
Evolutionary Neural
Architecture Search for Image

Classification

by

Gonglin Yuan

A thesis
submitted to the Victoria University of Wellington

in fulfilment of the
requirements for the degree of

Doctor of Philosophy
in Computer Science.

Victoria University of Wellington
2024

Abstract

Image classification serves as a cornerstone in the realm of computer vi-
sion, closely connected to various other vision-related tasks. Deep con-
volutional neural networks have surpassed traditional image processing
techniques in the domain of image classification, earning them the status
of the primary choice for many researchers. Although numerous effec-
tive convolutional neural networks have been proposed, their architec-
tures tend to be highly task-specific. This implies that a change in data
distribution for a specific task often necessitates an architecture design, a
process that is not only labor-intensive but also prone to errors. Further-
more, the architectures need to be designed by experts who know deep
learning and the specific task or domain information.

To address the shortcomings mentioned above, neural architecture search
has made great progress and attracted great attention, which refers to
searching for promising network architectures automatically for a given
task. Evolutionary computation, capable of addressing non-differentiable
problems, coping with discontinuous search spaces, and with promising
global search ability, is suitable for neural architecture search, and a num-
ber of evolutionary neural architecture search (ENAS) methods have been
proposed. However, most existing ENAS methods suffer from inaccurate
evaluations (i.e., the evaluated fitness cannot represent the candidate’s
true performance) and inefficiencies, limiting their usage. Furthermore,
the low explainability of deep neural networks remains a pressing con-
cern, inhibiting their broader applications. Enhancing the evaluation reli-
ability and efficiency of ENAS, coupled with improving network explain-
ability, emerges as a crucial research direction.

The overall goal of this thesis is to advance effective and efficient ENAS
methodologies by incorporating new search spaces, proposing novel ar-
chitecture representations and new fitness evaluation methods, and de-
veloping innovative evolutionary operations. Furthermore, a method is
proposed to explain network decisions in image classification tasks.

Firstly, this thesis proposes a novel particle swarm optimization-based
ENAS method for image classification. Utilizing an autoencoder, the variable-
length architecture representation is transformed into the fixed-length la-
tent form, making it suitable for particle swarm optimization. Addition-
ally, this thesis develops a novel hierarchical fitness evaluation method
to assess the candidate’s performance efficiently. The experimental re-
sults on three benchmark datasets confirm that the new method achieves
promising results, improving both the classification accuracy and search
efficiency.

Secondly, this thesis proposes a new ENAS method that incorporates
a performance predictor to facilitate the convergence of the search, and a
new weight inheritance mechanism to accelerate fitness evaluations. Specif-
ically, the proposed method designs a new performance predictor to aid
in the generation of high-performing offspring instead of directly predict-
ing the candidate’s fitness, and even the incorrect prediction will not harm
the search. Additionally, an innovative weight-inheritance method is in-
troduced to boost the efficiency of fitness evaluations. The empirical out-
comes show that the proposed method achieves commendable classifica-
tion outcomes and reduces the computational demands.

Thirdly, this thesis proposes an improved one-shot ENAS methodol-
ogy characterized by its reliable fitness evaluations and high efficiency. In
particular, an innovative supernet fine-tuning strategy is proposed to im-
prove the fitness evaluation reliability, a new training strategy is adopted
to improve the efficiency of supernet training, and a population initializa-
tion strategy is presented to enhance the evolutionary progress. Extensive
experimental results confirm the method’s superior performance and val-

idate each introduced strategy’s efficacy.
Fourthly, this thesis proposes a novel evolutionary post-hoc, model-

agnostic explanatory method to explain classifiers’ decisions for image
classification tasks. The proposed method leverages a stable diffusion
model to help generate counterfactual images, aiding in explaining the de-
cisions. Additionally, a multi-objective evolutionary method is proposed
to identify minimal but pivotal regions, and the associated features are
explainable by humans. The experimental results show the method’s effi-
cacy across diverse similar classes and classification architectures.

iv

Acknowledgments

I wish to extend my profound and sincere gratitude to all individuals who
have contributed to my Ph.D. journey.

First and foremost, I would like to express my deepest gratitude to my
dear supervisors, Prof. Mengjie Zhang and Prof. Bing Xue. Their unwa-
vering support, warm encouragement, and expert guidance have been so
important to support my Ph.D. study. They have spent dedicated time
providing detailed academic training and meticulous feedback, ensuring
the enhancement of my research skills. Their constructive critiques and
enlightening discussions have been instrumental in shaping my thoughts
and refining my understanding of intricate concepts, fostering my growth
as a researcher. I am incredibly fortunate to have had the opportunity to
learn and evolve under the supervision of such distinguished and benev-
olent mentors. Their impact on my academic journey and overall personal
development has been profound, and for this, I extend my sincerest ap-
preciation.

I extend my cordial thanks to my peers and colleagues in the Evolution-
ary Computation Research Group (ECRG) for creating an active research
environment and providing valuable encouragement to me. I would also
like to thank all members of the Feature Analysis, Selection, and Learning
(FASLIP) group for their generous sharing of knowledge, which has ex-
panded my intellectual horizons and motivated me to complete this thesis.
My appreciation also goes to the faculty and staff of the Victoria University
of Wellington (VUW) for their support.

v

vi

I wish to thank my family for their consistent understanding, support,
and encouragement throughout my Ph.D. study. Their sacrifices and en-
during encouragement have been my pillars of strength and a constant
source of inspiration.

I would like to express my gratitude to the Wellington Doctoral Schol-
arship program for its financial support of my Ph.D. studies. Thanks to
the School of Engineering and Computer Science (ECS) and VUW for pro-
viding me with the resources necessary to complete my thesis, especially
the computing resources to support the expensive experiments.

Last but not least, I thank all reviewers and examiners who have taken
the time to read my thesis and provided valuable comments and sugges-
tions.

List of Publications

• Gonglin Yuan, Bing Xue and Mengjie Zhang. A Graph-Based Ap-
proach to Automatic Convolutional Neural Network Construction
for Image Classification. In Proceedings of the 35th International Con-
ference on Image and Vision Computing New Zealand (IVCNZ 2020).
Wellington, New Zealand. 2020, pp. 1-6.
DOI: 10.1109/IVCNZ51579.2020.9290492.

• Gonglin Yuan, Bin Wang, Bing Xue and Mengjie Zhang. Particle
Swarm Optimization for Efficiently Evolving Deep Convolutional
Neural Networks Using an Autoencoder-based Encoding Strategy.
IEEE Transactions on Evolutionary Computation. 15pp, 2023. DOI:
10.1109/TEVC.2023.3245322.

• Gonglin Yuan, Bing Xue, and Mengjie Zhang. A Two-Stage Efficient
Evolutionary Neural Architecture Search Method for Image Classifi-
cation. In Proceedings of the 18th Pacific Rim International Conference on
Artificial Intelligence (PRICAI 2021), Lecture Notes in Computer Sci-
ence. vol. 13031. Springer. Hanoi, Vietnam. 8-12 November 2021.
pp. 469-484. DOI: 10.1007/978-3-030-89188-6 35.

• Gonglin Yuan, Bing Xue, and Mengjie Zhang. An Effective and Effi-
cient Neural Architecture Search Method based on Performance Pre-
diction and Weight Inheritance. Submitted to IEEE Computational In-
telligence Magazine (2023).

vii

viii

• Gonglin Yuan, Bing Xue, and Mengjie Zhang. 2023. An Effective
One-Shot Neural Architecture Search Method with Supernet Fine-
Tuning for Image Classification. In Proceedings of 2023 Genetic and
Evolutionary Computation Conference (GECCO 2023). ACM Press. Lis-
bon, Portugal. 15-19 July 2023. pp. 615-623.
DOI: https://doi.org/10.1145/3583131.3590438.

• Gonglin Yuan, Bing Xue, and Mengjie Zhang. Efficient Evolution-
ary Neural Architecture Search using Reliable Fitness Evaluations.
Conditionally accepted by Information Sciences (2024).

• Gonglin Yuan, Bing Xue, and Mengjie Zhang. Explaining Fine-Grained
Image Classifications Using Evolutionary Search and the Stable Dif-
fusion Model. To be submitted to IEEE Transactions on Evolutionary
Computation (2023).

Contents

1 Introduction 1
1.1 Problem Statement . 1
1.2 Motivations . 3

1.2.1 Challenges of Neural Architecture Design and Neu-
ral Architecture Search 4

1.2.2 Why EC . 5
1.2.3 Limitations of Current ENAS Methods 6

1.3 Research Goals . 12
1.4 Major Contributions . 15
1.5 Organization of the Thesis . 19

2 Literature Review 21
2.1 Machine Learning . 21
2.2 Image Classification . 23
2.3 CNNs and NAS . 24

2.3.1 CNNs . 24
2.3.2 NAS . 28

2.4 Evolutionary Computation 29
2.4.1 Evolutionary Algorithms 30
2.4.2 Swarm Intelligence . 32
2.4.3 Evolutionary Multi-Objective Optimization 34

2.5 Image Generation . 36
2.6 Related Work . 38

ix

x CONTENTS

2.6.1 Evolutionary Neural Architecture Search 38
2.6.2 Fitness Evaluations in NAS 45
2.6.3 One-Shot Neural Architecture Search 48
2.6.4 Explainability of Deep CNNs 50

2.7 Chapter Summary . 61

3 PSO for NAS using an Autoencoder-based Encoding Strategy 65
3.1 Introduction . 65

3.1.1 Chapter Goals . 66
3.1.2 Chapter Organization 67

3.2 The Proposed Method . 67
3.2.1 Overall Framework . 68
3.2.2 Block Vectors to Encode Dense Blocks 69
3.2.3 Latent Vectors Transformed by Autoencoder 70
3.2.4 Training of the Autoencoder 72
3.2.5 Particle Initialization 77
3.2.6 Fitness Evaluation . 78
3.2.7 Evolving Dense Blocks 82
3.2.8 Stacking Dense Blocks 83

3.3 Experiment Design . 84
3.3.1 Benchmark Datasets 84
3.3.2 Peer Competitors . 85
3.3.3 Parameter Settings . 86

3.4 Results and Analysis . 87
3.4.1 Overall Results . 87
3.4.2 Analysis on Autoencoder 92
3.4.3 Analysis on different training data scales 96
3.4.4 The Rational Exploration of Stacking the Blocks . . . 98

3.5 Chapter Summary . 99

4 NAS based on Performance Prediction and Weight Inheritance 103
4.1 Introduction . 103

CONTENTS xi

4.1.1 Chapter Goals . 104

4.1.2 Chapter Organization 105

4.2 The Proposed Method . 106

4.2.1 Algorithm Overview 106

4.2.2 Architecture Search Space 108

4.2.3 Population Initialization 112

4.2.4 Offspring Generation 112

4.2.5 Performance Predictor 115

4.2.6 Fitness Evaluation with Weight Inheritance 117

4.3 Experimental Settings . 118

4.3.1 Benchmark Datasets 118

4.3.2 Peer Competitors . 119

4.3.3 Parameter Settings . 119

4.4 Results and Analysis . 120

4.4.1 Overall Results . 120

4.4.2 Effectiveness of Performance Predictor 124

4.4.3 Efficiency of Weight Inheritance 129

4.4.4 Analysis of the backbone block structure 132

4.5 Chapter Summary . 133

5 One-Shot Neural Architecture Search using Reliable Fitness Eval-
uations 135

5.1 Introduction . 135

5.1.1 Chapter Goals . 136

5.1.2 Chapter Organization 137

5.2 Analysis of Motivations . 137

5.3 The Proposed Method . 140

5.3.1 Algorithm Overview 141

5.3.2 Supernet Architecture 142

5.3.3 Supernet Training . 144

5.3.4 Population Initialization 148

xii CONTENTS

5.3.5 Individual Evaluation 149

5.3.6 Offspring Generation 149

5.3.7 Supernet Fine-Tuning 153

5.3.8 New Population Generation 154

5.4 Experimental Settings . 154

5.4.1 Benchmark Datasets 154

5.4.2 Parameter Settings . 154

5.5 Results and Analysis . 156

5.5.1 Overall Results . 156

5.5.2 Analysis of the Supernet Training 161

5.5.3 Effectiveness of Population Initialization 163

5.5.4 Effectiveness of Supernet Fine-Tuning 166

5.6 Chapter Summary . 168

6 Explaining Image Classification Using Evolutionary Search and
the Stable Diffusion Model 169

6.1 Introduction . 169

6.1.1 Chapter Goals . 170

6.1.2 Chapter Organization 171

6.2 The Proposed Method . 171

6.2.1 Algorithm Overview 171

6.2.2 Encoding and Decoding Strategies 173

6.2.3 Population Initialization 175

6.2.4 Counterfactual Image Generation 175

6.2.5 Objective Functions 177

6.2.6 Offspring Generation 180

6.2.7 Explanations . 180

6.3 Experimental Design . 181

6.3.1 Benchmark Dataset . 181

6.3.2 Selected Image Categories and Models 182

6.3.3 Parameter Settings . 183

CONTENTS xiii

6.4 Results and Analysis . 184
6.4.1 Counterfactual Explanations 184
6.4.2 Comparisions with Other Methods 193
6.4.3 Convergence Analysis 196

6.5 Chapter Summary . 197

7 Conclusions and Future Work 199
7.1 Achieved Objectives . 200
7.2 Main Conclusions . 202

7.2.1 PSO for NAS using an Autoencoder-based Encoding
Strategy . 203

7.2.2 NAS based on Performance Prediction and Weight
Inheritance . 204

7.2.3 One-Shot NAS . 206
7.2.4 Explaining Image Classification 208

7.3 Future Work . 209
7.3.1 Multi-Objective Neural Architecture Search 209
7.3.2 Neural Architecture Search for Broader Computer

Vision Tasks . 209
7.3.3 Network Architecture Search based on Novel Back-

bone Structures . 210
7.3.4 Efficient and Accurate Fitness Evaluations 210
7.3.5 Explanations for Networks across Varied Applications211
7.3.6 Explanations for Deep Network Architectures 211
7.3.7 Real-World Applications 211

Bibliography . 212

xiv CONTENTS

List of Tables

3.1 Performance comparisons on the CIFAR-10 dataset. 88

3.2 Performance comparisons on the CIFAR-100 dataset. 90

3.3 Performance comparisons on the ImageNet dataset. 92

3.4 The comparisons of different evaluation methods. 96

3.5 Different single blocks’ prediction error rates, best networks’
prediction error rates, and the corresponding numbers of
blocks. 100

4.1 The comparisons with peer competitors on CIFAR-10. 121

4.2 The comparisons with peer competitors on CIFAR-100. . . . 123

4.3 The comparisons with peer competitors on ImageNet. 125

4.4 The comparisons of NPPGA and EPPGA. 126

4.5 The comparisons of different performance predictors. 128

4.6 The training accuracy(%) among three weight inheritance
methods comparisions on the CIFAR-10 dataset. 131

4.7 The training accuracy(%) among three weight inheritance
methods comparisions on the CIFAR-100 dataset. 132

4.8 The comparisons of MPPGA and EPPGA. 133

5.1 Performance comparison results on CIFAR-10. 158

5.2 Performance comparison results on CIFAR-100. 159

5.3 Performance comparison results on ImageNet. 161

5.4 The comparisons of TIFNAS and TNFNAS. 165

xv

xvi LIST OF TABLES

5.5 The comparisons of TIFNAS and TINNAS. 166

List of Figures

1.1 The outline of this thesis. 19

2.1 Some examples of the CIFAR-10 dataset. 24

2.2 An example of a CNN architecture for image classification [1]. 25

2.3 Two steps of the depth-wise separable convolution. 26

2.4 An example of a four-layer dense block (adapted from [56]). 26

2.5 The structure of a MobileNetV3 block (adapted from [52]). . 27

2.6 The general process of EAs. 30

2.7 An example of the crossover operation in GP. 32

2.8 An example of the mutation operation in GP. 33

2.9 The selection process for the next iteration of NSGA-II pri-
marily involves non-dominated sorting and crowding dis-
tance sorting. (Adapted from [29]) 35

2.10 The encoder of a VAE compresses an input image to a ma-
trix in the latent space; the decoder component can then re-
construct the image from this latent matrix. 37

2.11 The sequence of operations involved in image synthesis within
the latent space. 38

2.12 Saliency Map visualization results. (images taken from [125]) 50

2.13 Guided Backpropagation visualization results. (images taken
from [128]) . 51

2.14 Comparison of Integrated Gradients with the vanilla gradi-
ent method. (image adapted from [141]) 52

xvii

xviii LIST OF FIGURES

2.15 Illustration of how CAM works. (image taken from [175]) . . 53

2.16 An example of Grad-CAM. (image taken from [117]) 55

2.17 Comparative visualization between Grad-CAM and Grad-
CAM++. (image taken from [22]) 56

2.18 Illustration of SLIC segmentation: (a) The original image of
a cat; (b) The image post SLIC segmentation. 58

2.19 Counterfactual visual explanations for bird breeds. (image
taken from [44]) . 59

2.20 Visualizations produced by GANalyze. (image sourced from
[41]) . 60

2.21 StylEx’s counterfactual explanations. (image taken from [69]) 61

3.1 Overview: an autoencoder is used to represent the dense
block architectures, a PSO algorithm is employed to imple-
ment the search process, and a new-designed fitness evalu-
ation method is applied. 68

3.2 Autoencoder to transform a block vector to a latent vector. . 71

3.3 An example of the autoencoder training: Two block vectors
are corresponding to two different dense blocks, and they
are input into the autoencoder. The encoder part generates
two latent vectors, respectively. The decoder part outputs
two reconstructed block vectors. The reconstruction loss,
architecture similarity loss, and scale similarity loss are con-
sidered. 74

3.4 The probability density curve of two element values of la-
tent vectors. (a) Produced by the proposed autoencoder. (b)
Produced by CAE. 93

3.5 The Relationship between the L1 distance of block vectors
and that of corresponding latent vectors. (a) Produced by
the proposed autoencoder, which considers the architecture
similarity loss. (b) Produced by CAE. 94

LIST OF FIGURES xix

3.6 The relationship between the L1 distance of the sum of val-
ues in block vectors and that in corresponding latent vec-
tors. (a) Produced by the proposed autoencoder. (b) Pro-
duced by CAE. 95

3.7 The influence of different data scales. 98
3.8 The best candidate at each iteration is found by training on

40% training data, and their rank at each iteration when
trained by 20% training data is shown. 99

3.9 The prediction error rates of networks stacked by different
numbers of blocks, and there are five different block struc-
tures. 100

4.1 Overview: EPPGA searches for the network architecture
following an evolutionary procedure. 106

4.2 An example of the network architecture: the top module
shows the overall network architecture. The middle mod-
ule presents the detailed stem and tail structures. The cell is
composed of four blocks in this example. The lowest mod-
ule provides the details of the EPPGA block structure and
the original MobileNetV3 block structure for comparison. . . 108

4.3 An example of a crossover operation: (a) The two parent in-
dividuals. (b) The generated offspring. The primary parent
replaces the 4th cell with the secondary parent, generating
the offspring. 113

4.4 An example of the feature construction for the performance
predictor contains two parts: (a) The first part comprises the
primary parent’s information. (b) The second part is com-
posed of the generated offspring’s information. The archi-
tecture representation length is 40 in this example. 116

4.5 The population’s performance during the evolutions of EPPGA
and NPPGA on CIFAR-10. (a) The average fitness of each
generation. (b) The best fitness of each generation. 126

xx LIST OF FIGURES

4.6 The population’s performance during the evolutions of EPPGA
and NPPGA on CIFAR-100. (a) The average fitness of each
generation. (b) The best fitness of each generation. 127

4.7 The training accuracy change situations using or not using
the weight inheritance method on CIFAR-10. (a) and (b)
shows the results on two different networks. 130

4.8 The training accuracy change situations using or not using
the weight inheritance method on CIFAR-100. (a) and (b)
shows the results on two different networks. 131

5.1 Overview: TIFNAS comprises supernet training, popula-
tion initialization, and evolutionary search. The supernet
is efficiently trained using the proposed training method,
and the well-performing subnets during the training are se-
lected as the initialized individuals. In the evolutionary
search process, the supernet is further fine-tuned to provide
more precise evaluations. 141

5.2 The architecture of the supernet. Each cell consists of four
blocks, with each block having 18 optional operations. An
operation comprises a 1×1 convolution, a depth-wise sepa-
rable convolution, and another 1×1 convolution. There are
3 candidate kernel sizes and 6 expansion rates to choose
from for an operation. 143

5.3 The progressive initialization method comprises four steps:
(a) training the path with all blocks of k = 7 and e = 6;
(b) initializing the weighs of the path with all blocks of k =

5 and e = 6, and then training; (c) initializing the weighs
of the path with all blocks of k = 3 and e = 6, and then
training; (d) initializing all other paths. 145

LIST OF FIGURES xxi

5.4 Two kinds of weight inheritance within the supernet. (a)
The convolution of a kernel size of 5 × 5 inherits weights
from the convolution of a kernel size of 7 × 7, and the con-
volution of a kernel size of 3× 3 inherited weights from the
convolution of a kernel size of 5 × 5. (b) The convolutions
of e = 2 and e = 4 inherit weights from the convolution of
e = 6, respectively. 146

5.5 An example of the two-level crossover operation. For the
cell-level crossover, the second and fourth cells are selected
to swap. The fifth cell is chosen to perform the block-level
crossover, and the second and fourth blocks are selected to
swap. 150

5.6 An example of three types of parameter-level mutations.
For the adding mutation, a new block is generated and in-
serted into the cell; for the reducing mutation, a block is
selected and removed; for the modification mutation, some
parameters are changed. 152

5.7 The supernet training processes of the three widest paths
on CIFAR-10. The X-axis represents the number of training
epochs, and the Y-axis represents the training loss. 162

5.8 The supernet training processes of sampling possible paths
to train the supernet on CIFAR-10. The X-axis represents
the number of training epochs, and the Y-axis represents the
training loss. 163

5.9 The distribution of fitness for the initial population, obtained
through two different initialization methods, on two image
classification datasets: CIFAR-10 and CIFAR-100. 164

5.10 Spearman Correlation Coefficient between measured and
true fitness throughout evolution on CIFAR-10. 167

xxii LIST OF FIGURES

6.1 Overview of the SD-MOEX framework: the primary work-
flow is illustrated on the left. The bottom part displays the
evolutionary process, following a typical NSGA-II proce-
dure. The evaluation process is depicted at the top, where
two objective values are calculated. 172

6.2 Illustration of the SLIC segmentation and the encoding-decoding
process. (a) The input image is segmented into 10 superpix-
els via SLIC. (b) Five superpixels are selected and encoded
into a string comprised of binary bit representations. Subse-
quently, the string is decoded into a binary mask, wherein
the selected superpixels are represented in white, and the
remaining portions of the image are depicted in black. 174

6.3 A example of the SD model’s inpainting. Inputs comprise
a source image of a cat, a mask image pinpointing inpaint-
ing regions, and a textual description specifying the desired
inpainting content. The model synthesizes a counterfactual
image based on the input information. 176

6.4 Illustrations of impact objective values. (a) represents an
individual corresponding to the eye region’s superpixels.
Conversely, (b) depicts an individual associated with the
ear region’s superpixels. The calculations imply that the
impact objective value in (b) exceeds that in (a), suggesting
that the ‘ear’ attribute assumes greater importance than the
‘eye’ feature for this classifier’s decision-making paradigm. . 179

6.5 Some example cases of the classes. 182

LIST OF FIGURES xxiii

6.6 Counterfactual explanations for an Egyptian Mau cat image
using MobileNetV2. The original image is displayed on
the left. Details of selected superpixels from the original
are presented above, with three variations of selected re-
gions. The synthesized counterfactual images correspond-
ing to these areas are displayed below. Enlarged views of
altered regions facilitate comparison between the original
(above) and counterfactual images (below). For each image,
classification probabilities for both categories are provided,
alongside changes in probabilities relative to the original
image for each counterfactual image. 186

6.7 Counterfactual interpretations of Wide ResNet-50 for the
classification of an Egyptian Mau cat. The figure comprises
three synthesized counterfactual images accompanied by
their corresponding prediction probabilities for both Egyp-
tian Mau cat and tabby cat categories. Salient alterations in
each counterfactual are accentuated and contrasted with their
respective manifestations in the original input. 187

6.8 Counterfactual explanations using MobileNetV2 for an elec-
tric guitar depicted in a wooden hue. The original image,
situated on the left, shows the classification probability for
the electric guitar as 63.07% and 36.43% for the acoustic gui-
tar. To the bottom right, three counterfactual images are
juxtaposed with the original, with corresponding selected
areas highlighted in the red mask. The extent of the mod-
ification area expands progressively from (a) to (c), along
with the rise in the prediction probabilities for acoustic gui-
tar. Key distinguishing features between the original and
counterfactual images are magnified for clarity. 189

xxiv LIST OF FIGURES

6.9 Counterfactual explanations using Wide ResNet-50 for an
electric guitar depicted in a wooden hue. Three synthesized
counterfactual images are presented, alongside the associ-
ated prediction probabilities for the electric guitar and acous-
tic guitar categories. Predominant modifications in each coun-
terfactual are highlighted, juxtaposed with their original ap-
pearances in the input image. 191

6.10 Counterfactual explanations using Wide ResNet-50 for a yawl.
Three synthesized counterfactual images are presented along-
side the associated prediction probabilities for the yawl and
schooner categories. Modifications in each counterfactual
are highlighted, compared with their original appearances
in the input image. 192

6.11 Counterfactual explanations using MobileNetV2 for an am-
bulance which looks like a police van. Three counterfactual
images are shown alongside the associated prediction prob-
abilities for ambulance and police van. The modifications in
each counterfactual are highlighted. 193

6.12 Visual explanations of MobileNetV2’s decision for an image
of an Egyptian Mau cat. Results from six distinct explanation
methodologies are displayed. For each method, two images
are showcased: the former presents the visualized heatmap,
and the subsequent shows this heatmap upon the input, fa-
cilitating the identification of salient features. 194

6.13 Visual explanations of MobileNetV2’s decision for an image
of an electric guitar. 195

6.14 Evolutionary process for SD-MOEX with an input image of
an Egyptian Mau cat processed by the MobileNetV2 model. . 196

Chapter 1

Introduction

1.1 Problem Statement

The recent development of mobile internet technology has led to a sub-
stantial increase in the number of images on the internet. How to process,
analyze, and understand the enormous amount of image data has become
a challenging task in the field of computer vision. Image classification [82],
which is the task of classifying the images into predefined categories based
on the content, is the cornerstone of image analysis. Furthermore, other
computer vision tasks, such as semantic segmentation and object recogni-
tion, are closely related to the image classification task.

However, image classification remains a challenging task for several
reasons. Firstly, variations in an object’s viewpoint, scale, deformation,
and occlusion can make one object appear markedly different. Secondly,
environmental factors, especially illumination conditions and background
clutter, can complicate object identification. Thirdly, intra-class variation
is challenging, as different objects of the same class may exhibit consider-
able variations in appearance. Therefore, an effective image classification
model should be invariant to all aforementioned variations while being
sensitive to intra-class differences.

Existing image classification techniques can be broadly categorized based

1

2 CHAPTER 1. INTRODUCTION

on whether the features are manually designed or automatically learned.
The former often relies on human-designed feature extractors, which are
labor-intensive and require domain knowledge. In contrast, techniques
based on automatic feature learning can extract meaningful features di-
rectly from raw data, eliminating the need for explicit feature engineering,
and they could generally outperform the former [82]. Notably, Convo-
lutional Neural Networks (CNNs) stand out as a key image classification
technique rooted in automatic feature learning. CNNs process raw images
as input, learn features through various operations, and yield direct clas-
sification results. This end-to-end learning approach can effectively take
advantages of the features of the image data to obtain accurate image clas-
sification results. There are some well-performed CNNs in recent years,
such as VGG [126], GoogLeNet [142], ResNet [48], and DenseNet [56].

However, CNN architectures are usually task-specific, i.e., a new CNN
architecture often needs to be designed when the distribution of data changes.
As a result, when there is a new task, the CNN architecture needs to be de-
signed by deep learning experts, taking into account the data’s scale and
distribution, which is labor-intensive. Moreover, the large computational
power needed, predominantly available in large institutions or industrial
giants, may not be accessible to all users. Consequently, the automatic
design of CNN architectures, enabling users without CNN expertise to
utilize them, has gained considerable attention.

Neural Architecture Search (NAS) is an approach that aims to auto-
matically search for promising deep neural network architectures for a
given problem [177]. Generally, NAS approaches fall into three categories
based on the optimization techniques adopted [79], i.e., the Reinforce-
ment Learning (RL)-based NAS algorithms, the gradient-based NAS al-
gorithms, and the Evolutionary Computation (EC)-based NAS algorithms
(ENAS). Given that RL-based algorithms typically require intensive com-
putational resources [131], and gradient-based algorithms often produce
ill-conditioned architectures [79], in this research, we focus on ENAS.

1.2. MOTIVATIONS 3

EC methods are population-based approaches inspired by Darwinian
theory [12]. Many EC algorithms have been applied to ENAS, such as Ge-
netic Algorithms (GAs) [92], Particle Swarm Optimization (PSO) [34], Dif-
ferential Evolution (DE) [101], and Genetic Programming (GP) [64]. How-
ever, existing methods still suffer from complex architecture representa-
tions, time-consuming fitness evaluations, limited interpretability, and low
search efficiency. Thus, this thesis focuses on addressing the above issues
in the realm of ENAS for image classification.

Explainability 1 is also crucial for CNNs, enabling domain experts/users
and developers to collect valuable insights and comprehend the under-
lying factors that influence the model’s predictions. Such understanding
can foster new discoveries and enhance decision-making processes. More-
over, understanding how CNNs arrive at their decisions can help build
trust in the outputs, which is pivotal in some industries, such as finance
and healthcare. Furthermore, explainable models allow developers to di-
agnose and address issues more effectively, as explainability can help re-
veal the underlying causes of incorrect decisions or predictions. As CNN
models grow in size and complexity, explaining their decision-making
processes becomes more challenging, and improving the explainability of
deep CNNs is essential for both their development and real-world appli-
cations.

1.2 Motivations

The motivations of this research proposal will be discussed from three as-
pects. Firstly, the challenges of the neural architecture design and search
will be presented. Next, the reasons for using EC methods to solve the
problems will be briefly introduced. Finally, the limitations of the existing
works will be itemized.

1For the purposes of this thesis, terms such as “explanability”, “interpretability”, and
“understandability” are used interchangeably and no distinction is made between them.

4 CHAPTER 1. INTRODUCTION

1.2.1 Challenges of Neural Architecture Design and Neu-

ral Architecture Search

In order to employ CNNs to solve problems, people need to manually de-
sign the architecture of the network or use a NAS approach to search for
appropriate architectures. However, designing architectures is a challeng-
ing task for the following reasons:

• CNN architectures often need to be tailored for specific tasks. Con-
sequently, a network optimized for one particular task usually does
not perform well on a different task. This means that a new problem
necessitates the design of an entirely new CNN architecture. Fac-
tors such as the dataset’s scale, number of categories, classification
complexity, and image size typically influence the architecture of the
CNNs.

• Designing a CNN architecture requires deep learning expertise. How-
ever, in practice, the experts with deep learning expertise are not al-
ways accessible. A significant number of these professionals work
for major industrial firms and may not be available for the users,
limiting many potential users from harnessing CNNs for their re-
quirements.

• Manually designing CNN architectures is labor-intensive due to the
trial-and-error process. Deep learning experts may need to invest
substantial time on a single task, familiarizing themselves with the
data distribution, training network weights, and adjusting hyperpa-
rameters over numerous iterations.

• The automatic NAS approach, while alleviating some manual labor,
is resource-intensive. The vast architectural search space implies nu-
merous candidate networks, and evaluating each network’s perfor-
mance can be very costly and time-consuming. Efforts to mitigate

1.2. MOTIVATIONS 5

the evaluation time may lead to another issue: less accurate assess-
ments.

• Regardless of whether CNN architectures are designed manually
or generated by NAS algorithms, their intricate designs pose inter-
pretability challenges. While some methods offer insights into the
important areas of the image, these methods cannot explain how
these areas (and the corresponding features) affect the classifier’s de-
cisions, which limits the explainability of CNNs.

• Providing detailed explanations for CNN decisions on similar im-
age classes is notably challenging. The classifications for similar im-
age classes are difficult, and explaining these decisions is much more
difficult. While attempts have been made to elucidate the logic be-
hind different categories, research focusing on explanations for sim-
ilar image categories remains rare.

1.2.2 Why EC

The process of NAS requires the optimization of several variables: the
number of layers, each layer’s type, and the corresponding parameters
of each layer, such as the number of feature maps and the kernel size.
Given these intricate considerations, NAS is a complex optimization prob-
lem, which is often nonconvex and non-differentiable since the candidate
parameters are discrete [36]. This renders traditional mathematical opti-
mization techniques less effective.

EC methods are a class of nature-inspired stochastic optimization
paradigms, which are population-based and mimic the principle of Dar-
winian natural selection. As EC methods are insensitive to the local op-
tima, able to address non-differentiable problems, and can cope with dis-
crete search spaces [12], they are quite suitable for the NAS optimization
problem. Specifically, GA is capable of producing high-quality solutions

6 CHAPTER 1. INTRODUCTION

by utilizing bio-inspired operators, such as crossover, mutation, and se-
lection. We can design new operators according to the specific ENAS
task, which is flexible. Besides, GA can cope with discrete representa-
tions, which are suitable for network architecture representations. PSO is
of simple implementation, high efficiency, and robustness [120], and fewer
parameters need to be tuned in PSO. Typically, PSO addresses continu-
ous search spaces, and each PSO particle signifies a potential solution or
network architecture. When architectural representation parameters are
continuous, PSO proves effective for ENAS challenges.

In Explainable Artificial Intelligence (XAI), EC also presents promising
prospects, with Multi-Objective Evolutionary Algorithms (MOEAs) stand-
ing out notably. The intrinsic capability of MOEAs to concurrently opti-
mize multiple conflicting objectives renders them particularly suitable for
counterfactual explanations. Within image classification, the counterfac-
tual image is anticipated to significantly alter the classifier’s prediction
probability, thereby highlighting the importance of the modified regions
and providing explanations for the cause reasoning. Besides, modifica-
tions in the counterfactual should be restricted to the smallest viable re-
gion because a limited area usually corresponds to fewer attributes or fea-
tures. Altering every pixel in an image obfuscates the specific attributes
responsible for any prediction alteration. As such, pinpointing pivotal
regions evolves into a bi-objective optimization challenge, i.e., minimiz-
ing the area and maximizing the significance. In this context, the Non-
dominated Sorting Genetic Algorithm II (NSGA-II) [29], a robust MOEA,
is adeptly suitable to address this challenge.

1.2.3 Limitations of Current ENAS Methods

ENAS methods offer an approach to automatically constructing CNN ar-
chitectures using the EC algorithms. However, the improvement of ENAS
algorithms still needs to be further explored due to the following limita-

1.2. MOTIVATIONS 7

tions.

1.2.3.1 CNN Architecture Search Space

The search space serves as a foundational component in determining the
outcomes of ENAS algorithms. Typically, the design of the search space is
based on existing high-performing CNN architectures. Despite the pivotal
role of the search space, many ENAS methodologies need to pay more at-
tention to the portability of the candidate networks constituting this space.

Recently, there has been a surge of interest in innovative, efficient, and
portable network architectures within the computer vision domain [52,
53, 87, 115, 172]. These architectures are particularly noteworthy as they
reduce the model size, optimize computational efficiency without com-
promising, and sometimes even enhance the overall performance. In this
case, there is a need for the construction of superior search spaces. These
enhanced spaces would incorporate effective and efficient network candi-
dates, improving the searched network architecture.

1.2.3.2 CNN Architecture Representation

Before commencing the search process of an NAS algorithm, the encoding
strategy must be established. Encoding strategies primarily differ based
on whether the representation length is variable or fixed. For fixed-length
encoding strategies [170], all individuals possess an equal length, inher-
ently restricting the architecture’s flexibility. Such strategies offer the ad-
vantage of reduced search space and compatibility with most standard
evolutionary operators designed for fixed-length representations. How-
ever, these strategies present notable limitations. One significant constraint
is the requirement to predetermine the architecture’s length/depth, which
demands human intervention. Additionally, the optimal architecture length
varies across tasks, posing a challenge even for experts to anticipate. Con-
sequently, achieving optimal performance becomes challenging when ad-

8 CHAPTER 1. INTRODUCTION

hering to a predetermined length.
Conversely, variable-length encoding strategies can represent networks

of diverse depths, granting greater flexibility and expanding the search
space [147]. The primary limitation is that these representations are more
challenging to process using standard EC operators. Researchers then pro-
pose novel operators tailored for variable-length individuals; however,
balancing exploration and exploitation capabilities is difficult. Therefore,
a representation that utilizes fixed-length to depict variable-length archi-
tectures is worth exploring, especially given its compatibility with most
EC algorithms.

Furthermore, exploring autoencoder-based architecture representations
holds potential. Autoencoders, utilized for unsupervised representation
learning [50], comprise an encoder that extracts intrinsic features of input
data and produces a corresponding encoded latent representation, and a
decoder that reconstructs the input from this latent representation. These
encoded latent representations are continuous and typically possess fewer
dimensions than the original input. Hence, the encoder can map discrete
architecture representations to a latent space, yielding lower-dimensional,
fixed-length, and continuous representations suitable for the PSO algo-
rithm. Given that similar architectures often exhibit comparable perfor-
mance [153,161], ensuring that similar architectures map to neighborhood
regions in the latent space can further enhance the search process.

1.2.3.3 Fitness Evaluation

In NAS strategies, fitness evaluation of architectures stands as the most
time-intensive procedure [78]. Typically, classification accuracy emerges
as a pivotal metric. To evaluate the accuracy, an individual needs to be
transferred into the corresponding CNN architecture according to the spe-
cific decoding strategy. Following this, it undergoes gradient training to
get the weights, and subsequently, its performance is assessed on the evo-
lutionary training dataset. This process usually consumes large amounts

1.2. MOTIVATIONS 9

of computational resources and costs a lot of time.

Researchers have been trying to reduce the time of the fitness evalua-
tions. The methodologies adopted can be generally divided into three cat-
egories: (1) shallow-training methods [124], (2) surrogate-assisted meth-
ods [68], and (3) parameter-sharing/replication techniques [154].

Shallow-Training Methods:

The shallow-training fitness evaluation methods are favored by nu-
merous researchers and adopt various strategies. Some researchers adopt
an early stopping policy, i.e., only training the networks for a predefined
small number of epochs [6]; some leverage a subset of the whole training
data to train the candidates, with the assumption that the subset main-
tains a similar data distribution as the original dataset [116, 123]. A few
works use a partial network, i.e., a network with lower depth and/or
lower width, as the proxy to estimate the performance [76, 149]. While
these methods can reduce the computational cost, they might also lead
to an inaccurate performance estimation. Zhou et al. [176] analyzed the
inconsistency of different reduction factors systematically using a model
pool. However, the candidate architectures may become more similar and
well-performing along the search process. In this regard, assessing the
candidates under proxies may not precisely identify the actual promising
candidates. Thus, investigating the effect of reducing training data used
during evolution and proposing an effective fitness evaluation method are
crucial.

Surrogate-Assisted Methods:

Some scholars have designed performance predictors to utilize surrogate-
assisted models to directly predict network performance based on archi-
tectural features [136, 150]. However, two primary challenges persist: (1)
preparing data to train these performance predictors may involve a large
computational budget [135], and (2) inaccuracies in predictions may mis-
guide the search process. For instance, NASNet [183] executed fully-training
and evaluation of candidate networks and discovered that the optimal net-

10 CHAPTER 1. INTRODUCTION

work was positioned at mere 70th out of 250 contenders according to the
performance predictor’s prediction. Hence, designing efficient and accu-
rate surrogate-assisted fitness evaluation methods is still a crucial research
direction.

Weight Inheritance/Replication Methods:

Weight inheritance/replication is a strategy employed to expedite the
fitness evaluation process. Typically, two contexts are prevalent: inheri-
tance from parent network(s) and inheritance from a supernet comprising
all candidate networks.

In the former scenario, offspring often share certain common compo-
nents with their parent(s). One circumvents the necessity of training from
scratch by inheriting weights of these common components as initializa-
tion. Evolutionary operators can be meticulously designed to optimize
this inheritance to maximize the shared components between offspring
and their parent(s).

Conversely, methods belonging to the latter context are termed one-
shot NAS [46]. Here, only a single supernet needs to be trained initially,
and all the candidate networks directly inherit weights from the supernet
without further training. One-shot NAS contains two stages: the super-
net training and the subsequent architecture optimization [46]. In the first
stage, a large supernet that encompasses the entire search space is trained.
In the second stage, the optimized architecture is searched by a search
algorithm, where all candidate networks (a.k.a. subnets) inherit weights
from the supernet without further training, resulting in significant time
savings. However, the second stage of one-shot NAS algorithms still faces
a primary challenge, i.e., unreliable evaluations, which may negatively
affect the search. Specifically, it is observed that the performance rank-
ing using inherited weights is different from that getting from stand-alone
training [162], which leads to unfair comparisons among subnets. This is-
sue has been attributed to the extensive sharing extent of weights in the
supernet [96], where all subnets that contain the same operation in a layer

1.2. MOTIVATIONS 11

use the same weights. These replicated weights may not be optimal for
individual subnets, leading to potential degradation in performance. To
mitigate this problem, previous approaches have proposed constructing
multiple sub-supernets that cover different regions of the search space to
mitigate the co-adaptation problem [173], or using a dictionary of weights
based on a group of supernets to combine weights for subnets [130]. How-
ever, these methods often require significant computational resources for
training multiple supernets and may result in large memory consumption
for saving weights. Another methodology, proposed by Zhou et al. [178],
adjusts the sharing extent during supernet training using a curriculum
learning strategy. However, the learning strategy is complicated and in-
troduces additional computations. Therefore, improving the evaluation
reliability of one-shot NAS remains a pivotal research direction.

1.2.3.4 Supernet Training

Although one-shot NAS methods have reduced computational costs com-
pared with most NAS methods, the training of the supernet still requires
significant computing resources. To address this challenge, Cai et al. [19]
proposed a progressive shrinking scheme to train the large supernet effi-
ciently, but the designed supernet is nested, with small subnets embed-
ded in large subnets, resulting in deeply coupled weights that may impair
fitness evaluations. Consequently, many supernets adopt a single path
mechanism [46], where each subnet is a single path inside the supernet.
However, research to enhance supernet training efficiency remains sparse.
Given the large computational requirements of supernet training, break-
throughs in this domain would be important.

1.2.3.5 Search Efficiency

The efficiency of traditional EC methods is currently not satisfactory [114].
In the evolutionary process of ENAS, the parent candidates are usually se-

12 CHAPTER 1. INTRODUCTION

lected based on their fitness values, i.e., the ones with good performance
are more likely to be chosen. Then, new offspring solutions are generated
by performing genetic operations on the selected parent candidates. In
this way, the offspring are expected to achieve better performance than the
parents [158], promoting the evolutionary process. If the ratio of better off-
spring could be enhanced, the process of evolution would be accelerated,
reducing the total number of generations and then reducing the compu-
tational cost. Thus, strategies to improve offspring quality and further
improve EC method efficiency are needed.

Population initialization determines the initial solutions (candidate ar-
chitectures in NAS), and it has been demonstrated that good initial solu-
tions can facilitate the evolutionary process [102], reduce computational
costs [62], increase the probability of finding the optimal solutions [88],
and improve the stability of search results [94]. Because the population
size is usually limited due to the restricted computational budget, the op-
portunity to cover promising areas through random initialization is low,
and the effectiveness could further decrease with increasing dimensions
of the search space [49]. For one-shot NAS, designing methods to leverage
information obtained from supernet training to pinpoint high-potential in-
dividuals during initialization is worth exploring.

1.3 Research Goals

The overall goal of this thesis is to advance effective and efficient ENAS
methodologies by developing new search spaces, novel architecture repre-
sentations, pioneering fitness evaluation techniques, and innovative evo-
lutionary operations. Furthermore, a new method will be introduced to
explain the decisions of the networks for image classification tasks by gen-
erating counterfactuals. With these designs, this thesis aims at increasing
the classification accuracy, diminishing the computational overhead, and
improving the explainability of prevalent image classifiers. Specifically,

1.3. RESEARCH GOALS 13

four specific objectives are as follows.

1. The objective is to design an effective PSO-based ENAS algorithm,
and there are three sub-objectives:

• Design an encoding scheme to represent the candidate block
architectures to suit the search algorithm. An autoencoder is
expected to compress the variable-length discrete integer block
vectors to fixed-length continuous decimal latent vectors. The
latent space is expected to be smooth and continuous, facilitat-
ing the downstream PSO search process.

• Propose a new loss function for the autoencoder that not only
considers the reconstruction loss but also takes the architecture
similarity and the model scale similarity into account. In this
way, the networks with a similar architecture or a similar model
scale are expected to be embedded in neighborhood regions in
the latent space.

• Develop a dynamic hierarchical fitness evaluation method to ef-
ficiently and effectively estimate the performance of individuals
during different stages of the search process.

2. The objective is to propose an efficient ENAS algorithm by incor-
porating a performance predictor to help generate well-performed
offspring and employing a weight-inheritance method to accelerate
fitness evaluations. Four specific sub-objectives are detailed below:

• Propose a new lightweight backbone block architecture that can
effectively construct discriminative features from the input fea-
ture maps. It is expected to have a small model scale and high
computational efficiency.

• Invent a random forest-based performance predictor. Instead of
directly predicting the fitness, it is expected to predict whether

14 CHAPTER 1. INTRODUCTION

offspring outperform their parent(s) and the confidence level
of the prediction. In this way, only the offspring that are most
likely to perform well will be preserved, which can improve the
overall performance of the offspring population, thereby accel-
erating the convergence of the evolutionary process. Moreover,
even inaccurate predicted results will not harm the evolution.

• Propose new crossover and mutation operators to cope with the
architecture representations. The newly generated offspring are
expected to remain the same in most layers as one of its par-
ents, making it easier for the performance predictor to identify
whether the offspring can outperform their parent.

• Propose a new weight inheritance method to avoid random ini-
tialization of the newly generated layers of the offspring, which
is expected to further improve the training efficiency.

3. The objective is to propose a powerful one-shot NAS algorithm for
image classification, with accurate fitness evaluations, efficient su-
pernet training, and a powerful population initialization to facilitate
the search process. Three sub-objectives are as follows:

• Propose a new efficient supernet training strategy to reduce the
computational cost of training the weights of the supernet.

• Propose an effective supernet fine-tuning strategy to offer accu-
rate fitness evaluations for all candidate network architectures.
The supernet weights are expected to be fine-tuned based on the
distribution of the candidate network architectures, which is ex-
pected to reduce the sharing extent and provide more accurate
evaluations.

• Propose a new population initialization method to select poten-
tially well-performing candidate network architectures as ini-
tial solutions, which is expected to facilitate the evolutionary
search.

