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Abstract

The Khovanov homology is a knot invariant which first appeared in Khovanov’s origi-

nal paper of 1999, titled “a categorification of the Jones polynomial.” This thesis aims

to give an exposition of the Khovanov homology, including a complete background

to the techniques used. We start with basic knot theory, including a definition of

the Jones polynomial via the Kauffman bracket. Next, we cover some definitions

and constructions in homological algebra which we use in the description of our ti-

tle. Next we define the Khovanov homology in an analogous way to the Kauffman

bracket, using only the algebraic techniques of the previous chapter, followed closely

by a proof that the Khovanov homology is a knot invariant. After this, we prove

an isomorphism of categories between TQFTs and Frobenius objects, which finally,

in the last chapter, we put in the context of the Khovanov homology. After this

application, we discuss some topological techniques in the context of the Khovanov

homology.
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Chapter 1

Introduction

In 1999, Khovanov published his original paper titled “a categorification of the Jones

polynomial”, [6]. This categorification is what we today call the Khovanov homol-

ogy. Before its introduction, there were no other knot invariants of this type, and

specifically it is regarded as one of the first categorifications in knot theory. In this

process of categorification, Khovanov found a homology theory that is a link invariant

with excellent properties. For instance, it encodes the Jones polynomial and includes

some of the perks of a homology theory, including functoriality, and more. It has

prompted much research in knot homology theories as well as research into variants

of Khovanov homology.

In the following years since Khovanov’s original paper, Dror Bar-Natan wrote a pa-

per on Khovanov homology in a more approachable form, along with computations

of the Khovanov homology for some knots [1]. These computations were enough to

show that the Khovanov homology is indeed a stronger knot invariant than the Jones

polynomial. Another nice introduction to the Khovanov homology was written by

Paul Turner [13].

Since then, some other neat properties of the Khovanov homology have emerged.

In particular, Kronheimer and Mrowka proved that the Khovanov homology is an

unknot-detector. That is, an unknot is the only link that has the Khovanov homol-

ogy of the unknot. Also, Dror Bar-Natan produced another influential paper, [2],

1



2 CHAPTER 1. INTRODUCTION

which reintroduces the theory in a more geometric way.

This thesis gives an introduction to the Khovanov homology of knots. Unquestion-

ably, there are a lot of interesting features of the Khovanov homology, however, this

thesis is restricted to its definition and its hallmark properties. While there is cer-

tainly a well written literature on this subject, our point of difference is that we

assume less prerequisite knowledge, thus providing a more elementary groundwork.

This includes a complete discussion of the homological algebra involved, and some

foundations of knot theory. Additionally, we endeavour to describe the relationship

between (1 + 1)-Topological Quantum Field Theories, or TQFTs, and Frobenius ob-

jects. The correspondence between these two collections (really an isomorphism of

categories) was used in Khovanov’s original paper, and is helpful to understanding

his definition.

From the outset, our aim was to give a relatively complete exposition of the math-

ematical techniques we use in the definition of the Khovanov homology. Certainly

one can completely describe the Khovanov homology algebraically, but the motiva-

tions for why the algebraic rules are what they are, are somewhat demystified by

applying a TQFT. Also, routine justification of well defined-ness of the Khovanov

bracket is vastly simplified by applying a TQFT. Hence, at some point during my

research, it became clear that some of the geometric motivation of the definition

was unclear without understanding the relationship between TQFTs and Frobenius

objects. Therefore, we undertook the task of trying to understand in detail the cat-

egorical equivalence between TQFTs and Frobenius objects following [7].

It is true that the resulting thesis provides a slightly fuller picture than necessary

for our purposes. This was an outcome of chapters taking on a life of their own,

and is particularly true for the three background chapters, the chapter on knot the-

ory, Chapter 2, the chapter on homological algebra, Chapter 3, and the chapter on

TQFTs, Chapter 6.

Moving forward, we now outline how we will proceed. We start with some back-

ground knot theory to give some meaning to the “knot invariant” part of the title.
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Next we cover some fundamentals of homological algebra, which, unsurprisingly, will

be essential in discussing the “homology” part of the title. This is followed by the

title chapter, in which we discuss the Khovanov homology, followed closely by a chap-

ter which contains the proofs that the Khovanov homology is, as promised, a knot

invariant. At this point, the thesis in some sense comes to a natural stopping point,

where the Khovanov homology is defined purely as an algebraic object, with some

rather mysteriously constructed objects, in particular, a graded vector space V . We

will not stop here. As it turns out, this object is part of a collection of objects which

are in bijective correspondence with a more topological object (the aforementioned

TQFT). Hence, the next chapter takes this route, and provides a proof of this cor-

respondence. We then apply the results of this chapter to the Khovanov homology,

where we tie off some loose ends.

Explicitly, the chapters are as follows. We begin by introducing some of the main

concepts and objectives of knot theory in Chapter 2. In this chapter we also define

some useful terminology when discussing knots. Section 2.2 is devoted to the Jones

polynomial which we define and prove is a knot invariant. It is worth noting that the

definition of the Kauffman bracket is a foreshadowing of a construction that appears

in a later chapter.

In Chapter 3, we cover some fundamental concepts in algebra. In particular, an

important operation we will use is the tensor product, ⊗. Also, to name a few here,

we define “chain complexes”, “homology”, “chain homotopies”, and “cone construc-

tions”. In the last section of this chapter, we define graded vector spaces and adapt

some of our descriptions to this case. This will be important in the construction of

the Khovanov homology.

After Chapter 3, we are in a position to define the Khovanov homology, which we

do promptly in Chapter 4. We define it and then state some of its nice properties in

the latter part of this chapter. Here, we also restate some of the nice features of the

Khovanov homology. Unfortunately, this chapter does not give the definition in its

entirety, as we will not prove that the Khovanov bracket is well defined until the last

chapter, Chapter 7.
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Next, we prove Reidemeister invariance of the Khovanov homology in Chapter 5. The

proofs follow Dror Bar-Natan’s method ([1]) closely. We have ventured to do so very

explicitly with additional explanations and leave no stone unturned. These moves

only require algebraic techniques, which is nice. However, this is not the method of

Khovanov, nor are the algebraic techniques particularly intuitively enlightening, but

serves its purpose as a verification of the invariance of the Khovanov homology under

the Reidemeister moves.

In Chapter 6, we begin discussion of TQFTs from the categorical point of view.

We will assume some knowledge of category theory. We begin by describing symmet-

ric monoidal categories and functor categories, and show an isomorphism between

categories of this type. The first few sections are done generally, without considering

specific categories. After proving the equivalence, we show that the category we used

in the construction of the isomorphism has exactly the attributes of a category with

topologies as objects and morphisms, the category of 2-cobordisms. Our conclusion

is that there is an isomorphism of categories between Frobenius objects and TQFTs.

Lastly, in Chapter 7, we show that we can indeed apply a TQFT in Khovanov ho-

mology, and hence can replace R-homomorphisms with cobordisms. Hence, algebraic

formulae are replaced by pictures of surfaces. We also return to the missing proof

we left in Chapter 4, and prove that the Khovanov bracket is well defined. Lastly,

we use TQFTs to prove again the invariance of the Khovanov homology under the

first Reidemeister move. Finally, at this point, we hope to have encouraged some

geometric intuition of the construction of the Khovanov homology.

An omission from this thesis is a computation of the Khovanov homology of a knot.

I have computed the Khovanov homology of a class of torus knots, but unfortunately

due to the length of this thesis have had to leave it out. My only justification for

choosing not to include this chapter in particular is the feeling that excluding any

other chapter would leave a gap in the story.



Chapter 2

Knot theory

The Khovanov homology is a knot invariant, so we begin with an overview of knot

theory. The beginning of this chapter, in which we discuss the basic concepts of knot

theory, follows the arrangement of [3]. Next we introduce some standard theorems

and techniques in knot theory such as Reidemeister’s theorem. In the last section of

this chapter, we introduce the Kauffman bracket, which is used to define the Jones

polynomial. Our normalisation here is not standard, but is done in anticipation of

the Khovanov homology.

2.1 An introduction to knot theory

We begin by defining the concepts we need to define what exactly we mean by a

“knot”.

Recall that a homeomorphism of topological spaces is a bi-continuous bijection be-

tween spaces. Let X, Y be topological spaces. An embedding is a map f : X ↪→ Y

such that f is a homeomorphism from X to its image, f(X) ⊆ Y .

5



6 CHAPTER 2. KNOT THEORY

Homotopy

Recall I is the closed interval [0, 1]. For topological spaces X and Y , consider con-

tinuous maps f, g : X → Y . A homotopy H : X × I → Y from f to g (also written

f → g) is a continuous map such that:

1. H(x, 0) = f(x) for all x ∈ X

2. H(x, 1) = g(x) for all x ∈ X.

Note that the maps ht(x) := H(x, t) for every t ∈ I are also continuous maps from

X to Y . If there exists a homotopy between maps f, g : X → Y , then f and g are

called homotopic. This is an equivalence relation on maps from X to Y .

Suppose H is a homotopy, and let ht := H|X×{t}. If ht is also an embedding from

X × {t} to Y for each t ∈ I, then H is called an isotopy.

Ambient isotopy

Let f : X ↪→ Y and g : X ↪→ Y be embeddings. An ambient isotopy from f to g

is an isotopy H : Y × I → Y from the identity on Y , idY , to the map that brings

im(f) to im(g). In other words, H : Y × I → Y is an ambient isotopy if it satisfies

the following.

1. H(y, 0) = y for all y ∈ Y

2. H(f(x), 1) = g(x) for all x ∈ X

3. ht := H|Y×{t} : Y × {t} → Y is a homeomorphism for every t ∈ I.

If there exists an ambient isotopy between two maps, then these maps are called

ambient isotopic. Ambient isotopy is an equivalence relation on embeddings X ↪→ Y .
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Figure 2.1: Some examples of knots. From left to right: two unknots, a figure eight
knot, and a right-handed trefoil.

Knots

A knot is an embedding K of the circle S1 in R3. There is some abuse of terminology

when referring to a knot. One can mean one, or even a few of many things: an embed-

ding K : S1 ↪→ R3, the equivalence class of embeddings [K]∼ under ambient isotopy,

or even a knot diagram, all of which will be discussed further below. Nonetheless,

for each of these meanings of “knot”, two knots are considered the “same” knot if

their corresponding embeddings are ambient isotopic. Many of the definitions in this

section are from [3].

Intuitively, there is a natural equivalence on knots which captures the idea that

we could move from one to the other without breaking the circle. For example, this

equivalence should ensure that the two leftmost knots in Figure 2.1 are the same

knot. Also, we want that the unknot, figure eight knot, and the trefoil knot are all

in different equivalence classes, as one cannot manipulate one to look like any of the

others. With all this in mind, we informally name the simplest knot (or rather the

equivalence class of knots) the unknot, which is just a simple circle, which can be

seen in Figure 2.1.

Let X and Y be topological spaces. Recall that the disjoint union of X and Y ,

denoted X q Y , is the disjoint union of their underlying sets with a natural topology

which we define as follows. A set U ⊆ X q Y is open if and only if U ∩X is open in

X and U ∩ Y is open in Y . A link is an embedding of the disjoint union of finitely

many circles
∐n

k=1 S
1
k into R3.
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Figure 2.2: Here are some examples of links. On the left k unlinked unknots. On the
right is the Hopf link

The simplest link with k components is k unlinked unknots, which are links with

“unknotted” and “unlinked” components. We define k unlinked unknots to be the

equivalence class of knots containing the knot in Figure 2.2. Disjoint union of knots

has not been formally defined yet (see Definition 2.1.1), but we note that we can more

formally define the link ‘k unlinked unknots’ to be the disjoint union of k unknots in

R3.

A component of a link is the embedding of a single circle S1 ⊆
∐n

k=1 S
1
k in the

disjoint union, and an embedding of
∐n

k=1 S
1
k is said to have n components. Unless

specified, “knots” (by the previous definitions, links with exactly one component) are

used to mean both links and knots. This is a common convention in knot theory

which will be used here.

Note that general isotopy is not a strong enough condition to define an equivalence

of knots, as we desire. To see why, we claim the diagram below give an example of a

non-ambient isotopy between the unknot and the trefoil knot.

Every one of the above knots (and everything in between) is an embedding of a circle

in R3. To see that these diagrams illustrate an isotopy from the trefoil to the unknot,
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the only fact that remains to show is that it is continuous at the “limit point” of

the trefoil, call it x ∈ R3. Every 3-ball centred at x, B(x, ε), contains a trefoil, and

therefore its pre-image in S1 × I will be open, as required.

Ambient isotopy ensures the space just around the knot, or a neighbourhood of the

embedding is preserved. One can think of an ambient isotopy between knots as a

deformation of one knot in R3 and the space around it into the other.

Not all embeddings of S1 in R3 have “nice” properties. Wild knots are knots with

infinite knotting – they have repeating sections of the knot that become smaller and

smaller until they reach a limit point. To avoid dealing with these knots, we will con-

sider only knots which are ambient isotopic to simple closed polygons in R3. These

are called tame knots.

Knot projections

Since knots are three dimensional objects, they can be difficult to visualise. In order

to simplify working with knots, we consider their projections onto a plane. More

precisely, a knot projection of a knot L is a projection of L ⊂ R3 onto the plane R2

which is injective except at finitely many points, F ⊂ R2. The pre-image of each

point in F has a cardinality of exactly two, with nice properties. For each of these

points, we note which arc of S1 is over and which is under on the plane.

The second-to-last statement, that the pre-image of each point in F has a cardi-

nality of two and has nice properties, ensures that there will be no places in the
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projection where the placements of the strands are not clear, such that three strands

pass through a point, or that one strand does not only “skim” the other — each

strand “passes through” the other. Note that since we are only considering tame

knots, for every tame knot there exists a projection with finitely many crossings,

since every tame knot is (by definition) ambient isotopic to a simple closed polygon.

There are many different knot projections for each knot, (for example, the figure

below contains three unknots). A natural question to ask is what changes can one

make to the knot projection, to ensure it is still a projection of the original knot. Be-

fore this discussion, we will describe some standard language and conventions when

referring to knot diagrams.

Knot projections will be referred to as diagrams, or sometimes as knots.

Consider the knot K : S1 ↪→ R3. A section of a single knot, or more formally,

for connected A ⊂ S1 (an arc of the circle), the image of A, K(A), is referred to as a

strand. The points of F are called the crossings of the knot diagram D. Hence, the

statement about the cardinalities of the pre-images of elements in F simply requires

that each crossing has only two strands.

The crossings in the knot projection cannot be drawn continuously without losing

important information about the knot. Therefore, the under-strands of a crossing are

drawn ‘broken’, where the over-strand passes through.
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For the projection of a knot, the analogue for ambient isotopy is planar isotopy. This

is an isotopy of the knot projection in R2 to another knot projection in R2. Note we

must think of the actual projection – so each crossing will be a cross with no gaps.

An isotopy between two knot projections requires that no crossings can pass through

each other, as the image of the knot would cease to be an embedding

Clearly, planar isotopies do not describe all ambient isotopies of knots in R3, or,

more importantly, if two projections represent equivalent knots. Therefore, we need

to describe other manipulations of knot projections to include what knot projections

are equivalent under ambient isotopy.

When naming knots, or referring to knots, we are referring to the entire equiva-

lence class of knots. So, we can now formally define the unknot as the class of knots

which are ambient isotopic to a knot diagram with no crossings. This can be some-

times ambiguous, as one can not always tell if two knots will resemble each other

after ambient isotopy.

We now define the disjoint union of knots which is similar to that of topological

spaces, but considers the embedding of the knots as well.

Definition 2.1.1. Disjoint union of two knots

Consider two knots or links K1 and K2 with knot diagrams D1 and D2 respectively.

The knot K is the disjoint union of K1 and K2 if there exists a knot projection D of

K such that every crossing either belongs to K1 or K2. This knot is unique, and is

written K1qK2. In the case of knot diagrams, we use D1qD2, or sometimes D1D2

to represent the knot diagram where every crossing either belongs to D1 or D2.

This definition can be extended to the disjoint union of a finite number of knots.

Next, we define the Reidemeister moves. This means we can forget about knots

as embeddings and ambient isotopies and only work with projections as follows.
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Figure 2.3: A minimal set of the three Reidemeister Moves: from one to three clock-
wise from top left

Reidemeister moves

The three Reidemeister moves are manipulations of knot diagrams. They are:

R1 Untwisting a left loop or a right loop,

R2 Moving one strand over or under another strand,

R3 Moving a strand over or under a crossing.

Strictly speaking, they are equivalences of knot diagrams, but we will refer to them

as moves. The Reidemeister moves are used in, perhaps, one of the most important

theorems in knot theory, as follows.

Theorem 2.1.2. Reidemeister’s Theorem Two knots are equivalent under am-

bient isotopy if and only if they are equivalent under the Reidemeister moves and

planar isotopy.

Reidemeister’s Theorem gives us no way to tell if two knots are the equivalent from

their knot projections. Rather, it tells us that if there exists a series of Reidemeister
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moves that changes one knot diagram to the other, then the two diagrams represent

the same equivalence class of knots. Moreover, as there is no bound on the number

of Reidemeister moves in the series which changes one to the other, this theorem is

not useful to show that two knot projections are not equivalent.

These moves (there are in fact five equivalences) are not a minimal set of moves.

Consider the set of the three Reidemeister moves in Figure 2.3 – which are limited

to untwisting a right twist, moving one strand over a crossing, and moving a strand

under a crossing. From only these three moves, the rest of the Reidemeister moves

are also permitted.

A left-twist is equivalent to its untwisted form using a right-twist in the first move

and R2.

Moving a strand over a left crossing is equivalent moving a strand over a right crossing

and two applications of R2.

Finally, we claim passing a strand over follows from passing a strand under a crossing.

This can be seen by planar isotopy, rotating the knot so the tangle in question looks

like R3, it follows that moving a strand over a crossing is also permitted.

This minimal set of Reidemeister moves is not unique, but it will be useful when

proving theorems about all the Reidemeister moves, which can be shown by only

showing for the minimal set. Therefore, when proving theorems about invariance the
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Reidemeister moves, we observe that it is sufficient to only prove invariance for this

minimal set, and will do so without further comment.

Definition 2.1.3. Knot invariant

A knot invariant is a function Ψ : {Links} → S such that if K1 and K2 are two equiv-

alent knots, then Ψ(K1) = Ψ(K2). Note that it is not required that Ψ(K1) = Ψ(K2)

implies that K1 and K2 are equivalent.

To prove a function Ψ on the collection of links is a knot invariant, it is necessary

and sufficient to prove that Ψ is invariant under the three Reidemeister moves.

The knot invariants that we will be working are defined on oriented knot projections.

Orientation of a knot

An oriented knot is a knot which has an orientation. More formally, suppose a simple

closed polygon P has an ordered numbering of its vertices from 1 to k. Recall that

a tame knot K with one component is ambient isotopic to an embedding of a simple

closed polygon P . Then the direction of increasing vertices of P (mod k) defines an

orientation of the knot, and is often denoted by an arrow in the direction of increasing

vertices.

To obtain an orientation of a link, one assigns the orientation of each component

separately.

It is clear from the diagrams in Definition 2.3 that the Reidemeister Moves are the

same for oriented knots. Specifically, consider the collection of moves R1,R2,R3

with all possible orientations of strands. Hence, it follows that the “oriented” Rei-

demeister moves and planar isotopy are necessary and sufficient to say when two

oriented knots are equivalent.

A knot is called invertible if there exists an ambient isotopy between an oriented

knot and the same knot with the reverse orientation. All knots with less than eight
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crossings are invertible, which means only when looking at more complicated knots

do differences appear between oriented and unoriented knots.

Note that it is much easier to find a link (with more than one component) that

can be oriented in different ways to give distinct oriented knots. For example, con-

sider the Hopf Link in Figure 2.2 with an arbitrary orientation of each component.

Reversing the orientation of only one component of the link will create a new oriented

link distinct from the first.

Tangles and skein relations

Sometimes it is useful to restrict one’s attention to only one part of the knot projec-

tion, or to look how altering one part of the knot projection changes the knot.

More formally, consider an embedding B of the open unit 3-ball, B(x; 1) := {y ∈ R3 :

|x− y| < 1}, in R3, and knot K : S1 ↪→ R3. A 2-tangle B := B(B(x; 1)) is the image

of the embedding B when the intersection B(B(x; 1))∩K(S1) ⊆ R3 is homeomorphic

to two disjoint open arcs.

There exists a projection of a knot containing a 2-tangle B onto the plane that

contains only the strands of B. This is equivalent to considering an embedding of an

open unit 2-ball into the plane R2 where the strands of the knot cross the boundary

of the 2-ball at exactly four distinct points. One can arrange these intersections on

the perimeter to be evenly spaced, as the knots are invariant under planar isotopy of

their respective knot diagrams.

An elementary 2-tangle is a 2-tangle with no crossings or exactly one crossing, of

which there are exactly four, as seen in the figures below. In general, a 2-tangle can
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have any number of crossings.

Consider a knot with an identified elementary 2-tangle within the knot. Chang-

ing this tangle with any of the three other elementary 2-tangles will change the knot,

and, informally, the relationship between a knot and knots with different elementary

2-tangles are known as skein relations. These skein relations are very useful when

defining relationships between these knots.

The following are the four possible way to arrange an elementary 2-tangle in a knot.

Clearly, they form four different knots.

When talking broadly about knots that differ by only a elementary 2-tangle in ex-

actly one place, it is convenient only to draw the elementary 2-tangle. We will refer

to them as a, b, c, d for the next few paragraphs.

a b c d

For example, consider a knot invariant Ψ, and without loss of generality suppose a

knot diagram D has an elementary 2-tangle a. Consider the knot D with the elemen-

tary 2-tangle a replaced with the elementary 2-tangle b. This knot is denoted Db,

and similarly for Dc, Dd. More formally than previously, a skein relation is when one

can find, for example, Ψ(D) in terms of Ψ(Db),Ψ(Dc), and Ψ(Dd) (we say broadly

‘a relation’, since we don’t know anything about the knot invariant Ψ). When we

generalise a relation between knots with replaced tangles, we refer to the knots as
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simply what occurs at the tangle in question, as follows.

Note that it important to notice the surroundings of the crossing, as rotating one

of the tangles by π
2

will change the knot.

This notation is consistent with oriented diagrams. To differentiate between the

two types of oriented crossings, in the diagrams below the left crossing is a positive

crossing and the crossing on the right crossing is a negative crossing. This is also

known as the sign of the crossing.

We more generally use “tangles” to refer to a piece of a knot diagram.

2.2 The Jones polynomial

First we will define the Kauffman bracket. This method gives a nice analogue to how

we will define the Khovanov homology.

Definition 2.2.1. The Kauffman bracket

Recall that a Laurent polynomial over the ring R is a finite sum
∑n

k=m akx
k where

ak ∈ R, m,n ∈ Z (in other words, we allow negative powers of x). The Kauffman

bracket of a knot diagram D, written 〈D〉, is a Laurent polynomial in the variable q

with coefficients in Z. It satisfies the following three relations.

Kf1 〈∅〉 = 1

Kf2 〈© qD〉 = (q + q−1)〈D〉
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Kf3 〈0〉 = 〈1〉 − q〈H〉

Here, ∅ denotes the empty link.

The first relation, Kf1, defines the Kauffman bracket of the empty link. The second

relation, Kf2, defines what the Kauffman bracket of the disjoint union of an unknot

and D, in terms of the Kauffman bracket of D, 〈D〉. The third relation, Kf3, gives

us the Kauffman bracket of a knot D in terms of the Kauffman brackets of the knots

with one less crossing.

Note that Kf3 is equivalent to 〈/〉 = 〈H〉 − q〈1〉, which one can see by simply

rotating every tangle by π
2
. By applying Kf3 recursively, one can reduce all knots to

a sum of Kauffman brackets of unlinked unknots.

The relations Kf1 and Kf2 specify the Kauffman bracket of k unlinked unknots.

〈k unlinked unknots〉 = (q + q−1)k

The Kauffman bracket is not itself a knot invariant, but a normalisation of it after

orienting the knot (the Jones polynomial!) is. This will be defined soon.

Total smoothings of a knot

A smoothing of a knot diagram D is when a crossing 0 in D is replaced with either

a 1 or H. The smoothing 1 is called as the 0-smoothing, and the smoothing H is

called 1-smoothing.

A total smoothing occurs when every crossing in a knot is replaced with one of these

smoothings. Note that a total smoothing will only consist of unlinked unknots, which

we know the Kauffman bracket of. Also, since there are two ways to smooth each

crossing, there are exactly 2n total smoothings of each knot diagram.

In order to keep track of the total smoothings, we will describe a way to label them
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by elements α of {0, 1}n (strings of length n from the set {0, 1}). First, we number

the n crossings in D by 1, . . . , n in some arbitrary way. In a total smoothing, the

ith crossing will be replaced either by the 0-smoothing or the 1-smoothing, and this

corresponds, as you would expect, to the 0 or 1 in the ith place of α. Hence, once we

order the crossings of the knot diagram, there is a natural bijective correspondence

between the total smoothings of a knot diagram with n crossings and elements of

{0, 1}n. We refer to the total smoothing associated to α as Sα.

The number of occurrences of a 1 in the string α is called the height of the smooth-

ing, denoted by |α| or rα. Also, the total 0-smoothing (respectively total 1-smoothing)

refers to the smoothing S00···0 (respectively S11···1), the smoothing where every cross-

ing is replaced by a 0-smoothing (respectively 1-smoothing).

We denote the number of cycles, or unknots in the smoothing Sα by kα, and therefore

〈Sα〉 = (q + q−1)kα .

Example 2.2.2. 0011 smoothing of the Figure Eight Knot

Arbitrarily numbered figure eight knot and its 0011 smoothing.

The n-dimensional cube

A construction that appears regularly during this thesis is the n-dimensional cube.

Let α, α′ ∈ {0, 1}n such that the strings α and α′ differ at exactly one place and

|α| < |α′|. We define the n-dimensional cube to be a directed graph with vertices la-

belled by elements of {0, 1}n, and directed edges {α→ α′} where α, α′ are as defined

in the previous sentence. For now, we only will be concerned with the vertices, but
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Figure 2.4: Hopf Link

the edges will reappear in later chapters.

Let D be a knot diagram D with n crossings. In terms of the previous discussion,

every total smoothing of D can be associated with a vertex of the n-dimensional

cube, and is drawn in Example 2.2.3.

Example 2.2.3. Computing the Kauffman bracket Here is an example how of

the Kauffman bracket of a simple knot is computed using the 2-dimensional cube.

−q·(q+q−1)

10

+

��

(q+q−1)2

00

��

q2·(q+q−1)2

11

��

−q·(q+q−1)

01

��

(q + q−1)2 + 2 · (−q) · (q + q−1) + (−q)2 · (q + q−1)2
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Here is the 2-dimensional cube with smoothings of the same height |α| on each verti-

cal, with the total 0-smoothing on the leftmost vertical and the total 1-smoothing on

the rightmost vertical. The polynomial in the box of each smoothing Sα is (−q)|α|〈Sα〉.

Using Kf3, we see that the sum of these polynomials is the Kauffman bracket, since

for every 1-smoothing in the smoothing, we multiply by (−q).

We now prove that the relations in 2.2.1 define the unique polynomial in Equation

2.1. This polynomial is defined in terms of the total smoothings of D.

Theorem 2.2.4. Let D be a knot diagram with n crossings. The relations in Defini-

tion 2.2.1 define a unique polynomial independent of the choice of the crossing when

applying the third skein relation, Kf3, on D. Therefore, it is independent of how

the crossings are numbered. These relations define the Kauffman Bracket of a knot

diagram D which can be written as the following sum.

〈D〉 =
∑

α∈{0,1}n
(−q)rα(q + q−1)kα (2.1)

Proof. This will be shown by induction on the number of crossings of the knot dia-

gram D.

As previously mentioned, if D is a knot with no crossings and k components, then

the Kauffman bracket of D is (q + q−1)k, which satisfies Equation 2.1.

For the induction hypothesis, we assume 〈D〉 =
∑

α∈{0,1}n(−q)rα(q + q−1)kα is true

for n = k crossings. We now show it follows that it is true for n = k + 1 crossings.

Consider a knot D with n crossings with an arbitrary numbering of the crossings.

Choose the ith crossing of D. Let D0 be identical to D but with a 0-smoothing at

the ith crossing, and similarly D1 be identical to D but with a 1-smoothing at the

ith crossing. The third relation of 2.2.1 states 〈D〉 = 〈D0〉 − q〈D1〉.

By the induction hypothesis, one can assume that 〈D0〉 =
∑

α∈{0,1}k(−q)rα(q+q−1)kα
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and 〈D1〉 =
∑

α∈{0,1}k(−q)rα(q + q−1)kα , where kα depends on the knot in question

(here, D0 and D1 respectively). First, we need to introduce some notation.

Let αj for 1 ≤ j ≤ n be the jth element of the string α ∈ {0, 1}n. For some

α ∈ {0, 1}k, let α0 and α1 represent elements of {0, 1}k+1 such that the ith element in

the string α0 is 0, and (α0)j<i = αj and (α0)j>i = αj−1. Similarly, the ith element in

the string α1 is 1, and satisfies (α1)j<i = αj and (α1)j>i = αj−1. So α0 (respectively

α1) represents a total smoothing of D which is exactly the total smoothing α of D0

(respectively D1).

Then, let k0
α be the number of cycles in D0 with smoothing α, and let k1

α be the

number of cycles in D1. Then, k0
α = kα0 and k1

α = kα1 . Note that rα depends only on

α, and not on the smoothing itself, and that rα0 = rα = rα1 − 1.

〈D〉 = 〈D0〉 − q〈D1〉

=
∑

α∈{0,1}k
(−q)rα(q + q−1)k

0
α + (−q)

∑
α∈{0,1}k

(−q)rα(q + q−1)k
1
α

=
∑

α0∈{0,1}k+1

(−q)rα0 (q + q−1)kα0 + (−q)
∑

α1∈{0,1}k+1

(−q)rα1−1(q + q−1)kα1

=
∑

α0∈{0,1}k+1

(−q)rα0 (q + q−1)kα0 +
∑

α1∈{0,1}k+1

(−q)rα1 (q + q−1)kα1

=
∑

α∈{0,1}k+1

(−q)rα(q + q−1)kα

The last equality holds because {α0 : α ∈ {0, 1}k} ∪ {α1 : α ∈ {0, 1}k} = {0, 1}k+1

and {α0 : α ∈ {0, 1}k} ∩ {α1 : α ∈ {0, 1}k} = ∅.

