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Abstract

The Uncertain Capacitated Arc Routing Problem (UCARP) is a well-
known combinatorial optimization problem that has many real-world ap-
plications. Genetic programming has successfully evolved routing poli-
cies that can make real-time routing decisions for uncertain arc routing
problems. Although the evolved routing policies are highly effective, they
are typically very complex thus hard for real users to understand and trust.
Therefore, it is necessary to improve the interpretability of GP-evolved
routing policies.

The overall goal of this thesis is to develop both intrinsic and post-hoc
methods to improve the interpretability of GP-evolved routing policies for
UCARP.

First, this thesis proposes a novel intrinsic genetic programming ap-
proach that simplifies the routing policies during the evolutionary process
using a niching technique. The simplified routing policies are stored in an
external archive. This thesis also develops new elitism, parent selection,
and breeding schemes for generating offspring from the original popula-
tion and the archive. The experimental results show that the newly pro-
posed approach can achieve significantly better test effectiveness than the
current state-of-the-art genetic programming hyper heuristic methods for
UCARP. The evolved routing policies are smaller, thus potentially more
interpretable.

Second, this thesis develops several multi-objective genetic program-
ming algorithms to evolve a Pareto front of routing policies with different
interpretability and effectiveness, so that the end users can choose based
on their preferences. This thesis handles two main challenges, i.e., ob-



jective selection bias issue and stochastic fitness evaluation issue, of de-
signing Multi-Objective GP (MOGP) for UCARP. To handle the objective
selection bias issue, an α dominance strategy is proposed. To further im-
prove the α dominance strategy, this thesis develops a new α value ad-
justment scheme. To handle the stochastic fitness evaluation issue, this
thesis proposes an archive strategy. The new archive strategy uses an ex-
ternal archive to store the potentially effective individuals that could have
been lost during the traditional GP process. The individuals in the archive
contribute back to the population in the breeding process. Finally, this
thesis combines all the above strategies to develop a new MOGP algo-
rithm. The experimental results show that the new MOGP algorithm out-
performs state-of-the-art algorithms for UCARP in terms of HV and IGD.
The evolved routing policies are much smaller, thus potentially more in-
terpretable.

Lastly, this thesis proposes a new post-hoc explanation approach to ex-
plaining the effective but complex GP-evolved routing policies. This thesis
proposes two metrics that can evaluate the quality of a local explanation
for GP-evolved routing policies. Then, this thesis investigates the feasibil-
ity of using a linear model to construct a local explanation for a complex
GP-evolved routing policy in a decision situation. After that, this thesis
further improves the local explanation method using Particle Swarm Op-
timization (PSO) to learn an interpretable linear model that accurately ex-
plains the local behavior of the routing policy for each decision situation,
and extends the local explanation method to a global explanation method.
The experimental results and case studies show that the proposed method
can obtain accurate and understandable explanations of GP-evolved rout-
ing policies for UCARP.

From the intrinsic aspect, both GP program simplification method and
multi-objective GP methods are proposed. The GP program simplifica-
tion approach addresses the case where only a single interpretable routing
policy is required, i.e. where the user’s preferences are known before the



routing policy is generated. The multi-target approach is aimed at situ-
ations where several different interpretable routing policies are needed,
because sometimes we cannot know the user’s preferences in advance,
and the user can choose their own routing policy according to their pref-
erences. From the post-hoc aspect, this thesis proposes local and global
explanation methods to further improve the interpretability of existing
complex GP-evolved routing policies. Furthermore, the local and global
explanation methods not only produce text explanations but also visual
explanations.
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Chapter 1

Introduction

This chapter introduces the research problem that this thesis addresses,
then describes the motivations, the research goals, and the major contri-
butions of the thesis.

1.1 Problem Statement

The Capacitated Arc Routing Problem (CARP) [72] is a classic combinato-
rial optimisation problem with a number of real-world applications, such
as waste collection [7] and winter gritting [75]. The main goal of CARP
is to serve a set of edges in a graph using a fleet of vehicles with the
minimum cost. CARP is considered as an arc routing counterpart to the
well-known Vehicle Routing Problem (VRP). It has been proven to be NP-
hard [204] and received much research interest. Many approaches have
been proposed for dealing with CARP [204]. However, most previous
studies assume a static environment, where all the parameters (e.g. task
demand, travel cost) are fixed and known in advance. This is usually not
true in the real world, where the environment is often uncertain. For exam-
ple, in waste collection, the amount of waste to be collected is not known
in advance and varies from one day to another.

Uncertain CARP (UCARP) [121,141,185] was proposed to better reflect

1
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the reality. A variety of uncertainties, such as the stochastic task pres-
ence and demand, stochastic edge deadheading cost and stochastic travel
time, have been considered [121]. In addition to the NP-hardness inher-
ited from CARP, the main challenge in UCARP is the route failure caused
by the stochastic task demand. A route failure occurs when the remaining
capacity of the vehicle becomes insufficient to serve and edge, because the
actual demand of an edge that needs to be served exceeds the vehicle’s
expected demand. Therefore, the vehicle has to return to the depot to refill
and come back to finish serving the edge again. A route failure might lead
to a high recourse cost.

UCARP is not just a standalone optimization challenge, it is an inte-
gral part of the extensive landscape of logistics and supply chain man-
agement [71]. In today’s world of commerce and global trade, managing
supply chains efficiently is of utmost importance. UCARP, representing
a challenge in routing and logistics, plays a pivotal role in tackling the
last-mile delivery challenge, optimal vehicle fleet management, and re-
source allocation within ever-changing and uncertain environments. In
sectors like e-commerce, where on-time deliveries are crucial for customer
satisfaction, UCARP solutions hold the promise of optimizing routes, re-
ducing delivery costs, and lessening the environmental impact. Moreover,
with supply chains constantly evolving in complexity and adaptability,
UCARP solutions can aid in streamlining distribution networks, ensur-
ing a seamless flow of products from manufacturers to end consumers.
Hence, successfully addressing UCARP goes beyond enhancing routing
efficiency. It ripples across the broader logistics and supply chain ecosys-
tem, influencing cost-effectiveness, environmental sustainability, and the
overall resilience of operations [86].

Traditional solution optimisation approaches to dynamic routing prob-
lems, such as mathematical programming [72], genetic algorithm s [185],
particle swarm optimisation [101] and Markov decision processes [170],
cannot effectively handle the route failures in UCARP. On the one hand,
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the traditional solution optimisation approaches try to optimise a solution
(i.e., a solution that performs reasonably well in all possible environments)
beforehand. If a route failure occurs, it is repaired by the recourse opera-
tor. However, the pre-planned solution is not flexible enough and cannot
be sufficiently changed by the recourse operator to cope with the dynamic
nature of the route failure situation. Additionally, it may induce a large
extra recourse cost in some situations. On the other hand, some solution
optimisation methods [41, 170] aim to re-optimise the remaining routes
when a route failure occurs. Although this can potentially obtain better
solutions, the re-optimisation process by running the solution optimisa-
tion algorithm is typically too slow to respond in real-time.

Routing policy-based approaches [166] are promising techniques that
can effectively handle the uncertain environment in UCARP. Unlike tradi-
tional solution optimization approaches, these approaches do not have to
pre-plan any solutions. Instead, they use routing policies to guide a vehi-
cle to determine which task to serve next as soon as it becomes idle [166].
A typical manually designed routing policy is Path Scanning [113]. How-
ever, numerous factors, such as the objective(s) and the graph topology,
can affect the effectiveness of the routing policy [91].

Recently, Genetic Programming Hyper Heuristic (GPHH) has been con-
sidered a promising technique that can automatically evolve effective heuris-
tics for dynamic problems [1], such as scheduling problems [26, 152, 214,
215] and resource allocation problems [180]. GPHH has also been suc-
cessfully applied to UCARP to evolve effective routing policies automati-
cally [67,122,123,133,143]. Although the GP-evolved routing policies have
shown effectiveness, they are often too complex to be understood by real
users. With the use of Artificial Intelligence (AI), interpretability has be-
come increasingly important. Interpretability is the degree to which a hu-
man can understand the cause of a decision [144]. If people are unable to
understand the principles behind the operation of AI models, it is difficult
for these models to be trusted by users. As a result, the interpretability
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of AI models has become a challenge for practical applications. There-
fore, it is essential to improve the interpretability of GP routing policies
for UCARPs.

In the world of logistics and supply chain management, where deci-
sions significantly impact operations and finances, the importance of AI
model interpretability cannot be emphasized enough [71]. Profession-
als like logistics managers, supply chain analysts, and decision-makers
grapple with the complex orchestration of goods, vehicles, and resources.
In environments marked by real-time shifts, unexpected disruptions, and
varying customer needs, understanding the reasoning behind AI-generated
decisions is crucial. Consider a logistics manager tasked with optimizing
delivery routes for a vehicle fleet during peak hours. An interpretable
routing policy can offer clear insights into why a particular route was cho-
sen, factoring in elements like traffic conditions, delivery time slots, and
cost-effectiveness. This transparency enables decision makers to adapt
swiftly, rerouting vehicles to address emerging challenges. In the realm
of supply chain planning, interpretable models can illuminate resource al-
location, ensuring decisions align with strategic goals and ethical consid-
erations. Additionally, in industries driven by compliance requirements,
interpretable AI can furnish verifiable explanations, aiding in audits and
regulatory adherence. In essence, interpretability acts as a bridge between
the intricate landscape of AI-driven decisions and the human intuition and
expertise that drive logistics and supply chain management [102, 139]. It
cultivates trust, enhances efficiency, and promotes strategic adaptability.

Methods to improve the interpretability of AI models can be broadly
divided into two categories [147]: intrinsic and post-hoc methods. In-
trinsic methods are applied during the model’s training process and are
designed to develop specific learning/search mechanisms to generate ef-
fective and interpretable models [35]. In contrast, post-hoc methods are
applied after model training to “explain” trained models. These meth-
ods can be applied to both “black-box” and transparent models because
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they are typically decoupled from the main model [35]. However, despite
the importance of interpretability, few studies have investigated the inter-
pretability aspect of GP-evolved routing policies for UCARP [87,140]. This
thesis aims to fill this gap in the literature.

To enhance interpretability of GP-evolved routing policies for UCARP,
it is crucial to carefully evaluate the appropriateness of interpretability
methods. This domain presents a complex challenge, necessitating a thought-
ful and nuanced approach. Intrinsic methods, operating during the model’s
training or evolution process, hold promise for UCARP by directly shap-
ing the evolved routing policies to enhance interpretability [147]. Through
techniques like program simplification and multi-objective optimization,
these intrinsic methods can potentially strike a balance between effective-
ness and interpretability, catering to various user preferences. On the other
hand, post-hoc methods, offering explanations after the model is trained,
provide a complementary avenue [147]. Although they might not directly
influence the model’s structure, they are invaluable for dissecting and vi-
sualizing the intricate behavior of evolved routing policies. In UCARP,
where routing decisions unfold sequentially, post-hoc methods can shed
light on why a particular decision was made in a given context. There-
fore, determining the suitability of interpretability methods for UCARP
involves a dynamic interplay between intrinsic techniques that streamline
the evolution process and post-hoc methods that unravel the intricacies of
the final routing policies. Together, they strive to make UCARP solutions
both effective and transparent.

The overall goal of this thesis is to develop both intrinsic and post-hoc
methods to improve the interpretability of GP-evolved routing policies for
UCARP.
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GPHH

Post-hoc methods, such as 
local explanation, 
visualisation etc.

Transparency

Intrinsic methods, such as 
simplification, MOGP etc.

Routing
Policy

Figure 1.1: GPHH interpretability methods

1.2 Motivations

1.2.1 Why Interpretability

Recently, Artificial Intelligence (AI) has become increasingly popular. AI
models can outperform humans on many tasks [14, 174] and often guide
human decision-making processes [26, 34, 178]. With the development of
AI, interpretability1 has become a hot topic in the field. It is crucial for
human users to understand and trust the AI model [13, 92, 145]. Usu-
ally, humans are reluctant to adopt techniques that are not directly inter-
pretable, tractable, and trustworthy [223], especially when they are con-
cerned about ethical AI [73]. An explanation that supports the output of an
AI model is essential. For example, when experts make diagnoses in pre-
cision medicine, they require much more information from the model than
a simple binary prediction to support their diagnosis [183]. Other exam-
ples include autonomous vehicles in transportation, security, and finance,
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among others [13]. Here are some benefits of improving interpretability of
the GP-evolved routing policies of UCARP [13, 139]:

1. Interpretability can help to ensure impartiality in decision-making,
i.e., to detect and, consequently, correct bias in the training dataset.

2. Interpretability is able to facilitate the robustness of the model by
highlighting potential adversarial perturbations that could change
the prediction.

3. Interpretability can ensure that only meaningful variables infer the
output. In other words, it can guarantee that a truthful causality
exists in the model reasoning.

4. The real-world rule dispatchers can understand the rules and correct
wrong decisions made by the rules in time.

5. The real-world dispatchers can understand the rules and easier to
adopt them to new scenarios.

GPHH can evolve routing policies that produce solutions that outper-
form those of other methods as well as manually designed routing policies
[122,203]. However, previous studies of GPHH in UCARP have primarily
focused on performance (effectiveness), which has been shown to be im-
pressive. If we only focus on performance, the system will become increas-
ingly opaque because there is a trade-off between a model’s performance
and its transparency [56]. In contrast to Deep Neural Networks (DNNs),
which are considered uninterpretable black-box models [13], some models
are considered more transparent or interpretable, such as linear/logistic
regression, decision trees, k-nearest neighbours, rule-based learning, gen-
eral additive models, genetic programming, and Bayesian models [13].

1In this thesis, interpretability, explainability and understandability are interchange-
able. They can be defined as the ability of a model to explain or to provide the meaning
in understandable terms to human operators.
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Figure 1.2: A simple and interpretable routing policy

Figure 1.3: A complex and uninterpretable routing policy

However, when these models, such as fuzzy systems based on rule-based
learning [5, 6], become too complex, they may not be as easy to interpret
as expected. Although the program evolved by GP is considered inter-
pretable because of its tree-based representation [60], if the evolved rout-
ing policy becomes too complex (either in program size or structure), it
can still be very difficult to interpret. Therefore, interpretability should
be considered alongside effectiveness. Most of the existing related works
have only focused on the effectiveness of routing policies, ignoring inter-
pretability. As a result, GP-evolved routing policies may be too compli-
cated to interpret and understand. Practitioners may lack confidence in
using the routing policies because they lack an understanding of the inner
mechanism, despite their effectiveness in training instances. Improving
the interpretability of evolved routing policies would make it much easier
to adopt them in practice. Besides, it would be possible to fix the evolved
routing policies when they make incorrect decisions.

Figs. 1.2 and 1.3 show two different routing policies. The routing policy
in Fig. 1.2 is easily interpretable when we understand that CFH indicates
the cost from the candidate task to the current location and DEM indicates
the expected demand of the candidate task. This policy favors tasks that
are near the current location and require less demand. On the other hand,
even if we understand all the terminals in the routing policy in Fig. 1.3,
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it is difficult to interpret and hard to read. While the routing policy in
Fig. 1.2 is more interpretable, its effectiveness is weak. Therefore, it is
necessary to develop intrinsic methods that evolve routing policies that
are both interpretable and effective, or post-hoc methods to explain the
complex routing policies.

In the broader scope of UCARP, the significance of explainability rever-
berates across various applications and industries. UCARP represents a
class of optimization challenges that extend beyond its academic roots and
directly impact real-world decision-making processes. From urban waste
collection to emergency response planning, the decisions made through
UCARP solutions can influence operational efficiency, resource allocation,
and even public safety. In these contexts, the ability to understand the
reasoning behind AI-driven routing policies is indispensable. Failure to
provide transparent and interpretable solutions may lead to suboptimal
outcomes, increased operational costs, and ethical concerns [54]. Thus, our
research embraces the principles advocated by explainable AI (XAI) [54]
and responsible AI (RAI) [96] frameworks. Our proposed methods priori-
tise transparency, accountability, and fairness, ensuring that the UCARP
solutions are not just effective but also ethically sound. By aligning with
XAI and RAI principles [189,209], our research empowers decision-makers
across diverse domains to trust, understand, and make informed adjust-
ments to AI-driven routing policies, thereby enhancing the broader appli-
cability and ethical integrity of our solutions in the dynamic landscape of
UCARP problem-solving.

1.2.2 Challenges of Evolving Interpretable Routing Poli-

cies

Even though GP is supposed to be an interpretable approach, the GP-
evolved routing policies in UCARP are not easy to interpret [88,196]. Evolv-
ing interpretable routing policies is challenging because:
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• GP tends to evolve trees containing a number of redundant compo-
nents that have no contribution to performance. As a result, the GP-
evolved routing policies become unnecessarily huge (also known as
bloat) and hard to interpret. Firstly, it is difficult to detect those re-
dundant components during the evolutionary process. Secondly, re-
moving them during the evolutionary process can have a negative
impact on the search and lead to worsened effectiveness.

• As with any machine learning algorithm, there is a trade-off between
interpretability and effectiveness. GP trees that are designed to be
more interpretable may sacrifice effectiveness, while more effective
routing policies may be less interpretable. Finding the right balance
between the two can be challenging.

• What is considered ”interpretable” may vary depending on the in-
tended audience and domain. Evolving an interpretable GP tree that
meets the needs and preferences of a specific user group can be chal-
lenging.

• GP is considered an interpretable approach because of its tree-based
representation. However, GP trees can apply complex nonlinear trans-
formations to input variables, which can make it difficult to under-
stand the relationship between the inputs and the output.

Interpretability is a persistent challenge, not only within UCARP but
also across various computing and machine learning tasks. The need for
models that can be easily interpreted is a common thread in different do-
mains, but UCARP presents unique challenges due to its nature of se-
quential decision-making and the complexity of evolved routing policies.
While the trade-off between model interpretability and effectiveness is a
common challenge in many AI and ML applications, UCARP introduces
its own complexities. One key difference lies in the fact that traditional in-
terpretation techniques used in tasks like classification and regression may
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not seamlessly apply to UCARP’s tree-based routing policies. Moreover,
while smaller models are typically more interpretable, in UCARP, ensur-
ing that simplification does not compromise the effectiveness of evolved
routing policies adds an additional layer of complexity. Addressing inter-
pretability in UCARP calls for a tailored approach that carefully consid-
ers its specific intricacies, setting it apart from interpretation challenges in
other computing and ML tasks.

Many strategies can be utilised to improve the interpretability of the
GP-evolved routing policies, such as intrinsic methods and post-hoc meth-
ods.

• GP-evolved routing policies contain many redundant materials, as
GP tends to generate larger and larger trees without any improve-
ment in effectiveness. GP simplification is potential way. Simplifi-
cation method can simplify a GP tree to its simpler version without
losing effectiveness.

• We can also optimise the interpretability and the effectiveness simul-
taneously. Intuitively, in addition to the effectiveness, we can take
all the factors that may affect the interpretability, such as the number
of nodes, number of distinguished features, tree depth, and model
complexity, of the evolved routing policies, into account using multi-
objective GP. There is a tradeoff between the interpretability and the
effectiveness. In this case, we can use multi-objective GP algorithm
to evolve a Pareto front of routing policies in which users can choose
routing policies based on their preference.

• Post-hoc methods can be also applied to improve the GP-evolved
routing policies. Comparing with intrinsic methods which improve
interpretability by evolving simpler routing policies. However, in
some very complex scenarios, the GP-evolved routing policies need
to maintain a certain level of complexity in order to be effective [25,
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95]. The post-hoc methods can potentially improve interpretabil-
ity without sacrificing effectiveness since they are applied to trained
models without modifying them.

1.2.3 Limitations of Current Approaches for Evolving In-

terpretable Routing Policies for UCARP

To the best of our knowledge, there is not much existing work on improv-
ing the interpretability of GP-evolved routing policies for UCARP. Existing
studies mainly focus on improving interpretability by limiting the GP tree
size, which is the most straightforward approach. However, this may also
decrease the effectiveness of the GP-evolved routing policies. Therefore,
there is a need to develop new algorithms that can improve interpretabil-
ity without compromising effectiveness.

GP tree simplification is an effective way to improve the interpretabil-
ity of the GP-evolved model. It is widely acknowledged that simpler mod-
els are easier to interpret [13, 39, 147]. GP typically produces trees that
contain a large number of redundant components, and it is desirable to re-
move as many of these redundancies as possible without sacrificing the ex-
ploration ability of GP or simplifying the model by searching for a simpler
model with the same phenotypic behavior. In the past, manual simplifica-
tion of the final GP tree has been attempted, but automatic simplification
is preferred [105]. Wong and Zhang et al. [205,218–220] have explored the
use of algebraic tree simplification with hashing techniques and applied it
to regression and classification problems. Kinzett et al. [107] and Song et
al. [177] have proposed numerical tree simplification methods. However,
these simplification methods have several limitations. First, they detect re-
dundant subtrees that need to be removed based on genotypic information
(e.g., tree structure) rather than phenotypic information (e.g., behavior in
decision-making). Thus, they may fail to detect some implicit redundan-
cies. Second, they require predefined parameters, such as predefined sim-
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plification rules or a predefined threshold. The final test performance is
highly sensitive to the predefined simplification rules or parameters, mak-
ing it challenging to set them appropriately. Another limitation is that pre-
vious studies only consider removing redundant components from the GP
tree. However, the primary goal of simplification is to convert a GP tree
into its simpler version with the same phenotypic behavior. Therefore, a
search technique can be applied to find a simpler version of the original
GP tree instead of simply removing redundant components.

Multi-objective approaches can also be applied to improve the inter-
pretability of GP-evolved routing policies for UCARP. These approaches
can evolve both the effectiveness and interpretability of the model, and
provide a set of routing policies with varying degrees of interpretability
to end-users. This way, users can choose a routing policy based on their
preference. However, there are two significant challenges when develop-
ing multi-objective GP (MOGP) to evolve effective and small routing poli-
cies for UCARP. First, GP is more likely to generate small but ineffective
individuals than effective but typically large ones. Under the traditional
dominance relation, small and ineffective individuals are more likely to be
selected as parents and survive into the next generation, leading to the ob-
jective selection bias issue. Second, fitness evaluation for routing policies
is stochastic due to the training sample rotation. In other words, it is calcu-
lated on a different small subset of training instances in each generation.
This stochastic fitness evaluation can cause potentially good routing poli-
cies to be discarded if they perform poorly on a small subset of training
samples. This phenomenon becomes worse in MOGP for UCARP since
most potentially good routing policies have large program size.

Post-hoc interpretability methods, such as local explanation and visu-
alization techniques, are considered promising techniques that can help
users to understand black-box models, such as DNNs. They can also be
utilised to improve the interpretability of the evolved model in GP. How-
ever, they cannot be directly applied to our problem since our problem is
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a sequential decision-making problem. For example, visualization tech-
niques for GP, which have been utilised in previous studies, are usually
used to visualise the evolutionary process of GP so that users can under-
stand why GP evolves the final model [47,138,151,157], or design new GP
tree visualization representation, such as top view cone tree, Robertson
cone tree, and cushion tree map, to make GP trees easier to observe [65]. It
is also important for users to understand the obtained model. Therefore,
it is necessary to apply visualization techniques to interpret the evolved
model. Visualization explanation techniques in Explainable Artificial In-
telligence (XAI) aim at visualizing the model’s behavior. It can be used to
visualise the high-dimensional distributed representations by rendering
2D visualizations in which nearby data points are likely to appear close
together (t-SNE) [118, 132]. It can also be used to identify the relationship
between the input and the output for image classification problems [21].
However, most existing visualization explanation techniques are for clas-
sification and regression problems [169, 211]. As existing approaches are
mainly for classification and regression problems, they cannot be directly
adapted to UCARP, which is a sequential decision-making problem. In
UCARP, it is important for us to understand the behavior generated by a
GP routing policy, for example, why task A is chosen over a set of other
tasks in a decision situation. Thus, it is necessary to develop post-hoc
approaches, such as local explanations and visualization methods, for GP-
evolved routing policies for UCARP to explain the behavior of the GP-
evolved routing policies.

1.3 Research Goals

Overall, the goal of this thesis is to enhance the interpretability of GP-
evolved routing policies for UCARP through both intrinsic and post-hoc
approaches. For intrinsic interpretability, the thesis will introduce new
GP simplification methods that simplify routing policies during the evo-
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lutionary process. It will also propose multi-objective GP techniques that
optimise both the effectiveness and complexity of routing policies. For
post-hoc interpretability, the thesis will present novel local and global ex-
planation methods to better elucidate the GP-evolved routing policies.

The specific research objectives of this work are shown as follows.

1. Develop new GP simplification approaches that can improve inter-
pretability by simplifying GP trees.

GP trees simplified by previous approaches still contain some im-
plicit redundant components. Besides, they only consider removing
redundant components from the GP tree. Simplification can be also
the process of converting a GP tree to its simple version which has
the same phenotypic behavior. In this objective, we aim to propose
new GP simplification approaches for UCARP. To achieve this objec-
tive, this research objective leads to sub-objectives as follows.

(a) To develop a new niching simplification scheme based on phe-
notypic behaviour to automatically detect and remove redun-
dant materials from GP tree during the evolutionary process.

(b) To develop new archive strategy to compromise the loss of pop-
ulation diversity due to the niching simplification.

(c) To design new breeding process and new breeding mechanisms
to including archive to the breeding process.

(d) To develop a new GPHH algorithm with Niching (GPHH-N)
that incorporates all the above-designed components.

(e) To verify the effectiveness of GPHH-N, and analyse the routing
policies evolved by GPHH-N.

2. Developing new multi-objective Genetic Programming approaches
for UCARP.

The goal is to find out the Pareto Front that can compromise the ef-
fectiveness and the interpretability of the evolved routing policies so
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that the GP-evolved routing policies meet the needs and preferences
of a different user groups. In this case, we use the number of nodes
in routing policy (tree size) and effectiveness as two main objectives.
Two main challenges are objective selection bias issue and stochastic
evaluation issue. Thus, it is necessary to propose new multi-objective
GP approaches that can handle this issue. To achieve this goal, this
research objective leads to sub-objectives as follows.

(a) To develop a new MOGP algorithm which uses α dominance
(αMOGP) to handle the objective selection bias issue so that the
multi-objective GP process will not bias to any objective during
the evolutionary process.

(b) To develop a new MOGP algorithm that uses archive strategy
(TSMOGP-a) to handle the stochastic evaluation issue so that
the MOGP algorithm can compensate the loss of potentially
good individuals and evolve more complete Pareto front.

(c) To develop a new MOGP algorithm that uses both the α dom-
inance and the archive strategy (αMOGP-a) to handle both is-
sues simultaneously so that the new MOGP algorithm not bias
to any objective and evolve a relatively complete Pareto front.

(d) To verify the effectiveness of αMOGP-a by comparing with the
current state-of-the-art on a wide range of UCARP instances,
and verify the effectiveness of the newly proposed α adaptation
scheme and archive strategy.

(e) To interpret the routing policies evolved by αMOGP-a, and un-
derstand the behaviors of the GP-evolved routing policies.

3. Develop a new local/global post-hoc explanation method to further
improve the interpretability of complex GP-evolved routing policy.

The post-hoc explainability technique is considered a promising tech-
nique that can be applied to model to explain its decision in ma-
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chine learning. It aims at communicating understandable informa-
tion about how an already developed model produces its predictions
for any given input [13]. Under a UCARP decision situation, e.g.,
when a vehicle completes the current task and becomes idle, it uses a
routing policy to prioritise/rank the candidate tasks (those that can
be served by the vehicle without violating the capacity constraint)
and selects the top-ranked task to serve next. Thus, the behaviour of
a routing policy can be characterised from two aspects: (1) its task
ranking and (2) the selected task. To explain the behaviour of a rout-
ing policy in a decision situation, we need to explain why the rout-
ing policy ranks the candidate tasks in a particular way, and why
it selects a certain task over others in this decision situation. In ad-
dition to explaining the above local behaviour of routing policy in
each decision situation, it is also important to explain its global be-
haviour in all the different decision situations that occurred during
the entire service process. However, the global explanation is much
more difficult to obtain than the local explanation for each single de-
cision situation [120]. To achieve this objective, we will propose a
new Local-Global Ranking Explanation (LGRE) method to tackle the
above challenges. This research objective leads to sub-objectives as
follows.

(a) To propose two measures, namely consistency and correlation, to
characterise the local behaviour of routing policy in each de-
cision situation so that we can qualify the local explanation of
GP-evolved routing policies.

(b) To investigate the feasibility of using linear model as local ex-
planation of GP-evolved routing policies.

(c) To develop new local explanation method for GP-evolved rout-
ing policies for UCARP. The new local explanation method uses
Particle Swarm Optimisation (PSO) algorithm to optimise the
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coefficients of linear models that is applied as local explanations
for the GP-evolved routing policy in a decision situation.

(d) To develop new global explanation method based on local ex-
planations for GP-evolved routing policies for UCARP. The global
explanation method utilises clustering mechanisms to summarise
the local explanations of all the decision situations occurred in
the UCARP instance into a global explanation, in the form of a
production rule, for example, “If the decision situation shows
pattern X, then the local explanation shows pattern Y”.

(e) To design new post-hoc method that can produce both local and
global explanations for GP-evolved routing policies for UCARP
(LGRE). LGRE uses PSO to evolve linear models for the local
explanation, and define a new fitness function that incorporates
the consistency, correlation and number of used attributes in the
linear model. LGRE uses K-means clustering method to gener-
ate global explanations.

(f) To verify the accuracy of the proposed LGRE method, in terms
of consistency and correlation in different decision situations.

(g) To show the interpretability of the LGRE method by giving case
studies of the local and global explanations.

1.4 Major Contributions

This thesis makes the following major contributions, each of which is dis-
cussed in each of the contribution Chapters 3 to 5 as appropriate.

1. This thesis proposes a novel GPHH method with a simplification
approach using a niching technique (GPHH-N). This is an intrinsic
interpretability method which aims to reduce the complexity of GP-
evolved routing policies so that they are much easier to be under-
stood by end-users. In the proposed method, a new niching sim-
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plification scheme based on phenotypic behavior is proposed to au-
tomatically simplify GP-evolved routing policies during the evolu-
tionary process. An external archive is used to compromise the loss
of population diversity due to the niching simplification. A multi-
source breeding mechanism is proposed to generate offspring from
the original population and the representative archive, respectively.
Niching-based elitism and parent selection schemes are designed for
breeding from the representative archive. GPHH-N was examined
and compared with the basic GPHH approach without simplifica-
tion (GPHH), the basic GPHH approach with algebraic simplifica-
tion (GPHH-A), and three representative bloat control methods on
57 UCARP instances. The results suggest that GPHH-N can out-
perform all the compared approaches in terms of test performance.
GPHH-N can also outperform GPHH and GPHH-A in terms of tree
size and training time. We also analysed the proposed components’
effect through a set of controlled experiments. The results showed
that all three new components could contribute to evolving smaller
and better routing policies. The niching tournament selection and
multi-source breeding components are more effective than the nich-
ing elitism component. Overall, GPHH-N can obtain better test per-
formance and smaller and potentially more interpretable routing poli-
cies than the current state-of-the-art GPHH approach.

Part of this contribution has been published in:

Shaolin Wang, Yi Mei, Mengjie Zhang. “Genetic Programming With
Niching for Uncertain Capacitated Arc Routing Problem”. IEEE Trans-
actions on Evolutionary Computation, vol. 26, no. 1, pp. 73–87, 2022.

2. This thesis introduces novel MOGP algorithms that can evolve a set
of non-dominated routing policies with different tradeoffs between
the effectiveness and the size so that end users can select a routing
policy based on their preference. This thesis proposes different meth-
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ods for issues in MOGP designing for UCARP. There are two main
challenges, i.e., the objective selection bias issue and the stochastic
evaluation issue, in MOGP designing for UCARP. Firstly, we have
designed new α dominance schemes to handle to objective selection
bias issue. In this case, the searching process will not bias to either
objective. Then, we have also designed new archive strategy to han-
dle the stochastic evaluation issue. The archive can maintain the
potentially good individuals evolved during the evolutionary pro-
cess. This can compensate the loss of good individuals caused by the
stochastic evaluation issue. Finally, an intrinsic MOGP interpretabil-
ity method is designed to improve the interpretability of GP-evolved
routing policies. Additionally, it can provide a relatively complete
Pareto front of routing policies to end-users to select policies based
on their preferences. The final algorithm (αMOGP-a) contains α-
dominance and archive strategy. It uses a new α adaptation scheme
that adaptively balances effectiveness and size during the evolution-
ary process. The new archive strategy is used to maintain poten-
tially useful routing policies. Experimental results demonstrate that
αMOGP-a outperforms state-of-the-art algorithms for UCARP. The
α adaptation scheme and archive are both effective, with both multi-
objective indicators, HV and IGD, worsening when either compo-
nent is removed. The effectiveness of αMOGP-a is proven through
routing policy analysis. As αMOGP-a can provide a set of non-
dominated solutions, it is possible to gain domain knowledge about
which building blocks are more useful for routing policy by observ-
ing these solutions in the same set. Overall, αMOGP-a obtains a bet-
ter Pareto front and potentially more interpretable routing policies
than state-of-the-art algorithms

Part of this contribution has been published in:

Shaolin Wang, Yi Mei, Mengjie Zhang. “A Multi-Objective Genetic
Programming Algorithm with α dominance and Archive for Uncer-
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tain Capacitated Arc Routing Problem”. IEEE Transactions on Evo-
lutionary Computation, 2022, DOI:10.1109/TEVC.2022.3195165.

Shaolin Wang, Yi Mei, Mengjie Zhang. “Two-stage multi-objective
genetic programming with archive for uncertain capacitated arc rout-
ing problem”. Genetic and Evolutionary Computation Conference
(GECCO), ACM, 2021. pp. 287-295.

Shaolin Wang, Yi Mei, Mengjie Zhang. ”A Multi-Objective Genetic
Programming Approach with Self-Adaptive α Dominance to Uncer-
tain Capacitated Arc Routing Problem.” IEEE Congress on Evolu-
tionary Computation (CEC). IEEE, 2021. pp. 636-643.

Shaolin Wang, Yi Mei, Mengjie Zhang. ”A Multi-Objective Genetic
Programming Hyper Heuristic Approach to Uncertain Capacitated
Arc Routing Problems.” IEEE Congress on Evolutionary Computa-
tion (CEC). IEEE, 2020. pp. 1-8.

3. This thesis proposes a new Local-Global Ranking Explanation (LGRE)
method to enhance the interpretability of GP-evolved routing poli-
cies. Existing post-hoc methods are mainly designed for classifica-
tion and regression problems. They cannot be adapted to sequential
decision making problems, such as UCARP. In addition, it is difficult
to explain the behaviors of GP-evolved routing policies, for exam-
ple why the routing policy ranks the candidate tasks in a particular
way, why it selects a certain task over others in this decision situa-
tion. LGRE is a post-hoc method that can be applied to existing GP-
evolved routing policies. The proposed approach consists of a local
ranking explanation module and a global explanation module. The
local ranking explanation module employs particle swarm optimiza-
tion to learn an interpretable linear model that accurately explains
the local behavior of the routing policy for each decision situation.
The global explanation module then uses a clustering technique to
summarize the local explanations into a global explanation. Experi-
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mental results and case studies on benchmark datasets demonstrate
that the proposed method can provide accurate and understandable
explanations of the routing policies evolved for UCARP.

Part of this contribution has been published in:

Shaolin Wang, Yi Mei, Mengjie Zhang. ”Explaining Genetic Pro-
gramming Evolved Routing Policies for Uncertain Capacitated Arc
Routing Problem”. 2023, IEEE Transactions on Evolutionary Com-
putation, DOI:10.1109/TEVC.2023.3238741.

Shaolin Wang, Yi Mei, Mengjie Zhang. “Local ranking explanation
for genetic programming evolved routing policies for uncertain ca-
pacitated Arc routing problems”. Genetic and Evolutionary Compu-
tation Conference (GECCO), ACM, 2022. pp. 314-322.

1.5 Organization of the Thesis

The remainder of this thesis is organised as follows. Chapter 2 introduces
the essential background and related work. The major contributions of the
thesis are presented in Chapters 3 to 5. Chapter 6 concludes the thesis.

Chapter 2 presents the essential background of Genetic Programming
(GP), Hyper Heuristic (HH) and Uncertain Capacitated Arc Routing Prob-
lems (UCARPs), an overview of the interpretability of GP. It also reviews
the related work in UCARP using GPHH as well as interpretability meth-
ods.

Chapter 3 proposes a novel GPHH method with a simplification ap-
proach using a niching technique (GPHH-N). A new niching simplifica-
tion scheme, an archive strategy and a multi-source breeding mechanism
are designed and illustrated. It then describes the details of the conducted
experiments to compare the proposed methods against the state-of-the-art
methods on 57 UCARP instances. The results suggest that GPHH-N can
outperform all the compared approaches in terms of test performance and
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obtain better interpretability.
Chapter 4 proposes novel MOGP algorithms that evolve a set of non-

dominated routing policies with different tradeoffs between the effective-
ness and the interpretability so that end users can select a routing policy
based on their preference.

Chapter 5 proposes a new Local-Global Ranking Explanation (LGRE)
method to improve the interpretability of GP-evolved routing policies.
The new approach includes a local ranking explanation and a global expla-
nation module. The experimental results and case studies on the bench-
mark datasets show that the proposed method can obtain accurate and
understandable explanations of the routing policies evolved for UCARPs.

Chapter 6 summarises the work in the thesis and draws overall con-
clusions. Some possible future research directions are also shown in this
chapter.
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Chapter 2

Literature Review

This chapter introduces the fundamental concepts of Uncertain Capaci-
tated Arc Routing Problem (UCARP), Genetic Programming (GP), Hyper
Heuristic (HH), Interpretability, and related works. Section 2.1 introduces
the UCARP. Section 2.2 introduces the routing policies and how it gen-
erates a solution to UCARP. Section 2.3 introduces the Hyper Heuristic.
Section 2.4 introduces the GP. Section 2.5 introduces the existing studies
for GPHH. Section 2.6 introduces the Multi-Objective Evolutionary algo-
rithms. Section 2.7 introduces the Particle Swarm Optimisation algorithm.
Section 2.8 introduces the interpretability in Machine Learning (ML). Sec-
tion 2.9 introduces related work.

2.1 Uncertain Capacitated Arc Routing Problems

A UCARP [141] instance can be represented by a connected undirected
graph G(V,E), where V and E indicate the sets of vertices and edges, re-
spectively. The vertex v0 ∈ V denotes the depot. Each edge e ∈ E has
a positive random deadheading cost ς̄(e), which indicates the cost to tra-
verse the edge. A fleet of vehicles with a same given positive capacity Q

are allocated to serve all the tasks T ⊆ E. Each task t ∈ T has a positive
random demand d̄(t), and a positive serving cost sc(t). The goal is to min-

25
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imise the total cost of serving all the tasks in T . Several constraints have to
be satisfied. First, all the routes must start and end at v0 ∈ V . Second, each
task t ∈ T must be served exactly once, but it can be traversed multiple
times. Third, the total demand served by each route (an edge sequence
starts and end at the depot) cannot exceed the capacity of the vehicle.

In UCARP, there are a number of random variables, each of which can
be sampling differently, which means that each variable can have infinite
values. Accordingly, a UCARP instance may contain different samples.
In a UCARP instance sample, each random variable, i.e., the task demand
d̄(t) and deadheading cost ς̄(e), takes a random realised value. However,
the realised demand of a task is unknown until it has been served, and
the realised deadheading cost of an edge is unknown in advance and is
revealed during the traversal over the edge.

The distribution of a task’s demand characteristics, such as its mean
and standard deviation, is predetermined, with the actual demand value
becoming known only after the task is completed, as seen in activities like
waste collection, where the precise amount of waste on the street remains
uncertain until the street is fully serviced. Similarly, each edge in the
graph has a relatively low likelihood of being absent, often due to tem-
porary roadwork or traffic accidents, and the actual presence of an edge
remains unknown until the vehicle reaches its initial point, analogous to
how a “closed road” sign is visible only when next to the closed road.
Additionally, the distribution of the deadheading cost for an edge is antic-
ipated in advance, relying on historical data, with the actual deadheading
cost realised only after traversing the edge, influenced by factors such as
real-time traffic conditions, road conditions, and driving skills, introduc-
ing variability into the cost estimation.

The nature of the uncertainties of the environment will lead to two
kinds of failures during the serving process.

• Route failure: the actual demand of a task exceeds the vehicle’s re-
maining capacity.
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• Edge failure: an edge in the route becomes inaccessible (its deadhead-
ing cost becomes infinity).

When a route failure occurs, the vehicle will go back to the depot to re-
fill and return to the failed task to complete the remaining service. Fig. 2.1
shows an example where the vehicle is serving the red edge with expected
demand of 3 but actual demand of 5. The vehicle’s remaining capacity of
4, thus is expected to be able to serve the task. However, the actual de-
mand is larger than the remaining capacity, and a route failure occurs. In
this case, the vehicle has to return to the depot to replenish its capacity
in the middle of the service. An edge failure occurs when an edge in the
route becomes inaccessible (its deadheading cost becomes infinity). The
edge failure can be addressed by finding the shortest detour under the
current situation using real-time path-finding algorithms (e.g., Dijkstra’s
algorithm [51]). The goal of solving UCARP is to minimise the expected
total cost of the solution over all the possible values of the random vari-
ables after addressing the route and edge failures..

