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Abstract
Scheduling is an important planning activity in manufacturing systems

to help optimise the usage of scarce resources and improve the customer
satisfaction. In the job shop manufacturing environment, scheduling prob-
lems are challenging due to the complexity of production flows and prac-
tical requirements such as dynamic changes, uncertainty, multiple objec-
tives, and multiple scheduling decisions. Also, job shop scheduling (JSS)
is very common in small manufacturing businesses and JSS is considered
one of the most popular research topics in this domain due to its potential
to dramatically decrease the costs and increase the throughput.

Practitioners and researchers have applied different computational tech-
niques, from different fields such as operations research and computer sci-
ence, to deal with JSS problems. Although optimisation methods usually
show their dominance in the literature, applying optimisation techniques
in practical situations is not straightforward because of the practical con-
straints and conditions in the shop. Dispatching rules are a very useful
approach to dealing with these environments because they are easy to im-
plement (by computers and shop floor operators) and can cope with dy-
namic changes. However, designing an effective dispatching rule is not a
trivial task and requires extensive knowledge about the scheduling prob-
lem.

The overall goal of this thesis is to develop a genetic programming
based hyper-heuristic (GPHH) approach for automatic heuristic design of
reusable and competitive dispatching rules in job shop scheduling envi-
ronments. This thesis focuses on incorporating special features of JSS in
the representations and evolutionary search mechanisms of genetic pro-
gramming (GP) to help enhance the quality of dispatching rules obtained.



This thesis shows that representations and evaluation schemes are the
important factors that significantly influence the performance of GP for
evolving dispatching rules. The thesis demonstrates that evolved rules
which are trained to adapt their decisions based on the changes in shops
are better than conventional rules. Moreover, by applying a new evalu-
ation scheme, the evolved rules can effectively learn from the mistakes
made in previous completed schedules to construct better scheduling de-
cisions. The GP method using the new proposed evaluation scheme shows
better performance than the GP method using the conventional scheme.

This thesis proposes a new multi-objective GPHH to evolve a Pareto
front of non-dominated dispatching rules. Instead of evolving a single rule
with assumed preferences over different objectives, the advantage of this
GPHH method is to allow GP to evolve rules to handle multiple conflict-
ing objectives simultaneously. The Pareto fronts obtained by the GPHH
method can be used as an effective tool to help decision makers select ap-
propriate rules based on their knowledge regarding possible trade-offs.
The thesis shows that evolved rules can dominate well-known dispatch-
ing rules when a single objective and multiple objectives are considered.
Also, the obtained Pareto fronts show that many evolved rules can lead to
favourable trade-offs, which have not been explored in the literature.

This thesis tackles one of the most challenging issues in job shop sched-
uling, the interactions between different scheduling decisions. New GPHH
methods have been proposed to help evolve scheduling policies contain-
ing multiple scheduling rules for multiple scheduling decisions. The two
decisions examined in this thesis are sequencing and due date assignment.
The experimental results show that the evolved scheduling rules are sig-
nificantly better than scheduling policies in the literature. A cooperative
coevolution approach has also been developed to reduce the complexity
of evolving sophisticated scheduling policies. A new evolutionary search
mechanisms and customised genetic operations are proposed in this ap-
proach to improve the diversity of the obtained Pareto fronts.



Through this thesis, following major contributions have been made:
(1) the first study comparing different representations of dispatching rules
in GP, (2) the development of a novel type of dispatching rules referred
to as iterative dispatching rules and a new GPHH for automatic design
of these rules, (3) the first multi-objective GPHH method for dynamic JSS
problems to find Pareto fronts of non-dominated dispatching rules, (4) two
new GP methods to generate reusable due date assignment rules, and (5)
a new multi-objective GPHH method for automatic design of scheduling
policies to handle multiple scheduling decisions and multiple conflicting
objectives.
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Chapter 1

Introduction

1.1 Problem Statement

Job Shop Scheduling (JSS) is a hard problem in the scheduling literature
and it has received a lot of attention because of its computational chal-
lenges for the research community as well as applicability in real world
situations. The term job shop is used to indicate companies that produce
customer-specific components in small batches [108]. One feature that sets
job shops apart from other production environments is the large variety
of routings with different operation processing times through a set of ma-
chines. As reported by Johns and Rabelo [92], there are thousands of fac-
tories with billions of dollars worth of products in the United States that
can be classified as job shops and production scheduling in this environ-
ment is considered as one of the most popular research topics due to its
potential to dramatically decrease costs and increase throughput [92]. In
the current highly competitive market, scheduling also plays a crucial role
to improve customer satisfaction. It has been shown that consistently high
priority has been given to the speedy and on time delivery capabilities of
manufacturing managers in Europe, Japan, and the United States [100].

In JSS, given a set of machines and a set of jobs with various pre-
determined routes through the machines, the objective is to find a sched-

1
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ule of jobs that minimises certain criteria such as makespan, maximum
lateness, and total weighted tardiness [153]. When dealing with a fixed
number of jobs with known processing information, the problem is called
static. On the other hand, if the processing information of jobs is not
known prior to their arrival, the problem is called dynamic. Different ap-
proaches have been proposed to solve these problems and they can be
classified into two main categories [145]: (1) theoretical studies of opti-
misation methods, which are usually restricted to static problems and (2)
experimental studies of heuristics or dispatching rules to deal with both
static and dynamic problems.

Although dispatching rules are not guaranteed to provide optimal so-
lutions for the problems, they have been applied extensively in research
and practice because of their simplicity and ability to cope with the dy-
namic environment [169]. Different from conventional optimisation meth-
ods which represent the scheduling solution in a very sophisticated way
in order to employ specialised techniques to solve the scheduling prob-
lem, a dispatching rule provides a way to perform the scheduling task
which is understandable to shop floor operators. Normally, a dispatching
rule is considered as a function that determines the priorities of jobs in the
queue of a machine and decides which one should be processed next. The
popularity of the dispatching rule is derived from the fact that it can be
easily modified when real world aspects such as setup time, release time,
machine breakdowns or parallel machines are considered. Another aspect
that makes dispatching rules attractive to both researchers and practition-
ers is that they do not have the scalability problems which are a big issue
for almost all optimisation methods. Moreover, effective dispatching rules
can also be used to create initial solutions for optimisation procedures to
fine-tune. In practice, dispatching rules have been applied in different
manufacturing environments such as semiconductor factories [150] and
printing companies [149] and shown promising results.
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The process of designing dispatching rules is quite time consuming
and complicated because the researchers have to manually synthesise var-
ious relevant elements to create the rules and design experiments to eval-
uate these rules. Recently, with the improvements of computing power,
some machine learning methods [54, 112, 68, 87, 181, 78, 84] have been
used to facilitate the design process of new dispatching rules. These meth-
ods are referred as hyper-heuristics, which aim at automating the design
and tuning of heuristic methods to solve hard computational search prob-
lems [30]. Genetic Programming (GP) [103] has been shown to be a promis-
ing approach for this purpose because GP is capable of evolving com-
plex priority functions with its flexible representation. In addition, the
rules evolved by GP also provide good potential interpretability which is
very useful for scheduling applications. However, many key aspects of
GP have not been investigated that may enhance the performance of this
method for evolving dispatching rules, such as representations and evo-
lutionary search mechanisms. Besides, the past studies only focus on sim-
plified JSS problems and practical requirements, e.g., multiple conflicting
objectives and multiple scheduling decisions have not yet been explored.

The overall goal of this thesis is to develop a genetic programming
based hyper-heuristic approach for automatic heuristic design of reusable
and competitive dispatching rules in job shop machine scheduling envi-
ronments by incorporating special features of JSS in the representations
and evolutionary search mechanisms.

1.2 Motivations

Previous studies have suggested some approaches to improve the effec-
tiveness of dispatching rules. One of the most straightforward ways to
improve the performance of dispatching rules, without affecting their sim-
plicity, is to use a combination of simple dispatching rules. One way to em-
ploy different dispatching rules is to monitor the status of jobs in the sys-
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tem and make a change from one dispatching rule to another as planned.
For example, FIFO/SPT will apply first-in-first-out (FIFO) when the jobs
in the queue of the considered machine have been waiting for more than
a specific time and shortest-processing-time (SPT) will be applied other-
wise. This combination, even though very simple, can take advantage of
each rule at the appropriate decision making moments and is normally
better than the application of a single dispatching rule. Another approach
to improving the performance of dispatching rules is to create compos-
ite dispatching rules (CDR) [88, 89], which provide heuristic combinations
of simple rules basically in the form of sophisticated human-made prior-
ity functions of various scheduling parameters (processing times, waiting
times, etc.).

Existing GP methods [87, 181, 78] for automatic discovery of dispatch-
ing rules for JSS only focus on generating CDRs by evolving sophisticated
priority functions. However, the incorporation of the machine and system
status has not been investigated in these GP methods even though it is a
key point to create more adaptive dispatching rules. CDRs may have some
implicit adaptive behaviours; however it is very difficult for a GP method
to evolve rules with such a property because these adaptive behaviours
will require complex arithmetic combinations. For this reason, there is a
need to devise a new representation for GP to cope with this problem by
making the evolved dispatching rules adaptive to shop changes. In addi-
tion, it is important that GP can help evolve rules that overcome the my-
opic behaviours of the traditional dispatching rules to improve the quality
of the obtained schedules.

The existing research on the automatic design of dispatching rules mainly
concentrates on single objective problems while multiple conflicting ob-
jectives are a natural feature of most production scheduling environments.
Tay and Ho [181] have suggested a GP method to evolve dispatching rules
for multi-objective flexible job shop scheduling problems. In their method,
the multi-objective problem is transformed into a single objective problem
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by linearly combining the objectives. However, since the scales of objec-
tives in scheduling problems are very different (e.g. the scale of tardiness
values is different from that of makespan values), it is very difficult to as-
sign a suitable weight for each objective in a single fitness function in ad-
vance. Even in the case that normalised objective functions are used, the
weights still need to be pre-defined by the decision makers even though
they do not have good knowledge about the trade-offs among different
objective functions. Finding the Pareto front of non-dominated dispatch-
ing rules will naturally be a good approach to this multi-objective prob-
lem because it does not require the decision makers to pre-determine the
weights and will also help decision makers make better choices of dis-
patching rules based on the trade-offs represented by the obtained Pareto
fronts. However, this research direction has not been explored in the past
research.

Another issue with the design of new dispatching rules is the interac-
tion of these rules with other scheduling and planning decisions within
the scheduling system. This is important in order to ensure that schedul-
ing systems perform properly and effectively. Due to the complexity of
these decisions, the existing research on these interactions of scheduling
decisions [160, 62, 151, 35, 41] is normally performed by examining dif-
ferent combinations of well-known rules and trying to find the combi-
nations of rules that can achieve the best performance. A limitation of
this approach is that it restricts us from exploring new potential combi-
nations of rules for all related decisions. One of the advantages of GP
is that the GP programs can represent multiple rules to handle multiple
scheduling decisions in comprehensive scheduling systems. However,
since the search space of GP will be significantly increased, the determi-
nation/development of suitable evolutionary search mechanisms in this
case will be very important to improve the performance of GP.
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1.3 Research Goals

The overall goal of this thesis is to develop Genetic Programming based
Hyper-heuristic (GPHH) methods to evolve reusable and competitive
dispatching rules for job shop machine scheduling environments. The
focus of this research is to investigate how to utilise genetic programming
to learn new dispatching rules for both static and dynamic JSS problems
through the studies of representations and evolutionary search mecha-
nisms. This research aims to use GP to evolve new effective dispatching
rules that are capable of incorporating machine/system attributes and re-
lated scheduling decisions to enhance the productivity of job shops. It
is expected that the evolved rules can be effective in unseen situations
(reusable) and competitive as compared to other dispatching rules pro-
posed in the literature. The research in this thesis will help answer the
following research questions:

(i) Which elements of JSS problems are significant/relevant when evolving ef-
fective dispatching rules with GP and how can these elements be represented
by GP programs?
Job shop scheduling is known as a very hard problem and many el-
ements of the problem are needed to make effective scheduling de-
cisions. However, it is not obvious what is a good way to employ
these elements in order to improve the performance of dispatching
rules. The manual development process is too time consuming to
investigate this issue. Therefore, GP as an automatic heuristic gener-
ation method is more suitable in this case. Moreover, the flexibility of
GP representations provides various ways to synthesise and evaluate
complex dispatching rules. Studying GP representations in this case
not only helps improve the performance of GP for evolving dispatch-
ing rules but also provides important patterns that could be useful in
good dispatching rules and helps improve the interpretability of the
evolved rules.
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(ii) How can GP be used to deal with multi-objective job shop scheduling prob-
lems?
One of the challenges when designing dispatching rules for a job
shop scheduling environment is to handle multiple conflicting ob-
jectives. However, this issue has been mostly ignored in the past
research on automatic discovery of dispatching rules. In cases where
GP is used, it is important to know which multi-objective evolution-
ary search mechanism is most helpful in tackling this issue. It would
be also interesting to know how representations help GP explore
trade-off (non-dominated) dispatching rules for the multi-objective
job shop scheduling problems.

(iii) Which evolutionary search mechanism of GP is effective for evolving a com-
plex scheduling system involving different scheduling decisions?
Even though dispatching rules are a key component in a scheduling
system, their performance is affected by other planning and schedul-
ing decisions. Due date assignment is one of the most direct schedul-
ing decisions that can influence the performance of a dispatching
rule. Creating combined rules to be evolved by GP for both dispatch-
ing and due date assignment tasks would be the most straightfor-
ward option to deal with this issue. However, it also increases the
complexity of the problem. In this case, different evolutionary search
mechanisms need to be investigated and evaluated to find the most
suitable one for evolving such complex rules.

In order to fulfill the overall goal stated above and to find the answers
for these research questions, a set of research objectives have been estab-
lished to guide this research.

1. Developing a new GP method that provides adaptive behaviours for
the evolved dispatching rules by incorporating the machine and sys-
tem attributes; with an expectation of improving the effectiveness of
these rules.



8 CHAPTER 1. INTRODUCTION

There are some existing works [86, 78, 181] using GP to evolve new
dispatching rules for different manufacturing environments but the
influences of representations of these dispatching rules within the
GP population have not been carefully investigated. This thesis aims
to evaluate and analyse these representations, which will help gain
more understanding of how different representations can influence
the performance of GP. New representations which incorporate the
machine and system attributes will be proposed and compared with
existing representations. Different aspects of representations such as
the interpretability, overfitting issue and scalability will also be in-
vestigated to point out the advantages and disadvantages of rules
evolved by using each representation. The thesis will also compare
the performance of the dispatching rules evolved with these repre-
sentations with the well-known dispatching rules proposed in the
literature as well as existing heuristics and meta-heuristics.

2. Extending and improving the GP method to deal with multi-objective
job shop scheduling problems.

In practice, job shop scheduling is a multi-objective problem since
many objectives are often simultaneously desired and they are nor-
mally conflicting. When dealing with multi-objective problems, a
study needs to be done in order to know whether the proposed rep-
resentations are still effective. This thesis will concentrate on using
GP to evolve a Pareto front of evolved solutions which allow the de-
cision makers to choose the suitable dispatching rules on the Pareto
front that can satisfy their interests. Studying the Pareto front in
this case will also help the scheduling researchers understand more
about the factors that influence the trade-offs among different ob-
jective functions. To carry out this research effectively, evolution-
ary search mechanisms to find the Pareto front will need to be in-
vestigated. Popular methods such as Nondominated Sorting Ge-
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netic Algorithm (NSGA-II) [52], Strength Pareto Evolutionary Al-
gorithms (SPEA2) [195], Harmonic Distance Based Multi-Objective
Evolutionary Algorithm (HaD-MOEA) [187], and a new proposed
method based on the special characteristics of JSS will be considered
to find the effective strategy for exploring the Pareto front in this
case.

3. Developing a hyper-heuristic method that allows relevant factors in-
fluencing the performance of dispatching rules to be considered and
evolved through the automatic heuristic generation process governed
by GP. This is a crucial issue for the development of a comprehensive
production planning and control system.

Dispatching rules play an important role in most production plan-
ning and control systems. However, there are several factors that can
affect the performance of dispatching rules. One of the most impor-
tant interactions investigated in the job shop scheduling literature is
between due date assignment rules and dispatching rules since these
rules can directly influence the performance of the scheduling sys-
tem. In this thesis, the proposed GP method will be used to evolve
these two rules simultaneously. Since exploring the heuristic search
space of these combined rules would be more difficult, a special evo-
lutionary search mechanism may need to be used. Cooperative co-
evolution [156] seems to be a natural option in this case since each
rule, either dispatching rules or due date assignment rules, can be
evolved in a subpopulation and then combined with the rules in an-
other subpopulation to create comprehensive rules for the schedul-
ing system.

In order to evaluate the performance of the proposed GP methods, we
will measure the performance of the evolved rules. For the static JSS prob-
lems, the evolved rules will be trained and tested on a set of well-known
benchmark instances [53, 179, 5]. To deal with the dynamic JSS problem,
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stochastic simulation models [94, 176, 81, 88, 78] will be used for both train-
ing and testing purposes. In this thesis, common criteria (e.g. makespan,
mean tardiness, etc.) are used to evaluate the performance of a dispatch-
ing rule because of their popularity in both theoretical studies and practi-
cal applications. When dealing with the due date assignment rules in the
third research objective, mean absolute percentage error (MAPE) between
estimated flow times and actual flow times will be used to measure the
performance of these rules.

Completing the first and second objectives will address research ques-
tions (i) and (ii). Meanwhile, the third research objective is investigated to
help tackle the last research question.

1.4 Major Contributions

This thesis makes the following major contributions.

1. The thesis presents the first study that has compared different rep-
resentations of dispatching rules used in GP and investigated how
representations influence the performance of GP when evolving dis-
patching rules for the static JSS problems. Experimental results show
that the representation which integrates system and machine attributes
can improve the quality of the evolved rules. In addition, the pro-
posed representations in this thesis also provide a convenient way to
incorporate special system features of real world environments into
the dispatching rules. Two fitness functions were also investigated
and the rules that are evolved to optimise the average performance
across all training instances provide better results than those evolved
to optimise worst-case performance.

Part of this contribution has been published in:

Nguyen, S., Zhang, M., Johnston, M. and Tan, K. C. “A computa-
tional study of representations in genetic programming to evolve
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dispatching rules for the job shop scheduling problem”. IEEE Trans-
actions on Evolutionary Computation (2012). DOI:10.1109/TEVC.2012.
2227326.

2. This thesis develops a novel type of dispatching rule for the static
JSS problems which can iteratively improve the schedules by utilis-
ing the information from completed schedules obtained in previous
iterations. A new GP method has been used to help evolve such
iterative dispatching rules (IDRs) and the results showed that these
evolved rules outperform the existing rules in the literature and com-
posite dispatching rules evolved by other existing GP methods. The
analysis also showed that the evolved iterative rules are efficient and
interpretable. Different aspects of IDRs are also investigated and the
insights from these analyses are used to significantly enhance the
performance of IDRs.

Part of this contribution has been published in:

Nguyen, S., Zhang, M., Johnston, M. and Tan, K. C. “Learning itera-
tive dispatching rules for job shop scheduling with genetic program-
ming”. The International Journal of Advanced Manufacturing Technology
(2012). DOI:10.1007/s00170-013-4756-9.

3. This thesis proposes the first multi-objective GPHH method for dy-
namic JSS problems to find the Pareto fronts of non-dominated dis-
patching rules to deal with multiple conflicting objectives. The ex-
tensive computational results have helped confirm the need of us-
ing multi-objective approaches to design effective and practical dis-
patching rules. The results showed that the Pareto fronts evolved
from the proposed method contain rules that outperform existing
rules when multiple objectives are considered simultaneously. The
analysis of the obtained Pareto front provides much better knowl-
edge about the search space of dispatching rules and shows that the
proposed method is a good tool to support the decision making pro-
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cess. New performance measures are also proposed to help assess
the quality of the evolved rules for a simulation scenario and the ro-
bustness of the evolved rules across different simulation scenarios.
These measures are useful not only for this study but also for future
studies on multi-objective GPHH methods.

Part of this contribution has been published in:

Nguyen, S., Zhang, M., Johnston, M. and Tan, K. C. “Dynamic job
shop scheduling problems: a MO-GPHH approach”. In Automated
Scheduling (Edited), Springer. (2012). (accepted).

4. This thesis develops two new GP methods to generate reusable due
date assignment rules to estimate the due dates of new jobs in dy-
namic job shops with a particular dispatching rule. The novelty of
these methods are the evaluation scheme employed to estimate flow-
times of jobs. Different factors of job shops consisting of utilisations,
distributions of operation processing times, etc, are used to evalu-
ate the reusability of the evolved rules. The results show that the
evolved rules based on detailed information of each operation of a
job are better than those that are only based on aggregate information
in the shop. It is noted that the training scenarios play an important
role on the testing performance of the rules and appropriate choices
of trainings scenarios can help reduce the computational times of
the proposed GP methods. Meanwhile, the number of simulation
replications did not make a large impact on the performance of the
evolved rules.

Part of this contribution has been published in:

Nguyen, S., Zhang, M., Johnston, M. and Tan, K. C. “Evolving reusable
operation-based due-date assignment models for job shop schedul-
ing with genetic programming”. In EuroGP’12: Proceedings of Euro-
pean Conference on Genetic Programming (2012), pp. 121–133.
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Nguyen, S., Zhang, M., Johnston, M. and Tan, K. C. “Genetic pro-
gramming for evolving reusable due-date assignment models in job
shop environments”. Evolutionary Computation (2013). DOI:10.11
62/EVCO a 00105.

5. This thesis proposes a new multi-objective GPHH method to gener-
ate a Pareto front of scheduling policies for dynamic job shops. This
is the first work that focuses on multiple scheduling decisions and
multiple objectives in JSS. The evolved Pareto fronts generated by the
proposed methods contain scheduling policies that dominate exist-
ing scheduling policies developed manually in the literature. More-
over, the scheduling policies are interpretable, which helps explain
how the trade-offs between different conflicting objectives can be ob-
tained. A new evolutionary search mechanism, diversified multi-
objective cooperative coevolution (DMOCC), is proposed based on
the cooperative coevolution framework [156] to help find the Pareto
front. The novelty of this method, as compared with the existing
GPHH methods, is that it allows specific scheduling rules to be evolved
in a subpopulation to reduce the complexity of evolving the whole
scheduling polices.

Part of this contribution has been published in:

Nguyen, S., Zhang, M., Johnston, M. and Tan, K. C. “A coevolution
genetic programming method to evolve scheduling policies for dy-
namic multi-objective job shop scheduling problems”. In CEC ’12:
Proceedings of the IEEE Congress on Evolutionary Computation (2012),
pp. 3261–3268.

Nguyen, S., Zhang, M., Johnston, M. and Tan, K. C. “Automatic
design of scheduling policies for dynamic multi-objective job shop
scheduling via cooperative coevolution genetic programming”. IEEE
Transactions on Evolutionary Computation (2013). DOI:10.1109/TEVC.20
13.2248159.
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1.5 Organisation of Thesis

The remainder of this thesis is organised as follows. Chapter 2 presents
the literature review of related works. Chapters 3 and 4 address the first
research objective. Chapters 5–7 presents works to fulfill the second and
third research objectives. Chapter 8 concludes the thesis.

Chapter 2 presents detailed descriptions of the JSS problem and the
methodologies used for this problem. The basic concepts of genetic pro-
gramming are given to provide the essential background for the readers
and make this thesis self-contained. This chapter then gives a review of the
current research on hyper-heuristics for heuristic generation, with a spe-
cial focus on the genetic programming based hyper-heuristics for learning
new dispatching rules.

Chapter 3 proposes new representations for dispatching rules which
allow them to systematically incorporate useful JSS features. Different rep-
resentations and fitness functions of dispatching rules are evaluated and
the evolved rules are analysed to show how they can solve the problems.

Chapter 4 presents a new evaluation scheme to help iteratively con-
struct better schedules for static JSS problems. Based on this evaluation
scheme, a new form of dispatching rule called iterative dispatching rules
are proposed which are able to iteratively improve the quality of the sched-
ules by learning from the mistakes of the previous or existing schedules.
Different aspects of iterative dispatching rules are investigated to enhance
the performance of the evolved rules.

Chapter 5 develops a new multi-objective GPHH method to deal with
dynamic job shops. Five popular objectives of job shop scheduling are si-
multaneously considered when the proposed method is used to evolve the
Pareto front of non-dominated dispatching rules. An extensive compari-
son between the evolved rules and a range of rules from the literature is
performed. New measures to help assess the Pareto dominance and the
robustness of evolved rules are also provided.
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Chapter 6 develops new GPHH methods to generate due date assign-
ment rules for JSS. Two evaluation schemes of due date assignment rules
based on the aggregate information of the shop and detailed information
of each operations are proposed. Different factors of dynamic job shops
are considered to assess the reusability of evolved rules. The performance
of the evolved rules are compared with the analytical dynamic due date
assignment rules proposed in the literature. A specialised terminal set is
also proposed to enhance the quality of the evolved rules when due date
oriented dispatching rules are used in the shop.

Chapter 7 proposes new multi-objective GPHH methods for automatic
design of scheduling policies, i.e., combinations between due date assign-
ment rules and dispatching rules. Two representation/evaluation con-
cepts for scheduling policies are investigated in this chapter. Based on
these concepts, four multi-objective GPHH methods are proposed. Reusa-
bility of the evolved Pareto fronts and the performance of the proposed
methods are provided.

Chapter 8 summarises the key findings and provides the overall con-
clusions from this thesis. Key research points and the contributions of this
thesis are ascertained. Finally, the opportunities for future works are dis-
cussed.
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Chapter 2

Literature Review

This chapter starts by introducing basic concepts in scheduling problems
and related methodologies used and discussed in this thesis. Then, de-
tailed descriptions of the job shop scheduling (JSS) problem including
the formal definitions of terminology and notations used by job shop re-
searchers are provided. The concepts of active and non-delay schedules in
JSS will also be presented. A review of traditional optimisation, heuristic,
and hybrid methods to solve the static and dynamic JSS problems is given
in this chapter to provide the readers a summary of the research topics in
this field. This chapter then reviews key concepts of genetic programming
(GP) such as the representation and genetic operators. The rest of this
chapter provides an overview of GP based hyper-heuristic (GPHH) meth-
ods for heuristic generation with a special focus on heuristic generation
methods for scheduling problems.

2.1 Basic Concepts

The purpose of this section is to provide basic concepts of general schedul-
ing problems, artificial intelligence (AI), evolutionary computation (EC),
and heuristics/meta-heuristics/hyper-heuristics.

17
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2.1.1 Sequencing/Scheduling

Sequencing and scheduling is a research field motivated by practical needs
in production planning, in computer control, and in most situations in
which scarce resources have to be allocated to jobs/tasks over time [110].
Because of its practical importance, sequencing and scheduling has at-
tracted great attention from researchers in operations research and com-
puter science in the last few decades. In the literature, sequencing and
scheduling are two steps of the process for generating a schedule/plan.
In the first step, sequencing decides which jobs should be processed next.
Scheduling then specifies the detailed schedules such as the resource (e.g.
machine, work centre) to handle each task, the start times, and completion
times of each task. Due to the complexity of the scheduling problems and
the techniques employed to solve the problems, it is sometimes not easy to
separate these two steps. For example, dispatching rules discussed in this
thesis perform sequencing and scheduling iteratively at each decision mo-
ment. Meanwhile, some heuristics/meta-heuristics decide the processing
sequence of jobs before mapping the sequence to a complete schedule.

Scheduling problems are classified based on the resource configura-
tions and the nature of the jobs [13]. For instance, scheduling problems
concern allocating jobs to a single machine or multiple machines in a man-
ufacturing system. Meanwhile, if the set of jobs remain unchanged over
time, it is a static scheduling problem. Otherwise, the scheduling problem
is dynamic when new jobs arrive over time. Another important aspect to
be considered in scheduling problems is the uncertainty of the process-
ing information (processing times, release times, etc.). If all information
is known in advance, we deal with deterministic problems. If uncertainty
exists, the scheduling problems are called stochastic.

A wide range of optimisation techniques have been applied to deal
with scheduling problems. Optimal solutions are found for some simpli-
fied scheduling problems. However, scheduling is considered NP-hard
problems in most practical situations [110]. Therefore, approximating ap-
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proaches and heuristics/meta-heuristics/hyper-heuristics have been de-
veloped to find near optimal solutions for scheduling problems in prac-
tical computational times. The descriptions of popular scheduling tech-
niques can be found in Baker and Trietsch [13] and Pinedo [153]. A more
detailed review of scheduling techniques for job shop scheduling prob-
lems is presented in Section 2.2.

2.1.2 Machine Learning

Machine learning can be defined as computational methods using experi-
ences to improve performance or to make accurate prediction of specific
tasks [126]. The goal of machine learning is to design computer programs
which learn to solve problems without explicitly being programmed or
instructed [3].

Machine learning methods are classified into three main categories:
(1) supervised learning, (2) unsupervised learning, and (3) reinforcement
learning [167]. In supervised learning, the actions or desired outputs for
a problem are known in advance (e.g. classification, regression). A super-
vised learning algorithm tries to create an inferred function to map inputs
to desired outputs. On the other hand, unsupervised learning deals with
unlabelled training examples (e.g. clustering, dimensionality reduction).
Since the correct actions are not provided, it is difficult to quantitatively
evaluate the performance of learners [126]. In reinforcement learning, the
learner interacts with the environment and receives an immediate reward
for each action. The goal of the learner in this case is to maximise its re-
ward over the course of actions and interactions with the environment.
Different from supervised learning, no long-term reward feedback is pro-
vided by the environment and desired outputs are not explicitly provided.
Some popular machine learning methods are decision tree, support vector
machines, Bayesian learning [3, 126], and genetic programming [103].
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2.1.3 Heuristics/Meta-heuristics/Hyper-heuristics

There are a few definitions of heuristics in the literature. In this thesis,
heuristics are considered in the scope of optimisation, particularly in the
field of scheduling. Heuristics refer to experience-based techniques to find
good solutions for computational problems. Usually, heuristics are devel-
oped to deal with the cases where exact methods for solving a computa-
tional problem are impractical (e.g. too time-consuming) [121, 153]. For
example, one of the most famous heuristics in scheduling is the shifting
bottleneck for JSS problems. Since JSS is too complicated to be solved to
optimality using exact methods such as branch-and-bound, the shifting
bottleneck heuristic uses a clever definition of the bottleneck value of a
machine to iteratively construct a schedule by solving a number of one
machine scheduling problems [164].

Meta-heuristics are optimisation methods designed to deal with hard
optimisation problems. Meta-heuristics are search methods containing
general low level heuristics that help explore the solution search space
to find near-optimal solutions. Different from heuristics, meta-heuristics
are more abstract and usually make no or very few assumptions about
the problems to be solved. Similar to heuristics, meta-heuristics also do
not guarantee to find the global optimal solutions. There are many meta-
heuristic techniques developed in the literature and they can be classi-
fied into two main categories: (1) local search based or single solution
based and (2) population-based. Local search based methods employ local
search heuristics and acceptance criteria to explore the search space. Typi-
cal examples of these methods are tabu search (TS) [71], simulated anneal-
ing (SA) [101] and variable neighbourhood search (VNS) [76]. On the other
hand, population-based methods maintain multiple solutions that inter-
act with each other to explore the search space. Most population-based
methods belong to evolutionary computation, which will be discussed in
the next section. When a problem domain knowledge is available, meta-
heuristics can be also combined with heuristics to create hybrid methods.
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Hyper-heuristics (HH) are a relative new research area which focuses
on exploring the “heuristic search space” [30] of the problems instead of
the solution search space in the cases with heuristics and meta-heuristics.
Currently, there are two main research directions for hyper-heuristics which
are (1) HH for heuristic selection and (2) HH for heuristic generation. The
first research direction aims to “raising the level of generality” at which
optimisation systems can operate [28]. Heuristic selection has mainly fo-
cused on developing HH frameworks that are able to adaptively select
suitable pre-existing heuristics based on the problem solving states and
the historical records obtained from the problem solving process [30, 34].
Many HH frameworks have been developed for heuristic selection such
as the choice function [47, 46], tabu search based HH [34], and simulated
annealing based HH [57]. Some new powerful HH frameworks for heuris-
tic section have also been discovered from the Cross-Domain Heuristic
Search Competition (CHeSC) [140]. Meanwhile, the objective of heuristic
generation methods is to fabricate a new heuristic (or meta-heuristic). The
obtained heuristic can be either an improving or constructive heuristic.
In order to generate a new heuristic, the hyper-heuristic framework must
be able to combine various small components (normally common statis-
tics or operations used in pre-existing heuristics) and these heuristics are
trained on a training set and evolved to become more effective [130]. Ge-
netic programming and its variants (e.g. linear GP, grammatical evolution)
are currently the most popular approaches for this heuristic generation.

2.1.4 Evolutionary Computation

Evolutionary Computation (EC) is a sub-field of artificial intelligence that
focuses on nature inspired algorithms and iterative population-based sys-
tems to deal with optimisation or machine learning problems. The two
main categories in this research area are (1) evolutionary algorithms [93]
and (2) swarm intelligence [99].
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Evolutionary Algorithms (EAs)

EAs are a subset of EC that imitate Darwinian biological evolution such as
natural selection, reproduction, crossover, and mutation. EAs are usually
characterised by the use of population(s) of individuals through the course
of evolution. Similar to natural evolution, individuals in the population(s)
have to compete for survival. The concept of fitness is used extensively in
EAs to reflect the ability of an individual to survive and reproduce [93].
EAs work based on the notion of dynamically changing population due to
the birth of new individuals inheriting genetic materials from parent in-
dividuals with high fitness, and the death of individuals with low fitness.
Some popular EAs in the literatures are:

• Genetic Algorithms (GAs) [80]: is one of the earliest EC techniques.
In GAs, each individual or chromosome is represented (encoded) by
a fixed-length array of bits, integer numbers, or real numbers. These
arrays carry the information that can be decoded to solutions for the
problem needed to be solved. New offspring are generated by ex-
changing the genetic material between two selected parents or by
mutating a selected parent. Parents in GAs are usually randomly se-
lected and the individuals with higher fitness are more likely to be
chosen.

• Genetic Programming (GP) [103]: is an extended form of GAs where
individuals are represented as variable length computer programs.
Different data structures (e.g. tree, linear, grammar) have been em-
ployed to construct computer programs. This provides GP with the
flexibility to perform different tasks such as machine learning and
optimisation.

• Evolution Strategy (ES) [22]: is an optimisation method which adopts
the concept of biological evolution. Different from GAs and GP, ES
mainly uses only mutation to generate new individuals and the indi-
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vidual selection in ES is deterministic and only based on the fitness
rankings.

• Evolution Programming (EP) [60]: is similar to GAs, but focuses
more on the behaviour linkage between parents and offspring rather
than trying to imitate the genetic operators in nature. In EP, both
populations of parents and offspring are placed into the same pool
to select individuals for the next generation.

Swarm Intelligence (SI)

SI is a research area that focuses on the emergent collective intelligence
of groups of simple agents [21, 26] such as ant colonies, bird flocks, fish
schools, and bacterial growth. In SI, the agents follow simple rules, but the
interaction between agents can lead to “intelligent” global behaviour by
the swarm even though there is no centralized control structure dictating
how individual agents should behave. Two typical SI techniques in the
literature are:

• Particle Swarm Optimisation (PSO) [99]: is a simple SI technique
based on simulated social behaviours. In PSO, a swarm or popu-
lation of particles (candidate solutions) moves in the solution search
space. Each solution is usually encoded as a vector of real numbers
that are treated as the positions of a particle in the swarm. Each
particle is assigned a fitness value based on its performance. Then
particles update their positions by being accelerated towards refer-
enced particles such as global best, and local best (based on certain
topologies) with higher fitness. The key idea is that this movement
will help guide the swarm towards the global optimal solutions in
the search space.

• Ant Colony Optimization (ACO) [55]: is an algorithm that simu-
lates the behaviour of ants seeking a path between their colony and a
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source of food. In ACO, the artificial ants find the path (solution) to
the food source and leave on its path a trail of pheromone. Gradually,
the pheromone on the shorter paths (better solutions) are strengthen
and become more attractive to the ants. Based on this idea, many
extensions of ACO have been developed and shown to provide very
good results.

These two techniques have been applied successfully into a wide range
of optimisation problems such as vehicle routing [2, 20] and job shop schedul-
ing [173, 189]. Other well-known SI techniques include artificial immune
system (AIS) [48], and artificial bee colony algorithm (ABC) [96].

2.2 Job Shop Scheduling Problems

A scheduling problem is traditionally described by the triplet β|γ|δ, where
β represents the machine environment, γ provides the processing charac-
teristic (it may contain no entry at all or multiple entries), and δ describes
the objective to be minimised [153]. The general JSS problem could be sim-
ply defined as the scheduling of different jobs to be processed on different
machines [61] to satisfy certain objectives. In this case, a job is a sequence
of operations, each of which is to be performed on a particular machine.
In JSS, the routes of jobs are fixed, but not necessarily the same for each job
[153]. An example of a job shop studied in this thesis is shown in Figure
2.1. For the static JSS problem, the shop (or the working/manufacturing
environment) includes a set of M machines and N jobs that need to be
scheduled. Each job j has its own pre-determined route through a se-
quence of machines to follow and its own processing time at each machine
it visits. In static JSS, processing information of all jobs is available. In the
dynamic JSS problem, jobs arrive randomly over time and the processing
information of jobs is unknown before their arrival. Some basic definitions
and notations in JSS are as follows.
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Figure 2.1: Job Shop Scheduling (shop with 3 machines).

Parameters:

• Oj = {oj,1, . . . , oj,l, . . . , oj,Nj
}: the set of all operations of job j where

oj,l, is the lth operation of job j and Nj is the number of operations of
job j.

• wj : the weight of job j in the weighted tardiness objective function.

• dj : the due date assigned to job j.

• p(σ): the processing time of operation σ.

• m(σ): the machine that processes operation σ.

• next(σ): the next operation of the job that contains operation σ or
null if σ is the last operation of that job (if σ = oj,l then next(σ) =

oj,l+1).

Variables:

• Uk: the ready time of machine k, which is the time that the machine
becomes idle; in this study, all machines are idle at the beginning.

• rj : the release time when job j is available to be processed.

• r(σ): the ready time of operation σ, which is the release time rj of
job j for the first operation or the completion time of its preceding
operation for other operations.
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Table 2.1: Performance measures for JSS problems

Mean Flowtime F =
∑

j∈C
fj

|C|

Maximum Flowtime Fmax = maxj∈C{fj}
Percentage of Tardy Jobs %T = 100× |T|

|C|

Mean Tardiness T =
∑

j∈T
(Cj−dj)
|T|

Maximum Tardiness Tmax = maxj∈T{Cj − dj}
Makespan Cmax = maxj∈C{Cj}
Total Weighted Tardiness TWT = maxj∈T{wj × (Cj − dj)}

• Cj : the completion time of job j.

• fj : the flowtime of job j calculated by fj = Cj − rj .

• Tj : the tardiness of job j calculated by Tj = max(Cj − dj , 0).

Table 2.1 gives formal definitions of the seven objective measures con-
sidered throughout this thesis. In this table, C is the collection of jobs
recorded to calculate the objective values (C is all the jobs in static JSS prob-
lem instances or a set of jobs recorded after the warm-up period of the sim-
ulation of the dynamic job shops). Meanwhile, T = {j ∈ C : Cj − dj > 0}
is the collection of tardy jobs. These objectives are selected since they are
very popular performance measures in JSS, which have been used regu-
larly in previous studies [162, 88, 81].

2.2.1 Active schedules and non-delay schedules

In JSS, a schedule is called active if it cannot be altered to make any oper-
ations complete earlier without delaying the completion time of other op-
erations. Active schedules were first proposed by Giffler and Thompson
[69] in their seminal work and they have proven that an optimal solution
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1: Ω← {o1,1, o2,1, . . . , oN ,1}
2: repeat
3: let t(Ω) = minσ∈Ω{max{r(σ), Um(σ)}+ p(σ)}
4: let σ∗ be the operation that minimum is achieved, m∗ = m(σ∗),

and Ω∗ = {σ ∈ Ω|m(σ) = m∗}
5: let S(m∗) = max{minσ∈Ω∗{r(σ)}, Um∗}
6: let Ω′ = {σ ∈ Ω∗|r(σ) ≤ S(m∗) + α(t(Ω)− S(m∗))}
7: apply dispatching rule Δ on Ω′ to find the next operation σ′ to be

scheduled on m∗

8: remove σ′ from Ω′ and include next(σ) into Ω if next(σ) �= null

9: until all operations have been scheduled

Figure 2.2: A Generic procedure to construct a schedule for JSS.

of JSS with makespan as the objective to be minimised must be an active
schedule. Schedules are called non-delay schedules if no machine is al-
lowed to be idle when there are jobs in its queue ready to be processed. A
non-delay schedule is more restricted than an active schedule and the set
of non-delay solutions may not necessarily include the optimal solution.
Non-delay schedules are often applied in experiments using simulation
since a machine will immediately process all jobs in its queue in the order
determined by some sequencing rule to avoid loss of utilisation of manu-
facturing resources.

Figure 2.2 shows a generic procedure to construct an active schedule,
a non-delay schedule or a hybrid of both active and non-delay schedules
with a dispatching (priority) rule Δ. In this procedure, Ω contains all the
operations that are ready to be scheduled. The procedure will first de-
termine the next operation with the earliest completion time and its cor-
responding machine m∗ (ties are broken arbitrarily). The non-delay fac-
tor α ∈ [0, 1] controls the look-ahead ability of the algorithm and deter-
mines the set Ω′ of jobs which should be considered to be processed next
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Table 2.2: Example of a static JSS problem instance (N = 3,M = 3)

job machine sequence processing time weight due date

#1 1,2,3 7,2,3 4 13
#2 3,2,1 3,4,4 2 10
#3 3,2,1 2,4,4 1 12

on machine m∗ by the dispatching rule Δ. If α = 0, the procedure can
only construct non-delay schedules and only the operations that have al-
ready joined the queue are considered for scheduling. On the other hand,
if α = 1, the procedure will consider all the potential jobs that are ready
to join the queue of machine m∗ before the earliest completion time of m∗.
In general, α determines the interval of time that a machine is allowed to
wait even when there are operations in the queue. As a result, there are
fewer operations to be considered in each step of the algorithm when α is
small than when α is large. The purpose of dispatching rule Δ is to calcu-
late the priorities for all operations in Ω′. Usually, the job with the highest
priority in Ω′ will be scheduled next on machine m∗.

Example: The following is an example of a static JSS problem instance
with three jobs and three machines. Table 2.2 shows the machine sequence
and processing time corresponding to each job. Figure 2.3 shows the sched-
ule (solution) using shortest processing time (SPT), where operations with
smaller processing times have higher priorities, as the dispatching rule Δ

with both α = 0 (non-delay) and α = 0.5 (look-ahead).

For this example, the first machine to be scheduled is machine m∗ = 3

since it is the one with the earliest completion time (from operation o3,1)
within Ω = {o1,1, o2,1, o3,1}. Because o3,1 is also the operation with the
shortest processing time (SPT) in the queue of machine 3, it is sched-
uled in this step, and removed from Ω. The updated set of ready op-
erations is then Ω = {o1,1, o2,1, o3,2}. Similarly, o2,1, o3,2 and o1,1 will be



2.2. JOB SHOP SCHEDULING PROBLEMS 29

M

M

M1 J1

J

J

J

J

J

J

JJ

10 15 20

(a) SPT/non-delay (α = 0)

M

M

M1 J1

J

J

J

J

J

J

JJ

10 15 20

(b) SPT/look-ahead (α = 0.5)

Figure 2.3: Example of schedules in JSS (N = 3,M = 3).

scheduled in the next three steps. In the fifth step, Ω = {o1,2, o2,2, o3,3}
and m∗ = 2. In this step, if α = 0, only o2,2 is considered to be sched-
uled. If α = 0.5 then Ω′ = {o1,2, o2,2} and o1,2 is scheduled in this step
because it has a smaller processing time on machine 2. In the case of
SPT/non-delay (SPT is used with non-delay factor α = 0), the makespan
Cmax = max{C1, C2, C3} = max{15, 15, 11} = 15 and the total weighted
tardiness

∑
wjTj = 4 × 2 + 2 × 5 + 1 × 0 = 18. Similarly, Cmax = 17

and TWT = 14 in case of SPT/look-ahead. In this example, SPT/non-
delay outperforms SPT/look-ahead on the makespan but SPT/look-ahead
is better than SPT/non-delay when the objective is to minimise the total
weighted tardiness.