We now claim the Kauffman bracket does not depend on the ordering of the cross-

ings. Consider a permutation σ : {0, 1}n → {0, 1}n which changes the order of the

crossings. The permutation will not alter the height of α ∈ {0, 1}n, since there are

still the same number of 1s. Let α′ = σ(α). Then, each smoothing Sσ(α) is the same
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as the smoothing Sα′ . Hence, a smoothing of height r will be the same as exactly

one smoothing of height r in the new ordering of the crossings. Therefore, summing

over all total smoothings of height r for each ordering will yield the same polynomial.

Alternatively, we have the following equalities.∑
|α|=r

〈Sα〉 =
∑
|σ(α)|=r

〈Sα〉 =
∑
|σ(α)|=r

〈Sσ(α)〉

Definition 2.2.5. The Jones polynomial

Let D be an oriented diagram with n+ positive crossings and n− negative crossings.

The unnormalised Jones polynomial of D, denoted Ĵ(D), is the following polynomial.

Ĵ(D) := (−1)n−qn+−2n−〈D〉

Theorem 2.2.6. The Jones polynomial is an invariant of oriented knots.

Proof. One only needs to show that the Jones polynomial is invariant under the three

Reidemeister moves, as it is clearly invariant under planar isotopy.

First, we compute the Kauffman bracket of the tangle, and then assign all possi-

ble orientations to the strands to find the Jones polynomial.

I will use the fact that changing the orientation of a single strand in a crossing

will change its sign as well. For example, by reversing orientations on both strands

of a positive crossing, the crossing will remain a positive crossing.

1.

〈 〉 =〈 〉 − q〈 〉

=〈 〉 − q(q + q−1)〈 〉

=(1− q2 − 1)〈 〉

=− q2〈 〉
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We now assign an orientation to find the positive crossings and negative cross-

ings. Suppose has n+ positive crossings and n− negative crossings. Then

if keeps the orientation of , then it has one less negative crossing.

Therefore:

Ĵ( ) =(−1)n−qn+−2n−〈 〉

=(−1)n−qn+−2n−(−q2)〈 〉

=(−1)n−−1qn+−2n−+2〈 〉

=(−1)n−−1qn+−2(n−−1)〈 〉

=Ĵ( )

as required.

The opposite orientation is almost identical, as assigning the reverse orientation

to , the sign of the crossing will be unchanged.

2.

〈 〉 =〈 〉 − q〈 〉

=〈 〉 − q〈 〉 − q〈 〉+ q2〈 〉

=〈 〉 − q(q + q−1)〈 〉 − q〈 〉+ q2〈 〉

=(1− q2 − 1 + q2)〈 〉 − q〈 〉

=− q〈 〉

There are four ways to orient the strands in the tangle, and every possible ori-

entation will have one positive crossing and one negative crossing.

Suppose has n+ positive crossings and n− negative crossings. Then

will have n+ − 1 positive crossings and n− − 1 negative crossings. Therefore:
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Ĵ( ) =(−1)n−qn+−2n−〈 〉

=(−1)n−qn+−2n−(−q)〈 〉

=(−1)n−−1qn+−2n−+1(−q)〈 〉

=(−1)n−−1qn+−2n−−1+2(−q)〈 〉

=(−1)n−−1q(n+−1)−2(n−−1)(−q)〈 〉

=Ĵ( )

3. We use planar isotopy and invariance under R2. That is, we use that 〈 〉 =

−q〈 〉 and 〈 〉 = −q−1〈 〉.

〈 〉 =〈 〉 − q〈 〉

=(−q)〈 〉 − q〈 〉

=(−q)(−q−1)〈 〉 − q〈 〉

=〈 〉 − q〈 〉

=〈 〉

Note that no matter how we orient , the number of negative crossings and

number of positive crossings is the same as in . Therefore, it is clear that

Ĵ( ) = Ĵ( ) for every possible orientation, as required.

Therefore, the Jones polynomial is invariant under the Reidemeister moves.
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Chapter 3

Homological algebra

In order to discuss the Khovanov homology and the proof that it is a knot invariant,

we first need the tools of homological algebra. Much of this chapter can be gener-

alised to a class of categories called abelian categories. In this chapter, for clarity and

brevity of exposition, we will only refer only to R-modules but later in the chapter

use the fact that it is possible to generalise to any abelian category. We will assume

knowledge of the definition of a category and functors between categories, which can

all be found in [10]. What we eventually need is everything in this section in terms

of Z-graded R-modules, which the last section of this chapter is devoted to.

The following definitions and propositions will only discuss cohomology rather than

homology, which is all that is needed for the next chapters. Everything done here

can be extended to homology with little effort. The more typical algebraic structures

such as modules and tensor products follow [9] and [11]. The homological algebra

section follows the structure of the first chapter of Weibel, [14].

Notation 3.0.7. The arrow ↪→ denotes an injective map, or more generally, a monic

morphism. The arrow � denotes a surjective map, or more generally, an epic mor-

phism.

27
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3.1 Background

Modules

Let R be a ring with a multiplicative identity. A left R-module M is an abelian group

(M,+) and a scalar mulitplication map, · : R ×M → M , that satisfies the following

relations for r, s ∈ R and m,n ∈M .

1. r · (m+ n) = r ·m+ r · n

2. (r + s) ·m = r ·m+ s ·m

3. (rs) ·m = r · (s ·m)

4. 1R ·m = m

A right R-module is defined similarly, but with a scalar multiplication map M ×R→
M . We will only work with commutative rings with unit.

R-modules are generalisations of vector spaces, by replacing fields with rings. So,

one can view a vector space as a K-module where K is a field. Also, an abelian

group A can be considered a Z-module where for n ∈ Z and a ∈ A, with scalar

multiplication defined as n · a := a+ a+ · · ·+ a︸ ︷︷ ︸
n

.

Consider left R-modules M and N . A left R-homomorphism is a map f : M → N

such that f(m+m′) = f(m)+f(m′) for all m,m′ ∈M (that is, f is a homomorphism

of the groups M and N) and f(r ·m) = r · f(m) for all r ∈ R and m ∈ M (that is,

f is R-linear). An R-isomorphism is a bijective R-homomorphism, and two modules

are called isomorphic, denoted M ∼= N , if there exists an R-isomorphism between

them.

A right R-homomorphism of right R-modules is defined similarly, but the R-linear

condition is replaced with right R-multiplication, specifically f(m · r) = f(m) · r.
When the context is clear, we use R-homomorphism, or simply homomorphism when
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referring to left or right R-homomorphisms. From now on, when we refer to R-

modules, we mean left R-modules. This can all be translated into the language of

right R-modules.

Let M be a module. A submodule N of M is subset N of M , which is closed under

the binary operation + and action of R. In other words, N is itself an R-module

under the operations of the module M . Hence, (N,+) is an abelian group, and

·|R×N : R × N → N is well defined, so N is an R-module. The trivial R-module is

the zero module, written 0.

The collection of R-modules as objects and R-module homomorphisms as morphisms

forms a category, which is denoted R-mod.

Given R-modules M,N such that N is a submodule of M , one can define the quotient

module M/N . This is the R-module of equivalence classes of elements of M under

the equivalence relation m ∼ n if and only if m− n ∈ N . The elements of M/N are

written [m] or m+N . (M/N,+) inherits the operation of addition from (M,+), that

is, [m] + [n] := [m + n], and the action of R on M , r · [m] := [r ·m]. It follows that

these operations are well defined, as M and N are abelian groups, so N is a normal

subgroup of M . Hence, M/N is indeed an R-module.

Consider any R-homomorphism h : M → M ′, and let M/N be a quotient mod-

ule with the associated surjective map j : M � M/N . The quotient module M/N

has the universal property that if N is a subset of the kernel of h, then there exists

exactly one R-homomorphism h̃ such that h̃ ◦ j = h.

M
j

// //

h

!!

M/N

∃ ! h̃

��

M ′
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We now define an important quotient module that we consider in this chapter. Let

f : M → N be an R-homomorphism. The co-kernel of an R-module homomorphism

f is the R-module coker(f) := N/ im f . The co-kernel of an R-homomorphism f is

trivial if and only if f is surjective, which is the dual property of the fact that the

kernel of f is trivial if and only if f is injective. The co-kernel is always defined since

the image of a map f , im f , is always a submodule of its codomain, N .

Let B be a subset of M . Recall the span of B, spanB, is the collection of all

linear combinations of B in M .

spanB := {r1 · b1 + · · ·+ rk · bk : ri ∈ R, bi ∈ B for all 1 ≤ i ≤ k}

spanB is a submodule of M as it is closed under addition and scalar multiplication.

Let M be a module. Recall that a set B is linearly independent if the following

finite sum ∑
i

ribi = 0 where ri ∈ R, bi ∈ B,

implies that ri = 0 for all i. The rank of a module M is the cardinality of a maximal

independent set. Note that this set doesn’t necessarily span M .

Given R-modules M,N , one can define a larger R-module called the direct sum

of R-modules, denoted M ⊕ N . This R-module is the collection of formal sums of

elements of M and elements of N . Specifically, M ⊕N = {m+ n : m ∈ M,n ∈ N}.
Addition is as you would expect, (m + n) + (m′ + n′) := (m + m′) + (n + n′), and

scalar multiplication r · (m+ n) := r ·m+ r · n.

Suppose M is a module with submodules N,N ′. Suppose that span(N ∪ N ′) = M

and N ∩N ′ = {0}. Then, M = N ⊕N ′.
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One can extend the direct sum to a collection of modules {Mi}i∈I .

⊕
i∈I

Mi :=

{∑
i∈I

rimi :
mi ∈Mi, ri ∈ R for i ∈ I

only finitely many ri are non-zero

}

For a finite direct sum, one can also write the direct sum as ordered elements, or the

Cartesian product, (m1,m2, . . . ,mk) ∈ M1 × · · · ×Mk. The rank of module M ⊕N
is equal to the sum of the ranks of M and N , rank(M ⊕N) = rankM + rankN .

Free modules

Many nice properties of vector spaces are lost when generalising to modules, and we

will look at one particular type of R-module that retains some of the useful properties

of vector spaces.

A free R-module, M , is an R-module that admits a basis. That is, there exists a

set S ⊂M so every element m ∈M can be written uniquely as a sum

m =
∑
i

risi where ri ∈ R, si ∈ S

where only finitely many ri are non-zero.

We call the set S a basis of M . When a basis S of a module M is finite, the module is

called finitely generated. As opposed to vector spaces, not every linearly independent

set in M can be augmented to a basis of M . In the case that the basis has finite

cardinality, every basis of a free module M will have the same cardinality. Therefore,

one can define the rank of a finitely generated free module to be the cardinality of a

basis S of this free module (note that rank is equal to dimension when referring to

vector spaces).

A finitely generated free R-module of rank n is isomorphic to the direct sum of

n copies of R. All modules over a field (that is, vector spaces) are free modules. A
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free module generated by a set S always exists.

Let S be a set, and denote the free module on S over R by F (S), and let Φ be

the inclusion map Φ : S ↪→ F (S). Free R-modules have the universal property that

for any R-module G and map g : S → G, there exists exactly one R-homomorphism

g̃ : F (S)→ G such that g̃ ◦ Φ = g.

S �
� Φ //

g

!!

F (S)

∃ ! g̃

��

G

3.1.1 Tensor product of modules

This section will be devoted to constructing another R-module from other R-modules

— the tensor product of R-modules. Suppose R is commutative. We will first define

a tensor product of two R-modules, that is describe the universal property we want a

tensor product to have. Then we show its existence by constructing it explicitly, and

showing that it satisfies the chosen universal property. Subsequently, we can then

call it the tensor product, which is unique up to unique isomorphism.

Let U×U ′ be the cartesian product of the underlying groups of the R-modules U and

U ′. Let W be an R-module. Recall that a R-bilinear map is a map f : U × U ′ → W

such that f is an R-homomorphism in each variable, so f(r · u, u′) = f(u, r · u′) =

r · f(u, u′), f(u+ v, u′) = f(u, u′) + f(v, u′) and f(u, u′ + v′) = f(u, u′) + f(u, v′) for

every r ∈ R, u, v ∈ U , and u′, v′ ∈ U ′.

Let Tens(U,U ′) denote a tensor product. We now describe the universal property

of a tensor product: there exists a bilinear map Ψ : U × U ′ → Tens(U,U ′) such

that for any bilinear map f : U × U ′ → W , there is a unique R-homomorphism

f̃ : Tens(U,U ′)→ W such that f̃ ◦Ψ = f . This implies that a tensor product, should
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it exist, is defined up to unique isomorphism.

U × U ′ Ψ //

f

##

Tens(U,U ′)

∃ ! f̃

��

W

We now construct a tensor product, thereby showing its existence. Let M denote the

free R-module on the set U × U ′. We now will construct a submodule N of M . Let

N be the module generated by elements

(u+ v, u′)− (u, u′)− (v, u′),

(u, u′ + v′)− (u, u′)− (u, v′),

(r · u, u′)− r · (u, u′),

(u, r · u′)− r · (u, u′),

where u, v ∈ U , u′, v′ ∈ U ′, and r ∈ R.

Then, the quotient module M/N is what we define to be the tensor product of U

and U ′, denoted U ⊗ U ′, with elements denoted by sums of elements of the form

u⊗ u′. That is, the tensor product of R-modules U and U ′ is the R-module U ⊗ U ′,
which is generated by the ordered pairs {u⊗u′ : u ∈ U, u′ ∈ U ′}, with the equivalences

(u+ v)⊗ (u′ + v′) = (u⊗ u′) + (u⊗ v′) + (v ⊗ u′) + (v ⊗ v′),

(r · u)⊗ (r′ · u′) = (rr′) · (u⊗ u′)

for all r, r′ ∈ R, u, v ∈ U , and u′, v′ ∈ U ′.

We now check this satisfies the universal property, and hence is well defined. Let

i : U × U ↪→ M be the inclusion map of U × U ′ to the free module on U × U ′,
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and let j : M � M/N = U ⊗ U ′ be the induced quotient map. Define the map

Ψ : U × U ′ → U ⊗ U ′ to be the composition j ◦ i. This map Ψ is R-bilinear by

construction.

Now suppose f : U × U ′ → W is R-bilinear. Next we check the existence and

uniqueness of an R-homomorphism f̃ : U ⊗ U ′ → W such that f̃ ◦ Ψ = f . This

follows from the universal property of the free module M , and the universal property

of the quotient module M/N = U ⊗ U ′.

U × U ′ � � i //

f

""

M

∃ !f ′

��

j
// // U ⊗ U

∃ !f ′′

}}

W

From the left triangle, any f : U × U ′ → W , there exists a unique R-homomorphism

f ′ such that f ′ ◦ i = f . Since f is bilinear and f ′(u, u′) = f(u, u′), f ′ is bilinear on

the image of i, hence we find that f ′ is zero on the generating elements of N , there-

fore N is a subset of the kernel of f ′. Hence from the right triangle, there exists a

unique R-homomorphism f ′′ such that f ′′ ◦ j = f ′. Combining these equations, with

Ψ = j ◦ i, we have a unique R-homomorphism f ′′ such that f ′′ ◦Ψ = f , as required.

To be clear that one is considering the tensor product of modules over the ring

R, the tensor product is occasionally denoted ⊗R. This will often be omitted when

the ring is clear from the context.

In the case of finitely generated R-modules U and U ′, the rank of the tensor product

is the product of the ranks. That is,

rank(U ⊗ U ′) = rankU · rankU ′.

The tensor product is associative, so one can omit the parentheses of the tensor
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product of more than one R-module.

U ⊗ (U ′ ⊗ U ′′) ∼= (U ⊗ U ′)⊗ U ′′

Therefore, for n ∈ N, one can write the nth tensor power of a R-module U to be

U⊗n. By convention, U⊗0 = R.

U⊗n := U ⊗ U ⊗ · · · ⊗ U︸ ︷︷ ︸
n

Also, the tensor product is distributive over direct sums. That is, U ⊗ (W ⊕W ′) ∼=
(U ⊗W )⊕ (U ⊗W ′).

Example 3.1.1. Consider the tensor product of anR-moduleW and the 1-dimensional

free R-module, R. Then W ⊗R ∼= W ∼= R⊗W .

We only show W ⊗ R ∼= W , as the other isomorphism follows similarly. Consider

the linear map Φ : W → W ⊗ R, defined by w 7→ w ⊗ 1. This is clearly linear as

Φ(r · w) = (r · w)⊗ 1 = r · (w ⊗ 1) = r · Φ(w). This map is injective since Φ(w) = 0

if and only if w ⊗ 1 = 0 if and only if w = 0. The map Φ is surjective since if

w ⊗ r ∈ W ⊗R, then w ⊗ r = w ⊗ (r · 1) = (r · w)⊗ 1 = Φ(r · w), as required.

The above properties ensure the tensor product is a symmetric monoidal product,

which means it has certain nice properties in the category R-mod (we employ this

without justification). For example, for R-homomorphisms f : M → N and f ′ :

M ′ → N ′, f ⊗ f ′ is a well defined R-homomorphism from M ⊗M ′ → N ⊗N ′, such

that f ⊗ f ′(m ⊗ m′) = (f(m)) ⊗ (f ′(m′)). We discuss the concept of symmetric

monoidal categories thoroughly in Chapter 7.
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3.2 Cochain complexes and cohomology

A cochain complex of modules

A cochain complex of R-modules is a sequence of R-modules C∗ := {Ci}i∈Z and R-

module homomorphisms {di : Ci → Ci+1}i∈Z such that the composition di+1 ◦di = 0.

· · · −→ Ci−1 di−1

−−→ Ci di−→ Ci+1 −→ · · ·

The requirement that di ◦ di−1 = 0 is equivalent to im di−1 ⊆ ker di. The {Ci}i∈Z are

called the spaces of the chain complex.

The R-homomorphisms {di}i∈Z are called the differentials of C∗. For each i ∈ Z, the

image of di−1 is denoted by Bi(C∗), and its elements are known as the i-coboundaries

of the cochain complex. The kernel of di is denoted by Zi(C∗), and its elements are

called the i-cocycles of the cochain complex. The i of Ci is its cochain complex degree.

We call a cochain complex C∗ bounded if its spaces are non-trivial for finitely many

i.

Let C∗ be a cochain complex with differentials {diC}i∈Z. A sub-complex of the cochain

complex C∗ is cochain complex D∗ such that Di is a sub-module of Ci for every i,

and the ith differential of D∗ is the restriction of diC to Di, denoted diD. Now let

D∗ be a sub-complex of a cochain complex C∗. A quotient of the cochain com-

plex C∗ with respect to D∗ is the cochain complex (C/D)∗ which has spaces Ci/Di

in degree i. Its differentials are the induced differentials of C∗, which are well defined.

Consider cochain complexes C∗, D∗ with respective differentials d∗C , d
∗
D. The direct

sum of C∗ and D∗, denoted C∗ ⊕ D∗, is the cochain complex with spaces Ci ⊕ Di,

and differentials di defined by di(c, d) = (diCc, d
i
Dd) for c ∈ Ci, d ∈ Di.

For a cochain complex C∗, the height shift operator ·[s] with s ∈ Z defines a new
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chain complex C∗[s] by

Cn[s] := Cn−s.

The differentials of C∗[s] are also shifted. That is, the nth differential of C∗[s] is the

(n− s)th differential of C∗.

Definition 3.2.1. Cohomology of a cochain complex

The nth cohomology module of a cochain complex C∗ is the module defined by the

quotient

Hn(C∗) := Zn(C∗)/Bn(C∗).

This is well defined since it is required that Bn(C∗) ⊆ Zn(C∗) for every n by def-

inition of a chain complex, and in fact Bn(C∗) is a submodule of Zn(C∗), by the

properties of homomorphisms.

Suppose C∗ is a chain complex such that Hn(C∗) = 0. Then one says C∗ is ex-

act at Cn. If Hn(C∗) = 0 for every n, then C∗ is called an exact sequence, or we

say it has zero homology. Also, a chain complex C∗ is called acyclic if it has zero

homology.

Note that the shift operator ·[s] on a cochain complex extends to the homology

of the complex, which is clear since the differentials are also shifted.

Hn(C∗[s]) = Hn−s(C∗)

Example 3.2.2. Consider the following cochain complex M∗ of Z-modules.

M i =

{
Z/8Z : i ≥ 0

0 : i < 0
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With the following differentials.

di =

{
4 so di(x) = 4x : i ≥ 0

0 so di(x) = 0 : i < 0

Then the cochain complex M∗ is as follows.

· · · −→ 0
0−−→ 0

0−−→ Z/8Z 4−−→ Z/8Z 4−−→ Z/8Z −→ · · ·

This is a cochain complex as for degrees ≤ 0, 0 ◦ 0 = 0 and 4 ◦ 4 = 0, and for degrees

> 0, im 4 = {0, 4} and ker 4 = {0, 2, 4, 6}. Therefore im 4 ⊆ ker 4 as required.

The cohomology modules for this complex are:

H i(M∗) ∼=


Z/2Z : i > 0

Z/4Z : i = 0

0 : i < 0

Since, for i < 0, H i(M∗) = 0/0 = 0. For i = 0, H i(M∗) = {0, 2, 4, 6}/{0} ∼= Z/4Z.

Lastly, for i > 0, H i(M∗) = {0, 2, 4, 6}/{0, 4} ∼= Z/2Z.

Cochain complex maps

Let C∗ and D∗ be cochain complexes with differentials d∗C and d∗D respectively. A

cochain complex map {f ∗ : C∗ → D∗} is a collection of R-homomorphisms {fn :

Cn → Dn}n∈Z that commute with the differentials of C∗ and D∗. So, there is a

commuting “ladder” diagram:

· · · // Cn−1

fn−1

��

dC // Cn dC //

fn

��

Cn+1 //

fn+1

��

· · ·

· · · // Dn−1 dD // Dn dD // Dn+1 // · · ·
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In other words, dD ◦ fn = fn+1 ◦ dC for every n. For clarity, the composition symbol

“◦” will sometimes be omitted in the following working.

Chain complexes of R-modules with chain complex maps form a category denoted

Ch(R-mod). The identity chain complex map is clearly the chain map which is the

collection of identity maps at each degree n, and is written idC∗ . The zero chain

complex map is the map which is zero for every degree n, and is denoted 0∗.

A cochain complex map f ∗ : C∗ → D∗ induces an R-homomorphism fn : Hn(C∗)→
Hn(D∗) on cohomology for every n. To show this induced map is well defined, we

first show that f ∗ sends cocycles to cocycles. If c ∈ ker dC , then since f ∗ is a cochain

map, dDf
n(c) = fn+1dC(c) = 0, which implies fn(c) is a cocycle of Dn. Therefore,

fn(Zn(C∗)) ⊆ Zn(D∗).

Next we show that the induced map is well defined under the quotient by the bound-

ary Bn(C∗). Suppose c, c′ represent the same element in Hn(C∗), so c− c′ ∈ Bn(C∗).

Then c− c′ = dCb for some b ∈ Cn−1. Therefore, fn(c− c′) = fndC(b) = dDf
n−1(b),

so it follows that fn(c)−fn(c′) ∈ Bn(D∗). This shows that fn(c) and fn(c′) represent

the same equivalence class in Hn(D∗), as required.

Definition 3.2.3. Quasi-isomorphism

A chain complex map is called a quasi-isomorphism if the induced maps are isomor-

phisms on the cohomology modules for every n. Hence, quasi-isomorphisms form an

equivalence relation on chain complexes.

Next we state a proposition that states Hn has nice properties, that it, it is a functor.

Proposition 3.2.4. The nth cohomology module Hn is a functor from Ch(R-mod)

to R-mod. More generally, for an abelian category A, Hn is a functor from Ch(A)

to A.
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This section, as well as the rest of this chapter, can be generalised to abelian cate-

gories, which will not be explicitly described here, but is done in [14]. Moreover, one

can show that if A is an abelian category, Ch(A) is also an abelian category. Hence,

many of the previous discussions can be extended to homology of cochain complexes,

of which we will discuss some details now.

In the next proposition, we explain the kernel and co-kernel of a chain complex

of R-modules are in the category Ch(R-mod). The kernel and co-kernel of a chain

map f ∗ are denoted ker f ∗ and cokerf ∗ respectively. There is slightly confusing ter-

minology, as both the chain complex ker f ∗ and the inclusion map ker f ∗ ↪→ C∗ are

denoted ker f ∗. Similarly, both the chain complex cokerf ∗ and the inclusion map

D∗ � cokerf ∗ are denoted cokerf ∗.

Proposition 3.2.5. Let f ∗ : C∗ → D∗ be a chain complex map of R-modules.

The kernel of a chain complex map f ∗ in the category Ch(R-mod), is the follow-

ing chain complex of the kernels of each f i, where the differentials d∗ker f∗ are the

restrictions di|ker f∗.

· · · −→ ker f i−1
di−1

ker f−−−−→ ker f i
diker f−−−−→ ker f i+1 −→ · · ·

The co-kernel of a chain complex map f ∗ in the category Ch(R-mod), is the following

chain complex of the co-kernels of each f i, where the differentials d∗coker f∗ are the

induced maps on quotients di ◦ cokerf i .

· · · −→ cokerf i−1
di−1
coker f−−−−−→ cokerf i

dicoker f−−−−−→ cokerf i+1 −→ · · ·

Proof. It is clear that ker f ∗ and cokerf ∗ have the desired properties of a kernel and

co-kernel in Ch(R-mod). That is, ker f ∗ has the universal property of a map such

that f ∗ ◦ (ker f ∗) = 0∗, and cokerf ∗ has the universal property of a map such that

(cokerf ∗) ◦ f ∗ = 0∗.

We first check that ker f ∗ and cokerf ∗ as defined above are in fact well defined
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sequences. Then we check they form chain complexes with their induced differen-

tials, and finally that their respective vertical maps ({ker f i}i∈Z and {cokerf i}i∈Z)

are in fact chain maps.

· · · // ker f i−1
//

� _

ker f i−1

��

ker f i //
� _

ker f i

��

ker f i+1
//

� _

ker f i+1

��

· · ·

· · · // Ci−1 di−1
// Ci di // Ci+1 // · · ·

The top row of the above diagram is what we want to show is the kernel space of

the chain map f ∗. The vertical maps is what we want to show is the inclusion kernel

map of f ∗, also denoted ker f ∗. First, we check that di|kerf i(ker f i) ⊆ ker f i+1. Take

some c ∈ ker f i. Then f i+1di|kerf i(c) = f i+1di(c) = dif i(c) = 0. Hence, c ∈ ker f i+1.

Next, we check di+1|ker f i+1di|ker f i = 0. Take c ∈ ker f i, then di+1|ker f i+1di|ker f i(c) =

di+1|ker f i+1di(c) = di+1di(c) = 0, as required. It follows that di ker f i = ker f i+1di|ker f i

from the construction of the kernel maps. Explicitly, take some c ∈ ker f i. Then

di ker f i(c) = di(c) = ker f i+1di(c). This shows that ker f ∗ is the collection of kernel

maps of each component of the chain map, or {ker f i}i∈Z, as required.

· · · // Di−1 di−1
//

coker f i−1

����

Di di //

coker f i

����

Di+1 //

coker f i+1

����

· · ·

· · · // cokerf i−1 // cokerf i // cokerf i+1 // · · ·

The bottom row of the above diagram is what we want to show is the co-kernel space

of the chain map f ∗. The vertical maps is what we want to show is the quotient co-

kernel map of f ∗, also denoted cokerf ∗. First, we check that di : cokerf i → cokerf i+1

is well defined. Take some c1, c2 ∈ Di such that c1−c2 = f i(c′) for some c′ ∈ Ci. Hence
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c1, c2 represent the same element in cokerf i. Then di([c1])−di([c2]) = di(c1)−di(c2) =

dif i(c′) = f i+1di(c′). So di([c1])− di([c2]) ∈ im f i+1, which shows di is well defined.

Next, we check di+1di = 0. Take [c] ∈ cokerf i, then di+1di([c]) = di+1([di(c)]) =

[di+1di(c)] = [0], as required. It follows that dicokerf i = cokerf i+1di from the con-

struction of the co-kernel maps. Explicitly, take some c ∈ Ci. Then dicokerf i(c) =

di([c]) = [di(c)] = cokerf i+1(di(c)). This shows that cokerf ∗ is the collection of co-

kernel maps of each component of the chain map, or {cokerf i}i∈Z, as required.

Hence, we have shown that the chain complexes ker f and cokerf are indeed cochain

complexes with induced differentials.

3.2.1 Euler characteristic

The Euler characteristic is a well known topological invariant, which is the alternating

sum of the number of n-cells. For example, for a 2-dimensional surface, with V

vertices, E edges, and F faces, the Euler characteristic is V − E + F , [4]. Hence,

as homology is a topological invariant, the Euler characteristic is an invariant of

homology, and is defined as follows.

Definition 3.2.6. Euler characteristic

Suppose C∗ is a bounded cochain complex which has finitely generated spaces. The

Euler characterisitic, χ, of C∗ is the alternating sum of the ranks of its cohomology

modules, Hk(C∗).

χ(C∗) :=
∑
k∈Z

(−1)k dimHk(C∗)

Proposition 3.2.7. The Euler Characteristic is an invariant of cohomology.

Proof. If Hn(B∗) ∼= Hn(C∗) for every n, then the dimension of the homology group

are the same for every n ∈ Z. It follows that the sum of the dimensions over all

homology groups are equal, so χ(B∗) = χ(C∗).

In this thesis, the above is important as the Jones polynomial is the graded Euler

characteristic of the Khovanov homology. Hence, what Khovanov has done is replaced
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a polynomial with a cochain complex which has the graded Euler characteristic of

the original polynomial. This is an example of “categorification”. A typical example

of categorification is replacing the cardinality of a finite set (which is an invariant

of finite sets), with the category of the sets themselves. The Khovanov homology

has also inspired other categorifications of polynomial knot invariants, as discussed

in [13].