A solution to a UCARP instance is represented as S = (S.M, S.N).
S.M = {S.M (1), . . . , S.M (j)} is a set of vertex sequences, where j is the
number of vertex sequences (routes). S.M (k) = (S.m

(k)
1 , . . . , S.m

(k)
Lk
) stands

for the kth route, where Lk represents the number of vertices in the kth

route. S.N = {S.N (1), . . . , S.N (j)} is a set of continuous vectors, and S.N (k) =

(S.n
(k)
1 , . . . , S.n

(k)
Lk−1) (S.n(k)

i ∈ [0, 1]) is the fraction of demand served along
the route S.M (k). The problem can be formulated as follows.
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Figure 2.1: An example of a route failure.

min Eξ∈Ξ[C(Sξ)], (2.1)

s.t.
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i=1

dξ

(
Sξ.m

(k)
i , Sξ.m

(k)
i+1

)
× Sξ.n

(k)
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(k)
i , Sξ.m

(k)
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∈ E, (2.3)(
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)
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k=1
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(k)
i × (1− Sξ.z

(k)
i (e)) = 0, ∀e : dξ(e) = 0, (2.7)
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where Eq. (2.1) is the objective function. It is used to minimise the E, which
is the expected total cost C(Sξ) of the solution Sξ over all samples ξ ∈ Ξ.
The total cost of a solution on one sample ξ is calculated by Eq. (2.8), where
ςξ(u, v) is the realised deadheading cost between the node u to v in ξ. The
sc(t) refers to the serving cost of a task and ςξ(t)) refers to deadheading cost
of the same task. For any sample ξ, a feasible solution Sξ is generated by a
routing policy which gradually builds the solution on-the-fly. Eq. (2.2) is
the capacity constraint, and dξ refers to the realised task demand in ξ. Eq.
(2.3) and Eq. (2.4) are the domain constraints of Sξ.M and Sξ.N . Eq. (2.5)
indicates that all the routes start and end at the depot. Eq. (2.6) means that
each task is served exactly once (the total demand fraction served by all
vehicles is 1). Sξ.z

(k)
i (e) equals 1 if

(
Sξ.m

(k)
i , Sξ.m

(k)
i+1

)
= e, and 0 otherwise.

Sξ.z
(k)
i (e) indicates whether the edge is a task or not. Eq. (2.7) ensures that

any non-required edge is not served at all, i.e., its service fraction is zero
everywhere in the solution.

C(Sξ) =

j∑
k=1

Lk−1∑
i=1

(
ςξ(Sξ.m

(k)
i , Sξ.m

(k)
i+1)

)
+
∑
t∈T

(sc(t)− ςξ(t)) (2.8)

The static CARP is a special case of UCARP, where all the variables are
known in advance. Route failure is the main extra challenge of UCARP
over the static CARP, and it can lead to large extra recourse cost.

2.1.1 UCARP Datasets

2.1.2 Dataset

In this thesis, we use the Ugdb and Uval datasets, which are commonly
used in UCARP literature [122, 123, 133, 143]. They are extended from gdb
and val which are well known static CARP datasets. The instances in the
gdb dataset are mostly small. They contain at most 55 tasks that need to
be served. The val dataset contains instances with the number of tasks
ranging from 34 to 97. Table 2.1 shows details of two datasets.



30 CHAPTER 2. LITERATURE REVIEW

Table 2.1: Details of Ugdb and Uval datasets.

Ugdb Uval
index task non-task vehicle index task non-task vehicle

Ugdb1 22 0 5 Uval1A 39 0 2
Ugdb2 26 0 6 Uval1B 39 0 3
Ugdb3 22 0 5 Uval1C 39 0 8
Ugdb4 19 0 4 Uval2A 34 0 2
Ugdb5 26 0 6 Uval2B 34 0 3
Ugdb6 22 0 5 Uval2C 34 0 8
Ugdb7 22 0 5 Uval3A 35 0 2
Ugdb8 46 0 10 Uval3B 35 0 3
Ugdb9 51 0 10 Uval3C 35 0 7

Ugdb10 25 0 4 Uval4A 69 0 3
Ugdb11 45 0 5 Uval4B 69 0 4
Ugdb12 23 0 7 Uval4C 69 0 5
Ugdb13 28 0 6 Uval4D 69 0 9
Ugdb14 21 0 5 Uval5A 65 0 3
Ugdb15 21 0 4 Uval5B 65 0 4
Ugdb16 28 0 5 Uval5C 65 0 5
Ugdb17 28 0 5 Uval5D 65 0 9
Ugdb18 36 0 5 Uval6A 50 0 3
Ugdb19 11 0 3 Uval6B 50 0 4
Ugdb20 22 0 4 Uval6C 50 0 10
Ugdb21 33 0 6 Uval7A 66 0 3
Ugdb22 44 0 8 Uval7B 66 0 4
Ugdb23 55 0 10 Uval7C 66 0 9

Uval8A 63 0 3
Uval8B 63 0 4
Uval8C 63 0 9
Uval9A 92 0 3
Uval9B 92 0 4
Uval9C 92 0 5
Uval9D 92 0 10

Uval10A 97 0 3
Uval10B 97 0 4
Uval10C 97 0 5
Uval10D 97 0 10
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For each UCARP instance, the task demand d̄(t) and traversal cost ς̄(e)
are random variables. They are transformed from the original task de-
mand d(t) and traversal cost ς(e) from the static CARP instance. The
random variables are assumed to follow the truncated normal distribu-
tion [122, 133, 143].

d̄(t) ∼ N (d(t),
d(t)

5
), ς̄(e) ∼ N (ς(e),

ς

5
). (2.9)

Any negative sampled task demand is set to 0, and any negative sampled
traversal cost is set to ∞, which means that the arc becomes inaccessible.

2.2 Routing Policy

Routing policy is a kind of constructive heuristic designing for routing
problems. In general, a heuristic is a mental shortcut that allows people
to solve problems and make judgments quickly and efficiently. In other
words, any technique or approach, which can be used for solving a prob-
lem by employing practical methods that may not be able to guarantee a
perfect or optimal solution but instead, can achieve solutions that are suf-
ficiently good in context of the problem at hand, is a heuristic [59, 202].
The concept of heuristics has its origin from the outside of Computer Sci-
ence (CS) that human judgment is subject to cognitive limitations when
they strive to make rational choices [163]. Tversky and Kahneman [188]
presented their study of heuristics in human decision-making. Heuristics
can be useful intelligent search strategies for computer problem [155]. A
Routing policy for UCARP constructs a solution step by step. Liu et al. list
five routing policies for UCARP [122]. They are described as follow:

• H1: selects the task with the maximal distance to the depot;

• H2: selects the task with the minimal distance to the depot;

• H3: selects the task with the maximal demand to the depot;
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• H4: selects the task with the minimal demand to the depot;

• H5: uses H1 if capacity ≥ 0.5, and H2 otherwise.

Suppose there three tasks A,B and C that need to be served and their
distances from the depot are 2, 3 and 1, respectively. If we use H1 as our
routing policy to construct the solution. Then H1 will choose to serve task
B as the first step because it is the furthest away from depot, then H1 will
choose to serve task A, and finally task C will be served. Finally, the solu-
tion will be B → A → C.

2.3 Hyper Heuristic

Heuristics have achieved great success in solving real-world computa-
tional search problems. However, heuristics are usually problem specific,
and are not easy to apply to a new problem or new instances of the same
problem. Besides, heuristics are usually expensive to develop because
they require substantial expertise and knowledge in problem domain. To
overcome these challenges, hyper heuristic is devised. The main goal of
hyper heuristic is to automate the development of heuristic methods to
solve hard computational search problems [27].

Hyper heuristic is becoming a popular method to design heuristics au-
tomatically. The ideas behind hyper heuristics are not new. They have
been used in many fields, such as Operational Research, Computer Sci-
ence and Artificial Intelligence, since the 1960s. However, the term hyper
heuristics was first used in a peer-reviewed conference paper in [44]. In
[43, 45, 46, 74], the authors further developed the ideas of [44] and applied
it to combinatorial optimisation problems. Hyper heuristic is a high-level
heuristic that automates the process of selecting or generating low-level
heuristics that can solve hard computational search problems [31]. Hy-
per heuristic can produce a generally applicable algorithm that can solve
problems in some given scenarios rather than find out solutions directly.
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The primary goal of hyper heuristic is to develop generic methods, which
can get good enough solutions, based on a set of easy-to-implement low-
level heuristics. So the process of hyper heuristic is that when a particular
problem instance or class of instances is given, we apply some low-level
heuristics to a learning algorithm, such as genetic programming. Then the
learning algorithm will automatically select or generate heuristics based
on the low-level heuristics. Finally, a suitable heuristic that can solve the
particular problem will be selected or generated.

2.3.1 Taxonomy of Hyper Heuristic

Hyper heuristic approaches can be classified into two categories [28]: heuris-
tic selection and heuristic generation.

• Heuristic selection: the idea of heuristic selection is to select the most
suitable heuristic for a given particular problem from pre-existing
heuristics that are specified to the given problem. The process of
building solution (sequence of heuristic) is incremental. The solution
pool starts from empty. The most suitable heuristic for the current
problem state is selected and use it to make decision for the current
state. The selected heuristic will be added to the solution pool. The
process will not stop until a complete solution is built up [27].

• Heuristic generation: the idea of heuristic generation is to construct
new heuristics for a given particular problem. Comparing with the
heuristic selection which use pre-exist heuristics, heuristic genera-
tion constructs new heuristics by combining various small compo-
nents such as general statistics or operators used in existing heuris-
tics.
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2.3.2 Heuristic, Metaheuristic and Hyper Heuristic

A heuristic is a technique that finds a solution to hard computational search
problems at reasonable computational cost based on limited knowledge or
incomplete information but does not guarantee an optimal solution. Meta-
heuristics are techniques that can be applied to a broad range of hard com-
putational search problems. Metaheuristics find optimal or near-optimal
solutions and its searching space is solutions [28]. The main difference
between heuristics and meta-heuristics is that heuristics construct a so-
lution from scratch and usually stops when a complete solution is con-
structed. But the quality of solution is not guaranteed. There are some
typical heuristics, such as greedy heuristic, A* search algorithm. GA and
simulated annealing are two popular meta-heuristics. We can also use the
Genetic Algorithm (GA) to find a solution. After we set up some param-
eters initially, GA will automatically generate many solutions randomly
and evaluate each solution, and return a good enough solution. How-
ever, it is important to consider that in dynamically changing or stochas-
tic environments, the computational cost of regenerating a new solution
using Genetic Algorithms (GA) can become significant. GA involves a
trial-and-error approach where multiple solutions are generated, evalu-
ated, and evolved over generations to converge towards an optimal or
near-optimal solution. This iterative process, although effective in many
scenarios, can be time-consuming, especially when the problem space is
constantly changing or inherently uncertain due to stochasticity. In such
dynamic and unpredictable settings, the efficiency of heuristic algorithms,
known for their ability to swiftly find optimal solutions, becomes particu-
larly advantageous. Hyper heuristics [27] is a high-level heuristic that au-
tomates the process of selecting or generating low-level heuristics that can
solve hard computational search problems [31]. For example, if we want
to find a path with the smallest cost from City A to City B. We can utilise A*
search algorithm as a heuristic to construct a route from A to B. However,
A* search might not be the most suitable algorithm for this scenario to
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find a satisfied solution. Hyper heuristic will select or construct heuristic
that are suitable for this specific scenario. Then, the generated or selected
heuristic can be applied to the problem and get a solution. Note that, both
heuristic and metaheuristic search the solution space directly, while hy-
per heuristic searches the heuristic space to select or generate heuristic to
construct solution.

2.4 Genetic Programming

Genetic Programming (GP) is evolutionary computing (EC) technology
that automatically solves problems without requiring domain knowledge
of solutions. The main aim of GP is to make computers solve problems
automatically. In GP, a population is a set of random designed computer
programs. We get the final solution by evolving population, generation
by generation. For each new generation, GP stochastically transforms pro-
grams to hopefully better programs so that they can solve the target prob-
lem. GP is very successful in developing new and unexpected ways to
solve problems [161]. Fig. 2.2 shows a simple diagram for GP process.
Usually, GP can be broken down into the following steps [161]:

• Generate a population of random programs (individuals) firstly;

• Run each program and evaluate its fitness;

• If the quality is good enough, the best individual in the population
is returned as the solution; otherwise, select good programs to pro-
duce new generation based on the previous generation using genetic
operators, such as crossover, mutation and reproduction;

• Repeat above steps until getting good enough solution.

GP has some advantages over other machine learning algorithms in pro-
ducing heuristics. First, heuristics usually behave in the form of programs
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Figure 2.2: A Simple Diagram of GP process [161].

or algorithms. GP can produce programs or algorithms automatically, so
GP is an excellent way to produce heuristics. The terminal set can choose
from good features of the problem domain. Features from manually de-
signed heuristics can be easily used in GP. A function set, relevant to the
problem domain can be determined without too much difficulty [31]. Sec-
ond, the length of programs is flexible as we do not have the domain
knowledge to predefine an optimal length of programs in most cases. In
this case, GP can produce heuristics for different scenarios.

2.4.1 Representation

GP is usually expressed as a syntax tree which is different from genetic
algorithms which are usually expressed as a one-dimension string. The
syntax tree is built up by combining leaf nodes and internal nodes. Leaf
nodes, which can be called terminals, are features in the terminal set or
constant number. Internal nodes, which can be called functions, are arith-
metic operations, such as addition, subtraction, multiplication and pro-
tected division, in function set. Typically, the terminal set and function
set are determined based on the domain knowledge about a particular
problem. There are two constraints for GP trees: closure and sufficiency.
Closure means that every function can accept any value or data type that
can be returned by any function in the function set or terminal in the ter-
minal set [161]. Sufficiency means that the combination of functions and
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Figure 2.3: An example of tree-based GP program [161].

terminals can produce a solution [161]. Fig. 2.3 is an example of tree-based
GP program, which is calculating the formula max(2x, x+ 3 ∗ y).

2.4.2 Population Initialisation

Usually, population initialisation is the first step of a GP process. A popu-
lation is a set of programs or individuals (GP trees). There are three com-
mon ways to initialise the population. They are full, grow and ramped-half-
and-half [161]. The full method grows all trees to the max-depth limit and
then assigns terminals to leaf nodes. The grow method grows all trees
by randomly assign function or terminal to each node, if a function is as-
signed to a node, the node will grow deeper; otherwise, it will stop grow-
ing. The ramped-half-and-half method grows a half of the population by
the full method and the other half by grow method. There are two limits
in tree generation. They are min-depth and max-depth. The min-depth
refers to the minimum depth of a tree. The max-depth refers to the maxi-
mum depth of a tree. The ramped-half-and-half method is the most pop-
ular way to generate population.
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2.4.3 Evaluation

In an evolutionary algorithm, it is important to measure how fit or capable
each individual is for solving the problem. The fitness function is used to
evaluate each individual in a population and determine the quality of the
individual and the generation. The definition of the fitness value for an
individual is dependent on the problem, it should be a good indicator of
the performance of the program for solving the problems. In other words,
different fitness measurements can be utilised for different problem. For
example, for solving classification/regression problems with GP, each in-
dividual is a classifier/regression model and the fitness can be defined
as the accuracy of the predictions/loss between the model output and the
true output over the training dataset. For solving UCARP, the fitness is the
total-cost (time or route length) of the solution generated by GP-evolved
routing policy from simulation. Fitness can help to decide which individ-
ual can survive to next generation. When reaching the stopping criteria,
the individual with the best fitness will be returned as the solution [161].

2.4.4 Selection

During the GP evolutionary process, individuals are selected from the
population to generate new individuals. Typically, individuals with better
fitness are more likely to survive to the next generation and more likely
to contribute to the gene pool in future generations. In the roulette wheel
method, a probability distribution is constructed based on fitness value
of population member so that individuals with better fitness have a bet-
ter and higher chance of being selected and then, individuals are selected
based on that distribution. Tournament selection is most often used to se-
lect individuals in GP [161]. In tournament selection, k (the tournament
size) individuals are randomly sampled from the population, and the in-
dividual with the best fitness among the sampled individuals is selected
to be the parent to genrate offspring.
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2.4.5 Genetic Operators

The main goal of genetic operators is to generating a population with bet-
ter quality by mixing and inheriting genetic materials from old population.
To this end, four main genetic operators, i.e. mutation, crossover, repro-
duction and elitism [161] are applied to GP population with a user-defined
probability.

Typical crossover operator is commonly used to generate new indi-
viduals based on two randomly selected individuals as parents. Subtree
crossover is one of the earliest and most frequently used crossover meth-
ods methods for GP [109]. In Subtree crossover, firstly, one node (crossover
point) from each parent is randomly selected, and then the subtrees lo-
cated at the selected nodes are swapped between two parents, finally, two
new offsprings are generated. Note that, the majority of nodes in a GP
tree are terminals, it is recommended by Koza et al. [109] to discriminate
between the terminals and functions in selecting crossover points by se-
lecting functions and terminals with a probability of 90% and 10% respec-
tively.

Unlike crossover, typical mutation operator generates only one new
individual based on a single individual. Subtree mutation is commonly
used. In the Subtree mutation, one individual is randomly selected, and
then a random node (mutation point) in the individual is selected, finally,
a new individual is generated by replacing the subtree at the mutation
point with a randomly generated new subtree.

Reproduction is a mechanism that allows GP to maintain good candi-
date solutions found so far and preserve them in the population. A typical
reproduction operator [109] simply use tournament selection operator to
select good individual from the population and copies it into the popula-
tion of the next generation without modifying it.

Elitism is quite similar with reproduction. In contrast to reproduction
which maintains good individuals, elitism maintains only the best indi-
viduals, for example, the best 10 individuals in the population, and copies
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them into the population of the next generation without modifying them.

2.5 Genetic Programming Hyper Heuristic

Hyper heuristics aim to automatically select or generate heuristics to solve
hard computational search problems [28]. Typically, the search space of
hyper heuristics is a space of heuristics rather than solutions, the aim is
to increase the robustness of search methods [31], especially for problem
instance with large solution space, it might be hard to find a satisfied so-
lution in a huge solution space, but it is likely to find a good heuristic in
the fixed heuristic space. It has been widely applied to many problem
domains, such as examination timetabling [17], bin packing [167], sports
scheduling [38], online container terminal truck dispatching problem [40],
job shop scheduling [210] and vehicle routing [192]. GP is considered as
a popular method for automatic design of hyper heuristics [150]. Burke
et al. [31] summarise the techniques of applying GP as a hyper heuristic
to generate new heuristics. They also survey previous work attempting
to generate heuristics using genetic programming. There are a number
of advantages using GP as hyper heuristic. One of the advantages is that
the variable-length encoding is flexible in GP. This can be useful if the best
length of the encoding for heuristic representation is not known for a given
problem domain. GP can evolve executable programs which can be easily
adopted as heuristics. Domain knowledge can be easily incorporated into
the fundamental components of the system. For example, humans can
easily identify the good features of the problem domain and utilise them
as the terminal and function set of a GP approach.

GP has been successfully applied to generate new constructive heuris-
tics in many problem domains and achieve comparable or even better per-
formance than human designed heuristics. Bader-El-Den and Poli [16]
utilised GP to quickly generate ‘disposable’ heuristics to solve the satis-
fiability problem and the result showed that the generated heuristics per-
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formed comparable with the heuristics designed by human. Note that,
only a limited search space of heuristics was covered in this work. Burke
et al. [30] applied GP evolved heuristics to one dimensional bin packing
problems and showed that GP evolved heuristics can outperform the hu-
man designed “bestfit” heuristic. In addition, Allen at al. [4] extended
the work [30] to three dimensional bin packing problem and achieved
competitive results with human designed heuristics. Besides, Burke et
al. [29] also applied GP based hyper heuristic on two dimensional strip
packing problems. Furthermore, GP based hyper heuristic approaches
can also handle travelling salesman problems [99], satisfiability testing
problems [66],web service allocation problems [179] and job shop prob-
lems [68, 85, 207, 208, 217].

GP is the most commonly used approach that is utilised as a hyper
heuristic for UCARP [122, 133, 143]. Simulation is a key element, which is
required for evaluating the heuristic functions (routing policies) evolved
by GP, in GPHH approach. A simulation for UCARP takes a routing pol-
icy and a UCARP instance as input and returns a feasible solution for the
instance. The simulation employs a constructive heuristic-like approach.
The algorithm starts with an empty route and build up a route step by
step, it adds tasks to the end of the route in a sequential approach. As a
result, this simulation will not open any new route as long as the current
route is open. The algorithm may return back to depot to refill its capacity
when the capacity is empty.

The simulation firstly initialises the vehicle’s route which starts from
the depot. Typically, all tasks are unserved and the capacity of the vehicle
is full. Then, the routing policy is utilised to select the next task that needs
to be served. To select the next task, all unassigned tasks are considered
first and then a filter method is applied to select a subset of all unassigned
tasks. If the subset is empty, the vehicle has to return to the depot and re-
fill, close the current route, and open a new route. Otherwise, the routing
policy is applied to the unassigned tasks and the task with the best pri-
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ority value is selected to be served next. Failures caused by the dynamic
nature of the problem are also considered in a simulation. A route failure
occurs when the actual demand exceed available capacity of the vehicle.
In case of a route failure, the vehicle has to return to the depot to refill. A
edge failure occurs when an edge suddenly becomes inaccessible. A de-
tour method is applied to handle edge failures. If no failure occurs, the
task is served and removed from the list of unserved tasks. This process
will not finish until all tasks are served. When the simulation is finished,
a collection of routes are created that serve all the tasks in the UCARP
instance.

We can briefly describe a GPHH approach to solving a UCARP in-
stance as:

• Step 1: Initialisation: Create an initial GP population (a population
of routing policies) randomly.

• Step 2: Evaluation: Each routing policy is evaluated by applying
the simulation to the samples from the input UCARP instance in the
training dataset and the fitness value is the average over the total
cost of serving tasks.

• Step 3: If the stopping criteria are not met, go to Step 4. Otherwise,
return the routing policy that has the best fitness value.

• Step 4: Evolution: Select good routing policies to evolve a new pop-
ulation using the genetic operators of crossover, mutation, and re-
production. Then, go to Step 2.

Comparing with manually designed heuristic and metaheuristic ap-
proaches, which can be time consuming and require high-level domain
knowledge, GPHH does not require extensive domain knowledge and
need to prepare solutions beforehand. It has been shown to be the state-
of-the-art for dealing with this problem [8, 9, 122, 124, 133, 134, 143, 203].
However, a drawback of this method is that the evolved routing policies
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are hard to be understood by human users. The users need to be able to
understand the evolved routing policies to feel confident to use them. In
addition, if we can interpret the evolved routing policies, we can deter-
mine what contribution each feature makes in the decision-making pro-
cess, and understand the meaning of each routing policy so that we can
reuse the knowledge to other cases. Therefore, it is important to evolve
both effective and interpretable routing policies.

When applying to UCARP, each individual of GPHH is a routing pol-
icy, which is essentially a priority function. Given a routing policy and
UCARP instance, the solution is constructed as follows.

• Step 1: all the vehicles are at the depot, with idle time 0 and their
routes are empty. All the tasks are unserved.

• Step 2: find the vehicle with the earliest idle time (ties are broken by
selecting task with smaller index), and its candidate tasks, i.e., the un-
served tasks with expected demand less than its remaining capacity.

• Step 3: if no candidate task is found, send the vehicle back to the
depot to replenish. Otherwise, use the routing policy to calculate
the priority of each candidate task, and select the best-priority task to
serve next. Set the idle time of the vehicle to the time it completes the
service. Fig. 2.4 shows an example of using the CFH+CTD routing
policy to select from 3 candidate tasks.

• Step 4: if all the tasks are served, send all the vehicles back to the
depot and stop. Otherwise, go to Step 2.

As the adoption of machine learning for solving combinatorial opti-
mization problems gains momentum, it is essential to acknowledge the
broader landscape of ML techniques in this domain. Deep Learning and
Deep Reinforcement Learning (DRL) have indeed been applied with re-
markable success to evolve heuristics for various combinatorial optimiza-
tion problems. However, it is pertinent to address why these specific tech-
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Figure 2.4: An example of decision making process using a simple routing policy in a
decision situation with three candidate tasks.

niques were not applied to the investigated Uncertain Capacitated Arc
Routing Problem (UCARP). UCARP represents a unique challenge char-
acterised by sequential decision-making and inherent uncertainty. While
DRL has shown promise in evolving heuristics for certain combinatorial
optimization problems, its application to UCARP is nuanced. The com-
plexity of UCARP’s routing policies, with numerous factors influencing
decisions, poses challenges in formulating an effective reward structure
for DRL. Additionally, the dynamic nature of UCARP, where uncertainties
evolve over time, adds an extra layer of complexity not readily amenable
to DRL’s traditional reinforcement learning paradigms. As such, the choice
of genetic programming as the primary optimization technique for UCARP
reflects a careful consideration of the problem’s intricacies and the suitabil-
ity of the selected approach to address its specific challenges.

2.5.1 Common Parameter Settings of GPHH

Some common parameter settings of GPHH are shown in Table 2.2. The
individuals are initialised with the ramped-half-and-half method with a
minimum depth of 2 and a maximum depth of 6. When generating a GP
individual, the rates to the terminal and non-terminal to use are 10% and
90%, respectively. The maximal of the depth of a GP individual is 8. To
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Table 2.2: The common parameter settings of GPHH.

Parameter Value
Population initialisation method ramped-half-and-half

Initial min/max tree depth 2/6
Terminal/function selection rate 10%/90%

Max tree depth 8
Population size 1000

Number of elites 10
Selection method Tournament selection
Tournament size 7

Crossover/Mutation ratio 85%/15%
Number of generations 101

maintain the quality of the obtained individuals in the evolutionary pro-
cess of GP, the best 10 individuals (i.e., elites) from the last generation are
moved to the next generation directly. The rest individuals for the next
generation are produced by crossover and mutation (i.e., genetic opera-
tors) with a rate of 85% and 15%, respectively. Tournament selection with
size 7 is used to select the parent(s) for the genetic operators. The algo-
rithm is stopped after 101 generations.

The function set is set to {+,−,×, /,min,max}, where the “/” (pro-
tected division) operator returns 1 if divided by 0. The terminals of GP
serve as features of the problem to capture sufficient information about
the problem. The terminal set of GP in this thesis consists of a number of
basic features in UCARP [122, 124, 133, 197], which is shown in Table 2.3.

The Evolutionary Computation Java (ECJ) package [131] is utilised to
implement all the algorithms.
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Table 2.3: The terminal set in the experiments.

Terminal Description
CFH cost from the candidate task to the current location
CFD cost from the head node of the task to the depot
CFR1 cost from the closest other route to the candidate task
CTT1 cost from the candidate to its closest remaining task
CTD cost from the depot to the candidate task
CR cost from the depot to the current location

DEM expected demand of the candidate task
DEM1 demand of the closest unserved task to the candidate task
FULL fullness (served demand over capacity) of the vehicle
FRT fraction of unserved tasks
FUT fraction of unassigned tasks
RQ remaining capacity of the vehicle

RQ1 remaining capacity of the closest alternative route
SC cost of serving the candidate task

ERC a random constant value

2.5.2 Individual Representation

In this thesis, each routing policy is represented as a priority function. The
priority function is a combination of the state features, such as the cost
from the current location to the candidate task (CFH) and the cost from the
candidate task to the depot (CTD). For example, if the priority function is
“CFH + CTD”, the priority function tends to select tasks that are closer to
the current location and also closer to the depot. The routing policy works
as a decision-maker during the solution construction process. Typically,
each vehicle can only serve one task at a time. The routing policy will be
applied to each unserved task to determine each unserved task’s priority
once a vehicle completes its current task and is ready to serve the next
task. The task with the best priority value will be served next. The deci-
sion process finishes when all the tasks have been served and the routes
returned as the solution constructed by the routing policy.
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Algorithm 1: The fitness evaluation process in GPHH.
Input: Training set Strain, An unevaluated population pop

Output: An evaluated population pop

Randomly sample a training subset S ′ ⊆ Strain;
// Evaluate pop using S ′

for each routing policy rp ∈ pop do
// Evaluate rp

for each training sample s ∈ S ′ do
while tasks in queue is not empty do

if vehicle is ready then
Select which task to serve using rp;

end

end
Get the total cost of the generated solution, i.e. tc(rp, s);

end
Calculate fit(rp) using Eq. (3.1);

end
return evaluated population pop;

2.5.3 Fitness Evaluation

Given a routing policy rp, the fitness is defined based on the average qual-
ity (i.e. total cost) of the routes that it generates. Specifically,

fit(rp) =
1

|S ′|
∑
s∈S′

tc(rp, s), (2.10)

where S ′ is a set of instance samples, |S ′| is the number of instance sam-
ples. tc(rp, s) stands for the total cost of the solution obtained by rp on
instance sample s. The solution is constructed based on a simulation pro-
cess that is commonly used in UCARP literature [123, 197]. Algorithm 1
shows the fitness evaluation in GPHH.

One can see that each routing policy is applied as a priority (heuristic)
function. When a vehicle is ready (at a decision-making point), a routing
policy is applied to determine which candidate task to serve next. The
quality of each routing policy can be evaluated by applying it to a set of
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training samples S ′. A solution can be constructed using the routing policy
on a training sample s ∈ S ′.

We randomly re-sample a subset of training samples for the fitness
evaluation. Such sample rotation has been commonly used in other stud-
ies [80, 122] to improve the generalisation of the evolved heuristics.

2.6 Multi-Objective Evolutionary Algorithms

Multi-Objective Evolutionary Algorithm (MOEA) is a powerful technique
used to solve complex optimization problems with multiple conflicting
objectives. Unlike traditional single-objective optimization, where there
is only one objective to optimise, MOEA considers multiple objectives si-
multaneously, making it suitable for solving real-world problems where
there are often multiple conflicting goals that must be balanced.

MOEA is a type of evolutionary algorithm that uses the principles of
natural selection and genetic variation to search for optimal solutions in a
multi-dimensional search space. The basic idea behind MOEA is to gen-
erate a population of candidate solutions, called individuals, and evaluate
their fitness based on multiple objectives. The individuals with the best
fitness are then selected for reproduction, where their genetic information
is combined and mutated to generate new offspring. The process contin-
ues iteratively, with the hope that the population will converge to a set of
optimal solutions, called the Pareto front.

The Pareto front is a set of solutions where no solution can be improved
in one objective without worsening at least one other objective. In other
words, the Pareto front represents the trade-off between different objec-
tives and provides a set of optimal solutions that are not dominated by
any other solution in the search space.

Non-dominated sorting is a powerful technique used in multi-objective
optimization to identify solutions that are Pareto-optimal, meaning that
they are not dominated by any other solution in the search space. The
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technique was introduced by Deb et al. [50] and has since become a funda-
mental component of many state-of-the-art multi-objective optimization
algorithms, such as NSGA-II [50], SPEA2 [224] and MOEA/D [221].

The basic idea behind non-dominated sorting is to group solutions
into levels or fronts based on their Pareto-optimal status. Specifically,
a solution is said to dominate another solution if it is better in at least
one objective and not worse in any other objectives. A solution is non-
dominated if there is no other solution that dominates it. The first level of
non-dominated solutions contains all the solutions that are non-dominated,
while the second level contains solutions that are dominated only by the
solutions in the first level, and so on.

To perform non-dominated sorting, a set of candidate solutions is first
evaluated on the multiple objectives of the optimization problem. The so-
lutions are then ranked into levels based on their non-dominated status,
with non-dominated solutions being assigned to the first level. Once the
non-dominated solutions are identified, the sorting process is repeated on
the remaining solutions, but the non-dominated solutions from the previ-
ous level are removed from consideration. This process is repeated until
all solutions have been sorted into levels.

Non-dominated sorting is a useful technique in multi-objective opti-
mization because it provides a way to identify solutions that are not dom-
inated by any other solution in the search space. These solutions are con-
sidered to be Pareto-optimal and represent the trade-offs between different
objectives. By identifying the Pareto-optimal solutions, a decision-maker
can make informed decisions on which solution to choose based on their
preferences and constraints.

There are several variations of MOEA, each with its own strengths and
weaknesses. One popular approach is the Non-dominated Sorting Ge-
netic Algorithm (NSGA-II) [50], which uses a fast and efficient sorting al-
gorithm to maintain a diverse set of solutions along the Pareto front. An-
other popular approach is the Strength Pareto Evolutionary Algorithm 2
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(SPEA2) [224], which uses a fitness sharing scheme to encourage diversity
and prevent premature convergence.

MOEA has been successfully applied to a wide range of real-world
problems, including engineering design, finance, environmental manage-
ment, and many others. However, MOEA is not a silver bullet and re-
quires careful tuning of its parameters and selection of appropriate objec-
tive functions and performance metrics to achieve good results. Addition-
ally, MOEA may be computationally expensive, especially when dealing
with high-dimensional search spaces, and may require significant compu-
tational resources to achieve good results.

2.7 Particle Swarm Optimisation

Particle Swarm Optimization (PSO) is a population-based metaheuristic
algorithm that has gained significant attention in the field of optimization
in recent years. The algorithm is inspired by the social behavior of birds
flocking, where individuals interact with each other to achieve a common
goal [100]. PSO operates by maintaining a population of particles, each
representing a candidate solution in the search space.

During the optimization process, each particle evaluates its fitness based
on an objective function, and updates its position p and velocity V based
on its own best known position and the best known position of its neigh-
bors in the search space. The position and velocity updates are guided by
a set of user-defined parameters. These parameters control the exploration
and exploitation capabilities of the algorithm and must be carefully tuned
to achieve good performance. Inertia weight w refers to the parameter
that controls the balance between exploration and exploitation during the
search process. A high inertia weight value allows for more exploration,
while a low value enables more exploitation. Cognitive factor c refers to
the parameter that controls the influence of the particle’s best known po-
sition on its movement. A high cognitive factor value favors exploitation,
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while a low value favors exploration.
PSO has several advantages over traditional optimization techniques,

including its simplicity and scalability. The algorithm can efficiently search
for solutions in high-dimensional search spaces and has been successfully
applied in various domains, including engineering, finance, and machine
learning.

The implementation of PSO is shown as below:

• Step 1: Initialise a population of particles with random positions and
velocities in the search space.

• Step 2: For each particle

– Evaluate the particle xi using a predefined fitness function.

– Compare the particle’s fitness with its best fitness. If current
value is better than its best fitness then set new fitness as best
fitness, and pbest equal to the current location.

– Identify the gbest which is the best position that explored by all
the particles in the swarm.

– Update the velocity and position of the particle according to the
following equation:

Vi(t+ 1) = wVt + c1r1(pbest − pxi
(t)) + c2r2(gbest − pxi

(t)) (2.11)

pxi
(t+ 1) = pxi

(t) + Vi(t+ 1) (2.12)

where r1 and r2 are random numbers between 0 and 1. Vi(t+ 1)

is the updated velocity. w is the inertia weight. r1 and r2 are
cognitive factors. pxi

(t+1) is the updated position of the particle
xi.

• Step 3: If a stopping criterion is met, then stop, otherwise go back to
Step 2.
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2.8 Machine Learning and Interpretability

Machine Learning (ML) is increasingly popular in the Artificial Intelli-
gence (AI) field. The aim of ML is to build computer programs that can
learn to perform complex tasks and can be improved automatically through
experience [53]. It can be utilised to many real-world problems for which
creating a detailed design can be quite hard despite a clear specification
[164]. Typically, ML algorithms solve a problem by training a model based
on training data, then the trained model is applied to the unseen test data.
ML systems can outperform humans on many tasks and decisions since
they are able to consider all the instances in a dataset without any human
bias due to the prior knowledge [164]. ML is able to observe the struc-
tures and patterns within large datasets. A learning problem refers to the
problem of improving some performance indicators through some type of
training experience during execution. ML can handle a variety of many
learning problems, such as classification, clustering and regression [146].
The main practical objective of ML is to design efficient and robust algo-
rithms to produce accurate predictions for unseen data.

In machine learning, it is common to split the available data into two
sets: the training set and the test set. The purpose of this split is to evaluate
the performance of the machine learning model on unseen data, which is
a crucial step in assessing the generalization capability of the model. The
training set is used to train the model, which involves adjusting the model
parameters or weights to minimise the error or loss function. The model is
trained using an optimization algorithm such as gradient descent, which
updates the weights in the direction that reduces the loss function. The
test set is used to evaluate the performance of the trained model on unseen
data. The test set is not used during the training process, and its purpose
is to provide an estimate of how well the model is likely to perform on
new, unseen data. It is important to use separate training and test sets to
avoid overfitting, which occurs when the model becomes too complex and
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fits the training data too closely, resulting in poor generalization to new
data. The test set provides a way to estimate the generalization error of
the model, which is the difference between its performance on the training
set and the test set. The performance of the model on the test set can be
measured using various metrics, depending on the nature of the problem.
Common metrics include accuracy, precision, recall, F1 score, and AUC-
ROC curve.

Generalisation and overfitting are two important concepts in machine
learning that relate to the ability of a model to perform well on new, un-
seen data. Generalisation refers to the ability of a machine learning model
to perform well on new, unseen data that is drawn from the same distri-
bution as the training data. In other words, a model that generalises well
is able to capture the underlying patterns and relationships in the training
data and apply them to new, unseen data. Overfitting, on the other hand,
occurs when a model becomes too complex and fits the training data too
closely. This can result in poor generalisation to new, unseen data because
the model has memorised the training data instead of learning the under-
lying patterns and relationships. Overfitting can occur when the model
is too complex, the training data is noisy or insufficient, or the model is
trained for too long. One way to detect overfitting is to compare the per-
formance of the model on the training set and the test set. If the perfor-
mance on the training set is much better than the performance on the test
set, it is likely that the model has overfit the training data.

The expected task performance is not the only concern for the deploy-
ment of ML systems in complex applications. The right to explanation [73]
becomes more and more important. Especially, when decisions derived
from ML systems can ultimately affect humans’ lives (as in e.g. medicine,
law or defense), there is an emerging need for understanding how such
decisions are furnished by AI methods [73]. Interpretability is becoming
one of the main barriers lying between the AI and its practical implemen-
tation [13]. If we want to integrate machines and algorithms into our daily
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lives, interpretability is required to increase the social acceptance [147].
Humans are reticent to adopt techniques that are not directly interpretable,
tractable and trustworthy [223], especially when humans care more and
more on ethical AI [73]. In addition, ML models usually pick up biases
from the training data. This can lead the ML contains unexpected discrim-
ination against protected groups. Interpretability can be a useful debug-
ging tool for detecting bias in machine learning models [147]. Doshi-Velez
and Kim [54] also claim that if we can ensure that the ML models can ex-
plain their decisions, it will be much easier to check the fairness, privacy,
robustness, causality and trust of the models.

2.8.1 Definition of Interpretability

It is difficult to provide a formal definition of interpretability since there
is no common understanding in the literature on what interpretability
means [13]. To understand the concept of interpretability, let us begin by
examining the meaning of the word “interpret” from dictionary, “ explain,
tell or to present in understandable terms’’ (Merriam-Webster dictionary ac-
cessed on 2023-3-23). Many studies claim to achieve interpretable models
and techniques that enable explainability [13]. Therefore, different defini-
tions may be given in the context of machine learning (ML) systems. For
instance, Kim et al. [103] define interpretability as “the degree to which a hu-
man can consistently predict the model’s result”, while Miller [144] defines it
as “ the degree to which a human can understand the cause of a decision.” There-
fore, it can be concluded that interpretability refers to a passive character-
istic of a model that refers to the level at which a given model makes sense
to a human observer [13]. The higher the interpretability of a machine
learning model, the easier it is for someone to understand why certain de-
cisions or predictions have been made. In other words, a model is more
interpretable than another model if its decisions are easier for a human
to comprehend than those of the other model [147]. In conclusion, inter-
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pretability can be defined as the ability to explain or provide meaning of a
ML model in understandable terms to a human users [13, 69, 111].

2.8.2 Techniques for Interpretability

There are two categories of approaches to interpretability based on the
techniques and the model properties [120]. The first one relates to trans-
parency which indicates the mechanism by which the model works, and
the other one consists of post hoc explanations. Usually, these two cate-
gories can be distinguished by identifying whether interpretability is achieved
through constraints imposed on the complexity of the ML model (intrin-
sic) or by applying methods that analyse the model after training (post-
hoc) [147].

2.8.2.1 Intrinsic Interpretability

Intrinsic mainly focus on the transparency of the model. Transparency
refers to models that are interpretable by themselves [35]. Intrinsic mainly
focus on the transparency of the model. Transparency can be achieved
through imposition of constraints on the model, such as sparsity, mono-
tonicity, causality, or physical constraints that come from the domain knowl-
edge [168]. Transparency can answers the question of how the model
works [120]. Lipton [120] considers the transparency at three different
levels: the entire model (simulatability), the individual components such
as parameters (decomposability) and the training algorithm (algorithmic
transparency).

• Simulatability can be denoted as the ability of a model being sim-
ulated by human users [13]. If an entire model can be understood
and simulated by a person at once, then the model can be called
transparent. In this case, an interpretable model should be a sim-
ple model. Thus, model complexity takes a dominant place in trans-
parency [14]. For example, a simple but extensive (e.g., contains too
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large number of rules) rule-based system is not transparent, how-
ever, a single perceptron neural network is transparent. This claim is
consistent with argument that sparse linear models are more inter-
pretable than dense linear models learned on the same inputs [182].
Ribeiro et al. [165] also agree with this claim and suggest that an in-
terpretable model is one that can be easily presented to a human by
means of text and visualizations. Lipton [120] suggests that simu-
latability may admit two subtypes: the first one based on the size of
the model and the other one based on the computation required to
make the prediction.

• Decomposability is the second notion of the transparency. It denotes
that ability to explain each of the components (input, parameter, and
calculation) of a model. This is consistent with the property of intel-
ligibility in [127]. For example, each node in a decision tree can be
easily translated to a plain text description. By contrast, the weights
in a deep neural network are hard to explain to users. Note that,
Decomposability requires every inputs themselves be individually
interpretable. Therefore, an algorithmically transparent model can
become decomposable when each part of the model can be under-
standable by a human without the need for additional tools [35].

• Algorithmic transparency is the final notion of transparency which
at the level of the learning algorithm itself. It deals with the ability of
the user to understand the process followed by the model to produce
any given output from its input data. For example, a linear model
is considered transparent because users can understand the shape of
the error surface, this allows users to understand how the model will
work in every unseen data it may handle [93]. On the other hand, it
is not possible to understand it in deep architectures of deep neural
network [97]. Lipton [120] also argues that the heuristic optimiza-
tion procedures for neural networks are demonstrably powerful, but
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we cannot understand how they work and guarantee that they will
work on new problems. [35]. Besides, Carvalho et al. [35] argue that
the main constrain for algorithmically transparent models is that the
model has to be fully explorable by means of mathematical analysis
and methods.

