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Abstract 
 

Daphnioldhanin A 1.6 is a recent alkaloid obtained from Daphyniphyllum plants.  
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The core structure as shown consists of a 5,5,7 tricyclic ring system, which is a 

challenging ring system and to date has not been reported in any other natural 

product. This project focussed on using two cascade approaches in forming this ring 

system, namely radical addition and cyclisation cascade and carbene cycloaddition 

cyclisation cascade CCCC.  

 

CO2Me

OR

OR

CCCC

N+

–N

O
Radical Rh-catalysed

+

1.20 1.21 1.22

Br

 

Using the radical approach would require a 5-endo trig cyclisation, which is 

disfavoured by Baldwin’s rules, but has been reported in systems which have an 

hetereoatom (carbonyl, nitrogen or sulfur) incorporated in the ring. In our case, the 5-

endo trig cyclisation is needed in an all carbon containing ring, and preliminary 

modelling studies have shown that the energy for the 4-exo trig cyclisation product is 

higher than that of the 5-endo trig cyclisation product. Therefore, the radical approach 

if successful will eventuate in a novel 5-endo trig cyclisation in an all carbon system. 

However, due to stability issues with the radical precursors this method had to be 

abandoned and attention focused on the CCCC approach. 

 i



For the CCCC approach, rhodium catalysed cascade cyclisation is intended on diazo 

compound 1.22. The presence of the intramolecular double bond enhances the second 

cyclisation to occur which will form the 5 and 7-membered ring simultaneously along 

with oxo-bridge resulting in the functionalised pentacyclic ring system which would 

be very similar to the proposed 5,5,7 core of Daphnioldhanin A.  

The desired diazo compound could not synthesised due to failure in forming the 

anhydride for the acid and future work would be focussed on forming acid derivatives 

in order to form the diazo compound 1.22 before using rhodium catalysed cyclisation 

to form the functionalised pentacyclic compound.    

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

 ii



Acknowledgements 
 

To begin with, I would like to thank my supervisor, Dr. Brendan Burkett. Throughout 

the past year, he had been providing constant guidance and helpful suggestion, which 

helped me to learn so much about chemistry. Thanks also for taking me out for coffee 

and having time to chat with me during those gloomy days!!! 

 

Secondly, I have to thank Dr. Mattie Timmer, for being my in-lab supervisor in the 

early days of my research and providing so many useful hints and suggestions from 

the beginning of my project to the end. 

 

I also have to thank Russell, who has been so helpful throughout my research and also 

for kindly offering to proof read my thesis. Lynton, who has been my thesis-writing 

buddy and who has helped learn all the weird (and helpful!!!) things that computers 

could do. I also have to thank all the people who drifted into our lab, especially Jim 

and the occupants of 209 in particular Russell, Lynton, Febly, Anita, Thomas, Sam 

and Shi for being there for a chat whenever I felt lonely!!!  

 

Thanks also to Dr. Joanne Harvey and Dr, Paul-Teesdale-Spittle for their interest in 

the project and providing helpful advice and suggestions every now and then. Thanks 

also to the remaining staff of SCPS who have provided assistance to me in so many 

ways.  

 

Thanks to Nelly for being my friend. My friend Kalpana for keeping in touch over the 

long distance. 

 

Finally I have to thank my family for supporting me through a very intensive year. 

My mum and dad for believing in me and for providing me with constant 

encouragement. My brothers Azwal and Amaan for being there for me, helping me 

out financially and giving me their love and support. Last but not the least my 

husband, Razeen, whose support and encouragement has been phenomenal, and 

without whom my dreams would not have been possible.  

 

 

 iii



 

Abstract...................................................................................................................................i 

Acknowledgements ............................................................................................................. iii 

Table of Contents ..................................................................................................................v 

List of Schemes .................................................................................................................. viii 

List of Figures.......................................................................................................................ix 

List of Tables .........................................................................................................................x 

Glossary ................................................................................................................................xi 
 
Chapter 1: Introduction 
 
1.1 Overview -Daphniphyllum Alkaloids ...............................................................................1 

1.2 Daphnioldhanin A- Structure and Isolation ......................................................................2 

1.3 Reported Syntheses of Daphniphyllum alkaloids .............................................................2 

1.4 Radical Approach towards Synthesis of Daphnioldhanin A ............................................6 

    1.4.1 Radical Approach in Synthesis of Polycyclic Systems..............................................6 

1.4.2 Radical Approach towards Daphnioldhanin A Synthesis........................................10 

1.5 Baldwin’s Rules ..............................................................................................................11 

    1.5.1 Cyclisation Process ..................................................................................................11 

1.5.2 5-Endo-Trig Cyclisation in Synthesis......................................................................12 

1.6 Carbene Cycloaddition Cyclisation Cascade (CCCC) Approach...................................15 

1.6.1 Principle and Advantages of CCCC approach.........................................................15 

1.6.2 CCCC Approach in Synthesis of Polycyclic System...............................................19 

1.6.3   CCCC Approach towards Daphnioldhanin A Synthesis .......................................21 

1.7 Objectives .......................................................................................................................22 
 
Chapter 2: Results- Radical Approach 
 

2.1 Synthesis of 2-methylidene cycloheptanone (2.7) ..........................................................25 

2.1.1 Aldol Reaction of Cycloheptanone (2.7) .................................................................26 

2.1.2 Mannich-Type reaction using Eschenmoser’s salt ..................................................27 

2.1.3 Mannich Reaction ....................................................................................................28 

2.1.4 Hoffmann Elimination of Compound 2.19 ..............................................................33 

2.1.5 Cope Elimination Reaction of Compound 2.19 .......................................................33 

2.2 Synthesis of enol ethers ..................................................................................................35 

    2.2.1 Enol ether synthesis 1.39−1.41 ................................................................................35 

2.2.2 Investigation into unsuccessful enol ether synthesis ...............................................36 

 iv



2.3 Radical Reactions on Various Systems...........................................................................39 

2.3.1 Model Studies with Styrene .....................................................................................39 

2.3.2 Radical reaction of 1-methoxy cycloheptene (2.24) ................................................41 

2.3.3 Radical reaction of 2-methylidene cycloheptanone (2.7) ........................................42 
 
Chapter 3: Results- CCCC Approach 
 

3.1 Carbene Cyloaddition Cyclisation Cascade Approach ...................................................44 

3.2 Synthesis of Cyclisation Precursors................................................................................46 

3.2.1 Method 1- via diethyl adipate (3.1)..........................................................................46 

3.2.2 Method 2 – via LDA mediated diazo reaction on 1.86............................................52 

3.2.3 Method 3- via tert-butyl adipate (3.12)....................................................................54 
 
Chapter4: Conclusion and Future Work 
 
Chapter 5: Experimental 
 

5.1 General Experimental Procedures...................................................................................64 

5.2 Synthesis of Radical Approach Precursors .....................................................................66 

5.2.1   2-(diethylamino) methyl cycloheptanone (2.19)....................................................66 

5.2.2 2-methylene cycloheptanone (2.7)...........................................................................67 

    5.2.3 1-methoxy cycloheptene (2.24) ...............................................................................69 

5.2.4 Representative procedure for Radical reactions: .....................................................70 

5.3 Synthesis of Carbene Cycloaddition Cyclisation Cascade precursors............................71 

5.3.1 Synthesis of ethyl 1-(2-oxo) cyclopentane carboxylate (1.84) ................................71 

5.3.2 Synthesis of ethyl 1-(but-3-ene) (2-oxo) cyclopentane carboxylate (1.86) .............72 

5.3.3 Synthesis of ethyl, 1-(but-3-ene) (2-oxo-3-methylacetyl) cyclopentane 
carboxylate (1.88) .............................................................................................................73 

5.3.4 Synthesis of bis-adipic acid chloride (3.11).............................................................75 

5.3.5 Synthesis of bis  tert-butyl adipate (3.12)71 .............................................................75 

5.3.6 Synthesis of tert-butyl (2-oxo)- cyclopentane carboxylate (1.85) ...........................76 

5.3.7 Synthesis of tert-butyl 1-(but-3-ene)-(2-oxo) cyclopentane carboxylate (1.87)......77 

5.3.8 Synthesis of tert-butyl 1-(but-3-ene, 2-oxo, 3-methyl acetyl) cyclopentane 
carboxylate (1.89) .............................................................................................................78 

5.3.9 Attempted synthesis of 2- ((2-oxo) –(3-but-3-ene)-3-tert butyl carboxylate 
cyclopentane) acetic acid (1.91) .......................................................................................79 

5.3.10 Synthesis of 2- ((2-oxo)- (3-but-3-ene) 3-tert-butyl carboxylate 
cyclopentane) acetic acid (1.91) .......................................................................................80 

 v



5.3.11 Representative Procedure for mixed anhydride formation of compound 1.91 ......80 

5.3.12 Synthesis of acetyl diazo bromide 3.7 ...................................................................81 

5.3.13 Attempted diazo reaction of compound 1.86 .........................................................82 
  

 Reference .............................................................................................................................93 
 
 
 
 
 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 vi



 
List of Schemes  

Chapter 1 
Scheme 1.1 Generalised biomimetic approach for the total synthesis of                              

Daphniphyllum alkaloids ................................................................................................3 

Scheme 1.2 Limitations of the biomimetic approach.............................................................4 

Scheme 1.3 Synthesis of methyl homodaphniphyllate 1.18...................................................4 

Scheme 1.4 Proposed approaches for daphnioldhanin A 5,5,7 core system. .........................5 

Scheme 1.5 Tandem 6-endo-trig cyclisation in heptacycle 1.23 synthesis ............................6 

Scheme 1.6 Radical reactions in lasonolide A (1.25) synthesis .............................................7 

Scheme 1.7 Radical reactions in synthesis of (+) dihydrocanadenoside (1.28) and (+) 

dihydrosporothriolide (1.29) ...........................................................................................8 

Scheme 1.8 Synthesis of griseolic acid (1.34)........................................................................9 

Scheme 1.9 Synthesis of (±)-hirsutene (1.36) ........................................................................9 

Scheme 1.12 5-endo-Trig cyclisation in sulphur containing compound 1.54 ......................12 

Scheme 1.15 5-endo-Trig cyclisation of 2-formylbenzaldehyde (1.63)...............................14 

Scheme 1.16 Nitrone cycloaddition .....................................................................................16 

Scheme 1.17 General Scheme for the CCCC approach .......................................................17 

Scheme 1.18 Rhodium and DMAD reaction with diazo compound 1.68 ............................18 

Scheme 1.19 Example of rhodium-mediated CCCC approach ............................................18 

Scheme 1.20 CCCC approach in synthesis of (-) colchicine and (-) isocolchicine..............19 

Scheme 1.21 CCCC approach in synthesis of  (±)-ribasine. ................................................20 

Scheme 1.22 CCCC approach in the synthesis of kopsifoline alkaloid 1.83 .......................20 

Scheme 1.23 Proposed CCCC approach towards synthesis of Daphnioldhanin A..............21 

 
Chapter 2 
 
Scheme 2.1 Competing regioselective radical additions......................................................23 

Scheme 2.2 Contributing resonance structures of the radical addition ................................24 

Scheme 2.3 Alternate approach to regioselective radical addition.......................................24 

Scheme 2.4 Retrosynthetic analysis of enol ethers 1.39 – 1.41 ...........................................25 

Scheme 2.5 Synthesis of compound 2.10 via radical nitrification .......................................25 

Scheme 2.6 Synthesis of compound 2.10 via Ramberg-Backlund reaction.........................26 

Scheme 2.7 Aldol reaction on cycloheptanone 2.8 ..............................................................26 

 vii



Scheme 2.8 Eschenmoser's salt reaction with cycloheptanone (2.8) ...................................27 

Scheme 2.9 Proposed piperidine reaction with Eschenmoser’s salt.....................................28 

Scheme 2.10 General Mannich reaction...............................................................................29 

Scheme 2.11 Proposed Mannich reaction of cycloheptanone (2.8) with piperidine ............29 

Scheme 2.12 Proposed piperidine reaction with 2-methylidene cycloheptanone (2.7) .......31 

Scheme 2.13 Mannich reaction with diethylamine hydrochloride.......................................32 

Scheme 2.14 Hoffmann elimination of compound 2.19.......................................................33 

Scheme 2.15 Generalised Cope reaction ..............................................................................34 

Scheme 2.16 Cope reaction of compound 2.19 ....................................................................34 

Scheme 2.17 Reaction of TMSI with α,β-unsaturated ketones ............................................37 

Scheme 2.18 Proposed mechanism of the reaction of TMSI with α,β-unsaturated 

ketones ..........................................................................................................................37 

Scheme 2.19 1-Methoxy-cycloheptanone (2.24) synthesis..................................................38 

Scheme 2.20 Radical reaction of styrene (2.25) with bromobenzene (2.26) .......................39 

 
Chapter 3 
 
Scheme 3.1 Retrosynthetic analysis for CCCC approach ....................................................44 

Scheme 3.2 Mechanistic approach to CCCC .......................................................................45 

Scheme 3.3 Dieckmann condensation on 3.1 .......................................................................46 

Scheme 3.4 Mechanism of Dieckmann condensation of compound 3.1..............................47 

Scheme 3.5 Sodium hydroxide mediated initial alkylation of compound 1.84....................47 

Scheme 3.6 LDA mediated alkylation of compound 1.86 ...................................................48 

Scheme 3.7 Methyl ester hydrolysis of 1.88 with 1M NaOH in EtOH solution..................50 

Scheme 3.8 NaOH mediated methyl ester hydrolysis of 1.88..............................................51 

Scheme 3.9 Pivaloyl chloride reaction on 1.90 ....................................................................51 

Scheme 3.10 Diazo reaction of bromo acetyl bromide ........................................................52 

Scheme 3.11 Attempted formation of diazo compound 1.94 ...............................................53 

Scheme 3.12 Reported substitution reaction of diazo compound ........................................54 

Scheme 3.14 Dieckmann condensation of bis-tert-butyl adipate 3.12 .................................55 

Scheme 3.15 Sodium hydride mediated alkylation on compound 3.20 ...............................56 

Scheme 3.16 LDA reaction of compound 1.87 ....................................................................56 

Scheme 3.17 Mechanism for ring opening of compound 1.91.............................................58 

Scheme 3.18 Proposed diazomethane reaction on anhydrides 1.93 and 3.16 ......................61 

 viii



Scheme 3.19 Diazomethane as a methylating agent ............................................................61 

 
Chapter 4 
 
Scheme 4.1 Another approach to CCCC..............................................................................62 

Scheme 4.2 Another CCCC approach to 5,5,7 ring system .................................................63 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 ix



List of Figures 
Chapter 1 
 

Figure 1.1 Two daphniphyllum alkaloids skeletal types........................................................1 

Figure 1.2 Selected Daphniphyllum alkaloids .......................................................................2 

Figure 1.3 Daphnioldhanin A.................................................................................................2 

Figure 1.4 5,5,7-Core of daphnioldhanin A...........................................................................5 

Figure 1.5 Lasonolide A.........................................................................................................7 

Figure 1.6 Examples of endo and exo cyclisations ..............................................................11 

Figure 1.7 4-exo-Trig versus 5-endo-trig cyclisation in daphnioldhanin A precursor 

synthesis........................................................................................................................15 

 
Chapter 2 
 
Figure 2.1 Attempted enol ether synthesis using amine 2.19 ..............................................38 

Figure 2.2 Attempted radical reaction of compound 2.24 ...................................................42 

Figure 2.3 Attempted radical reaction on compound 2.7.....................................................43 

 
Chapter 3 
 
Figure 3.1 Cyclic diazo compound 3.8 ................................................................................53 

Figure 3.2 Initially proposed hydrolysis product .................................................................57 

Figure 3.3 Corrected hydrolysis product..............................................................................57 

Figure 3.4 Corrected structure for molecule 3.5 ..................................................................59 

Figure 3.5 Hydrolysis product .............................................................................................59 

Figure 3.6 Attempted pivaloyl chloride reaction on 1.91 ....................................................60 

Figure 3.7 Attempted methyl chloroformate reaction of 1.91 .............................................60 

 

 

 

 

 

 

 x



List of Tables 
Chapter 1 
Table 1.1 Baldwin’s rules.....................................................................................................12 

 
Chapter 2 
 
Table 2.1 Aldol reaction on cycloheptanone........................................................................27 

Table 2.3: Mannich reaction with diethyl amine .................................................................32 

Table 2.4: Attempted methods for enol ether formation......................................................35 

Table 2.5 Attempted 1-methoxy cycloheptene formation....................................................36 

Table 2.6 Radical reaction of styrene with bromobenzene ..................................................40 

Table 2.7 Radical reactions of styrene and isopropyl bromide ............................................41 

 
Chapter 3 
 
Table 3.1 LDA reaction conditions ......................................................................................49 

  

