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Abstract—Convergence and diversity are inter-dependently
handled during the evolutionary process by most existing Many-
objective Evolutionary Algorithms (MaOEAs). In such a design,
the degraded performance of one would deteriorate the other, and
only solutions with both are able to improve the performance of
MaOEAs. Unfortunately, it is not easy to constantly maintain
a population of solutions with both convergence and diversity.
In this paper, an MaOEA based on two independent stages
is proposed for effectively solving Many-objective Optimization
Problems (MaOPs), where the convergence and diversity are
addressed in two independent and sequential stages. To achieve
this, we firstly propose a non-dominated dynamic weight aggre-
gation method by using a genetic algorithm, which is capable
of finding the Pareto-optimal solutions for MaOPs with concave,
convex, linear and even mixed Pareto front shapes, and then
these solutions are employed to learn the Pareto-optimal subspace
for the convergence. Afterwards, the diversity is addressed by
solving a set of single-objective optimization problems with
reference lines within the learned Pareto-optimal subspace. To
evaluate the performance of the proposed algorithm, a series of
experiments are conducted against six state-of-the-art MaOEAs
on benchmark test problems. The results show the significantly
improved performance of the proposed algorithm over the peer
competitors. In addition, the proposed algorithm can focus
directly on a chosen part of the objective space if the preference
area is known beforehand. Furthermore, the proposed algorithm
can also be used to effectively find the nadir points.

Index Terms—Many-objective evolutionary optimization algo-
rithm, two-stage method, nadir point, Pareto-optimal subspace.

I. INTRODUCTION

MANY-OBJECTIVE Optimization Problems (MaOPs)

typically have more than three conflict objectives to

be optimized concurrently [1]. Mathematically, an MaOP is

represented by (1)






f(x) = (f1(x), f2(x), · · · , fm(x))

s.t. x ∈ Π
(1)

where m > 3, Π ⊆ Rn is the search space for the decision

variable x = (x1, x2, · · · , xn), and f is an objective vector.

Without loss of generality, MaOPs discussed in this paper are

to be minimized because the maximization problems can be

transformed into the minimization ones by multiplying −1.
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Due to the conflicting nature among f1(x), f2(x), · · · , fm(x),
there is no single solution that satisfies all objectives simul-

taneously. Instead, a set of non-dominated solutions with

promising convergence and diversity is sought for. Specif-

ically, the convergence means that the solutions are close

to the true Pareto Front (PF) as far as possible, and the

diversity implies these solutions are uniformly distributed in

the PF. Evolutionary Algorithms (EAs) are preferably used to

solve these optimization problems with multiple conflicting

objectives because of their population-based, meta-heuristic

characteristics.

Numerous Multi-objective EAs (MOEAs), such as the elitist

Non-dominated Sorting Genetic Algorithm (NSGA-II) [2]

and the advanced version of Strength Pareto Evolutionary

Algorithm (SPEA2) [3], have been designed for solving

Multi-objective Optimization Problems (MOPs) satisfactorily

where the number of conflicting objectives is no more than

three. Typically, MOEAs employ a carefully crafted Pareto-

domination-based elitism mechanism and a density-based di-

versity promotion mechanism to achieve the convergence and

diversity, respectively. Regrettably, these MOEAs are not able

to address MaOPs largely due to the loss of selection pres-

sure [4]. Specifically, nearly all solutions from the population

are non-dominated with respect to each other as the number

of objectives increases because of the dominance resistance

phenomenon [5]. In this regard, the Pareto-domination-based

elitism mechanism cannot work effectively, and the density-

based diversity promotion mechanism becomes overly em-

phasized. However, in MaOPs, the solutions selected by the

density-based diversity promotion mechanism are typically far

away from each other and also distant from the PF [6]. As a

result, the parent solutions chosen by the density-based diver-

sity promotion mechanism will often generate poor offspring

in the next generation. It has been reported that the generated

offspring in such a situation could be stagnant during the

evolution or even far away from the PF [7]. To this end,

various Many-objective EAs (MaOEAs) specifically designed

to address MaOPs have been proposed in recent years.

Typically, MaOEAs can be classified into four different

classes. The first refers to the ones based on the diversity

enhancement using a set of reference lines that are uni-

formly distributed in the objective space. Examples include

the reference-line-based non-dominated sorting approach (i.e.,

NSGA-III) [8], the new dominance relation-based EA (i.e.,

θ-DEA) [9], the reference line-based estimation of distribu-

tion algorithm (i.e., MaOEDA/RL) [10], the improved reg-

ularity model-based estimation of distribution algorithm(i.e.,
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MaOEDA-IR) [11], and the Reference Vector guided EA

(RVEA) [12]. The second is known as the decomposition-

based algorithms; decomposing an MaOP into a set of Single-

objective Optimization Problems (SOPs). The MOEA based

on Decomposition (MOEA/D) [13] and its numerous variants,

such as [14]–[16], belong to this category. The third covers

the ones based on the convergence enhancement by modifying

the Pareto-dominance-based comparison strategy. For instance,

the ǫ-dominance method [17] employed a relaxed factor ǫ to

compare the dominance relation between solutions; the prefer-

ence order approach [18] used a ranking procedure to lower

the adverse impact of the Pareto-dominance-based comparison;

the fuzzy dominance method [19] was proposed with the fuzzy-

based ranking scheme; the MaOEA in [20] was proposed with

the grid-based approach to relax the Pareto-dominance-based

method; and a Knee point-based EA (KnEA) [21] was re-

cently presented to enhance the selection pressure. The fourth

is the indicator-based approaches. Because the performance

indicators extensively used in MaOEAs are the hypervolume

(HV) and the Inverse Generational Distance (IGD), MaOEAs

in this category are mainly based on these two indicators, such

as [22]–[24]. Recently, Sun et al. [25] proposed an IGD-based

MaOEA (MaOEA-IGD) that showed promising performance

in solving MaOPs.

These MaOEAs mentioned above handle the convergence

and diversity concurrently, i.e., the convergence and diversity

are explicitly addressed at the same time of each generation,

and then individuals with better convergence and diversity

survive into the next generation to hopefully generate new

solutions with both of such good characteristics. Because EAs

are heuristic, it has no guarantee to constantly maintain a

population of individuals that are with good convergence and

diversity at every generation, especially in MaOPs, due to their

large search space that solutions with good diversity are at

times with poor convergence and vice versa [4]. In addition,

the convergence and diversity are generally conflicting [26]–

[28], which implies that the individuals with promising con-

vergence are usually with poor diversity, and vice versa. To

this end, it is hard to maintain a population of individuals with

both promising convergence and diversity, but a compromise

between them.

To address the issue, researchers have proposed the

MaOEAs based on two-stage strategy where the convergence

and diversity are handled in different phases, such as the

objective space Reduction and Diversity improvement MaOEA

(MaOEA-RD) [29], the MaOEA based on two-stage strategy

and Parallel Cell Coordinate System (PCCS) [30], and the

Two-phase EA with Penalty Based Adjustment for reference

lines (TPEA-PBA) [31]. Typically, these MaOEAs in the first

stage find the Pareto-optimal Space (PoS) that is spanned

by the solutions from the Pareto Set (PS) (Pareto-optimal

solutions form the PS in the decision space). Therefore, the

convergence can be guaranteed if the solutions are found

from the PoS. In the second stage, the diversity is processed

within the PoS by using their claimed diversity promotion

strategies. By dividing the evolution into such two stages,

the convergence and diversity are obviously addressed without

the deficiencies mentioned above. Unfortunately, there are two

major limitations when these algorithms are used in practice.

Firstly, they only rely on the extreme points in finding the

PoS; however, the same extreme points may give the different

PoS. Secondly, they find the extreme points by obtaining the

optimal solutions of each objective of the MaOP, which has

been proven to be inaccurate [25], [32].

In order to make the best use of the advantages of the two-

stage strategy, a new MaOEA based on an Independent Two-

stage approach, in shortly named MaOEA-IT, is proposed in

this paper, which has eliminated the above limitations often

existed in two-stage MaOEAs. In summary, the contributions

of MaOEA-IT are highlighted as follows:

1) The pursuit of convergence and diversity in MaOEA-

IT is addressed independently through two sequential

stages, which makes MaOEA-IT to be effective in solving

MaOPs. To be specific, there is no requirement for

introducing any extra mechanism, which is often used to

simultaneously maintain the promising convergence and

diversity at each generation during the evolution.