2.8.2.2 Post-Hoc Interpretability

Post-hoc (post-model) interpretability refers to apply explanation methods
to the learned model as some models that are not readily interpretable by
design. It can extract information from the learned model. Note that, post-
hoc interpretations often do not elucidate precisely how a model works,
they may nonetheless confer useful information for practitioners and end
users of machine learning [120]. It can also answer the question what
else can the model tell us. Post-hoc methods can be applied to not only
“black-box” models, but also transparent models, since post-hoc meth-
ods are usually decoupled from the main model [35]. Some common
approaches to post hoc interpretations include text explanations, visu-
alizations of learned representations or models, local explanations and
example-based explanations [13, 120, 147].

• Text explanations handle the interpretability problem by providing
explainability for a model by means of learning to generate text ex-
planations that can help explaining the results from the model to
end users [69]. It is much easier for humans to understand text
comparing with a ML model as humans often justify decisions ver-
bally [120]. Krening et al. [110] propose a system in which one model
chooses actions to optimise cumulative discounted return, and the
other model to provide verbal explanations of strategy from the first
model. In the field of recommendation systems, McAuley and Leskovec
[137] provide text explanation to explain the decisions of a latent fac-
tor model. They train a latent factor model for rating prediction and
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a topic model for product reviews simultaneously. They aim to min-
imise the squared error on rating prediction and maximise the like-
lihood of review text. Rather than train a separate model to provide
text explanation, the top words presented in the topic models can be
also a explanation technique [37].

• Visualisation explanations aim at visualizing the model’s behavior.
Many existing visualisation techniques in the literature come along
with dimension reduction techniques that can help human to un-
derstand simpler visualisation. Visualisation explanations can be
applied with other techniques to improve their understanding, and
are considered as the most suitable way to introduce complex in-
teractions within the variables involved in the model to users not
acquainted to ML modeling [13]. One popular method is to visual-
ize high-dimensional distributed representations with t-distributed
stochastic neighbor embedding (t-SNE) [132] that can renders 2D vi-
sualizations in which nearby data points are likely to appear close
together. Mordvintsev et al. [148] try to explain a learned neural net-
work for image classification by altering the input through gradient
descent to enhance the activations of certain nodes selected from the
hidden layers. The relationship between the input image and the
output label can be investigated by inspected the the perturbed in-
puts of the nodes. They observed that enhancing some nodes caused
certain dog faces to appear throughout the input image.

• Local explanations handle the interpretability by explaining learned
model locally. It is quite difficult to describe the full mapping learned
by a model, but it is much easier to give explanations to less com-
plex solution subspaces that are relevant for the whole model [120].
Saliency map [175] is popular local explanation method for DNN. It
can accurately show the relationship between the output and a given
input vector by highlighting regions of the input that, if changed,
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would most influence the output. However, these local explana-
tions might be misleading. Because users may get a totally differ-
ent saliency map when they move a single pixel in the input image.
Local interpretable model-agnostic explanations (LIME) is another
popular local explanation method which is proposed in [165]. It
is actually a local surrogate model that trained to approximate the
predictions of the underlying black box model. Instead of training
a global surrogate model, LIME focuses on training local surrogate
models to explain individual predictions.

• Example-based explanations explain the behavior of ML models or
explain the underlying data distribution by selecting particular in-
stances of the dataset [147]. It is similar to the process of how humans
behave when attempting to explain a given operation, example-based
explanations can extract representative examples that represent the
inner relationships and correlations found by the model being anal-
ysed [13]. The most similar example could be k-nearest neighbors
method, we can identify a prediction based on other instances that
have been already labeled. Another example is that doctors often
refer to case studies to support a planned treatment protocol [120].
Doshi-Velez et al. [55] and Kim et al. [104] have done related work
for Bayesian methods, they try to interpret generative models by
example-based explanation approaches. Le et al. [116, 117] utilise
counterfactual to improve the model understanding and trust.

2.9 Related Work

2.9.1 Approaches to CARP

A variety of approaches have been proposed to solve CARP. The Exact
approaches [18, 72] were firstly applied. The advantage of the exact ap-
proaches is that they can get the optimal solutions. However, they can
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only be applied to small-sized instances due to their high computational
complexity. Constructive heuristics, such as path scanning heuristic [70],
augment-merge heuristic [72], and Ulusoy’s split heuristic [190], were pro-
posed to obtain reasonably good solutions in a short time. Constructive
heuristics are generally much faster than the exact approaches because the
one-pass solution construction process typically has a linear complexity.
In contrast, to guarantee optimality, the exact approaches have exponen-
tial complexity for NP-hard problems such as UCARP. Meta-heuristic ap-
proaches, such as tabu search [24,78], genetic algorithms [112], memetic al-
gorithms [113,142,181] and ant colony optimisation [52,94,206], were also
applied to CARP. Meta-heuristic approaches usually iteratively improve
one or more initial solutions. They can also provide promising solutions
within a limited time budget. Since meta-heuristic algorithms can take the
solution from constructive heuristics as their initial solution, they are not
worse than constructive heuristics. Transfer learning techniques, such as
meme learning and selection [62], memetic computing paradigm [61], are
also utilised to enhance the problem solving capability for CARP. These
approaches can capture useful structures or latent patterns from previous
experiences of problem-solving, and transfer the structures and patterns
to future evolutionary search. As a result, the effectiveness and search
efficiency can be improved.

2.9.2 Approaches to UCARP

The CARP in reality can contain a variety of different uncertainties. Liu et
al. [121] gave a comprehensive review on the uncertain factors in CARP,
and the corresponding approaches to address them. Liu et al. [121] sum-
marised four important uncertain factors in CARP, i.e., stochastic task de-
mand, stochastic edge deadheading cost, stochastic task presence and stochas-
tic edge existence, all of which are important to be considered. Thus, in
this paper, we aim to solve the UCARP [141] model that considers all the
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above four uncertain factors.

There are two types of approaches to the UCARP model with the four
uncertain factors. The first one aims to find solutions that are expected
to handle all the possible realisations of the random variables, which can
be namely “proactive” approaches. The second one uses Genetic Program-
ming Hyper Heuristics (GPHH) to evolve routing policies that construct
solutions gradually in real time, which can be namely “reactive” approaches.

Typically, proactive approaches output a pre-planned solution and a
recourse operator. They use an optimisation algorithm to generate the pre-
planned solution, and then a recourse operator to repair the solution when
failure, such as route failure, occurs. The performance of these approaches
is highly dependent upon the accuracy of the prediction of the stochastic
environment as well as the effectiveness of the recourse operators.

Fleury et al. [64] adapted the best method published for CARP, i.e.,hybrid
genetic algorithm (HGA), to CARP with stochastic task demand (SCARP).
HGA not only considers the solution cost but also the robustness of solu-
tions. Wang et al. [194] proposed a new MA for UCARP. This new MA
contains an integrated fitness function and a large step-size local search
operator. It makes use of the integrated fitness function to direct the search
process while the large step-size local search operator prevents MA from
trapping in the local optima. Babaee et al. [15] proposed hybrid meta-
heuristic approach integrated with a mix integer programming model to
deal with the demand uncertainty. The hybrid meta-heuristic approach
utilises simulated annealing as the optimiser and a constructive heuris-
tic to provide initial solution. Wang et al. [193] developed an Estima-
tion of Distribution Algorithm with Stochastic Local Search (EDASLS) for
UCARP. The EDASLS aims to get solutions that can perform well over a set
of UCARP instances. It is developed based on the edge histogram based
sampling algorithm [187]. A novel stochastic local search is proposed and
integrated. The stochastic local search can effectively handle the uncer-
tainties in UCARP. Tong et al. [186] proposed a generalised meta-heuristic
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framework for UCARP. In addition, Tong et al. [184] proposed a hybrid
local search framework which can handle the small dynamic changes in
UCARP.

In contrast, reactive approaches produce a routing policy without need-
ing any pre-planned solution. GP is typically used to evolve a population
of routing policies, and the best evolved routing policy can be applied to
unseen/future scenarios to make routing decisions in real time.

Weise et al. [203] firstly adapted a GPHH to a single-vehicle UCARP
and showed that routing policies evolved by GPHH could outperform
manually designed routing policies. After that, to improve the effective-
ness of GPHH, Liu et al. [122] proposed a novel pool filer to omit irrele-
vant candidate tasks during the decision-making process. In real world,
tasks in UCARP are usually served by a fleet of vehicles. Thus, the model
was extended from a single-vehicle to multi-vehicle version by Mei et al.
[143]. MacLachlan et al. [133] improved the GPHH by proposing a novel
pool filer which can prevent generating too small routes and an effective
look-ahead terminal which can prevent route failure. Then, MacLachlan
et al. [134] examined the advantage of vehicle collaboration in handling
the uncertain environment. To speed up the training efficiency, Ardeh et
al. [10, 11] applied transfer learning techniques to GPHH. Liu et al. [124]
proposed a new paradigm for GPHH. The new paradigm utilises GP and
cooperative coevolution to evolve a task sequence and a recourse policy
simultaneously. A new recourse strategy called OneFAll was proposed
to handle route failure by using one vehicle take charge of all the failed
tasks [126]. In addition, Liu et al. [125] proposed a GPHH method which
consider the stability of the routes generated by routing policies. Recently,
Wang et al. [195, 197] took the interpretability of the GP-evolved routing
policies into consideration by evolving smaller routing policies. Table 2.4
shows the categorisation of the approaches to CARP and UCARP.
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Table 2.4: Classification of approaches to (U)CARP.

Problem Category Literature

CARP
Exact approaches [18, 72]

Constructive heuristics [70, 72, 190]
Metaheuristics [24, 52, 61, 62, 78, 94, 112, 113, 142, 181, 206]

UCARP
Proactive approaches [15, 64, 184, 186, 193, 194]
Reactive approaches [10, 11, 122, 124, 133, 134, 143, 195, 197, 203]

2.9.3 Interpretable GP

2.9.3.1 Interpretability in GP

Genetic Programming (GP) is considered an interpretable approach since
its flexible tree-based representation [33, 83]. Therefore, it is often utilised
to explain other “black-box” models, such as Deep Neural Networks (DNNs)
[60, 63], Support Vector Machines (SVMs) [63], Random Forest (RF) [63]
and Reinforcement Learning (RL) [77]. Evans et al. [60] proposed a global
model extraction method which uses multi-objective genetic programming
to construct accurate, simplistic and model-agnostic representations of com-
plex black-box estimators. The result showed that the newly proposed
method can offer drastically simpler models, with statistically equivalent
test accuracy over DNNs and RF. Rather than reproducing a global model,
Ferreira et al. [63] utilised GP to evolve a local explanation model. The
Genetic Programming Explainer (GPX) was proposed to the problem of
explaining decisions computed by AI systems. GPX generates a noise set
located in the neighbourhood of the point of interest and fits a local expla-
nation model for the analysed sample. The result showed that GPX can
reflect the local behaviour of the complex models, such as Deep Neural
Networks, Support Vector Machines and Random Forest.

In addition to helping to explain “black-box” models, GP can be also
directly utilised to evolve interpretable programs for classification, regres-
sion and clustering problems. Berlanga et al. [19] utilised GP to evolve
compact and accurate GP trees for high-dimensional classification prob-
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lems. The evolved GP classification system showed a good performance
in terms of accuracy and interpretability. Hein et al. [77] utilised GP to dis-
cover interpretable policies for RL. The authors proposed a Genetic Pro-
gramming for Reinforcement Learning (GPRL) approach based on model-
based batch reinforcement learning and genetic programming, which au-
tonomously learns policy equations from pre-existing default state–action
trajectory samples. GPRL can produce well-performing interpretable re-
inforcement learning policies from the pre-existing default state–action
trajectory data. Hu et al. [82] designed a linear GP (LGP) algorithm and
feature importance evaluation methods for the bioinformatics application
problem of predicting disease risk using metabolite abundance levels in
blood samples. LGP can evolve highly accurate classification models and
the feature selection method based on feature importance evaluation can
help further improve the prediction accuracy and discover the causality
between the input and output. Zhao [222] utilised multi-objective GP to
evolve a Pareto Front of interpretable decision tree-style rules for clas-
sification problem. Although GP can be utilised to evolve interpretable
models, one issue is that the built-in interpretability is insufficient to han-
dle complex problems [139]. Mei et al. [139] also claim that the evolved
GP models become difficult to interpret when they become too large size.
Consequently, it becomes important to consider interpretability as a key
aspect of the design of GP algorithms. This will enable GP models not
only effectively perform critical tasks such as recognition, prediction, and
decision-making, but also provide insights into the reasoning behind their
decision-making processes. By incorporating interpretability, users can
comprehend the internal workings of the model, including its capabilities
and limitations, its potential for making errors in particular circumstances,
and how to enhance its performance.

There have been various studies to reduce tree size during the GP evo-
lutionary process. The most straightforward way is to limit the number
of nodes of the tree. Wang et al. [195–197] intended to handle this issue
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by directly reducing the size of the evolved GP programs. In addition, the
number of Splitting points was considered by Evans et al. [60]. However,
this strategy has two main limitations. First, it limits the search space and
may weaken the exploration ability of GP, and thus lead to worse effec-
tiveness. Second, it is nontrivial to predefine a reasonable limit for the
number of nodes [23]. To deal with these issues, Silva and Costa [171–173]
proposed a method that dynamically adjust the limit during the evolution-
ary process. The method in [171] initial set a small limit and then increase
the limit once it finds a new best individual exceed the limit. The limit
can be also decreased if a new best individual has a smaller size [172].
Another commonly used strategy is to penalise large trees during the se-
lection, known as the parsimony pressure [109]. The parsimony pressure
can be utilised in either fitness evaluation stage [36, 89, 153, 212] or parent
selection stage [20, 23, 48, 58, 129]. The penalty term can be a fixed value
based on domain knowledge [36, 89, 153] or dynamically changed based
on the accuracy and size of the current best individual [212]. One way to
use lexicographic parsimony pressure methods [129] is to prioritise accu-
racy when comparing solutions, and then compare their size only if their
accuracy is identical. Kinzett et al. [108] point out that it is difficult to ob-
tain a small and effective solution in some scenarios. The solution could
be biased by either tree size or fitness in GP. Luke et al. [130] review a set
of bloat control methods in GP and compare them with the depth limiting
method on different problems. The authors argue that linear parsimony
pressure [36] performed the best in the cross-problem comparison, and the
double tournament selection [128] performed the second best. However,
the conclusions obtained in [130] are purely empirical.

General genetic operators can be modified to evolve simpler GP trees.
Rather than resorting to the arbitrary generation and subsequent rejection
or penalization of large offspring in genetic algorithms, it is possible to
design genetic operators specifically aimed at generating small offspring.
A frequently employed strategy involves creating offspring that bear re-
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semblance to their parents in terms of structure. In tree-based genetic pro-
gramming, one can adopt crossover techniques that select only sub-trees
possessing the same structural characteristics as the parents’ upper seg-
ments, such as one-point crossover [159], or sub-trees with similar sizes,
such as size-fair crossover [114]. Homologous crossover [154] represents
a hybrid approach that takes into account both sub-tree size and inher-
ited structure. When it comes to mutation, one may modify only a single
node’s value (point mutation [160]), instead of replacing an entire sub-
tree. Alternatively, the size of newly generated sub-trees can be controlled
to ensure that it does not surpass the replaced sub-tree, using techniques
like size-fair mutation [115] or the prune and plant operator [3].

Keijzer and Babovic [98] and Mei et al. [140] handle the interpretabil-
ity issue by applying dimensionally aware GP which considers the physi-
cal dimensions of the problem features, and favours the combinations be-
tween the features with the same physical dimension. Alba et al. [2] and
Hein et al. [76] utilised strongly-typed GP to constrain the combinations
of different feature types to evolve interpretable GP programs. GP tree
simplification methods are an alternative for tree size reduction. Hooper
et al. [81] utilised the expression simplification to simplify the trees. Their
simplification method employed over 200 simplification rules to simplify
an expression. To speed up the simplification process, Zhang and Wong et
al. [205,218–220] proposed the use of algebraic tree simplification with the
hashing techniques. However, these algebraic methods cannot detect all
kind of redundancies [106]. It can easily simplify the expression A − A to
0. However, A+ 10−100 cannot be simplified to A directly, although 10−100

does not play any significant role in the final output. In addition to the al-
gebraic approach, Kinzett [107] and Song et al. [177] proposed numerical
simplification methods. These methods are based on the local effect of a
subtree. Kinzett et al. [107] removed a node or a subtree if its numerical
contribution is smaller than a predefined threshold. Song et al. [177] re-
placed the parent node with its child node if the difference between their
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outputs is below a predefined threshold. Most GP simplification methods
can only detect redundancies based on genotypic information (contribu-
tion of the genotypic subtrees) rather than phenotypic information (output
of the whole GP tree). Thus, many redundancies will still exist. Also, they
require manually selected simplification rules or predefined threshold pa-
rameter. The final test performance is highly sensitive to these parameters.
It is hard to set these parameters properly.

2.9.3.2 Interpretability in GPHH for UCARP

There are two categories of approaches to interpretability based on the
techniques and the model properties [120]. The first one is mainly about
the intrinsic which aims to the complexity of the model directly, and the
other one consists of post-hoc explanations. Usually, these two categories
can be distinguished by identifying whether interpretability is achieved
through constraints imposed on the complexity of the ML model (intrin-
sic) or by applying methods that analyse the model after training (post-
hoc) [147].

Intrinsic approaches mainly focus on the transparency of the model.
Transparency refers to the degree that a model can be understood by users
directly [35]. If an entire model can be understood and simulated by a
person at once, then the model can be called transparent. In this case, an
interpretable model should be a simple model. Thus, model complexity
takes a dominant place in transparency [14]. For example, a rule-based
system that contains a large number of simple rules is not transparent,
however, a single perceptron neural network is transparent. This claim is
consistent with the argument that simple linear models (having few coef-
ficients) are more interpretable than complex linear models (having many
coefficients) learned on the same inputs [182]. Intrinsic interpretability is
typically achieved by imposing constraints on the model, such as mono-
tonicity, causality, sparsity, or physical constraints that come from the do-
main knowledge [168].
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Branke et al. [25] investigated the use of a simple linear model as an
alternative to the GP-evolved rules, however, the linear model gave sig-
nificantly worse results than the GP-evolved model. Jia et al. [95] also ex-
plored different representations of routing policies, and eventually found
that a routing policy represented as a GP tree was the best choice. To
evolve more interpretable routing policies for UCARP, Wang et al. [195,
197] take the intrinsic interpretability of the GP-evolved routing policies
into consideration by evolving simpler routing policies. Wang et al. [195,
197] firstly add size limitation for the GP tree to evolve smaller routing
policies. Even though users can understand relatively simple routing poli-
cies, in some cases GP needs to evolve very complex routing policies to
ensure effectiveness. It is necessary to find ways to explain these complex
routing policies.

Post-hoc (post-model) interpretability refers to applying explanation
methods to the learned model as some models are not readily interpretable
by design. It can extract information from the learned model. Note that,
post-hoc interpretations often do not elucidate precisely how a model works,
they may nonetheless confer useful information for practitioners and end
users of machine learning [120]. It can also answer the question what
else the model can tell us. Post-hoc methods can be applied to not only
“black-box” models, but also transparent models (the model itself is easy
to interpret), since post-hoc methods are usually decoupled from the main
model [35]. Some common approaches to post-hoc interpretations include
text explanations, visualisations of learned representations or models, lo-
cal explanations and example-based explanations [13, 120, 147].

To our best knowledge, there is not any existing post-hoc interpretabil-
ity work for GPHH for UCARP. we can see that previous research has
focused on intrinsic methods, while post-hoc has yet to be investigated. It
is necessary to develop novel post-hoc methods that help end-users un-
derstand GP-evolved routing policies.
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2.10 Chapter Summary

This chapter reviewed the main concepts of UCARP. The essential back-
grounds of GP, HH and GPHH. Also, this chapter reviewed the related
work of approaches for CARP and UCARP. We discuss the limitations of
existing work of current GPHH works for UCARP. The current studies of
GPHH for UCARP is lack of interpretability. GP-evolved routing policies
are typically very complex thus hard to interpret by human users. Inter-
pretability is very important if we want to apply the GP-evolved routing
policies in practice as users will refuse to use GP-evolved routing policies
if they are not trustworthy. In this chapter, we have also reviewed related
works of interpretability of GP from two aspects, i.e. using GP to interpret
other machine learning models and interpreting GP-evolved models. This
chapter showed that improving GP-evolved routing policies have many
challenges and difficulties. The limitations of the existing work that form
the motivations of this research were also discussed, which can be sum-
marised as follows.

1. Existing studies have shown that GPHH methods can evolve effec-
tive routing policies that well handle UCARP. However, these meth-
ods still have limitations of the interpretability of the evolved rout-
ing policies. Therefore, improving the interpretability of GP-evolved
routing policies is still an open issue. Research needs to be conducted
to propose new methods to improve the interpretability in both in-
trinsic and post-hoc ways.

2. Existing studies to evolve simpler routing policies mostly limit the
tree size directly. One key reason of complex routing policies is that
GP tree contains many redundant build blocks. However, to our best
knowledge, there is no study trying to removing the redundant build
blocks from GP-evolved routing policies for UCARP.

3. There is a tradeoff between the interpretability of effectiveness of
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GP-evolved routing policies. Thus, we can treat our problem as a
multi-objective problem. In addition, evolving interpretable rout-
ing policies that meets the needs and preferences of a specific user
group can be challenging. Existing method have not consider using
multi-objective methods to evolve a diverse non-dominated routing
policies to different users.

4. To our best knowledge, there is no study trying to propose post-
hoc methods to improve the interpretability of GP-evolved routing
policies for UCARP as GP is considered an interpretable approach
because of its tree-based representation. However, GP trees can ap-
ply complex nonlinear transformations to input variables, which can
make it difficult to interpret the relationship between the inputs and
the output. Therefore, it is necessary to propose post-hoc methods
that can explain the relationship between the inputs and the final
decision made by GP-evolved routing policies.

By proposing both intrinsic and post-hoc methods for GP-evolved rout-
ing policies for UCARP, the above-mentioned issues will be addressed in
the following three chapters. Chapter 3 will develop intrinsic method that
can automatically remove the redundant build blocks from GP-evolved
routing policies during the evolutionary process. Chapter 4 will develop
new multi-objective GP methods to include both interpretability and ef-
fectiveness as main objectives and evolve a Pareto front of routing policies
meet the needs and preferences of different user groups. Chapter 5 will in-
troduce new post-hoc methods that give explanations of GP-evolved rout-
ing policies to end users.



Chapter 3

Genetic Programming with
Niching for Uncertain Capacitated
Arc Routing Problem

3.1 Introduction

GP evolved routing policies are usually too large and complex, which
usually leads to poor interpretability. Evolving small and simple rout-
ing policies (without losing effectiveness) can help end users understand
the evolved routing policies better so that they can use them confidently
and modify them when necessary. Intuitively, the size (number of nodes)
of the routing policy is an essential factor that can affect the interpretabil-
ity, and a larger (smaller) routing policy tends to be harder (easier) to in-
terpret. Usually, the tree size of the routing policy evolved by GPHH is
too large. The main reason is that GP tends to continuously increase the
size of its individuals, which is known as bloat [23, 49, 162]. For bloat con-
trol, one can simply limit the tree size or depth during the GP evolution
(e.g., [161, 197]) or design specific genetic operators to consider both tree
size and effectiveness (e.g., [49,108,130]). However, these approaches can-
not balance the two aspects well. Their performance could be biased by
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Algebraic 
simplification

Figure 3.1: An example of GP tree algebraic simplification.

either tree size or effectiveness.

GP program simplification is another way to reduce the tree size by
removing redundant materials from GP trees. GP produces trees that typ-
ically contain a large number of redundant components (subtrees). It is de-
sirable to remove as much of these redundant materials as possible with-
out sacrificing the exploration ability of GP. Manual simplification on the
final GP tree has been tried in the past. However, it is more preferred
to simplify GP trees during the search process [105]. Wong and Zhang
et al. [205, 218–220] have explored the use of algebraic tree simplification
with the hashing technique and applied it to regression and classification
problems. Kinzett et al. [107] and Song et al. [177] have proposed numeri-
cal tree simplification methods. Both methods are based on the local effect
of a subtree.

The above simplification methods have several limitations. First, they
detect redundant subtrees based on genotypic information (e.g. tree struc-
ture) rather than phenotypic information (e.g. behaviour in decision mak-
ing). Thus, they may fail to detect some implicit redundancies. Second,
they need predefined parameters, i.e. simplification rules and threshold.
The final effectiveness is highly sensitive to these parameters, and it is
hard to set them properly. To the best of our knowledge, there is no ex-
isting study that implements the simplification based on the phenotype of
GP trees. Also, there is no existing study that applies GP program simpli-
fication to GPHH for UCARP to evolve both effective and simple routing
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policies.
The phenotypic behaviour, in this context, captures the actual sequence

of routing decisions made by the evolved solutions. To illustrate this con-
cept, consider a simplified UCARP scenario with a pool of tasks (e.g., t1,
t2, t3) awaiting service. A routing policy, as the outcome of the evolution-
ary process, selects a specific order to serve these tasks. For instance, if the
routing policy prioritises t3 first, followed by t1, and finally t2, the result-
ing phenotypic behavior of the routing policy would be represented as ‘t3,
t1, t2.’ This sequence embodies the concrete routing actions taken by the
vehicles, dictating the order in which tasks are served.

To simplify a GP tree based on phenotypic behaviour, we aim to re-
place a large tree with another smaller tree with the same phenotypic be-
haviour. An intuitive approach is to group the individuals in the popula-
tion based on their phenotypic behaviour (each group contains the indi-
viduals with the same behaviour), and simplify all the individuals in each
group by replacing it with the smallest individual in that group. We call
this approach niching simplification, since it is similar to the niching tech-
niques [84,136] that divides the individuals in the population into different
groups/niches.

3.1.1 Chapter Goals

The overall goal of this chapter is to propose a novel GPHH that simplifies
the individuals during the evolutionary process based on their phenotypic
behaviour. In this way, we can obtain both more effective and smaller
routing policies, which can be potentially more interpretable and general-
isable. To achieve this goal, we have the following research objectives:

1. To develop a new niching simplification scheme based on pheno-
typic behaviour. Specifically, the individuals with the same pheno-
typic behaviour (i.e., fitness in this study) are grouped into a niche.
In each niche, all the individuals are replaced by the individual with
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the smallest size (so-called representative of the niche);

2. To compromise the loss of population diversity due to the niching
simplification, we still keep the original population, and store the
niche representatives in an external archive;

3. To develop a multi-source breeding mechanism to generate offspring
from the original population and the representative archive, respec-
tively;

4. To design niching-based elitism and parent selection schemes for the
breeding from the representative archive;

5. To develop a new GPHH algorithm with Niching (GPHH-N) that
incorporates all the above designed components.

6. To verify the effectiveness of GPHH-N, and analyse the routing poli-
cies evolved by GPHH-N.

3.1.2 Chapter Organisation

The rest of this chapter is organised as follows. Section 3.2 describes the
proposed approach. Section 3.3 gives the experimental studies. Section 3.4
conducts the results and the further analysis. Finally, Section 3.6 gives the
conclusions and possible future directions.

3.2 Proposed Method

3.2.1 Overall Framework

The overall framework of GPHH-N is shown in Fig. 3.2. Firstly, a popu-
lation of routing policies (each represented as a GP tree) is initialised ran-
domly. Then, the routing policies are evaluated at each generation based
on their simulation effectiveness (total cost). If the stopping criteria are not
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reached, the population undergoes the evolutionary process. In the evolu-
tionary process, routing policies are first simplified by the niching simpli-
fication. Details of the niching simplification will be given in Section 3.2.4.
After that, the smallest tree in each niche is considered the niche repre-
sentative and is stored in a representative archive. The niching elitism and
niching tournament selection are then applied to both the original popula-
tion and representative archive to produce offspring. The niching elitism
selects diverse trees for the next generation. It will be described in Sec-
tion 3.2.5. The newly developed niching tournament selection can ensure
that diverse parents are selected from the simplified population. Details
will be discussed in Section 3.2.6. The multi-source breeding process se-
lects parents from both the original and simplified populations so that the
simplified blocks are not completely lost. We will describe its details in
Section 3.2.7. The relationship between the population and representative
archive and how the newly proposed operations update them are shown
in Fig. 3.3.

3.2.2 Individual Representation

In this thesis, each routing policy is represented as a priority function. The
priority function is a combination of the state features, such as the cost
from the current location to the candidate task (CFH) and the cost from the
candidate task to the depot (CTD). For example, if the priority function is
“CFH + CTD”, the priority function tends to select tasks that are closer to
the current location and also closer to the depot. The routing policy works
as a decision-maker during the solution construction process. Typically,
each vehicle can only serve one task at a time. The routing policy will be
applied to each unserved task to determine each unserved task’s priority
once a vehicle completes its current task and is ready to serve the next
task. The task with the best priority value will be served next. The deci-
sion process finishes when all the tasks have been served and the routes
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Figure 3.2: The overall Framework of GPHH-N

returned as the solution constructed by the routing policy.

3.2.3 Fitness Evaluation

Given a routing policy rp, the fitness is defined based on the average qual-
ity (i.e. total cost) of the routes that it generates. Specifically,

fit(rp) =
1

|S ′|
∑
s∈S′

C(sξ), (3.1)

where S ′ is a set of instance samples, |S ′| is the number of instance sam-
ples. C(sξ) stands for the total cost of the solution obtained by rp on in-
stance sample s, which can be calculated by Eq. (2.8). The solution is con-
structed based on a simulation process that is commonly used in UCARP
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Figure 3.3: The illustration of the offspring generation in GPHH-N.

literature [123,197]. Algorithm 2 shows the fitness evaluation in GPHH-N.

One can see that each routing policy is applied as a priority (heuristic)
function. When a vehicle is ready (at a decision-making point), a routing
policy is applied to determine which candidate task to serve next. The
quality of each routing policy can be evaluated by applying it to a set of
training samples S ′. A solution can be constructed using the routing policy
on a training sample s ∈ S ′.

We randomly re-sample training samples for the fitness evaluation.
Such sample rotation has been commonly used in other studies [80, 122]
to improve the generalisation of the evolved heuristics.

3.2.4 Niching Simplification

The niching simplification method is shown in Algorithm 3. It firstly
places the trees with the same phenotype into the same niche. Then, each
niche identifies the tree with the smallest tree size (number of nodes in
the tree) in the niche as the niche representative, and replaces all the other
trees with this representative. If there are multiple trees with the smallest
tree size, the first identified tree is chosen as the representative. In this
way, each niche is represented by a tree with the smallest tree size under
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Algorithm 2: The fitness evaluation in GPHH-N.
Input: Training set Strain, An unevaluated population pop

Output: Fitness values of pop
Randomly re-sample a training samples S ′ ⊆ Strain;
// Evaluate pop using S ′

for each routing policy rp ∈ pop do
// Evaluate rp

for each training sample s ∈ S ′ do
while tasks in queue is not empty do

if vehicle is ready then
Select which task to serve using rp;

end

end
Get the total cost of the generated solution, i.e. C(sξ);

end
Calculate fit(rp) using Eq. (3.1);

end
return fitness values of pop;

the same phenotype. Fig. 3.4 shows two trees with the same phenotype
but different tree sizes. Tree A can be hardly simplified to Tree B by the
algebraic or the numerical simplification method. However, Tree A can be
easily simplified to Tree B by the niching simplification approach.

Note that fitness is used as a high-level phenotypic behaviour of a GP
individual. This is a specific design for GPHH for UCARP, since our pre-
liminary study has shown that many routing policies have different tree
structures but the same fitness value. Although we can use other more
precise phenotypic characterisations such as the structure of the obtained
routes for a given instance, or the phenotypic vector [79], the fitness-based
characterisation is shown to be effective enough empirically, and is very
efficient to compute.
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Algorithm 3: The niching simplification.
Input: Original Population pop

Output: Simplified Population pop′, Representative Archive archive

Initialise archive = ∅ ;
for each routing policy rp ∈ pop do

inNiche(rp) = false ;
end
for each routing policy rp ∈ pop do

if inNiche(rp) == true then
continue ;

end
Create a new niche = {rp};
Set inNiche(rp) = true;
for each routing policy rp′ ∈ pop do

if fit(rp′) equals to fit(rp) then
Add rp′ to niche;
Set inNiche(rp′) = true;

end

end
Find out the individual with smallest tree size inds in niche;
Add inds to archive;
Replace all other individuals in the niche with inds and update pop′ ;

end
return pop′ and archive;

3.2.5 Niching Elitism

Elitism is used in GP to avoid losing the previously found best individuals.
In the traditional elitism scheme, we directly copy the best individuals
(e.g. the top 10 individuals in terms of fitness) from the population to the
next generation. However, this will lead to a significant loss of diversity
after the niching simplification since all the best individuals might come
from the same niche. We propose a niching elitism scheme to address
this issue, which selects the elitists only from the representative archive
to maintain diversity. Firstly, the archive is sorted based on the fitness
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Figure 3.4: Two trees with the same fitness but different tree sizes.

value. Then, top individuals are returned, and they can survive to the
next generation.

3.2.6 Niching Tournament Selection

In GP, the parents are typically selected by tournament selection. In GPHH-
N, each niche can contain many individuals with identical (good) fitness,
and traditional tournament selection tends to select identical parents. To
avoid such a loss of diversity, we modified the tournament selection op-
erator. The new niching tournament selection selects only from the rep-
resentative archive so that the parents for crossover are more likely to be
different. We set the probability of selecting a representative proportional
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to its niche size using the following equation,

P (repi) =
Hα

i∑N
i=1H

α
i

, α ∈ [0, 1] (3.2)

where Hi stands for the number of individuals in nichei, N refers to the
total number of niches. α (0 ≤ α ≤ 1) is a parameter to control the balance
between exploration and exploitation. The Hα

i represents the α power of
Hi. When α equals 1, the niching tournament selection becomes the tradi-
tional tournament selection, which selects parents directly from the sim-
plified population. On the other hand, when α equals 0, each representa-
tive will have the same probability of selection regardless of the number
of individuals in its niche. A parameter sensitivity analysis on α will be
given in Section 3.4.1.

3.2.7 Multi-Source Breeding

The niching simplification process may lead to the loss of the potential
useful building blocks in the large trees. To compensate for such loss, we
design a multi-source breeding scheme. The multi-source breeding pro-
duces offspring from two sources, i.e. the original population and the rep-
resentative archive. Each source is used to produce half of the offspring
population. The pseudocode of the multi-source breeding is shown in Al-
gorithm 4. We breed offspring from two sources so that each source will
produce half of the population in the next generation.

3.3 Experiment Design

To verify the effectiveness of the proposed GPHH-N, we compare it with
the baseline GPHH (which evolves routing policies using GPHH without
any simplification methods) [122], GPHH with the algebraic simplifica-
tion (GPHH-A) [219]. Bloat control approaches are most commonly used
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Algorithm 4: The multi-source breeding
Input: Original population pop, Representative archive archive, population size

S, elitism number k
Output: New population newpop

Add k best individuals from pop to newpop;
while size(newpop) < S/2 do

Select parents from pop using traditional tournament selection;
Generate an offspring by applying (crossover/mutation/reproduction

operators);
Add the offspring to newpop;

end
Add k best individuals from archive to newpop;
while size(newpop) < S do

Select parents from archive using niching tournament selection ;
// Eq.(3.2) applied

Generate an offspring by applying (crossover/mutation/reproduction
operators);

Add the offspring to newpop;

end
return newpop;

to consider both effectiveness and tree size in GP. In this case, we com-
pare our GPHH-N with three representative bloat control approaches, i.e.
Tarpeian, linear parametric parsimony pressure (LPPP), double tourna-
ment (DT) in the literature [130]. The comparisons are conducted within
the scope of GP approaches. First, the purpose of the experiments is to
verify whether our new GP algorithm can obtain both effective and small
routing policies. The tree size can only be compared with other GP ap-
proaches. Second, the previous study [135] has already shown that GPHH
is a competitive approach for UCARP, which is no worse than the state-of-
the-art non-GP approaches such as EDASLS [193].

For each UCARP instance, we randomly generate 500 training samples
and 500 test samples by randomly sampling the stochastic task demands
and deadheading costs. The samples share the same graph topology of the
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UCARP instance but different realised values for the stochastic demands
and deadheading costs.

A GP run on a UCARP instance contains training and test phases. In
the training phase, routing policies are trained on 500 training samples.
These samples are split into 100 batches, each containing 5 samples (S ′ in
Eq. 3.1). A different batch is used for the training in each of the 100 gen-
erations. The best routing policy in the final population is returned as the
trained policy. In the test phase, the trained routing policy is tested on the
500 test samples. The test effectiveness of a routing policy on the UCARP
instance is defined as the average total cost over the 500 test samples, cal-
culated as follows.

Effectiveness(rp) =
1

|Stest|
∑
s∈Stest

tc(rp, s), (3.3)

where Stest is the test set, and |Stest| = 500 is the size of the test set. Fig. 3.5
shows the training and test phases of one GP run on one UCARP instance.

Figure 3.5: The training and test phases of a GP Run on a UCARP Instance.

3.3.1 Dataset

In this work, we use the Ugdb and Uval datasets, which are commonly
used in UCARP literature [122, 123, 133, 143]. They are extended from gdb
and val which are well known static CARP datasets. Details of the datasets
have been discussed in Table 2.1.
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3.3.2 Specific Parameter Setting

For GPHH approaches, the Parameter Setting has been discussed in Sec-
tion 2.5.1. For the compared bloat control methods, the parameters are set
according to the literature [130]. The simplification rules for GPHH-A are
set according to the literature [219]. GPHH refers to the state-of-the-art
GPHH method for UCARP [143]. The meanings of each terminal can be
found in Table 2.3

We use Evolutionary Computation Java (ECJ) package [131] to imple-
ment all the algorithms. For each UCARP instance, each compared algo-
rithm is run 30 times independently (each run trains a routing policy on
the 500 training samples, and then test it on the 500 test samples).

3.4 Results and Further Analysis

We compared the algorithms using the Wilcoxon rank sum test with the
significance level of 0.05. In the tables, “+”, “-” or “=” next to each com-
pared algorithm indicates that the compared algorithm performed statis-
tically significantly better than, worse than, or comparable to GPHH-N.

3.4.1 Parameter Sensitive Analysis On α

The parameter α is important in balancing exploration and exploitation
in the niching tournament selection. To set the α value, we compared the
GPHH-N with 3 different α values, i.e. 0, 0.5 and 1.

Tables 3.1 and 3.2 show the results of the pairwise comparison among
GPHH-N-0.0, GPHH-N-0.5 and GPHH-N-1.0. Each entry is represented in
the Win-Draw-Lose format. Win (Lose) indicates the number of instances
where the row approach performs significantly better (worse) than the col-
umn approach. Draw indicates the number of instances where the two
approaches show no significant difference. Table 3.1 shows the results in
terms of the effectiveness, and Table 3.2 shows the results in terms of the
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tree size. From Table 3.1, we can see that both GPHH-N-0.0 and GPHH-N-
0.5 achieved the best test effectiveness among the compared algorithms.
From Table 3.2, GPHH-N-0.5 achieved significantly smaller tree size than
GPHH-N-0.0. Overall, GPHH-N-0.5 is the best in terms of the effective-
ness and the tree size.

Table 3.1: The Win-Draw-Lose table for the pairwise comparisons between different α
values in terms of effectiveness(average total cost).

Approach GPHH-N-1.0 GPHH-N-0.5 GPHH-N-0.0
GPHH-N-1.0 0-29-28 1-20-36
GPHH-N-0.5 28-29-0 2-50-5
GPHH-N-0.0 36-20-1 5-50-2

Table 3.2: The Win-Draw-Lose table for the pairwise comparisons between different α
values in terms of tree size.

Approach GPHH-N-1.0 GPHH-N-0.5 GPHH-N-0.0
GPHH-N-1.0 57-0-0 57-0-0
GPHH-N-0.5 0-0-57 55-0-2
GPHH-N-0.0 0-0-57 2-0-55

Fig. 3.6 shows the scatter plot of GPHH-N with different α values on a
representative instance Uval2B. Each shape represents the mean tree size
and Effectiveness of the 30 independent runs. We can see that GPHH-
N-0.5 and GPHH-N-0.0 achieved much better effectiveness than GPHH-
N-1.0. In addition, GPHH-N-0.5 obtained a much smaller tree size than
GPHH-N-0.0. Therefore, α = 0.5 is used in the subsequent experiments.

3.4.2 Effectiveness

Tables 3.3 and 3.4 show the mean and standard deviation for the effective-
ness (average total cost) over the 30 independent runs on Ugdb and Uval
instances.
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Figure 3.6: Scatter plot of GPHH-N with different α value on Uval2B

On the Ugdb dataset, we can see that GPHH-N significantly outper-
formed all the compared algorithms. It performed significantly better than
GPHH on 11 out of 23 instances and never performed worse than GPHH.
Besides, GPHH-N significantly outperformed GPHH-A on 9 out of 23 in-
stances while was defeated by GPHH-A on only 2 instances. GPHH-N
performed significantly better than Tarpeian on 19 out of 23 instances and
slightly worse on only 1 instance. GPHH-N was defeated by DT on only 1
instance. However, it outperformed DT on 10 out of 23 instances. GPHH-
N outperformed LPPP on all the instances except Ugdb16. On average,
GPHH-N (283.85) performed the best among all the compared approaches
on the Ugdb dataset.

The same pattern can be observed for the Uval dataset. GPHH-N sig-
nificantly outperformed GPHH on 22 out of 34 instances while never per-
formed worse. GPHH-N outperformed GPHH-A on 24 instances while
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Table 3.3: The mean and standard deviation for Effectiveness (Average total cost) of
compared approaches on the Ugdb instances of 30 runs.