2.2.2 Job shop scheduling methods

Over the last few decades, a large number of methods have been devel-
oped and applied to JSS, ranging from simple heuristics to artificial intel-
ligence and mathematical optimisation methods [92]. Dispatching rules
are perhaps the most straightforward method to deal with both static and
dynamic JSS problems [171, 162, 88]. Meanwhile, optimisation is the main
research stream to deal with the static JSS problems [153]. A review of
these methods is shown in this section. For a broader review of schedul-
ing methods, the readers are encouraged to read Ouelhadj and Petrovic
[143] and Potts and Strusevich [158].
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Dispatching rules

Although there have been many breakthroughs in the developments of ex-
act and approximate methods for JSS; these methods are mainly focused
on static problems and simplified job shop environments. General meth-
ods like genetic algorithm (GA) can be extended to solve problems with
realistic constraints, but the major drawback is its weak computational ef-
ficiency. Moreover, as pointed out in [118], the conventional operations
research and artificial intelligence methods are often not applicable to the
dynamic characteristics of the actual situation because these methods are
fundamentally based on static assumptions. For that reason, simple dis-
patching rules have been used consistently in practice because of their
ability to cope with the dynamic changes of the shop.

There have been a large number of rules proposed in the literature and
they can be classified into three categories [92]: (1) simple priority rules,
which are mainly based on the information related to the jobs; (2) combina-
tions of rules that are implemented depending on the situation that exists
on the shop floor; and (3) weighted priority indices which employ more
than one piece of information about each job to determine the schedule.
Composite dispatching rules (CDR) [88, 89, 153] can also be considered as
a version of rules based on weighted priority indices, where scheduling
information can be combined in more sophisticated ways instead of linear
combinations. Panwalkar and Iskander [145] provided a very comprehen-
sive survey on scheduling (dispatching) rules used in research and real
world applications using a similar classification. Pinedo [153] also showed
various ways to classify dispatching rules based on the characteristics of
these rules. The dispatching rules in this case can be classified as static and
dynamic rules, where dynamic rules are time dependent (e.g. minimum
slack) and static rules are not time dependent (e.g. shortest processing
time). Another way to categorise these rules is based on the information
used by these rules (either local or global information) to make sequencing
decisions. A local rule only uses the information available at the machine
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where the job is queued. A global rule, on the other hand, may use the
information from other machines.

The comparisons of different dispatching rules have been continuously
done in many studies [171, 162, 88, 81, 78]. The comparison was usually
performed under different characteristics of the shop because it is well-
known that the characteristics of the shop can significantly influence the
performance of the dispatching rules. Different objective measures were
also considered in these studies because they are the natural requirements
in real world applications. Although many dispatching rules have been
proposed, it is still a challenge for scheduling researchers to develop rules
that can perform well on multiple objectives.

Meta-heuristic methods

Since the static JSS is a NP-hard problem [65], finding optimal solutions by
mathematical programming methods can be very time-consuming even
for reasonable small instances. The research on meta-heuristics [70] for
scheduling has been very active in the last two decades, mostly with makespan
as the objective. Local search based methods [4] such as simulated anneal-
ing [182], large step optimisation [115], tabu search [139], and guided local
search [14] have shown very promising results. The focus of these meth-
ods is on the development of efficient neighbourhood structures (mainly
based on the concept of critical paths and critical blocks) and diversifying
strategies to escape from local optima. Since the neighbourhood structures
play an important role in these methods, they and their related operators
have to be redesigned in order to incorporate real world constraints; even
then it is still questionable whether they produce good results.

A more general alternative for solving JSS problems is the use of evo-
lutionary computation methods. GA is one of the most popular methods
in this line of research (refer to [38] for a review of GA methods for JSS).
More recently, many hybrid algorithms have been proposed to combine
the advantages of GA and local search heuristics. Yamada and Nakano
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[190] presented a GA with the multi-step crossover (MSX) for JSS. In this
method, MSX was used in combination with a local search heuristic. The
preliminary experiments using benchmark instances showed promising
performance of the proposed approach. Goncalves et al. [74] proposed
a hybrid GA method for JSS to minimise makespan. In this method, the
chromosome representation is based on random keys and represents the
priorities of operations. An active/non-delay parameter is also applied to
restrict the delay time of operations. During the GA search, the schedule
is further improved by the neighbourhood local search procedure from
[139].

Swarm intelligence methods [21, 26] have also been applied to JSS prob-
lems and show very promising results. Sha and Hsu [173] developed a
hybrid PSO algorithm (HPSO) that modified the particle position based
on preference list-based representation and employed Giffler and Thomp-
son algorithm [69] to decode particle positions into schedules. Moreover,
tabu search is also applied to further improve the solution quality. The
experimental results showed that HPSO is competitive compared to other
meta-heuristics proposed in the literature. Xing et al. [189] proposed a so-
phisticated ant colony optimisation method in which a knowledge model
is used to learn some available knowledge from the optimisation of ACO.
The existing knowledge will be used to guide the current heuristic search-
ing. The proposed knowledge-based ant colony optimization (KBACO)
algorithm outperformed some current approaches.

Research on other objectives have also been considered in the litera-
ture, especially due date related objectives due to the need to improve
the delivery performance in modern manufacturing systems. Pinedo and
Singer [152] presented a heuristic to minimise the total weighted tardiness
in JSS, which was based on the shifting bottleneck procedure [153] that
schedules one machine at a time and used a branching tree to find a good
order to schedule the machines. Every node of the tree represents a par-
tial order in which the machines are scheduled. From the experiments, this
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method yielded solutions that were near optimum on some problems with
10 jobs and 10 machines. Asano and Ohta [6] introduced another heuristic
for the minimisation of the total weighted tardiness in JSS that is based on
the tree search procedure, also with very promising results. Kreipl [105]
proposed an efficient large step random walk (LSRW) method for min-
imising total weighted tardiness. This method employed different neigh-
bourhood sizes to perform a small step or a large step. The small step con-
sists of iterative improvement while the large step consists of a Metropolis
algorithm (similar to the simulated annealing algorithm but with a con-
stant temperature). Essafi et al. [59] proposed a hybrid genetic algorithm
which employed the iterative local search and the hybrid scheduling con-
struction procedure to solve this problem. The results showed that the
proposed method is very competitive as compared to LSRW [105].

Dispatching rules based meta-heuristics

Some efforts to combine both meta-heuristics and dispatching rules into
the same framework have also been proposed in the literature. Storer et
al. [178] proposed a simple hill climbing method to find the good assign-
ments of heuristics/dispatching rules into different scheduling windows.
Even though some good results were obtained, this method was still re-
stricted to known dispatching rules and their linear combinations, which
may not be sufficient to solve hard JSS problems. Dorndorf and Erwin [56]
employed GA as a meta-strategy to guide an optimal design of local deci-
sion rule sequences. They proposed two GA methods in their paper. The
first method aimed at finding the optimal sequence of dispatching rules to
handle the conflicting operations in each decision step of the Giffler and
Thompson algorithm [69]. The second method was used to control the se-
lection of nodes in the enumeration tree of the shifting bottleneck heuris-
tic [153]. The results showed that the proposed methods can find better
solutions compared to the shifting bottleneck heuristic and simulated an-
nealing. Hart and Ross [77] developed a hybrid GA method which is quite
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similar to the dispatching rules based GA proposed by Dorndorf and Er-
win [56], except that the methods to calculate the set of conflicting opera-
tions are also encoded into the genes. This method was quite promising
compared to other similar methods in the literature. However, the per-
formance of this method was governed by the choice of dispatching rules
to deal with different objectives. Zhou et al. [194] introduced a general
framework using a genetic algorithm and dispatching rules to solve a simi-
lar problem and showed that it was better than the pure genetic algorithm.
Different from those proposed in [77] and [56], this method encoded the
dispatching rules for each machine in combination with the first job to be
scheduled on that machine. Even though the proposed hybrid GA pro-
vided solutions that are inferior to those obtained in [105], it was still very
promising since it is capable of solving a variety of scheduling problems
without major redesign. For other similar methods, the reader is referred
to [43], [149] and [155].

Multi-objective optimisation methods for JSS

Since many conflicting objectives usually exist in JSS environments, there
is a practical need to design a method to deal with these multi-objective
problems. Kacem et al. [95] proposed a Pareto approach based on the hy-
bridisation of fuzzy logic and evolutionary algorithms to minimise make-
span, total workload of machine, and the workload of the most loaded
machine. The results from the experiments were very encouraging. Xia
and Wu [188] used particle swarm optimization (PSO) to assign opera-
tions to machines and simulated annealing to schedule operations on each
machine. This study also considered the three objectives used in [95];
however, the problem is converted to a single objective problem by us-
ing an aggregated weighted objective function. The results from this hy-
brid method were shown to be better than some evolutionary algorithms.
Also using an aggregated weighted objective function, Lam et al. [106]
introduced an enhanced genetic algorithm for multi-objective JSS with ob-
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jectives (makespan, mean of weighted tardiness and mean of weighted
earliness). The algorithm evolved three individual objectives in a modi-
fied parallel GA system with migration to reach their own objectives. Af-
ter that they are combined to continue the evolutionary process with the
compromise combined objective. More recently, Vázquez-Rodrı́guez and
Petrovic [184] introduced a new dispatching rule based GA for the multi-
objective JSS problem. In their algorithm, they encoded both dispatching
rules and the number of successive steps that these rules were applied to.
The proposed representation showed very good performance on a wide
range of problem instances.

2.2.3 Holistic view of job shop scheduling

It has been a common assumption for many people that job shop schedul-
ing is equivalent to sequencing that determines the order in which jobs
waiting in the queue of a machine are processed [1]. A large number of
studies on JSS, as shown in the previous section, also mainly focus on
the sequencing part. However, sequencing is only one of several schedul-
ing decisions. Other important scheduling decisions include job order re-
lease and due date assignment. For job order release, the task is to con-
trol the amount of work to be released into the shop in order to balance
the throughput and the congestion of the manufacturing system. Mean-
while, due date assignment decisions are made whenever orders (jobs)
are received from customers and good due date assignments are needed
in order to maintain high customer satisfaction. Figure 2.4 shows the con-
nections between these decisions and the locations where these decisions
are applied in a production planning and control system. Most studies
on job shop scheduling only considered one of the many decisions and
fixed the others in order to reduce the complexity of the scheduling prob-
lems. These approaches are valid when there is no interaction among the
scheduling decisions, which is often not the case for real world applica-
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Figure 2.4: Production planning and control (PPC) decisions [107].

tions. The focus of thesis is mainly on due date assignment and dispatch-
ing/scheduling decisions. Other planning tasks (as shown in Figure 2.4)
will be simplified in order to make it easier to analyse the interactions be-
tween the two considered scheduling decisions. Following are reviews on
other scheduling decisions and their interactions with dispatching rules.

Due date assignment

Due date assignment decisions are made whenever jobs (customer orders)
are received from customers. Good due date assignments are needed in
order to maintain high delivery performance (delivery speed and deliv-
ery reliability). Generally, due dates can be set: (1) exogenously, or (2)
endogenously [40, 163]. In the former case, due dates are decided by inde-
pendent agencies (sellers, buyers). This thesis only focuses on the second
case, where the due dates are internally set based on the characteristics of
the jobs and shop [163], to improve the delivery performance of job shops.
The endogenous due date assignment is especially important when man-
ufacturers need to “promise” a delivery date to customers and it is also
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useful for better management of shop floor activities. Basically, the due
date of a new job is calculated as:

dj = rj + f̂j (2.1)

where f̂j is the estimated (predicted) flowtime of job j. The value of f̂j
is calculated by the due date assignment rule (DDAR). In the ideal case,
we want the calculated due date dj to be equal to the completion time
of the job Cj . The performance (with respect to missing the due date) is
normally measured by the error (lateness) between the completion time
and due date ej = Cj − dj = fj − f̂j , where fj is the actual flowtime.

Some criteria to evaluate the performance of DDARs [41, 19] in the
JSS literature are shown in Table 2.3. In this table, C is the set of jobs
collected from the simulation runs to calculate the performance measures,
ej is the lateness of job j, ē is the mean lateness and T is the set of tardy
jobs (Cj − dj > 0). MAPE and MAE measure the accuracy of the flowtime
estimation. Smaller MAPEs or MAEs indicate that the DDAR can make better
predictions. MPE measures the bias of the DDAR. If the DDAR results in
a negative (positive) MPE, it means that the DDAR tends to overestimate
(underestimate) the due date. STDL measures the delivery reliability of the
DDAR. A smaller STDL indicates that the estimated due dates are more
reliable. Another delivery performance measure is %T, which shows the
percentage of jobs that fail to meet the due date.

Many DDARs have been proposed in the JSS literature. The DDARs in
early studies are mainly based on creating a simple model that employed
aggregate information from the new job and the shop. Examples of these
methods are Total Work Content (TWK) where dj = rj + kpj , Number
of Operations (NOP) where dj = rj + kmj , and Processing Plus Waiting
(PPW) where dj = rj + pj + kmj . In these methods, pj and mj are the
total processing time and the number of operations of job j, and k is a
coefficient that needs to be determined. Other more sophisticated models
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Table 2.3: Performance measures of DDARs

Mean Absolute Percentage Error MAPE = 1
|C|
∑

j∈C
|ej |
fj

Mean Percentage Error MPE = 1
|C|
∑

j∈C
ej
fj

Mean Absolute Error MAE =
∑

j∈T
|ej |

|C|

Standard Deviation of Lateness STDL =
√

1
|C|
∑

j∈C(ej − ē)2

Percent Tardiness %T = 100× |T|
|C|

have also been proposed that incorporate more information of jobs and the
shop to make better predictions of flowtimes. These include Job in Queue
(JIQ), Work in Queue (WIQ), Total Work and Number of Operations (TWK
+ NOP), Response Mapping Rule (RMR), and Operations-based Flowtime
Estimation (OFE). Comparisons of these DDARs [160, 62, 151, 35, 41, 168]
show that the DDARs which employ more useful information can lead
to better performance. However, the main drawback of these methods
is that they depend strongly on the determination of the corresponding
coefficients for factors used in the prediction models. The most popular
method to determine the coefficients is using linear regression models.

Because of the complexity and stochastic nature of dynamic job shops,
nonlinear models will be needed [151], which make it computationally
more expensive to solve for regression methods. For this reason, many
artificial intelligence methods have been applied to solve this problem.
Philipoom et al. [151] proposed a neural network (NN) method for due
date assignment and showed that their NN method can outperform con-
ventional methods and nonlinear models. Also in this direction, Sha and
Hsu [174] developed an NN method for due date assignment in a wafer
fabrication system that showed very good results. Patil [147] enhanced
the NN method by using ensemble learning and bagging/boosting con-
cepts. A GA method was also employed to search for neural network
architectures that develop a parsimonious model of flowtime prediction.
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The computational results showed that the enhanced NN method outper-
formed other simple NN methods. Although different shop environments
were considered, the paper only focused on training and testing the NNs
on the same shop environments and the reusability of the obtained NNs on
unseen different shop environments have not been examined. Baykasoglu
and Gocken [17] applied gene expression programming (GEP) to evolve
a symbolic regression model for DDA in a specific multi-stage job shop.
The results showed that the evolved DDAR was better than the previous
proposed DDARs. However, only aggregate information from the shop
was employed to estimate the job flowtimes and detailed information of
operations has not been considered. Also, similar to [147], there is no anal-
ysis on the reusability of the evolved DDARs. Other data-mining methods
such as decision trees [144], regression trees [175], and a regression based
method with case-based tuning [176] have also been proposed, showing
very promising results.

Although the DDARs described above have shown good results in sim-
ulation studies, determining good model coefficients is not an easy task,
especially with the dynamic changes in the shop floor. To overcome this
problem, some dynamic DDARs have been proposed, in which the coef-
ficients are adjusted based on the information of the new job and state of
the system. Cheng and Jiang [41] proposed Dynamic Total Work Content
(DTWK) and Dynamic Processing Plus Waiting (DPPW) by applying Lit-
tle’s law [114] from queueing theory:

• DTWK:

dj = rj +max

{
1,

Nst

λμpμg

} mj∑
i=1

pji (2.2)

• DPPW:

dj = rj +

mj∑
i=1

pji +
Nqtmj

λμg
(2.3)

where Nst is the number of jobs in the shop at the moment a new job
arrives, λ is the average arrival rate of jobs, μp and μg are respectively



40 CHAPTER 2. LITERATURE REVIEW

the average processing time and average number of operations, pji
is the processing time of the ith operation of job j, and Nqt is the total
number of jobs in the queue of each machine.

In another study, Baykasoglu et al. [19] developed ADRES, a new
dynamic DDAR, which uses a simple smoothing method to estimate the
waiting time of the next job. In this model, the due date can be calculated
as follows (assuming zero transportation times):

dj = rj +

mj∑
i=1

w′
ji + p̄j (2.4)

where w′
(j+1)i = αji + (1 − αji)w

′
ji is the formula to estimate the waiting

time of job j at its ith operation, αji = | Sji

Aji
| is the smoothed value, Sji =

βeji+(1−β)S(j−1)i is the smoothing error, Aji = β|eji|+(1−β)A(j−1)i is the
absolute smoothed error, β is a smoothing constant, eji = wji − w′

ji is the
error of the waiting time estimation when wji is the actual waiting time,
and p̄j is the sum of mean processing times at stations on the route of job
j.

Previous research has shown that DTWK, DPPW and ADRES are very
effective DDARs as compared to static regression-based DDARs. Another
advantage of these DDARs is that no preliminary runs to obtain the pa-
rameter estimations are necessary. Therefore, they have been used as good
candidates for comparison purposes [175, 19, 17, 18, 186].

One of the problems with the dynamic DDARs is that they are still
mainly based on the aggregate information of jobs and the shop to make
the prediction and ignore the detailed operation information, while it is
shown that this information can help improve the quality of the prediction
[168]. However, development of such operation-based DDARs would be
very difficult since these models involve many different factors (variables).
Thus, there is a need to have an automatic method to facilitate the design
of such models. Also, there is no previous study on the reusability of the
proposed models in the JSS literature, so it is questionable whether the
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proposed/evolved models can be applied, without major revisions, when
there are changes in the shop.

Other scheduling policies

Ragatz and Mabert [161] performed a large number of experiments to eval-
uate the combinations of five releasing mechanisms and four dispatching
rules under different levels of due date tightness. The results suggested
that the use of job release mechanisms can enhance the performance of
simple dispatching rules. Rohleder and Scudder [166] performed another
study to compare the performance of dispatching rules and order release
mechanisms. The simulation experiments showed that the job release
mechanisms are less important than dispatching rules when dealing with
early/tardy problems, especially when the shop is at high utilisation level
(the percentage of time that machines are employed). Lu et al. [116] per-
formed similar research for the assembly job shop environment. The ex-
perimental research on both job release mechanism and dispatching rules
is highly relevant to due date and flow time based performance measures.
The study also emphasised the incorporation of the order release mech-
anism into dispatching rules to enhance the performance of the job shop
scheduling system.

Ahmed and Fisher [1] were the first to investigate three-way interac-
tion between due date, job release and due date assignment rules. The
average total cost was used as the performance measure. This study con-
cluded that the combination of rules used in a job shop is at least as impor-
tant as the choice of individual scheduling decisions. Moreira and Alves
[129] further investigated the interactions between these three scheduling
decisions and included an order acceptance decision to form a four-way
decision making problem for the general job shop environment. The study
concluded that simultaneously considering all four decisions can improve
mean tardiness and total flow time of jobs in the system.
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Although job shop scheduling has been popular for decades, the stud-
ies on the interactions between scheduling decisions are still quite lim-
ited. One of the reasons for the lack of research in this direction is because
dealing with each scheduling decision is itself already hard. Therefore,
the studies on the interactions can only depend on the combinations of
well-known rules for each scheduling decision, making the problem even
harder. Since the 1990s, optimisation has been the dominant research trend
in job shop scheduling. While there have been many great achievements,
the focus on optimisation methods (mainly for one scheduling decision in
a static environment) also restricts the studies of the interactions between
scheduling decisions. In order to effectively tackle this problem, there is a
need for a new methodology for improving scheduling decisions, which
can cope with dynamic features of job scheduling problems.

2.3 Genetic Programming

Genetic programming (GP) [103] is an evolutionary computation method,
inspired by biological evolution, to automatically find computer programs
for solving a specific task. In genetic programming, a population of com-
puter programs (individuals) is created and these programs are evolved
to gain higher (better) fitnesses through an evolutionary process. In each
generation of the evolutionary process, each program is evaluated by us-
ing a pre-defined fitness function, which assesses the ability of the pro-
gram to perform a specific computational task. The fitness values obtained
by programs in the population decide the chance of each program to sur-
vive and reproduce in the next generation. Different from GAs [80], each
individual of a GP population is not represented by a fixed length string of
genes (bits, real numbers, or symbols). Because the shape and length of the
final program is normally not known by the user, individuals in GP usu-
ally represent programs in a tree form of various lengths [103]. Other rep-
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resentations are also developed in grammar-based GP [119], linear-based
GP [27], cartesian genetic programming [122] and achieve very promising
results.

Since its first introduction more than thirty years ago, GP has been ap-
plied to solve a wide range of real world applications. Moreover, because
of its ability to evolve novel and promising solutions for solving problems,
GP has produced a large number of human-competitive results and even
patentable new inventions [154]. In the rest of this section, key concepts
of GP are presented to explain how GP works. This review only focuses
on tree based GP as this form is used in this thesis. Since multi-objective
optimisation and coevolution are also incorporated into GP in this thesis,
we briefly review these aspects in this section.

2.3.1 Representation

Figure 2.5 shows an example of a GP individual, which is a tree-based
representation of the program x + min(y − 3, 0). The variables {x, y} and
constants {3, 0} are called terminals of the program and can be found at
the leaves of the tree. Meanwhile, the arithmetic operations {+,−,min}
are called functions in GP; each requires at least one argument and cannot
be located at the leaves of the tree. The collections of these terminals and
functions are known as the terminal set and the function set, respectively.
Basically, a GP individual is a specific combination of elements selected
from these two sets. In the GP literature, in order to easily observe the rela-
tionship between a function and its subtrees, the GP programs are usually
presented to the human users by using the prefix notation similar to a Lisp
expression. For example, the program x + min(y − 3, 0) can be presented
as ( + ( x (min (− y 3 ) 0 ) ).

In the above example, the return values of all functions as well as ter-
minals are numerical. However, in some applications of GP, it is useful
to have programs that contain different components (or subroutines) with
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Figure 2.5: GP program that represents x+min(y − 3, 0).

different return types. For example, when the conditional function if is
used, the condition requires the return type to be boolean, but other ar-
guments of this function can be numerical. This issue, if not considered,
will cause serious errors in the evolution process of GP. Poli et al. [154]
presents a summary of these approaches, including strongly typed genetic
programming, and grammar based approaches. The basic idea of these
methods is to ensure the closure of GP programs. In strongly typed GP
(STGP) [127], types and their constraints are incorporated into the GP sys-
tem. Therefore, each terminal possesses a type and each function will only
accept the arguments of certain types and it also has its own return type.
Another approach to deal with this problem is to use grammars to express
constraints [75, 79, 141]. In this type of system, the grammar is used to
ensure that the initial population is made up of legal ”grammatical” pro-
grams. Moreover, the genetic operators in this GP system also need to
follow the grammar. An interesting discussion about the advantages and
disadvantages of these solutions is presented in [154].

2.3.2 Initialisation

Similar to other evolutionary computation methods, GP starts its evolu-
tion process with a randomly generated population. Various initialisation
approaches have been proposed in the literature. Two of the earliest and
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most popular approaches are full and grow [103]. In these approaches,
a maximum depth is determined for each GP individual to restrict the
program tree depth (the largest number of edges required to reach a leaf
node). For the full approach, the purpose is to generate full trees whose
terminals are all located at the maximum depth of the trees. In this ap-
proach, nodes are randomly selected from the function set until the max-
imum depth of the tree is reached. However, the fact that all programs
generated by the full approach will have the same depth does not mean
that the lengths of these programs (the total number of nodes) are the
same because functions may require different number of arguments (ar-
ities). On the other hand, the grow approach does not require the gener-
ated program to have all terminal nodes at the maximum depth. In this
case, nodes can be selected either from the function set or the terminal set
and the approach only forces the node to be selected from the terminal
set when the maximum depth is reached. In order to diversify the initial
population with individuals of various depths, lengths and shapes, these
two approaches are often combined and the hybrid approach is known as
ramped half-and-half. The purpose of this method is to generate half the
initial population with the full approach and the other half with the grow
approach.

2.3.3 Evaluation

Evaluation is an important step in GP in order to determine the fitness
(goodness) of evolved programs. If the programs are in a tree form, they
are normally executed (interpreted) by traversing the tree recursively start-
ing from the root node and postponing the evaluation of each node until
the values of its children (arguments) are known [154]. Since an evolved
program is usually planned to be able to handle different situations, its
fitness will depend on the performance of the program when it runs with
different inputs (scenarios). A pre-defined fitness function will use the re-
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sults obtained from the application of an evolved program to calculate the
fitness for that program. The fitness function plays an important role in a
GP system because it helps guide the search to find good programs. De-
pending on a specific task, the fitness function can be very different. For
example, the fitness can be the aggregate errors between the outputs and
the target outputs of the evolved programs; the amount of time or cost re-
quired for a program to complete a task; or the performance measures of
the programs when they are used to solve a computational problem. Since
the fitness function is used to assess the ability of the evolved programs to
achieve a specific objective, it is sometimes also referred as the objective
function.

2.3.4 Selection

After individuals in the GP population are evaluated, they will be assigned
fitnesses to show how well these individuals perform on a specific task.
The fitness of an individual decides its chance to be selected for genetic
operators. Similar to the natural selection process, good individuals will
be more likely to be chosen to generate offspring (child programs). The
most popular selection methods in EC methods are fitness proportionate
(or roulette wheel selection) and tournament selection [154].

For roulette wheel selection, individuals are randomly selected based
on the distribution determined by their fitness. Individuals with good fit-
ness have higher probabilities to be chosen and the poor individuals have
lower probabilities to be selected. A variant of this method is ranking se-
lection where the proportionate selection is performed based on the ranks
of individuals in the population. One problem with roulette wheel selec-
tion is that poor individuals with low fitness may have very small proba-
bilities to be selected while the selection pressure for good individuals can
be very high.

Tournament selection is another alternative to deal with this problem.
In tournament selection, a number of individuals (the tournament size)
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are first randomly sampled from the population. Then, the best individ-
ual among these individuals will be selected. The first step of the tourna-
ment selection uses equal probabilities for all individuals to be selected,
including the poor individuals [117]. For this selection method, a smaller
tournament size will give higher probabilities for the bad individuals to
be selected for the genetic operators.

2.3.5 Genetic operators

The role of genetic operators is to utilise the genetic materials from ex-
isting individuals (parents) to generate new individuals (children or off-
spring) for the next generation. Because of the special representation, ge-
netic operators in GP are significantly different from those used in other
evolutionary computation methods. Like in genetic algorithms, the basic
genetic operators in GP are crossover, mutation and reproduction. To per-
form crossover, two parent individuals are selected from the population
by using the selection methods above. The most commonly used form of
crossover in GP is subtree crossover [103] as shown in Figure 2.6. A node is
selected randomly as the crossover point from each of the selected parents
and two offspring are typically created by replacing the subtree rooted
at the crossover point in the copy of the one parent with the copy of the
subtree rooted at the crossover of the another parent [154]. Since a large
number of nodes in GP trees are leaves (terminals), uniformly selecting
nodes for crossover may lead to exchanges of very small amounts of ge-
netic materials. To deal with this problem, Koza [103] suggested to choose
function or non-terminal nodes for 90% of the time and terminal nodes or
leaves 10% of the time.

For mutation, only one parent is needed to generate a new offspring.
The most popular type of mutation in GP is the subtree mutation, in which
a random mutation point is chosen from the selected parent. The subtree
rooted from this node is then removed and replaced by a newly generated
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Figure 2.6: Subtree crossover in GP.

subtree. An example of subtree mutation is shown in Figure 2.7. Another
common form of mutation in GP is point mutation, which only replaces a
random node with an equivalent node from either function or terminal
sets. Multiple nodes can also be mutated in one application of point mu-
tation. The difference between the subtree mutation and point mutation
is that the shape of the program may be changed when subtree mutation
is used while the point mutation still preserves the shape of the parent
program.
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Figure 2.7: Subtree mutation in GP.

Reproduction in GP is quite similar to that in other evolutionary com-
putation methods. When reproduction is applied, an individual is selected
from the population by the selection mechanism (e.g. tournament selec-
tion) and copied to the population of the next generation. In each gen-
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eration of GP, the applications of each genetic operator are governed by
the probability assigned to each type of genetic operator and referred to as
crossover rate, mutation rate and reproduction rate. Different from some
evolutionary computation methods where these genetic operators can be
applied sequentially, these operators are mutually exclusive in GP [154].
Besides these basic genetic operators, an elitism mechanism is also often
used in many evolutionary computation methods. This operator just sim-
ply picks the top individuals of the current generation and inserts them
into the population of the next generation. The objective of using elitism
is to ensure that the best obtained individuals will not be lost through the
probabilistic selection process.

2.3.6 Basic GP algorithm

Figure 2.8 shows a basic GP algorithm. As mentioned, the aim of GP is to
evolve a program that is capable of solving a problem, so the output of this
algorithm is the best program found by GP. The algorithm starts by load-
ing all the data required to evaluate the fitness of a program and randomly
generating the initial population of size S. At a generation, each program
Δi will be applied and the fitness value of each program is calculated by
a pre-determined fitness function. If the evaluated program is better (has
smaller fitness value since we focus on minimisation problems in this re-
search) than the best program Δ∗, it will be assigned to the best program
found so far Δ∗ and the best fitness value fitness(Δ∗) is also updated.
After all individuals in the population are evaluated, the GP system will
apply genetic operators such as reproduction, crossover and mutation to
the selected programs (using the selection methods in Section 2.3.4) in the
current population to generate new individuals for the next generation.
When the maximum number of generations is reached, the GP algorithm
will stop and return the best found rule Δ∗.
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Inputs: problem data
Output: the best evolved program Δ∗

1: randomly initialise the population P ← {Δ1, . . . ,ΔS}
2: set Δ∗ ← null and fitness(Δ∗) = +∞
3: generation← 0

4: while generation ≤ maxGeneration do
5: for all Δi ∈ P do
6: evaluate fitness(Δi)

7: if fitness(Δi) < fitness(Δ∗) then
8: Δ∗ ← Δi

9: fitness(Δ∗)← fitness(Δi)

10: end if
11: end for
12: P new ← {}
13: while |P new| < S do
14: Δnew ← apply either reproduction, crossover,

or mutation to selected programs from P

15: P new ← P new ∪Δnew

16: end while
17: P ← P new

18: generation← generation+ 1

19: end while
20: return Δ∗

Figure 2.8: Basic GP algorithm.

2.3.7 Multi-objective GP

Multi-objective GP (MOGP) has been very active in the last decade [154]
to solve problems with different conflicting objectives. The applications
of MOGP are quite wide, ranging from reducing bloat [58, 50, 49, 11],
simplifying solution trees [109] within the GP evolution process, learn-
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ing boolean queries in information retrieval systems with precision and
recall as objectives [45], to designing autonomous navigation controllers
for unmanned aerial vehicles with high stability and efficiency [16].

In general, there are two basic ways to deal with multiple objectives.
The first option is to combine these objectives into an aggregate scalar fit-
ness function. One of the easiest ways is to linearly combine these objec-
tives into a function f =

∑
i wifi, where fi is the ith objective to be op-

timised and wi is the weight assigned to objective fi. The advantage of
this method is that the existing single objective GP methods can be used
without any (or with very little) modification. However, the users need
more effort to find suitable ways to combine conflicting objectives. Even
when the simple linear combination is employed, determining weights for
different objectives is not easy because it requires the users to have some
knowledge about the landscapes of the objective functions, which is often
not available.

Another way to handle multiple objectives is based on the Pareto dom-
inance concept. From the Pareto dominance perspective, a solution dom-
inates another solution when it is not inferior to the other solution in all
objectives and there is at least one objective where this solution performs
better. In this case, the ultimate goal is not to find a single high fitness solu-
tion but a set of non-dominated solutions or Pareto front instead. Because
the Pareto front may contain a large number of non-dominated solutions
and heuristic methods such as GP cannot guarantee the optimal solution,
the aim of the search methods is to find the set of non-dominated solutions
to approximate the true Pareto front. For this reason, many performance
measures have been proposed to measure the quality of the approximated
Pareto front such as (inverted) generational distance convergence to the
true Pareto front [52, 197] and (generalised) spread [52, 193] to indicate
the diversity of solutions in the obtained Pareto front. An excellent review
and analysis of different quality indicators for multi-objective problems
are presented by Zitzler et al. [197]. Many general approaches in evolu-
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tionary computation have been proposed for searching the Pareto front.
The following are some popular approaches which can work well with
genetic based methods (see [44] for a more comprehensive review):

• Non-dominated Sorting GA (NSGA, NSGA-II) [52]: evolve an archive
population which is updated in each generation by collecting the
non-dominated solutions from both parent and offspring popula-
tions. Pareto dominance is used in the traditional tournament se-
lection and a “crowding distance” is used to break the ties in these
tournaments as well as the updating process of the archive popula-
tion.

• Harmonic Distance Based Multi-Objective Evolutionary Algorithm
(HaD-MOEA) [187]: is an improved version of NSGA-II by introduc-
ing a new crowding distance measure called harmonic average dis-
tance and changing the selection scheme used in NSGA-II to prevent
the inappropriate selection of solutions based on non-dominated ranks.

• Strength Pareto Evolution Algorithms (SPEA, SPEA2) [195]: main-
tain a fixed separate archive and update this archive in each gener-
ation. The fitness of an individual in this case is the combination
between the dominance or strength of that individual and its area
density. When updating the archive, if the size of the union of non-
dominated solutions from both population and archive exceeds the
size of the archive, the most similar solutions will be eliminated from
the archive.

• ε-Multi-Objective Evolutionary Algorithm (ε-MOEA) [51]: is a steady
state algorithm which is different from generational evolutionary al-
gorithms like NSGA, NSGA-II, SPEA, and SPEA2. In each genera-
tion of ε-MOEA, one solution is produced by using one parent from
the population and one parent from the archive. The offspring will
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be compared with other individuals in the population to see whether
it can be accepted to the population and replace the old individ-
ual. Moreover, this offspring is also considered to be included in the
archive by checking the ε-dominance criterion and different strate-
gies are also used to decide whether the offspring is accepted.

• Pareto Archived Evolution Strategy (PAES) [102]: is also a steady
state algorithm. However, different from ε-MOEA, PAES accepts an
offspring into the population and the archive of non-dominated so-
lutions. The new solution is generated by applying a simple muta-
tion operator to the current solution. If the current solution is dom-
inated by the new solution, it will be replaced and the archive will
also be updated. In PAES, the archive is used for two purposes: (1)
storing non-dominated solutions, and (2) supporting for accurately
select between current and candidate solutions. If the archive is full,
the solution in the least crowded region will be preferred.

2.3.8 Co-evolution with GP

Another interesting topic in GP is co-evolution [157], where multiple pop-
ulations are evolved and the fitness of an individual depends on its inter-
actions with other individuals. There are two types of co-evolution called
competitive co-evolution and cooperative co-evolution. In competitive co-
evolution, individuals have to co-evolve against other individuals (within
a population or in opponent population) and the fitness of an individual
depends on the fitness of opponent individuals. On the other hand, coop-
erative co-evolution evolves different populations each of which contains
partial solutions of a problem. Different from competitive co-evolution,
the fitness of an individual is measured by combining it with one member
from each of the other populations to form a complete solution.

Co-evolution with GP has been very successful in many applications.
Azaria and Sipper [9] applied a competitive co-evolution method to learn
strategies for playing the game of backgammon. The results show that
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the co-evolution approach, which allows individuals to play against each
other, can lead to much better results compared to those learned with fixed
external opponents. Jin [90] used a cooperative co-evolution GP to evolve
the strategies for bargaining problems under incomplete information and
time preference. This method evolves two populations each of which con-
tains the bargaining strategies for a player. The fitness of a strategy is the
average utility of the strategy gaining from the agreements with strate-
gies in the co-evolving opponent’s population. The co-evolution method
was shown to provide reasonably good solutions for several difficult bar-
gaining problems. Gagné and Parizeau [64] proposed a cooperative co-
evolution method to design nearest neighbour classifiers. In this method,
both GA and GP are used to evolve the nearest neighbour prototypes and
neighbourhood proximity measures. The experimental results from this
method are very promising when compared with other traditional meth-
ods. In another study, Mendes et al. [120] tried to discover fuzzy classifi-
cation rules with a cooperative co-evolution system, in which GP is used
to evolve the fuzzy rule sets and evolution strategies (ES) [170] is used
to evolve membership function definitions. The experimental results of
this method on five data sets are very good compared with two existing
methods. In bioinformatics, co-evolution GP was also employed for auto-
matic knowledge discovery in annotated sequence data. Both amino acid-
based regular expressions and keyword-based logical expressions were
co-evolved by genetic programming. The proposed approach has been
shown to be very useful and it was able to discover unexpected links be-
tween biological processes. Many other applications of co-evolution GP
also achieved reasonable successes [113, 192, 83, 172].

2.4 Hyper-Heuristics for Heuristic Generation

Hyper-heuristics (HHs) are a relatively new search method and have at-
tracted a lot of attention from the research community. Different from
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heuristics and meta-heuristics, hyper-heuristics aim at exploring the heuris-
tic search space to find a logical and efficient way to solve hard computa-
tional search problems. Heuristic selection and heuristic generation are
currently the two main research methodologies in HH [30]. Even though
they both work in the “heuristic search space” and try to “raise the level of
generality” [30] at which optimisation can operate, their methodologies are
quite different. The key idea of heuristic selection is to find the right ex-
isting heuristics or combinations of existing heuristics for problem solv-
ing. Most of the related studies for heuristic selection have been based on
evolutionary methods and local search methods. Examples of evolution-
ary methods are memetic algorithms [104, 85, 142], where genetic search
and local search are employed adaptively through the searching process.
Some interesting aspects of memetic automation can be found in [36]. On
the other hand, local search methods are mainly based on the principles of
reinforcement learning [47] and local search based meta-heuristics such as
tabu search [34] and simulated annealing [57].

The focus of this study is on hyper-heuristics for heuristic generation
where the aim is to generate new heuristics. In order to generate a new
heuristic, the HH framework must be able to combine various small com-
ponents (normally common statistics or operators used in pre-existing heuris-
tics) and these heuristics are trained on a training set and evolved to be-
come more effective.

2.4.1 Genetic programming based hyper-heuristics

Recently, GP has become popular in the field of hyper-heuristics and it is
known as genetic programming based hyper-heuristics (GPHH) [31]. Be-
cause GP is able to represent and evolve complex programs or rules, it nat-
urally becomes an excellent candidate for heuristic generation. Bolte and
Thonemann’s work [25] can be considered the first to successfully adopt
GP to learn new heuristics. They proposed a GP system to evolve an-
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nealing schedule functions in simulated annealing to solve the quadratic
assignment problem (QAP). The paper also considered the case when the
GP system was used as a meta algorithm for simulated annealing where
the annealing schedules found were tailored to a specific problem, and the
case where the GP system is used to evolve a more generalised annealing
schedule. The experimental results showed that the method with GP as a
meta algorithm can find near optimal solutions for QAP and the improved
simulated annealing algorithm based on the generalised annealing sched-
ule found by GP outperformed existing simulated annealing algorithms.

Fukunaga [63] used GP to evolve variable selection heuristics in each
application of a local search algorithm for the satisfiability (SAT) problem.
Existing components that are used in popular local search methods are
used as primitives of the GP system. The experimental results showed that
the evolved heuristics are very competitive when compared with other
heuristics. Burke et al. [29, 32, 33] proposed a GPHH framework to evolve
construction heuristics for online bin packing. The basic idea of this GP
system is to generate a priority function from static and dynamic statistics
of the problem such as the size of piece p, and the fullness and capacity of
bin i. If the output of this function is greater than zero, piece p is placed
in bin i. The experimental results showed that human designed heuristics
can be obtained by GP.

Keller and Poli [98, 97] proposed a grammar based linear genetic pro-
gramming method to solve the travelling salesman problem. Several gram-
mars are introduced, including ones with a loop construct. Bader-El-Den
et al. [10] introduced a sophisticated grammar based GP for evolving
timetabling heuristics. Their GPHH is based on a grammar derived from a
collection of graph colouring heuristics that have previously been shown
to be effective in constructing timetables. The grammar in this method
provided a flexible way to evolve a heuristic that can react to different
states of the construction process of a solution. Even though the proposed
GPHH produced competitive results when compared with some existing
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search methods in the literature, it was not shown whether the evolved
heuristics can be reused on new problem instances.

2.4.2 GPHH for scheduling problems

GPHH is currently the most popular approach to automatic design of dis-
patching/scheduling rules. This section provides a review of GP applica-
tions for scheduling problems, which has been classified based on manu-
facturing environments.

Single machine environments

Dimopoulos and Zalzala [54] used GP to evolve dispatching rules for the
one-machine scheduling problem with a standard function set and a ter-
minal set of scheduling statistics (processing time, release time, due date,
number of jobs, etc.). The evolved dispatching rules are better than tradi-
tional rules even for large and unseen instances. Jakobovic et al. [87] em-
ployed the same method for developing dispatching rules for the parallel
machine scheduling problem in both static and dynamic environments.
However, the evolved rules obtained from these studies have not consid-
ered the effects of different representations on the performance of the GP
system, and the machine and system attributes were not included in the
evolved rules.

Also trying to learn new dispatching rules for the single machine envi-
ronment, Geiger et al. [68] presented a learning system that combines GP
with a simulation model of an industrial facility. The proposed GP is used
to create the priority rule for a single machine in static and dynamic envi-
ronments. The terminal set of GP includes system attributes, job attributes,
and machine attributes, and the function set consists of basic operators.
The paper also proposed a method to learn dispatching rules for multi-
ple machine problems in which GP will evolve multiple trees simultane-
ously with modified crossover and mutation operators. Comparison with
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the optimal rule in a simple two machine environment showed that the
evolved rules are quite competitive. However, the use of an independent
dispatching rule for each machine may rapidly increase the complexity of
the scheduling systems and make it difficult to generate generalised rules
for large manufacturing systems. A similar GP system is also applied to
solve the batch processor scheduling problem [67], where a machine can
simultaneously process multiple jobs in a batch and all of these jobs will
begin and finish at the same time. Both static and dynamic cases are con-
sidered in their study and the experimental results show that evolved rules
can approximate the optimal rule in the static case when total flow time is
the objective to be minimised. In dynamic cases, the evolved rules are bet-
ter than the existing rules for minimising the total tardiness and total flow
time. However, no system or machine status is considered in these studies
to improve the adaptiveness of the evolved rules.

Nei et al. [138] proposed a gene expression programming (GEP) method
to solve the single machine scheduling problem. In their study, many ob-
jective functions are considered and the rules evolved by GEP show very
competitive results compared with existing rules. The comparison with
GP also showed that GEP can perform slightly better than GP and with
less computational time. However, no statistical test was performed to
support these results. A disadvantage of the proposed GEP system is
that it requires more parameters than the standard GP. Yin et al. [191]
employed GP with bi-trees programs that include the priority rules to se-
quence jobs in the queue and the functions to calculate the required idle-
ness to deal with the machine breakdown problem in a single-machine
environment. The evolved rules are shown to be much better than the
existing rules in this field.

Job shop environments

Miyashita [123] developed an automatic method using GP to design cus-
tomised dispatching rules for a job shop environment and viewed JSS as
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a model of a multi-agent problem where each agent represents a resource
(machine or work station). Three multi-agent models are proposed: (1) a
homogeneous model where all resources share the same dispatching rule,
(2) a distinct agent model where each resource employs its own evolved
rule, and (3) a mixed agent model where two rules can be selected to pri-
oritise jobs depending on whether the resource is a bottleneck or not. Al-
though the multi-agent models perform better, the use of these models de-
pends on some prior-knowledge of the job shop environment, which can
be changed in dynamic situations. A similar system was also proposed by
Atlan et al. [7] but the focus was on finding the solution for a particular
problem instance.