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 xi



Glossary 
 
AIBN azobisisobutyronitrile 

ACN azobiscyclohexylnitrile 

aq. aqueous 

b.p boiling point 
tBuOH tert-butanol 

n-BuLi n-butyl lithium 

Bu3SnH tributyltin hydride 

CCCC carbene cycloaddition cyclisation cascade 

COSY Correlation spectroscopy 

d doublet 

dd doublet of doublets 

d.e. diastereomeric excess 

DBN 1,5-Diazabicyclo[4.3.0]non-5-ene 

DBU 1,8-Diazabicyclo[5.4.0]undec-7-ene 

DCM dichloromethane 

DMA N,N dimethylaniline 

DMF N,N-dimethylforamide 

eq. equivalent 

FTIR Fourier Transform InfraRed 

HRMS High Resolution Mass Spectrometyr 

HSQC Heteronuclear Single Quantum Coherence 

IR Infra-red  

J coupling constant 

LDA lithium diisopropylamide 

m multiplet 

mCPBA meta-chloroperbenzoic acid  

min minute 

MS mass spectrometry 

mw microwave 

NMR nuclear magnetic resonance 

[O] oxidation 

 xii



Piv chloride pivaloyl chloride 

Ppm parts per million 

PTSA para-toulene sulfonic Aacid 

Rf retention factor 

rt room temperature 

ROESY rotating frame Overhause effect 

spectroscopy 

Rh2(OAc)4 dirhodium tetra-acetate 

s singlet 

t triplet 

TBDMS tert-butyldimethylsilyl  

THF tetrahydrofuran 

Tf trifluoromethanesulfonyl 

TFA trifluoroacetic acid 

TLC thin layer chromatography 

TMS trimethylsilyl 

UV ultra violet 
1H NMR proton nuclear magnetic resonance 
13C NMR carbon-13 nuclear magnetic resonance 

δ chemical shift (ppm) 

 
 
 

 

 

 

 

 

 

 

 
 
 

 xiii



Chapter 1: Introduction 
 
1.1 Overview -Daphniphyllum Alkaloids 
 
Daphniphyllum alkaloids are complex nitrogen containing polycyclic alkaloids, isolated 

from trees of genus Daphniphyllum. The Daphniphyllum genus consist of about 30 species 

which are distributed over southeast Asia, with 10 found in southern China.1 Some 

Daphniphyllum species such as D.calycinum, D.macropodum and D.oldhami have found 

use in traditional medicine for treatment of conditions such as; asthma, snake bites, 

rheumatism and cough.1 To date more than 60 new alkaloids have been isolated, mostly 

from the stems and leaves of Daphniphyllum plants.2 The carbon skeletons are derived from 

squalene with more than seven skeletal types described.3 Two of these skeletal types are 

daphniphylline 1.1 and secodaphyniphylline 1.2 (figure 1.1). The complex structures of 

these alkaloids have been targets for bioactivity studies and elegant total synthesis.4,5, 6  
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Figure 1.1 Two daphniphyllum alkaloids skeletal types 

 

Some alkaloids isolated from these plants in recent years include (figure 2.2); 

daphnezomines F (1.3) and G (from stems of Daphniphyllum humile),7 daphmanidins A 

(1.4) and B (from the leaf extracts of D. teijsmanii),8 17-hydroxyhomodaphniphyllic acid  ( 

and yuzurimine E (1.5) (from the seeds of D. calycinum), 2 and many more.9,10  
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Figure 1.2 Selected Daphniphyllum alkaloids 

 

1.2 Daphnioldhanin A- Structure and Isolation 

Daphnioldhanin A (1.6, figure 1.3) is a natural product alkaloid which had been recently 

isolated from the aerial parts of plant saplings of Daphniphyllum Oldhami.11 A number of 

other natural alkaloids had also been isolated from the saplings of the same plant; namely 

daphnioldhanins B–F. Daphnioldhanin A has a yuzurimine-type skeleton with a hydroxyl 

group at C-9 and is composed of six fused heterocyclic rings. It was the first compound 

with this type of skeleton to be analysed with single-crystal X-ray diffraction.  

The structural elucidation of daphnioldhanin A, 1.6, was achieved by Mu and co-workers in 

2006 using comprehensive NMR studies including ROESY, IR spectroscopy, and single-

crystal X-ray diffraction.11 
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Figure 1.3 Daphnioldhanin A 

 

1.3 Reported Syntheses of Daphniphyllum alkaloids 
 
The total syntheses of certain Daphniphyllum alkaloids have been achieved successfully 

with stereocontrolled synthesis using a biomimetic approach, employing a Diels-Alder 

reaction and an aza-Prins cyclisation. As reported by Wallace and Heathcock, the 

 2



biomimetic approach to the synthesis of alkaloids was developed in the 1980s and since 

then has been applied in the total synthesis of five Daphniphyllum alkaloids.12  

This method was remarkable in that it generated six stereocenters in a ‘one-pot’ reaction. 

As seen from scheme 1.1, the first step was the oxidation of the 1,5-diol, 1.7 to dialdehyde 

1.8, followed by treatment with ammonia and acetic acid, which leads to the dihydro-

pyridine 1.10 This dihydro-pyridine can undergo an intramolecular Diels-Alder reaction to 

form the imine 1.11, which when heated as an acetic acid solution undergoes an 

intramolecular aza-Prins cyclisation to provide pentacyclic amine 1.12.13 
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Scheme 1.1 Generalised biomimetic approach for the total synthesis of                   

Daphniphyllum alkaloids 

 
This method has its limitations, as discovered by Wallace and Heathcock.13 They found that 

the intramolecular inverse-electron demand Diels-Alder cycloaddition was tolerant to a 

range of alkyl substitution patterns of the dienophiles, but as expected they observed a 

decrease in the rate of reaction when an electron deficient dienophile was employed. As 
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shown in scheme 1.2, diol 1.13 was oxidised to the dialdehyde 1.14 successfully, but 

subsequent reactions to form the imine 1.16 failed. The authors believed that failure to form 

the pyrrole 1.15 was responsible for the failure of this reaction cascade. 

They also found that the structure of the pyrrole, cyclopentyl ring, quaternary carbon and 

all tertiary carbon centres in the starting diols (1.13) were crucial as alteration of this 

structure could cause competing side reaction or complete failure of the reaction cascade.  
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Scheme 1.2 Limitations of the biomimetic approach 

 
 

In 1992, Heathcock and co-workers described the total synthesis of methyl 

homodaphniphyllate 1.18 (scheme 1.3).12 The synthesis required a total of 15 steps starting 

from known keto acid 1.17 to provide 1.18 and 1.19 in 1:1 ratio, with an overall yield of 

1.1%.   
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CO2Me
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Scheme 1.3 Synthesis of methyl homodaphniphyllate 1.18 
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These methods, due to their limitations could not be applied to formation of other 

Daphniphyllum alkaloids, like daphnioldhanin A, and new methods for the synthesis of 

these compounds are actively searched for.  

Daphnioldhanin A is a very interesting molecule as it contains a 5,5,7-fused tricyclic ring 

system (figure 1.4), presenting a significant synthetic challenge. This complex ring system 

has not been previously synthesised, and we envisaged that the 5,5,7-core could be used as 

a scaffold for the daphnioldhanin alkaloids. Specifically, we were interested in using a 

cascade approach to this tricyclic system.  

RO

MeO2C

 
Figure 1.4 5,5,7-Core of daphnioldhanin A 

 

We viewed that this challenging tricyclic ring system could be synthesised (scheme 1.4) via 

a radical cascade sequence from an acrylic ester (1.20) and the appropriate cycloheptene 

derived precursor (1.21). Alternatively, a carbene cycloaddition cyclisation cascade 

(CCCC) approach using rhodium catalyst could be applied – notably from a diazoketone 

derived from cyclopentanone (1.22), as in Heathcock’s synthesis of methyl 

homodaphniphyllate.12 These will be discussed further in chapter 2 and 3.  
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Scheme 1.4 Proposed approaches for daphnioldhanin A 5,5,7 core system. 
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1.4 Radical Approach towards Synthesis of Daphnioldhanin A  
 
1.4.1 Radical Approach in Synthesis of Polycyclic Systems 

 

The use of radical reactions in the formation of polycyclic compounds has been well 

studied and is now commonly utilised methodology. Radical addition and radical 

cyclisations are important in the formation of new carbon-carbon bonds and carbon-

heteroatom bonds, which are often required for the synthesis of precursors of more complex 

natural products and bioactive compounds. The use of cascade of radical reactions in 

synthesising organic compounds is appealing because it provides chemists with elegant 

ways of designing ‘one-pot’ reactions where bonds can be constructed between carbons 

atoms in a cascade of highly selective reactions.  

 

For example, as shown in scheme 1.5, the novel steroidal heptacycle 1.23 was formed 

involving a cascade of seven 6-endo trig cyclisations.14 The cascade begins with chain 

initiation through loss of the selenophenyl group from compound 1.24, generating the 

radical centre. Successive 6-endo trig radical cyclisations occur with the double bonds, until 

a termination of the radical species occurs. Importantly, these reactions proceed with high 

selectivity (both regioselectivity and stereoselectivity). 
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Scheme 1.5 Tandem 6-endo-trig cyclisation in heptacycle 1.23 synthesis 
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Lee and co-workers also used a radical reaction in the synthesis of natural product 

lasonolide A (1.25), a cytotoxic macrolide isolated from the Caribbean marine sponge 

Forcepia sp.  Radical cyclisation reactions of β-alkoxyacrylates were used in the synthesis 

of both of the tetrahydropyran rings found in lasonolide A.15 
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Figure 1.5 Lasonolide A 

 

Retro-synthetically, the molecule was divided into two fragments and radical reactions 

were used as key steps in synthesising these precursors (scheme 1.6). As seen again, the 

radical reactions are selective, resulting in structures 1.26 and 1.27 in high yields. 

Subsequent reaction of these intermediates and coupling them ultimately led to lasonolide 

A 1.25. 
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Scheme 1.6 Radical reactions in lasonolide A (1.25) synthesis 
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Sharma and Gopinath have reported the use of radical cyclisations in the synthesis of 

natural products (+)-dihydrocanadenoside (1.28) and (+)-dihydrosporothriolide (1.29) from 

D-xylose (scheme 1.7).16 In this case, Barton-McCombie deoxygenation of xanthates 1.30 

and 1.31 led to the initial radical centre, which cyclises selectively to afford the 5-exo-trig 

products.   
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Scheme 1.7 Radical reactions in synthesis of (+) dihydrocanadenoside (1.28) and (+) 

dihydrosporothriolide (1.29) 

 

Clark and colleagues used a radical cyclisation to synthesise griseolic acid, (1.33) an 

unusual monosaccharide derivative (scheme 1.8). Vinyl iodide 1.32, after initiation, 

underwent cyclisation onto the tethered alkene leading to both the required 5-exo-trig as 

well as 6-endo-trig cyclisation products in good yields.17 The 5-exo-trig product 1.33, 

subsequently led to griseolic acid (1.34). 
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Scheme 1.8 Synthesis of griseolic acid (1.34) 

 

Perhaps the most classic example of radical cyclisation in natural product synthesis is by 

Curran and Rakiewicz,18 whereby they synthesised  (±)-hirsutene (1.36) from compound 

1.35 via tandem radical reactions (scheme 1.9). This method offers a synthetic strategy 

which can be used to prepare both simple and complex analogous and also allowed the 

synthesis of isomeric relatives of (±)-hirsutene, which was often difficult to do using 

standard methods.  

OH

CO2H

I

TMS

H

H

H

i) AIBN, Bu3SnH

ii) TsOH

1.35 1.36  
Scheme 1.9 Synthesis of (±)-hirsutene (1.36) 

 

Parsons and colleagues used a novel free radical cyclisation approach to synthesise lysergic 

acid analogue 1.38 (scheme 1.10). The synthesis was accomplished through selective 

tandem double 5-exo-trig and 6-endo trig cyclisations of the aryl radical 1.37 as shown in 

scheme 1.10.19  
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Scheme 1.10 Synthesis of lysergic acid analogue (1.38) 

N
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MeO2C
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75%

1.37 1.38

1.4.2 Radical Approach towards Daphnioldhanin A Synthesis  

The use of radical reactions as a synthetic tool for natural product synthesis is very well 

established. Our vision for the synthesis of the 5,5,7 core of daphnioldhanin A is shown in 

scheme 1.11. 

Br

CO2Me

OR

RO

MeO2C

OR

MeO2C

OR

MeO2C

OR

CO2Me

Radical Addition

5-exo trig

5-endo-trig

4-exo-trig

1.20 1.39 R=OTMS
1.40 R=OTBDMS
1.41 R=OMe

1.42 R=OTMS
1.43 R=OTBDMS
1.44 R=OMe

1.45 R=OTMS
1.46 R=OTBDMS
1.47 R=OMe

1.48 R=OTMS
1.49 R=OTBDMS
1.50 R=OMe

1.51 R=OTMS
1.52 R=OTBDMS
1.53 R=OMe  

Scheme 1.11 Proposed radical approach towards the synthesis of daphnioldhanin A 
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In order to use this approach for making the 5,5,7 ring system of daphnioldhanin A, 

incorporation of a 5-endo-trig cyclisation is required as a key step in the synthesis. Prior to 

discussing some recent examples of the criteria for 5-endo-trig cyclisation, it is necessary to 

provide some background on Baldwin’s rules. According to Baldwin’s rules, 5-endo-trig 

cyclisation is disfavoured over 4-endo-trig cyclisation, and to the best of our knowledge 

this disfavoured cyclisation has yet to be demonstrated in an all carbon ring system (as in 

the case of daphnioldhanin A).  

 

1.5 Baldwin’s Rules 
 
1.5.1 Cyclisation Process 

Ring forming reactions are an important part of organic synthesis since they lead to 

formation of precursors of many complex natural products. Ring closing reactions can be 

classified as exo- and endo- depending on where the breaking bond is in relation to the 

smallest ring formed. Thus, to form an exo-bond the breaking bond would be exo-cyclic to 

the smallest ring formed and for an endo- bond the breaking bond would be endo-cyclic 

and be incorporated into the ring. The suffixes tet, trig and dig indicate the geometry of the 

carbon which is undergoing the ring-closure reaction (i.e. tetrahedral, trigonal planar and 

digonal). Some examples are shown in figure 1.6:20 

 

X Y

3-exo-trig

X Y

4-exo-tet

X

Y

5-exo-dig

X
Y X Y

4-exo-trig 5-endo-trig

 

 

 

Figure 1.6 Examples of endo and exo cyclisations 

Baldwin’s rules state that the favoured cyclisation is one in which the length and nature of 

the linking chain enables the terminal atom to obtain the required trajectory.21 The 

disfavoured process require severe distortion of bond angles and distances to achieve 

orbital alignment, and thus if alternate pathways exist, these will dominate over the 

disfavored process.21 
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The rules are summarized in table 1.1: 21 

 

Table 1.1 Baldwin’s rules 

Type of System Favoured Disfavoured 

Tetrahedral system 3 to 7-exo-tet 5 to 6-endo-tet 

Trigonal systems 3 to 7-exo-trig, 6 to 7-endo trig 3 to 5-endo-trig 

Digonal Systems 5 to 7-exo-dig, 3 to 7-endo-dig 3 to 4-exo-dig 

 

1.5.2 5-Endo-Trig Cyclisation in Synthesis  

Although the 5-endo-trig cyclisation is considered to be a disfavoured process relative to 

the competing 4-exo-trig cyclisation, it has been seen in a number of systems where certain 

constraints are present. Baldwin and co-workers were the first to report this unusual 

cyclisation in systems containing sulfur. They found that thiol 1.54 reacted with NaOMe 

and MeOH at reflux to provide sulfide 1.55 (scheme 1.12). They concluded that as second 

row elements have larger radii and bond length, molecules containing these elements may 

form conformations which are difficult for the first row elements to achieve.22  

 

 

 

 

 

 5-endo-Trig cyclisation in sulphur containing compound 1.54 

habashi and co-workers found that radical cyclisation on N-vinylic α-chloroacetamide 

.56 proceeded through the ‘disfavoured’ 5-endo-trig cyclisation of radical as opposed to 

  

OMe
O

SH
MeOH

S

OMe
O

1.54 1.55

NaOMe

Scheme 1.12

Is

1

the 4-exo-trig cyclisation to afford 5-membered lactams 1.57 (scheme 1.13).23
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Scheme 1.13 'Disfavoured' 5-endo-trig cyclisation in carbonyl containing compound 1.56 

The authors believed that the carbonyl group of amide 1.56 played an essential role in the 

5-endo-trig cyclisation. To test their theory, they performed a series of reaction with 

dithioacetals 1.59 and 1.60 (scheme 1.14). The results showed that the five-membered ring 

1.61 only formed if the carbonyl group was incorporated in the ring system as shown for 

compound 1.59. Absence of the carbonyl group, led, to only reduction product 1.62, as in 

the case of 1.60.  