Instance GPHH GPHH-A Tarpeian DT LPPP GPHH-N
Ugdb1 351.25(14.66)(-) 352.1(12.22)(-) 360.34(15.85)(-) 359.03(24.37)(-) 360.89(8.73)(-) 344.12(6.23)
Ugdb2 367.73(4.77)(=) 369.51(12.19)(=) 374.35(9.26)(-) 369.88(6.38)(-) 383.72(10.26)(-) 367.49(13.31)
Ugdb3 307.03(2.87)(=) 306.35(3.1)(=) 308.69(2.55)(=) 307.03(4.3)(=) 312.42(5.27)(-) 307.63(3.64)
Ugdb4 324.9(6.42)(=) 321.95(3.08)(+) 325.91(3.15)(-) 322.87(4.33)(=) 329.18(10.06)(-) 323.43(4.13)
Ugdb5 422.17(6.09)(=) 426.57(15.3)(=) 429.59(8.93)(-) 425.49(9.32)(-) 450.11(14.66)(-) 422.22(13.32)
Ugdb6 344.3(8.37)(-) 344.9(9.11)(-) 359.26(7.17)(-) 342.51(6.46)(-) 362.24(0.0)(-) 337.6(5.27)
Ugdb7 353.24(4.41)(-) 352.58(3.67)(=) 359.59(0.68)(-) 354.95(4.05)(-) 359.85(0.0)(-) 351.68(4.68)
Ugdb8 430.79(8.16)(-) 436.28(37.62)(-) 439.64(11.37)(-) 427.71(7.06)(=) 451.64(13.39)(-) 425.96(5.95)
Ugdb9 389.02(9.86)(-) 387.8(9.17)(-) 397.22(10.41)(-) 392.48(14.55)(-) 408.01(13.95)(-) 380.47(10.02)
Ugdb10 293.0(7.22)(=) 293.75(7.29)(=) 298.22(5.56)(-) 293.79(7.58)(=) 298.7(2.09)(-) 291.47(7.01)
Ugdb11 433.32(8.52)(-) 435.88(6.31)(-) 446.76(7.19)(-) 437.03(6.03)(-) 446.48(4.31)(-) 429.82(11.32)
Ugdb12 604.8(17.36)(=) 606.66(15.48)(=) 618.57(13.27)(-) 604.82(18.0)(=) 622.06(15.8)(-) 604.19(13.94)
Ugdb13 577.11(8.53)(=) 580.12(9.02)(=) 586.62(8.97)(-) 578.01(6.93)(=) 599.42(15.69)(-) 574.93(7.15)
Ugdb14 107.02(1.31)(=) 110.24(12.68)(=) 108.25(1.59)(-) 107.75(2.58)(=) 117.81(2.88)(-) 106.8(1.27)
Ugdb15 58.34(0.81)(=) 58.26(0.19)(-) 58.26(0.24)(-) 58.27(0.41)(=) 62.01(0.0)(-) 58.11(0.09)
Ugdb16 134.52(0.55)(=) 134.64(0.09)(=) 134.51(0.07)(+) 134.61(0.11)(=) 134.47(0.0)(+) 134.91(1.92)
Ugdb17 91.47(1.9)(-) 91.08(0.12)(+) 91.23(0.09)(=) 91.18(0.46)(+) 93.82(0.48)(-) 91.29(0.35)
Ugdb18 167.49(1.77)(-) 167.62(3.06)(-) 168.81(2.19)(-) 168.18(5.61)(-) 180.78(5.52)(-) 166.06(0.92)
Ugdb19 63.29(1.61)(=) 64.16(1.47)(=) 63.95(1.61)(=) 63.66(1.56)(=) 67.81(1.07)(-) 63.63(1.41)
Ugdb20 127.09(1.57)(=) 127.19(1.53)(=) 128.85(2.05)(-) 128.0(4.57)(=) 137.31(0.0)(-) 126.67(2.16)
Ugdb21 164.74(2.27)(-) 167.54(17.58)(-) 166.29(2.96)(-) 165.35(2.82)(-) 181.52(5.49)(-) 163.25(1.58)
Ugdb22 210.11(2.22)(-) 209.26(1.38)(=) 211.01(3.61)(-) 209.28(1.69)(=) 221.46(2.44)(-) 209.09(1.94)
Ugdb23 250.62(2.98)(-) 251.07(4.16)(-) 251.66(2.49)(-) 249.52(1.86)(-) 258.34(6.08)(-) 247.73(2.13)
Average 285.80 286.76 290.76 286.58 297.39 283.85

showed comparable results on the remaining 10 instances. GPHH-N beat
Tarpeian on 32 out of 34 instances but never showed significantly worse
effectiveness. GPHH-N also significantly outperformed DT on 20 out of
34 instances and showed comparable effectiveness on the other instances.
GPHH-N beat LPPP on all the instances. The average effectiveness of
GPHH-N (384.27) is better than all the other approaches.

3.4.3 Tree Size

Tables 3.5 and 3.6 show the mean and standard deviation for the tree size
of routing policies of the compared algorithms on Ugdb and Uval instances.

In Table 3.5, we can see that GPHH-N can evolve much smaller routing
policies than GPHH on 18 out of 23 instances on the Ugdb dataset. GPHH-
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Table 3.4: The mean and standard deviation for Effectiveness (Average total cost) of
compared approaches on the Uval instances of 30 runs.

Instance GPHH GPHH-A Tarpeian DT LPPP GPHH-N
Uval1A 175.43(2.73)(=) 176.47(3.33)(-) 180.75(2.32)(-) 176.51(6.15)(=) 188.73(6.65)(-) 174.37(1.71)
Uval1B 184.2(2.73)(=) 183.87(1.46)(=) 185.65(2.44)(-) 183.74(1.3)(=) 190.04(3.09)(-) 183.69(1.29)
Uval1C 311.93(10.22)(-) 313.69(10.77)(-) 318.29(5.53)(-) 314.01(9.08)(-) 328.39(5.82)(-) 306.5(12.67)
Uval2A 228.68(1.7)(=) 229.37(3.36)(=) 230.97(3.46)(=) 229.06(2.77)(=) 237.65(4.18)(-) 229.25(2.48)
Uval2B 276.49(4.06)(-) 277.95(4.12)(-) 279.74(5.18)(-) 278.63(3.25)(-) 293.33(15.04)(-) 274.2(3.36)
Uval2C 593.34(23.87)(-) 592.11(16.74)(-) 618.37(26.69)(-) 593.6(22.97)(-) 615.61(14.72)(-) 585.09(32.83)
Uval3A 82.18(1.47)(=) 82.44(1.32)(=) 82.36(0.91)(-) 83.63(4.19)(=) 88.37(2.15)(-) 81.97(0.66)
Uval3B 96.04(2.22)(-) 97.13(2.39)(-) 100.0(3.71)(-) 95.91(1.7)(-) 101.36(0.67)(-) 94.09(1.45)
Uval3C 176.45(7.56)(-) 176.18(5.65)(-) 177.49(7.76)(-) 175.66(5.63)(-) 191.54(14.79)(-) 171.31(4.22)
Uval4A 420.29(9.25)(-) 419.32(6.39)(-) 426.99(18.41)(-) 418.89(6.68)(-) 430.38(9.0)(-) 415.05(3.25)
Uval4B 440.85(5.92)(-) 440.07(5.77)(=) 449.25(12.83)(-) 441.81(7.28)(-) 452.09(10.8)(-) 437.64(4.84)
Uval4C 490.73(12.69)(-) 487.45(10.77)(-) 496.52(11.98)(-) 488.95(12.07)(-) 502.05(11.07)(-) 481.42(7.47)
Uval4D 699.52(32.49)(-) 699.17(41.57)(-) 723.26(32.38)(-) 694.53(30.51)(-) 726.66(39.43)(-) 679.62(24.65)
Uval5A 440.36(3.98)(-) 441.58(4.16)(-) 444.51(4.6)(-) 439.69(5.3)(=) 450.26(4.75)(-) 437.46(4.75)
Uval5B 469.81(5.51)(-) 469.55(5.51)(-) 477.66(12.84)(-) 473.99(20.39)(-) 480.97(11.09)(-) 465.81(4.25)
Uval5C 513.04(5.46)(-) 514.82(8.29)(-) 518.32(7.1)(-) 514.65(7.88)(-) 531.0(12.04)(-) 508.33(4.32)
Uval5D 723.04(14.21)(=) 725.36(27.47)(=) 750.36(24.91)(-) 724.44(16.5)(=) 749.13(25.04)(-) 720.0(14.98)
Uval6A 229.0(2.36)(=) 230.67(10.98)(=) 229.39(2.19)(-) 228.69(2.95)(=) 232.31(5.11)(-) 228.36(2.89)
Uval6B 257.32(3.71)(=) 257.53(4.5)(=) 259.23(3.15)(-) 256.1(3.5)(=) 266.56(9.88)(-) 255.71(4.6)
Uval6C 400.99(11.4)(-) 403.55(12.32)(-) 422.21(22.31)(-) 402.19(11.42)(-) 428.03(23.79)(-) 395.1(8.26)
Uval7A 289.74(15.08)(=) 294.17(20.28)(-) 289.73(5.6)(-) 288.03(9.94)(=) 298.57(6.06)(-) 287.14(10.39)
Uval7B 293.51(8.59)(=) 298.33(20.17)(-) 297.86(8.31)(-) 293.96(6.33)(-) 308.95(9.0)(-) 289.62(5.3)
Uval7C 405.06(6.32)(=) 404.95(8.67)(=) 415.7(18.46)(-) 405.42(8.09)(=) 414.11(11.49)(-) 402.77(5.21)
Uval8A 398.75(8.67)(-) 400.7(18.68)(-) 398.24(2.34)(-) 397.08(1.84)(-) 404.15(4.65)(-) 396.17(4.7)
Uval8B 426.22(6.28)(-) 425.1(5.71)(-) 432.02(10.94)(-) 425.21(6.16)(-) 437.98(6.99)(-) 421.27(4.98)
Uval8C 664.62(19.93)(-) 662.56(18.46)(-) 682.25(15.4)(-) 657.38(14.87)(=) 688.07(15.69)(-) 651.12(18.18)
Uval9A 333.75(3.75)(-) 335.02(6.79)(-) 336.69(3.47)(-) 333.52(2.04)(-) 342.35(6.31)(-) 330.88(2.36)
Uval9B 348.89(4.77)(-) 349.08(4.68)(-) 351.79(4.28)(-) 349.35(4.07)(-) 356.58(5.8)(-) 345.14(4.46)
Uval9C 363.89(6.27)(-) 364.33(4.45)(-) 369.69(6.37)(-) 361.15(4.06)(=) 373.94(5.01)(-) 360.36(5.16)
Uval9D 476.86(10.82)(-) 475.31(9.89)(=) 486.36(18.25)(-) 478.3(12.22)(-) 491.21(9.41)(-) 469.8(12.01)
Uval10A 439.33(4.74)(=) 441.52(19.54)(-) 441.37(4.74)(-) 438.55(3.63)(=) 458.51(20.73)(-) 436.58(1.09)
Uval10B 458.65(7.58)(-) 459.46(5.03)(-) 461.27(4.45)(-) 458.54(4.98)(-) 471.01(17.59)(-) 453.76(4.0)
Uval10C 479.37(6.92)(-) 478.5(6.38)(-) 482.29(6.73)(-) 478.85(5.93)(-) 485.69(10.49)(-) 474.86(6.0)
Uval10D 622.17(16.77)(=) 619.15(6.68)(=) 623.39(23.78)(=) 619.56(7.05)(=) 628.2(10.06)(-) 620.74(15.32)
Average 388.54 389.01 395.29 388.22 401.29 384.27
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Table 3.5: The mean and standard deviation for tree size of routing policies of the
compared algorithms on Ugdb instances of 30 runs.

Instance GPHH GPHH-A Tarpeian DT LPPP GPHH-N
Ugdb1 83.0(21.64)(-) 74.8(19.29)(-) 21.4(12.68)(+) 83.2(25.28)(-) 7.47(3.14)(+) 50.0(16.13)
Ugdb2 88.2(23.16)(-) 62.87(14.11)(-) 24.13(10.46)(+) 81.67(21.61)(-) 8.67(3.45)(+) 51.33(20.92)
Ugdb3 69.13(23.69)(-) 63.67(19.22)(-) 18.8(10.18)(+) 73.93(25.56)(-) 6.53(1.25)(+) 34.13(17.46)
Ugdb4 66.0(28.63)(-) 65.6(30.39)(-) 16.27(7.6)(+) 64.8(21.08)(-) 8.47(3.86)(+) 45.2(16.53)
Ugdb5 80.6(19.27)(-) 70.13(20.0)(-) 25.13(11.31)(+) 91.87(23.2)(-) 7.0(3.06)(+) 49.47(23.74)
Ugdb6 66.13(16.19)(-) 57.67(18.81)(-) 8.8(19.42)(+) 72.47(24.81)(-) 1.0(0.0)(+) 41.73(17.74)
Ugdb7 43.4(17.63)(-) 35.07(20.06)(=) 2.13(2.81)(+) 44.13(17.97)(-) 1.0(0.0)(+) 32.73(14.35)
Ugdb8 62.33(19.67)(=) 65.33(16.77)(=) 26.27(15.83)(+) 79.8(27.69)(-) 8.27(4.15)(+) 65.0(21.69)
Ugdb9 66.53(21.91)(=) 67.4(20.17)(=) 24.27(16.46)(+) 68.2(18.71)(=) 8.4(3.9)(+) 69.27(20.43)
Ugdb10 64.6(21.4)(-) 60.87(20.74)(-) 14.4(13.52)(+) 63.13(22.69)(-) 5.13(0.51)(+) 29.93(18.77)
Ugdb11 51.27(31.21)(=) 54.6(17.94)(-) 8.73(12.02)(+) 54.53(18.23)(-) 1.73(2.32)(+) 38.67(15.1)
Ugdb12 75.0(20.6)(-) 66.33(17.07)(-) 25.13(11.87)(+) 85.53(28.04)(-) 14.0(4.54)(+) 48.47(17.08)
Ugdb13 69.4(22.05)(-) 66.0(19.76)(-) 17.13(6.39)(+) 64.07(20.08)(=) 8.47(2.97)(+) 54.27(20.55)
Ugdb14 80.4(26.39)(-) 62.13(16.87)(-) 20.33(9.6)(+) 75.53(22.11)(-) 1.53(1.38)(+) 42.53(24.73)
Ugdb15 96.0(30.83)(-) 71.07(32.92)(-) 21.07(12.3)(=) 91.33(39.31)(-) 1.0(0.0)(+) 22.8(16.04)
Ugdb16 19.0(17.62)(=) 10.27(5.52)(=) 2.67(4.07)(+) 28.0(14.86)(-) 1.0(0.0)(+) 20.6(22.37)
Ugdb17 85.73(35.77)(-) 55.67(20.89)(-) 10.87(18.69)(+) 80.47(41.31)(-) 1.07(0.37)(+) 31.53(36.35)
Ugdb18 80.07(29.18)(-) 75.4(25.14)(-) 25.0(13.54)(+) 92.87(36.2)(-) 5.33(2.58)(+) 47.2(23.31)
Ugdb19 71.8(27.87)(-) 71.87(33.84)(-) 16.27(14.05)(+) 74.33(31.86)(-) 1.4(0.81)(+) 26.47(17.58)
Ugdb20 78.93(28.74)(-) 63.53(20.6)(-) 19.8(14.16)(+) 85.53(31.95)(-) 1.0(0.0)(+) 41.27(19.22)
Ugdb21 81.07(32.49)(-) 67.53(19.86)(-) 20.6(9.53)(+) 79.8(31.31)(-) 2.73(2.77)(+) 53.6(25.61)
Ugdb22 80.87(26.72)(-) 67.33(15.09)(-) 23.07(9.24)(+) 78.87(22.34)(-) 1.4(1.22)(+) 55.47(17.49)
Ugdb23 81.33(28.09)(=) 71.13(20.14)(=) 24.73(12.65)(+) 81.2(20.73)(=) 5.4(2.54)(+) 73.2(26.88)
Average 71.33 62.01 18.13 73.70 4.70 44.56

N can also obtain smaller routing policies than GPHH-A on 18 out of 23
instances. In Table 3.6, the results are consistent with that in Table 3.5.
GPHH-N can evolve much smaller routing policies than GPHH on 24 out
of 34 instances on the Uval dataset. It can evolve much smaller routing
policies than GPHH-A on 19 out of 34 instances.

Note that Tarpeian and LPPP achieved much smaller routing policies
on both datasets. However, their effectiveness is much worse than GPHH-
N in most instances. The tree size of routing policies evolved by DT is com-
parable with that in GPHH on both datasets. This is because DT firstly se-
lects the parents based on the fitness and then considers the tree size. Thus,
if all the good individuals selected from the first tournament selection are
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Table 3.6: The mean and standard deviation for tree size of routing policies of the
compared algorithms on Uval instances of 30 runs.

Instance GPHH GPHH-A Tarpeian DT LPPP GPHH-N
Uval1A 68.2(24.45)(-) 66.0(26.61)(-) 11.33(6.1)(+) 77.47(27.33)(-) 3.73(2.55)(+) 29.0(19.81)
Uval1B 67.0(20.1)(-) 58.8(15.63)(-) 18.73(9.26)(=) 67.6(22.71)(-) 6.53(2.21)(+) 23.2(10.11)
Uval1C 69.13(20.58)(=) 65.27(25.22)(=) 24.4(12.68)(+) 82.67(29.53)(=) 8.4(3.45)(+) 69.73(14.58)
Uval2A 73.07(29.08)(-) 69.67(21.98)(-) 19.87(8.27)(=) 76.4(29.6)(-) 7.53(1.66)(+) 31.27(27.17)
Uval2B 73.2(23.7)(-) 72.67(22.92)(-) 19.67(9.93)(+) 76.27(30.29)(-) 6.93(4.05)(+) 33.67(23.4)
Uval2C 81.73(31.01)(=) 64.2(24.4)(=) 23.0(11.72)(+) 68.67(20.69)(=) 13.33(6.06)(+) 72.2(19.26)
Uval3A 72.2(25.59)(-) 65.6(22.63)(-) 27.6(12.87)(+) 77.33(24.2)(-) 5.6(1.19)(+) 36.73(15.87)
Uval3B 68.87(32.24)(-) 67.13(25.94)(-) 11.87(8.92)(+) 72.47(19.43)(-) 3.13(0.51)(+) 41.07(19.93)
Uval3C 75.6(19.26)(-) 69.67(17.05)(=) 27.13(12.94)(+) 84.67(36.86)(-) 8.0(3.35)(+) 63.6(18.07)
Uval4A 68.27(22.76)(-) 68.33(22.54)(-) 22.27(11.54)(+) 76.73(25.47)(-) 8.13(2.45)(+) 47.2(16.13)
Uval4B 72.53(20.41)(-) 60.93(19.11)(=) 25.67(13.97)(+) 70.6(20.15)(-) 11.47(3.95)(+) 54.33(19.05)
Uval4C 68.8(19.02)(=) 66.87(21.05)(=) 26.6(10.54)(+) 77.2(23.41)(-) 12.6(3.12)(+) 64.33(19.84)
Uval4D 66.8(22.98)(=) 66.6(19.79)(=) 29.2(12.65)(+) 70.67(23.35)(=) 16.8(8.78)(+) 70.4(18.52)
Uval5A 68.33(20.16)(-) 68.4(20.92)(-) 21.87(10.14)(+) 68.53(19.31)(-) 6.87(2.4)(+) 40.47(16.47)
Uval5B 84.8(33.43)(-) 70.07(23.32)(-) 28.27(14.21)(+) 80.53(29.0)(-) 10.4(3.57)(+) 52.67(17.61)
Uval5C 63.67(18.48)(-) 60.67(24.65)(-) 21.07(10.3)(+) 64.8(21.97)(-) 11.0(4.39)(+) 46.87(17.08)
Uval5D 70.93(20.65)(=) 64.8(19.2)(=) 19.73(9.73)(+) 72.6(23.76)(=) 12.47(5.12)(+) 66.33(15.85)
Uval6A 77.87(25.58)(-) 73.87(28.8)(-) 23.47(11.79)(+) 74.33(24.76)(-) 9.53(3.6)(+) 39.87(14.09)
Uval6B 74.27(23.92)(-) 62.0(18.58)(-) 22.8(10.28)(+) 71.6(17.94)(-) 9.67(3.8)(+) 47.13(17.4)
Uval6C 66.67(21.32)(=) 63.93(19.06)(=) 26.27(12.54)(+) 74.07(20.5)(-) 9.73(6.23)(+) 63.67(16.71)
Uval7A 73.07(25.02)(-) 67.4(22.51)(-) 27.27(16.71)(+) 76.93(17.78)(-) 10.13(2.91)(+) 40.07(22.85)
Uval7B 74.6(22.3)(-) 66.87(22.17)(-) 22.0(8.55)(+) 80.07(25.13)(-) 10.33(4.28)(+) 37.67(15.57)
Uval7C 73.67(21.13)(=) 64.6(15.24)(=) 25.53(10.94)(+) 75.47(21.46)(-) 14.4(5.07)(+) 63.8(23.58)
Uval8A 70.07(18.06)(-) 65.13(18.99)(-) 24.87(21.78)(+) 66.6(18.44)(-) 7.47(1.87)(+) 43.33(17.63)
Uval8B 68.33(22.62)(-) 63.13(20.36)(-) 18.4(12.87)(+) 66.33(20.56)(-) 7.0(3.28)(+) 45.87(15.9)
Uval8C 73.6(18.66)(-) 68.53(19.25)(=) 27.73(14.53)(+) 71.2(21.27)(=) 14.93(4.65)(+) 62.07(16.31)
Uval9A 68.67(19.55)(-) 70.33(21.3)(-) 22.2(10.99)(+) 69.47(22.59)(-) 8.27(3.3)(+) 48.67(20.53)
Uval9B 60.4(17.84)(=) 64.67(20.89)(=) 25.33(12.55)(+) 69.2(21.97)(-) 7.87(2.27)(+) 53.8(21.86)
Uval9C 69.2(30.56)(=) 55.73(15.96)(=) 24.33(14.18)(+) 84.13(29.38)(-) 8.2(3.18)(+) 61.0(17.9)
Uval9D 80.73(30.09)(-) 76.2(22.81)(-) 29.33(12.95)(+) 77.8(24.92)(-) 14.87(3.48)(+) 62.07(15.83)
Uval10A 62.73(18.84)(-) 58.0(19.28)(-) 22.13(12.39)(+) 62.13(23.1)(-) 5.87(3.14)(+) 38.2(19.19)
Uval10B 70.87(21.73)(-) 60.73(21.42)(=) 21.73(11.71)(+) 68.4(22.21)(-) 8.73(4.06)(+) 56.27(20.32)
Uval10C 65.73(18.13)(-) 63.2(17.34)(=) 26.27(12.64)(+) 70.4(18.58)(-) 8.53(2.81)(+) 55.07(15.14)
Uval10D 67.8(20.45)(=) 66.07(22.53)(=) 31.27(14.69)(+) 77.4(21.98)(-) 16.33(4.4)(+) 63.93(21.05)
Average 70.93 65.77 23.51 73.55 9.55 50.76
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large, there is no chance to select small individuals in the second tourna-
ment selection process. Overall, GPHH-N performed well on the tree size,
which is expected, as it can effectively remove redundant components in
GP trees.

3.4.3.1 Effectiveness Vs Tree Size

To show the results more clearly, we also plot the results in a scatter map,
where the x-axis is mean effectiveness on 30 independent runs and the y-
axis is the mean tree size. Fig. 3.7 shows the scatter plot on Ugdb1 and
Uval2B. Each compared algorithm is represented as a single dot with a
specific shape in each figure.

From Fig. 3.7, we can see that GPHH-N dominates all the other meth-
ods except Tarpeian and LPPP, which achieve smaller tree size but much
worse effectiveness. Consider that the effectiveness is relatively more im-
portant than the tree size, we can see that GPNN-N is better than all the
other compared algorithms.

3.4.3.2 Training Time

Table 3.7 shows the mean training time of GPHH, GPHH-A and GPHH-
N on Ugdb and Uval instances. As expected, both GPHH-A and GPHH-N
can significantly reduce the training time on most instances. This is mainly
because the simplification operation can remove the redundant compo-
nents. The simplified routing policies need less time to be evaluated. We
can see that GPHH-N can further reduce training time comparing with
GPHH-A. This is mainly because GPHH-N can remove more redundant
components than GPHH-A and makes evolved trees smaller.

Overall, we can see obvious advantage of GPHH-N over GPHH, GPHH-
A and the compared bloat control methods. GPHH-N can obtain better
and smaller routing policies in a shorter training time.
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Figure 3.7: Scatter map of compared approaches on representative instances (Top one is
on Ugdb1, bottom is on Uval2B).
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Table 3.7: The mean training time (seconds) of the compared algorithms on Ugdb and
Uval datasets.

Dataset GPHH GPHH-A GPHH-N
Ugdb (Average) 1027.86 901.05 863.07
Uval (Average) 7794.32 7385.92 7178.14

3.5 Further Analysis

3.5.1 Effect of Each Component

It has been shown that GPHH-N can evolve both better and smaller rout-
ing policies. There are four main components in GPHH-N. They are the
niching simplification (Section 3.2.4), niching elitism scheme (Section 3.2.5),
niching tournament selection (Section 3.2.6) and multi-source breeding
(Section 3.2.7). In order to verify the effectiveness of each component of
GPHH-N, we designed some controlled experiments. Due to the page
limit, we will present the experimental results in the Win-Draw-Lose for-
mat. Win (Lose) indicates that GPHH-N can significantly perform better
(worse) than the compared algorithm. Draw indicates that GPHH-N can
achieve comparable results with the compared algorithm. Table 3.8 shows
the results in terms of effectiveness and Table 3.9 shows the results in terms
of the tree size of the evolved routing policies.

Table 3.8: The Win-Draw-Lose table for the controlled experiments between the
compared algorithms and GPHH-N in terms of effectiveness (average total cost).

v.s. no niching
elitism

v.s. no multi-
source breeding

v.s. no niching
tournament selec-
tion

W-D-L 1-55-1 15-42-0 28-29-0

From Table 3.8, one can see that the niching tournament selection made
the most contribution to GPHH-N in terms of effectiveness. The effective-
ness decreases on 28 out of 57 instances when niching tournament selec-
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Table 3.9: The Win-Draw-Lose table for the controlled experiments between the
compared algorithms and GPHH-N in terms of tree size.

v.s. no niching
elitism

v.s. no multi-
source breeding

v.s no niching
tournament selec-
tion

W-D-L 33-0-24 42-0-15 0-0-57

tion is not used (using traditional tournament selection on the simplified
population instead). The multi-source breeding method can make some
contributions. The niching elitism does not play a major role in improving
the effectiveness.

From Table 3.9, one can observe that the niching tournament selection
tends to increase the tree size. The niching tournament selection can im-
prove the diversity of the parent selection process and lead to better effec-
tiveness. However, it will also increase the tree size.

Fig. 3.8 shows the scatter plot of the GPHH-N with and without differ-
ent components. We can see that all the three components are important in
terms of effectiveness. We can see that the dot of GPHH-N without niching
tournament selection is located at the bottom right area of the plot. This
indicates that niching tournament selection can improve the effectiveness
at the cost of larger tree size.

3.5.2 Analysis of Evolved Policies

To gain further understanding of the behaviour of the routing policies, a
representative routing policy is selected. Eqs. (3.4) – (3.7) show a selected
policy evolved by GPHH-N for the Ugdb19 instance. The policy has a
promising effectiveness (63.39, while the mean effectiveness of GPHH-N
is 63.63). In addition, it has 21 nodes, which is much smaller than the
routing policies evolved by other algorithms with the similar effectiveness.
The meanings of each terminal can be found in Table 2.3

RP = S1 +max(S2, S3) (3.4)
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Figure 3.8: Scatter map of controlled experiment on a representative instance Uval2B

where

S1 = 2DEM + CFH − CTD (3.5)

S2 = DEM + CFH − CTD (3.6)

S3 = PUT +RQ−max(CFR1, CTT1) (3.7)

To make it easier to understand, we can also transform RP to the fol-
lowing IF-ELSE format rule set.

if S2 ≥ S3 then
RP = 3DEM + 2CFH − 2CTD

else
if CFR1 > CTT1 then
RP = 2DEM + CFH − CTD + PUT +RQ− CFR1

else
RP = 2DEM + CFH − CTD + PUT +RQ− CTT1

end if
end if
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We can identify the following patterns and interpretations from the
above rule set.

• When S2 ≥ S3, the RP becomes RP = 3DEM + 2CFH − 2CTD.
There are two possible cases for S2 ≥ S3 to happen:

– S2 is large. This indicates that all the remaining tasks have large
demand, far away from the current location of the vehicle and
close to the depot;

– S3 is small. This indicates that there are not many remaining
tasks, the vehicle is almost full, and all the remaining tasks have
a large CFR1 and CTT1 (they are far away from the other ve-
hicles and each other);

In these two cases, RP prefers the tasks with small demands, close
to the current location of the vehicle and far away from the depot.

• Otherwise, S2 < S3 indicates that the remaining tasks can have small
demands, are close to the current location of the vehicle, and far
away from the depot, and the vehicle is relatively empty. It also has
two possible cases:

– CFR1 > CTT1, this indicates that the task is close to some other
tasks, but far away from other vehicles. In this case, in addition
to small demands, close to the current location of the vehicle
and far away from the depot, RP also prefers the tasks with
larger CFR1, i.e. farther away from other vehicles;

– CFR1 < CTT1, this indicates the task is far away from other
tasks, but can be close to some other vehicles. In this case,
in addition to small demands, close to the current location of
the vehicle and far away from the depot, RP also prefers the
tasks with larger CTT1, i.e. far away from other tasks. In other
words, RP prefers the isolated tasks towards the beginning of
the routes.
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3.6 Chapter Summary

The goal of this chapter is to evolve both effective and smaller/simpler
routing policies for UCARP. This goal has been successfully achieved by
the newly proposed novel GPHH with a simplification approach using a
niching technique (GPHH-N). GPHH-N is examined and compared with
the basic GPHH approach without simplification (GPHH), the basic GPHH
approach with algebraic simplification (GPHH-A) and three representa-
tive bloat control methods on 57 UCARP instances. The results suggest
that GPHH-N can outperform all the compared approaches in terms of ef-
fectiveness. GPHH-N can also outperform GPHH and GPHH-A in terms
of tree size and training time. We also analysed the effect of the newly pro-
posed components by a set of controlled experiments. The results showed
that all the three new components could contribute to evolve smaller and
better routing policies. The niching tournament selection and multi-source
breeding components are more effective than the niching elitism compo-
nent. Overall, GPHH-N can obtain better effectiveness and smaller and
potentially more interpretable routing policies than the current state-of-
the-art GPHH approach.
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Chapter 4

Multi-Objective Genetic
Programming Algorithms for
Uncertain Capacitated Arc
Routing Problem

4.1 Introduction

As discussed in the previous chapter, the GP-evolved routing policies are
usually too large and complex thus hard to interpret. A main reason is
that GP tends to continuously increase the size of its individuals during
the evolutionary process, which is known as bloat [49, 162]. A number of
strategies have been proposed to deal with bloat [23, 106, 109, 161, 197].
In the previous chapter, we have also proposed a new GP simplification
method to reducing the GP tree size to increase the interpretability. In this
chapter, we will propose new multi-objective GP (MOGP) method to op-
timise effectiveness and GP tree size simultaneously. In this case, we can
have GP-evolved routing policies with different degrees of interpretabil-
ity and effectiveness. Different users can have different understanding of

99
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interpretability. Users can pick routing policies based on their preference
by using MOGP. In addition, it is possible to get some knowledge from the
Pareto front evolved by MOGP method by analysing the difference among
GP-evolved routing policies in the Pareto front.

There are two major challenges for developing MOGP to evolve effec-
tive and small routing policies for UCARP. First, GP is much more likely
to generate small (but ineffective) individuals than effective (and typically
large) ones. Under the traditional dominance relation, small ineffective
individuals are more likely to be selected as parents and survive into the
next generation. This is known as the objective selection bias issue [198].
Second, the fitness evaluation for routing policies is stochastic due to the
training sample rotation [26, 122], i.e., it is calculated on a different small
subset of training instances in each generation. The stochastic fitness eval-
uation issue can cause potentially good routing policies to be discarded
if they happen to perform poorly on a small subset of training samples.
This phenomenon becomes worse in MOGP, since most potentially good
routing policies have large program size.

In this chapter, we have proposed different strategies for addressing
the above issues. To handle the objective selection bias issue, firstly, we
adapted the α dominance strategy to our MOGP framework as α domi-
nance strategy [90] has the potential to handle the objective selection bias
issue. A detail introduction of α dominance strategy will be given in Sec-
tion 4.1.2. In this case, the newly proposed MOGP algorithm is named
αMOGP). The detail of αMOGP is discussed in the Section 4.2. After
proposing αMOGP, we found that simply adapted α dominance strategy
to our problem only partially handle the objective selection bias issue. Es-
pecially, the performance of the algorithm depends on the α value, but
it is difficult to find the best α parameter setting in different scenarios.
Thus, we proposed a new α value adjustment scheme to automatically ad-
just the α value based on the bias status during the evolutionary process.
This new MOGP algorithm is named self-adaptive αMOGP (αMOGP-sa).
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αMOGP-sa can automatically identify whether the Pareto front is bias to
size or effectiveness, and then increase/decrease the α value. αMOGP-sa
can find the suitable α value for different scenarios. The detail of αMOGP-
sa will be discussed in Section 4.3. To handle the stochastic fitness eval-
uation issue, we proposed an archive strategy. The new archive strategy
uses an external archive to store the potentially effective individuals that
could have been lost during the traditional GP process. The individuals
in the archive contribute back to the population in the breeding process.
In this case, we can avoid losing the potentially good individuals in the
non-dominant sorting process. This new algorithm is named Two-Stage
MOGP with Archive (TSMOGP-a). TSMOGP-a is discussed in Section 4.4.

Finally, we combine all the above strategies together to develop a new
MOGP algorithm with the α-dominance and archive strategy which is
named αMOGP-a. αMOGP-a aims to address the following limitations
of our previous works in MOGP for evolving routing policies. First, the
effectiveness of the α-dominance method highly depends on the α value,
which is challenging to determine. Intuitively, α should be increased if
the population is biased to small ineffective individuals, and decreased if
most individuals in the population are too large. However, the α adapta-
tion is non-trivial due to the difficulty of estimating the accurate bound-
aries of the effectiveness and program size. Second, the existing archive
update strategies are not effective enough. It can include duplicate in-
dividuals in the archive and reduce the diversity of the archive. To ad-
dress the issue of sensitivity to the α value, in the αMOGP-a we propose
a new scheme to estimate the relative program size of the population, and
a new α adaptation strategy guided by the relative program size estima-
tion. To address the archive diversity issue, we propose a new archive
update strategy that avoids including phenotypic duplicate individuals in
the archive. αMOGP-a will be discussed in Section 4.5.
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4.1.1 Chapter Goals

The overall goal of this chapter is to propose novel MOGP algorithms
that can evolve a set of non-dominated routing policies that have differ-
ent tradeoffs between the effectiveness and the size so that end users can
select a routing policy based on their preference. To achieve this goal, we
have the following specific research objectives:

1. To develop new MOGP algorithms that can evolve effective and in-
terpretable routing policies for UCARP,

2. To develop new strategies that can deal with the objective selection
bias issue,

3. To develop new strategies that can deal with the stochastic fitness
evaluation issue,

4. To verify the performance of MOGP algorithms by comparing with
the current state-of-the-art on a wide range of UCARP instances, and

5. To interpret the routing policies evolved by new MOGP algorithms,
and understand the behaviors of the GP-evolved routing policies.

4.1.2 α Dominance Strategy

The α-dominance strategy [90] is a more general form of traditional dom-
inance. The basic idea of α-dominance is to set tradeoff rates between
objectives. For example, we have two solutions, A and B, with two ob-
jectives, obj1 and obj2. f(A) = (a1, a2) and f(B) = (b1, b2). When using
traditional Pareto-dominance, if a1 < b1 and a2 > b2, A and B are nondom-
inated. However, A might dominate B when using α-dominance strategy.
For a problem to minimize all objectives. If a feasible solution x domi-
nates another solution x′ using α-dominance strategy. The problem can be
formulated as follows.

min(f1(o), f2(o), f3(o), ..., fm(o)), (4.1)
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si(x, x
′) ≤ 0, ∀i ∈ {1, 2, 3, ...,m}, ∧ (4.2)

si(x, x
′) < 0, ∃i ∈ {1, 2, 3, ...,m} (4.3)

where

si(x, x
′) = fi(x)− fi(x

′) +
1...m∑
j ̸=i

αij(fj(x)− fj(x
′)) (4.4)

There is one thing that needs to be noticed that traditional dominance is a
special form of α dominance while all αij equal to 0.

In our problem, we expect that a solution with medium size and good
performance will not be dominated by a solution with extremely small
size but poor performance. Thus, we modified Eq. 4.3 as follows.

ssize(x, x
′) = size(x)− size(x′) + αs(eff (x)− eff (x′)) (4.5)

seff (x, x
′) = eff (x)− eff (x′) + αp(size(x)− size(x′)) (4.6)

where size(x) refers to the size (i.e., number of nodes) of the individual x.
eff (x) refers to the effectiveness (i.e., test performance) of the individual x.
αs equals to α (all the α value mentioned later in the paper) and αp equals
to 0.

Specifically, given two solutions x and x′, we say that x α-dominates x′

if ssize(x, x′) ≤ 0, seff (x, x
′) ≤ 0.

Fig. 4.1 shows the how the dominance area changes when α value
changes. It can be seen that when α equals 0, the dominance area is same as
traditional dominance criteria in which two objectives are treated equally.
When the α is increased, the effectiveness is subsequently given more im-
portance. When α equals positive ∞, it only considers the single objective
effectiveness and ignore the size.

4.1.3 Chapter Organisation

The rest of this chapter is organised as follows. Section 4.2 describes the
newly proposed αMOGP. Section 4.3 introduces the αMOGP-sa. Section



104 CHAPTER 4. MOGP FOR UCARP

(a) α = 0 (b) α = 1 (c) α = ∞

Figure 4.1: The dominance area when α changes.

4.4 introduces the TSMOGP-a. Section 4.5 describes the αMOGP-a. Finally,
Section 4.6 gives the summary of this chapter.

4.2 MOGP Approach with Adaptive α Dominance

Strategy

4.2.1 Overall Framework

The basic idea of αMOGP is using α-dominance strategy to replace the tra-
ditional Pareto-dominance. The α-dominance strategy is combined with
tournament selection as α tournament selection. After evaluating each
routing policy, α tournament selection will be applied to select parent in-
dividuals from the old population. The parent individuals will be used
to breed new population. The, crossover, mutation and reproduction, op-
erators will be applied in the breeding process. The pseudocode of the
αMOGP approach is shown in Algorithm 5. Given the number of gener-
ations G. Each routing policy is evolved using a different training subset
randomly sampled from the training set Strain.

The α tournament selection uses the α dominance to select the parents.
Specifically, it first randomly samples T individuals, and then select the
best one among them in terms of α dominance. If there are multiple non-
dominated individuals, the first one identified during the comparison is
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Algorithm 5: The overall framework of αMOGP.
Input: Training set Strain, number of generations G
Output: A set of non-dominated routing policies RP
initialise the population pop;
g = 0;
while g < G do

randomly sample a training subset S ′ ⊆ Strain;
evaluate pop using S ′;
while |pop′| < popsize do

Breed pop′ using parent selection (Algorithm 6) and genetic
operators;
g = g + 1;

end
pop = pop′;
update the α value based on different update schemes;

end
return the non-dominated routing policies in pop;

selected. The pseudocode of the α Tournament Selection method is shown
in Algorithm 6.

The α-dominance strategy presents a challenge in finding the right bal-
ance between performance and size throughout the evolutionary process.
In our exploration, we have assessed the behaviors of three distinct adap-
tation schemes for the α value: linear, sigmoid, and cosine.

The linear scheme implements a gradual reduction in the emphasis on
performance, resulting in a shift of pressure from performance to size as
evolution progresses. This scheme seeks to strike a balance by gradually
tilting the objectives towards favoring smaller, more interpretable routing
policies.

In contrast, the sigmoid scheme introduces a nuanced approach. It ini-
tiates a slow reduction in the emphasis on performance during the early
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Algorithm 6: The α tournament selection approach
Input: size of Tournament T , Population pop

Output: best routing policy
t= 1;
best = random selected rp from pop;
for t < T do

rp = random selected rp′ from pop;
if rp’ α-dominates best (Eq. (4.5,4.6)) then

best = rp′;
end
t = t+ 1;

end
return best;

stages of evolution, followed by a more rapid reduction in the middle
stages. This rapid decrease sharpens the shift of pressure from perfor-
mance to size. The sigmoid scheme aims to adapt to the evolving needs
of the GP process, responding dynamically to the tradeoff between perfor-
mance and size.

The cosine scheme takes a cyclical approach, consistently oscillating
between increasing and decreasing emphasis on performance. This repet-
itive pattern enables a continuous shifting of pressure between the objec-
tives of performance and size. The cosine scheme provides an intriguing
perspective on how periodic changes in emphasis can influence the evolu-
tionary trajectory of GP.

Each of these adaptation schemes offers a unique perspective on the
dynamics of the α value during the GP process. By examining their be-
haviors, we gain valuable insights into how variations in the α value im-
pact the tradeoff between performance and size, ultimately aiding in the
pursuit of more interpretable and effective routing policies.

The three adaptation scheme curves are shown in Fig. 4.2. The formu-
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Figure 4.2: Three adaptation scheme curves.

las for all three schemes are shown as follow.

flinear(generation) = C +
−C ∗ generation

50
(4.7)

fsigmoid(generation) = C ∗ 1

1 + egeneration−25
(4.8)

fcosine(generation) =
C

2
∗ (cos(π ∗ generation

10
) + 1) (4.9)

where C is a sufficiently large constant which is 99999999 in this paper.

