posted on 2021-11-15, 13:48authored byLe Gros, Giovanna
<p>The Khovanov homology is a knot invariant which first appeared in Khovanov's original paper of 1999, titled ``a categorification of the Jones polynomial.'' This thesis aims to give an exposition of the Khovanov homology, including a complete background to the techniques used. We start with basic knot theory, including a definition of the Jones polynomial via the Kauffman bracket. Next, we cover some definitions and constructions in homological algebra which we use in the description of our title. Next we define the Khovanov homology in an analogous way to the Kauffman bracket, using only the algebraic techniques of the previous chapter, followed closely by a proof that the Khovanov homology is a knot invariant. After this, we prove an isomorphism of categories between TQFTs and Frobenius objects, which finally, in the last chapter, we put in the context of the Khovanov homology. After this application, we discuss some topological techniques in the context of the Khovanov homology.</p>
History
Copyright Date
2015-01-01
Date of Award
2015-01-01
Publisher
Te Herenga Waka—Victoria University of Wellington
Rights License
Author Retains Copyright
Degree Discipline
Mathematics
Degree Grantor
Te Herenga Waka—Victoria University of Wellington
Degree Level
Masters
Degree Name
Master of Science
Victoria University of Wellington Unit
Centre for Applied Cross-Cultural Research
ANZSRC Type Of Activity code
1 PURE BASIC RESEARCH
Victoria University of Wellington Item Type
Awarded Research Masters Thesis
Language
en_NZ
Victoria University of Wellington School
School of Mathematics, Statistics and Operations Research