1.4. MAJOR CONTRIBUTIONS 15

4. The objective is to propose a novel post-hoc, model-agnostic method
for explaining classifiers in image classifications, and three detailed
objectives are described as follows:

• To develop a method that employs a stable diffusion model
for generating counterfactual images for explanation purposes.
The generated images are expected to be natural and circum-
vent the sharp edges that often result from directly masking
specific regions.

• To utilize an MOEA to automatically identify an ensemble of
superpixels of salient impact and a minimal number of super-
pixels, which are essential for explaining the decisions of classi-
fiers.

• To propose a new objective function that assesses the impact of
the selected superpixels for similar classifications.

1.4 Major Contributions

This thesis makes the following major contributions.

1. This thesis shows how to develop an efficient PSO-based NAS algo-
rithm to search for appropriate network architectures on image clas-
sification tasks. Unlike most methods that use variable-length repre-
sentations for network architectures, this method designs an autoen-
coder to represent variable-length network architectures as fixed-
length latent vectors, which converts the original search space to a
latent space that can facilitate the downstream search. Besides, an
efficient and effective hierarchical fitness evaluation method guides
the search process and improves efficiency. The experimental results
show the proposed method is a very competitive ENAS algorithm
that achieves an error rate of 2.74% on CIFAR-10 and 16.17% on

16 CHAPTER 1. INTRODUCTION

CIFAR-100, and reduces the computational cost from hundreds or
thousands of GPU-days to only 2.2 and 4 GPU-days, respectively.
Further analyses also confirm the effectiveness of both the proposed
autoencoder and the proposed hierarchical fitness evaluation method.

Part of this contribution has been published in:

• Gonglin Yuan, Bin Wang, Bing Xue and Mengjie Zhang. Par-
ticle Swarm Optimization for Efficiently Evolving Deep Con-
volutional Neural Networks Using an Autoencoder-based En-
coding Strategy. IEEE Transactions on Evolutionary Computation.
15pp, 2023. DOI: 10.1109/TEVC.2023.3245322.

2. This thesis shows how to develop a random forest-based perfor-
mance predictor to help generate superior offspring candidates to ef-
ficiently construct good CNNs for image classification. Unlike exist-
ing NAS methods that directly use performance predictors for eval-
uations, which may introduce inaccurate assessments and harm the
evolution, this thesis develops a new random forest-based perfor-
mance preditor to help produce potentially good offspring, improv-
ing the population’s performance and accelerating the evolution. In
this way, even sometimes the estimated predictions being inaccurate
will not harm the evolution. Furthermore, a new weight inheritance
method is proposed to accelerate the evaluation processes, making
the offspring inherit weights from their parents and other existing
trained networks. Besides, new genetic operations assist in produc-
ing offspring that share a large percentage of the good genetic ma-
terials with one of their parents, improving the performance predic-
tor’s effectiveness and promoting weight inheritance. Finally, a new
efficient backbone block structure further reduces the computational
cost and helps search for lightweight networks. The experimental
results demonstrate that the proposed method is a very competi-
tive ENAS algorithm, which costs only 1.6, 2.4, and 9.4 GPU-days

1.4. MAJOR CONTRIBUTIONS 17

on CIFAR-10, CIFAR-100, and ImageNet, and achieves error rates
of 2.50%, 16.75%, 24.1%, respectively. The searched networks are
also substantially smaller than those learned by most of the current
ENAS methods. Further analyses reveal the superiority of the pro-
posed block structure and confirm the effectiveness of the proposed
performance predictor and the weight inheritance method.

Part of this contribution has been submitted/published in:

• Gonglin Yuan, Bing Xue, and Mengjie Zhang. An Effective and
Efficient Neural Architecture Search Method based on Perfor-
mance Prediction and Weight Inheritance. Submitted to IEEE
Computational Intelligence Magazine (2023).

3. This thesis shows how to develop an efficient supernet training strat-
egy and a reliable fitness evaluation method for one-shot NAS. An
efficient supernet training strategy reduces the training time by lever-
aging a novel weight initialization method that considers the par-
ticular architecture of the supernet. Additionally, the new method
fine-tunes the supernet during the evolutionary search process based
on the architectures to be evaluated, providing more reliable per-
formance estimations. Furthermore, a powerful population initial-
ization method facilitates the search by utilizing information from
the previous supernet training. Experimental results demonstrate
that the proposed method achieves error rates of 2.59%, 16.67%, and
23.9% on CIFAR-10, CIFAR-100, and ImageNet, respectively, using
only 0.31, 0.28, and 4.1 GPU-days. The classification results are promis-
ing, and the computational cost is lower than most competitors. Fur-
ther experiments and analyses confirm the efficacy of the proposed
supernet training, population initialization, and supernet fine-tuning
methods.

Part of this contribution has been submitted/published in:

18 CHAPTER 1. INTRODUCTION

• Gonglin Yuan, Bing Xue, and Mengjie Zhang. 2023. An Effec-
tive One-Shot Neural Architecture Search Method with Super-
net Fine-Tuning for Image Classification. In Proceedings of 2023
Genetic and Evolutionary Computation Conference (GECCO 2023).
ACM Press. Lisbon, Portugal. 15-19 July 2023. pp. 615-623.
DOI: https://doi.org/10.1145/3583131.3590438.

• Gonglin Yuan, Bing Xue, and Mengjie Zhang. Efficient Evolu-
tionary Neural Architecture Search using Reliable Fitness Eval-
uations. Submitted to IEEE Transactions on Evolutionary Compu-
tation (2023).

4. This thesis shows how to develop a post-hoc, model-agnostic ap-
proach for explaining image classification decisions based on an evo-
lutionary multi-objective method. The method employs a stable dif-
fusion model to produce counterfactual images, thereby explaining
the influence of different image regions on classifications. This al-
gorithm optimizes both the impact and quantity of the superpix-
els, resulting in more straightforward explanations. Complementing
this, a new fitness evaluation function measures the impact of these
superpixels in classifications. Comprehensive experimental evalua-
tions underscore the efficacy of this method across various classes
and classification models. By bridging the gap between complex
classifier decisions and human interpretability, this research paves
the way for more transparent applications of deep learning.

Part of this contribution has been submitted in:

• Gonglin Yuan, Bing Xue, and Mengjie Zhang. Explaining Fine-
Grained Image Classifications Using Evolutionary Search and
the Stable Diffusion Model. To be submitted to IEEE Transac-
tions on Evolutionary Computation (2023).

1.5. ORGANIZATION OF THE THESIS 19

1.5 Organization of the Thesis

Evolutionary Neural Architecture Search

Chapter 3
PSO-based ENAS

• Design effective representations

Chapter 2
Literature Review

Chapter 1
Introduction

Chapter 4
Performance Predictor-based ENAS

• Improve the efficiency

Chapter 5
One-Shot ENA

• Provide reliable evaluations

Chapter 6
Explanations for Classifiers
• Explain the decisions

Chapter 7
Conclusions

Figure 1.1: The outline of this thesis.

The following sections outline the structure and content of the remain-
ing of this thesis, which is also presented in Figure 1.1. Chapter 2 provides
the fundamental background and comprehensive literature review. Chap-
ters 3 to 6 elucidate the primary contributions of this thesis, each spot-
lighting its unique objective and corresponding significant advancement.
Chapter 7 concludes this thesis and indicates potential directions for sub-
sequent research endeavors.

Chapter 2 presents a detailed background and a review of existing lit-
erature. It encompasses the concepts of computer vision, image classifi-
cation, evolutionary computation, neural architecture search, and explain-
able deep learning. The chapter also discusses open questions and identi-
fies the shortcomings of existing research.

Chapter 3 proposes a novel PSO-based NAS method, leveraging a newly
designed autoencoder to represent the architectures of candidate networks

20 CHAPTER 1. INTRODUCTION

effectively. Additionally, it presents a dynamic hierarchical fitness evalu-
ation method to evaluate the candidates’ fitness to guide the search. This
chapter subsequently describes the details of the architecture representa-
tion and the evaluation method, concluding with experimental results that
validate the efficacy of the proposed method.

Chapter 4 presents an effective NAS method, incorporating a perfor-
mance predictor and weight inheritance method to improve efficiency.
This chapter introduces the proposed architecture search space and the
corresponding encoding strategy. This is followed by an in-depth pre-
sentation of the proposed performance predictor and weight inheritance
mechanism. Subsequent sections illustrate the experimental design, out-
comes, and analyses, confirming the method’s efficiency and efficacy.

Chapter 5 presents an enhanced one-shot ENAS method that improves
the efficiency of the supernet training and the reliability of fitness eval-
uations. The chapter analyzes the limitations of current one-shot NAS
methods. Subsequently, detailed information on the proposed supernet
training, weight fine-tuning, and population initialization methods are
presented. The settings of the experiments are then given, and the results
are presented to confirm the effectiveness of this proposed method.

Chapter 6 introduces an innovative method to explain classifier deci-
sions on image classifications. The chapter starts with a depiction of the
overall algorithm framework, followed by the design of encoding and de-
coding strategies. The key point is the counterfactual image generation
process, which utilizes the stable diffusion model’s inpainting capability
to emphasize specific features within target image regions. The subse-
quent section presents the novel fitness evaluation methods. A series of
experiments, results, and analyses are presented, underscoring the capa-
bility of the proposed method.

Chapter 7 summarizes the research and provides the comprehensive
conclusions of the thesis. It highlights the key points and the primary
contributions of the thesis, and also discusses future research directions.

Chapter 2

Literature Review

This chapter presents the essential background and basic concepts of ma-
chine learning, image classification, Convolutional Neural Networks (CNNs),
Neural Architecture Search (NAS), typical Evolutionary Computation (EC)
algorithms, and image generation methods. Furthermore, this chapter re-
views recent works on Evolutionary Neural Architecture Search (ENAS),
fitness evaluations in NAS, one-shot NAS methods, and explanations for
CNNs. In the end, it summarises the content and points out the limitations
of existing works.

2.1 Machine Learning

Machine learning [59, 89], a subfield of Artificial Intelligence (AI), aims to
enable computers to learn from data automatically, imitating the mecha-
nism that humans learn. With the advent of the big data era, the demand
for data analysis continues to increase. Consequently, developing ma-
chine learning approaches to extract knowledge from expansive datasets
becomes an essential research area.

A typical machine learning model involves three main parts [2]: (1) a
decision process, (2) an error function, and (3) an optimization process.
Specifically, the machine learning method outcomes predictions based on

21

22 CHAPTER 2. LITERATURE REVIEW

input data, and the error function evaluates the predictions by compar-
ing them with labeled data, and the weights/parameters of the model are
adjusted to achieve better prediction results through an optimization pro-
cess.

Machine learning paradigms can be categorized based on the presence
of labels or the types of feedback into four categories [3]:

1. Supervised Learning: The dataset has already been labeled, and the
model can learn from the labeled data and assess how accurate the
performance is. There are two major tasks for supervised learning,
i.e., classification and regression.

2. Unsupervised Learning: The dataset is not labeled, and the mod-
els learn to find structures within the data by extracting meaningful
features.

3. Semi-Supervised Learning: The dataset is a mix of both labeled and
unlabeled data, and the models are trained to label the unlabeled
data.

4. Reinforcement Learning: An agent takes actions within various states
and receives feedback. It learns how to map states to actions to max-
imize the expected long-term reward.

Classification is one of the major tasks in supervised learning [63]. The
training data comprises input features coupled with corresponding labels.
The machine learning methods, such as decision trees [113], support vec-
tor machines [97], and neural networks [5], are fed with the training data
and learn to map the features and the labels. Subsequently, these models
can predict labels based on the input data. Classification can be binary or
multi-class. For instance, determining if an email is spam is a binary clas-
sification task while identifying images of digitals from 0 to 9 falls into a
multiclass classification task.

2.2. IMAGE CLASSIFICATION 23

Typically, datasets are divided into three distinct subsets: a training
set, a validation set, and a test set [9]. The training set is used to train the
model to learn the features of the data and to make accurate predictions.
The validation set is employed to provide an evaluation of the model’s
performance during the tuning of hyperparameters, assisting in avoiding
overfitting and underfitting and aiding in model selection. The test set is
used to assess the model’s performance, testing its generalization ability
and potential performance on unseen data.

2.2 Image Classification

Image classification [82] aims to classify images into specific categories
according to their content information, and the main procedures are ex-
tracting the semantic information and training the classifier. Image clas-
sification is a fundamental research topic in computer vision and attracts
great attention. In recent years, there have been a huge amount of im-
ages to classify with the development of big data. The traditional image
classification approach extracts the hand-crafted image features and trains
the classifiers accordingly. However, the human-designed features cannot
effectively discriminate different classes when facing a huge amount of
data. On the contrary, automatic feature learning approaches are widely
employed to solve image classification problems.

There are some widely used datasets for image classification, such as
MNIST [71], CIFAR-10 [65], CIFAR-100 [65], and ImageNet [112]. There
are different numbers of images in each dataset, and the resolution of
images is different. Figure 2.1 exhibits some examples from CIFAR-10.
Specifically, the CIFAR-10 benchmark dataset is composed of 60 000 RGB
images whose size is 32 × 32. These images belong to 10 categories, and
each category has the same number of images.

24 CHAPTER 2. LITERATURE REVIEW

Figure 2.1: Some examples of the CIFAR-10 dataset.

2.3 CNNs and NAS

2.3.1 CNNs

Convolutional Neural Networks (CNNs) [7, 45, 72] are a kind of neural
network widely used for image processing tasks, such as image classifica-
tion [82], object recognition [134], and image segmentation [98]. Figure 2.2
shows a standard CNN architecture for image classification. Convention-
ally, CNNs mainly have three types of layers, i.e., convolutional layers,
pooling layers, and fully-connected layers.

Convolutional layers connect to different local regions of the input fea-
ture maps and output the scalar product between their weights and the
pixel values in the corresponding area. There are some parameters for
convolutional layers, such as the number of filters, the size of kernels, and
the stride size. Usually, the elementwise activation functions are employed
to process the output of convolutional operations. Pooling layers are uti-
lized to downsample the spatial dimensionality of the corresponding in-

2.3. CNNS AND NAS 25

Figure 2.2: An example of a CNN architecture for image classification [1].

put. Average pooling and max-pooling are widely used in many promis-
ing CNNs. Fully-connected layers attempt to produce the class scores used
for classification. Every node in a fully-connected layer is directly con-
nected to every node in both the previous and the next layer. The number
of layers, the number of neurons for each layer, and the corresponding
activation function are several parameters for fully-connected layers.

Recently, some new CNN architectures have been designed to reduce
the computational cost and maintain performance. One of the most fun-
damental technologies is the depth-wise separable convolution, which is
illustrated in Figure 2.3. As we can see, it contains two separate steps —
the depthwise convolution and the pointwise convolution. Another im-
portant technique for reducing the computational cost is the group convo-
lution, which divides the input channels into several groups and applies
convolution operations separately for each group. These new techniques
have already been successfully used in some promising CNN architec-
tures, such as MobileNet [53], ResNetXt [156], ShuffleNet [172], and Con-
denseNet [55]. Moreover, the new techniques offer more choices for the
NAS tasks and expand the search space, making the design of the search
strategy more challenging.

26 CHAPTER 2. LITERATURE REVIEW

Figure 2.3: Two steps of the depth-wise separable convolution.

2.3.1.1 DenseNet

DenseNet [56] is mainly composed of dense blocks as the core units, and
the blocks can extract meaningful features and alleviate the vanishing gra-
dient problem during the training. Figure 2.4 shows the details of a stan-
dard dense block.

BN
-R
el
u-
Co

nv

Input Feature
Maps

Output Feature
Maps

BN
-R
el
u-
Co

nv

BN
-R
el
u-
Co

nv

BN
-R
el
u-
Co

nv

Figure 2.4: An example of a four-layer dense block (adapted from [56]).

In the example, the feature maps generated by the previous layers are
input to the dense block, and the dense block could further extract pow-
erful features from them. There are four composite layers inside the block
in the example, and each layer is composed of three consecutive layers
— a Batch Normalization layer, a rectified linear unit (ReLU) layer, and a

2.3. CNNS AND NAS 27

convolutional layer, which work together to extract features. The input of
each composite layer is the output of the previous directly connected layer
and the outputs from all the previous layers inside the same dense block,
which is different from some other conventional convolutional neural net-
works.

Hyper-parameters of dense blocks are essential and significantly affect
the performance. Firstly, the dense block’s length (the number of the com-
posite layers) affects the ability to extract features. Secondly, the growth
rate of each composite layer is the number of feature maps generated by
the corresponding convolutional layer and also affects the feature extrac-
tion.

2.3.1.2 MobileNetV3

MobileNetV3 [52] achieves outstanding success in image classification, ob-
ject detection, and semantic segmentation tasks using relatively low com-
putational resources, attributing to its promising structure, where the ef-
fective MobileNetV3 block is employed to construct informative features,
shown in Figure 2.5.

1

Pool
FC,
NL

FC,
NL+

1×1, NL Dwise, NL 1×1

⨂

Figure 2.5: The structure of a MobileNetV3 block (adapted from [52]).

In a MobileNetV3 block, the input feature maps are processed by 1×1
convolutional layers first. The size of the output feature maps is consis-
tent with the input, and the number of feature maps is expanded accord-
ing to the predefined expansion rate, i.e., the width of the output feature

28 CHAPTER 2. LITERATURE REVIEW

maps is the product of the number of input feature maps and the expan-
sion rate. After that, depth-wise convolutions are constructed, followed
by a Squeeze-and-Excitation (SE) module, providing different weights for
different channels of the input feature maps. Specifically, the SE module
contains a global average pooling layer to squeeze the spatial information,
two fully-connected layers, and corresponding non-linear processors. The
output feature maps are achieved by multiplying the learned weights for
each channel and the original input feature maps. Essentially, the SE mod-
ule is a lightweight channel-wise attention mechanism, focusing more on
informative representations and overlooking the less powerful informa-
tion channel-wisely. Finally, point-wise filters project the feature maps to
the output with the same dimension as the block input, and a skip connec-
tion is constructed between the original block input and the output.

The expansion rate is an essential hyper-parameter to a MobileNetV3
block. It determines the number of feature maps to the depth-wise sepa-
rable convolution, which significantly affects the representational power
of the block. Another crucial hyper-parameter is the depth-wise convolu-
tional kernel size, since different kernel sizes can capture different levels
of information. Due to diverse MobileNetV3 blocks being in different po-
sitions inside a network, they may prefer different expansion rates and
kernel sizes.

2.3.2 NAS

NAS [36] aims to automatically search for the optimal deep neural net-
work architecture a∗ within a vast search space A for a given dataset, de-
fined as follows in image classification tasks:

a∗ = arg min
a∈A

Leva(a,w∗
a) , (2.1)

where Leva denotes the classification loss on the evaluation data, which is
used for measuring the performance of networks, and w∗

a represents the

2.4. EVOLUTIONARY COMPUTATION 29

learned weights for the candidate network architecture a. The weights are
learned by minimizing the training loss, i.e.,

w∗
a = arg min

wa

Ltra(a, wa) , (2.2)

where wa as the weights of the network a and Ltra representing to the loss
on the training data.

The computational cost of NAS is often prohibitive, as the performance
of each network a must be evaluated, and learning the weights w∗

a is time-
consuming. To mitigate this, some researchers employ shallow training
methods to approximate w∗

a and reduce computational costs. Others de-
velop proxy models to directly predict the performance without requiring
optimized weights w∗

a. Additionally, some researchers design a large su-
pernet N encompassing the entire search space and train the weights of
the supernet WA. In this case, the candidate network a can directly inherit
the corresponding weights from the supernet, bypassing the need for the
weight optimization as Equation (2.2).

2.4 Evolutionary Computation

Evolutionary Computation (EC) algorithms, learning from the biological
evolution process [12], are computational intelligence techniques for search-
ing and optimizing [118]. As population-based algorithms, EC methods
produce a population of individuals to search for promising solutions in
the search domain, and each individual represents a potential solution
for a specific problem. The optimization problem can be represented in
flexible forms in EC algorithms, without the limitation of mathematically
represented as continuous and differentiable functions. Besides, EC has
good global search ability. Thus, EC is widely used in NAS problems. It
is complicated to represent the network architectures by continuous and
differentiable mathematic functions.

30 CHAPTER 2. LITERATURE REVIEW

Start

Initial
Population

Fitness
Evaluation

Terminal
?

Selection

Crossover

New
Population

MutationReproduction

Output
Results

EndNo

Yes

Figure 2.6: The general process of EAs.

At the beginning of EC approaches, a group of potential solutions is
initialized in the search space. Then, they are evaluated and updated it-
eratively until the termination criterion is met. Usually, the individuals
will be distributed into more promising search areas during the updating
process with interaction, competition, and cooperation among them.

2.4.1 Evolutionary Algorithms

In principle, EC algorithms can be divided into Evolutionary Algorithms
(EAs) and Swarm Intelligence (SI). Many EAs have been designed and
achieved promising performance, such as Genetic Algorithm (GA), Ge-
netic Programming (GP), and Evolutionary Strategy (ES). This thesis mainly

2.4. EVOLUTIONARY COMPUTATION 31

introduces GA and GP since they are closely related to NAS. The gen-
eral process of EAs is shown in Figure 2.6. Firstly, a group of individu-
als/solutions is initialized. They compete to survive to the next gener-
ation: the parent individuals are selected according to their fitness, and
evolutionary operators are employed to produce offspring. This process
will continue until the termination criterion is satisfied, and usually, the
individual with the highest fitness of the final population will be selected
as the final solution.

2.4.1.1 Genetic Algorithms

Genetic Algorithm (GA) is an important branch of EAs, and it is widely
employed in ENAS. In GA, the solutions are encoded into chromosomes
according to specific encoding strategies, and the chromosomes compete
to survive and generate better solutions [92]. Generally, the main steps of
GA are as follows:

Step 1: Initialize the initial population according to the designed encoding
strategy randomly.

Step 2: Evaluate the individuals with the fitness evaluation function.

Step 3: Select the promising individuals according to their fitness to be par-
ent individuals.

Step 4: Perform crossover and mutation operations to the selected parent
individuals, and generate the offspring.

Step 5: Evaluate the new offspring, and perform environmental selection to
select the individuals who survive to the next generation.

Step 6: Go to step 3 if the termination criterion is not met. Otherwise, select
the best individual of the current population and decode it as the
optimal solution.

32 CHAPTER 2. LITERATURE REVIEW

Commonly, the termination criterion is the maximal generation num-
ber. The crossover and mutation operators need to be designed corre-
sponding to the encoding strategy.

2.4.1.2 Genetic Programming

Genetic Programming (GP) is another EA approach. GP solves problems
by evolving computer programs [14, 64]. The individuals are commonly
presented by trees in GP and have the functions as internal nodes and ter-
minals as leaf nodes. The tree generation methods can be divided into
three categories: full, grow, and ramped half-and-half. One of the three
methods is commonly employed to build the initial population, and the
sub-tree crossover and sub-tree mutation operators are utilized to produce
offspring. Specifically, an example of the crossover process is shown in
Figure 2.7. Two parent individuals produce two offspring individuals by
exchanging the randomly chosen sub-trees. Figure 2.8 exhibits the muta-
tion process. The mutation operation is utilized on a single parent indi-
vidual. A sub-tree is randomly chosen and swapped with a new sub-tree
generated by the initialization method.

Figure 2.7: An example of the crossover operation in GP.

2.4.2 Swarm Intelligence

Swarm Intelligence (SI) is an important category of EC optimization meth-
ods. Unlike EAs, SI algorithms are mainly inspired by the self-organizing

2.4. EVOLUTIONARY COMPUTATION 33

Figure 2.8: An example of the mutation operation in GP.

interaction among individuals within a group or some groups, such as an-
imal herding, bird flocking, and ant colonies foraging. Many successful
SI algorithms have been proposed, and the mainstream is the Ant Colony
Optimization (ACO) algorithm [32] and the Particle Swarm Optimization
(PSO) algorithm [34]. The standard ACO algorithm is often used to solve
discrete optimization problems. The PSO algorithms are good at solving
continuous optimization problems. This thesis transfers the discrete pa-
rameters to continuous ones by the auto-encoder to facilitate the PSO pro-
cess, so the details of the PSO algorithm will be presented here.

2.4.2.1 Particle Swarm Optimization

PSO is usually used for addressing continuous optimization problems,
and each particle, representing a potential solution, has both velocity and
position vectors [26, 121]. The main procedures of PSO are exhibited as
follows:

Step 1: Initialize the particles of the initial population randomly.

Step 2: Evaluate the particles with the fitness evaluation function.

Step 3: For each particle, select the best one from the particle’s history, and
record the position as pBesti.

34 CHAPTER 2. LITERATURE REVIEW

Step 4: For all particles, choose the best one from the history of all particles,
and record the position as gBest.

Step 5: Calculate the velocity {v1, ..., vi, ...} for each particle by Equation (2.3).

Step 6: Update the positon {p1, ..., pi, ...} for each particle by Equation (2.4).

Step 7: Go to step 2 if the termination criterion is not met. Otherwise, return
gBest as the final solution.

vi = w · vi + c1 · r1 · (pg − pi) + c2 · r2 · (pp − pi) (2.3)

pi = pi + vi (2.4)

In Equation (2.3) and Equation (2.4) , vi is a fixed-length vector repre-
senting the velocity of the i-th particle, and pi expresses the position of the
i-th particle. w, c1, and c2 are PSO parameters, which are used to fine-tune
the performance of PSO. r1 and r2 are random numbers between 0 and
1, and pg as well as pp denotes the positions of gBest as well as pBesti,
respectively.

2.4.3 Evolutionary Multi-Objective Optimization

For Evolutionary Multi-Objective (EMO) optimization methods, the sub-
objectives are usually conflicting, so the improvement of one objective
may negatively affect the other objectives.

2.4.3.1 NSGA-II

The Non-dominated Sorting Genetic Algorithm II (NSGA-II) [29] is a fa-
mous multi-objective optimization algorithm frequently employed for ad-
dressing problems with conflicting objectives. It provides a robust and ef-
ficient methodology underpinned by the principles of Pareto dominance.

2.4. EVOLUTIONARY COMPUTATION 35

Specifically, a solution is recognized as superior if it advances at least one
objective without compromising any others. The algorithm leverages a
fast non-dominated sorting technique to categorize solutions into different
dominance levels. The first front contains non-dominated solutions that
are optimal in all objective spaces, and subsequent fronts contain solutions
dominated by those in preceding fronts. Once the sorting is over, a new
population is filled by the solutions of different non-dominated fronts, and
the best non-dominated front has the first priority, then is the second non-
dominated front, and so on. When the last allowed front is considered, it is
very likely that not all individuals can be included in the new population.
Instead of discarding individuals arbitrarily, NSGA-II selects the solutions
that make the diversity of the selected solutions the highest according to
the crowding distances.

Specifically, the crowding distance mechanism is to maintain diversity
in the population. The crowding distance is a measure of how close an in-
dividual solution is to its neighbors. A larger crowding distance indicates
a larger space devoid of any other solutions, implying better diversity.

Non-Dominated Sorting Crowding Distance Sorting

Pt

Qt

F1

F2

F3 F3
Rejected

Pt+1

Figure 2.9: The selection process for the next iteration of NSGA-II pri-
marily involves non-dominated sorting and crowding distance sorting.
(Adapted from [29])

36 CHAPTER 2. LITERATURE REVIEW

During the selection of individuals for the next iteration, NSGA-II pre-
dominantly utilizes non-dominated and crowding distance sorting mech-
anisms, as depicted in Figure 2.9. For a given population, denoted Pt,
the corresponding offspring population Qt is generated through selection,
crossover, and mutation operations. Subsequently, the non-dominated
sorting is applied to the combined population comprising Pt and Qt, achiev-
ing different rank fronts, represented as F1, F2, ..., Fn. Individuals from the
set F1 are selected first, followed by those from the set F2, until no addi-
tional sets can be accommodated. As shown in Figure 2.9, a subset of the
individuals from F3 are chosen to achieve the desired population size of
Pt+1. Notably, within F3, individuals with larger crowding distances are
chosen.

NSGA-II has been successfully used in a variety of real-world opti-
mization problems across diverse domains, demonstrating its effective-
ness and efficiency in handling multi-objective optimization tasks [146].
Given its attributes, the NSGA-II is employed in this thesis to solve multi-
objective problems.

2.5 Image Generation

In recent years, image generation has become a popular research topic,
which aims to generate realistic and innovative image content through
algorithms or models. The applications include image synthesis, image
enhancement, super-resolution, style transformation, image filling, video
generation, etc. Existing mainstream image generation models include
generative adversarial networks (GANs) [42], variational autoencoders
(VAEs) [8], flow-based generative models [51], and models [27]. Partic-
ularly, diffusion models become very popular recently for their excellent
performance [31, 95].

The stable diffusion (SD) model [110] is a kind of conditional diffusion
model [27] that excels in image synthesis tasks. It has exhibited impressive

2.5. IMAGE GENERATION 37

results in class-conditional image synthesis and image inpainting. Distinc-
tively, it showcases superior efficiency compared to traditional diffusion
models in synthesizing images [181].

Encoder Decoder

Latent Space

Input Output

Figure 2.10: The encoder of a VAE compresses an input image to a matrix
in the latent space; the decoder component can then reconstruct the image
from this latent matrix.

The SD model employs a VAE to transform an image into a lower-
dimensional latent matrix. The image synthesis process, or the diffusion
process, takes place in the latent space rather than the pixel space, signif-
icantly boosting the model’s efficiency. This efficiency gain is primarily
because the latent space dimensionality is considerably smaller than that
of the pixel space. Figure 2.10 depicts the usage of a VAE to compress and
subsequently reconstruct an image.

Figure 2.11 depicts the synthesis process in the latent space, essentially
a reverse diffusion process. Initially, a random latent space matrix is gen-
erated. Subsequently, the noise predictor estimates the noise inherent in
the latent matrix, which is then subtracted from the latent matrix. This
sequence of operations is repeated for a predetermined number of steps.
Finally, the decoder of the VAE transforms the latent matrix into the out-
put image. The noise predictor relies on a U-Net [111] backbone combined
with a cross-attention mechanism, enabling it to learn attention-based [57]
models from different text prompts.

The mechanism of the SD model renders it suitable for image inpaint-
ing tasks, where corresponding pixels in the latent matrix are fixed, while

38 CHAPTER 2. LITERATURE REVIEW

Stop?

DecoderNew Latent Matrix

New Latent Matrix Latent Matrix Predicted Noise

Predicted NoiseNoise PredictorLatent Matrix Output Image

Yes

No

= -

Figure 2.11: The sequence of operations involved in image synthesis
within the latent space.

the others are synthesized. This distinctive characteristic motivated us to
harness the SD model to generate counterfactual images that merge spe-
cific semantic meanings, assisting in explaining image classifier decisions.

2.6 Related Work

2.6.1 Evolutionary Neural Architecture Search

ENAS algorithms refer to the algorithms that employ EC methods to opti-
mize the NAS problem [15,36,93,108,177], and researchers have employed
many kinds of EC methods, such as GA, GP, PSO, and other evolutionary
methods.

2.6.1.1 GA based ENAS

GA-based approaches account for the majority of existing ENAS algo-
rithms, and many researchers developed original algorithms with state-
of-the-art performance.

Some researchers fix the length of the architectures. For example, Xie et
al. [155] designed a fixed-length GA algorithm to optimize CNN architec-
tures for image classification. They employed fixed-length binary strings

2.6. RELATED WORK 39

to represent the architectures of CNNs. The number of blocks and the
number of convolutional layers in each block are all predefined, which
restricts the search space and limits the performance of the searched re-
sults. To break through the limitations of fixed length, Sun et al. [139]
developed a variable-length GA algorithm to automatically evolve CNN
architectures named EvoCNN. The depth of CNNs is not predefined to a
specific number, which significantly increases the possibilities of the rep-
resented architectures and improves flexibility. However, the encoding
strategy could only encode the CNNs with plain connections of convo-
lutional layers, pooling layers, and fully-connected layers, not advanced
structures like shortcut connections. This will limit the final performance.
Then, in order to further break through the limitations of plain connec-
tions, Sun et al. [140] proposed another variable-length GA algorithm for
ENAS called CNN-GA. CNN-GA utilized the merit of skip connections
compared with EvoCNN. Specifically, CNN-GA stacked residual blocks
and pooling layers according to the encoding information and achieved
promising performance on the CIFAR-10 dataset and CIFAR-100 dataset.

In order to reduce the search cost, some researchers perform the search
based on fixed block structures. For instance, Sun et al. [138] proposed a
block-based GA for ENAS named AE-CNN. AE-CNN built the architec-
ture by stacking the predefined ResNet block units, DeneNet block units,
and pooling units, and there might be several residual blocks or dense
blocks in each unit. The experimental results show that AC-CNN achieved
good classification accuracy with a small number of parameters and short
evolutionary time, i.e., 27 GPU-days in CIFAR-10.

Martı́n et al. [90] employed a GA to automatically search for deep neu-
ral network architectures along with training the parameters, such as the
types of optimizers, the number of epochs, and the batch size. Note that
all the search parameters are predefined to several choices.

In 2017, Fujino et al. [39] proposed an evolutionary method to optimize
the hyperparameters in a network. Specifically, they employed AlexNet

40 CHAPTER 2. LITERATURE REVIEW

[66] as the basic CNN architecture and used a GA to optimize its param-
eters, such as the number of filters, the filter size, and the pooling size.
This is an early study of ENAS, and as we can see, they mainly focused on
tuning the parameters of an existing network instead of exploring origi-
nal architectures. Different from searching for the crucial architecture pa-
rameter, O’Neill et al. [99] introduced an ENAS algorithm to optimize the
skip-connection structures within DenseNet blocks. This new method em-
ployed simple adjacency matrices to encode the skip-connections inside
the blocks and evolved the individuals with simple crossover and mu-
tation operators. Additionally, it introduced dynamic compression rates,
which were different from traditional statistical compression rates. The ex-
periment results show the ENAS algorithm achieves better performances
than the baseline DenseNet-BC network on both CIFAR-10 and CIFAR-
100. Note that this method just optimized the skip-connection structures
instead of the whole network architecture.

Zhu et al. [179] focused on the evolutionary operators and proposed an
efficient ENAS algorithm called EENA. For EENA, the crossover opera-
tions are carefully designed and are guided by the prior learning process.
Similarly, the mutation operations are learned from typical architectures.
In this way, EENA significantly reduces the search time.

In summary, GA is widely used in ENAS, and researchers break through
the limitations of fixed-length representations and plain network connec-
tions, obtaining better performance using variable-length network repre-
sentations and optimizing the skip connections.

2.6.1.2 GP based ENAS

Suganuma et al. [132] employed Cartesian Genetic Programming (CGP) to
automatically construct CNN architectures for image classification tasks.
CGP employed highly functional modules as the node functions, such as
ConvBlock, ResBlock, max pooling, average pooling, concatenation, and
summation. Besides, CGP only used mutation as the evolutionary opera-

2.6. RELATED WORK 41

tor, and there were only two offspring in each generation.
Similarly, Loni et al. [80] also employed CGP to optimize CNN archi-

tectures. Differently, they proposed a multi-objective CGP optimization
algorithm, which considers both accuracy and model size. Specifically, af-
ter obtaining the promising network architecture, they also deployed it to
the hardware devices with a limited resource budget.

Instead of utilizing CGP, many researchers also employed GP trees
in ENAS algorithms because of the interpretability and flexibility of GP.
For example, Zhu et al. [180] utilized GP trees to optimize CNN architec-
tures. Four kinds of residual blocks with different filter sizes and convo-
lutional layer numbers were manually designed as the terminals of GP.
Four kinds of primitive functions were employed, which were capable of
changing the filter number or stride size and connecting two blocks. A
major drawback is that too many candidate parameters and structures are
pre-defined, reducing automation.

Evans et al. [37] designed a multi-objective GP-based method to con-
struct network architectures, and the two objectives are to maximize the
reconstruction ability and minimize the trees’ complexity. As a result, they
improved the interpretability the searched networks.

2.6.1.3 PSO based ENAS

Some researchers employ PSO to evolve variable-length network architec-
tures. For example, Junior and Yen [60] designed a novel PSO algorithm to
search for variable-length deep CNN architectures, which is called psoCNN.
A novel difference operator and a new velocity operator to cope with the
variable-length particle. The experimental results show psoCNN takes
less time than competing algorithms. Wang et al. [147] developed a new
algorithm whose encoding strategy uses IP address to represent CNN ar-
chitectures, so its name is IPPSO. IPPSO uses ‘disabled layers’ to trans-
fer the variable-length architecture to a fixed-length vector so that PSO
can evolve the particles. However, the disabled bits are set to 0, and the

42 CHAPTER 2. LITERATURE REVIEW

gap between them and valid bits is big, which may harm the evolutionary
process. Besides, PSO is good at processing continuous decimal vectors,
but the neural architectures are discrete in nature; the representations are
composed of integers, which cannot suit the PSO algorithm well. Sun et
al. [137] proposed a flexible convolutional autoencoder with flexible num-
bers of convolutional layers and pooling layers and stacked them to build
a CNN to solve image classification problems. The encoded CNN struc-
tures are evolved by PSO. Note that each particle keeps the same length
during the evolving process as its initial length to accomplish the length
diversity.

PSO can also be combined with GA for NAS. Wang et al. [148] devel-
oped a hybrid ENAS method called GAPSO, which employs both GA and
PSO. The whole architecture is composed of a number of blocks. Specifi-
cally, PSO is employed to search for the block architectures, and the blocks
are connected to build the whole network. GA is employed to explore the
skip connections inside each block, for skip connections can be encoded
by a binary string suitable for GA.

Instead of searching for network architectures, Lorenzo et al. [81] used
PSO to optimize the hyper-parameters of CNNs, such as receptive field
size, number of receptive fields, and stride size of each layer. This algo-
rithm did not explore the newly generated architectures but justified that
PSO is suitable for optimizing the hyper-parameters of specific architec-
tures.

Some researchers are dedicated to improving search efficiency. Field-
ing et al. [38] proposed Swarm Optimised Block Architecture (SOBA), which
can concurrently optimize the architecture and train the weights of the net-
work. Besides, the PSO model used adaptive acceleration coefficients, and
parameter sharing is employed to accelerate the optimization process. As
a result, the optimization on the CIFAR-10 dataset only takes 34 hours on
a single GPU. Gao et al. [40] proposed a gradient-priority PSO algorithm
to optimize the CNN parameters that are encoded by the proposed binary

2.6. RELATED WORK 43

coding system, which improves the training efficiency and model perfor-
mance. However, this algorithm is just used for emotion recognition and
has not been tested on other image classification datasets. Wang et al. [149]
developed an efficient ENAS algorithm utilizing the structure of the dense
block, which is called EPSOCNN. EPSOCNN only encodes a single dense
block and employs PSO to evolve it using a small part of the dataset. Af-
ter achieving the best block structure, some blocks of the same architecture
are stacked together to build the whole architecture.

The PSO-based ENAS methods face the challenge of fixed-length par-
ticle representations, and researchers have tried to break through the lim-
itations. Besides, PSO is also flexible and can optimize network hyper-
parameters, block structures, and network architectures.

2.6.1.4 Other Evolutionary Computation Method-based ENAS

Some researchers foucus on designing new architecture representations
and use relative simple EC strategies to evolve the candidates. Suematsu
et al. [106] designed a simple evolutionary method to evolve graph-based
CNN architectures to address image classification tasks. They encoded
the architectures by graphs, and the vertices represent feature maps or ac-
tivation functions, such as batch-normalization with rectified linear units
or plain linear units. The edges represent identity connections or convo-
lutions. The graphs are evolved by mutation operators. Note that the
children would inherit the weights from their parents wherever possible.
The results show the searched networks achieve accuracies of 94.6% and
77.0% on CIFAR-10 and CIFAR-100, respectively, which is good, but the
network scales are large. The results also prove that weight inheritance
can improve the evaluation efficiency significantly. Liu et al. [74] proposed
a hierarchical genetic representation to search for network architectures.
Hierarchical representations employ several motifs at different hierarchy
levels, and the lower-level motifs are used as the building blocks to con-
struct the higher-level motifs. As for the evolution process, this method

44 CHAPTER 2. LITERATURE REVIEW

only utilizes mutation operations, and the evolved architecture is stacked
several times to build a small model, then the small model is trained. The
accuracy of the small model is used as the fitness of the candidate architec-
ture. After reaching the stopping evolution criterion, the best architecture
is chosen to stack into a whole large architecture.

Different from concentrating on architecture representations, Real et
al. [105] proposed an evolutionary algorithm named ‘aging evolution’ to
optimize CNN architectures called AmobeNet. It employs the same search
space as NASNet [183] , and each cell receives the direct input from the
previous cell and a skip input from the cell before the previous cell (a kind
of skip-connection). The ‘aging evolution’ also kills the oldest model in the
population and prefers the younger genotypes. AmobeNet also utilizes
mutation operators to evolve individuals.

Some researchers did not employ evolutionary methods to optimize
the whole structure of the network. They focused on optimizing impor-
tant network parameters, such as the learning rate and the activation func-
tion. For example, Carvalho et al. [21] proposed AutoLR: a framework that
evolves learning rate schedulers for a specific neural network architec-
ture using structured grammatical evolution. The schedulers are functions
whose inputs are the learning rate of the previous epoch and the num-
ber of the performed epochs, and they return a single learning rate. The
experiment is based on a simple architecture to explore the appropriate
learning rate policy. Then, the network is trained by the evolved learning
rate policy, and the performance is compared with the baseline training
method — using a fixed learning rate of 0.01. The results show that the
proposed AutoLR could improve the accuracy of the test dataset after the
same epochs of training. Bingham et al. [17] explored the novel activation
functions for CNNs by using an Evolutionary Algorithm (EA) to search
for the best individual. The proposed method employs a tree-based en-
coding strategy to encode the candidate activation functions. Then, novel
crossover and mutation operators are used to evolve the presentations of

2.6. RELATED WORK 45

activation functions.

Some researchers designed a search strategy that can help improve
search efficiency. For example, Ren et al. [107] proposed an efficient ENAS
approach for image classification. The evolutionary process in EIGEN is
different from traditional evolutionary algorithms. In each generation,
EIGEN employs both the primary and the secondary succession to evolve
individuals, and the primary succession is conducted in a larger search
space compared with the second one. In order to reduce the computational
cost, in each generation, EIGEN trains the individuals for a small number
of epochs and extinct the bad ones two times, and only the surviving indi-
viduals would be fully trained. Additionally, in each generation, only the
best individual is chosen, and the individuals of the next generation are
mutated by the best individual of the former generation. Flawed individ-
uals employ knowledge distillation to learn from the teacher network.

2.6.2 Fitness Evaluations in NAS

In NAS algorithms, the fitness of individuals needs to be evaluated, and
the fitness evaluation process consumes most of the computational re-
sources in the whole algorithm. In LargeEvo [106], 250 Graphics Process-
ing Units (GPUs) were employed, and it took 11 days to finish running
the algorithm. The prohibitive computation resources are not available
for many researchers. As a result, researchers have been investigating the
design of new fitness evaluation strategies to shorten the evaluation time
and reduce computation. Generally, there are three categories of efficient
fitness evaluation methods: shallow-training methods, surrogate-assisted
methods, and one-shot methods. The first two categories will be illus-
trated in this section, and the related works of one-shot methods will be
introduced in Section 2.6.3.

46 CHAPTER 2. LITERATURE REVIEW

2.6.2.1 Shallow Training

The shallow training strategies are widely employed in NAS. The simplest
way is to set a fixed, relatively small number of training epochs. Then, the
architectures are tested to get the corresponding fitness with the weights
obtained from insufficient training. Assunccao et al. [10] trained all the
individuals for the same time each epoch, but the time could increase with
the number of epochs. So et al. [127] stopped training weak individuals
and allocated the promising individuals more training time to get a more
faithful evaluation. Moreover, some researchers stopped the training until
there was no significant improvement, such as [39] and [103].

Another type of shallow training is to reduce the training data and only
use a subset of the data to train the candidate individuals. For example,
Liu et al. [77] employed a subnet to explore the promising architectures
and apply the searched architecture to the original large dataset by transfer
learning.

Training a small-scale model is also a shallow training method. Lu et
al. [85] reduced the number of layers and feature maps to construct a small-
scale proxy, and trained the proxy to obtain the classification accuracy as
the fitness of the corresponding candidate architecture.

The limitation of shallow training methods is obvious, i.e., the obtained
fitness may not reflect the true performance of the candidate network ar-
chitecture, which may mislead the search process and compromise the
search results.

2.6.2.2 Performance Predictor

Many existing works use computationally efficient performance predic-
tors to avoid the traditional time-consuming performance estimation pro-
cess. Generally, existing predictors can be divided into two main cate-
gories: learning curves-based performance predictors and end-to-end per-
formance predictors [79]. The first category refers to predictors that lever-

2.6. RELATED WORK 47

age the learning curves of neural networks during training to predict their
final performance, without requiring the models to be trained to comple-
tion. For example, Rawal et al. [104] proposed a meta Long Short-Term
Memory (LSTM) to predict networks’ final performance according to par-
tial training results.

The end-to-end performance predictors could directly predict networks’
performance according to their architectures. These algorithms usually
collect a group of network architectures and their corresponding perfor-
mance, then a regression model is trained, and Mean Square Error (MSE)
is used to measure the loss during the model training process. For exam-
ple, Sun et al. [136] designed an offline end-to-end performance predictor
based on the random forest to accelerate the fitness evaluation process in
evolutionary deep learning. A set of data pairs was used to train the ran-
dom forest, and the pair was composed of the encoding architecture and
its performance. Later on, Sun et al. [135] proposed a Pairwise Ranking In-
dicator (PRI), employing a logistic regression model to compare the rank
order between two training samples. Similarly, Wang et al. [150] trans-
formed the expensive performance estimation into a binary classification
task conducted by a Support Vector Machine (SVM). The SVM is used for
predicting the performance comparison result between two individuals,
which is enough to support the evolutionary process even without the ac-
tual fitness of each individual. In this way, the expensive computational
cost is avoided.

While improving the efficiency, the predictions of the performance pre-
dictors may bring some biases compared with those obtained from fully-
training the networks, which might misguide the evolution. For exam-
ple, AE-CNN+E2EPP’s [136] accuracy is 1.00% and 1.17% lower than AE-
CNN’s [138] on CIFAR-10 and CIFAR-100 [65], respectively.

48 CHAPTER 2. LITERATURE REVIEW

2.6.3 One-Shot Neural Architecture Search

In one-shot NAS, only a single supernet needs to be trained initially, and
all the candidate networks directly inherit weights from the supernet with-
out further training. Some one-shot NAS algorithms employ continuous
relaxation to parameterize the search space, and optimize the architecture
parameters and supernet weights alternatively using gradient-based ap-
proaches [20]. However, this mechanism may cause interference between
the architecture parameters and the supernet weights.

To address this issue, some one-shot methods separate the supernet
training and the architecture search [46] into two sequential stages. In
the first stage, a large supernet that encompasses the entire search space
is trained. In the second stage, the optimized architecture is searched by
a search algorithm, where all candidate networks (a.k.a. subnets) inherit
weights from the supernet without further training, resulting in significant
time savings.

