A New Two-Stage Evolutionary Algorithm for Many-Objective Optimization
journal contribution
posted on 2020-10-29, 00:46 authored by Y Sun, Bing XueBing Xue, Mengjie ZhangMengjie Zhang, GG Yen© 1997-2012 IEEE. Convergence and diversity are interdependently handled during the evolutionary process by most existing many-objective evolutionary algorithms (MaOEAs). In such a design, the degraded performance of one would deteriorate the other, and only solutions with both are able to improve the performance of MaOEAs. Unfortunately, it is not easy to constantly maintain a population of solutions with both convergence and diversity. In this paper, an MaOEA based on two independent stages is proposed for effectively solving many-objective optimization problems (MaOPs), where the convergence and diversity are addressed in two independent and sequential stages. To achieve this, we first propose a nondominated dynamic weight aggregation method by using a genetic algorithm, which is capable of finding the Pareto-optimal solutions for MaOPs with concave, convex, linear and even mixed Pareto front shapes, and then these solutions are employed to learn the Pareto-optimal subspace for the convergence. Afterward, the diversity is addressed by solving a set of single-objective optimization problems with reference lines within the learned Pareto-optimal subspace. To evaluate the performance of the proposed algorithm, a series of experiments are conducted against six state-of-The-Art MaOEAs on benchmark test problems. The results show the significantly improved performance of the proposed algorithm over the peer competitors. In addition, the proposed algorithm can focus directly on a chosen part of the objective space if the preference area is known beforehand. Furthermore, the proposed algorithm can also be used to effectively find the nadir points.
History
Preferred citation
Sun, Y., Xue, B., Zhang, M. & Yen, G. G. (2019). A New Two-Stage Evolutionary Algorithm for Many-Objective Optimization. IEEE Transactions on Evolutionary Computation, 23(5), 748-761. https://doi.org/10.1109/TEVC.2018.2882166Publisher DOI
Journal title
IEEE Transactions on Evolutionary ComputationVolume
23Issue
5Publication date
2019-10-01Pagination
748-761Publisher
Institute of Electrical and Electronics Engineers (IEEE)Publication status
PublishedISSN
1089-778XeISSN
1941-0026Usage metrics
Categories
Keywords
ConvergenceOptimizationEvolutionary computationSociologyStatisticsSunHeuristic algorithmsMany-objective evolutionary optimization algorithmnadir pointPareto-optimal subspacetwo-stage methodArtificial Intelligence & Image ProcessingElectrical and Electronic EngineeringInformation SystemsArtificial Intelligence and Image Processing
Licence
Exports
RefWorksRefWorks
BibTeXBibTeX
Ref. managerRef. manager
EndnoteEndnote
DataCiteDataCite
NLMNLM
DCDC