3.2.2 Exact sequences

A sequence C∗ is called exact at Cn if Hn(C∗) = 0. This is equivalent to im dn−1 =

ker dn.

Let A, B, and C be R-modules. A short exact sequence is a sequence

0→ A
f−→ B

g−→ C → 0

such that the sequence is exact at every module. Such a sequence is exact if and only

if f is injective (ker f = 0), g is surjective (cokerg = 0), and im f = ker g.

We claim that a short sequence of chain complexes, 0 → A∗
f∗−−→ B∗

g∗−−→ C∗ → 0

is exact in Ch(R-mod) if and only if the sequence 0 → An
fn−−→ Bn gn−−→ Cn → 0

is exact for every n. The forward direction is clear. The converse follows because

ker fn = 0 for every n, hence 0∗ forms the kernel of f ∗, and similarly the cokernel

of gn for all n forms cokerg∗. We know that im fn = ker gn are subspaces of Bn

for every n, and because ker gn forms a subcomplex ker g∗ of B∗, im f ∗ = ker g∗ as

subcomplexes.

There is a very useful theorem in homology theory when considering short exact

sequences of chain complexes.

Theorem 3.2.8. Consider the short exact sequence of chain complexes:

0→ A∗
f∗−→ B∗

g∗−→ C∗ → 0
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There exist natural R-homomorphisms ∂n : Hn(C)→ Hn+1(A) such that the homol-

ogy groups under the induced maps form a long exact sequence as follows.

· · · → Hn−1(C∗)
∂n−1

−−−→ Hn(A∗)
fn−−−→ Hn(B∗)

gn−−−→ Hn(C∗)
∂n−−−→ Hn+1(A∗)→ · · ·

The proof of this theorem uses the Snake Lemma, which we will prove below.

Lemma 3.2.9. Snake Lemma

Consider the following commuting diagram.

A′ //

α

��

B′
g′

//

β

��

C ′ //

γ

��

0

0 // A
f

// B // C

If the rows are exact, then the following is an exact sequence.

kerα→ ker β → ker γ
∂−→ cokerα→ cokerβ → cokerγ

Where the map ∂ is defined as

∂(c′) := f−1 ◦ β ◦ (g′)−1(c′) c′ ∈ ker γ.

Proof. We begin by showing the sequence is well defined. Consider the following

commuting diagram with, by the assumption, exact second and third rows.
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kerα
f ′|kerα

//

��

ker β
g′|kerβ

//

��

ker γ

��

A′
f ′

//

α

��

B′
g′

//

β

��

C ′ //

γ

��

0

0 // A
f

//

��

B
g

//

��

C

��

cokerα
f

// cokerβ
g

// cokerγ

If we consider the middle two rows as chain complexes with chain maps α, β, γ, the

top row is the kernel complex and the bottom row is the co-kernel complex with

respective induced maps. Hence it is indeed a commuting diagram.

We claim the map ∂ : ker γ → cokerα defined by ∂(c′) := f−1βg′−1(c′) is well

defined. By exactness of the second row, g′ is surjective, so g′−1(c′) exists. Also by

exactness of the third row, we know that im f = ker g. By the commutativity of the

right square, gβg′−1(c′) = γg′g′−1(c′) = γ(c′) = 0, so βg′−1(c′) ∈ ker g = im f , and by

the injectivity of f , there exists a unique element a ∈ A such that f(a) = βg′−1(c′).

So, the equivalence class represented by a in cokerα is the image element of c′ via ∂.

Therefore, to check that ∂ is well defined, we need to ensure that the function is not

affected by the choice of b′ ∈ B′ such that g′(b′) = c′. Suppose g′(b′) = g′(b′′) = c′.

It suffices to show that f−1β(b′ − b′′) ∈ imα, and therefore f−1β(b′) and f−1β(b)

represent the same equivalence class in cokerα. By exactness of the second row,

im f ′ = ker g′, so since g′(b′ − b′′) = 0, there exists a′ ∈ A′ such that f ′(a′) = b′ − b′′.
By commutativity of the left square, f−1β(b′−b′′) = f−1βf ′(a′) = α(a′) ∈ imα, which

shows that f−1β(b′) and f−1β(b′′) represent the same equivalence class in cokerα, as

required.
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Finally, we show the sequence is exact, by showing exactness in four places.

(i) im f ′|kerα = ker g′|kerβ

This follows by the commutativity of the top two squares and exactness of the

second row. We know already that the induced maps g′|kerβf
′|kerα = 0 since the

top row is a chain complex. The kernel ker(g′|kerβ) is contained in the image

im(f ′|kerα), since suppose g′(b′) = 0 for some b′ ∈ ker β. By exactness at B′,

there is an a′ ∈ A′ such that f ′(a′) = b′. Therefore by commutativity of the left

square, fα(a′) = βf ′(a′) = β(b′) = 0, and since f is injective, α(a′) = 0. So

there is an a′ ∈ kerα such that f ′|kerα(a′) = b′.

(ii) im g′|kerβ = ker ∂

For im g′|kerβ ⊆ ker ∂, suppose there exists b′ ∈ ker β such that g′(b′) = c′. Then

∂(c′) = f−1βg′−1g′(b′) = f−1β(b′) = f−1(0) = 0. ker ∂ ⊆ im g′|kerβ: let c′ such

that ∂(c′) = f−1βg′−1(c′) ∈ imα. Then f−1βg′−1(c′) = α(a′) for some a′ ∈ A′,
and therefore βg′−1(c′) = fα(a′) = βf ′(a′). Choose b′ = g′−1(c′)− f ′(a′), which

is in ker β since βg′−1(c′)−βf ′(a′) = 0 and g′(b′) = g′g′−1(c′)−g′f ′(a′) = c′−0 =

c′, which shows c′ ∈ im g′|kerβ, as required.

(iii) im ∂ = ker f

Clearly im ∂ ⊆ ker f , since f∂(c′) = ff−1βg′−1(c′) = βg′−1(c′) ∈ im β, which is

trivial in cokerβ. ker f ⊆ im ∂ since if f(a) ∈ im β, there is b′ ∈ B′ such

that β(b′) = f(a) and γg′(b′) = gβ(b′) = gf(a) = 0, and so can choose

c′ := g′(b′) ∈ kerα so that ∂(c′) = a+ im γ ∈ cokerα, as required.

(iv) im f = ker g

We know gf = 0 since the bottom row is a chain complex. Suppose g(b+im β) =

im γ. Then there is b′ ∈ B′ such that gβ(b′) = g(b), since g′ is surjective.

Therefore, g(b− β(b′)) = 0, and so as the third row is exact, there exists a ∈ A
such that f(a) = b − β(b′). So, f(a + imα) = b − β(b′) + im β = b + im β, as

required.
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Proof of Theorem 3.2.8. Consider the short exact sequence of cochain complexes:

0→ A∗
f∗−−−→ B∗

g∗−−−→ C∗ → 0

with differentials {αn : An → An+1}n∈Z, {βn : Bn → Bn+1}n∈Z, and {γn : Cn →
Cn+1}n∈Z. We consider a segment of this short exact sequence with appropriate

kernels in the top row and co-kernels in the bottom row as in the proof of the Snake

Lemma:

0 // kerαn //

��

ker βn //

��

ker γn

��

0 // An
fn

//

αn

��

Bn gn
//

βn

��

Cn //

γn

��

0

0 // An+1 fn+1
//

��

Bn+1 gn+1
//

��

Cn+1

��

// 0

cokerαn // cokerβn // cokerγn // 0

We know that the second and third rows are exact from the discussion at the be-

ginning of this section. Therefore, we apply the discussion in the proof of the Snake

Lemma to know that this diagram commutes, and also that the top and bottom rows

are exact except at kerαn and cokerγn. Since kerαn → ker βn is induced from fn, it

follow from the injectivity of fn, and similarly for cokerγn. Therefore, we now have

shown that this is a commutative diagram with exact rows and columns.

Consider the natural induced map α̃n : An/ imαn−1 → kerαn+1 of αn : An →
kerαn+1. Since imαn−1 ⊆ kerαn, this map exists and is unique by the universal

property of the quotient space An/ imαn−1.
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Note that [a] ∈ An/ imαn−1 is in the kernel of α̃n if and only if a ∈ kerαn, and since

imαn−1 ⊆ kerαn, then [a] ∈ kerαn/ imαn−1. This implies that ker α̃n = Hn(A∗).

The image of α̃n is the same as the image of αn, and so coker α̃n = Hn+1(A∗). The

homology groups of B∗ and C∗ are formed similarly from the kernels and co-kernels

of β̃n and γ̃n.

An/ imαn−1 //

α̃n

��

Bn/ im βn−1 //

β̃n

��

Cn/ im γn−1 //

γ̃n

��

0

0 // kerαn+1 // ker βn+1 // ker γn+1

Therefore, by the Snake Lemma, there is an exact map ∂n that forms an exact

sequence as follows. All other maps are induced maps on homology.

Hn(A∗)→ Hn(B∗)→ Hn(C∗)
∂−→ Hn+1(A∗)→ Hn+1(B∗)→ Hn+1(C∗)

Joining these exact sequence for every n forms the long exact sequence, as required.

3.2.3 Bi-complexes

Definition 3.2.10. Bi-complex

A bi-complex is a collection of graded vector spaces {Cp,q}p,q∈Z and maps dp : Cp,∗ →
Cp+1,∗ and dq : C∗,q → C∗,q+1 such that dp+1◦dp = dq+1◦dq = dq+1◦dp+dp+1◦dq = 0.

It can be visualised as the lattice below (note that this diagram is not required to

commute).
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...
...

...

· · · // Cp−1,q+1

OO

dp−1
// Cp,q+1

OO

dp // Cp+1,q+1

OO

// · · ·

· · · // Cp−1,q

dq

OO

dp−1
// Cp,q

dq

OO

dp // Cp+1,q

dq

OO

// · · ·

· · · // Cp−1,q−1

dq−1

OO

dp−1
// Cp,q−1

dq−1

OO

dp // Cp+1,q−1

dq−1

OO

// · · ·

...

OO

...

OO

...

OO

Note that {dp}p∈Z and {dq}q∈Z are not necessarily chain maps, as they don’t commute

with differentials.

3.2.4 Mapping cones

It will be useful when talking about the Khovanov homology to have some more

constructions from homological algebra. The next construction we introduce is the

mapping cone of a chain map f ∗, denoted Conef ∗.

Consider a chain map f ∗ : B∗ → C∗. The mapping cone, denoted Cone(f ∗) is

the chain complex B∗ ⊕ C∗[−1] where the nth differential d is defined as:

d(b, c) := (dBb, fb− dCc) for every b ∈ Bn, c ∈ Cn−1

where dB, dC are the differentials of B∗ an C∗ respectively, and the negatives denote

additive inverses.
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Since the elements of Cone(f ∗) can be written as ordered pairs, and the differen-

tial is R-linear, the differentials can be written as matrices as follows, and we will do

so accordingly. Also, composition of these R-linear maps therefore can be represented

by matrix multiplication. (
dn+1
B 0

fn+1 −dnC

)

Recall that dnCf
n = fn+1dnB for every n, since f ∗ is a chain map. Therefore, the

mapping cone is indeed a cochain complex since:(
dn+1
B 0

fn+1 −dnC

)(
dnB 0

fn −dn−1
C

)
=

(
dn+1
B dnB 0

fn+1dnB − dnCfn dnCd
n−1
C

)
=

(
0 0

0 0

)

as required.

3.2.5 Chain homotopies

Chain homotopies form an equivalence relation on chain maps between chain com-

plexes. Much like homotopy-equivalent spaces having the same homology, chain

homotopy equivalent complexes have the same homology.

Chain homotopies

Consider a cochain complex map f ∗ : A∗ → B∗ where the chain complexes A∗ and

B∗ have differentials d∗A and d∗B respectively. f ∗ is null-homotopic if there exists a

collection of maps {sn : An → Bn−1} such that fn = dn−1
B sn + sn+1dnA for every n.

For clarity, we can consider the following non-commuting diagram.
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· · · // An−1

fn−1

��

dA // An
dA //

fn

��

sn

~~

An+1 //

fn+1

��

sn+1

~~

· · ·

· · · // Bn−1 dB // Bn dB // Bn+1 // · · ·

Two chain complex maps f ∗, g∗ : A∗ → B∗ are called chain homotopic if their dif-

ference is null-homotopic. Chain homotopic maps form an equivalence relation on

all chain maps from A∗ → B∗, written '. Therefore, since f ∗ and g∗ are homotopic

if and only if f ∗−g∗ is null-homotopic, so f ∗ ' g∗ if and only if (f−g)∗ = f ∗−g∗ ' 0∗.

Two chain complexes A∗ and B∗ are called chain homotopy equivalent, denoted

A∗ ∼ B∗ if there exists chain complex maps f ∗ : A∗ → B∗ and g∗ : B∗ → A∗

such that f ∗g∗ ' idB∗ and g∗f ∗ ' idA∗ . This forms an equivalence relation on chain

complexes.

As previously discussed, chain maps induce maps on the homology modules of the

chain complex. That is f ∗ : A∗ → B∗ induces a map f̄n : Hn(A∗) → Hn(B∗) for

every n.

Possibly the most useful property of chain homotopy is that chain homotopic maps

induce the same homomorphism on homology modules. This theorem implies that it

is sufficient to construct a chain homotopy equivalence between two chain complexes

to show they are quasi-isomorphic. This is shown explicitly below.

Proposition 3.2.11. Let f ∗, g∗ be chain homotopic chain maps, so f ∗ ' g∗. Then

the induced maps of f ∗ and g∗ on homology are equal: fn = gn : Hn(A∗)→ Hn(B∗).

Proof. Suppose f ∗, g∗ : A∗ → B∗ are chain homotopic chain maps. Then there exists

a family of maps {sn : An → Bn−1}n∈Z such that fn− gn = dn−1
B sn + sn+1dnA for each
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n. Take some a ∈ ker dnA. Then we can rewrite fn(a)− gn(a) as follows.

fn(a)− gn(a) = (dn−1
B sn + sn+1dnA)(a)

= dn−1
B sn(a) + sn+1dnA(a)

= dn−1
B sn(a)

This shows f(a)− g(a) ∈ im dB. Therefore, fn([a])− gn([a]) = [f(a)− g(a)] = [0] for

every a ∈ ker dnA, so fn = gn, as required.

Using Proposition 3.2.11, it is straightforward to see that chain homotopy equivalent

complexes have isomorphic homology groups. This can be seen as follows. Suppose

A∗ ∼ B∗ are chain homotopy equivalent via chain maps f ∗ : A∗ → B∗ and g∗ : B∗ →
A∗. Then (fngn) = fngn = idB∗ = idHn(B), and similarly gnfn = idHn(A), which

implies that gn and fn are both isomorphisms for each n, and so Hn(A∗) ∼= Hn(B∗)

for every n.

3.3 Z-graded R-modules

The algebraic structures we will be using for most of this thesis are graded vector

spaces — vector spaces with some additional structure. In this section, we define

them and translate some of the constructions in the previous section from R-modules

to Z-graded R-modules, and R-homomorphism to Z-graded R-homomorphisms.

We use graded vector spaces as opposed to vector spaces since one can ‘encode’

a polynomial in these structures by considering the graded dimension of graded vec-

tor spaces — an analogue of dimension of vector spaces.

Definition 3.3.1. Graded vector spaces

An A-graded vector space W over the field K is the direct sum
⊕

α∈AWα, where each

Wα is a vector space over K. The elements of Wα in W are said to have degree α, or

to have q-grading α. A homogeneous element of degree α is an element in Wα.
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Note that the set A can have some additional structure (for example, A could be

a group).

For convenience, the graded vector space will be written as the direct sum of the

vector spaces in each dimension which are non-zero, with subscripts referring to its

dimension. For example, for αi ∈ A, where i 6= j implies αi 6= αj, and ni ∈ N,

Kn1
α1
⊕Kn2

α2
⊕ · · · ⊕Knk

αk
is the A-graded K-vector space which is Kni in degree αi.

Definition 3.3.2. Maps between graded vector spaces A map between A-

graded vector spaces L : W → W ′ is called a graded linear map if it preserves

the grading, i.e. L(Wα) ⊆ Wα′ . In other words, the map L is a collection of linear

maps {Lα : Wα → W ′
α}α∈A between associated vector spaces of degree α.

Let (A,+) be a set with a commutative binary operation + : A × A → A. A

homogeneous linear map of degree β is a map L : W → W ′ such that L(Wα) ⊆ Wα+β.

This means if 0 is the identity element of (A,+), a homogeneous linear map of degree

0 is a graded linear map.

Example 3.3.3. One can think of the set of polynomials with real coefficients, R[X]

as an N-graded vector space. In this case, the coefficient of Xn corresponds to the

same element in degree n of the graded vector space. So in degree n ∈ N of the

graded vector space is a 1-dimensional vector space over R. The linear map that

brings a polynomial p(X) to Xp(X) is a graded linear map of degree 1.

Definition 3.3.4. Direct sum of graded vector spaces

Consider A-graded vector spaces W =
⊕

α∈AWα and W ′ =
⊕

α∈AW
′
α. The direct

sum of W and W ′ is the A-graded vector space is defined as follows.

(W ⊕W ′)α := (Wα ⊕W ′
α)

We now will describe the tensor product of graded vector spaces. Recall in Example

3.1.1 that we showed that for every R-module W , R ⊗W ∼= W ∼= W ⊗ R. So, the
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tensor product with R will not change the R-module. The anologue of this object for

Z-graded R modules is the following R-module, denoted R0.

(R0)i :=

{
R : i = 0

0 : otherwise

Definition 3.3.5. Tensor product of graded vector spaces

Recall a semi-group is a set with a commutative associative binary operation. Con-

sider A-graded vector spaces W and W ′ where (A, ∗) is a semi-group. Let i, j, k be

elements of A. The tensor product of W and W ′ is the A-graded vector space is

defined for all A-gradings k by:

(W ⊗W ′)k :=
⊕
i∗j=k

(Wi ⊗W ′
j)

For m ∈ N, the mth tensor power of a graded vector space W is written W⊗m.

W⊗m := W ⊗W ⊗ · · · ⊗W︸ ︷︷ ︸
m

Example 3.3.6. Recall Z/2Z is the group of order 2. Let W be the Z/2Z-graded

vector space which is 1-dimensional over Q in degrees 0 and 1, i.e. W0 = W1 = Q.

For convenience, this is written Q0 ⊕Q1.

Then the tensor product W ⊗W is the graded vector space:

(W ⊗W )0 = (Q0 ⊗Q0)⊕ (Q1 ⊗Q1) ∼= Q2

(W ⊗W )1 = (Q0 ⊗Q1)⊕ (Q1 ⊗Q0) ∼= Q2

Here we are using that Q⊗Q = Q, where Q represents one dimensional vector spaces

over Q. Note that the graded dimension of V is independent of field of the vector

space.

From now on, we will consider only Z-graded vector spaces.
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Definition 3.3.7. Graded dimension of graded vector spaces

The graded dimension, denoted qdim, of a Z-graded vector space W =
⊕

k∈ZWk is

a polynomial in variable q, defined as follows.

qdim
(⊕
k∈Z

Wk

)
:=
∑
k

qk dim(Wk)

Example 3.3.8. From the point of view of the Khovanov homology, a very appro-

priate graded vector space to consider is the Z-graded vector space V over the field

K generated by one element v+ in degree 1 and one element v− in degree −1. The

specific Z-gradings of the graded vector space are:

Vi :=


spanK{v+} : i = +1

spanK{v−} : i = −1

0 : otherwise

In other words,

V = K−1 ⊕K+1

The only q-gradings with non-trivial dimensions are ±1, so we only consider a sum

of q1 and q−1. Since the dimensions of the spaces at these q-gradings are exactly one,

the graded dimension of this graded vector space is q+q−1. Also, observe that q+q−1

is the unnormalised Jones Polynomial of the unknot! This graded vector space will

resurface in the next chapter.

In this latest example, we see a construction of a graded vector space that is related

to a polynomial by its graded dimension. In fact, it ‘encodes’ this polynomial in its

structure. The next definitions and propositions show some other manipulations of

graded vector spaces which will have the necessary effect on their graded dimensions.

Example 3.3.9. We give another example of the tensor product, but this time with

the Z-graded K-vector space defined in Example 3.3.8. So, V ∼= K−1 ⊕K+1. Then,
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we have the following.

V ⊗ V =(K−1 ⊕K+1)⊗ (K−1 ⊕K+1)

=(K−1 ⊗K−1)⊕ (K1 ⊗K−1)⊕ (K−1 ⊗K+1)⊕ (K+1 ⊗K+1)

=(K ⊗K)−2 ⊕ (K ⊗K)0 ⊕ (K ⊗K)0 ⊕ (K ⊗K)+2

∼=(K)−2 ⊕ (K)0 ⊕ (K)0 ⊕ (K)+2

=(K)−2 ⊕ (K2)0 ⊕ (K)+2

More generally, we can find V ⊗k for any k ∈ N. The minimum non-trivial q-grading

is −k, which is generated by

K−1 ⊗K−1 ⊗ · · · ⊗K−1︸ ︷︷ ︸
k

∼= K.

The next non-trivial q-grading is generated by all permutations of the following tensor

product,

K−1 ⊗K−1 ⊗ · · · ⊗K−1 ⊗K+1︸ ︷︷ ︸
k

∼= K,

of which there are k. Continuing the pattern, we see there are k choose i,
(
k
i

)
, differ-

ent ways to arrange i of K+1 and k − i of the K−1, which will generate the space in

q-grading i− (k− i) = −k+ 2i. Hence, we can represent V ⊗k by the following direct

sum over the q-gradings.

V ⊗k =
⊕

0≤i≤k

K
(ki)
−k+2i

Definition 3.3.10. Shifts in grading

Take some l ∈ Z. For a Z-graded vector space W =
⊕

k∈ZWk, the degree shift

operator, denoted ·{l} defines a new graded vector space as follows.

W{l}k := Wk−l

Hence, if l is positive, the operator ·{l} “shifts” the graded vector space “up”, or in
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the positive direction, by l places. If l is negative, the operator ·{l} shifts the graded

vector space in the negative direction.

One can think of this shift as a shift isomorphism, ·{l} : W
∼=−→ W{l} which is a

homogenous map of degree l (and hence isn’t strictly an isomorphism by our defini-

tion), where each map Wk
=−→ Wk−l is an automorphism. Therefore, the shift sends

an element x ∈ Wk to x ∈ W{l}k, so, if the degree of x in W is k, then the degree of

x in W{l} is k − l.

Proposition 3.3.11. Graded dimensions under the direct sum, the tensor

product, and grade shifts

Consider Z-graded vector spaces W and W ′.

1. qdim (W ⊕W ′) = qdim (W ) + qdim (W ′)

2. qdim (W ⊗W ′) = qdim (W ) · qdim (W ′)

3. qdim (W{l}) = ql · qdim (W )

Proof. 1. The q-dimension of a direct sum is the sum of the q-dimensions of the

two graded vector spaces. This follows directly from that two vector spaces U

and U ′, dim(U ⊕ U ′) = dimU + dimU ′. So, at each grading, dim(Wk ⊕W ′
k) =

dimWk + dimW ′
k. Hence we have the following equations.

qdim(W ⊕W ′) =
∑
k∈Z

qk dim
(
(W ⊕W ′)k

)
=
∑
k∈Z

qk dim(Wk ⊕W ′
k)

=
∑
k∈Z

qk(dimWk + dimW ′
k)

=
∑
k∈Z

qk dimWk +
∑
k∈Z

qk dimW ′
k

=qdim(W ) + qdim(W ′)
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2. The q-dimension of a tensor product is the multiple of the q-dimensions of the

two graded vector spaces. Similarly, this follows from the relation dim(U⊗U ′) =

dimU · dimU ′

qdim(W ⊗W ′) =
∑
k∈Z

qk dim
(
(W ⊗W ′)k

)
=
∑
k∈Z

qk dim
( ⊕
j+j′=k
k∈Z

Wj ⊗W ′
j′

)
=
∑
k∈Z

qk
( ∑
j+j′=k
k∈Z

dim(Wj ⊗W ′
j′)
)

=
∑
k∈Z

qk
( ∑
j+j′=k
k∈Z

dimWj · dimW ′
j′

)
=
∑
k∈Z

( ∑
j+j′=k
k∈Z

qj+j
′
dimWj · dimW ′

j′

)
=
(∑
j∈Z

qj dimWj

)
·
(∑
j′∈Z

qj
′
dimW ′

j′

)
=qdim(W ) · qdim(W ′)

3. Lastly, the shift map ·{l} alters the q-dimension by ql.

qdim(W{l}) =
∑
k∈Z

qk dim(W{l}k)

=
∑
k∈Z

qk dim(Wk−l)

=ql
∑
k∈Z

qk−l dim(Wk−l)

=ql
∑
k−l∈Z

qk−l dim(Wk−l)

=ql · q dim(W )
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Thinking back to the relations used to compute the Kauffman Bracket, these rela-

tions provide one with a way to construct a graded vector space with a specific graded

dimension. For example, in relation two of Definition 2.2.1, 〈©qD〉 = (q+ q−1)〈D〉.
To find a graded vector space with graded dimension that satisfies this relation, we

see from (2) in Proposition 3.3.11 that qdim(W ⊗W ′) = qdim(W ) · qdim(W ′). So

if qdim(V ) = q + q−1, we know that the right hand side of the equation can be

represented by a tensor product, ⊗, of graded vector spaces.

This is not exactly what Khovanov has done. Instead of finding a graded vector

space for every knot diagram which is related to its Kauffman bracket by its graded

dimension, he found a chain complex of graded vector spaces for every knot diagram

D. This will be defined in the next chapter.

Homology on graded vector spaces

The definitions of chain complexes and homology of R-modules are defined similarly

for graded vector spaces. We will make a few brief recollections about homology in

the context of graded vector spaces.

A cochain complex of graded vector spaces over the field K is a sequence of graded

vector spaces W ∗ := {W i}i∈Z and graded K-linear maps {di : W i → W i+1}i∈Z such

that the composition di+1 ◦ di = 0.

· · · −→ W i−1 di−1

−−→ W i di−→ W i+1 −→ · · ·

In this context, the differentials of the chain complex are to be graded linear maps,

so they must be of degree zero. Hence the ith differential can be thought of as a

collection of maps dij : W i
j → W i+1

j for every j ∈ Z. The height shift operator ·[s] for

s ∈ Z is also defined on cochain complexes of graded vector spaces.

W r[s] := W r−s

We now cover some facts that will be useful for showing the Jones polynomial is the
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graded Euler characteristic of the Khovanov bracket.

Definition 3.3.12. Graded Euler characteristic

The graded Euler characterisitic, χq, of a bounded chain complex of graded vector

spaces W ∗ is the alternating sum of the graded dimensions of the homology graded

vector spaces.

χq(W
∗) :=

∑
i

(−1)iqdimH i(W ∗)

Proposition 3.3.13. The graded Euler characteristic of a bounded chain complex of

finitely generated graded vector spaces C∗ (with degree zero differentials) is equal to

the alternating sums of the graded dimensions of the chain complex C∗.

Proof. The proof of the proposition follows from two facts. Firstly, for a linear map

f : A → B, A ∼= ker f ⊕ im f , and therefore dimA = dim(ker f) + dim(im f). Sec-

ondly, if A is the quotient B/C, then dimA = dimB − dimC.

Consider a bounded chain complex of finitely generated vector spaces, C∗, and with-

out loss of generality we assume it is trivial in homological degree < 0. There is an

r ∈ Z such that Ci = 0 for i < 0 and i > r. We know from the above statements that

dim(Ci) = dim(ker di) + dim(im di) and dim(H i(C∗)) = dim(ker di) − dim(im di−1)

which are all finite, hence we substitute this into the Euler characteristic of C∗.

χ(C∗) =
∑
i

(−1)i dimH i(C∗)

=
∑
i

(−1)i dim(ker di/ im di−1)

=
∑
i

(−1)i
(

dim(ker di)− dim(im di−1)
)

= dim(ker d0)− dim(im d−1)−
(

dim(ker di)− dim(im di−1)
)

+ · · ·

±
(

dim(ker dr)− dim(im dr−1)
)

= dim(C0)− dim(C1) + · · · ± dim(Cr)

=
∑
i

(−1)i dim(Ci)
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We have only shown that this is the case for vector spaces, so we now extend this

to graded vector spaces. Thus, suppose C∗ is a cochain complex of graded vector

spaces. Then the above equality is true for each q-grading of the graded vector space,

C∗j . The equalities below complete the proof.

χq(C
∗) =

∑
i

(−1)iqdimH i(C∗)

=
∑
i

(−1)i
(∑

j

qj dim
(
H i(C∗)j

))
=
∑
j

qj
(∑

i

(−1)i dim
(
H i(C∗)j

))
=
∑
j

qj
(∑

i

(−1)i dim(Ci)j

)
=
∑
i

(−1)i
(∑

j

qj dim(Ci)j

)
=
∑
i

(−1)iqdim(Ci)
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Chapter 4

The Khovanov homology

In this chapter, we introduce the Khovanov homology, which is an invariant of knots.

This is really a cohomology theory, but is called the Khovanov homology throughout

the literature.

We begin this chapter with a description and then a definition of the Khovanov

bracket. The Khovanov bracket satisfies three relations which are analogous to the

three Kauffman bracket relations, but instead assigns a cochain complex of Z-graded

vector spaces to each knot diagram. However, the Khovanov bracket itself is not

a link invariant. After assigning an orientation to a knot diagram, we assign the

Khovanov bracket of the underlying knot diagram with a shift that depends on its

orientation, called the Khovanov cochain complex. The Khovanov cohomology is the

cohomology of this cochain complex of graded vector spaces, and is indeed a knot

invariant.

