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ABSTRACT 

Modernized “Smart” grids incorporate renewable energy sources on a widespread scale. 

Foreseen expansion in integrating more renewables is driven by global CO2 emission 

concerns and depletion of fossil fuels. Active elements/devices are added to smart grids 

to enhance power availability and quality with the aid of advances in power electronics 

and communication systems. Active Voltage Conditioner (AVC) represents state-of-the-

art in the field of voltage regulation and conditioning, however; integrating it into 

modernized grids has not been the subject of detailed study yet. 

 

This thesis details the AVC-Grid interaction mechanism and associated performance 

parameters. ABB PCS100 AVC computer model based on MATLAB/PLECS platform is 

used as a basis for the proposed mathematical model. Accordingly, operational V-I 

characteristics is derived and impact of equivalent grid stiffness is analyzed.  

 

In this thesis, the modeling of AVC has been introduced as seen by the grid in light of 

MATLAB/PLECS simulations. The conditioning ratio to describe the “depth” of load 

conditioning had been introduced. Modeling of AVC operational characteristics has been 

developed and dependency on conditioning ratio and equivalent grid stiffness had been 

investigated. Also, the analysis of grid behavior due to AVC operation during 

overvoltages and undervoltages has been carried out as well as discussing the envisaged 

impact on tied WTG/PV systems. 

 

The thesis represents an initial attempt to model the AVC and discusses its envisaged 

impact on smart grids. 
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GLOSSARY OF TERMS & SYMBOLS 

ϕ Load power angle (rad) 

∆Ig Additional grid supply current due to AVC operation (p.u.). 

∆Qg Additional reactive power demand due to the operation of AVC (p.u.) 

∆V PCC voltage variation from system nominal (p.u.) 

∆Va Additional PCC voltage variation due to additional AVC demand (p.u.) 

AC Alternating Current 

AVC Active Voltage Conditioner 

AVQR Active Voltage Quality Regulator 

AVR Automatic Voltage Regulator 

CPL Constant Power Load 

d-axis Direct Axis (machine rotor) 

DC Direct Current 

DFIG Doubly Fed Induction Generator 

DG Distributed Generation 

DVR Dynamic Voltage Restorer 

EMF Electro Motive Force 

EMI Electromagnetic Interference 

Eth Supply grid Thévinin equivalent EMF (p.u.)  

HV High Voltage (voltages greater than 69 kV) 

HVAC Heating, Ventilation and Air Conditioning 

HVRT High Voltage Ride-Through 

Ig Grid supply current (p.u.) 

In Load nominal current (p.u.) 

If Short circuit current (p.u.) 

IEEE Institute of Electrical and Electronics Engineers 

KVL Kirchhoff’s Voltage Law 

LSC Line Side Converter 

LV Low Voltage (voltages up to and including1 kV) 

LVRT Low Voltage Ride-Through 

MPPT Maximum Power Point Tracking 

MV Medium Voltage (ranging from >1 kV to 69 kV) 

NGR Neutral Grounding Resistor 

NZ New Zealand 
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OLTC On-Load Tap Changer 

O/V Overvoltage 

p.u. Per Unit 

PAVC , PC AVC demand active power (p.u.) 

PCC Point of Common Coupling (where AVCs are connected) 

PF Power Factor (%, p.u.)  

PLECS® Piecewise Linear Electrical Circuit Simulation 

PLL Phase Locked Loop 

PV Photovoltaic 

q-axis Quadrature Axis (machine rotor) 

QAVC, QC AVC demand reactive power (p.u.) 

QNo-AVC Load reactive power in case of no AVC is activated (p.u.) 

R&D Research and Development 

RSC Rotor Side Converter 

SAVC AVC demand apparent power (p.u.) 

Sc Total conditioned load (p.u.) 

Sg Demand as seen by supply grid on PCC (p.u.)  

Sn Load nominal apparent power (p.u.) 

Ssc Supply grid short circuit capacity (p.u.) 

St Total PCC load (p.u.) 

Suc Total unconditioned load (p.u.) 

SCR Short Circuit Ratio 

SLD Single Line Diagram 

SLG Single Line-to-Ground (fault type) 

THDv Total Harmonic Distortion – voltage based. (%) 

U/V Undervoltage 

Vn System nominal voltage (p.u.) 

VPCC AVC input voltage on PCC (p.u.) 

VA Volt-Ampere 

VFD Variable Frequency Drive 

WTG Wind Turbine Generator 

x Conditioning ratio 

Zc Conditioned load impedance (p.u.) 

Zuc Unconditioned load impedance (p.u.) 

Zs Supply grid short circuit impedance (p.u.) 

Zt Total PCC load impedance (p.u.) 
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1 Introduction 

1.1 Background 

 
The world trend in power generation is heading towards integrating more renewable 

energy sources into smart grids in particular. Renewable energy penetration in 

modernized grids is running around 20-30% with intermittent figures exceeding 50% 

[1]. Studies for up to 90% penetration are taking place around North America where 

the need for reliable and secure power is crucial [2]. The higher renewable energy 

penetration level is associated with stability concerns with more generation 

intermittency. Accordingly, voltage fluctuations on Point of Common Coupling 

(PCC) appear with variable power flow. 

1.2 The Problem of Voltage Fluctuations 

 
Industrial and commercial electricity consumers are mostly concerned with 

productivity loss due to voltage sags/swells especially with increased use of sensitive 

electronic and power electronics process control equipment. Millions of dollars are 

lost every year due to insignificant voltage sags causing production lines to halt as 

well as networks to mal-operate [3]. 

Voltage profile within grid is helpful into predicting the ride-through capability of tied 

renewable energy sources. The need for voltage regulation on sensitive power loads 

justifies using Active Voltage Conditioners (AVCs) to stabilize the load voltage with 

minimal deviation (zero, ideally) from nominal voltage over the grid operational 

voltage range (European standards allow up to ±10% voltage variation from nominal 

value) [4].  

1.3 Aim of the Thesis 

 
The study aims to investigate the impact of using Active Voltage Conditioners 

(AVCs) on integrated renewable energy sources. Investigating the operation of AVC 

on the grid side voltage will be the key parameter to analyze the envisaged impact on 

tied renewable energy resources. The thesis describes the AVC performance and 

determine its parameters and dependencies. 

The study highlights the basic performance parameters ascribed to AVC operation 

like voltage variations, current demand, reactive power demand, load impedance, 
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power factor, response time, efficiency and harmonic distortion. Unsymmetrical 

operation should be addressed within the thesis.    