Although one-shot NAS methods have reduced computational costs
compared with most NAS methods, the training of the supernet still re-
quires significant computing resources. To address this challenge, Cai et
al. [19] proposed a progressive shrinking scheme to efficiently train a large
network, but the designed supernet is nested, with small subnets embed-
ded in large subnets, resulting in deeply coupled weights that may impair
fitness evaluations. Consequently, many supernets adopt a single path
mechanism [46], where each subnet is a single path inside the supernet.
However, there is little research on improving the training efficiency of
the supernet.

One-shot NAS also suffers from limited reliability in evaluating the
performance of candidate networks (a.k.a. subnets). During the search
stage, the subnets inherit weights from the supernet, and their fitness is
assessed based on these weights. However, researchers have noted that
the ranking correlation between inherited weights and the weights from
stand-alone training is low [162], leading to unfair comparisons among

2.6. RELATED WORK 49

subnets. This issue has been attributed to the extensive sharing extent of
weights in the supernet [96], where all subnets that contain the same op-
eration in a layer use the same weights. These replicated weights may not
be optimal for individual subnets, leading to potential degradation in per-
formance. To mitigate this problem, some approaches have proposed con-
structing multiple sub-supernets that cover different regions of the search
space to mitigate the co-adaptation problem [173], or using a dictionary
of weights based on a group of supernets to combine weights for sub-
nets [130]. However, these methods often require significant computa-
tional resources for training multiple supernets and may result in large
memory consumption for saving weights. Additionally, the division of the
search space and the effective combination of weights remain challeng-
ing issues. Another approach proposed by Zhou et al. [178] is to adjust
the sharing extent during supernet training using a curriculum learning
strategy. However, the learning strategy is complicated and introduces
additional computations. Bender et al. [16] trained a large supernet model
incorporating path dropout in order to ensure the model is robust, and
then randomly zeroed out some operations and accurately evaluated the
performance.

Some works focused on combining the one-shot NAS method with
multi-objective optimization approaches. For instance, Yang et al. [160]
introduced an efficient multi-objective neural architecture search method
by sharing the architecture parameters with a supernet. CARS initializes
a supernet with considerable cells and blocks; then, the individuals are
derived from the supernet. The individuals are selected by a new multi-
objective selection method called pNSGA-III, which considers the increas-
ing speed of accuracy to protect the large-scale architectures that may per-
form badly during the evaluation period but has the potential for achiev-
ing higher accuracy. Corresponding crossover and mutation operators are
also applied. CARS reaches a state-of-the-art performance on CIFAR-10
with a cutout preprocessing technique within only 0.4 GPU days.

50 CHAPTER 2. LITERATURE REVIEW

2.6.4 Explainability of Deep CNNs

The explainability of deep CNNs is generally difficult, and some studies
have been trying to explain the decision-making processes within these
networks. The section mainly introduces three kinds of methods: gradient-
based methods, class activation mapping-based methods, and model-agnostic
explanation methods.

2.6.4.1 Gradient-based Methods

Gradient-based methods can offer explanations of deep CNNs’ decisions
by visualizing the salience regions within the input images that contribute
to the decisions.

Saliency Map

Saliency Map [125] is a kind of gradient-based method, which can vi-
sualize the regions within the input image that significantly influence the
CNN’s output. Specifically, gradients are calculated based on the score
corresponding to the true or interested class and are then visualized through
a saliency map, where each pixel’s intensity corresponds to its gradient

Figure 2.12: Saliency Map visualization results. (images taken from [125])

2.6. RELATED WORK 51

value. In this way, the pixels with higher intensity indicate they have a
substantial impact on the prediction of the corresponding class, and the
saliency map can show where the important regions are located.

Figure 2.12 shows the saliency maps for the top-1 predicted class in
ILSVRC-2013 test images. Specifically, the input image is presented above
its corresponding saliency map. The saliency maps clearly highlight the
regions that contribute most to the prediction.

Guided Backpropagation
Guided Backpropagation [128] aims to show the important features

that the network learns, thereby facilitating the understanding of its de-
cisions. Different from the vanilla backpropagation, this method consid-
ers only positive gradients, discarding negative gradients by setting them
to 0, which is based on the rationale that features corresponding to nega-
tive gradients are ‘suppressed’ by the neurons, indicating that they are not
important.

Figure 2.13: Guided Backpropagation visualization results. (images taken
from [128])

52 CHAPTER 2. LITERATURE REVIEW

Figure 2.13 presents the visualization of patterns learned from the sixth
(above) and ninth (below) convolutional layers. It clearly shows that the
shallow convolutional layer extracts fundamental or low-level features,
and the deeper convolutional layers capture more abstract, high-level fea-
tures, helping people to understand what the network/convolutional layer
has learned, thus providing a kind of interpretability.

Integrated Gradient
Integrated Gradient (IG) [141] also aims to connect the output results

with the input features by computing the gradients. Particularly, IG is
suitable for interpreting both image processing and natural language pro-
cessing models. The IG method sets a baseline first, which is defined as an
absence of a feature in an input, and then, the calculation of the integrated
gradients considers both the sensitivity and the implementation invariance.

Figure 2.14: Comparison of Integrated Gradients with the vanilla gradient
method. (image adapted from [141])

2.6. RELATED WORK 53

Using three examples, Figure 2.14 contrasts the IG method with the
standard gradient method. It is obvious that the IG method can identify
the salient regions in the original images more accurately than the vanilla
gradient method, providing explanations for the model’s predictions by
signifying the important regions in the original input.

2.6.4.2 Class Activation Mapping-based Methods

Class activation mapping-based methods primarily focus on image classi-
fication tasks and generate heatmaps to indicate the importance of regions
in the input images, considering the predicted results and thus providing
explanations.

Class Activation Mapping (CAM)

Class Activation Mapping (CAM) [175] aims to generate a heatmap to
locate the discriminative regions in the input image that are pivotal for
the model’s predictions for a specified class. Specifically, CAM employs a
global average pooling (GAP) layer to replace the fully-connected layer(s),
aiding in pinpointing the import regions.

Figure 2.15: Illustration of how CAM works. (image taken from [175])

54 CHAPTER 2. LITERATURE REVIEW

Figure 2.15 illustrates the workflow of CAM, which adds a GAP layer
subsequent to the last convolutional layer of the CNN (shown in the top
row), and the average value of each feature map generated by the last
convolutional layer is computed. Subsequently, for the outputs of the GAP
layer, linear models are trained to match them to the class labels. Once
the weights of the linear models are learned, the class activation maps
are synthesized by aggregating the product of the feature maps of the last
convolutional layer and their correlating weights (shown in the bottom
row).

In the example presented in Figure 2.15, the class activation map of the
Australian terrier class is shown in the lower right. It shows that the head
of the dog is of crucial importance (colored in red in the class activation
map), and the dog’s body also attracts attention from the network (colored
in light blue and yellow in the class activation map). On the contrary, the
other regions in the image are not quite related to the decision of Australian
terrier.

Despite CAM’s efficacy in indicating the crucial regions, the computa-
tional cost of learning the weights for the linear models is large, as N lin-
ear models have to be trained for N classes. In addition, the architectures
of the CNNs need to be modified for the CAM method by removing the
fully-connected layer(s) and adding the GAP layer, which is complicated.

Grad-CAM

Grad-CAM [117] also aims to interpret the knowledge learned by CNNs
by visualizing the important regions for classifications. Unlike CAM, Grad-
CAM does not need any model architecture modification and is suitable
for a broader range of CNNs. Besides, Grad-CAM can avoid the overhead
of learning the weights of the linear models. Grad-CAM utilizes feature
maps from the last convolutional layer and exploits the gradient informa-
tion between them and the target class to formulate the class activation
map.

2.6. RELATED WORK 55

(a) Original Image (b) Grad-CAM ‘Cat’ (c) Grad-CAM ‘Dog’

Figure 2.16: An example of Grad-CAM. (image taken from [117])

Figure 2.16 illustrates an example of Grad-CAM in explaining the orig-
inal image containing a dog and a cat. The second figure (b) presents the
results of using Grad-CAM to explain the class of ‘cat’, and the region
where the cat locates is highlighted, signifying it contributes to the classi-
fication of ‘cat’ most for the classifier. Similarly, the third figure (c) shows
the explanations corresponding to the class of ‘dog’, where the area of the
head of the dog is highlighted, indicating this region is important to the
prediction of the ‘dog’ class.

Grad-CAM++
Grad-CAM++ [22], enhanced from Grad-CAM [117], is designed to

provide more fine-grained and class-discriminative visualizations, mak-
ing it easier to understand and explain the decisions made by CNNs. Un-
like Grad-CAM [117], where each pixel gradient has the same weight in
generating the activation map, Grad-CAM++ [22] scales the pixel gradi-
ents that are important to a particular class by a larger factor and scales
those that do not contribute to the prediction by a smaller factor. In this
way, the ‘important’ pixels are better highlighted.

Figure 2.17 presents the comparisons between Grad-CAM [117] and
Grad-CAM++ [22] on four example images. The above two cases belong to
the situation of multiple occurrences of the same class, and Grad-CAM++
can locate all the dogs more precisely than Grad-CAM. There is only one

56 CHAPTER 2. LITERATURE REVIEW

Figure 2.17: Comparative visualization between Grad-CAM and Grad-
CAM++. (image taken from [22])

objective in the bottom two images, and Grad-CAM++ can present more
complete contour than Grad-CAM, i.e., the nose of the hedgehog and the
legs of the bird are highlighted in the heatmaps produced by Grad-CAM++.
The cases show that Grad-CAM++ can present better heatmaps than Grad-
CAM, thus providing more refined and precise visual explanations.

2.6.4.3 Model-Agnostic Explanation Methods

Different from the gradient-based and class activation mapping-based meth-
ods that produce explanations based on the models’ weights or gradi-
ents, model-agnostic explanation methods offer interpretations for ma-
chine learning models regardless of the models’ specific types/architectures.

2.6. RELATED WORK 57

Simple Linear Iterative Clustering (SLIC) Superpixels

Analyzing each individual pixel to pinpoint critical regions becomes
computationally prohibitive due to the typically large number of pixels in
images. Moreover, it is unnecessary, as approximate regions are sufficient
to provide effective explanations. In this case, some methods segment the
image into superpixels, forming the basis for identifying pivotal regions.

The Simple Linear Iterative Clustering (SLIC) method [4] stands out
as a widely-adopted algorithm for superpixel segmentation because of its
computational efficiency and adaptability in generating meaningful su-
perpixel representations. While SLIC itself is not an explanation method,
it is closely connected to several explanation techniques and is utilized in
the proposed method for explanations of this thesis. A detailed overview
of SLIC is presented below.

SLIC is an adaptation of the k-means clustering approach, specifically
designed to efficiently generate superpixels. The algorithm operates within
a five-dimensional space, encompassing the CIELAB color space and spa-
tial coordinates, ensuring the consideration of both color and spatial prox-
imities during clustering.

The SLIC algorithm works by first sampling equally spaced pixels across
the image and considering these as cluster centers. The clusters are then
iteratively refined by assigning each pixel to the cluster whose center is
closest in the combined color and spatial distance metric. The distance
metric D employed in SLIC is defined as:

D =

√
d2c +

(
ds
S

)2

m2 , (2.5)

where dc represents color distance, ds denotes spatial distance, m is a weight-
ing factor that balances color and spatial proximity, and S defines the grid
interval. The iterative process continues until convergence, which is typ-
ically achieved in less than 10 iterations. The SLIC algorithm is advan-
tageous due to its simplicity, efficiency, and effectiveness in generating

58 CHAPTER 2. LITERATURE REVIEW

superpixels that adhere well to image boundaries.

Figure 2.18 presents an instance of the SLIC segmentation, with su-
perpixel boundaries highlighted in yellow. Each superpixel potentially
represents a discernible feature, which contributes to the rationale for ex-
plaining classifiers based on superpixels.

(a) (b)

Figure 2.18: Illustration of SLIC segmentation: (a) The original image of a
cat; (b) The image post SLIC segmentation.

Local Interpretable Model-agnostic Explanations (LIME)

LIME [109] is a method that can be used to explain the predictions of
almost all the machine learning classifiers. The main idea is to approx-
imate the complex model with a simpler and interpretable model, thus
explaining the model’s decision-making process.

To explain image classifiers, LIME segments the input image into su-
perpixels using algorithms like SLIC. Then, LIME turns off some superpix-
els to generate perturbed images, which are then fed to the model to obtain
the corresponding predicted scores. Subsequently, an interpretable model,
such as a linear model, is trained with the perturbed images and the pre-
diction scores. Finally, the interpretable model approximates the complex
model, providing explanations. In addition, LIME generates a heatmap to

2.6. RELATED WORK 59

highlight the superpixels (regions) that impact the model’s decision most,
providing visual interpretability for the given image.

Counterfactual Generation Methods

Counterfactual generation methods can generate counterfactual im-
ages that alter the prediction probability of the classifier. Users can identify
what alterations shift the model’s predictions by comparing the difference
between the original ‘query’ image and the counterfactual variant.

Goyal et al. [44] interchange a small patch within a ‘query’ image with
a specific region from another ‘distractor’ image to generate a ‘compos-
ite’ image, altering the classifier’s predictions (from the ‘query’ class to
the ‘composite’ class) and attributing the classification result to the modi-
fied region. Figure 2.19 presents two examples of the bird breed classifica-
tions. In the first example, the head plumage of Horned Grebe is posted to
the ‘query’ image, and the generated ‘composite’ image is classified to be

Figure 2.19: Counterfactual visual explanations for bird breeds. (image
taken from [44])

60 CHAPTER 2. LITERATURE REVIEW

Horned Grebe, implying that the head plumage is a crucial feature for the
classification of Horned Grebe. Similarly, in the second example, the yellow
wing spots of Myrtle Warbler are important for the classifier. Although the
method is effective in identifying important features, it cannot assure that
there exists a patch that can lead to a different outcome. The contours of
the concatenated counterfactual image’s junction regions may introduce
interfering features to the classifier.

Some methods generate counterfactuals utilizing generative models
like GANalyze [41], which employs GANs [42] to generate counterfactu-
als to study cognitive properties like memorability. Figure 2.20 shows the
visualizations of GANalyze. The images in the middle columns are the
baseline images, and they are modified to be characterized more (right)
or less (left) by a specific property, which is quantified by the scores on
the top left corner. The generated counterfactuals change the score of spe-
cific cognitive properties, but the counterfactuals alter almost all the pixels,
making it challenging to determine which attribute(s) cause the different
outcomes, thereby reducing the explainability.

To alleviate the above limitation, StylEx [69] generates multiple coun-

Figure 2.20: Visualizations produced by GANalyze. (image sourced from
[41])

2.7. CHAPTER SUMMARY 61

terfactual explanations for input, and each only alters one attribute. The
explanations for a ”cat vs. dog” classifier are presented in Figure 2.21,
where the generated counterfactual images are marked with colored bor-
ders. The prediction scores of cat are positioned on the left top of images.
These examples clearly show that features such as open or closed mouth,
eye shape, and pointed or dropped ears can affect the classifier’s predic-
tions. However, a generative network named StyleGAN2 [61] needs to
be trained for an input, which is time-consuming and involves parameter
tuning.

Figure 2.21: StylEx’s counterfactual explanations. (image taken from [69])

2.7 Chapter Summary

This chapter first provided the essential backgrounds of the key areas in-
volved in this research, including machine learning, image classification,
architectures of CNNs and some particular networks related to this re-
search, the concept of NAS, some famous and related EC methods, and
image generation techniques.

The chapter also reviewed the related work in Section 2.6. Specifically,
the ENAS methods are reviewed based on the employed EC methods, i.e.,

62 CHAPTER 2. LITERATURE REVIEW

GA, GP, PSO, and other EC methods. Then, the fitness evaluation meth-
ods used in ENAS are introduced. The fitness evaluation is usually ex-
pensive, and researchers have proposed many strategies to alleviate this
problem. Subsequently, the one-shot NAS works are reviewed, and their
limitations are pointed out. Finally, the methods to explain the CNNs
are reviewed. Specifically, the gradient-based methods provide explana-
tions based on calculating the gradient information, the class activation
mapping-based methods generate heatmaps to highlight saliency regions,
and model-agnostic explanation methods do not rely on the weights or
gradient information and can explain a broader range of models.

However, there were still limitations in the above-mentioned works,
which are discussed as follows:

• The candidate architectures for NAS are expected to have various
numbers of layers, because the promising depth of network archi-
tecture is hard to predict before the searching process. However,
the standard EC algorithms, such as GA and PSO, are designed for
processing fixed-length individuals. Many existing works have been
trying to use new operations for EC algorithms to cope with variable-
length individuals, which may be complicated and may affect the
results of the evolution. Representing the variable-length architec-
tures with fixed-length vectors is also a solution. In this way, the
standard EC algorithms could be directly used for optimizing the
architectures. However, there is little work focused on it.

• The fitness evaluation process in NAS consumes too much time. Train-
ing the networks is very time-consuming, and people have proposed
many methods to reduce the computational cost, such as reducing
the training epoch, using a partial training dataset, sampling the
candidate network, and designing a performance predictor. How-
ever, the accuracy of the predicted fitness also decreases with the de-
crease of the computational cost. Research is still needed to balance

2.7. CHAPTER SUMMARY 63

the trade-off between fitness prediction accuracy and computational
cost.

• In one-shot NAS, the supernet training still consumes many com-
putational resources, and the evaluations of the subnetworks may
be inaccurate, harming the search process and the searched results.
Specifically, the supernet is usually very large and difficult to train;
existing methods spend a lot of consumption on the supernet train-
ing. A more efficient supernet training strategy is worth exploring.
In addition, the subnets are evaluated based on the weights inher-
ited from the supernet, but the weights might not be suitable for the
subnets and could cause inaccurate evaluations.

• The interpretability of the CNNs still needs to improve. Although
the counterfactual generation methods are model-agnostic and can
provide straightforward explanations, some of them change all the
pixels, and it is challenging to locate the critical feature(s); some in-
volve training a generation network, which is time-consuming. Be-
sides, there are few methods focusing on explaining the decisions
between similar image classes. Classifying them is more difficult for
the models, and interpretability is more important to provide insight
to improve the models.

The following chapters of this thesis will show how to use evolutionary
methods to tackle these issues.

64 CHAPTER 2. LITERATURE REVIEW

Chapter 3

PSO for NAS using an
Autoencoder-based Encoding
Strategy

3.1 Introduction

Particle swarm optimization (PSO) [26], an effective and efficient EC al-
gorithm, attracts a lot of attention because of its simple implementation,
high efficiency, and robustness [120]. Besides, there are fewer parameters
needed to be tuned in PSO, which helps improve the automation in NAS
algorithms, making PSO widely used in ENAS [38,40,60,81,137,147–149].
Each particle represents a potential solution/network architecture. Gen-
erally, a standard PSO algorithm is used for processing fixed-length par-
ticles, and the length of the particles is usually associated with the depth
of the corresponding network, but the optimal depth of the network is
not easy to determine. To tackle this problem, some existing works [147,
150] use vectors of the same length to represent the network architectures,
where some bits of the vectors can be disabled to represent no layer. How-
ever, the disabled bits are usually set to 0, and the gap between them and
valid bits is big, which may harm the evolutionary process. Besides, PSO

65

66 CHAPTER 3. PSO FOR NAS

is good at processing continuous decimal vectors. However, because the
neural architectures are discrete in nature, the representations are usu-
ally composed of integers, which cannot suit the PSO algorithm well [28].
In addition, PSO is designed for continuous and fixed-length representa-
tions. However, it is not easy to represent complicated network architec-
tures of different lengths by vectors of the same length. In this chapter,
the architecture representations are transformed to fixed-length decimal
vectors to suit PSO well with the help of an autoencoder.

Furthermore, the primary reason for the prohibitive computational cost
in NAS is that all the candidate networks need to be trained and evalu-
ated to get their estimated performance during the search process. Some
researchers use proxies to approximate the performance of the candidates
[6, 76, 116, 123, 149]. In fact, the candidate architectures may become more
similar and well-performing along the search process. In this regard, as-
sessing the candidates under proxies may not precisely identify the actual
promising candidates. To alleviate this limitation, this chapter explores the
effect of reducing training data used during the evolutionary process and
proposes an effective hierarchal fitness evaluation method accordingly.

3.1.1 Chapter Goals

The overall goal of this chapter is to design a new PSO-based ENAS al-
gorithm, employing a newly designed autoencoder to represent the archi-
tectures of candidate networks effectively and adopting a dynamic hier-
archical fitness evaluation method to identify well-performing candidates
during the search process. To achieve this goal, there are four objectives as
follows:

1. Design an encoding scheme to represent the candidate block archi-
tectures to suit the search algorithm. An autoencoder could com-
press the variable-length discrete integer block vectors to fixed-length
continuous decimal latent vectors. The latent space is expected to

3.2. THE PROPOSED METHOD 67

be smooth and continuous, facilitating the downstream PSO search
process.

2. Propose a new loss function for the autoencoder that not only con-
siders the reconstruction loss but also takes the architecture simi-
larity and the model scale similarity into account. In this way, the
networks with a similar architecture or a similar model scale can be
embedded to neighborhood regions in the latent space.

3. Investigate the effect of using different sizes of training data to esti-
mate the fitness values and the impact on different search stages.

4. Present a dynamic hierarchical fitness evaluation method to efficiently
and effectively estimate the performance of individuals during dif-
ferent stages of the search process.

3.1.2 Chapter Organization

The remainder of this chapter is organized as follows. Section 3.2 describes
the framework and details of the proposed algorithm. Then, Section 3.3
documents the experiment design information, and Section 3.4 exhibits the
experiment results and corresponding analysis. At last, the conclusions
are summarized in Section 3.5.

3.2 The Proposed Method

In this section, the overall framework and the details of the proposed
method will be illustrated and explained. The proposed algorithm is re-
ferred to as EAEPSO (efficient autoencoder-based PSO) for convenience.

68 CHAPTER 3. PSO FOR NAS

3.2.1 Overall Framework

Figure 3.1 illustrates the overall framework of the proposed method. We
employ a standard PSO search algorithm, which is shown in the yellow
box in the flowchart. To facilitate the evolutionary process of PSO, the
particles are expected to be fixed-length vectors of decimals. How to use
fixed-length vectors to represent the variable-length candidate dense block
architectures is a key focus here, and the procedure is represented in the
upper green part. Besides, the procedure of the proposed efficient fitness
evaluation method is represented in the left circle part.

Dense Block Block Vector Autoencoder Latent Vector

Network Architecture Representation

Initialization

Fitness
Evaluation

Update gbest
and pbest

Update Velocities
and Positions Terminate?

No

Particle Swarm Optimization

Dense Block

Training data

SGD
Training

Decode

Best Particle

Particle

Yes

Autoencoder

Evaluation

Fitness
evaluation data

Fitness Evaluation

Figure 3.1: Overview: an autoencoder is used to represent the dense block
architectures, a PSO algorithm is employed to implement the search pro-
cess, and a new-designed fitness evaluation method is applied.

For the network architecture representation, the proposed method en-
codes dense blocks of different lengths into variable-length integer vec-
tors, called block vectors (see Section 3.2.2). The block vectors are trans-
formed by the autoencoder to fixed-length decimal-represented vectors
called the latent vectors (details in Section 3.2.3). The details of the au-
toencoder training are illustrated in Section 3.2.4, which includes how to
build the autoencoder, prepare the training samples, and the details of the

3.2. THE PROPOSED METHOD 69

loss function. Latent vectors are the particles in the PSO algorithm and are
initialized randomly for the first iteration (see Section 3.2.5).

The proposed hierarchical fitness evaluation method is used to esti-
mate the particles’ performance (see Section 3.2.6 for details). Specifically,
each candidate particle will be decoded to the block vector with the help of
the decoder part of the autoencoder and then to the corresponding dense
block, which is a reverse procedure of the encoding process. Next, a cer-
tain proportion of the training dataset is selected to train the dense block
with the Stochastic Gradient Descent (SGD) method. Finally, the dense
block is measured on the fitness evaluation dataset, and the accuracy is
recorded as its fitness value.

During the PSO search process, the particles are updated and evolved,
which is a kind of global evolutionary search/training. Section 3.2.7 ex-
hibits the details, and this process will continue until it meets a stopping
criterion. The particle with the highest fitness will be chosen and decoded
as the output dense block architecture. At last, the dense block is repeated
and stacked to build the final network, and Section 3.2.8 shows how to
determine the promising number of blocks.

3.2.2 Block Vectors to Encode Dense Blocks

Since the proposed method explores the number of layers and the growth
rate of each layer of variable-length dense blocks [56], the hyper-parameters
of the dense block need to be encoded into a vector, named block vector.
Considering the common network scale and the specific hardware con-
dition, a maximum number of layers, lmax, of a dense block should be de-
fined. Besides, the minimum number of layers, lmin, should also be defined
because too few layers in a block would not be able to learn powerful fea-
ture maps. The length of the block vector represents the length/number
of layers in the dense block, so lmax and lmin are also the maximum and
minimum length of a block vector. A block vector can be any length be-

70 CHAPTER 3. PSO FOR NAS

tween lmin and lmax, where each element represents the growth rate of a
corresponding layer.

3.2.3 Latent Vectors Transformed by Autoencoder

The block vector representations form a discrete search space, similar to
most existing NAS algorithms. The reason is that the network architec-
tures are discrete in nature. However, if we can map the discrete search
space to a continuous latent space, the search in the latent space would be
more efficient. In addition, if the dimension of the representation in the
latent space can be reduced over the block vector representation, it will
further improve the search efficiency.

Since PSO can easily process fixed-length vectors, the block vector should
be transformed into a fixed-length latent vector. Although we can use
fixed-length discrete strings or vectors to represent dense blocks of dif-
ferent lengths by padding zeros to represent the non-existing layers, this
will cause significant gaps between the representations of existing lay-
ers and non-existing layers, i.e., the large difference between the existing
layer’s growth rate and zero, which may harm the downstream search
process. Besides, PSO performs well in a continuous search space, so it
would be better if the latent vector can be represented by decimal num-
bers. The proposed encoding strategy employs an autoencoder to extract
features in the middle layer as the latent vector to achieve a fixed-length
decimal-represented vector. Figure 3.2 illustrates an example of how the
autoencoder transforms a variable-length block vector to a fixed-length
latent vector. First of all, the maximum length of the input block vector
lmax is set to 10 in the example in Figure 3.2, but it will be determined ac-
cording to the available hardware conditions in the experiments and the
applications. Secondly, to feed the variable-length block vector to the au-
toencoder, each variable-length block vector is padded with 0s to reach
the length of lmax. Two 0s are padded into the block vector in the exam-

3.2. THE PROPOSED METHOD 71

ple. Thirdly, the block vector is processed by the encoder part, composed
of several fully-connected layers, and the number of nodes gets smaller.
The encoder finally outputs a fixed-length latent vector, consisting of four
decimals in the example. It can be directly fed into the PSO algorithm, i.e.,
latent vectors encoded by the autoencoder will be the particles in PSO. The
gaps between different integers and between existing and non-existing
layers (represented by 0s) in the block vector representations no longer
exist in the latent vector. Finally, with regard to the decoding from the
latent vector to the block vector, the decoder part marked in Figure 3.2 is
used to perform the translation to obtain blocks.

16

32

14

13

18

20

17

12

0

0

0.22

0.63

0.53

0.95

16

32

14

13

18

20

17

12

0

0

Encoder Decoder

Latent Vector

Block Vector Reconstructed Block Vector

Figure 3.2: Autoencoder to transform a block vector to a latent vector.

There are several advantages of the transformation from block vectors
to latent vectors. Firstly, since the autoencoder is a well-known approach
for feature construction [23], it has the ability to construct meaningful fea-
tures from the input vector. Therefore, the feature variables could well
represent the block vector. Secondly, the autoencoder in the proposed en-
coding strategy has fewer dimensions in the feature variables than that of

72 CHAPTER 3. PSO FOR NAS

the input vector, so the dimensionality has been reduced in the transfor-
mation. Thirdly, the discrete values of growth rates in the block vector are
transformed to continuous values in the latent vector, which suits the PSO
algorithm better.

3.2.4 Training of the Autoencoder

3.2.4.1 Building the Autoencoder

Generally, an autoencoder is built following the common convention, i.e.,
fully-connected layers are employed in both the encoder and decoder parts
[50]. In particular, we consider the latent vectors’ distribution, i.e., the par-
ticles’ distribution in the PSO process, while designing the architecture of
the autoencoder, so a batch-normalization layer is added to the end of the
encoder part. This layer would adjust all the elements of the same place in
a batch to obtain a Gaussian distribution with a mean of 0 and a variance
of 1. In this way, the architecture representation in the latent space will
become smooth, which may facilitate the downstream search on the latent
space [159].

3.2.4.2 Sampling Training Data

Before the PSO search process, the autoencoder is independently trained.
Specifically, while training the weights of the autoencoder, we consider the
relationship between the similarity among block vectors, and that among
latent vectors. Considering the similarity, the autoencoder is supposed
to be trained by pair-wised vectors. So we need to create two datasets
of the same size. During training, the same number of block vectors are
randomly selected from the two datasets to compose pair-wised training
data for each batch.

Each dataset is composed of a number of block vectors, and the block
vector data generating process is shown in Algorithm 1. First of all, block
vectors need to be defined by a few parameters. Besides the maximum

3.2. THE PROPOSED METHOD 73

and minimum number of layers lmax and lmin mentioned in Section 3.2.2,
the maximum growth rate gmax and the minimum growth rate gmin are also
needed. The convolutional layer will not extract enough meaningful fea-
tures if the corresponding growth rate is too small. While the maximum
growth rate mainly depends on the hardware resource, a too-large max-
imum growth rate may result in the issue of out of memory in Graphic
Processing Units (GPUs) and also increase the computation time. A less
complex dataset would typically require a lower maximum growth rate.

Algorithm 1: Generating Block Vectors for Autoencoder Training
Input: The minimal and maximal number of layers lmin, lmax; the

minimal and maximal growth rates gmin, gmax; the number
of instances n.

Output: The block vector dataset Db.
1 Dg ← ∅;
2 for i = 1; i ≤ n; i← i+ 1 do
3 block vector ← ∅;
4 nlayer ← Randomly generate an integer between [lmin, lmax];
5 for j = 1; j ≤ nlayer; j ← j + 1 do
6 ngrowth ← Randomly generate an integer between

[gmin, gmax];
7 block vector ← block vector ∪ ngrowth;

8 end
9 for k = nlayer + 1; k ≤ lmax; k ← k + 1 do

10 block vector ← block vector ∪ 0;
11 end
12 Db ← Db ∪ block vector

13 end
14 Return Db.

The block vectors are generated repeatedly until reaching the prede-
fined number of instances in the dataset n (lines 2-13). Specifically, for a

74 CHAPTER 3. PSO FOR NAS

block vector, the specific number of layers is randomly chosen from the
predefined range (line 4), and the number of feature maps of each layer is
within the minimal and maximal growth rates to give the same possibili-
ties to each possible value (line 6). Furthermore, the proposed algorithm
sets the last few layers’ growth rates to 0 by looping from nlayer + 1 to lmax

(lines 9-10). Finally, all of the generated data are stored (line 12) and will
be used to train the autoencoder.

Encoder

No
rm

al
iza

tio
n

La
te
nt

Ve
ct
or
s!

"I,
! #

Decoder

Block Vector bi

Block Vector bj

Block Vector ""’

Block Vector "#%

Reconstruction loss
Lreco(bi)

Reconstruction loss
Lreco(bj)

Architecture
similarity loss

Architecture
distance

Scale similarity
loss

Scale
distance

Architecture
distance

Scale
distance

Figure 3.3: An example of the autoencoder training: Two block vectors
are corresponding to two different dense blocks, and they are input into
the autoencoder. The encoder part generates two latent vectors, respec-
tively. The decoder part outputs two reconstructed block vectors. The
reconstruction loss, architecture similarity loss, and scale similarity loss
are considered.

3.2. THE PROPOSED METHOD 75

3.2.4.3 The Loss Function

A new loss function is designed, and Figure 3.3 exhibits four different
kinds of loss when using a pair of block vectors to train the autoencoder.
The overall loss function of two block vectors bi and bj is shown as:

L(bi, bj) = Lreco(bi) + Lreco(bj) + Larch(bi, bj) + Lscale(bi, bj) , (3.1)

where Lreco(bi) and Lreco(bj) are the reconstruction loss of bi and bj , respec-
tively. They can be calculated according to Equation (3.2). Larch(bi, bj) is
the arechitecture similarity loss, which is calculated according to Equation
(3.6), and Lscale(bi, bj) represents the scale similarity loss between bi and bj ,
which is calculated according to Equation (3.9).

Specifically, the original target of an autoencoder is to minimize the
reconstruction loss. The reconstruction loss of a block vector bm is shown
as:

Lreco(bm) =
lmax∑
k=1

(bm,k −A(bm,k))
2 , (3.2)

whereA(·) refers to the autoencoder’s processing, bm,k is the k-th bit in the
m-th block vector, and lmax is the maximal length of block vectors.

To project the similar architecture to a neighborhood latent space, we
also designed the architecture similarity loss Larch and the scale similarity
loss Lscale considering the similarity/difference between different dense
blocks. If the dense blocks are similar, they usually lead to similar perfor-
mance [161]. In this regard, their corresponding latent vectors are also ex-
pected to be similar. If the particles of similar fitness are distributed in the
neighborhood space, the search could be more efficient and effective. To
measure the similarity among dense blocks, we consider both the architec-
tures and the model scales. In the employed block representation strategy,
the differences among the candidate block architectures are the number of
layers and the number of feature maps of each layer; we use the difference

76 CHAPTER 3. PSO FOR NAS

in each layer’s number of feature maps to define the architecture differ-
ence and employ the sum of all layers’ feature maps to approximate the
model scale. In this way, both the depth and the width of the networks are
taken into account when approximating the model scale.

To calculate the architecture similarity loss Larch, we need to calculate
the architecture distance first. As the element values in latent vectors are
between 0 and 1, we also normalize the element values in block vectors to
the same range according to Equation (3.3) for the convenience of calcu-
lation, where b∗m,k is the k-th element value in the m-th block vector after
normalization. gmin and gmax indicate the minimal and maximal growth
rates, representing the minimal and maximal number of feature maps in
dense block layers, respectively. Equation (3.4) and Equation (3.5) calcu-
late the architecture distance between two block vectors bi and bj and be-
tween two latent vectors li and lj , where lmax and hmax are the maximal
length of the block vectors and latent vectors, respectively. b∗i,k and b∗j,k are
the k-th element values of the i-th and j-th normalized block vectors, and
li,k and lj,k are the k-th element values of the i-th and j-th latent vectors.
The architecture similarity loss is calculated according to Equation (3.6).

b∗m,k =
bm,k − gmin

gmax − gmin

(3.3)

Darch(bi, bj) =

lmax∑
k=1

| b∗i,k − b∗j,k |

lmax

(3.4)

Darch(li, lj) =

hmax∑
k=1

| li,k − lj,k |

hmax

(3.5)

Larch(bi, bj) = [Darch(bi, bj)−Darch(li, lj)]
2 (3.6)

For the scale similarity loss Lscale, the model scale distance between bi

and bj and two corresponding latent vectors’ scale distance are given by
Equation (3.7) and Equation (3.8). The overall scale loss between bi and bj

is represented by Equation (3.9).

3.2. THE PROPOSED METHOD 77

Dscale(bi, bj) =
lmax∑
k=1

b∗i,k −
lmax∑
k=1

b∗j,k (3.7)

Dscale(li, lj) =
hmax∑
k=1

li,k −
hmax∑
k=1

lj,k (3.8)

Lscale(bi, bj) = [Dscale(bi, bj)−Dscale(li, lj)]
2 (3.9)

3.2.5 Particle Initialization

Algorithm 2 shows how to initialize the particles at the beginning of the
PSO searching process. Particles are generated until reaching the prede-
fined population size N (lines 2-6). For each particle, a block vector is
randomly generated according to lines 3-12 in Algorithm 1 (line 3 in Al-
gorithm 2). It is then encoded by the trained autoencoder to the corre-
sponding latent vector (line 4). Finally, the first population with randomly
generated particles will be generated.

Algorithm 2: Particle Initialization
Input: The population size N , the trained autoencoder.
Output: Initialized population P0.

1 P0 ← ∅;
2 for i = 1; i ≤ N ; i← i+ 1 do
3 bi ← Randomly generate a block vector;
4 li ← Encode bi by the encoder of the trained autoencoder;
5 P0 ← P0 ∪ li;

6 end
7 Return P0.

78 CHAPTER 3. PSO FOR NAS

3.2.6 Fitness Evaluation

Fitness evaluations are the most time-consuming process in ENAS algo-
rithms. We investigated the use of reduced training data to propose an ef-
ficient and effective hierarchical fitness evaluation method. In most cases,
training the candidate networks with a reduced dataset is likely to lead
to lower test accuracy than training using the whole dataset. However,
the fitness evaluation in the EC technique is usually used to guide the se-
lection, which aims at evaluating how good each individual is to identify
which network is better, so we care more about the relative goodness of
the individuals, i.e., the relative fitness ranking relationship among indi-
viduals. This could be achieved by a (surrogate) measure if the measure
can correctly identify the relative goodness of the individuals. There are
three main considerations:

(1) Reducing the training dataset often reduces the test accuracy of the
candidate, along with harming the ranking consistency between the
ranking based on estimated performance and the ranking based on
true performance. The less training data is used, the lower ranking
consistency may lead to.

(2) The approximate ranking performance received by using reduced
training data could also guide the evolutionary process, primarily at
the beginning of the evolution because there is considerable varia-
tion among candidates.

(3) The best candidate found by more training data usually also per-
forms well if trained by less training data. However, the best can-
didate found with less training data may not be the best one when
given more training data.

Based on the above three considerations, we designed a new efficient
and effective hierarchical fitness evaluation method for the PSO algorithm,
which dynamically increases the amount of the training data along with

3.2. THE PROPOSED METHOD 79

the evolutionary process. At the beginning of the evolution, in order to re-
duce the computational cost, we develop a basic fitness evaluation method,
which only employs a small number of training data instances and con-
sumes cheap computing resources. As there is a lot of variation among
particles at the beginning of evolution, and the performance is not promis-
ing, the basic fitness evaluation method could guide the evolution effec-
tively. As the evolution goes, when the basic fitness evaluation cannot
further guide the searching process effectively, the developed progressive
fitness evaluation method will be used, and its main idea is to use more
training data to improve the rank consistency and select local and global
best particles more accurately.

Specifically, the basic fitness evaluation method is presented in Algo-
rithm 3. According to the predefined proportion rb, the training data is
randomly selected from the whole training dataset (line 1). Next, every
particle in the population is evaluated (lines 2-12). Specifically, the par-
ticle is decoded to the corresponding dense block vector by the decoder
part of the autoencoder (line 3) and then is interpreted to the dense block
(line 4). The dense block will be trained until the training epoch reaches
the predefined maximal epoch, or the training loss is lower than the pre-
defined criterion (lines 6-9). The dense block will not be evaluated on the
fitness evaluation dataset until the training is finished. This is different
from some existing performance estimation methods, which evaluate the
performance after each training epoch and choose the highest accuracy as
the corresponding fitness. This is because at the early stage of the training,
the candidate’s performance on the evaluation dataset is relatively poor,
but it will get better along with the training process. So, it will consume
much unnecessary time if the evaluation is performed for each epoch.

The weight parameters and the training loss will be updated during
the training (lines 7-8). After training, the candidate block will be evalu-
ated (line 10), and its fitness is updated by the accuracy on the evaluation
dataset (line 11).

80 CHAPTER 3. PSO FOR NAS

Algorithm 3: Basic Fitness Evaluation
Input: The population P , the maximum training epochs kbmax, the

training loss criterion lbt, the proportion of the training data
rb, the whole training dataset Dtrain, the fitness evaluation
dataset Dfit.

Output: The population with fitness.
1 Dbtrain ← Randomly select rb of Dtrain;
2 for p in P do
3 reconstructed block vector ← Decode p by the decoder of the

autoencoder;
4 block ← Decode reconstructed block vector to the dense block;
5 epoch, loss← 0, +∞;
6 while epoch ≤ kbmax and loss ≥ lbt do
7 Apply SGD to train block on Dbtrain;
8 loss← Update by the training loss;

9 end
10 acc← Evaluate block on Dfit;
11 p← Update the fitness of p;

12 end
13 Return P with the updated fitness.

Along with the evolution, the basic fitness evaluation method may not
accurately evaluate the individuals’ performance, and a progressive fit-
ness evaluation method will then be employed. The details of the pro-
posed progressive fitness evaluation method is presented in Algorithm 4.
As mentioned earlier, the candidates that perform well on a larger training
dataset usually also achieve good performance on a less training dataset.
Two training datasets with different scales are used to evaluate the fitness
to balance efficiency and effectiveness. The progressive training dataset
Dptrain is built according to the predefined portion rprog (line 1), and the
scale is larger than the basic training dataset mentioned in Algorithm 3.

3.2. THE PROPOSED METHOD 81

Algorithm 4: Progressive Fitness Evaluation
Input: The population P , the population size N , the maximum

progressive training epochs kpmax, the progressive training
loss criterion lpt, the proportion of the progressive training
data rprog, the whole training data Dtrain, the fitness
evaluation dataset Dfit.

Output: The population with both basic fitness and progressive
fitness.

1 Dptrain ← randomly select rprog of Dtrain;
2 for i = 1; i ≤ N ; i← i+ 1 do
3 Employ Algorithm 3 to achieve the acci on Dfit;
4 pi ← Update the basic fitness with acci;
5 blocki ← Save the model with the trained weights;

6 end
7 for i = 1; i ≤ N ; i← i+ 1 do
8 if acci is in the top third of P then
9 Load blocki;

10 epoch, loss← 0,+∞;
11 while epoch ≤ kpmax and loss ≥ lpt do
12 Apply SGD to train blocki on Dptrain;
13 lossp ← Update by the training loss;

14 end
15 accp ← Evaluate block on Dfit;
16 pi ← Update the progressive fitness with accp;

17 else
18 pi ← Update the progressive fitness with 0;
19 end

20 end
21 Return P with the updated basic and progressive fitness.

82 CHAPTER 3. PSO FOR NAS

Then, all the particles are trained by the basic training dataset (lines 2-4)
to get their basic fitness, which is similar to Algorithm 3, but their cor-
responding model and trained weights will be saved (line 5). The basic
fitness is used for selecting the local best particle. Next, each particle’s
progressive fitness is evaluated (lines 7-20). If the particle’s basic fitness
is good, it is more likely to perform well when training by the progres-
sive training dataset. To save the computational resources, we only select
the top third of particles (line 8), which will be further trained (lines 9-16).
Specifically, the model trained by the basic training dataset is loaded (line
9) and is further trained by the larger progressive training dataset (lines
10-14). Then the network is measured by the fitness evaluation dataset
(line 15), and the performance is recorded as the progressive fitness (line
16). For the particles with poor basic fitness, their progressive fitness is
directly set to 0 (line 18), which can improve the search efficiency.

3.2.7 Evolving Dense Blocks

After the encoding transformation, fixed-length latent vectors are achieved,
which can feed to the PSO algorithm. Then the dense blocks evolve in the
PSO process based on the basic and progressive fitness evaluation meth-
ods mentioned in Section 3.2.6. Please note that there is no fixed training
data proportion for the progressive fitness evaluation method. A set of
gradually increasing progressive training dataset proportions will be pro-
vided as [rprog1, ..., rprogn].

Specifically, the population is initialized according to Section 3.2.5 first.
After that, all the particles are evaluated based on Algorithm 3 to get their
basic fitness, and then select/update the personal best particle for each one
and select/update the global best one for the population, and all particles
are then updated. All the particles will be evaluated by the basic fitness
evaluation method and updated repeatedly until the global best fitness
has not increased for five consecutive iterations, when the current evolu-

3.2. THE PROPOSED METHOD 83

tion is considered not to be able to guide the search further. The particles
will be evaluated by the proposed progressive fitness evaluation method
according to Algorithm 4 with rprog1 as the training data proportion, and
then personal best particles and the global best one are updated based on
the basic fitness and progressive fitness respectively, and all the particles
are then updated. Similarly, particles will be repeatedly evaluated and
updated until global best fitness has not been updated for five consecutive
iterations. Then, the next progressive training proportion rprog2 is used to
fit the progressive evaluation method and help to evaluate and update the
particles. The evolutionary process will continue until the last progressive
training proportion rprogn is used. Finally, the global best particle gBest

is selected and decoded to the network architecture as the evolved dense
block.

3.2.8 Stacking Dense Blocks

The evolved dense block needs to be stacked to get the whole network,
and the promising number of blocks is hard to be determined manually.
The entire training dataset is employed, and a simple grid search process
is designed to determine how many blocks should be stacked together.

Before the search process, a maximum number of blocks smax needs to
be predefined considering the hardware resources and the image size. If
smax is too big, the hardware storage limit may be overloaded. Besides,
a pooling layer is usually attached to each dense block, which means the
size of the feature maps will be reduced to half after processing by a dense
block. The minimum limit of the size of the feature maps is 1×1, so the
initial input image size constrains smax.

Specifically, several networks are built using the repeated dense blocks,
and the numbers of blocks are increased from one to smax. For each net-
work, 80% of the training dataset is selected as the training part, and the
other 20% is selected as the evaluation part. Each network is trained by

84 CHAPTER 3. PSO FOR NAS

the training part and further measured on the evaluation part, and the
performance on the evaluation part is used to evaluate the network. The
network with the best performance on the evaluation part is selected as
the final solution to the specific task.

3.3 Experiment Design

3.3.1 Benchmark Datasets

This chapter uses three common image classification datasets to evalu-
ate the performance of the new algorithm. Among them, CIFAR-10 and
CIFAR-100 [65] are selected to validate the effectiveness and efficiency
of the proposed EAEPSO algorithm; CIFAR-100 and ImageNet are uti-
lized to assess the performance of the network identified on CIFAR-10,
demonstrating the notable transferability of the architecture searched by
EAEPSO. These datasets are of different data scales and classification dif-
ficulties, helping to evaluate the proposed algorithm more comprehen-
sively. Besides, many famous manual-designed networks and NAS algo-
rithms are tested on them, which can offer a good comparison.

There are 60 000 color images in the CIFAR-10 dataset. The image size is
32×32, and there are three channels: R, G, and B. 50 000 images are used for
training, and the other 10 000 images are for assessing the model’s perfor-
mance. The number of images in these ten categories is evenly distributed,
i.e., for each category, there are 5000 training images and 1000 test images.
As for CIFAR-100, the image size and the number of images are the same
as CIFAR-10. However, there are 100 categories, i.e., there are only 600 im-
ages for each category, and 500 of them are used for training. More classes
and fewer training examples for each class make the classification task on
CIFAR-100 much more challenging than on CIFAR-10.