N

SPh
SPh

O

Bu3SnH

N

SPh
SPh

COMe

AIBN

Bu3SnH

AIBN

N
O

SPh

Me

H

H

N
COMe

SPh

1.59

1.60

1.61

1.62

Me

 
Scheme 1.14 Radical cyclisation in dithioacetals 1.59 and 1.60 

Mendenhall and co-workers found that 5-endo-trig cyclisation of 2-formylbenzadehyde 

radical is highly favored as compared to the 4-exo-trig cyclisation (scheme 1.15). They 

found that the thermal decomposition of aldehyde 1.63, lead to a mixture of stereoisomeric 

3,3-biphthalides 1.65. This could have only occurred through a 5-endo-trig closure of the 2-

formylbenzaldehyde radical to form the lactone radical 1.64, which dimerised to form 

compound 1.65. Electron Spin Resonance and laser flash photolysis studies of the radical 

intermediate provided evidence of this cyclisation.24 
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Scheme 1.15 5-endo-Trig cyclisation of 2-formylbenzaldehyde (1.63)  

Most cases of 5-endo-trig cyclisation have only been seen in molecules, which have a 

carbonyl or a heteroatom (such as nitrogen), incorporated into the ring system. This 

constraint system prevents the 4-exo-trig cyclisation from occurring, as the resulting 4-exo-

trig cyclisation product is higher in energy as compared to the 5-endo-trig cyclisation 

product.  So far, there has been no reported example of this cyclisation in an all carbon ring 

system. 

Preliminary computer-aided modelling studies of 4-exo-trig cyclisation products (1.48–

1.50) and the 5-endo-trig cyclisation products (1.51–1.53) from our proposed system 

(figure 1.7),25 have shown that the radical resulting from the 4-exo-trig cyclisation is 

significantly higher in energy than the radical from the 5-endo-trig cyclisation. In addition, 

the differences in transition state energy, whilst not fully optimised, were closer in energy. 

To us, this suggested the intriguing possibility that, if the 4-exo-trig was a favoured process, 

ring opening of the resultant highly strained radical product 1.48–1.50, and subsequent 5-

endo-trig closure to the more thermodynamically stable compound 1.51-1.53 may occur. 
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OR

MeO2C
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MeO2C
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MeO2C

1.51 R=OTMS
1.52 R= OTBDMS
1.53 R=OMe

1.48 R=OTMS
1.49 R=OTBDMS
1.50 R=OMe  

Figure 1.7 4-exo-Trig versus 5-endo-trig cyclisation in daphnioldhanin A precursor 

synthesis 

In addition to the possibilities offered by a radical cascade sequence, we also considered 

investigation of an alternate cascade sequence involving rhodium-carbene chemistry that 

will be discussed in the following section. 

 
1.6 Carbene Cycloaddition Cyclisation Cascade (CCCC) Approach 

1.6.1 Principle and Advantages of CCCC approach  

Over the years the use of carbene 1,3-dipolar cycloaddition cascades have been of great 

interest in the total synthesis of compounds. The major attraction of this cycloaddition 

method is the stereoselective formation of ring systems, which are vital in the synthesis of 

complex natural products.  The discovery of new classes of dipoles and dipolarophiles has 

also lead to greater versatility of this synthetic strategy.26 These dipolar moieties have been 

used in tandem cyclisation reactions with olefinic, acetylenic and hetero-multiple-bonded 

dipolarophiles. The simplest additions of these types involve addition of a carbene to the 

oxygen atom of a carbonyl group to afford an oxonium ylide. Some dipoles, which are 

commonly used in synthesis, are nitrones, nitrile oxides, carbonyl ylides, azomethine ylides 

and azides. The choice of dipole depends on the type of heterocyclic system that is to be 

produced. For example, as shown in scheme 1.16, nitrones have been used as dipoles to 

synthesise bridged, medium-sized rings (1.67) through intramolecular nitrone 

cycloaddition.27 
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Scheme 1.16 Nitrone cycloaddition 

In a similar manner, carbonyl ylides can be used to generate oxo-bridged ring systems. 

Carbonyl ylides can be generated ‘in situ’ by photolysis of oxiranes or 1,3,4-oxazolidines.27 

Another well-known method of oxonium ylide generation involves the use of rhodium 

catalysts, which may decompose α-diazoketones and subsequently form oxonium ylides 

with another carbonyl group. Carbonyl ylides are very reactive and readily undergo facile 

dipolar cycloaddition with alkenes and alkynes.26  

The use of rhodium acetate has been very effective, as a catalyst for keto carbenoid 

generation.27 This method follows the formation of a carbonyl ylide through the attack of 

the rhodium carbenoid intermediate onto a lone pair of electrons on the carbonyl group.  

The resultant dipole leads subsequently to intramolecular cycloaddition. A general scheme 

of this is shown in scheme 1.17.28 
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Scheme 1.17 General Scheme for the CCCC approach 

In 1988, Padwa and co-workers demonstrated the use of Rh2(OAc)4 for the intramolecular 

synthesis of six-membered rings from carbonyl ylides.28 The reaction of diazo ketone 1.68, 

(scheme 1.18) with the rhodium catalyst was consistent with the mechanism, in which the 

key step involves the intramolecular cyclisation of the keto carbenoid onto the oxygen atom 

of the ester carbonyl. The resulting resonance stabilised six-membered carbonyl ylide 

intermediate was then trapped by the internal double bond to give the desired major product 

1.69, and 1.70 as a by-product.  

In the presence of excess dimethyl acetylenedicarboxylate (DMAD) the internal 

cycloaddition was entirely suppressed, as bases such as pyridine and DMAD are excellent 

traps for carbenes,29 and the expected bimolecular dipolar cycloadduct 1.71 was formed as 

the major product.28 
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Scheme 1.18 Rhodium and DMAD reaction with diazo compound 1.68 

The use of rhodium (II) catalysed reactions in the formation of bimolecular cycloadducts 

has been studied by England and co-workers, whereby they looked into tandem carbonyl 

ylide formation and 1-3 dipolar cycloaddition of highly functionalised diazo compounds.30 

The rhodium-catalysed reaction took place intramolecularly to form products derived from 

trapping of the carbonyl with a tethered alkene.30 An example involved rhodium (II) 

catalysed intramolecular cycloaddition of alkenyl ether 1.72, in which the cycloaddition ran 

smoothly to give cycloadduct 1.73 containing 4 stereocenters in good yield as shown in 

scheme 1.19. 
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1.72 1.73  
Scheme 1.19 Example of rhodium-mediated CCCC approach 
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1.6.2 CCCC Approach in Synthesis of Polycyclic System 

The versatility of carbene cycloaddition cyclisation cascade (CCCC) methodology has 

made it a useful tool in natural product synthesis. Schmatz and co-workers used a rhodium-

catalysed intramolecular dipolar cycloaddition reaction as an integral step in the synthesis 

of (-)-colchicine 1.76 and (-)-isocolchicine 1.77 (scheme 1.20). Colchicine is an alkaloid 

obtained from meadow saffron, which is known to exhibit antimitotic activity. The CCCC 

reaction of α-diazoketone 1.74 with the tethered alkyne was carried out in the presence of 

Rh2(OAc)4 at 110 °C. This led to the formation of oxatetracyclic compound 1.75 in 98% 

d.e. which was then converted to 1.76 and 1.77 over subsequent steps.31 
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Scheme 1.20 CCCC approach in synthesis of (-) colchicine and (-) isocolchicine 

 

Padwa and co-workers used CCCC approach to synthesise the oxabicyclo-[3.2.1]octane 

ring of (±)-ribasine 1.80. They subjected diazoketone 1.78 to CCCC reaction in the 

presence of Rh2(TFA)4 leading to the formation of 1.79 (scheme 1.21). This product can be 

easily converted to 1.80, the exact core structure of ribasine, through insertion of an 

aldehyde group in place of the ethoxycarbonyl and an imino group instead of the alkenyl 

moiety in compound 1.79.32  
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Scheme 1.21 CCCC approach in synthesis of  (±)-ribasine. 

 

In another study, Padwa and co-workers used the CCCC reaction of carbonyl ylides to 

synthesise the hexacyclic framework found in kopsifoline alkaloids (scheme 1.22), which 

are possibly derived from aspidosperma alkaloids. Diazoketone 1.81 underwent a CCCC 

reaction to form cycloadduct 1.82 as a single isomer. Further synthetic transformations led 

to the hexacyclic skeleton (1.83) of the kopsifoline alkaloid.33  

N

N

CO2Me

N2 O

O

O

SO2

CO2Me

N
SO2

N

HO

O

H CO2Me

CH2CO2Me

N
SO2

H

OH
O

CO2Me

N H

1.81 1.82 1.83

O

 
 

Scheme 1.22 CCCC approach in the synthesis of kopsifoline alkaloid 1.83 

 

The complexity of these systems and efficiency observed in the cyclisation process 

compelled us to consider the CCCC approach as a viable means for construction of the 

5,5,7-core of daphnioldhanin A. 
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1.6.3   CCCC Approach towards Daphnioldhanin A Synthesis 

An alternate strategy for making the 5,5,7 ring system of daphnioldhanin A involves utility 

of a 1,3 intramolecular carbene cycloaddition cyclisation cascade CCCC approach (scheme 

1.23). The CCCC precursor 1.94 and 1.95 (which is subjected to treatment with rhodium 

catalyst) could be accessed over a series of transformation of cyclopentanone derivatives 

1.84 and 1.85. CCCC reaction on 1.94 and 1.95 should afford 1.100 (which is similar to 

daphnioldhanin A 5,5,7 core system) after subsequent decarboxylation of 1.98 and 1.99  
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Scheme 1.23 Proposed CCCC approach towards synthesis of Daphne A 
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1.7 Objectives  

The objectives of this research are to investigate the viability of two different cascade 

approaches for the assembly of the 5,5,7-carbocyclic core of daphnioldhanin A. 

Firstly, we aim to investigate a radical addition/cyclisation cascade in which a 5-endo trig 

cyclisation is the key step. These reactions would be carried out on cycloheptanone 

derivatives and successive 5-exo-trig followed by 5-endo-trig cyclisation would result in 

the desired tricyclic system. 

Secondly, we aim to lay the foundation for the rhodium catalysed carbene cyclisation 

cascade sequence. The starting point for these reactions would be cyclopentanone 

derivatives and through rhodium-catalysed CCCC reaction, would provide another pathway 

to attain the targeted 5,5,7-tricyclic ring system.  
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Chapter 2: Synthesis of Radical Precursors and Radical 

Reactions: Results and Discussion 

The proposed radical addition-cyclisation cascade as a synthetic for the formation of the 

5,5,7-core of daphnioldhanin A represents a significant challenge for a variety of reasons. 

As previously discussed, the key step in this approach relies on the typically disfavoured 5-

endo-trig cyclisation. However, equally important is the regioselectivity of the initial 

radical addition to the system. For the proposed sequence to be successful, the reaction of 

the adduct radical with the diene (1.39–1.41) must proceed with complete regioselectivity 

at the endo-cyclic olefin resulting in compounds 2.1–2.3 (scheme 2.1). Alkyl radicals are 

generally accepted to be nucleophilic in nature,34 and one might therefore predict that the 

preferred selectivity for the radical addition would proceed at the more electron deficient 

exo-cyclic alkene to provide 2.1–2.3, as opposed to the more electron rich enol ether 

moiety, which would provide our desired products 1.42–1.44.  

OR

Br
CO2Me

Br
CO2Me

OR ORCO2Me

OR

CO2Me

+

1.20

+

1.39-1.41
1.42 R= OTMS
1.43 R=OTBDMS
1.44 R=OMe

1.39-1.41 1.20 2.1 R=OTMS
2.2 R=OTBDMS
2.3 R=OMe  

Scheme 2.1 Competing regioselective radical additions 

 

However, the contribution of the stabilities of the adduct radicals to any possible 

regioselectivity cannot be ignored (scheme 2.2). Therefore, our initial studies were focused 

on determining the regioselectivity as a function of the properties of the adduct radical. 
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Scheme 2.2 Contributing resonance structures of the radical addition 

If selectivity is an issue and the radical addition reaction occurs at the exo-cyclic double 

bond, then this could be prevented by employing the use of an ester derivatives (2.4) 

instead of enol ethers (1.39–1.41) as the initial starting material (scheme 2.3). This methyl 

ester would enhance the electrophilic nature of the internal bond, which could help to drive 

the addition of the nucleophilic alkyl radical to the internal double bond. Once the expected 

addition resulting in 2.5 has taken place, the methyl ester can be hydrolysed, 

decarboxylated and later oxidised to provide the desired cycloheptanone derivative 2.6.   

RO O

Br
CO2Me

RO O

CO2Me

O

CO2Me

1.20

+

2.4 2.5

2.6  
Scheme 2.3 Alternative approach to regioselective radical addition 
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2.1 Synthesis of 2-methylidene cycloheptanone (2.7) 

Whilst a number of alkyl and aryl radical precursors were readily available in our 

laboratories, the syntheses of 1.39–1.41 has yet to be reported. The retrosynthetic analysis 

of 1.39–1.41 shows that these molecules could be readily derived from 2-methylidene 

cycloheptanone (2.7) as a common intermediate, which in turn could be derived from 

commercially available cycloheptanone (2.8). It was rationalised that the formation of the 

enol ether 1.39–1.41 would be readily achieved under standard conditions.35,36,37 

OR O O

2.7 2.8

1.39 R= OTMS
1.40 R= OTBDMS
1.31 R= OMe

1.39-1.41

 
Scheme 2.4 Retrosynthetic analysis of enol ethers 1.39 – 1.41 

Ono and colleagues,38 were able to furnish 2.7 via radical denitrification of α-

hydroxymethyl cycloheptanone (2.11). The purpose of the nitro group in compound 2.9, in 

this case was presumably to further activate the α-position for alkylation resulting in 2.10. 

Subsequent elimination of the resulting α-hydroxymethyl cycloheptanone (2.11) led to the 

formation of the desired enone 2.7 in 85% yield.  

O
NO2

HCHO

Ph3P

O
CH2OH
NO2

Bu3SnH

O
CH2OH

DBU

O

AIBN,C6H6
C6H6

2.11 2.72.9 2.10  
Scheme 2.5 Synthesis of compound 2.10 via radical nitrification 

Block and colleagues reported another method for the formation of compound 2.7 using a 

Ramberg-Backlund reaction (scheme 2.6), in 77% overall yield.39 Although attractive, the 

formation of by-product 2.13, and the necessity to employ photochemical conditions for 

this reaction rendered this synthesis unsatisfactory for our purposes.  
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Scheme 2.6 Synthesis of compound 2.10 via Ramberg-Backlund reaction 

Although there have been only a few literature reports involving exo-cyclic functionality in 

cycloheptanone, the cyclohexanone analogues have been widely reported. Many methods 

exist for the installation of the exo-cyclic double bond, including aldol chemistry,40 the 

Mannich reaction,41 and the use of Eschenmoser’s salt to form activated α-cycloketones 

which can then undergo elimination to form methylidene cycloketones. These methods 

were attractive as the starting materials in these cases were readily available cycloketones 

(in our case cycloheptanone). We decided to evaluate the merits of all these chemistries as 

outlined in the discussion below.  

2.1.1 Aldol Reaction of Cycloheptanone (2.7) 

The first method we used involved the synthesis of cycloheptanone with α-hydroxymethyl 

functionality, (scheme 2.7) which can undergo elimination under strong basic conditions,38 

or by activation/elimination to yield the methylene compound. Formation of the 

hydroxymethyl derivative 2.14 was achieved using the procedure reported by Wipf and 

Aslan.40  

O

HCHO

K2CO3

O
CH2OH

2.8 2.14  
Scheme 2.7 Aldol reaction on cycloheptanone 2.8 

This method was investigated using a variety of conditions to improve the yield of the 

desired α-hydroxymethyl compound 2.14. As shown in table 2.1, the first attempt was 

carried out using conventional heating, with no reaction observed. We decided to see if 

performing microwave-based heating would result in any products, in which case (entry 2) 

the formation of compound 2.7 was seen. Attempts to optimise this reaction by varying the 

amounts of reactants, reaction time and the type of base used, unfortunately, did not result 
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in any significant change in product quantity. This method was abandoned and other 

procedures investigated. 

 

Table 2.1 Aldol reaction on cycloheptanone 

Entry  Conditions£  Results * 

1 HCHO  (1.9 eq.), K2CO3 (0.015 eq.), H2O, r.t.  2 

hours 

 Starting material  

2 HCHO (1.9 eq.), K2CO3 (0.015 eq.), H2O, µwave 

120 ºC, 2 Bar, 10 mins 

Starting material and minor 

compound 2.7 ^ 

3 HCHO (1.9 eq.), K2CO3 (0.015 eq.), MeCN,  

µwave 120 ºC, 2 Bar, 15 mins  

Starting material and minor 

compound 2.7 ^ 

4 HCHO (1.9 eq.), 1M NaOH (0.015 eq.) 1M HCl 

(0.015 eq.), H2O, µwave 120 ºC, 2 Bar, 15 mins 

Starting material and minor 

compound 2.7 ^ 

* Results are based on 1H NMR spectroscopic analysis  
^ None of the expected α-hydroxymethyl cycloheptanone was seen in the 1H NMR spectrum. 
£  Formaldehyde (HCHO) was used as a 37% aq. solution  

2.1.2 Mannich-Type reaction using Eschenmoser’s salt   

The next method employed in the attempt to form compound 2.7 involved the use of 

Eschenmoser’s salt (CH2N(CH3)2I). This salt consists of the iodide salt of an iminium ion 

and can react directly with cycloheptanone to form amino derivative 2.15 through the 

pathway shown in scheme 2.8. 