Jakobovic and Budin [86] applied GP to evolve dispatching rules for
both single machine and job shop environments. The results for the sin-
gle machine environment are shown to be better than existing rules. For
the job shop environment, a meta-algorithm is defined to show how the
evolved rules are used to construct a schedule. This study also proposed
an interesting way to provide some adaptive behaviours for the evolved
rules. They proposed a GP-3 system that evolves three components, a dis-
criminant function and two dispatching rules. The discriminant function
aims at identifying whether the considered machine to be scheduled is
a bottleneck or not. This function serves as the classifier in binary clas-
sification problems. Based on the classification decision obtained from
the discriminant function, one of two dispatching rules will be selected
to sequence jobs in the queue of that machine. Even though the purpose
of the discriminant function in this case is to identify the bottleneck ma-
chine, there is no guarantee that the classification can help indicate the
bottleneck machine or just (some) other useful attributes of the shop or
machines. The results show that the GP-3 system performed better than
traditional GP with a single tree. Unfortunately, no analysis of the evolved
rules or demonstrations of the evolved rules are given. Tay and Ho [181]
proposed a GP system to evolve dispatching rules for a multi-objective
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job shop environment. The multi-objective problem was converted into
a single objective problem by linearly combining all objective functions.
The proposed GP program can be considered as a priority function which
is used to calculate the priority of operations in the queue of a machine
based on a set of static and dynamic variables. The set of instances was
randomly generated and it was shown that the evolved dispatching rules
can outperform other simple dispatching rules. However, they did not
consider the use of machine attributes in the priority function.

Hildebrandt et al. [78] re-examined this system in different dynamic
job shop scenarios and showed that rules evolved by Tay and Ho [181] are
only slightly better than the earliest release date (ERD) rule and quite far
away from the performance of the SPT rule. They explained that the poor
performance of these rules is caused by the use of the linear combination
of different objectives and the fact that the randomly generated instances
cannot effectively represent the situations that happened in a long term
simulation. For that reason, Hildebrandt et al. [78] evolved dispatching
rules by training them on four simulation scenarios (10 machines with two
utilisation levels and two job types) and only aimed at minimising mean
flow time. Some aspects of the simulation models were also discussed in
their study. The results indicated that the evolved rules were quite com-
plicated but effective when compared to other existing rules. Moreover,
the evolved rules are also robust when tested with another environment
(50 machines and different processing time distributions).

2.4.3 Other techniques for learning dispatching rules

Other methods have also been applied for discovering new dispatching
rules for JSS. Li and Olafsson [112] applied the decision tree method on
production data to generate dispatching rules. For further improvement,
the authors used data engineering to create more useful attributes besides
ones recorded as part of the raw production data. The results show that
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the discovered decision rules can accurately replicate the dispatching list
obtained by specific rules. However, since the rules are learned from the
historical records of the production system, it is difficult to generate new
dispatching rules and the performance of the evolved rules may only be
as good as the actual rules. Most recently, Ingimundardottir and Runars-
son [84] proposed a logistic regression approach which tries to discover
new dispatching rules using the characteristics of optimal solutions. The
learned linear priority dispatching rules showed better results than sim-
ple rules. One of the drawbacks is that the proposed supervised learning
approach tries to learn from the optimal solutions which are normally not
available in many cases.

2.5 Chapter Summary
Dispatching rules have been a very practical tool for scheduling in real
world situations. However, manual design of new dispatching rules is
still a very time consuming process. Several machine learning methods
have been proposed to ease this task. Genetic Programming is one of
the more popular methods because of its flexibility which helps GP eas-
ily cope with different problem environments. The results reported in the
literature have confirmed the effectiveness of GP for designing new dis-
patching rules. However, the research in this direction is relatively new
and many aspects still need to be explored to enhance the quality of GP
methods and cope with practical requirements. The following are some
remarks regarding this line of research.

• Although several works have been done to investigate the use of
GP for automatic design of dispatching rules, studies of represen-
tations and evaluation schemes of the evolved rules have not been
provided. It is noted that existing works mainly aim to evolve prior-
ity functions with the same behaviours as the traditional dispatching
rules. However, with the flexibility of GP representation, special as-
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pects of JSS can be used to enhance the representation of dispatching
rules. Moreover, since the design process is automatic, GP can apply
a more sophisticated evaluation scheme to evolve the dispatching
rules which are difficult to be explored manually.

• In real-world applications, scheduling decisions need to take into
account multiple conflicting objectives. However, dispatching rules
evolved by existing GP methods mainly focus on a single objective.
Although, Tay and Ho [181] considered multiple objectives in their
study, all objectives are combined into a single objective function and
rules are evolved in the way similar to other GP methods. Since the
weights for each objective need to be determined prior to GP runs,
without any knowledge about the trade-offs between these objec-
tives the evolved rules may be undesirable as pointed out by Hilde-
brandt et al. [78]. Evolving Pareto fronts of non-dominated dispatch-
ing rules is a more suitable method to deal with this issue.

• With the current focus on the delivery performance, it is important
that all due date related decisions in the scheduling system are con-
sidered. GP is only used to handle sequencing/scheduling decisions
and other decisions such as due date assignment are simplified. This
restricts the evolved dispatching rules from adapting to other related
decisions to ensure that the scheduling system runs smoothly. It is
noted that manually designing different scheduling decisions and
investigating different interactions between these decisions are very
challenging tasks in the scheduling literature. However, the use of
automatic design methods can help overcome these issues and open
a new research direction to construct comprehensive scheduling sys-
tems.

• Existing GP methods employed in the past studies may not be suf-
ficient to deal with practical issues such as multiple conflicting ob-
jective and multiple scheduling decisions. The main reason is the
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high complexity of the problems which makes it much more diffi-
cult to find effective scheduling rules. For that reason, it is impor-
tant to utilise special features of the scheduling problems to develop
more effective GP methods. The focus should be on developing new
evolutionary search mechanisms that can effectively find competi-
tive scheduling rules. Moreover, the representation of each individ-
ual rule and sets of scheduling rules needs to be investigated to help
reduce the search space that GP will explore.

• The reusability of the evolved rules is an interesting issue in previ-
ous studies in automatic design of heuristics. In scheduling prob-
lems, the reusability or the extent to which the evolved rules can be
used effectively is of great interest for scheduling researchers and
production/operation managers. Understanding the reusability of
the evolved rules will help decide how rules can be employed given
the practical situations of the shops. For example, the shop utilisa-
tion often fluctuates over time and it is important to know whether
the employed rules are able to cope with different utilisation levels.
While examining the reusability of the evolved rules for the single
objective problem is quite straightforward, dealing with multiple ob-
jectives is much more challenging. In the case of multiple objective
problems, the resuability of the evolved rules needs to be examined
by checking the Pareto relationships from different objectives instead
of each individual objective. This is a crucial issue which needs to be
investigated to have a proper assessment of the evolved rules.

The following chapters in this thesis will show how we can employ GP
to tackle these issues.
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Chapter 3

Program Representations of
Dispatching Rules

The purpose of this chapter is to investigate the influence of different rep-
resentations on the performance of rules evolved by GP. Through these
representations, we aim to evolve adaptive dispatching rules (ADR) for the
static JSS with makespan and total weighted tardiness as objective func-
tions. Basically, an ADR is a combination of different dispatching rules
and it is “adaptive” because the master rule will choose a specific dis-
patching rule to sequence jobs in the queue of a machine based on the
status of the machines at each decision making step. Three representa-
tions of dispatching rules are proposed and tested with the GP system.
Different fitness functions used to measure the performance of an evolved
dispatching rule are also compared.

The objectives of this chapter are to:

1. Investigate the performance of the GP system with different types of
representations.

2. Compare the performance of the evolved rules with well known dis-
patching rules both on the training set and the test set.

65
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3. Analyse the performance of the proposed algorithm as well as the
evolved rules.

The remainder of this chapter is organised as follows. Sections 3.1 and
3.2 provide detailed descriptions of the proposed representations and fit-
ness functions. Section 3.3 shows the overall GP algorithm employed in
this chapter. The experimental setting is presented in Section 3.4 and the
results will be shown in Section 3.5. Some insights regarding the proposed
method and the evolved rules will be discussed further in Section 3.6. Fi-
nally, Section 3.7 concludes the findings of this chapter.

3.1 Representations

Three representations of dispatching rules are considered. The first repre-
sentation (R1) provides a way to incorporate machine attributes into the
GP program along with simple dispatching rules and the hybrid schedul-
ing strategy (between non-delay and active scheduling). The second rep-
resentation (R2) is the traditional arithmetic representation like that em-
ployed in [181]; the purpose of this representation is to generate composite
dispatching rules. The last representation (R3) is a combination of R1 and
R2, in which different composite dispatching rules exist and are logically
applied to JSS based on the machine and system attributes.

3.1.1 Decision-tree like representation (R1)

The key idea of this representation is to provide dispatching rules with
the ability to apply different simple dispatching rules based on machine
attributes. In this case, dispatching rules are represented in a decision-
tree form. To make the rules more readable and explainable, the proposed
grammar in Figure 3.1 is used when building the GP programs and per-
forming the genetic operators (e.g. dispatching nodes must contain two
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Start ::= <action>

<action> ::= <if> | <dispatch>

<if> ::= if <attributetype> <op> <threshold>

then <action> else <action>

<op> ::= ≤ | >

<attributetype> ::= WR | MP | DJ | CMI | CWR | BWR

<threshold> ::= 10%|20%|30%|40%|50%|60%|70%|80%|90%|100%

<dispatch> ::= assign <nondelayfactor> assign <rule>

<nondelayfactor> ::= uniform[0,1]

<rule> ::= FIFO | SPT | LPT | LSO | LRM | MWKR | SWKR | MOPR | EDD | MS | WSPT

Figure 3.1: Grammar for the proposed GP system with R1.

arguments, which are a value of the non-delay factor and a single dis-
patching rule). Two example rules based on this grammar are shown in
Figure 3.2 (it is noted that the numbers in this figure only for the demon-
stration purpose). In Figure 3.2(a), the rule is SPT which is applied with
the non-delay factor α = 0.084. The rule in Figure 3.2(b) is a bit more so-
phisticated. The rule firstly checks the workload ratio WR (the ratio of the
total processing times of jobs in the queue to the total processing times of
all jobs that have to be processed at the machine) of the considered ma-
chine m∗ (refer to the generic schedule construction procedure in Figure
2.2 on page 27); if the workload ratio is less than or equal to 20%, dis-
patching rule SPT is applied with α = 0.221; otherwise, dispatching rule
FIFO is applied with α = 0.078. This rule can be considered as a vari-
ant of FIFO/SPT, in which the workload of the machine is used as the
switch instead of the waiting times of jobs in the queue. Different from
other applications [91, 148] where a single non-delay factor is evolved, the
proposed GP system using this representation allows different values of
non-delay factors to be employed based on the status of the shop.

In this study, we will consider six attributes which indicate the status
of machines in the shop. Let Λ be the set of operations that are planned to
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Figure 3.2: Example program trees based on representation R1.

visit the considered machine m∗, and K and I are the sets of all operations
that have and have not yet been processed bym∗, respectively (Λ = K∪I).
In the shop, we call a machine critical if it has the greatest total remaining
processing time

∑
σ∈I p(σ) and a machine is called bottleneck if it has the

largest workload
∑

σ∈Ω′ p(σ) in Ω′. The following definitions of the ma-
chine and system attributes are used in this study:

• Workload ratio, WR =
∑

σ∈Ω′ p(σ)
∑

σ∈I p(σ)
: indicates the workload in Ω′ com-

pared to the total remaining workload that m∗ has to process (in-
cluding the operations in the queue and operations that have not yet
visited m∗).

• Machine progress, MP =
∑

σ∈K p(σ)
∑

σ∈Λ p(σ)
: indicates the progress of m∗, calcu-

lated as the ratio of the total processing time that m∗ has processed
to the total processing time of all operations in Ω′ that have to visit
m∗.

• Deviation of jobs, DJ =
minσ∈Ω′{p(σ)}
maxσ∈Ω′{p(σ)} : is a simple ratio of minimum

processing time to the maximum processing time of operations in
Ω′.

• Critical machine idleness, CMI: is the workload ratio WR of the critical
machine.
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• Critical workload ratio, CWR =
∑

σ∈Ωc p(σ)
∑

σ∈Ω′ p(σ : is the ratio of the workload
of operations in Ωc to the workload in Ω′ where Ωc ⊂ Ω′ is the set of
operations belonging to the jobs that have operations that still need
to be processed at the critical machine after being processed at m∗.

• Bottleneck workload ratio, BWR =
∑

σ∈Ωb p(σ)
∑

σ∈Ω′ p(σ) : is the ratio of the work-
load of operations in Ωb to the workload in Ω′ where Ωb ⊂ Ω′ is the
set of operations belonging to the jobs that have operations that still
need to be processed at the bottleneck machine after being processed
at m∗.

While the first three attributes provide the local status at m∗, the last
three attributes indicate the status of the shop with a special focus on the
critical and bottleneck machines. The machine and system attributes here
appear in the scheduling literature in different forms. There are also other
attributes in the literature but they are mainly designed for special manu-
facturing environments which are not useful (or applicable) for this study.
The key difference between our attributes and the attributes used in other
studies is that our attributes have been scaled from 0 to 1. The scaled
(normalized) attribute values aim to enhance the generality of the evolved
rules and also make the evolved rules easier to understand. For exam-
ple, two scheduling instances can have very different processing times.
If the machine progress is important for our scheduling decisions, it is
very difficult to design a general rule for two instances with the unnor-
malised value

∑
σ∈K p(σ) (total processing time that a machine has pro-

cessed). Also, reading the rule with normalised attributes are much easier
(e.g. “50% of workload has been done” rather than “100 processing hours
have been done”).

Jakobovic and Budin [86] employed attributes similar to ours without
normalization (e.g. remaining work at the machine is similar to workload
ratio in our study). The definition of attributes for bottleneck and critical
machines are adapted from the bottleneck concept [82] for static problems
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and these attributes are used to adjust the rules to react appropriately to
the changes of the shop.

For representation R1, eleven simple dispatching rules are considered
as the candidate rules in the ADR. The aim of these rules is to determine
which operation σ in Ω′ will be processed next. Let n(σ) be the job which
operation σ belongs to, j = n(σ) and oj,h = σ (h is the index of the current
operation of job j). The following are brief descriptions of the candidate
dispatching rules. Detailed discussion of these rules can be found in [145]
and [185].

• FIFO: operations are sequenced first-in-first-out.

• SPT: select the operation with the shortest processing time p(σ).

• LPT: select the operation with the longest processing time p(σ).

• LSO: select the operation belonging to the job that has the longest
subsequent operation p(next(σ)).

• LRM: select the operation belonging to the job that has the longest
remaining processing time (excluding the operation under considera-
tion)

∑Nj

l=h+1 p(oj,l).

• MWKR: select the operation belonging to the job that has the most
work remaining

∑Nj

l=h p(oj,l).

• SWKR: select the operation belonging to the job that has the smallest
work remaining

∑Nj

l=h p(oj,l).

• MOPR: select the operation belonging to the job that has the largest
number of operations remaining Nj − h + 1.

• EDD: select the operation belonging to the job that has the earliest due
date dj .
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• MS: select the operation belonging to the job that has the minimum
slack MSj = dj −

∑Nj

l=h p(oj,l)− t. Value t = Rm∗ is the time at which
the sequencing decision needs to be made.

• WSPT: select the operation that has the maximum weighted shortest
processing time wj/p(σ).

The function set for this representation contains If, Dispatch, ≤,> to
help construct the logic of the adaptive dispatching rule as demonstrated
by the examples in Figure 3.2. Dispatch represents the combination of a
single dispatching rule and its corresponding non-delay factor. The non-
delay factor is treated as Ephemeral Random Constants (ERC) in GP [103].
The values of the non-delay factor will initially be a random number from
0 to 1. Meanwhile, attribute type, attribute threshold and dispatching rule
terminals are randomly chosen from their candidate values as described
in the previous section with equal probabilities.

3.1.2 Arithmetic representation (R2)

For this representation, the focus is to formulate composite dispatching
rules that include different pieces of information from jobs and machines.
Basically, the GP programs are priority functions that can be used to cal-
culate the priorities for operations in Ω′ and the operation with the highest
priority will be scheduled to be processed next on the machine m∗. Differ-
ent from R1 rules that become more effective by logical choices of single
dispatching rules, R2 rules create their sophisticated behaviour by arith-
metically combining various terms into the priority functions. The advan-
tage of this representation is that more information can be directly consid-
ered to determine the priorities of operations when sequencing decisions
need to be made.

In our GP system, the function set consists of +, −, ∗, % (protected di-
vision), If, min, max, and abs. The terminal set contains popular terms
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Table 3.1: Terminal set for R2 ( j = n(σ) and oj,h = σ)

Notation Description Value

RJ operation ready time r(σ)

RO number of remaining operations of job j Nj − h+ 1

RT work remaining of job j
∑Nj

l=h p(oj,l)

PR operation processing time p(σ)

W weight wj

DD due date dj

RM machine ready time Rm∗

# constant Uniform[0,1]

W PR

(a)

+

RT RM

-

DD

(b)

Figure 3.3: Example program trees based on representation R2.

that are used in existing dispatching rules. The descriptions of the termi-
nals used for calculating the priority of operation σ are shown in Table
3.1. Figure 3.3 shows two simple examples when WSPT and MS are repre-
sented by R2 rules. The non-delay scheduling strategy will be used along
with this representation like common applications of composite dispatch-
ing rules.
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3.1.3 Mixed representation (R3)

This representation tries to combine the advantages of R1 and R2 to create
sophisticated adaptive dispatching rules. Within R3, the incorporation of
both system/machine status and composite dispatching rules are consid-
ered. The representation R3 inherits the grammar in R1 and the composite
dispatching rules will be used to calculate the priorities of operations for
sequencing decisions besides the use of simple dispatching rules. An ex-
ample of an R3 rule is shown in Figure 3.4. The function set for R3 repre-
sentation is the combination of function sets of R1 and R2.

0.015

Dispatch

WSPT 0.241

Dispatch≤

50

I

-

RT PR

WR

Figure 3.4: An example program tree based on representation R3.

3.2 Fitness Evaluation

The focus of this study is to learn effective rules for JSS to minimise the
makespan or total weighted tardiness. In order to estimate the effective-
ness of an evolved dispatching rule, it will be applied within the con-
struction procedure in Figure 2.2 (page 27) to solve a set of instances in
the training set and the resulting objective values from all instances are
recorded. Since the objective values obtained by a dispatching rule Δ for
each instance are very different, we will measure the quality of an ob-
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tained schedule by the relative deviation of its objective value from its
corresponding reference objective value as shown in equation (3.1).

dev(Δ, In) =
Obj(Δ, In)− Ref(In)

Ref(In)
(3.1)

In this equation, Obj(Δ, In) is the objective value obtained when ap-
plying rule Δ to instance In, and Ref(In) is the reference objective value
for instance In. The fitness of rule Δ on the training set is calculated by
either equation (3.2) or (3.3); devaverage(Δ) and devmax(Δ) will correspond-
ingly measure the average performance and worst-case performance of Δ
across T instances in the data set.

devaverage(Δ) =

∑
In∈{I1,...,IT} dev(Δ, In)

T
(3.2)

devmax(Δ) = maxIn∈{I1,...,IT}{dev(Δ, In)} (3.3)

The objective of the GP system is to minimise these fitness functions. In
the case of Jm||Cmax, the reference objective value is the lower bound ob-
tained by other approaches (refer to [146] for a list of lower bound values
obtained for popular benchmark instances). Since the lower bounds are
used in this case, the fitness values for the GP programs are always non-
negative. If the fitness value is close to zero, it indicates that the evolved
rules can provide near optimal solutions. For Jm||

∑
wjTj , because the

lower bound values are not available for all instances, we will use objec-
tive values obtained by EDD as the reference objective values for all in-
stances in the data set since it is a widely used dispatching rule for due
date related problems. Because EDD is just a simple rule, it can be dom-
inated by more sophisticated rules. For that reason, the fitness value of
the GP programs for Jm||

∑
wjTj can be negative, which means that the

evolved rules perform better than EDD with a given fitness function.
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3.3 Proposed GP algorithm

Figure 3.5 shows the GP algorithm used in this study to evolve dispatching
rules for JSS. The GP system first sets up the training set D and randomly
initialises the population. At a generation, each dispatching rule (or in-
dividual) Δi will be applied to solve all instances in the training set D to
find the relative deviation dev(Δi, In) for each instance. Then, the fitness
value of each rule is calculated by using devaverage(Δi). If the evaluated
rule is better (has smaller fitness value) than the best rule Δ∗, it will be
assigned to the best rule Δ∗ and the best fitness value fitness(Δ∗) is also
updated. After all individuals in the population are evaluated, the GP sys-
tem will apply genetic operators such as reproduction (elitism), crossover
and mutation to the programs in the current population to generate new
individuals for the next generation. More details of the genetic operators
used in this study will be provided in the next section. When the maxi-
mum number of generations is reached, the GP algorithm will stop and
return the best found rule Δ∗, which will be applied to the test set to eval-
uate the performance of the GP system.

3.4 Design of Experiments

This section discusses the configuration of the GP system and the data sets
used for training and testing.

3.4.1 Parameter setting

The GP system for learning ADRs is developed based on the ECJ20 li-
brary [117] (a java-based evolutionary computation research system). The
parameter settings of the GP system used in the rest of this paper are
shown in Table 3.2. The parameters in this table are commonly used for
GP [103, 15] and also show good results from our pilot experiments. The
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Inputs: training instances D ← {I1, I2, . . . , IT}
Output: the best evolved rule Δ∗

1: randomly initialise the population P ← {Δ1, . . . ,ΔS}
2: set Δ∗ ← null and fitness(Δ∗) = +∞
3: generation← 0

4: while generation ≤ maxGeneration do
5: for all Δi ∈ P do
6: for all In ∈ D do
7: dev(Δi, In)← solve In with Δi

8: end for
9: evaluate fitness(Δi)← devaverage(Δi)

10: if fitness(Δi) < fitness(Δ∗) then
11: Δ∗ ← Δi

12: fitness(Δ∗)← fitness(Δi)

13: end if
14: end for
15: P ← apply reproduction, crossover, mutation to P
16: generation← generation + 1

17: end while
18: return Δ∗

Figure 3.5: GP algorithm to evolve dispatching rules for JSS.

population size of 1000 is used to ensure that there is enough diversity in
the population. The initial GP population is created using the ramped-
half-and-half method [103]. Since the R1 and R3 rules are created based
on the grammar in Figure 3.1, we use strongly typed GP to ensure that the
GP nodes will provide proper return types as determined by the gram-
mar. In this case, the crossover and mutation operators of GP are only
allowed if they do not violate the grammar. For crossover, the GP sys-
tem uses the subtree crossover [103], which creates new individuals for
the next generation by randomly recombining subtrees from two selected



3.4. DESIGN OF EXPERIMENTS 77

parents. Meanwhile, mutation is performed by subtree mutation [103],
which randomly selects a node of a chosen individual and replaces the
subtree rooted at that node by a newly randomly-generated subtree. The
combinations of three levels of crossover rates and mutation rates will be
tested in our experiments to examine the influence of these genetic opera-
tors on the performance of GP. When generating random initial programs
or applying crossover/mutation, the maximum depth of eight is used to
restrict the program from becoming too large. Greater maximum depths
can also be used here to extend the search space of GP; however, we choose
this maximum depth to reduce the computational times of the GP system
and make the evolved rules easier to analyse. Tournament selection with
the tournament size of seven is used to select individuals for genetic oper-
ations [103].

3.4.2 Data sets

There are many data sets in the JSS literature which are generated by dif-
ferent scheduling researchers [111, 5, 179, 53] to measure the performance
of different heuristic and optimisation methods. The instances in these
data sets are still very useful because they include a wide range of in-
stances with different levels of difficulty. Moreover, lower bounds for
these instances are available and can be used to calculate the fitness of the
evolved dispatching rules as described in Section 3.2. Descriptions of the
data sets used for the experiments are shown in Table 3.3 (N is the num-
ber of jobs andM is the number of machines). In this study, we combine
these data sets and distribute them into the training set and test set used
by the proposed GP system. The training set and the test set are created
to include halves of the instances of each individual data set in Table 3.3.
In particular, the training set will contain {la01, la03, . . . , la39}, {orb01,
. . . , orb09},{ ta01, . . . , ta79}, {dmu01, . . . , dmu79}. The other (even index)
instances will be included in the test set. This allows a fair distribution of
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Table 3.2: Parameters of the proposed GP system

Population Size 1000

Crossover rate 95%,90%,85%

Mutation rate 0%,5%,10%

Reproduction rate 5%

Generations 50

Max-depth 8

Tournament size 7

Function set (R1) If, Dispatch, ≤,>
Terminal set (R1) attribute type, attribute threshold, non-delay factor,

dispatching rule

Function set (R2) +,−, ∗,%, If,min,max, abs

Terminal set (R2) as shown in Table 3.1

Function set (R3) Function set (R1) and Function set (R2)
Terminal set (R3) Terminal set (R1) and Terminal set (R2)

Fitness devaverage(Δ)

Table 3.3: JSS data sets

Data set Notation # of inst. Size (N ×M) Reference

LA la01-la40 40 10× 5 to 15× 15 Lawrence [111]

ORB orb01-orb10 10 10 × 10 Applegate and Cook [5]

TA ta01-ta80 80 15× 15 to 100× 20 Taillard [179]

DMU dmu01-dmu80 80 20× 15 to 50× 20 Demirkol et al. [53]

problems with different instance sizes into both the training set and the
test set. There are 105 instances in each of the training set and test set.
For the case of Jm||

∑
wjTj , the due dates for jobs in each instance will be

generated (following Baker [12]) by a due date assignment rule:
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dj = rj + h×
Nj∑
l=1

p(oj,l) (3.4)

The parameter h is used to indicate the tightness of due dates. We choose
h = 1.3 for all instances in the training set and test set because it is the
common value used in previous research [105, 194]. For the weights wj
of jobs, we employ the 4 : 2 : 1 rule which has been used in [105] and
[194]. This rule is inspired by Pinedo and Singer [152] when their research
showed that 20% of the customers are very important, 60% are of average
importance and the remaining 20% are of less importance. For that reason,
in Jm||

∑
wjTj , the weight of 4 is assigned to the first 20% of jobs, the next

60% are assigned a weight of 2 and the last 20% of jobs are assigned a
weight of 1.

3.5 Influence of different representations

The proposed GP systems, with different settings, will be applied to evolve
new dispatching rules. This section shows the results obtained from the
GP system with three representations, three levels of crossover/mutation
rates, two fitness functions and two objectives. In total, we need to run
3 × 3 × 2 × 2 = 36 experiments. For each experiment, 30 independent
runs are performed with different random seeds. Table 3.4 and Table 3.6
show the means and standard deviations of fitness values obtained from
all experiments on the training set and test set. The upper part and lower
part of each table show the statistics of devaverage(Δ) and devmax(Δ) when
they are used as the fitness function for the GP system. The triple 〈c,m, r〉
indicates the GP parameters used in a specific experiment. For example,
〈85, 10, 5〉 represents the experiment where the crossover rate is 85%, the
mutation rate is 10% and the reproduction rate is 5%. All statistical tests
discussed in this section are the standard Wilcoxon tests and they are con-
sidered significant if the obtained p-value is less than 0.05.
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3.5.1 Makespan

As shown in Table 3.4, when devaverage(Δ) is used as the fitness function,
the evolved rules based on R1 show a performance close to those obtained
by R2 and R3 on the training set. It is also noted that the R1 rules evolved
with higher mutation rates are significantly better than those evolved with-
out lower mutation (all p-values < 0.0163) on the training set. Since R1

rules contain many ERCs, higher mutation rates seem quite useful to im-
prove the performance of the GP system with theR1 representation. How-
ever, the performances of R1 rules are quite poor on the test set. This indi-
cates the overfitting issue of R1 rules when learning with the training set.
The reason for this problem comes from the fact that the candidate rules
used in R1 are too simple, and therefore the rules have to depend strongly
on the machine and system statuses to provide better sequencing deci-
sions on the training instances. However, the overuse of the machine and
system attributes make R1 rules less effective when dealing with unseen
instances in the test set.

Evolved R2 rules show a more consistent performance on both the
training set and test set. Different from R1, the statistical tests indicate
that the choice of GP parameters does not have significant influence (all p-
values > 0.1511) when R2 is used as the representation of the dispatching
rule. These results indicate that mutation is not really useful in this case
and the crossover operator is sufficient for the GP system to evolve good
individuals. Since R2 provides only one way to sequence operations, the
effectiveness is obtained by good combinations of different terms. Hence,
they are also less affected when working with unseen instances like R1

rules.

Taking the advantages of R1 and R2, the evolved R3 rules show very
promising performance. Different from R1, the incorporation of the ma-
chine and system attributes into the R3 rules is supported by better com-
posite dispatching rules, and therefore the R3 rules do not need to depend
heavily on the use of machine and system attributes to be effective. The
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performance on the test set shows that the evolvedR3 rules also have good
generalisation qualities like that of the R2 rules. Mutation does not affect
the GP system with R3 as strongly as the GP system with R1. The signif-
icant difference is only observed between the experiment with no muta-
tion and the experiment with the mutation rate of 10% (p-value < 0.0042).
Although there is no obvious difference in the performance of evolved
rules from different configurations on the training set, R2 rules and R3

rules (evolved with non-zero mutation rate) are significantly better than
R1 rules on the test set (all p-values < 0.0421 over (3 + 2) × 3 = 15 statis-
tical tests). Also, the evolved R3 rules from the GP system with non-zero
mutation rates are significantly better than R1 and R2 rules on the test set
(all p-values < 0.017 over 2× (3 + 3) = 12 statistical tests).

When devmax(Δ) is used as the fitness function, the evolvedR1 rules do
not show overfitting issues compared to other representations as shown
in the case when devaverage(Δ) is used. This is because the evolved rules
tend to focus on hard instances that caused high relative deviations and
integrate essential features into the evolved rules to avoid worst-case sce-
narios. In this case, R1 and R3 rules from the GP system with non-zero
mutation rates are significantly better than R2 rules in the training set (all
p-values < 0.0213 over (2 + 2)× 3 = 12 statistical tests). This suggests that
evolved rules that employ the machine and system attributes are more
effective to improve worst-case scenarios for Jm||Cmax. However, no ob-
vious difference is recorded from the performance of evolved rules on the
test set. This indicates that the GP system with devmax(Δ) as the fitness
function does not provide good generalisation for its evolved rules.

Table 3.5 shows the performance of the evolved rules with four selected
dispatching rules for Jm||Cmax. These four rules are selected since they are
known to reduce the flowtimes (completion time Cj in static JSS) of jobs.
The values in this table are the statistics of relative deviations using equa-
tion (3.1) obtained when applying the evolved rules to the instances in
the training set and test set. The values of Mean and Max can be calcu-
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lated by using equation (3.2) and (3.3) to measure the average and worst-
case performance of a dispatching rule on a given set of instances. The
values of Min, like Max, indicate the performance of the evolved rule in
extreme cases but they are used to show the best case performance in-
stead. From each representation and each fitness function, two evolved
rules that show the best fitness in the training stage are used here for com-
parison. Rule Δyvz

Rx
is the vth best rule that was evolved by using the rep-

resentation Rx, fitness function z to minimise objective function y for the
JSS. For example, Δc2a

R2
is the second best rule evolved with the represen-

tation R2, devaverage(Δ) as the fitness function (m will be used to indicate
devmax(Δ)), and Cmax as the objective function (t will be used to indicate
the total weighted tardiness).

Each simple dispatching rule is used to generate both active and non-
delay schedules for all instances in the training set and test set. The results
show that LRM with non-delay scheduling strategy is better than other
simple rules. The performance of the evolved rules are better than all
of the simple dispatching rules on the training set and test set. The re-
sults from the evolved rules show that the GP system can find the rules
that minimise the fitness function. On the training set, rules evolved by
devaverage(Δ) show better average relative deviations than those evolved
with devmax(Δ) as the fitness function. On the other hand, the rules evolved
by devmax(Δ) show better worst-case relative deviations than those evolved
with devaverage(Δ) as the fitness function. However, not all evolved rules
can produce good results when dealing with unseen instances. Rules Δc2a

R1

and Δc2a
R3

are the rules that provide the best performance on the test set
even though they are not the best rules on the training set. The two R1

rules show the best worst-case performance on the training set and test set
among rules evolved with devmax(Δ). These results again suggest that the
incorporation of machine and system attributes plays an important role
in improving the worst-case performance. Generally, it seems quite diffi-
cult to develop a rule that produces good average and worst-case perfor-
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Table 3.5: Relative deviations obtained by evolved rules and other rules
for Jm||Cmax

Rules
Training Set Test Set

If Min Mean Max Min Mean Max

FIFO
Active 0.012 0.325 0.691 0.000 0.325 0.654

Non-Delay 0.012 0.325 0.691 0.000 0.325 0.654

SPT
Active 0.322 0.694 1.252 0.316 0.711 1.091

Non-Delay 0.029 0.292 0.576 0.092 0.312 0.664

LRM
Active 0.020 0.321 0.745 0.000 0.319 0.723

Non-Delay 0.000 0.224 0.556 0.000 0.225 0.529

MWKR
Active 0.047 0.323 0.736 0.000 0.328 0.713

Non-Delay 0.000 0.253 0.590 0.000 0.254 0.584

devaverage(Δ)

Δc1a
R1

0.000 0.173 0.448 0.000 0.192 0.525

Δc2a
R1

0.000 0.174 0.428 0.000 0.183 0.479

Δc1a
R2

0.000 0.174 0.479 0.000 0.190 0.442

Δc2a
R2

0.000 0.175 0.457 0.000 0.191 0.446

Δc1a
R3

0.000 0.171 0.490 0.000 0.185 0.572

Δc2a
R3

0.000 0.172 0.447 0.000 0.177 0.428

devmax(Δ)

Δc1m
R1

0.000 0.194 0.356 0.000 0.193 0.416

Δc2m
R1

0.000 0.190 0.361 0.000 0.189 0.412

Δc1m
R2

0.023 0.220 0.362 0.000 0.219 0.482

Δc2m
R2

0.000 0.187 0.367 0.000 0.198 0.420

Δc1m
R3

0.000 0.185 0.360 0.000 0.184 0.457

Δc2m
R3

0.000 0.179 0.361 0.000 0.185 0.478

mance. One explanation is that the rules evolved with devmax(Δ) only aim
at a group of hard instances (which cause high relative deviations) and
cannot capture the general useful features. Meanwhile, the rules evolved
with devaverage(Δ) focus on the overall performance, therefore they may ig-
nore some extreme cases. Evolved rule Δc2a

R3
is one rare case when the best

average performance and very good worst-case performance is achieved.
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3.5.2 Total weighted tardiness

According to Table 3.6, the experiments with R3 as the representation can
produce rules with better fitness than experiments with R1 or R2 as the
representation. When devaverage(Δ) is used as fitness, the statistical tests
show that evolved R3 rules from the GP system with non-zero mutation
rates are significantly better than other evolved R1 and R2 rules on both
training set and test set (all p-values < 0.0007 over 2 × (3 + 3) × 2 =

24 statistical tests). These results again confirm the effectiveness of the
R3 representation. Also, the R1 rules from the GP system with non-zero
mutation rates are significantly better than R2 rules in this case (all p-
values < 2 × 10−16 over 2 × 3 × 2 = 12 statistical tests). This suggests
that the machine attributes and scheduling strategies are quite important
when dealing with Jm||

∑
wjTj . When devmax(Δ) is used as the fitness

function, the evolved rules cannot easily dominate EDD because the ob-
tained devaverage(Δ) are not significantly smaller than zero. This observa-
tion shows that Jm||

∑
wjTj is a very hard objective for this problem and

it is very difficult to create a dispatching rule that is generally better than
other dispatching rules.

The comparison of the evolved rules and other dispatching rules are
shown in Table 3.7. It is easy to see that non due date related rules such
as FIFO and LRM have a very poor performance on Jm||

∑
wjTj even

though LRM achieves good performance on Jm||Cmax. MS and WSPT
show better performance than FIFO and LRM because information about
the due date and the weight of a job is considered in these rules. While
MS is still much worse than EDD, WSPT shows good performance even
though it still cannot totally beat EDD. Sophisticated due date related rules
W(CR+SPT), W(S/RPT+SPT), COVERT and ATC (see [185, 125] for a de-
tailed description of these rules) which have not been included in the list
of candidate dispatching rules are also presented here. The expected wait-
ing time in COVERT and ATC is calculated based on the standard method
[185] in which the expected waiting time W = b × PR, where PR is the
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Table 3.7: Relative deviations obtained by evolved rules and other rules
for Jm||

∑
wjTj

Rules
Training Set Test Set

Min Mean Max Min Mean Max

FIFO
Active −0.318 0.455 1.600 −0.159 0.442 1.196

Non-Delay −0.318 0.455 1.600 −0.159 0.442 1.196

LRM
Active 0.193 0.832 2.129 −0.125 0.836 1.813

Non-Delay −0.189 0.507 1.571 −0.236 0.494 1.425

MS
Active 0.106 0.601 1.519 0.035 0.607 1.321

Non-Delay −0.040 0.387 1.205 −0.133 0.363 0.822

WSPT
Active −0.133 0.148 0.874 −0.154 0.160 0.946

Non-Delay −0.394 −0.169 0.168 −0.459 −0.161 0.253

W(CR+SPT)
Active −0.133 0.140 0.670 −0.234 0.147 0.858

Non-Delay −0.398 −0.173 0.177 −0.459 −0.165 0.435

W(S/RPT+SPT)
Active −0.110 0.149 0.867 −0.154 0.161 0.853

Non-Delay −0.394 −0.168 0.168 −0.459 −0.161 0.253

COVERT
Active −0.171 0.146 0.722 −0.235 0.147 0.853

Non-Delay −0.394 −0.173 0.177 −0.459 −0.160 0.253

ATC
Active −0.258 0.145 0.757 −0.260 0.140 0.795

Non-Delay −0.394 −0.168 0.168 −0.459 −0.163 0.253

devaverage(Δ)

Δt1a
R1

−0.586 −0.247 0.020 −0.560 −0.220 0.150

Δt2a
R1

−0.531 −0.244 0.003 −0.507 −0.224 0.018

Δt1a
R2

−0.467 −0.223 −0.003 −0.517 −0.199 0.326

Δt2a
R2

−0.529 −0.223 0.151 −0.523 −0.206 0.116

Δt1a
R3

−0.506 −0.265 −0.033 −0.616 −0.246 −0.002
Δt2a
R3

−0.581 −0.265 −0.022 −0.555 −0.253 0.031

devmax(Δ)

Δt1m
R1

−0.469 −0.212 −0.043 −0.492 −0.211 0.129

Δt2m
R1

−0.493 −0.206 −0.041 −0.559 −0.203 0.121

Δt1m
R2

−0.456 −0.170 −0.005 −0.490 −0.177 0.198

Δt2m
R2

0.000 0.000 0.000 0.000 0.000 0.000

Δt1m
R3

−0.487 −0.221 −0.098 −0.448 −0.202 0.086

Δt2m
R3

−0.497 −0.215 −0.072 −0.514 −0.212 0.065
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operation processing time. For each method, two parameters needed to
be specified which are k (look-ahead parameter) and b. 25 combinations
of b ∈ {0.5, 1.0, 1.5, 2.0, 2.5} and k ∈ {1.5, 2.0, 2.5, 3.0, 3.5} are examined
on the training set, and the combination that gives the best average per-
formance is selected for comparison (k = 2.5, b = 2.5 for COVERT and
k = 1.5, b = 0.5 for ATC). The performance of these two rules are quite
good since they are customised to deal with weighted tardiness problems.
However, in the worst case, they still cannot provide better schedules than
those obtained by EDD.

On both the training set and the test set, all of these GP evolved rules
show better average performance than the existing rules (except for theR2

rules evolved with devmax(Δ) as the fitness function). Similar to what has
already been stated, R1 and R3 rules are also much better than R2 rules.
However, it is still not easy to find a rule that totally dominates EDD.
Among all the evolved rules, the evolved R3 rules are the most promising
ones. The best two evolved R3 rules obtained very good average relative
deviations for both training set and test set compared to those obtained
by R1 and R2 rules. Rule Δt1a

R3
is also the only evolved adaptive dispatch-

ing rule that totally dominates EDD on all training and testing instances.
Meanwhile, Δt2a

R3
produces a very good average performance, even bet-

ter than Δt1a
R3

on the test set and it is just slightly worse than Δt1a
R3

in the
worst case. The impressive results of R3 rules again confirm the need for
integrating machine and system attributes with sophisticated dispatching
rules to generate generalised and effective dispatching rules.

In the case where devmax(Δ) is used as the fitness function, the evolved
rules show a very poor generalisation quality. Their worst-case perfor-
mance on the test set is sometimes worse than those obtained by rules
using devaverage(Δ) as the fitness function. Some promising rules can be
found when R3 is used as the representation. However, these rules are
still much worse than their counterparts Δt1a

R3
and Δt2a

R3
. This suggests that

devaverage(Δ) is better than devmax(Δ) as the fitness function.
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3.6 Analysis and Discussions

In this section, we will further investigate the evolved rules to figure out
how they can produce good performance. An analysis on the compo-
nents of the evolved rules is also given in order to gain more understand-
ing of each factor within the proposed representations that may influence
the ability of the GP system to generate better rules. A comparison be-
tween the evolved rules and some meta-heuristic approaches is then pro-
vided. Finally, the dispatching rules evolved by the proposed GP system
are tested under a simulated JSS dynamic environment.

3.6.1 Insights from the evolved rules

In the previous experiment, there are 1080 rules evolved with different GP
parameters and representations for Jm||Cmax and Jm||

∑
wjTj . The per-

formance of the two best evolved rules for each representation and each
objective function of JSS were shown in Table 3.5 and Table 3.7. As an ex-
ample, we pick one evolved rule from each representation among these
rules based on their overall performance on the training set and test set
for further analysis (other evolved rules have a similar pattern).

Evolved rules for Jm||Cmax

Here, Δc1a
R1

, Δc1a
R2

and Δc2a
R3

are chosen for analysis. The detailed represen-
tations of these rules are shown in Figure 3.6. For Δc1a

R1
(Figure 3.6(a)),

the first observation is that even though the rule looks complicated, it is
just a combination of four simple dispatching rules (LRM, SPT, LPT and
WSPT) and three machine attributes (CMI, CWR, DJ). Since WSPT is less
relevant to Jm||Cmax and LPT is not very effective in this case, they only
appear once in the entire adaptive dispatching rule. The root condition of
Δc1a
R1

checks the critical machine idleness and it is noted that LRM is the
main dispatching rule when the idleness of the critical machine is greater
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than 10%. When CMI is small, the rule is more complicated and rules that
favour small processing time operations like SPT and WSPT occur more
in this case. This rule suggests that when the critical machine seems to be
idle, the considered machine should focus on completing operations with
small processing times in order to feed more work to the critical machine
and keep it busy; otherwise LRM should be used to prevent certain jobs
from being completed so late and increase the makespan.

Different from Δc1a
R1

, Δc1a
R2

(Figure 3.6(b)) is a pure mathematical func-
tion. In order to make it easy for analysis, we will simplify the whole
function by eliminating terms which appear to be less relevant. The sim-
plification step is as follows:

Δc1a
R2

= (PR+RM)W
PR − (RJ+RM)PR

RT +RT + DD
(PR+RM)RT W

(PR2) +
RT
PR (RJ +RM)

≈ RT + RT
PR

DD
(PR+RM)

W
(PR) +

RT
PR(RJ +RM)

≈ RT + k × RT
PR

Since the first and second terms of Δc1a
R2

do not make much sense in
this case, we just drop them from the priority function. The rest of the
function can be grouped in two parts. The first part has RT, like rule
MWKR, and the second part contains RT

PR, which is a combination of SPT
and MWKR. When considering other terms in the second part as a con-
stant k, we have the approximation of Δc1a

R2
as a linear combination of

MWKR and SPT/MWKR. This rule is actually not new. If we omit RT
in the approximation function, the rest is known as shortest processing
time by total work (SPTtwk) rule in the literature [43].

