thesis_access.pdf (1.46 MB)
Download file

Automatic Design of Dispatching Rules for Job Shop Scheduling with Genetic Programming

Download (1.46 MB)
thesis
posted on 13.11.2021, 21:25 authored by Nguyen, Su

Scheduling is an important planning activity in manufacturing systems to help optimise the usage of scarce resources and improve the customer satisfaction. In the job shop manufacturing environment, scheduling problems are challenging due to the complexity of production flows and practical requirements such as dynamic changes, uncertainty, multiple objectives, and multiple scheduling decisions. Also, job shop scheduling (JSS) is very common in small manufacturing businesses and JSS is considered one of the most popular research topics in this domain due to its potential to dramatically decrease the costs and increase the throughput.  Practitioners and researchers have applied different computational techniques, from different fields such as operations research and computer science, to deal with JSS problems. Although optimisation methods usually show their dominance in the literature, applying optimisation techniques in practical situations is not straightforward because of the practical constraints and conditions in the shop. Dispatching rules are a very useful approach to dealing with these environments because they are easy to implement(by computers and shop floor operators) and can cope with dynamic changes. However, designing an effective dispatching rule is not a trivial task and requires extensive knowledge about the scheduling problem.   The overall goal of this thesis is to develop a genetic programming based hyper-heuristic (GPHH) approach for automatic heuristic design of reusable and competitive dispatching rules in job shop scheduling environments. This thesis focuses on incorporating special features of JSS in the representations and evolutionary search mechanisms of genetic programming(GP) to help enhance the quality of dispatching rules obtained.  This thesis shows that representations and evaluation schemes are the important factors that significantly influence the performance of GP for evolving dispatching rules. The thesis demonstrates that evolved rules which are trained to adapt their decisions based on the changes in shops are better than conventional rules. Moreover, by applying a new evaluation scheme, the evolved rules can effectively learn from the mistakes made in previous completed schedules to construct better scheduling decisions. The GP method using the newproposed evaluation scheme shows better performance than the GP method using the conventional scheme.  This thesis proposes a new multi-objective GPHH to evolve a Pareto front of non-dominated dispatching rules. Instead of evolving a single rule with assumed preferences over different objectives, the advantage of this GPHH method is to allow GP to evolve rules to handle multiple conflicting objectives simultaneously. The Pareto fronts obtained by the GPHH method can be used as an effective tool to help decision makers select appropriate rules based on their knowledge regarding possible trade-offs. The thesis shows that evolved rules can dominate well-known dispatching rules when a single objective and multiple objectives are considered. Also, the obtained Pareto fronts show that many evolved rules can lead to favourable trade-offs, which have not been explored in the literature.   This thesis tackles one of themost challenging issues in job shop scheduling, the interactions between different scheduling decisions. New GPHH methods have been proposed to help evolve scheduling policies containing multiple scheduling rules for multiple scheduling decisions. The two decisions examined in this thesis are sequencing and due date assignment. The experimental results show that the evolved scheduling rules are significantly better than scheduling policies in the literature. A cooperative coevolution approach has also been developed to reduce the complexity of evolving sophisticated scheduling policies. A new evolutionary search mechanisms and customised genetic operations are proposed in this approach to improve the diversity of the obtained Pareto fronts.

History

Copyright Date

01/01/2013

Date of Award

01/01/2013

Publisher

Te Herenga Waka—Victoria University of Wellington

Rights License

Author Retains Copyright

Degree Discipline

Computer Science

Degree Grantor

Te Herenga Waka—Victoria University of Wellington

Degree Level

Doctoral

Degree Name

Doctor of Philosophy

ANZSRC Type Of Activity code

890205 Information Processing Services (incl. Data Entry and Capture)

Victoria University of Wellington Item Type

Awarded Doctoral Thesis

Language

en_NZ

Victoria University of Wellington School

School of Engineering and Computer Science

Advisors

Zhang, Mengjie; Johnston, Mark