Effect of Series Active Voltage Conditioners on Modernized Grid
Modernized “Smart” grids incorporate renewable energy sources on a widespread scale. Foreseen expansion in integrating more renewables is driven by global CO₂ emission concerns and depletion of fossil fuels. Active elements/devices are added to smart grids to enhance power availability and quality with the aid of advances in power electronics and communication systems. Active Voltage Conditioner (AVC) represents state-of-the-art in the field of voltage regulation and conditioning, however; integrating it into modernized grids has not been the subject of detailed study yet. This thesis details the AVC-Grid interaction mechanism and associated performance parameters. ABB PCS100 AVC computer model based on MATLAB/PLECS platform is used as a basis for the proposed mathematical model. Accordingly, operational V-I characteristics is derived and impact of equivalent grid stiffness is analyzed. In this thesis, the modeling of AVC has been introduced as seen by the grid in light of MATLAB/PLECS simulations. The conditioning ratio to describe the “depth” of load conditioning had been introduced. Modeling of AVC operational characteristics has been developed and dependency on conditioning ratio and equivalent grid stiffness had been investigated. Also, the analysis of grid behavior due to AVC operation during overvoltages and undervoltages has been carried out as well as discussing the envisaged impact on tied WTG/PV systems. The thesis represents an initial attempt to model the AVC and discusses its envisaged impact on smart grids.