2) A Non-dominated Dynamic Weight Aggregation by using

a Genetic Algorithm (NDWA-GA) method is proposed,

which is capable of finding k Pareto-optimal solutions

for an m-objective MaOP with convex, linear, convex and

even mixed PF shapes, where k >> m. The found solu-

tions are with promising convergence but not necessarily

good diversity, but are sufficient to be used to learn the

PoS with dimension reduction techniques.

3) The diversity is addressed by converting an m-objective

MaOEA into p SOPs with p reference lines that are

uniformly distributed in the objective space. During the

process of solving each SOP, the objective is to minimize

the cosine value between the corresponding reference

line and the solution via exploration and exploitation in

the PoS. Theoretically, any single-objective optimization

algorithm can be used in this stage.

4) The proposed algorithm can focus on only a small part of

the search space when the preference area of the MaOP to

be solved is known, which could save the computational

resource at a large extent because the traditional MaOEAs

must find all the solutions first, and then from which

the preference one is selected. In addition, the proposed

algorithm can also be used to effectively search for the

nadir points, which is typically used as a preprocessing

step in solving MaOPs.

The remainder of this paper is organized as follows. Sec-

tion II reviews the limitations of related works to motive the

proposed design in this paper. In Section III, the details of

MaOEA-IT are documented. To evaluate the performance of

MaOEA-IT, in Section IV, a series of experiments is conducted

validating MaOEA-IT on benchmarks with different numbers

of objectives against the state-of-the-art MaOEAs. In addition,

the performance of the proposed critical component NDWA-

GA is also investigated through the comparison to its seminal

work. Finally, MaOEA-IT is concluded and future works are

illustrated in Section V.
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II. MOTIVATIONS

In this section, the limitations of the existing MaOEAs

based on the two-stage approach are detailed, which form the

main motivation of the proposed algorithm. In addition, the

limitation of the existing dynamic weight aggregation strategy

is also documented, which inspires the design of the proposed

NDWA-GA method.

A. MaOEAs Based on Two-stage Approach

To the best of our knowledge, MaOEAs based on the

two-stage approach include MaOEA-RD, PCCS and TPEA-

PBA of which the two limitations have been pointed out in

Section I. Because the extensive explanation regarding the

second limitation can be found in [25], [32], we mainly discuss

the first one at length in this subsection.
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Fig. 1. An illustration of the extreme points, Pareto fronts and Pareto-optimal
solutions of the 2-objective M-DTLZ1 and DTLZ2 test problems.

As mentioned above, MaOEA-RD, PCCS and TPEA-PBA

employ the extreme points to obtain the PoS. In order to

clearly describe this deficiency, an example is shown in

Fig. 1 where the solid circles denote the extreme points

of the 2-objective Modified-DTLZ1 (named M-DTLZ1) and

DTLZ2 [33] test problems. Specifically, the M-DTLZ1 is

implemented by enlarging each objective of DTLZ1 [33] twice.

Therefore, the 2-objective M-DTLZ1 has the same extreme

points as the 2-objective DTLZ2, i.e., [0, 1] and [1, 0]. In

addition, the solid line and the dash line in Fig. 1 refer to the

PFs of the 2-objective M-DTLZ1 and DTLZ2 test problems,

respectively. Obviously, the 2-objective M-DTLZ1 and DTLZ2

test problems have the same extreme points but different PFs.

However, MaOEA-RD, PCCS and TPEA-PBA will treat them

with the same PoS1, which is obviously incorrect, or at least

not accurate. In Fig. 1, the star and diamond symbols refer to

the other Pareto-optimal solutions of the 2-objective M-DTLZ1

and DTLZ2 test problems, respectively. If these Pareto-optimal

solutions are used together with the respective extreme points,

the respective PoS for M-DTLZ1 and DTLZ2 will be found

correctly. Unfortunately, obtaining a set of such Pareto-optimal

solutions before solving the optimization problem is not an

easy task especially for the problems involving non-convex

PF shapes.

1Noting that the PoS typically refers to the subspace in the decision space.
This example is illustrated in the objective space of two concrete test problems
which is very familiar to the researchers and easy to understand the limitation.

B. Dynamic Weight Aggregation Strategy

Weight Aggregation (WA) methods [34] have been widely

used to find the Pareto-optimal solutions of MOPs at the

very beginning of MOPs researches. Specifically, WA methods

employ a weight, say w = {w1, w2, · · · , wm}, to transform

an m-objective MOP f(x) = (f1(x), f2(x), · · · , fm(x)) into

a SOP g(·) by g(x) = w1f1(x) +w2f2(x) + · · ·+wmfm(x).
By solving g(x), a Pareto-optimal solution of f(x) can be

found. Consequently, a set of different weights is required

to form multiple different SOPs, and then solving them for

obtaining multiple Pareto-optimal solutions. Algorithms based

on WA have also been proposed with different strategies for

maintaining the diversity, which are beyond the scope here

because we focus solely on the convergence when using WA-

based algorithms in this paper.

A

f1

f2

Fig. 2. Textbook explanation of the reason that weight aggregation-based
methods cannot reach to the concave area.

Most researchers have known that WA methods are inca-

pable of obtaining the Pareto-optimal solutions of the MOPs

with concave PF shapes. The reason has been stated in a long

time as that the contour of the transformed SOP g(x) cannot

reach to the concave region of f(x) during solving g(x), i.e.,

g(x) converges when it has an intersection with the PF of f(x),
and this intersection will not occur in the non-convex area.

Fig. 2 shows such an example where the area closed by dash

lines denotes the objective space of f(x), l1 and l2 refer to the

contour of g(x) with different x, the arrow denotes the moving

direction in solving g(x), A is a Pareto-optimal solution of f(x)
and also the optimal solution of g(x). l2 is also the stopping

position of g(x) and it will not move toward up-right (i.e.,

the concave area). However, this explanation is incomplete

because g(x) cannot stand beyond the PF [35], and the fact is

that g(x) moves from up-right towards the PF until it has no

intersection any more if it continues moving. To address this

concerning issue, various remedies have also been proposed,

such as [35]–[39], among which the Dynamic WA (DWA)-

based method [35], [39] is most recognized one because it

is capable of obtaining multiple Pareto-optimal solutions for

MOPs with convex, linear and concave PF shapes in a single

run. An example of DWA-based is shown in Fig. 3, where l3,

l4 and l5 denote the different contours of g(x) with different x,

and l5 is the stopping position based on our explanation above.

Obviously, the Pareto-optimal solutions have been found dur-

ing solving g(x) (i.e., the points B and C). By changing the

weights for transforming the original MOP into different g(x)
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and keeping an archive of the non-dominated solutions during

solving g(x), a set of different Pareto-optimal solutions will be

obtained. In addition, Jin in [40] has concluded that the DWA-

based method is only suitable to the MOPs that satisfy the

neighborhoodness, i.e., small variations in the decision space

should keep the same scale of variation in the objective space,

and only the Evolutionary Strategy (ES) is suitably used in

such a situation, which induces the DWA-ES algorithm [35].

A

f1

f2

B

C

Fig. 3. An example to illustrate how DWA-based algorithms search for the
Pareto-optimal solutions of the problems involving concave areas.

Experimental investigations indicate DWA-ES showing poor

performance on MaOPs. The major reasons are: 1) Solutions in

DWA-ES surviving into the next generation are selected based

on the fitness of g(x). However, the goodness of solutions for

g(x) does not promote the search towards the PF of f(x), i.e.,

if a solution can give a best fitness of g(x), it is not necessary

to give a promising performance of f(x). 2) The MaOPs

to be solved do not necessarily meet the neighborhoodness

constraint, which causes the inappropriate using of ES. 3)

Parameters in ES are usually difficult to be dynamically tuned,

although they are optimized also through the evolution, which

results into the poor performance of ES. In this paper, we will

propose the NDWA-GA method by addressing the limitations

above, which will still preserve the promising properties of

the DWA-based strategy.

III. THE PROPOSED ALGORITHM

In this section, the proposed Independent Two-stage Many-

objective Evolutionary Algorithm (i.e., MaOEA-IT) is pre-

sented. To be specific, the framework of MaOEA-IT is outlined

in Subsection III-A. Then, the details of the main steps

are documented in Subsections III-B to III-E. Finally, the

computational complexity of MaOEA-IT is analyzed in Sub-

section III-F. Noting that the MaOEA-IT is described within

the context formulated by (1).