ImageNet comprises roughly 1.2 million images spanning 1000 unique
categories. These images have undergone meticulous hand-annotation to

3.3. EXPERIMENT DESIGN 85

ensure the quality of their labels. Commonly, images from this dataset are
resized to standardized resolutions for research and benchmarking pur-
poses [67]. The dimension of 224× 224 pixels is a frequently adopted res-
olution for numerous deep learning models.

The data augmentation technique is not employed during the NAS
process but is performed for the post-search training process, because the
fitness evaluation method used in the NAS process could effectively com-
pare the performance of different candidate networks even without data
augmentation. The augmentation method used in post-search training not
only includes cropping, but also includes cutout [30]. However, we did
not employ dropout or scheduled path dropout [183] techniques to further
improve the performance.

3.3.2 Peer Competitors

To verify the effectiveness and efficiency of the proposed algorithm, we
select some state-of-the-art algorithms and compare them with EAEPSO.
These peer competitors could be broadly categorized into two categories
according to whether the CNN is designed manually. In the first cate-
gory, the CNNs are designed by human experts. They are FractalNet [70],
Maxout [43], ResNet [48], DenseNet [56], Highway Network [129], VGG
[126], SENet [54], and WRN-18 [165]. Most competitors are trained and
tested on both CIFAR-10 and CIFAR-100. The second category automati-
cally searches and constructs the network architectures, such as CGP-CNN
[132], NAS [182], Large-scale Evolution [106], Block-QNN [174], MetaQNN
[13], EIGEN [107], CNN-GA [140], PNASNet [73], AmoebaNet [105], EAS
[18], NASNET [183], AECNN [138], DENSER [11], GeNet [155], CoDeep-
NEAT [91], Hier. repr-n, evolution [74], EffPnet [150], DARTS [75], NSGA-
Net [84], LEMONADE [35], NSGANetV1-A1 [85], Proxyless NAS [19], AE-
CNN+E2EPP [136], EffPnet [150], and MobileNet [115].

86 CHAPTER 3. PSO FOR NAS

3.3.3 Parameter Settings

The parameter settings in EAEPSO follow the convention of the PSO al-
gorithm and deep learning, and we also consider the computational capa-
bility of the resources available — all the experiments are implemented on
the GPU cards of NVIDIA A6000.

Specifically, while employing the autoencoder to represent the dense
block architecture, the minimal and maximum length of block vectors are
set to 10 and 20 considering the hardware limit and the model scales of
the prevalent networks [56, 150, 165]. Considering the autoencoder’s scale
and the convention of dimension reduction [50], the latent vectors’ length
is set to 8. In block vectors, the growth rates are between 10 and 32, which
is similar to the width of the networks that work well. When building
the dense block, following the convention, all the convolutional layers’
kernel sizes are set to 3, and the stride is 1. As sampling block vectors is
relatively cheap, we sample 300 000 block vectors as the training data for
the autoencoder training, and they are trained by an Adam optimizer [33]
with a learning rate of 5×10−3 for 500 epochs.

For the evolutionary process, the population size is 30. The regular
parameters of PSO follow the convention: the inertia weight is 0.7298,
and the two acceleration coefficients are both 1.49618 [145]. The velocity
range is between -0.1 and 0.1. In the proposed dynamic fitness evaluation
method, the proportion for the basic evaluation is 10%, and the maximal
number of training epochs is set to 60. In progressive fitness evaluation,
the number of training epochs is 50, and there are two predefined training
dataset proportions: 20% and 40%. When stacking the block, the maxi-
mum number of blocks is 5.

For the post-search training process, the settings are followed [56]. Specif-
ically, the searched network is trained for 300 epochs, and the initial learn-
ing rate is set to 0.1, which changes to 0.01 and 0.001 when the training
epoch achieves 150 and 225, respectively.

3.4. RESULTS AND ANALYSIS 87

3.4 Results and Analysis

In this section, the experimental results of EAEPSO against peer competi-
tors are presented in Section 3.4.1. Then, the comparison results and cor-
responding analyses between the proposed autoencoder and the compar-
ative one are presented in Section 3.4.2. The comparison among different
fitness evaluation methods and different training dataset scales’ impact
on the rank consistency during the evolutionary process are investigated
in Section 3.4.3. At last, the rational exploration of stacking the blocks is
provided in Section 3.4.4.

3.4.1 Overall Results

EAEPSO is run on both CIFAR-10 and CIFAR-100 five times with different
initial random seeds, respectively. Besides, the block architecture searched
on CIFAR-10 (with the median error rate) is transferred to CIFAR-100 and
ImageNet to prove its transferability. The results of EAEPSO are com-
pared with manually designed methods from two aspects, i.e., the predic-
tive error rate and the model size. In order to demonstrate the efficiency
of EAEPSO, we also compare the computational cost with the NAS peer
competitors, which is measured by the GPU-days2 of the searching pro-
cess. Please note that a substantial number of peer competitors only pro-
vide the outcomes of their best or median trials without including com-
prehensive statistical information, such as mean values and variances for
their experiments, which hampers the feasibility of conducting statistical
significance tests (SSTs) between the proposed methods in this thesis and
the competitors.

88 CHAPTER 3. PSO FOR NAS

Table 3.1: Performance comparisons on the CIFAR-10 dataset.

Model Error Rate #Parameters GPU-Days

FractalNet [70] 5.22% 38.6M —
Maxout [43] 9.3% — —

ResNet-101 [48] 6.43% 1.7M —
DenseNet (k=24) [56] 3.74% 27.2M —

Highway Network [129] 7.72% — —
VGG [126] 6.66% 20.04M —

CGP-CNN [132] 5.98% 2.64M 27
NAS [182] 6.01% 2.5M 22,400

Large-scale Evolution [106] 5.4% 5.4M 2,750
Block-QNN-S [174] 4.38% 6.1M 90

MetaQNN [13] 6.92% — 100
EIGEN [107] 5.4% 2.6M 2

CNN-GA [140] 4.78% 2.9M 35
PNASNet-5 [73] 3.41% 3.2M 150

AmoebaNet-B [105] 2.98% 34.9M 3,150
EAS [18] 4.23% 23.4M <10

NASNET-A [183] 2.97% 27.6M 2,000
AECNN [138] 4.3% 2.0M 27
DENSER [11] 5.87% 10.81M —

GeNet from WRN [155] 5.39% — 100
CoDeepNEAT [91] 7.3% — —

Hier. repr-n, evolution [74] 3.63% — 300
EffPnet [150] 3.58% 2.68M <3
DARTS [75] 2.82% 3.4M 1

NSGA-Net [84] 2.75% 3.3 M 4
LEMONADE [35] 2.58% 13.1M 90

NSGANetV1-A1 [85] 3.49% 0.5M 27
Proxyless NAS [19] 2.08% 5.7M 1,500

EAEPSO (Best) 2.51% 3.6M 3
EAEPSO (Median) 2.74% 2.94M 2.2
EAEPSO (Average) 2.75% 3.17M 2.8

3.4. RESULTS AND ANALYSIS 89

3.4.1.1 Performance on CIFAR-10

Table 3.1 lists the number of parameters, the predictive error rate, and the
GPU-days of the searching process of both EAEPSO and the other base-
line methods on the CIFAR-10 dataset. EAEPSO (Median) achieves an
error rate of 2.74% on CIFAR-10, and two peer competitors outperform it,
whose error rates are in bold font in Table 3.1. Specifically, for LEMON-
ADE [35] and Proxyless NAS [19], the model scales are 4.46 times and
1.94 times of EAEPSO (Median), and the computational costs are 41 and
682 times of that of EAEPSO (Median). The best error rate is only 2.51%,
and the average error rate is similar to the median value. As EAEPSO is
based on the DenseNet structure, we further implement a One-Sample T-
Test between EAEPSO and DenseNet, and the P-value is 0.003, showing
the proposed algorithm is statistically significantly better than the orig-
inal DenseNet. In terms of the model scale, EAEPSO (Median)’s 2.94M
ranks ninth, and eight competitors are with a slightly smaller number of
parameters. Nevertheless, their predictive error rates are all worse than
EAEPSO (Median)’s. The average model scale is 3.17M, which is a lit-
tle larger than EAEPSO (Median). Concerning the computational cost of
the searching process, EAEPSO (Median)’s 2.2 GPU-days ranks third over
the NAS methods, and EIGEN’s [107] 2 GPU-days and DARTS’s [75] 1
GPU-day outperform it. However, EIGEN’s predictive accuracy is 1.78%
worse than EAEPSO (Median), and DARTS’s model scale is 0.46M bigger
than EAEPSO (Median) along with a worse predictive accuracy. The aver-
age computational cost is 2.8 GPU-days, which is still significantly smaller
than most of the NAS methods, as many of them spend hundreds or even
thousands of times of EAEPSO’s GPU-days. Overall, EAEPSO demon-
strates it is a very competitive method by comparing it with the 28 peer
competitors on the CIFAR-10 dataset.

2Strictly speaking, GPU-days are not accurate since GPUs can be different, but GPU-
days can be used as a good indicator, like many other papers [105, 140, 150, 155].

90 CHAPTER 3. PSO FOR NAS

3.4.1.2 Performance on CIFAR-100

Table 3.2: Performance comparisons on the CIFAR-100 dataset.

Model Error Rate #Parameters GPU-Days

FractalNet [70] 22.3% 38.6M —

Maxout [43] 38.6% — —

ResNet-101 [48] 25.16% 1.7M —

DenseNet (k=40) [56] 17.2% 25.6M —

Highway Network [129] 32.39% — —

VGG [126] 28.05 20.04M —

SENet [54] 15.41 34.4M —

Large-scale Evolution [106] 23% 40.4M >2730

Block-QNN-S [174] 20.65% 6.1M 90

MetaQNN [13] 27.14% — 100

EIGEN [107] 21.9% 11.8M 5

CNN-GA [140] 20.03% 4.1M 40

NSGA-Net [84] 20.74% 3.3M 8

PNASNet-5 [73] 19.53% 3.2M 150

ENAS [100] 19.43% 4.6M 0.5
AmoebaNet-A [105] 18.93% 3.1M 3,150

DARTS [75] 17.54% 3.4M 1
NSGANetV1-A1 [85] 19.23% 0.7M 27

AE-CNN+E2EPP [136] 22.02% 20.9M 10

EffPnet [150] 18.70% — —

EAEPSO 16.17% 5.42M 4

EAEPSO(Transfer) 16.94% 4.32M 2.2

Table 3.2 exhibits the performance of EAEPSO, EAEPSO(Transfer), and
some peer competitors on the CIFAR-100 dataset. EAEPSO’s error rate
ranks second among eleven peer competitors, and only the error rate of
manually-designed SENet [54] is 0.76% lower than it. Nevertheless, the
number of parameters of SENet is 6.35 times of EAEPSO. In regard to the

3.4. RESULTS AND ANALYSIS 91

number of parameters, eight peer competitors have more minor model
scales than EAEPSO, but they are also with higher error rates. As for the
computational cost, EAEPSO’s 4 GPU-days ranks third among the 13 NAS
methods. ENAS [100] and DARTS [75] have less searching time, however,
they also have higher error rates. So we can say EAEPSO achieves very
competitive performance on CIFAR-100 considering the model scale, pre-
dictive error rate, and computational cost.

3.4.1.3 Transferability Performance

In order to justify the transferability of the searched block architecture,
we transfer the block searched on CIFAR-10 to other datasets — CIFAR-
100 and ImageNet. The blocks sharing the same CIFAR-10 architecture
are stacked together to explore the appropriate number of blocks on the
new dataset. The experimental results on CIFAR-100 are shown in Table
3.2, denoted as ‘EAEPSO (Transfer)’. The error rate of EAEPSO (Transfer)
is 16.94%, which is only 0.77% higher than directly searching the block
architecture on CIFAR-100, but the model size is only 4.32M, which is
smaller than EAEPSO on CIFAR-100. EAEPSO (Transfer)’s GPU-days is
only 2.2 GPU-days, which is the second lowest among all the competitors.
Please note that the GPU-days of EAEPSO (Transfer) contains two parts:
the computational cost of searching for the promising block architecture
on CIFAR-10 and the time-consuming of stacking the block to determine
the promising number of blocks on CIFAR-100.

Table 3.3 presents the results on ImageNet. Specifically, in terms of the
error rate, three peer competitors outperform EAEPSO(Transfer), but their
numbers of parameters are all a little larger than EAEPSO(Transfer). Their
computational cost is much larger than EAEPSO(Transfer).

The experimental results indicate the block architecture evolved by
EAEPSO has a very good transferability, which can lead to a satisfactory
predictive accuracy on the target domain. Besides, we can take advantage
of the transferability to improve the search efficiency when encountering

92 CHAPTER 3. PSO FOR NAS

Table 3.3: Performance comparisons on the ImageNet dataset.

Model Error Rate #Parameters GPU-Days

NAGANetV1-A1 [85] 29.1% 3.0M 27

MobileNet-V2 [115] 28.0% 3.4M —

NSGANet-A [183] 26.0% 5.3M 1,575

AmoebaNet-A [105] 25.5% 5.1M 3,150

WRN-18 [165] 30.4% 11.7M —

PNASNET-5 [73] 25.8% 5.1M 150

EffPnet [150] 27.0% — —

EAEPSO(Transfer) 26.9% 4.9M 4

a huge dataset by transferring the block architecture searched on a smaller
domain dataset to the target large dataset, reducing the computational cost
and help people solve larger problems.

3.4.2 Analysis on Autoencoder

The objective of this section is to investigate the effectiveness of the de-
signed autoencoder, which contains a special normalization layer at the
end of the encoder part, and employs pair-wised training samples and the
proposed loss function during the training process. To achieve this objec-
tive, a comparative autoencoder is built, which has the same architecture
as the proposed one except for not including the specific normalization
layer. The comparative autoencoder is called CAE, which is also trained
with the same training dataset for the same number of training epochs,
but the samples do not need to be input pair-wisely, and its loss function
only contains the reconstructive error without the architecture similarity
loss or the scale similarity loss.

We compare the latent space produced by the autoencoder in EAEPSO
and by CAE. Specifically, we sample some random dense blocks and use
the two autoencoders to represent them into 8-element latent vectors. We

3.4. RESULTS AND ANALYSIS 93

2 0 2 4
Value

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

D
en

si
ty

2 0 2 4
Value

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

D
en

si
ty

(a)

0.18 0.16 0.14 0.12 0.10 0.08 0.06
Value

0

5

10

15

20

25

D
en

si
ty

0 5 10 15 20 25
Value

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

D
en

si
ty

(b)

Figure 3.4: The probability density curve of two element values of latent
vectors. (a) Produced by the proposed autoencoder. (b) Produced by CAE.

visualize two randomly selected element values’ probability density in
Figure 3.4. As shown in the figure, for the autoencoder used in EAEPSO,
the distribution of the values in latent blocks is very smooth and follows

94 CHAPTER 3. PSO FOR NAS

the Gaussian distribution, which may facilitate the downstream search
[159]. On the contrary, the latent space is not so smooth for CAE. The
first probability density is relatively smooth, and most values also follow
almost a Gaussian distribution. However, the second one is not smooth at
all. Most values are concentrated around three and four and accompanied
by a long tail distribution, which may be hard to make an effective and
efficient search.

Because similar candidates are more likely to have comparable perfor-
mance, we hope similar candidates could also be close in the latent space.
We plot the relationship between the L1 distance in the latent space and
that in the normalized block vectors in Figure 3.5. Similar dense block ar-
chitectures tend to have a small latent block distance in EAEPSO. On the
other hand, the relationship between the block vector distance and the la-
tent vector distance is obviously non-linear for CAE, which means similar
candidates may have a large latent vector distance, and this may harm to
the downstream search process.

(a) (b)

Figure 3.5: The Relationship between the L1 distance of block vectors and
that of corresponding latent vectors. (a) Produced by the proposed au-
toencoder, which considers the architecture similarity loss. (b) Produced
by CAE.

3.4. RESULTS AND ANALYSIS 95

We use the sum of all the values in the block vector to approximate
the model scale and compare the relationships between the sum of val-
ues in block vectors and that in corresponding latent vectors generated by
the two autoencoders, which is exhibited in Fig 3.6. With the help of the
autoencoder in EAEPSO, the dense blocks of a similar scale also have a
similar sum of values in the latent vectors, and the linear relationship is
apparent. In this way, the candidates with the similar model scales are
tend to be in the same region in the latent space, which may be helpful
to the search process. On the contrary, the sum of values in latent vectors
cannot reflect the model scale in CAE.

(a) (b)

Figure 3.6: The relationship between the L1 distance of the sum of values
in block vectors and that in corresponding latent vectors. (a) Produced by
the proposed autoencoder. (b) Produced by CAE.

These comparative experiments show that the proposed autoencoder
could transform the original dense blocks’ block vectors to a smooth latent
space, reflecting the architecture similarity and the model scale similarity
among different dense blocks. In this way, the candidates with similar
architecture and scale are more likely to concentrate together in the latent
space.

96 CHAPTER 3. PSO FOR NAS

3.4.3 Analysis on different training data scales

To prove the effectiveness and efficiency of the proposed hierarchical fit-
ness evaluation method, we use different fitness evaluation methods to re-
place the proposed one in the PSO process on CIFAR-10. The performance
of the population in the last iteration is estimated again using the same
assessment method, and the final results are presented in Table 3.4, where
the proposed EAEPSO method employs both the basic fitness evaluation
method and progressive fitness evaluation method, which use a variety of
training data portions: 10%, 20%, and 40%.

Table 3.4: The comparisons of different evaluation methods.

Method Average Acc. Highest Acc. GPU-Days

10% training data 71.62% 72.56% 0.3

40% training data 73.57% 74.68% 4

100% training data 73.92% 74.89% 14

EAEPSO 73.50% 74.44% 2

The method using only 10% training data consumes only 0.3 GPU-
days, which is much smaller than the other three methods, along with
the lowest average accuracy and highest accuracy. On the other hand, the
method using all of the training data achieves both the best average ac-
curacy and the best highest accuracy, but the computational cost is also
much more expensive than others. EAEPSO’s average accuracy is slightly
lower than directly using 40% training data, and the highest accuracy is
0.24% lower. However, EAEPSO’s 2 GPU-days is only half of the compar-
ative method’s 4 GPU-days. So we can say the proposed fitness evaluation
method achieves a good balance between effectiveness and efficiency.

We also investigate the impact on the rank consistency between the
evaluated fitness and the true performance when reducing the training
dataset. We employ a standard PSO algorithm to evolve 30 particles for 10
iterations, and 80% training dataset is selected as the SGD training part to

3.4. RESULTS AND ANALYSIS 97

train the candidates, and the other 20% is used for evaluating the candi-
dates’ fitness.

We record the candidates’ architectures at each iteration and employ
10%, 20%, and 40% of the training dataset to re-evaluate the networks for
each generation. The rank relationships of all the candidates’ performance
with the reduced training datasets are compared with each other. We em-
ploy the Spearman Coefficient as the metric to evaluate the rank consis-
tency of different training data scales. The Spearman Coefficient between
two ranking strings rp and rq is calculated by:

ρs(p, q) = 1−
∑n

i=1(rp,i − rq,i)
2

n× (n2 − 1)
, (3.10)

where n is the number of the candidates in each iteration, and rp,i and
rq,i refer to the i-th candidate’s rank over the 30 candidates under two
different conditions, respectively.

We calculate the Spearman Coefficient using different training data
scales for each iteration. Specifically, we compare the ranking results using
40% training data with 10% and 20% training data, respectively. Figure
3.7 shows the comparison results. Along with the evolution, the Spear-
man Coefficients of both training scales (10% and 20%) show a downward
trend. The reason is probably that the candidates learn from each other
and gather in the neighborhood space, making their fitness tend to be sim-
ilar, which inspires us to use more training data along with the evolution
process. Another observation is that the Coefficient of 20% training data
is almost always better than that of 10% of the training data at the same
iterations, indicating that using more training data can bring more reliable
fitness evaluation results.

One of the primary purposes of the fitness evaluation is to identify the
best particle at each iteration to guide the downstream velocity and posi-
tion update. If we can use a reduced training dataset to help identify each
iteration’s best particle, the searching time will be reduced. We investigate
this by analyzing the performance of the best particle found by a bigger

98 CHAPTER 3. PSO FOR NAS

2 4 8 106

 index of the iteration

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Sp
ea

rm
an

 C
oe

ff
ic

ie
nt

10% training data
20% training data

Figure 3.7: The influence of different data scales.

training dataset when trained by a smaller dataset. Figure 3.8 shows that
eight particles over ten top rank third when trained by a smaller dataset,
indicating that the best particle found by a larger dataset usually also per-
forms well when trained by a smaller dataset. This inspires us to use more
minor training data to evaluate the candidates and then use more train-
ing data to further evaluate the well-performing candidates to identify the
best particle precisely.

3.4.4 The Rational Exploration of Stacking the Blocks

In EAEPSO, PSO searches for a good dense block structure, and then dif-
ferent blocks that share the same structure are stacked together to deter-
mine the best number of blocks. In this section, we design experiments to
show if the whole network’s performance is closely related to the perfor-
mance of one block. Specifically, five different dense block structures are
randomly generated first. For each one, at most four blocks are stacked
together to test the performance on the CIFAR-10 dataset considering the
size of the input. Figure 3.9 shows the prediction error rate with differ-

3.5. CHAPTER SUMMARY 99

2 4 8 106

index of the iteration

0

5

10

15

20

25

30

ra
nk

 o
ve

r 3
0

ca
nd

id
at

es

Figure 3.8: The best candidate at each iteration is found by training on
40% training data, and their rank at each iteration when trained by 20%
training data is shown.

ent numbers of blocks. Table 3.5 presents the single block’s performance,
the network’s best performance, and the number of blocks of the best net-
works.

From Figure 3.9, we can see the prediction error rate decreases along
with the number of blocks increasing when the number is smaller than
four. From Table 3.5, we can see that Structure 5 has the lowest error rate
when the network is composed of a single block, and it also achieves the
best performance when consisting of 3 blocks. Generally, the network’s
best performance is consistent with the single block’s performance. It is
reasonable to select the best-performed block structure and then stack the
blocks.

3.5 Chapter Summary

This chapter aims to propose an effective and efficient ENAS method for
image classification. The goal has been achieved by designing an autoen-

100 CHAPTER 3. PSO FOR NAS

1 2 3 4
6

10

14

E
rr

or
 R

at
e

(%
)

#Blocks

 structure1
 structure2
 structure3
 structure4
 structure5

Figure 3.9: The prediction error rates of networks stacked by different
numbers of blocks, and there are five different block structures.

Table 3.5: Different single blocks’ prediction error rates, best networks’
prediction error rates, and the corresponding numbers of blocks.

Structure
Single Block

Error Rate

Lowest Network

Error Rate

Corresponding

Number of Blocks

1 13.30% 8.03% 4

2 13.08% 8.34% 4

3 12.50% 7.78% 3

4 11.85% 7.65% 3

5 11.35% 7.50% 3

3.5. CHAPTER SUMMARY 101

coder and developing an efficient hierarchical fitness evaluation strategy.
The proposed method is based on PSO and is named EAEPSO. Specifically,
in order to represent the blocks of different depths with fixed-length indi-
viduals to facilitate the search, this chapter designs an autoencoder, which
is able to encode the block vectors to fixed-length latent vectors. In addi-
tion, the proposed autoencoder can convert the discrete search space to a
continuous smooth latent space, and the designed loss function can make
similar candidates distribute close to facilitate the downstream search pro-
cess. By investigating the reliability of using different training data scales,
it is found that approximate ranking can also guide the search process,
which inspired the proposed efficient hierarchical fitness evaluation method
that could automatically change the scale of the training data considering
the trade-off between effectiveness and efficiency.

The proposed EAEPSO method was tested on three popular bench-
mark datasets — CIFAR-10, CIFAR-100, and ImageNet. EAEPSO shows
very good performance in terms of the searched network’s performance
and the computational cost, outperforming most peer competitors. Be-
sides, it only costs less than 3 GPU-days on CIFAR-10, much smaller than
most peer competitors, costing hundreds or even thousands of GPU-days.
To test the transferability, the block architecture searched by CIFAR-10 was
transferred to CIFAR-100 and ImageNet, which achieved competitive per-
formance, indicating its good transferability. In addition, further experi-
ments prove the effectiveness of the proposed autoencoder and the pro-
posed hierarchical fitness evaluation method.

Although the proposed method achieved promising performance, it
mainly searched the architecture of dense blocks. The following chap-
ter will explore the search based on lightweight backbone architectures.
Besides, this method employs a standard EC method, and the following
chapter will investigate how to accelerate the convergence of the evolu-
tionary process.

102 CHAPTER 3. PSO FOR NAS

Chapter 4

NAS based on Performance
Prediction and Weight Inheritance

4.1 Introduction

While numerous existing ENAS techniques, along with the methodology
discussed in the previous chapter, have made strides towards minimizing
the computational overhead of NAS, there remains considerable poten-
tial to further reduce the computational resources required. In contrast to
other strategies, this chapter endeavors to reduce the computational over-
head by accelerating the evolution.

The efficiency of traditional EAs might not be satisfactory [114]. In
the evolutionary process of ENAS, parent candidates are usually selected
based on their fitness values, and new offspring are generated by per-
forming genetic operations on the selected parent candidates. In this way,
the offspring are expected to achieve better performance than the par-
ents [158], promoting the evolution. If the ratio of better offspring could
be enhanced, the process of evolution would be accelerated, reducing the
total number of generations and alleviating the prohibitive computational
burden. This chapter proposes a performance predictor to help indicate
well-performed offspring, improving the evolutionary efficiency and sav-

103

104 CHAPTER 4. ENAS BASED ON PERFORMANCE PREDICTION

ing computational cost. This method overcomes the shortcomings of most
existing performance predictors, as even estimated (possibly inaccurate)
predictions will not harm the evolution because the offspring will be fur-
ther accurately evaluated. Moreover, given the genetic overlap between
offspring and their parents, this chapter introduces an enhanced weight
inheritance mechanism to expedite offspring evaluation.

Some novel, efficient, and portable network architectures have gained
a lot of attention in computer vision. Many of them can reduce the num-
ber of parameters and improve computing efficiency while maintaining
or even enhancing performance. Notably, MobileNetV3 [52] incorporates
Squeeze-and-Excitation (SE) modules complemented by the efficient h-
swish activation functions. Considering MobileNetV3’s superior perfor-
mance and lightweight architecture, more efficient convolutional modules
can be investigated based on the MobileNetV3 block to extract discrimina-
tive features. Furthermore, utilizing an appropriate search method to ex-
plore the essential hyper-parameters of the module may further improve
the performance.

4.1.1 Chapter Goals

The overall goal of this chapter is to propose a new ENAS algorithm by
proposing a lightweight architecture, incorporating a performance predic-
tor to help generate well-performed offspring, and employing a weight-
inheritance method to accelerate fitness evaluations. Four specific objec-
tives are detailed below to support the overall goal:

1. Propose a new lightweight backbone block architecture that can ef-
fectively construct discriminative features from the input feature maps.
It is expected to have a small model scale and high computational
efficiency. The search space will be built based on the proposed
block architecture, so that the searched network will be efficient and
portable.

4.1. INTRODUCTION 105

2. Invent a random forest-based performance predictor. Instead of di-
rectly predicting the fitness, it aims to predict whether offspring out-
perform their parent(s) and the confidence level of the prediction. In
this way, only the offspring most likely to perform well will be pre-
served, which can improve the overall performance of the offspring
population, thereby accelerating the convergence of the evolutionary
process. Moreover, even inaccurate predicted results will hopefully
not harm the evolution.

3. Propose new crossover and mutation operators to cope with the ar-
chitecture representations. The newly generated offspring are ex-
pected to remain the same in most layers as one of its parents. This
approach makes it easier for the performance predictor to identify
whether the offspring can outperform their parents.

4. Investigate the influence of different weight inheritance methods on
convergence efficiency and propose a new weight inheritance method
to avoid random initialization of the newly generated layers of the
offspring. Some layers of offspring are generated by mutation and
differ from the parent individuals. Avoiding these layers’ random
initialization is expected to further improve the training efficiency.

4.1.2 Chapter Organization

The remainder of this chapter is organized as follows. Section 4.2 intro-
duces the details of the proposed algorithm. Immediately after, Section
4.3 describes the experiment design information, and Section 4.4 presents
the experiment results and corresponding analysis. At last, Section 4.5
concludes this chapter.

106 CHAPTER 4. ENAS BASED ON PERFORMANCE PREDICTION

4.2 The Proposed Method

4.2.1 Algorithm Overview

Initialization Parent
Population

Parent
Selection

Offspring
Population

Offspring
Evaluation

SGD
Training

Evaluation

Weight
Initialization

Fitness
Individual

Parent1

Parent2

Crossover Mutation Surrogate

… …

Elitism

Possibly Best Offspring

Environmental
SelectionStop?Output

Offspring Generation

Decode

Training Data

Fitness Evaluation using
Weight Inheritance

Yes

No

Fitness Evaluation Data

Offspring 1

Crossover Mutation Surrogate Score n
Offspring n

Score 1

…

Fitness Evaluation Decode

Update
Predictor

OffspringWeight
Initialization

……

Trained Network Pool

SGD
Training

Evaluation

Training Data Fitness Evaluation Data

Fitness……

Inheritance

Figure 4.1: Overview: EPPGA searches for the network architecture fol-
lowing an evolutionary procedure.

The proposed efficient performance predictor-based genetic algorithm
for NAS, called EPPGA, is illustrated in Figure 4.1. It generally follows a
standard evolutionary algorithm pipeline. Prior to the evolution, a search
space and an encoding strategy are predefined (see Section 4.2.2). Then,
a GA is employed to search the network architecture until the termina-
tion criterion is met, at which point the best individual is selected, and its

4.2. THE PROPOSED METHOD 107

corresponding architecture is output.

For the evolutionary process, a population of candidate network archi-
tectures is initialized first (see Section 4.2.3), and a common fitness eval-
uation method is applied to measure the fitness of the individuals. The
top left circle of Figure 4.1 illustrates the details: an individual is decoded
to the network and then initialized by a traditional weight initialization
method. Subsequently, an SGD method is used to train the weights, and
the network is evaluated on the fitness evaluation dataset to obtain its
fitness. The process is repeated until all the individuals are evaluated.
Then, the proposed offspring generation method is employed to produce
offspring individuals (see Section 4.2.4), as shown in the upper middle
part of Figure 4.1. Specifically, new crossover and mutation operations
are performed on the two selected parents to generate new offspring a
number of times. Each offspring and its corresponding parent are input
to the performance predictor to obtain its score, i.e., the probability of per-
forming better than the parent. The details of the proposed performance
predictor are documented in Section 4.2.5. The offspring with the high-
est score is selected as the offspring of the two parents. This process will
repeat a number of times to form the offspring population. Afterward,
the proposed fitness evaluation method using weight inheritance is ap-
plied to evaluate the offspring (see Section 4.2.6). Figure 4.1’s upper right
part presents the details: one offspring is decoded to the corresponding
architecture, and its initialized weights are inherited from a trained net-
work pool, which includes all the trained networks, and the offspring’s
network inherits weights from its parents and other networks that share
some identical block architectures. Then, the routine training and evalua-
tion procedures are applied. Note that the weight inheritance fitness eval-
uation will be applied to all offspring individuals, respectively. Then, the
performance predictor will be constructed/updated. Next, the environ-
mental selection is used to select individuals to build the next generation
from both the current parent population and offspring population.

108 CHAPTER 4. ENAS BASED ON PERFORMANCE PREDICTION

4.2.2 Architecture Search Space

To investigate the appropriate network architecture, we predefine an ar-
chitecture search space, and EPPGA searches for the network’s depth (num-
ber of layers), width (number of feature maps), and convolution kernel
size. These factors are crucial for a network and can significantly affect its
feature extraction ability. This section introduces the candidate network
architecture and the corresponding encoding strategy.

4.2.2.1 Network Architecture

Stem …… Output

Network Architecture

Stem Structure

Conv 1×1 Dwise K×K Conv 1 × 1 Pooling FC 1 FC 2 Mul Add

[W/s, H/s, e×C] [W/s, H/s, C’][W/s, H/s, e×C] [1, 1, C’] [1, 1, C’/r] [1, 1, C’] [W/s, H/s, C’]

Conv 1*1 Dwise K × K Conv 1 × 1Pooling FC 1 FC 2 Mul Add

[W/s, H/s, e×C] [W/s, H/s, e×C][W/s, H/s, e×C] [1, 1, e×C] [1, 1, e×C/r] [1, 1, e×C] [W/s, H/s, C’]

Conv 1 × 1

(a) EPPGA Block Structure

(b) MobileNetV3 Block Structure

Conv 3 × 3 Conv 3 × 3 FC

Tail StructureCell Structure

Conv 1 × 1

Feature Map
Size: [W, H, C]

Feature Map
Size: [W, H, C]

Cell 1 Cell 2 Cell 5 Tail

Block 1 Block 4Block 2 Block 3

Figure 4.2: An example of the network architecture: the top module shows
the overall network architecture. The middle module presents the detailed
stem and tail structures. The cell is composed of four blocks in this exam-
ple. The lowest module provides the details of the EPPGA block structure
and the original MobileNetV3 block structure for comparison.

4.2. THE PROPOSED METHOD 109

As illustrated in Figure 4.2, the input images are processed by a stem
first, then five cells, and finally the tail. The stem and tail structures are
fixed. The stem structure comprises a convolutional layer with a 3 × 3

kernel size (followed by a batch normalization operation and a non-linear
activation layer). The tail structure contains a convolutional layer, and an
FC layer, classifying the images according to the extracted features.

The network’s central part consists of five continuous cells, with non-
fixed cell structures and a maximum of four blocks per cell, as illustrated
in Figure 4.2. The maximal number of blocks depends on the available
computational resources and can be larger if more powerful Graphics Pro-
cessing Units (GPUs) are accessible, potentially leading to improved per-
formance. The number of blocks in different cells determines the network
depth, which may significantly affect the final result. As different datasets
may prefer different depths, EPPGA automatically explores the appropri-
ate number of blocks for each cell.

The blocks share the same backbone structure but have different hyper-
parameters. Inspired by the MobileNetV3 block, the proposed block struc-
ture has a smaller model scale and lower computational complexity, mea-
sured by the numbers of parameters and Floating Operation Points (FLOPs).
Meanwhile, its feature reconstruction capability is comparable to the Mo-
bileNetV3 block, as demonstrated in Section 4.4.4.

Specifically, the input feature maps (Size [W , H , C], where W is the
width, H is the height, and C is the number of channels) are first pro-
cessed by an expansion layer, consisting of a 1×1 convolutional layer with
an expansion rate e. The number of output channels is e times larger than
the input channels. The expansion rate e is an important parameter that
is difficult to determine, so EPPGA automatically searches for the optimal
expansion rate for each block. A depth-wise separable convolution fol-
lows, comprising a depth-wise convolutional layer with k × k kernel size
and a point-wise 1 × 1 convolution. The kernel size affects the quality
of reconstructed features, and different blocks may prefer different kernel

110 CHAPTER 4. ENAS BASED ON PERFORMANCE PREDICTION

sizes due to their positions in the network. Thus, each block’s kernel size
is also part of the search space. Additionally, the stride of the depth-wise
convolutional layer influences the output size. If the block is the first in
the cell, the stride can be one or two; otherwise, it is set to one. An SE
channel-wise attention module is applied to the output feature maps of
the depth-wise convolutional layer, comprising a global average pooling
layer, two FC layers, and corresponding non-linear activation layers. The
first FC layer squeezes the channels to 1/r of the original, and the second
FC layer expands the channels to r times, achieving the same as the orig-
inal, where r is the reduction rate of the SE module. Finally, the feature
maps multiply the output of the SE module channel-wisely, and a residual
connection is constructed with the original block input.

The primary difference between the original MobileNetV3 Block and
the proposed block is the position of the SE module, which is moved
from connecting to the depth-wise convolutional layer to connecting to
the point-wise convolutional layer. This change reduces both the scale and
computational cost of the subsequent SE model, as the point-wise convo-
lutional layer typically has a smaller number of kernels. Specifically, the
depth-wise convolution has e × C kernels, and the point-wise convolu-
tion has C ′ kernels, where C and C ′ are the numbers of feature maps of
the block input and output, respectively. Note that C ′ is usually slightly
larger than C for the first block in each cell but is the same as C for other
blocks. For an SE module, excluding the biases of linear layers, the num-
bers of parameters and FLOPs for a fully-connected layer are calculated
according to Equation (4.1) and Equation (4.2), where Nin and Nout refer to
the numbers of neurons of the input and output.

PARAMs = Nin ×Nout (4.1)

FLOPs = 2×Nin ×Nout (4.2)

Consequently, the two FC layers in the proposed block architecture’s

4.2. THE PROPOSED METHOD 111

SE module share the same number of parameters and FLOPs. For each
layer, the number of parameters is C ′2/ r, and the number of FLOPs is
2× C ′2/ r, where r is the reduction rate of the SE module. In a traditional
MobileNetV3 block, one FC layer’s number of parameters and FLOPs are
e2×C2/ r and 2× e2×C2/ r, respectively, where e is the expansion rate of
the block.

When the input’s number of channels is the same as the output, both
the numbers of parameters and FLOPs for the SE model of a MobileNetV3
block are e2 times larger than that of the proposed EPPGA’s block. For
the first block in each cell, where the input channel number C is smaller
than the output channel number C ′, the number of channels for the feature
maps after the expansion layer e×C is also usually larger than the output
channel number C ′. Thus, the proposed block architecture reduces the
model scale and computational complexity, as quantitatively proven in
Section 4.4.4.

4.2.2.2 Encoding Strategy

For the convenience of processing, we represent a network architecture
using a string. As we investigate the cell structure within the network, we
construct five cell vectors to denote the candidate network. A maximum
number of blocks in a cell, bmax, must be predefined based on available
resources, with bmax block vectors in one cell vector. We need to explore
the hyper-parameters of a block, so a block vector consists of two numbers:
the expansion rate and the kernel size. When the number of blocks in a cell
is less than bmax, we use a vector of two zeros to represent non-existing
blocks, corresponding to the expansion rate and kernel size parameters.
Consequently, the cell vectors have a fixed length, which is convenient for
further processing. For instance, [[4, 3], [2, 5], [0, 0]] is a cell vector repre-
senting a two-block cell with a maximum of three blocks, where the first
block’s expansion rate and kernel size are 4 and 3, respectively. Likewise,
the second block’s hyper-parameters are 2 and 5. In this manner, five cell

112 CHAPTER 4. ENAS BASED ON PERFORMANCE PREDICTION

block vectors form a network string containing 5× 2× bmax elements.

4.2.3 Population Initialization

To initialize the population for the initial generation, individuals are gen-
erated one by one until reaching the predefined population size. For each
individual, the parameters of each cell are generated repeatedly. Specif-
ically, the number of blocks in each cell nblock is determined randomly.
Then, the block’s expansion rate and kernel size are selected from the can-
didate values. If the number of blocks is smaller than the predefined max-
imum number bmax, 0s are added to make the cell vector reach the length
of 2× bmax. The individual is represented by connecting the generated cell
vectors. Finally, all the developed individuals make up the population of
the first generation.

4.2.4 Offspring Generation

To generate an offspring, two parent individuals are chosen from the cur-
rent population using binary tournament selection. We then randomly se-
lect one parent individual as the primary parent, while the other is named
the secondary parent individual.

In EPPGA, both crossover and mutation operations are performed on
the two parents for a predefined number of times individually, generating
one offspring each time. The performance predictor receives information
about each offspring and its primary parent. A score evaluating the like-
lihood of the offspring outperforming its primary parent is predicted by
the performance predictor. The offspring with the highest score is added
to the offspring population, and others become extinct. This approach
ensures that the generated offspring is more likely to have better perfor-
mance than its parents, adhering to the original purpose of the genetic op-
erations. This idea is similar to “brood recombination” [143], with the key
difference being the use of the performance predictor, which is more effi-

4.2. THE PROPOSED METHOD 113

cient and time-saving. Please note that in the first generation, crossover
and mutation are applied only once to each pair of parents, and the off-
spring is directly added to the offspring population without estimating its
score since there is no trained performance predictor.

Cell 1 Cell 2 Cell 3 Cell 4 Cell 5

Cell 1’ Cell 2’ Cell 3’ Cell 5’

Cell 1 Cell 2 Cell 3 Cell 4’ Cell 5

ReplaceThe Primary Parent

The Secondary Parent

Cell 4’

(a)

Cell 1 Cell 2 Cell 3 Cell 4 Cell 5

Cell 1’ Cell 2’ Cell 3’ Cell 5’

Cell 1 Cell 2 Cell 3 Cell 4’ Cell 5

ReplaceThe Primary Parent

The Secondary Parent

Cell 4’

(b)

Figure 4.3: An example of a crossover operation: (a) The two parent indi-
viduals. (b) The generated offspring. The primary parent replaces the 4th
cell with the secondary parent, generating the offspring.

Figure 4.3 shows an example of the crossover operation. Specifically,
one of the five cells is randomly chosen, and then the corresponding cell
structure of the primary parent is replaced by the corresponding cell of the
secondary parent, producing a new offspring.

After generating an offspring using a crossover operation, the muta-
tion operation is utilized to alter some blocks’ hyper-parameters of the
offspring, as detailed in Algorithm 5. Specifically, the number of one-block
mutations nm are generated within the maximal times of one-block muta-
tion nmax (line 1). For each one-block mutation, a block is randomly se-
lected from the entire offspring architecture (line 3), the number of blocks
in the corresponding cell is calculated (line 4), and a specific mutation type

114 CHAPTER 4. ENAS BASED ON PERFORMANCE PREDICTION

Algorithm 5: The Mutation Operation
Input: The offspring q; the maximal number of blocks in a cell bmax.
Output: The mutated offspring q.

1 nm ← generate a number between [1, nmax];
2 for i = 1; i ≤ nm; i← i+ 1 do
3 block ≤ Randomly choose a block from q;
4 nb ← the number of blocks in the cell;
5 operation ← Randomly select one from

{adding, removing,modifying};
6 if operation is adding and nb < nmax then
7 blocknew ← generate a new block;
8 Add blocknew next to block;

9 else if operation is removing and nb > 1 then
10 Remove block;
11 else
12 blocknew ← generate a new block;
13 Replace block with blocknew;

14 end

15 end

is randomly selected from three predefined types: adding, removing, and
modifying (line 5). If the type is adding and the number of existing blocks
is smaller than the maximum value (line 6), a new block vector is gener-
ated and is positioned next to the selected block (lines 7-8). If the type is
removing and there is more than one block in the cell (line 9), the selected
block is removed from the architecture (line 10). If the type is modifying, a
new block is generated and replaces the selected one (lines 12-13).

By controlling the maximal times of one-block mutation, most block ar-
chitectures remain the same between the generated offspring and the pri-
mary parent. This similarity offers several advantages. First, this can en-
hance the performance predictor’s effectiveness. The primary parent and

4.2. THE PROPOSED METHOD 115

the offspring will be used to construct the training samples for the perfor-
mance predictor. The similarity between them can strengthen the correla-
tion of the two parts within a training sample. The performance may focus
more on the different components rather than all the information, poten-
tially improving its performance, especially when there are limited train-
ing samples. Second, this similarity can reduce the computational cost of
evaluating the offspring. Since most blocks of the offspring inherit the
same architectures from the primary parent, the weights of these blocks
can also be inherited from the parent, expediting the training process.

4.2.5 Performance Predictor

A performance predictor is constructed to assess the probability of off-
spring surpassing their primary parents in terms of the performance. This
mechanism facilitates the pre-selection of superior offspring, thereby en-
hancing the evolutionary efficiency. Following this purpose, a pair of par-
ents generate several offspring, and only the one with the highest score
evaluated by the performance predictor will survive. Moreover, incorrect
predictions are unlikely to misguide the evolution since each generated
offspring (if not discarded) undergoes precise evaluation to obtain their
fitness. This method offers a distinct advantage over algorithms that solely
rely on a performance predictor to evaluate offspring’s fitness.

To train the performance predictor, appropriate training data is required.
Given the predictor’s purpose, both the primary parent and candidate off-
spring information are collected as features, with a class label of 1 indicat-
ing that the offspring outperforms the parent individual, and 0 otherwise.

Figure 4.4 depicts the two feature components of a training sample,
with the full feature set being a combination of both parts. Figure 4.4(a)
presents the primary parent information, including individual representa-
tion, the number of parameters, and the number of FLOPs. The individual
representation is an encoded string containing 40 elements in the example,

116 CHAPTER 4. ENAS BASED ON PERFORMANCE PREDICTION

……

Architecture Representation #Params #FLOPs

……

40 integers

40 integers

Architecture Representation #Params #FLOPs

(a)

……

Architecture Representation #Params #FLOPs

……

40 integers

40 integers

Architecture Representation #Params #FLOPs

(b)

Figure 4.4: An example of the feature construction for the performance
predictor contains two parts: (a) The first part comprises the primary par-
ent’s information. (b) The second part is composed of the generated off-
spring’s information. The architecture representation length is 40 in this
example.

assuming a maximum of 4 blocks per cell. Both the numbers of parameters
and FLOPs are essential network features, indicating the network’s scale
and computational complexity, which may be related to the final predic-
tive accuracy. Similarly, the second part contains offspring information.
For each generation, after evaluating the performance of the offspring, the
training dataset of the performance predictor is updated by adding the
examples composed of the offspring and their primary parent informa-
tion and the class labels. Then, the performance predictor is retrained on
the newly expanded training dataset to work well on the newly generated
offspring with a new distribution.

A random forest for binary classification is employed as the perfor-
mance predictor in EPPGA for several reasons. Firstly, as an ensemble

4.2. THE PROPOSED METHOD 117

learning approach, a random forest typically yields good performance.
Secondly, it effectively handles high-dimensional features, with 84 fea-
tures in an EPPGA training example, as shown in Figure 4.4. Thirdly, the
computational cost of a random forest is relatively low, especially com-
pared with neural networks, enabling faster training and prediction. The
primary goal of utilizing a performance predictor is to improve evolution-
ary efficiency and reduce optimization time. If training and using the per-
formance predictor is time-consuming, its design significance is substan-
tially diminished.

The random forest comprises 200 decision trees, ensuring predictive
accuracy without excessive computational resource usage. The random
forest training process follows standard rules. When predicting whether
an offspring can outperform its primary parent, the 200 decision trees
make individual decisions, and the proportion of trees voting 1 serves as
the predicted score. Consequently, the candidate offspring with the high-
est score is most likely to achieve good performance. If a candidate off-
spring’s score is below 0.5, its performance may be inferior to its primary
parent. For a parent pair, if all candidate offspring scores are below 0.5,
the offspring will become extinct, and their primary parent will propagate
to the offspring population.

4.2.6 Fitness Evaluation with Weight Inheritance

Fitness evaluation is often considered the most time-consuming process
for NAS algorithms. EPPGA employs a novel fitness evaluation method
using weight inheritance to expedite offspring evaluations. Note that the
original fitness evaluation method without weight inheritance is applied
to the initial population, as no pre-existing trained networks are available.