1.4 Methodology 

 
MATLAB/PLECS model for PCS100 AVC series manufactured by ABB NZ has 

been used within this thesis to investigate the operational impact on smart/modernized 

grid with high renewable energy penetration. Simulation output (Chapter 3) is used as 

a basis for AVC mathematical modeling (Chapter 4). Operational V-I characteristics 

is derived accordingly.   

Operation of AVC is characterized by very fast response (around half a cycle) 

compared with other voltage regulation techniques e.g. OLTCs (up to 10 minutes) 

which enables them to act during short time transient voltage abnormalities. Remote 

system faults, motor starting, load and generation rejection mostly do not last enough 

to cause AVR/OLTC to respond. Nevertheless, AVCs will respond to such 

disturbances collectively at the same Point of Common Coupling (PCC), at the same 

time. 

The application of AVCs has not been studied much within the industry, and a 

possible area for development may exist within modern grids with engineered 

application of new technologies. 

1.5 Thesis Outline 

 
The thesis is split into five chapters as follows: 

Chapter 1: This chapter introduces for the need for voltage regulation within grids 

with high renewable energy penetration and associated voltage 

fluctuations. Aim of the thesis and its outline are included. 

Chapter 2:  This chapter lists more detailed description for elements of system 

under study and associated operational abnormalities. 

Chapter 3:  This chapter is dedicated to describe Active Voltage Conditioner 

(AVC) construction and operation. PLECS/Simulink simulation results 

are provided.  

Chapter 4:  This chapter lists the investigation carried out to predict the AVC-Grid 

interaction. Detailed mathematical modeling for AVC is derived and 

associated V-I characteristics are developed based on PLECS/Simulink 
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simulation results in Chapter 3. In light of modeling results, envisaged 

AVC impact on modernized grids is discussed. 

Chapter 5:  This chapter summarizes the study conclusions and lists 

recommendations for further related research points. 

 

References and bibliography contains a list of citations and reference material and 

literature at the end of the thesis.  
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2 Literature Review: 

2.1 Smart Grid 

 
With the widespread use of Distributed Generation (DG) within networks, and the 

current trend of communication systems, the concept of “smart” gird evolves to 

compose a real-time controlled grid that achieves reliable and economic operation and 

interaction between generation and consumers. Voltage regulation within smart grids 

is of particular importance with various methods of control [5]. The bi-directional 

power flow among the smart grid raises the challenge of using flexible automatic and 

distributed voltage regulators working on real-time environment. 

The concept of smart grid is very helpful into integrating renewable energy sources 

due to stochastic intermittency nature of generated power. With the growing high 

penetration of renewable energy sources, the smart grid proves to be deemed 

necessary in order to achieve system reliability, stability and dispatchability. 

Load flow among various elements of the grid with distributed generation can result 

in unpredictable voltage profiles. Accordingly, the need for fast and reliable voltage 

conditioning arises. Since the aggregation of sources and loads is possible with the 

virtue of linear operators, the thesis will focus on analyzing voltages at Point of 

Common Coupling (PCC) with connected AVCs, conventional generation and 

renewable energy source. 

2.2 Renewable Energy Sources 

 

Major generated power contribution from renewable energy sources-excluding hydro-

comes from wind turbine generators (WTG) and photovoltaic cells (PV). Allocation 

of renewable energy sources is decided based on historical records of the availability 

of wind and solar insolation for economic feasibility of the installations. 

2.2.1 Wind Turbine Generators (WTG) 

 
Growth of wind power around the world is exceeding the optimistic expectations of 

the past years [6]. 20-30% installed capacity penetration of wind power generation 

cannot be missed within Italy, Denmark & Germany. Intermitting penetration may 

rise to about 50% [1]. 
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Horizontal axis wind turbines are typically used both onshore and offshore for utility 

scale generation. Rotor diameters may exceed 100 m (offshore) with supporting masts 

supporting them for “free from turbulences” wind. Figure  2-1 shows typical 

horizontal axis wind turbine construction. An upstream wind turbine rotor is oriented 

into the prevailing wind flow by an active yaw system, and down consisting of a set 

of motors that rotate the nacelle and rotor around the vertical axis of the machine [2]. 

Power electronic converters are commonly used to control wind active and reactive 

power injected to grid (converters are usually located at ground level for 

maintainability). Local step-up transformer is usually installed next to each WTG for 

power transmission within the wind farm (cable reticulation of up to 10 km radial 

feeders) to MV collector substation. 

Average wind farm installation cost is about ~2k US$/kW (2011) with foreseen 

reductions with R&D advances [2]. 

Four wind turbine generator technologies (listed hereunder) are commercially 

prevalent these days: 

1- Fixed speed wind generators with squirrel cage induction generators. 

2- Wind generators with wound rotor induction generators and limited speed 

variation through an external resistor. 

3- Doubly Fed Induction Generators (DFIG) with variable speed. 

4- Permanent Magnet Synchronous Machine or an Induction Machine (cage or 

wound rotor) with a full converter and variable speed range. 

The most commonly used technology is the Doubly Fed Induction Generator (DFIG) 

[6]. This is due to the reduced converter capacity (~30% of machine rating) impacting 

positively the feasibility of high power installations. 

Typical construction of DFIG is shown in Figure  2-2.  

Power is injected to the grid by stator as well as the rotor through a double converter 

arrangement (Rotor Side Converter (RSC) & Line Side Converter (LSC)). DC 

chopper is used to control DC link voltages during operation as well as to limit power 

losses.    
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Figure  2-1 : Typical modern horizontal axis wind turbine components [2]. 

 

Due to the virtue of power electronic controllers, most DFIG designs have the 

capability to provide reactive power support to the grid. A vector control approach is 

utilized to split the rotor current into a d-axis (flux producing) component and q-axis 

(torque producing) component. Controlling the d-axis excitation on the rotor can 

achieve the reactive power support [6]. Switched electronic rotor crowbar is used to 

divert excessive currents.  

 

Figure  2-2 : DFIG wind turbine schematic diagram [7]. 
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The reactive power support is very useful during voltage disturbances as it helps to 

retain system normal operating conditions quickly and improve system stability. 

Typical DFIG reactive power capability is show in Figure  2-3. (family of curves with 

different slip values “rotor speeds”). DFIG normally operates in the region bounded 

by red dash-dot lines. Green dots show the locus of unity power factor with no 

injection or consumption of reactive power.  

 

Figure  2-3 : Reactive current capability at nominal voltage as a function of active current [6]. 

2.2.1.1 Low Voltage Ride-Through (LVRT) Capability  

 
Most of modern DFIG wind generators are provided with Low Voltage Ride-Through 

(LVRT) capability in order to utilize the DFIG reactive power support capability 

during voltage dips [8]. The reactive power support is important to avoid the risk of 

cascaded outages. 