2.8

N I
O

H

H
N

Eschenmosers salt

O
O

2.15  
Scheme 2.8 Eschenmoser's salt reaction with cycloheptanone (2.8) 
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This method has been widely used in a variety of substrates42 and is an attractive procedure, 

as the Eschenmoser’s salt is readily available and the reaction involves simple reflux 

conditions. However, despite numerous attempts, only trace amounts of 2.15 was detected 

in the 1H NMR data of the crude mixture, with majority being starting material. We 

rationalised that the addition of a base may assist the reaction. Hence piperidine was added 

to the reaction; however no improvement in conversion was noted.  In retrospect, piperidine 

may not have been a wise choice of base for this reaction as it could have added to the 

Eschenmoser’s salt, leading to compound 2.16 (scheme 2.9), although, no evidence of the 

diamine 2.16 was detected. 

 

N I N NN
H

2.16

 

 

 

Scheme 2.9 Proposed piperidine reaction with Eschenmoser’s salt 

2.1.3 Mannich Reaction 
 
We next investigated the Mannich reaction for the synthesis of compound 2.7. This reaction 

has been extensively used for the synthesis of α-amino-alkylated products, which upon 

elimination of an amine provides a bis-methylene compound.43 The Mannich reaction 

involves reacting an enolisable carbonyl with formaldehyde and any primary or secondary 

imines. Since, the reaction is carried out under acidic condition, keto-enol tautomerisation 

occurs with the enol form reacting with the resulting iminium ion to form the Mannich 

product (scheme 2.10).43  
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Scheme 2.10 General Mannich reaction 

 

The first conditions attempted for the Mannich reaction involved treatment of 

cycloheptanone with formaldehyde and catalytic piperidine in the presence of acetic acid.44 

This was an attractive method as we thought that would allow direct access to 2.7 without 

the need to isolate any α-alkyl amine intermediates as shown in scheme 2.11.  
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2.7  
Scheme 2.11 Proposed Mannich reaction of cycloheptanone (2.8) with piperidine 
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Gratifyingly, we were able to achieve 33% conversion to the desired enone 2.7 with the 

reminder being starting material. We were unable to improve the yield of this reaction 

despite numerous attempts to optimise the reaction conditions.  

As seen in table 2.2, the first reaction attempted with this method resulted in 30% product. 

At this point it was thought that excess of formaldehyde might help to drive the reaction 

further (entry 2), but this also resulted in similar yield. When amounts of piperidine and 

acetic acid were increased (entry 3), 4 signals were seen in the alkene proton region at 5.92, 

5.42, 5.25 and 4.93 ppm in the 1H NMR spectrum. We rationalised these signals were due 

to the presence of compound 2.7 and the bis-methylidene product 2.17 in the product 

mixture. Interestingly, despite formation of this bis-methylidene compound 2.17, we were 

unable to obtain more than 33% conversion of products, regardless of the reaction scale. 

 

Table 2.2: Mannich reaction with piperidine 
2.8 2.7

OO O

2.17

and / or

Results * Entry  Conditions  

2.8 2.7 2.17 

1 HCHO (1 eq.), piperidine (cat.), CH3COOH (cat.), 

in EtOH reflux overnight 

60% 30% - 

2 HCHO (2 eq.), piperidine (cat.), CH3COOH (cat.), 

EtOH reflux overnight 

50% 30% - 

3 HCHO (1 eq.), piperidine (0.5 eq.), CH3COOH 

(0.1 eq.), EtOH reflux overnight 

50% 15%^ <15% ^ 

* Results are based on 1H NMR, resulting from peak integration 
^ Results as obtained from 1H NMR spectral data of the crude mixture, showing 4 peaks in the double bond 

region 
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It was rationalised that perhaps the piperidine was able to perform a 1,4 addition to 

compound 2.7, resulting in equilibrium of the mixture, (scheme 2.12), thereby preventing 

the conversion of 2.8 to 2.7 from improving. However, we did not pursue this avenue 

further and instead decided to perform this reaction on a large scale and separate out the 

33% of the product formed and then resubject the recovered starting material to the 

Mannich reaction conditions.  

 

N
H

N
HOO H

N
H

 

 

 

 

 

Scheme 2.12 Proposed piperidine reaction with 2-methylidene cycloheptanone (2.7) 

 

Unfortunately, separation of cycloheptanone and compound 2.7 was unable to be achieved 

satisfactorily by either distillation or flash column chromatography. Compound 2.7 also 

appeared to be degrading during column chromatography so this method was abandoned 

and further alternatives were pursued.  

 

We next investigated, another reported Mannich procedure, using diethylamine and acetic 

acid with formaldehyde, and refluxing it over two days in ethanol.45 1H NMR spectroscopic 

analysis indicated formation of the 2-(dimethylamino) compound 2.19 (scheme 2.13), but 

the yield was very poor, resulting in approximately 5% of isolated product.  

We then decided to use diethylamine hydrochloride salt and formaldehyde with 

hydrochloric acid.46-48 The use of commercially available diethylammonium hydrochloride 

proved to be problematic with yields of approximately 30% of compound 2.15, which was 

not purified or characterised.  Finally, we decided to synthesise our own diethylamine 

hydrochloride (2.18) from hydrochloric acid and diethylamine, then reacting this with 

cycloheptanone (2.11) and formaldehyde (scheme 2.13). Analysis of the 1H NMR spectrum 

of the crude reaction mixture revealed the presence of desired product 2.19, which was 

purified by distillation and collected in 76% yield.  
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Scheme 2.13 Mannich reaction with diethylamine hydrochloride 

 Table 2.3 summarises the various methods used and the yields obtained in the reactions to 

achieve compound 2.19. 

N

2.8 2.19

O O

 
Table 2.3: Mannich reaction with diethyl amine  

               Results* Entry  Conditions 

2.8 2.19 

1 HCOH (1 eq.), (CH2CH3)2NH (1.2 eq.), 

CH3COOH (1.2 eq.), reflux overnight 

75% 5% 

2 HCOH (1 eq.), (CH2CH3)3NH.HCl (1.2 eq.), 

conc. HCl (cat.), reflux overnight 

- 50% 

3 HCOH (1 eq.), (CH2CH3)3NH.HCl (1.2 eq.), 

conc. HCl, reflux 5 h 

- 70% 

* Results are based on 1H NMR spectral data, resulting from peak integration 
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2.1.4 Hoffmann Elimination of Compound 2.19  

With compound 2.19 in hand, the next step was generation of 2-methylidene 

cycloheptanone (2.7). Initially, Hoffmann elimination was performed using methyl iodide 

to form a quaternary ammonium salt,47 then subsequent treatment with silver oxide to allow  

elimination of the amine moiety (facilitated through in situ generation of hydroxide ions).49 

Silver oxide and water lead to formation of hydroxide ions, which would participate in the 

elimination of the amine, as shown in the scheme 2.14.  To our dismay, only trace amounts 

of the desired alkene were detected. Attempts to improve this by heating or extending 

reaction times led to degradation of the product.  

N N I OH N

OH

N

MeI, overnight

+

2.7

O O O

O

H

2.19

Ag

-AgI

-H2O

 
Scheme 2.14 Hoffmann elimination of compound 2.19 

2.1.5 Cope Elimination Reaction of Compound 2.19 

An alternate method was found whereby a Cope elimination reaction was used to form 

methylene compounds from amino compounds.50 This reaction involves oxidation of an α-

amino-methyl moiety to furnish an amine oxide and subsequent syn-elimination to afford 

an alkene as shown in scheme 2.15. 
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Scheme 2.15 Generalised Cope reaction 

The advantage of this method was that the crude amino compound 2.19 could be used 

without purification, and involves short reaction time. Thus, compound 2.19 was treated 

with 1.5 eq. of mCPBA in dichloromethane at room temperature. This reaction proceeded 

well, providing yields of up to 80% upon heating to 30–35°C. None of the amine oxide 

intermediate 2.20, was isolated in this reaction and complete conversion of the amine 

compound to the alkene 2.7 occurred. The product was purified using Kugelrohr distillation 

apparatus. 

2.19

N N
O

N
OH

OH
N
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O O

O
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Scheme 2.16 Cope reaction of compound 2.19 
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2.2 Synthesis of Enol Ethers  
 
2.2.1 Enol ether synthesis 1.39 - 141  

Upon synthesis of the desired alkene 2.7, we turned our attention to formation of the 

corresponding silyl and methyl enol ethers. The reaction conditions used to form silyl enol 

ethers obtained from the literature were first employed using cycloheptanone for initial 

studies, and then successful methods were applied to the formation of the enol ether of 

compound 2.7. 

Unfortunately, as seen from table 2.4, formation of the enol ethers of 2.7 was not possible 

under these set, reported conditions. Upon reaction of compound 2.7 with LDA and 

TMSCl51,35 only starting material was isolated. Interestingly, when strong Lewis acid such 

as TBDMSOTf, (prepared using a reported procedure52) was used36 or TMSI (generated 

from TMSCl and NaI) was used,53 loss of the olefinic protons was seen in the 1H NMR  

spectrum. 

 O OR

1.39 R=TMS,
1.40 R=TBDMS2.7

 

 

 

Table 2.4: Attempted methods for enol ether formation 

Entry  Conditions Results* 

1 LDA (1.2 eq.), TMSCl (1.2 eq.),  -78 ºC–r.t., 

overnight  

Starting material recovered 

2 TBMSOTf (1 eq.), Et3N (1.5 eq.), r.t., 3 h Undesired product 

3 TMSCl (1.2 eq.), NaI (1.2 eq.), Et3N, r.t., 5 h Undesired product 

* As analyzed from the 1H NMR spectral data of the crude reaction mixture 
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A deuterium study using LDA and cycloheptanone was also done, whereby the reaction 

was quenched with D2O. The 1H NMR spectrum of the resulting product was compared 

with the 1H NMR spectrum of cycloheptanone. The product 1H NMR data showed two 

peaks, (as expected) seen at 2.3 ppm, which integrated for 3 protons, and at 1.6 ppm, which 

integrated for 8 protons. This clearly showed that one of the α-protons was missing, 

(replaced by deuterium), which provided evidence that the LDA deprotonation step was 

working.  

Attempts to generate methyl enol ether also proved to be futile as seen from table 2.5. As 

seen from table 2.5, when either trimethyl orthoformate (entry 1),37 or Meerwein’s salt was 

used (entry 2)54, loss of  olefinic protons was seen. 

 

 

able 2.5 Attempted 1-methoxy cycloheptene formation 

Entry  Conditions Results* 

O OMe

1.412.7
 

 

T

1 HC(OMe)3 (1.2 eq.), PTSA (0.67 mol %), MeOH, Undesired product 

reflux, 5 h 

2 Me3OBF4 (1.2 eq.), CH2Cl2, r.t., 2 days Undesired product 

* As analysed from the H NMR spectral data 

 

.2.2 Investigation into unsuccessful enol ether synthesis 

1

2  

 that reaction of α,β-unsaturated Upon further investigation of the literature, it was found

ketones with TMSI resulted in addition to the double bond. Hence, strong electrophiles 

(such as trimethylsilyl iodide) react with α,β-unsaturated ketones (scheme 2.17) generating 

iodotrimethylsilyl enol ethers 2.21 which could hydrolyse to β-iodocarbonyl derivatives 

2.22 upon aqueous work-up.55 
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Scheme 2.17 Reaction of TMSI with α,β-unsaturated ketones 

This reaction could have occurred due to the stability of the compound generated after the 

addition reaction. As seen in scheme 2.18, the carbonyl group can provide resonance 

stabilisation to the resulting product of this reaction.  
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Scheme 2.18 Proposed mechanism of the reaction of TMSI with α,β-unsaturated ketones  

This reaction is plausible in our case though no concrete evidence of the formation of 2-

methyl-iodo cycloheptanone could be seen in the 1H NMR spectroscopic data. 

Another paper was found which stated that 2-methylene cyclohexanone (similar to 

compound 2.7) was very reactive, dimerising readily, hence it is difficult to isolate the 

monomer itself.56 This explanation provides insight into the difficulty of the attempted enol 

ether synthesis particularly in the presence of Lewis acids. It is likely that the reactant 2.7 

was forming dimers before it could undergo the desired reaction processes. 

Our experience of dealing with α,β unsaturated ketone 2.7 found problems involving 

storage over a prolonged period of time. The compound could only be safely stored under 
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nitrogen in the refrigerator. Decomposition could still occur at these low temperatures, 

hence it is not surprising we encountered problems at elevated temperatures. Given this 

issue and the problems faced with the stability of 2.7, we envisaged that synthesis of the 

desired diene could be achieved via enol ether formation of the amino compound 2.19. This 

reaction, however, led to the formation of the olefinic compound 2.7, and none of the 

methyl enol ether 1.41 formed.  

O

N
X

HC(OMe)3
OMe

2.19 1.41

 

 

 

 

Figure 2.1 Attempted enol ether synthesis using amine 2.19 

Having encountered problems with the stabilities of the intermediate species leading to the 

required diene (1.39–1.41), we were increasingly concerned that the 7-membered system 

may be problematic in the radical addition reactions. Thus, we decided to investigate the 

stabilities of the various precursor compounds under radical conditions. Model studies of 

the radical reactions were formulated to investigate the selectivity of the first radical 

addition reaction. If these more stable, isolatable compounds demonstrated dubious 

stability, there would be good cause to abandon the postulated pathway. Thus, 1-methoxy 

cycloheptene 2.24 was chosen as the model compound for these studies. Compound 2.24 

was synthesized from cycloheptanone using HC(OMe)3 and PTSA (scheme 2.19). 

Distillation of dimethylacetal 2.23 led to the formation of compound 2.24.  This compound 

could only be stored under nitrogen in the freezer, since decomposition was observed if left 

in the refrigerator or at room temperature, which did not bode well for the radical studies.   

 

O

HC(OMe)3

PTSA
OMeMeO OMe

+

2.11 2.23 2.24

heat

 
Scheme 2.19 1-Methoxy-cycloheptanone (2.24) synthesis  

 38



 

2.3 Radical Reactions on Various Systems  

2.3.1 Model Studies with Styrene  

In order to ascertain optimal conditions for the radical reactivity on our model systems, we 

conducted initial experiments on styrene.  

A number of different variations of radical methodology were employed to do this reaction. 

The first reaction conditions used were ones reported by Bennasar and collegues,57 who 

also used styrene as an alkene acceptor for radical reactions. In our case bromobenzene was 

used with styrene. The results we obtained from reaction, and taking into consideration 

other reported methods,58,59 we optimised the reaction conditions and reactant 

stoichiometry in order to achieve the best radical conditions for styrene based radical 

reactions. All the reactions were carried out under argon atmosphere, refluxing in dry 

degassed toluene. Some reactions led to the formation of polystyrene, which could be 

identified from the 1H NMR of the crude product. Other reactions led to the formation of 

1,2-diphenyl ethane (2.27). The different reaction conditions and results are summarised in 

table 2.6 

As, can be seen from table 2.6, the different approaches to this reaction varied in the 

relative amount of reactants used, the type of initiators used and the speed in which the 

reactants were added to the reaction mixture. In a few reactions tris(trimethylsilyl)silane 

((TMS)3SiH) was used instead of the Bu3SnH and in some other reactions the initiator 

AIBN was used instead of ACN (azobiscyclohexylnitrile). The initial problem encountered 

was removal of Bu3SnH from the reaction mixture, as it streaked through the flash 

chromatography column. Literature search showed Bu3SnH could be removed using KF,60 

and thus use of this led to successful removal of the tin compound. 

 
Br

Bu3SnH
ACN
PhMe

2.25

2.26

2.27
 

 

Scheme 2.20 Radical reaction of styrene (2.25) with bromobenzene (2.26)  
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Table 2.6 Radical reaction of styrene with bromobenzene 

Exp. 

No. 

Reaction Stoichiometry ^ Reaction Conditions 

(reagents were added in 

toluene)  

Result * 

1 2.26 (0.8 eq.), Bu3SnH (0.25 eq.), 

ACN (0.03 eq.) 

Bu3SnH, 1 h addition.   2.27, polystyrene 1:1 ratio 

(30 %) 

2 2.26 (0.8 eq.), Bu3SnH (0.25 eq.), 

ACN (0.09 eq.) 

Bu3SnH, 1 hr addition 

and 0.03 eq. ACN 3 times 

over 1 hr addition 

 2.27 (60%) polystyrene 

(trace) 

3 2.26 (2 eq.), Bu3SnH (1.5 eq.), 

ACN (0.5 eq.) 