In EPPGA, a weight pool is established to store trained network mod-
ules, encompassing both network architectures and their trained weights.
The weight pool aids in offspring evaluations. When evaluating an off-

118 CHAPTER 4. ENAS BASED ON PERFORMANCE PREDICTION

spring, its primary and secondary parents have already been trained. Ac-
cording to the offspring generation method described in Section 4.2.4, four
cells are similar to the primary parent’s corresponding cells, and one cell is
partially similar to the secondary parent, excluding mutated blocks. Thus,
the non-mutated blocks’ weights are directly inherited from the offspring’s
parents as initialized weights.

As for the mutated blocks, the weights will be inherited from the blocks
with identical structures in the weight pool, rather than random initializa-
tion. If no matching block structures are present in the pool, the block’s
weights are initialized using He Initialization [47]. Consequently, most off-
spring blocks inherit weights from trained networks, significantly acceler-
ating training convergence. Although directly connecting blocks inherited
from different networks may cause discrepancies at junctions due to vary-
ing feature maps, the weights still converge faster during training than
random initialization, as quantified in Section 4.4.3. This is probably be-
cause feature maps at similar positions in networks, despite being distinct,
possess some common intrinsic features.

4.3 Experimental Settings

4.3.1 Benchmark Datasets

We employ three well-known image classification datasets, namely CIFAR-
10, CIFAR-100, and ImageNet, to verify the effectiveness and efficiency of
EPPGA. The reason for choosing them is that they are famous and are
used in the NAS literature, bringing convenience to compare with peer
competitors. Detailed information about these datasets can be found in
Section 3.3.1 (see page 84).

4.3. EXPERIMENTAL SETTINGS 119

4.3.2 Peer Competitors

To demonstrate the effectiveness and efficiency of EPPGA, we compare its
performance with several state-of-the-art algorithms, which can be broadly
categorized into hand-crafted and NAS competitors. For hand-crafted
competitors, we consider the test error rate, model size (measured by the
number of parameters), and computational complexity (measured by the
number of FLOPs). When comparing with NAS algorithms, we also ac-
count for the search cost, measured in GPU-days, indicating the search
process duration using a single GPU card.

Specifically, the manual-designed competitors include FractalNet [70],
Maxout [43], ResNet [48], DenseNet [56], Highway Network [129], VGG
[126], MobileNetV2 [115], and ShuffleNet [172]. The NAS algorithms con-
tain CGP-CNN [132], NAS [182], Large-scale Evolution [106], Block-QNN
[174], MetaQNN [13], EIGEN [107], CNN-GA [140], PNASNet [73], Amoe-
baNet [105], EAS [18], AECNN [138], NPENAS [152], Hier. repr-n, evo-
lution [74], EAEPSO [164], EffPnet [150], DARTS [75], NSGA-Net [84],
LEMONADE [35], MetaQNN [13], EffPnet [150], EIGEN [107], NSGANetV1
[85], Proxyless NAS [19], AE-CNN+E2EPP [136], SNAS [157], ENAS [100],
SI-EvoNet-S [167], NPENAS-NP [152], Modulenet [24], CNN-GA [140],
MobileNetV3 [52], SSPS [133], BanditNAS [168], and EBNAS [119].

4.3.3 Parameter Settings

Most experimental parameter settings follow the tradition of GAs and ma-
chine learning. Besides, some parameters are also affected by the availabil-
ity of the computational resources, and all the experiments in this chapter
are implemented using NVIDIA A6000.

For the evolutionary process, the population size is set to be 20, which
is smaller than most GA methods. The number of generations is also set
to be 20. Each pair of parents generates 10 offspring, and the one with
the highest score can survive. While encoding the candidate architectures,

120 CHAPTER 4. ENAS BASED ON PERFORMANCE PREDICTION

considering the hardware ability, the maximal number of blocks in one
cell is 4. The maximal number of mutated blocks is 3. As for the perfor-
mance predictor, 200 decision trees are utilized to build the random forest,
and each decision tree selects less than 40 features, and a bootstrapping
sampling method is employed.

In terms of the post-search evaluation, the number of training epochs
is 300. A batch size of 96 is employed, and a cosine annealing learning rate
policy is utilized with the initial learning rate set to 0.01. The dropout rate
is set to be 0.2 on CIFAR-10 and CIFAR-100, and the dropout technique is
not employed on ImageNet. For the data augmentation method, except
for the cropping and flipping methods, cutout is also employed to improve
the performance, which is similar to other peer methods.

4.4 Results and Analysis

4.4.1 Overall Results

EPPGA is run on both CIFAR-10 and CIFAR-100 five times with different
independent random seeds. We report the average performance of the
five trials and the best and median trial results. However, considering the
limited available computational resources, we only perform EPPGA on
ImageNet once.

4.4.1.1 Performance on CIFAR-10

Table 4.1 presents the experimental results on CIFAR-10. The best trial’s
error rate is only 2.44%. The median trial of EPPGA achieves an error
rate of 2.50% with 2.2M parameters within 1.6 GPU-days. The average
performance of the five trials closely resembles the median results. Since
the three measurements are intrinsically connected, we primarily analyze
the comparison results of the median trial. Considering the error rate,

4.4. RESULTS AND ANALYSIS 121

Table 4.1: The comparisons with peer competitors on CIFAR-10.

Model Error Rate #Parameters GPU-Days

FractalNet [70] 5.22% 38.6M —
Maxout [43] 9.3% — —

ResNet-101 [48] 6.43% 1.7M —
DenseNet (k=24) [56] 3.74% 27.2M —

Highway Network [129] 7.72% — —
VGG [126] 6.66% 20.04M —

Large-scale Evolution [106] 5.4% 5.4M 2,750
Block-QNN-S [174] 4.38% 6.1M 90

MetaQNN [13] 6.92% — 100
EIGEN [107] 5.4% 2.6M 2

CNN-GA [140] 4.78% 2.9M 35
PNASNet-5 [73] 3.41% 3.2M 150

AmoebaNet-B [105] 2.98% 34.9M 3,150
AECNN [138] 4.3% 2.0M 27

Hier. repr-n, evolution [74] 3.63% — 300
EAEPSO [164] 2.75% 3.17M 2.8
EffPnet [150] 3.58% 2.68M <3
DARTS [75] 2.82% 3.4M 1

NSGA-Net [84] 2.75% 3.3 M 4
LEMONADE [35] 2.58% 13.1M 90

NSGANetV1-A1 [85] 3.49% 0.5M 27
Proxyless NAS [19] 2.08% 5.7M 1,500
NPENAS-NP [152] 2.54% 3.5M 1.8

SNAS [157] 2.85% 2.8M 1.5
ENAS [100] 2.89% 4.6M 0.5

SI-EvoNet-S [167] 2.69% 1.84M 0.46
Modulenet [24] 2.77% — 8.0
CNN-GA [140] 3.22% 2.9M 35

EPPGA (best) 2.44% 2.39M 1.9
EPPGA (median) 2.50% 2.20M 1.6
EPPGA (average) 2.53% 2.36M 1.8

122 CHAPTER 4. ENAS BASED ON PERFORMANCE PREDICTION

EPPGA(median)’s 2.50% ranks second among all 28 competitors. Prox-
yless NAS’s [19] 2.08% error rate is superior; however, its model size is
2.59 times larger than EPPGA(median), and its search cost is 938 times
greater. EPPGA(median)’s model size is the fifth smallest, and ResNet-
101 [48], AECNN [138], NSGANetV1-A1 [85], and SI-EvoNet-S [167] have
fewer parameters, but their predictive performance is much worse than
EPPGA(median). Regarding the computational cost, four competitors out-
perform EPPGA(median)’s 1.6 GPU-days, but DARTS [75], SNAS [157],
ENAS [100], and SI-EvoNet-S [167] all exhibit poorer predictive perfor-
mance. From the experimental results, we conclude that EPPGA demon-
strates exceptional performance and strikes an outstanding balance be-
tween effectiveness and efficiency.

4.4.1.2 Performance on CIFAR-100

Table 4.2 displays the experimental results on the CIFAR-100 dataset. Sim-
ilarly, the median trial’s performance is close to the average performance.
Specifically, EPPGA (median) achieves an error rate of 16.75%, ranking
third among the NAS competitors. SI-EvoNet-S’s [167] 15.70% is lower,
but its model size is 1.6 times that of EPPGA (median). EAEPSO [164] is
0.58% more accurate, but its model size is over 2.56 times that of EPPGA
(median). In terms of the number of parameters, EPPGA (median)’s 2.12M
is the third smallest, with only ResNet-101 [48] and NSGANetV1-A1 [85]
having smaller model sizes, but their error rates are also higher. EPPGA
(median) only costs 2.4 GPU-days, which is the fourth smallest. ENAS
[100] and DARTS [75] have lower computational costs but also exhibit
inferior prediction results. Thus, we can conclude that EPPGA achieves
excellent performance on CIFAR-100: the small model scale renders it
suitable for deployment in various scenarios, and the low computational
cost makes it applicable for researchers without expensive computing re-
sources.

4.4. RESULTS AND ANALYSIS 123

Table 4.2: The comparisons with peer competitors on CIFAR-100.

Model Error Rate #Parameters GPU-Days

FractalNet [70] 22.3% 38.6M —

Maxout [43] 38.6% — —

ResNet-101 [48] 25.16% 1.7M —

DenseNet (k=40) [56] 17.2% 25.6M —

Highway Network [129] 32.39% — —

VGG [126] 28.05% 20.04M —

Large-scale Evolution [106] 23% 40.4M 2,730

Block-QNN-S [174] 20.65% 6.1M 90

MetaQNN [13] 27.14% — 100

EIGEN [107] 21.9% 11.8M 5

CNN-GA [140] 20.03% 4.1M 40

EAEPSO [164] 16.17% 5.42M 4

NSGA-Net [84] 20.74% 3.3M 8

PNASNet-5 [73] 19.53% 3.2M 150

ENAS [100] 19.43% 4.6M 0.5
AmoebaNet-A [105] 18.93% 3.1M 3,150

DARTS [75] 17.54% 3.4M 1

NSGANetV1-A1 [85] 19.23% 0.7M 27

AE-CNN+E2EPP [136] 22.02% 20.9M 10

EffPnet [150] 18.70% — —

AECNN [138] 22.40% 5.4M 36

SI-EvoNet-S [167] 15.70% 3.32M 0.81

Modulenet [24] 17.76% — —

CNN-GA [140] 20.53% 4.1M 40

EPPGA (best) 16.34% 2.79M 2.8

EPPGA (median) 16.75% 2.12M 2.4

EPPGA (average) 16.64% 2.43M 2.5

124 CHAPTER 4. ENAS BASED ON PERFORMANCE PREDICTION

4.4.1.3 Performance on ImageNet

Table 4.3 displays the experimental results on the ImageNet dataset. EPPGA
requires 9.4 GPU-days3 to search for an appropriate network architecture,
which is substantially more affordable than most peer competitors. Specif-
ically, the search costs of some competitors are lower than EPPGA’s, but
they all have reduced accuracies. As for the performance of the search net-
work, EPPGA attains 75.9% top-1 accuracy and 92.7% top-5 accuracy, out-
performing most competitors. Among all NAS competitors, only NSGANetV1-
A3’s [85] top-1 accuracy is 0.3% higher than EPPGA’s, along with 0.4%
better top-5 accuracy. However, NSGANetV1-A3’s number of FLOPs is
74M larger than EPPGA’s 496M, and the search cost of NSGANetV1-A3
is almost three times that of EPPGA’s. Among the manual-designed net-
works, DenseNet-169 [56] achieves better classification performance, but
its model scale is 2.5 times larger than EPPGA’s, and the number of FLOPs
is 13.6 times greater. In conclusion, EPPGA exhibits highly competitive
performance considering search cost, classification accuracy, model scale,
and model complexity.

4.4.2 Effectiveness of Performance Predictor

In EPPGA, a random forest-based performance predictor is developed
to help generate well-performed offspring, accelerating the evolutionary
convergence. To verify the effectiveness of the performance predictor, we
designed a comparative experiment by developing an algorithm without
using the performance predictor, termed NPPGA. Specifically, a pair of
parents in NPPGA produces only one offspring, while a pair of parents in
EPPGA generates 10 offspring, with the performance predictor assisting
in selecting the potentially best one.

3The cost in GPU-days also includes the training cost of all candidates, differing from
some methods that exclude the training cost and report only the search cost.

4.4. RESULTS AND ANALYSIS 125

Table 4.3: The comparisons with peer competitors on ImageNet.

Model Top-1 Acc. Top-5 Acc. #Params #FLOPs GPU-Days

MobileNetV2 [115] 72.0% 91.0% 3.4M 600M —

ShuffleNet [172] 73.7% — 5.4M 524M —

DenseNet-169 [56] 76.4% 93.3% 14.2M 6,740M —

ResNet-34 [48] 73.2% 91.3% 21.8M 7,360M —

MobileNetV3 [52] 75.2% — 5.4M 450M —

PNASNet-5 [73] 74.2% 91.9% 5.1M 588M 150

AmoebaNet-C [105] 75.7% 92.4% 6.4M 570M 3,150

SSPS(ResNet-34) [133] 74.3% — — — —

NSGANetV1-A3 [85] 76.2% 93.0% 5.0M 570M 27

ProxylessNAS [19] 75.1% 92.5% 7.1M — 8.3

DARTS [75] 73.3% 91.4% 4.7M — 4

SNAS [157] 72.7% 90.8% 4.3M — 1.5

BanditNAS [168] 75.3% — 5.12M 547M 1.8

EBNAS (large) [119] 67.8% 87.4% — 128M 0.04

EPPGA 75.9% 92.7% 5.6M 496M 9.4

4.4.2.1 Overall Performance

The performance of NPPGA and EPPGA is presented in Table 4.4. EPPGA
is 0.3% and 0.5% more accurate than NPPGA on CIFAR-10 and CIFAR-
100, respectively. The model scales of EPPGA are also smaller than those
of NPPGA on the corresponding datasets. As for the search cost, NPPGA
requires 1.5 GPU-days on CIFAR-10, which is slightly less than EPPGA’s
1.6 GPU-days; however, NPPGA’s GPU-days is 0.2 greater than EPPGA’s
on CIFAR-100. Consequently, the proposed performance predictor can
help improve the searched network’s performance without substantially
increasing the computational cost.

126 CHAPTER 4. ENAS BASED ON PERFORMANCE PREDICTION

Table 4.4: The comparisons of NPPGA and EPPGA.

Method Error Rate Dataset #Params GPU-Days

NPPGA
2.80% CIFAR-10 2.66M 1.5
18.06% CIFAR-100 2.39M 2.6

EPPGA
2.50% CIFAR-10 2.20M 1.6
16.75% CIFAR-100 2.12M 2.4

4.4.2.2 Convergence Situations

Since the primary purpose of the performance predictor is to accelerate
the evolutionary process, we also examine the population performance
during the evolutionary stage. The experimental results on CIFAR-10 and
CIFAR-100 are shown in Figure 4.5 and Figure 4.6, respectively.

0 5 10 15 20
0.86

0.87

0.88

0.89

0.90

NPPGA

EPPGA

A
v
e
ra

g
e
 F

it
n
e
s
s

#Generation

(a)

0 5 10 15 20
0.87

0.88

0.89

0.90

NPPGA

EPPGA

B
e
s
t
F

it
n
e
s
s

#Generation

(b)

Figure 4.5: The population’s performance during the evolutions of EPPGA
and NPPGA on CIFAR-10. (a) The average fitness of each generation. (b)
The best fitness of each generation.

On CIFAR-10, the average fitness of EPPGA and NPPGA are similar
during the first seven generations, but EPPGA’s average fitness noticeably
outperforms NPPGA in the subsequent generations. The best fitness of
each generation follows a similar tendency — there are no significant dif-

4.4. RESULTS AND ANALYSIS 127

ferences between them in the first eight generations. EPPGA’s best fitness
continues to increase and surpasses NPPGA’s in the following genera-
tions. This is because there are not enough training samples for the perfor-
mance predictor in the initial generations, resulting in inferior prediction
results. Along with the evolution, more parent-offspring training samples
are collected, and the performance predictor is adequately trained, im-
proving the prediction accuracy so that the population’s performance of
EPPGA maintains substantial growth and surpasses that of NPPGA.

0 5 10 15 20
0.58

0.60

0.62

0.64

NPPGA

EPPGA

A
v
e

ra
g
e

 F
it
n
e

s
s

#Generation

(a)

0 5 10 15 20

0.60

0.62

0.64

0.66

NPPGA

EPPGA

B
e
s
t
F

it
n
e
s
s

#Generation

(b)

Figure 4.6: The population’s performance during the evolutions of EPPGA
and NPPGA on CIFAR-100. (a) The average fitness of each generation. (b)
The best fitness of each generation.

From Figure 4.6, we observe that the average fitness of EPPGA and
NPPGA on CIFAR-100 are similar for the first six generations, with EPPGA’s
average fitness reaching 0.63 after approximately 11 generations, and then
volatility rises. In contrast, NPPGA’s average fitness does not reach 0.63
until the 17th generation and subsequently declines in the following gen-
erations. Regarding the best fitness in each generation, there are not many
differences between EPPGA and NPPGA at first, but EPPGA notably out-
performs NPPGA after the sixth generation, achieving the best fitness of
0.651 in the 18th generation and ceasing to update afterward. However,
NPPGA’s best fitness does not improve substantially after 11 generations,

128 CHAPTER 4. ENAS BASED ON PERFORMANCE PREDICTION

with the best result being only 0.634, which is inferior to EPPGA.

To conclude, the performance predictor employed in EPPGA can sig-
nificantly enhance the population’s quality after approximately six gener-
ations when sufficient training samples are collected. In subsequent gener-
ations, the performance predictor accelerates the evolution and improves
both the population’s quality and the best individual’s fitness.

4.4.2.3 Effectiveness of the Random Forest

Within EPPGA, a random forest-based performance predictor plays a cru-
cial role. This section explores the efficacy of random forest by comparing
with other machine learning methods, i.e., Support Vector Machine (SVM)
and logistic regression. Table 4.5 provides comparative results of different
performance predictors.

Table 4.5: The comparisons of different performance predictors.

Predictor Error Rate Dataset #Params GPU-Days

SVM
2.55% CIFAR10 2.35M 1.5

17.02% CIFAR100 2.10M 2.2

Logistic Regression
2.63% CIFAR10 2.24M 1.6

17.15% CIFAR100 2.25M 2.2

Random Forest
2.50% CIFAR10 2.20M 1.6

16.75% CIFAR100 2.12M 2.4

The random forest-based method demonstrates the lowest error rates
on both CIFAR10 and CIFAR100 datasets. SVM and logistic regression also
exhibit competitive classification performance, which is slightly worse. In
terms of model size and computational cost, the differences among these
performance predictors are slight.

4.4. RESULTS AND ANALYSIS 129

4.4.3 Efficiency of Weight Inheritance

In EPPGA, a novel weight inheritance method is proposed: offspring in-
herit weights from their primary parents, secondary parents, and other
networks in the weight pool. In this section, we first compare the training
process of networks using the proposed weight inheritance method with
that of networks without weight inheritance. Then, we present experi-
mental results of different weight inheritance methods.

4.4.3.1 With and Without the Proposed Weight Inheritance Method

Two individuals are randomly selected from an offspring population and
decoded to corresponding networks. The first individual employs a ran-
dom initialization method without weight inheritance; the second one uti-
lizes the proposed weight inheritance method. Figure 4.7 shows the net-
work training process with SGD on the CIFAR-10 dataset. Please note
that the weight inheritance training method is conducted for 20 train-
ing epochs, while the one without inheritance is operated for 40 epochs.
This is because 20 training epochs are sufficient to achieve high and stable
training accuracy using weight inheritance. For the first network (shown
in Figure 4.7(a)), the weight inheritance method facilitates rapid weight
convergence, taking about 10 epochs to achieve stable training accuracy.
In contrast, the random initialization method requires approximately 35
training epochs. Regarding the other network (shown in Figure 4.7(b)), it
takes about 15 training epochs to achieve stable and high training accu-
racy, which costs 30 more training epochs without weight inheritance.

The two network training processes with SGD on CIFAR-100 are de-
picted in Figure 4.8. The training accuracy becomes stable for the first net-
work using weight inheritance after 16 training epochs, while the training
protocol without weight inheritance takes more than 30 epochs to achieve
similar accuracy. For the second network, the training accuracy using
weight inheritance after 15 training epochs is higher than the accuracy

130 CHAPTER 4. ENAS BASED ON PERFORMANCE PREDICTION

0 10 20 30 40

0.4

0.6

0.8

1.0
Tr

ai
ni

ng
 A

cc
ur

ac
y

#Epochs
(a)

no weight inheritance
use weight inheritance

0 10 20 30 40
0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 A
cc

ur
ac

y

#Epochs
(b)

no weight inheritance
use weight inheritance

Figure 4.7: The training accuracy change situations using or not using the
weight inheritance method on CIFAR-10. (a) and (b) shows the results on
two different networks.

without inheritance for 40 training epochs, demonstrating the effective-
ness of weight inheritance. By employing the proposed weight inheri-
tance method, the training time of the candidates is reduced by at least
50% compared to not using weight inheritance.

4.4.3.2 Different Weight Inheritance Methods

We also compare the performance among different weight inheritance meth-
ods. Offspring can (1) inherit weights only from their primary parents (de-
noted as One Parent), (2) inherit weights from both parents (denoted as Two
Parents), or (3) inherit weights from the parents and the weight pool (de-
noted as EPPGA). Two networks are randomly selected from the offspring,
and each is evaluated using the above three weight inheritance methods
mentioned above. Table 4.6 and Table 4.7 present the experimental results
on CIFAR-10 and CIFAR-100, specifically reporting the training accuracies
on the 5th, 10th, 15th, and 20th training epochs.

For the first network on CIFAR-10, the “two parents” inheritance method
outperforms the “one parent” method for the four chosen epochs. EPPGA’s

4.4. RESULTS AND ANALYSIS 131

0 10 20 30 40

0.1

0.4

0.7

1.0

Tr
ai

ni
ng

 A
cc

ur
ac

y

#Epochs
(b)

no weight inheritance
use weight inheritance

0 10 20 30 40

0.1

0.4

0.7

1.0

Tr
ai

ni
ng

 A
cc

ur
ac

y

#Epochs
(a)

no weight inheritance
use weight inheritance

Figure 4.8: The training accuracy change situations using or not using the
weight inheritance method on CIFAR-100. (a) and (b) shows the results on
two different networks.

inheritance method achieves a lower accuracy at the 5th epoch than the
“two parents” method. However, it achieves better performance on the
three subsequent epochs, indicating the proposed weight inheritance may
converge slowly at the beginning of the training but accelerates conver-
gence as training progresses. EPPGA performs well on the selected four
epochs for the second network, indicating its higher convergence speed
than the other two weight inheritance methods. On CIFAR-100, EPPGA

Table 4.6: The training accuracy(%) among three weight inheritance meth-
ods comparisions on the CIFAR-10 dataset.

Network Inheritance Method E5 E10 E15 E20

1

One Parent 96.89 98.34 98.76 99.17

Two Parents 97.10 98.49 98.81 99.14

EPPGA 97.05 98.87 99.02 99.23

2

One Parent 92.42 96.28 97.77 98.45

Two Parents 92.86 96.90 98.05 98.48

EPPGA 93.41 96.89 98.38 98.76

132 CHAPTER 4. ENAS BASED ON PERFORMANCE PREDICTION

achieves significantly higher accuracies for the first network and much
higher accuracies on the last two selected epochs for the second network.
In general, the proposed weight inheritance method can substantially ac-
celerate weight convergence and achieve a higher convergence speed than
other weight inheritance methods.

Table 4.7: The training accuracy(%) among three weight inheritance meth-
ods comparisions on the CIFAR-100 dataset.

Network Inheritance Method E5 E10 E15 E20

1

One Parent 94.79 97.05 97.65 97.68

Two Parents 94.52 97.10 97.24 98.24

EPPGA 94.90 97.80 97.50 98.97

2

One Parent 92.58 96.53 98.68 98.94

Two Parents 92.86 97.02 98.54 98.64

EPPGA 95.68 95.64 99.33 99.94

4.4.4 Analysis of the backbone block structure

In EPPGA, a new backbone block structure is proposed inspired by the
MobileNetV3 block. The proposed structure constructs the search space
and aims to reduce the computational cost during the evolution. Besides,
the searched network is expected to perform well with a small model scale
and low computational complexity. To demonstrate the effectiveness of
the proposed backbone structure, a comparison algorithm is implemented
called MPPGA. The search space of MPPGA is based on the MobileNetV3
block, and all the other parameters are identical to those of EPPGA. The
comparisons are presented in in Table 4.8.

On CIFAR-10, MPPGA costs 3.3 GPU-days to search for an appro-
priate network architecture, which is more than twice the time needed
by EPPGA. Regarding the searched network, MPPGA’s 2.79% error rate
is worse than EPPGA’s 2.50%. However, the network’s model size of

4.5. CHAPTER SUMMARY 133

Table 4.8: The comparisons of MPPGA and EPPGA.

Method Error Rate Dataset #Params #FLOPs GPU-Days

MPPGA
2.79% CIFAR-10 3.66M 194M 3.3

16.77% CIFAR-100 4.11M 218M 3.6

EPPGA
2.50% CIFAR-10 2.20M 185M 1.6

16.75% CIFAR-100 2.12M 207M 2.4

MPPGA is 1.66 times that of EPPGA, and the number of FLOPs is also
9M larger than EPPGA. On CIFAR-100, MPPGA’s GPU-days is 1.5 times
that of EPPGA. The error rate of MPPGA is 0.02% worse than EPPGA,
but the model size is 1.94 times of EPPGA, along with a larger number
of FLOPs. The proposed block can help reduce the search computational
cost and enable the network to maintain classification performance with a
much smaller model size and a lower computational complexity than the
MobileNetV3 block.

4.5 Chapter Summary

This chapter aims to propose an efficient and effective ENAS method to
search for lightweight networks. The objective has been achieved by de-
signing a new backbone block structure, proposing a new performance
predictor, developing a new weight inheritance method, and inventing
new genetic operations. To lower the computational cost and reduce the
model scale of the searched network, an efficient block architecture is de-
signed, inspired by the MobileNetV3 block but more lightweight. A ran-
dom forest-based performance predictor is proposed to estimate the per-
formance of the offspring and help generate high-quality offspring, im-
proving the population’s performance and accelerating the evolution. Fur-
thermore, a new weight inheritance method is proposed, which can make
the offspring inherit weights from their parents and other existing trained

134 CHAPTER 4. ENAS BASED ON PERFORMANCE PREDICTION

networks, improving the weight convergence speed while training. Fi-
nally, corresponding genetic operations are designed to produce offspring
that can maintain a large proportion of the same as the primary parent, im-
proving the predictor’s performance and promoting weight inheritance.

The proposed algorithm is examined and the performance is compared
with state-of-the-art peer competitors. The results show that EPPGA is an
excellent ENAS algorithm regarding the search cost, the prediction error
rate, and the searched network’s size and computational complexity. Fur-
thermore, the experiments indicate the proposed performance predictor
can effectively accelerate the evolution and search for better candidates.
The weight inheritance experiments prove the effectiveness of the pro-
posed weight inheritance mechanism. The experiments using different
search spaces show the proposed backbone structure can maintain the per-
formance with smaller model size and lower computational complexity.

EPPGA is based on a standard NAS framework, and the following
chapter will explore a new framework, i.e., one-shot NAS, which is typ-
ically of higher efficiency.

Chapter 5

One-Shot Neural Architecture
Search using Reliable Fitness
Evaluations

5.1 Introduction

For one-shot NAS, only a single supernet needs to be trained initially, and
all the candidate networks directly inherit weights from the supernet with-
out further training, thus saving much computational cost. However, the
training of the supernet still requires significant computing resources. This
chapter proposes an efficient supernet training strategy to further reduce
the overall computational cost.

One-shot NAS also suffers from limited reliability in evaluating the
performance of candidate networks (a.k.a. subnets). During the search
stage, the subnets inherit weights from the supernet, and their fitness is
assessed based on these weights. However, researchers have noted that
the ranking correlation between inherited weights and the weights from
stand-alone training is low [162], leading to unfair comparisons among
subnets. This issue has been attributed to the extensive sharing extent of
weights in the supernet [96], where all subnets that contain the same op-

135

136 CHAPTER 5. EFFICIENT ONE-SHOT NAS

eration in a layer use the same weights. These replicated weights may
not be optimal for individual subnets, leading to potential degradation in
performance. This chapter fine-tunes the supernet weights by directly uti-
lizing the candidates to be evaluated as a guide for the fine-tuning process.
By reducing the sharing extent from the fundamental role of the supernet,
i.e., evaluating the subnets, this chapter aims to improve the reliability of
performance estimation in one-shot NAS.

Accelerating the convergence of the EC-based search process can re-
duce the computational cost of NAS algorithms. Population initialization
determines the initial solutions (candidate architectures in NAS), and it
has been demonstrated that good initial solutions can facilitate the evolu-
tionary process [102], reduce computational costs [62], increase the prob-
ability of finding the optimal solutions [88], and improve the stability of
search results [94].

5.1.1 Chapter Goals

The overall goal of this chapter is to propose a one-shot ENAS algorithm
for image classification, which enables accurate fitness evaluations, effi-
cient supernet training, and a powerful population initialization to facil-
itate the search process. To accomplish this, four specific objectives are
outlined as follows.

1. Propose a new efficient supernet training strategy to reduce the com-
putational cost of training the weights of the supernet. The proposed
strategy leverages the characteristics of the supernet architecture by
training paths with ‘larger’ operations first, then replicating corre-
sponding weights for ‘smaller’ operations, and finally, further train-
ing these paths.

2. Propose an effective supernet fine-tuning strategy to offer accurate
fitness evaluations for all candidate network architectures. The su-

5.2. ANALYSIS OF MOTIVATIONS 137

pernet weights are expected to be fine-tuned based on the distribu-
tion of the candidate network architectures, which can reduce the
sharing extent and provide more accurate evaluations.

3. Propose a new population initialization method to select potentially
well-performing candidate network architectures as initial solutions,
facilitating the evolutionary search. The proposed initialization method
is based on information extracted from the supernet training process.

4. Provide further analysis and discussions on the limitations of cur-
rent one-shot NAS methods, and discuss the motivations behind the
proposed supernet training, weight fine-tuning, and population ini-
tialization methods. This analysis aims to provide insights into the
rationale and benefits of the proposed approaches.

5.1.2 Chapter Organization

The remainder of this chapter is organized as follows. Section 5.2 provides
the analysis of the motivations for this work. Section 5.3 presents detailed
information on the proposed algorithm. Section 5.4 describes the experi-
mental design information, including dataset and parameter settings. Sec-
tion 5.5 presents the results and analysis of the experiments. Finally, Sec-
tion 5.6 provides the conclusion.

5.2 Analysis of Motivations

Sample-based one-shot NAS [46] consists of two consecutive stages: su-
pernet training and architecture search. The supernet encompasses the
entire search space A and its weights WA are trained by iteratively sam-
pling a single path or subnet a within A, as follows:

W ∗
A = arg min

W
E

a∼U(A)
JLtra(a,W (a))K , (5.1)

138 CHAPTER 5. EFFICIENT ONE-SHOT NAS

where W ∗
A denotes the optimized weights of the supernet, EJ·K represents

the expectation of variables, Ltra(a,W (a)) signifies the training loss of sub-
net a with weights W (a), and a ∼ U(A) indicates that subnet a follows a
uniform distribution in the search space A.

In the second stage, the goal is to find the subnet with the best perfor-
mance a∗ in the search space A, expressed as:

a∗ = arg max
a∈A

ACCeva(a,W∗
A(a)) , (5.2)

where W ∗
A(a) denotes the inherited weights of subnet a from the learned

supernet weights W ∗
A, and ACCeva(a,W∗

A(a)) refers to the evaluation ac-
curacy of a with the inherited weights, which serves as a measure of the
subnet’s performance.

Although one-shot NAS has attracted significant attention, there re-
main limitations when considering the underlying principles more deeply.
The supernet is typically quite large since it must encompass the entire
search space. A layer consists of m possible operations that are connected
in parallel, i.e., o1, o2, . . . , om. Assuming the total number of layers in the
supernet is n, there will be mn subnets within the supernet. For the k-th
operation of the l-th layer, olk, its weights are influenced by all the subnets
that contain olk, and the total number of such subnets is mn−1, which is typ-
ically a rather large number4. This characteristic may result in two issues:
inefficient training of the supernet and unreliable performance estimation
of the subnets.

During supernet training, a subnet a is sampled from the search space
A as shown in Equation (5.1), and the weights of each operation are influ-
enced by the mn−1 subnets, resulting in a large computation budget for su-
pernet training. A promising weight initialization could accelerate weight
convergence. In a specific layer, the operations o1, o2, . . . , om typically have

4For simplicity, the mathematical calculations in this section do not account for the
variable length of subnets, i.e., some layers in the subnet may not exist. All the subnets
are assumed to be of maximum length.

5.2. ANALYSIS OF MOTIVATIONS 139

different widths (number of kernels) and kernel sizes. The operation with
the largest width and kernel size, denoted as olarge, can be optimized first,
and then the weights of all other operations can be copied from the trained
operation olarge. This supernet weight initialization mechanism is expected
to facilitate the subsequent weight optimization process.

Another concern is the reliability of performance estimation using the
weights inherited from the supernet. As seen from Equation (5.2), the mea-
sured performance of subnet a is closely related to its inherited weights
W∗

A(a). However, the optimal weights for a subnet are often not the same
as the weights trained in the supernet, as each operation’s weight W∗

A(a, o)
in W∗

A(a) is affected by a large number of subnets, and may deviate from
the optimized weights w∗

a,o, leading to potential inaccurate performance
estimation. One way to alleviate this issue is to reduce the number of
subnets that affect each other, as supported by [16] — reducing the shar-
ing extent can improve the reliability of the estimated performance. The
main task of the supernet is to aid in the subnets’ performance evaluation.
Therefore, to enhance evaluation reliability, it would be beneficial to fine-
tune the weights of the supernet to better fit the subnets to be evaluated
before the evaluation, as shown in Equation (5.3):

W ∗
i = arg min

W
E

a∈{ai1,ai2,...,aip}
JLtra(a,W (a))K , (5.3)

where {ai1, ai2, . . . , aip} refers to all the p subnets to be evaluated in the i-
th iteration, and W ∗

i is the optimized supernet weights for the evaluation
of the subnet in the i-th iteration. Although fine-tuning may increase the
computational cost, the additional computational cost will not be large,
as the number of subnets to be sampled for fine-tuning in each iteration is
typically much smaller (p) compared to the number of subnets used for su-
pernet training (mn) and the convergence of weights is expected to be fast.
However, a major concern with this fine-tuning strategy is the increased
time and computational consumption. Nevertheless, the additional time
and computational cost for the fine-tuning could be acceptable for the fol-

140 CHAPTER 5. EFFICIENT ONE-SHOT NAS

lowing reasons:

(1) The initial supernet weights of the i-th iteration Wi are inherited from
the optimized weights of the previous iteration W ∗

i−1, which have al-
ready been fine-tuned by the subnets of the previous iteration. Since
the populations share many common genes, the difference between
W ∗

i and W ∗
i−1 is expected to be small, and the fine-tuning process is

unlikely to involve a significant amount of computation.

(2) The number of subnets to be sampled for fine-tuning in each itera-
tion is typically much smaller (p) compared to the number of subnets
used for supernet training (mn). Typically, p ranges from a few dozen
to a hundred, while mn can be much larger. The fine-tuning process
among this smaller number of subnets is expected to be quick, i.e.,
the convergence of weights is expected to be fast.

Additionally, during the supernet training process, a large number of
subnets are activated and optimized, and some of these subnets may show
promising performance based on their training progress and evaluation
results. These potentially good subnets can serve as a valuable source
of information for the architecture search process, as they can guide the
search towards more promising regions of the search space. By using the
potentially good subnets as the initial population for the search, the archi-
tecture search process can benefit from an informed starting point, which
may help in accelerating the search process and improving the chances
of finding high-performing architectures. This can be especially useful in
cases where the search space is large and complex.

5.3 The Proposed Method

This section describes the comprehensive procedures and the critical com-
ponents of the proposed algorithm. The proposed algorithm is called
TIFNAS, an acronym standing for efficient supernet Training, effective

5.3. THE PROPOSED METHOD 141

population Initialization, and effective supernet Fine-tuning for Neural
Architecture Search.

5.3.1 Algorithm Overview

Supernet
Training Initialization Individual

Evaluation
Supernet
Fine-Tuning

Offspring
Generation

Stop? New
Population

Training Data

Evaluation

Supernet

Sample Path

Accuracy

Supernet

SGD Training

Individual

Fitness Evaluation Data

No

Yes
Output

.

.

.

Offspring

Fitness Evaluation Data

Individual
Evaluation

Inherit Corresponding Weights

Supernet
Fine-Tuning

Train the
Widest Paths

Weight
Inheritance

Train Paths

Evaluation

Record
& Elitism Update the

Weights

Figure 5.1: Overview: TIFNAS comprises supernet training, population
initialization, and evolutionary search. The supernet is efficiently trained
using the proposed training method, and the well-performing subnets
during the training are selected as the initialized individuals. In the evolu-
tionary search process, the supernet is further fine-tuned to provide more
precise evaluations.

Figure 5.1 illustrates the overall framework of the proposed TIFNAS.
Prior to the search, the supernet is predefined, covering the entire search
space (see Section 5.3.2), and its weights are trained using the method
presented in Section 5.3.3. Specifically, the three widest paths inside the
supernet are trained; then, the other operations inherit weights from the
three paths, which facilitates the training process; subsequently, the possi-
ble paths are trained: for each batch of data in a training epoch, a path
is randomly sampled/selected, and the weights are trained employing

142 CHAPTER 5. EFFICIENT ONE-SHOT NAS

SGD. The performance of the selected path/subnet is evaluated on the fit-
ness evaluation data if it is the last training epoch of SGD. The candidate
individuals for the first generation are then determined by the proposed
initialization method (see Section 5.3.4), which involves selecting the best
subnets evaluated during the last training epoch to enhance the popula-
tion quality.

Following the initialization, the search process commences, and the
weights of the supernet are fine-tuned to obtain a more accurate assess-
ment of the initial population. During the evaluation, each individual
(a.k.a. subnet) inherits the weights from the supernet and is evaluated
on the fitness evaluation data to obtain its classification accuracy as fitness
(see Section 5.3.5). Offspring are then generated (see Section 5.3.6), and the
supernet is further fine-tuned based on the offsprings (see Section 5.3.7).
Specifically, for each batch of data, an offspring individual is randomly se-
lected as the subnet, and the corresponding weights are trained using SGD
and updated. Afterward, the offspring population is evaluated to obtain
fitness values, and a new population is generated (see Section 5.3.8). This
process is repeated for a predefined number of generations as the stopping
criterion. Ultimately, the best individual/subnet is output as the searched
result.

5.3.2 Supernet Architecture

The supernet of TIFNAS encompasses the entire search space, as depicted
in Figure 5.2. TIFNAS aims to determine the optimal depth (number of
layers/blocks), width (number of feature maps), and kernel sizes of the
convolutions. The supernet architecture is designed to include DCNNs
with different choices. Typically, the depth of the supernet adopts the max-
imum number of layers/blocks. For each layer/block, the operations of all
possible combinations of widths and kernel sizes are parallelly aligned.
This connection approach alleviates the weight co-adaptation problem,

5.3. THE PROPOSED METHOD 143

especially when compared to using only one operation with the largest
width and kernel size for a layer/block.

Opt. 1 Opt. 2 Opt. 18

Opt. 1 Opt. 2 Opt. 18

Opt. 1 Opt. 2 Opt. 18

Block 1

Block 2

Block 3

Kernel Size: 3×3; 5×5; 7×7

Expansion Rate: 1; 2; 3; 4; 5; 6

Choices for an Operation:

……

……

……

Cell 1

Stem

Cell 5

Tail

Cell 2

Cell 3

Cell 4

Opt. 1 Opt. 2 Opt. 18Block 4 ……

Convolution 3 ✕ 3

Convolution 3 ✕ 3

FC

Convolution 1 ✕ 1

Dep. Sep. Conv k ✕ k

Convolution 1 ✕ 1

+

An Operation:

Figure 5.2: The architecture of the supernet. Each cell consists of four
blocks, with each block having 18 optional operations. An operation com-
prises a 1×1 convolution, a depth-wise separable convolution, and an-
other 1×1 convolution. There are 3 candidate kernel sizes and 6 expansion
rates to choose from for an operation.

The supernet structure can be divided into a stem, five cells, and a tail
following other methods [83]. The stem consists of a 1×1 convolution.
Each cell contains four blocks, and each block has 18 optional operations.
The tail consists of a 1×1 convolution followed by a fully-connected layer
for classification. Specifically, an operation comprises a 1×1 convolution to
expand the width, a depth-wise separable convolution to construct infor-
mative features, and another 1×1 convolution to reduce the width to the
same as the input of the operation. Additionally, the input feature maps
and the feature maps after convolutions are added together as the final
output of the operation. For each operation, the kernel size of the depth-
wise separable convolution is optional, and there are three candidate ker-
nel sizes to choose from. The expansion rate of the first convolution is also
optional, with six candidate expansion rates available. If an operation has

144 CHAPTER 5. EFFICIENT ONE-SHOT NAS

an expansion rate of e, the width (a.k.a. the number of feature maps) of
the first two convolutions will be e×w, where w represents the width of
the input feature maps.

All subnets are encompassed within the large supernet, and each sub-
net is composed of five cells. Each cell can have a flexible number of
blocks, where each block has a specific kernel size and expansion rate. In
GA, an individual is represented by a string consisting of five vectors, with
each vector corresponding to a cell. For example, [(3,4), (7,6), (5,2)] repre-
sents a cell with three blocks, where the kernel size of each block is 3, 7,
and 5. The expansion rates of the three blocks are 4, 6, and 2, respectively.

5.3.3 Supernet Training

The supernet is large and thus challenging to train. To improve the train-
ing efficiency and training effectiveness (measured by the training loss),
TIFNAS comprises a proposed progressive initialization method along
with the widely used single-path sampling training approach [25].

5.3.3.1 Progressive Weight Initialization

Figure 5.3 illustrates the key steps of the progressive weight initialization
method for the supernet. To simplify notation, we use Path (k; e) to de-
note the path/subnet with the greatest depth, where each cell has four
blocks, and each block utilizes the expansion rate of e and a kernel size of
k. Firstly, we activate and train the “largest” path, Path (k = 7; e = 6);
then, Path (k = 5; e = 6) inherits weighs from Path (k = 7; e = 6) and
is then trained; subsequently, Path (k = 3; e = 6) inherits weighs from
Path (k = 5; e = 6) and is then trained; finally, all the other paths with the
largest depth are initialized by a new weight inheritance method.

The weight initializations for Path (k = 5; e = 6) and Path (k = 3; e =

6) belong to the category of inheriting weights from convolutions of the
same width (e) but with different kernel sizes (k). On the other hand, the

5.3. THE PROPOSED METHOD 145

(a) Train Path (k = 7; e = 6) (b) Initialize Path (k = 5; e = 6)
and Train

(c) Initialize Path (k = 3; e = 6)
and Train

. . .

. . .

. . .

Inherit

. . .

. . .

. . .

Inherit

. . .

. . .

. . .

. . .

. . .

. . .

(d) Initialize all other Paths

Figure 5.3: The progressive initialization method comprises four steps: (a)
training the path with all blocks of k = 7 and e = 6; (b) initializing the
weighs of the path with all blocks of k = 5 and e = 6, and then training;
(c) initializing the weighs of the path with all blocks of k = 3 and e = 6,
and then training; (d) initializing all other paths.

weight initializations of all other paths belong to the category of inheriting
weights from convolutions of different widths (e) but with the same kernel
size. Figure 5.4 illustrates the two types of weight inheritance methods.
The first type involves each convolution kernel inheriting weights from
the central part of the larger convolution kernel, with the selected central
part size being consistent with the convolution kernel to be initialized.
The second type applies when all other paths inherit weights from the
three trained paths with the largest expansion rate. Each convolution to be
initialized selects the convolution of the same kernel size with the largest
expansion rate at the same block and inherits weights from the previous
layers of the large convolutions, where the number of layers is the same as

146 CHAPTER 5. EFFICIENT ONE-SHOT NAS

the convolution to be initialized. This way, all the paths will be initialized
by copying weights from the trained path, which can facilitate the training
process and significantly reduce the training cost.

Inherit Inherit

(a) Weight inheritance from convolutions of different kernel sizes

Kernel Size: 7 × 7
Kernel Size: 5 × 5

Kernel Size: 3 × 3

Inherit Weights

Inherit Weights

Convolution with e = 6 Convolution with e = 4
Convolution with e = 2

(b) Weight inheritance from convolutions of different widths / numbers of kernels

Figure 5.4: Two kinds of weight inheritance within the supernet. (a) The
convolution of a kernel size of 5× 5 inherits weights from the convolution
of a kernel size of 7 × 7, and the convolution of a kernel size of 3 × 3

inherited weights from the convolution of a kernel size of 5 × 5. (b) The
convolutions of e = 2 and e = 4 inherit weights from the convolution of
e = 6, respectively.

5.3.3.2 Single Path Sampling Training

After initializing the weights using the progressive weight initialization
method, single-path sampling training will be employed to train the weights
of the supernet. The training process is described in Algorithm 6. A spe-
cific number of training epochs T and a predefined learning rate α are

5.3. THE PROPOSED METHOD 147

used. The training continues until T training epochs have been completed
(lines 1-11), with each batch of data being traversed in an epoch (lines 2-
10). In each epoch, a path is randomly selected from the supernet (line
3), and the weights of the path are trained and updated using SGD (lines
4-6). If it is the last training epoch, the path is further evaluated on the
evaluation data, and the loss is computed and recorded for the population
initialization process (lines 7-9). Through this process, the weights of the
supernet are trained to adapt to all candidate subnets.

Algorithm 6: Single Path Sampling-based Supernet Training
Input: Supernet S, training data Dtrain, evaluation data Deva,

learning rate α, number of epochs T .
Output: Weights θ of the supernet S.

1 for t = 1 to T do
2 for data batch Di in Dtrain do
3 Sample a path p from the supernet S;
4 Compute the loss L(Sp(θ),Di);
5 Compute the gradient∇θL(Sp(θ),Di);
6 Update the weights θ ← θ − α∇θL(Sp(θ),Di);
7 if t == T then
8 Evaluate p on Deva by computing the evaluation loss

L(Sp(θ),Deval);

9 end

10 end

11 end

The path evaluation is conducted after the training of the path instead
of after the training epoch is finished. This is because the training of other
paths will affect the weights of the current path, reducing the evaluation
reliability of this path.