Typical LVRT capability requirements for various codes are shown in Figure  2-4. The 

reason behind local differences between codes is mainly to get use of the reactive 

power support capability of connected wind farms during system disturbances. The 

LVRT capability represents the capability of power converters to withstand transient 

heavy currents during voltage dips.  
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Grid requirement dictates the actual need for DFIGs LVRT capabilities during voltage 

variations. In this regard, induction generators are switched to the reactive power 

support mode if the PCC voltage drops beyond 10% of generator terminal voltage [9]. 

For example, German grid code (shown in red) asks for DFIGs to tolerate a zero 

voltage for about 150 ms and ramping up voltage to 90% at 1500 ms. The DFIG 

should be properly tuned and sufficiently capable of providing pre-selected “usually 

2% of rated current for each percent of the voltage dip” reactive current during 

voltage recover not exceeding this pattern. 

 

 

Figure  2-4 : Wind farm fault ride-through requirement for various codes [9]. 

2.2.1.2  High Voltage Ride-Through Capability (HVRT) 

 
Similar to the LVRT operation, the wind farms have to provide reactive power 

support to the grid during High Voltage Ride-Through (HVRT) events. However, 

instead of delivering reactive power to the grid, reactive power should be absorbed 

during HVRT operation in order to mitigate the voltage rise/swell at PCC [10]. Figure 

 2-5 shows Germany (E.ON) and Spain HVRT requirements. 



9 
 

 
 

 

Figure  2-5 : Wind farm HVRT requirement in Germany & Spain [10].  
 

2.2.2 Impact of Wind Generators on System Dynamic 
Performance 

 
Wind generators impact on system dynamic performance has been an important 

subject of study as detailed in [9], [11], [12], [13] and [14]. The performance 

parameters under study are: 

 

1- Frequency stability. 

2- Rotor angle stability. 

3- Voltage stability. 

 
With a weak grid and isolated electrical systems, the integration of a large amount of 

wind generation may cause problems due to the limited capability of wind power 

generation systems to provide both the inertial rotating mass and the reactive current 

capacity to maintain stability after severe transient disturbances in the grid [13]. 

Basically, the high wind power gives rise to the fluctuations of the system frequency 

as the wind penetration increases. Fluctuations soar when exceeding beyond 10% of 

the total capacity [11]. With the virtue of modern power electronics, the injection of 

reactive power by WTGs (DFIGs) is possible. Reactive power support by DFIG 

improves the rotor angle response of grid synchronous generators during faults and 

system abnormalities [12].  
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2.2.3 Photovoltaic (PV) Systems 

 
Photovoltaic technologies convert sunlight directly into DC electricity by enabling 

solar photons to “excite” electrons from their ground state, producing a freed (photo-

excited) electron and a “hole” pair in semi conductive substrate (in most cases, 

silicone based). The electron and hole are then separated by an electric field that is 

formed by the design of the PV cell and pulled toward positive and negative 

electrodes, producing DC electricity. Figure  2-6 shows a typical PV construction [2].  

 

Figure  2-6 : Typical PV cell construction 
 

PV generated DC power is controlled by a DC-DC converter usually supported by 

Maximum Power Point Tracking (MPPT) option to force the PV cell to operate at 

maximum power point. The DC-DC converter output is feeding a DC-link capacitor 

in turn feeds the DC/AC inverter. DC/AC inverter is used for AC power interface to 

distribution grid (Figure  2-7) 

With the high cost impact of PV installations, economics plays major role in 

investment decision making. Recently, the PV installation costs are getting lower 

(around 2~3$/W) due to the advances in manufacturing and efficiency improvement 

[2]. 
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Figure  2-7 : Grid-tied PV system [15]. 

2.2.3.1  Low Voltage Ride-Through Capability (LVRT) 

 
Due to the smaller share/penetration of photovoltaic (PV) systems in most of the 

operating power systems in the world, grid operators impose basic grid requirements. 

IEEE Std. 929-2000 recommends disconnection of PV systems during voltage 

disturbances exceeding certain limits (Figure  2-8) for safety reasons. Nevertheless, 

with the increased PV penetration, grid codes are expected to introduce LVRT 

requirement for MV and HV grid tied PV systems (Figure  2-9) [10].  

 

 

Figure  2-8 : Voltage and frequency window for PV systems in IEEE Std 929–2000 [16]. 
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Figure  2-9 : Example of the LVRT requirement in various countries [10]. 

 

2.3 Voltage Disturbances 

 
The study covers topics related with smart grid, renewable energy sources 

integrations, active and reactive power demand, system stability and operational 

abnormalities. References [9], [17], [18], [19] describe causes for voltage disturbances 

within grids to include: 

 

- Faults (SLG is the most common). 

- Motor starting. 

- Load / generation rejection. 

- Ferroresonance. 

- Arcing ground faults. 

 

Reference [17] gives a detailed description for various types of voltage disturbances 

and waveforms arising into modernized power systems due to the intensive presence 

of non-linear loads e.g. VFDs. 

Consequences of supplying sensitive loads from networks borne to disturbances can 

result in outages, mal-operations and even damages. Examples of such cases are given 

in [3]. 
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2.4 Active Voltage Quality Regulator (AVQR) 

 
Active Voltage Quality Regulator (AVQR) is very similar in concept with AVC. 

Papers [20], [21] and [22] explain in detail the design and operational aspects of 

AVQR with different control techniques and topologies. No related papers can be 

located for researches carried out on grid impact of AVQR. 

The AVQR topology/schematic as shown in Figure  2-10 resembles the ABB PCS100 

AVC series outline topology. Injection transformer is used to impose corrective 

voltage component on supply voltages. Corrective voltage component is produced by 

controlled inverter connected to a rectifier driven DC link. The DC link voltage 

control technique causes a phase-shift between input and output voltages so that the 

resultant AVQR power is kept as minimum.  

 

Figure  2-10 : AVQR schematic as depicted in [22]. 

2.5 Conclusion 

 
Listed references of paper [22] don’t deal with grid interface with AVQR. The AVC 

is a fairly new technology and no published titles can be located for research done on 

the impact of series active voltage conditioners on girds with high renewable energy 

penetration. 
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3 Active Voltage Conditioner (AVC) 

3.1  Topology 

 
The Active Voltage Conditioner (AVC)  comprises of series boost transformer driven 

by precisely controlled rectifier/inverter set to compensate the grid voltage variations. 