Bu3SnH and ACN 1 h 

addition  

 2.27 (approx. 50%)  

4 2.26 (2 eq.), (CH3)3Si)3SiH (3 

eq.), ACN (0.25 eq.) 

 (CH3)3 Si)3SiH, ACN in 

2 h addition 

 Polystyrene (50%)  

5  2.26 (0.8 eq.), Bu3SnH (0.25 eq.), 

AIBN (0.09 eq.) 

Bu3SnH, 1 h addition, 

AIBN 3 times over 1 h 

addition 

Polystyrene (60%)  

* Results are based on 1H NMR, resulting from peak integration 

^ 1 eq. of 2.25 was used in all the reactions 

 

 Using Bu3SnH results in the formation of tributyltin halides, which also makes isolation of 

product difficult,61 and due to toxicity and disposal issues another compound was sought to 

replace the tin reagent. Preliminary studies on the use of tris(trimethylsilyl)silane this 

compound as a reducing agent reported by Chatgilialoglu and colleagues showed that 

(TMS)3SiH can be effective as a free radical reducing agent without the ecological and 

toxicological hazards of the tin compounds.61 In this molecule the Si-H bond is weak, and 

given the right conditions can be cleaved, and act a radical initiator. However, this silane 

compound is a weaker H donor and an excess of this compound is required in order to 

initiate radical reaction. In our case, the use of (TMS)3SiH (entry 4, table 2.6) did not result 

in favoured product and only polystyrene was obtained from the reaction. 
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Burnett and Keck found that ACN gave more favourable yields in higher temperature 

reactions as compared to AIBN.62 Our attempted in using AIBN, instead of ACN for radical 

reaction on styrene (entry 5, table 2.6) resulted in formation of polystyrene  

Once the radical reaction conditions with bromobenzene had been optimised, reaction of 

styrene with isopropyl bromide (2.28) was carried out as shown in table 2.7. 

 

 

 

Bu3SnH
ACN
PhMe

2.25 2.29

2.28
Br

Table 2.7 Radical reactions of styrene and isopropyl bromide 

Exp 

No. 

Reaction Stiochiometry^ Reaction Conditions 

(reagents were added in 

toluene) 

Result * 

1 2.28 (0.8 eq.), Bu3SnH (0.25 

eq.) ACN (0.09 eq.) 

Bu3SnH, 1 h addition, ACN 3 

times over 1 h addition 

Major product polystyrene 

and minor 2.29 

2 2.28 (2 eq.), Bu3SnH (1.2 

eq.), ACN (0.18 eq.) 

Bu3SnH, 1 hr addition, ACN 3 

times over 1 h addition. 

Compound 2.29 (20%) 

polystyrene (30%)  

3 2.28 (2 eq.), Bu3SnH (1.5 

eq.), ACN (0.5 eq.) 

Bu3SnH, ACN, 1 h addition Compound 2.29 (30 %) 

*  As analyzed from the 1H NMR spectroscopy of the crude reaction mixture based on peak integration. 

^ 1 eq. of 2.25 was used in all reactions 

The best conditions for both the bromobenzene and isopropyl bromide studies, was found 

to be entry 3 in both table 2.6 and 2.7. These conditions were applied for radical reactions 

of 1-methoxy cycloheptene (2.24) and 2-methylidene cycloheptanone (2.7).  
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2.3.2 Radical reaction of 1-methoxy cycloheptene (2.24) 

The first radical reaction performed with 1-methoxycycloheptene (2.24) involved reacting 

it with bromobenzene, and was carried out using the standard conditions mentioned 

previously. The 1H NMR spectrum from this reaction showed that the methoxy 

cycloheptene 2.24 did not react with the bromobenzene. This could be because the phenyl 

radical is very reactive and reduction to benzene occurred over the desired reaction with 

compound 2.24.  

As isopropyl bromine is less reactive and we had performed model studies with this 

compound, radical reaction using 2.24 and isopropyl bromine was carried out according to 

our standards conditions. The 1H NMR spectrum from this reaction showed the loss of the 

methoxy peak from the starting compound, which made us believe that polymerisation of 

the starting material was occurring. This product was not identified, as the TLC indicated a 

number of products were present, with similar Rf values. 

OMe Br

Bu3SnH
ACN
PhMe

OMe

X

2.24 2.30

2.28

 
 

Figure 2.2 Attempted radical reaction of compound 2.24 

2.3.3 Radical reaction of 2-methylidene cycloheptanone (2.7) 

 At this stage we were certain that the radical conditions were not compatible with our 

starting material, but for completeness we investigated the radical reaction of methylidene 

compound 2.7, to see if the radical precursors had preference for the exo-cyclic double 

bond.   If the radical addition occurred at the exo-cyclic double bond, to produce undesired 

products, then an alternative protection strategy of the exo-cyclic double bond could be 

used. The enol ether could be synthesised after protection of the double bond, and then later 

the protecting groups could be removed and the product derivatised accordingly to form the 

5,5,7 ring system after the ring cyclisation reaction.    
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Reactions were performed with bromobenzene, as it would be easy to determine the 

attachment of this to the compound 2.7, since this would not further complicate the 

aliphatic region of the 1H NMR spectrum. The 1H NMR data of the crude mixture showed 

that mostly polymerisation of the compound occurred, as many peaks could be seen in the 

1-3 ppm region in 1H NMR spectrum with no COSY or HMBC correlation to the aromatic 

region. Flash chromatography was very difficult, as a number of compounds were eluting 

together. One small fraction contained a few small peaks in the aromatic region of the 1H 

NMR spectrum and also in the 1-3 ppm region but due to other impurities being present in 

the sample and the quantity obtained, structure elucidation and characterisation were not 

possible. At this stage, it was concluded that the radical reaction on these systems was not 

feasible and other alternate ways of gaining access to the 5,5,7 ring system had 

investigated. 
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Figure 2.3 Attempted radical reaction on compound 2.7 
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Chapter 3: The Carbene Cycloaddition Cyclisation Cascade 

Route - Results and Discussion 
 

3.1 Carbene Cyloaddition Cyclisation Cascade Approach 

After an array of radical reactions had proven to be futile for the formation of the core of 

daphnioldhanin A, it was decided that a carbene cycloaddition cyclisation cascade process 

(CCCC) approach should be investigated (scheme 3.1). We envisaged that the 

carboskeleton of the 5,5,7 system could be furnished following a CCCC pathway from the 

diazo skeleton 1.94 or 1.95. This in turn could be derived from acid 1.90 or 1.91, which 

would be accessible from functional group conversion of precursors 1.86 or 1.87. Finally, 

1.86 or 1.87 would be derived from readily accessible cyclopentanone derivatives 1.84 or 

1.85.  
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Scheme 3.1 Retrosynthetic analysis for the CCCC approach 
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The key step of this synthesis is the rhodium-catalysed cascade of the diazo skeleton 1.94 

or 1.95 to afford 1.98 or 1.99 (scheme 3.2). In this sequence, 1.94 or 1.95 could undergo 

reaction with a rhodium catalyst to afford the metallo-carbenoids 1.96 or 1.97, entropically 

driven by the expulsion of N2. Once the highly electrophilic rhodium carbenoid is formed, 

it could be attacked by the lone pair of electrons of the ring carbonyl oxygen, in order form 

a six-membered ring with an oxonium ylide. Ylides are known to undergo intramolecular 

cycloaddition with tethered alkenes,28 and in our case, it is hoped that the 5- and 7- 

membered rings would form simultaneously; resulting in the functionalised pentacyclic ring 

system 1.98 or 1.99. 
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Scheme 3.2 Mechanistic approach to CCCC of 1.94 or1.95 

After the formation of 1.98 or 1.99, a small number of subsequent reactions, involving 

removal of the ketone carbonyl, ring opening of the oxo-bridge and subsequent hydroxyl 

protection, hydrolysis and decarboxylation of the ester groups would lead to the resultant 

precursor being similar to the initially targeted 5,5,7 ring system 1.51–1.53 (scheme 1.11).  
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3.2 Synthesis of Cyclisation Precursors 

3.2.1 Method 1- via diethyl adipate (3.1) 

The required cyclopentanone starting material for elaboration to the diazoskeleton 

precursors is easily accessible via a Dieckmann condensation of corresponding adipic acid 

derivatives. Dieckmann condensation involves intramolecular reaction of diesters under 

basic conditions to afford β-keto esters. The ester substituent at C-2 was considered 

unproblematic at this stage as we hypothesised it could be removed through 

decarboxylation later in the synthesis. Our initial studies utilised carboxypentanoate 1.84 as 

our starting material. This compound is available commercially, though synthesis of the 

compound was carried out in the course of this project using Dieckmann condensation 

method of diethyl adipate 3.1 (scheme 3.3), which was available in our laboratories.63 

O
O

O

O
PhMe

tBuOK

1.84

O

O O

3.1

 

Scheme 3.3 Dieckmann condensation on 3.1 

Potassium tert-butoxide was used for deprotonation at the ester’s α-positions; generating 

the carboanion, which then initiates cyclisation to form compound 1.84 in 42% yield 

(scheme 3.4). The characteristic peaks for compound 1.84 were seen in the 1H NMR 

spectrum at 4.20 ppm  (quadruplet), and at 1.29 ppm (triplet) for the ethyl ester, and most 

importantly, a triplet at 3.15 ppm for the hydrogen at the substituted α position. These 

results matched that previously reported,63 and the crude product obtained after the work-up 

was of high purity. 
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Scheme 3.4 Mechanism of Dieckmann condensation of compound 3.1  

With compound 1.84 in hand, the first alkylation was carried out. As expected, the selective 

alkylation occurred at the substituted α-position of the 1,3 dicarbonyl moiety. For this 

reaction, standard etherification methodology was used,64,65 utilising sodium hydride as a 

base (scheme 3.5). Yields of up to 65% of compound 1.86 could be achieved if the reaction 

was carried out overnight; however, longer reaction times resulted in decomposition of the 

product. Also observed was the formation of the O-alkylated product 3.2 (5%). The yield of 

3.2 was approximately 10% but seemed to increase if left to react for longer then overnight. 

The C-alkylated product 1.86 and the O-alkylated product 3.2 were collected after column 

chromatography as colourless liquids.  
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Scheme 3.5 Sodium hydride mediated alkylation of compound 1.84 

Both compounds 1.86 and 3.2 were analysed and characterised after extensive NMR 

spectroscopic studies. For product 1.86, the 1H NMR spectral data showed the peaks in the 

double bond region at approximately 5.8 ppm and 5.0 ppm, and the –OCH2 protons as a 
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quadruplet at approximately 4.1 ppm. A number of peaks were present in the 1–2 ppm 

region. The 13C NMR spectrum showed the presence of a ketone carbon at 214.8 ppm, ester 

carbon at 170.9 and the alkene carbons at 137.7 and 115.1 for the terminal sp2 carbon. 

HSQC and COSY correlations and mass spectroscopy confirmed the identity as that of 

1.86. For compound 3.2, the most striking observation from the 1H NMR spectral data was 

the presence of two signals between 4.0 and 4.2 ppm. This indicated that there were two 

different types of protons next to an oxygen atom. The –OCH2 protons of the ethyl ester 

appeared as a quartet at 4.17 ppm and a triplet was also seen at 4.06 ppm. The 13C NMR 

spectrum showed that there was no ketone carbon present in the molecule, instead two 

carbons signals were found in the region of 165-167 ppm. These observations lead us to 

believe that the unknown compound was the O-alkylated product 3.2, which was confirmed 

through HSQC and COSY correlations and high-resolution mass spectrum  (HRMS) data. 

With 1.86 in hand, the next step involved substitution at the remaining available α-position. 

For this reaction LDA was employed as the base66 to abstract the α- hydrogen (scheme 3.6). 

Initial attempts to form the desired compound were not successful, with starting material 

isolated (table 3.1, entry 1). Formation of the desired product was only seen when the 

temperature during the deprotonation step was increased from -78°C to -40°C (entries 2 and 

3) and the starting material was dried using azeotropic conditions to remove water (entry 

3). 
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Scheme 3.6 LDA mediated alkylation of compound 1.86  

A number of products were isolated following flash chromatography purification. In 

addition to the starting material (20%), equal weights of two other compounds were 

obtained. 1H NMR spectroscopic analysis of the more polar of the two compounds showed 
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two prominent singlets at 3.42 and 3.45 ppm, characteristic of oxyalkyl protons. 

Investigation of the 13C NMR spectrum revealed a single compound hence there was no 

diastereoisomeric mixture. Since the molecule has two methoxy peaks and no 

diastereoisomers, it was proposed that this compound was the dialkylated product 3.3 

(scheme 3.6). HSQC and COSY correlations and HRMS data confirmed this to be the case. 

The second product obtained displayed one prominent peak at 3.61ppm in the 1H NMR 

spectrum and 13C NMR spectroscopic analysis indicated there was a mixture of 

diastereoisomers. Based on these observations it was proposed that this was our target 

molecule 1.88. HSQC and COSY correlations, in addition to HRMS information confirmed 

the structure of the molecule to be 1.88. 

The different conditions and the results obtained for this reaction are summarised below: 

 

Table 3.1 LDA reaction conditions 

Exp 

No. 

Reaction Stiochiometry^ Reaction Conditions 

(reagents were added in 

toluene) 

Result * 

1 i) LDA (1.2 eq.), 1.86 (1 eq.) 

ii) BrCH2CO2Me (1.2 eq.) 

i) -78 °C, 1 h  

ii) r.t., overnight 

Starting material 

2 i) LDA (1.2 eq.), 1.86  (1 eq.) 

ii) BrCH2CO2Me  (1.2 eq.) 

i)  -40 °C, 1h 

ii) r.t., overnight 

1.88 (10% diastereomers) 

3 i) LDA (1.2 eq.), 1.86 (1 eq.) 

ii) BrCH2CO2Me (1.2 eq.) 

i) -40 °C, 1 h 

ii) r.t., overnight 

1.88 (30% diastereomers), 

3.3 (30%) ^ 

 
* Results are based on 1H NMR, resulting from peak integration 
^ Azeotropic drying was used 
£  All reactions were carried out in THF 

Our proposed route to the diazo ketone precursor involved the selective hydrolysis of the 

methyl ester whilst the ethyl ester remained intact. We had hoped that the very different 

steric environments of the two esters would result in selectivity in the hydrolysis reaction. 
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We envisaged the hydrolysis of the methyl ester would be preferred, as it is a smaller group 

and has less steric hinderance compared to the ethyl ester. 

The reaction of compound 1.88 with NaOH in absolute ethanol appeared to form diethyl 

ester 3.4 (scheme 3.7). Analysis of 1H NMR spectrum of the crude reaction showed that the 

integration of the –OCH2 protons integrated for 4 protons, and disappearance of the methyl 

ester protons was also seen. TLC analysis of this reaction also showed that the products 

formed were less polar than the starting material. These results, in addition to mass spectral 

analysis all indicated the formation of the diethyl ester 3.4. Thus it appeared that trans-

esterification had occurred.  

 

 

 

O
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1.88 3.4

1M NaOH in EtOH

65%

Scheme 3.7 Methyl ester hydrolysis of 1.88 with 1M NaOH in EtOH solution 

The next attempt for selective hydrolysis of 1.88 used the method reported by Ghosh and 

Miller, whereby they used a 2:1 THF/water mixture as solvent system, and NaOH (1M aq.) 

as a base for the reaction.67 This reaction was unsuccessful in our case, as only the starting 

material 1.88 was isolated from the reaction. Selective hydrolysis (of orthogonal diesters; 

tert-butyl ester and methyl ester) has been observed by Johnson and colleagues,68 when 

aqueous NaOH in ethanol was used. Under these conditions, after 2 days, the desired 

monoacid did not form but instead the formation of what is assumed to be hemiacetal 3.5 

(scheme 3.8) was seen. This structure was postulated from the absence of the ketone carbon 

signal in the range of 200–210 ppm in the 13C NMR spectrum, and absence of methoxy 

protons near 3.5 ppm in the 1H NMR spectrum.  

The reaction was repeated, with stirring for just 3 hours this time and a mixture of both 

acetal compound 3.5 and desired acid 1.90 was seen in the crude mixture of product 
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(scheme 3.8). This time the 13C NMR spectrum showed two carbons at around 220 ppm, 

and four ester peaks were seen, in addition to four alkene carbon signals. Mass spectral 

analysis also indicated that both compound 3.5 and 1.90 were present, with compound 3.5 

as the major product, as observed in 13C NMR spectrum. It was possible that the formation 

of 3.5 occurred due to the strain in the cyclopentanone ring, which could be relieved 

through attack of ethanol to provide a sp3 centre at the initial ketone carbon. 
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Scheme 3.8 NaOH mediated methyl ester hydrolysis of 1.88  

Crude product 1.90 was used without further purification owing to the scale of the reaction, 

and difficulties in column chromatography caused by co-elution of the products. The next 

step in the synthesis involved activation of the monoacid with pivaloyl chloride using a 

known method (scheme 3.9).68,27 
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Scheme 3.9 Activation of monoacid 1.90 pivaloyl chloride  

The 1H NMR spectrum of the crude mixture looked promising, as a prominent singlet was 

seen at approximately 1.0 ppm (possibly from the -C(CH3)3) and starting material 1.90 was 

also detected. However, purification of the compounds proved to be surprisingly difficult 

by flash chromatography. The compounds could not be separated on the column, with only 
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about 20% material recovered upon stripping the column with EtOAc. Our attention then 

turned to using reverse phase chromatography. The underlying idea for using reverse phase 

chromatography was that this would provide good separation of the monoacids 3.5 and 

1.90, from the anhydride product 1.92, if the column was eluted with a basic elutent. The 

base would react with the acids and ‘charge’ the molecules, making them very polar. This 

would increase the polarity of the acids and thus elute them in the most polar solvent 

mixture used (acetone: 2% NH3 (aq) solution 50:50 mixture). This would keep the desired 

compound 1.92, in the column, adhered to the reverse phase beads, which would later elute 

with a less polar solvent system. The solvent mixture used were acetone: 2% NH3 (aq) 

solution, 1:1 mixture, acetone: 2%NH3 (aq.) solution 75:25, mixture and 100% acetone.  