A. Framework of MaOEA-IT

Algorithm 1 outlines the framework of the proposed

MaOEA-IT algorithm that is composed of four steps. Firstly,

the proposed NDWA-GA algorithm is developed to search for

a set of Pareto-optimal solutions (denoted by P ) of a given

MaOP f(x) = {f1(x), f2(x), · · · , fm(x)} (line 1). Secondly,

the PoS (denoted by Ω) is learned from the found Pareto-

optimal solutions P (line 2). Thirdly, the given reference lines

Algorithm 1: Framework of MaOEA-IT

Input: the MaOP to be optimized

f(x) = {f1(x), f2(x), · · · , fm(x)}, a set of

uniformly distributed reference lines

r = {r1, r2, · · · , rN}.
Output: The solutions of f(x).

1 P ← Find a set of Pareto-optimal solutions of f(x) by

using the proposed NDWA-GA algorithm;

2 Ω← Learn the Pareto-optimal subspace based on P ;

3 Update the given reference lines r = {r1, r2 · · · , rN};
4 Q← Diversity maintaining with r in Ω;

5 Return Q.

are updated (line 3) where N is predefined by the end-users

based on how many solutions they finally would like to have.

Fourthly, the final solutions Q with promising convergence

and diversity are obtained (line 4).

Noting that the given reference lines r are generated by

using Das and Dennis’s method [41] that is extensively used

in reference lines-based MaOEAs, such as NSGA-III. Because

the reference lines will be used in the first and the third steps of

the proposed algorithm, the details of Das and Denis’s method

are introduced priori to presenting the details of each step. To

be specific, r1, r2, · · · , rN are generated from the (m − 1)-
dimensional unit hyperplane located in the first quadrant of

Rm, i.e. Rm
+ , and the summation of the components in each

reference line ri (1 ≤ i ≤ N ) satisfies
∑m

k=1 ri,k = 1 and

ri,k ∈ {0/h, 1/h, · · · , h/h}, where ri,k refers to the k-th

component of the i-th reference line, and h is the division

size determining the total number of sampled reference lines

by N = Ch
m+h−1. However, no inside reference lines will

be generated if h < m, which leads to the loss of diversity,

i.e., generated reference lines only pass through the bound-

ary of the (m − 1)-dimensional unit hyperplane and, there

is no generated reference lines passing through the inside

part. Otherwise when h ≥ m, too many reference lines are

generated, which will lead to the impracticality especially

when m > 5. To address this concerning issue, the two-

layer sampling method [8] is used. Specifically, the two-

layer method is composed of sampling reference lines through

the boundary and the inner part of the unit hyperplane. For

sampling reference lines through the boundary, just setting

h < m. During sampling reference lines for the inside, the

boundary sampling method is utilized again with the division

size for the inside, and then the sampled reference lines are

transformed to pass through the centers between the boundary

reference lines and the center point (1/m, · · · , 1/m).
Next, the details of each step shown in Algorithm 1,

especially the motivations and the reasons of the designs,

are specified in Subsections III-B, III-C, III-D and III-E,

respectively.

B. NDWA-GA

Algorithm 2 shows the steps of the proposed NDWA-GA

algorithm. Specifically, given an MaOP f(x) to be optimized,

the maximal generation number T and the population size L,
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Algorithm 2: Non-dominated Dynamic Weight Aggrega-

tion by Using Genetic Algorithm

Input: The MaOP to be optimized

f(x) = {f1(x), f2(x), · · · , fm(x)}, the number of

generations T , the population size L.

Output: The Pareto-optimal solutions P of f(x).
1 archive← ∅;
2 r = {r1, r2, · · · , rk} ← Generate a set of weight vectors

by using Das and Dennis’s method;

3 P0 ← Randomly initialize a population of individuals

with the size of L;

4 t← 0;

5 while t < T do

6 for i← 1 to L do

7 ind← (t mod m) + 1;

8 Let i-th individual in Pt model the minimization

problem of
∑m

j=1 rind,j ∗ fj(x);
9 end

10 Evaluate the fitness of the individuals in Pt;

11 R← Generate the offspring from Pt;

12 R← R ∪ Pt;

13 Let individuals in R model the problem of f(x);
14 Evaluate the fitness of the individuals in R;

15 Non-dominate the solutions in R into the Pareto

fronts {F1, F2, · · · };
16 Add individuals in F1 to archive;

17 t← t+ 1;

18 Pt ← ∅;
19 j ← 1;

20 while |Pt|+ |Fj | < L do

21 Add individuals in Fj to Pt;

22 j ← j + 1;

23 end

24 Randomly select L− |Pt| individuals from Fj and

add them to Pt;

25 end

26 P ← Select the non-dominated solutions from archive;

27 Return P .

NDWA-GA begins to take effect, and finally a set of Pareto-

optimal solutions of f(x) is obtained. During the execution of

NDWA-GA, an archive denoted by archive is initialized firstly

as an empty set. Then, a set of weight vectors are obtained

by transforming the reference lines generated by Das and

Dennis’s method. This is followed by randomly initialization

of the population P0. Next, NDWA-GA performs a series of T
generations. Finally, the Pareto-optimal solutions are obtained

by selecting the non-dominated solutions from the archive.

Furthermore, each repeated iteration in NDWA-GA is com-

posed of four steps. The first is to periodically use the weight

vector (line 7) to transform f(x) into a SOP, where the period-

icity is based on the generation, and then let the individuals

in the current population to encode the SOP (line 8). When

the fitness of these individuals are evaluated (line 10), the

offspring are generated using genetic operators (line 11), and

the current population is updated by combining the parent

population and the generated offspring (line 12). Specifically,

the binary tournament selection, Simulated binary crossover

(SBX) [42] and the polynomial mutation [28] operators are

used to generate the offspring. The second is to evaluate the

fitness of individuals in the current population by encoding

f(x), and divide these individuals into different PFs based on

their domination relationship, which are shown in lines 14-15.

The third is to copy the individuals in the first PF into the

archive, which is shown in line 16. The fourth is to increase

the generation number and select L individuals with promising

convergence performance from the previous population as the

parent solutions of the next generation. Specifically, L− |Pt|
individuals are randomly selected from the j-th non-dominated

front Fj when |Pt|+|Fj | ≥ L and |Pt|+|Fj−1| < L, where |·|
is a countable operator measuring the cardinality. The details

of the fourth step are shown in lines 17-24.

As mentioned in Subsection II-B that the proposed NDWA-

GA algorithm is inspired by DWA-ES. Next, we will mainly

discuss the major differences between NDWA-GA and DWA-

ES as well as the motivations why such new components are

designed in NDWA-GA. Specifically, NDWA-GA differs from

DWA-ES in two aspects: 1) NDWA-GA is designed based

on GA while DWA-ES is on ES, and 2) the environmental

selection in NDWA-GA is based on non-dominated selection

while that in DWA-ES is based on the traditional selection

upon SOP such as the roulette wheel selection. First, indi-

viduals in ES are generated through the variation by adding

a N(µ, λ) to the parent solutions. Due to the unknown size

of the search space, µ and λ cannot set to be constant

values but to dynamic ones, which are problem-dependent and

very sensitive. Although some advanced methods have been

proposed to set the proper values, experiences on using ES are

still required. However in GA, the promising performance can

be achieved by simply setting the probabilities for crossover

and mutation. In particular, genetic operator type and the

parameters in the used genetic operators based on the con-

vention from the EA community, such as the probabilities for

crossover and mutation setting to be 0.9 and 0.1, respectively,

can handle well the problems in most situations. Second,

the individuals surviving into the next generation in DWA-

ES are selected based on their fitness of the transformed

SOP. However, an individual with good fitness regarding the

SOP cannot show its promising convergence in the search

space of the corresponding MaOP. For MOP, the deficiency

of using such environmental selection is not significant due to

the small search space, however, the performance becomes

poor when addressing MaOPs. Because the non-dominated

solutions are typically used as the convergence measurement

for the individuals in solving MOPs and MaOPs, a revised

approach adopting non-dominated sorting is expectedly used

in such a situation. As a result, NDWA-GA is proposed. The

experimental results in Section IV will show that our design

in NDWA-GA against DWA-ES is significantly improved in

solving not only MOPs but also MaOPs.

C. Pareto-optimal Subspace Learning

The steps of the PoS learning are shown in Algorithm 3

which is composed of two parts: finding the principal com-
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Algorithm 3: Pareto-optimal Subspace Learning

Input: The Pareto-optimal solutions P generated by

NDWA-GA, a threshold value ǫ, the lower bound

l limit = [l1, l2, · · · , ln] of x, and the upper

bound u limit = [u1, u2, · · · , un] of x.