For the majority of this chapter, the graded vector spaces we will look at are over

a general field K. In particular, if we consider the Khovanov chain complex over

the field Q, we find that the Jones polynomial is the Euler characteristic of this

chain complex. In fact, through little extra effort, everything we say here can be

generalised to a commutative ring R with identity, by replacing every instance of

‘field’ with ‘commutative ring with identity’. Hence, the ‘Z-graded K-vector space’

V becomes the ‘Z-graded R-module’ generated by an element v+ in degree 1 and one

63
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element v− in degree −1, but one can forget about this for almost the entire chapter.

4.1 Setting the scene

Here are some definitions and constructions that we will need to describe the Kho-

vanov bracket. The notation in this section when referring to smoothings is the same

as the notation of Chapter 2 , but many of the points and definitions will be reiterated

here.

The Z-graded K-vector space V

First we recall a Z-graded K-vector space, V , first defined in Chapter 3. This is the

graded vector space referred to as V for the rest of this thesis. Let V be generated by

one element v+ in degree 1 and one element v− in degree −1. Specifically, the graded

vector space is as follows.

Vi :=


spanK{v+} : i = +1

spanK{v−} : i = −1

0 : otherwise

In other words,

V = K−1 ⊕K+1

Also, recall that the graded dimension of this Z-graded vector space V , denoted

qdim(V ), is q + q−1.

The Flatten operation

We now describe a ‘Flatten’ operation which takes a chain complex of chain com-

plexes to a chain complex. First, it assigns a bi-complex to a chain complex of chain

complexes, and then forms a chain complex from a bi-complex by taking each space

to be a direct sum of a diagonal. We first describe how to get the bi-complex, and
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then describe how the Flatten operation works.

Let (Cp)∗ be a chain complex for every p ∈ Z. Consider a chain complex of chain com-

plexes. That is, consider the following chain complex of chain complexes {(Cp)∗}p∈Z
and differentials (that are chain complex maps) (fp)∗.

· · · → (Cp−1)∗
(fp−1)∗−−−−−−→ (Cp)∗

(fp)∗−−−−→ (Cp+1)∗ → · · ·

Let dp,q be the qth differential of (Cp)∗, and fp,q is the qth chain map component

of (fp)∗. Then since (fp)∗ is a chain map, we have fp,q+1 ◦ dp,q = dp+1,q ◦ fp,q

by definition, as seen in the following commutative diagram. Also, we have that

dpdp = f qf q = 0.

(Cp)q

dp,q

��

fp,q
// (Cp+1)q

dp+1,q

��

(Cp)q+1

fp,q+1
// (Cp+1)q+1

Furthermore, one can form a bi-complex, {Cp,q}p,q∈Z, from this chain complex of

chain complexes by including minuses on the differentials to make each square anti-

commute. Specifically, the component Cp,q is the object (Cp)q in the above nota-

tion. As for differentials, let the vertical maps {dv := dp,q : Cp,q → Cp,q+1}p,q∈Z be

the differentials of each (Cp)∗ in the sequence above, and let the horizontal maps

{dh : Cp,q → Cp+1,q}p,q∈Z be defined as the map (−1)q(fp)q.
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...

��

...

��

...

��

· · · // Cp−1,q−1

dv

��

dh // Cp,q−1

dv

��

dh // Cp+1,q−1

dv

��

// · · ·

· · · // Cp−1,q

dv

��

dh // Cp,q

dv

��

dh // Cp+1,q

dv

��

// · · ·

· · · // Cp−1,q+1

��

dh // Cp,q+1

��

dh // Cp+1,q+1

��

// · · ·

...
...

...

The sign change of the horizontal differentials in the previous paragraph implies that

dp+1,q
v ◦ dp,qh = dp+1,q

v ◦ (−1)qfp,q = (−1)qfp,q+1 ◦ dp,qv = (−1)q(−1)−(q+1)dp,q+1
h ◦ dp,qv =

−dp,q+1
h ◦ dp,qv . Hence we have established anti-commutativity on each square of the

diagram above. This means that now {dp,qh }p,q∈Z and {dp,qv }p,q∈Z are not necessarily

chain maps. Note that we also know that dvdv = dhdh = 0 as both Cp,∗ and C∗,q are

chain complexes.

Now we have a bi-complex, we can define the flatten operation, which gives us another

chain complex. The components of

Flatten
[
· · · → (Cp)∗

(fp)∗−−−−→ (Cp+1)∗ → · · ·
]

are the direct sums of the diagonals of this bi-complex. Thus, the nth component of

this new chain complex is ⊕
p+q=n

Cp,q.
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This collection of spaces along with the maps

dn =
∑
p+q=n

(dp,qv + dp,qh )

forms a chain complex. This is a chain complex from the anti-commutativity of the

squares above and that dvdv = dhdh = 0.

Tensor product of a cochain complex and a module

Consider a Z-graded vector space U and a chain complex of Z-graded vector spaces

W ∗. We define the tensor product U⊗(W ∗) to be the chain complex of graded vector

spaces as follows. The graded vector space in homological degree i is {U ⊗W i}, and

if di is the ith differential of W ∗, then the ith differential of U⊗(W ∗) is idU ⊗di. This

is a well defined cochain complex as (idU ⊗di+1) ◦ (idU ⊗di) = (idU idU)⊗ (di+1di) =

idU ⊗0 = 0.

4.2 The Khovanov bracket

We now construct the Khovanov bracket of a link diagram, which is a chain complex

of graded vector spaces. Each of Kf1,Kf2,Kf3 has a direct analogue to one of the

following relations. We begin by describing the three relations we want the Khovanov

bracket to satisfy, along with a description of what they imply. Next, we give a defini-

tion of the graded vector spaces in each degree of the chain complex, and then define

the differentials of this chain complex. Finally, we will show that this definition does

indeed satisfy the three Khovanov bracket relations. This list of relations is from [1].

The Khovanov bracket of a knot diagram D, written JDK, is a cochain complex of

Z-graded K-vector spaces. It satisfies the following three relations.

Kh1 J∅K = 0→ K → 0

Kh2 J© qDK = V ⊗ JDK
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Kh3 J0K = Flatten[0∗ → J1K→ JHK{1} → 0∗ ]

We sometimes will refer to the chain complex J·K with the superscript J·K∗. The

graded vector space in homological degree r will be denoted J·Kr.

Property Kh1 tells us the Khovanov bracket of the empty link is the chain com-

plex which is only non-trivial in degree 0, where the graded vector space is simply K

in q-degree 0. Property Kh2 defines the disjoint union of an unknot and any knot

diagram D in homological degree r to be the tensor product of V ⊗JDKr, as explained

in Section 4.1.

The third rule, Kh3, relates the Khovanov bracket of a knot diagram D to the

Khovanov bracket of its smoothings. Explicitly, suppose D is a knot diagram with

n > 0 crossings, and choose a crossing of D which we refer to as the ith crossing. Let

D0 be identical to D but with a 0-smoothing at the ith crossing, and similarly D1 be

identical to D but with a 1-smoothing at the ith crossing. Inside the brackets of the

Flatten operation in Kh3, there is the map of cochain complexes as follows (drawn

horizontally rather than vertically for convenience). The top row lies in degree 0, and

the bottom row is in degree 1. These are the only non-trivial rows in the diagram.

· · · // JD0Ki−1

��

// JD0Ki

⊕

//

��

JD0Ki+1

⊕

//

��

· · ·

· · · // JD1Ki−1{1} // JD1Ki{1} // JD1Ki+1{1} // · · ·

Hence, the ith graded vector space in the cochain complex will be the graded vector

space JD0Ki ⊕ JD1Ki−1{1}, as shown by the dotted diagonal lines. We let the 0th

graded vector space in the new “flattened” sequence be the diagonal that includes

the graded vector space in the 0th row and 0th column, which in this case is JD0K0.

Moreover, it also follows from all three rules that the chain complex J·K will only be
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non-trivial in homological degrees 0 ≤ i ≤ n (recall n is the number of crossings in

D). Therefore, we can rewrite the graded vector spaces in the cochain complex JDK
as follows.

JDKi =


JD0Ki : i = 0

JD0Ki ⊕ JD1Ki−1{1} : 0 < i < n

JD1Ki−1{1} : i = n

So far we have avoided discussing the differentials of the chain complex J·K, including

the vertical arrows in the above diagram, but we will soon. The Flatten operation

also defines “new” differentials from the current bi-complex.

Note also that Kh1 and Kh2 specify the Khovanov bracket of a knot diagram of k

unlinked unknots in the plane.

Jk unlinked unknotsK = 0→ V ⊗k → 0

Like the Kauffman bracket, the Khovanov bracket of a knot projection D is also

constructed from the total smoothings of D. Suppose D is a knot projection with n

crossings that are ordered in some way. Recall that to every total smoothing of D,

one can associate a string of length n from the alphabet {0, 1}, or an α ∈ {0, 1}n.

Also, each string can be associated to a vertex of the n-dimensional cube mentioned

in Section 2.2. In other words, there is a bijective natural correspondence between

the total smoothings of D and elements α ∈ {0, 1}n. This is “natural” in the sense

that once there is an ordering of the crossings of the knot projection, then we can

associate the smoothing of the ith crossing to the ith element in α.

The total smoothing of a knot diagram D is a link diagram with every crossing

in D replaced by a smoothing, and hence is a collection of k unlinked unknots in the

plane. To be explicit, the total smoothing of D associated to α is as follows. If the
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ith element in α is 0, then the ith crossing of D is replaced with a 0-smoothing, and

similarly if ith element in α is 1, and is denoted Sα. For a complete discussion, refer

to Chapter 2.

Let Vα be the graded vector space of the smoothing Sα. Recall kα is the number

of cycles in Sα, and rα is the number of 1-smoothings of Sα, also denoted |α|. We

define the graded vector space associated with the total smoothing Sα of D to be the

following.

Vα := V ⊗kα{rα}

Example 4.2.1. Khovanov bracket of the Hopf link

V {1}

10

⊕

��

V ⊗2

00

��

V ⊗2{2}

11

��

V {1}

01

��

V ⊗2 d0
// V ⊕ V {1} d1

// V ⊗2{2}

J)K0 J)K1 J)K2

In the above diagram (which we note is similar to Example 2.2.3), the bottom line

is the Khovanov bracket (though the differentials d∗ have not been defined). It sits

with the leftmost graded vector space in chain complex degree 0. Another way to

think of the cochain complex of the Hopf link is seen in the table above. This is the
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HHH
HHHm

r −1 0 1 2 3

4 K
3
2 K K2 K2

1
0 K2 K2 K
−1
−2 K

Khovanov bracket of the Hopf link where V is a graded vector space over K. Here,

m is the q-grading and r is the height or chain complex degree. In other words, each

column represents a different graded vector space in the cochain complex of graded

vector spaces. Only the non-zero entries are shown.

So, for example, at degree zero of the chain complex, the graded vector space is

the direct sum of the column, K−2 ⊕ K2
0 ⊕ K2. See Example 3.3.9 for the explicit

calculation of V ⊗2.

We now define the underlying collection of graded vector spaces of the Khovanov

bracket. Once we define the differentials, and show that together this sequence does

form a cochain complex, we will show that this Khovanov bracket satisfies the rela-

tions Kh1,Kh2 and Kh3.

Definition 4.2.2. The spaces of the Khovanov bracket, J·K
Let D be a knot diagram with n crossings which are ordered in some arbitrary way.

Also, let α ∈ {0, 1}n. The graded vector space in degree r of the Khovanov bracket,

JDK, is defined to be the following direct sum.

JDKr :=
⊕
rα=r

V ⊗kα{rα} for 0 ≤ r ≤ n (4.1)

In degrees r < 0 and r > n, the Khovanov bracket is trivial.
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We claim that this definition of the Khovanov bracket is independent of the ordering

of the crossings of the knot diagram D. This amounts to considering a permutation,

σ : {0, 1}n → {0, 1}n on n elements, which rearranges the crossings. It follows that

|α| = |σ(α)|, so the height is unchanged, though the smoothing Sα will not necessarily

be the same as Sσ(α). Therefore, consider the string α′ := σ(α). Then the smoothing

Sα′ = Sσ(α), and so kα′ = kσ(α). Therefore, a permutation will only change the

ordering in the direct sum, ⊕
rα=r

V ⊗kα{rα},

for each r, since {α : |α| = r} = {σ(α) : |α| = r}. Note that we haven’t actually

defined a way to order the Vα in the direct sum above, so in some way we were

defining the bracket up to “ways to order this direct sum”.

The edges of the n-dimensional cube of smoothings

Let α, α′ ∈ {0, 1}n such that α and α′ differ in exactly one place, which we refer to

as the ith crossing, and |α| < |α′| (in other words, this implies |α| + 1 = |α′|). Let

ζ ∈ {0, 1, ?}n such that ζ is the same as α and α′ everywhere except in the ith cross-

ing (where α and α′ differ) which is replaced with ?. We will refer to this crossing in

D as the ith crossing. In an n-dimensional cube, there is exactly one edge between

α and α′, which will be denoted ζ as it was just defined. All edges in the cube are of

this form.

We define a graded linear map dζ : Vα → Vα′ along each edge of the n-dimensional

cube of (the graded vector spaces of) smoothings, and as in the previous description,

the subscript ζ denotes the edge, and depends on α, α′. As a slight abuse of nota-

tion, we will sometimes say cube of smoothings when we really mean the cube of the

graded vector spaces associated to the smoothings.

Each dζ is a graded linear map between two smoothings which only affects the graded

vector spaces of the cycles that “intersect” the ith crossing. In other words, consider

α, α′ which differ only in the ith place as before, and their total smoothings Sα, Sα′ .

The two strands in the 0-smoothing of the ith crossing and the 1-smoothing of the
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ith crossing will either be a part of one cycle or two cycles. In the case that the

0-smoothing of the ith crossing is part of a single cycle, the 1-smoothing of the ith

crossing will be part of two cycles, as seen in the following figure. One swaps the

figures and rotates them for the case when the 0-smoothing of the ith crossing is part

of two cycles.

Therefore, kα and kα′ will differ by exactly one. When restricting to the cycles in-

tersecting the crossing, each dζ will map either these two cycles to one cycle, or one

cycle to two cycles. We want dζ to be the identity on the rest of the cycles. Each

cycle is represented by V in the chain complex, so these mappings are equivalent to

finding graded linear maps that map V ⊗ V → V , and V → V ⊗ V .

Moreover, we require that dζ is a graded linear map, and thus is of homogeneous

degree 0 (recall this means that the q-grading of a homogeneous element is unchanged

under dζ). First we must take into account the q-shift of each complex. The map

dζ : Vα → Vα′ maps V ⊗kα{rα} → V ⊗kα′{rα + 1}, as rα′ = rα + 1. Therefore, we

require that the maps V ⊗ V → V and V → V ⊗ V to be of homogenous degree −1

(with respect to the q-grading).

These maps, known as m and ∆ are defined on the generators of V and V ⊗ V

as follows.

m : v+ ⊗ v+ 7→ v+ ∆ : v+ 7→ v+ ⊗ v− + v− ⊗ v+

v+ ⊗ v− 7→ v− v− 7→ v− ⊗ v−
v− ⊗ v+ 7→ v−

v− ⊗ v− 7→ 0

Note that these maps are homogenous of degree −1, as required. Of course, Sα and

Sα′ will be the same everywhere except at the cycles which are part of the ith cross-
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ing. We want these other cycles to be unaffected by the graded linear map . Thus,

the map dζ : Vα → Vα′ will act as the identity on all other cycles in Sα.

Let τ : V ⊗V → V ⊗V be the twist map, τ(a⊗b) = b⊗a. Note that since there is no

natural ordering of the cycles of Sα (or the tensor product of cycles, V ⊗k), this forces

m and ∆ to be commutative (mτ = m) and co-commutative (τ∆ = ∆) respectively.

So, m(v+ ⊗ v−) = m(v− ⊗ v+) is forced, and also ∆(v+) = v+ ⊗ v− + v− ⊗ v+ =

v− ⊗ v+ + v+ ⊗ v− = τ∆(v+) is forced.

Example 4.2.3. The map d0?00 of the figure eight knot

For convenience, I have labelled the cycles of the smoothings. We see that d0?00 leaves

V3 unchanged, and takes V1 ⊗ V2 → V1. Since this is a ‘merging’ of two cycles which

are labelled 1 and 2, this happens via the map m12, where the subscript refers to

which cycles are to be merged. Similarly, id3 is the identity map on the cycle labelled

3. Therefore, the differential between the two maps is as follows.

d00?0 = m12 ⊗ id3

We now define the differentials of this chain complex, which are sums of the edges

of the n-dimensional cube. We have to include a function which gives us the sign of
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the edges when we add them. The reason for this will be clear when we show that in

fact these maps do form a cochain complex, JDK.

Definition 4.2.4. The differentials of the Khovanov bracket, J·K
Let Zn be the collection of ζ ∈ {0, 1, ?}n where ζ contains exactly one ?. Recall |ζ|
is the height of ζ (the number of 1s in ζ). Let s : {0, 1, ?}n → Z≥0 be a function that

maps each string of {0, 1, ?}n to the number of 1s on the left of the (leftmost) ?.

The rth differential of the Khovanov cochain complex is as follows.

dr :=
∑
|ζ|=r
ζ∈Zn

(−1)s(ζ)dζ (4.2)

Example 4.2.5. Differentials of the Hopf link

V {1}

10

⊕

��

&
d1?

∆12
$$

V ⊗2

00

��

d?0
m12

::

d0?

m12
$$

V ⊗2{2}

11

��

V {1}

01

��

d?1

∆12

::

V ⊗2 d0
// V ⊕ V {1} d1

// V ⊗2{2}
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A negative differential is denoted by a cross on the tail of the arrow.

From the diagram, one can see the differentials are:

d0 = d?0 + d0? = (m,m), hence for v ∈ V00, d
0(v) = (mv,mv) ∈ V10 ⊕ V01,

d1 = d?1|V10 − d1?|V01 = ∆ −∆, hence for (v1, v2) ∈ V01 ⊕ V10, d
1(v1, v2) =

∆v1 −∆v2 ∈ V11.

Observe that the maps {dr}r∈Z form a well defined sequence of graded vector spaces

on the Khovanov bracket as defined in Definition 4.2.2. That is, dr does indeed map

JDKr → JDKr+1, as each summand dζ of dr maps an element of height r to an element

of height r+ 1. Hence, it remains to show that this is in fact a chain complex, which

we will discuss in the next lemma and theorem.

Lemma 4.2.6. If the faces of the n-dimensional cube commute without signs, then

the Khovanov bracket is a cochain complex

Proof. We will prove that (−1)s(ζ) in Equation 4.2 ensures that for every face of

the n-dimensional cube, there will be an odd number of minus signs of the edges

of this face. This means that if each face commutes without the minuses, they will

anti-commute with the minuses. Thus, since composition dr+1 ◦ dr is the same as

summing over all the faces, we will be able to say the sums will cancel!

We now check that there will be an odd number of minus signs on each edge of

the cube. The four edges of a face of a cube will be of the form α1 ? α20α3,

α1 ? α21α3, α10α2 ? α3, and α11α2 ? α3 for some strings of {0, 1} α1, α2, α3. Then

s(α1 ? α20α3) = s(α1 ? α21α3) = s(α10α2 ? α3) = −s(α11α2 ? α3).

Therefore, with Lemma 4.2.6, all we need to show that the Khovanov bracket is

indeed a cochain complex is to prove that each face of the n-dimensional cube of
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smoothings commutes, which we state in the following theorem.

Theorem 4.2.7. Each face of the n-dimensional cube of smoothings commutes.

This proof is more straightforward using TQFTs. Hence, we prove this theorem in

Section 7.3 of Chapter 7.

We now show that the Khovanov bracket is invariant under the ordering of the

crossings. We already have mentioned that the spaces of the Khovanov bracket are

invariant under ordering of the crossings, but it remains to show that the Khovanov

bracket is invariant up to isomorphism (as a chain complex) under ordering of the

crossings. We first note that in general, the n-dimensional cube of two differently

ordered knot diagrams are the same before considering the signs (−1)s(ζ). Note that

each edge of the cube depends only on the vertex at either edge. If one permutes

the order of the crossings by σ, then the height of α is unchanged, rα = rσ(α) (there

is still the same the number of 1-smoothings). Thus, the dζ will not change in the

differential. However, the signs (−1)s(ζ) change.

Proposition 4.2.8. The Khovanov bracket as defined in Definition 4.2.2 and Defi-

nition 4.2.4 is invariant of the ordering of the crossings (up to isomorphism).

Proof. Consider a knot diagram D with n crossings. Consider two orderings of the

crossings of D, and let σ be the permutation that changes the first ordering to the

second ordering. We denote the chain complex with respect to the first ordering JDK,
and the chain complex with respect to the second ordering JDKσ. The graded vector

spaces of the vertices of the n-dimensional cube of the first ordering of D are simply

denoted Vα, and the vertices of the n-dimensional cube of the second ordering of D

are denoted Vσ(α). Similarly, dζ and dσ(ζ) refer to the “same” edge map in each of

the n-dimensional cube of smoothings. It is implicit that the sub-script σ of these

graded vector spaces and edge maps imply that these graded vector spaces refer to
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the second ordering, and those without σ refer to the first ordering.

We will show that there is an isomorphism of chain complexes from JDK to JDKσ.

Recall that with the ordering of the crossings as defined, the smoothing Sα is the

same as the smoothing Sσ(α), hence there are isomorphisms between the graded vec-

tor spaces φα : Vα → Vσ(α). Note also that −φα is also an isomorphism of graded

vector spaces. We let t be a function that depends on the string α and the permuta-

tion σ, which we will define properly in the next paragraph. For now, we define the

rth chain map component to be a sum
∑

α=r(−1)t(α,σ)φα which is an isomorphism of

the rth space of the chain complex.

We noted previously that changing the ordering of the crossings will change the

differentials. More specifically, it changes the sign on the edges of the n-dimensional

cube, or summands of the differential. That is, s(ζ) and s(σ(ζ)) are not necessar-

ily the same, therefore we require that the (−1)t(α,σ) ensures that this collection of

maps does in fact form chain map — that is, that they commute with the differentials.

We define t(α, σ) to be the number of transpositions of the 1s of α under σ mod

2. In other words, we exclude all the 0s from α, and find the parity of the permuta-

tion of only the 1s under σ (the parity of a permutation is normally denoted sgn(·)).
Recall that s(ζ) is the number of 1s to the left of the ?.

Restricting our attention to an edge of the n-dimensional cube, we next show that the

maps between the corresponding edges of the n-dimensional cube commute. Once

we know this, we claim that the maps {
∑

α=r(−1)t(α,σ)φα}r∈Z form a chain complex

map. This is because each edge map with minuses, (−1)s(ζ)dζ , will commute with the

(−1)t(α,σ)φα. Hence the sum of these maps from some Vα, which is the the differen-

tial restricted to a summand of JDKr and JDKrσ will commute with the (−1)t(α,σ)φα.

Therefore, since this is true for each summand of JDKr, the (non-restricted) dif-

ferential commutes with the maps
∑

α=r(−1)t(α,σ)φα, as required for a chain map.

More briefly, it is because of the universal property of the product and co-product

of the finite direct sum that the edges Vα → Vα′ where |α| = r form a unique map

JDKr → JDKrσ.
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Let α, α′ ∈ {0, 1}n differ at only the ith place, and let ζ be the edge of the n-

dimensional cube between them, α
ζ−−→ α′.

Vα

(−1)t(α,σ)φα

��

(−1)s(ζ)dζ
// Vα′

(−1)t(α
′,σ)φα′

��

Vσ(α)

(−1)s(σ(ζ))dσ(ζ)

// Vσ(α′)

We know that dζ and dσ(ζ) are the same in their respective n-dimensional cubes,

hence dσ(ζ)φα = φα′dζ . What remains to show for the above diagram to commute is

the following equality.

s(ζ) + t(α′, σ) = s(σ(ζ)) + t(α, σ) mod 2

Firstly, note s(ζ) − s(σ(ζ)) is the number of transpositions of ? with the 1s under

σ, mod 2. Secondly, note t(α, σ) − t(α′, σ) is the number of times the ith element

of α is transposed with 1s under σ, mod 2. Therefore, since ? is the ith element of

ζ, s(ζ) − s(σ(ζ)) and t(α, σ) − t(α′, σ) are both the number of transpositions of the

ith element with respect to the 1s under σ (mod 2), so are in fact equal. Hence,

the above equation holds and thus the diagram commutes, as each way around the

diagram has the same number of minus signs.

Therefore, we have shown that there is an isomorphism of chain complexes between

two Khovanov brackets of the same knot diagram under different ordering of crossings,

as required.

Next, we will show that the Khovanov bracket as we have defined it satisfies Kh1,

Kh2 and Kh3. The following proposition and proof are similar to the proposition

and proof that the Kauffman bracket is well defined, but only when checking that

the spaces of the cochain complex satisfy the three relations. This reinforces the
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point that the Khovanov bracket is constructed in an analogous way to the Kauff-

man bracket. In fact, like the Kauffman bracket, the relations Kh1, Kh2 and Kh3

define unique spaces of the chain complex (up to isomorphism). What makes matters

more confusing in these definitions is the chain maps of the cochain complex. They

do satisfy the three relations Kh1, Kh2 and Kh3, but the three relations do not

define unique chain maps of the Khovanov bracket.

Theorem 4.2.9. Let D be a knot diagram. The chain complex JDK with the rth

graded vector space as defined in Definition 4.2.2, and differentials as defined in

Definition 4.2.4 satisfies the three Khovanov bracket relations Kh1, Kh2, Kh3.

Proof. Recall that for any K-vector space W , that W⊗0 := K. Consider the empty

link, ∅. Then by definition, we get the following Khovanov bracket of the empty link.

J∅K :=
[
· · · → 0→ V ⊗0 → 0→ · · ·

]
Hence, since V ⊗0 = K, the relation Kh1 is satisfied.

Consider a knot diagram D and an unknot ©. Let Sα be a smoothing of D. Then

the smoothing of D q© corresponding to α is Sα q©. Therefore, if we let kα be

the number of cycles in Sα, then kα + 1 will be the number of cycles in Sα q©. The

height of the smoothing of D, rα, will be the same as the height of the corresponding

smoothing of D q©. Therefore, we have the following equalities for every r.

JD q©Kr =
⊕
rα=r

α∈{0,1}k

V ⊗(kα+1){rα}

=
⊕
rα=r

α∈{0,1}k

V ⊗ V ⊗kα{rα}

= V ⊗
( ⊕

rα=r
α∈{0,1}k

V ⊗kα{rα}
)

= V ⊗ JDKr
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The summands of the differentials act as the identity on all cycles which are not

part of the crossing in question. Hence if dζ is the rth differential of JDK, the rth

differential of JD q©K is dζ ⊗ idV , as required.

The relation Kh3 will be shown by induction on the number of crossings of the

knot diagram D. It is clear for a knot D with no crossings and l components that

JDK has the following components.

JDKr =

{
V ⊗l : r = 0

0 : r 6= 0

Consider a knot projection with n = k crossings, D. For the induction hypothesis, we

assume that the cochain complex JDK satisfies the Kh3. We now show that follows

Kh3 is satisfied for a knot projection with n = k + 1 crossings.

Consider a knot D with k+ 1 crossings with an arbitrary numbering of the crossings.

Choose the ith crossing of D. Let D0 be identical to D but with a 0-smoothing at

the ith crossing, and similarly D1 be identical to D but with a 1-smoothing at the

ith crossing. We need to show that JDK as defined satisfies the relation Kh3, that

JDK = Flatten[0→ JD0K→ JD1K{1} → 0 ]. We will begin by showing that the spaces

of JDK satisfy Kh3. Thus, we now show that the spaces of the chain complex JDK
are as follows (as discussed in Section 4.1).

JDKr =


JD0Kr : r = 0

JD0Kr ⊕ JD1Kr−1{1} : 0 < r < k + 1

JD1Kr−1{1} : r = k + 1

First, we need to introduce some notation.

For 1 ≤ j ≤ n, let αj be the jth element of the string α ∈ {0, 1}n. For some

α ∈ {0, 1}n−1, let α0 and α1 represent an element of {0, 1}n such that the ith element

in the string α0 is 0, and (α0)j<i = αj and (α0)j>i = αj−1. Similarly, the ith element
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in the string α1 is 1, and satisfies (α1)j<i = αj and (α1)j>i = αj−1.

Then, where k0
α is the number of cycles in D0 with smoothing α, and k1

α is the

number of cycles in D1. Thus we have k0
α = kα0 and k1

α = kα1 . Note that rα depends

only on α, and not on the smoothing itself, and that rα0 = rα = rα1 − 1.

JDKr :=
⊕
rα=r

α∈{0,1}k+1

V ⊗kα{rα}

=
( ⊕

rα0=r

α0∈{0,1}k+1

V ⊗kα0{rα0}
)
⊕
( ⊕

rα1=r

α1∈{0,1}k+1

V ⊗kα1{rα1}
)

=
( ⊕

rα0=r

α0∈{0,1}k+1

V ⊗kα0{rα0}
)
⊕
( ⊕
rα1−1=r−1

α1∈{0,1}k+1

(
V ⊗kα1{rα1 − 1}{1}

))

=
( ⊕

rα=r
α∈{0,1}k

V ⊗k
0
α{rα}

)
⊕
(( ⊕

rα=r−1
α∈{0,1}k

V ⊗k
1
α{rα}

)
{1}
)

= JD0Kr ⊕ JD1Kr−1{1}

The second equality is because
{
α0 : α ∈ {0, 1}k

}
∪
{
α1 : α ∈ {0, 1}k

}
= {0, 1}k+1

and
{
α0 : α ∈ {0, 1}k

}
∩
{
α1 : α ∈ {0, 1}k

}
= ∅. The above working is sufficient to

say that the spaces as defined in Definition 4.2.2 satisfy Kh3.