Figure  3-1 shows the Single Line Diagram (SLD) of the PCS 100 AVC. 

 

Figure  3-1 : PCS100 AVC SLD & Waveforms [23]. 

 
Injection/boost transformer (passive component of AVC) operates in its linear region 

by imposing additional or subtractive voltage wave on the grid waveform and 

accordingly keeping the output voltage stabilized. Figure  3-2 shows ABB installation 

in Germany for Medium Voltage PCS100 AVR. The unit is installed outdoor in a 

container enclosure with underground cable trenches. AVC enclosure size is 

proportional to its nominal power. The AVC power is limited to the product of 

voltage correction range (±10% typical) and nominal load current.  

The AVC does not employ any energy storage devices e.g. battery, which enhances its 

minimal size and installation feasibility. 

3.2 Operational Features 

3.2.1 Concept 

 
The PCS100 AVC has a nominal (guaranteed) correction range of ±10%. This is 

sufficient to compensate for voltage variation within most of grid operator codes 

worldwide.  
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Figure  3-2 : PCS100 AVR (MV Level – Outdoor Installation) 

 

3.2.2 Efficiency 

 
Being an active installation with only one passive power element (boost transformer), 

the AVC efficiency is very high (greater than 98%) [3]. Power loss is a function of 

loading and correction depth of the AVC. Figure  3-3  shows typical 400 kVA losses 

variation. 

It is evident from Figure  3-3 that the losses increase with load current (resistive losses 

are proportional to the square of the current). Bypass losses is shown in green. AVC 

losses in connections and passive elements are shown in blue. The total losses 

including switching devices losses (active during correction) are shown in red.  

3.2.3 Fast Operation 

 
The AVC response time for voltage variations is typically as short as half a cycle [3]. 

This allows for the seamless operation to avoid disturbing sensitive process loads e.g. 

HVAC in chips manufacturing facilities. (Figure  3-4 shows the measured response of 

AVC to 30% and 50% voltage sags). Power quality improvement is achievable for 

wide range of sags and swells occurring for very short times to sustained overvoltage 

and undervoltages. 
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Figure  3-3 : 400 kVA PCS100 AVC (LV) losses vs. loading 
 

The distribution transformers On-Load Tap Changers (OLTCs) are not fast enough to 

compensate for such short disturbances. This is due to slow Automatic Voltage 

Regulators (AVRs) response and mechanical moving parts inertia. 

The fast response time allows modeling distributed AVCs connected to the same 

Point of Common Coupling (PCC) to respond collectively at the same time. Chapter 4 

explains mathematical modeling of AVC grid interface. 

The operation of AVC beyond ±10% is intermittent compared with a DVR (Dynamic 

Voltage Restorer) and supposed to last for few cycles as shown in (Figure  3-4) due to 

the lack of energy storage devices.  

 

 

Figure  3-4 : AVC response to 30% (left) & 50% (right) voltage sags – Volts. Vs. milliseconds [3] 
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3.2.4 Waveform Conditioning 

 
Waveform conditioning is also carried out by the AVC eliminating wave distortions 

and harmonics (other than zero sequence/triplen harmonics). This is usually limited to 

11th harmonic due to design constraints. Voltage Total Harmonic Distortion (THDv) 

input of up to 25% can be tolerated by PCS 100 AVR.  

Sensitive power loads utilizing power electronics may well be subjected to mal-

operation due to voltage waveform distortion due to zero crossing shift and EMI 

issues. AVC provides proper waveform/power quality for connected loads.  

3.2.5 Through Fault Capability 

 
PCS100 AVC introduces additional series impedance into network fault equivalent 

circuit. The downstream fault current is reduced by the boost transformer series 

impedance (ranging from 1 to 2%). There is no impact on zero-sequence impedance 

as the AVC is a three-wire system and the injection transform is connected in series 

with the current loop.  

Due to design economics, the AVC does not have deliberate means for reducing 

through-fault currents. The inverter is usually bypassed during heavy fault currents. A 

fast acting silicone controlled rectifier bypass on the inverter side is enabled by AVC 

overcurrent protection when the current exceeds 2 p.u., this in turn is bypassed by 

mechanical contacts.   

The same technique is used in case of AVC internal fault. 

3.2.6 Unsymmetrical Voltage Conditioning 

 
Single phase faults cause voltage dips on faulty phases and voltage swells on healthy 

phases depending on system neutral point grounding connection. Most of MV 

networks have their star points grounded through Neutral Grounding Resistors (NGR) 

to limit the system single phase-to-ground fault current, while LV networks usually 

have solidly grounded configuration to allow for single phase loads. 

The phase-to-ground faults are very common on industrial and commercial networks 

(about 98% of industrial system faults are single phase-to-ground) causing zero 

sequence current and voltage components to exist within the system (if a neutral 

current path exists). Nevertheless, the PCS100 AVC doesn’t compensate for zero 

sequence voltages. 



18 
 

In the case of faults on an 11 kV network (usually an NGR is provided), voltages (to 

ground) on healthy two phases will jump to line-to-line values causing additional 

stresses on system insulation and cabling (Figure  3-5). 

 

Figure  3-5 : Phase relationships during normal and faulty conditions (Neutral Grounded through 

Impedance) 

 
The AVC will not compensate for the phase voltages. AVC line-to-line output 

voltages will be compensated properly (resultant zero sequence voltages diminish for 

line-to-line voltages). Eqs.( 3-1) demonstrate the diminishing of zero sequence 

components in line-to-line voltages.  
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 ( 3-1) 

The operation of AVC on resistor grounded network will achieve the line-to-line 

compensation (no zero sequence involved) while phase-to-ground voltages will not be 

compensated due to the presence of zero sequence current and voltage components 
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during system unbalances and faults. Delta-star transformer can be used past the AVC 

to achieve conditioned phase-to-ground voltages. Review of network fault current 

setting may be needed to accommodate additional system impedance (boost 

transformer). 

3.3 PLECS/Simulink Simulation 

3.3.1 Model 

 

ABB NZ have provided simplified PLECS/Simulink model for AVC. PLECS® is a 

tool for high-speed simulations of power electronic systems [24]. Figure  3-6 shows 

rectifier-inverter link injects compensating voltages into the source voltage through 

boost/injection transformer (represented as a linear inductance). Control signals are 

derived mathematically using Park and Clarke reference frame transformations with a 

reference signal (pure sinusoidal positive sequence at power frequency) and power 

limit. Phase Locked Loop (PLL) is employed to synchronize injection inverter to the 

grid. 

The model uses normalized per unit values for ease of application. Further technical 

details of the model may be requested on ABB NZ discretion. 