The fraction of 1:1 acetone: 2% NH3 solution appeared to contain most material, with 1H 

NMR spectral data indicating presence of starting materials and another minor compound. 

This method turned out to be quite complex and it seemed that separation of the desired 

compound would prove to be quite tedious and time-consuming. At this point other 

methods for forming the desired diazo compound 1.94 were investigated.  

 

3.2.2 Method 2 – via LDA mediated diazo reaction on 1.86 
 
An alternative method of accessing the diazo ketone 1.94, which was investigated involves 

direct installation of the diazo ketone moiety via alkylation of α-bromo diazo ketone 3.7, 

with cyclopentanone derivative 1.86. This method was appealing since it removed two 

steps from the initial planned synthesis. Formation of the diazo methyl derivative 3.7 (80% 

yield) was achieved through preparation of diazomethane then reacting it with bromo acetyl 

bromide 3.6 (scheme 3.10), using a reported procedure.69  

 

Br

O
Br

CH2N2
O

Br

3.73.6

N2

 
Scheme 3.10 Diazo reaction of bromo acetyl bromide (3.6) 
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The reaction was successful and the 1H NMR spectrum showed the formation of the desired 

compound 3.7 (60%) along with another compound present in approximately 20% yield. 

The 1H NMR spectrum showed the minor compound had two doublets at around 3.5 ppm, 

leading to our conclusion that the protons were held in a rigid framework (most probably in 

a cyclic system) and a singlet at 3.12 ppm hinted that a proton might be next to a bromine 

atom. The high-resolution mass spectral data of these products confirmed that both the 

compound 3.7 and the minor compound had the same molecular formula and the signals 

were indicative of two bromine isotopes 79Br and 81Br, present in the molecule. Based on 

this, we deduced that the structure of the unknown is probably 3.8, although a feasible 

mechanism could not be derived for its formation. 

3.8

N N

O

H
H

Br
H

 
Figure 3.1 Cyclic diazo compound 3.8 

 

The diazo compound 3.7 was then reacted with alkylated cyclopentanone 1.86 (scheme 

3.11) in an attempt to form diazo derivative 1.94.  
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Scheme 3.11 Attempted formation of diazo compound 1.94 

Similar substitution reactions, had been performed by Padwa and co-workers, whereby they 

compared the reactivity of diazo derivative 3.9 with various nucleophiles (scheme 3.12).70 
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Scheme 3.12 Reported substitution reaction of diazo compound 

The base used by Padwa, was sodium hydride, but since our substitution needed to occur at 

the unsubstituted α-position, our first attempt used LDA as a base instead of sodium 

hydride. Unfortunately, the diazo compound 3.7 appeared to decompose in the presence of 

LDA. This was apparent as the colour of the solution turned to red-brown as soon as the 

compound 3.7 was added. The 1H NMR spectral data from the reaction showed the 

presence of starting material 1.86 and by-product 3.8 with no traces of compound 3.7.  

We then investigated the use of sodium hydride as a base for this reaction, using the 

method reported by Padwa.70 However, this method was also unsuccessful, with both the 

starting material 1.86 and 3.7 recovered. Another uncharacterised compound was isolated 

in trace amounts from the purification. Given that many issues from original pathway relied 

on selective hydrolysis of similar esters, we decided to use a system with ester functions of 

greater orthogonality then ethyl and methyl esters. Thus the tert-butyl ester was used in 

place of ethyl ester in the initial cyclopentanone derivative.   

 

3.2.3 Method 3- via tert-butyl adipate (3.12)  

Bis-tert-butyl adipic ester was not readily available, and therefore this was synthesised from 

adipic acid via the acid chloride 3.11 (scheme 3.13). Compound 3.11 was formed (57%) by 

reacting adipic acid (3.10) with thionyl chloride by following a reported procedure.71 The 
13C NMR spectrum of the product matched the reported values,71 displaying peaks at 173.0, 

46.2 and 23.7 ppm. Subsequent treatment of 3.11 with tert-butanol using the method of 

Babler and Sarussi72 furnished 3.12 (53%) .  
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Scheme 3.13 Formation of bis tert-butyl adipate from adipic acid 

Dieckmann condensation was carried out using the method previously described for diethyl 

adipate to obtain 1.85 in 75% yield (scheme 3.14). The 1H NMR spectroscopic analysis of 

the compound 1.85 showed a triplet at 3.05 ppm corresponding to the proton at the 

substituted α-position, and a singlet integrating for 9 atoms for the tert-butyl protons at 

1.47ppm. 13C NMR, COSY and HSQC spectroscopic analysis in addition to with mass 

spectral data confirmed the structure. 
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Scheme 3.14 Dieckmann condensation of bis-tert-butyl adipate 3.12 

Product 1.85 was then subjected to sodium hydride based alkylation (scheme 3.15), using 

the method used in the formation of ethyl ester derivative 1.86. Flash chromatography was 

performed to purify the cyclopentanone derivative 1.87 (40%) and elution was possible in 

40:1 Hex: EtOAc mixture. The O-alkylated product 3.13 (5%) was also collected in the 

same solvent elution. 1H and 13C NMR spectroscopic data along with high-resolution mass 

spectral data corresponded with the product.  

 55



Br

NaH, DMF

1.85 1.87 3.13

O O O

O O O
O O O

+

 
 

Scheme 3.15 Sodium hydride mediated alkylation on compound 3.20 

Product 1.87 was then subjected treatment with LDA in order to form diester derivative 

1.89 (scheme 3.16). The LDA reaction proceeded smoothly and the method used for the 

ethyl ester derivative was employed again for this reaction. The yield obtained in this 

reaction was low (18%), as compared to the alkylation of the corresponding ethyl ester 

derivative and no double alkylation was seen. This could be due to the bulkiness of the tert-

butyl ester, hindering reaction at the α- position in the molecule. 
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1.87 1.89  
Scheme 3.16 LDA reaction of compound 1.87 

After the formation of compound 1.89 was achieved, selective hydrolysis of the methyl 

ester was carried out using NaOH. The conditions required for the cleavage of tert-butyl 

esters and methyl esters are orthogonal, thus the basic conditions would enable to 

selectively cleave only the methyl ester. The method employed,73 indicated stirring was 

necessary for  2 days. Surprisingly, the 13C NMR spectrum showed that the ketone was no 

longer present in the molecule. Instead of observing the signal from the ketone carbon at 

approximately 210 ppm, a new signal at 175 ppm was seen for the product. The 1H NMR 

showed that the methyl ester was no longer present in the molecule, both the alkene protons 

and the tert-butyl ester protons appeared unaltered. The mass spectral analysis showed that 

the compound has a molecular formula of C16H26O6. Based on these results, it was initially 

thought that the structure of the molecule could be acetal 3.14 (figure 3.2). 
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Figure 3.2 Initially proposed hydrolysis product 

However, no evidence of this acetal was seen in the spectral data, as the new carbon signal 

at 175 ppm was not at the expected place for an acetal carbon, which would have occurred 

around 90–100 ppm. Therefore it was concluded that this was possibly diacid 3.15 (figure 

3.3, obtained in 57% yield). The 13C NMR spectrum also showed that there were 

diastereomers present, as all the carbon signals appeared to double up. 13C NMR spectral 

data showed signals at 180.9 and 178.1 ppm, which were corresponded to the two acids and 

HMBC, HSQC, COSY and mass spectral data confirmed the structure to be that of diacid 

3.15 

3.15

O

O
HO

O O
OH

 
 

Figure 3.3 Corrected structure for hydrolysis product 3.15 

The mechanism for formation of compound 3.15 could be explained as shown in scheme 

3.17, after initial hydrolysis of the methyl ester.  
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Scheme 3.17 Proposed mechanism for ring opening of compound 1.91 

The anion is stabilised by the resonance form with the tert-butyl ester, which aids in the 

ring opening reaction of the hydrolysed product.  

In retrospect, it is possible that the hydrolysis of the ethyl ester derivative 1.88 could have 

resulted in a similar ring opened product, and not product 3.5 as believed previously. The 

assumed product 3.5 was not fully characterised through extensive NMR studies and could 

have had the structure as shown in figure 3.4. 
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Figure 3.4 Alternative structure for molecule 3.5 

 

Once the problems with the hydrolysis had been identified, our attention turned to ways of 

preventing this second hydrolysis from happening. The reaction time was very important in 

this reaction, as it was feasible that the ring opening reaction (Scheme 3.17) could be 

happening with prolonged reaction times. We ultimately found that reaction at 0 °C for 3 

hours enabled good formation of product, with only trace amounts of starting material 

remaining. The 13C NMR spectrum clearly showed the presence of ketone peak at 213.7 

ppm and 214.2 ppm (due to distereoisomers), and the mass spectral data of this material 

suggested that the product was compound 1.91 (figure 3.5). 

1.91

OHO

O O

O

 
Figure 3.5 Hydrolysis product  

 

 

Once it was fully deduced that this was the desired product; it was subjected to the reported 

pivaloyl chloride reaction,68 in order to form the mixed anhydride derivative 1.93 (figure 

3.6). However, this reaction did not seem to work, as none of the desired compound 1.93 

was evident from the mass spectral results. This could be due to the steric hinderance, 

inflicted by the highly substituted cyclopentanone.  
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Figure 3.6 Attempted pivaloyl chloride reaction on 1.91 

The next approach for the formation of the mixed anhydride was to use methyl 

chloroformate, using the procedure employed by Fadel and colleagues.74 It was envisaged 

that as the pivaloyl group is quite bulky, this could have prevented the anhydride from 

forming and thus the use of a smaller group could enhance the anhydride formation (figure 

3.7). However, even this reaction did not seem to work as the mass spectral data indicated 

the presence of starting material only. At this point, it became clear that the formation of 

anhydride derivatives of acid 3.16 might not possible most probably due to the high degree 

of steric hinderance. 
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Figure 3.7 Attempted methyl chloroformate reaction of 1.91 

Since we could not purify any compound due to the small reaction scale, in order to test if 

any of the (so far undetected) methyl and pivaloyl anhydride had formed, the product from 

these reactions was subjected to treatment with diazomethane (scheme 3.18). If any of these 

anhydrides were present then the diazo compound 1.95 would form and could be easily 

characterised by 1H NMR spectroscopic data.    
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Scheme 3.18 Proposed diazomethane reaction on anhydrides 1.93 and 3.16 

 

The 1H NMR spectrum of the crude product corresponded to compound 1.89. This 

provided further evidence that the compound 1.93 and 3.16 did not form and so the acid 

1.91 simply underwent methylation, which is typical reaction of carboxylic acid with 

diazomethane (scheme 3.19).75,76  
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Scheme 3.19 Diazomethane as a methylating agent 

At this point, attempts to carry the research further was suspended due to time restrictions 

and our attention focused on planning further improvements which could be undertaken in 

to form the desired diazo compound and subsequent 5,5,7 ring system. 

 

 

 61



Chapter 4 Concluding Remarks and Future Work 
 
4.1 Conclusion 
 
Although, the synthesis of the 5,5,7 tricyclic ring system of daphnioldhanin A, has not been 

achieved in this research, significant advances has been achieved towards its synthesis. For 

the radical cascade approach, compound 2-methylidene cycloheptanone (2.7) has been 

achieved. It has been demonstrated that it is 2.7 is a highly reactive molecule which forms 

dimers readily, thus would not be a suitable precursor for the radical approach towards 

daphnioldhanin A synthesis.  

 

For the CCCC approach, the formation of monoacid 1.91 has been achieved successfully 

over a series of steps starting from adipic acid 3.10. The results obtained from reactions 

done on compound 1.91 indicated that a different approach should be taken from this point 

in the synthesis and a few of these routes are discussed later in this section. 

 

 

4.2 Future Work 
The radical approach could be exploited more to see the feasibility of this reaction in 

forming the core of the daphnioldhanin A. However, since 2-methylidene cycloheptanone 

(2.7) is so reactive, another intermediate must be employed to carry out these reactions. 

Hence, we believe it is not feasible to pursue the radical reactions through this compound 

and another approach must be sought. 

However, for the CCCC approach, the difficulties with this methodology arose from the 

failure to form the anhydride derivative of acid 1.91. The acid chloride derivative of acid 

1.91 might be a suitable alternative precursor for diazo compound 1.95, which could avoid 

this problem. The chloride group of the acid chloride 4.1 is smaller than the anhydride 

derivatives targeted during this research, thereby reducing the unfavourable steric 

interactions due to the bulky methyl and pivaloyl anhydride groups.  Acid chlorides have 

been used previously by researchers, to activate acid precursors for CCCC approach.77 
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Scheme 4.1 Alternative CCCC approach to compound 1.100  

 

The tert-butyl ester is used in this reaction in order to drive the stereochemistry of the 

methyl ester and the butene group, to being on the same face of the molecule. This 

stereochemistry is essential for the preferred CCCC reaction to take place in order to form 

compound 1.100.  

Another approach might involve hydrolysis of the tert-butyl ester group and then 

subsequent decarboxylation of the resulting acid after the stereochemistry of the tethers has 

been set. The hydrolysis of the tert-butyl ester would be selective, since the hydrolysis of 

the methyl and the tert -butyl ester is orthogonal and thus by using a strong acid, such as 

TFA, the selective hydrolysis of the tert-butyl ester could be undertaken. Decarboxylation 

of the resulting acid could be achieved via, Barton-McCombie radical methods. The 

removal of this bulky tert-butyl ester could help to reduce the steric hinderance and thus 

could result in successful anhydride formation.  
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Scheme 4.2 Another CCCC approach to 5,5,7 ring system of daphnioldhanin A 
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Chapter 5 Experimental 
 
5.1 General Experimental Procedures 

Unless otherwise stated, the following conditions apply. All reactions were carried out in 

oven-dried Pyrex round-bottom flasks, sealed with rubber septa, and stirred with a Teflon-

coated magnetic stir-bar.  All the radical reactions were carried out under argon in flame-

dried glassware. Addition of liquid reagents was achieved using syringes fitted with flame-

dried needles or disposable needles.  For reactions where heating was required, oil baths 

were used. Reactions at 0 °C were achieved using ice baths, and reactions at –78 °C were 

maintained using dry ice with acetone bath, enclosed in a thermostat container. For reaction 

at -40 °C, acetonitrile with dry ice bath was used. 

Solvents were removed using a Büchi Rotary evaporator also referred to as ‘under reduced 

pressure’. Rotary evaporation took place in a water bath (20–30 ºC).  High-vacuum rotary 

evaporation was achieved using a Büchi Rotavapor RE-111 fixed with a vacuum pump (ca. 

2 mm Hg)  

Room temperature (r.t.) was assumed to be approximately 20 ºC. Anhydrous magnesium 

sulphate was used as the drying agent in all the experiments, unless otherwise stated. 

THF and diethyl ether used for reactions were freshly distilled over sodium wire, under 

argon. Dichloromethane used for reactions was distilled over calcium hydride. 

Diisopropylamine and triethylamine were distilled from sodium hydroxide and toluene (dry 

and distilled from Na) was used for the radical reactions. Acetone used for reactions was 

distilled from potassium carbonate. All other reagents used were of commercial quality and 

used without further purification. 

Reaction progress was monitored using aluminium-backed TLC plates coated with silica 

gel 60 and products were detected using iodine dip, UV radiation at 254nm and an acidic 

solution of anisaldehyde.  
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Fractional distillation and flash column chromatography were used for the purification of 

products. Silica gel 60 was used for flash chromatography and solvents systems used were 

composed of hexanes:ethyl acetate in the ratios indicated in the relevant procedures. The 

retention factor (Rf) was derived from the distance of the substance’s travel as compared to 

the solvent front, upon a TLC plate.  