Finally, we show that the differentials of JDK will also satisfy Kh3, which we also show

by induction on the number of crossings of D. Suppose D has n = 1 crossing, then

there is one 0-smoothing, S0, and one 1-smoothing, S1, of D. Let k0 be the number of

cycles in S0 and k1 be the number of cycles in S1. Then the (only non-trivial) differ-

ential is defined to be either m⊗ idV ⊗(k0−2) or ∆⊗ idV ⊗(k0−1) . This is also the only non-

trivial differential of the bi-complex constructed from
[
0 → JD0K → JD1K{1} → 0

]
,

and the only summand of this differential. Since the domain is JD0K0, (−1)0 = 1, so

there is no minus sign, as required.
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Now, for the induction step, consider a knot diagram D with n = k + 1 cross-

ings. Let D0 and D1 be smoothings of D which differ only at the (k + 1)th crossing

(we choose this crossing for convenience). By definition, we know that the rth dif-

ferential of each JD0K and JD1K is
∑
|ζ|=r(−1)s(ζ)dζ where ζ ∈ Zk. Although, in the

notation with respect to the smoothings of D, these become
∑
|ζ0|=r(−1)s(ζ0)dζ0 and∑

|ζ1|=r(−1)s(ζ1)dζ1 respectively. Note that s(ζ) = s(ζ0) = s(ζ1). Now we look at the

differentials corresponding to the (k+ 1) crossing, which we want to show are formed

from the bi-complex below. That is, we want to show that di =
∑

p+q=i(d
p,q
v + dp,qh )

(see the beginning of this chapter for details about notation).

· · · // JD0Kr−1

∑
|α|=r−1 dα?

��

// JD0Kr //

∑
|α|=r dα?

��

JD0Kr+1 //

∑
|α|=r+1 dα?

��

· · ·

· · · // JD1Kr−1{1} // JD1Kr{1} // JD1Kr+1{1} // · · ·

Hence, the rth differential of JDK can be written as follows.

dr =
∑
|ζ|=r
ζ∈Zk+1

(−1)s(ζ)dζ

=
∑
|ζ|=r
ζ∈Zk

(−1)s(ζ0)dζ0 +
∑
|ζ|=r−1
ζ∈Zk

(−1)s(ζ1)dζ1 +
∑
|α|=r

α∈{0,1}k

(−1)|α|dα?

=dr0 + dr−1
1 +

∑
|α|=r

α∈{0,1}k

(−1)|α|dα?

The second equality holds since
{
ζ0 : ζ ∈ Zk

}
∪
{
ζ1 : ζ ∈ Zk

}
∪
{
α? : α ∈ {0, 1}k

}
=

Zk+1 and
{
ζ0 : ζ ∈ Zk

}
∩
{
ζ1 : ζ ∈ Zk

}
∩
{
α? : α ∈ {0, 1}k

}
= ∅. The final sum

is exactly the rth differential as defined from a bi-complex of the form above, as

required.
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4.3 The Khovanov cohomology

Recall in Chapter 2, we first defined the Kauffman bracket on a knot diagram, and

then defined the unnormalised Jones polynomial of an oriented knot diagram D to

be the Kauffman bracket of D under the normalisation, (−1)n−qn+−2n− . Under this

normalisation, we have a a knot invariant. Accordingly, to continue our analogous

construction of the Khovanov chain complex with respect to the unnormalised Jones

polynomial, we define the Khovanov chain complex to be the Khovanov bracket under

a q-degree shift and a homological degree shift, [−n−]{n+ − 2n−}, as follows.

Definition 4.3.1. The Khovanov chain complex

The Khovanov cochain complex C∗(D) of an oriented knot diagram D with n+ posi-

tive crossings and n− negative crossings is defined as follows.

C∗(D) := JDK[−n−]{n+ − 2n−}

Definition 4.3.2. The Khovanov cohomology

The rth Khovanov cohomology module, denoted Kh r(D), is the cohomology of the

cochain complex C∗(D).

Consider the rth graded vector space of the Khovanov cochain complex, Cr(D). The

vector space in q-degree m of Cr(D) is denoted Crm(D). Similarly, the vector space

in q-degree m of the rth cohomology module of the Khovanov cochain complex is

denoted Kh r
m(D). This follows the standard notation of both the homological degree

of cochain complexes and the qdim of graded vector spaces. Everything we have

done in this section so far has been over a Z-graded K-vector space. It all can be

generalised to a Z-graded R-module where R is a commutative ring with identity.

In fact, in Khovanov’s original paper, the definition was over a polynomial ring Z[c].

Such rings, particularly Z, are interesting when applying the quotients (when finding

the homology), as the interesting property of torsion sometimes arises. Unfortunately,

this is beyond the scope of this thesis.

Finally, we state the fundamental property of the Khovanov homology.
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Theorem 4.3.3. The Khovanov homology is a knot invariant.

This theorem will proved in Chapter 5 and is mentioned again in Chapter 7.

4.4 Relation to Jones polynomial

Proposition 4.4.1. The unnormalised Jones polynomial is the graded Euler charac-

teristic of the Khovanov homology of an oriented knot D.

Proof. We know from Proposition 3.3.13 that the graded Euler characteristic of a

chain complex of finitely generated graded vector spaces C∗ is equal to the alternat-

ing sums of the graded dimensions of the chain complex C∗. Also, recall the Jones

polynomial from Definition 2.2.5 is Ĵ(D) = (−1)n−qn+−2n−〈D〉. Using the properties

of qdim, the following equalities hold.

qdim(JDKr) =qdim(
⊕
rα=r

Vα)

=
∑
rα=r

qdim(V ⊗kα{rα})

=
∑
rα=r

qrαqdim(V ⊗kα)

=
∑
rα=r

qrα(qdimV )kα

=
∑
rα=r

qrα(q + q−1)kα

We must also consider the shift ·[−n−]{n+ − 2n−}. Recall that qdim(W{l}) =

qlqdimW . The shift [−n−] will not affect the q-dimension, but will affect the power

of (−1) in the Euler characteristic by moving i 7→ i + n−. Therefore, we have the
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following.

qdim(Cr(D)) =qdim(JDKr[−n−]{n+ − 2n−})

=qn+−2n−qdim(JDKr+n−)

Therefore, summing over all r, we find the Euler characteristic of C(D).

χq(C∗(D)) :=
∑
j

(−1)jqdim(Cj(D))

=
∑
j

(−1)jqn+−2n−qdim(JDKj+n−)

=
∑
i

(−1)i−n−qn+−2n−qdim(JDKi)

=(−1)n−qn+−2n−
∑
i

(−1)i
(∑
rα=i

qrα(q + q−1)kα
)

=(−1)n−qn+−2n−
∑

α∈{0,1}n
(−1)rα

(
qrα(q + q−1)kα

)
=(−1)n−qn+−2n−〈D〉

The fourth equality is summing over all of α ∈ {0, 1}n. In other words,
⋃
i∈Z
{
α ∈

{0, 1}n : rα = i
}

= {0, 1}n. The last line is the unnormalised Jones polynomial of D,

as required.

Khovanov homology is a strictly stronger invariant than the Jones polynomial. We

have shown that the Khovanov homology encodes the Jones polynomial, hence if two

knots have the same Khovanov homology, they will have the same Jones polynomial.

The following is an example of a two knots, 51 and 10132, that have the same Jones

polynomial but different Khovanov homologies, which shows it is indeed a stronger

invariant. These were shown to have different Khovanov homologies in [1].
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An incredibly appealing property of the Khovanov homology is that it is an unknot-

detector, [8]. That is, if a knot diagram D has the same Khovanov homology as the

unknot, then the knot diagram D is the unknot. Instead, while it is unknown that

the Jones is an unknot-detector for knots with only one component, there are knots

with more than one component, or links, that have the same Jones polynomial as the

unknot.

4.5 A long exact sequence

A nice feature of attributing a cochain complex to every knot diagram that one can

use properties of homological algebra. In particular, we construct a short exact se-

quence of chain complexes, and then use Theorem 3.2.8 in Chapter 3 to construct a

long exact sequence of homology graded vector spaces. In this case, each long exact

sequence is based on one particular crossing of a knot, and in the following proposition

we will consider a positive crossing. The long exact sequence of a negative crossing

can be obtained similarly with some modifications of the indices. This follows [13].

Theorem 4.5.1. Long exact sequence of a knot

Let D be an oriented knot diagram with a positive crossing. Let D0 and D1 be knot dia-

grams where the positive crossing is replaced with either a 0-smoothing or 1-smoothing

respectively. Then there is a long exact sequence of Khovanov homology modules:

· · · → Kh i−c−1
j−3c−2(D1)→ Kh ij(D)→ Kh ij−1(D0)→ Kh i−cj−3c−2(D1)→ · · ·
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where c := (number of negative crossings in D1)−(number of negative crossings in D).

Proof. The construction of the short exact sequence follows from the construction of

the Khovanov bracket.

Suppose D is a knot diagram with n crossings. Let dr0 represent the rth differen-

tial of JD0K and dr1 represent the rth differential of JD1K. Recall the spaces of JDK
are as follows.

JDKr =


JD0Kr : r = 0

JD0Kr ⊕ JD1Kr−1{1} : 0 < r < n

JD1Kr−1{1} : r = n

Hence, Cr(D) can be written as a direct sum of Cr(D0) and Cr−1(D1) under some

shifts in the homological grading and the q-grading, which makes up the bulk of this

proof. Nonetheless, we first must construct a short exact sequence of the brackets.

We claim that ιi : JD1Ki−1{1} ↪→ JD0Ki ⊕ JD1Ki−1{1} is an injective chain map.

We need only to check ι commutes with the differentials. This can be seen because

each differential of JDK will be a sum of the edges of the n-dimensional cube of D0,

D1, or from D0 to D1, since each summand of the differential replaces a 0-smoothing

with a 1-smoothing. Therefore the restriction of the ith differential to JD1Ki−1{1} in

JD0Ki ⊕ JD1Ki−1{1} is exactly the ith differential in the chain complex JD1Ki−1{1}.

Next, we claim the surjective projection map i : JD0Ki ⊕ JD1Ki−1{1} � JD0Ki is

a chain map. This can be seen for similar reasons as above. Also, it is clear that the

image of ι is exactly the kernel of . Hence, we have the following exact sequence of

cochain complexes.

0∗ → JD1K[1]{1} ↪→ JDK� JD0K→ 0∗

As mentioned in Subsection 3.2.2, we know that this is an exact sequence of graded
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vector spaces for each homological degree. Since the maps between graded vector

spaces graded linear maps (they preserve the grading), we know when restricting to

a particular q-grading, we have an exact sequence of vector spaces. Hence, for every

(i, j) (where i is the homological degree and j is the q-degree), we have the following

exact sequence of vector spaces.

0→ JD1Ki−1
j−1 ↪→ JDKij � JD0Kij → 0 (4.3)

From this form, we alter the indices under the normalisation ·[−n−]{n+ − 2n−} to

find a short exact sequence of the Khovanov chain complexes of D,D0, D1.

Since the normalisation of the Khovanov bracket depends on how the knot is oriented,

we must consider separately when the crossing in question is positive or negative. We

will consider the case where the crossing is positive.

In the case the crossing is positive, D0 will inherit the orientation of D.

Instead, for D1, one must arbitrarily choose the orientation. Define c ∈ Z as follows.

c = number of negative crossings in D1 − number of negative crossings in D

Therefore we can we find the Khovanov chain complex of D, D0, and D1.

1. D has n+ positive crossings and n− negative crossings, so C∗(D) = JDK[−n−]{n+−
2n−},

2. D0 has n+ − 1 positive crossings and n− negative crossings, so C∗(D0) =

JD0K[−n−]{n+ − 1− 2n−},
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3. D1 has (n+ + n−) − (c + n−) − 1 = n+ − c − 1 positive crossings and c + n−

negative crossings, so C∗(D1) = JD1K[−(c + n−)]{n+ − c − 1 − 2(c + n−)} =

JD1K[−c− n−]{n+ − 2n− − 3c− 1}.

Note also that Cij[a]{b} = Ci−aj−b , so Ci+aj+b [a]{b} = Cij.

We now write each of the graded vector spaces in equation 4.3 after the shift ·[−n−]{n+−
2n−}.

JD1Ki−1
j−1[−n−]{n+ − 2n−} =JD1Ki−c−1

j−1−3c−1[−n− − c]{n+ − 2n− − 3c− 1}

=Ci−c−1
j−3c−2(D1)

JDKij[−n−]{n+ − 2n−} =JDKij[−n−]{n+ − 2n−}

=Cij(D)

JD0Kij[−n−]{n+ − 2n−} =JD0Kij−1[−n−]{n+ − 2n− − 1}

=Cij−1(D0)

Hence we have the following exact chain complex of graded vector spaces.

0→ Ci−c−1
j−3c−2(D1)→ Cij(D)→ Cij−1(D0)→ 0

Since all the chain maps are unaffected by the shifts, we have the following short

exact sequence of chain complexes. After this, we apply Theorem 3.2.8 to get a long

exact sequence of vector spaces (not graded — but it is easy enough to form the

graded vector space by “combining” the vector spaces).

0∗ → C∗j−3c−2(D1)[c+ 1]→ C∗j (D)→ C∗j−1(D0)→ 0∗

Recall the homological shifts of the cochain complexes also shift the homology in a
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similar way. Therefore, this short exact sequence gives us the long exact sequence of

Khovanov homologies for each q-degree j ∈ Z as follows.

· · · → Kh i−c−1
j−3c−2(D1)→ Kh i

j(D)→ Kh i
j−1(D0)→ Kh i−c

j−3c−2(D1)→ · · ·

As required.
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Chapter 5

Invariance under the Reidemeister

moves

In this chapter, we follow Dror Bar-Natan’s proofs of the Reidemeister invariance of

the Khovanov homology in [1]. We endeavour to include all details. These proofs

only use algebraic techniques to show that two complexes have the same homologies.

In the following proof of R1 and R2, the techniques are analogous to the proof of

the Jones polynomial. However, in the proof of invariance under R3, where one uses

R2, one requires a more sophisticated method.

We will use the cone construction, which is described in Chapter 3. Specifically,

for R1, we show that J K = Cone
[
J K→ J K

]
, which we describe soon. It is

useful to first state and prove the following lemma.

Lemma 5.0.2. Cancellation theorems

Let C, C ′ be chain complexes, where C ′ is a sub-complex of C.

1. If C ′ is acyclic, then Hn(C) ∼= Hn(C/C ′) for every n,

2. If C/C ′ is acyclic, then Hn(C) ∼= Hn(C ′) for every n.

Proof. 1. Let C ′ be acyclic, and consider the short exact sequence of chain com-

plexes

0→ C ′ ↪→ C � C/C ′ → 0

93
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This induces a long exact sequence of homology modules

· · · → Hn−1(C/C ′)→ Hn(C ′)→ Hn(C)→ Hn(C/C ′)→ Hn+1(C ′)→ · · ·

By assumption, Hn(C ′) = 0 for every n, so the map Hn(C)→ Hn(C/C ′) is both

an injection by exactness at Hn(C), and surjective by exactness at Hn(C/C ′).
Therefore, we have isomorphisms Hn(C) ∼= Hn(C/C ′) for every n, so C and C/C ′

are quasi-isomorphic.

2. Let C/C ′ be acyclic, then Hn(C) ∼= Hn(C ′) for every n. Similarly we find from

the long exact sequence that Hn(C)→ Hn(C ′) must be injective and surjective

for every n, and thecoore C and C ′ are quasi-isomorphic.

Notation, cochain complexes, and quotients

Firstly, we let the concatenation of two strings, say α and β, simply be written as

their juxtaposition αβ. Hence, for α ∈ {0, 1}n−1, and if S, S0 and S1 denote smooth-

ings of D, D0 and D1 which differ in the first crossing respectively, then conveniently

our notation implies (S0)α = S0α, (S1)α = S1α, (V0)α = V0α and (V1)α = V1α.

Next, we briefly describe an approach to view the constructions we use. Let D

be a knot diagram with n crossings. Let D0 be the same knot diagram as D with a

0-smoothing in the first crossing and similarly let D1 be the same knot diagram as D

with a 1-smoothing in the first crossing. Recall each edge of the n-dimensional cube

is the graded vector space denoted by V0α or V1α, which are vertices of the (n − 1)-

dimensional cube of D0 and D1 respectively. It is useful to discuss maps between the

“sub”-n-dimensional cubes of a knot diagram D, which is defined by the collection

of maps as follows. {[
d?α : V0α −→ V1α

]
: α ∈ {0, 1}n−1

}
We have chosen D0 and D1 to be smoothings of the first crossing of D to simplify

things in terms of the minus signs, which we can assume since we showed in Chapter
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4 that the Khovanov bracket doesn’t depend on the ordering of the smoothings in

the knot diagram.

Hence, in the map between the rth spaces of Khovanov brackets is sum
∑
|α|=r d?α.

Note that these maps will not form a chain map between the brackets JD0K and JD1K,
since (put briefly) the faces including the d?α are required to anti-commute.

So, for this chapter, when we talk of the “complex,”[
JD0K −→ JD1K

]
which is a cochain complex of cochain complexes, we are implicitly flattening this

complex — that is, putting it in a bi-complex and then taking the direct sums of the

diagonals. Note in this case, to form a a bi-complex which matches the definitions of

the differentials in Chapter 4, we choose minuses in front of all edges of all differentials

in D1, that is, if ζ ∈ Zn−1 then −(−1)s(ζ)(d1)ζ = (−1)s(1ζ)d1ζ since s(1ζ) = s(ζ) + 1.

Now we talk briefly of taking quotients. All the following proofs rely heavily on

taking quotients of cochain complexes in the form above, and using Lemma 5.0.2.

We now show that this is indeed is well defined.

Let
[
B∗

f∗−−−→ C∗
]

be a cochain complex as described above, and note that this

is in fact the cone of f ∗. We claim that it is sufficient to show that if B′∗, C ′∗ are

sub-complexes of B∗ and C∗ respectively, and the map f ′∗ : B′∗ → C ′∗ is a restriction

of the chain map f ∗ : B∗ → C∗, then
[
B′∗

f ′∗−−−→ C ′∗
]

is indeed a sub-complex. This

can be done by considering the cone construction, and then follows rather effortlessly.(
dn+1
B′ 0

f ′n+1 −dnC′

)(
dnB′ 0

f ′n −dn−1
C′

)
=

(
dn+1
B′ d

n
B′ 0

f ′n+1dnB′ − dnC′f ′
n dnC′d

n−1
C′

)
=

(
0 0

0 0

)

We add that dn+1
B′ d

n
B′ = dnC′d

n−1
C′ = 0 follows since B′∗, C ′∗ are chain complexes. Next,

f ′n+1dnB′ − dnC′f ′
n = 0 follows since f ′n+1dnB′ = fn+1dnB|B′ = dnCf

n|B′ = dnC′f
′n.

What remains is to show that putting a cochain complex map into a bi-complex
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and then taking direct sums of the diagonals is the same as taking the cone. This is

simple if one puts the minuses in the right places for the bi-complex, which in this

example is on the row or column containing the differentials of C∗, dC . With no

further comment, we continue to the proofs.

5.1 First Reidemeister move

In this section, we will discuss the proof of the first Reidemeister move using geo-

metric complexes for the Khovanov homology of graded vector spaces. Let D denote

, and D′ denote . The opposite orientation is similar, as seen the proof of

Theorem 2.2.6. Additionally, we let D0 be the 0-smoothing of D, , and let D1

be the 1-smoothing, . Also, let n, n+ and n− be the number of crossings, pos-

itive crossings and negative crossings of D, respectively. Without loss of generality,

we assume the crossing in is the first crossing, and that the ordering of the

crossings of D0 and D1 is inherited from D.

We will show that the Khovanov homologies of D and D′ are the same by rewriting

the Khovanov bracket of D in terms of the Khovanov brackets of D0 and D1, which

will we discuss in detail. The cancellation theorems are used to find a “simpler”

complex which is quasi-isomorphic to D, and also has a more evident isomorphism

with D′. Lastly, we show that the degree shifts to construct the quasi-isomorphism

are adjusted for under the shift map (that is, we use that two quasi-isomorphic com-

plexes are still quasi-isomorphic under the same shift of the q-degree, {·}, and the

same shift of the homological degree, [·]).

Proof of invariance of the Khovanov homology under R1. We start by showing that

the Khovanov bracket J K can be rewritten as Cone
(
J K∗ m̆∗−→ J K∗−1

)
.

Let d0 and d1 be the differentials of J K∗ and J K∗−1 respectively, where a super-

script will denote the degree of the differential in their respective cochain complexes.
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From Equation 4.2, the differentials of J K can be written as follows.

dr :=
∑
|ζ|=r

(−1)s(ζ)dζ

=
∑
|ζ|=r

(−1)s(0ζ)d0ζ +
∑
|ζ|=r−1

(−1)s(1ζ)d1ζ +
∑
|α|=r

(−1)s(?α)d?α

= dr0 − dr−1
1 +

∑
|α|=r

d?α

Here we use s(?α) = 0 and s(1ζ) = s(ζ) + 1. In the following working, we write

dr+1dr in terms of the above. Needless to say, composition of the differentials only

occurs where there is well defined composition of maps.

dr+1dr =
(
dr+1

0 − dr1 +
∑
|α|=r+1

d?α

)(
dr0 − dr−1

1 +
∑
|α|=r

d?α

)
= dr+1

0 dr0 + dr1d
r−1
1 +

( ∑
|α|=r+1

d?α
)( ∑
|α|=r

d?α
)

+
( ∑
|α|=r+1

d?α
)
dr0 − dr1

( ∑
|α|=r

d?α
)

=
( ∑
|α|=r+1

d?α
)
dr0 − dr1

( ∑
|α|=r

d?α
)

Since these are differentials of a cochain complex, dr+1dr = 0, so the last line is

equal to zero. Hence, when the Khovanov bracket is drawn as the following diagram,

we use the above equality to assert that the vertical maps in the following diagram

form a chain complex map.

· · · // JD0Kr−1

∑
|α|=r−1 d?α

��

// JD0Kr //

∑
|α|=r d?α

��

JD0Kr+1 //

∑
|α|=r+1 d?α

��

· · ·

· · · // JD1Kr−1{1} // JD1Kr{1} // JD1Kr+1{1} // · · ·

Next, we note that each summand of the vertical chain maps is a map from a smooth-
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ing of to , and hence each summand is the map m⊗ id, where m acts on

the two cycles seen in . We denote the collection of these maps that form the

chain complex by m̆∗. That is, it is the edge map which is the identity on all cycles

outside , and is m on the cycles shown in . We will first show that the

chain complex J K can be written as Cone(m̆∗).

Every element of JDKr can be written as a unique sum a + b where a ∈ JD0Kr and

b ∈ JD1Kr−1 (a property of the direct sum). Hence, as the differential shown above,

dr(a+ b) = dr(a) + (m̆)r(a)− dr−1(b).

We claim that J K = Cone
(
J K∗ m̆∗−→ J K∗−1

)
, so each J Kr is the direct

sum J Kr ⊕ J Kr−1. We now will define the differentials in the context of these

direct sums (and from the equation above follows almost tautologically). We now

will write this differential as a matrix to act on the ordered pairs from the direct sum.(
dn0 0

m̆ −dn−1
1

)

Note that the minus signs are to ensure the differential is the same as in . The

following shows that the differential here is indeed the same as that in J K.

(a, b) 7→
(
d0(a), m̆(a)− d1(b)

)

Recall that m is the merging map V ⊗ V → V . It is defined on the generators

of V ⊗ V as follows.
m : v+ ⊗ v+ 7→ v+

v+ ⊗ v−, v− ⊗ v+ 7→ v−

v− ⊗ v− 7→ 0

Consider the complex J K∗v+
⊕ J K∗−1, where the subscript “v+” denotes that

the cycle in is only generated by v+, so J K∗v+
⊂ J K∗. This is a sub-
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complex of J K∗ ⊕ J K∗−1 since the cycle in will be unaffected by the

differentials, and thus the differentials act as the identity on v+.

We now will show that this complex is acyclic by showing every r-cocycle of J K∗v+
⊕

J K∗−1 is also an r-coboundary. In other words, we show that if (a, b) ∈ J Krv+
⊕

J Kr−1 is such that(
dr0 0

m −dr−1
1

)(
a

b

)
=

(
dr0a

m̆a− dr−1
1 b

)
=

(
0

0

)
,

then there must exist (a′, b′) ∈ J Kr−1
v+
⊕ J Kr−2 such that a = dr−1

0 a′ and

b = m̆r−1a′ − dr−2
1 b′.

First, we claim that m̆∗ is a bijection and begin by showing m̆ is surjective. Ev-

ery smoothing of has a corresponding smoothing of , which is the same

smoothing and only differs inside our chosen crossing. Therefore, take an element x

of Vα ⊂ J Kr. The element x has an element of V corresponding to each cycle.

Hence, if we consider the corresponding Vα ⊂ J Kr, the element with the same

element of V assigned to each cycle and v+ assigned to the extra cycle will be in the

preimage of x.

More explicitly, take x ⊗ x′ ∈ Vα ⊂ J Kr, where x is the element of V repre-

senting the cycle in , and x′ represents the rest of the cycles in the rest of the

smoothing. Then m ⊗ id(v+ ⊗ x ⊗ x′) = x ⊗ x′, since m is the identity on tensor

products with v+, that is v+ ⊗ (r · v+)
m7−→ r · v+ and v+ ⊗ (r · v−)

m7−→ r · v− for every

r ∈ R. This is true for every generator Vα ⊂ J Kr. So in fact, we have shown that

there is an element in the preimage that is also an element of J Kn−1
v+

, as required.

Now for the injectivity of m̆. If m ⊗ id(v+ ⊗ x ⊗ x′) = m ⊗ id(v+ ⊗ y ⊗ y′), then

x⊗ x′ = y ⊗ y′. Clearly, it follows that m̆ is an injection.

Now we are convinced that m̆r−1 : J Kr−1
v+
→ J Kr−1 is a bijection, we can
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say that for every b ∈ J Kr−1, there exists an element a′ ∈ J Kr−1
v+

such that

m̆r−1(a′) = b. Therefore, since (a, b) is a cocycle and m̆∗ is a chain map, m̆a −
m̆dr−1

0 a′ = m̆a− dr−1
1 m̆a′ = 0. As m̆r is injective, and m̆(a− dr−1

0 a′) = 0, a = dr−1
0 a′.

So, for (a′, 0) ∈ J Kr−1
v+
⊕ J Kr−2, we have that d((a′, 0)) = (dr−1

0 a′, m̆a′) = (a, b),

so (a, b) is a coboundary, as required.

Note that though m̆∗ is a bijection, it is not an isomorphism of graded modules, since

it has a q-shift of −1. That is, if deg(x) = i for x ∈ J Kr, then deg(m̆r(x)) = i− 1.

Now we know the subcomplex J K∗v+
⊕J K∗−1 is acyclic, we apply the cancellation

theorems:

Hr(J K∗ ⊕ J K∗−1) ∼= Hr
((

J K∗ ⊕ J K∗−1
)
/
(
J K∗v+

⊕ J K∗−1
))

∼= Hr
(
J K∗/v+=0

)
for all n. It is clear that in the second isomorphism, all elements of the form v+ ⊗ x
are equivalent to 0. Therefore, all elements are generated by elements of the form

v− ⊗ x.

It remains to show that Hr(J K∗/v+=0) is isomorphic to Hr(J K∗{−1}) for all

n. It easily follows that the homologies after the shift by ·[−n−]{n+− 2n−} will also

be isomorphic, and in both cases, this will give the Khovanov chain complex of the

respective oriented knots, as has one less positive crossing than , which is

adjusted for in the q-shift ·{−1}.

Consider the element x⊗ v− in J Kr/v+=0, and denote its q-degree by k ∈ Z. Con-

sider the isomorphism of vector spaces x⊗ v− 7→ x. This is a bijection, but to show

it is an isomorphism it remains to show that this does not change the q-degree of

the element. If deg(x ⊗ v−) = k, then deg(x) = k + 1, but because of the q-shift

·{−1} which shifts everything in the graded module “down” by 1, the q-dimension

of x ∈ J K∗{−1} is altered by −1 (see Definition 3.3.10). Thus, the shift of x is
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adjusted accordingly, since deg(x) = k + 1− 1 = k, as required.

The differentials are identical in J K∗v− and J K∗{−1}, since the two knot projec-

tions are identical outside this section and all differentials are unaffected by the extra

cycle in . This means that the n-dimensional cubes are identical except for an

extra cycle generated by v− in J K∗v− , which is unaffected by the differential.

This completes the proof that the Khovanov homology of a link is invariant un-

der R1.

5.2 Second Reidemeister move

Let D denote the knot projection with crossings as follows, , and D′ denote

the same knot projection with the previous crossing replaced by . We denote

the projections of D with the crossings in replaced by smoothings of D with

subscripts representing the smoothings. Without loss of generality, let the left cross-

ing in be the first crossing of D, and let the right crossing be the second

crossing of D. In other words, D00 denotes , D01 denotes , D10 denotes

, and D11 denotes .

We will discontinue the use of m̆ for the map m ⊗ id, and use m instead, where

the tensor product with the identity is implicit.

Proof of invariance of the Khovanov homology under R2. We start by introducing a

new way to write the cochain complex graded vector space JDK as a diagram. Let α

be a smoothing that resolves every crossing in D except the first and second crossings

which are seen in . Then if |α| = r, then the following chain complex represents
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all the smoothings of D which contain α. These are 00α, 01α, 10α, and 11α.

J Kr{1} m⊗idα // J Kr{2}

J Kr d?0α //

∆⊗idα

OO

J Kr{1}

d1?α

OO

JDK

This diagrams holds for every α ∈ {0, 1}n−2. Recall from the proof of R1 that

the maps pictured above will form chain maps on the brackets of D00, D01, D10, and

D11. As in the discussion at the beginning of this chapter, what we have drawn in

this diagram is chain complex maps between Khovanov brackets, and these maps are

“pre-flattened,” hence all produce commuting ladder diagrams. Nonetheless, we keep

in mind that we are implicitly taking direct sums and including some minuses on the

differentials.

It will be satisfactory to show that the following cochain complexes are quasi-isomorphic.

These diagrams above account for the normalisation [−n−]{n+−2n−}, since no mat-

ter how one orients the strands, has exactly one more negative crossing and

one more positive crossing than . Therefore, we know the shift of D will be

[−n−]{n+− 2n−}, so the shift of D′ will be [−(n−− 1)]{(n+− 1)− 2(n−− 1)} which

is the same as [−n−]{n+ − 2n−}[1]{1}.
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J K∗{1} m // J K∗{2}

J K∗ d?0 //

∆

OO

J K∗{1}

d1?