Output: The learned Pareto-optimal subspace Ω.

1 Let a matrix M ∈ R|P |×n denote the solutions in P ;

2 mean← Calculate the mean values of M ;

3 M ′ ← Update M by subtracting mean;

4 [v1, v2, · · · , vn]← Calculate the eigenvalues of the

covariance matrix of M ′;

5 [ind1, ind2, · · · , indn]← Record the positions of the

eigenvalues with the descending order;

6 j ← 0;

7 while
∑indj

i=1 vi/
∑n

i=1 vi < ǫ do

8 j ← j + 1;

9 end

10 median← Calculate the median value of each column

in M ;

11 for i← j + 1 to n do

12 l i← Copy the indi component of median;

13 u i← Copy the indi component of median;

14 end

15 Ω← All points in [l limit, u limit];
16 Return Ω.

ponents of the Pareto-optimal space with the given thresh-

old ǫ, and padding the non-principal components with the

corresponding median values. These two steps are shown in

lines 1-9 and 10-15, respectively. Specifically, the Principal

Component Analysis (PCA) method is used in the first part.

Firstly, the Pareto-optimal solutions in P are represented by

a matrix M ∈ R|P |×n where each row denotes a solution

and each column denotes the same component of all solutions

(line 1). Secondly, the mean values mean of M are calculated,

and M is updated to M ′ by subtracting mean (lines 2-

3). Thirdly, the eigenvalues [v1, v2, · · · , vn] of the covariance

matrix of M ′ are calculated (line 4). Fourthly, the principal

components are found based on the given threshold ǫ (lines 5-

9). In the second part, the median values of each column in

M are calculated first (line 10), and then the elements in the

lower and upper bounds of x are set to be the corresponding

median values if they belong to the non-principal components

(lines 11-14). Finally, the PoS is generated by sampling all the

points in the updated lower and upper bounds (line 15).

The reason that PCA is used in the first step is consid-

ered from two aspects: 1) PCA is a widely used dimension

reduction technique, and its implementations with specifically

optimized techniques are widely available in different libraries,

and 2) PCA has been successfully used to reduce the search

space in addressing MaOPs in our previous works [10], [11].

In addition, the median values are used here to pad the non-

principal components instead of the mean values that is a

standard operation in PCA. The reason is that not all the

non-dominated solutions in P are precisely lying in the PF,

and a small partition of them are beyond the PF especially

in the case of a larger number of objectives. These non-

dominated solutions not standing at the PF are called “outliers”

in dimension reduction. Removing the outliers from the entire

dataset is not an easy task, while the outliers typically affect

the quality of the resulted outcome. In this regard, using

median values will generate a more accurate PoS than using

mean values. For example, the element values of one non-

principle component are [0.3, 0.4, 0.5, 0.5, 0.5] and the ground-

truth on this component is 0.5. Consequently, the mean value

is (0.3+0.4+0.5+0.5+0.5)/5 = 0.44, while the median value

is 0.5. Obviously, the resulted PoS by using the mean values is

different from that by the median values. Although there is a

slight difference between the mean value and the median value

in one component just as this example shows, significantly

inferior performance will be caused when such differences

are accumulated to multiple non-principal components, which

have been observed during the design of Algorithm 3.

D. Reference Lines Mapping

Algorithm 4: Reference Lines Mapping

Input: The MaOP to be optimized

f(x) = {f1(x), f2(x), · · · , fm(x)}, the

Pareto-optimal solutions P generated by

NDWA-GA, the uniformly distributed reference

lines r = {r1, r2, · · · , rN} generated by using

Das and Dennis’s method.

Output: The updated reference lines r.

1 extreme points← ∅;
2 for i← 1 to m do

3 s = [s1, · · · , sm] = [0, · · · , 1, · · · , 0]← Initialize a

vector of m elements with zeros except for the i-th
element with one;

4 x∗ ← Solve the single-objective optimization

problem formulated by (2);

5 extreme points← extreme points ∪ f(x∗);
6 end

7 nadir point← ∅;
8 ideal point← ∅;
9 for i← 1 to m do

10 nadir point← nadir point ∪ The maximal

element at the i-th component of extreme points;

11 ideal point← ideal point ∪ The minimal element

at the i-th component of extreme points;

12 end

13 for each r in r = {r1, r2, · · · , rN} do

14 r ← r× (nadir point− ideal point)+ ideal point;
15 end

16 Return r.

The steps of mapping the reference lines are shown in

Algorithm 4 that is composed of three parts. They are finding

the extreme points, extracting the nadir and ideal points, and

mapping each reference line, which are detailed in lines 1-6,

7-12 and 13-15, respectively. In finding the extreme points,

each extreme point is obtained by solving a SOP in the PoS

Ω that is formulated by (2).
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maximize
∑

m
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fi(x)si√∑
m
i=1

f2

i
(x)
√∑

m
i=1

s2
i

s.t. x ∈ Ω

(2)

Intuitively, it is to find the solution of which the objective

vector has the closest included angle to the corresponding axis,

i.e., the maximal cosine value. In addition, the nadir point and

the ideal point is obtained by extracting the maximal value and

minimal value from each dimension of the extreme points, and

the mapping of each reference line is achieved by the algebraic

operation shown in line 14 of Algorithm 4.

f1

f2

(a)

f1

f2

(b)

Fig. 4. The illustration regarding the intention of mapping the reference lines
where the arrow lines, dash lines, and the solid circles denote the reference
lines, Pareto front and the resulted Pareto-optimal solutions for maintaining
the promising diversity. Specifically, reference lines in Fig. 4a refer to the
ones generated by the Das and Dennis’s method and in Fig. 4b refer to the
ones after mapping.

The reason of mapping the reference lines is that such N
reference lines generated by using Das and Dennis’s method

span the entire space of Rm
+ . However, the PF of the MaOP

does not necessarily occupy the entire space of Rm
+ , i.e.,

only a part of such N reference lines pass through the PF.

Because the promising diversity is achieved by finding the

solution that has the minimal included angle to each reference

line, the resulted final solutions will loss the diversity under

such a situation. The aim of mapping the reference lines is

to keep such predefined N reference lines within the PF for

keeping the promising diversity. For a better understanding the

intention of mapping the reference lines, an example is shown

in Fig. 4 where the arrow lines, dash lines and solid circles

denote the reference lines, PF and resulted Pareto-optimal

solutions with diversity. It can be observed from Fig. 4a

that the seven reference lines generated by Das and Dennis’s

method span the entire space of R+ but the PF does not. In

such situation, the resulted solutions are with poor diversity.

Noting that there are two overlapping solutions at each end of

the PF shown in Fig. 4a. The reference lines that have been

mapped with Algorithm 4 are shown in Fig. 4b, where it can

be investigated that the resulted Pareto-optimal solutions are

with good diversity.

Noting that the extreme points in MaOEA-IT are obtained

by repeatedly solving m times of the SOP formulated by (2)

with m different v′s from the PoS, but choosing them from

the Pareto-optimal solutions P generated by NDWA-GA in

Subsection III-B. The reason is that all the solutions in P do

not necessarily cover all the extreme points. If the extreme

points are forced to be obtained from P , the results would

be with poor accuracy. In addition, there are also existing

algorithms, such as NSGA-III, extracting the nadir points to

perform the operation mapping the reference lines by using the

intercepts, and the intercepts are from the hyperplane passing

through the extreme points extracted from the Pareto-optimal

solutions. However, the resulted nadir point is also inaccurate

and not suitable for the proposed MaOEA-IT. NSGA-III

can use such nadir points due to the updating strategy in

its subsequent generations. As shown above, the proposed

MaOEA-IT is capable of searching for the nadir points. To

justify the fact, further discussion and experiments of MaOEA-

IT on searching the nadir points are shown in the Supplemental

Materials.

E. Diversity Maintenance

This is the final step of the proposed MaOEA-IT where a

population of solutions with promising diversity is obtained

from the PoS.

Algorithm 5: Diversity Maintaining

Input: The MaOP to be optimized

f(x) = {f1(x), f2(x), · · · , fm(x)}, the

Pareto-optimal subspace Ω found in Algorithm 3,

the updated reference lines r = {r1, r2, · · · , rN}
generated in Algorithm 4.

Output: The solutions with promising divesity Q.