¹H and ¹³C spectra were obtained on a Varian Innova 300 instrument, running at 300 MHz 

for ¹H and 75 MHz for ¹³C or an Innova 500 instrument, running at 500 MHz for ¹H and 

125 MHz for ¹³C. All samples were run in CDCl3 and referenced to solvent peaks (7.26 

ppm for ¹H) and (¹³C at 77.0 ppm ¹³C). NMR data has been recorded as follows: Chemical 

shift (δ, parts per million, ppm), peak multiplicity (multiplet (m), singlet (s), doublet (d), 

triplet (t), quadruplet (q) or a combination of these), coupling constants (J expressed in 

Hertz). 2D spectral data (COSY, HSQC, HMBC) was also obtained in addition to 1D 

spectral data.  

All HRMS (mass spectroscopy) data was obtained on a Micromass Q-TOF Premier mass 

spectrometer.  

Infrared spectra were obtained on a Bruker tensor 27 FTIR spectrometer. The samples were 

analysed neat.  

Degassing of the samples for radical reactions took place in a Unisonics FX P8 Sonicator, 

within a water bath, at room temperature.  
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5.2. Synthesis of Radical Approach Precursors 

5.2.1.   2-(diethylamino) methyl cycloheptanone (2.19) 

O

CH3COOH

O
(CH3CH2)2NH.HCl, 
HCHO

N

2.8 2.19  

As reported by Lee and co-workers,46 cycloheptanone (1 eq., 11.8 mL, 0.100 mol)  and 

diethylamine hydrochloride salt (1 eq., 10.97 g, 0.100 mol) was taken and formaldehyde 

(1.2 eq., 3.71 mL, 0.120 mol) added to it. Conc. HCl (0.5 mL) was then added to the 

reaction mixture and the solution was refluxed for 3 hours, after which it was allowed to 

cool down to r.t. The reaction mixture was then washed with Et2O (100 mL) and then 

basified using 2M KOH solution to a pH of 10-12.  The upper organic layer was then 

removed and the aqueous layer extracted twice with diethyl ether (2 x 100 mL). The 

organic layers were combined, washed with brine solution (2 x 50 mL) and dried. The 

ethereal solution was concentrated under reduced pressure. Distillation under vacuum 

afforded 14.8 g of product in 75% yield as colorless oil (116 ºC, 10 Torr). In subsequent 

reaction, the crude product was not purified and used as crude product. 

 1H NMR: δ 2.74–2.61 (m, 2H), 2.40–2.53 (m, 6H), 2.31 (d, 1H, J = 5Hz), 2.00–1.51 

(complex m, 6H), 1.41–1.17 (complex m, 2H), 0.97 (t, 6H, J = 7 Hz, -NCH2CH3) 13C 

NMR: δ 215.9, 54.7, 50.9, 47.4, 43.9, 43.5, 29.5, 29.4, 28.6, 11.7    

IR (cm-1): 2966, 2925, 2853, 2800, 1698, 1453, 1381, 1202, 1069, 934. 

Mass Spec: HRMS-ESI (m/z): [M+H]+ calculated for C12H23NO + H+, 198.1780; found 

198.1853. 
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5.2.2 2-methylene cycloheptanone (2.7) 
 
Method A 44 

O

CH3COOH

O

Piperidine, HCHO

2.8 2.7  

To a solution of cycloheptanone (1 eq., 6.2 mL, 0.05 mol) in MeOH (50 mL), was added 

formaldehyde (1.2 equiv, 37% solution in water, 5.5 mL), piperidine (0.25 mL, cat.) and 

AcOH (0.25 mL, cat.). This was refluxed for two days after which the reaction mixture was 

cooled down and then extracted with Et2O (2 x 50 mL). The organic layer was then washed 

with saturated brine solution (2 x 25 mL) and dried. Pale yellow oil was obtained (4.2 g), 

which was a 2:1 mixture of 2.8 and 2.7 as determined by 1H NMR spectral data. 

 

 Method B 

O

N
  MeI O

N I

O
 AgNO3 .

2.19 2.7  

Adapted from Szmuszkovicz,49 MeI (1.2 eq., 1.00 g, 0.007 mol) was added to amino-

cycloheptanone 2.19 (1 eq., 1.00 g, 0.005 mmol.) and this was left to react in the dark for 

two days. Product formed was seen to be a brown viscous liquid, containing 2-

(diethylamino)methyl-cycloheptanone iodide. The product was then washed with Et2O (2 x 

30 mL), and dissolved in 30 mL MeOH: 7 mL H2O mixture. Ag2O (2.3 g, 0.01 mmol) was 

added to it and the mixture was then stirred vigorously overnight. MeOH was removed 

from the reaction mixture and the mixture extracted using Et2O (2 x 40 mL), after which 

the organic layer was dried and concentrated under reduced pressure. The product was 

obtained as a yellow oil (0.32 g), which was a complex mixture of unidentified products 

including 2.7 (approximately 20%) as observed in the 1H NMR spectrum.  
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Method C 

mCPBA, CH2Cl2
OO

N

2.19 2.7  
 

A procedure similar to one previously reported was used,50 whereby crude amine 

compound 2.19  (1 eq., 0.50 g, 2.75 mmol) was taken in CH2Cl2 (20 mL) and treated with 

mCPBA (1.5 equiv, 70% in meta-chlorobenzoic acid and H2O, 1.01 g). The reaction was 

stirred at r.t. overnight and worked up by washing with dilute HCl (30 mL) and then with 

NaHCO3 solution (30 mL, aq.) to remove excess mCPBA. The organic layer was then 

washed with brine solution (30 mL), dried and concentrated to liberate pale yellow oil. 2-

Methylidene cycloheptanone 2.10 was purified using Kugelrohr distillation. (75–80 °C at 

13 Torr) resulting in 70% (0.24 g) of product 2.7 as a colorless liquid. The spectral data 

results were consistent with the previously reported results.39 

1H NMR: δ 5.92 (s, 1H, -CH=CHH, cis to carbonyl), 5.20 (s, 1H, -CH=CHH, trans to 

carbonyl), 2.56 (d, 2H), 2.45 (d, 2H), 1.67–1.63 (complex m, 6H). 13C NMR: δ 203.8, 

148.3, 122.5, 43.4, 33.8, 31.3, 30.5, 25.3. 

 IR (cm-1): 3003, 2926, 2360, 2341, 1711, 1420, 1359, 1219, 1091, 901. 

 

5.2.3 1-methoxy cycloheptene (2.24) 
 

O
HC(OMe)3. MeOH OMeMeO OMe

2.11 2.23 2.24

Δ

PTSA

 

Adapted from Shishido and collegues,78 a solution of  cycloheptanone (1 eq., 3.16 mL, 26.7 

mol), HC(OMe)3 (6.3 eq. 17.76 g, 167.9 mmol) and PTSA (0.07 eq., 0.36 g) in  dry MeOH 
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(26 mL) was refluxed under nitrogen for 30 minutes. An extra portion of PTSA (0.07 eq.) 

was added to the flask and then it was allowed to cool down. The reaction mixture was 

extracted using Et2O (2 x 70 mL), washed with brine (50 mL) and dried. The organic layer 

was concentrated to produce dimethoxycycloheptane (2.23). Distillation of the crude 

product at atmospheric pressure (155-165 ºC) gave the desired product 1-methoxy 

cycloheptanone (2.24) as a colorless oil in 60% overall yield. The NMR data were 

consistent with one reported previously.79 

2.23:  1H NMR: δ 3.28 (s, 6H), 1.72 (s, 4H) and 1.50 (s, 8H) 

2.24: 1H NMR: δ 4.69 (t, 1H, J = 7 Hz), 3.42 (s, 3H), 2.24 (t, 2H,J = 5Hz), 2.06 (q, 2H, J = 

4 Hz), 1.72–1.64 (complex m, 2H) and 1.56–1.43 (complex m, 4H) 13C NMR: δ 162.0, 

96.4, 54.2, 33.8, 32.2, 28.2, 25.6, 25.4 

 

5.2.4 Representative procedure for Radical reactions: 

Br

Bu3SnH
ACN
PhMe

2.25

2.26

2.27

 

To a refluxing solution of styrene (1 eq.) and bromobenzene (0.8 eq.) in toluene (2mL per 

mmol of styrene), was added Bu3SnH (1.5 eq.) and ACN (0.5 eq.) in toluene (0.2 mL per 

mmol of Bu3SnH) through a syringe pump at a rate of 3 mL per hr and refluxed for an 

additional 3 hours. The reaction was then cooled down KF (2 eq.) added to it and this was 

left stirring at r.t. overnight. The reaction was worked up by removing toluene under 

reduced pressure, followed by dilution of the reaction mixture with Et2O (20 mL). The 

ethereal layer was then washed with water (15 mL) and brine (10 mL) and dried using 

magnesium sulfate, to yield a yellow oil, which was characterized to be diphenyl methane 

(50%).  

The same procedure was applied for radical reaction involving the methylidene compound 

2.7 and methoxy compound 2.24    
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5.3 Synthesis of Carbene Cycloaddition Cyclisation Cascade precursors 

5.3.1 Synthesis of ethyl 1-(2-oxo) cyclopentane carboxylate (1.84) 

O
O

O

O

tBuOK

3.1 1.84

O

O

O
PhMe

 

Adapted from Pinkney et al.,63 diethyl adipate 3.1 (1 eq., 5.12 g, 25.2 mmol) was added to 

dry, degassed toluene (25 mL) in a reaction flask, and  tBuOK (1.5 eq., 4.24 g, 37.8 mmol) 

was added. The reaction mixture was refluxed under argon for 3 hours. During the course 

of the reaction, additional toluene (100 mL) was added and the temperature maintained 

between 115–120 °C to prevent the formation of solid material. The reaction was quenched 

by, cooling in an ice bath and 10% AcOH (aq.) (25 mL) was added. 

The toluene layer was separated and washed once with water (50 mL), twice with 30 mL 

cold 7% Na2CO3 solution and then again with water (50 mL). The organic layer was 

washed with brine (50 mL), dried and reduced under pressure. Product 1.84 was obtained 

as yellow oil  (1.52 g) in 42% yield, and used without further purification. 

1H NMR: δ4.20 (q, J = 7Hz, 2H, -CO2CH2CH3), 3.15 (t, J = 9Hz, 1H, -COCHCO), 2.35–

2.28 (complex m, 4H), 2.18–2.10 (m, 1H), 1.92–1.82 (m, 1H), 1.29 (t, J = 8Hz, 3H, -

CO2CH2CH3)  

13C NMR: δ 212.5, 169.4, 61.4, 54.8, 38.1, 27.4, 21.0, 14.2. 
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5.3.2 Synthesis of ethyl 1-(but-3-ene) (2-oxo) cyclopentane carboxylate (1.86) 
 

O

EtO
O

O

EtO
O

NaH, Br

anhydrous DMF

O

EtO
O

1.84 1.86 3.2  

Using a modified procedure,65 NaH (1.2eq., 0.102 g, 4.26 mmol, 60% dispersion in mineral 

oil) was washed with hexanes (30 mL) and dried under high vacuum. This was then placed 

under an argon atmosphere and 20 mL of anhydrous DMF added. Compound 1.84 (1 eq., 

0.504 g, 3.46 mmol) was added to the reaction vessel and stirred until all the NaH had 

reacted. 4-Bromobut-1-ene (1.2 eq., 0.572 g, 4.15 mmol) was then added dropwise, the 

reaction was then stirred at 80 °C overnight. DMF was removed under reduced pressure 

and the reaction mixture was extracted twice with Et2O (2 x 40 mL). The ethereal layer was 

washed with NaHCO3 solution (30 mL) and brine (30 mL). The organic layer was then 

dried with magnesium sulfate and concentrated under vacuum. Flash chromatography 

(Hex: EtOAc 40:1) of the crude product separated out both C- and O- alkylated compounds 

1.86 and 3.2.  

Compound 1.86 was collected as colourless oil (Rf  = 0.5, 0.46 g, 65%) 

 1H NMR: δ5.82-5.74 (m, 1H -CH=CH2), 5.01 (d, 1H, J = 17 Hz, -CH=CHH), 4.96 (d, 1H, 

J = 10 Hz, -CH=CHH), 4.14 (q, 2H, J = 7 Hz, -CO2CH2CH3), 2.58–2.52 (m, 1H), 2.45–

2.37 (m, 1H), 2.31–2.22 (m, 1H), 2.35–1.87 (complex m, 6H), 1.69–1.63 (m, 1H), 1.25 (t, 

3H, J = 7 Hz, -CO2CH2CH3) 

13C NMR: δ 214.8, 170.9, 137.7, 115.1, 61.4, 60.2, 38.0, 33.0, 32.8, 29.1, 19.6, 14.1 

IR (cm-1): 2972, 1699, 1715, 1453, 1296, 1251, 1142, 912,827. 

Mass Spec: HRMS-ESI (m/z): [M+ Na]+ calculated for C12H18O3 + Na+
, 233.1154; found 

233.1154. 
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Compound 3.2 (ethyl 1-(2-but-3-enoxy) cyclopentane carboxylate) (Rf = 0.23, 0.04g, 5%) 

3.2: 1H NMR δ 5.91–5.81 (m, 1H, -CH=CH2), 5.14 (d, 1H, J = 17Hz, -CH=CHaHb), 5.09 

(d, 1H, J = 10 Hz, -CH=CHaHb), 4.17(q, 2H, J = 7 Hz, -CO2CH2CH3), 4.06(t, 2H, J = 

7Hz), 2.63 (t, 2H, J = 7Hz), 2.56 (t, 2H, J = 7Hz), 2.48 (q, 2H, J = 14Hz), 1.85 (m, 2H), 

1.28 (t, 3H, J = 7Hz) 

13C NMR δ 168.1, 165.4, 133.9, 117.4,104.6, 69.8, 59.3, 34.2, 31.6, 29.3, 19.3, 14.4 

IR (cm-1): 3005, 1711, 1420, 1358, 1220, 1092. 

Mass Spec: HRMS-ESI (m/z): [M+ Na]+ calculated for C12H18O3 + Na+, 233.1154; found 

233.1151 

 

5.3.3 Synthesis of ethyl, 1-(but-3-ene) (2-oxo-3-methylacetyl) cyclopentane carboxylate 
(1.88) 

O

O
O

Br
O

OMe

THF

O

O
O

OO

O

O
O

CH2CO2MeMeO2CH2C

1.86 1.88

LDA,

3.3  

Adapted from  Tzvetkov et al.,66 iPr2NH (1.2 eq., 0.24 mL, 1.70 mmol) was dissolved in 

THF (3 mL) under argon and cooled down to -78°C. n-BuLi (1.2 eq., 1.14 mL, 1.6 M 

solution in hexanes) was then added to the reaction vessel and this was stirred at –78 °C for 

one hour. The reaction flask was warmed up to –40 °C and compound 1.86 (1 eq., 0.29 g 

1.42 mmol in 2 mL THF) was added and stirred at this temperature for one hour. Methyl 

bromoacetate (1.2 eq., 0.13 mL, 1.70 mmol) was then added, stirred at –40 °C for 30 

minutes, and then was allowed to warm to r.t. overnight. THF was then removed under 

reduced pressure and the crude mixture was extracted with Et2O (20 mL). This was then 

washed with water (10 mL) and brine solution (10 mL).  The organic layer was then dried 
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and reduced under vacuum. Flash chromatography (Hex: EtOAc 20:1) provided compound 

1.88 and compound 3.3  

Compound 1.88 was collected as colourless oil (Rf = 0.28, 0.11 g, 27%) (mixture of 

diastereoisomers) 

 1H NMR: δ 5.73–5.65 (m, 1H, –CH=CH2), 4.97 (d, 1H, J = 15 Hz, -CH=CHH), 4.88 (d, 

1H, J = 11Hz, -CH=CHH), 4.09 (q, 2H, J = 10Hz, -CO2CH2CH3), 3.61 (s, 3H, -CO2CH3), 

2.67–2.76 (m, 1H), 2.67–2.19 (m, 2H), 2.05–1.78 (complex m, 5H), 1.76–1.58 (complex m, 

3H), 1.18  (t, 3H, J = 7Hz, -CO2CH2CH3). 13C NMR δ: 214.1, 213.5, 172.3, 172.2, 171.2, 

170.6, 137.7, 137.5, 115.2, 115.1, 61.5, 61.4, 60.2, 59.5, 51.8, 45.8, 45.4, 34.6, 34.1, 33.8, 

32.6, 31.1, 30.3, 29.1, 29.0, 27.0, 26.4, 25.6, 14.1,14.1. 

IR (cm-1):  3004, 3001, 1710, 1448, 1428, 1420, 1359, 1218, 956. 