It should be noted that both the training data Dtrain and the evaluation
data Deva are selected from the training dataset DTRA, which is separate

148 CHAPTER 5. EFFICIENT ONE-SHOT NAS

from the test dataset DTEST . There is no overlap between them, as ex-
pressed by Equation (5.4):

Dtrain ∪ Deva = DTRA, Dtrain ∩ Deva = ∅ . (5.4)

5.3.4 Population Initialization

Most evolutionary NAS approaches employ a random initialization method,
randomly selecting architectures from the large search space. However,
TIFNAS takes advantage of the information obtained during the supernet
training process to select potentially well-performing individuals as the
initial population. Specifically, during the last training epoch of the super-
net training, a number of candidate architectures/subnets are evaluated,
and the architectures with the lowest evaluation losses are chosen as the
initial population.

There are two main reasons that TIFNAS uses this specific population
initialization method:

(1) Facilitates the search in the large search space: The search space in
NAS is typically huge, with a vast number of possible architectures
to explore (as discussed in Section 5.2), but the population size is
usually limited because of the available computational budget. Ran-
domly initializing the population may result in individuals scattered
across the search space without covering promising regions. How-
ever, the selected initial individuals can suggest potentially promis-
ing areas in the space, and provide a good starting point to facilitate
the evolutionary architecture search.

(2) Computationally efficient: Evaluating a large number of individu-
als to select good ones as the initial population can be computation-
ally expensive. TIFNAS, on the other hand, takes advantage of the
supernet training process and evaluates the sampled subnets in the

5.3. THE PROPOSED METHOD 149

last training epoch. Since the supernet is a single network, this evalu-
ation can be done efficiently using existing computational resources,
making the population initialization method computationally effi-
cient.

5.3.5 Individual Evaluation

During the evolutionary search, each candidate network must be evalu-
ated to obtain its corresponding fitness, which shows its performance and
guides the search. In TIFNAS, the individual fitness evaluation is simple
and efficient. The weights of the individual architectures are directly in-
herited from the corresponding operations in the supernet, without being
trained separately. Subsequently, the networks are evaluated on the fitness
evaluation dataDeva, and their classification accuracies are recorded as the
candidate’s fitness.

5.3.6 Offspring Generation

TIFNAS generates offspring based on the current population, utilizing
three main procedures following traditional GAs: (1) selecting parent indi-
viduals with promising fitness, (2) performing crossover operations, and
(3) carrying out mutation operations. This subsection will provide a de-
tailed description of these three procedures.

Parent Selection

TIFNAS utilizes a binary tournament selection strategy to select parent
individuals from the current population. This process involves randomly
sampling two individuals and comparing their fitness values. The indi-
vidual with the better fitness value will be selected as one of the parents
and included in the mating pool. This process is repeated until the number
of individuals in the mating pool reaches the population size.

150 CHAPTER 5. EFFICIENT ONE-SHOT NAS

Two-Level Crossover

TIFNAS employs a two-level crossover operation that combines genes
from both the cell level and the block level. Since each individual in
TIFNAS represents a neural network architecture with multiple cells, and
each cell contains several blocks, this two-level crossover operation allows
for the hybridization of entire cells and the exchange of specific blocks be-
tween parents.

Swap

Parent 1

Parent 2

Swap

Subnet 1

Subnet 2

null

Cell 5

Cell 5’

null

Swap

Cell 1 Cell 2 Cell 3 Cell 4
3
1

7
2

7
4

3
3

5
3

7
3

7
3

3
1

7
2

7
4 null

5
1

3
2 nullnull

5
5

7
6

3
6 null

3
6

5
4

5
4

5
3

7
3

null nullnull 5
1

7
2

5
5

3
4

3
6

3
3

nullnull 3
6

5
6

5
2

3
2

3
1

7
2

7
4 null

5
3

7
3

nullnull 5
1

3
2 nullnull

3
6

3
3

nullnull 5
4

5
6

3
6

3
2

5
3

7
3

7
3

null 3
1

7
2

7
4

3
3

5
1

7
2

5
5

3
4

5
5

7
6

3
6 null 3

6
5
4

5
2

Cell 4’Cell 3’Cell 2’Cell 1’

Figure 5.5: An example of the two-level crossover operation. For the cell-
level crossover, the second and fourth cells are selected to swap. The fifth
cell is chosen to perform the block-level crossover, and the second and
fourth blocks are selected to swap.

An example of the crossover operation between two parent individu-
als is illustrated in Figure 5.5. In this example, the second and fourth cells
are randomly selected to swap with the corresponding cell of another par-
ent. One of the remaining three cells is randomly selected for block-level
crossover, and in this case, the fifth cell is chosen. Inside the fifth cell,
two blocks among the four blocks are randomly selected, and the second
and fourth blocks are exchanged with the corresponding blocks from an-
other parent. Please note that the fifth cell of Parent 1 only contains three
blocks, and the non-existing block is represented by null, which can also

5.3. THE PROPOSED METHOD 151

be swapped with other blocks. After the crossover, the fifth cell of Off-
spring 2 contains three blocks: the first and third blocks are from Parent 2,
and the second block is from Parent 1. The two-level crossover operation
effectively hybridizes the genes between the parents.

Parameter-Level Mutation

Algorithm 7: Parameter-Level Mutation
Input: A subnet s.
Output: A mutated subnet s.

1 nm ← Determine the number of mutation operations;
2 for i = 1 to nm do
3 cell← Randomly select a cell from s;
4 Randomly select a type from {adding, removing, modifying};
5 nb ← The number of blocks in cell;
6 if adding and nb < 4 then
7 blockm← Generate a new block;
8 Choose a position & Insert blockm;

9 else if removing and nb > 2 then
10 Choose a block & Remove it;
11 else
12 Choose 1 or 2 blocks randomly;
13 Modify the parameter(s) of the block;

14 end

15 end

TIFNAS incorporates three types of mutation operations, namely adding,
removing, and modifying. Algorithm 7 provides a detailed description of
the mutation operation in TIFNAS. Specifically, the number of mutation
operations to be performed is determined first (line 1). A cell is randomly
selected for each operation, and a mutation type is randomly chosen (lines

152 CHAPTER 5. EFFICIENT ONE-SHOT NAS

3-4), followed by counting the number of blocks in the cell (line 5), and the
operation is based on the selected mutation type as follows.

• Adding: If the number of blocks does not reach the maximum value
(line 6), the parameters for a new block are generated and inserted at
a random position in the cell (lines 7-8). In the example presented in
Figure 5.6, a new block is added next to the second block, increasing
the number of blocks from 3 to 4.

• Removing: If the number of blocks exceeds the minimum value (line
9), a random block is chosen and removed (line 10). In Figure 5.6, the
third block is removed after the removing mutation.

• Modifying: One or two blocks in the cell are randomly selected (line
12), and their parameters are modified (line 13). In Figure 5.6, the
second block’s expansion rate and the third block’s kernel size are
changed.

e1
k1

e2
k2

e3
k3

em
km

em
km

Ad
din

g

Cell After Removing

Removing

Original Cell

Cell After Adding

Cell AfterModifying

Modifying

e1
k1

e2
k2

e3
k3

e1
k1

e2
k2

e1
k1 k2

e3

Figure 5.6: An example of three types of parameter-level mutations. For
the adding mutation, a new block is generated and inserted into the cell;
for the reducing mutation, a block is selected and removed; for the modi-
fication mutation, some parameters are changed.

5.3. THE PROPOSED METHOD 153

5.3.7 Supernet Fine-Tuning

In TIFNAS, the supernet weights are fine-tuned to better fit the population
to be evaluated, resulting in more accurate assessments. The supernet is
fine-tuned prior to evaluating the individuals in the population for both
the initial generation and the subsequent generations during the evolu-
tionary process.

The fine-tuning process is similar to the supernet training process (as
illustrated in Algorithm 6), namely, for each batch of data, a path/subset
is selected and trained. There are mainly two distinctions.

One key distinction is that the paths/subnets are selected from the pop-
ulation to be evaluated, instead of from the extensive search space. This
approach offers several advantages. First, the primary objective of the
supernet is to facilitate the assessment of candidate individuals’ perfor-
mance, and directly employing the individuals to be evaluated for fine-
tuning the supernet is sufficient for the weight fine-tuning. Second, the
number of subnets for the fine-tuning (each time) is equal to the popu-
lation size, which is a relatively small number, thus mitigating the issue
of weight co-adaptation. Third, training the weights of the supernet with
fewer paths to converge is easier. It may take a much longer time to train
the weights of the supernet to convergence by randomly sampling paths
in the search space, but the computational cost is essentially shrunk by
only sampling from the population to be evaluated.

The other distinction is about the stopping criterion. While TIFNAS
prescribes a specific number of training epochs in the supernet training
stage, the supernet is trained until weight convergence during fine-tuning.
This is because the weights are easy to converge during fine-tuning, and
adequately trained weights can provide more accurate evaluations of can-
didate individuals.

154 CHAPTER 5. EFFICIENT ONE-SHOT NAS

5.3.8 New Population Generation

In each generation, the individuals with good performance are selected
from both the current population and the offspring population to form a
new population. To achieve this, a binary tournament selection is applied
to the combined population of both the current and offspring populations,
and the better individual is selected to move on to the next generation. Ad-
ditionally, an elitism selection is applied to ensure that the best individual
from the current generation is included in the new population, preserving
the best architecture found so far.

5.4 Experimental Settings

5.4.1 Benchmark Datasets

In the experiments, the performance of the proposed TIFNAS method is
evaluated using three commonly used benchmark datasets in image classi-
fication research, namely CIFAR-10, CIFAR-100, and ImageNet. Detailed
information about these datasets can be found in Section 3.3.1 (see page
84). These datasets are selected for two primary reasons. Firstly, they
offer a diverse range of difficulty levels, as they encompass varying quan-
tities of images, image sizes, and classification categories. This enables a
comprehensive evaluation of TIFNAS’s performance. Secondly, numerous
peer competitors have also employed these datasets in their evaluations,
thereby facilitating a fair comparison between TIFNAS and other studies.

5.4.2 Parameter Settings

TIFNAS primarily consists of two main processes: supernet training and
architecture search. The latter process is further divided into supernet fine-
tuning and the GA process. Besides, to enable a fair comparison with other
peer methods, a post-search evaluation process is required to measure the

5.4. EXPERIMENTAL SETTINGS 155

performance of the searched architecture. The parameter settings for these
processes are detailed below.

Supernet training: In TIFNAS, three single paths with the blocks of the
largest width are initially trained, followed by the sampling and training
of all other paths. For the widest single path training, no specific num-
ber of training epochs is provided on CIFARs, and the weights are fully
trained; each path is trained for 5 epochs on ImageNet considering the
available resources; for all path training, the number of training epochs
is set to 100 for CIFARs and 20 for ImageNet, considering the available
computing resources. Other settings remain the same and follow [46]: the
learning rate is 0.025, the momentum is 0.9, the weight decay is 3 × 10−4,
and the batch size is 96. The batch size is a relatively small number be-
cause a path is sampled for each batch of data, and a smaller batch size
can help traverse more paths.

Supernet fine-tuning: The training settings for fine-tuning are iden-
tical to those of supernet training, except for the stopping criterion. For
fine-tuning, the weights are trained until the training loss does not de-
crease further for five epochs.

Genetic algorithm: The population size is set to 50, and the number of
generations is set to 10. Although the number of generations is relatively
small compared to most GAs, it is sufficient for TIFNAS to search for suit-
able architectures, as a new population initialization method is employed
to facilitate the search.

Post-search evaluation: The best-found architecture must be fully eval-
uated to enable comparison with other methods by training and testing
the corresponding network. Specifically, SGD is utilized as the optimiza-
tion method; a cosine annealing learning rate policy is employed, with a
warmup step of 30 epochs, and maximum and minimum learning rates of
0.1 and 0.0008, respectively. The total number of training epochs is 300.
The image augmentation method of cutout is employed, and a dropout
rate of 0.2 is used for CIFARs, but not for ImageNet, as the data amount

156 CHAPTER 5. EFFICIENT ONE-SHOT NAS

for ImageNet is significantly larger. Additionally, a squeeze and excita-
tion (SE) layer is added to each block for ImageNet to enhance the feature
extraction ability [52, 115].

5.5 Results and Analysis

This section presents the experimental results to demonstrate the effective-
ness and efficiency of the proposed TIFNAS. Specifically, Section 5.5.1 pro-
vides the overall performance of TIFNAS and compares it with peer com-
petitors; Section 5.5.2 illustrates the training process of the proposed su-
pernet training method and contrasts it with the vanilla training method;
Section 5.5.3 investigates the impact of the proposed population initial-
ization method; and finally, Section 5.5.4 presents a comparison between
employing and not employing the proposed supernet fine-tuning strategy.

5.5.1 Overall Results

TIFNAS is evaluated on CIFAR-10 and CIFAR-100 datasets for five trials,
and the results are reported. The total computational cost is measured by
GPU-days and consists of both the supernet training cost and the search
cost 5. Additionally, the model size of the searched network, measured by
the number of parameters, is presented. Due to the large size and com-
plexity of ImageNet, TIFNAS is tested only once, and the computational
complexity of the network is provided, which is quantified by the number
of Floating Point Operations (FLOPs).

5Some existing algorithms only present the search cost as the computational metric
for NAS methods. However, when considering a novel dataset, the supernet needs to
be trained first. Therefore, we believe that incorporating the supernet training cost is
essential to accurately assess the overall computational expense of the NAS algorithm.

5.5. RESULTS AND ANALYSIS 157

5.5.1.1 Performance on CIFAR-10

The overall performance comparisons on CIFAR-10 are shown in Table 5.1.
There are four peer competitors belonging to manually-designed methods,
and the other 29 competitors belong to NAS methods. TIFNAS achieves
an average error rate of 2.594%, which ranks fifth among all the 33 com-
petitors. The error rate is very similar to RandomNAS’s [169] 2.59% and
LEMONADE’s [35] 2.58%, but they have much larger model sizes; their
consumed GPU-days are also much larger than TIFNAS. NPENAS-NP’s
[152] 2.54% is 0.054% lower than TIFNAS, but its model size is 1.56 times
larger than that of TIFNAS, and the computational cost is 5.8 times larger
than that of TIFNAS. Proxyless NAS [19] has the lowest error rate of 2.08%,
which is 0.514% lower than TIFNAS, but its model size is 2.53 times larger
than that of TIFNAS, and the computational cost is 4,839 times that of
TIFNAS. TIFNAS (best) achieves an impressive error rate of 2.53%, rank-
ing second over all competitors. Only Proxyless NAS [19] demonstrates
superiror classification performance, but the model size is much larger.
TIFNAS has 2.25M parameters, and only AECNN [138] and NSGANetV1-
A1 [85] have fewer parameters. However, the classification error rates of
them are 1.706% and 0.896% higher than that of TIFNAS. TIFNAS (best)’s
model size is a mere 2.18M, which is smaller than the average. TIFNAS’s
average computational cost is only 0.31 GPU-days, which is the lowest
among all the competitors, and is actually much less than others. The com-
putational cost of TIFNAS across different trials is similar, and TIFNAS
(best) only costs 0.3 GPU-days. It can be concluded that TIFNAS achieves
very good classification results in terms of the error rate and the model
size, and the computational cost is much lower than existing methods.

5.5.1.2 Performance on CIFAR-100

On the CIFAR-100 dataset, five manually-designed networks and 18 NAS
methods are used for comparison with TIFNAS, as illustrated in Table 5.2.

158 CHAPTER 5. EFFICIENT ONE-SHOT NAS

Table 5.1: Performance comparison results on CIFAR-10.

Model Error Rate #Parameters GPU-Days

FractalNet [70] 5.22% 38.6M —
Maxout [43] 9.3% — —

DenseNet (k=24) [56] 3.74% 27.2M —
Highway Network [129] 7.72% — —

CGP-CNN [132] 5.98% 2.64M 27
NAS [182] 6.01% 2.5M 22,400

Large-scale Evolution [106] 5.4% 5.4M 2,750
Block-QNN-S [174] 4.38% 6.1M 90

MetaQNN [13] 6.92% — 100
EIGEN [107] 5.4% 2.6M 2

CNN-GA [140] 4.78% 2.9M 35
PNASNet-5 [73] 3.41% 3.2M 150

AmoebaNet-B [105] 2.98% 34.9M 3,150
EAS [18] 4.23% 23.4M <10

NASNET-A [183] 2.97% 27.6M 2,000
AECNN [138] 4.3% 2.0M 27
DENSER [11] 5.87% 10.81M —

GeNet from WRN [155] 5.39% — 100
CoDeepNEAT [91] 7.3% — —

Hier. repr-n, evolution [74] 3.63% — 300
NPENAS-NP [152] 2.54% 3.5M 1.8

SNAS [157] 2.85% 2.8M 1.5
ENAS [100] 2.89% 4.6M 0.5

EffPnet [150] 3.58% 2.68M <3
DARTS [75] 2.82% 3.4M 1

NSGA-Net [84] 2.75% 3.3 M 4
LEMONADE [35] 2.58% 13.1M 90

NSGANetV1-A1 [85] 3.49% 0.5M 27
Proxyless NAS [19] 2.08% 5.7M 1,500

EAEPSO [164] 2.75% 3.17M 2.8
RandomNAS [169] 2.59% 3.1M 0.7
SI-EvoNet-S [167] 15.70% 3.32M 0.81

Modulenet [24] 2.77% — 2.0

TIFNAS (best) 2.53% 2.18M 0.3
TIFNAS 2.594%±0.03% 2.25M±0.36M 0.31±0.02

5.5. RESULTS AND ANALYSIS 159

Table 5.2: Performance comparison results on CIFAR-100.

Model Error Rate #Parameters GPU-Days

FractalNet [70] 22.3% 38.6M —
Maxout [43] 38.6% — —

DenseNet (k=40) [56] 17.2% 25.6M —
Highway Network [129] 32.39% — —

SENet [54] 15.41% 34.4M —

Large-scale Evolution [106] 23% 40.4M 2,730
Block-QNN-S [174] 20.65% 6.1M 90

MetaQNN [13] 27.14% — 100
EIGEN [107] 21.9% 11.8M 5

CNN-GA [140] 20.03% 4.1M 40
EOFGA [163] 17.07% 1.96M 0.92
EAEPSO [164] 16.17% 5.42M 4
NSGA-Net [84] 20.74% 3.3M 8
PNASNet-5 [73] 19.53% 3.2M 150

ENAS [100] 19.43% 4.6M 0.5
AmoebaNet-A [105] 18.93% 3.1M 3,150

DARTS [75] 17.54% 3.4M 1
NSGANetV1-A1 [85] 19.23% 0.7M 27

AE-CNN+E2EPP [136] 22.02% 20.9M 10
EffPnet [150] 18.70% — —

AECNN [138] 22.40% 5.4M 36
SI-EvoNet-S [167] 15.70% 3.32M 0.81

Modulenet [24] 17.76% — —

TIFNAS (best) 16.56% 2.20M 0.3
TIFNAS 16.672%±0.13% 2.12M±0.15M 0.28±0.02

TIFNAS attains an average error rate of 16.672%, ranking fourth among
the 22 competitors. Although SENet [54] exhibits an error rate that is
1.262% lower, its model size is over 16 times larger than that of TIFNAS.
EAEPSO [164] and SI-EvoNet-S [167] also demonstrate lower error rates;

160 CHAPTER 5. EFFICIENT ONE-SHOT NAS

however, their model sizes and computational costs are greater than those
of TIFNAS. TIFNAS (best) achieves an error rate of 16.56%. TIFNAS pos-
sesses the third smallest number of parameters, surpassed by NSGANetV1-
A1 [85] and EOFGA [163], which exhibit fewer parameters but are both
less accurate than TIFNAS. In terms of the computational cost, TIFNAS re-
quires mere 0.28 GPU-days, which is lower than all its competitors. In con-
clusion, TIFNAS delivers promising performance on CIFAR-100, achiev-
ing high classification accuracy with a compact model in just 0.28 GPU-
days.

5.5.1.3 Performance on ImageNet

In the ImageNet dataset, TIFNAS is compared with 15 peer competitors,
including four manually-designed methods (shown in Table 5.3). TIFNAS
achieves a Top-1 classification accuracy of 76.1%, securing the third posi-
tion. While DenseNet-169 [56] and NSGANetV1-A3 [85] marginally out-
perform TIFNAS by 0.3% and 0.1% respectively, DenseNet-169’s model
size is 2.78 times larger and its computational complexity is 14 times greater
than TIFNAS. NSGANetV1-A3 exhibits a 1.19 times higher computational
complexity and 6.4 times larger search cost compared to TIFNAS. Regard-
ing Top-5 accuracy, TIFNAS attains 93.0%, with only DenseNet-196 [56]
surpassing it by 0.3%.

TIFNAS’s model size, with 5.1M parameters, ranks fourth smallest.
MobileNetV2 [115] and DARTS [75] have fewer parameters, but underper-
form in classification compared to TIFNAS. NSGANetV1-A3 has marginally
fewer parameters (0.1M less) but a higher computational complexity than
TIFNAS. TIFNAS records 477M FLOPs, with MobileNetV3 [52], EBNAS
(large) [119], and EOFGA [163] demonstrating lower complexity; however,
they all exhibit inferior classification accuracies. The total computational
cost for TIFNAS, encompassing supernet training and the search process,
is 4.2 GPU-days, which ranks fifth. Despite having lower computational
costs, BanditNAS [168], SNAS [157], EBNAS (large), and DARTS all yield

5.5. RESULTS AND ANALYSIS 161

markedly poorer classification performance than TIFNAS.

Table 5.3: Performance comparison results on ImageNet.

Model Top-1 Acc. Top-5 Acc. #Params #FLOPs GPU-Days

ResNet-34 [48] 73.2% 91.3% 21.8M 7,360M —

MobileNetV2 [115] 72.0% 91.0% 3.4M 600M —

DenseNet-169 [56] 76.4% 93.3% 14.2M 6,740M —

ShuffleNet [172] 73.7% — 5.4M 524M —

RL-NAS [171] 75.9% — — 561M —

MobileNetV3 [52] 75.2% — 5.4M 450M —

PNASNet-5 [73] 74.2% 91.9% 5.1M 588M 150

Proxyless NAS [19] 75.1% 92.5% 7.1M — 8.3

AmoebaNet-C [105] 75.7% 92.4% 6.4M 570M 3,150

BanditNAS [168] 75.3% — 5.12M 547M 1.8

EOFGA [163] 75.6% 92.5% 5.7M 455M 8.0

SNAS [157] 72.7% 90.8% 4.3M — 1.5

NSGANetV1-A3 [85] 76.2% 93.0% 5.0M 570M 27

EBNAS (large) [119] 67.8% 87.4% — 128M 0.04
DARTS [75] 73.3% 91.4% 4.7M — 4

TIFNAS 76.1% 93.0% 5.1M 477M 4.2

5.5.2 Analysis of the Supernet Training

In TIFNAS, supernet training comprises two processes: training the three
paths with the largest width and training all possible paths. In the first
process, the three paths are trained sequentially, with the two paths of
smaller kernel sizes inheriting weights prior to training. In the second
process, all operations’ initial weights are inherited from the three trained
paths instead of randomly initialized. This section presents an analysis of
these training processes on CIFAR-10.

Figure 5.7 depicts the training process for the three individual paths, as
well as the training processes for the two ‘smaller’ paths without weight

162 CHAPTER 5. EFFICIENT ONE-SHOT NAS

inheritance in (b) and (c). For Path (k = 7; e = 6), the training loss con-
sistently decreases throughout the training process and converges after 17
epochs. For Path (k = 5; e = 6), the initial training loss using the TIFNAS
method is significantly lower than that of training from scratch. More-
over, training ceases at the 10th epoch, which is notably earlier than the 15
epochs by training without weight inheritance. A similar trend is observed
for Path (k = 3; e = 6). These findings demonstrate the effectiveness of
the weight initialization of TIFNAS in substantially reducing the number
of training epochs and the computational cost.

Training in TIFNAS

Lo
ss

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Epoch
0 5 10 15

Training in TIFNAS
Training from scratch

Lo
ss

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Epoch
0 2 4 6 8 10 12 14 16

Training in TIFNAS
Training from scratch

Lo
ss

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Epoch
0 2 4 6 8 10 12 14 16 18

(a) Training loss for Path (k = 7, e = 6)

(b) Training loss for Path (k = 5, e = 6) (c) Training loss for Path (k = 3, e = 6)

Figure 5.7: The supernet training processes of the three widest paths on
CIFAR-10. The X-axis represents the number of training epochs, and the
Y-axis represents the training loss.

Figure 5.8 illustrates the training process for all possible paths within
the supernet using the TIFNAS method over 100 epochs, as well as the

5.5. RESULTS AND ANALYSIS 163

Supernet training in TIFNAS
Supernet training from scratch

0.2

0.3

0.4
80 100

Lo
ss

0

0.5

1.0

1.5

2.0

2.5

Epoch
0 100 200 300 400 500

0.6

0.7

480 500

Figure 5.8: The supernet training processes of sampling possible paths
to train the supernet on CIFAR-10. The X-axis represents the number of
training epochs, and the Y-axis represents the training loss.

training process for training from scratch over 500 epochs. Evidently, the
training loss for TIFNAS decreases much more rapidly than that of train-
ing from scratch, with the final training loss reaching approximately 0.3,
compared to 0.65 for training from scratch. This indicates that the pro-
posed training method can achieve superior training results with signifi-
cantly reduced computational costs. Employing a single A6000 GPU card,
the total supernet training time for TIFNAS on CIFAR-10 is approximately
175 minutes, while the training time for training from scratch over 500
epochs is around 625 minutes. Consequently, TIFNAS utilizes 28% of the
training cost to achieve markedly improved training outcomes compared
to the vanilla training method.

5.5.3 Effectiveness of Population Initialization

To demonstrate the effectiveness of the proposed population initialization
method, comparative experiments are designed by using an algorithm

164 CHAPTER 5. EFFICIENT ONE-SHOT NAS

called TNFNAS. This algorithm has identical settings to TIFNAS, with the
exception of employing a random population initialization method.

5.5.3.1 Analysis on the Initial Population Performance

TIFNAS
TNFNAS

 TIFNAS TNFNAS
Minimum: 60.36 60.16
Maximum: 65.34 65.15
Median: 63.16 62.73
Average: 63.14 62.77

Pr
op

or
tio

n

0.0

0.2

0.4

0.6

0.8

0.10

0.12

0.14

Accuracy
60% 61% 62% 63% 64% 65%

 TIFNAS TNFNAS
Minimum: 89.46 87.73
Maximum: 92.09 91.57
Median: 90.73 90.06
Average: 90.75 90.07

TIFNAS
TNFNAS

Pr
op

or
tio

n

0.0

0.2

0.4

0.6

0.8

0.10

0.12

0.14

0.16

Accuracy
88% 89% 90% 91% 92%

(a) Performance on CIFAR-10 (b) Performance on CIFAR-100

(a) Performance on CIFAR10

Figure 5.9: The distribution of fitness for the initial population, obtained
through two different initialization methods, on two image classification
datasets: CIFAR-10 and CIFAR-100.

The performance of the initial population is evaluated for both TIFNAS
and TNFNAS. During the evaluation, the candidates are trained from scratch
to convergence, and then evaluated to obtain the classification accuracies
as their fitness6. Figure 5.9 displays the initial population’s performance
distribution for TIFNAS and TNFNAS. On CIFAR-10, the average accu-
racy for TIFNAS is 90.75%, while it is 90.07% for TNFNAS. The minimum,
maximum, and median accuracies of TIFNAS are all higher than those
of TNFNAS. On CIFAR-100, the distribution of individuals of TIFNAS

6In the training, no data augmentation techniques are used, a simple fixed learning
rate policy is employed, and the weights are randomly initialized without using weight
inheritance, filtering the impact of the supernet. The training stops when the training loss
does not decrease for five epochs. The achieved classification accuracy is able to represent
the candidate’s performance.

5.5. RESULTS AND ANALYSIS 165

is more concentrated on higher accuracies compared to that of TNFNAS.
Furthermore, the number of individuals with higher accuracies in TIFNAS
is greater than that of TNFNAS, and these promising individuals may con-
tain beneficial genes that facilitate the subsequent search. The probabil-
ity distribution results confirm that the proposed initialization produces a
higher-quality initial population.

5.5.3.2 Overall Comparasions

Table 5.4 shows the comparison results of TIFNAS and TNFNAS on CIFAR-
10 and CIFAR-100. Overall, TIFNAS achieves lower error rates on both
datasets compared to TNFNAS. The average error rate of TIFNAS is 0.114%
and 0.485% lower than that of TNFNAS on CIFAR-10 and CIFAR-100, re-
spectively. We used the Mann-Whitney U test to compare the performance
of TIFNAS and TNFNAS: On CIFAR-10, the test reveals a significant dif-
ference between them (Ustatistic = 0, p = 0.0079); similarly, on CIFAR-100,
the test also indicates a significant difference (Ustatistic = 0, p = 0.02857). The
average numbers of parameters of TIFNAS on both datasets are slightly
larger than TNFNAS. Regarding the computational cost, TIFNAS con-
sumes 0.02 and 0.01 more GPU-days than TNFNAS on CIFAR-10 and
CIFAR-100, respectively. The difference is very small, indicating that the
proposed initialization method introduces little additional computation.

Table 5.4: The comparisons of TIFNAS and TNFNAS.

Method Dataset Error Rate (%) #Params GPU-Days

TIFNAS
CIFAR-10 2.594±0.03 2.25M±0.36M 0.31±0.02

CIFAR-100 16.672±0.13 2.12M±0.15M 0.28±0.02

TNFNAS
CIFAR-10 2.708±0.03 2.01M±0.09M 0.29±0.02

CIFAR-100 17.157±0.10 1.97M±0.22M 0.27±0.02

166 CHAPTER 5. EFFICIENT ONE-SHOT NAS

5.5.4 Effectiveness of Supernet Fine-Tuning

To test the effect of the supernet fine-tuning, we remove this step from
TIFNAS, forming a method called TINNAS.

5.5.4.1 Overall Comparasions

Table 5.5 shows the overall performance of TINNAS and TIFNAS on the
two datasets. The average accuracy of TIFNAS is 0.243% and 0.863%
higher than that of TINNAS on CIFAR-10 and CIFAR-100, respectively.
Mann-Whitney tests are conducted to examine the difference between the
classification error rates of TINNAS and TIFNAS on the two datasets, and
the p-values for the two datasets were both less than the commonly ac-
cepted threshold of 0.05, suggesting a significant difference between TIN-
NAS and TIFNAS in terms of the classification error rates. There is not
much difference between the number of parameters of the two methods.
As for the computational cost, TINNAS consumes much fewer GPU-days
compared with TIFNAS, indicating that supernet fine-tuning does require
some additional computations, which is about 0.09 GPU-days on both
datasets. However, considering the difference in error rates, the additional
computational cost is acceptable and worthwhile.

Table 5.5: The comparisons of TIFNAS and TINNAS.

Method Dataset Error Rate (%) #Params GPU-Days

TIFNAS
CIFAR-10 2.594±0.03 2.25M±0.36M 0.31±0.02

CIFAR-100 16.672±0.13 2.12M±0.15M 0.28±0.02

TINNAS
CIFAR-10 2.837±0.02 2.31M±0.20M 0.22±0.01

CIFAR-100 17.535±0.15 2.16M±0.25M 0.19±0.01

5.5. RESULTS AND ANALYSIS 167

5.5.4.2 Analysis on the Evaluation Reliability

The purpose of supernet fine-tuning is to provide more reliable fitness
evaluations, and the evaluated fitness is expected to be similar to the true
fitness, which is obtained through training from scratch until the training
loss does not decrease. The Spearman Correlation Coefficient is used to
measure the correlation between the predicted fitness and the true fitness.

TIFNAS
TINNAS

Sp
ea

rm
an

 C
or

re
la

tio
n

C
oe

ffi
ci

en
t

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Generation
0 1 2 3 4 5 6 7 8 9 10

Figure 5.10: Spearman Correlation Coefficient between measured and true
fitness throughout evolution on CIFAR-10.

For the population of each generation, the Spearman Correlation Co-
efficient of the predicted fitness and the true fitness was calculated for
both TIFNAS and TINNAS. As evaluating the true fitness is very time-
consuming, the experiment is only conducted on CIFAR-10 once, and the
results are shown in Figure 5.10. It can be seen that the Spearman Cor-
relation Coefficient of TIFNAS fluctuates around 0.6, indicating a strong
correlation between the predicted fitness and the true fitness, and this
strong correlation does not deteriorate over the course of evolution. In
contrast, the Spearman Correlation Coefficient of TINNAS is around 0.2
for the first three generations and becomes approximately 0 for the fol-
lowing generations, suggesting a weak correlation for the first three gen-
erations and almost no correlation for the subsequent generations. These

168 CHAPTER 5. EFFICIENT ONE-SHOT NAS

results demonstrate that the proposed supernet fine-tuning strategy can
significantly improve the reliability of the predicted fitness, and this relia-
bility is stable and does not degrade during the evolution process.

5.6 Chapter Summary

This chapter presents an efficient one-shot evolutionary neural architec-
ture search method, which has been achieved by developing an effective
supernet training strategy, introducing a robust population initialization
method, and devising a supernet fine-tuning approach to providing more
precise fitness evaluations. The proposed supernet training method lever-
ages the unique structure of the supernet and the powerful weight inher-
itance to accelerate the weight training process, thus reducing the overall
computational cost. Moreover, the population initialization method sup-
plies high-quality individuals for the initial population by utilizing the
information gleaned from the previous supernet training process. Fur-
thermore, the supernet weights are fine-tuned along with the evolutionary
search according to the individuals to be evaluated, which requires mini-
mal additional time but yields significantly more accurate evaluations.

The proposed method, TIFNAS, is evaluated on three widely-used
datasets, and is compared with 67 peer competitors. TIFNAS achieves
low error rates with compact models, and the computational costs are only
0.31, 0.28, and 4.1 GPU-days on CIFAR-10, CIFAR-100, and ImageNet, re-
spectively, which are substantially lower than most competitors. Further
analysis demonstrates the efficacy of the new training strategy, the pro-
posed population initialization method, and the fine-tuning strategy.

While the proposed method can search for promising network architec-
tures effectively, explaining why and how the searched architecture makes
decisions is challenging. The next chapter will develop a new method to
improve the interpretability of the architecture.

Chapter 6

Explaining Image Classification
Using Evolutionary Search and
the Stable Diffusion Model

6.1 Introduction

In contrast to Chapters 3, 4, and 5, which primarily focus on proposing
innovative CNN architecture search methods, this chapter delves into ex-
plaining the decision-making processes underlying CNNs. As the com-
plexity of CNN models has escalated, their interpretability has dwindled.
Explainability, however, enables domain experts and developers to gain
valuable insights and comprehend the underlying factors that influence
the model’s predictions. Such an understanding may lead to new discov-
eries and enhance decision-making. Moreover, understanding how deep
models arrive at their decisions can help build trust in their outputs, which
is pivotal in industries such as finance and healthcare. Furthermore, ex-
plainable models allow developers to diagnose and address issues more
effectively, as explainability can help reveal the underlying causes of in-
correct decisions or predictions.

Many methods aim to explain the rationale behind classifiers by pin-

169

170 CHAPTER 6. EXPLAINING IMAGE CLASSIFICATION

pointing the salient areas [125,128,144,166]. However, their primary focus
remains on discerning ’where’ the influential regions are situated, rather
than explicating ’how’ these regions steer the results. This approach inad-
vertently curtails the depth of explainability. To alleviate this limitation,
this chapter incorporates a generative model to generate counterfactuals.
Such an approach allows one to identify not only ‘where’ the pivotal re-
gions are but also ‘how’ their content changes, thereby granting a more
interpretably understanding of CNNs’ decision-making processes. Ad-
ditionally, this proposed method possesses the capability to explain de-
cisions on similar image classes. These classes, inherently nuanced and
intricate, often pose greater challenges for the classifiers to classify. In this
case, finding out how the classifiers make their predictions is crucial, and
explaining the decisions also becomes much more difficult.

6.1.1 Chapter Goals

The overall goal of the chapter is to propose a novel post-hoc, model-
agnostic method for explaining image classifiers, which utilizes a Stable
Diffusion (SD) model to generate counterfactual images and a Multi-Objective
Evolutionary Algorithm (MOEA) to identify crucial superpixels or attributes.
To achieve this goal, four objectives are described as follows:

1. To develop a method that combines an SD model for generating
counterfactual images for explanation purposes. Instead of directly
using the SD model to generate the whole image, this method paints
specific regions of an image while adhering to certain semantic in-
formation. The generated images are usually natural and circum-
vent the sharp edges that often result from directly masking specific
regions.

2. To propose an EMO method based method to automatically iden-
tify crucial and minimal number of superpixels, which are essen-
tial for explaining the decisions of classifiers. This method should

6.2. THE PROPOSED METHOD 171

not only identify superpixels with a significant impact on the output
classification probability but also optimize the number of superpix-
els. Fewer superpixels contain fewer attributes, thereby simplifying
the explanation process.

3. To propose a new evaluation metric that assesses the salience of the
selected superpixels for classifications. This evaluation can represent
the impact of the superpixels on the classifier’s ability to categorize
the image into a specific category rather than another similar cate-
gory.

4. To validate the proposed method on extensive experiments, includ-
ing several similar image categories and several classic deep learning
models.

6.1.2 Chapter Organization

Subsequent sections unfold as: Section 6.2 elucidates the general frame-
work and provides detailed information about the proposed algorithm;
Section 6.3 details the experimental settings and provides details about the
implementation; Section 6.4 delivers the experimental results along with
their corresponding analysis; and Section 6.5 presents the conclusions.

6.2 The Proposed Method

This section delineates the framework and essential details of the pro-
posed algorithm, termed SD-MOEX, an acronym for Stable Diffusion as-
sisted Multi-Objective EXplaination method.

6.2.1 Algorithm Overview

Figure 6.1 outlines the overall framework of SD-MOEX. The main pipeline,
illustrated on the left, begins with an input image, which is then seg-

172 CHAPTER 6. EXPLAINING IMAGE CLASSIFICATION

SLIC
Segmentation

Evolution

Counterfactual
Images

Explain

Initialization Evaluation
Selection
Crossover
Mutation

Offspring

Sorting &
Selection

New
PopulationStop?Pareto Front

IndividualMask

SD Model Classifier

0 1 1 1 … 0 1

0.1

0.6

0.3

Objective 1

Image

Counterfactual
Image

Evolution

Objective EvaluationMain Flow

Decode

Text

No
Yes

Objective 2

Figure 6.1: Overview of the SD-MOEX framework: the primary workflow
is illustrated on the left. The bottom part displays the evolutionary pro-
cess, following a typical NSGA-II procedure. The evaluation process is
depicted at the top, where two objective values are calculated.

mented into superpixels using the SLIC method. An MOEA is deployed
to yield non-dominated solutions, pinpointing pivotal superpixels or fea-
tures in the image. Subsequently, the generated counterfactual images cor-
responding to the most favorable solutions will be output and provided to
humans to explain the decision of the classifier (see Section 6.2.7). Please
note that SD-MOEX is designed to explain classifications between closely
related and similar classes, thus requiring a textual description of the com-
parable class, so that the image generator can produce counterfactuals
considering the features of the comparable class. For instance, given an
input image of a tabby cat, a corresponding textual description could be
Egyptian Mau cat. SD-MOEX can explain why the classifier leans towards
a tabby cat classification rather than an Egyptian Mau cat.

The evolutionary procedure is illustrated at the bottom of Figure 6.1.
Each individual represents a subset of the superpixels (refer to Section
6.2.2), and a population of individuals are initialized first, as shown in
Section 6.2.3. Then, the objectives of these individuals are evaluated us-

6.2. THE PROPOSED METHOD 173

ing the proposed objective evaluation method, depicted at the top of the
figure. Following this, specific individuals are selected, and the crossover
and mutation operations are performed to generate an offspring popu-
lation (see Section 6.2.6). The existing and new populations are merged
into a combined population, where all individuals are sorted following the
principle of NSGA-II, and the high-performing and less crowded individ-
uals are selected to form the new population. This evolutionary process
continues until the stopping criterion is met. The non-dominated solutions
in the Pareto front are the output.

The evaluation step begins with decoding an individual to its corre-
sponding mask (see Section 6.2.2). Simultaneously, the number of super-
pixels within the individual is calculated and used as Objective 1. The
SD model is then invoked to inpaint within the input image, utilizing the
mask to pinpoint the inpainting regions, and the text description of the
similar category to ascertain the inpainting content (see Section 6.2.4). Sub-
sequently, a counterfactual image is generated, and the generated image is
tested by the classifier. The second objective measure, Objective 2, quanti-
fying the chosen superpixels’ impact on the classifier, is calculated based
on the classifier’s outputs (see Section 6.2.5).

6.2.2 Encoding and Decoding Strategies

In SD-MOEX, each individual/solution in the population represents a sub-
set of the superpixels. To achieve this, we designed straightforward encod-
ing and decoding strategies. An input image is segmented into N super-
pixels using the Simple Linear Iterative Clustering (SLIC) method, where
N is manually specified. Every superpixel gets a distinctive integer tag
from 1 through N . Figure 6.2 (a) offers an example where the input image
is dissected into ten superpixels.

A simple binary encoding strategy is employed, wherein the encoded
representation is an N -length string, equaling the number of superpixels.

174 CHAPTER 6. EXPLAINING IMAGE CLASSIFICATION

1 2 3

4 5 6

7 8 9 10

0 1 1 1 0 10 0 0 1

1 2 3

4

8 10

Input Image Segmentation Result

SLIC Segmentation

(a) Segmentation

Selected Superpixels

Encode

Decode
Individual Representation

Mask
(b) Encoding and Decoding

Figure 6.2: Illustration of the SLIC segmentation and the encoding-
decoding process. (a) The input image is segmented into 10 superpixels
via SLIC. (b) Five superpixels are selected and encoded into a string com-
prised of binary bit representations. Subsequently, the string is decoded
into a binary mask, wherein the selected superpixels are represented in
white, and the remaining portions of the image are depicted in black.

A ‘1’ denotes the inclusion of a superpixel, while a ‘0’ signifies its absence.
Figure 6.2 (b) illustrates this, with the second, third, fourth, eighth, and
tenth superpixels selected and their corresponding positions in the string
set to ‘1’.

During the evaluation process, each individual is decoded into a mask,
which is then fed to the SD model, delineating inpainting areas. The de-
coding process translates the selected superpixels into a white area and
retains other segments as black, indicating that the corresponding content
remains unchanged. Figure 6.2 (b) further clarifies this decoding process,
where the individual is decoded to a mask consisting of black and white.

6.2. THE PROPOSED METHOD 175

6.2.3 Population Initialization

The initial population is constructed with a predetermined number of in-
dividuals. As detailed in Section 6.2.2, every individual in the population
corresponds to a binary string, where each bit denotes the inclusion (1) or
exclusion (0) of a superpixel. The process of initializing each individual is
fairly straightforward:

1) For each position in the binary string, a random binary digit (either
0 or 1) is chosen. This decision determines whether the superpixel
corresponding to that position is active or not in the individual.

2) The above step is carried out iteratively until the entire length of the
string matches the total number of superpixels for the given image.

3) This procedure is repeated for each individual until the desired pop-
ulation size is achieved.

6.2.4 Counterfactual Image Generation

To evaluate the impact of the superpixels on each individual, a counter-
factual image is generated. The SD model is utilized to produce natural-
looking and realistic counterfactual images. This model enables the in-
painting of specific regions in an input image, guided by a textual de-
scription, termed the prompt. Within SD-MOEX, the mask image, decoded
from the individual, denotes the region for inpainting. Simultaneously, a
textual description of a related and similar category guides the inpainting
content.

Figure 6.3 presents an example of the SD model’s inpainting process.
Three distinct inputs are required: the source image (the input image in
SD-MOEX), the mask image (decoded from the individual in SD-MOEX),
and the textual description (the description of the similar category in SD-
MOEX). In this instance, the source image is a photograph of a cat, the

176 CHAPTER 6. EXPLAINING IMAGE CLASSIFICATION

mask image indicates regions to inpaint, particularly around the eyes, and
the textual description, A picture of a dog, suggests that the inpainted areas
should adopt dog-like features. Given that the inpainting is constrained to
the eye locations, the generated counterfactual image portrays a cat pos-
sessing the eyes of a dog. The image quality is high, with no discernible
edges between the inpainted content and the surrounding area. The re-
sulting image appears realistic and natural, although the content does not
exist in reality.

Stable
Diffusion

A picture of a dog
text description

source image

mask image

counterfactual
image

Figure 6.3: A example of the SD model’s inpainting. Inputs comprise a
source image of a cat, a mask image pinpointing inpainting regions, and a
textual description specifying the desired inpainting content. The model
synthesizes a counterfactual image based on the input information.

From the aforementioned example, several key strengths of the SD
model in counterfactual image generation emerge:

1. The generated image boasts high quality, preserving pixel distribu-
tion consistency with real images.

2. The inpainted content integrates seamlessly with the surrounding

6.2. THE PROPOSED METHOD 177

content, devoid of noticeable boundaries that could potentially im-
pact classification and adversely affect the explanation.

3. The textual description guides the inpainting, ensuring the newly
generated eyes possess ‘dog’ attributes. This capability allows for
the analysis of the impact of ‘eye’ features on classifiers when telling
whether an image represents a cat or a dog.

6.2.5 Objective Functions

SD-MOEX is designed to pinpoint crucial superpixels, employing the re-
sulting counterfactual images to explain the classifier’s causal reasoning in
classification tasks. The evolved set of superpixels is expected to be com-
pact and significant. Consequently, each individual is evaluated based on
two corresponding objective functions.

6.2.5.1 Objective 1: Number of superpixels

The first objective is to minimize the number of the selected superpix-
els. Generally, fewer superpixels correspond to smaller regions 7. Reduced
regions typically represent fewer and more straightforward features; thus,
a smaller number of superpixels can lead to fewer features and facilitate
the interpretation. For instance, the region of a cat’s eyes corresponds to
a smaller number of superpixels and the features of eyes; conversely, a re-
gion comprising a cat’s face corresponds to a larger number of superpixels
and integrates multiple features like eyes, nose, whiskers, mouth, coat color,
and pattern. It subsequently becomes more challenging to discern which
feature(s) significantly influence the decision, thereby impeding the ex-
plainability.

7Technically, fewer superpixels might not necessarily lead to smaller regions, given
the variable areas of different superpixels. It is possible for a set of superpixels to include
fewer superpixels but correspond to a larger area. Nonetheless, this scenario is uncom-
mon, and fewer superpixels roughly equate to smaller areas in most cases.

178 CHAPTER 6. EXPLAINING IMAGE CLASSIFICATION

6.2.5.2 Objective 2: Impact of Superpixels

The second objective is to maximize the impact of the superpixel en-
semble. Specifically, this objective value quantifies how drastically the
prediction results would change towards another category if the corre-
sponding superpixels are replaced by features from another category. This
insight aids in explaining why the classifier designates an image into a spe-
cific category over alternatives. A novel evaluation method is proposed to
quantify this impact.

