Open Access Te Herenga Waka-Victoria University of Wellington
thesis_access.pdf (605.64 kB)

Cascade Approaches Towards the Synthesis of Daphnioldhanin A Alkaloid

Download (605.64 kB)
posted on 2021-11-08, 22:01 authored by Khan, Ashna Ashneen

Daphnioldhanin A 1.6 is a recent alkaloid obtained from Daphyniphyllum plants. The core structure as shown consists of a 5,5,7 tricyclic ring system, which is a challenging ring system and to date has not been reported in any other natural product. This project focussed on using two cascade approaches in forming this ring system, namely radical addition and cyclisation cascade and carbene cycloaddition cyclisation cascade CCCC. Using the radical approach would require a 5-endo trig cyclisation, which is disfavoured by Baldwin's rules, but has been reported in systems which have an hetereoatom (carbonyl, nitrogen or sulfur) incorporated in the ring. In our case, the 5-endo trig cyclisation is needed in an all carbon containing ring, and preliminary modelling studies have shown that the energy for the 4-exo trig cyclisation product is higher than that of the 5-endo trig cyclisation product. Therefore, the radical approach if successful will eventuate in a novel 5-endo trig cyclisation in an all carbon system. However, due to stability issues with the radical precursors this method had to be abandoned and attention focused on the CCCC approach. For the CCCC approach, rhodium catalysed cascade cyclisation is intended on diazo compound 1.22. The presence of the intramolecular double bond enhances the second cyclisation to occur which will form the 5 and 7-membered ring simultaneously along with oxo-bridge resulting in the functionalised pentacyclic ring system which would be very similar to the proposed 5,5,7 core of Daphnioldhanin A. The desired diazo compound could not synthesised due to failure in forming the anhydride for the acid and future work would be focussed on forming acid derivatives in order to form the diazo compound 1.22 before using rhodium catalysed cyclisation to form the functionalised pentacyclic compound.


Copyright Date


Date of Award



Te Herenga Waka—Victoria University of Wellington

Rights License

Author Retains Copyright

Degree Discipline


Degree Grantor

Te Herenga Waka—Victoria University of Wellington

Degree Level


Degree Name

Master of Science

Victoria University of Wellington Item Type

Awarded Research Masters Thesis



Victoria University of Wellington School

School of Chemical and Physical Sciences


Burkett, Brendan