Rule Δc2a
R3

(see Figure 3.6(c)) is the most interesting rule in this case be-
cause both arithmetic rules and simple dispatching rules are employed.
However, with the condition that MP has to be less than 100% at the sec-
ond level, we can totally eliminate the sub-trees that contain the simple
dispatching rules. After some simplification steps, it is also noted that
the arithmetic rules are also variants of SPTtwk. With the support of the
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(IF (> CMI 10%)

(IF (> CWR 20%)

(IF (> CWR 80%) (DISPATCH 0.131 LRM)

(IF (≤ DJ 30%) (DISPATCH 0.198 SPT) (DISPATCH 0.102 LRM)))

(IF (> CWR 10%) (DISPATCH 0.102 LRM) (DISPATCH 0.131 LRM)))

(IF (> CWR 10%)

(IF (> CWR 80%) (DISPATCH 0.014 WSPT)

(IF (≤ DJ 30%) (DISPATCH 0.198 SPT) (DISPATCH 0.131 LRM)))

(IF (> CWR 80%) (DISPATCH 0.830 LPT)

(IF (≤ DJ 20%) (DISPATCH 0.198 SPT) (DISPATCH 0.102 LRM)))))

(a) Evolved rule Δc1a
R1

(+ (+ (-

(*(+ PR RM) (/ W PR))

(/(+ RJ RM) (/ RT PR)))

RT)

(-(*

(/ DD(+ PR RM))

(*(/ RT PR) (/ W PR)))

((-1*) (*(/ RT PR) (+ RJ RM)))))

(b) Evolved rule Δc1a
R2

(IF (> CWR 90%)

(DISPATCH 0.069 (/ (* (+ RJ 0.594) (+ RT PR)) (+ W PR)))

(IF (≤ MP 100%) (DISPATCH 0.128 (/ (- RT PR) (+ W PR)))

(IF (≤ CWR 100%) (IF (≤ MP 100%)

(DISPATCH 0.166 WSPT) (DISPATCH 0.282 LPT))

(IF(≤ MP 100%)(DISPATCH 0.044 LRM) (DISPATCH 0.736 FIFO)))))

(c) Evolved rule Δc2a
R3

Figure 3.6: Selected evolved rules for Jm||Cmax.

machine attribute, the obtained arithmetic rules become much easier to
analyse. The simplified version of Δc2a

R3
is as follows:
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Δc2a
R3

=

{
〈 (RJ+0.594845)(RT+PR)

W+PR , α = 0.069〉 if CWR > 90%

〈 (RT−PR)(W+PR) , α = 0.128〉 otherwise

≈
{
〈 (RJ+0.594845)(RT+PR)

PR , α = 0.069〉 if CWR > 90%

〈 (RT−PR)PR , α = 0.128〉 otherwise

The notation 〈·, ·〉 indicates the dispatching rule and α value as in the
middle and right subtrees of Figure 3.4. Although both priority functions
of Δc2a

R3
are variants of SPTtwk, the non-delay factor α for the case is smaller

when CWR > 90%. One explanation is that when Ω′ contains many criti-
cal operations, it is reasonable to start the available operations right away
instead of waiting for the operations that will be ready after the ready time
of m∗.

Evolved rules for Jm||
∑
wjTj

Here, Δt1a
R1

, Δt2a
R2

and Δt1a
R3

are selected to represent the evolved rules for
Jm||

∑
wjTj . The three full rules obtained by the GP are shown in Figure

3.7. For Δt1a
R1

, it is quite interesting that this rule can obtain such a good
result (as shown in Table 3.7) without any due date related components.
The two main simple dispatching rules used in this case are WSPT and
LPT. While WSPT can be considered as a suitable rule for Jm||

∑
wjTj , it

does not make sense to include LPT in this case. The result when we re-
place LPT by WSPT shows that the refined rule can still produce the results
as good as Δt1a

R1
. For this reason, the contribution for the success of the rule

comes from WSPT and other factors instead of the combination of different
rules as we observed in the previous section. It is noted that most values of
α in this case are about 0.4. Using these values for the WSPT alone shows
that WSPT with appropriate choice of α can produce the results much bet-
ter than the case when the non-delay scheduling strategy is used. In this
rule, the contribution of the machine and system attributes are not very
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significant and they are mainly employed to improve the worst-case per-
formance.

(IF (>DJ 80%)

(IF (>BWR 90%)

(IF (≤ DJ 90%) (DISPATCH 0.426 WSPT)

(IF (≤ MP 10%) (DISPATCH 0.436 WSPT) (DISPATCH 0.364 LPT)))

(DISPATCH 0.065 WSPT))

(IF (> BWR 20%)

(IF (≤ DJ 30%) (DISPATCH 0.436 WSPT)

(IF (≤ DJ 30%) (DISPATCH 0.364 LPT) (DISPATCH 0.389 WSPT)))

(IF (≤ DJ 30%) (DISPATCH 0.436 WSPT)

(IF (> DJ 80%) (DISPATCH 0.364 LPT) (DISPATCH 0.181 WSPT)))))

(a) Evolved rule Δt1a
R1

(- (+ (*

(* PR (* 0.614577 PR))

(- ((-1*) RM) (/ RM W)))

((-1*) (* (* RT PR) (/ RT W))))

(+ (-

(/ (* RT PR) (- W 0.5214191))

(* (/ RM W) (* 0.614577 PR)))

(* (/ (* RT PR) (- W 0.5214191)) (+ (/ RM W) (/ RM W)))))

(b) Evolved rule Δt2a
R2

(IF (≤ DJ 50%)

(DISPATCH 0.331 ((-1*) (* DD (/ PR W))))

(DISPATCH 0.163 ((-1*) (* (/ DD W) (/ RT W)))))

(c) Evolved rule Δt1a
R3

Figure 3.7: Selected evolved rules for Jm||
∑
wjTj .

For Δt2a
R2

, we perform the following steps to simplify the evolved rule:

Δt2a
R2

= 0.614PR2(−RM−RM
W )−RT×PR×RT

W −(RT PR
W −0.521)−0.614

RM
W PR+
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2RT PR
(W−0.5214191)

RM
W

≈ −0.614RM × PR2(1 + 1
W )−RT PR

W (RT + 2 RM
(W−0.5214191) )

≈ −k1 × PR2(1 + 1
W )− k2 ×RT PR

W

The simplified rule is a linear combination of two sophisticated vari-
ants of WSPT where the first part includes PR2 instead of PR and the sec-
ond part includes RT. Repeating the experiment on this simplified rule
shows that it can perform better than sophisticated rules like ATC and
COVERT (just slightly different from the full rule) regarding the average
relative deviation with appropriate choice of k1 and k2 (with k2 > k1, sim-
ilar to the original rule).

It is very surprising that the best evolved rule for Jm||
∑
wjTj with

the R3 representation is also the smallest rule. Rule Δt1a
R3

can be formally
described as follows:

Δt1a
R3

=

⎧⎪⎨
⎪⎩
〈−DD×PR

W , α = 0.331〉 if DJ ≤ 50%

〈−DD×RT
W 2 , α = 0.163〉 otherwise

The dispatching rule following the first priority function is a combination
of EDD and WSPT and it is applied when the deviation of processing times
of operations in Ω′ is less than 50% (which means that the minimum pro-
cessing time is less than half of the maximum processing time). When DJ
is larger than 50% (which means that the gap between the minimum and
maximum processing time is small), RT is used instead of PR and W2 is
used instead of W to increase the priority of jobs with small remaining
processing times and high weights.

In general, even though the evolved rules can be very complicated
sometimes, they contain some good patterns which are very useful to cre-
ate good dispatching schedules. While R1 rules can be easily explained
with the support of the machine and system attributes, R2 rules are quite
sophisticated and often possess very interesting properties. It is surprising
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that the R3 rules presented here are quite straightforward even thought
they contain both machine attributes and composite dispatching rules.
Rule Δt1a

R3
could be quite tricky to represent as a pure mathematical func-

tion and it could be more difficult to discover its useful patterns; however,
the use of attributes makes it much easier to identify and explain the rule.

3.6.2 Aggregate view of the evolved rules

Figure 3.8 shows the frequency that machine and system attributes have
occurred in all of the evolved R1 and R3 rules. For Jm||Cmax, critical ma-
chine related attributes are the most frequent ones while the bottleneck
workload ratio has the lowest frequency. This result indicates that the
information related to the critical machine is very important for the con-
struction of a good dispatching rule to minimise the makespan. As shown
in the previous section, suitable dispatching rules can be selected based
on the idleness of the critical machine as well as the critical workload of
m∗. In the case of Jm||

∑
wjTj , the critical machine related attributes are

still employed very often, and CWR along with DJ are the ones with the
highest occurrence frequency. However, the distribution of attributes in
Jm||

∑
wjTj are more “uniform” than that in Jm||Cmax. This observation

suggests that different attributes should be used to construct good dis-
patching rules for Jm||

∑
wjTj .

For the priority functions (for composite dispatching rules) within R2

and R3 rules, Figure 3.9 shows that RT and PR are the most used terms
for Jm||Cmax. This explains the occurrence of SPTtwk variants in the best
rules in the previous section. While W is the least used term for Jm||Cmax,
it is the most used term in Jm||

∑
wjTj . This emphasises the importance

of weights for determining the priority of operations in Jm||
∑
wjTj . It is

quite surprising that the second most frequent term in evolved rules for
Jm||

∑
wjTj is PR instead of DD. Even though due dates of jobs also de-

pends on the processing times in aggregate form, the results here suggest
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Figure 3.8: Frequency of attributes in the evolved R1 and R3 rules.
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Figure 3.9: Frequency of terminals in the evolved R2 and R3 priority func-
tion.

that such local information as PR is still very useful for the dispatching
tasks for due date related problems.
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3.6.3 Performance in a dynamic JSS environment

This section examines the performance of the evolved rules in a dynamic
environment. A simulation model of a simple job shop environment is
built for the evaluation of the evolved rules. Table 3.8 shows the param-
eters of the simulation model. This simulated symmetrical job shop has
been widely used in the literature to assess the performance of dispatching
rules [81, 162, 78]. With this configuration, the utilisation of each machine
λ
μ

is equal to the arrival rate λ (since μ = 1). The due date assignment rule
is the same as that used in the previous section. Each simulation experi-
ment consists of 30 replications and the common random seeds are used for
each experiment in order to reduce the variance of the obtained results.
The interval from the beginning of the simulation until the arrival of job
50,000 is considered as the warm-up time and all statistics are collected
for the next 100,000 jobs. The results obtained from the experiments are
shown in Figure 3.10. Since the JSS instances in the data set do not consider
the release times of jobs (all release times of jobs are assumed to be zero
in all instances) which are very important for the dynamic Jm||Cmax, the
evolved rules for Jm||Cmax are not suitable for these experiments. So, only
the evolved rules for Jm||

∑
wjTj presented in Figure 3.7 are investigated

here. For ease of presentation, the total weighted tardiness is normalised
using the formula proposed by [185]. Thus, the normalised weighted tar-
diness =

∑
wjTj

N×M× 1
μ
×w̄ , where the number of jobs N = 100000, the number of

machinesM = 6, the average processing time of an operation 1
μ
= 1 and

average weight of a job w̄ = 2.2.

In Figure 3.10, the performance of the evolved rules are quite consistent
with what has been shown when dealing with the static problem shown in
Section 3.5. The results show that simple rules such as FIFO and EDD are
easily dominated by the sophisticated rules like ATC, WSPT, COVERT and
the evolved rules. It is noted that rule Δt1

R1
and rule Δt1

R3
are significantly

better (p-value 0.05) than existing rules ATC, COVERT and WSPT when
the utilisation is less than or equal to 0.8, but they are beaten by the existing
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Table 3.8: Parameter setting of the simulation model

Parameter Value

Number of machines 6
Arrival process Possion with λ from 0.5 to 0.9

Processing time Exponential with mean 1
μ
= 1

Number of operations per job 6
Visiting order of jobs randomly generated with no ma-

chine being revisited
Weight randomly sampled from {4, 2, 1}

with the probabilities {0.2, 0.6, 0.2}

rules when utilisation is 0.9. On the other hand, the R2 rule is significantly
worse than the existing rules for all levels of utilisations. The R2 rule is
significantly worse than R1 and R3 rules when the utilisation is less than
or equal to 0.8 and better thanR1 when utilisation is 0.9. One of the reasons
for the inferiority of the evolved rules when the utilisation of the shop is
high is that the evolved rules are trained on a set of static instances which
usually reflect the situations in the dynamic job shop with a low utilisation.

The investigation of the evolved rules in the dynamic environment
shows that there is still a difference in the characteristics between the static
problem and the dynamic problem which sometimes prevent the evolved
rules from being effective in the dynamic environment. Although the
evolved rules show good results in the dynamic Jm||

∑
wjTj , the fact that

they are inferior to the existing rules suggests the lack of generality of the
data set used to train the dispatching rules. The deteriorated performance
of the evolved rules when utilisations of machines are high is not because
the GP system is not able to evolve effective rules but because the static
training instances cannot represent all possible scenarios happening in a
dynamic environment. This is consistent with the observation from Hilde-



3.6. ANALYSIS AND DISCUSSIONS 99

0.5 0.6 0.7 0.8 0.9

2
4

6
8

Utilisation

N
or

m
al

is
ed

 T
ot

al
 W

ei
gh

te
d 

Ta
rd

in
es

s

FIFO
EDD
WSPT
COVERT

ATC
ΔR1

t1

ΔR2
t2

ΔR3
t1

Figure 3.10: Performance of the evolved rules in the dynamic environment
(FIFO and EDD curves are above all other curves)

brandt et al. [78]. Thus, if the ultimate objective of the dispatching rules is
to be applied to the dynamic environment, it seems reasonable to train the
rules in the dynamic situation (e.g. via a simulation model) in order to en-
sure that the evolved rules can capture all critical features of the dynamic
system.

3.6.4 Further Discussion

Most of the proposed GP systems [181, 123, 191, 67] in the literature are
very similar to ours when the R2 representation is used. Miyashita [123]
and Jakobovic and Budin [86] are the only works that focus on the use
of system attributes, specifically bottleneck machines, to support the se-
quencing decisions. However, it is noted that the GP system proposed by
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Miyashita [123] is only suitable when we try to evolve dispatching rules
for a specific shop with a small number of machines in which the bottle-
neck machine is known. Therefore, it is difficult to generalise the rules
based on that GP system. Jakobovic and Budin [86] improved that GP sys-
tem [123] by using a dedicated GP tree to detect the bottleneck machine
to apply suitable dispatching rules. The problem is that the bottleneck
machine is not always a good feature to help decide which dispatching
rules to be applied. When there are multiple bottleneck machines in the
shop (especially with a symmetrical shop), applying a dedicated rule for
the detected bottleneck is not very effective since the temporary bottleneck
machine can change rapidly before that rule shows any noticeable effect.
This explains why the proposed GP-3 system [86] performed significantly
better than the simple GP system, but the gaps between the objectives ob-
tained by GP-3 and the simple GP are not large. When examining the
GP-3 system with our training and testing instances (using the same ter-
minal sets for dispatching rules in R2 and R3), the experimental results
show that there is no significant difference between the rules evolved by
GP-3 and rules evolved with the R2 representation (more detailed results
are shown in Section 4.4.3 of Chapter 4). The analysis in Section 3.6 also
showed that the workload ratio WR (an indicator for the bottleneck level
of the considered machine) is not a major attribute in the best evolved
rules. This suggests that different machine and system attributes should
be used instead of depending solely on bottleneck machines.

One major advantage of the evolved rules is that they are quite ready
to be applied to the dynamic environment as shown in the previous sub-
section, which makes these rules more practical than meta-heuristic meth-
ods. Therefore the evolved rules are suitable for shops with rapid dy-
namic changes [165, 169, 177]. In these shops, even when mathematical
programming methods are able to find optimal schedules, these sched-
ules can quickly become sub-optimal or even infeasible under dynamic
conditions [169]. Besides, with its flexibility, the proposed GP system can
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be easily applied to generate good rules for complex manufacturing pro-
cesses (e.g. batch processing, assembly station, etc.), which are difficult to
be handled by conventional optimisation methods. Another advantage of
the evolved dispatching rules is that they are understandable to the users
(managers, operators, and researchers), and therefore it is much easier for
these people to incorporate these rules with other planning decisions com-
pared to the detailed schedules produced by other methods.

3.7 Chapter Summary

In this chapter, we investigated the use of GP as a hyper-heuristic method
for automatically discovering new dispatching rules for the JSS problem.
New representations of dispatching rules which take advantage of the ma-
chine and system attributes to support the sequencing decisions were de-
veloped and examined. The experimental results suggest that the GP sys-
tem can evolve effective dispatching rules for Jm||Cmax and Jm||

∑
wjTj

with the representations that integrate system attributes and suitable com-
posite dispatching rules. The evolved rules are also shown to outperform
the existing rules on the training set and test set. The simulation exper-
iments have also confirmed the effectiveness of the evolved rules com-
pared to well-known dispatching rules in the dynamic environment. Also,
compared to the solutions obtained by the conventional meta-heuristic ap-
proaches (as mentioned in Chapter 2.2.2), the evolved rules in this work
provide much better interpretability of the sequencing decisions. Another
advantage of the proposed GP system is that it only requires one run to
generate dispatching rules which can be used to solve multiple problem
instances.

This chapter also evaluates rules evolved based on static problem in-
stances on the dynamic environment. It is observed that the evolved rules
are most effective in shops with low utilisation levels. One of the rea-
sons is that the evolved rules are trained on a set of static instances which
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usually reflect the situations in the dynamic job shop with a low utilisa-
tion. Another reason is that the global information such as CWR and BWR
can change rapidly in the dynamic shop, especially with a high utilisa-
tion level. In this case, the use of global information may be outdated
very soon after the sequencing decisions are made, which can cause un-
expected consequences. These reasons suggest two important points that
need to be considered when GP is used to evolve rules for dynamic job
shops. First, rules should be trained based on long term simulation in-
stead of static problem instances to ensure that evolved rules can handle
all possible situations. Second, the use of local information (as terminals
to construct rules) is more suitable than global information which are very
sensitive to the rapid changes in the dynamic shops.

In general, this is the first study that has compared different represen-
tations of dispatching rules used in a GP system and investigated how
representations influence the performance of the GP system when evolv-
ing dispatching rules for the JSS. With their flexibility, the proposed rep-
resentations in this study can be easily extended to deal with different
manufacturing environments. Moreover, these representations provide a
convenient way to incorporate special system features of real world envi-
ronments into the adaptive dispatching rules. Therefore, the GP system
proposed in this study can also be employed as a good tool to automat-
ically discover effective dispatching rules for a particular manufacturing
system.

However, similar to traditional dispatching rules, schedules constructed
by the evolved rules using the proposed representations only depend on
myopic information of jobs and machines. Therefore, these evolved rules
did not taken into account the future impact of the sequencing decisions.
To overcome this drawback, the next chapter proposes a new form of dis-
patching rules called iterative dispatching rules. The novelty of these (iter-
ative) dispatching rules is that they can iteratively improve the schedules
by utilising the information from completed schedules.



Chapter 4

Iterative Dispatching Rules

One of the issues with dispatching rules is that the schedules generated
from these rules are often not as good as those obtained from optimisa-
tion methods when tested on static JSS instances. Even though this is a
trade-off between the quality and the simplicity/understandability of the
rules, it is still expected that the gap in quality between these rules and
optimisation methods can be reduced to make dispatching rules more at-
tractive. The most straightforward way to deal with this issue is to use
different dispatching rules (or complex rules with different parameters )
to generate multiple schedules and select the best generated schedule to
apply. However, this is just a trial-and-error method and the quality of the
obtained schedules depends strongly on the existing rules.

Some priority dispatching rules based meta-heuristic methods [37, 56,
77, 178, 184, 194], e.g., genetic algorithms (GAs), have also been proposed
to determine how dispatching rules should be applied. The key idea of
these methods is to find the best way to utilise existing dispatching rules
or heuristics for JSS problems. Even though some promising results are ob-
tained, these methods do not have good understandability as dispatching
rules. Also, they are computationally expensive because many schedules
need to be evaluated.

103
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In this chapter, we propose iterative dispatching rules (IDR), a new type
of dispatching rule for solving JSS problems. Different from traditional
dispatching rules (DR) which provide one fixed schedule of jobs, IDR tries
to iteratively improve the schedules by taking into account the informa-
tion of scheduled jobs in previous steps. Therefore, these rules have a
chance to correct their mistakes from their previous sequencing decisions.
However, developing such rules is quite complicated and difficult using
traditional methods because we have to synthesise many pieces of infor-
mation. Therefore, we will develop a new GP method for automatic de-
sign of IDRs. This study will focus on using GP to learn/evolve new IDRs
for JSS problems. Three key objectives for this chapter are:

1. Developing a new GP method for evolving IDRs.

2. Comparing the performance of evolved IDRs with evolved compos-
ite DRs and existing DRs in the literature.

3. Analysing the evolved IDRs and further improving their performance.

Section 4.1 provides the definition of the proposed IDRs. Development
and the evaluation scheme of GP for IDRs are described in Section 4.2.
Section 4.3 compares the performance of the evolved IDRs with existing
dispatching rules and dispatching rules evolved with the proposed rep-
resentations in Chapter 3. Different aspects of IDRs are investigated in
Section 4.4 to help improve the performance of the evolved IDRs. Section
4.5 proposes a new representation for look-ahead strategies. An example
of an evolved IDR is analysed Section 4.6.

4.1 Definition of IDR

A traditional dispatching rule (DR) can be defined as a priority function
Δ(J ,W) which is used to assign a priority for each job J in the queue of a
considered machineW based on the information from J (e.g. processing
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time, due date) andW (e.g. ready time). After a priority has been assigned
to all jobs in the queue, the one with the highest priority will be processed
next. A limitation of these rules is that they can only provide sequencing
decisions based on the available information of jobs and machines at the
time the decision is made. Since these pieces of information come from a
partial schedule, the future impact of the decisions made by a dispatching
rule on the complete schedule is not considered in order to enhance the
effectiveness of the rule. Different from these dispatching rules, an IDR
is defined as ΔI(J ,W,R), where R is the recorded information of the
previous generated schedule. The overall algorithm used to construct a
schedule by ΔI(J ,W,R) is shown in Figure 4.1.

At the beginning, an initial recorded information R0 (more details on
how to determine R0 will be shown in the next section) is assigned to R.
Steps from 4 to 12 are used to construct a schedule similar to the proce-
dure in Figure 2.2 (on page 27). After a schedule is obtained, the objective
is calculated and compared to the best objective Obj∗ obtained in previous
iterations. If the schedule obtained is improved, Obj∗ will be updated and
the information from scheduled jobs is used to update R. This procedure
will be repeated until no improvement is realised from the new generated
schedule. Different from traditional dispatching rules which only make
sequencing decisions based on the partial schedule, IDRs can use the in-
formation from a complete schedule to correct the mistakes made in previ-
ous iterations. However, designing such a rule would be very challenging
using the traditional methods since many pieces of information will need
to be considered. In this study, we apply GP to handle this problem by
automating the design process.

Regarding the time complexity of IDRs, the maximum number of sched-
ules (or iterations) maxstepIDR generated by IDRs is fewer than �ObjI−LB

ε
�,

where ObjI is the objective of the initial solution, LB is a lower bound
of the problem and ε is the smallest improvement in the objective values.
Obviously, LB and ObjI are always finite and ε is always larger than zero



106 CHAPTER 4. ITERATIVE DISPATCHING RULES
1:R

←
R

0

2:
O
bj ∗

=
+
∞

3:
π
←
∅

and
Ω
←
{
o
1
,1 ,o

2
,1 ,...,o

N
,1 }

4:
repeat

5:
let

t(Ω
)
=

m
in
σ∈

Ω {
m
ax{

r(σ
),U

m
(σ

) }
+
p(σ

)}
6:

let
σ
∗

be
the

operation
thatm

inim
um

is
achieved,

m
∗←

m
(σ

∗)

7:
Ω

∗←
{
σ
∈
Ω|m

(σ
)
=
m

∗}
8:

let
Ω

′
=
{
σ
∈
Ω

∗|r(σ
)≤

S
(m

∗)
+
α
(t(Ω

)−
S
(m

∗))}
w

here
S
(m

∗)
=

m
ax{

m
in
σ∈

Ω
∗{
r(σ

)}
,U

m
∗}

9:
apply

Δ
I(J

,M
,R

)
on

Ω
′to

find
the

nextoperation
σ
′to

be
scheduled

on
m

∗

10:
rem

ove
σ
′from

Ω
′and

include
itinto

π

11:
include

n
ex
t(σ

′)
into

Ω
if
n
ex
t(σ

′)�=
n
u
ll

12:
untilalloperations

have
been

scheduled
13:

O
bj(π

)←
calculate

the
objective

value
obtained

from
schedule

π

14:
if
O
bj ∗

>
O
bj(π

)
then

15:
O
bj ∗

=
O
bj(π

)

16:
R
←

g
et
in
f
orm

a
tion

(π
)

17:
go

back
to

step
3

18:
else

19:
end

the
procedure,and

return
(O
bj ∗,R

)

20:
end

ifFigure
4.1:G

eneric
procedure

to
constructa

schedule
for

JSS
problem

s
w

ith
ID

R
.



4.2. EVALUATION SCHEME FOR IDRS 107

(for all instances with Cmax as the objective function and integer process-
ing times, ε is always larger than or equal to one). Therefore, maxstepIDR

is always a finite value and IDRs can always stop in a finite time.

4.2 Evaluation scheme for IDRs

The same GP algorithm as in Figure 3.5 (on page 76) will be used to evolve
IDRs. However, there are some changes in the terminal set and the eval-
uation scheme of evolved IDRs. The terminal set for IDRs is shown in
Table 4.1. Terminals in the upper part are the same as those used by the
R2 representation in Section 3.1. The three terminals in the lower part of
this table are the recorded information R of scheduled jobs from the pre-
vious iteration. These terminals provide information about the previous
schedule at the job level (RFT) and the operation level (RWT and RNWT).
An illustration of how an IDR is represented and evaluated is shown in
Figure 4.2.

Record
Scheduled Jobs

)(* ObjObj

Yes

)(* ObjObj

No *Objreturnconstruct

+

RT %

W RFT

Figure 4.2: Representation and evaluation of an evolved IDR.

In this case, a GP individual will play the role of a ΔI(J ,W,R) to as-
sign the priorities to jobs in the queues, which is step 9 in the schedule
construction procedure in Figure 4.1. In the first time when a GP indi-
vidual is used to construct the schedule, since there has been no recorded
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Table 4.1: Terminal set for IDR

Notation Description

RJ operation ready time
RO number of remaining operations
RT work remaining of job
PR operation processing time
W weight
DD due date
RM machine ready time
# constant from Uniform[0,1]

RFT recorded finish time
RWT recorded operation waiting time
RNWT recorded waiting time of the next operation

information R from the previous schedule, so other pieces of information
will be employed as the initial value of RFT, RWT, and RNWT, which rep-
resent the initial recorded information R0. The initial value for RFT is the
total processing time of the considered job. For RWT and RNWT, they will
take half of the workload (total operation processing time of jobs waiting
in the queue) of the considered machine as their initial recorded waiting
times. This implies that a job has to wait for half of the jobs in the queue
to be finished before it can be processed, given that all of those jobs have
the same processing times.

4.3 Comparison with other GP methods

Although the evolved IDRs use a different evaluation scheme compared to
the rules in Chapter 3, the representation of IDRs in GP are the same asR2.
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Therefore, Algorithm 3.5 (page 76) can be employed to evolve IDRs. The
only difference in this algorithm is that composite dispatching rules Δi are
replaced by iterative dispatching rules ΔI

i . Tables 4.2 and 4.3 show the
performance of evolved IDRs with the non-delay factor α = 0 (adaptive α
is presented in Section 4.5) and rules evolved with R1, R2, and R3. All of
the rules in this table are evolved using devaverage(Δ) as the fitness function
with the crossover rate and mutation rate of 90% and 5%, respectively.

Table 4.2: Performance of evolved rules for Jm||Cmax

Data Sets Min Mean ± Stdev. Max

ΔR1

Training 0.174 0.181± 0.004 0.190

Testing 0.181 0.192± 0.005 0.201

ΔR2

Training 0.175 0.181± 0.003 0.186

Testing 0.182 0.188± 0.004 0.199

ΔR3

Training 0.173 0.181± 0.004 0.187

Testing 0.176 0.184± 0.005 0.195

ΔI
Training 0.145 0.151± 0.004 0.160

Testing 0.151 0.160± 0.005 0.171

These tables show that evolved rules ΔI are significantly better than
other rules evolved by using different representations when dealing with
Jm||Cmax. For Jm||

∑
wjTj , evolved IDRs are significantly better than

rules evolved with R1 and R2, but not significantly different from rules
evolved with R3. The results from both the training set and the test set are
very consistent, which indicates that the improvement of IDRs is made
without deteriorating their reusability. A problem with the proposed GP
method is that it usually need more time to evaluate evolved IDRs as com-
pared to the evaluation of dispatching rules with R1, R2, and R3 represen-
tations because of the iterative construction procedure. From the experi-
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Table 4.3: Performance of evolved rules for Jm||
∑
wjTj

Data Sets Min Mean ± Stdev. Max

ΔR1

Training −0.245 −0.235± 0.007 −0.221
Testing −0.232 −0.221± 0.005 −0.207

ΔR2

Training −0.224 −0.217± 0.004 −0.210
Testing −0.214 −0.205± 0.006 −0.193

ΔR3

Training −0.263 −0.245± 0.013 −0.223
Testing −0.261 −0.236± 0.015 −0.209

ΔI
Training −0.258 −0.251± 0.004 −0.243
Testing −0.244 −0.238± 0.003 −0.231

ments, evolutionary training times of the simple GP method is about 1–2
hours while the evolutionary training times of the proposed method is 2–
4 hours. However, since the evolved IDRs can be reused to solve unseen
instances without the need to rerun GP, these running times are still very
reasonable, especially when GP is used to deal with such a complicated
design task.

4.4 Insights into IDRs

The previous results have shown that the evolved IDRs can effectively
solve the JSS problems. This section will carefully investigate how an
IDR works and how to enhance its performance. As shown in Figure
4.1, IDRs try to improve the quality of the schedule through some itera-
tions. Different from a traditional dispatching rule that only provides a
unique schedule π, an IDR will iteratively generate a sequence of sched-
ules π0 → π1 → · · · → πn where Obj(πi) > Obj(πi+1) and πi+1 is a function
F of πi. This behaviour is very similar to that of a local search, which also
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tries to improve the quality of the solution iteratively. However, instead of
using a neighbourhood structure N (πi) to find a new improved solution,
an IDR employs a function F(πi) to generate a new schedule. From the
local search viewpoint, two key issues needed to be considered for devel-
oping effective IDRs are the choice of initial solution, and the strategy to
escape from local optima. We will explore these issues in the rest of this
section.

4.4.1 Initialisation for IDRs

Initialisation for an IDR involves the choice of R0 since this choice will
decide how the initial schedule is created, and therefore also influence the
final schedule obtained by that IDR. In the proposed GP system, a heuristic
approach is used to generate R0, more specifically RFT, RWT, and RNWT.
Since the evolved IDRs can be in very different forms, it is expected that
they can be more effective if a more suitable R0 is used. To cope with this
problem, we introduce an extension of the proposed GP method to take
into account the initialisation of R0. In this method, the three terminals
RFT, RWT, and RNWT will be turned into pseudo terminals rft, rwt, and
rnwt. The difference between these pseudo terminals and the original ones
is that the pseudo terminals are treated as a function which also includes
a child node or a subtree. When the evolved IDRs are used in the first
iteration, the values evaluated from the subtrees will be used asR0. In the
later iterations, these subtrees will be ignored when the evaluation reaches
the pseudo nodes and R will be used in this case instead. An illustration
of this approach is shown in Figure 4.3. In this example, when evaluating
node rft, we will check whether it is the first iteration of the scheduling
construction procedure. If it is the first iteration, this node will return the
output from its subtree which is (RT−PR) in this case. Otherwise, it will
return the recorded finish time from the previous schedule.
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+

rft

%

W PR

-

RT PR

Figure 4.3: Illustration of a pseudo terminal.

4.4.2 Variable neighbourhood search with IDRs

Being trapped at a local optimum is a big issue with local search methods.
For this reason, many approaches to escaping from the local optima have
been proposed in the literature. Some popular approaches used for JSS
problems are simulated annealing [182], tabu search [139], large step opti-
misation [115], and guided local search [14]. Even though these methods
have been shown to be very effective when tested on benchmark JSS in-
stances, they require extensive knowledge in the local search operators to
make the approaches effective/efficient. Therefore, it would be hard to ap-
ply these approaches to evolve IDRs. For IDRs, it would be more suitable
to consider high-level and more general approaches. Variable neighbour-
hood search (VNS) [76] seems a good candidate for this task since it mainly
deals with the choice of neighbourhood structure or local search heuristics
and their order in the search instead of low-level manipulations. One in-
teresting idea in VNS is that a local optimum within one neighbourhood
is not necessarily a local optimum within others, and a change of neigh-
bourhoods has the potential to enhance the effectiveness of the search. In
this study, we now propose a new local search method based on IDR and
VNS. An overview of the new method IDR-VNS is shown in Figure 4.4.

The key idea of this method is to employ different IDRs to explore bet-
ter schedules since the best schedule obtained by an IDR is not necessarily
the best solution of the other IDRs. However, instead of the applying dif-
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1: select a set of iterative dispatching rules Fk, k = 1, . . . , kmax

2: Obj∗∗ = +∞ and k = 1

3: R∗ ←R0

4: improve← false

5: R ← R∗

6: (Obj∗,R)← apply steps 2–20 of the algorithm in Figure 2.2 with
Fk as ΔI(J ,W,R)

7: if Obj∗∗ > Obj∗ then
8: Obj∗∗ = Obj∗

9: R∗ ← R
10: improve← true

11: end if
12: if k �= kmax then
13: k = k + 1 and return to step 5
14: else
15: if (improve = true) then k = 1 and return to step 4;
16: else stop and return (Obj∗∗,R∗)

17: end if

Figure 4.4: Local search IDR-VNS.

ferent IDRs independently, we will use the recorded information R∗ from
the best schedule obtained by an IDR to be the initial R0 of the next IDR
to efficiently explore better schedules. Similar to VNS, in order to cre-
ate effective IDR-VNS, we need to decide: (1) how many Fk to be used
(kmax), (2) what Fk to be used, and (3) the order in which these Fk are ap-
plied. While the first factor has to be decided experimentally, the next two
factors can be handled by GP. A GP method is proposed in which a local
search IDR-VNS is represented by a GP individual with multiple trees. An
example of this representation is shown in Figure 4.5. By evolving these
GP individuals, GP can also help us find the effective IDRs and the order
in which they will be applied.
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F1 F2 Fkmax

Figure 4.5: Representation of an IDR-VNS.

4.4.3 Performance of the enhanced IDRs

Figure 4.6 shows the performance of the enhanced IDRs using the two
extensions discussed in the previous subsections. In this figure, IDR-P is
used to indicate the evolved rules using pseudo terminals and kmax = 2

is used for IDR-VNS. It is easy to see that the evolved IDRs dominate the
evolved DRs. For Jm||Cmax, there is no significant difference between IDR
and IDR-P. These results indicate that our heuristic to initialise R (as de-
scribed in Section 4.2) is good enough for these problems. For Jm||

∑
wjTj ,

IDR-P rules are significantly better than IDRs on the training set but there
is no significant difference between these two types of dispatching rules
on the test set. One explanation for this is that the initialisation of R can
be useful when dealing with sophisticated objectives such as

∑
wjTj ; how-

ever, each problem instance may require different R0 and it is really hard
to create a general way to generate good initalR0.

IDR-VNS is the best approach in this comparison since the average rel-
ative performance of IDR-VNS is significantly smaller than those of all the
other approaches. Obviously, the use of variable IDRs to search for good
schedules is shown to be very effective. The fact that IDR-P has trouble
improving the quality of IDRs and the success of IDR-VNS suggests two
interesting points. First, the JSS instances in the data sets have very differ-
ent characteristics, which cannot be handled easily by a single dispatching
rule, even when the feedback from the previous schedule is used. Second,
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Figure 4.6: Comparison between evolved DR, IDR, IDR-P, and IDR-VNS.

from the optimisation search viewpoint, the search space of JSS problems
is very complicated with many local optima. Therefore, the use of good
R0 alone may not be useful because IDRs can be easily trapped at some
local optimum. To enhance its performance, IDRs need to include some
mechanism that helps escape from the local optima. VNS is an effective
mechanism of this kind.

Given that IDR-VNS can effectively solve JSS problems, we now inves-
tigate how the number of IDRs, kmax, influences the performance of the
IDR-VNS. Figure 4.7 show the performance of IDR-VNS with kmax = 2, 3

and 4. It is quite clear that the performance of the IDR-VNS improves
significantly when kmax increases. This again confirms the importance of
using different IDRs to avoid being trapped in a local optimum. Another
interesting observation is that while the average relative deviation tends to
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Figure 4.7: Influence of kmax on IDR-VNS.

linearly decrease when kmax increases in the training set, the gaps between
IDR-VNS with different kmax tends to be larger in the test set. This indi-
cates that high kmax will also increase the generality of IDR-VNS. A reason
is that high kmax not only improves the quality of the schedules but also
allows the evolved IDR-VNS rules to cover more situations in the training
set.

4.5 Look-ahead strategies

In previous experiments, we only considered evolved IDRs which gener-
ate non-delay schedules. However, non-delay schedules (α = 0) may not
always provide good results in all cases. For that reason, we need to con-
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sider active schedules [69] or hybrid schedules [24]. Among the three types
of schedules, hybrid schedules are the most general since they can be used
not only to generate active and non-delay schedules but also schedules
with some look-ahead ability. Since the appropriate value for α is quite
difficult to choose, as it depends on the status of machines and the type
of JSS problems, we also include in our GP individual a component to de-
cide which non-delay values should be used. The representation of this
component is shown in Figure 4.8.

Non-delay factor

BA

BA
A

Figure 4.8: Look-ahead component represented in GP.

Basically, the look-ahead component contains two subtrees. The func-
tion set used to construct these subtrees is the same as that in the evolved
IDRs while the terminal set consist of the six machine attributes (WR, MP,
DJ, CMI, CRW, and BWR) used in the R1 representation. The two subtrees
are evaluated and produce two outputs A and B, whose absolute values
are used to calculate the non-delay factor α as shown in Figure 4.8. When
A and B are both zero, we will use α = 0 as default. This calculation
ensures that the obtained values will range from 0 to 1.

Figure 4.9 shows the performance of evolved IDR-VNS-L rules (IDR-
VNS with a look-ahead component) against the rules evolved by GP with
the R3 representation, GP-3 [86], and the evolved IDR-VNS rules without
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Figure 4.9: Influence of the evolved look-ahead component.

the look-ahead component. In these experiments, kmax = 2 is used for
both IDR-VNS and IDR-VNS-L. For both Jm||Cmax and Jm||

∑
wjTj , the

complex GP-3 is significantly worse than R3 rules in the training and test
sets. One explanation is that the individuals in GP-3 are more complicated
since they include three GP trees for the three key components (for classi-
fication and dispatching rules) and require a much larger population size
(10,000 is used in [86]) to obtain good results. It is quite obvious that IDR-
VNS and IDR-VNS-L rules show superior performance for both training
and test sets in this case. Within these two rules, IDR-VNS-L rules are
significantly better than IDR-VNS rules.
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4.6 Illustration of an evolved IDR-VNS-L rule

Figure 4.10 shows an example of an IDR-VNS-L rule with kmax = 2 evolved
for Jm||

∑
wjTj . It is easy to see that RFT and RWT appear in all terms

within the two functions F1 and F2, which suggests that they have a large
impact on the entire evolved IDR-VNS-L. In this example, the evolved
functions can be considered as an extension of WSPT which is enhanced
by incorporating information from the previous schedules since the term
W/PR occurs very often in the two functions.

(−((PR ∗ RFT)/((W/RT)/(RFT − W))) + ((min(max(RO,RT), ((W/PR) + min(0.0269, PR)))

/(RT + RFT)) + min(0.0269, PR))) + If(0.443 + W,RFT + RFT,max(PR,DD))

(a) Priority function F1

min(max(RM,RWT), ((W/PR) + min(0.026903434, PR)))/If(0.44284365 + W, abs(RFT − RO)

/0.19508022, abs(RT − RFT)/0.19508022)

(b) Priority function F2

A = −0.2272413, B = DJ =⇒ |A|
|A|+|B| = 0.2272413

0.2272413+DJ

(c) Look-ahead strategy

Figure 4.10: Example of an evolved IDR-VNS-L with kmax = 2

Meanwhile, the look-ahead strategy is a very simple function including
only the machine attribute DJ. Figure 4.11 shows the behaviour of the look-
ahead strategy. This figure points out two features of the evolved look-
head strategy. First, the non-delay factor α should be roughly higher than
0.2. This suggests that a reasonably small waiting time is better than zero
waiting time in non-delay schedules (α = 0). Second, the non-delay factor
should be reduced when DJ increases. This means that when there is no
deviation of jobs in the queue, we should allow the machine to process the
next job soon. However, when there is a large deviation (low DJ) in the
queue, the non-delay factor should be higher so that more potential jobs
can be examined by the evolved rules to decide which job is processed
next.
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Figure 4.11: The evolved look-ahead strategy.

Table 4.4: Comparison with the multi-pass heuristic

Rules
Training Set Test Set

Min Mean Max Min Mean Max

Multi-pass −0.610 −0.256 0.090 −0.620 −0.253 0.026

IDR-VNS-L −0.592 −0.342 −0.198 −0.673 −0.339 −0.074

To further assess the effectiveness of this example rule, we also com-
pare it with a multi-pass heuristic, where multiple dispatching rules are
used to solve an instance and the best result will be reported. The five
existing rules (WSPT, W(CR+SPT), W(S/RPT+SPT), COVERT and ATC)
mentioned in Section 3.5 are the candidate rules for the multi-pass heuris-
tic. We also fine-tune the non-delay factor for this heuristic (α = 0.4). The
results from the example rule and the multi-pass heuristic are shown in
Table 4.4. It is obvious that the evolved rule has a much better average
relative deviation as compared to the multi-pass heuristic on both training
and test sets. This again confirms the superiority of the evolved rules and
that the use of the information from previous schedule is very important
to enhance the quality of the schedule.
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Figure 4.12: Correlation between problem size and the number of itera-
tions from the evolved IDR.
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Figure 4.13: Relationship between problem size and the dominance of the
evolved IDR.

In Figure 4.12 and Figure 4.13, we show how the problem size (number
of operations = N ×M) influences the number of iterations and the dom-
inance (1 if the evolved rule is better than the multi-pass heuristic and 0
otherwise) of the evolved IDR-VNS-L rule. In general, the number of itera-
tions tends to increase as the problem size increase. This indicates that the
evolved rule has more chances to make improvement steps for the larger
problem instances. However, it is noted that the increase in the number
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of iterations is not large. This suggests that the computational effort for
the evolved rules are not increased rapidly as the problem size increases.
Figure 4.13 also shows that the evolved rules tend to provide better re-
sults when the problem size increases. These observations suggest that
the evolved rule is more effective than the multi-pass heuristic, especially
for large-scale problems, while still maintaining good efficiency. In our
experiments, the example IDR-VNS-L rule can solve all 210 training and
test instances in less than a second (coded in Java and run on Intel Core
i5-2400 3.10 GHz).

4.7 Chapter Summary

While machine and system attributes inR1 and R3 are useful, the sequenc-
ing decisions are still myopic. To overcome this drawback, an iterative
procedure has been introduced. The key idea is to provide the rules with
the ability to take into account the future impact of the sequencing deci-
sions on the quality of the final solutions. The experiments have shown
that IDRs are significantly better than other evolved rules. This confirms
the importance of estimating the future impact of jobs in the shop for im-
proving the performance of the scheduling system. However, the iterative
procedure introduced in this chapter is still limited to the static JSS prob-
lem. When applied to a dynamic JSS environment, not only the current
jobs in the shop but also the new and future arriving jobs will influence
the sequencing decisions. In this case, the future impact needs to be in-
directly estimated through due date assignments instead of the iterative
procedure. This issue will be investigated in Chapters 6 and Chapters 7.

The GP methods in Chapters 3 and 4 only focused on evolving rules
for a specific objective in static JSS environment. However, practical job
shops often have to deal with multiple objectives and dynamic changes.
Chapter 5 will tackle these issues based on GP.



Chapter 5

Multi-objective GPHH

Handling multiple conflicting objectives in dynamic JSS (DJSS) is challeng-
ing because many aspects of the problem need to be considered when de-
signing dispatching rules. Tay and Ho [181] presented the first work on GP
that focuses on multi-objective DJSS (MO-DJSS) problems. In their study,
they converted the multi-objective problem to a single objective problem
by optimising a linearly weighted sum of all the objectives. However, this
approach is only effective when there exists good knowledge about the
search space of the objectives considered (the scale of each objective, the
shape of the true Pareto front), which is not available in most cases. Hilde-
brandt et al. [78] re-examined the GP system proposed by Tay and Ho
[181] in different dynamic job shop scenarios and showed that the rules
evolved by Tay and Ho [181] are only slightly better than the earliest re-
lease date (ERD) rule and quite far away from the performance of the
shortest processing time (SPT) rule with mean flowtime as the objective.
This suggested that a linear combination of objectives may not be a suit-
able approach to deal with MO-DJSS.