 

 

Figure  3-6 : PLECS model for ABB AVC 

 

3.3.2 AVC Response to Undervoltages 

 
A 10% undervoltage (VPCC) is simulated using PLECS/Simulink model. Voltage sag 

is compensated in about half a cycle keeping the load voltage quickly at nominal 

value. Load current is also kept at nominal value; nevertheless, the source current sees 

an increase to keep the load power constant because the instantaneous power is the 
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product of voltage and current. It is noted that the supply power factor is almost equal 

to load power factor (initial ramp in Figure  3-7 is due to PLECS numericals). 

Figure  3-7 shows AVC PLECS model waveforms for 10% undervolage.  

3.3.3 AVC Response to Overvoltages 

 
Similarly, a 10% overvoltage (VPCC) is simulated using PLECS/Simulink model. 

Since the load power is proportional to the load voltage (constant, when conditioned), 

the load power is constant, while source voltage swells, the source current decreases 

to keep the constant load power demand. It is noted that the supply power factor is 

almost equal to load power factor (initial ramp in Figure  3-8 is due to PLECS 

numericals). 

Figure  3-8 shows AVC PLECS model waveforms for 10% overvoltage. 

 

For discussion of simulation results and mathematical details related to this section, 

please refer to Chapter 4.   
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Figure  3-7 : AVC response with 10% voltage sag (PF =90%). 
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Figure  3-8 : AVC response with 10% voltage swell (PF =90%). 
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4 AVC-Grid Interaction 

4.1 Simulations Analysis 

 
PLECS® simulations confirm the power/energy conservation concept. Undervoltages 

cause increase in grid current (demand) while overvoltages cause line currents to 

decrease. This concept is the basis for the AVC impact mathematical modeling in this 

chapter. 

The derived equations are based on 3-phases system notations. Most of the involved 

parameters are vector quantities. Given that the operation of AVC doesn’t change the 

load/supply power factor as shown in Figure  3-7 and Figure  3-8, linear algebraic 

addition is used. 

4.2 Operation of AVC during Voltage Disturbances 

 
The Active Voltage Conditioner (AVC) compensates the voltage variations as seen on 

PCC keeping the load power constant over the correction range (±10%).  

As shown in Figure  3-7 and Figure  3-8, the AVC input power factor is almost equal to 

its output (load) power factor; this allows the linear algebraic equations for analyzing 

the additional currents associated with AVC operation. 

During an undervoltage event due to any operational disturbance like system 

undervoltage, heavy motor starting, generation rejection/fluctuation, remote 

fault,…etc, the AVC keeps the load voltage constant (@ Vn p.u.) and accordingly, the 

demand power (@Sn p.u.). Given that the AVC does not have any energy storage 

capability and has very high efficiency; the grid “sees” a constant load power demand 

during the event. 

Since the AVC has a very short response time to input voltage disturbances, it can be 

presumed that all connected AVCs on the same PCC responds at the same time. 

(Figure  4-1). 

4.2.1 PCC with 100% Conditioned Loads 

 
Let the aggregate AVC conditioned loads to be represented as a linear load with 

constant impedance Zc, and nominal system line-to-line voltage Vn, the demand 

power can be represented by Eq.( 4-1). 
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Figure  4-1 : Typical distribution bus with k connected AVCs. 
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This demand is constant over voltage variation range of 0.9Vn to 1.1Vn. 

Voltage deviations from nominal voltage Vn is represented by differential voltage ∆V 

as per Eq.( 4-2). 

 

 VVV nPCC ∆−=  ( 4-2) 

  

In case of no AVC installed, the demand power varies proportionally with the square 

of the system voltage and inversely with the load impedance:  
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And the grid current will be:   
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From Eq. ( 4-4), during a voltage disturbance, the demand power and grid current 

follow the system voltage in case of no AVC installed, Nevertheless; with AVC in 

action, the demand power remains constant (equal to SAVC) forcing the grid supply 

current to deviate from its value in case of no AVC. 

Rewriting Eq. ( 4-4) : 
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Plots hereunder in (Figure  4-2) depict the AVC impact on load linearity versus PCC 

voltage. Most of loads are considered as constant impedance load (linear), where the 

V-I characteristics are linear with slope representing the reciprocal of load impedance. 

AVC transforms the loads into a constant power/demand load around the conditioning 

voltage range (±10%) as shown in Figure  4-2. 

A spike in grid current is observed at -10% voltage (dip) in order to keep the load 

power constant. 

The inverse gradient passes the nominal voltage (100%) point at nominal current i.e. 

0% AVC conditioning. A shallow current demand appears at +10% voltage (swell) to 

intersect with the linear load characteristics again. AVC piece-wise V-I characteristics 

may be extended beyond ±10% of nominal voltage for very short time. 

 

The equations and graphs are valid for the 100% PCC conditioned loads case.  
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Figure  4-2 : AVC V-I characteristics and complex power variation with applied voltage. 

 

4.2.2 PCC with Mixed Loads 

 
Realistically, some users may still tie their loads to the grid with no AVC and their 

demand follows Eq. ( 4-3). Equivalent network is shown in Figure  4-3.  

With mixed loads, Sc is the conditioned load demand and Suc is unconditioned load 

demand, the conditioning ratio x can be defined as the ratio between conditioned load 

demand Sc and the total connected load St at PCC. 
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 ucct SSS += .  ( 4-7) 
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Figure  4-3 : Typical distribution bus with k connected AVCs and unconditioned loads. 

 
 

Additional grid supply current due to AVC ∆Ig can be represented as: 
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With values above in per unit, assuming Vn=1 p.u., Eq. ( 4-8) becomes: 
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Figure  4-4 plots the dependency of additional grid current on conditioning ratio x and 

voltage variation ∆V. Positive ∆V refers to PCC undervoltage. (Refer to Eq. ( 4-2)). 

Values greater than 0.1 p.u. voltage variations are true (theoretically) for short 

intermittent AVC operations.   

 

It is clear that the greater the conditioning ratio, the higher the additional grid current 

demand. The above equations neglect the additional voltage drop caused by grid 

impedance and additional grid supply current ∆Ig. 
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Figure  4-4 : Additional grid current (∆Ig) due to AVC operation vs. voltage variation (∆V) 

“x=0 : no AVC”. 

4.2.3 Impact of Weak Grid Stiffness 

 
Most of remote radial load centers/consumers are subjected to low grid short circuit 

currents. Additional voltage drop due to additional current causes further shift of the 

operating PCC voltage. The grid equivalent stiffness described by Zs can hint about 

the available PCC short circuit current and associated amount of additional voltage 

increase/decrease due to AVC operation. 