4.2.2 Experimental Study

To evaluate the proposed approach, we test them on a number of UCARP
instances which are commonly used in UCARP literature [122, 143]. For
the sake of convenience, we denote the αMOGP with different adaptation
schemes as follows: αMOGP-linear (αMOGP-l), αMOGP-sigmoid (αMOGP-
s) and αMOGP-cosine (αMOGP-c) . αMOGP-l adjust the α value based
on a linear adaptation scheme. αMOGP-s adjusts the α value based on
a sigmoid adaptation scheme. αMOGP-c adjusts the α value based on
a cosine adaptation scheme. We compare these three algorithms with
the SimpleGP [143], which evolves a single routing policy using GPHH,
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Two-stage GPHH [196], which apply single-objective GPHH in the first
stage and multi-objective GPHH in the second stage, and some other tradi-
tional MOGP algorithms, such as NSGA-II [50] and SPEA2 [22]. These two
widely-used and easily implementable methods, NSGA-II and SPEA2, lend
themselves well to adaptation within the context of GPHH for UCARPs.
They rely on traditional dominance criteria and serve as useful bench-
marks to evaluate the effectiveness of our proposed method. Both NSGA-
II and SPEA2 in this work utilise the original idea of NSGA-II [50] and
SPEA2 [22] but with GP adaptation to make it compatible in GPHH. While
originally designed for static problems, the core principles of selection,
reproduction, and elitism can be seamlessly applied to UCARPs. Our ap-
proach utilizes GP crossover and mutation operators and employs simulation-
based fitness assignment.

We select 8 commonly used UCARP instances to evaluate the perfor-
mance of the proposed approach. The problem size varies from 22 tasks
and 5 vehicles (small) to 97 tasks and 10 vehicles (large). Thus, we can
examine the effectiveness of the proposed methods in different problem
scenarios. In the training phase, routing policies are trained based on the
training set Strain. There are 5 training samples during the evaluation and
they are re-sampled each generation. In the test phase, the routing policy
will be tested on an unseen test set Stest, which contains 500 test samples
that can avoid testing bias.

The population size for all the compared algorithms is 1000. Besides
that, the total number of generations for all the compared algorithms set
to 50. For the initialisation, ramp-half-and-half initialisation is used. The
ratio of crossover to mutation to reproduction is 0.8 : 0.15 : 0.05. For all
αMOGP algorithms, the α-tournament selection size is 7. For NSGA-II,
the tournament selection size is 2 which is a common setting for NSGA-
II. For SPEA2, the tournament selection size is 7 which is a common set-
ting for SPEA2. For SimpleGP, the tournament selection size is 7 which is
commonly used in UCARP experiments. The maximal depth is 8, which
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has been commonly used in previous studies (e.g., [122]). Elitism size for
all compared approaches is 10 except NSGA-II and SPEA2. There is no
elitism parameter for NSGA-II and SPEA2 approaches. The meanings of
each terminal can be found in Table 2.3

We use Evolutionary Computation Java (ECJ) package [131] to imple-
ment all the algorithms. The result is collected based on 30 independent
runs for each algorithm on each UCARP instance.

4.2.3 Results

We use two commonly adopted measures for multi-objective optimisation,
i.e. hyper-volume (HV, the larger the better) and Inverted Generational
Distance (IGD, the smaller the better). The Wilcoxon rank sum test with
a significance level of 0.05 is used to verify the performance of the pro-
posed approaches. Each +, − and = in parentheses refer the Wilcoxon
rank sum test significance. The first parentheses refer to the Wilcoxon
rank sum test significance between compared algorithms and NSGA-II.
The second parentheses refer to the Wilcoxon rank sum test significance
between compared algorithms and SPEA2.

Table 4.1 shows the mean and standard deviation of HV of the com-
pared algorithms. It can be seen that all αMOGP algorithms significantly
outperforms NSGA-II and SPEA2 on all instances. This indicates the ef-
fectiveness of the proposed αMOGP. To make further comparison, we also
make a pairwise comparison between the algorithms. Table 4.2 shows the
pairwise comparison results between the algorithms. In the table, each
entry represents the comparison result between the column algorithm and
the row algorithm. The entry is formatted in W-D-L format. W (L) indi-
cates the number of instances where the column approach performs sig-
nificantly better (worse) than the row approach. D indicates the number
of instances where the two approaches showed no significant difference.

From the table, we can see that all αMOGP algorithms can generate
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Table 4.1: The mean and standard deviation for HV of the compared algorithms in test
process. For each method, (+), (-) and (=) indicates it is significantly higher (better) than,

lower (worse) than, and comparable with NSGA-II (the first parentheses) and SPEA2
(the second parentheses).

Instance NSGA-II SPEA2 TS-GPHH αMOGP-l αMOGP-s αMOGP-c

Ugdb1 0.9071(0.0252) 0.8645(0.0408) 0.9378(0.0258)(+)(+) 0.9389(0.0356)(+)(+) 0.9427(0.0263)(+)(+) 0.9423(0.0292)(+)(+)
Ugdb2 0.9153(0.0154) 0.8894(0.0355) 0.9399(0.0199)(+)(+) 0.9395(0.0281)(+)(+) 0.9572(0.0121)(+)(+) 0.9423(0.0175)(+)(+)
Ugdb8 0.9142(0.0228) 0.8625(0.0466) 0.9395(0.0333)(+)(+) 0.9404(0.0302)(+)(+) 0.9505(0.0195)(+)(+) 0.9427(0.0251)(+)(+)
Ugdb23 0.8889(0.0206) 0.8738(0.0259) 0.9303(0.0198)(+)(+) 0.9295(0.0376)(+)(+) 0.9416(0.0186)(+)(+) 0.9341(0.0247)(+)(+)
Uval9A 0.9756(0.0052) 0.9577(0.0178) 0.9838(0.0037)(+)(+) 0.9781(0.0159)(+)(+) 0.9853(0.0115)(+)(+) 0.9811(0.0084)(+)(+)
Uval9D 0.919(0.0174) 0.8528(0.053) 0.9508(0.012)(+)(+) 0.9393(0.0324)(+)(+) 0.9581(0.0121)(+)(+) 0.948(0.0215)(+)(+)

Uval10A 0.9736(0.0067) 0.9534(0.0161) 0.9861(0.0097)(+)(+) 0.9832(0.0112)(+)(+) 0.9905(0.0047)(+)(+) 0.9859(0.0117)(+)(+)
Uval10D 0.9302(0.0238) 0.8986(0.0325) 0.9643(0.0123)(+)(+) 0.9518(0.0411)(+)(+) 0.9724(0.0106)(+)(+) 0.963(0.0138)(+)(+)

Table 4.2: The WDL table for the pairwise comparisons between the algorithms in terms
of HV.

Approach NSGA-II SPEA2 TS-GPHH αMOGP-l αMOGP-s αMOGP-c

NSGA-II 0-8-0 0-0-8 8-0-0 8-0-0 8-0-0 8-0-0
SPEA2 8-0-0 0-8-0 8-0-0 8-0-0 8-0-0 8-0-0

TS-GPHH 0-0-8 0-0-8 0-8-0 0-8-0 6-2-0 0-8-0
αMOGP-l 0-0-8 0-0-8 0-8-0 0-8-0 5-3-0 0-8-0
αMOGP-s 0-0-8 0-0-8 0-2-6 0-3-5 0-8-0 0-5-3
αMOGP-c 0-0-8 0-0-8 0-8-0 0-8-0 3-5-0 0-8-0

better Pareto fronts than NSGA-II and SPEA2. Also, αMOGP-s performs
best among all αMOGP algorithms and TS-GPHH. It is significantly better
than αMOGP-l on 5 instances and significantly better than αMOGP-c on
3 instances. It can also generate better Pareto fronts than TS-GPHH. We
can see that it perform significantly better than TS-GPHH on 6 out of 8
instances. Besides that, it does not perform significantly worse on any
instance than other algorithms.

Table 4.3 shows mean and standard deviation of IGD of compared al-
gorithms. It can be seen that αMOGP-l outperforms NSGA-II on 7 out of
total 8 instances. Besides that, all other αMOGP algorithms and TS-GPHH
outperform NSGA-II on all instances. It is clear to see that all compared
algorithms can outperform SPEA2 on all instances. This is consistent with
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Table 4.3: The mean and standard deviation for IGD of the compared algorithms in test
process. For each method, (+), (-) and (=) indicates it is significantly lower (better) than,
higher (worse) than, and comparable with NSGA-II (the first parentheses) and SPEA2

(the second parentheses).

Instance NSGA-II SPEA2 TS-GPHH αMOGP-l αMOGP-s αMOGP-c

Ugdb1 0.0972(0.0205) 0.1316(0.0373) 0.0835(0.028)(+)(+) 0.0786(0.0375)(+)(+) 0.0733(0.021)(+)(+) 0.0729(0.0284)(+)(+)
Ugdb2 0.1619(0.0078) 0.1806(0.0277) 0.112(0.0252)(+)(+) 0.1197(0.023)(+)(+) 0.105(0.0218)(+)(+) 0.1212(0.0214)(+)(+)
Ugdb8 0.0748(0.0198) 0.1205(0.0406) 0.0672(0.0306)(+)(+) 0.0778(0.0448)(=)(+) 0.0466(0.0169)(+)(+) 0.0676(0.041)(+)(+)

Ugdb23 0.1376(0.0171) 0.1487(0.0225) 0.0909(0.0203)(+)(+) 0.083(0.0421)(+)(+) 0.0717(0.0177)(+)(+) 0.0791(0.0366)(+)(+)
Uval9A 0.1018(0.0215) 0.1194(0.0237) 0.0548(0.0154)(+)(+) 0.0608(0.0195)(+)(+) 0.0568(0.025)(+)(+) 0.0499(0.0194)(+)(+)
Uval9D 0.1403(0.02) 0.195(0.0507) 0.0767(0.0194)(+)(+) 0.0742(0.0387)(+)(+) 0.0713(0.0191)(+)(+) 0.0696(0.0319)(+)(+)

Uval10A 0.1029(0.0196) 0.1332(0.0282) 0.0635(0.016)(+)(+) 0.0619(0.0167)(+)(+) 0.0647(0.0189)(+)(+) 0.0593(0.0232)(+)(+)
Uval10D 0.0751(0.0198) 0.098(0.0275) 0.0507(0.0226)(+)(+) 0.0645(0.0509)(+)(+) 0.0331(0.0131)(+)(+) 0.0543(0.0251)(+)(+)

Table 4.4: The WDL table for IGD on all 8 instances in W-D-L format for each compared
approach.

Approach NSGA-II SPEA2 TS-GPHH αMOGP-l αMOGP-s αMOGP-c

NSGA-II 0-8-0 0-0-8 8-0-0 7-1-0 8-0-0 8-0-0
SPEA2 8-0-0 0-8-0 8-0-0 8-0-0 8-0-0 8-0-0

TS-GPHH 0-0-8 0-0-8 0-8-0 1-7-0 3-5-0 2-6-0
αMOGP-l 0-1-7 0-0-8 0-7-1 0-8-0 3-5-0 1-7-0
αMOGP-s 0-0-8 0-0-8 0-5-3 0-5-3 0-8-0 0-6-2
αMOGP-c 0-0-8 0-0-8 0-6-2 0-7-1 2-6-0 0-8-0

HV. We also make a pairwise comparison on each algorithm on IGD, and
the results are shown in Table 4.4. In the table, each entry represents the
comparison result between the column algorithm and the row algorithm.
The entry is formatted in W-D-L format. W (L) indicates the number of in-
stances where the column approach performs significantly better (worse)
than the row approach. D indicates the number of instances where the
two approaches showed no significant difference. The result is consistent
with HV, all compared algorithms can obtain better front than NSGA-II
and SPEA2, and αMOGP-s performs best among all αMOGP algorithms.

Performance is still the primary objective of this study. Thus, we take
the routing policies with the best performance from every front to com-
pare the mean performance and size for all compared algorithms. The
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result is shown in Table 4.5 and Table 4.6, respectively. Table 4.5 shows the
mean and standard deviation of test performance of the compared algo-
rithms. Wilcoxon rank sum test with a significance level of 0.05 is used to
compare each approach with SimpleGP. From Table 4.5, one can see that
both NSGA-II and SPEA2 perform worse than SimpleGP since they can-
not handle the challenge of premature convergence on smaller individu-
als. All αMOGP algorithms can obtain a comparable result with SimpleGP.
Especially, both αMOGP-l and αMOGP-c perform significantly better than
SimpleGP on 2 out of 8 instances.

Table 4.6 shows the mean and standard deviation of size of the com-
pared algorithms. All the compared approaches can evolve much smaller
routing policies than SimpleGP. This is as expected since we use size as an
objective. The result indicates that using size as an objective can reduce
routing policy size effectively. There is one thing that needs to be noticed
that both NSGA-II and SPEA2 achieves much smaller size on all instances
than other algorithms. This is because either NSGA-II or SPEA2 has the
problem of premature convergence to small individuals which will lead to
poor performance (shown in Table 4.5).

Overall, the proposed αMOGP can generate better Pareto fronts than
NSGA-II, SPEA2 and TS-GPHH. Besides that, it can achieve much smaller
rule size than SimpleGP with comparable performance. Primarily, with
proper adaptation scheme, it can obtain better performance.

4.2.4 Further Analysis

To analyse the routing policies evolved by αMOGP, we picked one of the
best performing routing policies from αMOGP-s for Ugdb1 as an example.
The routing policy evolved by αMOGP-s, denoted as RP1, is shown in Eq.
4.10.

RP1 = max(S1, S2) (4.10)
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Table 4.5: The mean and standard deviation for test performance (total cost) of the
compared algorithms. For each method, (+), (-) and (=) indicates it is significantly lower

(better) than, higher (worse) than, and comparable with SimpleGP.

Instance SimpleGP NSGA-II SPEA2 TS-GPHH αMOGP-l αMOGP-s αMOGP-c

Ugdb1 355.47(14.83) 373.2(9.8)(-) 389.15(15.56)(-) 356.4(10.7)(=) 354.8(12.0)(=) 358.4(10.6)(=) 354.6(12.5)(=)
Ugdb2 371.72(7.67) 392.8(6.5)(-) 404.08(15.62)(-) 372.0(9.1)(=) 370.2(7.9)(=) 370.8(6.4)(=) 370.5(7.0)(=)
Ugdb8 463.34(54.3) 476.3(15.1)(-) 509.82(29.91)(-) 452.0(23.0)(=) 441.1(10.8)(+) 448.9(12.7)(=) 443.7(11.2)(+)

Ugdb23 252.47(3.11) 260.2(2.9)(-) 262.35(3.66)(-) 253.0(3.3)(=) 250.5(2.2)(+) 252.0(3.1)(=) 251.1(2.7)(=)
Uval9A 335.13(3.8) 351.3(6.0)(-) 371.24(19.77)(-) 336.7(4.6)(=) 336.0(3.7)(=) 336.4(3.4)(=) 336.3(3.8)(=)
Uval9D 478.14(16.68) 522.7(17.4)(-) 586.58(51.35)(-) 480.7(10.1)(=) 474.2(11.9)(=) 479.3(13.4)(=) 474.8(12.2)(=)

Uval10A 439.41(5.97) 460.0(7.0)(-) 481.59(16.89)(-) 442.0(10.9)(=) 440.5(3.9)(=) 440.9(4.4)(-) 439.7(4.0)(=)
Uval10D 620.91(7.97) 668.9(24.0)(-) 699.8(32.83)(-) 624.2(8.6)(=) 619.6(8.4)(=) 622.2(10.0)(=) 617.5(10.4)(+)

Table 4.6: The mean and standard deviation for size of routing policies of the compared
algorithms.

Instance SimpleGP NSGA-II SPEA2 TS-GPHH αMOGP-l αMOGP-s αMOGP-c

Ugdb1 74.6(23.84) 10.0(3.99) 8.4(5.18) 30.53(18.02) 27.67(15.97) 17.33(11.98) 27.87(15.27)
Ugdb2 71.93(23.79) 6.93(3.13) 5.73(3.22) 38.33(19.8) 28.07(14.12) 26.53(13.27) 29.0(14.08)
Ugdb8 65.47(24.33) 7.07(3.08) 5.6(4.49) 42.27(36.62) 51.67(19.03) 30.87(13.97) 41.6(22.49)

Ugdb23 71.8(25.22) 8.27(3.66) 8.6(4.53) 31.13(19.5) 47.53(26.57) 33.07(24.67) 43.27(24.64)
Uval9A 56.93(18.27) 9.73(4.65) 8.53(4.83) 30.6(13.72) 28.4(14.79) 26.07(14.04) 30.6(12.68)
Uval9D 69.27(29.46) 10.33(4.85) 7.53(6.15) 42.67(19.31) 58.0(29.24) 37.0(22.18) 49.87(20.02)

Uval10A 60.47(18.59) 8.07(3.47) 4.53(4.54) 24.07(10.86) 19.27(9.74) 15.73(6.0) 23.6(12.99)
Uval10D 65.33(14.35) 8.93(3.46) 9.2(5.18) 35.0(21.22) 47.67(23.7) 34.13(17.92) 45.73(21.52)

where

S1 = DC ∗ CFH + CTT1 (4.11)

S2 =
DEM1

DC − CFR1
(4.12)

From S1, we can observe that the policy tends to select the tasks with
smaller CFH (close to the current place) and smaller CTT1. From S2, one
can see that the policy tends to select the tasks with smaller DEM1. Thus
RP1 tends to select the tasks close to current place or the tasks that their
closest task has a small demand.

We have also analysed the final Pareto front. One interesting observa-
tion is that a large amount of small and good routing policies contains the
same building block “DC * CFH”. The final Pareto front contains a large
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number of individuals with one single terminal. Another interesting ob-
servation is that most of the single-terminal individuals are “CFH”. This
indicates that “CFH” is critical for build small and good individuals.

4.2.5 Summary

In summary, this work proposes some different manual settings of α adap-
tation schemes to control the balance between the effectiveness and size
of routing policies in MOGP. The experimental results show that with
a proper adaptation scheme, the proposed approach could evolve much
smaller routing policies without losing the test performance. The results
also show that the proposed approach can effectively reduce the objective
selection bias issue. In addition, different manual settings of α adaptation
schemes can all outperform the standard GPHH.

4.3 MOGP Approach with Self Adaptive α Dom-

inance Strategy

Although the manually designed α adaptation schemes outperform the
standard MOGP, we still see that the best alpha depends on the scenarios,
and we should set α differently in different scenarios. In this case, we
will design new self α adaptation scheme to adjust α value during the
evolutionary process.

4.3.1 Overall Framework

Fig. 4.3 shows the diagram of the αMOGP-sa. The basic idea of αMOGP-
sa is using α-dominance criteria to replace the traditional dominance cri-
teria. After evaluating each routing policy, the population will be non-
dominated sorted based on α dominance. Rank and sparsity will be as-
signed to each individual in the population. Then, we can detect the bias
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of the Pareto front of the current generation and adjust the α value. After
that, a new population will be generated. The tournament selection will be
applied to select parent individuals based on each candidate individual’s
rank and sparsity. The crossover and mutation operators will be applied
to breed a new population. When the stopping criteria are reached, the
final Pareto front based on traditional dominance criteria will be returned.

Initialisation

Evaluation

Stop?

Find the 
Pareto front
(traditional 
dominance)

Non-dominated 
sorting (? 

dominance)

Self adaptive 
? scheme

Evolve 
population 

using genetic 
opterator

Return the 
Pareto front

Yes

No

Figure 4.3: The diagram of αMOGP-sa.

4.3.2 Self-Adaptive α Scheme

One of the main challenges of the α dominance is to find a proper α value
[198]. For different instances, we need different α value as the search space
can be quite different, and the range of the objectives can also be quite dif-
ferent for different instances. In this paper, we propose a self-adaptive α

scheme. The scheme will first identify the upper and lower boundary of
the effectiveness and size to know the range of the objective space, and
if the new boundary is greater than the original, then the original bound-
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ary is replaced by the new boundary. We assume that a good Pareto front
should cover the boundary as much as possible. Then, the current Pareto
front based on traditional dominance criteria is utilised to identify the bias.
If the current front is biased to effectiveness, the α should be decreased. If
the current front is biased to size, the α should be increased. The pseu-
docode of the self-adaptive α scheme is shown in Algorithm 7.
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Algorithm 7: The self-adaptive α scheme.
Input: The population pop, The α value, Upper boundary and lower boundary

of effectiveness ueff and leff , Upper boundary and lower boundary of
size usize and lsize, learning rate lr

Output: The α value, Updated upper and lower boundary of effectiveness ueff

and leff , Updated upper and lower boundary of size usize and lsize

find the current upper and lower boundary of effectiveness and size u′
eff , l′eff ,

u′
size, l′size from pop;

if u′
eff > ueff then
ueff = u′

eff ;
end
if l′eff < leff then

leff = l′eff ;
end
if u′

size > usize then
usize = u′

size ;
end
if l′size < lsize then

lsize = l′size ;
end
Find the current Pareto front pf using traditional dominance criteria from pop;
Calculate the average mean effectiveness avgeff of the pf ;
Calculate the average mean size avgsize of the pf ;
if ueff−avgeff

avgeff−leff
> 1.0 and usize−avgsize

avgsize−lsize
< 1.0 then

// bias to effectiveness, then decrease the α

α = α− lr ;

end
if ueff−avgeff

avgeff−leff
< 1.0 and usize−avgsize

avgsize−lsize
> 1.0 then

// bias to size, then increase the α

α = α+ lr ;

end
return α,ueff , leff ,usize,lsize;

4.3.3 Experimental Study

To evaluate the performance of the αMOGP-sa, we test all compared al-
gorithms on a set of UCARP instances. We compare the αMOGP-sa with
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SPEA2, TSMOGP [196] and the αMOGP [198] which is the current state-
of-the-art MOGP approach for UCARP in terms of effectiveness and size.

We select eight commonly used UCARP instances to evaluate the per-
formance of the proposed approach. The problem size varies from small
(22 tasks and 5 vehicles) to large (97 tasks and 10 vehicles). The experi-
ment consists of two phases, i.e. training and test. In the training phase,
routing policies are trained based on the training set. There are 5 training
samples during the evaluation, and they are re-sampled each generation.
In the test phase, the routing policy will be tested on 500 unseen test sam-
ples, which can avoid testing bias. The meanings of each terminal can be
found in Table 2.3

For all compared algorithms, the generation is 50, and the popula-
tion size is 1000. Ramp-half-and-half initialisation is used. The ratio of
crossover to mutation is 0.85 : 0.15. The tournament selection size is 7
for all compared algorithms. The maximal depth is 8, which has been
commonly used in previous studies (e.g., [122]). Elitism size for all com-
pared approaches is 10. There is no elitism parameter for SPEA2 as it has
an archive to store elites. When α value equals to 0, the α dominance
criteria is the traditional dominance criteria. Previous studies [196, 198]
have demonstrated the existence of objective selection bias issue when us-
ing traditional dominance criteria. To test our hypothesis that the self-
adaptive α scheme can detect the bias and find a suitable α value to ad-
dress the bias, the α value is set to 0 at beginning for αMOGP-sa. The
learning rate for the self-adaptive α scheme is 0.2. The Evolutionary Com-
putation Java (ECJ) package [131] is utilised to implement all the algo-
rithms. The results are collected based on 30 independent runs for each
algorithm on each UCARP instance.
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Table 4.7: The mean and standard deviation for HV of the compared algorithms in test
process.

Instance SPEA2 TSMOGP αMOGP αMOGP-sa
Ugdb1 0.8625(0.04) 0.937(0.03) 0.9385(0.03) 0.9578(0.02)(+)(+)(+)
Ugdb2 0.8902(0.04) 0.9334(0.02) 0.9316(0.03) 0.954(0.01)(+)(+)(+)
Ugdb8 0.8392(0.05) 0.9274(0.04) 0.9284(0.03) 0.9705(0.01)(+)(+)(+)
Ugdb23 0.866(0.03) 0.9274(0.02) 0.9286(0.04) 0.9478(0.01)(+)(+)(+)
Uval9A 0.9577(0.02) 0.9815(0.0) 0.9735(0.02) 0.9887(0.0)(+)(+)(+)
Uval9D 0.8524(0.05) 0.9477(0.01) 0.9326(0.04) 0.9592(0.01)(+)(+)(+)
Uval10A 0.9542(0.02) 0.9863(0.01) 0.9747(0.02) 0.9931(0.0)(+)(+)(+)
Uval10D 0.9019(0.03) 0.9684(0.01) 0.9566(0.04) 0.9775(0.01)(+)(+)(+)

4.3.4 Results

The Wilcoxon rank sum test with a significance level of 0.05 is used to
compare all algorithms. For each compared algorithm, if the proposed
algorithm is statistically significantly better than, worse than, and com-
parable with that of the compared algorithm, the corresponding entry is
marked with (+), (-), or (=), respectively.

We adopt two commonly used indicators for multi-objective optimi-
sation, i.e. Hyper-Volume (HV) [225] and Inverted Generational Distance
(IGD) [42]. The results are shown in Tables 4.7 and 4.8. It can be seen that
the αMOGP-sa perform best among all compared algorithms on almost
all instances. This is as expected as the self-adaptive α scheme can auto-
matically find a suitable α value for different scenarios. With the suitable
α value, αMOGP-sa can generate the better Pareto front. To make the re-
sults more obvious, the final Pareto front over the 30 independent runs on
each instance is shown in Fig. 4.4. We can see that the Pareto fronts of the
αMOGP-sa are better distributed in the objective space. The Pareto fronts
of αMOGP is close to that of αMOGP-sa. This is expected as both algo-
rithms utilised α dominance instead of traditional dominance. The Pareto
fronts of αMOGP-sa are better than that of αMOGP. This can also indicate
the effectiveness of the self-adaptive α scheme.
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(a) Ugdb1 (b) Ugdb2

(c) Ugdb8 (d) Ugdb23

(e) Uval9A (f) Uval9D

(g) Uval10A (h) Uval10D

Figure 4.4: The final Pareto front over 30 independent run of compared algorithms.
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Table 4.8: The mean and standard deviation for IGD of the compared algorithms in test
process.

Instance SPEA2 TSMOGP αMOGP αMOGP-sa
Ugdb1 0.0921(0.03) 0.0678(0.03) 0.066(0.04) 0.0345(0.01)(+)(+)(+)
Ugdb2 0.1329(0.03) 0.0892(0.03) 0.0865(0.03) 0.048(0.01)(+)(+)(+)
Ugdb8 0.1359(0.04) 0.0973(0.03) 0.1113(0.05) 0.0244(0.01)(+)(+)(+)
Ugdb23 0.1207(0.02) 0.0788(0.02) 0.0851(0.05) 0.047(0.01)(+)(+)(+)
Uval9A 0.1218(0.03) 0.0522(0.01) 0.0598(0.02) 0.0486(0.02)(+)(=)(+)
Uval9D 0.202(0.05) 0.0842(0.02) 0.0807(0.04) 0.0545(0.02)(+)(+)(+)
Uval10A 0.097(0.03) 0.0444(0.02) 0.0466(0.02) 0.0271(0.01)(+)(+)(+)
Uval10D 0.1033(0.03) 0.0522(0.03) 0.0674(0.05) 0.0316(0.01)(+)(+)(+)

In this paper, we are still concerned about effectiveness because we
would like some effective and compact routing policies. In this case, we
extract the individual with the best average total cost in the final Pareto
front from each run of each MOGP algorithm. We also compare our al-
gorithm with the state-of-art single-objective GPHH approach. Table 4.9
shows the mean and standard deviation of the average total cost (effec-
tiveness) of the compared algorithms. It can be seen that αMOGP-sa can
perform comparable with GPHH on all instances. Besides, it can outper-
form SPEA2 on all instances because SPEA2 has the objective selection bias
issue on size. This is consistent with the pattern of the final Pareto front of
the SPEA2 in Fig. 4.4. αMOGP-sa can outperform TSMOGP on 3 out 8 in-
stances and achieve comparable effectiveness on other instances. αMOGP-
sa performs slightly worse than αMOGP on 1 instance, but it performs sig-
nificantly better than αMOGP on 3 out of 8 instances and comparable on
other instances. Table 4.10 shows the mean and standard deviation of the
size of compared algorithms. αMOGP-sa can evolve significantly smaller
routing policies than GPHH. This is because αMOGP-sa considers both
size and effectiveness during the evolutionary process. We can see that
SPEA2 obtains much smaller routing policies than αMOGP-sa. This is be-
cause of the objective selection bias issue. All the routing policies obtained
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Table 4.9: The mean and standard deviation of the average total cost of the best
individual from compared algorithms.

Instance GPHH SPEA2 TSMOGP αMOGP αMOGP-sa
Ugdb1 355.4678(14.83) 389.147(15.56) 356.4119(10.74) 354.7738(12.05) 351.8234(7.41)(=)(+)(=)(=)
Ugdb2 371.7201(7.67) 404.084(15.62) 372.0391(9.14) 370.1717(7.91) 372.9289(6.03)(=)(+)(=)(-)
Ugdb8 430.3441(8.16) 509.8187(29.91) 451.9689(22.96) 441.0539(10.75) 433.7355(5.58)(=)(+)(+)(+)
Ugdb23 252.4679(3.11) 262.3478(3.66) 253.0202(3.27) 250.4665(2.16) 251.2397(1.95)(=)(+)(+)(=)
Uval9A 335.1342(3.8) 371.2449(19.77) 336.7092(4.57) 336.0367(3.65) 333.8784(2.22)(=)(+)(+)(+)
Uval9D 478.1405(16.68) 586.5754(51.35) 480.6811(10.14) 474.2416(11.94) 477.6783(7.09)(=)(+)(=)(=)
Uval10A 439.4139(5.97) 481.591(16.89) 442.041(10.9) 440.5193(3.92) 438.1817(2.47)(=)(+)(=)(+)
Uval10D 620.9134(7.97) 699.7957(32.83) 624.1609(8.61) 619.5877(8.45) 620.2146(4.96)(=)(+)(=)(=)

Table 4.10: The mean and standard deviation of the average number of nodes of the
best individual from compared algorithms.

Instance GPHH SPEA2 TSMOGP αMOGP αMOGP-sa
Ugdb1 74.6(23.84) 8.4(5.18) 30.6(18.01) 27.67(15.97) 34.47(31.68)(+)(-)(=)(=)
Ugdb2 71.93(23.79) 5.73(3.22) 38.33(19.8) 28.8(13.88) 28.07(13.26)(+)(-)(+)(=)
Ugdb8 65.47(24.33) 5.6(4.49) 42.27(36.62) 51.67(19.03) 51.2(33.63)(+)(-)(=)(=)
Ugdb23 71.8(25.22) 8.6(4.53) 31.33(19.58) 47.53(26.57) 37.07(36.73)(+)(-)(=)(+)
Uval9A 56.93(18.27) 8.53(4.83) 30.6(13.72) 28.4(14.79) 32.27(19.78)(+)(-)(=)(=)
Uval9D 69.27(29.46) 7.53(6.15) 42.67(19.31) 58.0(29.24) 40.7(16.45)(+)(-)(=)(+)
Uval10A 60.47(18.59) 4.53(4.54) 24.07(10.86) 19.27(9.74) 25.8(13.99)(+)(-)(=)(-)
Uval10D 65.33(14.35) 9.2(5.18) 35.0(21.22) 47.67(23.7) 42.4(18.06)(+)(-)(-)(=)

by SPEA2 are small but poor. This is consistent with the results in Table
4.9. The effectiveness of SPEA2 is significantly worse than αMOGP-sa.
αMOGP-sa can achieve comparable size with TSMOGP and αMOGP on 6
out of 8 instances. Besides, αMOGP-sa outperforms TSMOGP on Ugdb2,
and it also outperforms αMOGP on Ugdb23.

4.3.5 Further Analysis

To further verify the self-adaptive α scheme’s effectiveness, we also com-
pare the NSGP-II with the self-adaptive α scheme (NSGP-II-sa) with the
traditional NSGP-II and a Two-Stage NSGP-II (TSNSGP-II). From Table
4.11, we can see that the NSGP-II-sa can outperform the other two algo-
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Table 4.11: The experiment result (HV) to show the effectiveness of the self-adaptive α

scheme.

Instance NSGP-II TS-NSGP-II NSGP-II-sa
Ugdb1 0.7512(0.06) 0.7929(0.06) 0.9082(0.04)(+)(+)
Ugdb2 0.8342(0.03) 0.8629(0.04) 0.9261(0.02)(+)(+)
Ugdb8 0.8707(0.03) 0.8798(0.04) 0.9508(0.03)(+)(+)
Ugdb23 0.5643(0.08) 0.6(0.09) 0.8213(0.04)(+)(+)
Uval9A 0.728(0.06) 0.8074(0.06) 0.8939(0.02)(+)(+)
Uval9D 0.7125(0.07) 0.794(0.06) 0.8851(0.02)(+)(+)
Uval10A 0.5867(0.1) 0.7001(0.09) 0.9001(0.03)(+)(+)
Uval10D 0.6329(0.14) 0.7697(0.11) 0.9228(0.02)(+)(+)

rithms without self-adaptive α scheme. This is expected as the scheme can
automatically adjust the dominance criteria to reduce the objective selec-
tion bias to generate better Pareto front. The NSGP-II is a simple adap-
tion of popular NSGA-II algorithm to GP. TSNSGP-II is the combination
of NSGP-II with the two-stage framework which is introduced in [196].
The NSGP-II-sa is the combination of NSGP-II with the self-adaptive α

scheme, the self-adaptive α scheme is introduced in Section 4.3.2.
We also plot the convergence curve of α value on all instances on 30

independent runs. The convergence curve is shown in Fig. 4.5. We can
see that the curves grow rapidly at first, and as generation increases, the
curves stabilise and eventually converge. Besides, the curve eventually
converges at different values for different instances. For Ugdb23 and Uval10A,
the α value converge to large values. For Uval9A, α value converges to a
medium value. For the rest of the instances, α value converge to small
values. This is consistent with the assumption that α value is scenario
specified. The self-adaptive α scheme is capable of identifying suitable α

values for different scenarios. This is also why the αMOGP-sa can outper-
form αMOGP on HV and IGD.
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Figure 4.5: The convergence curve of α value.

4.3.6 Summary

In summary, this work proposes a simple yet effective α dominance crite-
rion based Multi-Objective GP with a self-adaptive α scheme (αMOGP-sa).
The experimental results showed that the newly proposed (αMOGP-sa)
better handle the objective selection bias issue than the state-of-art GPHH
approach. The αMOGP-sa generates much better Pareto fronts in terms of
HV and IGD than other MOGP approaches from the literature. We also
employ the newly proposed self-adaptive α scheme on NSGP-II. The ex-
periment results also indicate that the scheme can effectively address the
objective selection bias issue. The convergence curve of α value indicates
that the self-adaptive α scheme can find proper α values for different in-
stances. In the following section, we will design algorithm to handle the
stochastic evaluation issue.
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4.4 Two-Stage MOGP with Archive Strategy

GPHH is essentially a learning approach rather than direct optimisation,
and the ultimate goal is to apply the evolved routing policies to future
unseen UCARP instances. Generally, obtaining accurate fitness values
requires a large number of independent samples, but it is time consum-
ing, and the use of a small number of samples may mislead GP searches.
To improve the generalisation of the evolved routing policies, a common
strategy is to use a small subset of training samples and change the sam-
ples at each generation (so-called training sample rotation). Such strategy
has been widely used in other problems such as dynamic scheduling (e.g.
[80, 213, 214, 216]) and is conceptually similar to the mini-batch strategy
in machine learning. As a result, the effectiveness evaluation of a routing
policies becomes stochastic and changes generation by generation. In this
way, effective routing policies may be lost simply because its effectiveness
happens to be not so promising in the small subset of training samples
in a particular generation. This issue becomes more serious in MOGP in
UCARP, since it is already difficult to retain the potentially effective rout-
ing policies. This is stochastic evaluation issue in MOGP algorithm design
in UCARP. In this section, we design a new archive strategy to store the
potentially effective individuals that could have been lost during the tra-
ditional GP process.

4.4.1 Overall Framework

The flowchart of the proposed TSMOGP-a is given in Fig. 4.6. It consists
of two stages. Both stages utilise an external archive to store potentially
good individuals. The first stage is from generation 0 to generation G/2

(G is the maximal number of generations), i.e. half of the entire search
process. During the first stage, we only consider minimising the total cost,
and ignore the size temporarily. In other words, the first stage is a single-
objective optimisation stage. Initially, the population is randomly gener-
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ated and an empty external archive is created. Then, each individual is
evaluated purely based on the effectiveness. At each generation, the off-
spring population is first generated from the current population and the
external archive by the evolutionary operators (e.g. crossover and muta-
tion). After that, the current and offspring populations are combined and
evaluated. Finally, the individuals in the combined population are sorted
based on the total cost, and the top N (N is the population size) individu-
als are selected to be in the next generation.

Figure 4.6: Overview of TSMOGP-a.
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Note that the first stage of TSMOGP-a is different from the standard
single-objective GP, which directly passes all the offspring to the next gen-
eration. Therefore, the first stage of TSMOGP-a is greedier than the stan-
dard GP. In addition, due to the training sample rotation, the parents are
re-evaluated on the new training samples to be compared with the off-
spring in the combined population.

The second stage of TSMOGP-a is from generation G/2 + 1 to gener-
ation G. This stage considers both the objectives of total cost and size,
and treats them as equally important. It follows the NSGA-II [50] frame-
work, except that at each generation the parents are selected from both
the current population and the external archive. At each generation, the
offspring population is first generated from the current population and
the archive. Then, the current offspring populations are combined with
the parent population, and non-dominated sorting and crowding distance
calculation are applied. Finally, the top N individuals are selected into the
next generation. At each generation, the external archive is updated with
the non-dominated individuals in the population, and contributes itself to
generate offspring during the breeding process. The details can be seen in
Section 4.4.2.

4.4.2 External Archive

The external archive is used to store potentially good individuals gener-
ated during the evolutionary process. As shown in Fig. 4.6, potentially
good individuals are put into the external archive at the end of each gen-
eration. The external archive contains genotypically unique individuals.
Whenever a new individual is to be added into the archive, its genotype
(i.e. tree structure) is compared with that of the individuals in the archive.
If there is a duplicate already in the archive, the new individual will be
discarded. The maximal size of external archive is set the same as the pop-
ulation size. When the size of the archive is exceeded, individuals will be
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re-evaluated, then non-dominated sorting is applied to the individuals in
the archive, and only retain population size non-dominated individuals.
The pseudocode of the updating process of the external archive is shown
in Algorithm 8.

The external archive contributes itself during the breeding process. Specif-
ically, when selecting the parents for crossover and mutation, the current
population is combined with the external archive to form the mating pool.
Then, the parents are selected from the combined mating pool by the tour-
nament selection (of size 7). To avoid re-applying the non-dominated sort-
ing and crowding distance calculation on the combined mating pool, we
define the following archive-aided comparison. The pseudocode of the
archive-aided breeding process is shown in Algorithm 9.

• Set all the individuals in the archive as rank 0.5;

• Individual A is better than individual B if rank(A) < rank(B);

• If rank(A) = rank(B), then

– if A and B are from the current population, then we use the pre-
calculated crowding distance, and select the one with a larger
crowding distance.

– if A and B are from the archive, then we select them randomly.

4.4.3 Experimental Study

To verify the performance of the proposed TSMOGP-a, we compare it
with several state-of-the-art MOGPs for UCARP. Specifically, we compare
with the SPEA2 [23] that weakens the bias towards size, the αMOGP [198]
which is the current state-of-the-art MOGP approach for UCARP in terms
of effectiveness and size. We also compare with the baseline single-objective
GPHH [122] in terms of effectiveness.
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Algorithm 8: The updating process of the external archive.
Input: The current number of generation g, The total number of generation G,

the current population pop, the external archive, the population size
popsize

Output: The updated archive

if g ≤ G
2 then

// Stage 1

Obtain the best individual in the population in terms of effectiveness: ind ;
Set duplicate = false;
for ind′ ∈ archive do

if genotype(ind) equals to genotype(ind′) then
// two inds have same genotype (tree structure)

duplicate = true;
break;

end

end
if duplicate = false then

Re-assign the rank of ind to 0.5;
Put ind into archive;

end

else
// Stage 2

Obtain the non-dominated (rank-0) solutions popnd in pop;
for ind ∈ popnd do

Set duplicate = false;
for ind′ ∈ archive do

if genotype(ind) equals to genotype(ind′) then
tcptwo inds have same genotype (tree structure)
duplicate = true;

break;

end

end
if duplicate = false then

Re-assign the rank of ind to 0.5;
Put ind into archive;

end

end

end
if |archive| ≥ popsize then

Non-dominated sort the archive;
Remove duplicates;
Retain popsize individuals archivend;
Set archive = archivend;

end
return archive;
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Algorithm 9: The archive-aided breeding process.
Input: The current population pop, the external archive
Output: The offspring population pop′

Create an empty population pop′ = ∅;
Set the mating pool as pool = archive ∪ pop;
while |pop′| < popsize do

Select the parents by the tournament selection with the
archive-aided comparison;

Generate a child using parents by crossover/mutation;
Add child to pop′;

end
return pop′;

We select 6 representative UCARP instances from the commonly used
Ugdb and Uval datasets [122,143] for experiments which have been intro-
duced in Table 2.1. The experiment is divided into the training and test
phases. In the training phase, 5 training samples are used for evaluation,
which is changed at each generation. In the test phase, the best trained
routing policy is tested on an unseen test set containing 500 test samples.

The number of generations is 50 for all compared algorithms. For the
single-objective GPHH, the population size is 1000. Since the NSGP-II
double the number of evaluations per generation due to the re-evaluations,
for fair comparison, we set the population size to 500 for all the NSGP-II
algorithms. For other MOGPs, the population size is 1000. Ramp-half-
and-half initialisation is used. The tournament selection size is 7. The
maximal depth is 8. The crossover and mutation rates are 0.85 and 0.15.
All the algorithms are implemented on Evolutionary Computation Java
(ECJ) package [131]. Each algorithm was run 30 times independently for
each UCARP instance. The meanings of each terminal can be found in
Table 2.3
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4.4.4 Results

4.4.4.1 Comparison with State-Of-The-Art Approach

Tables 4.12 and 4.13 shows the results of the Hyper-Volume (HV) and In-
verted Generational Distance (IGD) of the SPEA2, αMOGP and TSNSGP-
II-a on the 6 test instances. For HV, we normalised the objective values
first, and then use (1,1) as reference point. For IGD, we exact all the so-
lutions from all algorithms for each instance and find a reference Pareto
front from these solutions. For each instance, the Wilcoxon rank sum test
with a significance level of 0.05 is conducted between the 30 independent
runs of TSNSGP-II-a and each compared algorithm. If TSNSGP-II-a is sta-
tistically significantly better than, worse than, and comparable with that
of the compared algorithm, the corresponding entry is marked with (+),
(-), or (=), respectively.