1 Q← ∅;
2 for i← 1 to N do

3 s← ri;
4 x∗ ← Solve the single-objective optimization

problem formulated by (2);

5 Q← Q ∪ x∗;

6 end

7 Return Q.

The steps of diversity maintenance are shown in Algo-

rithm 5, where each solution is obtained by solving the SOP (2)

with a set of reference lines r. Because reference lines in r

are uniformly distributed in the PF, and each solution in Q
is with minimal cosine value to each reference line, solutions

in Q are with promising diversity. In addition, the decision

space of (2) is the PoS from which any solution sampled is

with promising convergence. Therefore, the solutions in Q are

also with promising convergence. In summary, solutions in Q
are promising in terms of both convergence and diversity.

F. Computational Complexity

For the convenience of the analysis, it is assumed that

the population size in Algorithm 2, the population size for

solving (2), and the number of final solutions are set to

be N . The number of generations for solving (2) is set

to be T . Specifically, in Algorithm 2, the non-dominated

sorting accounts for the most computational time. However,

it is hard to determine the exact number of solutions in the

archive. To this end, we could only calculate the computational



8

complexity under the worst case scenario, i.e., the generated

N offspring are all non-dominated, and TN solutions in the

archive. Consequently, the computational complexity of Algo-

rithm 2 is O((TNm)2). In Algorithm 3, the calculation of the

eigenvalues contributes to the major computational complexity.

Calculating the eigenvalues involves the matrix factorization,

of which the computational complexity is O(n3) where n
denotes the number of decision variables. The computation

time of Algorithm 4 is mainly from solving the SOP. Because

the SBX and polynomial mutation are used for generating the

offspring, the total computational complexity of Algorithm 4

is O(m2n). As a consequence, the computational complexity

of Algorithm 5 is O(Nmn). Because n >> m in MaOPs

and T >> n, the computational complexity of Algorithms 2

and 5 approaches O((TNm)2), and that of Algorithms 3 and

4 is O(n3). As a result, the worst computational complexity of

the proposed MaOEA-IT algorithm is O((TNm)2) or O(n3)
whichever is larger, while the best is O(n3). In summary, the

non-dominated sorting accounts for the major computational

complexity when the number of non-dominated solutions is

large. Otherwise, the calculation of the eigenvalues for learning

the PoS accounts for the major computational complexity.

IV. EXPERIMENTS

In order to examine the performance of the proposed

MaOEA-IT algorithm in solving MaOPs, a series of exper-

iments is performed against peer competitors. Particularly,

NSGA-III [8] is selected firstly because it is typically used

as a baseline in comparing the performance of MaOEAs.

Additionally, the recently proposed or the most well-regarded

ones are selected from each of the four categories mentioned in

Section I as the corresponding representative peer competitors.

They are RVEA [12], MOEA/D [13], KnEA [21] and MaOEA-

IGD [25]. Furthermore, the MaOEA-RD [29] which is an

MaOEA based on the two-stage strategy is also selected as

the peer competitor.

The remaining of this section is organized as follows. Firstly,

the benchmark test problems utilized in the comparisons are

introduced in Subsection IV-A. Secondly, the chosen perfor-

mance metric is given in Subsection IV-B to quantitatively

evaluate the quality of the resulted solutions of all competing

MaOEAs. Thirdly, the parameter settings used in all the

algorithms considered are enumerated in Subsection IV-C, and

experimental results measured by the chosen performance met-

ric are presented and analyzed in Subsection IV-D. Fourthly,

the performance of the proposed NDWA-GA algorithm is

evaluated in Subsection IV-E by comparing to the pioneering

work (i.e., the DWA-ES).

A. Benchmark Test Problems

The extensively used test problems, DTLZ1-DTLZ7 with

configurable numbers of objectives from the DTLZ benchmark

test suite [33], are used in the experiments. Particularly, each

objective fi(x) of one given test problem from DTLZ is

formulated by (3):

fi(x) = g(x1, · · · , xm−1) · h(xm, · · · , xz+m−1) (3)

where n = z+m−1 is the number of the decision variables, m
is the number of objectives, and z is a configurable parameter

that is set to be 5 for DTLZ1, 10 for DTLZ2-DTLZ6 and 20
for DTLZ7. Specifically, g(·) is controlled by the first m− 1
decision variables to measure the distribution of the solutions

in the PF, and h(·) is controlled by the last z+m−1 decision

variables to determine the distance to the PF. Furthermore, di-

verse complicated forms of g(·) have been implemented, such

as multi-modal, concave, biased, disconnected and deceptive,

which raises the challenges for the MaOEAs and is sufficient

to conclude whether the tested MaOEA is effective or not in

solving MaOPs. Noting that the DTLZ benchmark test suite

used in these experiments follows the version introduced in

the original paper [33].

B. Performance Metric

The widely used Hypervolume (HV) [43], which is able

to concurrently measure the convergence and diversity of the

tested MaOEAs, is chosen as the performance metric in these

experiments. Based on the suggestions in [9], [11], the resulted

solutions by the competing MaOEAs are normalized priori

to calculating their HV values. Because of the computational

cost of HV significantly growing as the number of objectives

increases, Monte Carlo simulation [44]2 is used for the calcu-

lation when m ≥ 10. Otherwise the precise approach proposed

in [45] is utilized3. Furthermore, the HV values are normalized

for the comparisons.

C. Parameter Settings

1) Number of Objectives: Because the proposed MaOEA-

IT algorithm focuses on solving the MaOPs of which the

number of objectives is larger than three, the 5-, 8-, 10- and 15-

objective test problems are investigated. However, the experi-

mental results are difficult to visually analyze when the number

of objectives is larger than three. Therefore, the 3-objective test

problems are also investigated in these experiments.

2) Crossover and Mutation: SBX [42] and polynomial

mutation [28] are used as the crossover and mutation operators,

respectively, in the competing MaOEAs. Based on the conven-

tions, the probabilities of SBX and polynomial mutation are

set to be 1.0 and 1/n (n is the number of decision variables),

respectively. The distribution index of SBX and polynomial

mutation are set to be 20, in addition to the NSGA-III whose

distribution index needs to be specified as 30 based on its

developers [8].

3) Population Size: The population sizes for all competing

MaOEAs on each considered number of objectives are all set

to be 240 for the reason of simplicity, However, the reference

lines-based algorithms, such as NSGA-III, require the number

of solutions to be the same as that of the generated reference

lines. However, the reference lines generated by Das and

Dennis’s method is a binomial coefficient, which cannot be

arbitrarily set. In order to do a fair comparison, the population

2The source code is available at: http://www.tik.ee.ethz.ch/sop/download/
supplementary/hype/.

3The source code is available at: http://www.wfg.csse.uwa.edu.au/
hypervolume/.
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size of the reference lines-based algorithms is set to be the

number that is the closest to 240 by choosing an appropriate

division size. As mentioned above, when the division size is

less than m when generating the reference lines, the resulted

solutions will have a poor diversity. To this end, the two-

layer approach [8] is employed when m > 5. As a result, the

division sizes for 3-, 5-, 8-, 10- and 15-objective test problems

are set to be [20], [6], [3, 3], [3, 2] and [2, 2], respectively.

Consequently, the corresponding population sizes are set to

be 231, 210, 240, 275 and 240, respectively.

4) Number of Function Evaluations: The maximal gener-

ation number for peer competitors are set to be with the

order of 102 when m < 10 and 103 otherwise based on the

conventions [8], [10]–[12]. Because of the two-stage nature

of the proposed MaOEA-IT algorithm, the total numbers of

function evaluation of MaOEA-IT in the two-stage are set to be

the same to that of the peer competitors for a fair comparison.

For this reason, the maximal generation number is transformed

to the maximal numbers.Consequently, the maximal numbers

of function evaluations are set to be 1.4 × 105, 2.4 × 105,

4.0× 105, 2.0× 106 and 3.0× 106 for 3-, 5-, 8-, 10- and 15-

objective test problems, respectively. They are approximately

200 generations when m < 10 and 800 otherwise.

5) Statistical Approach: Because of the heuristic character-

istic of MaOEAs, each competing MaOEA is independently

performed 30 times with the same configurations, and the

resulted HV values are statistically evaluated. Based on the

conventions, the Mann-Whitney-Wilcoxon rank-sum test [46]

with a 5% significance level is employed for this purpose.