This chapter aims to use GP for evolving dispatching rules for multi-
objective DJSS (MO-DJSS) problems, which can be used to support the
decision makers by providing them with potential trade-offs among dif-
ferent objectives. The objectives of this chapters are:

123
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1. Developing a multi-objective genetic programming based hyper-heuristic
(MO-GPHH) method to evolve dispatching rules for DJSS.

2. Performing detailed comparisons between the evolved rules and other
existing dispatching rules for DJSS.

3. Assessing the robustness of evolved dispatching rules under differ-
ent simulation scenarios.

In Section 5.1, a detailed description of the proposed MO-GPHH are
presented. Simulation models for DJSS, benchmark dispatching rules in
the literature, and statistic analysis procedures to compare different rules
are also provided in this section. Section 5.2 examines the performance of
the evolved rules through extensive experiments. More insights regarding
the evolved Pareto fronts and the robustness of evolved rules are investi-
gated in Section 5.3. Section 5.4 concludes this chapter.

5.1 MO-GPHH for DJSS

This section shows how the proposed MO-GPHH method is used to solve
DJSS problems. The first part will show how dispatching rules are repre-
sented by GP and how they can be evaluated. Then, the proposed MO-
GPHH algorithm is presented. Finally, we describe the simulation model
of DJSS used for training/testing purposes and the statistical procedure to
analyse the results.

5.1.1 Representation and Evaluation

Similar to previous applications of GP for JSS problems [78, 84, 86, 112,
123, 138, 181], the dispatching rules here are also represented by GP trees
[103]. A GP tree in this case will play the role of a priority function which
will determine the priorities of jobs waiting in the queue. This chapter
only considers the simple GP tree representation (R2) of dispatching rules
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Table 5.1: Terminal and function sets for DR

Symbol Description

rJ job release time (arrival time)
RJ operation ready time
RO number of remaining operation within the job.
RT work remaining of the job
PR operation processing time
DD due date of the job
RM machine ready time
SL slack of the job = DD− (t + RT)
WT is the current waiting time of the job = max(0, t− RJ)
# Random number from 0 to 1

NPR processing time of the next operation
WINQ work in the next queue
APR average operation processing time of jobs in the queue

Function set +,−,×, %, min, max, abs, and If
∗t is the time when the sequencing decision is made.

because GP is capable of evolving effective priority functions that can in-
corporate the global/local information of the shop for making sequencing
decisions. The terminal and function sets of evolved dispatching rules are
presented in Table 5.1. In this table, the upper part shows a number of
terms that usually appear in the dispatching rules in the literature. The
next part in this table shows three terms that reflect the status of the cur-
rent and downstream machines. It is noted that more global terms, as
introduced in Chapter 3, can also be used in this case. However, since
dispatching rules work in a dynamic environment where the global infor-
mation can change rapidly, the use of global information may be outdated
very soon after the sequencing decisions are made. So we use the termi-
nals and functions in Table 5.1.
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Figure 5.1: Illustration of a dispatching rule in DJSS.

An example of an evolved rule is shown in Figure 5.1. In the job shop,
when a machine is idle and a new job arrives at that machine, that job will
be processed immediately. In the case that a machine has just completed
a job and there are still jobs waiting in the queue to be processed at that
machine, the dispatching rule will be applied. To assign a priority to a
waiting job, the information about that job will be extracted to be used in
the terminals in Table 5.1. Then, the GP tree representing the dispatching
rule will be evaluated and the output from this evaluation will be assigned
to the considered job as its priority (refer to [103] for detailed discussion
on how a GP tree is evaluated). This procedure will be applied until priori-
ties are assigned to all waiting jobs and the job with highest priority will be
processed next. This evaluation scheme is similar to that in Section 3.1.2
(on page 71) to generate a non-delay schedule. However, the set Ω here
contains not only known jobs in the shop but also new jobs arriving dur-
ing the simulation. Also, the evaluation continues until the termination
condition of the simulation is met instead of when all jobs are scheduled.

5.1.2 The proposed MO-GPHH algorithm

In this work, we want to evolve dispatching rules to minimise five pop-
ular objectives in the DJSS literature, which are the mean flowtime (F),
maximum flowtime (Fmax), percentage of tardy jobs (%T), mean tardiness
(T), and maximum tardiness (Tmax) [171, 81, 162] (see Table 2.1 on page 26).
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load training simulation scenarios S← {S1, S2, . . . , ST}
randomly initialise the population P ← {R1,R2, . . . ,Rpopsize}
Pe ← {} and generation← 0

1: while generation ≤ maxGeneration do
2: for allRi ∈ P do
3: Ri.objectives← applyRi to each scenario Sk ∈ S

4: end for
5: calculate the Harmonic distance [187] and the ranks for

individuals in P
⋃
Pe

6: Pe ← select(P
⋃
Pe)

7: P ← apply crossover, mutation to Pe

8: generation← generation + 1

9: end while
10: return Pe

Figure 5.2: MO-GPHH to evolve dispatching rules for DJSS problems.

The HaD-MOEA algorithm [187] is applied here to explore the Pareto front
of non-dominated dispatching rules regarding the five objectives men-
tioned above. HaD-MOEA can be considered as an extension of NSGA-II
[52] and it has been shown to work well on the problems with many ob-
jectives. Figure 5.2 shows how the proposed MO-GPHH works. At first,
a number of training simulation scenarios (more details will be shown in
the next section) are loaded and the initial archive Pe (parent population)
is empty. These scenarios will be used to evaluate the performance of an
evolved dispatching rule.

The initial GP population is created using the ramped-half-and-half
method [103]. In each generation of MO-GPHH, all individuals in the pop-
ulation will be evaluated by applying them to each simulation scenario.
The quality of each individual in the population will be measured by the
average value of the objectives across all simulation scenarios. After all in-
dividuals have been evaluated, we calculate the Harmonic distance [187]
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for each individual. Then, individuals in both archive Pe and population
P are selected to update the archive Pe based on the Harmonic distance
and the non-dominated rank [52]. The new population will be generated
by applying subtree crossover and subtree mutation to the current popu-
lation. Binary tournament selection [52] is used to select the parents for the
two genetic operations. The crossover rate and mutation rate used in this
method are 90% and 10%, respectively. The maximum depth of GP trees
is eight. A population size of 200 is used in this study and the results will
be obtained after the proposed method runs for 200 generations. These
parameters are selected based on our preliminary experiments to balance
between the effectiveness and the (Pareto) diversity of evolved dispatch-
ing rules.

5.1.3 Simulation models for dynamic job shop

Simulation is the most popular method to evaluate the performance of
dispatching rules in the DJSS literature. Since our goal is to evolve ro-
bust dispatching rules, a general job shop would be more suitable than a
specific shop. The following factors characterise a dynamic job shop:

• Distribution of processing times (F1)

• Utilisation (F2)

• Due date tightness (F3)

Utilisation is the proportion of time the machine is busy processing an
operation of a job. Therefore, it is used to indicate the congestion level of
machines (and the shop). The performances of the scheduling decisions
under different utilisation levels are of interest in most research in the
DJSS literature. Meanwhile, the distribution of processing times and the
due date tightness (a factor that controls the time allowance to complete
a job) are also very important factors that can influence the performance
of a dispatching rule. In this study, we employ a symmetrical (balanced)
job shop model in which each operation of a job has equal probability
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Table 5.2: Training and testing scenarios

Factor Training Testing

F1 Discrete Uniform[1, 49] Discrete Uniform[1, 49] and [1, 99]

F2 70%, 80% 85%, 95%

F3 c is randomly selected
from (3, 5, 7)

c = 4, c = 6, c = 8

〈25, 70, (3, 5, 7)〉, 〈25, 85, 4〉, 〈25, 85, 6〉, 〈25, 85, 8〉,
Summary 〈25, 80, (3, 5, 7)〉 〈25, 95, 4〉, 〈25, 95, 6〉, 〈25, 95, 8〉,

〈50, 85, 4〉, 〈50, 85, 6〉, 〈50, 85, 8〉,
〈50, 95, 4〉, 〈50, 95, 6〉, 〈50, 95, 8〉

Total Work Content (TWK) [12] with allowance factor c is used to set the due dates.

to be processed at any machine in the shop. Therefore, machines in the
shop expect to have the same level of congestion in long simulation runs.
This model has been used very often in the DJSS literature [81, 162, 78]
to evaluate performance of dispatching rules. Although it is simple, it re-
flect many interesting features of real world applications such as multiple
(and changing) bottlenecks and complex routings. Therefore, this model
is suitable for examining the effectiveness of our proposed method. The
scenarios for training and testing of dispatching rules are shown in Table
5.2.

The simulation experiments have been conducted in a job shop with 10
machines. The triplet 〈m, u, c〉 represents the simulation scenario in which
the average processing time is m (m is 25 or 50 when processing times
follow discrete uniform distribution [1,49] or [1,99], respectively), the util-
isation is u% and the allowance factor is c (due date = release time + c
× total processing time). In the training stage, two simulation scenarios
(corresponding to the two utilisation levels) and five replications will be
performed for each scenario. The average value for each objective from
2 × 5 = 10 replications will be used to measure the quality of the evolved
rules (as described in the previous section). We use the shop with differ-



130 CHAPTER 5. MULTI-OBJECTIVE GPHH

ent characteristics here in order to evolve rules with good generality. The
allowance factors, which decide the due date tightness, are selected ran-
domly from the three values 3, 5, and 7 instead of a fixed allowance factor
(for each scenario) in common simulation experiments for DJSS problems.
If we train on scenarios with fixed allowance factors, the evolved rules
will tend to focus more on the scenarios with small allowance factors to
improve the due date performance (mean tardiness, maximum tardiness,
etc.) because the values of the due date based objectives are higher in these
cases. This may cause an overfitting problem for the evolved dispatch-
ing rules. Moreover, training on different scenarios with different fixed
allowance factors will also increase the training time of our MO-GPHH
method. Simulating multiple utilisation levels in a simulation scenario
can also be used to reduce the number of training scenarios but will in-
crease significantly the running time of a replication to obtain the steady
state performance of the rules, and indirectly increase the training time of
the MO-GPHH method.

In the testing stage, 12 simulation scenarios with 50 replications for
each scenario (or shop condition) resulting in 12 × 50 = 600 replications
will be used to have a comprehensive assessment of the evolved rules.
In each replication of a simulation scenario, we start with an empty shop
and the interval from the beginning of the simulation until the arrival of
the 500th job is considered as the warm-up time and the statistics from the
next completed 2000 jobs [81] will be used to calculate the five objective
values. The number of operations for each new job is randomly generated
from the discrete uniform distribution [2,14] and the routing for each job
is randomly generated, with each machine having equal probability to be
selected (re-entry is allowed here but consecutive operations are not pro-
cessed on the same machine). The arrival of jobs will follow a Poisson
process with the arrival rate adjusted based on the utilisation level [162].
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5.1.4 Benchmark dispatching rules

Table 5.3 shows 31 dispatching rules that will be used to compare with
the evolved rules in our work. The upper part of this table shows some
original dispatching rules and the lower part shows some extensions of the
original rules that have been proposed in the literature. The parameters of
ATC and COVERT are the same as those used in Vepsalainen and Morton
[185] (k = 3 for ATC, k = 2 for COVERT, and the leadtime estimation
parameter b = 2). More detailed discussion on these rules can be found in
[185, 162, 145, 88, 81].

5.1.5 Statistical Analysis

Since DJSS is a stochastic problem, statistical analysis is required to com-
pare the performance of dispatching rules obtained from simulation. In
this work, we use the one-way ANOVA and Duncan’s multiple range
tests [128] to compare the performance of rules or a set of rules for each
objective since this statistical analysis has been used in previous studies
[162, 88, 81]. It is noted that the common random number technique is used
in our experiments for variance reduction.

It is important to note that Pareto-dominance has not been considered
before in the dispatching rule literature, even though it is an important
concept in the multi-objective optimisation domain. Most studies on dis-
patching rules have been done mainly based on a single objective even
when multiple objectives are investigated. The reason is that the focus of
previous studies is on minimising a single objective and the performance
on other objectives are not of interest. Also, since DJSS is a stochastic prob-
lem, statistical analysis is necessary to examine the Pareto-dominance of
rules but there is no standard statistical procedure available for this task.
In this work, we describe two procedures to check for the statistical Pareto-
dominance between two different rules, which can be used to validate each
other.
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Objective-wise procedure.

In multi-objective optimisation, solution (or dispatching rule in this work)
a is said to Pareto-dominate solution b if and only if ∀i ∈ {1, 2, . . . , n} :

fi(a) ≤ fi(b) ∧ ∃j ∈ {1, 2, . . . , n} : fj(a) < fj(b) where n is the num-
ber of objectives to be minimised. However, if fj(a) and fj(b) are ran-
dom variables (i.e. solutions a and b produce different outputs in different
runs/replications), we cannot use the above definitions to check for the
Pareto-dominance. Therefore, we need to redefine the Pareto-dominance
for this context. For the objective-wise procedure, solution a statistically
Pareto-dominates solution b if and only if ∀i ∈ {1, 2, . . . , n} : fi(a) ≤T fi(b)

∧ ∃j ∈ {1, 2, . . . , n} : fj(a) <T fj(b), where fi(a) ≤T fi(b) means that a
is significantly smaller (better) than or not significantly different from b

based on the statistical test T (e.g. z-test); similarly, fj(a) <T fj(b) means
that a is significantly smaller than b based on T . It should be noted that
since multiple comparisons (n comparisons for n objectives) need to be
done here, we have to adjust the value of the pre-set probability α of a
type-1 error [128] in order to control the false positive rate. Many methods
have been proposed for this problem such as the Bonferroni method and
Scheffe method [159].

Replication-wise procedure.

Different from the above method that examines the Pareto-dominance of
two solutions based on the relative performance of each objective, the
replication-wise procedure focuses on the Pareto-dominance in each repli-
cation/observation to detect the difference between two solutions. This
procedure is adapted from the method proposed by Bhowan et al. [23]
to compare the performance of different multi-objective GP methods on
a run-by-run basis and determine whether a method significantly dom-
inates another over all runs. In this procedure, the traditional Pareto-
dominance is used to examine the dominance relation between two so-
lutions in each replication. For instance, fj(a) = {f 1

j (a), f
2
j (a), . . . , f

N
j (a)}
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Figure 5.3: Wins, losses and draws in replication-wise procedure.

and fj(b) = {f 1
j (b), f

2
j (b), . . . , f

N
j (b)} are the values for objective j obtained

by solutions a and b fromN replications. In replication k, {f k1 (a), fk2 (a), . . . ,
fkn(a)} is compared to {fk1 (b), fk2 (b), . . . , fkn(b)} to determine the Pareto-
dominance between a and b in this replication. Three possible outcomes
from the comparison are (1) win for a if a dominates b, (2) loss for a if b
dominates a, or (3) draw otherwise. The proportions of win (pw), lose (pl),
and draw (pd) over N replications is then recorded. Figure 5.3 gives an
example to show how pw, pl and pd are calculated in the case with two
objectives and N = 5. The outcomes here form a multinominal distribu-
tion since the proportions or probabilities for all outcomes always sum to
one. In a multinominal distribution, the (1 − α)% confidence interval of
the difference in the probability of win and lose (pw − pl) can be calculated
as follows:

(pw − pl)± zα/2
√
var(pw − pl) (5.1)
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where

var(pw − pl) = var(pw) + var(pl)− (var(pw + pl)− var(pw)− var(pl))
= 2var(pw) + 2var(pl)− var(pw + pl)

var(pw) =
pw(1− pw)

N

var(pl) =
pl(1− pl)

N

var(pw + pl) =
(pw + pl)(1− pw − pl)

N

The confidence interval obtained by the equation (5.1) can be used to
determine whether one solution significantly dominates the other. If the
lower bound of the confidence interval is positive, solution a significantly
dominates solution b. If the upper bound of the confidence interval is neg-
ative, solution b significantly dominates solution a. Otherwise, there is no
significant dominance between the two solutions.

There are some key differences between these two procedures. While
the objective-wise procedure focuses more on the magnitude of the differ-
ence between average objectives obtained by the two methods, the replication-
wise procedure only cares about the Pareto dominance regardless of the
difference between the obtained objective values in each replication. If
the variances of the objectives obtained from the simulation are high, the
replication-wise procedure may not accurately determine the statistical
Pareto dominance between two solutions. For example, when pw and pl

are very close, it is very likely the replication-wise procedure will conclude
that there is no dominance between the two solutions. However, it is intu-
itively not true if there are some “big” wins (there are large difference be-
tween pairs of objective values fkj (a) and fkj (b) for some j ∈ {1, 2, . . . , n})
for a solution in some replications. The advantage of the replication-wise
procedure is that one statistical significance test needs to be performed
as compared to multiple tests (which make the procedure more compli-
cated) in the objective-wise procedure. In Section 5.2.2, we will apply both
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procedures to determine the statistical Pareto-dominance between evolved
dispatching rules and the dispatching rules reported in the literature.

5.2 Results

Thirty independent runs of the proposed MO-GPHH method are performed
and the non-dominated evolved rules from the evolved Pareto front Pe are
recorded. We perform a post-processing step to extract the Pareto front P
from Pe for each testing scenario based on the average values of five ob-
jectives in that scenario. The performance of the evolved rules in P will
be presented in this section. We first examine the quality of these rules for
each single objective. Then, we show the Pareto dominance of the evolved
dispatching rules as compared to the dispatching rules reported in the lit-
erature.

5.2.1 Single Objective

Even though our target is to solve the MO-DJSS problems, it is impor-
tant to know whether the evolved rules can provide satisfactory results
for each single objective. This is also a good opportunity to make a proper
comparison of the evolved dispatching rules from a multi-objective GP
method and the existing rules which are usually designed for a specific ob-
jective. Figures 5.4–5.7 show the performance of the evolved rules for each
objective under different shop conditions. For each GP run, the evolved
rule within P that performs best on the objective O (O can be F ,Fmax, %T,
T, or Tmax) is denoted as R∗

O. The left box-plot in each plot in Figures 5.4–
5.7 represents the average values of the objective O obtained by R∗

O from
the 30 GP runs. The right box-plot shows the corresponding values ob-
tained by the top five rules for the objective O among the 31 existing rules
shown in Table 5.3.

A quick observation of Figures 5.4–5.7 shows that the proposed MO-
GPHH method can effectively find rules that are better than, or as com-
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Figure 5.4: Performance of evolved dispatching rules (processing times
from [1,49] and utilisation of 85%).

petitive as, the best existing dispatching rules for each objective under
different shop conditions. The evolved rule R∗

O can dominate the exist-
ing rules regarding F, Fmax, %T, and T. For Tmax, the proposed MO-GPHH
can find the rules that dominate the majority of the existing rules and the
obtained R∗

O from some GP runs can also dominate the best existing rule.
This suggests that it is totally possible to evolve a superior rule for each
single objective by the proposed MO-GPHH. However there are objectives
that are more difficult to minimise, e.g., Tmax in this case. Given that we try
to evolve rules to minimise five objectives simultaneously in the general
case, the results obtained here for single objective are very competitive.

Further statistical tests are also performed here to confirm the quality
of the evolved rules. For a specific objectiveO and shop condition 〈m, u, c〉,
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Figure 5.5: Performance of evolved dispatching rules (processing times
from [1,49] and utilisation of 95%).

we perform statistical analysis of the R∗
O rule from each GP run and the

best five dispatching rules in the literature (based on the average values
of the corresponding objective) using the one-way ANOVA and Duncan’s
multiple range tests [128] with α = 0.01. The summary of all statistical
tests is shown in Table 5.4. For each shop condition, the first row shows
the number of times the proposed MO-GPHH method is able is find the
R∗

O that is significantly better than the best existing rule for minimising
O, which is shown in the second row. In general, the results here are
similar to those shown in Figures 5.4–5.7. It is clear that the MO-GPHH
method can almost always find a superior rule for minimising F while
2PT+WINQ+NPT is the best existing rule. These observations are consis-
tent with those in [78] and [81]. Similar to [78], when using GP to evolve
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Figure 5.6: Performance of evolved dispatching rules (processing times
from [1,99] and utilisation of 85%).

rules for minimising F, the evolved rules can easily beat 2PT+WINQ+NPT
across different simulation scenarios. For Fmax, the evolved rules also
dominate the best rule, i.e., SPT+PW+FDD in this case, in the majority
of GP runs. It is interesting to note that the 2PT+WINQ+NPT rule and
SPT+PW+FDD rule are always the best existing rules for the two objec-
tives (F and Fmax) under all shop conditions. This suggests that the shop
condition does not really have a large impact on the performance of the
rules. However, the complexity of the objective may make the design of
an effective rule more difficult.

The due date based performance measures such as %T, T, and Tmax
are more sensitive to the shop condition since the best existing rules are
different under different shop conditions. %T is an easy objective as it
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Figure 5.7: Performance of evolved dispatching rules (processing times
from [1,99] and utilisation of 95%).

does not take into account the magnitude in which the job misses the due
date. Therefore, MO-GPHH is able to find superior rules for this objective
in almost all the scenarios. The number of superior evolved rules is not
large only in the scenarios with large allowance factor (c = 8) and low
utilisations (85%). The reason is that the number of tardy jobs is very low
(near zero as seen in Figures 5.4–5.7) when due dates are too loose and the
shop is not very busy. It is noted that many other existing rules (besides
Slack/OPN) can also achieve near zero %T in this case. Therefore, it is
very difficult to detect superior evolved rules here. In other cases, the dif-
ferences between the evolved rules and existing rules for minimising %T
are very clear. A similar conclusion can also be applied to T. Perhaps, Tmax
is the most difficult objective among the five objectives that we consider in
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Table 5.4: Performance of evolved rules under different shop conditions

F Fmax %T T Tmax

〈25, 85, 4〉
* 30/30 30/30 30/30 30/30 26/30

** 2PT+WINQ+NPT SPT+PW+FDD MOD COVERT PT+WINQ+NPT+WSL

〈25, 85, 6〉
* 30/30 30/30 30/30 29/30 29/30

** 2PT+WINQ+NPT SPT+PW+FDD RR RR Slack/OPN

〈25, 85, 8〉
* 30/30 30/30 25/30 17/30 18/30

** 2PT+WINQ+NPT SPT+PW+FDD Slack/OPN Slack/OPN Slack/OPN

〈25, 95, 4〉
* 30/30 29/30 30/30 30/30 30/30

** 2PT+WINQ+NPT SPT+PW+FDD LWKR+SPT 2PT+WINQ+NPT PT+WINQ+SL

〈25, 95, 6〉
* 30/30 29/30 30/30 30/30 26/30

** 2PT+WINQ+NPT SPT+PW+FDD LWKR+SPT RR PT+WINQ+NPT+WSL

〈25, 95, 8〉
* 30/30 30/30 30/30 30/30 22/30

** 2PT+WINQ+NPT SPT+PW+FDD LWKR+SPT RR PT+WINQ+NPT+WSL

〈50, 85, 4〉
* 30/30 29/30 30/30 30/30 28/30

** 2PT+WINQ+NPT SPT+PW+FDD MOD COVERT PT+WINQ+NPT+WSL

〈50, 85, 6〉
* 30/30 29/30 30/30 29/30 29/30

** 2PT+WINQ+NPT SPT+PW+FDD RR RR PT+WINQ+NPT+WSL

〈50, 85, 8〉
* 30/30 30/30 24/30 10/30 8/30

** 2PT+WINQ+NPT SPT+PW+FDD Slack/OPN Slack/OPN Slack/OPN

〈50, 95, 4〉
* 30/30 30/30 30/30 30/30 30/30

** 2PT+WINQ+NPT SPT+PW+FDD LWKR+SPT 2PT+WINQ+NPT PT+WINQ+NPT+WSL

〈50, 95, 6〉
* 30/30 29/30 30/30 30/30 25/30

** 2PT+WINQ+NPT SPT+PW+FDD LWKR+SPT RR PT+WINQ+NPT+WSL

〈50, 95, 8〉
* 30/30 29/30 30/30 30/30 24/30

** 2PT+WINQ+NPT SPT+PW+FDD LWKR+SPT RR PT+WINQ+NPT+WSL

this study since it is hard to minimise and also quite sensitive to the shop
condition. Even though our MO-GPHH method can find superior rules
in most runs overall, the number of superior rules is usually lower than
those for other objectives.

In general, the experimental results show that the proposed MO-GPHH
can effectively find the good rules for each specific objective we consider
in this work. It is obvious that the existing rules that are supposed to be
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the best for an objective can also be outperformed by the evolved rules.
Since we evolved the Pareto front of non-dominated rules for five objec-
tives with a modest population of 200 individuals, the method may not al-
ways find the superior rules for some hard objectives. However, as shown
in Table 5.4, because the shop condition can affect the performance of dis-
patching rules and their relative performance, the rules that are superior
under one shop condition may not be the superior one under the other
shop conditions. Therefore, evolving a set of non-dominated rules in our
method is actually more beneficial than evolving a single rule (either for
single objective in [78] or aggregate objective of multiple objective in [181])
since it can provide potential rules to deal with different shop conditions.

5.2.2 Multiple Objectives

The comparison above has shown that the proposed MO-GPHH method
can simultaneously evolve superior rules for each specific objective. How-
ever, these superior performances come with some trade-offs on other ob-
jectives. Previous studies have shown that there is no dispatching rule
that can minimise all objectives. Therefore, dispatching rules in the liter-
ature are designed for minimising a specific objective only. Although it is
true that these rules can effectively minimise the objective that it focuses
on, it usually deteriorates other objectives significantly. For example, the
2PT+WINQ+NPT rule can successfully reduce the average flowtime but it
performs badly on almost all other objectives. Since the existence of multi-
ple conflicting objectives is a natural requirement in real world scheduling
applications, it is crucial to include this issue into the design process of dis-
patching rules as well. In this part, we will examine the Pareto-dominance
of the evolved rules against other dispatching rules in the literature.

For each MO-GPHH run, the evolved rules in the Pareto front P are
compared to the set D of 31 benchmark dispatching rules in from Table
5.3. For each shop condition, we will employ the objective-wise (OBJW)
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and replications-wise (REPW) procedures discussed in Section 5.1.5 to de-
termine the statistical Pareto dominance between each pair (Ri,Bj) for all
Ri ∈ P and Bj ∈ D. Therefore, there are |P| × |D| comparisons in total
for each MO-GPHH run and each statistical procedure. Both OBJW and
REPW procedures will be performed with α = 0.01. In the OBJW proce-
dure, we use the Bonferroni method [128] to adjust the value of αt = α/n in
each z-test (for each objective). From this point forward, we use dominate
or dominance when mentioning about the statistical Pareto-dominance, un-
less otherwise indicated. After all the comparisons in each MO-GPHH
run were done, an evolved dispatching rule Ri is classified into three cat-
egories:

1. Non-dominated if there is no dominance betweenRi and Bj for
∀Bj ∈ D

2. Dominating if Ri is not dominated by any Bj ∈ D and ∃Bj ∈ D such
thatRi dominates Bj

3. Dominated if ∃Bj ∈ D such that Ri is dominated by Bj

The proportions of evolved rules in the three categories for each P
is determined and the average proportions from 30 MO-GPHH runs are
shown in Figure 5.8. The triplets in the figure indicate the shop conditions
as explained in the previous section. It is clear that the proposed MO-
GPHH method can always find rules that can dominate rules reported
in the literature across all objectives. In the worst cases 〈25, 95, 4〉 and
〈50, 95, 4〉, there are still about 20% of the evolved rules that are dominat-
ing rules. The number of dominated evolved rules is also very low and the
highest proportions (about 10%) of dominated rules are in 〈25, 95, 8〉 and
〈50, 95, 8〉. There are also some interesting patterns in Figure 5.8. Different
from our comparison for single objective where there are fewer superior
rules found when the allowance factor increases, it is easy to see that the
number of non-dominated rules decreases and the number of dominating
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Figure 5.8: Average Pareto dominance proportion of evolved dispatching
rules.

rules increases when the allowance factor increases from 4 to 8. This sug-
gests that even when the MO-GPHH method cannot find a superior rule
for a specific objective, it can easily find rules that can perform as good as
the best existing rule on that objective while significantly improving other
objectives. Another interesting pattern in Figure 5.8 is that the number
of dominated rules decreases when the allowance factor increases with
the shop utilisation of 85%. However, a reverse trend is found with the
utilisation of 95% when the number of dominated rules increases when
the allowance factor increases. For the cases with utilisation of 85%, the
higher allowance made the DJSS problems easier, at least for the due date
based performance measures. Therefore, it is difficult for existing rules to
dominate the evolved dispatching rules. In the case with utilisation of 95%
and low allowance factor, it is very difficult to make a good sequencing de-
cision to satisfy multiple objectives and to find a rule that is superior on
all objectives. For that reason, the number of dominating and dominated
rules are relatively small compared to the number of non-dominated rules.
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Figure 5.9: Pareto dominance proportions of evolved rules.

When the utilisation is 95% and the allowance factor is high, the number of
dominated rules increases because these shop conditions (very busy shop
and loose due dates) are quite different from the shop conditions used in
the training stage.

It is also noted that the results from OBJW and REPW in Figure 5.8 are
very consistent. The REPW procedure results in slightly more dominating
rules (fewer non-dominated rules) as compared to the OBJW procedure.
Perhaps, this is because the OBJW procedure with the Bonferroni adjust-
ment method is quite conservative, which makes the OBJW procedure
more difficult to detect significant differences between two rules. How-
ever, the differences between the two procedures in our application is very
small. Therefore, both OBJW and REPW are suitable procedures to anal-
yse the results from our experiments. A more detailed Pareto dominance
of evolved rules is shown in Figure 5.9. In this figure, the box-plots rep-
resent the proportions from the OBJW procedure of non-dominated (ND),
dominating (D) and dominated (d) from each run of MO-GPHH. This fig-
ure shows that the proposed MO-GPHH is quite stable since the obtained
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Figure 5.10: NDER for each existing dispatching rules (processing times
from [1,49] and utilisation of 85%).

dominance proportions have low variances. Moreover, the proportions of
non-dominated and dominating rules are always larger than that of dom-
inated rules. In general, these results suggest that the evolved dispatching
rules are significantly better or at least very competitive when compared
to the existing dispatching rules.

Through all the comparisons, we also count the number of dominat-
ing evolved rules (NDER) in each MO-GPHH run that dominate a specific
rule Bj . These values can be used as an indicator for the competitiveness
of the existing dispatching rules when multiple objectives are considered.
The values of NDER for each rule Bj shown in Table 5.3 under different
shop conditions from 30 MO-GPHH runs are shown in Figures 5.10–5.13.
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Figure 5.11: NDER for each existing dispatching rules (processing times
from [1,49] and utilisation of 95%).

In these figures, the rules are arranged from left to right in the order of de-
creasing values of the average NDER. It is easy for the MO-GPHH method
to evolve rules that dominate the simple rules such as LPT, MWKR, FIFO,
etc. It is noted that most rules with low values of NDER are the ones
which are designed for minimising due date based performance measures
and the ones that achieve the best performance for each objective as shown
back in Table 5.4. Since the MO-GPHH method can almost always find su-
perior rules for minimising F and Fmax, the best existing rules for these two
objectives, i.e., 2PT+WINQ+NPT and SPT+PW+FDD, are also easily dom-
inated by the evolved rules (dominating evolved rule for these two rules
can be found in all MO-GPHH runs). The most competitive existing rules
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Figure 5.12: NDER for each existing dispatching rules (processing times
from [1,99] and utilisation of 85%).

are actually the ones that give reasonably good performance across all ob-
jectives such as OPFSLK/PT, which is not the best rule for any particular
objective. PT+WINQ+NPT+WSL and PT+WINQ+SL are the most com-
petitive rules overall (with low NDER in most simulation scenarios) and
the MO-GPHH method cannot find rules that dominate these two rules in
some runs.

Although a lot of efforts have been made in the literature to improve
the competitiveness of dispatching rules, it is clear that the search space
of potential dispatching rules is very large and there are still many highly
competitive rules that have not been explored, especially when different
multiple conflicting objectives are simultaneously considered. Manually



5.2. RESULTS 149

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o o

o

o

oo

o

o

o

o

o

<50,95,4>

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o o

o

o

oo

o

o

o

o

o

<50,95,4>

LPT
MWKR

COVERT
NPT

MOPNR
LIFO

ATC
AVPRO

MOD
LWKR

SPT+PW SPT
FIFO PW

Slack/OPN

LWKR+SPT RR CR

PT+WINQ

2PT+WINQ+NPT

OPFSLK/PT
EDD

WINQ
Slack SL

FDD

SPT+PW+FDD

CR+SPT

Slack/RPT+SPT

PT+WINQ+NPT+WSL

PT+WINQ+SL

0
20

40
60

80
10

0

o

oo

o

o

o o o
o

o

o

o

o

o

o

o

o

o

o

o o

o o

o
o o o

<50,95,6>

o

oo

o

o

o o o
o

o

o

o

o

o

o

o

o

o

o

o o

o o

o
o o o

<50,95,6>

LPT
MWKR

MOPNR

COVERT
NPT

LIFO
AVPRO ATC

LWKR
MOD

SPT+PW SPT

LWKR+SPT
FIFO PW

Slack/OPN

PT+WINQ CR

2PT+WINQ+NPT
WINQ RR

OPFSLK/PT

CR+SPT

Slack/RPT+SPT
EDD

Slack SL
FDD

SPT+PW+FDD

PT+WINQ+NPT+WSL

PT+WINQ+SL

0
50

10
0

15
0

o

o

o
o o

o

o

o o

o o

o

<50,95,8>

o

o

o
o o

o

o

o o

o o

o

<50,95,8>

LPT
MWKR

MOPNR
NPT

AVPRO
LIFO

ATC
MOD

LWKR

SPT+PW SPT

COVERT

LWKR+SPT
FIFO PW

PT+WINQ
WINQ

2PT+WINQ+NPT

Slack/OPN

CR+SPT

Slack/RPT+SPT CR
EDD

Slack

OPFSLK/PT SL
FDD

SPT+PW+FDD RR

PT+WINQ+SL

PT+WINQ+NPT+WSL

0
50

10
0

15
0

Figure 5.13: NDER for each existing dispatching rules (processing times
from [1,99] and utilisation of 95%).

exploring this search space seems to be an impossible task. For that rea-
son, there is a need for automatic design methods such as the MO-GPHH
proposed in this work. The extensive experimental results shown here
have convincingly confirmed the effectiveness of the proposed MO-GPHH
method for evolving dispatching rules for DJSS problems. It is totally pos-
sible for the proposed method to evolve rules that are significantly better
than rules reported in the literature, not only on a specific objective but
also on different objectives of interest.
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5.3 Further Analysis

The previous section has shown the performance of the evolved rules
when single objective and multiple objectives are considered. In this sec-
tion, we will provide more insights on the distribution and robustness of
the evolved rules on the obtained Pareto front. Some examples of evolved
rules are also shown here to demonstrate their robustness as well as how
the evolved rules are more effective as compared to the existing rules.

5.3.1 Evolved Pareto front

The comparison results have shown that the proposed MO-GPHH method
can evolve very competitive rules. However, we have not fully assessed
the advantages of the proposed MO-GPHH methods, more specifically the
advantages of the evolved Pareto front of non-dominated evolved rules. In
Figure 5.14, we show the aggregate Pareto front including the non-dominated
evolved rules extracted from Pareto fronts generated by all MO-GPHH
runs (based on the traditional Pareto dominance concept) in the scenario
with the shop condition 〈25, 85, 4〉. This figure is a scatter plot matrix
which contains all the pairwise scatter plots of the five objectives (the two
scatter plots which are symmetric with respect to the diagonal are similar
except that the two axes are interchanged). The objective values obtained
by 31 existing rules are also plotted in this figure (as +).

The first observation is that the Pareto front can cover a much wider
range of potential non-dominated rules compared to rules that have been
discovered in the literature. The figure not only shows that the evolved
rules can dominate the existing rules but the Pareto front of evolved rules
also helps with understanding better about the possible trade-offs in this
scenario. For example, it can be seen that the percentage of tardy jobs %T
can be substantially reduced with only minor deterioration on other ob-
jectives. Obviously, this insight cannot be obtained with the available dis-
patching rules since these rules only suggest that other objectives will be
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Figure 5.14: Distribution of rules on the evolved Pareto front for the sce-
nario 〈25, 85, 4〉.

deteriorated significantly when we try to reduce %T below 20%. However,
we can see from the Pareto front that it is possible to reduce %T further to
10% without major deteriorations in other objectives. In fact, F and T will
not be affected when we try to reduce %T to a level above 10%. When
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we try to reduce %T below 10%, Fmax and Tmax will be greatly deterio-
rated. In this scenario, we also see that there is a strong correlation be-
tween Fmax and Tmax when the values are high and the trade-offs between
these two objectives are only obvious when they reach their lowest values.
This makes sense since high values of Fmax and Tmax are caused by some
extreme cases. Thus, as long as these extreme cases are handled well, both
Fmax and Tmax can also be reduced. This observation also suggests that
focusing on one of them should be enough if these two objectives are not
very important.

This visualisation shows that decision makers can benefit greatly from
the Pareto front found by the proposed MO-GPHH method. For DJSS
problems, the ability to understand all possible trade-offs is very impor-
tant since many aspects need to be considered when a decision needs to be
made. Without the knowledge from these trade-offs, the decisions will be
too extreme (only focus on a specific objective) and they can be practically
unreasonable sometimes (e.g. double the maximum tardiness just for re-
ducing %T by 1%). Moreover, the decision makers do not need to decide
their preferences on the objectives before the design process, which could
be quite subjective in most cases.

5.3.2 Robustness of the evolved dispatching rules

It has been shown that the evolved Pareto fronts contain very competitive
rules. In this section, we will investigate the robustness of the evolved
rules, which is their ability to maintain their performance across different
simulation scenarios. In the single objective problem, the robustness of the
evolved rules can be easily examined by measuring and comparing the
performance of the rules on different scenarios. However, the assessment
of the robustness of the evolved rules are not trivial in the case of multi-
objective problems because the robustness of rules depends not only on
the values of all the objectives but also on the Pareto dominance relations
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of the rules. Unfortunately, there has been no standard method to mea-
sure the robustness of the evolved rules for the multi-objective problems.
Therefore, we propose a method to help roughly estimate the robustness
of the evolved rules. In this work, the robustness of a rule Ri will be cal-
culated as follows:

robustnessi = 1−
∑

s∈SHamming Distance(domis, dom
∗
is)

|S| × |B| (5.2)

where domis = {dis1, . . . , disj, . . . , dis|B|} is a binary array which stores the
Pareto dominance between Ri and each rule Bj in the set B of reference
rules. In a simulation scenario s ∈ S (12 test scenarios in our work), disj
is assigned 1 when Ri statistically dominates Bj , and 0 otherwise. Here,
we include in B ten benchmark rules that are most competitive in Fig-
ure 5.10 and Figure 5.11 (FDD, Slack/OPN, OPFSLK/PT, SPT+PW+FDD,
PT+WINQ+NPT+WSL, PT+WINQ+SL, RR, 2PT+WINQ+NPT, COVERT,
and SL). Meanwhile, dom∗

is is also a binary array which contains the most
frequent value of disj across all s ∈ S. The second term in equation (5.2)
measures the average Hamming distance per dimension between domis

and dom∗
is. From this calculation, if the Pareto-dominance relations be-

tween Ri and each rule Bj are consistent across all s ∈ S, this term will be
zero and the robustness is one. In the worst case when the Pareto domi-
nance relations are greatly different for each scenario s, the second term in
equation (5.2) will approach 1 and the robustness will be near zero.

A histogram of robustness values of all evolved rules obtained by 30
MO-GPHH runs is shown in Figure 5.15. The density in this figure is
the number of rules with robustness within the corresponding range (bin)
of the histogram. It is clear that the distribution of robustness values is
skewed to the right, which indicates that the evolved rules are reason-
ably robust. The majority of the rules have robustness values from 0.8 to
0.95 and there is only a small proportion of evolved rules with small ro-
bustness. This result is consistent with our observation in Section 5.2.2
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Figure 5.15: Robustness of the evolved rules.

that a small number of evolved rules that do not perform well on unseen
scenarios can be dominated by the benchmark rules, in which case their
Pareto-dominance relations are changed.

5.3.3 Examples of evolved dispatching rules

This section shows examples of the evolved dispatching rules. Since many
rules have been evolved, it is impossible to list all of these rules. We only
show here ten typical rules which can achieve balanced performance on
all objectives that we considered in this work. These ten rules are shown
in Table 5.5 along with their average objective values obtained from the
training scenarios. In general, the example rules shown in the table are
quite long and include different terminals from Table 5.1. This suggests
that different information needs to be considered in order to make good



5.4. CHAPTER SUMMARY 155

sequencing decisions that can favour all objectives. Therefore, it seems
to be infeasible to design such rules manually, especially when different
trade-offs have to be taken into account. Although the rules here are quite
long, they are mainly synthesised based on very basic mathematical oper-
ations, and therefore it is possible to simplify these rules or to understand
how they can effectively solve the DJSS problems.

The performance of the example rules and some benchmark rules on
two unseen simulation scenarios 〈50, 95, 4〉 and 〈50, 95, 6〉 are shown in Ta-
ble 5.6. It is easy to realise that most benchmark rules are dominated,
regarding all objectives, by some example evolved rules. For instance, so-
phisticated rules such as RR and COVERT are greatly dominated by rules
#3 and #4 in the two testing simulation scenarios. PT+WINQ+SL is the
only benchmark rule that is not dominated by our example rules, based
on the average objective values shown in the table. This is not surprising
since PT+WINQ+SL is one of the most competitive rules, but there are still
several evolved rules that can dominate PT+WINQ+SL as shown in Fig-
ures 5.10–5.13. Rules #1 and #7 are two rules with results quite similar to
those from PT+WINQ+SL and only slightly worse than PT+WINQ+SL in
some objectives. In 〈50, 95, 4〉, rule #1 is only worse than PT+WINQ+SL
for T. However, it is noted that rule #1 can achieve much better %T and
Tmax.