Mass Spec: HRMS-ESI (m/z): [M+ Na]+ calculated for C15H22O5 + Na+, 305.1365; found 

305.1357 

 Compound 3.3 (ethyl, 1-(but-3-ene) (2-oxo-bis-3,3-dimethyl acetyl) cyclopentane 

carboxylate) was collected as a colorless oil (Rf = 0.25, 0.02 g, 5%) 

 1H NMR: δ 5.81–5.75 (m, 1H, -CH=CH2), 5.03 (d, 2H, J = 18 Hz, -CH=CHH), 4.96 (d, 

2H, J = 10Hz, -CH=CHH), 4.20 (q, 2H, J = 7Hz, -CO2CH2CH3), 3.65 (s, 3H, -CO2CH3), 

3.63 (s, 3H, -CO2CH3), 2.70–2.59  (m, 3H, -CHH + -CH2), 2.61 (d, 1H, J = 18Hz, -CHH), 

2.65 (m, 1H), 2.28–2.21 (m, 1H), 2.12 (dd, 2H, J = 10 Hz, J = 7Hz, -CH2CH=CH2), 2.04 

(q, 2H, J = 7.5 Hz), 1.89–1.83 (m, 1H), 1.69–1.59 (m, 1H), 1.25 (t, 3H, J = 7Hz, -

CO2CH2CH3). 

13C NMR: δ 214.3, 170.9, 170.8, 170.0, 137.6, 115.1, 61.7, 61.0, 51.8, 51.7, 49.4, 39.9, 

39.2, 35.1, 29.7, 29.4, 29.2, 14.1. 

Mass Spec: HRMS-ESI (m/z): [M+ Na]+ calculated for C18H26O7 + Na+, 377.1577; found 

377.1576. 

IR (cm-1):  3004, 3002, 2997, 1710, 1450, 1428, 1420, 1359, 1220, 1156, 820,  
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5.3.4 Synthesis of bis-adipic acid chloride (3.11) 

HO

O
OH

O

SOCl2
Cl

O
Cl

O

3.10 3.11  

 

Adapted from the method of Lees71, adipic acid (1 eq., 6.00g, 41.1mmol,) and thionyl 

chloride (2.8 eq. 8.39 mL, 115 mmol) were heated at reflux for 2 hours. The NMR data 

correlated well with the literature data.71 4.3 g of product 3.11, as yellow oil was obtained 

in 57% yield and used for the next reaction without purification.  

1H NMR: δ 2.12 (s, 4H), 1.56 (s, 4H),  

13C NMR: δ 173.3, 46.4, 23.7 

 

5.3.5 Synthesis of bis  tert-butyl adipate (3.12)72 

 

Cl

O
Cl

O
O

O
O

O

3.11 3.12

tBuOH

DMA

 

Adipic acid chloride 3.17 (1 eq., 3.00 g, 16.4 mmol) in 5 mL anhydrous Et2O was added 

over 5 minutes to a stirring solution of tBuOH (3.25 equiv, 5.09 mL, 53.3 mmol) and DMA 

(3.25 eq., 6.75 mL, 53.3 mmol) in 10 mL of anhydrous Et2O. The reaction mixture was 

stirred vigorously at room temperature over 2 days, then it was diluted with 10% NaCl 

solution (50 mL) and the product isolated after extraction with Et2O (50 mL). The organic 

layer was then washed with 3:1 2M aqueous HCl-saturated brine solution (2 x 50mL), 

 75



followed by washing with 3:1 1M aqueous NaOH-saturated brine solution (1 x 50mL) and 

finally with saturated brine (50 mL). The organic layer was then dried and reduced under 

vacuum to afford 2.23g (53%) of 3.12. The product was obtained as light yellow oil, which 

solidified upon cooling. The NMR data matched with that reported previously72 and this 

compound was used in the next step without  further purification.  

1H NMR: δ 2.24–2.20 (complex m, 4H), 1.62–1.58 (complex m, 4H), 1.44 (s, 18H)  

13C NMR: δ172.8, 80.1, 35.2, 28.1, 24.5.  

 

 5.3.6 Synthesis of tert-butyl (2-oxo)- cyclopentane carboxylate (1.85) 

 

O

O
O

O PhMe

KtOBu

3.12 1.85

O

O

O

 

Compound 3.12 (1 eq., 2.23 g, 8.66 mmol) and potassium tert-butoxide  (1.5 eq., 1.46 g, 

13.0 mmol) were taken in 25 mL toluene and subjected to Dieckmann condensation using 

conditions described for the synthesis of compound 1.84. Compound 1.85 was collected as 

yellow oil after work-up (1.2 g) in 75% yield. 

1H NMR: δ 3.04 (t, J = 9Hz, 1H, -COCHCO2
tBu), 2.30–2.23 (complex m, 4H), 2.10 (m, 

1H), 1.88–1.76 (m, 1H), 1.46 (s, 9H, -CO2(CH3)3). 

13C NMR: δ 212.9, 168.7, 81.7, 55.7, 38.1, 28.0, 27.4, 20.9. 

IR (cm)-1: 2976, 1752, 1717, 1650, 1368, 1256, 1146.5, 912, 843, 729. 

Mass Spec: HRMS-ESI (m/z): [M+ Na]+ calculated for C10H16O3 + Na+, 207.0998; found 

207.0995 
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5.3.7 Synthesis of tert-butyl 1-(but-3-ene)-(2-oxo) cyclopentane carboxylate (1.87)  

O

O

O Br

NaH, DMF

O

O

O
O

O

O

1.85 1.87 3.13

+

 

Compound 1.85 (1 eq., 0.512 g, 2.72 mmol) was reacted with NaH (1.2 eq., 0.078 g, 3.26 

mmol) and 4-bromo-but-1-ene (1.2 eq., 0.33 mL, 3.26 mmol) using the reaction conditions 

and work-up procedure as described for the synthesis of 1.86. Pure compound 1.87 and 

3.13 were obtained after flash chromatography in 40: 1 Hex: EtOAc 

Compound 1.87 collected as light yellow oil (Rf = 0.53, 0.22 g, 40%) 

1H NMR: δ 5.82–5.74 (m, 1H -CH=CH2), 5.02 (d, 1H, -CH=CHH), 4.95 (d, 1H, -

CH=CHH), 2.49–2.38 (complex m, 2H), 2.25–2.09 (complex m, 2H, -CH2CH=CH2), 2.10–

1.84 (complex m, 4H), 1.67–1.56 (complex m, 2H), 1.44 (s, 9H, -CO2 (CH3) 3) 

13C NMR: δ 215.2, 170.2, 137.9, 114.9, 81.7, 60.7, 37.9, 33.0, 32.8, 29.1, 27.9, 19.6 

IR (cm)-1:  2974, 1748, 1715, 1453, 1368, 1251, 1142, 912, 846 

Mass Spec: HRMS-ESI (m/z): [M+ Na]+ calculated for C14H22O3 + Na+, 261.1468; found 

261.1469 

Compound 3.13 was collected as light yellow oil (Rf = 0.38, 0.03 g, 5%) 

 1H NMR: δ 5.86 (m, 1H, –CH=CH2), 5.11 (d, 1H J = 17Hz, (d, 1H, -CH=CHH), 5.08 (d, 

1H, J = 10 Hz, -CH=CHH), 4.03 (t, 2H, J = 7Hz, -OCH2CH=CH2), 2.62 (t, J = 7Hz, 2H), 

2.52 (t, 2H, J = 7Hz), 2.47 (q, 2H, J = 8Hz, -OCH2CH2CH), 1.81(complex m, 2H), 1.48 (s, 

9H, CO2 (CH3) 3)) 

13C NMR: δ 166.9, 165.0, 133.9, 117.3, 106.1, 79.1, 69.6, 34.2, 31.6, 29.6, 28.4, 19.2. 

IR (cm)-1: 3004, 1710, 1420, 1358, 1220, 1092, 902. 
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Mass Spec: HRMS-ESI (m/z): [M+ Na]+ calculated for C10H14O3 + Na+, 261.1468; found 

261.1462. 

 

5.3.8 Synthesis of tert-butyl 1-(but-3-ene, 2-oxo, 3-methyl acetyl) cyclopentane carboxylate 

(1.89) 

 

O

O

O BrH2C OMe

O
O

O

OO

MeO
LDA, THF

1.87 1.89

 

 

Adapted from  Tzvetkov et al.,66 iPr2NH, (1.2 eq., 0.06 mL, 0.40 mmol) was dissolved in  

THF (3 mL) under argon and cooled down to -78°C. n-BuLi (1.2 eq., 0.22 mL, 0.40 mmol, 

1.6 M solution in hexanes) was then added to the reaction vessel and this was stirred at –78 

°C for one hour and then warmed up to –20 °C and left stirring for another 30 minutes.  

Compound 1.87 (1 eq., 0.08 g, 0.34 mmol in 2 mL of THF) was added and stirred at this 

temperature for one hour. Methyl bromoacetate (1.2 eq., 0.04 mL, 0.40 mmol) was then 

added, with stirring and then allowed to warm up to r.t. overnight. THF was then removed 

under reduced pressure and the crude mixture was extracted with Et2O (25 mL). This was 

then washed with water (10 mL) and brine (10 mL).  The organic layer was then dried and 

concentrated under reduced pressure. Flash chromatography (Hex: EtOAc 20:1) gave 

compound 1.89 (Rf =0.41, 0.02 g, 18%) in addition to the starting material (60%). 

1.89: 1H NMR: δ5.87–5.73 (m, 1H, -CH=CH2), 5.02 (d, 1H, -CH=CHH), 4.95 (d, 1H, -

CH=CHH), 3.70 (s, 3H, CO2CH3), 2.82 (dd, 2H, J = 12 Hz, 4.9Hz, -CH2CO2Me), 2.66–

2.56 (m, 1H), 2.44–2.34 (m, 1H), 2.33–2.26 (complex m, 2H), 2.19–2.10 (m, 1H,), 2.06– 

1.89 (complex m, 2H, -CH2CH=CH2), 1.84–1.62 (complex m, 2H), 1.44 (s, 9H, -CO2 

(CH3) 3) 

13C NMR (as distereoisomers): δ 214.7, 213.8, 172.5, 172.3, 170.4, 170.1, 137.9, 137.8, 

115.0, 114.9, 82.0, 81.8, 60.6, 60.2, 51.9, 51.8, 46.0, 45.2, 34.9, 33.9, 33.8, 32.5, 31.4, 30.5, 

29.0, 28.9, 27.9, 27.9, 27.2, 25.6. 
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IR (cm)-1:  3004, 1710, 1420, 1359, 1220. 

Mass Spec: HRMS-ESI (m/z): [M+ Na]+ calculated for C17H26O5 + Na+, 333.1678; found 

333.1669 

 

5.3.9 Attempted synthesis of 2- ((2-oxo) –(3-but-3-ene)-3-tert butyl carboxylate 

cyclopentane) acetic acid 

3.15

O

O

OO

MeO

1.89

1M NaOH (aq)

MeOH: H2O O

O
HO

O O
OH

1

2

3
4

57
810 11 136

9
12

 

A previously reported procedure was used,73 whereby compound 1.89 (1 eq., 26mg, 0.09 

mmol ) was dissolved in 1mL of MeOH: THF 2:1 mixture and 10% NaOH (6.64 eq., 0.43 

mL) was added to it at r.t. and the reaction was stirred overnight. The reaction was 

quenched with 0.3 mL of 10% HCl (aq.). The organic solvent was removed under reduced 

pressure and the aqueous layer was diluted with H2O (3 mL) and extracted with EtOAc 

(10mL). The organic layer was collected, washed with brine and dried with MgSO4, 

evaporated to yield, 15mg (57%) of 3.15.   

3.15: 1H NMR δ: 5.74–5.66 (m, 1H, -CH=CH2), 4.94 (d, 1H, J = 18Hz C-2 Ha), 4.88 (d, 

1H, J = 11Hz, C-2 Hb), 1.99–1.92 (m, 2H, C-3 H), 2.80–2.73 (m, 1H, C-8 H), 2.69–2.61 

(m, 1H, C-9 Ha), 2.47–2.40 (m, 1H, C-9 Hb), 2.22–2.15 (m, 1H, C-5 H), 1.66–1.40 (m, 6H 

C-4 H2, C-6 H2 C-7 H2), 1.38 (s, 9H, -CO2 (CH3)3 

13C NMR δ: 180.9, 180.8, 178.1, 178.1, 175.0, 174.9, 137.8, 137.8, 115.2, 115.1, 80.6, 

80.5, 45.5, 45.4, 40.9, 40.8, 35.6, 35.4, 31.7, 31.6, 31.4, 29.6, 29.4, 29.2, 29.1, 28.1, 27.9, 

14.2. 

Mass Spec:  HRMS-ESI (m/z): [M+ Na]+ calculated for C16H26O6 + Na+, 337.1620; found 

337.1630. 
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5.3.10 Synthesis of 2- ((2-oxo)- (3-but-3-ene) 3-tert-butyl carboxylate cyclopentane) acetic 

acid (1.91) 

O

O

OO

HO

1.91

O

O

OO

MeO

1.89

1M NaOH (aq)

MeOH: H2O

 

 

A modified previously reported procedure was used,73 whereby compound 1.89 (1 eq., 26 

mg, 0.09 mmol ) was dissolved in of MeOH: THF 2:1 (1 mL) mixture and 10% NaOH (6.6 

eq., 0.43 mL) was added to it at 0°C. The reaction was stirred at 0°C for 3 hours (TLC 

showed trace of starting material), after which it was quenched with 0.3 mL of 10% HCl 

(aq.). The organic solvent was removed under vacuum and the aqueous layer was diluted 

with water (2 mL) and extracted with EtOAc (10 mL). The organic layer was collected, 

washed with brine (4 mL), dried and reduced to yield, 15mg of 1.91 (56%) as colourless 

oil. 

3.24   1H NMR: δ 5.74–5.66 (m, 1H, -CHCH2), 4.95 (d, 1H, -CHCHH, J = 17 Hz), 4.88 (d, 

1H, -CHCHH, J = 10 Hz), 2.83 (d, 2H, -CH2COOH, J = 17Hz), 2.52–2.48 (m, 1H, -

CHCH2COOH), 2.38–2.22 (complex m, 3H), 2.13–2.06 (m, 1H), 1.97–1.81 (complex m, 

2H, -CH2CH=CH2), 1.82–1.50 (complex m, 2H), 1.36 (s, 9H, -C(CH3) 3) 

13C NMR: δ 214.2, 213.7, 177.2, 177.1, 170.4, 170.0, 137.9, 137.7, 115.1, 115.0, 82.1, 

81.9, 60.6, 60.1, 45.8, 45.1, 34.8, 33.7, 32.6, 30.6, 29.0, 28.9, 27.9, 27.8, 27.1, 25.6 

Mass Spec:  HRMS-ESI (m/z): [M+ Na]+ calculated for C16H24O5 + Na+, 319.1529; found 

319.1516 
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5.3.11 Representative Procedure for mixed anhydride formation of compound 1.91 
 
 
 

1.91 1.93

OHO

OO

O
OO

OO

OO

PivCl, Et3N

 
 
 

Compound 1.91 (1 eq.) was dissolved in 0.2 mL Et2O, cooled down to 0°C and then 

pivaloyl chloride (1.5 eq.) was added to it, followed by triethyl amine (1.5 eq.). The 

reaction was warmed to r.t. over 2 hours. The reaction was then quenched with 10% acetic 

acid (0.2 mL) and the organic layer washed with water (0.2 mL) and brine (0.2 mL). The 

solvent was removed under reduced pressure to yield the starting compound 1.91. The same 

conditions were applied for the anhydride formation of 1.91 with methyl chloroformate, 

and again only starting material was obtained from the reaction.      

 

5.3.12 Synthesis of acetyl diazo bromide 3.7 
 

Br

O
Br

CH2N2
O

Br

3.6 3.7

N2

 

As reported previously,80 an ethereal solution (43 mL) of diazomethane (~0.45g, ~10.6 

mmol), was generated from 3.2 g of N-methyl- N-nitroso-p-toulenesulfonamide and was 

cooled to 0 °C. Bromoacetyl bromide (0.72 g, 3.56 mmol) in 10 mL of anhydrous Et2O was 

added slowly over 5 minutes. The reaction was then left to warm up to ambient temperature 

overnight and the ether was removed under vacuum. The residual oil contained compound 
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3.7 (0.52g), in 80% yield, including about 25% impurities. This impure compound was 

used in the next reaction without purification.  

 3.7: 1H NMR δ: 5.80 (s, 1H) and 3.84 (s, 2H) 

13C NMR δ: 187.3, 55.9, and 33.3 

IR (cm-1):  2926, 1738, 1368, 1232. 

Mass Spec: HRMS-ESI (m/z): [M+ Na]+ calculated for C3H3Br79N2O + Na+, 184.9328; 

found 184.9329 (Br79) 

 

5.3.13 Attempted diazo reaction on compound 1.86 

 

1.86 1.94

O

O

O O O O

O

Br

NaH
N2

N2  

 

 

 

To a solution of compound 1.86 (1 eq., 0.221 g, 1.05 mmol) in THF (10 mL) at 0°C, was 

added NaH (1.2 eq., 0.052g, 1.26 mmol, 60 % dispersion in mineral oil). This was stirred 

for 30 minutes at 0°C after which compound 3.7 was added to it and this was left stirring 

for 3 more hours at that temperature. The reaction was then quenched with water (20 mL) 

and extracted with EtOAc (30 mL). The organic layer was then washed with brine (10 mL), 

dried and reduced under vacuum to yield the starting compound 1.86 and 3.7. 
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