D. Overall Results

The experimental results of the proposed MaOEA-IT algo-

rithm against NSGA-III, RVEA, MOEA/D, KnEA, MaOEA-

IGD and MaOEA-RD on 3-, 5-, 8-, 10- and 15-objective

DTLZ1-DTLZ7 test problems are shown in Table I. In Table I,

the numbers with bold face indicate the best mean values

among all competing MaOEAs for the same numbers of

objectives of each test problem. The symbols “+” and “-”

denote whether the null hypothesis, i.e., the results of MaOEA-

IT are better or worse than the peer competitors, is accepted by

the Mann-Whitney-Wilcoxon rank-sum test at the significance

level of 5%, while symbol “=” implies the corresponding

null hypothesis is rejected. In addition, the numbers shown

next to symbols “+,” “-,” and “=” in the last row summarize

how many times MaOEA-IT performs significantly better than,

worse than, and equal to, respectively, the corresponding peer

competitors over each test problem on all considered numbers

of objectives.

As can be seen in Table I, MaOEA-IT wins the best scores

against all peer competitors on DTLZ1 with all considered

numbers of objectives, which is the same to DTLZ2 and

DTLZ3. For DTLZ4, MaOEA-IT achieves the best perfor-

mance on the 5-, 8- and 15-objective test problems. Although

the winner on 3-objective DTLZ4 is MAOEA/D, MaOEA-IT

shows the statistically equal performance to MOEA/D. On

10-objective DTLZ4, MaOEA-IT shows a little worse than

RVEA which is credited as the winner. Although MOEA/D

wins the best performance on DTLZ5 with 8 and 10 objectives,

MaOEA-IT shows the best performance on the 3-, 5- and 15-

objective problems. In addition, MaOEA-IT also shows the

best performance on DTLZ6 with 3, 10 and 15 objectives, but

performs worse on 5 and 8 objectives on which RVEA and

MOEA/D are the winners, respectively. Furthermore, MaOEA-

IT is also the winner upon DTLZ7 except for its 10-objective

test problem on which KnEA shows the best performance.

Based on the shapes of PF, DTLZ1-DTLZ7 can be di-

vided into two categories. The first category includes DTLZ1-

DTLZ4 of which the extreme points are located at the axes,

while the other is composed of DTLZ5-DTLZ7 of which not

all the extreme points are located at the axes. Form Table I,

it can also be clearly seen that MaOEA-IT performs better

on DTLZ1-DTLZ4 than on DTLZ5-DTLZ7, which is caused

by the reference line mapping in line 3 of Algorithm 1. To

be specific, the nadir point estimation in MaOEA-IT is based

on the extreme-point-to-nadir scheme, i.e., the extreme points

are supposed to stand at the axes. However, the test problems

are not necessary with such an assumption, which causes the

inaccurate estimated nadir point from the extreme points. This

can be viewed as the limitation of the nadir point estimation

method based on the extreme-point-to-nadir scheme. However,

the advantage of the extreme-point-to-nadir scheme remains

in its significantly cheaper computational cost. Furthermore,

MaOEA-IT still wins most of the test problems in DTLZ5-

DTLZ7.

In summary, the proposed MaOEA-IT algorithm wins 164

out of the 210 competitions, which assure the superior per-

formance of MaOEA-IT in addressing DTLZ1-DTLZ7 test

problems with 3-, 5-, 8-, 10- and 15-objective problems. We

believe the promising performance of the proposed algorithm

in mainly owing to 1) its two-stage strategy where the converge

and diversity are treated at different stages, and 2) the designed

NWDA-GA method in finding the accurate PoS in the first

stage. Specifically, the peer competitors used in this experi-

ment can be classified into two different categories, i.e., the

traditional MaOEAs which pursue the promising convergence

and diversity in the same generation, and the two-stage strategy

based MaOEAs which treat the convergence and diversity

in different generations. Particularly, as discussed in Section

I, the individuals with promising convergence are typically

with poor diversity, and vice versa. For the peer competitors

in the first category, the individuals selected by them are a

compromise between the convergence and diversity, but not

with both good convergence and diversity. As a result, the

performance measured by HV may not be promising. For the

peer competitors in the second category, two limitations exist

for them; the first one is the incorrect PoS may be resulted

and the second is the inaccurate extreme points they employed.

For the benchmark problems, the first limitation does not

exist, while the second limitation affects more about the

performance, which is the main reason that peer competitors

from this category show worse performance than the proposed

algorithm. In addition, the proposed algorithm is composed

of two components, i.e., the convergence component and the

diversity component. The convergence component is viewed

as the main contributor to the promising performance of the
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TABLE I
HV RESULTS OF MAOEA-IT AGAINST NSGA-III, RVEA, MOEA/D, KNEA, MAOEA-IGD AND MAOEA-RD OVER DTLZ1-DTLZ7 TEST PROBLEMS

WITH 3, 5, 8-, 10, AND 15 OBJECTIVES.

3-objective 5-objective 8-objective 10-objective 15-objective

DTLZ1

MaOEA-IT 0.9756(1.773e-04) 0.9988(2.880e-05) 0.9996(9.485e-05) 0.9998(8.753e-05) 0.9996(1.963e-04)
NSGA-III 0.9660(4.514e-05)(+) 0.9889(3.983e-05)(+) 0.9900(3.895e-06)(+) 0.9900(1.638e-06)(+) 0.9900(6.963e-06)(+)

RVEA 0.9662(5.058e-07)(+) 0.9889(4.170e-05)(+) 0.9900(5.236e-06)(+) 0.9900(9.679e-07)(+) 0.9900(0.000e+00)(+)
MOEA/D 0.9662(4.726e-07)(+) 0.9890(3.615e-05)(+) 0.9900(1.871e-06)(+) 0.9900(7.071e-07)(+) 0.9609(4.509e-03)(+)

KnEA 0.9076(2.168e-02)(+) 0.6546(9.013e-02)(+) 0.8523(3.258e-02)(+) 0.0000(0.000e+00)(+) 0.0000(0.000e+00)(+)
MaOEA-IGD 0.9565(3.713e-04)(+) 0.9936(3.171e-04)(+) 0.9746(4.264e-04)(+) 0.9982(4.003e-04)(=) 0.9815(3.425e-04)(+)
MaOEA-RD 0.9739(2.681e-04)(=) 0.9974(9.890e-05)(=) 0.9651(9.191e-03)(+) 0.9096(2.183e-02)(+) 0.9107(2.932e-02)(+)

DTLZ2

MaOEA-IT 0.9295(8.891e-05) 0.9897(1.551e-04) 0.9991(6.549e-05) 0.9996(5.484e-05) 0.9997(6.834e-05)

NSGA-III 0.9203(2.579e-05)(+) 0.9805(7.965e-05)(+) 0.9981(3.538e-04)(=) 0.9994(1.174e-04)(=) 0.9898(4.632e-05)(+)
RVEA 0.9205(6.100e-07)(+) 0.9805(5.425e-05)(+) 0.9893(2.837e-05)(+) 0.9899(8.268e-06)(+) 0.9900(1.191e-06)(+)

MOEA/D 0.9205(6.979e-08)(+) 0.9806(7.905e-05)(+) 0.9894(1.963e-05)(+) 0.9899(9.330e-06)(+) 0.9900(1.304e-06)(+)
KnEA 0.9280(1.621e-04)(=) 0.9897(1.164e-04)(=) 0.9990(4.016e-05)(=) 0.9899(1.191e-05)(+) 0.9900(9.515e-07)(+)

MaOEA-IGD 0.9216(3.300e-04)(+) 0.9771(1.869e-04)(+) 0.9875(5.212e-04)(+) 0.9768(2.759e-04)(+) 0.9870(3.737e-04)(+)
MaOEA-RD 0.9174(1.711e-03)(+) 0.9698(3.733e-03)(+) 0.9575(5.797e-03)(+) 0.9069(2.260e-02)(+) 0.7854(7.653e-02)(+)

DTLZ3

MaOEA-IT 0.9293(1.733e-04) 0.9902(1.817e-04) 0.9991(6.494e-05) 0.9997(8.479e-05) 0.9998(5.811e-05)

NSGA-III 0.9204(1.708e-05)(+) 0.9806(7.297e-05)(+) 0.9936(1.705e-03)(+) 0.9960(1.252e-03)(=) 0.9966(7.389e-04)(=)
RVEA 0.9204(5.996e-06)(+) 0.9804(1.187e-04)(+) 0.9894(1.910e-05)(+) 0.9899(8.756e-06)(+) 0.9900(1.137e-06)(+)