The synthesized counterfactual image is processed by the target clas-
sifier, yielding classification outcomes. The output from the last layer of
neurons is a vector containing the raw classification values for each class,
as illustrated in Equation (6.1), where z⃗ denotes the output vector, and zi

represents the i-th neuron’s output. The Softmax function [58] is subse-
quently employed to calculate the predicted probabilities of belonging to
different neurons/classes, following Equation (6.2), where K is the total
number of neurons/classes. The objective value quantifying the impact
is computed according to Equation (6.3), where σ(z⃗)Cimg

is the input im-
age’s class predicted probability, and σ(z⃗)Ctext corresponds to the textual
description’s class predicted probability. Thus, if the counterfactual image
is more likely to be classified into the text class, i.e., the inpainted class,
the objective value escalates, suggesting that the selected superpixels are
crucial for the classifier to categorize the image into the true class instead
of the similar one.

z⃗ = [z0, z1, ..., zk] (6.1)

σ(z⃗)i =
ezi∑K
j=1 e

zj
(6.2)

Objectiveimp = σ(z⃗)Cimg
− σ(z⃗)Ctext (6.3)

Figure 6.4 presents an example of the objective value calculation for
impact. The first individual corresponds to a mask emphasizing the eye

6.2. THE PROPOSED METHOD 179

counterfactual image 1

cat: 65%

dog: 35%

mask 1

Objective Value = -30%

classifier

counterfactual image 2

cat: 55%

dog: 45%

mask 2 classifier

(a) The impact objective value of individual 1

(b) The impact objective value of individual 2

Objective Value = -10%

Figure 6.4: Illustrations of impact objective values. (a) represents an in-
dividual corresponding to the eye region’s superpixels. Conversely, (b)
depicts an individual associated with the ear region’s superpixels. The
calculations imply that the impact objective value in (b) exceeds that in
(a), suggesting that the ‘ear’ attribute assumes greater importance than
the ‘eye’ feature for this classifier’s decision-making paradigm.

regions, while the second one spotlights ear regions. Consequently, the
former counterfactual image showcases a cat with canine eyes, and the
latter showcases a cat with canine ears. Upon classifying these counterfac-
tual images, the classifier determines the probabilities for each category.
The latter counterfactual image exhibits a stronger inclination towards the
dog classification than the former, with its impact objective value surpass-
ing the former by 20%. This indicates that the ‘ear’ feature is more crucial
than the ‘eye’ feature for this classifier to categorize an image as a cat rather
than a dog.

180 CHAPTER 6. EXPLAINING IMAGE CLASSIFICATION

6.2.6 Offspring Generation

The representation of individuals in SD-MOEX is relatively straightfor-
ward (refer to Section 6.2.2), and the commonly used offspring generation
method is adopted. Parent individuals are chosen from the existing popu-
lation (detailed information can be found in Section 2.4.3.1). Subsequently,
the two-point crossover method is utilized as the mating procedure, and
the flip-bit mutation operation is introduced to enrich the diversity of the
population.

Specifically, the two-point crossover technique randomly chooses two
points in the parent individuals and swaps the genes between these points
in the parents to generate new offspring. This technique fosters explo-
ration of the search space and facilitates the exchange of advantageous
genetic information between individuals. The flip-bit mutation operator
functions on a granular level, flipping each bit of the individual indepen-
dently with a probability dictated by the mutation rate. This mutation op-
erator introduces variation into the population and prevents the algorithm
from prematurely converging at local optima.

6.2.7 Explanations

The evolutionary process aims to identify a set of non-dominated solu-
tions, facilitating subsequent explanations. Each individual corresponds
to a group of superpixels, highlighting salient image regions. However,
it does not directly indicate ‘how’ these regions affect the decision. In-
stead of relying solely on the ‘best’ superpixel sets to explain the classifiers
directly, SD-MOEX collects the synthesized counterfactual images corre-
sponding to these ‘best’ individuals during the evaluation phase. The clas-
sification outcomes of these counterfactuals are concurrently presented,
laying the foundation for comprehensive explanations. In order to provide
a more comprehensive explanation, SD-MOEX selects three representative
counterfactuals based on the number of superpixels in the individual: the

6.3. EXPERIMENTAL DESIGN 181

one with the fewest superpixels, the median, and the one with the most
superpixels. This allows for showcasing influential features at different
levels.

Through this approach, users can identify what features of the input
image are altered, how they are changed, and how these alterations im-
pact the classifier’s decision. Thus, the two crucial questions — ‘what’
regions are essential and ‘how’ these regions can affect the decision — can
be addressed in a more effective way.

6.3 Experimental Design

6.3.1 Benchmark Dataset

The experiments employ the ImageNet dataset [112] to assess the efficacy
of SD-MOEX. The detailed information on ImageNet is introduced in Sec-
tion 3.3.1 (see page 84). The selection of the ImageNet dataset follows three
primary reasons:

1. ImageNet consists of 1000 categories, many of which are closely re-
lated and challenging to distinguish, such as the tabby cat versus the
Egyptian Mau cat, and the electric guitar in comparison to the acoustic
guitar. Given SD-MOEX’s objective to explain decisions on similar
classes, these closely related classes make it aptly suited.

2. ImageNet stands as a renowned dataset for image classification. Nu-
merous celebrated classifiers have been trained and evaluated on Im-
ageNet, facilitating the use of SD-MOEX in explaining their decision-
making processes.

3. Several renowned explainable artificial intelligence techniques have
been assessed using ImageNet, providing a conducive environment
to compare SD-MOEX with other methodologies.

182 CHAPTER 6. EXPLAINING IMAGE CLASSIFICATION

6.3.2 Selected Image Categories and Models

To evaluate the efficacy of SD-MOEX, specific similar image categories
from the ImageNet dataset are selected. Given its model-agnostic nature,
SD-MOEX can elucidate the decisions of various image classification mod-
els, and some models need to be selected in the experiments.

classes: We focus on four different classification scenarios: Egyptian
Mau cat versus tabby cat, electric guitar versus acoustic guitar, yawl versus
schooner, and ambulance versus police van. The Egyptian Mau cat and the
tabby cat exhibit considerable morphological similarities, especially con-
cerning facial structure and body proportions. Nevertheless, nuanced vari-
ances, such as coat shades or pattern distributions, render their distinction
intricate. Similarly, the electric and acoustic guitars, despite sharing similar
body contours, fret layouts, and design aesthetics, have subtle differen-
tiators like the sound hole design and electronic components. The yawl
and the schooner are both sailing vessels and share structural similarities
in terms of hull design and sail arrangement. However, the number of
masts and sails is different. The ambulance and the police van are special-
ized vehicles, but their texts on the bodies differ.

Relying solely on these superficial traits for classification proves chal-

Egyptian Mau Cat Tabby Cat Electric Guitar Acoustic Guitar

SchoonerYawl
Police Van

Ambulance

Figure 6.5: Some example cases of the classes.

6.3. EXPERIMENTAL DESIGN 183

lenging, highlighting their suitability for SD-MOEX exploration. Further-
more, these minor differences underscore the intricacy involved in ex-
plaining why classifiers assign an image to a specific category, not another.
Figure 6.5 provides some example pictures of the similar classes.

Classification Models: We selected two image classification models
for the evaluation of SD-MOEX: MobileNetV2 [115] and Wide ResNet-
50 [165]. These models were chosen due to their different structural de-
signs and computational complexities. Specifically, ResNet-50 employs a
deep residual framework; on the contrary, MobileNetV2 is a lightweight,
efficient network designed for mobile computing. In addition, they also
achieve different classification accuracies on ImageNet, demonstrating their
different capabilities for feature extraction.

It is important to emphasize that SD-MOEX is designed to be a model-
agnostic method compatible with any classification model, including those
searched in previous chapters of this thesis. Because MobileNetV2 and
Wide ResNet-50 are two representative deep learning models, if SD-MOEX
explains the decisions of both models, it will underscore its proficiency as
a model interpreter with robust generalization capabilities. As a result,
SD-MOEX has not been further applied to the networks searched in Chap-
ters 3, 4, and 5.

6.3.3 Parameter Settings

We present the parameter settings of SD-MOEX across three domains: im-
age segmentation, evolution, and image synthesis. Specifically, a critical
parameter in SLIC segmentation is the number of superpixels. In SD-
MOEX, this is set to 100, accounting for the dimensions of the input im-
age and computational capacity. A larger number results in finer segmen-
tation, increases the dimension of individual representations, and conse-
quently augments the computational overhead. For the evolution, we set
both the population size and the number of generations to 50. Typically,

184 CHAPTER 6. EXPLAINING IMAGE CLASSIFICATION

larger values for these parameters yield improved results but also increase
the computational expense. The crossover and mutation rates are fixed at
0.5 and 0.2, respectively. For the SD model to produce counterfactual im-
ages, specific parameters must be established. In alignment with practices
found in [110], the guidance scale is 7.5, and the strength is set at 0.75.

6.4 Results and Analysis

This section delineates the experimental results of SD-MOEX, followed by
in-depth analyses and discussions. Initially, the evolved counterfactual
explanations are detailed in Section 6.4.1. Subsequently, a comparative
analysis of SD-MOEX’s counterfactual explanations with other explana-
tion techniques is provided. Lastly, an examination of the evolution pro-
cess and convergence scenario of SD-MOEX is furnished in Section 6.4.3.

6.4.1 Counterfactual Explanations

In this section, we examine SD-MOEX’s explainability on four closely re-
lated image classification tasks: the Egyptian Mau cat versus the tabby cat,
the electric guitar versus the acoustic guitar, the yawl versus the schooner, and
the ambulance versus the police van. Given that our proposed SD-MOEX is a
model-agnostic explanation method, we have chosen two prominent CNN
models for examination: MobileNetV2 [115] and Wide ResNet-50 [165].
The counterfactuals corresponding to the individuals on the Pareto front
can be used for explanations. Considering the practical situation, it is im-
possible to select all the counterfactuals corresponding to the front, and
there is a great deal of overlap among some counterfactuals. Thus, it is
not necessary to select all the counterfactuals for explanations. In the ex-
periments, based on the number of superpixels corresponding to an indi-
vidual, we selected three representative counterfactuals with potentially
small overlaps: the smallest, the centered, and the largest number of su-

6.4. RESULTS AND ANALYSIS 185

perpixels, respectively.

6.4.1.1 Egyptian Mau cat & Tabby cat

Bronze Egyptian Mau cats bear a striking resemblance to tabby cats. SD-
MOEX aims to clarify why a classifier would categorize a given image as
an Egyptian Mau cat rather than a tabby cat. SD-MOEX generates a series of
counterfactual images accompanied by their respective classification prob-
abilities. Three counterfactuals are selected based on their numbers of
chosen superpixels to furnish detailed explanations for both MobileNetV2
and Wide ResNet-50.

Explanations for MobileNetV2:
The evolved counterfactual explanations for MobileNetV2 are presented

in Figure 6.6. Specifically, in Counterfactual (a), the modified area is rela-
tively minor, focusing on the body of the Egyptian Mau cat. In the original
image, the skin pattern near the neck appears spotted; however, in the
counterfactual, this pattern transitions to stripes. This transformation is
mirrored on the lower portion of the cat’s body. As a result, the classifica-
tion probability for Egyptian Mau cat drops from 95.92% to 62.28%, while
the tabby cat likelihood rises from 1.44% to 28.92%. Although MobileNetV2
continues to identify the counterfactual image as an Egyptian Mau cat, its
confidence is significantly diminished. This suggests that the body pattern
plays a pivotal role in MobileNetV2’s decision on whether the subject is an
Egyptian Mau cat or a tabby cat.

In counterfactual image (b), a more extensive modification is made
compared to counterfactual image (a), especially on the front chest. In the
original image, the pattern on the chest is finely speckled, but this shifts
to distinct black stripes interspersed with brown and white fur colors in
the counterfactual. Additionally, patterns on the back and the lower part
of the body transition from black spots to strips. Relative to the original,
the prediction probability for the Egyptian Mau cat declines from 95.92% to
59.26%, while the prediction probability for the tabby cat rises by 33.16% to

186 CHAPTER 6. EXPLAINING IMAGE CLASSIFICATION

Egyptian cat: 95.92%
Tabby cat: 1.44%

Egyptian cat: 59.26% (- 36.66%)
Tabby cat: 34.60% (+ 33.16%)

Egyptian cat: 25.96% (- 69.96%)
Tabby cat: 58.01% (+ 56.57%)

Egyptian cat: 62.28% (- 33.64%)
Tabby cat: 30.36% (+ 28.92%)

Detailed
Information

Generated Counterfactuals

(a) (b) (c)

mobilenetV2

Figure 6.6: Counterfactual explanations for an Egyptian Mau cat image using Mo-
bileNetV2. The original image is displayed on the left. Details of selected superpixels
from the original are presented above, with three variations of selected regions. The syn-
thesized counterfactual images corresponding to these areas are displayed below. En-
larged views of altered regions facilitate comparison between the original (above) and
counterfactual images (below). For each image, classification probabilities for both cate-
gories are provided, alongside changes in probabilities relative to the original image for
each counterfactual image.

34.60%. This suggests that a spotted pattern in a cat’s body tends to favor
the classification of Egyptian Mau cat, while a striped pattern leans towards
the identification of a tabby cat.

In the final counterfactual (c), modifications are made across almost
the entire body. The spotted pattern characteristic of the original is erad-
icated in the counterfactual, replaced entirely by a striped pattern. It’s
noteworthy that the pinstriped pattern on the cat’s abdomen in the orig-
inal remains untouched, as it wasn’t selected for modification. Similarly,
the tail’s black striped pattern in the original remains consistent, also es-
caping modification. Given these alterations, MobileNetV2’s prediction
probability for Egyptian Mau cat plunges to 25.96%, whereas the prediction

6.4. RESULTS AND ANALYSIS 187

probability for tabby cat rises to 58.01%. Consequently, the final classifica-
tion for this counterfactual shifts from Egyptian Mau cat to tabby cat. This
counterfactual underscores that features such as the face, claws, and tail
don’t play a pivotal role in differentiating between these two cat breeds.
Instead, it’s the body pattern that emerges as the decisive factor in catego-
rizing them.

Egyptian cat: 98.41%
Tabby cat: 1.12%

Detailed
Information

Generated Counterfactuals

WideResnet

Egyptian cat: 20.39% (- 78.02%)
Tabby cat: 74.42% (+ 73.30%)

Egyptian cat: 8.14% (- 90.27%)
Tabby cat: 86.52% (+ 85.40%)

Egyptian cat: 75.59% (- 22.82%)
Tabby cat: 22.21% (+ 21.09%)

(a) (b) (c)

Figure 6.7: Counterfactual interpretations of Wide ResNet-50 for the classification of an
Egyptian Mau cat. The figure comprises three synthesized counterfactual images accom-
panied by their corresponding prediction probabilities for both Egyptian Mau cat and
tabby cat categories. Salient alterations in each counterfactual are accentuated and con-
trasted with their respective manifestations in the original input.

Explanations for Wide ResNet-50:

Analyzing the counterfactual explanations presented in Figure 6.7, we
observe that in Counterfactual (a), a confined region, primarily encom-
passing the chest pattern and lower body of the cat, undergoes modi-
fication. Here, the black spots transform into black stripes. As a con-
sequence, the prediction likelihood for the Egyptian Mau cat diminishes
by 22.82%, settling at 75.59%, while the probability for the tabby cat esca-
lates by 21.09%, reaching 22.21%. This emphasizes the pivotal role of the

188 CHAPTER 6. EXPLAINING IMAGE CLASSIFICATION

pattern in these specific regions during classification. In Counterfactual
(b), an expanded region is altered, with the spot patterns being predom-
inantly transmuted into stripes. This leads to a further reduction in the
prediction probability for Egyptian Mau cat to 20.39%, while that for the
tabby cat surges to 74.42%. Notably, the final prediction now tilts in favor
of the tabby cat. In Counterfactual (c), the vast majority of the body wit-
nesses modifications. Though the fur color and posture remain consistent,
the inherent pattern undergoes a transformation. The spots are replaced
with stripes, culminating in a prediction probability of just 8.14% for the
Egyptian Mau cat and a dominating 86.52% for the Tabby cat. This solidi-
fies the assertion that for Wide ResNet-50, pattern differentiation remains
paramount in distinguishing between the Egyptian Mau cat and the tabby
cat.

6.4.1.2 Electric guitar & Acoustic guitar

Typically, acoustic guitars boast a hue reminiscent of wood, while elec-
tric guitars can span a broader color spectrum. However, when an electric
guitar has a wooden hue, the distinction between the two becomes notably
challenging. The provided counterfactuals aim to elucidate the pivotal fea-
tures that classifiers rely on to distinguish these guitar variants, with the
original input being an electric guitar rendered in wooden color.

Explanations for MobileNetV2:
As depicted in Figure 6.8, the synthesized counterfactuals highlight

distinctions within the input image of an electric guitar. For Counterfac-
tual (a), a localized region undergoes transformations to characteristics
associated with acoustic guitars, with three primary features adjusted. The
original image displays two pickups, components intrinsic to electric gui-
tars, responsible for capturing string vibrations and transmitting them to
the amplifier. Within the counterfactual, the upper pickup changes into
a pickguard, while the lower one is removed, replaced by the underlying
wood. Additionally, the pickup selector switch, tone control, and volume

6.4. RESULTS AND ANALYSIS 189

Electric guitar: 63.07%
Acoustic guitar: 36.43%

Detailed
Information

Generated Counterfactuals

Electric guitar: 3.49% (- 59.58%)
Acoustic guitar: 95.68% (+ 59.25%)

Electric guitar: 1.88% (- 61.19%)
Acoustic guitar: 97.64% (+ 61.21%)

Electric guitar: 0.33% (- 62.74%)
Acoustic guitar: 99.55% (+ 63.12%)

(a) (b) (c)

Figure 6.8: Counterfactual explanations using MobileNetV2 for an electric guitar depicted
in a wooden hue. The original image, situated on the left, shows the classification prob-
ability for the electric guitar as 63.07% and 36.43% for the acoustic guitar. To the bottom
right, three counterfactual images are juxtaposed with the original, with corresponding
selected areas highlighted in the red mask. The extent of the modification area expands
progressively from (a) to (c), along with the rise in the prediction probabilities for acoustic
guitar. Key distinguishing features between the original and counterfactual images are
magnified for clarity.

control are exclusive to electric guitars and are positioned on the guitar’s
right side, which are omitted in the counterfactual. Subsequent to these
alterations, the classifier’s prediction probability for the electric guitar di-
minishes significantly from 63.07% to 3.49%, whereas the acoustic guitar’s
probability surges from 36.43% to 95.68%. These shifts underscore the piv-
otal role of the pickups, pickup selector switch, tone control, and volume
control in MobileNetV2’s classification mechanism.

In the second counterfactual image portrayed in Figure 6.8, a more ex-
pansive region undergoes modification compared to the first counterfac-
tual. Similar to Counterfactual (a), the pickups, pickup selector switch,
tone control, and volume control are excised. Additionally, the strings
on the neck of the guitar manifest as thicker and denser, a characteris-
tic feature of acoustic guitars. The previously acute angles at the top left

190 CHAPTER 6. EXPLAINING IMAGE CLASSIFICATION

corner evolve to adopt a more rounded and elliptical contour, aligning
more with the common shapes observed in acoustic guitars. With these
alterations, the classifier’s prediction probability for the electric guitar de-
creases to 1.88%, while that for the acoustic guitar increases to 97.64%. This
observation strongly suggests that the presence of thick, dense strings, and
the rounded and elliptical shape, are pivotal attributes for MobileNetV2’s
discernment between the two guitar types.

In the third counterfactual image depicted in Figure 6.8, an even more
extensive set of superpixels undergoes alteration. Similar to the modifica-
tions observed in Counterfactuals (a) and (b), the pickup selector switch,
tone control, and volume control on the guitar’s right side are eliminated.
Notably, instead of merely substituting the two pickups with the body’s
wood texture, a sound hole emerges in the area previously occupied by
the two pickups. This sound hole, a hallmark of acoustic guitars, serves
to amplify the instrument’s sound. In contrast, electric guitars lack sound
holes, relying instead on electric amplifiers for sound projection. In light
of these modifications, the classifier’s prediction probability for the electric
guitar dwindles to merely 0.33%, while that for the acoustic guitar escalates
to 99.55%. Evidently, the presence of a sound hole emerges as a pivotal
characteristic for MobileNetV2 when discerning an acoustic guitar.

Explanations for Wide ResNet-50:

Figure 6.9 presents counterfactual explanations generated for Wide ResNet-
50’s classification of an electric guitar image. Three distinct counterfactuals
elucidate key features contributing to the classification decision. In Coun-
terfactual (a), the modifications are as follows: (1) the acute angles on the
top-left corner of the guitar body transform into a gentler, elliptical cur-
vature; (2)the top pickup is replaced by a sound hole. Post these alter-
ations, the prediction probability for the electric guitar plummets dramati-
cally from 95.04% to 22.29%, while the likelihood for acoustic guitar surges
from 3.73% to 73.21%. This indicates that for Wide ResNet-50, the body’s
contour, presence of pickups and the sound hole are pivotal attributes in

6.4. RESULTS AND ANALYSIS 191

Electric guitar: 95.04%
Acoustic guitar: 3.73%

Detailed
Information

Generated Counterfactuals

Wide resnet

Electric guitar: 22.29% (- 72.75%)
Acoustic guitar: 73.21% (+ 69.48%)

Electric guitar: 3.09% (- 91.95%)
Acoustic guitar: 96.09% (+ 92.36%)

Electric guitar: 0.52% (- 94.52%)
Acoustic guitar: 99.05% (+ 95.32%)

(a) (b) (c)

Figure 6.9: Counterfactual explanations using Wide ResNet-50 for an electric guitar de-
picted in a wooden hue. Three synthesized counterfactual images are presented, along-
side the associated prediction probabilities for the electric guitar and acoustic guitar cat-
egories. Predominant modifications in each counterfactual are highlighted, juxtaposed
with their original appearances in the input image.

distinguishing between guitar types. Notably, these influential features
align intuitively with human discernment, thereby providing insights that
are both explainable and relatable.

In Counterfactual (b), several features are altered, encompassing the
modifications seen in Counterfactual (a). Specifically, the lower pickup,
together with the bridge, is transmuted into a singular bridge for string
support. With this additional alteration, the prediction likelihood for the
electric guitar plunges further, reaching 3.09%. This provides evidence that
the pickup is a salient feature for Wide ResNet-50 in deciding a guitar’s
category.

For Counterfactual (c), beyond the modifications seen in Counterfac-
tual (b), the pickup selector switch and the volume control are obliterated,
with these regions reverting to the native body surface of the guitar. The
prediction probability for electric guitar dwindles to 0.52%, while that for
acoustic guitar escalates to 99.05%. This showcases Wide ResNet-50’s re-

192 CHAPTER 6. EXPLAINING IMAGE CLASSIFICATION

liance on features such as the pickup selector switch and volume control
in adjudicating a guitar’s classification.

6.4.1.3 Yawl & Schooner

Yawl: 95.12%
Schooner: 1.30%

Detailed
Information

Generated Counterfactuals

Wide resnet

Yawl: 88.89% (- 6.23%)
Schooner: 4.24% (+ 2.94%)

(a) (b) (c)

Yawl: 78.81% (- 16.31%)
Schooner: 15.71% (+ 14.41%)

Yawl: 46.51% (- 48.61%)
Schooner: 35.67% (+ 34.46%)

Figure 6.10: Counterfactual explanations using Wide ResNet-50 for a yawl. Three syn-
thesized counterfactual images are presented alongside the associated prediction prob-
abilities for the yawl and schooner categories. Modifications in each counterfactual are
highlighted, compared with their original appearances in the input image.

A picture of a yawl is classified by Wide ResNet-50, and Figure 6.10
shows three counterfactual explanations to interpret why Wide ResNet-50
classifies it to be a yawl instead of a schooner. The major feature that affects
the decision is the number of sails. The more sails in the counterfactuals,
Wide ResNet-50 is more likely to classify the image into schooner.

6.4.1.4 Ambulance & Police Van

Figure 6.11 presents the counterfactual explanations for an ambulance
image. The ambulance in the example looks like a police van in terms of
the color distribution and the vehicle shape. From the generated counter-
factual images and the corresponding prediction probabilities, we can see

6.4. RESULTS AND ANALYSIS 193

Ambulance: 91.75%
Police van: 8.11%

Detailed
Information

Generated Counterfactuals

Wide resnet

Ambulance: 72.24% (- 19.51%)
Police van: 27.71% (+ 19.60%)

(a) (b) (c)

Ambulance: 39.25% (- 52.50%)
Police van: 60.59% (+ 52.48%)

Ambulance: 16.51% (- 75.24%)
Police van: 83.12% (+ 75.01%)

Figure 6.11: Counterfactual explanations using MobileNetV2 for an ambulance which
looks like a police van. Three counterfactual images are shown alongside the associated
prediction probabilities for ambulance and police van. The modifications in each counter-
factual are highlighted.

that, in this case, MobileNetV2 mainly makes decisions on the text on the
body of the vehicle. If the text of ‘AMBULANCE’ is blurred, the predicted
probability of it will decrease; if the text of ‘POLICE’ is added to the body,
the classifier is very likely to classify the image into police van.

6.4.2 Comparisions with Other Methods

To assess the performance of SD-MOEX, it is compared against six promi-
nent explanation methods. Among these, certain methods employ gradient-
based explainability approaches: Integrated Gradients [141], which pro-
vides insights into model decisions by evaluating the integral of gradi-
ents between input features and a defined baseline, attributing importance
based on the influence each feature exerts; and Grad-CAM [117], which
leverages gradients concerning the target class to pinpoint crucial regions
within the input image, yielding a broad localization map that denotes
areas crucial for a specific prediction. On the other hand, methodologies

194 CHAPTER 6. EXPLAINING IMAGE CLASSIFICATION

such as DeepLIFT [122] and SHAP [86] are importance score-based, as-
signing a score to quantify each input feature’s contribution. LIME [109],
a local explanatory technique, deciphers intricate model decisions by fit-
ting a locally comprehensible linear model, uncovering the significance of
individual features in that vicinity. Distinctively, Score-CAM [151] capital-
izes on the model’s activation maps and class scores to formulate a Class
Activation Map (CAM), highlighting areas instrumental for classification
decisions.

(a) Integrated Gradients

Guided backpropagation

(b) DeepLIFT (c) SHAP

(d) LIME (e) Score-CAM (f) Grad-CAM

Figure 6.12: Visual explanations of MobileNetV2’s decision for an image of
an Egyptian Mau cat. Results from six distinct explanation methodologies
are displayed. For each method, two images are showcased: the former
presents the visualized heatmap, and the subsequent shows this heatmap
upon the input, facilitating the identification of salient features.

These methods were utilized to elucidate MobileNetV2’s classifications.
For an input depicting an Egyptian Mau cat, the visualization results are
illustrated in Figure 6.12. Both Integrated Gradients [141] and DeepLIFT
[122] display the cat’s contour and distinct markings, suggesting these fea-
tures’ importance; SHAP [86] accentuates the cat against its backdrop, in-
dicating the prediction leans heavily on the cat rather than the image’s
other components; LIME [109] selects particular superpixels of the cat,
denoting their significance for MobileNetV2. With Score-CAM [151], the
cat’s main body stands out while its head and tail seem less influential;

6.4. RESULTS AND ANALYSIS 195

whereas Grad-CAM [117] emphasizes both the cat and its immediate sur-
roundings. However, the explanations from these methods often span ex-
tensive regions, containing numerous features, complicating the discern-
ment of pivotal elements. Moreover, they fall short in explaining ‘how’
these features steer the decision, let alone ascertaining why MobileNetV2
discerns the image as an Egyptian Mau cat instead of other breeds of cats.

(a) Integrated Gradients

Guided backpropagation

(b) DeepLIFT (c) SHAP

(d) LIME (f) Grad-CAM(e) Score-CAM

Figure 6.13: Visual explanations of MobileNetV2’s decision for an image
of an electric guitar.

Figure 6.13 showcases the explanation results for an image of an electric
guitar for MobileNetV2. Integrated Gradients [141] and DeepLIFT [122]
emphasize the significance of the guitar’s right side. SHAP [86] similarly
highlights the right side but also underscores the contour of the entire gui-
tar. LIME [109] identifies key superpixels, encompassing the neck, pick-
ups, bridge, and angle. Score-CAM [151] accentuates the guitar’s central
portion, while Grad-CAM [117] indicates the entirety of the guitar as being
pivotal. However, these methodologies offer explanations that are broad,
leveraging numerous features, and they cannot explain ‘how’ these fea-
tures impact the classifier’s decisions. On the contrary, the proposed SD-
MOEX can explain the classifiers’ decisions much better by indicating both
‘where’ the important features are and ‘how’ they affect the classifiers.

196 CHAPTER 6. EXPLAINING IMAGE CLASSIFICATION

6.4.3 Convergence Analysis

Initial Generation
10th Generation
20th Generation
30th Generation
40th Generation
50th Generation

Si
gn

ifi
ca

nc
e

of
 C

ha
ng

ed
 S

up
er

pi
xe

ls

−1.0

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Number of Included Superpixels
4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Initial Generation
10th Generation
20th Generation
30th Generation
40th Generation
50th Generation

Si
gn

ifi
ca

nc
e

of
 C

ha
ng

ed
 S

up
er

pi
xe

ls

−1.0

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Number of Included Superpixels
4 6 8 10 12 14 16 18 20 22 24 26 28

(a) The populaton distribution (b) The Pareto front

Figure 6.14: Evolutionary process for SD-MOEX with an input image of
an Egyptian Mau cat processed by the MobileNetV2 model.

In this section, we analyze the evolutionary process across generations.
Figure 6.14 showcases the distributions across generations alongside their
corresponding Pareto fronts. This visual representation captures the evo-
lution of SD-MOEX when the input is an image of an Egyptian Mau cat
and the classifier in use is MobileNetV2. Observing the population dis-
tributions, it becomes evident that as generations progress, individuals
increasingly exhibit fewer superpixels and greater impact. Analyzing the
Pareto front, there is a noticeable performance improvement in the ‘best’
individuals during the initial 20 generations. Performance remains rela-
tively stable between the 30th and 40th generations. However, a signifi-
cant leap in performance is observed when comparing the 40th to the 50th
generation. This depiction of the bjective values’ evolution underscores
the efficacy of the employed evolutionary algorithm.

6.5. CHAPTER SUMMARY 197

6.5 Chapter Summary

This chapter aims to introduce a post-hoc, model-agnostic method to ex-
plain image classifiers’ decisions, especially concerning similar classes.
The method is expected to provide insight into both ‘where’ crucial fea-
tures lie and ‘how’ they influence classifier decisions. This objective has
been successfully achieved by the integration of the SD model for counter-
factual generation, NSGA-II for searching for minimal and crucial super-
pixel set identification, and a novel evaluation method proposed in this
chapter. Specifically, the SD model in SD-MOEX inpaints specific regions
based on textual descriptions, resulting in naturalistic counterfactual im-
ages. Simultaneously, the tailored NSGA-II synergizes with the SD model
to furnish an efficient evolutionary search mechanism. Additionally, the
proposed evaluation metrics provide a comprehensive measure of super-
pixel quantity and impact.

The capabilities of SD-MOEX were evaluated on four classification tasks:
Egyptian Mau cat versus tabby cat, electric guitar versus acoustic guitar, yawl
versus schooner, and ambulance versus police van, using prominent image
classifiers like MobileNetV2 and Wide ResNet-50. For the cat categoriza-
tion, the derived counterfactual explanations delineate patterns that in-
fluence breed classification, highlighting the specific contributions of each
pattern. In the guitar case, the interpretations shed light on influential
components, rendering the results interpretable for human comprehen-
sion. For the yawl, the number of sails affects the decisions significantly.
The text description on the vehicle body influences the decisions. A com-
parative analysis of six prevalent explanatory methods demonstrated the
superiority of SD-MOEX in its explanations. Moreover, an analysis of evo-
lutionary objective values distributions confirms the effectiveness of our
evolutionary approach.

While SD-MOEX proves proficient in explaining image classifier deci-
sions, its current scope is confined to image classification. In future work,

198 CHAPTER 6. EXPLAINING IMAGE CLASSIFICATION

we plan to extend this method to broader computer vision tasks.

Chapter 7

Conclusions and Future Work

This thesis aims to enhance the effectiveness and efficiency of ENAS method-
ologies, primarily by improving classification accuracies and minimizing
computational overhead. It also tries to explain the decisions of networks
in image classification tasks. These objectives have been successfully achieved
by proposing a novel PSO-based ENAS method with an autoencoder to
transform architecture representations (EAEPSO in Chapter 3), an inno-
vative performance predictor coupled with weight inheritance-assisted
ENAS method (EPPGA in Chapter 4), a novel one-shot NAS method with
reliable fitness evaluations and efficient supernet training (TIFNAS in Chap-
ter 5), and a novel method to explain classifiers’ decision on image clas-
sifications (SD-MOEX in Chapter 6). The first three methods primarily
focus on enhancing classification performance and search efficiency via
strategies such as novel encoding techniques (representations), reliable fit-
ness evaluation techniques, advanced search spaces, efficient evolution-
ary processes, and novel evolutionary operations. The fourth method
focuses on explaining classifiers’ decisions through counterfactual gen-
eration. Experiments have been conducted to examine and contrast the
proposed methods with existing ones on renowned image classification
datasets of varying complexities. Results have shown the proposed meth-
ods can achieve superior classification performance and are more compu-

199

200 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

tationally efficient. Moreover, the interpretative approach, SD-MOEX, has
been validated for its ability to explain classifier decisions.

The rest sections of this chapter outline conclusions for each thesis ob-
jective, summarize major findings, and highlight potential avenues for fu-
ture research.

7.1 Achieved Objectives

This thesis has achieved the following research objectives:

1. Proposes an innovative PSO-based ENAS method for effectively and
efficiently searching for network architectures. Central to this method
is a uniquely designed autoencoder, purposed to help tailor the ar-
chitecture representations to better utilize the ability of the search
algorithm, i.e., PSO. Specifically, the autoencoder converts variable-
length integer block vectors into fixed-length continuous decimal la-
tent vectors, creating a smooth and continuous search space for the
PSO search process. Notably, a multifaceted loss function for the au-
toencoder is developed. This function, extending beyond the tradi-
tional scope of reconstruction loss, incorporates considerations of ar-
chitectural and model scale similarities, ensuring the networks with
a similar architecture or model scale are embedded in neighborhood
regions in the latent space. Besides, this work explores the effects
of varying training data sizes on fitness value evaluations, reveal-
ing its consequential impact across diverse search stages. Accord-
ingly, a dynamic hierarchical fitness evaluation strategy is designed
to optimize the efficiency of performance estimations, which em-
ploys different training data scales throughout various stages of the
search process, ensuring the accurate evaluations of the candidate
networks. The proposed method is compared with 55 peer competi-
tors on three main-stream image classification datasets, and the re-
sults confirm the outstanding performance of the proposed method.

7.1. ACHIEVED OBJECTIVES 201

2. Proposes a novel ENAS algorithm that employs a performance pre-
dictor and a weight-inheritance method. The method designs a novel
lightweight backbone block architecture, contributing to the search
for promising and portable network architectures. Furthermore, it
employs a random forest-based performance predictor. Instead of
the conventional fitness predictions, this predictor assesses whether
offspring can outperform their parent(s), also quantifying the confi-
dence of these predictions, which ensures that only top-performing
offspring are retained, improving the evolutionary convergence speed.
Furthermore, the algorithm introduces new crossover and mutation
operators aiming at ensuring that the majority of newly generated
offspring closely resemble one of their parents, thereby facilitating
the prediction process. To optimize evaluation efficiency, a novel
weight inheritance method is proposed, almost avoiding random
initialization in the mutated layers of offspring. The proposed method
is compared with 66 state-of-the-art competitors within the field, and
the rigorous evaluation reveals a noteworthy advancement in terms
of classification performance, model size, and computational cost.
Further analysis also demonstrates the effectiveness of the proposed
backbone block, performance predictor, and weight inheritance method,
respectively.

3. Proposes a new one-shot NAS method for image classification. The
method introduces an efficient supernet training strategy by leverag-
ing the inherent characteristics of the supernet architecture and em-
ploying the weight inheritance technique. Furthermore, the method
designs a supernet fine-tuning strategy to provide more accurate fit-
ness evaluations for the candidate networks. Specifically, the fine-
tuning is conducted along with the evolutionary process. In addi-
tion, a novel population initialization method is introduced to gen-
erate initial candidate architectures with potential high performance,
facilitating the evolutionary search. Experimental results demon-

202 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

strate the effectiveness of the proposed method, achieving remark-
able error rates of 2.59%, 16.67%, and 23.9% on CIFAR-10, CIFAR-
100, and ImageNet, respectively, while demanding only 0.31, 0.28,
and 4.1 GPU-days. Notably, these classification results exhibit promise,
and the computational cost remains significantly lower than that of
most competing methods. Extensive experiments and analyses cor-
roborate the efficacy of the proposed supernet training, supernet fine-
tuning, and population initialization methods.

4. Proposes a novel post-hoc, model-agnostic methodology to explain
classifier decisions in similar classifications. The method combines
a Stable Diffusion model to produce counterfactual images, thereby
illuminating the significance of distinct image regions in classifica-
tion outcomes. Furthermore, a multi-objective evolutionary algo-
rithm is presented to identify both pivotal and minimal superpixels.
The method can locate concise salience regions, identify important
and straightforward futures, and provide intuitive explanations. Be-
sides, a novel objective function is proposed to evaluate the impact
of these superpixels. Experimental results emphasize the efficacy
of this methodology across various similar classes, such as Egyptian
Mau cat versus Tabby cat and acoustic guitar versus electric guitar. This
robustness also extends to different classification networks.

7.2 Main Conclusions

This thesis demonstrates the efficacy of evolutionary computation in search-
ing for promising network architectures for image classification. Addi-
tionally, it showcases the ability of evolutionary computation to provide
interpretable explanations for classifiers’ decisions in image classification
tasks. This section summarizes the key findings drawn from the four re-
search objectives in the contribution chapters (Chapter 3 to Chapter 6).

7.2. MAIN CONCLUSIONS 203

7.2.1 PSO for NAS using an Autoencoder-based Encoding

Strategy

Chapter 3 proposes an autoencoder-based encoding strategy combined
with a dynamic hierarchical fitness evaluation method to evolve CNNs,
which improves the accuracy and significantly reduces computational costs.

Architecture Representation

It is observed that the architecture representation can be effectively
condensed from the variable-length discrete integer block vectors to fixed-
length continuous decimal latent vectors. This transformation renders the
latent space become smooth and continuous, enhancing the downstream
PSO search process.

The architecture representation, based on an autoencoder, is well-suited
for the PSO search process. Specifically, the autoencoder captures mean-
ingful features from the initial vector representation, reducing its dimen-
sionality. The original block/architecture parameters are transformed from
discrete values to continuous values. A newly designed batch-normalization
layer is appended to the end of the encoder part, ensuring a smoother rep-
resentation within the latent space. Furthermore, similar architectures are
projected to neighborhood in the latent space, which is achieved by the
novel loss function formulated for the autoencoder’s training. The loss
function takes into account the reconstruction loss, architecture similarity
loss, and scale similarity loss. Experimental results validate the efficacy
of the architecture representations generated by the autoencoder, outper-
forming those from a standard autoencoder in classification tasks. This
research also shows that a novel representation strategy can help improve
the searched results for ENAS tasks, because the search process is within a
crafted latent space. This method opens up possibilities for incorporating
various techniques and innovative concepts in building the latent space,
offering a new perspective to enhance ENAS algorithms.

204 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

Hierarchical Fitness Evaluations

It is found that the dynamic hierarchical fitness evaluation method can
reduce the computational overhead while providing effective evaluations
for the candidate networks throughout the evolutionary process.

The proposed hierarchical fitness evaluation method dynamically ad-
justs the volume of the training data along with the PSO process, achieving
a good balance between efficiency and accuracy. While training the can-
didate on a reduced dataset might compromise test accuracy compared
to utilizing the entire dataset, fitness evaluations within the EC technique
typically aim to guide the selection based on the relative performance of
the individuals. In this context, the method adaptively modifies the scale
of the training data to furnish precise relative performance comparisons.
Experimental results indicate that the proposed method can achieve simi-
lar classification accuracy to using the full training data while using only
a seventh of the computational resources. This method not only considers
the assessment of the candidate, but also considers the role of the eval-
uation phase within the search process, being tailored according to the
inherent characteristics of the search algorithm.

7.2.2 NAS based on Performance Prediction and Weight

Inheritance

Chapter 4 introduces a method centered on performance prediction and
weight inheritance to efficiently search for well-performing network ar-
chitectures. It also introduces a new lightweight architecture to construct
the search space.

Lightweight Architecture

A new backbone lightweight block architecture is proposed to build
the basic blocks for candidate networks. Though inspired by the Mo-
bileNetV3 block, this architecture boasts greater efficiency and better per-

7.2. MAIN CONCLUSIONS 205

formance. Experimental results suggest that searches based on this newly-
proposed block are markedly more efficient, with the resulting networks
outperforming the accuracy achieved by those based on the conventional
MobileNetV3 block. The proposed new block architecture’s good perfor-
mance shows that the improvement of the backbone structure affects the
efficiency of the NAS methods and the performance of the searched re-
sults.

Performance Predictor

It is observed that a performance predictor can be used to help the
generation of powerful offspring, thus accelerating the evolutionary pro-
cess. The newly proposed random forest-based performance predictor is
the key contribution of this method. While traditional preditors aim to
estimate the performance of candidates directly, this proposed predictor
adopts a distinct approach. Functioning as a random forest-based binary
classifier, it seeks to predict the comparative outcomes between two can-
didates. In this way, the potentially wrong predictions will not affect the
search process in the proposed method because the predictor’s primary
role is to aid in the selection of high-performing offspring. The actual fit-
ness of these offspring undergoes further rigorous assessment. The exper-
imental results show that incorporating the performance predictor signif-
icantly improves the performance of the searched network within a pre-
defined number of evolutionary iterations. This method shows that the
performance predictor can transcend mere fitness evaluations, playing a
pivotal role in offspring selection, accelerating the convergence of the com-
prehensive search process, and consequently reducing computational ex-
penses.

Weight Inheritance

It is noted that a powerful weight inheritance can substantially reduce
the computational demands of the fitness evaluation process. Specifically,

206 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

a weight pool is constructed to collect the network modules that have un-
dergone training. The offspring networks primarily inherit weights from
their parent individuals; mutated blocks derive initial weights from this
weight pool, thus avoiding random initialization. The experimental re-
sults reveal training candidates utilizing the proposed weight inheritance
method outperforms training using traditional inheritance methods in ef-
ficiency and accuracy. The method shows that an efficient fitness evalua-
tion method can help to reduce computational consumption.

7.2.3 One-Shot NAS

To further improve the efficiency of the NAS algorithm, Chapter 5 intro-
duces a methodology grounded in the efficient one-shot framework. This
method further reduces computational overhead by introducing an inno-
vative supernet training methodology and improves the reliability of fit-
ness evaluations through a distinct supernet fine-tuning strategy. More-
over, a novel population initialization is incorporated to enhance the evo-
lutionary process.

Supernet Training

It is found that the novel supernet training strategy significantly boosts
the training efficiency of the large supernet, subsequently diminishing
the overall computational expenditure. The training strategy is based on
the analysis of the complicated supernet architecture and leverages the
weight replication technique, which entails the replication of weights from
’larger’ operations to ’smaller’ ones. The experimental results indicate that
this method spends merely 28% of the training cost to achieve markedly
enhanced training outcomes compared to the vanilla training methodol-
ogy. Despite one-shot NAS methods being highly efficient, this methodol-
ogy demonstrates further potential for optimizing supernet training effi-
ciency.

7.2. MAIN CONCLUSIONS 207

Supernet Fine-tuning

It is suggested that the fine-tuning of the supernet can contribute to
providing more reliable and precise fitness evaluations for candidate net-
works. The weights of the supernet undergo fine-tuning according to the
distribution of the candidates awaiting evaluation, which can reduce the
sharing extent and provide more reliable evaluations. The experimen-
tal results confirm the fine-tuning strategy can significantly improve fit-
ness evaluation reliability and show that the searched networks are of
higher classification accuracies when applied to the supernet fine-tuning
strategy. Although the fine-tuning will consume a little more computa-
tion, amounting to 0.09 GPU-days on both the CIFAR-10 and CIFAR-100
datasets, the overall computational costs remain significantly lower than
most peer competitors. Consequently, this methodology employs an effi-
cient supernet fine-tuning strategy and successfully addresses the preva-
lent challenge of inconsistent fitness evaluations in one-shot NAS.

Population Initialization

It is noted that a better population initialization method can help the
ENAS method in searching for network architectures with superior clas-
sification performance. This initialization method selects potential high-
performing candidate network architectures as initial solutions, drawing
insights from the supernet training phase. Given that the supernet under-
goes training by iteratively sampling single paths, the performance met-
rics of the sampled paths can indicate the potential performance of the
corresponding candidates. The promising candidates are then elected for
the initial population. Empirical results validate that this population ini-
tialization method can significantly improve the overall performance of
the initial population and lead to a better performance of the searched
networks.

208 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

7.2.4 Explaining Image Classification

Different from the previous chapters focusing on searching for good net-
work architectures, Chapter 6 introduces a method to explain the net-
works’ decisions for image classification tasks. This method is achieved
by an evolutionary multi-objective optimization technique and a counter-
factual generation approach.

Counterfactual Generation
It is found that a good counterfactual generation method that inte-

grates textual information can contribute to the explanations for the de-
cisions made on similar classes. This generation is based on the Stable Dif-
fusion (SD) model. Rather than directly employing the SD model to create
an entire counterfactual image, this method capitalizes on the SD model to
inpaint specific regions using features from a similar class. Consequently,
by observing alterations in prediction outcomes, one can confirm the influ-
ence of the modified content (along with its associated features). It can be
observed that the generated content blends smoothly and naturally with
the surrounding areas, thereby avoiding abrupt edges that could poten-
tially interfere with the classifier. The results confirm that this promising
counterfactual generation method can assist in explaining the decisions of
the classifiers.

Explainations for Similar Image Classes
It is demonstrated that the method combines the SD model and an Evo-

lutionary Multi-Objective (EMO) method to provide explanations for sim-
ilar image classes. Classifying similar classes is difficult for the classifiers,
and providing explanations is more complicated. The SD model can paint
content comprising the features of a similar class, and the EMO method
is employed to search for smaller but pivotal superpixels/regions. Gener-
ally, a large region has more impact on the decision but also contains more
features. The more features are selected, the harder the explanations will

7.3. FUTURE WORK 209

be because it will be challenging to identify which feature(s) contribute
most to the impact. The experimental results show that the pivotal re-
gions are found using the EMO method, and the corresponding features
help humans understand the causal reasoning behind the classifiers’ deci-
sions.

7.3 Future Work

This section highlights key research directions for future work.