From the tables, we can see that TSNSGP-II-a perform best among the
compared algorithms. It can outperform SPEA2 and αMOGP on all the
instances in both HV and IGD. Fig. 4.7 plots the non-dominated set of
single run that has the median HV value of the 30 runs of each compared
algorithm on each instance. It can be seen that the solutions obtained by
TSNSGP-II-a are better distributed in the objective space and can mostly
dominate that obtained by SPEA2 and αMOGP. It can be seen that the so-
lutions of SPEA2 are biased to size, and cannot achieve good effectiveness.
Typically, SPEA2 can maintain the diversity of the population as it has an
internal archive to store good individuals. However, in our problem, we
do training sample rotation every generation. In this case, the internal
archive of SPEA2 is not able to maintain the diversity of the population.
We can see that αMOGP is sensitive to instance. It can obtain good so-
lutions on 4 out 6 instances. However, it is still slightly biased to size on
Ugdb2 and Ugdb23. Overall, the results indicate that TSNSGP-II-a can
generate better non-dominated solutions than the state-of-the-art MOGP
approaches, and it is much easier for users to choose a routing policy from
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Table 4.12: The mean and standard deviation for HV of the compared algorithms in test
process.

Instance SPEA2 αMOGP TSNSGP-II-a
Ugdb1 0.8676(0.04) 0.9446(0.03) 0.9643(0.01)(+)(+)
Ugdb2 0.8953(0.04) 0.9524(0.03) 0.9674(0.01)(+)(+)
Ugdb8 0.8378(0.05) 0.8999(0.06) 0.9673(0.01)(+)(+)
Ugdb23 0.8664(0.03) 0.9366(0.03) 0.9509(0.02)(+)(+)
Uval9D 0.8524(0.05) 0.9326(0.04) 0.963(0.01)(+)(+)
Uval10D 0.9019(0.03) 0.9553(0.04) 0.9779(0.01)(+)(+)

Table 4.13: The mean and standard deviation for IGD of the compared algorithms in test
process.

Instance SPEA2 αMOGP TSNSGP-II-a
Ugdb1 0.1022(0.04) 0.058(0.02) 0.0381(0.01)(+)(+)
Ugdb2 0.0814(0.03) 0.0544(0.01) 0.0325(0.01)(+)(+)
Ugdb8 0.2637(0.04) 0.2002(0.03) 0.0799(0.03)(+)(+)
Ugdb23 0.1124(0.03) 0.0873(0.02) 0.0412(0.01)(+)(+)
Uval9D 0.2104(0.05) 0.1262(0.03) 0.0604(0.03)(+)(+)
Uval10D 0.089(0.03) 0.0496(0.01) 0.0268(0.01)(+)(+)

the Pareto front from TSNSGP-II-a based on their preference.

4.4.4.2 Effectiveness of the External Archive

The use of the external archive is a major contribution in TSNSGP-II-a. To
verify the effectiveness of the external archive, we compare TSNSGP-II-a
with TSNSGP-II, which is the version without the archive. In addition,
we also compare NSGP-II-a with NSGP-II. Both the algorithms have a sin-
gle stage, which is the second stage of TSNSGP-II-a. NSGP-II-a has the
archive, while NSGP-II has not.

Tables 4.14 and 4.15 show the results of the Hyper-Volume (HV) and
Inverted Generational Distance (IGD) of NSGP-II, NSGP-II-a, TSNSGP-II
and TSNSGP-II-a. We can see that NSGP-II-a can outperform NSGP-II in
HV for 5 out of 6 instances, and in IGD for all instances. In addition, it can
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(a) Ugdb1 (b) Ugdb2

(c) Ugdb8 (d) Ugdb23

(e) Uval9D (f) Uval10D

Figure 4.7: The non-dominated solution of the run with the median HV among the 30
runs of each compared algorithm.

be seen that TSNSGP-II-a can outperform TSNSGP-II in both HV and IGD
for all the 6 instances. Overall, we can see that the external archive can
significantly improve the performance of the MOGP, no matter whether
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the two-stage framework is used or not.

Table 4.14: The HV of NSGP-II, NSGP-II-a, TSNSGP-II and TSNSGP-II-a.

Instance NSGP-II NSGP-II-a TSNSGP-II TSNSGP-II-a
Ugdb1 0.9104(0.03) 0.9333(0.02)(+) 0.9272(0.02) 0.9643(0.01)(+)
Ugdb2 0.9217(0.02) 0.9355(0.02)(+) 0.9383(0.02) 0.9674(0.01)(+)
Ugdb8 0.897(0.03) 0.9544(0.01)(+) 0.9046(0.03) 0.9673(0.01)(+)
Ugdb23 0.8826(0.02) 0.9135(0.02)(+) 0.8964(0.03) 0.9509(0.02)(+)
Uval9D 0.9184(0.02) 0.9227(0.02)(=) 0.9389(0.01) 0.963(0.01)(+)
Uval10D 0.9336(0.02) 0.9452(0.02)(+) 0.9572(0.02) 0.9779(0.01)(+)

Table 4.15: The IGD of NSGP-II, NSGP-II-a, TSNSGP-II and TSNSGP-II-a.

Instance NSGP-II NSGP-II-a TSNSGP-II TSNSGP-II-a
Ugdb1 0.0669(0.02) 0.056(0.01)(+) 0.058(0.02) 0.0381(0.01)(+)
Ugdb2 0.0591(0.01) 0.0531(0.01)(+) 0.0544(0.01) 0.0325(0.01)(+)
Ugdb8 0.2144(0.03) 0.1243(0.03)(+) 0.2002(0.03) 0.0799(0.03)(+)
Ugdb23 0.0981(0.02) 0.0689(0.02)(+) 0.0873(0.02) 0.0412(0.01)(+)
Uval9D 0.1563(0.02) 0.116(0.03)(+) 0.1262(0.03) 0.0604(0.03)(+)
Uval10D 0.0648(0.02) 0.0535(0.02)(+) 0.0496(0.01) 0.0268(0.01)(+)

4.4.5 Further Analysis

The ultimate goal of GPHH for UCARP is to obtain an effective and small
routing policy. Here, we assume that the effectiveness is preferred, and the
routing policy from the final set with the lowest total cost is selected. Then,
we compare the selected routing policy from those obtained by TSNSGP-
II-a with the routing policy obtained by the baseline single-objective GPHH
[122].

Table 4.16 shows the mean and standard deviation of the average total
cost (effectiveness) of TSNSGP-II-a and GPHH, along with that of SPEA2
and αMOGP. We can see that TSNSGP-II-a outperformed GPHH on 2 out
of 6 instances, and achieved comparable effectiveness on the other in-
stances. Besides, TSNSGP-II-a can outperform SPEA2 on all instances.
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Table 4.16: The mean and standard deviation of the average total cost of best individual
from each compared algorithms.

Instance GPHH SPEA2 αMOGP TSNSGP-II-a
Ugdb1 355.47(14.83) 366.54(9.04) 354.77(12.05) 350.55(5.34)(=)(+)(=)
Ugdb2 371.72(7.67) 384.02(11.53) 370.17(7.91) 370.18(5.89)(=)(+)(=)
Ugdb8 443.34(54.3) 468.61(19.12) 441.05(10.75) 433.17(8.48)(+)(+)(+)
Ugdb23 252.47(3.11) 258.23(4.11) 250.47(2.16) 250.91(2.3)(+)(+)(=)
Uval9D 478.14(16.68) 500.72(14.71) 474.24(11.94) 475.01(7.9)(=)(+)(=)
Uval10D 620.91(7.97) 644.7(18.95) 619.59(8.45) 621.63(7.54)(=)(+)(=)

This is consistent with the patterns shown in Fig. 4.7. The median non-
dominated set of SPEA2 is biased to size. TSNSGP-II-a also achieved com-
parable results with αMOGP on 5 out 6 instances and outperform αMOGP
on 1 instance.

Table 4.17 shows the mean and standard deviation of the average num-
ber of nodes (size) of compared algorithms. We can see that SPEA2 achieves
the smallest size. This is because its search process is still biased to the
size, and the effectiveness is largely ignored due to the objective selec-
tion bias issue. TSNSGP-II-a obtains significantly smaller routing policies
than αMOGP on 3 out of 6 instances. This is consistent with Fig. 4.7.
TSNSGP-II-a can obtain comparable effectiveness with αMOGP but with
smaller size. Therefore, the median non-dominated set of TSNSGP-II-a can
dominate that of αMOGP. Overall, TSNSGP-II-a can evolve significantly
smaller routing policies than GPHH without sacrificing effectiveness on
all instances. This verifies the effectiveness of the two-stage framework
and external archive used in TSNSGP-II-a.

4.4.5.1 Analysis of Routing Policies

We randomly select two best routing policies from GPHH and TSNSGP-
II-a for Ugdb23, one for each algorithm. These two routing policies are
shown in Fig. 4.8. The effectiveness of the routing policy obtained by
GPHH is 249.89, and the effectiveness of the routing policy obtained by
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Table 4.17: The mean and standard deviation of the size of the best individual from each
compared algorithms.

Instance GPHH SPEA2 αMOGP TSNSGP-II-a
Ugdb1 74.6(23.84) 12.13(9.41) 27.67(15.97) 46.33(34.29)(+)(-)(-)
Ugdb2 71.93(23.79) 16.27(12.83) 28.8(13.88) 36.67(26.14)(+)(-)(=)
Ugdb8 65.47(24.33) 16.07(20.08) 51.67(19.03) 45.47(24.12)(+)(-)(=)
Ugdb23 71.8(25.22) 14.4(13.93) 47.53(26.57) 35.53(28.19)(+)(-)(+)
Uval9D 69.27(29.46) 20.3(15.16) 58.0(29.24) 40.47(17.24)(+)(-)(+)
Uval10D 65.33(14.35) 11.4(5.39) 47.67(23.7) 34.67(17.95)(+)(-)(+)

TSNSGP-II-a is 249.27. It can be seen that the routing policy from GPHH
is large and complex. We cannot gain useful knowledge from it easily. In
contrast, it is easier to understand the routing policy from TSNSGP-II-a as
it is smaller and simpler. The routing policy obtained by TSNSGP-II-a can
be represented as follows:

RP = max (S1, S2) (4.13)

where

S1 = FUT ∗DEM −min (DEM,CTD), (4.14)

S2 = (CR+
RQ

SC
) ∗ CFH (4.15)

To gain detailed understandings of the behaviours from the routing poli-
cies evolved by TSNSGP-II-a and make it easier to understand, we trans-
form RP to the following IF-ELSE format rule set.

if S1 ≥ S2 then
if DEM ≤ CTD then

RP = FUT ∗DEM −DEM

else
RP = FUT ∗DEM − CTD

end if
else

RP = (CR+ RQ
SC ) ∗ CFH

end if
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We can extract the following patterns and understandings from the
rule set:

• When S1 ≥ S2, RP becomes S1. There are two possible cases for
S1 ≥ S2 to happen:

– S1 is large. This indicates that there are many remaining tasks,
and all the remaining tasks have large demand and are close to
the depot.

– S2 is small. This indicates that vehicle is relatively empty and
is close to the depot. All the remaining tasks are close to the
current location.

There are two possible cases of S1:

– When DEM ≤ CTD, S1 becomes FUT ∗ DEM − DEM or
(FUT − 1) ∗ DEM . Note that, FUT refers to the fraction of
the unassigned tasks. The value of FUT is between 0 and 1.
It is hard for (FUT − 1) to greater than 0. Thus, the output
of (FUT − 1) ∗ DEM will be a negative value. This leads to a
negative output of S1. However, this contradicts the assump-
tion that S1 ≥ S2 because the output of S2 is usually a positive
value. Therefore, this case would never happen.

– When DEM > CTD, which means that all the remaining tasks
are very close to the depot and require large demand. RP be-
comes FUT ∗DEM − CTD.

In this case, RP prefers the tasks with small demands and far away
from the depot.

• Otherwise, S1 < S2 indicates that the vehicle is far away from the
depot, and there are only a few remaining tasks with small demands,
all the remaining tasks are close to the current location of the vehicle
and far away from the depot. RP becomes (CR + RQ

SC
) ∗ CFH , and
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RP prefers the tasks with large serving cost and close to the current
location.

4.4.6 Summary

In summary, the external archive strategy stores a wide range of poten-
tially effective individuals, in case they are lost from the population due
to the training sample rotation. The experimental results show that the
proposed method managed to obtain both effective and smaller routing
policies than the state-of-the-art MOGPs for UCARP. It also provides a
better distributed set of routing policies, making it easier for the end-users
to select better routing policy based on their preferences. We have also
verified the efficacy of the external archive. The external archive can sig-
nificantly improve the performance of the MOGP in terms of HV and IGD.
The evolved routing policies are much easier to understand than that in
standard GPHH.

4.5 MOGP with Self Adaptive α Dominance and

Archive Strategies

Previous sections proposed different strategies to handle either the objec-
tive selection bias issue or the stochastic evaluation issue. This section
aims to propose an approach that handle both issues simultaneously. The
proposed approach contains both α dominance strategy and archive strat-
egy.

This work aims to address the following limitations of the existing α-
dominance and archive strategies in MOGP for evolving routing policies.
First, the effectiveness of the α-dominance method highly depends on the
α value, which is challenging to determine. Intuitively, α should be in-
creased if the population is biased to small ineffective individuals, and
decreased if most individuals in the population are too large. However,
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the α adaptation is non-trivial due to the difficulty of estimating the accu-
rate boundaries of the effectiveness and program size. Second, the existing
archive update strategies are not effective enough. It can include duplicate
individuals in the archive and reduce the diversity of the archive. To ad-
dress the issue of sensitivity to the α value, in the new algorithm we pro-
pose a new scheme to estimate the relative program size of the population,
and a new α adaptation strategy guided by the relative program size esti-
mation. To address the archive diversity issue, we propose a new archive
update strategy that avoids including phenotypic duplicate individuals in
the archive.

4.5.1 Overall Framework

Fig. 4.9 shows the overall framework of the newly proposed αMOGP-
a. Firstly, a population is randomly initialised and an empty archive is
created. Each individual, which is represented as a GP tree, is evaluated
based on a set of training instances (simulations). Specifically, the size
(number of nodes) and the effectiveness (the mean total cost of the solu-
tions generated for the training instances) are calculated for each individ-
ual. After that, an α non-dominated sorting is carried out to sort all the
individuals in the population. The tournament selection is utilised to se-
lect parents to generate offspring. The offspring population is combined
with the parent population. This follows the process of NSGA-II [50]. As
we use the training sample rotation in UCARP, the parents in the com-
bined population are re-evaluated on the instances used to evaluate the
offspring. The boundary of individual size will be identified and updated.
The boundary is utilised to identify the bias. The combined population
is then sorted using the α non-dominated sorting and the non-dominated
individuals are stored in the archive. The individuals in the archive will
be involved in the breeding process. The utilisation of the archive will
be discussed in Section 4.5.3. The α parameter is then updated based on



4.5. αMOGP-A 141

the distribution of the population. The new α adaptation scheme will be
introduced in Section 4.5.2. Then, the top N (N is the population size)
individuals will be selected to next generation. When the stopping crite-
ria are met, the archive individuals will be re-evaluated using a validation
set of samples which is different from the training and test samples. A
traditional non-dominated sorting is applied to the archive and the final
non-dominated solutions are returned.
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Figure 4.9: The overall Framework of αMOGP-a.
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4.5.2 New α Adaptation Scheme

The α parameter controls the balance between the effectiveness and size
during the search. To control the balance better, it is necessary to adap-
tively adjust the α value during the evolutionary process. In this chapter,
we propose a novel α adaptation scheme that can automatically adjust the
α value based on the distribution of current α non-dominated solutions
generated by α dominance. Here, we use size alone to estimate the bias,
since it is difficult to estimate the range of effectiveness of routing policies
during the search process (e.g., a random routing policy can be very poor).
If the current α non-dominated solutions is biased away from size, we will
decrease the α value. Otherwise, if the current α non-dominated solutions
is biased towards size, we will increase the α value.

The procedure of estimating the current bias to size is as follows. First,
we calculate the mean size of the α non-dominated individuals in the cur-
rent population, denoted as Spop. Then, we compare Spop with the his-
torical range of the size [Smin, Smax]. If Spop leans towards Smin, then we
consider the current population to bias towards size. If Spop is closer to
Smax, then the current population tends to bias away from size. In addi-
tion, the amount of increase/decrease in α should depend on the degree of
the bias. For example, we should increase α more if Spop is closer to Smin.

Taking the above into account, we design the α adaptation scheme as
follows.

θold = arctan(αold) (4.16)

θnew = θold +
Smax + Smin − 2Spop

Smax − Smin

∗ ϕ (4.17)

αnew = tan(θnew) (4.18)

where αold and αnew are the α values before and after the update. θold and
θnew are angles corresponding to αold and αnew (the angle between the hori-
zontal line and the boundary of the dominance region induced by α in Fig.
3). ϕ is a step size which indicates how many degrees we need increase or
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Figure 4.10: The relationship between changes in the dominance area and the location
the current Pareto front.

decrease the angle to adjust the dominance area. In other words, the angle
θ changes linearly from −ϕ to ϕ when Spop changes from Smin to Smax. θ

is unchanged if Spop = (Smax + Smin)/2, i.e., in the middle of the historical
sizes.

Fig. 4.10 shows two examples of the α adaptation scheme. In the first
example, the current α is 0, Spop = Smin, and ϕ = 90◦. In this case, the
current population is strongly biased towards size. Thus, we increase the
angle by 90◦ (the maximum possible change) so that the subsequent search
will ignore size and fully focus on effectiveness. In the second example,
the current α is ∞ (angle is 90◦), Spop = Smax, and ϕ = 45◦. In other words,
the current population is biased away from size (the individuals are very
large), and we need to decrease α. In this case, we decrease the angle by
45◦ (due to the step size ϕ), and α is decreased from ∞ to 1.

4.5.3 New Archive Strategy

In this paper, the external archive is used to store the potentially good
individuals occurred in the evolutionary process. At the end of each gen-
eration, the α non-dominated individuals are added to the archive if it is
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not a duplicate of any individual in the archive. The duplication check-
ing process is based on the comparison of the Phenotypic Characterisation
vector (PC vector) [215]. The phenotypic characterisation of an individual
is an vector of decisions it makes in a list of representative decision situa-
tions. For each decision situation, the decision is the index of its selected
task for the idle vehicle. If two individuals have similar PC vectors, they
tend to have similar behaviour and effectiveness. Since the phenotypic
characterisation is a vector of task indices, we use the following equation
to calculate the distance between two PC vectors p1 and p2:

∆(p1,p2) =
L∑
i=1

Ip1i=p2i (4.19)

where Ip1i=p2i = 1 if p1i = p2i, and Ip1i=p2i = 0, otherwise. If the distance of
two individuals is zero, we consider the two individuals to be duplicates.
If a new individual and an existing individual in the archive are dupli-
cates, then the new individual will replace the existing individual only if
it has a smaller size. The archive updating process is shown in Algorithm
10.

To fully utilise the archive, we use it to provide parents for breeding.
When the breeding process starts, the archive is merged with the cur-
rent population to create a mating pool. Then, we select parents from the
mating pool using tournament selection. Note that the individuals in the
archive are evaluated on different instance samples from the current pop-
ulation, due to the instance rotation. To compare between the individuals
in the archive and the current population, we assume that the individu-
als in the archive are slightly worse than the non-dominated individuals
in the current population, but better than other dominated individuals. If
two selected individuals are both from current population, the better in-
dividual is the one that is dominated by fewer individuals or dominated
by same number of individuals but has smaller crowding distance. If two
individuals are both selected from the archive, we can randomly pick one
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Algorithm 10: The updating process of the archive.
Input: The current population pop, the external archive, the population size

popsize

Output: The updated archive

Obtain the α non-dominated individuals popnd in pop;
for ind ∈ popnd do

Set duplicate = false;
for ind′ ∈ archive do

calculate distance between ind and ind′ using Eq.4.19;
if distance = 0 then

duplicate = true;
if size(ind) < size(ind′) then

replace ind′ with ind

end
break;

end

end

end
return archive;

as a parent. If one is from the archive and the other one is from the cur-
rent population, as long as the individual from the current population is
not a non-dominated individual, the archive individual will be chosen as
a parent.

Typically, the final non-dominated solutions are chosen based on the
performance of the solution on the training set at the last generation. How-
ever, this may lead to the final non-dominated solution being biased to-
wards the training set of the last generation, which in turn results in the
non-dominated solution performing poorly on the test set. In addition, to
select non-dominated solutions from the archive, solutions in the archive
should be re-evaluated. Therefore, at the end of the GP process, the archive
will be passed to a validation set of samples to select the non-dominated
solutions.
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4.5.4 Experiment Design

To verify the effectiveness of the newly proposed αMOGP-a, we design
two sets of experiments:

1. Compare with the current state-of-the-art MOGP algorithm for UCARP
(TSMOGP-a [199]), to verify the quality of the obtained Pareto front,
using Hyper Volume (HV) and Inverted Generational Distance (IGD).

2. Compare with the state-of-the-art algorithms for reducing program
size (i.e., bloat control methods, such as Tarpeian, linear parametric
parsimony pressure (LPPP), double tournament (DT) in the litera-
ture [130] and GPHH-N [201]), to verify the effectiveness and size of
the obtained most effective routing policy.

A GP run contains two main phases, i.e., training and test. In the train-
ing phase, routing policies are trained on 350 training samples (250 sam-
ples for training and 100 sample for validating). The 250 samples are di-
vided into 50 subset. Each subset contains 5 training samples. For each
generation, one subset is used for fitness evaluation. At the end of train-
ing process, 100 validating samples are used to select final Pareto front
from the archive. In the test phase, the final Pareto front is tested on 500
test samples. All the samples share the same graph topology of a UCARP
instance but are generated by randomly sampling the stochastic task de-
mands and deadheading costs.

In this work, αMOGP-a is verified on two commonly used large UCARP
datasets, i.e., the Ugdb and Uval which have been introduced in Table 2.1.

The initialisation method of the population for all compared algorithms
is Ramped Half-and-Half. All these parameter settings are commonly
used in the GPHH literature [29, 32, 143]. The population size for MOGP
algorithms are set to 500. For single-objective GP algorithm, it is set to
1000. This is because MOGP combines parent and offspring population
to generate a new combined population which will double the original
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population size. For fair comparison, the population size of the MOGP
algorithms is set as the half of the single-objective algorithm. The maxi-
mal number of generations is set to 50. The tournament selection size is
2. The ratio of crossover and mutation operator is set as 0.85 : 0.15. The
maximal tree depth of all GP algorithm is set to 8. The elitism size of the
single-objective GP is set to 10. All the compared MOGP algorithms are
non-dominated sorting based, thus there is no need to use elitism. The
Evolutionary Computation Java (ECJ) package [131] is utilised to imple-
ment all the algorithms. The results are collected based on 30 independent
runs for each algorithm on each UCARP instance. The meanings of each
terminal can be found in Table 2.3

4.5.5 Parameter Sensitive Analysis

For the α dominance, the initial value of α and the step size ϕ are very
important. A good initial α value can help the algorithm find good indi-
viduals faster. A good step size can help α faster converge to the proper
value. Thus, we design a set of experiments to identify a proper initial α
value and step size. All the parameters are tested in the newly proposed
αMOGP-a algorithm. We set 3 different initial α values, i.e., 0, 1 and 100.
When initial α value is set to 0, the algorithm starts from the traditional
dominance that treats the two objectives equally. When initial α value is
set to 1, the algorithm focuses more on the effectiveness. When initial α
value is set to 100, the algorithm almost becomes a single-objective algo-
rithm that only optimise the effectiveness. We also have 5 different step
size, 10, 20, 30, 50 and 90. Due to the page limit, we summary the experi-
mental results in the boxplot format, each box in the boxplot represents the
distribution of the 30 runs of the proposed algorithm with the correspond-
ing parameter setting over the 57 instances. We examined the performance
on both HV and IGD. As IGD has the same pattern as the HV, we omit the
IGD results here due to the page limit. The results are shown in Fig. 4.11.
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(a) α = 0 (b) α = 1 (c) α = 100

Figure 4.11: The experimental results for parameter sensitivity analysis in terms of HV.

From Fig. 4.11, we can observe that the algorithms with initial α value
of 0 and 1 perform better than algorithms with initial α value of 100 as they
can obtain more stable results and which is independent of the θ value.
This indicates that a smaller initial value is a better choice. By looking into
the results, when α equals 100, the algorithm will focus too much on the
effectiveness, and almost becomes a single-objective algorithm. The pop-
ulation is occupied by only large individuals. This makes it hard for the
algorithm to find small effective individuals. As a result, it is difficult for
the algorithm to find a complete Pareto front. Intuitively, 0 is a better ini-
tial value than 1 since α dominance becomes traditional dominance when
α equals 0. We can use the traditional dominance as a start point. For
the step size, it can be seen that step size is not very sensitive when initial
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value equals 0 and 1, but 90 seems to be a slightly better choice. Therefore,
the initial α value of 0 and step size of 90 are utilised in the subsequent
experiments.

4.5.6 Results

We use the Wilcoxon rank sum test with the significance level of 0.05 for
statistical analysis. In each table, each “+”, “-” or “=” next to αMOGP-a
indicates that αMOGP-a performed statistically significantly better than,
worse than, or comparable to the compared algorithm.

4.5.6.1 Hyper-Volume and IGD Test Performance

Tables 4.18 and 4.19 show the results of the mean and standard deviation
of HV and IGD obtained by the compared MOGP methods on the test
samples.

From Tables 4.18 and 4.19, we can see that αMOGP-a outperforms
TSMOGP-a on 20 out of 57 instances and achieves comparable results on
remaining instances in terms of HV. The αMOGP-a also performs signifi-
cantly better than TSMOGP-a on 16 out of 57 instances and achieves com-
parable results on 40 instances in terms of IGD. This is as expected since
αMOGP-a can better handle the objective selection bias issue and the issue
of potentially good individuals. By looking further into the results, we can
also see that even though αMOGP-a and TSMOGP-a obtain competitive
results on many instances, the mean value of each instance of αMOGP-
a is slightly better than that achieved by TSMOGP-a in terms of HV and
IGD. All these observations can indicate that αMOGP-a can generate bet-
ter Pareto front than the TSMOGP-a on some instances and generate at
least competitive Pareto front on other instances.

The Pareto front with the median HV over the 30 independent runs on
some representative instances is shown in Fig. 4.12. It can be seen that the
non-dominated solutions generated by αMOGP-a is better than TSMOGP-
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Table 4.18: The mean and standard deviation of the HV and IGD of the compared
MOGP methods on the on Ugdb Dataset.

HV IGD
Instance TSMOGP-a αMOGP-a TSMOGP-a αMOGP-a
Ugdb1 0.9327(0.015) 0.9459(0.017)(+) 0.0571(0.015) 0.0428(0.012)(+)
Ugdb2 0.9331(0.026) 0.9501(0.015)(+) 0.0618(0.024) 0.0488(0.012)(+)
Ugdb3 0.9648(0.005) 0.9662(0.005)(=) 0.1111(0.024) 0.1350(0.023)(-)
Ugdb4 0.9749(0.018) 0.9755(0.011)(=) 0.0672(0.016) 0.0710(0.016)(=)
Ugdb5 0.9416(0.020) 0.9512(0.016)(+) 0.0569(0.018) 0.0467(0.012)(+)
Ugdb6 0.9146(0.027) 0.9137(0.024)(=) 0.0610(0.017) 0.0597(0.015)(=)
Ugdb7 0.9447(0.006) 0.9531(0.012)(+) 0.0361(0.003) 0.0334(0.007)(+)
Ugdb8 0.9260(0.011) 0.9358(0.012)(+) 0.066(0.0150) 0.0616(0.016)(=)
Ugdb9 0.8962(0.022) 0.9068(0.022)(=) 0.1039(0.022) 0.0990(0.022)(=)
Ugdb10 0.9553(0.014) 0.9600(0.013)(=) 0.0698(0.015) 0.0674(0.013)(=)
Ugdb11 0.8233(0.028) 0.8257(0.021)(=) 0.1321(0.026) 0.1293(0.019)(=)
Ugdb12 0.8835(0.036) 0.9025(0.033)(+) 0.0819(0.030) 0.0636(0.025)(+)
Ugdb13 0.9215(0.019) 0.9307(0.018)(=) 0.0498(0.013) 0.0453(0.014)(=)
Ugdb14 0.9438(0.021) 0.9405(0.014)(=) 0.0467(0.014) 0.0429(0.008)(=)
Ugdb15 0.9827(0.008) 0.9842(0.013)(=) 0.0250(0.009) 0.0216(0.010)(=)
Ugdb16 0.9401(0.004) 0.9392(0.002)(=) 0.0946(0.017) 0.0774(0.016)(+)
Ugdb17 0.9858(0.001) 0.9945(0.004)(+) 0.0218(0.001) 0.0145(0.004)(+)
Ugdb18 0.9606(0.014) 0.9647(0.012)(=) 0.0408(0.013) 0.0366(0.010)(=)
Ugdb19 0.9697(0.036) 0.9811(0.024)(+) 0.0705(0.024) 0.0630(0.016)(=)
Ugdb20 0.9359(0.024) 0.9346(0.026)(=) 0.0493(0.017) 0.0471(0.015)(=)
Ugdb21 0.9305(0.017) 0.9337(0.016)(=) 0.0626(0.015) 0.0581(0.013)(=)
Ugdb22 0.9079(0.030) 0.9281(0.016)(+) 0.0658(0.024) 0.0476(0.014)(+)
Ugdb23 0.9151(0.013) 0.9232(0.012)(+) 0.0639(0.011) 0.0549(0.007)(+)

a. Specifically, αMOGP-a can find solutions with better effectiveness than
that obtained by TSMOGP-a. This is because αMOGP-a use the α dom-
inance to adaptively give more pressure to the effectiveness during the
evolutionary process when necessary. This can help αMOGP-a generating
more effective and compact individuals during the evolutionary process.
As other algorithms are single-objective algorithms, their Pareto fronts
have only one point. We can see that the solutions of Tarpeian and LPPP
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Table 4.19: The mean and standard deviation of the HV and IGD of the compared
MOGP methods on the on Uval Dataset.

HV IGD
Instance TSMOGP-a αMOGP-a TSMOGP-a αMOGP-a
Uval1A 0.9772(0.009) 0.9777(0.013)(=) 0.0239(0.006) 0.0218(0.007)(=)
Uval1B 0.9747(0.015) 0.9753(0.009)(=) 0.0215(0.010) 0.0209(0.010)(=)
Uval1C 0.8787(0.031) 0.8910(0.026)(=) 0.0784(0.028) 0.0701(0.021)(=)
Uval2A 0.9723(0.009) 0.9735(0.012)(=) 0.0323(0.006) 0.0281(0.007)(+)
Uval2B 0.9587(0.012) 0.9649(0.012)(+) 0.0372(0.009) 0.0330(0.007)(=)
Uval2C 0.8048(0.049) 0.8289(0.034)(+) 0.1389(0.039) 0.1163(0.024)(+)
Uval3A 0.9673(0.010) 0.9751(0.009)(+) 0.0415(0.006) 0.0357(0.007)(+)
Uval3B 0.8827(0.024) 0.8959(0.020)(+) 0.0878(0.018) 0.0766(0.016)(+)
Uval3C 0.8513(0.047) 0.8521(0.051)(=) 0.1219(0.040) 0.1224(0.044)(=)
Uval4A 0.9673(0.011) 0.9712(0.008)(=) 0.0433(0.012) 0.0466(0.010)(=)
Uval4B 0.9672(0.011) 0.9689(0.013)(=) 0.0382(0.009) 0.0386(0.011)(=)
Uval4C 0.9538(0.013) 0.9628(0.011)(+) 0.0510(0.010) 0.0454(0.010)(+)
Uval4D 0.8814(0.036) 0.8979(0.036)(=) 0.0771(0.023) 0.0685(0.022)(=)
Uval5A 0.9757(0.006) 0.9772(0.002)(=) 0.0253(0.008) 0.0226(0.005)(=)
Uval5B 0.9662(0.009) 0.9728(0.006)(+) 0.0296(0.008) 0.0238(0.007)(+)
Uval5C 0.9643(0.011) 0.9674(0.008)(=) 0.0329(0.010) 0.0285(0.007)(+)
Uval5D 0.9265(0.012) 0.9428(0.015)(+) 0.0778(0.013) 0.0713(0.014)(=)
Uval6A 0.9785(0.006) 0.9782(0.008)(=) 0.0297(0.010) 0.0307(0.012)(=)
Uval6B 0.9644(0.008) 0.9626(0.016)(=) 0.0437(0.010) 0.0424(0.016)(=)
Uval6C 0.9071(0.033) 0.9114(0.040)(=) 0.0726(0.024) 0.0683(0.029)(=)
Uval7A 0.8902(0.035) 0.8821(0.037)(=) 0.0712(0.022) 0.0737(0.024)(=)
Uval7B 0.9399(0.017) 0.9476(0.019)(=) 0.0558(0.009) 0.0493(0.012)(=)
Uval7C 0.9328(0.025) 0.9444(0.025)(+) 0.0556(0.019) 0.0474(0.018)(=)
Uval8A 0.9752(0.006) 0.9789(0.006)(+) 0.0386(0.013) 0.0350(0.013)(=)
Uval8B 0.9673(0.010) 0.9697(0.006)(=) 0.0342(0.009) 0.0331(0.007)(=)
Uval8C 0.9126(0.020) 0.9197(0.015)(=) 0.0776(0.016) 0.0724(0.015)(=)
Uval9A 0.9692(0.007) 0.9713(0.005)(=) 0.0282(0.006) 0.0258(0.006)(=)
Uval9B 0.9646(0.012) 0.9656(0.010)(=) 0.0332(0.009) 0.0365(0.008)(=)
Uval9C 0.9577(0.007) 0.9588(0.011)(=) 0.0301(0.006) 0.0295(0.009)(=)
Uval9D 0.9176(0.012) 0.9211(0.008)(=) 0.0617(0.011) 0.0584(0.010)(=)
Uval10A 0.9765(0.010) 0.9764(0.012)(=) 0.0254(0.008) 0.0254(0.009)(=)
Uval10B 0.9772(0.004) 0.9781(0.005)(=) 0.0481(0.015) 0.0530(0.018)(=)
Uval10C 0.9689(0.008) 0.9707(0.007)(=) 0.0388(0.011) 0.0384(0.011)(=)
Uval10D 0.9643(0.012) 0.9701(0.010)(+) 0.0408(0.010) 0.0377(0.010)(=)

are allocated on the left side of each figure. This indicates that Tarpeian
AND LPPP evolve small but less effective solutions. The solutions of DT
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(a) Ugdb23 (b) Uval5C (c) Uval6C

Figure 4.12: The non-dominated solution of the run with the median HV over 30 runs on
compared algorithms.

and GPHH-N are allocated on the right side of each figure. This indicates
that DT and GPHH-N evolve effective but large solutions. The αMOGP-a
can evolve Pareto front which contains solutions varies from small (inef-
fective) to large (effective). As a result, users can choose a solution based
on their preference.

4.5.6.2 Most Effective Individual

Although a set of non-dominated solutions are obtained, only a single in-
dividual needs to be selected as the routing policy in practical use. Here,
we consider the effectiveness as the primary objective, and select the indi-
vidual with the best effectiveness from the non-dominated set. Then, we
compare the effectiveness and size of the most effective individuals ob-
tained by each algorithm. Each “+”, “-” or “=” next to the compared algo-
rithms indicates that αMOGP-a performs statistically significantly better
than, worse than, or comparable to the compared algorithm.

Tables 4.20 and 4.21 show the mean and standard deviation of the av-
erage total cost (effectiveness) of the compared algorithms. It can be seen
that αMOGP-a performs significantly better than Tarpeian on 32 out of
57 instances, and never performs significantly worse than Tarpeian. The
αMOGP-a also outperforms LPPP on almost all instances. There is an in-
teresting observation that both DT and GPHH-N can outperform αMOGP-
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Table 4.20: The Experimental Results of (Effectiveness/Average total cost) for
Compared Algorithms on Ugdb Dataset.

Instance Tarpeian LPPP DT GPHH-N TSMOGP-a αMOGP-a
Ugdb1 359.741(9.67)(+) 361.5418(8.43)(+) 353.9708(17.169)(=) 347.0554(5.705)(-) 354.4534(6.151)(+) 349.8263(6.501)
Ugdb2 376.6364(11.098)(+) 385.6952(10.432)(+) 371.489(7.852)(=) 369.7039(7.791)(=) 375.5819(9.299)(+) 369.4091(5.863)
Ugdb3 307.3752(1.659)(=) 311.9899(4.892)(+) 306.3066(2.038)(=) 307.6944(2.444)(+) 307.1549(1.537)(=) 306.8357(1.532)
Ugdb4 324.5011(4.963)(+) 331.275(16.411)(+) 322.1242(1.958)(=) 322.646(1.942)(=) 322.7723(4.693)(=) 322.0611(2.534)
Ugdb5 432.4777(9.581)(=) 451.353(14.359)(+) 425.016(8.723)(=) 422.739(6.281)(-) 433.6248(11.01)(=) 428.6176(8.313)
Ugdb6 362.5787(16.472)(+) 362.7825(1.89)(+) 343.9608(9.035)(-) 338.8735(3.449)(-) 349.2738(8.652)(=) 349.8394(7.416)
Ugdb7 359.4155(0.96)(+) 359.8538(0.0)(+) 357.3026(3.399)(+) 355.1464(4.582)(=) 357.2867(1.504)(+) 354.9296(3.213)
Ugdb8 441.1566(12.024)(+) 456.8996(13.306)(+) 432.0626(10.601)(=) 430.0516(6.924)(=) 437.2732(4.744)(+) 432.5656(5.593)
Ugdb9 399.2624(8.284)(+) 406.644(11.598)(+) 392.9335(10.982)(=) 383.0641(8.999)(-) 396.7845(8.619)(+) 392.4596(8.449)
Ugdb10 296.5628(4.87)(+) 300.0145(2.93)(+) 291.9685(5.712)(=) 289.9431(4.95)(-) 294.8434(3.747)(=) 293.4669(3.696)
Ugdb11 443.5919(5.715)(+) 446.8559(4.755)(+) 438.2663(5.222)(=) 432.2868(8.233)(-) 439.2069(4.559)(=) 438.8171(3.598)
Ugdb12 618.1571(14.697)(+) 624.9459(18.742)(+) 606.285(16.707)(=) 605.8586(9.306)(=) 610.9021(15.611)(+) 604.2255(13.99)
Ugdb13 585.3549(7.584)(=) 593.7929(10.522)(+) 581.0675(7.594)(=) 576.8475(7.093)(-) 585.7524(6.656)(=) 582.4751(6.353)
Ugdb14 108.6919(2.039)(=) 118.0813(2.556)(+) 108.072(2.439)(-) 107.0618(1.437)(-) 108.0788(1.482)(=) 108.4235(1.018)
Ugdb15 58.3416(0.316)(=) 62.0083(0.0)(+) 58.5233(0.974)(=) 58.4673(1.037)(=) 58.2869(0.187)(=) 58.2604(0.356)
Ugdb16 134.5298(0.06)(+) 134.4749(0.0)(=) 134.5552(0.052)(+) 134.4879(0.411)(=) 134.393(0.222)(=) 134.4488(0.14)
Ugdb17 91.2706(0.0)(+) 93.8657(0.0)(+) 91.1897(0.251)(+) 91.2842(0.107)(+) 91.2649(0.03)(+) 91.076(0.091)
Ugdb18 169.0591(2.795)(=) 182.0322(6.18)(+) 168.7085(4.76)(=) 166.973(1.606)(-) 169.0211(2.14)(=) 168.5346(1.795)
Ugdb19 61.7611(1.723)(=) 68.0709(0.802)(+) 61.5426(1.902)(=) 60.8448(0.547)(=) 61.7781(1.601)(=) 61.3057(1.071)
Ugdb20 128.8132(2.175)(=) 137.3079(0.0)(+) 127.914(4.238)(=) 126.8208(2.337)(-) 127.794(1.565)(=) 127.9286(1.693)
Ugdb21 166.2336(3.428)(=) 180.8426(5.53)(+) 165.9424(4.636)(=) 164.6705(3.54)(-) 166.5348(1.982)(=) 166.0947(1.814)
Ugdb22 211.7671(3.45)(+) 221.2032(2.724)(+) 210.1016(2.105)(=) 210.0523(2.478)(=) 210.8277(2.0)(+) 209.5899(1.034)
Ugdb23 251.9495(2.512)(=) 257.2459(4.187)(+) 251.1037(2.753)(=) 248.748(1.801)(-) 251.8207(1.736)(=) 251.0229(1.492)

a on a number of instances. DT will first use tournament selection to select
multiple effective individuals and then select the smallest one from the
selected ones as parent. So DT still prefers to select the effective individ-
uals as parent. For GPHH-N, it utilises the niching simplification method
to reduce the size but its main goal is still on the effectiveness. Both al-
gorithms focus more on the effectiveness. Thus, they can achieve better
effectiveness than αMOGP-a on some instances. However, if we go a step
further and look into the experimental results, we see that the effectiveness
of αMOGP-a is just slightly worse than that in DT and GPHH-N. Further-
more, as we will see later, αMOGP-a can obtain much smaller size than
DT and GPHH-N. In addition, αMOGP-a can outperform the TSMOGP-a
on 18 instances and never perform significantly worse than TSMOGP-a on
remaining instances.

Tables 4.22 and 4.23 show the mean and standard deviation of the av-
erage size (number of nodes) of the compared algorithms. We can see that
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Table 4.21: The Experimental Results of (Effectiveness/Average total cost) for
Compared Algorithms on Uval Dataset.