MOEA/D 0.9204(3.328e-05)(+) 0.9804(1.683e-04)(+) 0.9893(2.546e-05)(+) 0.9899(7.190e-06)(+) 0.9871(5.492e-03)(+)
KnEA 0.8133(3.084e-02)(+) 0.5495(1.188e-01)(+) 0.0000(0.000e+00)(+) 0.0000(0.000e+00)(+) 0.0000(0.000e+00)(+)

MaOEA-IGD 0.8924(3.334e-04)(+) 0.9772(1.073e-04)(+) 0.9683(1.776e-04)(+) 0.9875(3.113e-04)(+) 0.9773(3.158e-06)(+)
MaOEA-RD 0.9244(7.885e-04)(=) 0.9769(2.351e-03)(+) 0.9527(1.026e-02)(+) 0.6618(1.073e-01)(+) 0.0046(2.671e-01)(+)

DTLZ4

MaOEA-IT 0.9186(6.153e-03) 0.9833(1.144e-03) 0.9912(2.333e-03) 0.9819(6.415e-03) 0.9975(1.794e-03)
NSGA-III 0.9204(2.179e-05)(=) 0.9730(3.929e-03)(+) 0.9893(3.084e-05)(=) 0.9889(3.329e-04)(-) 0.9900(1.127e-05)(+)

RVEA 0.9205(8.934e-07)(=) 0.9805(7.441e-05)(=) 0.9893(2.414e-05)(=) 0.9899(9.612e-06)(-) 0.9900(1.276e-06)(+)
MOEA/D 0.9205(5.675e-08)(=) 0.9804(1.280e-04)(=) 0.9860(1.392e-03)(+) 0.9895(1.901e-04)(-) 0.9899(2.194e-05)(+)

KnEA 0.9187(1.590e-04)(=) 0.9799(1.536e-04)(=) 0.9892(4.954e-05)(=) 0.9899(1.167e-05)(-) 0.9900(1.021e-06)(+)
MaOEA-IGD 0.9115(2.088e-04)(+) 0.9725(3.592e-04)(+) 0.9803(3.515e-04)(+) 0.9725(5.241e-04)(+) 0.9871(3.205e-04)(+)
MaOEA-RD 0.9128(3.018e-04)(+) 0.9808(7.628e-04)(=) 0.9889(1.552e-03)(=) 0.9732(3.111e-03)(+) 0.9647(8.225e-03)(+)

DTLZ5

MaOEA-IT 0.7578(5.256e-04) 0.7240(7.017e-04) 0.5686(1.996e-01) 0.5471(1.840e-01) 0.6606(8.474e-04)
NSGA-III 0.7544(2.362e-04)(=) 0.6504(1.830e-02)(+) 0.5540(3.701e-02)(+) 0.5219(4.239e-02)(+) 0.5519(2.226e-02)(+)

RVEA 0.7526(1.471e-04)(+) 0.6776(2.604e-03)(+) 0.5807(9.214e-03)(-) 0.5466(3.898e-02)(=) 0.5000(4.388e-02)(+)
MOEA/D 0.7505(4.455e-07)(+) 0.6586(1.783e-02)(+) 0.6939(3.904e-04)(-) 0.6848(7.182e-04)(-) 0.5583(6.623e-02)(+)

KnEA 0.7546(1.191e-04)(=) 0.5846(3.659e-02)(+) 0.6700(5.557e-03)(-) 0.6341(1.020e-02)(-) 0.0000(1.473e-01)(+)
MaOEA-IGD 0.7228(2.736e-04)(+) 0.5697(5.903e-05)(+) 0.5753(4.039e-04)(-) 0.5308(8.704e-05)(+) 0.4322(3.353e-04)(+)
MaOEA-RD 0.5000(0.000e+00)(+) 0.5000(0.000e+00)(+) 0.5000(0.000e+00)(+) 0.5000(0.000e+00)(+) 0.5000(0.000e+00)(+)

DTLZ6

MaOEA-IT 0.7578(4.034e-04) 0.6627(1.812e-02) 0.6229(4.146e-02) 0.6776(3.714e-04) 0.6604(1.535e-03)
NSGA-III 0.7537(2.719e-04)(=) 0.6761(1.034e-02)(-) 0.3766(7.599e-02)(+) 0.0000(2.536e-01)(+) 0.0000(2.065e-01)(+)

RVEA 0.7508(7.625e-04)(+) 0.6779(5.757e-03)(-) 0.6213(1.081e-02)(=) 0.6410(7.605e-03)(+) 0.4413(4.722e-02)(+)
MOEA/D 0.7505(1.164e-07)(+) 0.7235(4.708e-04)(-) 0.6891(2.210e-03)(-) 0.5220(9.244e-03)(+) 0.4422(1.205e-02)(+)

KnEA 0.7558(1.148e-05)(=) 0.6630(6.876e-03)(=) 0.5581(3.181e-02)(+) 0.0965(1.236e-01)(+) 0.0000(1.141e-01)(+)
MaOEA-IGD 0.6651(4.619e-04)(+) 0.5944(2.693e-04)(+) 0.4293(3.525e-04)(+) 0.3208(7.166e-05)(+) 0.3305(2.501e-04)(+)
MaOEA-RD 0.5000(0.000e+00)(+) 0.5000(0.000e+00)(+) 0.5000(0.000e+00)(+) 0.5000(0.000e+00)(+) 0.4950(0.000e+00)(-)

DTLZ7

MaOEA-IT 0.6694(4.010e-04) 0.6636(7.589e-04) 0.6482(1.098e-03) 0.6154(2.200e-03) 0.5507(3.113e-03)

NSGA-III 0.5991(5.854e-04)(+) 0.6138(8.956e-03)(+) 0.5704(1.327e-02)(+) 0.5452(1.466e-02)(+) 0.4820(1.055e-02)(+)
RVEA 0.5985(3.989e-04)(+) 0.6168(1.394e-03)(+) 0.6162(5.578e-03)(+) 0.5909(1.062e-02)(+) 0.5447(2.500e-02)(+)

MOEA/D 0.6007(6.764e-06)(+) 0.6417(2.737e-04)(+) 0.4194(4.503e-02)(+) 0.4089(3.813e-02)(+) 0.3774(4.266e-02)(+)
KnEA 0.5979(8.629e-04)(+) 0.6123(9.458e-03)(+) 0.6408(7.469e-03)(+) 0.6430(1.070e-02)(-) 0.5280(1.017e-02)(+)

MaOEA-IGD 0.3961(3.574e-06)(+) 0.4087(3.282e-05)(+) 0.4005(2.532e-04)(+) 0.5041(3.837e-06)(+) 0.4324(2.061e-04)(+)
MaOEA-RD 0.4252(4.062e-02)(+) 0.4002(1.490e-02)(+) 0.5280(1.997e-02)(+) 0.5134(2.326e-02)(+) 0.5239(8.403e-03)(+)

+/=/- 31/11/0 32/7/3 30/7/5 31/4/7 40/1/1

proposed algorithm. The main reason is that the diversity

component used in the proposed algorithm is also used by the

peer competitors, such as NSGA-III and RVEA. Nevertheless,

the proposed algorithm shows the promising performance

among these peer competitors.

E. Investigation Between NDWA-GA and DWA-ES

In this subsection, the performance of the proposed NDWA-

GA in finding the Pareto-optimal solutions is investigated

through the comparison against its preceding work, i.e., DWA-

ES. To evaluate the quality of the generated Pareto-optimal so-

lutions, two performance indicators, the Generational Distance

(GD) [28] and the Maximum Pareto Front Error (MPFE) [47]

which are specifically designed to measure the convergence of

the solutions, are applied in this investigation.

Specifically, GD and MPFE are mathematically represented

by (4) and (5), respectively,

GD =

√

∑

p∈P minpf∈PF ||p− pf ||2
|P | (4)

MPFE = maxp∈P minpf∈PF ||p− pf ||2 (5)
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TABLE II
THE CONVERGENCE OF NDWA-GA AND DWA-ES MEASURED BY GD AND MPFE.