5.4 Chapter Summary

Most of the dispatching rules for DJSS problems proposed in the literature
are designed for minimising a specific objective. However, the choice of
a suitable dispatching rule has to depend on the performance of the rule
across multiple conflicting objectives. In this work, we show how we can
use GP to handle this issue. The proposed MO-GPHH method aims at
exploring the Pareto front of evolved rules which can be used to support
the decision making process. Extensive experiments have been performed
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Table 5.5: Some typical examples of evolved rules

Rule #1 – Objectives(757.16, 3520.19, 0.17, 164.52, 1811.77)

(((IF(SJ, RJ, max(PR, WT)) + (max(RO, RT) + (RJ/IF(SJ, PR, rJ)))) − WINQ) + (((max(RO, RT)+

IF(SJ, IF(SJ, PR, rJ), rJ)) + (−1× (IF(SJ, PR, rJ))+ IF(SJ, DD/PR, rJ))) − min(SJ, (WINQ × min(PR, WINQ)))))

−Abs((rJ − RT) + min(min(SJ, IF(SJ, PR, rJ)), (rJ − RT)))

Rule #2 – Objectives(828.45, 2322.88, 0.19, 165.04, 1931.40)

(−rJ − SJ+ max(RO, RT) + (((((RJ/PR) + max(RO, RT)) + max(PR, max(RO, RT))) + (−PR − RT)) − 0.8968051))

−Abs(IF(min(SJ, WINQ), WINQ, DD/PR) + Abs(min(SJ, WINQ)))

Rule #3 – Objectives(720.28, 4383.52, 0.09, 105.67, 2401.59)

((max(RM, (Abs(min(WT, SJ)) × (RT× PR)))/PR)/Abs(PR + RO))/Abs(max(((PR × max(RT, max(APR, SJ))) × (PR

+WINQ)), ((Abs(PR) × (RT× PR)) × DD)%Abs(min(WT, (SJ/APR)))))

Rule #4 – Objectives(716.52, 3842.36, 0.11, 82.67, 1714.88)

((max((PR × APR), (Abs(min(WT, SJ)) × WINQ))/PR)%WINQ)/Abs(max(((PR × PR) × (max(Abs(RT), max(APR, SJ))

+min(WT, (SJ/APR)))), ((PR × WINQ) × DD)%Abs(min(WT, (SJ/APR)))))

Rule #5 – Objectives(708.05, 4141.63, 0.13, 109.08, 1977.63)

(((((RT/rJ) + rJ)/max(min(DD, SJ), RT)) − min(−(IF(SJ, RJ, NPR)/(SJ + WINQ)), DD)) + (−WINQ + (−RO−
min(min(SJ, WINQ), rJ)))) + ((max(SJ, rJ) + ((IF(SJ, RJ,−RO)/PR) − (rJ+ max((WINQ + PR), 0.371)))) − NPR)

Rule #6 – Objectives(687.85, 5708.02, 0.16, 134.13, 4046.06)

Abs((((RJ/SJ)/PR)/PR)/max(APR, WINQ)) × Abs(((((SJ/APR) − SJ)/min(RT, SJ))

×min(RT, SJ))/min(((RJ/SJ) × (RJ/SJ)), RT))

Rule #7 – Objectives(798.58, 3383.23, 0.15, 73.83, 602.15)

((SJ/APR) + (−(min(min(RT, PR), rJ) − (min(PR, SJ) − min(WINQ, SJ))) − min(RT, SJ))) + ((RT + (((RJ/SJ)/PR)

×min(RT, SJ))) + (WINQ − max(APR, WINQ)))

Rule #8 – Objectives(697.64, 6306.54, 0.06, 114.89, 4488.11)

Abs((((RJ/SJ)/PR)/PR)/min((min(PR, (RJ/SJ)) − (SJ/rJ)), (DD − WINQ))) × Abs(((PR/(min(PR, RM) + WINQ))

×min(RT, SJ))/min((RT × min(PR, (RJ/SJ))), RT))

Rule #9 – Objectives(845.94, 2261.88, 0.27, 150.63, 1074.42)

((((−rJ − (−rJ%(SJ − RT))) − (WINQ + (0.559 + PR))) − max(Abs(−RT + rJ),−rJ)) − ((SJ − max(Abs(SJ

−RT), SJ)) − (−rJ/min((RM + WT), DD)))) + RT− 1− SJ+ DD− APR× PR− WINQ− 3× (0.559+ PR)

Rule #10 – Objectives(737.34, 3790.15, 0.13, 84.86, 1118.69)

max((WT − 2× SJ+ 0.563716 − APR× PR), ((Abs(IF(PR + SJ, RM/PR, 2× SJ− WT))

/max(PR + 0.024362229, max(SJ, RT)))/Abs(max(−APR + WINQ, APR)/(RM/PR))))

∗IF(a, b, c) will return b if a ≥ 0; otherwise it will return c.
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Table 5.6: Performance of example evolved rules in 〈50, 95, 4〉

〈50,95,4〉 F Fmax %T T Tmax

PT+WINQ+SL 2991.03 7551.84 88.47 1431.15 4491.71

Slack/OPN 4532.45 13977.43 97.45 2930.66 11409.89

RR 2943.40 15050.27 85.46 1374.69 12255.53

COVERT 2744.83 37158.13 77.18 1166.01 34645.73

2PT+WINQ+NPT 2355.21 31321.28 45.65 1010.55 28785.17

PT+WINQ+NPT+WSL 3356.03 7695.30 94.06 1771.03 4481.94

SPT+PW+FDD 3710.73 6769.10 96.94 2115.04 5268.29

OPFSLK/PT 3108.31 7648.78 91.88 1530.30 5909.04

FDD 3740.53 6810.86 96.98 2144.74 5322.64

SL 3638.32 7967.81 98.59 2038.43 4732.04

Rule #1 2933.19 7096.85 68.44 1446.81 4193.42

Rule #2 3381.54 6018.19 85.10 1812.70 5486.42

Rule #3 2548.54 9075.00 46.06 1126.13 6047.45

Rule #4 2472.12 9615.42 51.21 1018.41 6983.91

Rule #5 2527.99 8182.37 56.04 1081.19 5192.21

Rule #6 2229.99 13394.98 37.33 928.19 10625.92

Rule #7 3049.49 7492.19 90.03 1462.91 4406.31

Rule #8 2323.42 16446.96 24.61 1021.91 13515.90

Rule #9 3042.21 6800.97 86.39 1477.09 4645.73

Rule #10 2629.42 7945.21 63.78 1124.64 4772.82
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Table 5.7: Performance of example evolved rules in 〈50, 95, 6〉

〈50,95,6〉 F Fmax %T T Tmax

PT+WINQ+SL 2714.00 7982.00 61.49 657.95 3148.09

Slack/OPN 3941.20 12989.18 77.26 1581.59 8974.86

RR 2811.91 11882.35 53.49 611.18 7107.35

COVERT 2999.75 31445.59 56.98 676.51 27970.88

2PT+WINQ+NPT 2355.21 31321.28 26.12 701.61 27540.38

PT+WINQ+NPT+WSL 2932.42 8021.92 68.06 771.68 3037.79

SPT+PW+FDD 3710.73 6769.10 81.53 1421.97 5064.32

OPFSLK/PT 3108.31 7648.78 68.09 927.30 5441.89

FDD 3740.53 6810.86 82.00 1448.29 5118.74

SL 3524.23 8647.86 91.95 1163.81 3672.67

Rule #1 2768.33 8172.39 40.60 817.59 3702.13

Rule #2 3264.87 6243.41 57.39 1081.99 5428.79

Rule #3 2444.66 9914.98 26.03 576.57 5190.51

Rule #4 2419.77 9898.71 28.31 520.51 5564.72

Rule #5 2426.92 9221.52 34.36 585.90 4464.28

Rule #6 2213.12 14116.06 23.18 651.85 9846.80

Rule #7 2761.50 7893.13 51.89 588.13 3061.45

Rule #8 2280.87 17798.84 14.04 627.54 13237.53

Rule #9 2934.48 7009.52 60.37 798.31 3879.64

Rule #10 2487.80 9041.86 34.35 514.90 4150.00
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and the results show that the evolved Pareto front contains superior rules
as compared with rules reported in the literature when both single and
multiple objectives are . Moreover, it has been shown that the obtained
Pareto front can provide valuable insights on how trade-offs should be
made.

We have also discussed and implemented different analyses on the ex-
perimental results, which help us confirm the effectiveness of the evolved
dispatching rules. In these analyses, we focus on two issues. First, we try
to define a standard procedure in order to properly compare the perfor-
mance of rules within the multi-objective stochastic environments. Sec-
ond, we need to find a way to assess the robustness of the evolved rules
under different simulation scenarios. Although they are two very impor-
tant issues, there have been no existing guidelines on how they should be
done. In this work, we proposed different approaches to handle these is-
sues. Even though there are still some limitations with these approaches,
they can nevertheless be used as a good way to assess the performance of
rules in such a complicated problem. Certainly, these two issues can also
be interesting issues for future studies.

In this chapter, we have employed TWK to assign due dates to new ar-
riving jobs. While this due date assignment rule is easy to apply, it may not
incorporate effectively with the existing or evolved rules to achieve better
scheduling objectives. Therefore, it is important to design suitable due
date assignment rules to maximise the effectiveness of dispatching rules.
The next chapter will investigate new GP methods to evolve effective and
reusable due date assignment rules for job shop scheduling.
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Chapter 6

Evolving
Due Date Assignment Rules

A large number of studies on JSS have focused on sequencing decisions,
which determine the order in which waiting jobs are processed on a set
of machines in a manufacturing system. However, sequencing is only one
of several steps in the scheduling process [1]. One of the other impor-
tant activities in JSS is due date assignment (DDA), sometimes referred to
as estimation of job flowtimes (EJF). This activity arises when a manager
need to “promise” a delivery date to a customer. The objective of DDA is to
determine the due dates for arriving jobs by estimating the job flowtimes
(the time from the arrival until the completion of the job), and therefore
DDA strongly influences the delivery performance, i.e., the ability to meet
promised delivery dates, of a job shop [40].

Many due date assignment rules (DDARs) have been proposed in the
job shop literature. The traditional DDARs focus on exploiting the shop
and job information to make a good flowtime estimation. Most of the early
DDARs are based on linear combinations of different terms (variables) and
the coefficients of the rules are then determined based on simulation re-
sults. Regression has been used very often in order to help find the best
coefficients for the rules employed [160, 62, 168, 176, 94]. Since the early

161
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1990s, artificial intelligence and statistical methods have also been applied
to deal with DDA problems, e.g., gene expression programming [17], neu-
ral networks [174, 147], decision trees [144], regression trees [175], and a
regression based method with case-based tuning [176].

Even though experimental results with these DDARs are promising,
some limitations are still present. First, since a job can include several
operations which represent the processing steps of that job at particular
machines, the operation-based flowtime estimation (OFE) method [168],
which utilises the detailed job, shop and route information for operations
of jobs, can help improve the quality of the prediction. However, this OFE
method depends strongly on the determination of a large number of coeffi-
cients, which is not an easy task. Thus, there is a need to create a dynamic
OFE method similar to Dynamic Total Work Content (DTWK), Dynamic
Processing Plus Waiting (DPPW) [41], and ADRES [19] to overcome this
problem by replacing the coefficients with more general aggregate terms
(job characteristics and states of the system). Second, there are no studies
on the reusability of the DDARs in the JSS literature, so it is questionable
whether the rules can be applied when there are changes in the shop with-
out major revisions. Finally, various relevant factors need to be considered
in order to make a good estimation of flowtime, which makes the design
of a new DDAR a time-consuming and complicated task.

This chapter aims to develop a new approach that employs GP to evolve
reusable DDARs for job shop environments. We expect the evolved DDARs
to outperform the existing rules in terms of mean absolute percentage er-
ror and to be reusable for new (unseen) job shop simulation scenarios.
Two types of DDARs considered in this study are Aggregate Due date
Assignment Rules (ADDARs) and Operation-based Due date Assignment
Rules (ODDARs). The difference between these two rules is that ADDARs
employ the aggregate information from jobs, machines and the shop to
predict the due date while ODDARs indirectly predict the due date by
estimating the flowtime of each operation.
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The objectives for this chapter are:

1. Developing GP methods to automatically evolve reusable ADDARs
and ODDARs for the job shop environment.

2. Comparing the evolved DDARs obtained from the two GP methods
with existing DDARs.

3. Analysing the proposed GP methods and the evolved DDARs to
understand how these rules can estimate flowtime well, with good
reusability.

The rest of this chapter is organised as follows. The development and
descriptions of ADDAR and ODDAR are given in Section 6.1 and the ex-
perimental setting is presented in Section 6.2. The experimental results
and the comparison of DDARs are provided in Section 6.3. Analysis of the
proposed algorithm and evolved DDARs is presented in Section 6.4. Fur-
ther investigation into sophisticated dispatching rules is shown in Section
6.5.

6.1 GP for evolving DDARs

In this section, we describe two GP methods GP-ADDAR and GP-ODDAR
to evolve ADDARs and ODDARs, respectively. First, the representation
and evaluation scheme are discussed. Then, a fitness function is provided
to measure the performance of the evolved DDARs.

6.1.1 Representation

The purpose of the proposed GP-ADDAR and GP-ODDAR is to evolve
dynamic ADDARs and ODDARs that estimate job flowtimes (i.e. due
dates by using equation (2.1)) by employing information from jobs and the
shop similar to DTWK and DPPW. In this case, we use tree-based GP to
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create mathematical combinations of these pieces of information in each
GP individual. For this reason, the function set will consist of standard
mathematical operators +,−,×, and protected division %, along with a
conditional function If to allow GP to evolve sophisticated DDARs. The
protected division function % returns a value of 1 when division by 0 is
attempted. Function If includes three arguments and if the value from
the first argument is greater than or equal to zero, If will return the value
from the second argument; otherwise If will return the value from the
third argument. Since ADDARs and ODDARs need different types of in-
formation, GP-ADDAR and GP-ODDAR will use different terminal sets
as shown in Table 6.1. In this table, the first five terminals are the same for
the two proposed GP methods. The next eight terminals are variables that
characterise the state of operations/machines for GP-ODDAR and their
aggregate counterparts for GP-ADDAR. The last terminal of each method
provides extra information to estimate the flowtime. While SL provides
the information of previous arriving jobs, PEF is especially proposed in
this study to estimate the changes of the system through the period of
time the new job spends in the system (more details are given in Section
6.1.2). SOTR and SAPR are calculated based on the 20 previous jobs pro-
cessed at machine δ. On the other hand, SAR and SL are calculated based
on the arrivals of the last 100 jobs and 20 jobs respectively.

6.1.2 Evaluation

An example of how an individual in GP-ADDAR is evaluated is shown in
Figure 6.1(a). In this method, a GP individual represents a mathematical
function and the output of this function is the estimated flowtime f̂ of the
new job. The information used in this function is extracted from the new
job and machines in the shop.

The GP individual in GP-ODDAR aims at estimating the flowtime of
each operation of the new job. Therefore, instead of using the function
obtained from the GP individual to estimate job flowtime f̂ , the output of
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Table 6.1: Terminal sets for GP-ADDAR and GP-ODDAR (ψ is the new
job, φ is the considered operation in GP-ODDAR, and δ is the machine
that process will φ)

GP-ADDAR GP-ODDAR

N Number of jobs in the shop
SAR Sampled arrival rate
NO Number of operations of job ψ
M Number of machines
# Random number from 0 to 1

TAPR total average processing time of job
in queues of machines that ψ will
visit

APR average processing times of jobs in
the queue of the machine that pro-
cesses φ

TOT total processing time of ψ OT processing time of φ
TLOT average LOT for all machines that ψ

will visit
LOT time for δ to finish the leftover job

AOTR average OTR for all queues of ma-
chines that ψ will visit

OTR percentage of jobs in queues of δ that
require less processing time than OT

ASOTR average SOTR for all queues of ma-
chines that ψ will visit

SOTR percentage of sampled jobs pro-
cessed at δ that require less process-
ing time than OT

TQWL total QWL for all machines that ψ will
visit

QWL total processing time of jobs in the
queue of δ

TSAPR total SAPR for all machines that ψ
will visit

SAPR sampled average processing time of
jobs processed at δ

TRWL total RWL for all machines that ψ will
visit

RWL total processing time of jobs that
need to be processed at δ

SL sampled average number of opera-
tions of jobs

PEF partial estimated flowtime

this function is used to estimate the operation flowtime f̂o of each opera-
tion of the new job, starting from the first operation. When f̂o is obtained,
a condition is checked to see whether the operation being considered is the
last operation. If it is not the last operation of the new job, f̂o will be used
to update the partial estimated flowtime (PEF), which will also be used as
a terminal in the GP individual. So PEF here is a dynamic terminal. Then,
the GP individual is applied to estimate the flowtime for the next opera-
tion. In the case that the flowtime of the last operation has been estimated,
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Figure 6.1: DDAR evaluation scheme

f̂o will be added to the current PEF to obtain the final estimated flowtime
f̂ . The evaluation scheme for GP-ODDAR is shown in Figure 6.1(b) (not-
ing that only the tree in the figure is evolved by the GP). The use of PEF
(initially zero for the first operation) in the terminal set of GP-ODDAR also
provides DDARs a chance to predict the changes of the system, assuming
that the partial estimated flowtime is predicted well.

6.1.3 Fitness Function

As discussed in Section 2.2.3, the performance of a DDAR can be mea-
sured in many different ways, which indicate the delivery accuracy and
delivery reliability. In this study, we will use MAPE to measure the quality
of evolved DDARs because it is a good indicator for both delivery accu-
racy and delivery reliability. A discrete-event simulation model of a job
shop was implemented in order to evaluate the evolved DDARs. In this
model, the inter-arrival times of jobs, the processing times and route infor-
mation of jobs will follow some particular probability distributions (more
details are provided in Section 6.2.1). Upon the arrival of a job j, the DDAR
will be applied to estimate the flowtime f̂j of that job. The error ej of this
estimation is recorded when job j leaves the system and the errors of all
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recorded jobs will be used to calculate MAPE as shown in Table 2.3 (on page
2.3). Since our objective is to evolve reusable DDARs, the quality of the
evolved DDARs will be measured based on their performance on a num-
ber of simulation scenarios S = {S1,S2, . . . ,SK}, which represent different
shop characteristics. For a simulation scenario Sk, the quality of a DDAR
pi is indicated by MAPESk

pi
. The fitness value of pi is calculated as followed:

fitness(pi) =
1

K

K∑
k=1

MAPESk
pi

(6.1)

With this design, a smaller fitness(pi) indicates that the evolved DDAR pi

produces more accurate estimations of jobs across different scenarios.

6.1.4 Evolution of DDARs

The same GP method as shown in Figure 2.8 (page 50) is used to evolve
ADDARs and ODDARs. A variety of simulation scenarios will be em-
ployed in this algorithm to provide the evolved (trained) DDARs better
generality, but it should be noted that a large number of scenarios also in-
creases the computation time of the GP systems. The evolutionary process
will be terminated when the maximum generation is reached and the al-
gorithm will return the best found DDAR p∗. Also notice that GP-ADDAR
and GP-ODDAR use the same algorithm, but the terminals used by these
two methods are different since they have different focus (as mentioned in
Sections 6.1.1 and 6.1.2).

6.2 Experimental Setting

This section discusses the simulation environments in which the DDARs
are trained or evolved. Then, the details of the training and testing scenar-
ios are provided. Finally, the settings of the GP systems are given.
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6.2.1 Job Shop Simulation Environment

Simulation is the most popular method to evaluate the performance of a
DDAR in the JSS literature. Since our goal is to design reusable DDARs, a
general job shop would be more suitable than a specific shop. The follow-
ing factors characterise a job shop:

• Number of machines (F1)

• Utilisation (F2)

• Arrival process

• Distribution of processing times (F3)

• Distribution of number of operations (F4)

The number of machines will be the main factor that shows the scale of
the shop; this may also influence the complexity of the JSS decisions. Util-
isation, on the other hand, is the proportion of time a machine is busy. The
performance of the JSS decisions under different utilisation levels are of
interest in most research in the JSS literature. The arrival process, distribu-
tion of processing times and number of operations are factors that directly
influence the difficulty of JSS decisions.

In our experiments, we employ a symmetrical job shop model in which
each operation of a job has equal probability to be processed at any ma-
chine in the shop (a job visits each machine at most once). Therefore, ma-
chines in the shop expect to have the same level of congestion in long
simulation runs. This model has been used very often in the JSS litera-
ture [35, 41, 168, 108, 78]. This simulation model can be considered as an
extension of the simulation applied in Chapter 5 to further explore other
key factors in JSS such as number of machines, distributions of processing
time and distribution of number of operations. Based on the discussion
above, the scenarios for training and testing of DDARs are designed and
shown in Table 6.2.
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Table 6.2: Training and testing scenarios

Factor Training Testing

F1 4,6 4,5,6,10,20

F2 70%,80%,90% 60%,70%,80%,90%,95%

F3 Exponential Exponential, Erlang-2, Uniform

F4 missing missing, full

In these experiments, without loss of generality, the processing times
are randomly generated based on a specific distribution with mean equal
to 1 and the arrival of jobs will follow a Poisson process with the arrival
rates adjusted based on the utilisation level [162]. For the distribution of
number of operations, the missing setting is used to indicate that the num-
ber of operations will follow a discrete uniform distribution from 1 to the
number of machines. Meanwhile, the full setting indicates the case that
each job will have its number of operations equal to the number of ma-
chines in the shop. In each replication of a simulation scenario, we start
with an empty shop and the interval from the beginning of the simula-
tion until the arrival of the 1000th job is considered as the warm-up time
and the information collected from the next 5000 completed jobs (set C in
Section 2.2.3) is used to evaluate the performance of DDARs.

In the training stage of a particular GP run, since the simulation is very
time-consuming, we only perform one replication for each scenario. There
are (2×3×1×1) = 6 simulation scenarios used to evaluate the performance
of the evolved DDARs. For testing, the best DDAR p∗ obtained from a
run of GP is applied to (5 × 5 × 3 × 2) = 150 simulation scenarios and
30 simulation replications are performed for each scenario; therefore, we
need 150× 30 = 4500 simulation replications to test the performance of p∗.
The use of a large number of scenarios and replications in the testing stage
will help us confirm the quality and reusability of the evolved DDARs. For
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Table 6.3: Parameters of the proposed GP systems

Population size 1000 Crossover rate 80%
Mutation rate 15% Reproduction rate 5%
Generations 50 Maximum depth 10

the shop floor level, First-In-First-Out (FIFO) is used as the dispatching
rule to sequence jobs in queues of machines. By using FIFO, the earliest
job that joins the queue of the machine will be processed first. We adopt
FIFO in this study because it is one of the most popular dispatching rules
in the scheduling literature.

6.2.2 GP parameters

The GP system for evolving DDARs is developed based on the ECJ20 li-
brary [117]. The parameter settings of the GP system used in the rest of this
study are shown in Table 6.3. The initial GP population is created using
the ramped-half-and-half method [103]. Tournament selection is used to
select individuals for genetic operators. Normally, a tournament selection
size from 4 to 7 is used and we use a tournament size of 5 in this study in
order to maintain a balance between diversity and the convergence of the
proposed GP methods [103]. Parameters in Table 6.3 are similar to those in
other applications of GP [103]. Since the terminal set includes many differ-
ent terminals, the mutation rate is set to 15% to provide sufficient genetic
material through the evolution process of the proposed GP methods.

6.3 Results

A comparison of the best evolved DDARs with some existing DDARs is
provided to show the effectiveness of the evolved DDARs. Then, we com-
pare the performance of the two proposed GP methods.
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6.3.1 Comparison of evolved DDARs with existing DDARs

For each GP method, 30 independent runs are performed and the best
ADDARs and ODDARs obtained from each run are recorded and com-
pared with existing dynamic DDARs (DTWK, DPPW, and ADRES). Tables 6.4
and 6.5 show the comparison between evolved DDARs and other DDARs
on 150 testing scenarios. In these tables, 〈·, ·, ·〉 is the number of evolved
DDARs that are significantly better (by t-test with significance level of
0.05) than DTWK, DPPW, and ADRES, respectively. It is easy to see that the
evolved DDARs dominate other DDARs in most scenarios. These exper-
imental results indicate the effectiveness of the proposed GP methods for
evolving DDARs. It is also interesting to see that the evolved DDARs have
very good reusability since the evolved DDARs can provide superior per-
formance even on unseen scenarios (e.g. with full setting).

Among the five factors discussed in Section 6.2.1, the distribution of
processing times (F3) seems to have less impact on the reusability of the
evolved DDARs. The use of processing times drawn from an exponential
distribution provides a wide range of jobs that can also reflect the cases
when processing times follow other distributions. For some scenarios with
high utilisation level, full setting and large numbers of machines, the num-
ber of evolved DDARs that can beat DPPW is smaller, especially when the
processing times follow an Exponential or an Erlang-2 distribution. Most
evolved DDARs cannot show superior performance compared to DPPW on
these scenarios. This may be because DPPW is based on the steady state
performance of the system and can perform better in shops with less di-
verse jobs when the full setting is used and with high levels of utilisation.
Another reason is that the evolved DDARs have not been trained on these
extreme scenarios (this issue will be investigated in Section 6.4.2). In gen-
eral, it should be noted that the existing dynamic DDARs can only perform
well with less diverse jobs, which is not always the case for job shops in
real world applications. On the other hand, the evolved DDARs not only
show their superiority compared to the existing dynamic DDARs, but also
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Table 6.4: Comparing the evolved ADDAR with existing DDARs

Setting
missing full

%60 %70 %80 %90 %95 %60 %70 %80 %90 %95

Exponential

4 〈30, 30, 30〉 〈30, 0, 0〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 29, 30〉
5 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 0, 0〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 1, 30〉
6 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 29, 30〉 〈30, 0, 30〉
10 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 0〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 29, 30〉 〈30, 0, 30〉 〈30, 0, 30〉
20 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 1, 30〉 〈30, 1, 30〉 〈30, 0, 30〉 〈30, 0, 30〉

Erlang-2

4 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 0, 30〉
5 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 29, 30〉 〈30, 0, 30〉
6 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 1, 30〉 〈30, 0, 30〉
10 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 29, 30〉 〈30, 0, 30〉 〈30, 0, 30〉
20 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 29, 30〉 〈29, 1, 30〉 〈30, 0, 30〉 〈30, 0, 30〉

Uniform

4 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 0, 30〉 〈30, 0, 30〉
5 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 0, 30〉 〈30, 0, 30〉
6 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 0, 30〉 〈30, 0, 30〉
10 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 29, 30〉 〈29, 0, 30〉 〈29, 0, 30〉
20 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈29, 29, 30〉 〈29, 0, 30〉 〈29, 0, 30〉

Table 6.5: Comparing the evolved ODDAR with existing DDARs

Setting
missing full

%60 %70 %80 %90 %95 %60 %70 %80 %90 %95

Exponential

4 〈30, 30, 30〉 〈30, 0, 0〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 29, 30〉
5 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 0, 0〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 2, 30〉
6 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 29, 30〉 〈30, 0, 30〉
10 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 2〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 29, 30〉 〈30, 28, 30〉 〈30, 0, 30〉 〈30, 0, 30〉
20 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈29, 24, 30〉 〈30, 7, 30〉 〈30, 2, 30〉 〈30, 0, 30〉 〈30, 0, 29〉

Erlang-2

4 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 9, 30〉
5 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 4, 30〉
6 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 15, 30〉 〈30, 0, 30〉
10 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 29, 30〉 〈30, 4, 30〉 〈30, 0, 30〉
20 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈29, 25, 30〉 〈28, 25, 30〉 〈30, 7, 30〉 〈30, 0, 30〉 〈30, 0, 30〉

Uniform

4 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 12, 30〉 〈30, 11, 30〉
5 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 13, 30〉 〈30, 10, 30〉
6 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 12, 30〉 〈30, 5, 30〉
10 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈29, 29, 30〉 〈29, 29, 30〉 〈30, 29, 30〉 〈30, 10, 30〉 〈30, 2, 30〉
20 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈28, 26, 30〉 〈28, 26, 30〉 〈28, 25, 30〉 〈27, 9, 30〉 〈26, 0, 30〉

show good reusability, which makes them more robust when applied to
complicated job shops in real world situations.

6.3.2 GP-ADDAR vs. GP-ODDAR

Table 6.6 shows the p-values of t-tests of the average MAPESk
p∗ (from 30 sim-

ulation replications) over the testing scenarios between GP-ADDAR and
GP-ODDAR. In this table, the highlighted values indicate that GP-ADDAR
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is not significantly different from GP-ODDAR and other values show that
GP-ODDAR is significantly better than GP-ADDAR (with p-value smaller
than 0.05). The results show that GP-ODDAR is significantly better than
GP-ADDAR on most simulation scenarios, especially in the case where the
missing setting for the number of operations is used. In the case that the full
setting for the distribution of number of operations is used, GP-ODDAR
is also significantly better than GP-ADDAR in most cases except for the
scenarios with a high level of utilisation (e.g. 95%) and large numbers of
machines (e.g. 20). These results suggest that the aggregate information
of jobs used in ADDARs is usually sufficient for estimating the flowtime
of jobs when the shop is at a high congestion level and has a large number
of machines. Also, ODDARs may have difficulty estimating the operation
flowtimes of later operations of jobs with a large number of operations.
This observation, together with that observed in Section 6.3.1 for DPPW, in-
dicates the importance of aggregate information for flowtime estimation in
the cases of high utilisation levels, fewer diverse jobs and large numbers
of machines. It suggests that systematic incorporation of information be-
tween ADDAR and ODDAR could enhance the accuracy of the flowtime
estimation.

6.4 Analysis

The previous section has shown that the evolved DDARs can be used ef-
fectively to solve DDA problems in job shops. This section will futher
investigate key issues that can influence the performance as well as the
computational time of the proposed GP methods.

6.4.1 Number of simulation replications for training DDARs

The number of simulation replications is normally an important parameter
when we try to measure the performance of a stochastic system through
simulation. Even though large numbers of simulation replications are es-
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Table 6.6: GP-ADDAR vs. GP-ODDAR (p-values from t-tests)

Setting
missing full

%60 %70 %80 %90 %95 %60 %70 %80 %90 %95

Exponential

4 0.0002 0.0002 0.0002 0.0002 0.0006 0.0001 0.0001 0.0001 0.0002 0.0072

5 0.0002 0.0001 0.0001 0.0002 0.0015 0.0001 0.0001 0.0001 0.0004 0.0273

6 0.0001 0.0001 0.0001 0.0002 0.0007 0.0001 0.0001 0.0001 0.0016 0.0399

10 0.0001 0.0001 0.0001 0.0002 0.0725 0.0068 0.0034 0.0087 0.1891 0.8219

20 0.0020 0.0017 0.0012 0.0982 0.1201 0.1576 0.3126 0.7293 0.4448 0.0567

Erlang-2

4 0.0002 0.0002 0.0002 0.0002 0.0005 0.0001 0.0001 0.0001 0.0001 0.0003

5 0.0002 0.0001 0.0001 0.0002 0.0004 0.0001 0.0001 0.0001 0.0001 0.0004

6 0.0001 0.0001 0.0001 0.0001 0.0004 0.0001 0.0001 0.0000 0.0001 0.0006

10 0.0001 0.0001 0.0001 0.0002 0.0058 0.0391 0.0017 0.0001 0.0065 0.0376

20 0.0195 0.0038 0.0006 0.0016 0.6183 0.1356 0.2247 0.9441 0.5709 0.6905

Uniform

4 0.0002 0.0002 0.0003 0.0003 0.0005 0.0002 0.0002 0.0002 0.0002 0.0002

5 0.0002 0.0003 0.0003 0.0003 0.0005 0.0006 0.0003 0.0002 0.0001 0.0001

6 0.0003 0.0003 0.0003 0.0003 0.0004 0.0044 0.0006 0.0001 0.0001 0.0001

10 0.0026 0.0007 0.0003 0.0002 0.0007 0.8953 0.3616 0.0156 0.0006 0.0006

20 0.6324 0.8460 0.0700 0.0052 0.1147 0.1064 0.1263 0.3579 0.5118 0.4639

sential for accurately measuring the performance of the stochastic systems,
they will significantly increase the computational time of the proposed
GP methods. Figure 6.2 shows the average MAPESk

p∗ from all testing scenar-
ios obtained by the evolved DDARs when different numbers of simula-
tion replications are used for evaluating the evolved DDARs. This figure
shows that the use of more replications for training DDARs does not ap-
pear to improve the quality of the evolved DDARs. An explanation for
these results is that one replication is quite enough for training DDARs be-
cause the performance measure of the evolved DDARs has been applied
thousands of times in each simulation replication, which can characterise
various situations in the dynamic systems. Also, accurately determining
the performance measures of evolved DDARs in the proposed GP meth-
ods is not as important as that in common simulation applications because
what we need is to find out which evolved DDARs are better than the oth-
ers (for individual selection in GP) and the performance measures from a
single replication appears to be good enough for this purpose.
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Figure 6.2: Influence of the number of simulation replications on the per-
formance of the proposed GP methods (the horizontal axis shows the
number of simulation replications).

6.4.2 The choice of simulation scenarios for training DDARs

As shown in Section 6.3.1, the evolved DDARs have trouble beating DPPW

in the scenarios with full jobs sometimes. This problem may come from
the fact that the evolved DDARs have not been trained on these scenar-
ios; therefore they cannot handle these scenarios as well as the scenarios
with missing jobs. This raises the issue of how to choose suitable train-
ing scenarios in order to maximise the reusability of the evolved DDARs
without significantly increasing the computational time of the proposed
GP methods.

Tables 6.7 and 6.8 show the comparison between existing dynamic DDARs
and the evolved DDARs trained on the same simulation scenarios in Table
6.2 but the full setting is used instead of the missing setting. The results
in these tables suggest that the evolved DDARs can only show their su-
periority on the scenarios with full setting and processing times following
Exponential and Erlang-2 distributions. This indicates that the evolved
DDARs do not have as good reusability as those trained with missing jobs
as shown in Tables 6.4 and 6.5. However, these evolved DDARs can dom-
inate DPPW in some scenarios with a small number of machines, utilisation
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Table 6.7: Performance of evolved ADDARs trained with full setting

Setting
missing full

%60 %70 %80 %90 %95 %60 %70 %80 %90 %95

Exponential

4 〈4, 6, 6〉 〈4, 0, 0〉 〈6, 14, 6〉 〈17, 26, 15〉 〈23, 27, 14〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉
5 〈4, 8, 18〉 〈4, 8, 16〉 〈7, 16, 14〉 〈5, 0, 0〉 〈23, 26, 14〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 22, 30〉
6 〈5, 8, 18〉 〈6, 12, 16〉 〈7, 16, 14〉 〈17, 22, 15〉 〈20, 23, 11〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 2, 30〉
10 〈5, 5, 13〉 〈5, 7, 7〉 〈12, 21, 17〉 〈7, 4, 0〉 〈24, 24, 18〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 27, 30〉 〈30, 4, 30〉 〈30, 0, 29〉
20 〈6, 12, 22〉 〈10, 14, 20〉 〈11, 18, 14〉 〈19, 23, 13〉 〈22, 23, 13〉 〈29, 12, 30〉 〈30, 9, 30〉 〈30, 6, 30〉 〈30, 0, 30〉 〈30, 0, 29〉

Erlang-2

4 〈11, 15, 27〉 〈17, 18, 27〉 〈20, 22, 26〉 〈25, 25, 21〉 〈25, 25, 21〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 26, 30〉
5 〈13, 16, 27〉 〈16, 17, 25〉 〈18, 22, 26〉 〈25, 25, 23〉 〈25, 25, 18〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 22, 30〉
6 〈13, 16, 27〉 〈16, 17, 26〉 〈17, 21, 25〉 〈25, 25, 23〉 〈25, 25, 19〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 3, 30〉
10 〈12, 13, 28〉 〈15, 17, 25〉 〈22, 22, 25〉 〈25, 25, 20〉 〈25, 25, 20〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 16, 30〉 〈30, 0, 30〉
20 〈11, 11, 26〉 〈13, 13, 25〉 〈19, 19, 23〉 〈23, 23, 20〉 〈23, 23, 20〉 〈30, 15, 30〉 〈30, 11, 30〉 〈30, 12, 30〉 〈30, 0, 30〉 〈29, 0, 29〉

Uniform

4 〈12, 12, 30〉 〈15, 14, 27〉 〈19, 19, 24〉 〈23, 23, 23〉 〈25, 25, 22〉 〈30, 28, 30〉 〈30, 28, 30〉 〈30, 24, 30〉 〈30, 24, 30〉 〈30, 16, 30〉
5 〈14, 12, 29〉 〈15, 14, 28〉 〈18, 18, 24〉 〈24, 23, 22〉 〈25, 25, 21〉 〈30, 28, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 25, 30〉 〈30, 11, 30〉
6 〈13, 13, 30〉 〈15, 15, 27〉 〈16, 16, 26〉 〈23, 23, 23〉 〈24, 24, 21〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 28, 30〉 〈30, 25, 30〉 〈30, 5, 30〉
10 〈12, 11, 29〉 〈15, 13, 26〉 〈15, 15, 25〉 〈23, 23, 23〉 〈24, 24, 21〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 29, 30〉 〈28, 28, 30〉 〈29, 5, 30〉
20 〈12, 10, 27〉 〈13, 12, 26〉 〈13, 13, 23〉 〈21, 21, 21〉 〈24, 24, 20〉 〈30, 26, 30〉 〈29, 23, 30〉 〈29, 21, 30〉 〈28, 18, 30〉 〈28, 0, 29〉

Table 6.8: Performance of evolved ODDARs trained with full setting

Setting
missing full

%60 %70 %80 %90 %95 %60 %70 %80 %90 %95

Exponential

4 〈21, 25, 28〉 〈21, 0, 0〉 〈28, 29, 27〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 28, 30〉
5 〈22, 28, 30〉 〈25, 28, 30〉 〈28, 30, 30〉 〈27, 0, 0〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 13, 30〉
6 〈23, 28, 30〉 〈28, 30, 30〉 〈28, 30, 30〉 〈30, 30, 30〉 〈30, 30, 27〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 0, 30〉
10 〈23, 26, 30〉 〈25, 28, 28〉 〈30, 30, 30〉 〈28, 22, 1〉 〈30, 30, 28〉 〈30, 30, 30〉 〈30, 29, 30〉 〈30, 29, 30〉 〈30, 1, 30〉 〈30, 0, 29〉
20 〈28, 30, 30〉 〈28, 30, 30〉 〈29, 30, 30〉 〈30, 30, 29〉 〈30, 30, 28〉 〈29, 27, 30〉 〈30, 20, 30〉 〈30, 4, 30〉 〈30, 0, 29〉 〈30, 0, 28〉

Erlang-2

4 〈29, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 22, 30〉
5 〈29, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 29〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 9, 30〉
6 〈29, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 28〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 29, 30〉 〈30, 1, 30〉
10 〈29, 29, 30〉 〈29, 30, 30〉 〈30, 30, 30〉 〈30, 30, 29〉 〈30, 30, 28〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 13, 30〉 〈30, 0, 30〉
20 〈28, 28, 30〉 〈28, 28, 30〉 〈29, 29, 29〉 〈29, 29, 29〉 〈29, 29, 28〉 〈30, 28, 30〉 〈30, 27, 30〉 〈30, 25, 30〉 〈30, 0, 30〉 〈29, 0, 29〉

Uniform

4 〈27, 25, 30〉 〈30, 28, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈27, 27, 30〉 〈27, 27, 30〉 〈27, 27, 30〉 〈27, 26, 30〉 〈29, 15, 30〉
5 〈27, 25, 30〉 〈29, 28, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 28〉 〈27, 27, 30〉 〈27, 27, 30〉 〈27, 27, 30〉 〈28, 26, 30〉 〈29, 13, 30〉
6 〈27, 27, 30〉 〈29, 27, 30〉 〈29, 29, 30〉 〈30, 30, 30〉 〈30, 30, 28〉 〈27, 27, 30〉 〈27, 27, 30〉 〈27, 27, 30〉 〈28, 25, 30〉 〈28, 9, 30〉
10 〈26, 26, 30〉 〈27, 26, 30〉 〈28, 28, 30〉 〈29, 29, 29〉 〈29, 29, 28〉 〈27, 27, 30〉 〈27, 27, 30〉 〈27, 27, 30〉 〈28, 23, 30〉 〈27, 4, 30〉
20 〈26, 25, 30〉 〈26, 26, 30〉 〈28, 28, 29〉 〈29, 28, 29〉 〈28, 28, 28〉 〈27, 25, 30〉 〈26, 25, 30〉 〈26, 25, 30〉 〈28, 18, 30〉 〈25, 0, 30〉

of 95% and full jobs, which cannot be achieved by the evolved DDARs
trained with missing jobs. Tables 6.9 and 6.10 show the performance of
evolved DDARs trained with both full and missing jobs (a total of 12 sim-
ulation scenarios used for training). These tables show that the evolved
DDARs in this case have better reusability than those evolved with full or
missing alone. However, it is noted that these results are obtained by dou-
bling the number of simulation scenarios, and therefore it also doubles the
computational effort of the proposed GP methods.
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Table 6.9: Performance of evolved ADDARs trained with full + missing
setting

Setting
missing full

%60 %70 %80 %90 %95 %60 %70 %80 %90 %95

Exponential

4 〈30, 30, 30〉 〈30, 0, 0〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉
5 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 0, 0〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 4, 30〉
6 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 0, 30〉
10 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 0〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 3, 30〉 〈30, 0, 30〉
20 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 29, 30〉 〈30, 7, 30〉 〈30, 1, 30〉 〈30, 0, 30〉 〈30, 0, 30〉

Erlang-2

4 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 6, 30〉
5 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 5, 30〉
6 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 8, 30〉 〈30, 0, 30〉
10 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 4, 30〉 〈30, 0, 30〉
20 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 29, 30〉 〈30, 7, 30〉 〈30, 0, 30〉 〈30, 0, 30〉

Uniform

4 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 7, 30〉 〈30, 2, 30〉
5 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 7, 30〉 〈30, 2, 30〉
6 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 7, 30〉 〈30, 2, 30〉
10 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 7, 30〉 〈30, 2, 30〉
20 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 29, 30〉 〈30, 6, 30〉 〈30, 0, 30〉

Table 6.10: Performance of evolved ODDARs trained with full + missing
setting

Setting
missing full

%60 %70 %80 %90 %95 %60 %70 %80 %90 %95

Exponential

4 〈30, 30, 30〉 〈30, 0, 0〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 29, 30〉
5 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 0, 0〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 5, 30〉
6 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 0, 30〉
10 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 1〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 29, 30〉 〈30, 28, 30〉 〈30, 0, 30〉 〈30, 0, 30〉
20 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈28, 23, 29〉 〈29, 13, 30〉 〈29, 2, 30〉 〈30, 0, 30〉 〈30, 0, 29〉

Erlang-2

4 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 13, 30〉
5 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 8, 30〉
6 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 21, 30〉 〈30, 0, 30〉
10 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 28, 30〉 〈30, 4, 30〉 〈30, 0, 30〉
20 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈28, 24, 30〉 〈28, 25, 30〉 〈30, 12, 30〉 〈29, 0, 29〉 〈30, 0, 30〉

Uniform

4 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 20, 30〉 〈30, 13, 30〉
5 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 20, 30〉 〈30, 13, 30〉
6 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 19, 30〉 〈30, 8, 30〉
10 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 29, 30〉 〈30, 29, 30〉 〈30, 29, 30〉 〈30, 18, 30〉 〈30, 4, 30〉
20 〈30, 29, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈29, 26, 30〉 〈29, 26, 30〉 〈28, 26, 30〉 〈30, 13, 30〉 〈29, 0, 30〉

Figure 6.3 shows the average MAPESk
p∗ from all testing scenarios obtained

by the evolved DDARs when different training sets are employed. It is ob-
vious that evolved DDARs trained with full jobs are not as good as those
trained with missing or full + missing jobs. It is also noted that the evolved
DDARs trained with full + missing jobs are not significantly better than
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Figure 6.3: Influence of training set on the performance of evolved
DDARs.
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Figure 6.4: Influence of population size on the performance of the pro-
posed GP methods.

those trained with missing jobs. The results in this section suggest that us-
ing missing jobs may be sufficient for evolving DDARs with good reusabil-
ity for these problems.

6.4.3 Population size of the proposed GP methods

This section examines the influence of population size on the performance
of the proposed GP methods. Figure 6.4 shows that a population size of
1000 would be sufficient for the two proposed GP methods to explore the
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search space of DDARs since population sizes more than 1000 do not show
significant improvement on the performance of the GP methods. Also, in-
creasing the population size from 500 to 1000 does not show significant
improvements for GP-ADDAR but it can significantly improve the perfor-
mance of GP-ODDAR. This observation suggests that the search space of
ODDARs is more complicated than that of ADDARs and requires a larger
population size to ensure the diversity in the population.