4.2.3.1   Analytical Solution 

 
Due to the linear nature of supply grid reactance and resistance, superposition can be 

used to estimate the additional voltage drop ∆Va can be based on Eq.( 4-9) while Eq. 

( 4-2) will be: 

 

 ( )anPCC VVVV ∆+∆−=  ( 4-10) 
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where Ssc is the system short circuit VA (p.u.) @ PCC. 

∆Va can be determined iteratively. For power quality reasons associated with 

intermittent power fluctuations, some countries have defined for wind farms a short 

circuit level at the connection point between 20 and 25 times the wind farm capacity. 

Lower short circuit levels have been already in operation within some networks [25].  

Considering a value of 20 as the SCR for the equivalent grid stiffness and substituting 

in Eq.( 4-11) for ∆Va yields: 
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As shown in Table  4-1, Table  4-2 and Table  4-3, additional voltage depends on the 

initial voltage variation ∆V and conditioning ratio x. It is clear that the greater the 

conditioning ratio, the higher the additional grid voltage variation. The AVC does not 

operate beyond ±10% and thus, voltage at PCC cannot exceed the correction limits 

(±10%), cells with PCC voltages exceeding +10% or -10% value (theoretically) are 

coloured in red and blue, respectively.  

Due to the inverse gradient curve representing the constant power load, VPCC response 

to undervoltages appears to be greater than that during overvoltages. This is clear 

when comparing the absolute value/magnitude of additional voltage with initial 

voltage variation of 8% (Undervoltage) and 8% (Overvoltage) in Table  4-1 

(highlighted in yellow). The difference becomes less noticeable with lower initial 

variations and conditioning ratios. Figure  4-5 shows the difference between response 

magnitude percentage due to overvoltages (O/V) and undervoltages (U/V). The 

impact of equivalent grid stiffness on additional voltage can be obtained by plotting 
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∆Va from Eq.( 4-11) against equivalent grid Short Circuit Ratio (SCR) as shown in 

Figure  4-5.  

Note that these curves in Figure  4-5 are clipped at a total PCC voltage variation of 

10% (magnitude) since the AVC acts at that limit. With initial voltage variation of 

5%, absolute values of ∆Va greater than 5% to be clipped and at 7.5% initial variation, 

absolute values of ∆Va greater than 2.5% to be clipped 

Accordingly, additional reactive power demand as seen by the upstream supply is 

given by Eq.( 4-13): 
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4.2.3.2   Graphical Solution 

4.2.3.2.1 100% Conditioning 

 
AVC Operational voltage can be determined by means of graphically solving both 

source and load V-I characteristics. Kirchhoff’s Voltage Law (KVL) applied to 

Thévinin equivalent circuit in Figure  4-1 for supply gird results in Eq.( 4-14). 

 

 PCCsgth VZIE =− 3  ( 4-14) 

 

Eq.( 4-14) may be represented as a load line intersecting with AVC V-I characteristics 

in Figure  4-2. 

In Figure  4-1, Thévinin equivalent EMF (Eth) depends on the system topology; 

Convenient representation of Zs in network planning usually uses bus/PCC short 

circuit capacity (~MVA) or available short circuit current (~kA).  

 

Rewriting Eq.( 4-14) : 
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Figure  4-5 : Additional voltage vs. equivalent grid SCR. 

 

 

Plotting both equations ( 4-5) and ( 4-15) in Figure  4-6 for a 380 V PCC with AVC 

conditioning a load of 50 kVA. During normal operation, the load lines representing 

two grid stiffness (5 kA & 15 kA) passes through the same operating point of Vn & In. 
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Undervoltage of 7% (without AVC) causes a shift in PCC voltage value of  about 

2.28 V(0.6%) with 2 kA available short circuit current and about 0.86 V (0.225%) 

with 5 kA grids. Overvoltages also cause further shift (due to reduced current 

demand). 7% overvoltage (without AVC) causes a shift in PCC voltage value of  

about 2.1 V (0.55%) with 2 kA available short circuit current and about 0.8 V (0.21%) 

with 5 kA grids. These values conform to analytical results as detailed in  4.1.  

4.2.3.2.2 Mixed Loads 

 
Similar to 100% conditioning, the AVC V-I characteristics are modified to 

incorporate portion of the PCC load following the system voltage without 

conditioning. The lower the conditioning ratio, the lower the additional voltage. 

(Figure  4-7). 

4.3 AVC Impact on connected sources 

4.3.1 Impact Mechanism 

 
As demonstrated in  4.2 , the AVC interaction during voltage variations on PCC 

causes: 

a- Constant demand  

b- Additional/subtractive current (and voltage)  

The impact of AVC operation on grids with high renewable energy sources can be 

predicted based on the response of individual renewable source to bus voltage 

disturbances and demand variations. Nevertheless, and due to the stochastic nature of 

renewable energy, it is difficult to estimate the impact on overall wide spread smart 

grid with high penetration of renewable energy sources. 

Impact of additional PCC voltage variation can be investigated on wind farms and PV 

plants separately. With steeply increasing installation rate of wind turbine generators 

(WTGs), the Doubly Fed Induction Generators (DFIGs) are the most common type 

used for this application. Versatile control methods of DFIG enable controlling 

reactive power injected into the grid and encourage keeping the wind farms connected 

to the grid during voltage variations in order to provide voltage support. Additional 

voltage variations directly affect the ride-through requirements for WTGs as 

explained in  2.2.1.1 and  2.2.1.2. 
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Comparatively, a similar impact can be predicted on the Photovoltaic installations as 

explained in  2.2.3.1. 

4.3.2 Additional Voltage Variation due to AVC Operation 

 
As highlighted above, additional voltage variation takes place due to the operation of 

AVC. This can be the major impact at PCC voltage directly related to the AVCs.  

When a generator injects power into the network, the voltage tends to rise. In HV 

networks, this phenomenon occurs mainly when reactive power is injected because 

the line resistance is negligible compared with the line inductive reactance [5]. 

Instead, in MV & LV distributed networks, the line resistance is not negligible, thus 

an active power injection increases the voltage. Accordingly, the so-called 

“decoupling”, which is typical of HV networks, cannot be applied in MV & LV 

networks. The variations are “coupled” with the voltage variations [5]. For the model 

under study, the simplified equivalent circuit in Figure  4-1 and Figure  4-3 is used. 

4.3.3 Wind Farms Performance during Voltage Disturbances 

 
As detailed under  2.2.1.1 and  2.2.1.2, the LVRT and HVRT requirements represent 

the required reactive power support required on Point of Common Coupling (PCC) of 

wind farms. 