OO

JDK∗

'

0 // 0

0 //

OO

J K∗{1}

OO

JD′K∗[1]{1}

As mentioned previously, these are cochain complex maps in the same way as m :

→ {1} was in the first Reidemeister move. The chain complex on the left

represents the bi-complex[
J K∗ → J K∗ ⊕ J K∗{1} → J K∗{2}

]
,

where the first map is represented by

(
∆

d?0

)
, and the second map is represented by(

m d1?

)
. In other words, the modules of the chain complex are the direct sums of

the downward right diagonals, with differentials the sum of the maps of the direct

summands. One can regard the number of arrows, s, from the bottom left to one of

the vertices in this diagram as a visual way to represent homological degree shifts, or

[s], at this vertex.

We remark that it is less convenient to use the cone construction here as we would end

up with a 4× 4-matrix. Nonetheless, what remains of the construction built in R1 is

the method of the chain maps as matrices. Also what remains is the validity of taking

quotients of the chain complexes when drawn as squares. Recall it is equivalent to

rewrite the above as J K∗ ' J K∗−1{1}. For clarity, the asterisk superscripts

∗, and occasionally the shifts {·} will be omitted in these diagrams, as above.
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Consider the following subcomplex of J K∗.

J Kv+{1}
m // J K{2}

0 //

OO

0

OO

C ′

⊂

J K{1} m // J K{2}

J K //

∆

OO

J K{1}

OO

C

Conveniently, we have shown that the complex C ′ on the left (it is identical up to the

shift ·[1]) is acyclic in the proof of R1, and so by the cancellation theorems, C ' C/C ′.

The quotient C/C ′ is as follows.

J K/v+=0{1} // 0

J K d0? //

∆

OO

J K{1}

OO

C/C ′

Next, one finds another acyclic subcomplex of C/C ′, call it C ′′.

Without loss of generality, let the first element of the tensor product represents

the cycle in , and the second element represents the rest of the cycles. We

show that ∆ in C/C ′ is a bijective map. If v+ is assigned to the right cycle in D00,

∆ ⊗ id(v+ ⊗ x) = (v+ ⊗ v− + v− ⊗ v+) ⊗ x ∼ v− ⊗ v+ ⊗ x, since v+ ⊗ v− ⊗ x = 0

in this quotient of the graded vector space J Kr/v+=0 for every x. So every ele-
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ment of JD00K is sent to the same element but with v− assigned to the cycle inside D01.

As the map ∆ is bijective, one can define a map τ := d0?∆
−1. We write elements

of J K/v+=0{1} ⊕ J K{1} as ordered pairs. The subcomplex of this cochain

complex is the collection of elements of the form (β, τβ), where β is any element of

J Kr/v+=0{1} for some r.

β //

τ

$$

0 J K/v+=0
// 0

⊂

α //

∆

OO

τβ

OO

J K d0? //

∆

OO

J K

OO

C ′′ C/C ′

Note that above we have written the generating elements of the complex rather than

the complex itself. The complex can also be written as follows.

J K/v+=0
//

τ

''

0

J K d0? //

∆

OO

τ(J K/v+=0)

OO

C ′′

⊂

J K/v+=0
// 0

J K d0? //

∆

OO

J K

OO

C/C ′

We claim that C ′′ is acyclic. The chain map is well defined, since d0?(α) = τ∆(α), so

(∆α, d0?(α)) = (∆α, τ(∆α)), which is an element in the complex C ′′. The assignment

α 7→ (∆α, d0?α) is a bijection, since ∆ : JD00K∗ → JD01K∗/v+=0{1} itself is.

Now one mods out by C ′′, so all elements of the complex C ′′ go to zero. There-
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fore, (β, τβ) = 0 for every β ∈ JD01K/v+=0 in this quotient complex. In other words,

the quotient imposes the equivalence (β, 0) ∼ (0,−τβ) for every β. We will call this

complex Cτ .

J K/v+=0
//

β=−τβ

((

0

0 //

OO

J K

OO

Cτ := (C/C ′)/C ′′

generated
by

β //

β=−τβ

((

0

0 //

OO

γ

OO

Cτ := (C/C ′)/C ′′

When discussing this complex we will always use β to denote an element of J Kr/v+=0,

and γ to denote an element of J Kr, as above, which shows two different ways to

write the same chain complex.

We claim the elements of J K can be (naturally) embedded into this quotient.

Consider the inclusion ι : J Kr ↪→ Crτ which maps γ 7→ (0, γ). Take γ1, γ2 ∈
J Kr such that ι(γ1) = ι(γ2). Then (0, γ1 − γ2) = (β, τβ) for some β, and clearly

β = 0, so γ1 − γ2 = τβ = 0, and are the same element of J Kr.

0 // 0

0 //

OO

J K{1}

OO

↪→

J K/v+=0
//

β=−τβ

))

0

0 //

OO

J K

OO

Cτ := (C/C ′)/C ′′

We have shown the above is an embedding. Nonetheless, it remains to show that this

embedding is an isomorphism. Let [·]∼ denote the equivalence classes of elements

under this quotient. We want to show that this embedding is also surjective, and we
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only need to show that every element (β, γ) is equivalent to (0, γ′) for some γ′. This

follows if we choose γ′ = γ − τβ, then (β, γ) − (0, γ − τβ) = (β, τβ), which is an

element of {(β, τβ) : β ∈ J Kr}, as required.

This shows the invariance under R2, as required.

5.3 Third Reidemeister move

Proof of invariance of the Khovanov homology under R3. Consider an oriented knot

projection D with a section of the projection which looks like , and an identical

knot projection but with replaced by .

These projections will be denoted simply by and and their smoothings

respectively. For the third Reidemeister move, we want to show that the Khovanov

bracket of these two projections are quasi-isomorphic.

J K ' J K

This is sufficient — that is we don’t need to consider any shifts — since no matter how

one orients the strands in the projections (that are consistent with the surrounding

knot), the two knots will have the same number of positive crossings and negative

crossings. Therefore, both (oriented) knot projections have the shift [−n−]{n+−2n−}.

As before, we now smooth the crossings pictured, which are ordered as follows. Where

required, the subscript ‘a’ will denote when something occurs on the left knot (

), and ‘b’ will denote when something occurs on the right knot ( ).
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101

//

111

100

∆ //

@@

OO

110

m

@@

001

//

011

OO

000

//

@@

OO

010

@@

OO

101

m //

111

100

//

∆

@@

OO

110

@@

001

//

011

OO

000

//

@@

OO

010

@@

OO

Note, we haven’t included the q-shifts {·}, and brackets J·K, which we will continue

to omit along with the smoothing label. Another way to think of the above is as the

chain complexes of the following, where only the first crossing has been replaced by

a smoothing.

da,?

OO

and
db,?

OO

Next, one replaces the top layer of the cube using the complex Cτ from the proof of

R2 in the previous section. That is, the top layer is quasi-isomorphic to the following

quotient chain complex.
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J K/v+=0
//

β=−τβ

''

0

0 //

OO

J K

OO

More rigorously, we find the same sub-complexes and take the same quotients of

the above cubes by the complex
[
0→ C ′

]
, and so on.

// 0

0 //

BB OO

/v+=0

>>

βa=−τaβa
``

da,?01

//

OO

//

BB

OO

>>
∆a

OO

/v+=0

//

βb=−τbβb

  

0

0 //

>> OO

@@

∆b

//

OO

//

>>

OO

@@db,?10

OO

Now, we would like to construct an isomorphism between these two chain complexes.

The isomorphism between the bottom layers is clear, and the isomorphism of the top

layers is just a transpose of the direct sums. Recall, the top layers are isomorphic

since they are both isomorphic to . For this isomorphism on spaces — let us call

it Υ — to also be an isomorphism of chain complexes, the only thing that remains

to show is that the vertical maps between the layers commute with the isomorphism

Υ between the cubes.

Let Υ act on the top layers by sending [(0, γa)] 7→ [(0, γb)]. To show that this isomor-
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phism on spaces commutes with the differentials, one must prove the following.

da,?01 = τb∆b and db,?10 = τa∆a (5.1)

where da,?10 = ∆a and db?01 = ∆b. We want to show because, say Υ is the isomor-

phism, then we require Υda,?01 = ∆bΥ but

im(Υda,?01) ⊆ / im τb and im(∆bΥ) ⊆
/v+=0

.

So, we must consider what the images are under the equivalence relation β ∼ τbτ .

If Υda,?01 = −τb∆bΥ, then these maps are equal since (β, 0) ∼ (0,−τβ) under the

equivalence relation. If one ignores the Υ — which one can since it is the identity on

the spaces it is acting on in this case — the equation is exactly that in (5.1). It is

similar for the second.

Now the task is to show that these two relations are equivalent. Recall that, us-

ing the notation of the diagrams, that τa := da,10?∆
−1 where ∆ is the map da,1?0. We

denote the map ∆a which is mapped to the space /v+=0 by ∆a. (This just means

∆a = φ ◦∆a, where φ mods out by v+).

∆a
//

/v+=0

∆−1

//

da,10?
//

x � // v− ⊗ x � // x � // da,10?(x)

Recall ∆−1 from R2. It is clear from the above maps that ∆−1∆a = id. There-

fore τa∆a = da,10?. Note also that the edges of the cube,

da,10? : → and db,?10 : → (5.2)
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are the same rearrangement of the top two strands, and so are the same map. Given

the morphism Υ is the identity on the bottom layer of the cube, Υ commutes with

this side of the cube, as in equation5.1.

As for the proof of da,?01 = τb∆b, it is almost identical to the one given above.

Recall that

∆b
//

/v+=0

∆−1

//

db,1?0
//

x � // v− ⊗ x � // x � // db,1?0(x)

which implies that ∆−1∆b = id, and so τb∆b = db,1?0. Accordingly, we have

db,1?0 : → and da,?01 : → ,

are the same, as required.

Therefore, the Khovanov homology is invariant under R3, as required.

In Dror Bar-Natan’s proofs in [1], we see that these proofs are (as you would expect)

not an algebraic analogue of the proofs of Reidemeister invariance of the Jones poly-

nomial.

This is not apparent in the proof of R1, but, as shown explicitly by Bar-Natan, we

see that it is not possible to use R2 in the invariance of R3. Specifically, though we

know from R2 that Kh( ) ∼= Kh( ) ∼= Kh( ), the chain complexes (which,

recall, are isomorphic on each space),
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da,?

OO

and
db,?

OO

cease to be isomorphic as chain complexes.

Instead, by using the quotient complex isomorphic to , we find an isomorphism

of the chain complexes that also commutes with the differentials da,? and db,?.



Chapter 6

Topological Quantum Field

Theories and Frobenius objects

The purpose of this chapter is to show, from the bottom up, an equivalence of cat-

egories between (1 + 1)-TQFTs and Frobenius algebras. This is useful because the

graded R-module V in Chapter 4 is a Frobenius object in the category of Z-graded

R-modules, which we will show in Chapter 7. Hence, one can apply the TQFT to

replace all algebraic relations with something more topological. This simplifies much

of the working. In Chapter 7 we also use TQFTs to review some aspects of the Kho-

vanov homology.

In sections 6.1 and 6.2, we aim to describe an isomorphism of categories,

SymMonCat(X,V) ∼= cFrob(V)

between the symmetric monoidal functor category and Frobenius objects in the cate-

gory V. This involves the construction of the free monoidal category X, with desired

relations. In Section 6.3, we discuss, as promised, a topological description of a cate-

gory of cobordisms. We see in this section the geometric reasoning the construction

of the category X, as all relations reflect the topology of surfaces. Also, we show the

above isomorphism of categories in the context of 2-cobordisms in Section 6.5. This

all follows [7], except with a rearrangement of the material, by instead building up

113
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the isomorphism from a category-theoretic point of view. Lastly, in this chapter we

mention the symmetric monoidal category we consider for applying this chapter to

the Khovanov homology in the final chapter of this thesis.

Some category theory notation

For a category C, let Ob(C) denote the collection of objects of C, and let Mor(C)
denote the collection of morphisms of C. An equivalence of categories is denoted ',

and an isomorphism of categories is denoted ∼=. We assume the reader is familiar

with the basics of category theory. Our source for this material is [10].

6.1 Symmetric monoidal categories

Symmetric monoidal categories

Definition 6.1.1. Strict monoidal category

Let {∗} be the category with exactly one object, ∗, and one morphism, id∗. A strict

monoidal category is a category V with a bi-functor m and functor h,

m : V ×V→ V h : {∗} → V

which satisfy

m ◦ (m× idV) = m ◦ (idV×m), m ◦ (h× idV) = idV = m ◦ (idV×h).

That is, the following diagrams commute.

V ×V ×V
idV ×m //

m×idV

��

V ×V

m

��

V ×V m //V
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V × {∗} idV ×h //

∼=

""

V ×V

m

��

V

{∗} ×V
h×idV //

∼=

$$

V ×V

m

��

V

The isomorphisms V × {∗}
∼=−→ V

∼=←− {∗} × V are the projection morphisms onto

V, which are isomorphisms of categories.

It is convenient to define an object I := h(∗), and to define an object X�Y :=

m(X, Y ) for every X, Y ∈ Ob(V), and similarly for f, g ∈ Mor(V), the mor-

phism f�g := m(f, g). The top diagram implies associativity of �, (X�Y )�Z =

X�(Y �Z). The bottom diagrams imply there is an identity object h(∗), denoted I,

that commutes with every object X, X�I = X = I�X.

The bi-functor m is referred to as the monoidal product and I is referred to as the

neutral object in V. A monoidal category will be denoted by a triple (V,�, I), with

respect to its monoidal product and neutral object.

A coherence theorem

The word strict in strict monoidal category refers to the equalities X�I = X = I�X

and (X�Y )�Z = X�(Y �Z). In a monoidal category, these equalities are only re-

quired to be isomorphisms, and we will formally define these in the next paragraphs.

Then, we will give a brief overview of why it is sufficient to only discuss the strict

case, in the method of [10].
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The following morphism is natural for all a, b, c ∈ ObV, and the subsequent pen-

tagonal diagram commutes for all W,X, Y, Z ∈ ObV.

α = αX,Y,Z : X�(Y �Z) ∼= (X�Y )�Z

X�(Y �(Z�W )) α //

idX �α

��

(X�Y )�(Z�W ) α // ((X�Y )�Z)�W

X�((Y �Z)�W ) α // (X�(Y �Z))�W

α� idW

OO

This shows associativity of the monoidal product up to natural isomorphism. Next,

we have the following natural isomorphisms for all X ∈ ObV.

λX : I�X ∼= X, ρX : X�I ∼= X.

Such that

λI = ρI : I�I → I,

and the following three diagrams commute.

X�(I�Z)
αX,I,Z

//

idX �λZ

��

(X�I)�Z

ρX� idZ

��

X�Z X�Z

I�(Y �Z)
αI,Y,Z

//

λY �Z

��

(I�Y )�Z

λY � idZ

��

Y �Z Y �Z

X�(Y �I)
αX,Y,I

//

idX �ρZ

��

(X�Y )�I

ρX�Y

��

X�Y X�Y
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The categories we want to look at will not always be strict monoidal categories, but

it will be convenient in the following section to work with only strict monoidal cate-

gories. We can do this as discussed in Mac Lane, [10] in Sections VII and XI, which

give us the following theorems.

First, Mac Lane proves a theorem that gives an isomorphism between any two strings

of objects of V. That is, consider an n-tuple of V, or an element of Ob(Vn), and

let w, v bring each ordered element to a monoidal product combinations of brackets

and neutral elements I of the ordered string. For example, consider w which assigns

(X1�I)�X2 to (X1, X2) (the ordering of the Xi must stay the same). Mac Lane

proves that there exists a natural isomorphism between any two elements of this

form. The following theorem is a similar assertion of the previous statement.

Theorem 6.1.2. Coherence Theorem

Every monoidal category is categorically equivalent to a strict monoidal category.

This theorem allows us to say any commuting diagram of a monoidal category is

equivalent to one in a strict monoidal category. As a result, in this section we will

only consider strict monoidal categories from this point on, and bear in mind that

everything can be generalised to general monoidal categories.

“Stick figure” notation of morphisms

It is useful to visualise objects of a monoidal category as vertical stacks of dots, where

the ith dot from the bottom represents Xi in X1�X2� · · ·�Xn.

X1

X1�X2� · · ·�Xn is represented by
X2

X3

...

Xn
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Morphisms are represented by lines, with the domain the left dot and the co-domain

the right dot of the line. The morphism f : X → Y will be the following.

f
YX

Additionally, it will be useful later to use the following property of monoidal cate-

gories. Suppose f : X → X ′ and g : Y → Y ′ are morphisms in V. Then the following

are equivalent.

X X ′
f

Y Y ′
g

=

X X ′
f idX′

Y Y ′
idY g

=

X X ′
idX f

Y Y ′
g idY ′

More specifically, this means f�g = (idX′ �g) ◦ (f� idY ) = (f� idY ′) ◦ (idX �g).

Often, when the map name is omitted from a morphism, the map denotes the identity

morphism.

Definition 6.1.3. Strict monoidal functor

A strict monoidal functor between two strict monoidal categories (V,�, I) and (V′,�′, I ′)

is a functor F : V→ V′ such that

m′ ◦ (F × F ) = F ◦m and F ◦ h = h′.

That is, the following diagrams commute.

V ×V
F×F

//

m

��

V′ ×V′

m′

��

V F //V

{∗}

h

��

{∗}

h′

��

V F //V′
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Therefore, for every pair of objects X, Y in V, F (X�Y ) = FX�′FY , for every pair

of morphisms f, g in V, F (f�g) = Ff�′Fg, and also FI = I ′.

Definition 6.1.4. Symmetric monoidal category

A symmetric strictly monoidal category is a strictly monoidal category (V,�, I) with

a twist map,

τX,Y : X�Y ∼= Y �X for every X, Y ∈ ObV.

The morphism τX,Y will be drawn graphically as follows.

X Y

Y X

A twist map is an isomorphism, and has the following properties. Sometimes along

with commuting diagrams, graphical diagrams have also been included.

1. Naturality for every pair of objects. That is, for every morphisms f : X → X ′

and g : Y → Y ′ in V, the following diagram commutes.

X�Y
τX,Y

//

f�g

��

Y �X

g�f

��

X ′�Y ′
τX′,Y ′

// Y ′�X ′

X Y ′

Y X ′

τX,Y g�f

=

X Y ′

f�g τX′,Y ′

Y X ′



120CHAPTER 6. TOPOLOGICAL QUANTUM FIELD THEORIES AND FROBENIUS OBJECTS

2. τY,XτX,Y = idX�Y

X�Y
τX,Y

//

idX�Y

$$

Y �X

τX,Y

��

X�Y

Y

X

Y

X
τX,Y τY,X

=

idX�Y

Y

X

Y

X

3. The Unit Law

I�X
τI,X

//

id

��

X�I

id

��

X

X�I
τX,I

//

id

��

I�X

id

��

X

4. Associativity: (idY �τX,Z)◦(τX,Y � idZ) = τX,Y �Z and (idX �τY,Z)◦(τX,Z� idY ) =

τX�Y,Z .

X�Y �Z
τX,Y �Z

//

τX,Y � idZ

��

Y �Z�X

Y �X�Z

idY �τX,Z

?? X�Y �Z
τX�Y,Z

//

idX �τY,Z

��

Z�X�Y

X�Z�Y

τX,Z� idY

??

From conditions (2) and (4), the following equality holds, which we will not prove.
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=

X

Y

Z

Z

Y

X

X

Y

Z

Z

Y

X

Definition 6.1.5. Symmetric monoidal functor

A symmetric strict monoidal functor between two symmetric strict monoidal cate-

gories (V,�, I, τ) and (V′,�′, I ′, τ ′) is a monoidal functor F : V→ V′ such that for

every pair of objects X, Y in V, the functor sends τX,Y to τ ′FX,FY .

F (τX,Y ) = τ ′FX,FY

X�Y

τX,Y

��

FX�′FY

τ ′FX,FY

��

� F //

Y �X FY �′FX

Definition 6.1.6. Monoidal natural transformations

Consider strict monoidal categories (V,�, I) and (V′,�′, I ′), and two strict monoidal

functors F,G : V ⇒ V′. Recall a natural transformation from F to G, written

u : F −→. G, is a collection of maps {uX : FX → GX}X∈ObV in (V′,�′, I ′) such that

for every morphism f : X → Y in V, the following square commutes in V′.

FX
uX //

Ff

��

GX

Gf

��

FY
uY // GY
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A (strict) monoidal natural transformation from F to G is a natural transformation

u : F −→. G, such that for every two objects X, Y in V, uX�′uY = uX�Y , and

uI = idI′ . That is, the following diagrams commute.

F (X�Y )
uX�Y // G(X�Y )

FX�′FY
uX�′uY // GX�′GY

FI
uI // GI

I ′
idI′ // I ′

All the vertical equalities follow from the assumption that F andG are strict monoidal

functors.

The collection of monoidal natural transformations, denoted MonCat(V,V′), form

a category where the objects are monoidal functors V→ V′, and the morphisms are

monoidal natural transformations.

Consider the category of only the symmetric monoidal functors in MonCat(V,V′).

This is a full subcategory of MonCat(V,V′), denoted SymMonCat(V,V′). The

objects are only symmetric monoidal functors V → V′, and the morphisms are ex-

actly the morphisms between these objects in MonCat(V,V′) (hence it is the full

subcategory).

6.1.1 Generating categories under the monoidal product

Just like a group can be generated by a subset of the group, a monoidal category C
can be generated by certain subsets of its objects, ObC. Of course, one could not

define a generating set without the existence of a monoidal product, m.



6.1. SYMMETRIC MONOIDAL CATEGORIES 123

To illustrate this, we begin by looking at the most general example of the types

of categories we want to look at. In this case, it is the simplex category Φ. The

category Φ is the skeleton of the category of finite sets, or FinSet.

The objects of Φ are given by natural numbers. That is, for n ≥ 1, n := {0, 1, . . . , n−
1} and 0 := ∅. The morphisms of Φ are all set functions on the underlying sets. The

monoidal product in Φ is the cardinal sums of cardinals, denoted +++, and +++(m,n) =

m+ n. The neutral object is 0 (the empty set). The following equations assert that

the monoidal product and neutral object are indeed part of a monoidal category.

That is, +++ is associative and the cardinal sum of an object in Φ and 0 doesn’t change

the object.

(k + m) + n = k + (m + n) and 0 + n = n = n + 0

Every n ∈ ObΦ can be written as a disjoint union of n many of the 1. Therefore, all

objects in Φ can be written as a monoidal co-product of 1, and therefore 1 generates

ObV. Note that 0 is the unique initial object in Φ, that is, it is the empty co-product

of 1.

Note that 0 is an initial object in Φ, and +++ is the co-product in Φ. This is in

fact an example of the general case that categories with co-products and an initial

object are monoidal.

For our purposes, it will be sufficient to know that all set maps on FinSet are cardi-

nal sums of identity morphisms id, twist morphisms t, multiplication morphisms µΦ,

and unit morphisms ηΦ. In Set, µΦ is the function which sends two elements to one

element, ηΦ is the unique function from the empty set to a single element set, and

the twist map t is a permutation of a two element set. For more specifics, see [7].
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6.1.2 Monoids in monoidal categories

Definition 6.1.7. Monoids in strict monoidal categories

Consider a monoidal category (V,�, I). A monoid in V is an object M ∈ ObV

together with two morphisms

µ : M�M →M and η : I →M

which satisfy µ(µ� idM) = µ(idM �µ) and µ(η� idM) = idM = µ(idM �η).

M�M�M
idM �µ //

µ� idM

��

M�M

µ

��

M�M
µ

//M

M�I
idM �η //

∼=

##

M�M

µ

��

M

I�M
η� idM //

∼=

##

M�M

µ

��

M

The top diagram implies associativity of multiplication, which can be shown as in

the diagram below.

=

The bottom commutative diagrams imply the following, known as the unit identities.
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= =

We denote a monoid in V as a triple with its multiplication map and unit map. That

is, a monoid will be denoted (M,µ, η).

In the above diagrams, we have omitted labelling the dots. This is because it is

clear in this context that every dot represents M , the monoidal object. The map µ,

represented graphically by is called the multiplication map and the map η,

represented graphically by is called the unit map.

Definition 6.1.8. Monoid homomorphisms

A monoid homomorphism, ψ : M → M ′, is a morphism in a monoidal category

(V,�, I) between monoids M,M ′ such that their monoidal structure is preserved.

That is, µ′(ψ�ψ) = ψµ and ψη = η′.

M�M
ψ�ψ

//

µ

��

M ′�M ′

µ′

��

M
ψ

//M ′

I

η

��

I

η′

��

M
ψ

//M ′

The collection of monoids in a monoidal category (V,�, I) form a category, denoted

Mon(V). The objects of this category are monoids (M,µ, η), and the morphisms are

monoid homomorphisms.

Definition 6.1.9. Commutative monoids

Consider now a symmetric (strict) monoidal category (V,�, I, τ). A monoid M

in V is called a commutative monoid if the multiplication map µ is unaffected by

pre-composing with the twist map τ . That is, if

µτ = µ.
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Note the subscript of τM,M is omitted. We will continue to do so when the monoid is

clear from the context. So the following diagram commutes.

M�M τ //

µ

��

M�M

µ

��

M

=

The collection of commutative monoids forms a category, written cMon(V). The

morphisms are monoid homomorphisms.

Recall from earlier in this section, (Φ,+,0, t) is the simplex category described in

Subsection 6.1.1. We now prove a theorem which demonstrates an isomorphism of

categories that is a precursor to the main theorem of this chapter.

Theorem 6.1.10. Let (V,�, I, τ) be a symmetric monoidal category. Then there is

an isomorphism of categories as follows.

SymMonCat(Φ,V) ∼= cMon(V)

[F : Φ→ V] 7→ (F1, FµΦ, FηΦ, F t)

Proof. We show this isomorphism of categories by defining a pair of functors M,N
which are isomorphisms of categories. Specifically, we check that M, N are well

defined functors and that M◦N = idcMon(V) and N ◦M = idSymMonCat(Φ,V).
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M : SymMonCat(Φ,V) → cMon(V)

[F : Φ→ V] 7→ (F1, F (µΦ), F (ηΦ), F (t))

u : F −→. G 7→ (u1 : F1→ G1)

We show that M is indeed a well defined functor. Suppose F is a symmetric

monoidal functor Φ→ V. First, (F1, F (µΦ), F (ηΦ)) is a monoid with multiplication

F (µΦ) : F1�F1→ F1 and unit F (ηΦ) : I → F1, which follows as F is monoidal so

F (1 + 1) = F1�F1 and I = F0. Since F is a monoidal functor, the associativity of

FµΦ follows from the associativity of µΦ, and similarly for the unit relation.

Lastly, F1 is a commutative monoid, since F is a symmetric monoidal functor, for

the twist map in Φ, t, F (t) = τ . Therefore, F (t)F (µΦ) = F (tµΦ) = FµΦ, as required.

To show F is well defined on morphisms, we need to show u1 is a monoid homo-

morphism. Suppose u : F −→. G is a monoidal natural transformation. Since u is

monoidal, u1+1 = u1�u1 and F0 = G0 = I, and also F (1 + 1) = F1�F1. By

naturality of u and the relations of the previous sentence, the following diagrams

commute, which ensures that u1 is a monoid homomorphism from F1 to G1.

F1�F1
u1�u1 //

FµΦ

��

G1�G1

GµΦ

��

F1
u1 // G1

I

FηΦ

��

I

GηΦ

��

F1
u1 // G1
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N : cMon(V) → SymMonCat(Φ,V)


M

µ

η

τ

 7→


1 7→ M

F : µΦ 7→ µ

ηΦ 7→ η

t 7→ τ


(ψ : M →M ′) 7→ (u : F −→. F ′)

The definition of the functor N relies on the realisation that a functor can be defined

on “generating objects and morphisms” of the domain category. For now, while it

is clear the functor can be defined this way, it is not exactly clear what it means to

generate the category Φ, though discussed briefly earlier on in the section. For now

we will take it on faith that we can do this, and discuss it further in the next section.

We now check this functor N is well defined on objects. The image of M is a

functor on objects that is defined by how it acts on the generating object of Φ, 1.

That is, since every object n in Φ can be written as a cardinal sum of the object 1,

and the neutral object is sent to the neutral object, F0 = I.

F (n) = F (1 + · · ·+ 1︸ ︷︷ ︸
n

) := F1� · · ·�F1︸ ︷︷ ︸
n

= M� · · ·�M︸ ︷︷ ︸
n

(6.1)

This extends to morphisms of Φ. F is well defined on morphisms as all morphisms

in Φ are composites of cardinal sums of twists, identity arrows, multiplication ar-

rows and units. Therefore, F is a well defined functor. Equation (6.1) ensures F

is a monoidal functor, that is, that F (m + n) = Fm�Fn, and it follows that for

f, g ∈ MorΦ, F (f + g) = Ff�Fg. F is also symmetric as the twist map is brought

to the twist map: Ft = τ .

Next we check that N is well defined on morphisms. Suppose ψ : M → M ′ is a

monoidal homomorphism, and let N (M,µ, η) = F and N (M ′, µ′, η′) = G. The com-
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muting diagram on the left is as required for ψ to be a monoidal homomorphism. If

one replaces the objects and morphisms to be in the image of F and defines u1 := ψ,

then it becomes the commuting diagram on the right, which is one of the conditions

for u to be a natural transformation.

M�M
ψ�ψ

//

µ

��

M ′�M ′

µ′

��

M
ψ

//M ′

=

F1�F1
u1�u1 //

FµΦ

��

G1�G1

GµΦ

��

F1
u1 // G1

I

η

��

I

η′

��

M
ψ

//M ′

=

I

FηΦ

��

I

GηΦ

��

F1
u1 // G1

The above diagrams show that u is natural on µΦ and ηΦ. Naturality of τ in V

means that (ψ�ψ) ◦ τ = τ ◦ (ψ�ψ), so clearly since Ft = Gt = τ , u is natural on t.