7.3.1 Multi-Objective Neural Architecture Search

In this thesis, the ENAS methods (i.e., in Chapters 3, 4, and 5) have only
a single objective, i.e., to maximize the accuracy of the candidate architec-
tures. These methods achieve good classification performance. However,
when distributing these models to real-world applications, there are some
additional considerations. For instance, when deploying models onto mo-
bile devices, the model’s size becomes imperative. Similarly, in domains
such as autonomous driving, the inference time of a model is of great im-
portance. By adopting a multi-objective NAS approach, one can accom-
modate a number of objectives, generating models with different trade-
offs between the objectives to meet the different requirements of the users.

7.3.2 Neural Architecture Search for Broader Computer Vi-

sion Tasks

This thesis shows ENAS can achieve good performance in image classifica-
tion tasks, consistently performing well across a number of datasets with
varying classification complexities. However, there are some more com-
puter vision tasks, such as image generation, semantic segmentation, and
object recognition. Contrasted with image classification, the backbone net-

210 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

work architectures for these tasks differ significantly, and the evaluation
metrics are also quite different from classification. Assessing the candi-
date’s performance on these tasks may cost more computational resources,
and some existing methods spend a lot of computational resources on the
evaluations. Hence, it is worthwhile to design new efficient ENAS meth-
ods for these tasks to expand the application fields of NAS.

7.3.3 Network Architecture Search based on Novel Back-

bone Structures

This thesis explores the NAS methodologies based on the search space
constructed from different typical network structures, including DenseNet
and MobileNet. This thesis also refines and enhances the backbone struc-
ture to build a better search space. However, state-of-the-art network
structures are continuously invented and redefined. The NAS methods
based on the structures of potentially good performance are more likely to
achieve promising outcomes. Consequently, there emerges a compelling
need to develop NAS methods that are flexible and can accommodate the
emergent backbone structures.

7.3.4 Efficient and Accurate Fitness Evaluations

In this thesis, several methods are proposed to evaluate the performance
of candidate network architectures, keeping a balance between evalua-
tion efficiency and accuracy. However, these evaluations are still resource-
intensive, demanding significant computational power. Besides, for most
methods, the increase in efficiency comes at the cost of a decrease in accu-
racy. In the future, we will keep refining the fitness evaluation strategies,
aiming for a good balance between efficiency and accuracy. Specifically,
there are several existing efficient fitness evaluation methods, and an en-
semble of them may achieve a trade-off between efficiency and accuracy,
which is worth exploring.

7.3. FUTURE WORK 211

7.3.5 Explanations for Networks across Varied Applications

This thesis develops a methodology to explain the networks’ decisions for
image classifications and achieves good results. However, the realm of
interpretability extends far beyond classification tasks alone. The deep
networks for other applications, such as segmentation, generation, and
recognition, also need to be explained. Compared with classification, the
networks may be of higher complexity; thus, interpreting them may be
much more challenging. In the future, we plan to develop new methods
to explain the deep networks across an expanded spectrum of application
domains.

7.3.6 Explanations for Deep Network Architectures

This thesis explains the networks’ decisions on image classification tasks
from the point of the input data. It is also important to explain why a spe-
cific deep network architecture can achieve good performance on specific
application fields. In this way, researchers are more likely to design more
powerful network architectures, and the NAS methods may also achieve
better results.

7.3.7 Real-World Applications

In addition to the benchmark image classification datasets, it is important
to apply the proposed NAS methods to solve real-world image classifica-
tion tasks, such as aquaculture image classification. Specifically, the ENAS
methods can be applied to analyze shell-fish data on New Zealand green
mussels, and the fin-fish image data on New Zealand snappers.

212 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

Bibliography

[1] https://towardsdatascience.com/a-comprehensive-guide-to-
convolutional-neural-networks-the-eli5-way-3bd2b1164a53.

[2] https://ischoolonline.berkeley.edu/blog/what-is-machine-
learning/.

[3] https://blogs.nvidia.com/blog/2018/08/02/supervised-
unsupervised-learning.

[4] ACHANTA, R., SHAJI, A., SMITH, K., LUCCHI, A., FUA, P., AND

SÜSSTRUNK, S. Slic superpixels compared to state-of-the-art super-
pixel methods. IEEE Transactions on Pattern Analysis and Machine In-
telligence 34, 11 (2012), 2274–2282.

[5] ADELI, H. Neural networks in civil engineering: 1989–2000.
Computer-Aided Civil and Infrastructure Engineering 16, 2 (2001), 126–
142.

[6] AHMED, A. A., DARWISH, S. M. S., AND EL-SHERBINY, M. M. A
novel automatic cnn architecture design approach based on genetic
algorithm. In International Conference on Advanced Intelligent Systems
and Informatics (2019), Springer, pp. 473–482.

[7] ALBAWI, S., MOHAMMED, T. A., AND AL-ZAWI, S. Understanding
of a convolutional neural network. In 2017 International Conference
on Engineering and Technology (ICET) (2017), Ieee, pp. 1–6.

213

214 BIBLIOGRAPHY

[8] AN, J., AND CHO, S. Variational autoencoder based anomaly detec-
tion using reconstruction probability. Special lecture on IE 2, 1 (2015),
1–18.

[9] ANTONIOU, A., EDWARDS, H., AND STORKEY, A. How to train
your maml. arXiv preprint arXiv:1810.09502 (2018).

[10] ASSUNÇÃO, F., CORREIA, J., CONCEIÇÃO, R., PIMENTA, M. J. M.,
TOMÉ, B., LOURENÇO, N., AND MACHADO, P. Automatic design
of artificial neural networks for gamma-ray detection. IEEE Access 7
(2019), 110531–110540.

[11] ASSUNÇÃO, F., LOURENÇO, N., MACHADO, P., AND RIBEIRO, B.
Evolving the topology of large scale deep neural networks. In Euro-
pean Conference on Genetic Programming (2018), Springer, pp. 19–34.

[12] BÄCK, T., FOGEL, D. B., AND MICHALEWICZ, Z. Handbook of evo-
lutionary computation. Release 97, 1 (1997), B1.

[13] BAKER, B., GUPTA, O., NAIK, N., AND RASKAR, R. Designing
neural network architectures using reinforcement learning. arXiv
preprint arXiv:1611.02167 (2016).

[14] BANZHAF, W. Genetic Programming: First European Workshop, Eu-
roGP’98, Paris, France, April 14-15, 1998, Proceedings, vol. 1. Springer
Science & Business Media, 1998.

[15] BAYMURZINA, D., GOLIKOV, E., AND BURTSEV, M. A review of
neural architecture search. Neurocomputing 474 (2022), 82–93.

[16] BENDER, G., KINDERMANS, P.-J., ZOPH, B., VASUDEVAN, V.,
AND LE, Q. Understanding and simplifying one-shot architecture
search. In International Conference on Machine Learning (2018), PMLR,
pp. 550–559.

BIBLIOGRAPHY 215

[17] BINGHAM, G., MACKE, W., AND MIIKKULAINEN, R. Evolutionary
optimization of deep learning activation functions. arXiv preprint
arXiv:2002.07224 (2020).

[18] CAI, H., CHEN, T., ZHANG, W., YU, Y., AND WANG, J. Efficient
architecture search by network transformation. In Proceedings of the
AAAI Conference on Artificial Intelligence (2018), vol. 32.

[19] CAI, H., ZHU, L., AND HAN, S. Proxylessnas: Direct neural archi-
tecture search on target task and hardware. In International Confer-
ence on Learning Representations (2018).

[20] CAI, Z., CHEN, L., AND LIU, H.-L. BHE-DARTS: Bilevel optimiza-
tion based on hypergradient estimation for differentiable architec-
ture search. In Proceedings of ICASSP 2023 - 2023 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP) (2023),
pp. 1–5.

[21] CARVALHO, P., LOURENÇO, N., ASSUNÇÃO, F., AND MACHADO, P.
Autolr: an evolutionary approach to learning rate policies. In Pro-
ceedings of the 2020 Genetic and Evolutionary Computation Conference
(2020), pp. 672–680.

[22] CHATTOPADHAY, A., SARKAR, A., HOWLADER, P., AND BALA-
SUBRAMANIAN, V. N. Grad-CAM++: Generalized gradient-based
visual explanations for deep convolutional networks. In Proceed-
ings of 2018 IEEE Winter Conference on Applications of Computer Vision
(WACV) (2018), pp. 839–847.

[23] CHEN, X., KINGMA, D. P., SALIMANS, T., DUAN, Y., DHARIWAL,
P., SCHULMAN, J., SUTSKEVER, I., AND ABBEEL, P. Variational lossy
autoencoder. arXiv preprint arXiv:1611.02731 (2016).

216 BIBLIOGRAPHY

[24] CHEN, Y., GAO, R., LIU, F., AND ZHAO, D. Modulenet:
Knowledge-inherited neural architecture search. IEEE Transactions
on Cybernetics (2021), 1–11.

[25] CHU, X., ZHANG, B., XU, R., AND LI, J. Fairnas: Rethinking eval-
uation fairness of weight sharing neural architecture search. arXiv
preprint arXiv:1907.01845 (2019).

[26] CLERC, M. Particle swarm optimization, vol. 93. John Wiley & Sons,
2010.

[27] CROITORU, F.-A., HONDRU, V., IONESCU, R. T., AND SHAH, M.
Diffusion models in vision: A survey. IEEE Transactions on Pattern
Analysis and Machine Intelligence (2023), 1–20.

[28] DATTA, D., AND FIGUEIRA, J. R. A real-integer-discrete-coded par-
ticle swarm optimization for design problems. Applied Soft Comput-
ing 11, 4 (2011), 3625–3633.

[29] DEB, K., PRATAP, A., AGARWAL, S., AND MEYARIVAN, T. A fast
and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transac-
tions on Evolutionary Computation 6, 2 (2002), 182–197.

[30] DEVRIES, T., AND TAYLOR, G. W. Improved regularization
of convolutional neural networks with cutout. arXiv preprint
arXiv:1708.04552 (2017).

[31] DHARIWAL, P., AND NICHOL, A. Diffusion models beat GANs on
image synthesis. Advances in Neural Information Processing Systems
34 (2021), 8780–8794.

[32] DORIGO, M., BIRATTARI, M., AND STUTZLE, T. Ant colony opti-
mization. IEEE Computational Intelligence Magazine 1, 4 (2006), 28–39.

BIBLIOGRAPHY 217

[33] DP, K., AND BA, J. Adam: A method for stochastic optimization.
In Proc. of the 3rd International Conference for Learning Representations
(ICLR) (2015).

[34] EBERHART, R., AND KENNEDY, J. A new optimizer using particle
swarm theory. In MHS’95. Proceedings of the Sixth International Sym-
posium on Micro Machine and Human Science (1995), Ieee, pp. 39–43.

[35] ELSKEN, T., METZEN, J. H., AND HUTTER, F. Efficient multi-
objective neural architecture search via lamarckian evolution. arXiv
preprint arXiv:1804.09081 (2018).

[36] ELSKEN, T., METZEN, J. H., AND HUTTER, F. Neural architec-
ture search: A survey. The Journal of Machine Learning Research 20,
1 (2019), 1997–2017.

[37] EVANS, B. P., XUE, B., AND ZHANG, M. What’s inside the black-
box? a genetic programming method for interpreting complex ma-
chine learning models. In Proceedings of the Genetic and Evolutionary
Computation Conference (2019), pp. 1012–1020.

[38] FIELDING, B., AND ZHANG, L. Evolving image classification archi-
tectures with enhanced particle swarm optimisation. IEEE Access 6
(2018), 68560–68575.

[39] FUJINO, S., NAOKI, M., AND MATSUMOTO, K. Deep convolutional
networks for human sketches by means of the evolutionary deep
learning. fuzzy systems association and 9th international conference
on soft computing and intelligent systems (ifsa-scis). In 2017 Joint
17th World Congress of International. IEEE (2017).

[40] GAO, Z., LI, Y., YANG, Y., WANG, X., DONG, N., AND CHIANG,
H.-D. A gpso-optimized convolutional neural networks for eeg-
based emotion recognition. Neurocomputing 380 (2020), 225–235.

218 BIBLIOGRAPHY

[41] GOETSCHALCKX, L., ANDONIAN, A., OLIVA, A., AND ISOLA, P.
Ganalyze: Toward visual definitions of cognitive image properties.
In Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV) (October 2019).

[42] GOODFELLOW, I., POUGET-ABADIE, J., MIRZA, M., XU, B.,
WARDE-FARLEY, D., OZAIR, S., COURVILLE, A., AND BENGIO, Y.
Generative adversarial networks. Commun. ACM 63, 11 (oct 2020),
139–144.

[43] GOODFELLOW, I., WARDE-FARLEY, D., MIRZA, M., COURVILLE,
A., AND BENGIO, Y. Maxout networks. In International Conference
on Machine Learning (2013), PMLR, pp. 1319–1327.

[44] GOYAL, Y., WU, Z., ERNST, J., BATRA, D., PARIKH, D., AND LEE, S.
Counterfactual visual explanations. In Proceedings of the 36th Interna-
tional Conference on Machine Learning (09–15 Jun 2019), K. Chaudhuri
and R. Salakhutdinov, Eds., vol. 97 of Proceedings of Machine Learning
Research, PMLR, pp. 2376–2384.

[45] GU, J., WANG, Z., KUEN, J., MA, L., SHAHROUDY, A., SHUAI, B.,
LIU, T., WANG, X., WANG, G., CAI, J., AND CHEN, T. Recent
advances in convolutional neural networks. Pattern Recognition 77
(2018), 354–377.

[46] GUO, Z., ZHANG, X., MU, H., HENG, W., LIU, Z., WEI, Y., AND

SUN, J. Single path one-shot neural architecture search with uniform
sampling. In Proceedings of European Conference on Computer Vision
(2020), Springer, pp. 544–560.

[47] HE, K., ZHANG, X., REN, S., AND SUN, J. Delving deep into rec-
tifiers: Surpassing human-level performance on imagenet classifica-
tion. In Proceedings of the IEEE International Conference on Computer
Vision (2015), pp. 1026–1034.

BIBLIOGRAPHY 219

[48] HE, K., ZHANG, X., REN, S., AND SUN, J. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on Com-
puter Vision and Pattern Recognition (2016), pp. 770–778.

[49] HELWIG, S., AND WANKA, R. Theoretical analysis of initial particle
swarm behavior. In Parallel Problem Solving from Nature – PPSN X
(Berlin, Heidelberg, 2008), G. Rudolph, T. Jansen, N. Beume, S. Lu-
cas, and C. Poloni, Eds., Springer Berlin Heidelberg, pp. 889–898.

[50] HINTON, G. E., AND ZEMEL, R. S. Autoencoders, minimum de-
scription length, and helmholtz free energy. Advances in Neural In-
formation Processing Systems 6 (1994), 3–10.

[51] HO, J., CHEN, X., SRINIVAS, A., DUAN, Y., AND ABBEEL, P.
Flow++: Improving flow-based generative models with varia-
tional dequantization and architecture design. In Proceedings of the
36th International Conference on Machine Learning (09–15 Jun 2019),
K. Chaudhuri and R. Salakhutdinov, Eds., vol. 97 of Proceedings of
Machine Learning Research, PMLR, pp. 2722–2730.

[52] HOWARD, A. G., SANDLER, M., CHU, G., CHEN, L.-C., CHEN,
B., TAN, M., WANG, W., ZHU, Y., PANG, R., VASUDEVAN, V., LE,
Q. V., AND ADAM, H. Searching for mobilenetv3. 2019 IEEE/CVF
International Conference on Computer Vision (ICCV) (2019), 1314–1324.

[53] HOWARD, A. G., ZHU, M., CHEN, B., KALENICHENKO, D., WANG,
W., WEYAND, T., ANDREETTO, M., AND ADAM, H. Mobilenets: Ef-
ficient convolutional neural networks for mobile vision applications.
arXiv preprint arXiv:1704.04861 (2017).

[54] HU, J., SHEN, L., AND SUN, G. Squeeze-and-excitation networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (2018), pp. 7132–7141.

220 BIBLIOGRAPHY

[55] HUANG, G., LIU, S., VAN DER MAATEN, L., AND WEINBERGER,
K. Q. Condensenet: An efficient densenet using learned group con-
volutions. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (2018), pp. 2752–2761.

[56] HUANG, G., LIU, Z., VAN DER MAATEN, L., AND WEINBERGER,
K. Q. Densely connected convolutional networks. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (2017),
pp. 4700–4708.

[57] HUANG, Z., WANG, X., HUANG, L., HUANG, C., WEI, Y., AND

LIU, W. Ccnet: Criss-cross attention for semantic segmentation. In
Proceedings of the IEEE/CVF International Conference on Computer Vi-
sion (ICCV) (October 2019).

[58] JANG, E., GU, S., AND POOLE, B. Categorical reparameterization
with gumbel-softmax. arXiv preprint arXiv:1611.01144 (2016).

[59] JORDAN, M. I., AND MITCHELL, T. M. Machine learning: Trends,
perspectives, and prospects. Science 349, 6245 (2015), 255–260.

[60] JUNIOR, F. E. F., AND YEN, G. G. Particle swarm optimization of
deep neural networks architectures for image classification. Swarm
and Evolutionary Computation 49 (2019), 62–74.

[61] KARRAS, T., LAINE, S., AITTALA, M., HELLSTEN, J., LEHTINEN, J.,
AND AILA, T. Analyzing and improving the image quality of style-
gan. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) (June 2020).

[62] KIMURA, S., AND MATSUMURA, K. Genetic algorithms using low-
discrepancy sequences. In Proceedings of the 7th Annual Conference
on Genetic and Evolutionary Computation (New York, NY, USA, 2005),
GECCO ’05, Association for Computing Machinery, pp. 1341–1346.

BIBLIOGRAPHY 221

[63] KOTSIANTIS, S. B., ZAHARAKIS, I., PINTELAS, P., ET AL. Su-
pervised machine learning: A review of classification techniques.
Emerging Artificial Intelligence Applications in Computer Engineering
160, 1 (2007), 3–24.

[64] KOZA, J. R. Genetic programming as a means for programming
computers by natural selection. Statistics and Computing 4, 2 (1994),
87–112.

[65] KRIZHEVSKY, A., HINTON, G., ET AL. Learning multiple layers of
features from tiny images.

[66] KRIZHEVSKY, A., SUTSKEVER, I., AND HINTON, G. E. Imagenet
classification with deep convolutional neural networks. Advances in
Neural Information Processing Systems 25 (2012), 1097–1105.

[67] KRIZHEVSKY, A., SUTSKEVER, I., AND HINTON, G. E. Imagenet
classification with deep convolutional neural networks. Commun.
ACM 60, 6 (may 2017), 84–90.

[68] KUŞ, Z., AKKAN, C., AND GÜLCÜ, A. Novel surrogate measures
based on a similarity network for neural architecture search. IEEE
Access 11 (2023), 22596–22613.

[69] LANG, O., GANDELSMAN, Y., YAROM, M., WALD, Y., ELIDAN, G.,
HASSIDIM, A., FREEMAN, W. T., ISOLA, P., GLOBERSON, A., IRANI,
M., AND MOSSERI, I. Explaining in style: Training a gan to explain
a classifier in stylespace. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV) (October 2021), pp. 693–702.

[70] LARSSON, G., MAIRE, M., AND SHAKHNAROVICH, G. Fractal-
net: Ultra-deep neural networks without residuals. arXiv preprint
arXiv:1605.07648 (2016).

222 BIBLIOGRAPHY

[71] LECUN, Y., BOTTOU, L., BENGIO, Y., AND HAFFNER, P. Gradient-
based learning applied to document recognition. Proceedings of the
IEEE 86, 11 (1998), 2278–2324.

[72] LI, Z., LIU, F., YANG, W., PENG, S., AND ZHOU, J. A survey of con-
volutional neural networks: analysis, applications, and prospects.
IEEE Transactions on Neural Networks and Learning Systems (2021).

[73] LIU, C., ZOPH, B., NEUMANN, M., SHLENS, J., HUA, W., LI, L.-J.,
FEI-FEI, L., YUILLE, A., HUANG, J., AND MURPHY, K. Progressive
neural architecture search. In Proceedings of the European Conference
on Computer Vision (ECCV) (2018), pp. 19–34.

[74] LIU, H., SIMONYAN, K., VINYALS, O., FERNANDO, C., AND

KAVUKCUOGLU, K. Hierarchical representations for efficient archi-
tecture search. arXiv preprint arXiv:1711.00436 (2017).

[75] LIU, H., SIMONYAN, K., AND YANG, Y. Darts: Differentiable archi-
tecture search. arXiv preprint arXiv:1806.09055 (2018).

[76] LIU, J., GONG, M., MIAO, Q., WANG, X., AND LI, H. Structure
learning for deep neural networks based on multiobjective opti-
mization. IEEE transactions on Neural Metworks and Learning Systems
29, 6 (2017), 2450–2463.

[77] LIU, P., EL BASHA, M. D., LI, Y., XIAO, Y., SANELLI, P. C., AND

FANG, R. Deep evolutionary networks with expedited genetic al-
gorithms for medical image denoising. Medical Image Analysis 54
(2019), 306–315.

[78] LIU, S., ZHANG, H., AND JIN, Y. A survey on computationally effi-
cient neural architecture search. Journal of Automation and Intelligence
1, 1 (2022), 100002.

BIBLIOGRAPHY 223

[79] LIU, Y., SUN, Y., XUE, B., ZHANG, M., YEN, G. G., AND TAN, K. C.
A survey on evolutionary neural architecture search. IEEE Transac-
tions on Neural Networks and Learning Systems (Aug 06, 2021). doi:
10.1109/TNNLS.2021.3100554.

[80] LONI, M., MAJD, A., LONI, A., DANESHTALAB, M., SJÖDIN, M.,
AND TROUBITSYNA, E. Designing compact convolutional neural
network for embedded stereo vision systems. In 2018 IEEE 12th In-
ternational Symposium on Embedded Multicore/Many-core Systems-on-
Chip (MCSoC) (2018), IEEE, pp. 244–251.

[81] LORENZO, P. R., NALEPA, J., KAWULOK, M., RAMOS, L. S., AND

PASTOR, J. R. Particle swarm optimization for hyper-parameter se-
lection in deep neural networks. In Proceedings of the Genetic and
Evolutionary Computation Conference (2017), pp. 481–488.

[82] LU, D., AND WENG, Q. A survey of image classification methods
and techniques for improving classification performance. Interna-
tional Journal of Remote Sensing 28, 5 (2007), 823–870.

[83] LU, Z., DEB, K., GOODMAN, E., BANZHAF, W., AND BODDETI,
V. N. Nsganetv2: Evolutionary multi-objective surrogate-assisted
neural architecture search. In Computer Vision – ECCV 2020 (Cham,
2020), A. Vedaldi, H. Bischof, T. Brox, and J.-M. Frahm, Eds.,
Springer International Publishing, pp. 35–51.

[84] LU, Z., WHALEN, I., BODDETI, V., DHEBAR, Y., DEB, K., GOOD-
MAN, E., AND BANZHAF, W. Nsga-net: neural architecture search
using multi-objective genetic algorithm. In Proceedings of the Genetic
and Evolutionary Computation Conference (2019), pp. 419–427.

[85] LU, Z., WHALEN, I., DHEBAR, Y., DEB, K., GOODMAN, E.,
BANZHAF, W., AND BODDETI, V. N. Multi-objective evolutionary

224 BIBLIOGRAPHY

design of deep convolutional neural networks for image classifica-
tion. IEEE Transactions on Evolutionary Computation (2020).

[86] LUNDBERG, S. M., AND LEE, S.-I. A unified approach to interpret-
ing model predictions. Advances in Neural Information Processing Sys-
tems 30 (2017).

[87] MA, N., ZHANG, X., ZHENG, H.-T., AND SUN, J. Shufflenet v2:
Practical guidelines for efficient cnn architecture design. In Pro-
ceedings of the European conference on computer vision (ECCV) (2018),
pp. 116–131.

[88] MA, Z., AND VANDENBOSCH, G. A. E. Impact of random num-
ber generators on the performance of particle swarm optimization
in antenna design. In 2012 6th European Conference on Antennas and
Propagation (EUCAP) (2012), pp. 925–929.

[89] MAHESH, B. Machine learning algorithms-a review. International
Journal of Science and Research (IJSR).[Internet] 9, 1 (2020), 381–386.

[90] MARTÍN, A., LARA-CABRERA, R., FUENTES-HURTADO, F.,
NARANJO, V., AND CAMACHO, D. Evodeep: a new evolutionary
approach for automatic deep neural networks parametrisation. Jour-
nal of Parallel and Distributed Computing 117 (2018), 180–191.

[91] MIIKKULAINEN, R., LIANG, J., MEYERSON, E., RAWAL, A., FINK,
D., FRANCON, O., RAJU, B., SHAHRZAD, H., NAVRUZYAN, A.,
DUFFY, N., ET AL. Evolving deep neural networks. In Artificial intel-
ligence in the age of neural networks and brain computing. Elsevier, 2019,
pp. 293–312.

[92] MITCHELL, M. An introduction to genetic algorithms. MIT press, 1998.

[93] MO, H., CUSTODE, L. L., AND IACCA, G. Evolutionary neural ar-
chitecture search for remaining useful life prediction. Applied Soft
Computing 108 (2021), 107474.

BIBLIOGRAPHY 225

[94] MORRISON, R. W. Dispersion-based population initialization. In
Genetic and Evolutionary Computation — GECCO 2003 (Berlin, Heidel-
berg, 2003), E. Cantú-Paz, J. A. Foster, K. Deb, L. D. Davis, R. Roy, U.-
M. O’Reilly, H.-G. Beyer, R. Standish, G. Kendall, S. Wilson, M. Har-
man, J. Wegener, D. Dasgupta, M. A. Potter, A. C. Schultz, K. A.
Dowsland, N. Jonoska, and J. Miller, Eds., Springer Berlin Heidel-
berg, pp. 1210–1221.

[95] NICHOL, A., DHARIWAL, P., RAMESH, A., SHYAM, P., MISHKIN, P.,
MCGREW, B., SUTSKEVER, I., AND CHEN, M. Glide: Towards pho-
torealistic image generation and editing with text-guided diffusion
models. arXiv preprint arXiv:2112.10741 (2021).

[96] NING, X., TANG, C., LI, W., ZHOU, Z., LIANG, S., YANG, H., AND

WANG, Y. Evaluating efficient performance estimators of neural
architectures. In Advances in Neural Information Processing Systems
(2021), M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W.
Vaughan, Eds., vol. 34, Curran Associates, Inc., pp. 12265–12277.

[97] NOBLE, W. S. What is a support vector machine? Nature Biotechnol-
ogy 24, 12 (2006), 1565–1567.

[98] NOH, H., HONG, S., AND HAN, B. Learning deconvolution net-
work for semantic segmentation. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision (2015), pp. 1520–1528.

[99] O’NEILL, D., XUE, B., AND ZHANG, M. Neural architecture search
for sparse densenets with dynamic compression. In Proceedings of the
2020 Genetic and Evolutionary Computation Conference (2020), pp. 386–
394.

[100] PHAM, H., GUAN, M., ZOPH, B., LE, Q., AND DEAN, J. Efficient
neural architecture search via parameters sharing. In International
Conference on Machine Learning (2018), PMLR, pp. 4095–4104.

226 BIBLIOGRAPHY

[101] PRICE, K., STORN, R. M., AND LAMPINEN, J. A. Differential evo-
lution: a practical approach to global optimization. Springer Science &
Business Media, 2006.

[102] RAHNAMAYAN, S., TIZHOOSH, H. R., AND SALAMA, M. M. Quasi-
oppositional differential evolution. In 2007 IEEE Congress on Evolu-
tionary Computation (2007), pp. 2229–2236.

[103] RAPAPORT, E., SHRIKI, O., AND PUZIS, R. Eegnas: Neural archi-
tecture search for electroencephalography data analysis and decod-
ing. In International Workshop on Human Brain and Artificial Intelli-
gence (2019), Springer, pp. 3–20.

[104] RAWAL, A., AND MIIKKULAINEN, R. From nodes to networks:
Evolving recurrent neural networks. arXiv preprint arXiv:1803.04439
(2018).

[105] REAL, E., AGGARWAL, A., HUANG, Y., AND LE, Q. V. Regularized
evolution for image classifier architecture search. In Proceedings of
the AAAI Conference on Artificial Intelligence (2019), vol. 33, pp. 4780–
4789.

[106] REAL, E., MOORE, S., SELLE, A., SAXENA, S., SUEMATSU, Y. L.,
TAN, J., LE, Q. V., AND KURAKIN, A. Large-scale evolution of im-
age classifiers. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70 (2017), pp. 2902–2911.

[107] REN, J., LI, Z., YANG, J., XU, N., YANG, T., AND FORAN, D. J.
Eigen: Ecologically-inspired genetic approach for neural network
structure searching from scratch. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (2019), pp. 9059–9068.

[108] REN, P., XIAO, Y., CHANG, X., HUANG, P.-Y., LI, Z., CHEN, X.,
AND WANG, X. A comprehensive survey of neural architecture

BIBLIOGRAPHY 227

search: Challenges and solutions. ACM Computing Surveys (CSUR)
54, 4 (2021), 1–34.

[109] RIBEIRO, M. T., SINGH, S., AND GUESTRIN, C. Model-agnostic in-
terpretability of machine learning. arXiv preprint arXiv:1606.05386
(2016).

[110] ROMBACH, R., BLATTMANN, A., LORENZ, D., ESSER, P., AND OM-
MER, B. High-resolution image synthesis with latent diffusion mod-
els. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) (June 2022), pp. 10684–10695.

[111] RONNEBERGER, O., FISCHER, P., AND BROX, T. U-net: Convo-
lutional networks for biomedical image segmentation. In Medical
Image Computing and Computer-Assisted Intervention – MICCAI 2015
(Cham, 2015), N. Navab, J. Hornegger, W. M. Wells, and A. F. Frangi,
Eds., Springer International Publishing, pp. 234–241.

[112] RUSSAKOVSKY, O., DENG, J., SU, H., KRAUSE, J., SATHEESH, S.,
MA, S., HUANG, Z., KARPATHY, A., KHOSLA, A., BERNSTEIN, M.,
ET AL. Imagenet large scale visual recognition challenge. Interna-
tional Journal of Computer Vision 115, 3 (2015), 211–252.

[113] SAFAVIAN, S. R., AND LANDGREBE, D. A survey of decision tree
classifier methodology. IEEE Transactions on Systems, Man, and Cy-
bernetics 21, 3 (1991), 660–674.

[114] SALOMON, R. Raising theoretical questions about the utility of ge-
netic algorithms. In International Conference on Evolutionary Program-
ming (1997), Springer, pp. 275–284.

[115] SANDLER, M., HOWARD, A., ZHU, M., ZHMOGINOV, A., AND

CHEN, L.-C. Mobilenetv2: Inverted residuals and linear bottle-
necks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (2018), pp. 4510–4520.

228 BIBLIOGRAPHY

[116] SAPRA, D., AND PIMENTEL, A. D. Constrained evolutionary piece-
meal training to design convolutional neural networks. In Interna-
tional Conference on Industrial, Engineering and Other Applications of
Applied Intelligent Systems (2020), Springer, pp. 709–721.

[117] SELVARAJU, R. R., COGSWELL, M., DAS, A., VEDANTAM, R.,
PARIKH, D., AND BATRA, D. Grad-cam: Visual explanations from
deep networks via gradient-based localization. In Proceedings of the
IEEE International Conference on Computer Vision (ICCV) (Oct 2017).

[118] SEN, S. A survey of intrusion detection systems using evolution-
ary computation. In Bio-inspired Computation in Telecommunications.
Elsevier, 2015, pp. 73–94.

[119] SHI, C., HAO, Y., LI, G., AND XU, S. Ebnas: Efficient binary net-
work design for image classification via neural architecture search.
Engineering Applications of Artificial Intelligence 120 (2023), 105845.

[120] SHI, Y. Particle swarm optimization. IEEE connections 2, 1 (2004),
8–13.

[121] SHI, Y., AND EBERHART, R. Empirical study of particle swarm
optimization. In Proceedings of the 1999 Congress on Evolutionary
Computation-CEC99 (Cat. No. 99TH8406) (1999), vol. 3, pp. 1945–1950
Vol. 3.

[122] SHRIKUMAR, A., GREENSIDE, P., AND KUNDAJE, A. Learning im-
portant features through propagating activation differences. In Pro-
ceedings of the 34th International Conference on Machine Learning (06–
11 Aug 2017), D. Precup and Y. W. Teh, Eds., vol. 70 of Proceedings of
Machine Learning Research, PMLR, pp. 3145–3153.

[123] SHU, H., AND WANG, Y. Automatically searching for u-net image
translator architecture. arXiv preprint arXiv:2002.11581 (2020).

BIBLIOGRAPHY 229

[124] SHU, Y., WANG, W., AND CAI, S. Understanding architectures
learnt by cell-based neural architecture search. arXiv preprint
arXiv:1909.09569 (2019).

[125] SIMONYAN, K., VEDALDI, A., AND ZISSERMAN, A. Deep inside
convolutional networks: Visualising image classification models
and saliency maps. arXiv preprint arXiv:1312.6034 (2013).

[126] SIMONYAN, K., AND ZISSERMAN, A. Very deep convolu-
tional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556 (2014).

[127] SO, D., LE, Q., AND LIANG, C. The evolved transformer. In Interna-
tional Conference on Machine Learning (2019), PMLR, pp. 5877–5886.

[128] SPRINGENBERG, J., DOSOVITSKIY, A., BROX, T., AND RIEDMILLER,
M. Striving for simplicity: The all convolutional net. In ICLR (work-
shop track) (2015).

[129] SRIVASTAVA, R. K., GREFF, K., AND SCHMIDHUBER, J. Highway
networks. arXiv preprint arXiv:1505.00387 (2015).

[130] SU, X., YOU, S., ZHENG, M., WANG, F., QIAN, C., ZHANG, C.,
AND XU, C. K-shot nas: Learnable weight-sharing for nas with
k-shot supernets. In Proceedings of the 38th International Conference
on Machine Learning (18–24 Jul 2021), M. Meila and T. Zhang, Eds.,
vol. 139 of Proceedings of Machine Learning Research, PMLR, pp. 9880–
9890.

[131] SUCH, F. P., MADHAVAN, V., CONTI, E., LEHMAN, J., STANLEY,
K. O., AND CLUNE, J. Deep neuroevolution: Genetic algorithms
are a competitive alternative for training deep neural networks for
reinforcement learning. arXiv preprint arXiv:1712.06567 (2017).

230 BIBLIOGRAPHY

[132] SUGANUMA, M., SHIRAKAWA, S., AND NAGAO, T. A genetic pro-
gramming approach to designing convolutional neural network ar-
chitectures. In Proceedings of the Genetic and Evolutionary Computation
Conference (2017), pp. 497–504.

[133] SUN, Q., LI, X., JIAO, L., REN, Y., SHANG, F., AND LIU, F. Fast and
effective: A novel sequential single-path search for mixed-precision-
quantized networks. IEEE Transactions on Cybernetics (2022), 1–13.

[134] SUN, Q.-S., ZENG, S.-G., LIU, Y., HENG, P.-A., AND XIA, D.-S. A
new method of feature fusion and its application in image recogni-
tion. Pattern Recognition 38, 12 (2005), 2437–2448.

[135] SUN, Y., SUN, X., FANG, Y., YEN, G. G., AND LIU, Y. A novel
training protocol for performance predictors of evolutionary neu-
ral architecture search algorithms. IEEE Transactions on Evolutionary
Computation 25, 3 (2021), 524–536.

[136] SUN, Y., WANG, H., XUE, B., JIN, Y., YEN, G. G., AND ZHANG,
M. Surrogate-assisted evolutionary deep learning using an end-to-
end random forest-based performance predictor. IEEE Transactions
on Evolutionary Computation 24, 2 (2019), 350–364.

[137] SUN, Y., XUE, B., ZHANG, M., AND YEN, G. G. A particle swarm
optimization-based flexible convolutional autoencoder for image
classification. IEEE Transactions on Neural Networks and Learning Sys-
tems 30, 8 (2018), 2295–2309.

[138] SUN, Y., XUE, B., ZHANG, M., AND YEN, G. G. Completely auto-
mated cnn architecture design based on blocks. IEEE Transactions on
Neural Networks and Learning Systems 31, 4 (2019), 1242–1254.

[139] SUN, Y., XUE, B., ZHANG, M., AND YEN, G. G. Evolving deep
convolutional neural networks for image classification. IEEE Trans-
actions on Evolutionary Computation 24, 2 (2019), 394–407.

BIBLIOGRAPHY 231

[140] SUN, Y., XUE, B., ZHANG, M., YEN, G. G., AND LV, J. Automat-
ically designing cnn architectures using the genetic algorithm for
image classification. IEEE Transactions on Cybernetics 50, 9 (2020),
3840–3854.

[141] SUNDARARAJAN, M., TALY, A., AND YAN, Q. Axiomatic attribution
for deep networks. In Proceedings of the 34th International Conference
on Machine Learning (06–11 Aug 2017), D. Precup and Y. W. Teh, Eds.,
vol. 70 of Proceedings of Machine Learning Research, PMLR, pp. 3319–
3328.

[142] SZEGEDY, C., LIU, W., JIA, Y., SERMANET, P., REED, S., ANGUELOV,
D., ERHAN, D., VANHOUCKE, V., AND RABINOVICH, A. Going
deeper with convolutions. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (2015), pp. 1–9.

[143] TACKETT, W. A., AND CARMI, A. The unique implications of brood
selection for genetic programming. In Proceedings of the First IEEE
Conference on Evolutionary Computation. IEEE World Congress on Com-
putational Intelligence (1994), IEEE, pp. 160–165.

[144] TOMSETT, R., HARBORNE, D., CHAKRABORTY, S., GURRAM, P.,
AND PREECE, A. Sanity checks for saliency metrics. Proceedings of
the AAAI Conference on Artificial Intelligence 34, 04 (Apr. 2020), 6021–
6029.

[145] VAN DEN BERGH, F., AND ENGELBRECHT, A. P. A study of particle
swarm optimization particle trajectories. Information Sciences 176, 8
(2006), 937–971.

[146] VERMA, S., PANT, M., AND SNASEL, V. A comprehensive review
on nsga-ii for multi-objective combinatorial optimization problems.
IEEE Access 9 (2021), 57757–57791.

232 BIBLIOGRAPHY

[147] WANG, B., SUN, Y., XUE, B., AND ZHANG, M. Evolving deep con-
volutional neural networks by variable-length particle swarm opti-
mization for image classification. In 2018 IEEE Congress on Evolu-
tionary Computation (CEC) (2018), IEEE, pp. 1–8.

[148] WANG, B., SUN, Y., XUE, B., AND ZHANG, M. A hybrid ga-pso
method for evolving architecture and short connections of deep con-
volutional neural networks. In Pacific Rim International Conference on
Artificial Intelligence (2019), Springer, pp. 650–663.

[149] WANG, B., XUE, B., AND ZHANG, M. Particle swarm optimisa-
tion for evolving deep neural networks for image classification by
evolving and stacking transferable blocks. In 2020 IEEE Congress on
Evolutionary Computation (CEC) (2020), IEEE, pp. 1–8.

[150] WANG, B., XUE, B., AND ZHANG, M. Surrogate-assisted particle
swarm optimization for evolving variable-length transferable blocks
for image classification. IEEE Transactions on Neural Networks and
Learning Systems (2021).

[151] WANG, H., WANG, Z., DU, M., YANG, F., ZHANG, Z., DING,
S., MARDZIEL, P., AND HU, X. Score-cam: Score-weighted visual
explanations for convolutional neural networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops (June 2020).

[152] WEI, C., NIU, C., TANG, Y., WANG, Y., HU, H., AND LIANG, J.
Npenas: Neural predictor guided evolution for neural architecture
search. IEEE Transactions on Neural Networks and Learning Systems
(2022), 1–15.

[153] WEI, C., TANG, Y., NIU, C. N. C., HU, H., WANG, Y., AND LIANG,
J. Self-supervised representation learning for evolutionary neural

BIBLIOGRAPHY 233

architecture search. IEEE Computational Intelligence Magazine 16, 3
(2021), 33–49.

[154] WEI, H., YANG, Y., WU, H., TANG, Y., LIU, M., AND LI, J. Au-
tomatic feature selection by one-shot neural architecture search in
recommendation systems. In Proceedings of the ACM Web Conference
2023 (New York, NY, USA, 2023), WWW ’23, Association for Com-
puting Machinery, pp. 1765–1772.

[155] XIE, L., AND YUILLE, A. Genetic CNN. In Proceedings of the IEEE
International Conference on Computer Vision (2017), pp. 1379–1388.

[156] XIE, S., GIRSHICK, R., DOLLÁR, P., TU, Z., AND HE, K. Aggregated
residual transformations for deep neural networks. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (2017),
pp. 1492–1500.

[157] XIE, S., ZHENG, H., LIU, C., AND LIN, L. SNAS: stochastic neural
architecture search. arXiv preprint arXiv:1812.09926 (2018).

[158] XU, Z.-B., LEUNG, K.-S., LIANG, Y., AND LEUNG, Y. Efficiency
speed-up strategies for evolutionary computation: fundamentals
and fast-gas. Applied Mathematics and Computation 142, 2-3 (2003),
341–388.

[159] YAN, S., ZHENG, Y., AO, W., ZENG, X., AND ZHANG, M. Does
unsupervised architecture representation learning help neural archi-
tecture search? Advances in Neural Information Processing Systems 33
(2020).

[160] YANG, Z., WANG, Y., CHEN, X., SHI, B., XU, C., XU, C., TIAN, Q.,
AND XU, C. Cars: Continuous evolution for efficient neural archi-
tecture search. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (2020), pp. 1829–1838.

234 BIBLIOGRAPHY

[161] YOU, J., LESKOVEC, J., HE, K., AND XIE, S. Graph structure of neu-
ral networks. In International Conference on Machine Learning (2020),
PMLR, pp. 10881–10891.

[162] YU, K., SUITO, C., JAGGI, M., MUSAT, C.-C., AND SALZMANN,
M. Evaluating the search phase of neural architecture search. In
ICRL 2020 Eighth International Conference on Learning Representations
(2020), no. CONF.

[163] YUAN, G., BING, X., AND MENGJIE, Z. An effective one-shot neu-
ral architecture search method with supernet fine-tuning for image
classification. In Proceedings of the Genetic and Evolutionary Computa-
tion Conference (2023).

[164] YUAN, G., WANG, B., XUE, B., AND ZHANG, M. Particle swarm
optimization for efficiently evolving deep convolutional neural net-
works using an autoencoder-based encoding strategy. IEEE Transac-
tions on Evolutionary Computation (2023).

[165] ZAGORUYKO, S., AND KOMODAKIS, N. Wide residual networks.
arXiv preprint arXiv:1605.07146 (2016).

[166] ZEILER, M. D., AND FERGUS, R. Visualizing and understanding
convolutional networks. In Computer Vision – ECCV 2014 (Cham,
2014), D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, Eds., Springer
International Publishing, pp. 818–833.

[167] ZHANG, H., JIN, Y., CHENG, R., AND HAO, K. Efficient evolution-
ary search of attention convolutional networks via sampled training
and node inheritance. IEEE Transactions on Evolutionary Computation
25, 2 (2020), 371–385.

[168] ZHANG, J., GONG, X., LIU, Y., WANG, W., WANG, L., AND

ZHANG, B. Bandit neural architecture search based on performance

BIBLIOGRAPHY 235

evaluation for operation selection. Science China Technological Sci-
ences (2023), 481–488.

[169] ZHANG, M., LI, H., PAN, S., CHANG, X., ZHOU, C., GE, Z., AND

SU, S. One-shot neural architecture search: Maximising diversity to
overcome catastrophic forgetting. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence 43, 9 (2020), 2921–2935.

[170] ZHANG, T., LEI, C., ZHANG, Z., MENG, X.-B., AND CHEN, C. L. P.
As-nas: Adaptive scalable neural architecture search with reinforced
evolutionary algorithm for deep learning. IEEE Transactions on Evo-
lutionary Computation 25, 5 (2021), 830–841.

[171] ZHANG, X., HOU, P., ZHANG, X., AND SUN, J. Neural architecture
search with random labels. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR) (June 2021),
pp. 10907–10916.

[172] ZHANG, X., ZHOU, X., LIN, M., AND SUN, J. Shufflenet: An ex-
tremely efficient convolutional neural network for mobile devices.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (2018), pp. 6848–6856.

[173] ZHAO, Y., WANG, L., TIAN, Y., FONSECA, R., AND GUO, T. Few-
shot neural architecture search. In Proceedings of the 38th Interna-
tional Conference on Machine Learning (18–24 Jul 2021), M. Meila and
T. Zhang, Eds., vol. 139 of Proceedings of Machine Learning Research,
PMLR, pp. 12707–12718.

[174] ZHONG, Z., YAN, J., WU, W., SHAO, J., AND LIU, C.-L. Practical
block-wise neural network architecture generation. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (2018),
pp. 2423–2432.

236 BIBLIOGRAPHY

[175] ZHOU, B., KHOSLA, A., LAPEDRIZA, A., OLIVA, A., AND TOR-
RALBA, A. Learning deep features for discriminative localization.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (June 2016).

[176] ZHOU, D., ZHOU, X., ZHANG, W., LOY, C. C., YI, S., ZHANG, X.,
AND OUYANG, W. Econas: Finding proxies for economical neu-
ral architecture search. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (2020), pp. 11396–11404.

[177] ZHOU, X., QIN, A. K., SUN, Y., AND TAN, K. C. A survey of
advances in evolutionary neural architecture search. In 2021 IEEE
Congress on Evolutionary Computation (CEC) (2021), IEEE, pp. 950–
957.

[178] ZHOU, Z., NING, X., CAI, Y., HAN, J., DENG, Y., DONG, Y., YANG,
H., AND WANG, Y. Close: Curriculum learning on the sharing ex-
tent towards better one-shot nas. In Computer Vision – ECCV 2022
(Cham, 2022), S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and
T. Hassner, Eds., Springer Nature Switzerland, pp. 578–594.

[179] ZHU, H., AN, Z., YANG, C., XU, K., ZHAO, E., AND XU, Y.
Eena: efficient evolution of neural architecture. In Proceedings of
the IEEE/CVF International Conference on Computer Vision Workshops
(2019), pp. 0–0.

[180] ZHU, Y., YAO, Y., WU, Z., CHEN, Y., LI, G., HU, H., AND XU,
Y. Gp-cnas: Convolutional neural network architecture search with
genetic programming. arXiv preprint arXiv:1812.07611 (2018).

[181] ZHUANG, H., ZHANG, Y., AND LIU, S. A pilot study of query-
free adversarial attack against stable diffusion. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops (June 2023), pp. 2384–2391.

BIBLIOGRAPHY 237

[182] ZOPH, B., AND LE, Q. V. Neural architecture search with reinforce-
ment learning. arXiv preprint arXiv:1611.01578 (2016).

[183] ZOPH, B., VASUDEVAN, V., SHLENS, J., AND LE, Q. V. Learning
transferable architectures for scalable image recognition. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition
(2018), pp. 8697–8710.