4.3.3.1 AVC Contribution 

 
As detailed in 4.2, the AVC causes additional voltage variation making the voltage 

dip/undervoltage to go deeper and the overvoltage to go higher due to the stabilized 

load demand. The impact is not symmetrical around system nominal voltage but with 

undervoltages causing greater additional voltage when compared with overvoltages 

with equal magnitudes. 

An additional voltage of up to 1% may be present during voltage recovery. 

Notwithstanding that, the AVC contribution does not cause operational voltage 

variations to exceed ±10% regardless of equivalent grid stiffness; this can be verified 

as detailed under clause  4.1, Figure  4-6 and Figure  4-7.  

When the PCC voltage reaches ±10%, the load line intersects with the V-I 

characteristics at ±10% without any additional variations compared with other values 

over the range of 0.9Vn to 1.1Vn. Most grid codes have no requirement for both 
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LVRT and HVRT capability into the ±10% region as shown in Figure  2-4 and Figure 

 2-5, respectively. 

It can be concluded that the AVC has no direct effect on the LVRT or HVRT 

requirements for coupled WTGs. Shifting the operational Point of Common Coupling 

(PCC) voltage impacts the power flow capability of connected WTGs. Most of 

modern DFIGs are normally operating within ±10% range and no major impact due to 

AVC operation can be envisaged.  
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Initial variation          

           

           

 

 

          

 
∆V (pu) % 

St=Sn 

(pu) 
Sc (pu) Suc (pu) Ssc (pu) x ∆Ig (pu) ∆Va (pu) 

Vpcc(final-

Calculated) 

Vpcc(final-

Actual) 

∆Va 

(updated) 

10 1 1 0 20 1 0.122 0.012 0.888 0.900 0.000 

9 1 1 0 20 1 0.109 0.011 0.899 0.900 0.010 

8 1 1 0 20 1 0.096 0.009 0.911 0.911 0.009 

7 1 1 0 20 1 0.084 0.008 0.922 0.922 0.008 

6 1 1 0 20 1 0.071 0.007 0.933 0.933 0.007 

5 1 1 0 20 1 0.059 0.006 0.944 0.944 0.006 

4 1 1 0 20 1 0.047 0.005 0.955 0.955 0.005 

3 1 1 0 20 1 0.035 0.003 0.967 0.967 0.003 

2 1 1 0 20 1 0.023 0.002 0.978 0.978 0.002 

U
n

d
e

rv
o

lt
a

g
e

 

1 1 1 0 20 1 0.012 0.001 0.989 0.989 0.001 

Normal 0 1 1 0 20 1 0.000 0.000 1.000 1.000 0.000 

-1 1 1 0 20 1 -0.011 -0.001 1.011 1.011 -0.001 

-2 1 1 0 20 1 -0.023 -0.002 1.022 1.022 -0.002 

-3 1 1 0 20 1 -0.034 -0.003 1.033 1.033 -0.003 

-4 1 1 0 20 1 -0.045 -0.004 1.044 1.044 -0.004 

-5 1 1 0 20 1 -0.056 -0.005 1.055 1.055 -0.005 

-6 1 1 0 20 1 -0.067 -0.006 1.066 1.066 -0.006 

-7 1 1 0 20 1 -0.078 -0.007 1.077 1.077 -0.007 

-8 1 1 0 20 1 -0.089 -0.008 1.088 1.088 -0.008 

-9 1 1 0 20 1 -0.100 -0.009 1.099 1.099 -0.009 

O
v
e

rv
o

lt
a

g
e

 

-10 1 1 0 20 1 -0.110 -0.011 1.111 1.100 0.000 

Table  4-1 : Additional voltage ∆Va with x =1 
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Table  4-2 : Additional voltage ∆Va with x =0.5 

 

Initial variation          

           

           

 

 

          

 
∆V (pu) % 

St=Sn 

(pu) 
Sc (pu) Suc (pu) Ssc (pu) x ∆Ig (pu) ∆Va (pu) 

Vpcc(final-

Calculated) 

Vpcc(final-

Actual) 

∆Va 

(updated) 

10 1 0.5 0.5 20 0.5 0.061 0.006 0.894 0.900 0.000  

9 1 0.5 0.5 20 0.5 0.055 0.005 0.905 0.905 0.005 

8 1 0.5 0.5 20 0.5 0.048 0.004 0.916 0.916 0.004 

7 1 0.5 0.5 20 0.5 0.042 0.004 0.926 0.926 0.004 

6 1 0.5 0.5 20 0.5 0.036 0.003 0.937 0.937 0.003 

5 1 0.5 0.5 20 0.5 0.030 0.003 0.947 0.947 0.003 

4 1 0.5 0.5 20 0.5 0.024 0.002 0.958 0.958 0.002 

3 1 0.5 0.5 20 0.5 0.018 0.002 0.968 0.968 0.002 

2 1 0.5 0.5 20 0.5 0.012 0.001 0.979 0.979 0.001 

U
n

d
e

rv
o

lt
a

g
e

 

1 1 0.5 0.5 20 0.5 0.006 0.001 0.989 0.989 0.001 

Normal 0 1 0.5 0.5 20 0.5 0.000 0.000 1.000 1.000 0.000 

-1 1 0.5 0.5 20 0.5 -0.006 -0.001 1.011 1.011 -0.001 

-2 1 0.5 0.5 20 0.5 -0.011 -0.001 1.021 1.021 -0.001 

-3 1 0.5 0.5 20 0.5 -0.017 -0.002 1.032 1.032 -0.002 

-4 1 0.5 0.5 20 0.5 -0.023 -0.002 1.042 1.042 -0.002 

-5 1 0.5 0.5 20 0.5 -0.028 -0.003 1.053 1.053 -0.003 

-6 1 0.5 0.5 20 0.5 -0.034 -0.003 1.063 1.063 -0.003 

-7 1 0.5 0.5 20 0.5 -0.039 -0.004 1.074 1.074 -0.004 

-8 1 0.5 0.5 20 0.5 -0.044 -0.004 1.084 1.084 -0.004 

-9 1 0.5 0.5 20 0.5 -0.050 -0.005 1.095 1.095 -0.005 

O
v
e

rv
o

lt
a

g
e

 

-10 1 0.5 0.5 20 0.5 -0.055 -0.005 1.105 1.100  0.000 
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Initial variation          

           

           

 

 

          

 
∆V (pu) % 

St=Sn 

(pu) 
Sc (pu) Suc (pu) Ssc (pu) x ∆Ig (pu) ∆Va (pu) 