6.4.4 Performance of evolved DDARs on shops with a bot-

tleneck

Previous experiments have shown that the evolved DDARs produce very
good results on symmetrical job shops. In this section, we examine the
reusability of the evolved DDARs in unbalanced shops. Table 6.11 and
Table 6.12 show the performance of the previous DDARs (trained from
symmetrical job shops) on shops with a single bottleneck machine. The
utilisation values shown in these tables are the utilisation values of the
bottleneck machine. In these testing scenarios, the utilisations of non-
bottleneck machines are 5% less than that of the bottleneck machine. In
general, these results are similar to those in Table 6.4 and Table 6.5. The
evolved DDARs still provide superior performances as compared to DTWK,
DPPW, and ADRES. Moreover, the performance of evolved ODDARs on some
scenarios with high utilisation level and full setting is better than that in
Table 6.5 (more superior evolved ODDARs). Perhaps, training DDARs in
different simulation scenarios has made the evolved DDARs more robust
than the existing DDARs such as DTWK and DPPW, which depend on the
variation of job flowtimes. This also suggests that ODDARs are more ef-
fective in these cases because they take into account detailed information
of the machine that processes each operation of a job instead of using the
aggregate information in ADDARs.
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Table 6.11: Performance of evolved ADDARs on shops with a bottleneck

Setting
missing full

%60 %70 %80 %90 %95 %60 %70 %80 %90 %95

Exponential

4 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 0, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉
5 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 0, 0〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 29, 30〉
6 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 29, 30〉 〈30, 1, 30〉
10 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 0〉 〈30, 0, 0〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 29, 30〉 〈30, 1, 30〉 〈30, 0, 30〉
20 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 29, 30〉 〈30, 1, 30〉 〈30, 1, 30〉 〈30, 0, 30〉

Erlang-2

4 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 29, 30〉
5 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 1, 30〉
6 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 29, 30〉 〈30, 1, 30〉
10 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 29, 30〉 〈30, 1, 30〉 〈30, 0, 30〉
20 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 29, 30〉 〈29, 1, 30〉 〈30, 0, 30〉

Uniform

4 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 0, 30〉
5 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 0, 30〉
6 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 1, 30〉 〈30, 0, 30〉
10 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 0, 30〉 〈29, 0, 30〉
20 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈29, 29, 30〉 〈29, 0, 30〉

Table 6.12: Performance of evolved ODDARs on shops with a bottleneck

Setting
missing full

%60 %70 %80 %90 %95 %60 %70 %80 %90 %95

Exponential

4 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 0, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉
5 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 0, 0〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉
6 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 13, 30〉
10 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 0〉 〈30, 0, 0〉 〈30, 30, 30〉 〈30, 29, 30〉 〈30, 29, 30〉 〈30, 11, 30〉 〈30, 0, 30〉
20 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈29, 25, 30〉 〈30, 23, 30〉 〈30, 4, 30〉 〈30, 1, 30〉 〈30, 0, 30〉

Erlang-2

4 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉
5 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 14, 30〉
6 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 12, 30〉
10 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 29, 30〉 〈30, 30, 30〉 〈30, 29, 30〉 〈30, 12, 30〉 〈30, 0, 30〉
20 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈29, 25, 30〉 〈28, 25, 30〉 〈30, 21, 30〉 〈30, 3, 30〉 〈30, 0, 30〉

Uniform

4 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 12, 30〉
5 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 29, 30〉 〈30, 13, 30〉
6 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 17, 30〉 〈30, 12, 30〉
10 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈29, 29, 30〉 〈29, 29, 30〉 〈29, 29, 30〉 〈30, 16, 30〉 〈30, 10, 30〉
20 〈30, 28, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈28, 26, 30〉 〈28, 26, 30〉 〈27, 24, 30〉 〈27, 24, 30〉 〈27, 9, 30〉

6.4.5 Evolved DDARs

In this section, we further examine the evolved DDARs to explore useful
patterns for the development of more effective DDARs. The best evolved
ADDAR pADDAR and ODDAR pODDAR in a set of evolved DDARs obtained
from 30 independent GP runs are shown in Figure 6.5. Both evolved
DDARs include the total processing times of jobs in queues and the pro-
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(+

TOT

(If(−N(+TLOT TQWL))

(+TLOT TQWL)

(+TQWL(∗TLOT 0.6615654)))

)

(a) pADDAR

(If(∗(+(−SAR(−OT LOT))(−(+LOT OT) PEF))

(If(−(+PEF OT)(∗PEF(∗SAPR QWL)))(/(/OT N)(∗(+APR(−(∗SAPR LOT)PEF))(+OT QWL)))(+(∗QWL 0.2542787)SAR)))

(If(∗(+(∗(+(−(/OT N)(−OT LOT))

(−(∗SAPR LOT)PEF))(+(−SAR(−OT LOT))(−(+LOT OT)PEF)))(−LOT PEF))(∗PEF(∗(∗SAPR LOT)QWL)))

(+(+OT QWL) LOT)

(+OT QWL))

(+OT QWL))

(b) pODDAR

Figure 6.5: Best evolved DDARs.

cessing time of the new job, i.e., QWL + OT for ODDAR and TQWL + TOT for
ADDAR (when expanding the If expression in Figure 6.5(a)). This term is
actually a good estimate of flowtime for a job with a small number of op-
erations (for ADDAR) or for the first operation of a new job (for ODDAR).
The main difference between these two evolved DDARs is the use of con-
ditional terms to decide which extra terms should be included in the esti-
mation. For ODDAR, PEF, QWL and LOT are used in the conditional term of
function If. This DDAR shows that PEF is an important term to provide
better flowtime estimations.

Table 6.13 shows MAPESk

pODDAR and the t-test results between the pODDAR in
Figure 6.5(b) and other DDARs over 150 testing scenarios. In this table,
the a, b, c, and d are the indices to represent pADDAR, DTWK, DPPW, and ADRES,
respectively. A superscript of a result in this table shows the DDARs that
are not significantly different (by using t-tests) from the pODDAR. Meanwhile,
a subscript shows the DDARs that are significantly better than pODDAR, re-
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Table 6.13: MAPE values obtained by the best evolved DDARs

Setting
missing full

%60 %70 %80 %90 %95 %60 %70 %80 %90 %95

Exponential

4 0.1485 0.1534cd 0.1452 0.1235 0.1025a 0.2209 0.2197 0.2054 0.1673a 0.1301a

5 0.1636 0.1661 0.1555 0.1294acd 0.1049a 0.2251 0.2202 0.2034 0.1650a 0.1299ac

6 0.1731 0.1760 0.1668 0.1403 0.1165a 0.2252 0.2202 0.2025a 0.1636a 0.1297ac

10 0.1921 0.1913 0.1804 0.1498ad 0.1265a 0.2070a 0.2015a 0.1864
a

0.1512ac 0.1227ac

20 0.1935 0.1943 0.1834 0.1543a 0.1369a 0.1720
a

0.1715
a

0.1618
ac

0.1339
ac

0.1162
ac

Erlang-2

4 0.1376 0.1442 0.1408 0.1204 0.0960a 0.2026 0.2076 0.1997 0.1698 0.1348a

5 0.1524 0.1567 0.1533 0.1319 0.1068a 0.2038 0.2062 0.1975 0.1661 0.1353a

6 0.1601 0.1658 0.1608 0.1386 0.1147a 0.2013 0.2030 0.1937 0.1656 0.1364ac

10 0.1767 0.1800 0.1734 0.1467 0.1197a 0.1818 0.1836 0.1764 0.1508a 0.1237ac

20 0.1739 0.1787 0.1740 0.1518 0.1337a 0.1468 0.1526a 0.1507
a

0.1318
ac

0.1140
ac

Uniform

4 0.1228 0.1322 0.1341 0.1208 0.1006a 0.1735 0.1833 0.1857 0.1707 0.1462

5 0.1350 0.1433 0.1443 0.1297 0.1082a 0.1729 0.1820 0.1828 0.1690 0.1461

6 0.1423 0.1507 0.1510 0.1352 0.1124a 0.1684 0.1774 0.1788 0.1647 0.1421

10 0.1510 0.1597 0.1618 0.1467 0.1247a 0.1493 0.1572 0.1600 0.1493 0.1282

20 0.1458 0.1559 0.1586 0.1460 0.1281a 0.1184 0.1276 0.1332 0.1266 0.1122c

spectively. If an index is neither shown in the superscript nor subscript, it
means that pODDAR is significantly better than all other DDARs. The tests are
considered significant when the obtained p-value is less than 0.05. For ex-
ample, in the scenario with 6 machines, full setting, utilisation of 80% and
processing times follow Exponential, 0.2025a shows that there is no signif-
icant difference between pODDAR and pADDAR, and pODDAR is significantly better
than DTWK, DPPW, and ADRES. It is easy to see that the DDARs evolved by
GP-ODDAR dominate other DDARs in most scenarios. In a few specific
cases, pADDAR, DPPW, and ADRES are competitive with the evolved DDARs.
pADDAR and DPPW can also beat the evolved DDARs in some scenarios with
high utilisation level (95%), full setting and large numbers of machines.
These results are quite consistent with what has been observed in Section
6.3.1. It is also noted that MAPESk

p∗ is better when the utilisation increases,
which is similar to that observed in [168]. When the number of machines
increases, it is also interesting to see that the performance of the evolved
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DDARs deteriorates if the missing setting is used, but the performance of
these DDARs improves if the full setting is used.

Tables 6.14 and 6.15 show the detailed results obtained by the evolved
and the existing DDARs for two particular scenarios. The mean and the
corresponding standard deviation of each performance measure are shown
in this table to provide a general evaluation of each DDAR. The MAPE, MAE
and STDL of the evolved DDARs are better (smaller) than those obtained by
the existing DDAR. This indicates that the evolved DDARs provide better
delivery accuracy and delivery reliability than existing DDARs. It is also
interesting that the MPE of pODDAR is positive while those of other DDARs are
negative. This means that the other DDARs tend to overestimate the job
flowtimes while pODDAR tends to underestimate the job flowtimes but the es-
timations made by pODDAR are better because its MAPEs in absolute value are

Table 6.14: Performance of DDARs (90% utilisation, missing jobs, 6 ma-
chines, processing times follow Erlang-2 distribution)

DDAR MAPE MAE MPE STDL %T

pADDAR 0.145 ± 0.007 3.672 ± 0.348 −0.024± 0.004 5.622± 0.563 42.1599 ± 0.8230

pODDAR 0.139 ± 0.006 3.667 ± 0.356 0.021± 0.003 5.609± 0.569 50.4126 ± 0.6114

DTWK 0.579 ± 0.057 8.735 ± 1.522 −0.214± 0.063 12.106 ± 2.184 53.7524 ± 1.2697

DPPW 0.618 ± 0.081 6.231 ± 1.093 −0.388± 0.081 8.245± 1.474 48.7390 ± 1.2112

ADRES 0.427 ± 0.033 6.071 ± 0.485 −0.316± 0.036 7.671± 0.771 31.5857 ± 1.7690

Table 6.15: Performance of DDARs (90% utilisation, full jobs, 6 machines,
processing times follow Erlang-2 distribution)

DDAR MAPE MAE MPE STDL %T

pADDAR 0.170 ± 0.008 6.164 ± 0.472 −0.028 ± 0.004 7.990 ± 0.630 47.5206 ± 0.6539

pODDAR 0.166 ± 0.007 6.253 ± 0.490 0.027 ± 0.002 7.982 ± 0.645 57.8573 ± 0.7259

DTWK 0.269 ± 0.004 10.428 ± 1.223 −0.000 ± 0.015 14.071 ± 1.783 55.1111 ± 1.7751

DPPW 0.178 ± 0.008 6.508 ± 0.547 −0.011 ± 0.012 8.391 ± 0.733 50.3110 ± 2.4945

ADRES 0.281 ± 0.021 9.001 ± 0.503 −0.211 ± 0.023 9.789 ± 0.766 26.6826 ± 1.4803



184 CHAPTER 6. EVOLVING DDA RULES

smaller compared to those of existing DDARs. Since the existing DDARs
overestimate flowtimes, some of the %T values of those DDARs are smaller
than those of the evolved DDARs. However, with the current emphasis
on the just-in-time (JIT) [42] production concept where both earliness and
tardiness are undesirable and meeting the target job due date would be
of significance for the practice of JIT philosophy, smaller MAPE and STDL

would be more attractive than smaller %T.

Figure 6.6 presents a simulation example to show the actual flowtimes
and flowtimes estimated by different DDARs. In this figure, it is easy to
see that the flowtimes estimated by evolved ADDAR pADDAR and ODDAR
pODDAR are better than those estimated by the existing DDARs which tend
to overestimate job flowtimes because the flowtimes estimated by these
evolved DDARs are much closer to the actual flowtimes. The estimated
flowtimes from the evolved ADDAR and ODDAR are quite similar and
the ODDAR is able to make slightly better predictions compared to AD-
DAR for some jobs.

6.5 Further investigation with due date based dis-

patching rules

It has been shown that the evolved ODDARs have very good reusability
when tested under different shop conditions. However, it is still ques-
tionable if these evolved ODDARs can be reused when other dispatching
rules, rather than FIFO, are applied. To examine this issue, we test the
performance of the evolved DDARs with the popular Critical Ratio plus
Shortest Processing Time (CR+SPT) rule, which usually provides good
due date related performance [41]. Different from the case when FIFO
is used as the dispatching rule, it is noted that estimating job flowtimes
here is more complicated. The reason is that FIFO is not influenced by the
estimated due dates from the DDAR while the sequencing decisions from
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Figure 6.6: Simulation illustration of DDARs (utilisation = 90%, missing
jobs, 6 machines, processing times follow Erlang-2 distribution).

CR+SPT are strongly affected by the estimated due dates. For example,
the priority (with CR+SPT) of waiting jobs can be calculated as:

Zji = pji ×max

{
dj − t∑mj

r=i pjr
, 1

}
(6.2)

where pji is the processing time of the operation (j, i), which is the ith op-
eration of job j. After all jobs in the queue have been assigned priorities
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determined by equation (6.2), the job with the smallest priority value will
be processed next. While the value of pji is available when the job arrives,
dj and t depend on the DDAR and the moment the sequencing decision
is made. Therefore, we do not know the exact priorities of the new job
at the machines it is planned to visit. Unfortunately, in order to make an
accurate due date estimate of a new job, it is important to consider the
priorities of that job determined by the dispatching rule (when waiting in
the queues) because they will influence the job’s waiting times [168]. To
tackle this issue with our proposed GP-ODDAR method, we will include
into the terminal set a new term called estimated priority ratio (EPR), which
can be determined by equation (6.3).

EPRji =

∑
(l,k)∈Q′

m
plk∑

(l,k)∈Qm
plk

(6.3)

where Qm is the set of operations (l, k) in the queue at machine m at the
time the new job arrives and Q′

m = {(l, k) ∈ Qm : Ẑji < Ẑ ′
lk}. Ẑji and Ẑ ′

lk

are the estimated priorities of the operation (j, i) of the new job j and other
operations (l, k) which are calculated as:

Ẑji = pji ×max

{
(rj + f ′

j)− (rj + PEF )∑mj

r=i pjr
, 1

}

= pji ×max

{
f ′
j − PEF∑mj

r=i pjr
, 1

}
(6.4)

Ẑ ′
lk = plk ×max

{
dl − (rl + PEF )∑ml

r=k plr
, 1

}
(6.5)

where rj + f ′
j is a rough estimate of the due date and rj + PEF is the esti-

mate of the decision moment t. Since DPPW is shown to be a competitive
DDAR in our previous experiment, it will be used to calculate rj + f ′

j . The
role of EPRji is to represent the dominance relation regarding the priori-
ties between the new job and jobs currently in the shop.

Table 6.16 shows the performance of the evolved DDARs with CR+SPT
as the dispatching rule. We use the population size of 2000 in this exper-
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Table 6.16: Performance of evolved ODDARs with CR+SPT as the dis-
patching rule

Setting
missing full

%60 %70 %80 %90 %95 %60 %70 %80 %90 %95

Exponential

4 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 0, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈29, 29, 30〉 〈28, 1, 30〉
5 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 29, 30〉 〈29, 28, 30〉 〈27, 0, 30〉
6 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 29, 30〉 〈29, 25, 30〉 〈18, 0, 30〉
10 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 29, 30〉 〈30, 28, 30〉 〈28, 24, 30〉 〈15, 13, 30〉 〈2, 0, 30〉
20 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈27, 30, 30〉 〈26, 29, 30〉 〈28, 18, 30〉 〈23, 12, 30〉 〈16, 11, 30〉 〈7, 2, 30〉 〈0, 0, 30〉

Erlang-2

4 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 29, 30〉 〈30, 30, 30〉 〈29, 29, 30〉 〈25, 14, 30〉 〈2, 0, 30〉
5 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 29, 30〉 〈30, 30, 30〉 〈29, 28, 30〉 〈24, 11, 30〉 〈1, 0, 30〉
6 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 29, 30〉 〈30, 29, 30〉 〈29, 27, 30〉 〈21, 3, 30〉 〈0, 0, 30〉
10 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈29, 30, 30〉 〈30, 29, 30〉 〈30, 26, 30〉 〈26, 20, 30〉 〈1, 0, 30〉 〈0, 0, 30〉
20 〈30, 30, 30〉 〈29, 29, 30〉 〈26, 28, 30〉 〈25, 26, 30〉 〈21, 25, 30〉 〈28, 22, 30〉 〈23, 14, 30〉 〈14, 10, 30〉 〈1, 0, 30〉 〈0, 0, 30〉

Uniform

4 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈29, 30, 30〉 〈29, 29, 30〉 〈30, 29, 30〉 〈30, 28, 30〉 〈25, 19, 30〉 〈2, 1, 30〉 〈0, 0, 30〉
5 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈29, 29, 30〉 〈29, 29, 30〉 〈30, 29, 30〉 〈30, 27, 30〉 〈25, 20, 30〉 〈4, 1, 30〉 〈1, 0, 30〉
6 〈30, 30, 30〉 〈30, 30, 30〉 〈30, 30, 30〉 〈29, 29, 30〉 〈29, 29, 30〉 〈30, 29, 30〉 〈30, 26, 30〉 〈23, 18, 30〉 〈5, 1, 30〉 〈0, 0, 30〉
10 〈30, 30, 30〉 〈30, 30, 30〉 〈27, 27, 30〉 〈23, 25, 30〉 〈20, 20, 30〉 〈30, 26, 30〉 〈28, 20, 30〉 〈21, 16, 30〉 〈4, 1, 30〉 〈0, 0, 30〉
20 〈29, 27, 30〉 〈26, 24, 30〉 〈20, 20, 30〉 〈13, 13, 30〉 〈9, 9, 30〉 〈27, 18, 30〉 〈20, 13, 30〉 〈12, 0, 30〉 〈1, 1, 30〉 〈1, 1, 26〉

iment in order to ensure enough diversity to create more sophisticated
DDARs to deal with this situation. It can be seen that the the evolved
ODDARs still perform better than the existing DDARs in most scenar-
ios, especially the cases with ”missing” setting. For the scenarios with
”full” setting, there are a fewer number of superior evolved ODDARs that
can beat DTWK and DPPW when the utilisation increases. These results
suggest that DTWK and DPPW again significantly enhance their perfor-
mance with the less diverse jobs and high utilisation levels. Meanwhile,
the evolved ODDARs still show their superiority in more complicated sce-
narios when tested with CR+SPT.

6.6 Chapter Summary

In this chapter, two proposed GP methods have been developed for evolv-
ing due date assignment rules. This is the first time that GP has been ap-
plied to evolve reusable DDARs. The experimental results show that the
evolved DDARs can outperform the existing dynamic DDARs with MAPE

as the performance measure. Comparisons using other performance mea-
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sures also confirm the effectiveness of the evolved DDARs. From the per-
formance of the evolved DDARs on a number of simulation scenarios, it
can also be concluded that the evolved DDARs have good reusability and
they are able to make good job flowtime estimates for unseen scenarios
with different processing time distributions, utilisation, job settings and
numbers of machines. When comparing the two proposed GP methods, it
has been shown that GP-ODDAR is significantly better than GP-ADDAR
in most testing scenarios. Typical examples of the evolved DDARs show
that these GP evolved DDARs are (at least partially) understandable.

This study has shown the effectiveness of GP for evolving DDARs in
the case where FIFO, or a due date based dispatching rule CR+SPT, is used
as the dispatching rule. However, there are always different conflicting
objectives to be considered in JSS, which required better customised dis-
patching rules. Therefore, it is crucial that these two scheduling rules and
conflicting objectives of interest are considered simultaneously to design
effective comprehensive scheduling system. In the next chapter, we will
further investigate these issues by developing a new cooperative coevolu-
tion based on GP.



Chapter 7

Automatic Design of
Scheduling Policies

Practical JSS applications usually involve different scheduling/planning
decisions. However, most studies on JSS only consider one of the many de-
cisions and fix the others in order to reduce the complexity of the schedul-
ing problems. These approaches are valid when there is no interaction
among the scheduling decisions, which is often not the case for real world
applications. Although JSS has been popular for decades and investiga-
tion of the interactions among various decisions is essential for the de-
velopment of effective and comprehensive scheduling systems, studies on
the interactions among different scheduling decisions are rather limited.
The studies [160, 12, 124, 39] mainly examined the performance of simple
combinations of different existing dispatching rules (DRs) and due-date
assignment rules (DDARs). One of the reasons for the lack of research in
this direction is that dealing with each scheduling decision is already dif-
ficult; and thus considering multiple scheduling decisions simultaneously
will be even more complicated. To tackle this problem, there is a need to
develop new methodologies for improving the scheduling decisions and
their interactions, which should also be able to cope with the dynamic fea-
tures of JSS problems.

189
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In this chapter, GP is used as a hyper-heuristic method [30] for the
automatic design of scheduling policies (SPs) which include sequencing
rules and due date assignment rules for dynamic JSS problems. GP is a
suitable method for designing SPs because of its flexibility to encode dif-
ferent scheduling rules in the representation. Moreover, as an evolution-
ary approach, GP can be applied to handle the multiple conflicting objec-
tives of JSS problems (as shown in Chapter 5). Another advantage of GP
is that evolved scheduling policies are potentially interpretable, which is
important and useful for understanding how the problem is solved by the
evolved policies and how the trade-offs among the different objectives of
JSS can be obtained.

This chapter presents novel methodologies to design efficient SPs for
solving dynamic multi-objective JSS problems via genetic programming
based hyper-heuristic (GPHH) [31]. In order to address drawbacks of ex-
isting methods, three important aspects are considered in our proposed
algorithms: (i) representations of different scheduling rules; (ii) evolu-
tionary optimisation to evolve the trade-offs in SPs; and (iii) reusability
(ability to be reused on new unseen problems [31, 30]) of the evolved SPs.
The first aspect concentrates on how the scheduling rules can be repre-
sented and evaluated in GP. The second applies multi-objective evolution-
ary algorithms [8, 196, 52] to explore the Pareto front of the evolved SPs.
In order to examine how training scenarios may influence reusability of
the evolved rules on unseen situations, four multi-objective genetic pro-
gramming based hyper-heuristic (MO-GPHH) methods are proposed to
deal with the JSS problems. Different from other proposed GPHH meth-
ods which only evolve scheduling rules to handle a specific scheduling
decision, the MO-GPHH methods developed in this chapter will simulta-
neously evolve two scheduling rules to handle sequencing and due date
assignment decisions. Because the two scheduling rules are considered
together, they can interact and support each other in order to improve the
overall scheduling performance.



7.1. PROPOSED MO-GPHH METHODS 191

The objectives of this chapter are:

1. Developing MO-GPHH methods for automatic design of scheduling
policies for dynamic job shop scheduling problems.

2. Comparing the evolved scheduling policies with existing scheduling
policies from combinations of existing dispatching rules and due-
date assignment rules.

3. Evaluating the reusability of the evolved scheduling policies.

4. Analysing the performance of the proposed MO-GPHH methods
and the evolved scheduling policies.

Section 7.1 describes the proposed MO-GPHH methods and settings
for our experiments. The experimental results and comparison of the
evolved scheduling policies and the existing scheduling policies are pre-
sented in Section 7.2. The analysis of the proposed methods and the evolved
scheduling policies are shown in Section 7.3. Conclusions are drawn in
Section 7.4.

7.1 Proposed MO-GPHH methods

This section describes the new GPHH methods for evolving scheduling
policies, which include rules for due date assignment and sequencing de-
cisions in dynamic job shop environments. We will first show how DDARs
and DRs are represented by individuals in GP. Then, new MO-GPHH
methods based on NSGA-II, SPEA2, HaD-MOEA and a proposed cooper-
ative coevolution method are applied to deal with the dynamic JSS prob-
lems. These MO-GPHH methods are different in the way that the Pareto
fronts of non-dominated scheduling policies are explored. Lastly, the job
shop simulation model used for the training and testing will be described.
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7.1.1 Representations

As investigated in previous chapters, there are several ways to represent
scheduling rules (either DDARs or DRs). For DDARs in this chapter, we
employ the representation and the evaluation scheme of GP-ODDAR (see
Section 6.1.1) since it was shown to provide better estimation of job flow-
times. The same terminal and function sets of GP-ODDAR are used to
construct DDARs in our evolved SPs. Regarding DRs, we use the simple
arithmetic representation to construct composite dispatching rules (CDRs)
as presented in Chapters 3, 4, and 5. This representation is selected be-
cause the experiments in previous chapters showed that rules evolved
with this representation have good reusability and can be easily applied
to dynamic environments. The terminal set used to evolve CDRs in this
chapter is shown in Table 7.1. Because we do not consider non-delay fac-
tor α in our experiments for dynamic JSS, the six machine attributes (as
described in Chapter 3) in the lower part of Table 7.1 can be employed di-
rectly from the terminal set instead of utilising the grammar structure as
shown in Section 3.1. Figures 7.1 and 7.2 show the moment at which each
rule is activated and illustrate how decisions are made with these evolved
rules.
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Figure 7.1: Operation-based DDAR.
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Table 7.1: Terminal set for CDR

rJ job release time (arrival time)
RJ operation ready time
RO number of remaining operation of the job.
RT work remaining of the job
PR operation processing time
W weight of the job
DD due date of the job
RM machine ready time
SJ slack of the job = DD− (t+ RT)

# Random number from 0 to 1

WR workload ratio =
∑

σ∈Ω p(σ)∑
σ∈I p(σ)

MP machine progress =
∑

σ∈K p(σ)
∑

σ∈Λ p(σ)

DJ deviation of jobs in queue = minσ∈Ω{p(σ)}
maxσ∈Ω{p(σ)}

CWR critical workload ratio =
∑

σ∈Ωc p(σ)∑
σ∈Ω p(σ)

CWI critical machine idleness, WR of the critical machine

BWR bottleneck workload ratio =
∑

σ∈Ωb p(σ)
∑

σ∈Ω p(σ)

∗t is the time when the sequencing decision is made.

+

PR %

SJ RO

Machine is idle
and there are

jobs in the queue

Assign Priority

Each job
has been assigned

a priority ?

Go to the next
unassigned job

Process the job
with the

highest priority
YesFirst job in

the queue

No

Figure 7.2: Example of GP tree as a CDR.
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7.1.2 A Cooperative Coevolution MO-GPHH for DJSS

As discussed earlier, this work aims to evolve scheduling policies that in-
clude two key components, i.e., due date assignment rules and dispatch-
ing rules. While the representation of the rules has been discussed pre-
viously, we need to specify how these rules are evolved in our proposed
GPHH methods. In this work, two approaches are examined. In the first
approach, a GP individual contains two GP trees for the two rules as pre-
sented above. In this case, each individual is equivalent to a scheduling
policy. The scheduling policy is evaluated by applying the first tree as a
DDAR when a new job arrives at the job shop to assign a due date to that
job. Meanwhile, the second tree is applied when a machine becomes idle
and there are jobs in the queue of that machine to find the next job to be
processed. For this approach, we apply NSGA-II [52], SPEA2 [195], and
HaD-MOEA [187] to explore the Pareto front of non-dominated schedul-
ing policies similar to the common applications of these algorithms.

The second approach to evolving scheduling policies is to employ co-
operative coevolution [72, 73, 180] to evolve two decision rules in two
sub-populations. This approach is similar to the cooperative coevolution
framework proposed by Potter and de Jong [156], in which the scheduling
policy is the combination of an individual in a sub-population with a rep-
resentative from the other sub-population, and some specialised operations
are also employed here to help explore the Pareto front of the scheduling
policies. In this work, we propose a new diversified multi-objective co-
operative coevolution (DMOCC) method based on the second approach.
An overview of the proposed DMOCC is shown in Figure 7.3. Here each
sub-population (P1 for DDARs and P2 for DRs) represents one rule of the
complete scheduling policy. For each individual pri ∈ Pr, the objective val-
ues which determine the quality (fitness) of pri are obtained by combining
that individual with a representative from the other population to form
a complete scheduling policy S. When a complete scheduling policy is
applied to the job shop, the quality of that policy is characterised by the
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Figure 7.3: Overview of DMOCC.

expected values of three performance measures: (1) makespan (Cmax) [153];
(2) total weighted tardiness (TWT) [153]; and (3) mean absolute percentage
error (MPEA) [19] (see Table 7.4). Cmax and TWT are two popular performance
measures for evaluating dispatching rules or scheduling methods while
MPEA is used to indicate the accuracy of the due date assignment rules. In
this work, the scheduling policies are evolved such that these three perfor-
mance measures are minimised.

Within DMOCC, we use the crowding distance (individuals with higher
crowding distances are located in less crowded areas of the objective space)
and non-dominated rank [52] (individuals with the same rank are not dom-
inated by each other and dominated by at least one individual with a
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smaller rank) to select GP individuals for genetic operations and for col-
laboration between the two sub-populations. Representatives for collab-
oration are selected based on a binary tournament selection method [52],
which randomly selects two individuals and the one with a lower non-
dominated rank will be chosen. In the case that two individuals have
the same rank, the individual with a higher crowding distance will be se-
lected. The binary tournament selection is employed in DMOCC because
it takes into account both the quality of the non-dominated individuals
and their spread/distribution.

An external archive A is employed in this method to store the non-
dominated scheduling policies. After all individuals have been evalu-
ated, a set of non-dominated scheduling policies are extracted from in-
dividuals in the two sub-populations and the current archive to form a
new archive. Besides storing the non-dominated scheduling policies, the
archive in DMOCC is also used for two other purposes. First, it is used to
evaluate the quality (rank and crowding distance) of the evolved schedul-
ing policies in the two sub-populations. Instead of evaluating the quality
of the evolved rules independently in each sub-population, it is better to
assess their quality based on comparisons with those in the archive and the
other sub-population to identify other potential non-dominated schedul-
ing policies. Secondly, the archive can provide genetic materials which are
needed for the crossover operation (more details are provided in Section
7.1.3).

Different from NSGA-II, SPEA2 and HaD-MOEA, the size of archive in
DMOCC is not fixed, although the number of complete scheduling policies
stored in the archive cannot exceed a predefined maximum size. When
the number of non-dominated scheduling policies extracted from a gen-
eration is more than the maximum size, only individuals with the highest
crowding distance will be preserved in the archive. Since new individuals
will be created from parents in the archive through crossover, such a dy-
namic archive will help focus the search towards non-dominated schedul-
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ing policies at the early stage of the evolution. When the number of in-
dividuals in the archive increases, the shape of the Pareto front will be
characterised and the method will focus on distributing the individuals
uniformly.

The pseudo code of DMOCC is shown in Figure 7.4. The algorithm
starts by populating the two sub-populations P1 and P2 with randomly
generated individuals. In each generation, each individual pri of the two
populations collaborates with the representative pr′rep from the other sub-
population to create a complete scheduling policy S. Then, the objective
values of pri are obtained by applying S to the simulated job shop. When
all individuals have been evaluated, the archive A will be updated. Ranks
and crowding distances are then assigned to individuals in A, P1, and P2.
Here, new sub-populations are generated by genetic operations and the al-
gorithm starts a new generation if the maximum generation is not reached.

7.1.3 Genetic Operators

Traditional genetic operators are employed by the proposed MO-GPHH
methods. For crossover, GP uses the subtree crossover [103], which cre-
ates new individuals for the next generation by randomly recombining
subtrees from two selected parents. SPEA2 uses tournament selection to
select parents in the population with the highest fitness value in the tour-
nament. NSGA-II and HaD-MOEA use binary tournament selection based
on rank and crowding distance as explained in the previous section. For
DMOCC, binary tournament selection is used to select one parent from a
sub-population and one parent from the archive. Since individuals in the
archive have a rank of zero, the selection is made only based on the crowd-
ing distance in order to direct the search to less crowded areas. Here, mu-
tation is performed by the subtree mutation [103], which randomly selects
a node of a chosen individual in the population and replaces the subtree
rooted at that node by a newly randomly-generated subtree. For NSGA-II,
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1: initialise each sub-population Pr with r = {1, 2} Pr ← {pr1, pr2, . . . , prN}
2: A← {}
3: while maxGeneration is not reached do
4: for r = 1→ 2 do
5: for i = 1→ N do
6: S ← collaborate(pri , p

r′
rep) where r′ �= r

7: pri .objectives← evaluate(S)

8: end for
9: end for

10: A← update(A, P1, P2)

11: assign ranks and crowding distance
12: for r = 1→ 2 do
13: Pr ← genetic operations(Pr, A)

14: end for
15: end while
16: return A

Figure 7.4: Pseudo code for DMOCC.

SPEA2 and HaD-MOEA, the genetic operations will first randomly choose
which tree (either DR or DDAR) of the parents to perform the operations
on since each individual includes two trees for the two scheduling rules.
If the crossover is applied, only genetic materials from the selected tree of
the same type will be exchanged (e.g. a tree representing DR in one parent
will only crossover with a tree representing DR of the other parent).

7.1.4 Parameters

Table 7.2 shows the parameters used by the four proposed MO-GPHH
methods. SPEA2 applied tournament selection with a tournament size of
5 to select individuals for the genetic operations. NSGA-II, SPEA2, and
HaD-MOEA used a population size of 200 while DMOCC used a popu-
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Table 7.2: Parameter settings

Initialisation ramped-half-and-half [103]
Crossover rate 90%
Mutation rate 10%
Maximum depth 8
Number of generations 100
Population size 200 for NSGA-II, SPEA2, and HaD-MOEA,

and 100 for each sub-population of DMOCC

lation size of 100 for each sub-population to ensure that the number of
program evaluations remains the same for all methods. The archive size
of SPEA2 and maximum-size of DMOCC are set to 200. These settings are
used so that the proposed methods will give the same number of non-
dominated scheduling policies at the end of each run.

7.1.5 Job Shop Simulation Model

The same simulation model used in Chapter 6 is employed here for train-
ing and testing purposes. Table 7.3 presents all the training and testing
simulation scenarios in our experiments. In each replication of a simula-
tion scenario, we start with an empty shop and the interval from the be-
ginning of the simulation until the arrival of the 1000th job is considered as
the warm-up time and the statistics from the next completed 5000 jobs (set
C) are recorded to evaluate the performance measures of the scheduling
policies as shown in Table 7.4. In this table, M is the number of machines
in the shop, w̄ is the average weight and 1

μ
is the average processing time

of an operation. The average values of these performance measures across
different simulation scenarios/replications are the objectives to be min-
imised by the proposed MO-GPHH methods.
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Table 7.3: Training and testing scenarios

Factor Training Testing

Number of machines 4,6 5,10,20
Utilisation 80%,90% 70%,80%,90%,95%
Distribution of processing time Exponential Exponential, Uniform
Distribution of # of operations missing missing,full

In the training stage, due to the heavy computation time, we only per-
form one replication for each scenario. In Table 7.3, there are (2×2×1×1) =
4 simulation scenarios used for evaluating the performance of the evolved
scheduling policies. It should be noted that the performance measures
are obtained for each scenario by applying the evolved scheduling poli-
cies thousands of times, since there are thousands of due date assignment
and sequencing decisions needed to be made during a simulation replica-
tion of that scenario. During the testing stage, each of the non-dominated
scheduling policies from a GP run is applied to (3×4×2×2) = 48 simula-
tion scenarios (see Table 7.3) and 5 simulation replications are performed
for each scenario; therefore, we perform 48 × 5 = 240 simulation replica-
tions for testing the performance of the obtained non-dominated schedul-
ing policies. Limited simulation scenarios are used in these experiments
as compared to those in Chapter 6 because the evaluation times of all
scheduling policies in the obtained Pareto fronts are very time-consuming.
The testing scenarios are selected to help us assess the performance of
evolved rules on seen and unseen cases.

7.1.6 Performance Measures for MO-GPHH Methods

Similar to other multi-objective optimisation applications, we are inter-
ested in the quality of the obtained Pareto fronts in terms of (1) conver-
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Table 7.4: Performance measures of scheduling policies

Makespan [153] Cmax = maxj∈C{fj}

Normalised Total Weighted Tardiness [185] TWT =
∑

j∈C
wjTj

|C|×M× 1
μ
×w̄

Mean Absolute Percentage Error [19] MAPE = 1
|C|
∑

j∈C
|ej |
fj

gence to the trade-off solutions and (2) the spread or distribution of the so-
lutions on the obtained Pareto front. Three popular performance metrics
for multi-objective optimisation are used here: hypervolume ratio (HVR)
[196, 183]; SPREAD [52]; and generational distance (GD) [8].

Hypervolume (HV) and Hypervolume Ratio (HVR)

Hypervolume is used to measure the “volume” in the objective space cov-
ered by the obtained non-dominated solutions for minimisation problems,

HV = volume(

nPF⋃
i=1

νi) (7.1)

where nPF is the number of members in the obtained Pareto front PFknown,
νi is the hypercube constructed with a reference point and the member
i as the diagonal of the hypercube [196]. van Veldhuizen and Lamont
[183] normalised HV by using the hypervolume ratio which is the ratio of
the hypervolume of PFknown and the hypervolume of the reference Pareto
front PFref ,

HV R =
HV (PFknown)

HV (PFref)
(7.2)

The Pareto fronts found with larger HVRs are preferred as they contain
quality and widespread solutions.
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SPREAD

This metric measures the non-uniformity of PFknown [52]. A widely and
uniformly spread out set of non-dominated solutions in the PFknown will
result in a small SPREAD.

SPREAD =
df + dl +

∑nPF−1
i=1 |d′i − d̄|

df + dl + (nPF − 1)d̄
(7.3)

where d′i is the Euclidean distance between member i and its nearest mem-
ber in PFknown, d̄ is the average of all d′i, and df and dl are the Euclidean
distances between the extreme solutions and the boundary solutions of
PFknown.

Generational Distance (GD)

This metric is used to measure the distance between the obtained Pareto
front (PFknown) and the reference Pareto front (PFref ) [8],

GD =

(
1

nPF

nPF∑
i=1

d2i

)1/2

(7.4)

where di is the Euclidean distance between the member i in PFknown and
its nearest member in PFref .

PFref is normally the true Pareto front, which is unknown in the sim-
ulation here. Therefore, we need to adopt a reference Pareto front PFref
in the calculation of these performance metrics. In this work, PFref in-
cludes the non-dominated scheduling policies extracted from all schedul-
ing policies found by the four MO-GPHH methods (NSGA-II, SPEA2,
HaD-MOEA, and DMOCC) in all independent runs. Basically, the evolved
scheduling policies from 4 (methods) × 30 (runs) = 120 Pareto fronts are
combined into a common pool, and the non-dominated sorting technique
(as employed in NSGA-II) is used to find the non-dominated scheduling
policies from this pool.
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7.2 Results

In order to evaluate the effectiveness of the proposed methods, 30 inde-
pendent runs of each MO-GPHH method are performed and the evolved
Pareto fronts obtained from each run are recorded. The evolved non-
dominated scheduling policies (SPs) are then compared with the existing
SPs based on combinations of well-known dispatching rules with dynamic
and regression-based due date assignment rules.

7.2.1 Pareto Front of the Evolved Scheduling Policies

Figure 7.5(a) and Figure 7.5(b) show the aggregate Pareto fronts extracted
from all the evolved scheduling policies, which were obtained by the four
proposed MO-GPHH methods in 30 independent runs for both the train-
ing and testing scenarios. It can be observed that the three objectives Cmax,
TWT and MAPE are conflicting objectives. When tracing along the Pareto
front to find SPs that are able to minimise Cmax and TWT, it can be seen that
the value of MAPE tends to be increased. This suggests that scheduling poli-
cies that provide better shop performance (small Cmax and TWT) will result
in flowtimes that are hard to predict accurately (large MAPE). Given a sim-
ilar value of MAPE, trade-off between Cmax and TWT can also be observed,
which suggests that there is no evolved dispatching rule that can simulta-
neously optimise these objectives. Such an observation is consistent with
those discussed in the literature [88, 181].

In both the testing and training scenarios, it is observed that Cmax and
TWT can be significantly reduced by using SPs with MAPE smaller than 0.5.
The use of more sophisticated SPs can provide slightly better Cmax and TWT

but they also make the job flowtimes much more difficult to be estimated.
These results show that there are many trade-offs to be considered when
selecting an appropriate SP for a scheduling system and the knowledge
about these trade-offs is useful in making a better decision. For example,
the obtained Pareto fronts suggest that much better delivery reliability (a
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small MAPE) can be achieved with a reasonable sacrifice in Cmax or TWT. How-
ever, if a single objective such as Cmax or TWT is to be minimised in this
case, the evolved SPs will lead to very poor delivery reliability (a high
MAPE) and thus reduce the customer satisfaction. Also, given the shape of
the Pareto fronts in Figure 7.5, it would be difficult to apply a traditional
linear combination of objective values for fitness assessment to find de-
sirable rules due to the difficulty in identifying suitable weights for each
objective. These observations show that handling multiple objectives with
knowledge about their Pareto front is crucial for the design of effective
SPs.

7.2.2 Comparison to Existing DRs and Dynamic DDARs

The combination of six popular DRs and three dynamic DDARs are eval-
uated on both the training and testing scenarios. The results (red +) are
compared with the evolved non-dominated SPs as shown in Figure 7.5.
The six DRs used in this comparison are First-In-First-Out (FIFO), Critical
Ratio (CR), Slack-per-Operation (S/OPN), Shortest Processing Time (SPT)
[145], weighted Apparent Tardiness Cost (ATC) and weighted Cost Over
Time (COVERT) [185]. The parameters of ATC and COVERT are the same
as those used in Vepsalainen and Morton [185] (k = 3 for ATC, k = 2

for COVER, and the leadtime estimation parameter b = 2). The three dy-
namic DDARs are DTWK, DPPW [41] and ADRES [19]. These DDARs are
selected for comparison because they are well-known in the scheduling
literature and the application of these rules does not require predetermi-
nation of any parameter or coefficient for each simulation scenario. The
objective values obtained by these 18 combinations for the training and
testing scenarios are shown in Table 7.5 and Table 7.6 and are visualised as
crosses in Figure 7.5(a) and (b).

Among these existing scheduling policies, the ones given with FIFO

provide the best Cmax. The scheduling policies with DTWK provide the best
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Table 7.5: Performance of existing scheduling policies for
training scenarios (Cmax, TWT, MAPE)

DTWK DPPW ADRES

FIFO (101.5, 1.25, 0.81) (101.5, 0.71, 2.00) (101.5, 0.36, 1.05)

CR (174.6, 0.53, 0.73) (127.4, 0.52, 2.47) (178.0, 0.49, 1.33)

S/OPN (156.9, 0.42, 0.57) (114.0, 0.42, 1.63) (123.9, 0.14, 1.68)

SPT (575.8, 0.60, 0.67) (575.8, 0.69, 1.45) (575.8, 0.46, 4.96)

ATC (476.9, 0.32, 0.58 (504.3, 0.36, 1.32) (173.8, 0.06, 2.17)

COVERT (301.6, 0.25, 0.40) (362.9, 0.23, 1.00) (145.4, 0.09, 0.96)

Table 7.6: Performance of existing scheduling policies for
testing scenarios (Cmax, TWT, MAPE)

DTWK DPPW ADRES

FIFO (149.7, 0.73, 0.35) (149.7, 0.47, 0.80) (149.7, 0.21, 0.60)

CR (160.5, 0.19, 0.18) (115.2, 0.18, 0.71) (206.1, 0.03, 0.60)

S/OPN (159.9, 0.20, 0.20) (114.2, 0.19, 0.58) (184.6, 0.02, 0.74)

SPT (510.2, 0.68, 0.56) (510.2, 0.74, 0.86) (510.2, 0.45, 2.59)

ATC (302.8, 0.19, 0.29) (306.4, 0.19, 0.53) (220.4, 0.01, 1.05)

COVERT (242.8, 0.15, 0.21) (237.9, 0.14, 0.46) (152.2, 0.02, 0.55)

MAPE, and the combination of ATC and ADRES achieves the best TWT. How-
ever, these existing scheduling policies are easily dominated by the evolved
scheduling policies from the aggregate Pareto fronts as shown in Figure 7.5.
Moreover, when compared with the non-dominated scheduling policies
obtained by each independent run of NSGA-II, SPEA2, HaD-MOEA and
DMOCC, it can be observed from our experiments that these scheduling
policies are dominated by at least one of the evolved scheduling policies
using the proposed methods in both the training and testing scenarios.
These results show that the non-dominated scheduling policies evolved



7.2. RESULTS 207

by the proposed MO-GPHH methods not only show good performance
on the training scenarios, but can also be effectively reused for unseen sce-
narios.

7.2.3 Comparison to Existing DRs and Regression-based

DDARs

We further examine the effectiveness of the evolved SPs by comparing
them with existing DRs and regression-based DDARs. The four due date
assignment models used here are TWK, NOP, JIQ and JIS in combination
with the six dispatching rules reported in the previous section.

Different from the dynamic DDARs, the coefficients of the employed
models have to be determined by regression methods for each job shop
setting. Figure 7.6 and Table 7.7 show the performance of these (6×4) = 24

combinations and the aggregate Pareto front of the non-dominated schedul-
ing policies for the case with utilisation of 90%, 5 machines, full setting
and processing times following an exponential distribution. In this case,
the coefficients of the due date assignment models TWK, NOP, JIQ and JIS
were determined by using Iterative Multiple Regression (IMR) [66]. The
values shown in the figure are the average values of the three objectives
obtained from 30 independent simulation replications.

Since this work deals with a dynamic JSS environment with stochas-
tic factors (such as arrival process, processing time), we also examine the
Pareto dominance of SPs under uncertainty. We will utilise the concept
of statistical Pareto dominance based on OBJW introduced in Section 5.1.5
to help determine the Pareto dominance relation between two scheduling
policies in this case.