Let un = ψ� · · ·�ψ︸ ︷︷ ︸
n

. We will check that u is natural for all morphisms in Φ. Suppose

f : m → n in MorΦ, and hence is a monoidal product of µΦ, ηΦ, t, and the identity

morphisms. One can rearrange un ◦ Ff to be a cardinal sum of u2 ◦ FµΦ, u1 ◦ FηΦ,

u2 ◦ Ft, and u1 ◦ id. As mentioned previously, u1 or u1�u1 (respectively) commutes

with each of these GµΦ ◦ u2, GηΦ, Gt ◦ u2. Depending on the map f , one may have

to rearrange the sums between applying naturality for each µΦ, etc.. One can do this

for compositions of maps. Therefore, rearranging in terms of Gf , this shows that

un ◦ Ff = Gf ◦ um, so u is indeed a monoidal natural transformation.
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It only remains to show that the two functorsM and N are mutual inverses. Firstly,

MN = idcMon(V) as
M

µ

η

τ

 N7−−−→


1 7→ M

F : µΦ 7→ µ

ηΦ 7→ η

t 7→ τ

 M7−−−→


M

µ

η

τ



(ψ : M →M ′)
N7−−−→

(
u : F −→. F ′

where u1 = ψ

)
M7−−−→ (ψ : M →M ′)

NM = idSymMonCat(Φ,V).
1 7→ F1

F : µΦ 7→ FµΦ

ηΦ 7→ FηΦ

t 7→ Ft

 M7−−−→


F1

FµΦ

FηΦ

Ft

 N7−−−→


1 7→ F1

F : µΦ 7→ FµΦ

ηΦ 7→ FηΦ

t 7→ Ft


(u : F −→. F ′) M7−−−→ (u1 : F1→ F ′1)

N7−−−→ (u : F −→. F ′)

as required.

We now begin to define the dual concept of a monoid.

Definition 6.1.11. Co-monoids

Let (V,�, I) be a strict monoidal category. A co-monoid is an object in V with two

morphisms

δ : M →M�M and ε : M → I
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which satisfy (δ� idM)δ = (idM �δ)δ and δ(ε� idM) = idM = δ(idM �ε).

M
δ //

δ

��

M�M

δ� idM

��

M�M
idM �δ //M�M�M

M
δ //

idM

""

M�M

idM �ε

��

M�I

M
δ //

idM

""

M�M

ε� idM

��

I�M

The top diagram implies co-associativity.

=

The bottom commutative diagrams imply the following co-unit relations.

= =

A co-monoid homomorphism, ψ : M → M ′, is a morphism in a monoidal category

(V,�, I) between co-monoids M,M ′ such that their monoidal structure is preserved.
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That is, δ′ψ = (ψ�ψ)δ and ε = ε′ψ.

M
ψ

//

δ

��

M ′

δ′

��

M�M
ψ�ψ

//M ′�M ′

M
ψ

//

ε

��

M ′

ε′

��

I I

Like Mon(V), the collection of co-monoids in a monoidal category (V,�, I) forms a

category, denoted Comon(V). The objects of this category are co-monoids (M, δ, ε),

and the morphisms are co-monoid homomorphisms.

Definition 6.1.12. Co-commutative co-monoids

As previously, consider a symmetric strict monoidal category (V,�, I, τ). A co-

monoid M in V is called a co-commutative co-monoid if the co-multiplication map δ

commutes with the twist map τ . That is, if

τδ = δ.

So the following diagram commutes.

M

δ

��

δ

��

M�M τ
//M�M

=

The collection of co-commutative co-monoids forms a category, written cComon(V).

The morphisms are co-monoid homomorphisms.
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For a category C, recall its opposite category is the category with the same ob-

jects as C, ObC, and morphisms f op, which are in one to one correspondence with

the morphisms f of C. For a morphism f : a → b in C, the opposite morphism has

the domain and co-domain swapped, that is f op : b → a. This opposite category is

denoted Cop.

Consider the opposite category Φop. In this category, we have µop
Φ = δΦop , ηop

Φ = εΦop

and top = t. Since associativity of µΦ implies co-associativity of δΦop , and all other

relations on morphisms µΦ, ηΦ, t are the dual to the relations of δΦ, εΦ, t. With this in

mind, it follows that there is a dual of Theorem 6.1.10, that SymMonCat(Φop,V) ∼=
cComon(V).

Theorem 6.1.13. The category (cMonV,�, I, τ) is a symmetric monoidal category.

That is, if M,M ′ are objects in cMonV, then M�M ′ is also in cMonV.

Proof. Note that I is in cMonV, where multiplication and the unit map are identites

on I. All we are required to do is show there is a multiplication map and unit map

for M�M ′ such that multiplication is associative and the unit relation holds.

Let multiplication µM�M ′ : (M�M ′)�(M�M ′)→M�M ′ and the unit map ηM�M ′ :

I →M�M ′ be defined as follows.

M ′

M

M ′

M

M ′

M

µM�M ′

M ′

M

ηM�M ′

First recall the following, which follows from naturality of the twist map and that

X�I = X = I�X for every object X in V.
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= =

The unit relation holds, as follows.

M ′

M
=

M ′

M
=

M ′

M

Now we show associativity of multiplication. First note the following relations hold

by the naturality of the twist map τ .

M ′

M ′

M

M

M ′
=

M ′

M ′

M

M

M ′

Now for the associativity of µM�M ′ .
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=

naturality of τ
=

by associativity of multiplication and rear-

ranging the twist maps and identity maps
=

naturality of τ
=

Rearrangement of identity maps
=
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The dual category cComonV can also be shown to have the same property.

6.2 Frobenius objects

Definition 6.2.1. Frobenius objects

A Frobenius object in a (strict) monoidal category (V,�, I) is an object A with the

following morphisms.

µ : A�A→ A δ : A→ A�A η : I → A ε : A→ I

With the following unit and co-unit relations,

= = = =

and the Frobenius relation

= =

where each dot represents A.
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Lemma 6.2.2. A Frobenius object is both a monoid and a co-monoid in V. That

is, the “multiplication” map µ is associative and the “co-multiplication” map δ is co-

associative.

Proof. In the spirit of this section, we show this proof graphically (as done by [7]).

First, we find an equivalent map to µ.

= = =

The second equality uses the co-unit relation, and the third equality uses the Frobe-

nius relation.

Now we show associativity.

= =
(i) (ii)

= =
(iii) (iv)

The third equality is simply a rearrangement of the monoidal products with identity

maps. The first and fourth equalities use the substitution for multiplication, µ, shown
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above, and the second quality uses the Frobenius relation.

The proof of co-associativity is exactly the dual of this proof.

Next we prove a lemma which we will use to show that M is commutative if and only

if it is co-commutative.

Lemma 6.2.3. For an object M in FrobV, the multiplication map µ is the unique

map M�M → M that with the unit η satisfies the unit relation and satisfies the

Frobenius relation.

Dually, the co-multiplication map δ is the unique map M → M�M that has co-

unit ε and satisfies the the Frobenius relation.

Proof. This proof follows the method of [7], and is done in three parts. We call the

following relation the snake relation, which follows easily from the unit, co-unit, and

Frobenius relations.

= =

Firstly, we show that β := εµ which satisfies the snake relation is unique. Suppose

ξ : M�M → I also satisfies the snake relation.

β

=
(i)

=
(ii)

ξ

Consider now the right equality, (ii), and compose with β on the right. After a
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rearrangement with identity maps, we get the equality (iii). The equality (iv) follows

from (i) above .

β

=

(iii)

β

ξ

=

(iv) ξ

Next, we show that if ω : M�M → M satisfies the Frobenius relation and unit

relation, then β = εω. In other words, because εω satisfies the snake relation, and by

the uniqueness of β shown previously, β = εω.

εω

=
ω

=

Therefore, since εω satisifies the snake relation, we have β = εω. This is true for any

ω that satisfies the Frobenius relation and the unit relation, which is true for µ as

well, and hence εω = εµ. The final step demonstrates that µ is the unique morphism

that satisfies the Frobenius relation and the unit relation.

εω

=
ω

=

ω

=

εµ

=
µ

=

µ
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So ω = µ, as required. A dual proof shows co-multiplication, δ, is unique.

Definition 6.2.4. Commutative Frobenius objects

A commutative Frobenius object in a symmetric monoidal category (V,�, I, τ) is a

Frobenius object which is also a commutative monoid. That is, it satisfies µτ = µ.

Similarly, a co-commutative Frobenius object is a Frobenius object which is also

a co-commutative co-monoid, and therefore satisifies τδ = τ .

Lemma 6.2.5. A Frobenius object is commutative if and only if it is co-commutative.

Proof. Suppose the following co-commutativity relation holds for a Frobenius object

M .

=

We will demonstrate that M is also commutative by showing that µτ satisfies the

co-unit relation and Frobenius relation, and then applying Lemma 6.2.3 which asserts

that multiplication is unique, proving that µτ = µ.

= =

The first equality holds by the naturality of τ with η� id, and the second relation

holds by the unit relation of µ. It is identical to show µτ satisfies the other unit

relation µτ(id�η) = id. Next we show that µτ satisfies the Frobenius relation.



6.2. FROBENIUS OBJECTS 141

=
(i)

=
(ii)

=
(iii)

=
(iv)

=
(v)

=
(vi)

The equality (i) follows from ττ = id. The second and fourth equalities are from

naturality in τ . The third equality uses the commutativity of δ, and also ττ = id.

The fifth equality uses the Frobenius relation. This shows µτ satisfies the Frobenius

relation.

Definition 6.2.6. Morphisms of Frobenius objects

A morphism of Frobenius objects (M,µ, δ, η, ε), (M ′, µ′, δ′, η′, ε′) in a symmetric monoidal

category (V,�, I, τ) is a morphism ψ : M →M ′ in V which is also a monoid homo-
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morphism and a co-monoid homomorphism. That is, it satisfies the following four

equations.

ψµ = µ′(ψ�ψ) δ′ψ = (ψ�ψ)δ

ψη = η′ ε′ψ = ε

The collection of commutative Frobenius objects (and therefore co-commutative Frobe-

nius objects) in a category V forms a category which is denoted cFrobV.

Corollary 6.2.7. The symmetric monoidal category (cFrobV,�, I, τ) is a monoidal

category. That is, if M,M ′ are objects in cFrobV, then M�M ′ is also in cFrobV.

Proof. All we need to show is that the Frobenius relation holds for M�M ′, as we

have shown all other relations, the unit, the co-unit, associativity and co-associativity

hold in Theorem 6.1.13.
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M ′

M

M ′

M

M ′

M

M ′

M

=

naturality of τ
=

Since ττ = id, and a rearrange-

ment
=

Since ττ = id, and a rearrange-

ment =

By the Frobenius relation for M

and M ′, and a rearrangement, as

required.

M ′

M

M ′

M

M ′

M

M ′

M

=
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6.2.1 The category X and an equivalence of categories

Before constructing the category X, we will first look at more generally how to gener-

ate a category from a directed graph G, following the method of [10]. This generated

category is denoted C(G). Next, we consider the category C(G) under some relation

R on G, and see how to construct a “quotient” category, C(G)/R, under this relation.

This will be useful in the construction of X.

Consider a directed graph G = (A,O), where O is the collection of vertices of G,

and A is the collection of edges of G. Since the graph is directed, one can define two

functions: a domain function, ∂0, which assigns to each edge the vertex at the tail of

that edge, and a co-domain function, ∂1 which assigns to each edge the vertex at the

tip of that edge.

∂0 : A→ O ∂1 : A→ O

The objects of the category C(G) (constructed from the graph G = (A,O)) are ex-

actly the vertices of G, the collection O. Every morphism of C(G) is either an identity

morphism on some element of O, or is a composition of the edges of A. That is, for

objects a, b in C(G), there is a morphism f ∈ C(a, b) (a morphism a → b in MorC)

if and only if there is a directed path from a to b in G, or f is the identity morphism.

We now can generate a category from a directed graph G.

Next we describe how it is possible to construct a category under some relations,

R. Consider all the morphisms from a to b in a category C, denoted C(a, b). Let

Ra,b be a relation on this set. Let C/R be the quotient category which is defined in

the image of a functor Q. We define Q = QR to be the functor which satisfies the

following two properties.

1. If fRa,bf
′, then Qf = Qf ′ for every f, f ′ ∈ C(a, b).
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2. If H : C → D is any functor such that Hf = Hf ′ whenever fRa,bf
′, then there

is a unique functor H ′ : C/R→ D such that H ′ ◦QR = H.

That is, the functor Q is the identity on the objects of C, and sends each f ∈ C(a, b)

to its equivalence class with respect to an equivalence relation R′a,b extending Ra,b.

Therefore, the hom-sets C/R(a, b) in C/R are the equivalence classes of C(a, b) in C

under the relation R′a,b. Now consider R to be a function from any pair of objects

(a, b) ∈ ObC ×ObC.

In other words, Q is the universal functor on the category C with Qf = Qf ′ whenever

fRf ′. We will briefly describe the idea of the proof.

We will call S a congruence relation if (i) for every a, b ∈ ObC, Sa,b is an equiv-

alence relation on C(a, b), and (ii) for all maps g ∈ C(a′, a) and h ∈ C(b, b′), if

f ∼Sa,b f ′, then hfg ∼Sa′,b′ hf
′g. For every relation R as above, there exists a least

congruence, R′ extending R. That is, R′ is a congruence relation and R ⊆ R′, and if

R ⊆ S, then R′ ⊆ S.

The category C(G)/R is now what we define to be the category generated by G

with relations R. This provides us exactly with the tools we need in the next section

to define a new category, X.

We now alter our definition of generate again. Suppose we let our final category

have a monoidal product as well. That is, there is a monoidal product on objects

and a neutral object. Instead of using the word “generate” to only mean a category

C(G) where morphisms are compositions of morphisms of a graph, we now mean to

take a larger category Cm(G) where the morphisms are also combinations under the

monoidal product. For this category to be well defined under taking relations, we

need some extra conditions, which we will talk about soon.
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The category X

We now define a symmetric strict monoidal category called (X,+,0, t) as follows.

The objects of X are generated by 1. That is, every object is of the form

n := 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n

,

for n ∈ N, and there is a neutral object 0.

All morphisms are generated by multiplication (µX), co-multiplication (δX), unit

(ηX), co-unit (εX), the twist maps t, and of course the identity map on 1 (id1).

µX : 2→ 1 δX : 1→ 2 ηX : 0→ 1 εX : 1→ 0 t : 2→ 2

We now draw below a graph that generates X, which, to be brief, are just compo-

sitions of (monoidal) products of these maps. A description of its monoidal product

follows.

0 1 2

ηX δX

εX µX

t

We now know that the compositions in the graph above are morphisms in our cate-

gory. Now we discuss the monoidal product. Every morphism in X is the canonical

sum of morphisms µX, δX, ηX, εX, t, and id1. So, a cardinal sum of morphisms

f1 + f2 + · · ·+ fk will be a morphism with domain domf1 + domf2 + · · ·+ domfk and
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co-domain codf1 + codf2 + · · ·+ codfk.

This collection of cardinal sums of µX, δX, ηX, εX, t, and id1 does not complete

the collection of morphisms, rather it generates it with composites, as described in

the previous section by generating categories from graphs. Therefore, we know that

this forms a category.

Next, we want to describe the relations on this category, and define the category

X to be the quotient with respect to these relations. The relations are the unit,

co-unit, and Frobenius relations.

= = = =

= =

These equivalences extend to all cardinal sums. That is, if h : k → l and g : k′ → l′

are morphisms in X, if f ∼Rm,n f
′, then h + f + g ∼Rk+m+k′,l+n+l′

h + f ′ + g. Also,

recall that since we want X to be monoidal, we require h + g = (idl +g)(h + idk′) =

(h+ idl′)(idk +g).

k l
h

k′ l′
g

=

k l
h idl

k′ l′
idl g

=

k l
idk h

k′ l′
g idl′

Lastly, we want t to be a twist map, as defined in Definition . Also, we require that

µX is commutative and δX is co-commutative.

= =
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These are all the relations we require. Hence we have defined the category X. Note

that since X is a symmetric monoidal category under these relations, every object in

X is a commutative Frobenius object. Hence, these relations imply associativity of

µX, etc., as we have shown in previous sections.

Theorem 6.2.8. For a symmetric monoidal category (V,�, I, τ) and the category

X, we have the following isomorphism of categories.

SymMonCat(X,V) ∼= cFrob(V)

Proof. We have shown SymMonCat(Φ,V) ∼= cMon(V) in Theorem 6.1.10. This

extends to the dual, that SymMonCat(Φop,V) ∼= cComon(V). For this proof, it is

sufficient to discuss how the theorems extend to SymMonCat(X,V) ∼= cFrob(V).

In fact, much of the work is already done, and we use a similar pair of functorsM,N
as in 6.1.10. The only things we have yet to consider is the Frobenius relation in X,

and the Frobenius relation of the objects of cFrobV.

We show this isomorphism of categories by defining a similar pair of functors M,N
as in Theorem 6.1.10. Specifically, we check thatM, N are well defined functors and

that M◦N = idcMon(V) and N ◦M = idSymMonCat(Φ,V).

M : SymMonCat(X,V) → cFrob(V)

[F : X→ V] 7→ (F1, F (µX), F (δX), F (ηX), F (εX), F (t))

u : F −→. G 7→ (u1 : F1→ G1)

We know from Theorem 6.1.10 and its dual that F (1) is a commutative monoid and

co-monoid, and therefore satisifies the unit and co-unit relations. We only need to

check F (1) satisfies the Frobenius relation. This holds by the monoidal functorality of

F , since F ((µX+id)◦(id +δX)) = (FµX+idF1)◦(idF1 +FδX). So since the Frobenius

relation holds with multiplication and co-multiplication µX and δX in X, the Frobe-
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nius relation on object F1 holds with multiplication FµX and co-multiplication FδX

in V.

To show F is well defined on morphisms, we need to show u1 is a Frobenius ho-

momorphism. This is already done for us by the proof of Theorem 6.1.10 and its

dual, since from these we know u1 is a monoid and co-monoid homomorphism, which

is all we require to say u1 is a Frobenius homomorphism.

N : cFrob(V) → SymMonCat(X,V)



M

µ

δ

η

ε

τ


7→



1 7→ M

µX 7→ µ

F : δX 7→ δ

ηX 7→ η

εX 7→ ε

t 7→ τ



(ψ : M →M ′) 7→

(
u : F −→. F ′

where u1 := ψ

)

For (M,µ, δ, η, ε, τ) to be a commutative Frobenius object, we require that µ, δ, η, ε, τ

satisfy the unit, co-unit, and Frobenius relations. Since X only satisfies these mini-

mum requirements, and the category is the universal category with respect to these

relations, the sub-category generated by µ, δ, η, ε, τ in V under the same (respective)

relations must also have the same minimum congruences. Hence, the monoidal func-

tor F as defined above will be well defined. That (u : F −→. F ′) is a well defined natural

transformation follows from Theorem 6.1.10.

It only remains to show that the two functorsM and N are mutual inverses. Firstly,

MN = idcFrob(V) as
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
M

µ

δη

ε

τ


N7−−−→



1 7→ M

µX 7→ µ

F : δX 7→ δ

ηX 7→ η

εX 7→ ε

t 7→ τ


M7−−−→



M

µ

δ

η

ε

τ



(ψ : M →M ′)
N7−−−→

(
u : F −→. F ′

where u1 = ψ

)
M7−−−→ (ψ : M →M ′)

NM = idSymMonCat(X,V).

1 7→ F1

µX 7→ FµX

F : δX 7→ FδX

ηX 7→ FηX

εX 7→ FεX

t 7→ Ft


M7−−−→



F1

FµX

FδX

FηX

FεX

Ft


N7−−−→



1 7→ F1

µX 7→ FµX

F : δX 7→ FδX

ηX 7→ FηX

εX 7→ FεX

t 7→ Ft


(u : F −→. F ′) M7−−−→ (u1 : F1→ F ′1)

N7−−−→ (u : F −→. F ′)

as required.

6.3 Cobordisms

The next section describes another category called 2Cob. The aim is to show that

the skeleton of 2Cob (which we abusively also call 2Cob) is isomorphic to the cate-

gory X described in the previous section. Instead of sticklike figures, the morphisms

will be replaced by surfaces, where two morphisms are equivalent if and only if they

are equivalent topologically (specifically, equivalent under orientation preserving dif-
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feomorphism).

We begin with some background in differential topology. This section is a stand

alone section that we will not refer to once we have proven what we need — how to

construct the category 2Cob, the generators and relations of 2Cob, and an isomor-

phism of categories. For no reason other than it required no extra effort, we have

defined the category nCob for all n, though all we will need is the 2-dimensional case.

We work mostly with compact oriented 2-dimensional manifolds and oriented 1-

dimensional manifolds without boundary. Our manifolds will not be embedded in

any higher dimensional space, but rather are abstract topological spaces.

6.3.1 Some background in differential topology

Differentiable manifolds

Let λ : Rn → R be a non-zero linear transformation. Recall a half-space, Hn, is a

subspace of Rn such that

Hn := {x ∈ Rn : λx ≥ 0}

with the topology inherited from Rn. The boundary of Hn, denoted ∂Hn, is the same

as the topological boundary as a subspace of Rn, and consists of the points in the

subset {x ∈ Rn : λx = 0} of Hn.

A real n-dimensional manifold is a metrisable topological space that locally re-

sembles n-dimensional Euclidean space. More precisely, a metrisable topological

space M is called a manifold if there is an open cover {Ui}i∈Λ of M , such that

for every i ∈ Λ, there is a homeomorphism to an open subset of a half-space Hn,

Φi : Ui → Φi(Ui) ⊂ Hn. The open cover {Ui}i∈Λ is called an atlas of M , and the

homeomorphisms Φi are called the charts of M . We sometimes refer to an real n-

dimensional manifold as an n-manifold.
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The boundary points of M are the points which are mapped to ∂Hn in the charts,

and together, the boundary of M is denoted ∂M . A closed manifold will be a compact

manifold without boundary (this is not standard language).

A sub-manifold of a manifold M is a subset of M which is itself a manifold with

the inherited topology from M . We will consider the empty n-manifold, ∅n, to be a

manifold for each n. We will not require our manifolds to be connected.

The only manifolds we wish to consider are differentiable manifolds (also known as

smooth manifolds). These are manifolds with charts that are C∞, or infinitely differ-

entiable (alternatively known as smooth) at every point of the manifold. A map f

between differentiable manifolds is called a diffeomorphism if f is a homeomorphism

and both f and f−1 are infinitely differentiable.

Suppose M , M ′ are n-dimensional manifolds. The disjoint union of M and M ′,

denoted M qM ′, is a n-dimensional manifold in which one can embed both M and

M ′. The disjoint union of M and M ′ is defined to be the disjoint union of the un-

derlying sets of M and M ′, and the collection of charts is the union of all the charts

of both M and M ′.

Again, suppose M , M ′ are n-dimensional manifolds, and let A be a subspace of M

with an embedding f : A ↪→ M ′. One can define a new topological space by taking

the disjoint union of M and M ′, and then associating each element a ∈ A ⊂M with

f(a) ∈M ′. This is called the adjunction space of M and M ′ over f(A), and is denoted

M qf M ′. In the case A is a closed (n − 1)-dimensional manifold which is a subset

of the boundary of M , and f(A) is a subset of the boundary of M ′, then M qf M
is itself a manifold. As an abuse of notation, if Σ is a closed (n − 1)-dimensional

manifold and is a subset of the boundaries of M and M ′, we will write M qΣ M
′ as

the adjunction space of M and M ′ where Σ is associated.
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Orientable manifolds

In describing orientable manifolds, we are intentionally brief, as a full description is

outside the scope of this thesis, and we refer the reader to [5]. In particular, we have

not defined a tangent space of a manifold.

We begin by defining orientability on vector spaces and then extend this to how

to define an orientation on a manifold. This uses the collection of all tangent spaces

of a manifold.

Consider a vector space V . We first define a relation on the collection of all or-

dered bases of V . For ordered bases B,B′ of V , we let B ∼R B′ if there exists a

matrix with a positive determinant that maps one to the other. Hence, there are ex-

actly two equivalence classes under this relation, which once we assign a basis to be

a “positive basis,” each basis can be referred to as either a positive basis or a negative

basis. An orientation of a vector space V is an equivalence class of the ordered bases

of V . Note that there are exactly two orientations of V .

An orientation of a manifold is an orientation of the tangent space at each point

x ∈ M . such that there is a smooth change of the tangent space to any other point

in the manifold such that the orientation is equivalent.

We will only be considering oriented manifolds, which are manifolds for which there

exists an orientation. For an oriented manifold M , the manifold with the opposite

orientation is written with an over-bar: M .

Let TxM be the tangent space of a manifold M at x. Consider now an oriented

manifold M of dimension n with a closed sub-manifold Σ of dimension n − 1 with

its own orientation. Let [v1, v2, . . . , vn−1] be a positive basis for the tangent space of

x ∈ Σ, TxΣ. Consider a vector w ∈ TxM not contained in TxΣ. Then w is called a

positive normal if [v1, v2, . . . , vn−1, w] is a positive basis of TxM .

Now, consider the case where Σ is a connected component of the boundary of M
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with an orientation (in other words, Σ is a closed manifold contained in ∂M). Then

if the positive normal points inwards towards M — that is toward Hn \ ∂Hn — then

Σ is called an in-boundary. Otherwise, it is called an out-boundary. The in-boundary

(respectively out-boundary) of M is the collection of all in-boundaries (respectively

out-boundary) of M .

Let M,M ′ be oriented n-dimensional manifolds. A map f : M → M ′ is an ori-

entation preserving map if the induced maps on the tangent space brings a positively

oriented basis to a positively oriented basis.

Note that a manifold as we have defined it is not embedded in any higher dimensional

space. Hence, there is no concept of part of a manifold passing over or under another

part of a manifold.

Cobordisms

Consider two closed (n− 1)-manifolds Σ1 and Σ2. An n-cobordism M from Σ1 to Σ2

is an n-manifold with the boundary ∂M = Σ1 q Σ2. A cobordism from Σ1 to Σ2 is

denoted by the arrow M : Σ1  Σ2 (though at this stage there is no distinction be-

tween Σ1 and Σ2). Two closed (n− 1)-manifolds are called cobordant if there exists a

cobordism between them. Cobordance forms an equivalence relation on differentiable

manifolds.

An oriented cobordism is a cobordism of oriented manifolds. Consider oriented (n−1)-

manifolds Σ1 and Σ2. We want to formalise a concept of an oriented cobordism M

from Σ1 to Σ2, which we do by making Σ1 the in-boundary of M , and Σ2 the out-

boundary of M . More precisely, an oriented cobordism from Σ1 to Σ2 will be defined

as a manifold M such that the embedding of Σ1 is (orientation preserving) diffeomor-

phic to the in-boundaries of M , and the embedding of Σ2 is (orientation preserving)

diffeomorphic to the out-boundaries of M .
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Σ1

φ1
↪−→M

φ2←−↩ Σ2

Definition 6.3.1. Equivalent cobordisms

Two cobordisms M,M ′ : Σ1  Σ2 are called equivalent if there is an orientation

preserving diffeomorphism M → M ′ such that the following diagram commutes.

Note that this means Σ1 and Σ2 are fixed on M and M ′, and a diffeomorphism

between M and M ′ must respect these boundaries.

M

Σ1

* 


77

� t

''

Σ2
T4

gg

jJ

xx

M ′

∼=

OO

The boundary of an oriented cobordismM is the disjoint union of closed in-boundaries

and out-boundaries of M . In the case that both the in-boundary and the out-

boundary are empty manifolds, the cobordism is a closed manifold. For example,

an n-sphere is an oriented n-cobordism where both Σ1 and Σ2 are the empty mani-

fold, ∅n−1.



156CHAPTER 6. TOPOLOGICAL QUANTUM FIELD THEORIES AND FROBENIUS OBJECTS

Next, we will describe a category nCob, which has oriented (n−1)-dimensional man-

ifolds as objects. Unlike more standard categories, the morphisms of this category

are not functions between sets or functions with additional structure. Instead, the

collection of oriented n-dimensional cobordisms form the morphisms of a category

under an appropriate equivalence relation. Also, since we are considering oriented

cobordisms, there are exactly two types of boundaries. Hence, the boundary of a

cobordism can be divided into what will be defined as either the domain or the co-

domain of the morphism.

More formally, the objects of the category nCob are the equivalence classes of ori-

ented, compact, differentiable (n − 1)-manifolds under orientation preserving dif-

feomorphism. The morphisms of nCob are the equivalence classes of oriented n-

cobordisms (as in Definition 6.3.1), where the in-boundaries are the domain, and the

out-boundaries are the co-domain.

We claim that nCob is indeed a category for each n. Firstly, we introduce an identity

cobordism. The identity morphism of an (n − 1)-manifold Σ is simply the cylinder

Σ×I, where I is the closed unit interval. The embedding φ0 : Σ ↪→ Σ×I : x 7→ (x, 0)

maps Σ diffeomorphically onto the in-boundary Σ× {0}, and φ1 : Σ ↪→ Σ× I : x 7→
(x, 1) maps Σ diffeomorphically onto the out-boundary Σ× {1}, as required.

We will make a brief note about the orientation of the product (Σ×I). Let [v1, . . . , vn−1]

be a basis for TxΣ, and [w] be a basis of TyI, which is in the direction of 1 ∈ I. The

orientation of (Σ × I) is defined to have as a positive basis [v1, . . . , vn−1, w]. Hence,

the embedding φ0 does map Σ onto the in-boundary, and φ1 maps Σ onto the out-

boundary, and are indeed orientation preserving maps.

The composition of two cobordisms M : Σ0  Σ1 and M ′ : Σ1  Σ2 is the cobor-

dism M qΣ1 M
′ : Σ0  Σ2, that is a new cobordism formed by gluing M and M ′ at

Σ1 (consistently with its orientation). Not every gluing of this type is necessarily a

differentiable manifold, but because the morphisms of nCob are equivalence classes,
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we need only to know that a differentiable manifold MM ′ exists. This is covered in

detail in [7] .

The category nCob is a monoidal category. Disjoint union forms the monoidal prod-

uct, and the neutral object is the empty manifold, ∅n−1. Note that unlike in the

category of topological spaces, disjoint union does not form a co-product. Also, there

is no initial object.