GD Indicator MPFE Indicator
NDWA-GA DWA-ES NDWA-GA DWA-ES

DTLZ1

3 1.116378E-05(3.801440E-06) 2.011676E-03(4.260983E-03)(+) 4.996066E-04(2.904490E-04) 2.739488E-01(3.456044E-01)(+)
5 7.429154E-05(3.633830E-05) 2.164111E-02(9.207933E-04)(+) 2.033603E-03(4.772295E-03) 2.309088E-01(4.215690E-01)(+)
8 1.745770E-04(7.215127E-04) 4.514194E-02(2.984266E-04)(+) 4.935391E-02(4.812665E-03) 6.737321E-01(1.060792E-01)(+)

10 1.712473E-04(6.079962E-05) 5.367918E-02(2.384873E-04)(+) 3.048288E-01(2.429143E-04) 1.267158E-01(9.051564E-01)(+)
15 2.738109E-04(4.173079E-05) 8.154291E-02(6.843897E-02)(+) 9.184138E-01(6.704740E-04) 3.083838E-01(4.878440E-01)(+)

DTLZ2

3 2.254637E-05(9.106223E-05) 6.828068E-03(6.964152E-05)(+) 8.246289E-04(4.004944E-05) 6.047725E-01(2.623298E-01)(+)
5 1.737555E-04(4.703591E-04) 7.633826E-02(8.141903E-03)(+) 1.327162E-03(2.990603E-03) 9.310400E-01(3.674385E-01)(+)
8 3.608976E-04(4.060436E-05) 1.422377E-01(5.481838E-02)(+) 7.725854E-02(9.548772E-02) 8.073665E-01(7.051854E-01)(+)

10 3.316103E-04(4.174040E-04) 1.740351E-01(8.800398E-02)(+) 4.619234E-01(6.320157E-03) 6.620679E-01(8.816138E-01)(+)
15 4.836233E-04(7.855027E-04) 3.111430E-01(2.251463E-03)(+) 9.139047E-01(6.931652E-02) 6.362358E-01(9.921861E-01)(+)

DTLZ3

3 2.203975E-05(4.319371E-04) 6.738774E-03(2.620434E-04)(+) 4.248374E-03(4.736167E-04) 2.585487E-01(9.340812E-01)(+)
5 1.394320E-04(2.164811E-06) 6.445229E-02(7.243770E-02)(+) 1.603100E-02(8.976379E-03) 7.061242E-01(4.132775E-02)(+)
8 2.454213E-04(9.153132E-04) 1.924174E-01(6.238226E-02)(+) 6.683038E-01(1.455276E-03) 1.191811E-01(6.742588E-02)(+)

10 3.954295E-04(9.997008E-05) 1.840918E-01(3.309933E-02)(+) 9.343235E-01(7.210347E-02) 8.654473E-01(6.243297E-01)(+)
15 4.084966E-04(6.931363E-05) 2.708953E-01(7.918663E-03)(+) 9.249660E-01(1.326772E-01) 5.588227E-01(3.930256E-01)(+)

DTLZ4

3 2.770528E-05(3.051793E-05) 5.777959E-03(4.167487E-02)(+) 9.826194E-05(5.442619E-03) 6.644040E-02(9.916023E-01)(+)
5 1.204319E-04(7.474354E-04) 6.600408E-02(9.735102E-04)(+) 6.761374E-03(8.745897E-02) 9.557402E-01(1.413901E-01)(+)
8 2.855726E-04(9.948585E-05) 2.529676E-01(6.881755E-02)(+) 6.424232E-01(1.592495E-03) 7.305326E-01(6.196558E-01)(+)

10 3.434044E-04(2.329267E-06) 1.798878E-01(5.188940E-04)(+) 6.515113E-01(2.705081E-02) 7.967081E-01(9.963083E-01)(+)
15 5.211931E-04(3.316237E-04) 4.282656E-01(8.293367E-02)(+) 4.109187E-01(7.646295E-02) 2.857676E-01(7.086567E-01)(+)

where P and PF denote the generated Pareto-optimal solu-

tions and the solutions sampled from the PF, ||·||2 is to measure

the Euclidean distance, and | · | is a cardinality operator. It is

obvious that the calculation of GD and MPFE requires a set of

solutions sampled from the PF of the corresponding problem

to be solved. Because only DTLZ1-DTLZ4 have the analytical

form of their PFs, DTLZ5-DTLZ7 are excluded from this

investigation [11].

The performance measured by GD and MPFE are shown

in Table II where the numbers in bold face refer to the best

results, and the symbol “+” denotes that the null hypothesis

of the results regarding NDWA-GA is accepted by the Mann-

Whitney-Wilcoxon rank-sum test at the significance level of

5%. It is clearly observed from Table II that NDWA-GA out-

performs DWA-ES on all the test problems in the experiments.

To intuitively investigate the effectiveness of NDWA-GA,

the true PFs, and the resulted approximated PFs of NDWA-GA

and DWA-ES of the 3-objective DTLZ1-DTLZ4 are plotted

in Figs. 5-8, where Figs. 5a, 6a, 7a and 8a denote the

true PFs, Figs. 5b, 6b, 7b and 8b denote the approximate

Pareto-optimal fronts generated by NDWA-GA, and Figs. 5c,

6c, 7c and 8c denote the approximate Pareto-optimal fronts

generated by DWA-ES. Specifically, the ones, which are from

the solutions generated by NDWA-GA and DWA-ES but not

the true Pareto-optimal, are plotted in red, while the true

Pareto-optimal solutions are in blue. For a fair comparison, we

set the number of function evaluations to be 2× 104, and the

same numbers of offspring at each generation throughout the

evolutionary process. In addition, the CMA-ES [48], which is

a promising implementation of ES and can achieve promising

performance without parameter tuning, is adopted in DWA-ES

for maximizing its performance.

As can be seen clearly from these figures, all the solutions

generated by NDWA-GA are located exactly on the PFs, while

DWA-ES obtains promising solutions only on DTLZ4. In

addition, NDWA-GA also finds more Pareto-optimal solutions

than DWA-ES does.

V. CONCLUSIONS

The aim of this paper is to propose an independent two-

stage MaOEAs, i.e., MaOEA-IT, where the convergence and

diversity are addressed in independent stages for effectively

solving MaOPs. To achieve this, we firstly propose a non-

dominated dynamic weight aggregation method based on

genetic algorithm, i.e., NDWA-GA, which is capable of finding

a population of Pareto-optimal solutions for MaOPs with

concave, linear and convex Pareto front shapes in a single

run. Further, these found Pareto-optimal solutions are used to

learn the Pareto-optimal subspace to promote the convergence.

Then, the diversity is handled by solving a set of single-

objective optimization problems within the learned Pareto-

optimal subspace. The solution of each single-objective op-

timization problem is with the closest distance to the corre-

sponding reference line. There are totally N reference lines

uniformly distributed in the objective space, where N denotes

the desire number of final solutions that the end-users prefer.

Through the quantitative comparisons on seven test problems

with five different scales of objective numbers against six state-

of-the-art MaOEAs, MaOEA-IT shows significantly better

performance in addressing MaOPs. Moreover, the performance

of NDWA-GA is also investigated against its seminal work,

and NDWA-GA wins all of the comparisons. In addition,

MaOEA-IT can also be used to effectively search for the nadir

point, which had also been quantitatively and qualitatively

proven by a series of experiments. Furthermore, MaOEA-IT

is able to directly find the solutions within the preference

area, while existing MaOEAs still need to find a population

of solutions even when the preference area from end-users is

known in advance.

Based on the analysis on the computational complexity of

MaOEA-IT, it is realized that non-dominated sorting on a large
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Fig. 5. The true Pareto front, the Pareto-optimal solutions generated by NDWA-GA and the Pareto-optimal solutions generated by DWA-ES of the 3-objective
DTLZ1.
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Fig. 6. The true Pareto front, the Pareto-optimal solutions generated by NDWA-GA and the Pareto-optimal solutions generated by DWA-ES of the 3-objective
DTLZ2. Fig. 6c can be seen clearly on the computer screen.
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Fig. 7. The true Pareto front, the Pareto-optimal solutions generated by NDWA-GA and the Pareto-optimal solutions generated by DWA-ES of the 3-objective
DTLZ3. Fig. 7c can be seen clearly on the computer screen.
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Fig. 8. The true Pareto front, the Pareto-optimal solutions generated by NDWA-GA and the Pareto-optimal solutions generated by DWA-ES of the 3-objective
DTLZ4.

number of population size consumes extensive computational

resources. Therefore, efficient non-dominated algorithm could

be developed in our future work. In addition, MaOEA-IT can

be used to find the nadir points, however, it works under the

assumption that the extreme points stand at the axes due to

its extreme-point-to-nadir scheme. As can be seen from the

DTLZ5 and DTLZ6 test problems, a number of their extreme

points do not locate at the axes. In this regard, generalizing

MaOEA-IT for estimating the nadir points could also be part

of our future work. Moreover, MaOEA-IT will be extended to

solve constrained MaOPs that frequently exist in real-world

applications.
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