Vpcc(final-

Calculated) 

Vpcc(final-

Actual) 

∆Va 

(updated) 

10 1 0 1 20 0 0.000 0.000 0.900 0.900  0.000 

9 1 0 0.5 20 0 0.000 0.000 0.910 0.910 0.000 

8 1 0 0.5 20 0 0.000 0.000 0.920 0.920 0.000 

7 1 0 0.5 20 0 0.000 0.000 0.930 0.930 0.000 

6 1 0 0.5 20 0 0.000 0.000 0.940 0.940 0.000 

5 1 0 0.5 20 0 0.000 0.000 0.950 0.950 0.000 

4 1 0 0.5 20 0 0.000 0.000 0.960 0.960 0.000 

3 1 0 0.5 20 0 0.000 0.000 0.970 0.970 0.000 

2 1 0 0.5 20 0 0.000 0.000 0.980 0.980 0.000 

U
n

d
e

rv
o

lt
a

g
e

 

1 1 0 0.5 20 0 0.000 0.000 0.990 0.990 0.000 

Normal 0 1 0 0.5 20 0 0.000 0.000 1.000 1.000 0.000 

-1 1 0 0.5 20 0 0.000 0.000 1.010 1.010 0.000 

-2 1 0 0.5 20 0 0.000 0.000 1.020 1.020 0.000 

-3 1 0 0.5 20 0 0.000 0.000 1.030 1.030 0.000 

-4 1 0 0.5 20 0 0.000 0.000 1.040 1.040 0.000 

-5 1 0 0.5 20 0 0.000 0.000 1.050 1.050 0.000 

-6 1 0 0.5 20 0 0.000 0.000 1.060 1.060 0.000 

-7 1 0 0.5 20 0 0.000 0.000 1.070 1.070 0.000 

-8 1 0 0.5 20 0 0.000 0.000 1.080 1.080 0.000 

-9 1 0 0.5 20 0 0.000 0.000 1.090 1.090 0.000 

O
v
e

rv
o

lt
a

g
e

 

-10 1 0 0.5 20 0 0.000 0.000 1.100 1.100 0.000 
Table  4-3 : Additional voltage ∆Va with x =0 
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4.3.4 PV Performance during Voltage Disturbances 

4.3.4.1 AVC contribution 

 
Similar to WTGs, no LVRT or HVRT requirements exist in the ±10% region and 

accordingly, it can be concluded that no direct effect of AVC on PCC-tied PV systems. 
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Figure  4-6 : AVC V-I characteristics vs. system load lines (380 V network example) 
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Figure  4-7 : Variation of conditioning ratio and associated impact (380 V network example).
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5 Conclusions and Recommendations 
 

As highlighted in Chapter 1, the study aims to investigate the impact of AVC on 

modernized grids with renewable energy sources. Modeling the AVC mathematically for 

grid side interaction had been carried out and equations describing the AVC operation 

had been derived. Dependency on grid stiffness has been studied and illustrative graphs 

have been developed. In light of formulated performance model, impact on PCC-tied 

renewable energy sources has been discussed. 

This thesis is an initial attempt to model AVC impact. No papers or research notes on the 

subject could be located by the time of preparing this thesis. 

5.1 AVC Technology 

 
The Active Voltage Conditioner (AVC) is very efficient in keeping load voltage constant 

during system voltage disturbances including dips, swells and voltage flickers. The 

application areas for AVCs are getting increasingly wide with more sensitive loads being 

added to industrial networks. AVC is a major addition to Smart Grids with the virtue of 

controlling load voltage with real-time fluctuations impacting supply voltage and 

available power due to smart controllers.  

The AVC transforms the connected load from constant impedance load to constant active 

and reactive power load within operational conditioning range (±10% typically).  

It impacts the voltage at Point of Common Coupling (PCC) by increasing the voltage dips 

and swells magnitudes. Due to AVC operation and inverse gradient V-I characteristics, 

PCC undervoltages are more susceptible to get deeper than equal-in-magnitude 

overvoltages. 

5.2 Impact on Grid with Renewable Energy Sources 

 

The AVC impact on grid performance can be explained by the additional demand during 

voltage variations and resulting additional voltage drop/rise on Point of Common 

Coupling (PCC). Nevertheless; the study demonstrates that the operation of AVCs does 

not cause additional voltages to exceed the ±10%. Most utilities have no LVRT or HVRT 
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requirements in this voltage region and accordingly, it is envisaged that integrating AVCs 

does not impact LVRT or HVRT directly.  

Additional drop/rise depends on the conditioning ratio on the PCC (loads connected 

through AVCs) and system available short circuit current. Values up to 2% can occur 

with weak/remote LV/MV networks where it is common to get a renewable distributed 

power generation source tied. 

In the case of the operational range of AVC is extended beyond the ±10%, the additional 

demand and voltage drop will increase the reactive power support requirement for LVRT 

and HVRT.  

5.3 Further Research 

 

There is a wide future area of studies on AVCs due to the lack of detailed investigation 

on grids with high renewable energy penetration, including the impact of AVCs on: 

 

- Frequency stability  

- Rotor angle stability 

- System performance during wind/PV power loss 

- Voltage collapse 

- Reverse power flow (AVC upstream) 

- Harmonic currents 

- Ride-through requirements if AVC operational range is extended beyond ±10% 

- Dynamic short time compensation 

- Grid stability in case of system islanding 

 

Advanced network simulations with IEEE-9 and IEEE-30 buses system models will be 

needed to carry out further stability investigations. AVCs may be incorporated in a small 

scale grid/smart grid test-bed with non-linear loads to verify the system performance 

during disturbances in presence of harmonics. 

By examining the AVC derived model, if the AVC operational range is extended beyond 

±10% for specific needs and where the conditioned load is seemingly reasonable 

compared with grid capacity, ride-through capability of coupled wind farms and solar PV 
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systems may need to be revised to allow for additional reactive power requirement. 

Detailed computer simulation will be required to verify the additional requirement taking 

into consideration the impact of Constant Power Load (CPL) on system stability.  

Another subject for research exists for remedial solutions to keep AVC running without 

impacting PCC voltages. Depending on the “severity” of the additional PCC voltage 

variations, a detailed cost-benefit analysis may be carried out to justify adding battery 

banks connected to AVC DC bus in order to compensate the additional/subtractive 

demand. AVC physical design may be affected with energy storage elements. 

Impact on islanded systems may be investigated with an eye on the accelerated voltage 

collapse scenario that can take place during renewable power input fluctuations (e.g. 

wind speed, shadow on PV cells…etc).  
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