6.3.2 2-cobordisms

For the rest of this section, when we refer to a cobordism we mean the equivalence

class of all compact oriented 2-dimensional cobordisms under orientation preserving

diffeomorphism with respect to the boundaries (see Definition 6.3.1).

Every closed connected 1-manifold is diffeomorphic to a circle. It follows that ev-

ery closed 1-manifold (except the empty manifold ∅1) is the disjoint union of circles.

This means, under the operation of disjoint union, the objects of 2Cob are ‘gener-

ated’ by a circle under disjoint union. For any manifold Σ, the disjoint union Σq∅1

is Σ.

It is convenient to draw the in-boundaries of a cobordism on the left and the out-

boundaries on the right, and thus morphisms in 2Cob are drawn with the domain

on the left and the co-domain on the right. For example, a 2-cobordism with in-

boundary Σ and out-boundary Σ will be drawn as follows. Here, the arrows denote

the direction of the positive normal of the cobordism with respect to that boundary.

Σ Σ
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Hence, the two copies of Σ above have different normals with respect to the cylinder,

and one is an in-boundary and one is an out-boundary. Moreover, a 2-cobordism

with in-boundary Σ q Σ which is diffeomorphic to a cylinder could be drawn as on

the left. Our convention will be to draw this cobordism like the right diagram. So,

all positive normals with respect to the boundary of the manifold will point right.

Σ Σ

Σ

Σ

Two cobordisms that are (orientation preserving) diffeomorphic are not necessarily

the same cobordism in 2Cob — one needs to consider the boundaries of cobordism.

The simplest example of different diffeomorphic cobordisms in 2Cob is the twist

cobordism and the identity map on two circles. Hence the ordering of the circles in

the boundary (on a vertical as drawn below) are drawn with respect to an ordering,

hence the drawing on the right will represent the identity cobordism on two circles.

Consider all cobordisms from m circles to m circles which are diffeomorphic to m

disjoint cylinders. These can all be constructed from twist cobordisms and identity

cobordisms, under composition and disjoint union of cobordisms. This collection has

the structure of the symmetric group on m elements, Sm, where the operation is

composition of cobordisms.
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As an aside, we draw the twist cobordism with the two cylinders “intersecting” (on

the page) to reinforce that our manifolds are not embedded in any higher dimensional

space. Drawing one cylinder in front of the other can lead to the misconception that

the following two cobordisms aren’t the same.

Theorem 6.3.2. Every cobordism in the category 2Cob can be written as a combi-

nation of the following six symbols.

We now give a brief overview of how this theorem is proved.

Recall the genus of a connected compact orientable surface is the number of “2-

dimensional” holes in that surface. For example, a torus has genus 1, and a sphere

has genus 0. The genus of a surface with a boundary is the genus of the same surface

with closed disks attached to each boundary. Hence, the genus is an invariant of the

surface. Therefore, we can use this to say that every 2-cobordism can be rewritten

in a normal form as follows.

Every connected oriented 2-cobordism is homeomorphic to a ‘normal form’ of a con-

nected surface. That is, a connected surface with m in-boundaries, n out-boundaries,

and of genus g. We will not prove this but describe how this can be seen.
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So, we now have shown that every connected 2-cobordism can be written as a com-

bination of the following cobordisms, where the ends on the left are used for closed

2-cobordisms (cobordisms with no boundary).

Next, we consider non-connected manifolds. Consider a 2-cobordism M such that

M = M1 qM2 for connected 2-cobordisms M1,M2. We know M1 and M2 can be

written as a combination of the symbols , , , . The proof is not finished

here though, as there is no reason to believe that dom(M) = dom(M1) q dom(M2),

and similarly with the co-domain. That is, it is not necessary that the in-boundaries

of M1 correspond to the first in-boundaries of M , and that the in-boundaries of

M2 correspond to the last in-boundaries of M . That is, although these manifolds

will be diffeomorphic, they are not necessarily the same, in the same way the twist

cobordism is not the same cobordism as the disjoint union of two “identity” cylinders.

Therefore, using the twist cobordisms, one can permute the in-boundaries of M to

the ordering dom(M1)qdom(M2) of the in-boundaries. Similarly, there is a collection

of twist cobordisms that map cod(M1)q cod(M2) to cod(M). Hence, pre-composing

and post-composing M1 q M2 with the twist maps will leave us with our original

cobordism, since the twist cobordisms will not change each of M1 and M2 as cobor-

dism. Thus, we have shown that every 2-cobordism can be written as a composition

of the symbols in Theorem 6.3.2, as required.
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Relations in 2Cob

Next, we will examine some topological equivalences of composition of cobordisms,

and thereby finding equivalent morphisms in the category 2Cob. By doing so, we

have essentially found the generators and relations of this category, in the language of

Subsection 6.2.1. Consequently, this will give us the tools to prove that X and 2Cob

are isomorphic as categories. What only will remain is to show that the following

relations are sufficient.

The proofs of the following relations will not be done here, but we refer the reader

to [7].

The disjoint union of cylinders is the identity in 2Cob, as we can see below for

each of the generators of the morphisms of 2Cob.

= = =

= =
= =

= =

The above conditions are sufficient to say the disjoint union of cylinders is the identity

morphism in 2Cob. Consequently, we can forget about them as they are implied by

2Cob being a category. Next, we show some other relations.
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Sewing in discs

= = = =

Associativity and co-associativity

= =

Commutativity and co-commutativity

= =

Frobenius relation

= =

These relations are sufficient to define the category 2Cob. In other words, there are

no other relations in 2Cob. We also will not prove this here, but it is done in [7].

Now, we know exactly what the morphisms and objects in the category of 2-cobordisms
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are. In other words, there is a complete classification of all the objects – the 1-

manifolds, and all the morphisms – the equivalence classes of 2-cobordisms.

Recall we defined the objects of the category 2Cob to be equivalence class of all

closed 1-manifolds up to diffeomorphism, and morphisms of 2Cob to be equivalence

class of all 2-cobordisms up to orientation preserving diffeomoprhism.

Proposition 6.3.3. 2Cob and X are isomorphic as categories.

Proof. First, we see that the objects of 2Cob are freely generated by a single con-

nected 1-manifold under disjoint union. Also, there is a neutral object, the empty

manifold ∅1. Thus, there is a bijection between the objects.

Next, we need to show that 2Cob is generated by a disjoint union and composi-

tion of a multiplication map, co-multiplication map, unit, co-unit, twist map, and

identity. We now assign cobordisms to each of these maps, as follows.

F : X → 2Cob



1

µX

δX

ηX

εX

t



7→



©


Hence, the functor F assigns the upside-down pair of pants to the multipli-

cation map, and so on.
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Recall from Subsection 6.2.1 that the category X is generated by five morphisms

and the identity morphism under composition and the monoidal product +, and un-

der four relations. These relations are the unit relation, the co-unit relation, the

Frobenius relation, and the commutativity relation. These four relations were shown

to hold in the previous subsection. Lastly, we need to show the sufficiency of these

relations for 2Cob. We also showed in Subsection 6.2.1 that these four relations

imply associativity of multiplication, co-associativity of co-multiplication, commuta-

tivity and co-commutativity. The rest of the relations above (namely — the identity

relations) are implied by 2Cob being a category. Hence, the collection of all relations

of X and relations of 2Cob are the same under our assignment of the morphisms

under F . Therefore, we have shown F is a well defined functor which is fully faithful

and bijective on objects, and hence is an isomorphism of categories.

6.4 (1 + 1)-TQFTs

To conclude this section, we put everything into the language of the title of this

chapter. We have generalised everything to a general symmetric monoidal category,

(V,�, I, τ).

Let the map σ be the twist map σ : V ⊗V → V ⊗V which is defined by σ(a⊗b) = b⊗a,

and let T be the twist cobordism, .

Definition 6.4.1. Topological Quantum Field Theories

Let K-Vect be the category of vector spaces over a field K. A Topological Quantum

Field Theory, or a (n+1)-TQFT is a symmetric monoidal functor from (nCob,q,∅, T )

to (K-Vect,⊗, K, σ). The collection of these functors form a category,

(1 + n)-TQFT := SymMonCat
(
(nCob,q,∅, T ), (K-Vect,⊗, K, σ)

)
.
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6.5 The Equivalence of categories

The following theorem is a direct consequence of Theorem 6.2.8 and Proposition 6.3.3.

Theorem 6.5.1. For a symmetric monoidal category (V,�, I, τ), the following iso-

morphism of categories holds.

SymMonHom(2Cob,V) ∼= cFrob(V)

In application, we use the naturality of the isomorphism in Theorem 6.5.1, which

is shown explicitly in Theorem 6.2.8. That is, for a commutative Frobenius object

(M,µ, δ, η, ε, τ) in a symmetric monoidal category V, a morphism in V which can

be written in terms of µ, δ, η, ε, τ, idM under composition and the monoidal product

can be represented by a cobordism. To show two morphisms in V of the form just

described are the same in V, it is sufficient to show that the corresponding cobor-

disms are orientation preserving diffeomorphic, or really homeomorphic with respect

to their in-boundaries and out-boundaries.

Hence, when we refer to the TQFT applied to M , we mean the functor that sends

to µ, to δ, and so on, as in the functor Theorem 6.2.8.

When we speak of cobordisms from now on, or rather draw diagram of them, we

really mean the image of the cobordism in V. For example, the cobordism al-

ways represents δ.

6.6 Graded R-modules

To put this in the context of this thesis, we have one remaining thing to do, which

is show gr(R-mod), is a symmetric monoidal category. Then, once we show that
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our V is a Frobenius object, we can apply a TQFT and replace all our graded linear

maps with cobordisms! We will do so in the next chapter.

We now show that the category of Z-gradedR-modules, written gr(R-mod), is a sym-

metric monoidal category. To make things easier, we will use that (R-mod,⊗, R, τ)

is a symmetric monoidal category, as stated in [10, 7].

First, we define a neutral object, denoted R0.

(gr(R-mod),⊗, R0, τ)

With the neutral object and twist map defined as follows.

(R0)i :=

{
R : i = 0

0 : otherwise

τ : W ⊗W ′ → W ′ ⊗W
w ⊗ w′ 7→ w′ ⊗ w

Let U,W,X be Z-graded R-modules. Next, we show that (U⊗W )⊗X ∼= U⊗(W⊗X).

⊕
i+j=k

(
Ui ⊗

(
W ⊗X

)
j

)
=
⊕
i+j=k

(
Ui ⊗

( ⊕
l+m=j

(
Wl ⊗Xm

))
j

)
=
⊕
i+j=k

( ⊕
l+m=j

(
Ui ⊗

(
Wl ⊗Xm

)))
=

⊕
i+l+m=k

(
Ui ⊗

(
Wl ⊗Xm

))
∼=

⊕
i+l+m=k

((
Ui ⊗Wl

)
⊗Xm

))
The last line isomorphism is due to a natural isomorphism of

(
Ui ⊗Wl

)
⊗ Xm and

Ui⊗
(
Wl⊗Xm

)
. The last line is equal to U ⊗ (W ⊗X) by a symmetric argument to

the one given above.
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Next, R0 ⊗W ∼= W ∼= W ⊗R0.⊕
i+j=k

(
(R0)i ⊗Wj

)
=
⊕
j=k

(
R⊗Wj

)
=W

Finally, we note that τ is an isomorphism, which is clear from the map above, and

considering that every element can be written as a sum of elements from each R-

module in the grading, on which τ is an isomorphism.

Therefore, we have shown that gr(R-mod) is a symmetric monoidal category, as

required.
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Chapter 7

TQFTs and the Khovanov

homology

We now have the tools to tie off some (rather important!) loose ends about the

Khovanov homology we left in Chapter 4. We start by checking that the graded

vector space V is indeed a Frobenius object in the category of Z-graded vector spaces.

This involves first defining a unit and co-unit. Once this is done we apply a TQFT

and give a proof of Theorem 4.2.7. Next, we re-examine the Khovanov homology

from this new more topological perspective, by re-examining the n-dimensional cube

of cobordisms. What follows is a new quotient category of cobordisms, and finally

another proof of invariance of the Khovanov bracket under R1.

7.1 V is a Frobenius object

Let 1R denote the unit in the ring R0, and 0R denote the zero element in R0. We

will omit the subscripts R from time to time where convenient. Recall R0 is the

graded R-module that is only non-trivial in q-grading 0, where it is R. We let

τ : W ⊗ W ′ → W ′ ⊗ W which sends w ⊗ w′ to w′ ⊗ w be the twist map in

gr(R-mod). Finally, recall we already have shown that (gr(R-mod),⊗, R0, τ) is

a symmetric monoidal category.

169



170 CHAPTER 7. TQFTS AND THE KHOVANOV HOMOLOGY

We begin by defining the Z-graded module V from Chapter 4. Recall V is a Z-

graded module generated by v+ in degree +1, and by v− in degree −1. It has a

multiplication map and a co-multiplication map as follows.

m : v+ ⊗ v+ 7→ v+ ∆ : v+ 7→ v+ ⊗ v− + v− ⊗ v+

v+ ⊗ v− 7→ v− v− 7→ v− ⊗ v−
v− ⊗ v+ 7→ v−

v− ⊗ v− 7→ 0

Let the graded linear map τ : V ⊗ V → V ⊗ V be the twist map, defined as

τ(a ⊗ b) = b ⊗ a. Recall (or see above) that the map m is commutative, that is

mτ = m, and the map ∆ is co-commutative, τ∆ = ∆.

Thus, this being the case, we have a multiplication map m, a co-multiplication map

∆, and a twist map τ . These are commutative, and co-commutative respectively.

Our next task is to define a unit and co-unit, which we want to satisfy the unit and

co-unit relations. Let ι : R0 → V be the unit and ε : V → R0 be the co-unit, which

are defined as follows. These maps, denoted ι and ε are defined on the generators of

V and R0 as follows.

ι : 1R 7→ v+ ε : v+ 7→ 0R

v− 7→ 1R

Proposition 7.1.1. V with multiplication m, co-multiplication ∆, unit ι, co-unit ε

and a twist map τ is a Frobenius object in gr(R-mod).

Proof. We need to check the following.

The unit relation

m(ι⊗ id) = id = m(id⊗ι)

The co-unit relation

(ε⊗ id)∆ = id = (id⊗ε)∆
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The Frobenius relation

(m⊗ id)(id⊗∆) = ∆m = (id⊗m)(∆⊗ id)

We will use a few properties of the tensor product, like V ⊗R ∼= V , so one can write

1⊗v instead of v. For the first two relations, we only show one of the above equalities,

as the other follows from commutativity
(
m(ι⊗ id) = mτ(ι⊗ id) = m(id⊗ι)

)
, and

co-commutativity
(

(ε⊗ id)∆ = (ε⊗ id)τ∆ = (id⊗ε)∆
)

.

We begin with the unit relation. The following assignments show that m(ι⊗ id) is

the identity on each of the generators of V .

v+ = 1⊗ v+
ι⊗id7−−−−→ v+ ⊗ v+

m7−−−→ v+

v− = 1⊗ v−
ι⊗id7−−−−→ v+ ⊗ v−

m7−−−→ v−

Next, the co-unit relation. Again, we show that (ε ⊗ id)∆ is the identity on each

of the generators of V .

v+
∆7−−→ v+ ⊗ v− + v− ⊗ v+

ε⊗id7−−−−→ 0 + 1⊗ v+ = v+

v−
∆7−−→ v− ⊗ v−

ε⊗id7−−−−→ 1⊗ v− = v−

Finally, we show the Frobenius relation. We must show this relation holds for

three of the four generators,v+ ⊗ v+, v+ ⊗ v− and v− ⊗ v−. That it holds on v− ⊗ v+

follows from v+ ⊗ v−.

On v+ ⊗ v+.

v+ ⊗ v+
id⊗∆7−−−−−→ v+ ⊗ v+ ⊗ v− + v+ ⊗ v− ⊗ v+

m⊗id7−−−−−→ v+ ⊗ v− + v− ⊗ v+

v+ ⊗ v+
m7−−−→ v+

∆7−−→ v+ ⊗ v− + v− ⊗ v+



172 CHAPTER 7. TQFTS AND THE KHOVANOV HOMOLOGY

v+ ⊗ v+
∆⊗id7−−−−−→ v+ ⊗ v− ⊗ v+ + v− ⊗ v+ ⊗ v+

id⊗m7−−−−−→ v+ ⊗ v− + v− ⊗ v+

On v+ ⊗ v−.

v+ ⊗ v−
id⊗∆7−−−−−→ v+ ⊗ v− ⊗ v−

m⊗id7−−−−−→ v− ⊗ v−

v+ ⊗ v−
m7−−−→ v−

∆7−−→ v− ⊗ v−

v+ ⊗ v−
∆⊗id7−−−−−→ v+ ⊗ v− ⊗ v− + v− ⊗ v+ ⊗ v−

id⊗m7−−−−−→ 0 + v− ⊗ v−

On v− ⊗ v−.

v− ⊗ v−
id⊗∆7−−−−−→ v− ⊗ 0 = 0

m⊗id7−−−−−→ 0

v− ⊗ v−
m7−−−→ 0

∆7−−→ 0

v− ⊗ v−
∆⊗id7−−−−−→ v− ⊗ 0 = 0

id⊗m7−−−−−→ 0

Hence all three relations hold. Therefore, we have shown that V is a Frobenius object

in gr(R-mod).

For the rest of this chapter, we will work with the associated TQFT of V . That is,

we will consider a functor, denoted F : 2Cob→ gr(R-mod).

(V,m,∆, ι, ε, τ)
(1+1)-TQFT7−−−−−−−−−→

[
F : 2Cob→ gr(R-mod)

]

7.2 A topological n-dimensional cube of smooth-

ings

We have changed the notation from that in Chapter 6. Often from now on, when we

are representing a particular cobordism, we will draw it from top to bottom, that is,

the domain of the cobordism is at the top and the co-domain of the cobordism is at
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the bottom.

Let D be a knot diagram. Recall the n-dimensional cube of smoothings is the cube

where the vertices are total smoothings of D. We now think of each total smoothing

as a 1-manifold! Rather than having graded linear maps on the edges though, we

let the edges “be” cobordisms. That is, we replace the linear map m : V ⊗ V → V

with the pair of pants cobordism, , and the linear map ∆ : V → V ⊗ V with the

upside-down pair of pants, , and identity maps with cylinders, . Thus, each

edge is the disjoint union of cylinders and a pair of pants.

Therefore, we now think of the n-dimensional cube of smoothings as a cube of cobor-

disms defined directly from the knot diagram. Thus, we have found a topological way

to view the n-dimensional cube of smoothings. We will look more at this topological

perspective in Theorem 7.4.1.

7.3 The Khovanov bracket is a chain complex

We now have the grounding to prove that the Khovanov bracket, J·K, is a chain com-

plex, and we have a TQFT, F , instead of V . Now this becomes, in some sense, a

topological problem. Recall from Chapter 4, what remains to show of Theorem 4.2.7

is that (without the minuses), every face of the cube commutes. We prove this now.

Before we begin the proof, it will be useful to think of the cube of cobordisms

constructed in a different way. The final cube will be identical, but the different

construction will simplify the proof.

Consider a knot diagram D with n crossings. Let Xi denote the elementary 2-tangle

containing the ith crossing (see Subsection 2.1 in Chapter 2). That is, this is the

intersection of the knot diagram D with a 2-disc such that the boundary of the 2-

disc intersects the knot diagram D exactly four times and the intersection contains

exactly one crossing (the ith). We also require that the Xi are such that Xi∩Xj = ∅
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for i 6= j. We now define D̂ to be the knot diagram without every Xi. That is,

D̂ := D \
(∑

i

Xi

)
which will be a collection of arcs in the plane as in the following example.

excluding the Xi−−−−−−−−−−→

We now take the product of D̂ with the unit interval I, D̂ × I. Let α, α′ ∈ {0, 1}n

which differ at only the ith place and consider the edge of the n-dimensional cube

Sα → Sα′ , represented by ζ. The associated cobordism will be “identity arcs” on ev-

ery crossing except the ith crossing. This crossing will be replaced with a saddle, as

follows. Hence, when we say we alter the ith crossing, we mean that the ith crossing

that has a saddle in an associated cobordism (a cobordism from α→ α′ where α and

α′ differ at the ith crossing).

0-smoothing at the ith crossing

1-smoothing at the ith crossing

This saddle is an intersection of a pair of pants cobordism with a cylinder around this

crossing. An advantage to drawing it like this is that we don’t have to specify “which

direction” the pair of pants is, and restrict our attention to these saddles. That
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is, in this case whether it is upside down or not. In terms of graded vector spaces,

we don’t have to specify whether the edge is a map m : V ⊗V → V or ∆ : V → V ⊗V .

Proof of Theorem 4.2.7. All we need to do is see the equivalence in the following di-

agram, but first we will give some context. Let D be a knot diagram with n ≥ 2

crossings. Consider α ∈ {0, 1}n where the height of alpha is less than n − 1, that

is |α| ≤ n − 2. Hence α will contain at least two 0s — that is the smoothing Sα

will contain two 0-smoothings, which we label the ith and jth crossings where i < j.

Consider a face of the n-dimensional cube that begins with this total smoothing, Sα,

where one path (a composition of two cobordisms) around the edge alters first the

ith crossing and then the jth crossing, and the other path alters first the jth crossing

and then the ith crossing. In order to visualise this, we take the intersection of the

two cylinders containing the ith crossing and the jth crossing with the cobordisms

on each path around the face.

ith crossing jth crossing

=

ith crossing jth crossing

Each side of this equality represents a different path around a face of the n-dimensional

cube. Topologically, it is straightforward to see that the cobordisms on each side of

the equality are homeomorphic, and since everything outside these two cylinders is

identical, each side of the equation represents the same cobordism. Thus, each face
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of the n-dimensional cube commutes! As required.

7.4 Some properties of the TQFT F associated to

V

We now will show some equivalences of the cobordisms under the functor F . In other

words, we are finding some cobordisms in the “kernel” of F , that is, cobordisms that

are sent to the 0 map in gr(R-mod). We will apply these results when proving the

invariance of the Khovanov homology under R1 in the next section. This section

uses many results from [2].

Theorem 7.4.1. The following equivalences hold after applying the TQFT to V .

S

= 0F
( )

T

= 2F
( )

4-Tu

+ = +
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The 4-Tu relation is written without the functor “F” which acts on each of the

“cobordism-intersections” above for clarity.

The relation S implies that if a cobordism M in 2Cob contains a sphere, then the

functor F will assign M the zero map in gr(R-mod). The relation T implies that

the functor F will assign to the disjoint union of a cobordism M with a torus T a

map that is twice F(M). That is, F(M qT ) = 2F(M), which sends x 7→ 2F(M)(x).

The relation 4-Tu is the most difficult to see. Consider the intersection of a cobordism

M and a sphere. If the boundary of the sphere and the cobordism intersect at exactly

four places and the inside of the sphere looks like one of the summands in the picture

above, without loss of generality, let it be the first. Let M2,M3,M4 denote M with the

interior of the aforesaid sphere replaced with the second, third and fourth summands

of the above equation. Then F(M) is equal to the map F(M3) + F(M4)−F(M2).

Proof of Theorem 7.4.1. Let F be the TQFT assigned to V .

S All we must show is F( ) = ει = 0.

ε ι(1) = ε(v+) = 0

T Recall the torus is the composition of cobordisms, .

εm∆ ι(1) = εm∆(v+) = εm(v+ ⊗ v− + v− ⊗ v+) = ε(v− + v−) = 1 + 1 = 2

4-Tu This is more complicated than the others.

F( ) +F( ) = ι⊗ ι⊗ (∆34 ι) + (∆12 ι)⊗ ι⊗ ι

Hence, we get the following. We will write, for example, v+ ⊗ v− ⊗ v+ ⊗ v+ as

v+−++. The subscript on ∆ refers to the placing of the component of the image
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of ∆ in the tensor product. That is, x⊗∆13(v+)⊗x′ = v+⊗x⊗ v−⊗x′+ v−⊗
x⊗ v+ ⊗ x′.(

ι⊗ ι⊗ (∆34 ι) + (∆12 ι)⊗ ι⊗ ι
)

(1)

= v+ ⊗ v+ ⊗∆(v+) + ∆(v+)⊗ v+ ⊗ v+

= v++ ⊗ (v+− + v−+) + (v+− + v−+)⊗ v++

= v+++− + v++−+ + v+−++ + v−+++

Now for the other side of the equality.

F( ) + F( ) = ι⊗ (∆13 ι)⊗ ι+ ι⊗ ι⊗ (∆24 ι)

Hence, we get the following.(
ι⊗ (∆13 ι)⊗ ι+ ι⊗ ι⊗ (∆24 ι)

)
(1)

= v+ ⊗ (∆13 (v+))⊗ v+ + v+ ⊗ v+ ⊗ (∆24 (v+))

= (v++− + v−++)⊗ v+ + v+ ⊗ (v++− + v−++)

= v++−+ + v−+++ + v+++− + v+−++

Hence, we have found that the maps are equal in V , as required.

We have only shown this for the case where all boundaries of 4-Tu lie on the co-

domain of the cobordism, but the relation still holds for all other arrangements

of the boundary with respect to the in-boundaries and out-boundaries also

satisfy the 4-Tu relation.

We note that this is not the way it is done in [2], but rather a somewhat backward

way of what Dror Bar-Natan has done. Instead, he constructs a chain complex of
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1-manifolds with cobordisms as differentials from the topological n-dimensional cube

we described above. He then finds a quotient of this category under the relations

S,T and 4-Tu and homotopy equivalence of chain complexes. The outcome of this

construction is that each chain complex in this category is a link invariant. Hence,

the true achievement is a geometric complex which is a link invariant, without ever

establishing any algebraic structure. Only then does he apply the TQFT which we

have denoted F , to show how the theories agree. Therefore, in his paper, the above

proposition shows that the functor F is well defined.

7.5 First Reidemeister move (again)

We now show invariance of the Khovanov homology under R1 using cobordisms.

That is, we show a chain homotopy equivalence of the cochain complexes J K and

J K[−1] (we have accounted for shifts here, for details refer to original proofs in

Chapter 5). We apply the TQFT (implicitly) to each smoothing in each commuting

square of the chain map, which is the identity outside all crossings and subsequently

show that all maps (with respect to each smoothing α) are homeomorphic, and hence

equivalent as graded linear maps.

Proof. Recall that as has one more positive crossing than , one shows that

they are equivalent where is under the shift ·{−1}. Recall also that we can write

J K as a direct sum JD0K⊕ JD1K. So an element of J K is written as an ordered

pair, and maps to and from J Kr are written as matrices. For the details, refer to

Chapter 5.

Let A∗, B∗ be chain complexes. Recall from Chapter 3 that A∗ and B∗ are chain

homotopy equivalent if there exist chain maps f ∗ : A∗ → B∗ and g∗ : B∗ → A∗ such

that g∗f ∗ is homotopic to idA and f ∗g∗ is homotopic to idB. Also, recall that chain

homotopy equivalence is an equivalence relation on chain complexes. Moreover, chain

homotopy equivalent chain complexes have the same homology.

In the following diagrams, we omit the functor F on all cobordisms, which is standard



180 CHAPTER 7. TQFTS AND THE KHOVANOV HOMOLOGY

notation.

We want to show that J K and J K{−1} are homotopy equivalent. That is,

that there exists chain maps F : JD′K∗ → JDK∗−1 and G : JDK → JD′K such that

GF ∼ idD′ and FG ∼ idD. We first define our F :=

[
F0

F1

]
and G :=

[
G0 G1

]
.

Let F1 : JD′Kr → JD1Kr−1{1} be zero and let F0 : JD′Kr → JD0Kr be the follow-

ing chain map/cobordism.

−

Let G1 : JD1Kr−1 → JD′Kr be zero and let G0 : JD0Kr−1 → JD′Kr be the following

chain map/cobordism.

Showing GF ∼ id, and in fact we have an equality. GF = id
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− = 2 −

=

As for FG ∼ idD, we need to define maps H : JDK → JDK. Hence, this will be a

linear map defined by the matrix H :=

[
0 h

0 0

]
. We begin by reminding ourselves of

the differentials first.

We know the differential d =

[
d0 0

m̂ −d1

]
, where m̂ : JD0Kr → JD1Kr is the following

chain map/cobordism.

The map −h : JD1Kr → JD0Kr is the following chain map/cobordism.
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We now need to check that FG − id = Hd + dH. In other words, we need the

following. [
F0G0 0

0 0

]
−

[
id 0

0 id

]
=

[
−hm hd1

0 0

]
+

[
0 −d0h

0 −mh

]

We will show these one by one, starting with the easiest.

Firstly, that − id = −mh can be seen from the diagram below.

=

Next, we show 0 = +hd1 − d0h. This follows from a similar construction used in

Section 7.3 — that if two cobordisms are identical outside two cylinders and homeo-

morphic inside the cylinders, then they represent the same cylinder. We will denote

the “first” cylinder, that is the vertical cylinder of the crossing in question, by W .

Inside W , the differentials d0 and d1 will be identities. Hence, we have the following

homeomorphism hd1|W = d0h|W .
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=

The differentials d0 and d1 are differentials in JD0K and JD1K respectively. Suppose

−hr : JD1Kr−1 → JD0Kr−1, and let \W mean the cobordism excluding its intersection

with W . We must show hr+1dr−1
1 |\W = dr−1

0 hr|\W . Now we can see that d1 and d0

are of the same degree, it is straightforward to see that for each summand (d0)ζ of d0

and (d1)ζ of d1, (d0)ζ = (d1)ζ outside of W . This shows hr+1dr−1
1 |\W = dr−1

0 hr|\W , as

required.

Finally, we must check that F0G0 − idD0 +hm = 0. This follows from the 4-Tu

relation. The first line is F0G0 + hm.

− + − (∗)

We apply the 4-Tu relation to the first cobordism. The following is the first cobordism

without a ball. Inside the ball looks like a summand of the 4-Tu relation, which we

will now apply.
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= + −

Hence, substituting the right-hand side of this equation into (∗), we find that every-

thing cancels. Therefore, the equation (∗) is equal to 0, which is what we required.

This shows invariance under R1.
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