The results show that each of the 24 existing SPs considered here is sta-
tistically dominated (with a significant level α = 0.05 and using the Bon-
ferroni method [128] used to adjust the value of each individual statistical
test) by
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Table 7.7: Performance of DRs and regression-based DDARs

Cmax TWT MAPE

FIFO+ TWK 129.381± 27.26 3.231± 1.38 0.495± 0.05

FIFO+ NOP 129.381± 27.26 1.933± 1.31 0.451± 0.09

FIFO+ JIQ 129.381± 27.26 0.924± 0.09 0.178± 0.01

FIFO+ JIS 129.381± 27.26 0.871± 0.13 0.178± 0.01

CR+ TWK 183.169± 44.14 1.239± 1.06 0.291± 0.07

CR+ NOP 139.275± 40.01 1.183± 0.94 0.310± 0.09

CR+ JIQ 103.784± 15.15 0.406± 0.04 0.084± 0.01

CR+ JIS 102.935± 16.73 0.384± 0.04 0.085± 0.01

S/OPN+ TWK 156.279± 27.73 1.650± 1.36 0.440± 0.10

S/OPN+ NOP 126.500± 29.73 1.698± 1.44 0.375± 0.10

S/OPN+ JIQ 102.718± 15.44 0.383± 0.05 0.088± 0.08

S/OPN+ JIS 101.404± 15.74 0.390± 0.07 0.089± 0.09

SPT+ TWK 603.661± 235.69 0.996± 0.30 0.608± 0.03

SPT+ NOP 603.661± 235.69 1.370± 0.33 0.844± 0.03

SPT+ JIQ 603.661± 235.69 0.979± 0.29 0.632± 0.02

SPT+ JIS 603.661± 235.69 0.990± 0.30 0.616± 0.02

ATC+ TWK 600.539± 213.47 0.507± 0.19 0.481± 0.04

ATC+ NOP 609.517± 200.21 0.702± 0.21 0.441± 0.03

ATC+ JIQ 570.168± 201.18 0.409± 0.10 0.395± 0.02

ATC+ JIS 548.237± 190.89 0.381± 0.08 0.362± 0.02

COVERT+ TWK 511.948± 204.55 0.424± 0.18 0.225± 0.03

COVERT+ NOP 540.604± 210.92 0.483± 0.19 0.233± 0.04

COVERT+ JIQ 379.399± 141.83 0.258± 0.03 0.141± 0.02

COVERT+ JIS 336.875± 116.26 0.237± 0.02 0.135± 0.02

at least one evolved SP in the aggregate Pareto front, which is indicated
as a dominating evolved scheduling policy in Figure 7.6 and Table 7.8. This
further shows the high-quality of the evolved SPs even when they are
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Table 7.8: Performance of dominating evolved scheduling policies

SP/Objective Cmax TWT MAPE

#1 91.507± 15.32 0.204± 0.04 0.114± 0.01

#2 91.824± 15.47 0.194± 0.04 0.114± 0.01

#3 95.497± 16.46 0.135± 0.02 0.116± 0.01

#4 95.590± 16.61 0.182± 0.03 0.093± 0.01

#5 96.075± 16.85 0.134± 0.02 0.117± 0.01

#6 96.996± 16.67 0.182± 0.03 0.093± 0.01

#7 101.597± 15.45 0.180± 0.02 0.097± 0.01

#8 102.104± 17.60 0.171± 0.02 0.111± 0.01

#9 102.430± 19.77 0.133± 0.01 0.127± 0.01

#10 102.562± 18.31 0.132± 0.01 0.122± 0.01

#11 102.567± 19.25 0.122± 0.01 0.125± 0.01

#12 102.885± 18.65 0.118± 0.01 0.135± 0.02

#13 103.970± 18.12 0.106± 0.02 0.138± 0.02

#14 106.151± 17.82 0.096± 0.01 0.084± 0.01

#15 106.892± 17.40 0.085± 0.01 0.136± 0.02

#16 107.526± 21.07 0.086± 0.01 0.122± 0.01

#17 109.083± 18.78 0.165± 0.01 0.066± 0.01

#18 110.068± 22.30 0.126± 0.01 0.071± 0.01

#19 110.518± 19.41 0.163± 0.01 0.069± 0.01

#20 110.667± 19.84 0.154± 0.01 0.068± 0.01

#21 110.754± 19.52 0.080± 0.01 0.136± 0.02

#22 111.922± 19.59 0.040± 0.01 0.134± 0.01

#23 112.373± 17.29 0.040± 0.01 0.122± 0.01

#24 114.717± 23.73 0.072± 0.01 0.097± 0.01

#25 115.209± 24.68 0.057± 0.01 0.101± 0.01

#26 116.613± 22.75 0.069± 0.01 0.091± 0.01

#27 120.045± 27.26 0.053± 0.01 0.107± 0.01

#28 120.625± 25.72 0.052± 0.01 0.107± 0.01

#29 124.931± 24.49 0.065± 0.01 0.095± 0.01

#30 125.122± 26.18 0.065± 0.01 0.096± 0.01

#31 132.354± 26.58 0.105± 0.01 0.080± 0.01
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compared with customised SPs. Figure 7.6 also reveals that the combi-
nations of existing DRs and DDARs do not cover all promising regions
in the objective space. This observation suggests that automatic design
methods like the proposed MO-GPHH methods are essential in order to
provide informed knowledge about any potential SPs. Moreover, these
results suggest that the evolved SPs are robust to uncertain JSS environ-
ments even though they are trained/evolved based on the mean values of
the objectives across different simulation scenarios.

7.3 Further Analysis

The comparison results in the previous section have shown the effective-
ness of the proposed MO-GPHH methods for evolving efficient SPs. In
this section, we will compare the ability of the proposed MO-GPHH meth-
ods in exploring the Pareto front of non-dominated SPs.

7.3.1 Performance of MO-GPHH Methods

The performance indicators of the four MO-GPHH methods are shown in
Figure 7.7 and Figure 7.8 (better methods have higher HVR and smaller
SPREAD and GD). With the training scenarios, Wilcoxon signed-rank tests
(with significance level of 0.05) show that the HVRs obtained by DMOCC,
NSGA-II, and HaD-MOEA are significantly better (higher) than that of
SPEA2. This means that the SPs obtained by these methods can signifi-
cantly dominate those obtained by SPEA2. In terms of HVR, there is no
significant difference between DMOCC, NSGA-II, and HaD-MOEA but
the standard deviations of HVRs obtained by DMOCC and HaD-MOEA
are slightly smaller than those obtained by NSGA-II. For the distribution
of the obtained SPs on the Pareto fronts, the SPREAD values obtained
by DMOCC and HaD-MOEA are significantly better than those obtained
by NSGA-II and SPEA2. Although DMOCC uses crowding distance (like
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Figure 7.7: Performance of MO-GPHH methods on the training scenarios.
(HVR to be maximised; and SPREAD and GD to be minimised).

NSGA-II) as the indicator for individuals in less crowded areas, the selec-
tion method for choosing representative individuals as well as individu-
als for crossover has significantly improved the uniformity of the Pareto
fronts obtained by DMOCC. Given a better distribution of scheduling poli-
cies, GD of DMOCC is significantly smaller than NSGA-II although there
is no significant difference in HVR. Overall, DMOCC and HaD-MOEA are
the two most competitive methods for the problems studied in this chap-
ter. It should be noted that performances of the obtained non-dominated
SPs on the testing scenarios are rather consistent with those obtained in
the training scenarios. However, the SPREAD of DMOCC is significantly
better than all the other methods. These experimental results show that
the proposed DMOCC is a very promising approach for evolving highly
efficient SPs.

7.3.2 Complexity of DMOCC

The complexity of DMOCC depends on the operations performed at each
generation. Similar to NSGA-II, the three basic operations of DMOCC
are (1) non-dominated sorting, (2) crowding-distance assignment, and (3)
sorting for genetic and representative selection. For non-dominated sort-
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Figure 7.8: Performance of MO-GPHH methods on the testing scenarios.

ing, we adopt the procedure proposed by Deb et al. [52], which results
in the worst-case complexity of O(MR2) where M is the number of ob-
jective functions to be minimised and R is the size of the joined popula-
tion. Assuming that the size of each sub-population N is the same and
the maximum size of the archive is A, the size of the joined population is
R = 2N + A. The worst-case complexity of the crowding-distance assign-
ment and sorting for genetic operators and representative selection are
O(MR log(R)) and O(R log(R)), respectively. It is obvious that the com-
plexity of the algorithm is O(MR2), governed by the non-dominated sort-
ing procedure. Therefore, both the sub-population size N and archive size
A will influence the complexity of DMOCC. For complex problems where
GP needs a large population size in order to maintain the diversity of the
population, the complexity of NSGA-II (O(MN2)) will increase since its
complexity depends mainly on the population size. Because the number
of final non-dominated solutions is not necessarily as large as the popu-
lation, the complexity of DMOCC can be smaller than that of NSGA-II by
maintaining a small archive.
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7.3.3 Representative Selection

As mentioned earlier, representative selection is an important factor in the
proposed cooperative coevolution method. Here we will examine the in-
fluence of representative selection methods on the performance of the pro-
posed DMOCC. Apart from the representative selection method discussed
above, two other methods are also examined here. The first is a problem-
based method which applies two different representative selection strate-
gies for each sub-population. In this method, the representatives of the
sub-population of DRs are selected by using a similar method to that in
DMOCC (based on the non-dominated rank and crowding distance). On
the other hand, the representatives of DDARs are selected based on the
values of MAPE. This method assumes that good DDARs (with small values
of MAPE) are able to cope with a wide range of DRs, and thus it will only fo-
cus on MAPE when selecting representatives to form complete SPs with the
evolved DRs. The second method simply selects random representatives
from each sub-population. The performances of the three representative
selection methods are shown in Figure 7.9 and Figure 7.10. The DMOCC-P
and DMOCC-R are similar to DMOCC, except that they employ problem-
based and random representative selection methods, respectively.
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Figure 7.9: Influence of representative selection methods on the training
scenarios.
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Figure 7.10: Influence of representative selection methods on the testing
scenarios.

The results from these figures show that the HVR values of the three
selection methods are not significantly different. However, DMOCC gives
significantly better SPREAD and GD performances as compared to DMOCC-
P and DMOCC-R. Also, the DMOCC-P is better than DMOCC-R according
to these two performance metrics. The results show that it is important to
include the representative selection method based on the non-dominated
rank and crowding distance. Although individuals selected for genetic op-
erations for each sub-population also employ the non-dominated rank and
crowding distance, the features of non-dominated rank and crowding dis-
tance still have a strong impact on the performance of the representative
selection method. Also, the evolved DDARs with good MAPE are not neces-
sarily suitable for a wide range of DRs, since DMOCC-P does not produce
Pareto fronts with the performance of SPREAD as good as DMOCC.

7.3.4 Choice of Training Scenarios

Like other machine learning methods, it would be interesting to examine
how the choices of training sets or training scenarios may influence the
ability of the proposed MO-GPHH in exploring effective scheduling poli-
cies. Previously, we have trained the proposed MO-GPHH on scenarios
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with the missing setting of arriving jobs. This section will further examine
the cases where full and missing+full settings are used. The first case used
4 simulation scenarios and the second case used 8 simulation scenarios for
training. Figure 7.11 shows the performance of DMOCC on the testing
scenarios when different training scenarios have been used.

The results show that there is no significant difference between the
cases where either missing or full setting is used. When both missing and
full settings are used for training, the obtained HVRs are significantly bet-
ter than those obtained in the cases where either missing or full setting
is used and there is no significant differences in SPREAD and GD. This
indicates that more general training scenarios are necessary in order to
improve the quality of the evolved scheduling policies. Although the sim-
ulation scenarios with jobs following the missing setting also include jobs
following the full setting, it is still unable cover all situations that hap-
pened in the simulation scenarios with jobs following the full setting. The
major problem is that the use of a large number of simulation scenarios
will increase the computation cost of the proposed methods. Thus, there
is a trade-off between the computational effort and the reusability of the
evolved scheduling policies. Depending on the available computational
resources and the environments where the evolved scheduling policies
will be applied, the training simulation scenarios should be logically se-
lected.

7.3.5 The Evolved Scheduling Policies

This section investigates how the evolved scheduling policies can effec-
tively solve the problem and how trade-offs can be made among different
objectives. Since many SPs have been obtained from our experiments, we
will present some examples of the SPs. Figure 7.12 is the same as Figure
7.5(a) with a different view and the points surrounded by rectangles are
the example SPs, which are also presented in Table 7.9.
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Figure 7.11: Influence of training scenarios on testing performance of
DMOCC.
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Figure 7.12: Pareto front and selected evolved scheduling policies.

In general, the evolved rules are not very complicated and are in forms
that are explainable, especially for the DDARs, which are simply linear
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Table 7.9: Examples of the evolved scheduling policies

Scheduling Policy #1 (Cmax = 90.774, TWT = 0.170, MAPE = 0.098)

DR : 2RO2MP
(0.9087407−RJ)

+ IF(max(BWR, WR) − 2SJ,−PR,−RJ)
DDAR: OT+ LOT + QWL

Scheduling Policy #2 (Cmax = 83.597, TWT = 0.048, MAPE = 0.312)

DR : max(−0.043989424, 1
PR
(2PR+RT

PR
+ max(RT, PR)− SJ))

DDAR: OT+ LOT + QWL

Scheduling Policy #3 (Cmax = 66.844, TWT = 0.311, MAPE = 0.608)

DR : RTRO
PR

+ IF(−CWRSJ
PR
, DJ, RT(RO

PR
)2)− 2rJ + W

DDAR: OT+ 2LOT + QWL

Scheduling Policy #4 (Cmax = 68.162, TWT = 0.059, MAPE = 1.321)

DR : RT(2RO
PR
− CWR)− 3rJ + W

DDAR: OT+ 2LOT + 2QWL + 2SOTR
∗These rules have been simplified for better presentation but still ensure to achieve the same objective values
obtained by the original evolved rules.
∗IF(a, b, c) will return b if a ≥ 0; otherwise it will return c.

combinations of different terms. Scheduling Policy #1 is the one that
achieves the best MAPE among the four SPs. Since Scheduling Policy

#2 also employs the same DDAR, the better MAPE obtained by the first
SP is strongly influenced by its DR. The first component of the DR in
Scheduling Policy #1 will be negligible at the latter stage of the simulation
since it has RJ in its denominator, which increases with the time. There-
fore, this component has little impact on the performance of the schedul-
ing policy and the performance of the rules will be governed by the second
component. At the first glance, the second component is a combination of
both SPT and FIFO because the priorities of jobs are either −PR (higher
priority for jobs with smaller processing time) or −RJ (higher priority for
jobs arriving at the machine earlier). The switch between FIFO and SPT
is controlled by max(BWR, WR) − 2SJ. In the case that the slack of jobs SJ is
positive (not late) and larger than 1

2
max(BWR, WR), FIFO will be applied; oth-
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erwise SPT will be used. The purpose of this rule is to maintain a more pre-
dictable flow (by FIFO) of jobs when the jobs are not late, and to finish jobs
with a smaller processing time first so as to reduce the number of jobs in
the shop. These features make the flowtime prediction by OT + LOT + QWL

more accurate because it is important for a shop to have a smooth flow of
jobs.

Scheduling Policy #2 provides a better Cmax and TWT as compared to the
first SP. Different from the DR in the first SP, the DR in this SP emphasises
more on reducing the time jobs stay in the shop as well as on reducing the
lateness of jobs. In this case, the rule will give a higher priority to jobs with
a higher RT in order to reduce its flowtime (and the makespan in general).
In the case that jobs have large negative slacks, the rule will give a higher
priority to jobs with larger negative slacks and reduce the lateness of jobs.
However, because this rule will disturb the flow of jobs, the prediction will
become less reliable.

Scheduling Policies #3 and #4 are the two SPs that provide the small-
est makespans among the four. In general, the DRs in these two SPs give a
higher priority for jobs with a larger RT and RO and a smaller release time
rJ in order to reduce the makespan. However, when these values are sim-
ilar for the considered jobs, W is used to break the ties and gives a higher
priority to jobs with higher weights. The focus on makespan has made the
delivery performance of Scheduling Policy #3 worse as compared to the
first and the second SPs. Scheduling Policy #4 tries to minimise TWT by
over-estimating the flowtimes for reducing the tardiness of jobs. The con-
sequence is that the reliability of the due date is deteriorated significantly.

From Scheduling Policies #1 to #4, MAPE tends to be increased and
either Cmax or TWT is reduced, especially for Cmax. Tracking the evolved
SPs along this direction helps explain how the trade-offs can be achieved,
mainly between Cmax and MAPE. When observing the evolved SPs on the
Pareto fronts along other directions, we are also able to explore other types
of trade-offs, e.g., accepting a higher makespan for a better TWT. Since the
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evolved SPs are constructed based on the genetic materials of other SPs or
individuals, we can easily examine the connection among these SPs and
understand what creates the trade-offs. In other words, the evolved DRs
and DDARs are interpretable in this case.

7.4 Chapter Summary

Designing an effective scheduling policy is challenging and time-consuming
because it needs to take into account multiple scheduling decisions and
conflicting objectives in a manufacturing system. The original contribu-
tions of this chapter can be summarised as follows. First, we developed ge-
netic programming based hyper-heuristics for automatic design of schedul-
ing policies. The novelty here is on the representations and evolutionary
search approaches to handling multiple scheduling rules and conflicting
objectives in the evolution of scheduling policies. Four genetic program-
ming based hyper-heuristics have been proposed in this chapter. The per-
formances of the proposed methods were examined by training and test-
ing the evolved scheduling policies on various simulation scenarios. The
results show that the evolved scheduling policies outperform the existing
scheduling policies created from combinations of popular dispatching and
dynamic or regression-based due-date assignment rules on both the train-
ing and testing scenarios. Moreover, the Pareto fronts obtained also pro-
vide much better knowledge about the space of potential scheduling rules,
which cannot be achieved by simple combinations of existing scheduling
rules or by methods using an aggregate objective function to handle mul-
tiple objectives. Another advantage of the proposed methods is that they
perform well on unseen situations, which makes the evolved scheduling
policies more robust when they are employed in stochastic and dynamic
job shops. Analysis of the evolved scheduling policies also shows that the
proposed methods can evolve not only effective but also very meaningful
scheduling policies. In addition, it is easy to apply the proposed method
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to track the evolved scheduling policies along the Pareto front for better
understanding of the trade-off among different objectives.

The second contribution is the development of a diversified multi-objective
cooperative coevolution method, which shows favourable performance as
compared to other popular evolutionary multi-objective search strategies.
The experimental results show that the proposed DMOCC method can
evolve Pareto fronts that are better than NSGA-II and SPEA2. It is also
very competitive on all performance metrics for the training scenarios and
provides a better spread of the evolved scheduling policies for the test-
ing scenarios. Further analysis also shows that the representative selec-
tion strategies based on non-dominated rank and crowding distance play
a very important role in the proposed cooperative coevolution for evolv-
ing well-distributed Pareto fronts. Another advantage of the coevolution
approach is that multiple scheduling decisions can be evolved in different
sub-populations in order to reduce the complexity of evolving the sophis-
ticated scheduling policies. This method can be modified to take advan-
tage of parallelisation techniques so as to reduce the computational time.

For future studies, we will enhance the performance of the proposed
cooperative coevolution method by improving representation of the schedul-
ing rules, genetic operations and strategies to explore optimal Pareto fronts.
When examining the impact of the training scenarios, it has been observed
that general training scenarios helped improve the quality of the evolved
scheduling policies. However, this also increased the computational time,
and thus we will also study decomposition approaches for better learn-
ing/evolving in the algorithm. The incorporation of other scheduling
rules such as order review/release and order acceptance/rejection will
also be considered. In addition, we want to extend the proposed methods
to evolve heterogeneous scheduling rules for shops with specialised ma-
chines or groups of machines (batch processing, machines with sequence-
dependent setup, etc.). Besides, we will further examine the performance
of DMOCC on other multi-objective optimisation problems.
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Chapter 8

Conclusions

This thesis focuses on developing new GPHHs for job shop scheduling
problems. The overall goal is to enhance the performance of GPHHs for
JSS by investigating different key aspects of GP and JSS such as represen-
tations, evaluation schemes for evaluating dispatching rules, and evolu-
tionary search mechanisms. In order to achieve this goal, several new GP
methods are developed to evolve effective dispatching rules which can
cope with complex characteristics of JSS. The reusability and the effec-
tiveness of the evolved dispatching rules are measured by using popular
benchmark JSS instances and simulation models in the literature.

The rest of this chapter provides conclusions for each of the research
objectives of this thesis and gives main conclusions and highlights from
each chapter. Then, insightful discussions are provided to help under-
stand key issues in this research direction. Finally, the chapter presents
potential research areas for future works.

8.1 Achieved Objectives

The following research objectives have been fulfilled by this thesis:

223
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• Through this thesis, three new GP methods were developed to evolve
dispatching rules with adaptive behaviours. The first two GP meth-
ods corresponding to representations R1 and R3 (Chapter 3) focus
on embedding machines attributes and the non-delay factor into the
evolved rules to help them adapt their decisions based on changes
in the shop. The third method aims to design iterative dispatching
rules (Chapter 4) which can learn from the mistakes made by previ-
ous completed schedules to construct (and fine-tune) better schedul-
ing decisions. The experimental results show that the new proposed
methods can evolve rules that are significantly better than rules evol-
ved by other GP methods and well-known dispatching rules in the
literature. Within the three proposed methods, the GP method to
evolve iterative dispatching rules shows the best performance when
tested on a set of benchmark static JSS instances.

• This thesis developed a new multi-objective GPHH (Chapter 5) to
evolve a Pareto front of non-dominated dispatching rules for JSS. In-
stead of evolving a single rule with assumed preferences between
different objectives, the new methods simultaneously evolve non-
dominated rules to help decision makers select appropriate rules
based on further knowledge of possible trade-offs. The results show
that the evolved Pareto front contains rules that are significantly bet-
ter than the best existing rules in the literature for a specific objective.
Moreover, we find that GP can help explore rules with much better
trade-offs as compared to dispatching rules designed by human ex-
perts when multiple conflicting objectives are considered.

• This thesis developed new GPHHs to design scheduling policies for
JSS by simultaneously evolving multiple scheduling rules for mul-
tiple scheduling decisions. Besides the sequencing decisions, this
thesis also focuses on due date assignment decisions (Chapter 6) to
improve the delivery performance of job shops. The cooperative co-
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evolution approach (Chapter 7) is employed to evolve rules for han-
dling a specific scheduling decision from a specific sup-population to
reduce the complexity of evolving sophisticated scheduling policies.
In order to explore non-dominated scheduling policies, a new evo-
lutionary search mechanism and customised genetic operations are
proposed. The experimental results show that the evolved schedul-
ing policies are significantly better than scheduling policies in the
literature. Detailed analysis also shows that the evolved scheduling
policies are interpretable and we can understand how trade-offs be-
tween different objectives can be made.

8.2 Main Conclusions

This section presents the main conclusions for the three research objectives
drawn from the five major contribution chapters (Chapter 3 to Chapter 7).

8.2.1 Representations and Evaluation Schemes

In order to evolve dispatching rules for scheduling problems, two key im-
portant issues must be handled. First, we need to decide how rules can
be represented by GP programs. Second, given a specific representation
of rules, we need to determine how the outputs from the rules are used to
construct schedules.

Representations

Similar to any application of evolutionary computation, representations
play a very important role in the effectiveness of GP for JSS problems. Pre-
vious works have only focused on simple arithmetic representation since it
is the most straightforward way to represent priority functions. However,
our work has shown that arithmetic representation is not the unique way
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to deal with scheduling problems. Assuming that good attributes and ef-
fective rules are available, we can apply a decision-tree like representation
to create adaptive behaviours for our evolved rules (as shown in Chapter
3). In the case that scheduling problems are too complicated and exist-
ing dispatching rules are not sufficient to handle all possible situations,
a hybrid (or mixed) representation between decision-tree like representa-
tion and arithmetic representation can be used. The main advantage of
the hybrid representation is that we do not need to rely on existing rules
(which can cause certain biases because these rules are usually designed
by a human expert for some specific situations). Therefore, the hybrid rep-
resentation can help improve the generality of evolved rules by preventing
overfitting problems.

In order to allow GP to evolve more effective dispatching rules, dif-
ferent aspects have been considered through this thesis. One of the key
remarks on this issue is that more effective rules are usually evolved by
using sophisticated representations. The reason is that simple representa-
tions are not powerful enough to handle all possible situations (e.g. changes
of due date tightness). Our studies on iterative dispatching rules in Chap-
ter 4 show that the multiple-tree representation can help evolve better dis-
patching rules as compared to the single tree representation. Also, evolv-
ing an independent tree for the look-ahead strategy is useful to enhance
the competitiveness of evolved rules.

Evaluation Schemes

For JSS, our studies show that evaluation schemes are very important.
Given a specific representation, different evaluation schemes can be ap-
plied to solve JSS. While representations decide how the rules should look,
the role of evaluation schemes is not that straightforward. In this thesis,
evaluation schemes define how schedules or solutions are constructed (or
reconstructed); and therefore, define the nature of evolved rules of heuris-
tics.
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In Chapter 4, given the arithmetic representation, outcomes of evolved
rules can be very different. By using an evaluation scheme that iteratively
constructs new schedules, GP can significantly enhance the performance
of evolved rules. As a result, although the rules obtained by GP with the
simple evaluation scheme and the ”iterative” evaluation scheme are sim-
ply priority functions, they have different ways to find a final schedule.
For GP with a simple evaluation scheme, the evolved priority functions
act like construction heuristics that construct the schedule step by step (by
adding operations into the partial schedule). On the other hand, the prior-
ity functions representing iterative dispatching rules evolved by GP play
the role of both construction heuristics and improvement heuristics. As anal-
ysed in Chapter 4, these iterative dispatching rules have the characteristics
of local search heuristics. Understanding the characteristics of the evolved
rules has allowed us to enhance their performance, e.g., by applying the
concept of variable neighbourhood search.

Chapter 6 also emphasises the importance of evaluation schemes when
GP is employed to evolve due date assignment rules. In Chapter 6, exten-
sive experimental results indicate that operation-based due date assign-
ment rules are more effective than aggregate due date assignment rules.
The difference here is also caused by different evaluation schemes. Instead
of directly estimating job flowtimes, evaluating the GP tree to gradually
estimate operation flowtimes and partial job flowtimes can lead to bet-
ter predictions. In this case, aggregate due date assignment rules are just
simple functions while operation-based due date assignment rules can be
considered as recursive functions.

8.2.2 Multi-objective GPHH

Handling multiple objectives is important for practical applications in JSS.
In order to tackle multiple objectives, different aspects have to be consid-
ered.
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Evolutionary Search Mechanisms

The aim of MO-GPHH is to find the Pareto front of non-dominated schedul-
ing rules. In our work, the average measures from each objective obtained
from all training simulation scenarios are used to determine the Pareto
dominance of evolved rules.

In Chapter 5, a new MO-GPHH method is proposed. In this method,
we apply the harmonic crowding distances from HaD-MOEA and non-
dominated ranking to select evolved rules for genetic operations. The
experimental results have shown that the evolved rules are competitive
when tested on dynamic JSS simulation models with five objectives. The
evolved rules are not only better than existing rules designed for specific
objectives but also outperform existing rules in terms of Pareto dominance.
When comparing the Pareto front with a large set of existing rules, it can
be concluded that there are many promising trade-off dispatching rules
that have not been explored by human experts. This confirms the need
to have such an automatic design method as MO-GPHH to ensure that
potential non-dominated rules will not be ignored.

More challenges occur in Chapter 7 where two scheduling rules have to
be evolved simultaneously to satisfy multiple objectives. Methods similar
to MO-GPHH in Chapter 5 can still be applied. However, because of the
complexity of evolved schedule policies, that method (in Chapter 5) have
trouble finding effective and diverse Pareto fronts. A new evolutionary
search mechanism based on cooperative coevolution has been proposed.
This method allows specific rules to be evolved in sub-populations and
the quality of each scheduling rule is measured by combining the rule
with representative rules from the other sub-population to form a com-
plete scheduling policy. A new crossover operation and a new representa-
tive selection strategy are also developed to help diversify non-dominated
rules on the obtained Pareto front. The results show that the new evolu-
tionary search mechanism is very competitive and able to evolve Pareto
fronts with good uniformity.



8.2. MAIN CONCLUSIONS 229

Statistical Pareto Dominance

When dispatching rules are applied to dynamic and stochastic environ-
ments, assessing Pareto dominance becomes a challenging issue. To over-
come this problem, we have proposed two new statistical procedures in
Chapter 5 to help determine whether a dispatching rule statistically Pareto
dominates the another. The first procedure tries to determine the Pareto
dominance based on the overall dominance of each objective. The second
procedure emphasises more on the Pareto dominance in each simulation
replication. While the replication-wise procedure is simpler as compared
to the objective-wise procedure (only one statistical test is needed), it has
trouble detecting the dominance between two solutions when variances of
obtained objective values are large. The results show that the two proce-
dures provide consistent conclusions in our experiments.

Robustness

For a single objective, it is reasonably straightforward to evaluate the reusabil-
ity of evolved rules on unseen scenarios or instances. However, it is not a
trivial task in the case of multiple objectives. In this case, the reusability or
the robustness of evolved rules is not only decided by any specific objec-
tive but also based on the Pareto dominance relations. Chapter 5 presents
the first systematic approach to measuring the robustness of evolved rules
when multiple objectives are considered. The key idea of this approach is
to measure the robustness based on the difference in Pareto dominance re-
lations of evolved rules and benchmark rules across all simulation scenar-
ios. The experimental results indicate that evolved rules are quite robust
when tested on unseen simulation scenarios with five different objectives.

8.2.3 Evolving Comprehensive Scheduling Systems

In order to develop a comprehensive scheduling system, we have to en-
sure that all related decisions are considered and well coordinated. We
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deal with this problem by first developing GP methods for due date as-
signment (Chapter 6). Then, more sophisticated GP methods are proposed
to simultaneously deal with multiple decisions (Chapter 7).

Chapter 7 investigates two approaches to evolving scheduling poli-
cies consisting of dispatching rules and due date assignment rules. The
first approach tries to evolve GP individuals with two trees represent-
ing two scheduling rules (due date assignment and dispatching rules).
The second approach aims to reduce the complexity of evolving sophis-
ticated scheduling policies by co-evolving scheduling rules from specific
sub-populations. By applying this approach, we can easily adjust the
size of each specific sub-population depending on the complexity of each
scheduling rules (i.e. simple rules can be evolved from a smaller sub-
population). Also, a common external archive is used to store the non-
dominated scheduling policies from the two sub-populations to better as-
sess the quality of evolved scheduling rules and provide genetic materials
for the specialised crossover operation. The experimental results show
that the cooperative coevolution approach can effectively find the Pareto
front of non-dominated scheduling policies and have lower complexity as
compared to methods using the first approach.

8.3 Discussion

The previous section provided a summary of key findings in this thesis. In
this section, we provide further discussions on general issues covered by
the thesis and related to this field of research.

8.3.1 Job Shop Scheduling: Static vs Dynamic

Although job shop scheduling has been extensively studied in the litera-
ture, there are still missing links between research on static and dynamic
scheduling problems. Dispatching rules are an approach that can be adopted
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to handle both static and dynamic problems. However, because of the dif-
ference in the assumptions between the two problems, dispatching rules
that are effective for static problems do not necessarily perform well on
dynamic problems, and vice versa. Even though our ultimate goal is to
apply the rules to dynamic environments, studying rules under static en-
vironments is useful to understand how optimisation approaches can be
adapted to improve their scheduling performances.

In Chapters 3 and 4, several GP methods have been proposed to evolve
advanced dispatching rules. However, the evolved rules in these chapters
are still restricted to static problems either in terms of effectiveness or ap-
plicability. For example, as shown in the analysis section of Chapter 3, the
rapid changes of dynamic job shops make these evolved rules less effec-
tive. In Chapter 4, the iterative dispatching rules are very promising but
they cannot directly be applied to dynamic environments without con-
sidering other scheduling/planning factors such as planning periods (e.g.
new schedules are constructed every three working days) or job release
methods (which jobs are to be released at the beginning of a planning
period). The problems of iterative dispatching rules are similar to those
of other optimisation methods. However, these rules are much more ef-
ficient than traditional optimisation methods, which makes this method
attractive for complex and large-scale manufacturing systems.

The missing links between static and dynamic problems are not only
concerns in this thesis but also an interesting research topic in the research
community. This thesis has successfully reduced the gap between the two
problems by developing GP methods to evolve effective and flexible dis-
patching rules. We believe that it is a very promising research direction
that should attract more attention in the future studies.
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8.3.2 Need ”Better” Representations

Dispatching rules in the literature are usually in the form of arithmetic
functions. Most methods for evolving dispatching rules in this thesis also
employ the arithmetic representation. This is because arithmetic operators
provide a convenient way to represent the relationship between different
scheduling terms such as processing times and due dates. However, there
are still two main drawbacks with this representation:

• The sophisticated rules evolved by GP are sometimes not very intu-
itive. In order to understand these rules, we still need to simplify
the rules and utilise expert knowledge to explain evolved rules as
shown in the analysis throughout this thesis. This also causes diffi-
culty for the shop operators and production managers to understand
why jobs should be scheduled in a certain way. Therefore, we still
need to develop new representations with better interpretability.

• The quality of evolved rules also depends on the selected function
sets. Although basic functions such as +,−,× and % in combination
with conditional functions can help evolve very sophisticated func-
tions, finding these effective rules is still challenging because of local
optima and the large search space. For this reason, it is important to
develop new representations that can evolve good dispatching rules
and can be explored effectively by GP.

Moreover, it is important that the new representations can help avoid
overfitting issues of evolved rules and will not be too sensitive to the
choice of GP parameters. This thesis successfully made an attempt by
developing R1 and R3 representations, but more efforts are needed to im-
prove both quality and interpretability of evolved rules.



8.3. DISCUSSION 233

8.3.3 GPHHs and Other Optimisation Techniques

While treated as machine learning techniques throughout this thesis, our
proposed GPHHs have different relationships with other optimisation tech-
niques for JSS. GPHHs can also be considered as an optimisation approach
similar to applications of other meta-heuristics (e.g. genetic algorithms
and simulated annealing) for scheduling. The key difference is that GPHHs
explore the heuristic search space instead of the solution (schedule) search
space. From the implementation viewpoint, the output of GPHHs is an
instruction (rule or heuristic) on how a schedule is generated. Meanwhile
meta-heuristics produce a complete schedule of all jobs or at least a per-
mutation of jobs, which can easily be transformed into a detailed sched-
ule. Because of this difference, the obtained rules from GPHHs can be
reused for further problem instances while the obtained solutions from
meta-heuristics typically can only be used for the corresponding instances.

From the optimisation viewpoint, GPHHs still work on the same heuris-
tic search space regardless of the number of jobs or job information. On the
other hand, meta-heuristics work on different solution search spaces when
dealing with different problem instances. Therefore, the search space of
meta-heuristics increase as the number of jobs increase while the search
space of GPHHs remain the same. As the result, searching for good solu-
tions with meta-heuristics is more difficult than search for good dispatch-
ing rules as the number of jobs increases.

8.3.4 Multiple Scheduling Decisions

Handling multiple scheduling decisions is not a trivial task. Using GPHHs
to evolve multiple scheduling decisions can be challenging and time con-
suming. In this thesis, we apply the cooperative coevolution approach
to reducing the complexity of evolving multiple rules. This approach is
quite promising as shown in our experiments. Moreover, as we aim to
use GP for automatically designing the whole scheduling system involv-
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ing many related scheduling/planning decisions, cooperative coevolution
would be very useful. However, if we need to deal with multiple conflict-
ing objectives, representative selection strategies will play a very impor-
tant role, either to control the selection pressure or to maintain the diver-
sity of evolved non-dominated scheduling policies. This is still an open
topic for future research.

8.4 Future work

Applying GP for JSS in particular, and scheduling problems in general, is
still at a very early stage and there are many things to be done to make GP
a powerful method for scheduling problems. This section highlights some
future work, motivated by our studies in this thesis.

8.4.1 Feature Selection

Feature selection in GP is an important step to enhance the performance
of GP for evolving dispatching rules by (1) reducing the search space of
evolved rules, (2) improving the generality of the evolved rules, (3) deal-
ing with specific objectives (each objective may require a specific set of fea-
tures), and (4) creating specialised rules for complex processes (bottleneck
machine, batching, assembly, etc.). Because there are only a few studies
that have considered feature selection when learning scheduling rules in
the literature, there are many issues that need to be investigated.

Besides selecting low-level features, future studies need to focus on
constructing high-level features evolved by GP. We can develop two-stage
learning systems in which GP is employed at the first level to evolve good
high-level features; then the second stage will employ GP or other ma-
chine learning approaches (neural network, decision tree, etc.) to learn
effective rules based on the evolved features.
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8.4.2 Advanced Dispatching Rules for Dynamic JSS

Evolving dispatching rules with GP for dynamic JSS environments is shown
to be very promising. Currently, we have only inspected the use of GP to
evolve composite dispatching rules (priority functions) and many key as-
pects have not been considered yet. Some potential approaches to enhanc-
ing the quality of evolved rules are: (1) predicting the future impact of
a sequencing decision, (2) evolving self-adapted dispatching rules which
can improve performance by adjusting their behaviour based on historical
data, and (3) evolving periodic scheduling/rescheduling rules by apply-
ing the rolling horizon concept.

8.4.3 Hybrid Hyper-heuristic Methods

Dealing with multiple scheduling decisions and multiple conflicting ob-
jectives creates great challenges for hyper-heuristics. In this thesis, all
scheduling rules are automatically designed by the tree-based GP. How-
ever, tree-based GP is not necessarily the best method to evolve each schedul-
ing rule. Future work needs to explore other machine learning methods
such as linear GP and learning classifier systems. As a result, effective
hyper-heuristics could involve combinations of different machine learn-
ing methods.

8.4.4 Benchmarks of Dynamic JSS

Most experiments on dynamic JSS are restricted to simple balanced job
shops. In order to have a good assessment of hyper-heuristics, a more
comprehensive set of benchmarks are needed. The benchmarks should be
categorised into different classes based on the sets of features, the flow of
jobs, the flexibility of machines, specialised operations (batching, assem-
bly, etc.). These factors strongly influence the complexity of the shops and
help create a standard way to evaluate the effectiveness of hyper-heuristics
and GP methods.
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8.4.5 Two-Stage Learning/Optimising Systems

For static scheduling problems, a two-stage learning/optimising system
can be developed. The objective of such a system is to use GPHHs for
offline learning of reusable scheduling rules which can be reused to gen-
erate initial solutions for meta-heuristics. By applying this system, we can
reduce the computational time of meta-heuristics by providing them with
good initial solutions. We expect that this system can utilise the advan-
tages of GPHHs and meta-heuristics to compensate their weakness. Spe-
cially, GPHHs can help quickly produce good solutions for complex and
large scheduling problems and reduce the total time of the system to find
near optimal solutions. Meanwhile, meta-heuristics help refine the solu-
tions provided by GPHH to improve the quality of solutions found by the
system. This combination forms an effective and efficient way to handle
scheduling problems.



Glossary of Terms
This glossary provides a list of common terminology used across this the-
sis and along with their definitions.

active schedule A schedule in which no operation can start earlier without
delaying other operations.

arrival rate The rate that jobs arrive at the manufacturing system.

cooperative coevolution A evolutionary computation framework in which
solutions are decomposed to be evolved by different sub-populations.

crossover A genetic operation used to combine the genetic materials from
two parents to create a new individual.

crowdedness A measure of how crowded the area surrounding a solution
is in multi-objective optimisation.

dispatching rule A simple heuristic which is used for sequencing tasks in
a scheduling problem. At the moments when a sequencing decision
needs to be made, dispatching rules will prioritise the jobs in the
queue of the machine. Then, the job with the highest priority is the
next one to be processed at the corresponding machine.

due date assignment A scheduling decision that determines the due date
for a new arriving job (new order received from a customer).

dynamic job shop scheduling A scheduling problem in job shops where
new jobs arrival over time, usually according to some stochastic pro-
cess.
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evaluation In evolutionary computation, evaluation is an important step
to determine the fitness of an individual. It also strongly influences
the computational times of the considered algorithm.

evolutionary algorithm A subfield of evolutionary computation that fo-
cuses on algorithms inspired by Darwinian biological evolution.

evolutionary computation A research area in artificial intelligence that fo-
cuses on developing nature-inspired algorithms.

evolutionary multi-objective optimisation A subfield of evolutionary com-
putation that focuses on find solutions for optimisation problems
with multiple conflicting objective.

evolutionary search mechanism The process that an evolutionary compu-
tation technique applies to guide the search towards better solutions.
Evolutionary search mechanism includes the procedure to select in-
dividuals, genetic operators, and decomposition of solutions.

fitness The quality of evolved programs/solutions.

flowtime The time that a job spends in the manufacturing system from its
release time until the completion time of its last operation.

genetic programming An evolutionary computation technique that is em-
ployed to evolve computer programs for solving a specific computa-
tional task.

heuristic An experience-based technique to find good solutions for a spe-
cific computational problem.

hyper-heuristic A framework that employs heuristics or meta-heuristics
to explore the “heuristic search space” for heuristic selection or heuris-
tic generation.
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initialisation The first step of a heuristic search technique (e.g. tabu search,
genetic algorithm). The purpose of this step is to generate the initial
solution(or population of solutions) to start the search.

job A job which is sometimes referred to as a customer order (in a simple
manufacturing environment) is a components that need to be pro-
cessed at at least one specific machine in the manufacturing system.
A job may include one more processing steps or operations.

job shop Job shop is used to indicate companies that produce customer-
specific components in small batches. One feature that sets job shop
apart from other production environments is the large variety of
routings with different operation processing times through a set of
machines (work centre).

job shop scheduling, (JSS) The objective of JSS is to find the best schedule
of jobs in a job shop environment. JSS is a popular research topic in
the field of operations research and computer science.

machine A type of resource in a manufacturing system used to process a
job.

meta-heuristic Optimisation methods designed to deal with hard optimi-
sation problems. Meta-heuristics are search methods containing gen-
eral low level heuristics that help explore the solution search space
to find near-optimal solutions.

multi-pass dispatching rule A heuristic that uses multiple dispatching rules
to generate schedules for a scheduling problem instance. Then, the
best obtained schedule will be selected.

mutation A genetic operation which is used to modify a parent to create
a new individual.

non-delay factor A parameter that is used to determine the time that a
machine can wait while there are jobs available in the queue.
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non-delay schedule A schedule in which no machine is allowed to be idle
when there are jobs in its queue.

non-dominated Solution that cannot be totally dominated by any other
solutions regarding all considered objectives in a multi-objective op-
timisation problems.

non-dominated ranking A procedure used to find the sets of non-dominated
solutions from a pool of solutions.

objective A performance measure or a function to be optimised.

operation A processing step of a job,characterised by its required machine
and processing time. In practical situations an operation may also
include setup time, technological requirements, etc.

order A request from the customer that usually needs to be delivered by a
due date. Otherwise, based on the tardiness of the order, a fine will
be applied.

Pareto front A set of non-dominated solutions in a multi-objective opti-
misation problems.

processing time Time that a machine needs to process an operation or a
job.

queue The set of jobs waiting to be processed at a specific machine. If a job
arrives at a machine to be processed and the machine is busy, the job
will placed in the corresponding queue.

release time The time when a job can start being processed (from its first
operation).

representation The form in which a solution or heuristic/rule/computer
program is represented for computational purposes.
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reusability The ability of rules or heuristics to be reused in unseen (new)
scenarios.

schedule A detailed plan produced by production managers or computer
programs to indicate the start and finish time of each operation and
job.

scheduling policies A set of scheduling rules or heuristics to make differ-
ent scheduling decisions in a manufacturing system.

scheduling Process by which a schedule is generated.

selection In evolutionary computation, selection is a step to decide which
individuals to be selected for genetic operators (e.g. crossover, mu-
tation).

sequencing Sequencing is a process to determine the order in which jobs
are processed at a certain machine.

shop The place where manufacturing activities take place.

static job shop scheduling Scheduling problems where all information about
jobs and machines are available in advance.

swarm intelligence A research area that focus on developing systems that
imitate collective intelligence of groups of simple agents.

tardiness The time from the completion of a job until its due date if the
job is completed after its due date. If the job completes before its due
date, tardiness is zero.

utilisation An indicator to show how busy the shop or machines are dur-
ing a simulation.

weight (in multi-objective) Importance of a certain objective/criteria.
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weight (in tardiness) The penalty applied to tardy jobs or orders (deliv-
ered after their due date).
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