Instance Tarpeian LPPP DT GPHH-N TSMOGP-a αMOGP-a
Uval1A 181.9436(4.437)(+) 188.8427(6.633)(+) 177.7145(5.283)(=) 174.5455(1.57)(-) 178.3407(2.691)(=) 178.2425(3.673)
Uval1B 186.0304(2.533)(=) 190.4595(3.237)(+) 183.8868(1.058)(-) 183.7689(0.869)(-) 186.0899(3.287)(=) 185.6556(1.88)
Uval1C 320.5283(10.524)(+) 329.6197(8.438)(+) 315.8533(8.309)(=) 309.8156(12.435)(-) 317.9679(8.34)(=) 314.4565(7.278)
Uval2A 233.3371(6.258)(=) 239.207(5.083)(+) 231.5573(4.049)(=) 230.5274(3.451)(-) 232.9362(2.52)(=) 232.7639(3.327)
Uval2B 283.4977(12.472)(+) 295.0745(15.143)(+) 279.484(3.985)(=) 278.0283(3.801)(=) 280.5628(4.185)(=) 278.6683(4.082)
Uval2C 617.0144(18.002)(+) 622.1776(13.246)(+) 598.0613(22.492)(=) 591.1879(14.467)(-) 615.4274(21.033)(+) 606.9756(14.595)
Uval3A 82.8063(1.183)(=) 88.3126(2.176)(+) 82.4896(1.249)(=) 81.7668(0.698)(-) 83.3861(0.956)(+) 82.5919(0.906)
Uval3B 100.1533(3.669)(+) 101.8713(2.175)(+) 96.5034(1.66)(=) 95.3129(1.293)(-) 97.4254(1.338)(=) 96.8018(1.08)
Uval3C 179.7858(9.375)(=) 193.8458(14.893)(+) 177.4681(5.522)(-) 173.7863(4.013)(-) 182.4238(6.7)(=) 182.3861(7.16)
Uval4A 430.4099(27.157)(+) 429.4005(7.934)(+) 420.1009(5.788)(=) 417.5135(4.281)(-) 424.1895(6.985)(=) 421.1683(4.948)
Uval4B 448.8171(10.208)(=) 457.2661(12.784)(+) 444.0003(8.243)(=) 439.2253(6.023)(-) 446.7894(7.41)(=) 445.7183(9.372)
Uval4C 499.4249(12.378)(+) 503.3278(13.547)(+) 493.0886(17.139)(=) 486.7424(11.729)(-) 497.6095(10.661)(+) 490.4748(8.96)
Uval4D 726.6945(34.562)(=) 728.593(39.509)(=) 701.2216(31.662)(=) 689.6775(22.469)(-) 722.9498(28.646)(=) 709.5947(28.792)
Uval5A 444.9818(4.721)(+) 451.2758(3.761)(+) 440.4567(3.934)(-) 440.6779(8.742)(-) 443.9832(4.71)(=) 442.8144(2.026)
Uval5B 477.6904(8.99)(+) 479.6288(7.16)(+) 475.9497(27.624)(=) 467.0353(4.985)(-) 476.082(6.158)(+) 471.7457(3.856)
Uval5C 522.0263(6.645)(+) 530.2507(12.634)(+) 518.6073(8.35)(=) 513.4305(6.425)(=) 518.4106(7.573)(=) 516.0506(6.337)
Uval5D 747.1994(20.341)(+) 751.3212(20.016)(+) 728.8122(13.066)(=) 725.5403(15.047)(=) 735.3973(10.431)(+) 722.9408(11.808)
Uval6A 229.8105(2.513)(=) 232.7176(4.722)(+) 229.3166(2.951)(=) 228.1973(1.736)(=) 229.7946(2.232)(=) 229.4904(2.935)
Uval6B 260.987(4.221)(+) 268.2549(10.851)(+) 257.3596(4.19)(=) 256.8229(4.516)(=) 258.3724(3.261)(=) 259.3178(6.059)
Uval6C 423.3921(21.584)(=) 431.228(22.874)(+) 405.4078(8.073)(-) 401.385(6.803)(-) 416.9153(14.703)(=) 415.2576(17.743)
Uval7A 291.7678(6.221)(=) 300.7732(7.065)(+) 289.6651(10.374)(-) 285.0704(4.362)(-) 291.7044(5.248)(=) 292.8277(5.272)
Uval7B 299.9158(8.327)(=) 310.1024(9.85)(+) 294.6197(6.177)(-) 291.9621(6.751)(-) 304.7538(7.55)(=) 301.0962(7.967)
Uval7C 417.0744(17.023)(+) 413.6364(10.863)(=) 407.9503(8.14)(=) 406.1523(4.853)(=) 416.4156(12.029)(+) 411.1995(12.162)
Uval8A 398.8698(3.124)(+) 404.9157(5.031)(+) 398.6413(3.961)(=) 400.2917(12.315)(=) 400.0483(3.017)(+) 397.5535(2.686)
Uval8B 435.4858(14.72)(+) 438.6551(8.929)(+) 428.9821(9.303)(=) 424.48(5.044)(-) 429.9672(6.382)(=) 428.3036(4.022)
Uval8C 689.1992(14.948)(+) 690.6813(14.953)(+) 666.4134(18.001)(-) 661.1327(14.932)(-) 677.2028(13.883)(=) 672.4655(10.534)
Uval9A 336.7522(3.242)(=) 343.2224(7.196)(+) 334.4052(2.242)(-) 332.6537(2.86)(-) 337.6159(3.129)(+) 336.4662(2.551)
Uval9B 351.4968(3.71)(=) 356.7118(5.774)(+) 350.7538(3.445)(=) 347.8707(3.993)(=) 350.8984(6.068)(=) 350.211(5.154)
Uval9C 369.8666(5.713)(+) 375.803(4.828)(+) 363.2856(5.335)(=) 362.1799(4.098)(-) 367.4177(4.386)(=) 366.1998(6.142)
Uval9D 490.5418(13.782)(+) 492.4926(10.905)(+) 480.2601(10.236)(=) 474.6573(12.982)(-) 483.0787(8.324)(=) 480.3587(6.0)
Uval10A 444.3772(10.897)(=) 461.3147(22.035)(+) 439.147(4.092)(-) 437.5081(2.54)(-) 444.0889(5.229)(=) 444.2145(6.384)
Uval10B 462.9993(6.095)(=) 471.7224(17.878)(+) 460.3632(5.944)(=) 456.189(4.304)(-) 462.8599(3.279)(=) 461.9855(4.145)
Uval10C 483.9717(5.967)(=) 489.8595(11.404)(+) 480.028(6.693)(=) 476.3406(6.219)(-) 482.8358(6.115)(=) 481.3485(5.005)
Uval10D 622.7074(7.153)(=) 624.3295(7.891)(+) 619.4135(4.145)(=) 618.6131(5.903)(=) 625.817(10.896)(+) 620.4912(8.373)

αMOGP-a performs significantly worse than Tarpeian and LPPP. Tarpeian
and LPPP can evolve much smaller routing policies than αMOGP-a. How-
ever, this size reduction is compromised by sacrificing effectiveness. Tarpeian
and LPPP can only evolve small but ineffective routing policies. In con-
trast, DT and GPHH-N can evolve very effective routing policies, but the
size of the evolved routing policies is much larger than αMOGP-a. The
αMOGP-a can outperform DT and GPHH-N on almost all instances. It is
worth noting that although αMOGP-a and TSMOGP-a obtain competitive
results in terms of size, αMOGP-a outperforms TSMOGP-a in terms of the
effectiveness according to Tables 4.20 and 4.21.
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Table 4.22: The Experimental Results of (Size) for Compared Algorithms on Ugdb
Dataset.

Instance Tarpeian LPPP DT GPHH-N TSMOGP-a αMOGP-a
Ugdb1 21.7333(13.24)(-) 7.2667(3.095)(-) 84.9333(22.416)(+) 60.6(24.732)(+) 38.8(32.65)(=) 37.0(32.415)
Ugdb2 26.5333(11.407)(=) 9.1333(4.783)(-) 80.8667(29.172)(+) 52.1333(15.037)(+) 32.8(19.975)(=) 35.4667(19.929)
Ugdb3 19.4(8.589)(=) 7.5333(2.097)(-) 68.8(22.562)(+) 43.2667(23.511)(+) 26.8(17.47)(+) 18.2667(10.339)
Ugdb4 22.4(15.078)(=) 7.9333(3.352)(-) 62.0(22.935)(+) 55.0667(32.477)(+) 23.1333(18.827)(=) 24.5333(20.981)
Ugdb5 24.0667(10.837)(-) 8.4(5.096)(-) 77.1333(20.764)(+) 49.6(22.469)(+) 29.8(25.296)(-) 36.6667(26.57)
Ugdb6 12.0667(17.599)(-) 4.1333(5.138)(-) 62.6667(23.265)(+) 40.6667(17.905)(+) 20.2(11.454)(=) 18.8667(12.193)
Ugdb7 4.9333(10.069)(-) 1.0(0.0)(-) 41.2667(19.998)(+) 25.5333(12.616)(+) 10.3333(6.546)(-) 20.3333(21.22)
Ugdb8 31.2(16.949)(=) 8.4667(4.2)(-) 73.7333(29.231)(+) 60.1333(17.322)(+) 42.7333(35.544)(=) 43.7333(33.398)
Ugdb9 29.0(20.477)(=) 8.6667(3.155)(-) 62.8(20.317)(+) 61.4667(15.498)(+) 26.9333(18.274)(=) 26.3333(10.807)
Ugdb10 15.2667(8.737)(-) 5.0667(0.365)(-) 55.6667(21.575)(+) 29.3333(16.66)(=) 16.4667(12.789)(-) 25.5333(19.75)
Ugdb11 18.4(19.098)(=) 1.8667(2.609)(-) 55.4667(22.759)(+) 41.2(11.854)(+) 16.9333(15.461)(=) 17.4667(12.292)
Ugdb12 26.4(11.77)(=) 14.0667(4.571)(-) 80.2(26.343)(+) 53.0(16.526)(+) 36.0(21.047)(=) 28.6667(11.698)
Ugdb13 23.2667(10.657)(=) 7.2667(2.333)(-) 62.8(20.774)(+) 54.0(24.148)(+) 26.4(16.569)(=) 26.6667(15.296)
Ugdb14 23.5333(9.38)(=) 1.4(1.221)(-) 70.7333(21.053)(+) 46.9333(23.368)(+) 30.0(14.218)(=) 23.6667(8.949)
Ugdb15 25.8667(15.71)(=) 1.0(0.0)(-) 89.8667(37.522)(+) 32.8(25.877)(=) 18.2(9.974)(-) 33.2(24.57)
Ugdb16 2.5333(1.634)(+) 1.0(0.0)(=) 19.4667(18.35)(+) 9.0667(15.478)(+) 3.3333(7.485)(=) 1.8(3.221)
Ugdb17 4.0667(1.363)(-) 1.0(0.0)(-) 94.6667(49.248)(+) 6.8(13.166)(-) 5.2(9.253)(-) 21.3333(21.381)
Ugdb18 32.4667(16.358)(=) 5.2(2.987)(-) 83.5333(37.12)(+) 57.4667(31.191)(+) 36.8667(22.966)(=) 29.8667(15.22)
Ugdb19 16.1333(5.625)(+) 1.2(0.61)(-) 81.2(32.464)(+) 16.2667(14.888)(=) 15.5333(12.897)(=) 13.7333(13.781)
Ugdb20 25.1333(16.559)(=) 1.0(0.0)(-) 79.1333(41.556)(+) 43.4(22.963)(+) 24.6667(13.986)(=) 21.2667(9.318)
Ugdb21 25.3333(13.586)(=) 3.2(2.797)(-) 76.2667(33.307)(+) 58.4667(27.827)(+) 28.6(13.87)(=) 30.7333(14.713)
Ugdb22 21.9333(10.356)(-) 1.5333(1.383)(-) 65.9333(25.438)(+) 53.2(23.835)(+) 32.6(20.807)(=) 35.3333(22.561)
Ugdb23 28.4(12.286)(=) 6.1333(1.634)(-) 78.0(23.895)(+) 76.5333(34.894)(+) 38.2(18.108)(=) 29.9333(11.552)

To sum up, from the perspective of both benchmark datasets and real-
world dataset, αMOGP-a can evolve better Pareto front than TSMOGP-
a. For the benchmark datasets, αMOGP-a evolves much smaller routing
policies by slightly losing effectiveness comparing with DT and GPHH-N.
Tarpeian and LPPP can evolve much smaller routing policies than αMOGP-
a, but their effectiveness is much worse. For the real-world instance, αMOGP-
a evolves much smaller routing policies without losing effectiveness com-
paring with DT and GPHH-N. It evolves significantly better routing poli-
cies in terms of both effectiveness of size than Tarpeian and LPPP. Thus,
all the results indicate that αMOGP-a can evolve compact and effective
routing policies.
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Table 4.23: The Experimental Results of (Size) for Compared Algorithms on Uval
Dataset.

Instance Tarpeian LPPP DT GPHH-N TSMOGP-a αMOGP-a
Uval1A 15.6(11.193)(-) 3.8667(2.713)(-) 73.1333(25.249)(+) 30.5333(20.238)(=) 22.6(14.464)(=) 23.6(14.764)
Uval1B 19.9333(10.113)(=) 6.6(2.43)(-) 61.1333(22.505)(+) 26.4667(16.358)(=) 19.8(13.01)(=) 22.8667(15.429)
Uval1C 25.1333(11.708)(=) 9.6(4.207)(-) 75.7333(34.519)(+) 64.9333(20.854)(+) 33.1333(28.657)(=) 31.2667(16.789)
Uval2A 25.2667(12.426)(+) 7.1333(1.655)(-) 72.3333(29.405)(+) 26.5333(15.471)(+) 22.7333(16.161)(=) 17.8667(9.138)
Uval2B 24.6667(13.184)(=) 7.4667(4.289)(-) 74.2667(31.573)(+) 48.2667(27.884)(+) 33.4(16.917)(=) 28.2667(17.265)
Uval2C 26.7333(11.741)(=) 13.8(5.573)(-) 67.1333(24.166)(+) 71.9333(22.245)(+) 41.6(30.477)(=) 33.2(16.055)
Uval3A 28.8667(13.024)(=) 5.6(1.192)(-) 73.1333(28.796)(+) 36.0(15.972)(+) 26.7333(14.881)(=) 26.4(10.906)
Uval3B 14.6667(18.263)(-) 3.0(0.743)(-) 67.5333(24.624)(+) 50.4667(19.355)(+) 23.1333(10.345)(=) 21.2(9.618)
Uval3C 26.2(12.041)(=) 7.9333(3.14)(-) 76.8(37.3)(+) 65.6667(21.867)(+) 30.8(17.697)(=) 32.0(15.148)
Uval4A 25.2(9.357)(=) 8.7333(2.664)(-) 66.4(32.594)(+) 47.3333(19.526)(+) 31.2(14.644)(=) 27.8667(14.352)
Uval4B 28.2(12.743)(=) 12.4667(5.894)(-) 66.2667(23.297)(+) 47.4667(16.698)(+) 30.5333(15.247)(=) 25.0(10.544)
Uval4C 28.2(17.893)(=) 13.4667(3.665)(-) 73.5333(31.015)(+) 56.8(28.218)(+) 35.4667(20.623)(=) 30.9333(12.86)
Uval4D 28.0667(14.477)(-) 18.6667(10.131)(-) 67.6667(18.867)(+) 68.2667(23.893)(+) 29.1333(13.846)(=) 37.0(15.438)
Uval5A 26.8667(17.834)(=) 6.2667(1.437)(-) 59.6667(15.856)(+) 44.9333(16.613)(+) 28.3333(15.654)(=) 24.4(12.353)
Uval5B 30.1333(16.54)(=) 10.8667(3.235)(-) 75.0667(33.336)(+) 46.8667(19.333)(+) 30.5333(19.839)(=) 30.7333(14.732)
Uval5C 19.5333(7.947)(-) 9.3333(4.816)(-) 58.6667(20.186)(+) 41.4667(13.418)(+) 26.2667(18.175)(=) 25.0667(11.441)
Uval5D 20.9333(12.323)(-) 13.2(6.288)(-) 64.6667(22.61)(+) 63.6(19.842)(+) 31.4667(13.602)(=) 27.2(13.435)
Uval6A 23.0(12.171)(=) 9.5333(3.441)(-) 61.5333(29.389)(+) 39.0(21.953)(+) 36.6667(18.952)(+) 25.2(11.559)
Uval6B 23.6(11.205)(=) 9.8(3.773)(-) 68.8(21.88)(+) 48.6(18.977)(+) 34.2(35.929)(=) 30.2(17.377)
Uval6C 29.4(15.725)(=) 9.6667(5.809)(-) 70.0(20.408)(+) 62.6(16.336)(+) 28.4(11.425)(=) 28.5333(14.294)
Uval7A 27.3333(14.726)(=) 9.5333(2.569)(-) 65.0667(27.505)(+) 36.1333(15.046)(+) 27.3333(16.138)(=) 25.7333(10.392)
Uval7B 29.2(13.291)(=) 10.1333(3.739)(-) 81.6(31.488)(+) 38.0(18.411)(+) 33.1333(17.035)(=) 27.9333(11.552)
Uval7C 26.8667(11.59)(-) 14.0667(4.571)(-) 70.7333(25.006)(+) 58.4(19.849)(+) 42.6667(29.758)(=) 38.4(23.764)
Uval8A 24.9333(11.283)(=) 7.4(2.253)(-) 63.4667(16.739)(+) 39.0667(19.415)(+) 24.2(13.783)(=) 27.6667(14.126)
Uval8B 22.4(15.714)(=) 6.5333(2.662)(-) 57.6667(18.257)(+) 41.2667(21.027)(+) 30.5333(17.963)(=) 24.1333(10.887)
Uval8C 27.3333(13.392)(-) 15.0(5.872)(-) 62.6667(22.792)(+) 59.4667(23.286)(+) 36.0(16.54)(=) 36.6(20.358)
Uval9A 21.8667(8.593)(=) 8.1333(2.956)(-) 64.0(27.361)(+) 46.0(21.112)(+) 26.4667(14.659)(=) 21.4667(11.646)
Uval9B 26.0(11.951)(=) 8.0(2.716)(-) 62.4(22.653)(+) 49.4(18.491)(+) 32.8(14.339)(+) 29.0(19.476)
Uval9C 22.4667(10.814)(-) 8.0667(3.778)(-) 75.6(38.129)(+) 53.6667(17.736)(+) 28.4(16.147)(=) 31.7333(13.98)
Uval9D 31.4(11.196)(=) 16.2(4.055)(-) 66.4(20.077)(+) 59.8667(16.1)(+) 47.9333(38.445)(=) 38.0667(15.911)
Uval10A 24.9333(12.935)(=) 5.6(3.529)(-) 62.4(20.545)(+) 31.4(19.035)(+) 23.9333(12.722)(=) 22.2(13.01)
Uval10B 23.2667(12.089)(=) 8.4(3.682)(-) 61.4667(18.463)(+) 50.6(16.141)(+) 21.6667(10.984)(=) 24.0(18.471)
Uval10C 25.4(15.035)(=) 8.3333(3.032)(-) 62.6(16.587)(+) 52.0(13.884)(+) 23.9333(10.329)(=) 26.8(14.681)
Uval10D 27.9333(12.202)(-) 16.6667(5.122)(-) 77.9333(33.362)(+) 66.8(18.029)(+) 36.1333(20.928)(=) 34.9333(12.12)

4.5.7 Further Analysis

4.5.7.1 Component Analysis

To verify the effectiveness of each component of the newly proposed αMOGP-
a, we designed a set of control experiments on some representative in-
stances. We compare αMOGP-a which utilises the new α adaptation scheme
with an existing α adaptation scheme proposed in [198]. The existing α

adaptation scheme utilises both the effectiveness and size to identify bias
and adjust α value by simply +/- 0.1 each time. We also compare αMOGP-
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Table 4.24: The HV of the compared algorithms in the control experiment of α
adaptation scheme and archive.

Instance αMOGP-a αMOGP-a- αMOGP
+/- 0.1

Ugdb1 0.94(0.017) 0.93(0.014)(+) 0.88(0.024)(+)
Ugdb2 0.95(0.015) 0.92(0.018)(+) 0.88(0.029)(+)
Ugdb8 0.93(0.012) 0.92(0.012)(+) 0.84(0.071)(+)
Ugdb23 0.92(0.012) 0.89(0.020)(+) 0.84(0.052)(+)
Uval9A 0.97(0.005) 0.96(0.007)(+) 0.92(0.025)(+)
Uval9D 0.92(0.008) 0.91(0.011)(+) 0.84(0.043)(+)
Uval10A 0.97(0.012) 0.96(0.009)(+) 0.93(0.021)(+)
Uval10D 0.97(0.010) 0.96(0.008)(+) 0.90(0.046)(+)

a with the counterpart without using the archive (αMOGP). The experi-
mental results are shown in Table 4.24. As IGD has the same pattern as
the HV, we omit the IGD results here due to the page limit. Each “+”,
“-” or “=” next to the compared algorithms indicates that αMOGP-a per-
forms statistically significantly better than, worse than, or comparable to
the compared algorithm.

From Table 4.24, we can see that αMOGP-a significantly outperforms
the one using the existing α adaptation scheme. This indicates the effec-
tiveness of the new α adaptation scheme. In addition, we can see that
without using the archive, the performance of αMOGP-a significantly de-
teriorates. This demonstrates the effectiveness of using the archive.

4.5.7.2 α Adaptation

To further analyse how the new α adaptation scheme outperforms the ex-
isting one, we plot the convergence curve of α value on 8 representative
instances on 30 independent runs. The convergence curve is shown in
Fig. 4.13. Each dot in the figure is the mean α value over 30 independent
runs at the generation.

From Fig. 4.13a, it can be seen that with the existing α adaptation scheme,
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(a) Old α adaptation scheme (b) New α adaptation scheme

Figure 4.13: The Convergence Curve of α value over old adaptation scheme and new
adaptation scheme on Representative Instances.

α value keeps increasing until the end. This shows that 0.1 is not a proper
step size for the α value. In contrast, the convergence curve in Fig. 4.13b
grows rapidly at first, and as generation increases, the curves stabilise and
eventually converge. We can see some fluctuations above the convergence
curve. This is expected as when α is too large we need to decrease it, while
α is too small we need to increase it. In the process of finding the proper α
value, the α value will fluctuate around the proper value, and eventually
converge to the proper α value. This indicates that the new α adaptation
scheme has better capability to find the proper α value. At the same time,
Fig. 4.13b also confirms our hypothesis that different α values are required
for different instances.

4.5.7.3 Analysis of Evolved Routing Policies

We extract an effective routing policy evolved by αMOGP-a on Ugdb6
instance to make some further understanding of the behavior of the GP
evolved routing policy. To interpret the routing policy evolved by αMOGP-
a, we rewrite it by the following equations,

RP = S1 + S2 + S3, (4.20)
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Figure 4.14: A Routing Policies Evolved by αMOGP-a.

where
S1 = CFH, (4.21)

S2 = (FULL− 0.55) ∗ CTD, (4.22)

S3 = max(CTT1,DEM1). (4.23)

We can interpret the above routing policy as follows.

• The policy always prefers tasks close to the current location. This is
consistent with the well-known nearest neighbour heuristic.

• If FULL ≥ 0.55, i.e., the vehicle is more than half full, the coefficient
of CTD in S2 is non-negative. The policy prefers tasks close to the
depot. The focus on CTD increases as the vehicle fills up. This is
consistent with our intuition that as the vehicle becomes more full,
it is more likely to return to the depot to refill. If the route failure
occurs on a task near the depot, the recourse cost is minimised. If
FULL < 0.55, the route failure is unlikely to occur. The policy prefers
tasks that are distant from the depot, to leave the tasks closer to the
depot to the states where the route failure is more likely to occur (the
vehicle is more full).
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• If CTT1 ≥ DEM1, S3 = CTT1. In other words, if the cost from
the candidate task to its nearest task is greater than the demand
of the candidate task’s nearest task, the policy tends to select tasks
that are more isolated to the other remaining tasks. On the other
hand, if CTT1 < DEM1, then S3 = DEM1. In other words, if the
candidate task is close to some other remaining tasks (i.e., the cost
is smaller than the demand of the other remaining tasks), then the
policy prefers tasks whose nearby remaining tasks have smaller de-
mands. This way, after serving the candidate task, the vehicle can
easily serve its nearby remaining task with low cost and probability
of route failure (due to the small demand of the nearby task).

By observing the Pareto front found by αMOGP-a, we have some other
interesting observations. Eq. (4.24) and Eq. (4.25) shows two non-dominated
routing policies from same Pareto front of a single run on Ugdb6.

RP1 = CFH+ CTT1 ∗ FULL+
RQ

CTD
, (4.24)

RP2 = CFH+ CTT1 ∗ FULL. (4.25)

The mean total cost of RP1 is 351.02, and the mean total cost of RP2 is
362.75. It can be seen that the only difference between RP1 and RP2 is the
term RQ

CTD
, but their effectiveness is much different. This indicates that RQ

CTD

is a useful building block. We analyse its behavior. RQ refers to the remain-
ing capacity of the vehicle and CTD refers to the cost from the candidate
task to the depot. We can transform RQ

CTD
to RQ ∗ 1

CTD
. At each decision

point, RQ is a constant for all the candidate tasks. Then, CTD becomes the
only variable. Obviously, 1

CTD
decreases as CTD increases. Thus, RQ

CTD
tends

to select tasks that are distant from the depot. Then, we analyse the im-
pact of RQ. At the beginning of a vehicle route, its remaining capacity of
the vehicle is the largest (equal to its capacity). As the service continues,
RQ becomes smaller and smaller. This indicates that the impact of RQ

CTD
de-

creases when the vehicle serves more tasks and becomes more full. This
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is similar to the observation in Eq. (4.22), except that RP1 does not prefer
tasks near the depot when the vehicle is more full. As a result, RP1 still
performs worse than RP shown in Eq. (4.20).

4.5.8 Summary

In summary, αMOGP-a applied two strategies, i.e., α dominance strategy
and archive strategy, to handle objective selection bias issue and stochas-
tic fitness evaluation issue simultaneously. The experimental results show
that αMOGP-a evolves relatively complete Pareto front than previous MOGP
algorithms for UCARP. In addition, it evolves compact and effective rout-
ing policies that is more interpretable to end users.

4.6 Chapter Summary

The main goal of this chapter is to evolve Pareto front that contains rout-
ing policies with degree of interpretability and effectiveness so that users
can choose based on their preference. This goal is achieved by propos-
ing a set of new MOGP algorithms. There are two main issues, i.e., ob-
jective selection bias issue and stochastic fitness evaluation issue, when
designing MOGP algorithms for UCARP. Firstly, we investigate the util-
isation of α dominance and three different α adaptation schemes to han-
dle the objective selection bias issue. The results show that the objective
selection bias issue can be partially handled by α dominance. By observ-
ing the results, we found that it is necessary self-adaptive α adaptation
scheme so that α dominance can find proper α value to handle the ob-
jective selection bias issue. In this case, we design a new self-adaptive α

adaptation scheme which can automatically adjust the α value based on
the bias status. The results show that the new adaptation scheme out-
performs manually designed schemes. Then, we propose a new archive
strategy to handle the stochastic evaluation issue. The results show that
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the archive can effectively maintain the potentially good individuals dur-
ing the evolutionary process and improve the distribution of the Pareto
front. Finally, the αMOGP-a is proposed to handle both issues simulta-
neously. The experimental results show that αMOGP-a outperforms the
state-of-the-art algorithms for UCARP. The results showed that both the α

adaptation scheme and the archive are effective. The HV and IGD become
worse when either component is removed. We further analysed on sev-
eral evolved routing policies reveals that CFH is a very important feature,
in addition, the importance of the CTD and CTT1 are somewhat related
to how fully loaded the vehicle is. Because the new αMOGP-a can pro-
vide a set of non-dominated solutions, we can gain some domain knowl-
edge which building blocks are more useful for routing policy by observ-
ing these solutions in the same set of non-dominated solutions. Over-
all, αMOGP-a can obtain better Pareto front and potentially more inter-
pretable routing policies than the state-of-the-art algorithms.



164 CHAPTER 4. MOGP FOR UCARP



Chapter 5

Local and Global explanation
methods of Genetic
Programming-Evolved Routing
Policies for Uncertain Capacitated
Arc Routing Problem

5.1 Introduction

The methods to improve the interpretability of AI models can be nor-
mally divided into two categories [147], i.e., intrinsic methods and post-
hoc methods. Intrinsic methods are mainly used during the training pro-
cess of the model. They design specific learning/search mechanisms to
learn both effective and interpretable models [35]. The post-hoc methods,
on the other hand, are mainly used after the model training process to “ex-
plain” the trained models. Post-hoc methods can be applied to not only
“black-box” models, but also transparent models (the model itself is easy
to interpret), since post-hoc methods are usually decoupled from the main

165
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model [35].
Previous chapters are mainly about intrinsic interpretability. These

methods generally improve interpretability by evolving smaller (simpler)
routing policies. However, even with the effort to evolve simpler rout-
ing policies, the final routing policy may still be difficult to understand
in some cases, as the GP-evolved routing policies need to maintain a cer-
tain level of complexity in order to be effective [25, 95]. Once we have
evolved an effective GP-evolved routing policy for a UCARP instance, it
becomes difficult to improve its interpretability without sacrificing its ef-
fectiveness. Contrary to the intrinsic methods, the post-hoc methods can
potentially improve interpretability without sacrificing effectiveness, since
they do not change the trained model. Therefore, in this work we focus
on developing post-hoc methods to explain GP-evolved UCARP routing
policies.

Under a UCARP decision situation, e.g., when a vehicle completes the
current task and becomes idle, it uses a routing policy to prioritise/rank
the candidate tasks (those that can be served by the vehicle without vi-
olating the capacity constraint) and selects the top-ranked task to serve
next. Thus, the behaviour of a routing policy can be characterised from
two aspects: (1) its task ranking and (2) the selected task. To explain the
behaviour of a routing policy in a decision situation, we need to explain
why the routing policy ranks the candidate tasks in a particular way, and
why it selects a certain task over others in this decision situation.

There are a number of different post-hoc explanation methods, such as
text explanations, visualization or explanations by example [120]. Local
explanation is one of explanations by example methods, it is suitable for
UCARP as we can give explanation of the decision made by GP-evolved
routing policies in each decision point. The local explanation aims to ex-
plain a single decision or prediction as opposed to explaining the entire
decision or prediction space by the complex model. In general, it is quite
difficult to describe the full mapping learned by a model, but it is much
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easier to give explanations to less complex solution subspaces that are rel-
evant for the whole model [120]. In UCARP, there are usually many de-
cision situations, and one of many candidate tasks has to be selected to
serve in each decision situation. The GP-evolved routing policies are com-
plex and difficult to interpret as there are so many decisions to be made
in so many situations. However, to our best knowledge, there is not any
existing local explanation methods for GP-evolved routing policies. Thus,
it is necessary to design novel local explanation methods for GP-evolved
routing policies.

In addition to explaining the above local behaviour of routing policy in
each decision situation, it is also important to explain its global behaviour
in all the different decision situations occurred during the entire service
process. However, the global explanation is much more difficult to ob-
tain than the local explanation for each single decision situation [120]. A
potential way to build a global explanation is to find patterns in all local
explanations. Therefore, it is necessary to design novel global explanation
method by grouping local explanations.

5.1.1 Chapter Goals

The overall goal of this paper is to develop new post-hoc methods to ex-
plain the local and global behaviours of GP-evolved rules for stochastic
optimisation and machine learning problems, using UCARP as an exam-
ple. We have the following specific research objectives:

1. To propose two metrics, namely consistency and correlation, to charac-
terise the local behaviour of routing policy in each decision situation.

2. To investigate the feasibility of using a linear model to construct a
local explanation.

3. To use PSO to evolve linear models for the local explanation, and
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define a new fitness function that incorporates the consistency, cor-
relation and number of used attributes in the linear model.

4. To develop clustering mechanisms to summarise the local explana-
tions of all the decision situations occurred in the UCARP instance
into a global explanation, in the form of a production rule, for exam-
ple, “If the decision situation shows pattern X, then the local expla-
nation shows pattern Y”.

5. To verify the accuracy of the proposed LGRE method, in terms of
consistency and correlation in different decision situations.

6. To show the interpretability of the LGRE method by giving case stud-
ies of the local and global explanations.

5.1.2 Chapter Organisation

The rest of this paper is organised as follows. Section 5.2 describes the
investigation of the feasibility of using a linear model to construct a local
explanation. Section 5.3 describes PSO-based Local and Global explana-
tion method. Finally, Section 5.4 gives the summary of the chapter.

5.2 L1 Regression-Based Local Explanation Method

5.2.1 Overall Framework

This section describes the Local Ranking Explanation (LRE), a post-hoc
intractability method based on local explanations used to help explain
the decision made by GP-evolved routing policies. Note that, this sec-
tion introduces the LRE under the context of the GPHH for UCARP, al-
though it can be generalised to other problems, such as dynamic flexi-
ble job shop scheduling problem and dynamic cloud workflow schedul-
ing problem. The LRE is illustrated in Algorithm 11. Fig. 5.1 shows
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an example of LRE. In our research, we extend the application of L1 re-
gression to address the unique challenges posed by the interpretability of
GP-evolved routing policies in the context of UCARP. Our focus is on im-
proving the interpretability of these policies within the realm of logistics
and transportation, where they have practical implications for real-world
decision-making. The Evolutionary Feature Synthesis (EFS) method [12]
is a fast and efficient regression approach for creating interpretable nonlin-
ear models from small to medium-sized datasets. EFS uses evolutionary
computation to search for features and select subsets, making it one of the
quickest tools in this domain. While our research and EFS both employ
evolutionary algorithms, they address different problems. EFS focuses on
feature synthesis and regression, whereas our work concentrates on im-
proving the interpretability of routing policies for logistics, specifically the
UCARP.

A routing policies is typically a priority function. At a specific decision
situation that a set of candidate tasks are waiting to be served, a routing
policy is applied to calculate priority values for each candidate task, and
then the most prioritised task is selected to be served next.

Give a GP-evolved routing policy RP to be explained and a set of deci-
sion situations D, each decision situation d ∈ D contains a set of candidate
tasks T that need to be served. There is a set of attributes A in RP . Each
t ∈ T can be represented as a vector of the attribute values of the task.
Then, we can use the set of attributes to calculate the corresponding pri-
ority value p of each candidate task in a specific decision situation. To
explain the specific decision, we will collect all the attribute values of each
candidate task in the decision situation as input X , and the corresponding
priority values of each candidate task as output Y . These data will utilised
to generate a linear regression.

Some pre-processing of the data is also necessary before training the
linear regression. First, we will remove some useless attributes from the
input data. In the specified decision situation, some attributes have the



170 CHAPTER 5. LGRE OF GP-EVOLVED RPS FOR UCARP

Algorithm 11: Local Ranking Explanation (LRE).
Input: GP-evolved Routing Policy RP , A decision situation d

Output: An explanation for RP in d

Identify all attributes A used in RP ;
Get all the candidate tasks T in d;
// feature value set

X is empty;
// prediction value set

Y is empty;
for t ∈ T do

x = attributes in t;
// calculate priority value of task using routing policy

y = RP (t);
add x to X ;
add y to Y ;

end
Remove redundant attributes from X to get X ′;
Convert Y to rank value Y ′;
// When two tasks have same rank then remove the task with

larger index

Remove tie from X and Y ′;
LinearModel(LM) = Run linear regression (X ′, Y ′);
for a ∈ A do

Analyse the coefficient of a;
Calculate importance of a using Eq. 5.3 ;

end
return model and attributes importance as an explanation for RP in d;
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same value on all candidate tasks and these attributes are redundant for
training linear regression. For example, FULL represents the fullness of
a vehicle, and when we are deciding which task to service for a vehicle,
all the candidate tasks have the same FULL values. Second, for a decision
situation, we will rank the priority values of all the candidate tasks in this
decision situation and then use these ranked values as the new output
Y ′. This is because the priority values usually do not follow the linear
regression. Converting the priority values into ranked values will simplify
the problem. For example, if we have three candidates with priority values
1, 1.1 and 1000, it is difficult to describe the behaviors of the routing policy,
whereas if we transform them into ranked values 1, 2 and 3, it can better
reflect the behaviors of the routing policy. Also, it will not change the
behaviour of the routing policy in this way. The most prioritised candidate
task will be ranked with value 1. Third, we will remove all the ties in each
decision situation. A tie means that two candidate tasks have the same
priority values. When a tie occurs, the routing policy will simply choose
the task with the smallest index value. Thus, in the input data, if there is a
tie in a decision situation, we can remove the tie by simply removing the
task with larger index.

After the data preprocessing, we can use the input X and output Y to
generate a linear model LM to represent the RP at a decision situation.
The representation of LM is shown in Eq. 5.1. Because the intercept does
not affect the ranking process of the linear model, the intercept is omitted
in the linear mode. The loss function for LM is shown in Eq. 5.2. The loss
function contains the least square error and a regularisation in it. This is
to balance the regression error and model complexity (i.e., number of at-
tributes used). When λ equals to zero, the loss function becomes the linear
regression with least square error. Then, we will analyse the coefficients C
in the LM . Attribute importance will be calculated based on the attribute
value a ∈ A and its corresponding coefficient c ∈ C. The attribute impor-
tance is defined as the mean squared error value between the LM and LM ′
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that sets the coefficient of the attribute to zero in LM in Alg. 11. This mea-
surement of importance shows the extent to which an attribute affects the
current decision when it changes. The measurement is shown in Eq. 5.3,
where t refers to task and a refers to the attribute. Note that, we can also
observe the coefficients found by LM directly to get some understanding.
This LM is able to provide a local interpretation of the decisions made
by RP in a decision situation. As a linear equation, the interpretability of
LM is more straightforward than the interpretability of RP . There are of
course exceptions, especially when the number of nodes in RP is small.
This is the case where the method is used in situations where the original
RP is difficult to read and understand by the end user.

LM = C ·A = c1 ∗ a1 + c2 ∗ a2 + ...+ cn ∗ an (5.1)

Loss =
∑
t∈T

(LM(t)−RP (t))2 +
∑
c∈C

λ|c| (5.2)

Importance(a) =
1

|T |

√∑
t∈T

(LM(t)− LM ′(t))2 (5.3)

5.2.2 Experimental Study

This section presents an experimental analysis of the interpretability of the
proposed method. Firstly, we will perform an analysis of the performance
of different method. The performance is evaluated based on how well a
linear regression can fit the routing policy at a decision situation. We use
the following three metrics: the mean error between the output of the lin-
ear regression and the actual ranked value on each candidate task over all
decision situations, the correlation between the trend of the output of the
linear regression and the trend of the actual ranked value, and the con-
sistency between the prioritised task of the output of the linear regression
and the actual prioritised task. Then, we analyse the coefficients in linear
regressions to give a local explanation for the routing policy.
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+

CFH SC

+

max

FUT DEM

A routing policy 
RP A decision situation ds 

Extract all attr ibutes in RP 
A = {FUT,DEM,CFH,SC}

Extract all candidate tasks in ds
ds = {t1,t2}

Train linear model using X' and Y'
model: y = c1 *  DEM + c2 *  CFH + c3 *  SC

Get a set of cofficients
C = {c1,c2,c3}

Analyse the importance of each 
attr ibute

Return model, C and attr ibute 
importance as an explanation for RP 

in dsTask FUT DEM CFH SC

t1 0 1 3 2

t2 0 0.8 4 1

Get all attributes data  
X = {t1:[0,1,3,2],

t2:[0,0.8,4,1]}
Y = {RP(t1) = 6,RP(t2) = 5.8}

Task FUT DEM CFH SC

t1 0 1 3 2

t2 0 0.8 4 1

Remove all global attr ibutes 
from X

X' = {t1:[1,3,2],
t2:[0.8,4,1]}

Conver t pr ior ity to rank 
Y' = {rank(t1) = 2,rank(t2) = 1}

Remove tie if exists

Task DEM CFH SC

t1 1 3 2

t2 0.8 4 1

Figure 5.1: An example of LRE

We select 6 representative UCARP instances from the commonly used
Ugdb and Uval datasets [122,143] for experiments which have been intro-
duced in Table 2.1. To make the problem simpler, we use only one vehicle
in the experiment. We use 30 full simulations for each GP-evolved routing
policy for each instance.

For GP, the routing policies are evolved using the Evolutionary Com-
putation Java (ECJ) package [131]. The number of generations is 100. The
population size is 1000. The tournament selection size is 7. The maximal
depth is 8. The crossover and mutation rates are 0.85 and 0.15.

For linear regression, we use Scikit-learn python package [156] to im-
plement the linear regression. The linear regression is running with no
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regularization (LR-0), a linear regression with λ = 0.5 (LR-0.5) and a lin-
ear regression with λ = 1 (LR-1). These models were chosen as they are
considered interpretable regression methods, since the coefficients give us
a notion of attribute importance. Although multiple λ have tested, but
the primary goal is not to find the optimal λ but to observe patterns as
λ increases, focusing on these three values—no regularization, moderate
regularization, and strong regularization—can indeed provide valuable
insights. By examining these selected points along the regularization spec-
trum, we can gain a good understanding of how interpretability changes
with varying levels of regularization, which aligns with our research ob-
jectives. This approach allows for a more focused investigation and sim-
plifies the experimentation process while still yielding meaningful results.

5.2.3 Results

5.2.3.1 Performance of Linear Regression

We first analyze the how well a linear regression can fit the routing policy
at a decision situation. We utilise three three metrics the evaluate the linear
model.

• Error: the mean error between the output of the linear regression and
the ranked value given by the routing policy on each candidate task
over all decision situations. The error between the linear model lm
and the routing policy rp is defined as

err =
1

|D|
∑
d∈D

1

|T |
∑
t∈T

(lm(t)− rp(t))2 (5.4)

where |T | refers to the number of candidate tasks in a decision situa-
tion, and |D| refers to the number of decision situations.

• Consistency: whether the linear model selects the same task (with
rank 1) as the routing policy φ(·). A higher consistency indicates that
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the linear model makes more consistent decisions with the routing
policy. The consistency between two rank vectors γ and γ ′ is defined
as

ς(γ,γ ′) =

1, if idx(γ, 1) = idx(γ ′, 1),

0, otherwise,
(5.5)

where γ refers to the rank vector of routing policy and γ ′ refers to
the rank vector of linear model, idx(γ, 1) indicates the index of 1 in
γ.

• Correlation: how close is the rank vector of the linear model to that
obtained by the routing policy. A higher correlation indicates that
the linear model behaves more closely related to the routing policy
for all the candidate tasks in the decision situation. The correlation
between two rank vectors γ and γ ′ is defined as follows:

corr(γ,γ ′) =

∑N
i=1(γi − γ̄)(γ′

i − γ̄ ′)√∑N
i=1(γi − γ̄)2

√∑N
i=1(γ

′
i − γ̄ ′)2

. (5.6)

where γ̄ and γ̄′ refer to the average rank of the two rank vectors,
respectively.

Table 5.1 shows the mean and standard deviation for three metrics that
describe the quality of the linear regression of explaining the routing pol-
icy over 30 simulations. It can be seen that LR-0 performs best among
three linear regression models in terms of error metric on all instances.
LR-0 can always get the smallest mean error. This is as expected as LR-0
does not use any regularisation. We can see that the mean error increases
progressively on LR-0, LR-0.5 and LR-1, which is also positively related
to the complexity of the linear regression model. For some instances the
error values are small, e.g. Ugdb1 and Ugdb2, but for some instances they
are large, e.g. Uval10D. This is reasonable because linear regression is in-
herently difficult to fit perfectly for some complex data. Another reason
for the large error is that we have only converted the priority values but
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Table 5.1: The mean and standard deviation for three metrics of identifying the
performance of the linear regression over 30 simulations.

Instance Model Error Correlation Consistency

Ugdb1
LR-0 3.11(0.07) 0.978(0.002) 0.81(0.02)

LR-0.5 4.45(0.08) 0.969(0.004) 0.92(0.03)
LR-1 4.84(0.1) 0.965(0.004) 0.92(0.03)

Ugdb2
LR-0 4.32(0.09) 0.974(0.001) 0.61(0.01)

LR-0.5 5.89(0.12) 0.959(0.003) 0.58(0.03)
LR-1 8.46(0.2) 0.943(0.004) 0.61(0.02)

Ugdb8
LR-0 8.88(1.06) 0.97(0.004) 0.76(0.04)

LR-0.5 9.38(1.1) 0.954(0.008) 0.75(0.04)
LR-1 9.67(1.11) 0.936(0.023) 0.72(0.04)

Ugdb23
LR-0 18.83(1.05) 0.825(0.019) 0.78(0.02)

LR-0.5 19.52(1.07) 0.733(0.036) 0.73(0.04)
LR-1 20.78(1.06) 0.677(0.038) 0.72(0.03)

Uval10A
LR-0 19.97(0.99) 0.995(0.001) 0.87(0.01)

LR-0.5 20.12(0.99) 0.996(0.001) 0.85(0.01)
LR-1 20.4(1.0) 0.995(0.001) 0.85(0.01)

Uval10D
LR-0 78.95(3.0) 0.969(0.003) 0.64(0.04)

LR-0.5 79.34(3.0) 0.967(0.003) 0.65(0.04)
LR-1 80.19(3.0) 0.964(0.005) 0.66(0.04)

not the attribute values, which leads to a mismatch between the attribute
values and the values being converted. However, for our problem, the
correlation of trends and behaviour between linear regression and routing
policy are more important to the ranking decisions. From a correlation
perspective, the three linear regression models maintain a high positive
correlation with the routing policy on almost all instances. This is promis-
ing because a high positive correlation means that the linear regression
models can be broadly consistent with the routing policy’s ranking of can-
didate tasks. From a consistency perspective, the three linear regression
models are guaranteed to make exactly the same decision as the routing
policy in at least 55% of decision situations across all instances. Note that,
on some instances, such as Ugdb1, LR-1 can achieve full consistency with
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the routing policy in 92% of the decision situations.

Figure 5.2: LR-0 and the rank value of routing policy on a decision situation in Ugdb1

Figure 5.3: LR-0.5 and the rank value of routing policy on a decision situation in Ugdb1

Figs. 5.2, 5.3 and 5.4 show how well the candidate task ranking pre-
dicted by the linear regression model fits the routing policy’s ranking val-
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Figure 5.4: LR-1 and the rank value of routing policy on a decision situation in Ugdb1

ues for candidate tasks in a decision situation. Besides, their general trends
are consistent with the corresponding routing policy. This answers the re-
search question one that it is feasible to use a linear model to fit a routing
policy locally.

5.2.3.2 Complexity of Linear Model

As we are interested in model interpretability, Table 5.2 shows the com-
plexity of the functions obtained by all methods. For the GP-evolved
routing policy (RP-GP), the complexity is given by the number of nodes
present in the trees. To make a fair comparison, for the linear regression
models, we convert each linear models with its non-zero coefficients to a
tree format and report the mean number of nodes in it. Besides, we also
analyse the number of leaf nodes (i.e., attributes and coefficients) in the
routing policy and the linear models.

From Tables 5.2 and 5.3, We can see that the complexity of the RP-GP is
the greatest, both in terms of the overall number of nodes and the number
of leaf nodes. This is as expected since we set the maximum depth of the
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Table 5.2: The mean and standard deviation of the number of nodes for routing policy
and the linear regression models over 30 simulations.

Instance RP-GP LR-0 LR-0.5 LR-1
Ugdb1 103 16.59(0.0) 9.31(0.14) 8.19(0.09)
Ugdb2 55 13.88(0.0) 11.26(0.21) 9.92(0.32)
Ugdb8 59 10.24(0.18) 7.2(0.3) 6.76(0.21)
Ugdb23 53 7.99(0.16) 6.29(0.14) 5.64(0.06)
Uval10A 71 13.92(0.02) 10.82(0.11) 9.44(0.08)
Uval10D 71 14.0(0.0) 12.26(0.17) 11.21(0.22)

Table 5.3: The mean and standard deviation of the number of leaf nodes for routing
policy and the linear regression models over 30 simulations.

Instance RP-GP LR-0 LR-0.5 LR-1
Ugdb1 53 11.73(0.0) 6.87(0.09) 6.13(0.06)
Ugdb2 28 9.92(0.0) 8.17(0.14) 7.28(0.21)
Ugdb8 30 7.49(0.12) 5.47(0.2) 5.17(0.14)
Ugdb23 27 5.99(0.11) 4.86(0.09) 4.43(0.04)
Uval10A 36 9.95(0.02) 7.88(0.07) 6.96(0.06)
Uval10D 36 10.0(0.0) 8.84(0.11) 8.14(0.15)

GP tree to 8. Thus, GP is able to evolve relatively complex routing policies.
In contrast to RP-GP, all three linear regression models have much lower
complexity. In this case, they can have better interpretability. By further
observing the results, we can see that the complexity of the linear model is
somewhat positively correlated with RP-GP, meaning that when the com-
plexity of RP-GP is high, the linear regression model also becomes more
complex. Although the complexity of all three linear regression models
is low, we can observe that LR-1 performs the best among three models,
it has the fewest coefficients. LR-1 allows for a further increase in inter-
pretability by reducing the number of coefficients used as much as pos-
sible. These results can answer the research two that there is a tradeoff
between the performance and the complexity of the linear regressions.

The analysis of the above results shows that to provide a local expla-
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nation of the routing policy using a linear regression model is possible in
most decision situations. Also, by using regularisation in linear model,
we can further simplify the linear regression model to make it more user-
friendly. Because LR-1 has a lower complexity and, at the same time, main-
tains good enough correlation and consistency with the routing policy, our
attention will be focused mainly on LR-1 in the subsequent content. Fig.
5.5 shows a routing policy for Ugdb1, and Eq. 5.7 is a linear regression by
LR-1 (Error is 3.46, Correlation is 0.96 and Consistency with routing pol-
icy) for a decision situation in Ugdb1. We can give an initial explanation
by observing the coefficients in Eq. 5.7, under the decision situation where
the vehicle is empty and all the tasks are not served, the routing policy
focuses the most on small cost from the current location, some extent of
small serving cost, and slightly consider small cost to depot.

y = 1.1493 ∗ CFH + 0.1171 ∗ CTD + 0.4604 ∗ SC (5.7)

5.2.4 Further Analysis

5.2.4.1 Coefficients Analysis

In this section, a particular routing policy, i.e. the routing policy in Fig.
5.5, and its corresponding linear models will be analysed. First, we will
pick a representative decision situation, i.e. one that has good correlation
and consistency with the routing decision. Then, the decision situations
that are similar to it ((has similar FULL, RQ, FUT and FRT)) are identified
across the 30 simulations. Two decision situations are considered similar
when they differ by no more than 0.01 on FULL, FUT and FRT, and no
more than 0.1 on RQ. We will observe the distribution of the coefficients
of their linear regression models for each attribute in a boxplot format to
check whether we can get any insight from it. After that, we will focus
more on analysing the linear regression in a single simulation process and
each decision situation within it, as opposed to analysing the results of the
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Figure 5.5: A routing policy for Ugdb1.



182 CHAPTER 5. LGRE OF GP-EVOLVED RPS FOR UCARP

(a) DS1 (b) DS2 (c) DS3

Figure 5.6: BoxplotS of coefficients of linear regression models with similar decision
situations.

thirty simulations as a whole. The attribute importance will be analysed
based on a linear model at a representative decision situation. Finally, the
linear model and the attribute importance analysis can be used as a local
explanation for the routing policy at the decision situation.

Fig. 5.6 shows the Boxplots of coefficients of linear regression models
with similar decision situations on three representative decision situations.
For DS1 (FULL is 0.18, RQ is 4.06, FUT is 0.77), it represents the situation
that the vehicle is almost empty, has lots of remaining capacity and most
tasks are unserved. DS2 (FULL is 0.5, RQ is 2.46, FUT is 0.5) refers to the
situation that the vehicle is half loaded and half of the tasks have already
been serviced. DS3 (FULL is 0.69, RQ is 1.5, FUT is 0.3) represents the situ-
ation that the vehicle only has few remaining capacity and most candidate
tasks have been served.

In Fig. 5.6a, each box in the figure represents the distribution of the
coefficients for each attribute. It can be seen that the coefficients are 0 for
attributes CTT1, DEM and DEM1. This means that they are useless in this
kind of situations. Combining the above results with the global attributes,
i.e. FULL, RQ and FUT, we can make a preliminary interpretation of the
routing policy in this decision situation, i.e. with a large amount of spare
capacity in the vehicle (FULL is 0.18, RQ is 4.06) and with more than half of
the tasks remaining to be performed (FUT is 0.77), the routing policy will
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only consider cost from the candidate task to the current location (CFH),
cost from the candidate task to the depot(CTD) and the cost of serving the
candidate task(SC), and will not consider the cost from the candidate to
its closest remaining task (CTT1), the expected demand of the candidate
task (DEM) and demand of unserved task that closest to the candidate task
(DEM1). We can also observe that CFH, CTD and SC all have very small
standard deviations, which suggests that their linear models are similar
on these similar decision situations.

From Fig. 5.6b, it can be seen that the distribution of the coefficients is
similar to that in Fig. 5.6a, the biggest difference being that the coefficient
on CTT1 is no longer zero, meaning that the routing policy takes the cost
from the candidate to its closest remaining task into account in such cases.
CFH, CTD and SC still have small standard deviations, but CTT1 does not
have a small standard deviation, due to the fact that global attributes still
do not give a complete picture of a decision situation. The patterns in Fig.
5.6c is consistent with that in Fig. 5.6b, but the standard deviation of CTT1
has become smaller. At the same time, the standard deviations of CFH,
CTD and SC are still very small.

By looking at the above results, the research question three can be an-
swered that we can obtain similar linear models for similar decision situ-
ations.

5.2.4.2 Importance Analysis

To get some further understanding of these three linear regressions, we
carried out an attribute importance analysis for three linear models. The
equation to calculate the importance of an attribute has been already dis-
cussed in Eq. 5.3. To make it easier to understand, we transform the im-
portance to a ranked value, which means that the most important attribute
is ranked as 1. Table 5.4 show the attribute importance in ranked value for
all three decision situations.

From Table 5.4, for all three decision situations, CFH is the most im-
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Table 5.4: The attribute importance in ranked value for three representative decision
situations.

DS CFH CTD CTT1 SC
DS1 1 3 null 2
DS2 1 4 3 2
DS3 1 2 4 3

portant attributes since it always have the rank value 1. In DS1, SC plays
a second important role and CTD is the third important attribute in this
decision situation. Note that, attributes with coefficient 0 is not listed in
the table. CTT1 is labelled null since its coefficient is 0 in DS1. In DS2, SC
still plays a second important role. CTT1 replaces CTD to become third
most important attribute, and CTD becomes the fourth most important
attribute. DS3 differs significantly from the previous two decision situa-
tions in that the CTD is no longer the least important attribute, in contrast
to which it becomes the second most important attribute, in line with the
conclusions of the previous article on explaining the routing policy, which
takes more into account the distance to the depot when the vehicle is about
to be fully loaded. The above observations answer the research question
four that for different decision situations, different attributes play different
roles.

Based on the above observations and analysis, we can give a local ex-
planation for each of the three representative decision situations. For DS1,
the routing policy only considers the distance between the current location
and the candidate task (CFH), the service cost of the candidate task (SC)
and the distance from the candidate task to the depot (CTD), on the basis
of which CFH is the most important, followed by SC and finally CTD. For
DS2, the routing policy considers the distance between the current location
and the candidate task (CFH), the service cost of the candidate task (SC),
the distance from the candidate task to the depot (CTD) and the cost of
the candidate task to its nearest task (CTT1), on the basis of which CFH is
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the most important, followed by SC, then CTT1 and finally CTD. For DS3,
as with DS2, the routing policy only considers the distance between the
current location and the candidate task (CFH), the service cost of the can-
didate task (SC), the distance from the candidate task to the depot (CTD)
and the cost of the candidate task to its nearest task (CTT1). However,
CTD becomes second in importance, SC third and finally CTT1.

5.2.5 Summary

In summary, we have investigated the feasibility of using linear model to
fit the GP-evolved routing policies in a single decision situation and use
the linear model as a local explanation. This goal has been achieved by
proposing a Local Ranking Explanation method (LRE). LRE explains the
behaviours of a routing policy over a decision situation. The experimental
results give the following conclusions: firstly, it is possible to use linear
regression to fit a routing policy in a decision situation. Secondly, there is
a trade-off between the complexity and interpretability of linear models.
Thirdly, we can obtain similar linear models in similar decision situations.
Fourth, the importance of the same attribute varies across decision situa-
tions. By analysing a number of examples, we find that it is simpler to use
LRE to explain the routing policy compared to a direct analysis of routing
policies. However, LRE method cannot give good local explanations on all
instances as the consistency and correlation cannot be optimised directly
in linear regression optimisation.

5.3 Local and Global Explanation Method

In this section, we will introduce a new Local-Global Ranking Explana-
tion (LGRE) method. Previous LRE the local ranking explanation task as a
normal regression task (linear model directly predicting the ranks). How-
ever, in this work, the model is changed from a normal regression task to
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a learning-to-rank task and used PSO to learn the model. Second, LRE is
only a local explanation method. In contrast, this work extended it to both
local and global explanation methods. The approach has also moved from
a single method of providing the local explanation to a two-layer struc-
tured explanation framework. The first layer of the framework generates
a series of local ranking explanations by any learning-to-rank method such
as PSO in this work, and the second layer of the framework employs the
local explanations obtained from the first layer to generate the global ex-
planation.

5.3.1 Overall Framework

This section describes Local-Global Ranking Explanation (LGRE), a post-
hoc interpretability method to help explain the decision made by routing
policies. LGRE contains two layers. The first layer is a PSO-based search-
ing algorithm to find the approximation of the original routing policy in a
local decision situation. The second layer uses k-means clustering to clus-
ter the large number of local explanations obtained in the first layer, and
extract patterns from clusters to generate a global explanation.

The process of the proposed local ranking explanation of a routing pol-
icy φ(x) under a decision situation X is shown in Algorithm 12, and is il-
lustrated in Fig. 5.7 (colors in the figure are independent to decision sit-
uation). Specifically, a routing policy φ(x) is a priority function of the at-
tributes x, e.g., the serving cost the candidate task (SC) and demand of the
candidate task (DEM). A decision situation X = [xij]M×N is a matrix with
M candidate tasks and N attributes, where xij stands for the attribute j

value of candidate task i in this decision situation. In the decision situa-
tion, a vehicle aims to select the next task to serve from the M candidate
tasks. To explain the local behaviour of the routing policy in this deci-
sion situation, the local ranking explanation learns a linear model with as
few features as possible because linear models are considered easy to con-
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struct, widely applied and “highly interpretable” [147, 165].

Algorithm 12: Local Ranking Explanation
Input: A routing policy to be explained φ(x), a decision situation X = [xij ]M×N

Output: A linear model to explain φ(x) on X

Identify the decision-specific attributes x⟨local⟩ ⊆ x;
Let the decision-specific attribute columns in X be X⟨local⟩;
// Priority and rank calculation

for i = 1 → M do
Calculate priority φ(xi) for task xi := Xi,:;

end
Let φ(X) := [φ(x1), . . . , φ(xM )];
// Remove tie

for i1 = 1 → M − 1 do
for i2 = i1 + 1 → M do

if φ(xi1) == φ(xi2) then
Remove xi2 from X;
Remove φ(xi2) from φ(X);

end

end

end
// Convert priority value to rank

γ = sortedIdx(φ(X));
// Linear model learning

β = PSOLE(X⟨local⟩,γ);
// Feature selection

β = LEFS(β,X⟨local⟩);
return the linear model x⟨local⟩ · β̂;

To explain the local behaviour accurately, the linear model is required
to (1) select the same task as the routing policy (consistency), and (2) have
the same task ranking as the routing policy (correlation). To this end, the
local ranking explanation consists of decision-specific attribute extraction, pri-
ority and rank calculation, linear model learning, and feature selection, which
will be described next.
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Figure 5.7: The process of the local ranking explanation of a routing policy on a decision
situation.
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5.3.1.1 Decision-Specific Attribute Extraction

First, the decision-specific attributes x⟨local⟩ ⊆ x among the attributes appear
in the GP tree to be explained. A decision-specific attribute is an attribute
that is specific to the decision (i.e., candidate task in this case), such as
the demand and location of the candidate task. On the contrary, a decision-
independent attribute represents the global environment that is independent
of the decision (candidate task), such as the remaining capacity and loca-
tion of the vehicle. The corresponding decision-specific attribute columns
in X are also extracted, and the resultant matrix is denoted as X⟨local⟩. We
have normalised the data and each decision-specific attribute has been
normalised to 0 to 1 so that we can analyse the coefficients of the linear
models directly.

5.3.1.2 Priority and Rank Calculation

Second, for each candidate task i (i = 1, . . . ,M ), we calculate its priority
value by φ(xi), where xi := Xi,: is the feature vector of the task, i.e., row i of
X. Otherwise, use the routing policy to calculate the priority of each can-
didate task, and select the best-priority task to serve next. Ties are broken
by selecting the task with the smallest ID, which is the simplest and most
naive deterministic tie breaker. We do not consider random tie breaking
that is less interpretable in practice, nor heuristic tie breaking, which may
reduce the effect of GP-evolved policies (e.g., GP will learn policies to gen-
erate many ties and use the heuristic tie breaker to make decisions). Note
that we use this tie breaker as an example (since the routing policies were
trained under this tie breaker). However, our approach can theoretically
be applied to any policy with any tie breaker, as long as we know how to
break ties. We can simply change the task removal process by removing
the tasks except for the one selected by the tie breaker. After removing the
tasks with the same priority, all the remaining tasks have distinct priority
values. Then, we calculate the task ranks γ by the sortedIdx(·) method.
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For example, the task with the minimal priority value has rank 1, and that
with the second minimal priority value has rank 2.

5.3.1.3 Linear Model Learning

Third, we learn a linear model x⟨local⟩ · β to fit the task ranks γ. Different
from traditional linear regression, which directly compares between the
predicted values and the target values, we compare between the ranks of
the tasks based on the predicted values given by the linear model and the
target ranks. To this end, there are three steps to fit the task ranks:

• Calculate the predicted task priority values X⟨local⟩ · β;

• Convert the task priority values to task ranks by γβ = sortedIdx(X⟨local⟩·
β);

• Compare between γβ and the target task ranks γ. Ideally, they should
be the identical.

Due to the conversion from the raw priority value to the rank, the
normal linear regression methods such as least squares and Lasso are no
longer applicable. Therefore, we employ Particle Swarm Optimisation
(PSO) [158], which is a promising gradient-free continuous optimisation
method, to find the best β values.

The PSO-based Local Explanation, PSOLE(·), is described in Algorithm
13. It is a standard PSO process that evolves a swarm of particles B =

[βij]N×P , where P is the number of particles, and N is the number of at-
tributes/variables in the linear model. The jth particle is represented by
the jth column of B, i.e., βj = B:,j .

For evaluating a linear model x⟨local⟩ · β, in addition to the consistency
and correlation that are discussed in Section 5.2.3.1, we consider the one
more aspect that affect the quality of explanation:

• Model complexity: How complex the model is. A less complex linear
model tends to be easier to interpret. Here, the model complexity is
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measured by the L1 regularisation term
∑N

i=1 |βi|. In case two mod-
els predict the same ranks (e.g., f(x) and 2*f(x)), the one with less
complexity is considered better.

To take the above aspects into account, the fitness function of PSO is
defined as follows:

fit(β) = 1−
ς(γβ,γ) + corr(γβ,γ)

2
+

N∑
i=1

|βi|. (5.8)

The goal of PSO is to find the best linear model coefficients β∗ that
minimises the above fitness function. Note that PSO can be replaced by
any other learning-to-rank methods [119] that is suitable to optimise the
loss function as Eq. (5.8).

Remark. The linear model only considers the decision-specific attributes. In
other words, it does not consider the decision-independent attributes, and has
no constant term. First, the task ranks are unchanged by adding any constant.
Therefore, we can ignore the constant term in the linear model without changing
the ranking. Second, in a decision situation, all the candidate tasks have the same
decision-independent attribute values, thus the decision-independent attributes
are constants for the task ranking and can be ignored.

5.3.1.4 Feature Selection

Due to the sensitivity of the performance on the regularisation term
∑N

i=1 |βi|,
the β value obtained by PSO might still have some small non-zero β co-
efficients. Intuitively, simply changing a tiny β value to zero can greatly
improve the interpretability of the linear model, as we can remove the cor-
responding feature. However, it is important to ensure that such feature
removal does not degrade the accuracy of the model. To address this is-
sue, we develop a local explanation feature selection LEFS(·) method to
remove features without decreasing the model accuracy in terms of con-
sistency and correlation.
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Algorithm 13: PSOLE(X,γ)

Input: A decision situation X = [xij ]M×N , a rank vector γ
Output: The coefficients β of linear model x · β
// Initialisation

Randomly initialise a population of weights B = [βij ]N×P and velocities
V = [vij ]N×P ;

while true do
Calculate output matrix Y = [yij ]M×P = X ·B;
// Fitness evaluation

for j = 1 → P do
Get the particle output yj = [y1j , . . . , yMj ];
γj = sortedIdx(yj);
Calculate ς(γj ,γ) by Eq. (5.5);
Calculate corr(γj ,γ) by Eq. (5.6);
Calculate the fitness of βj := B:,j by Eq. (5.8);

Update pbest β⟨pb⟩
j and gbest β⟨gb⟩;

end
if stop then return β⟨gb⟩;
// Particle update

for j = 1 → P do
for i = 1 → N do

vij = wvij + r1c1β
⟨pb⟩
ij + r2c2β

⟨gb⟩
i ;

βij = βij + vij ;

end

end
return β;

end
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The LEFS method is described in Algorithm 14. It repetitively iden-
tifies a feature so that after removing the feature, the selected task (i.e.,
idx(γβ, 1)) is unchanged, and the correlation obtained by the new model
is not much worse (within a predefined threshold ε). If multiple features
meet the condition, then the one with the least correlation decrease is re-
moved (i.e., the corresponding β is set to 0). The feature selection process
continues until no feature can be removed without deteriorating the model
accuracy. Finally, the remaining weights are normalised, i.e., they are di-
vided by the maximal weight, to make it easy to do clustering later. Note
that the weight normalisation does not change the model accuracy, since
the task ranks are not affected.

5.3.1.5 An Example Illustration

Fig. 5.8 shows an example to explain the routing policy x1 + x2 + x3 ∗ x4,
where the meaning of the four attributes are as follows:

• x1 (CFH): the cost from the vehicle’s current location to the candidate
task

• x2 (DEM): the demand of the candidate task

• x3 (RQ): the remaining capacity of the vehicle

• x4 (PRT): the percentage of remaining (unserved) tasks

It can be seen that x1 (CFH) and x2 (DEM) are decision-specific at-
tributes, while RQ and PRT are decision-independent attributes. After
calculating the priority, we found that tasks 2 and 4 have the same pri-
ority value, thus task 4 is removed as it has a larger index than task 2. The
resultant target rank vector is [2, 3, 1] for the linear model learning. After
applying the PSOLE method, we might obtain a linear model x1 +0.01 ∗ x2,
with perfect consistency and correlation. Finally, after the feature selec-
tion, we can further reduce β2 to zero, and simplify the model to x1 as
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Algorithm 14: LEFS(β,X,γ, ε)

Input: A weight vector β = [βi]N×1, a decision situation X = [xij ]M×N , the
target rank vector γ, a correlation threshold ε

Output: An updated weight vector β̂
Calculate output yβ = [yi]M×1 = X · β;
The ranks γβ = sortedIdx(y);
Calculate the correlation corr(γβ,γ);
while true do

Initialise i∗ = 0, δ∗ = ε;
for i = 1 → N do

if βi = 0 then continue;
// Try to remove feature i

Set β′ = β, and change β′
i = 0;

Calculate new output yβ′ = X · β′;
γβ′ = sortedIdx(yβ′);
if idx(γβ, 1) = idx(γβ′ , 1) then

Calculate correlation loss δ = corr(γβ,γ)− corr(γβ′ ,γ);
if δ < δ∗ then

Update i∗ = i, δ∗ = δ;
end

end
if i∗ = 0 then break;
Set βi = 0; // Remove feature i

end

end
Normalise the weights β̂ = β

max(β) ;

return β̂;
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Figure 5.8: An example of the local ranking explanation.

there is no impact on the correlation and consistency when β2 is removed.
In other words, we explain that the routing policy selects the closest task
to the current vehicle location in this decision situation.

5.3.1.6 Global Explanation

Intuitively, the global behaviour of a routing policy contains its local be-
haviour in each possible decision situation. Therefore, we proposed a
global explanation method based on a collection of various decision sit-
uations and their corresponding local explanations, which is described in
Algorithm 15. Given a large number of L decision situations Xi and their
local explanations (i.e., the linear models βi), We first cluster the decision
situations into a small number of K clusters using K-means so that each
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Algorithm 15: Global Explanation Method
Input: A set of local explanations ⟨X1,β1⟩, . . . , ⟨XL,βL⟩
(B1, . . . ,BK) = kmeans(β1, . . . ,βL);
for i = 1 → K do Set Xi = ∅;
for i = 1 → L do

Find the cluster index ci of βi;
Add the first row of X⟨global⟩

i into Xci ;

end
Explain the global behaviour based on ⟨X1,B1⟩, . . . , ⟨XK ,BK⟩;

cluster contains similar local explanations (i.e., coefficients of the linear
models). Then, we analyse the distribution of decision-independent at-
tributes (that represent the global environment) of the decision situations
in each cluster. Finally, we can explain the global behaviour of the routing
policy based on its local behaviours in each cluster (e.g., in the format of
“if (the environment (decision-independent features) is in cluster k), then
(the local explanation for cluster k)”).

5.3.2 Experimental Study

In this section, we verify the proposed LGRE method on the commonly
used UCARP datasets and promising routing policies evolved by GP. Specif-
ically, we use the Ugdb and Uval datasets [141, 201] which have been in-
troduced in Table 2.1.

For each UCARP instance, we run a standard GP and select the routing
policy with the best test performance to be explained. The terminal (at-
tribute) set of GP is shown in Table 5.5, where the local (global) attributes
are shown as “L” (“G”). All decision-specific attributes are stochastic be-
cause all decision-specific attributes are calculated based on stochastic dead-
heading cost and stochastic demand. The function set is set to {+,−,×, /,min,max}
where “/” operator returns 1 if divided by 0. The population size is set to
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1000. The tournament selection size is set to 7. The maximal GP tree size
is set to 8. The crossover and mutation rates are 0.85 and 0.15, respec-
tively. The total number of generations is set to 100. Based on previous
studies [122,201], such a GP setting can evolve a promising routing policy.
However, they are too large (e.g., with more than 50 nodes and complex
combinations) and hard to interpret directly.

For each UCARP instance and its GP-evolved routing policy to be ex-
plained, we run 30 simulations with different random seeds (different
sampled values of the random demands and deadheading costs). Each
simulation consists of a number of decision situations (when a vehicle be-
comes idle and selects the next task to serve). Then we conduct two steps
of experiments:

1. Use the local ranking explanation to explain the local behaviour of the
routing policy in each decision situation.

2. Use the global explanation method to summarise the local explana-
tions in all these decision situations into a global explanation.

For the local ranking explanation, we use the standard PSO with star
topology to learn the linear model in Algorithm 13. We set 200 particles
and 200 iterations. The parameters c1 and c2 are set to 1.49618. The inertia
weight w is set to 0.729843788 [57, 149, 191].

For the global explanation, we use the K-means method with K = 5 to
cluster the linear models for all the instances.

5.3.3 Results

5.3.3.1 Local Explanation Results

First we investigate the accuracy of the local explanations in terms of con-
sistency and correlation, and the complexity of the learned linear models
in terms of number of features used (with non-zero coefficients). To ver-
ify the effectiveness of the proposed model learning method (Algorithms 2
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Table 5.5: The GP terminal set with local (L) and global (G) attributes.

Terminal G/L Description

SC L cost of serving the candidate task
CFD L cost from the depot to the candidate task
CTT1 L cost from the candidate to its closest remaining task
CTD L cost from the candidate task to the depot
CFH L cost from the current vehicle location to the candidate task
DEM L expected demand of the candidate task
DEM1 L demand of the closest unserved task to the candidate task

CR G cost to refill, i.e., from the current location to the depot
FULL G fullness (served demand over capacity) of the vehicle
PRT G percentage of unserved tasks
RQ G remaining capacity of the vehicle
ERC G a random constant value

and 3), we compare with the Lasso regression method [182], which consid-
ers both regression error and feature selection (i.e., better interpretability)
in the model learning. Specifically, to fit the rank vector γ, it minimises the
following objective function:

min
β

1

M
||γ −X⟨local⟩β||22 + λ||β||1. (5.9)

Note that Lasso can only use the raw linear aggregation X⟨local⟩β in-
stead of the converted ranks, since it requires continuity and smooth gra-
dient.

Tables 5.6 and 5.7 show the mean and standard deviation of the consis-
tency, correlation and number of used features obtained by Lasso and the
proposed LRE over all the decision situations of the 30 simulations for the
Ugdb and Uval dataset, respectively.

In terms of accuracy, we clearly see that the proposed LRE achieved
much higher consistency and correlation than Lasso. We conducted Wilcoxon
rank sum test with significance level of 0.05, and the results show that
LRE significantly outperformed Lasso for all the instances in terms of both



5.3. LOCAL AND GLOBAL EXPLANATION METHOD 199

consistency and correlation. Furthermore, LRE managed to consistently
achieve consistency of 1.0 (i.e., always select the same task as the explained
routing policy) for 16 out of the 23 Ugdb instances and 24 out of the 34
Uval instances. Overall, the mean consistency is no worse than 0.91 (Ugdb5).
LRE also achieved very high correlation, which is as high as 0.98 in most
cases. There are only 3 Ugdb instances where LRE achieved less than 0.9
correlation. In summary, the linear models learned by LRE can not only
make the same decision (select the same task), but also achieve the same
preference relationship among the candidate tasks as the explained rout-
ing policy. This verifies the effectiveness of LRE.

In comparison, Lasso obtained much lower consistency (mostly rang-
ing from 0.6 to 0.8) and correlation (mostly between 0.9 and 0.98) than
LRE. The consistency is much lower than correlation. This is because
Lasso treats the tasks equally important, and cannot focus on a particu-
lar task selected by the routing policy. By minimising the mean square
error, Lasso can achieve high correlation but makes more mistakes on the
selected tasks. The advantage of LRE over Lasso, especially in consis-
tency, verifies the effectiveness of the new fitness function in the proposed
PSOLE(·) algorithm that considers consistency and correlation separately.

In terms of number of features (interpretability), we can see that both
LRE and Lasso can obtain interpretable linear models with a small num-
ber of features (less than 4 features in almost all the cases). Lasso ob-
tained much fewer features than LRE for some instances (e.g., Ugdb15 and
Ugdb17). However, this is at the cost of lower accuracy (i.e., consistency
and correlation). LRE obtained fewer features than Lasso on a number
of Uval instances, which are larger and more complex than the Ugdb in-
stances. This is because LRE converts the priority values to the ranks, and
is more tolerant to the raw priority values. In other words, a simple model
that produces very different priority values but still converts to the same
ranks can still achieve high consistency and correlation. However, Lasso
minimises the error based on the raw priority values, thus is much harder
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to achieve high consistency and correlation with a simple model.

Table 5.6: The mean and standard deviation for three metrics of identifying the
performance of the local explanation over 30 simulations on Ugdb dataset.

Consistency Correlation Complexity
Instance Lasso LRE Lasso LRE Lasso LRE

Ugdb1 0.9(0.03) 1.0(0.0) 0.97(0.004) 0.99(0.001) 3.1(0.0) 3.0(0.1)
Ugdb2 0.6(0.02) 1.0(0.0) 0.94(0.004) 0.94(0.003) 3.6(0.1) 3.0(0.1)
Ugdb3 0.8(0.05) 1.0(0.02) 0.97(0.004) 0.99(0.002) 2.5(0.1) 1.5(0.1)
Ugdb4 0.7(0.04) 0.9(0.0) 0.98(0.011) 0.99(0.001) 3.4(0.2) 2.8(0.2)
Ugdb5 0.6(0.02) 0.9(0.03) 0.55(0.036) 0.76(0.007) 3.3(0.1) 3.5(0.2)
Ugdb6 0.6(0.02) 1.0(0.0) 0.87(0.006) 0.89(0.018) 3.8(0.1) 3.6(0.1)
Ugdb7 0.9(0.02) 1.0(0.0) 0.77(0.02) 0.94(0.004) 3.3(0.0) 3.4(0.1)
Ugdb8 0.7(0.04) 1.0(0.0) 0.94(0.023) 1.0(0.0) 2.6(0.1) 2.2(0.1)
Ugdb9 0.7(0.04) 1.0(0.01) 0.92(0.012) 0.99(0.001) 1.7(0.1) 1.3(0.0)
Ugdb10 0.7(0.02) 1.0(0.0) 0.95(0.002) 0.98(0.001) 2.0(0.0) 1.8(0.1)
Ugdb11 0.7(0.05) 1.0(0.0) 0.97(0.003) 0.99(0.001) 3.4(0.1) 3.6(0.1)
Ugdb12 0.9(0.04) 1.0(0.0) 0.96(0.004) 0.98(0.002) 3.9(0.1) 3.4(0.2)
Ugdb13 0.5(0.08) 0.9(0.03) 0.91(0.021) 0.99(0.005) 2.7(0.1) 2.5(0.1)
Ugdb14 0.6(0.05) 1.0(0.0) 0.96(0.015) 0.99(0.002) 2.3(0.1) 3.0(0.1)
Ugdb15 0.9(0.0) 1.0(0.0) 0.67(0.009) 0.98(0.0) 1.0(0.0) 3.7(0.0)
Ugdb16 0.8(0.01) 1.0(0.0) 0.87(0.003) 0.98(0.001) 2.2(0.1) 3.5(0.1)
Ugdb17 0.8(0.0) 1.0(0.0) 0.76(0.008) 0.99(0.003) 1.7(0.0) 3.1(0.0)
Ugdb18 0.8(0.01) 1.0(0.0) 0.83(0.008) 1.0(0.0) 2.5(0.0) 2.9(0.1)
Ugdb19 0.6(0.06) 1.0(0.0) 0.91(0.018) 1.0(0.0) 2.5(0.2) 3.7(0.4)
Ugdb20 0.8(0.0) 1.0(0.0) 0.97(0.001) 0.99(0.0) 2.7(0.0) 2.9(0.2)
Ugdb21 0.8(0.02) 1.0(0.0) 0.94(0.013) 0.98(0.001) 3.0(0.1) 3.6(0.1)
Ugdb22 0.7(0.04) 1.0(0.0) 0.82(0.039) 0.98(0.002) 3.0(0.1) 4.0(0.1)
Ugdb23 0.7(0.03) 1.0(0.0) 0.7(0.038) 0.86(0.011) 2.2(0.0) 2.9(0.1)

5.3.4 Further Analysis: Case Studies On Local Explanations

In this section, we provide examples of the local explanations in different
decision situations. Specifically, we consider the following scenarios:

• Small-sized instance (Ugdb2 with 26 tasks),

• Medium-sized instance (Ugdb9 with 51 tasks),
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Table 5.7: The mean and standard deviation for three metrics of identifying the
performance of the local explanation over 30 simulations on Uval dataset.

Consistency Correlation Complexity
Instance Lasso LRE Lasso LRE Lasso LRE

Uval1A 0.8(0.0) 1.0(0.0) 0.95(0.0) 0.99(0.0) 3.3(0.0) 3.3(0.1)
Uval1B 0.5(0.01) 1.0(0.0) 0.85(0.001) 0.91(0.001) 3.2(0.0) 3.2(0.1)
Uval1C 0.9(0.03) 1.0(0.0) 0.97(0.006) 1.0(0.001) 4.0(0.1) 3.9(0.1)
Uval2A 0.7(0.0) 1.0(0.0) 0.98(0.0) 0.99(0.0) 3.9(0.0) 2.0(0.1)
Uval2B 0.8(0.02) 1.0(0.01) 0.98(0.005) 0.99(0.001) 2.7(0.1) 1.6(0.1)
Uval2C 0.6(0.07) 1.0(0.01) 0.92(0.009) 0.97(0.003) 4.3(0.1) 4.1(0.1)
Uval3A 1.0(0.0) 1.0(0.0) 0.99(0.0) 1.0(0.0) 2.2(0.0) 1.4(0.1)
Uval3B 0.9(0.01) 1.0(0.0) 0.87(0.006) 0.95(0.001) 3.3(0.0) 3.8(0.1)
Uval3C 0.8(0.04) 1.0(0.0) 0.92(0.013) 0.99(0.001) 3.3(0.2) 3.3(0.2)
Uval4A 0.8(0.03) 1.0(0.0) 0.99(0.002) 1.0(0.0) 3.1(0.1) 1.9(0.1)
Uval4B 0.7(0.02) 1.0(0.0) 0.96(0.006) 0.97(0.003) 4.6(0.1) 2.7(0.2)
Uval4C 0.8(0.02) 1.0(0.0) 0.97(0.005) 0.98(0.002) 3.8(0.1) 2.7(0.1)
Uval4D 0.8(0.03) 1.0(0.0) 0.96(0.003) 1.0(0.0) 4.1(0.1) 2.8(0.1)
Uval5A 0.7(0.01) 1.0(0.01) 0.95(0.001) 0.99(0.001) 5.4(0.1) 3.1(0.1)
Uval5B 0.8(0.04) 1.0(0.0) 0.99(0.001) 1.0(0.0) 3.2(0.1) 1.2(0.1)
Uval5C 0.8(0.03) 1.0(0.0) 0.96(0.007) 0.98(0.003) 4.1(0.1) 2.8(0.1)
Uval5D 0.6(0.03) 1.0(0.0) 0.97(0.002) 0.99(0.0) 3.6(0.1) 2.3(0.1)
Uval6A 0.6(0.0) 1.0(0.0) 0.97(0.0) 0.99(0.0) 4.6(0.0) 3.2(0.1)
Uval6B 0.7(0.0) 1.0(0.0) 0.92(0.0) 0.94(0.0) 3.4(0.0) 3.2(0.1)
Uval6C 0.6(0.04) 0.9(0.02) 0.93(0.011) 0.97(0.004) 3.2(0.1) 2.3(0.1)
Uval7A 0.8(0.0) 1.0(0.0) 0.98(0.0) 1.0(0.0) 3.9(0.0) 2.3(0.1)
Uval7B 0.7(0.01) 1.0(0.0) 0.98(0.0) 1.0(0.0) 3.5(0.0) 2.3(0.1)
Uval7C 0.7(0.03) 1.0(0.0) 0.96(0.012) 0.99(0.001) 2.9(0.1) 2.3(0.1)
Uval8A 0.7(0.01) 1.0(0.0) 0.95(0.003) 0.97(0.002) 4.3(0.0) 2.3(0.1)
Uval8B 0.8(0.04) 1.0(0.01) 0.98(0.006) 0.99(0.003) 4.3(0.1) 2.1(0.2)
Uval8C 0.7(0.05) 1.0(0.0) 0.97(0.003) 0.99(0.001) 4.4(0.1) 2.8(0.1)
Uval9A 0.7(0.01) 1.0(0.0) 0.99(0.0) 1.0(0.0) 3.7(0.0) 1.5(0.0)
Uval9B 0.8(0.03) 1.0(0.0) 0.99(0.004) 1.0(0.001) 3.0(0.1) 1.3(0.1)
Uval9C 0.8(0.02) 1.0(0.01) 0.98(0.008) 0.98(0.003) 1.9(0.0) 1.3(0.0)
Uval9D 0.7(0.03) 1.0(0.0) 0.98(0.004) 0.99(0.001) 3.4(0.1) 1.7(0.1)
Uval10A 0.9(0.01) 1.0(0.0) 1.0(0.001) 1.0(0.0) 3.5(0.0) 1.2(0.0)
Uval10B 0.8(0.02) 1.0(0.0) 0.99(0.002) 1.0(0.0) 3.1(0.1) 1.2(0.0)
Uval10C 0.7(0.03) 1.0(0.01) 0.94(0.005) 0.98(0.002) 3.7(0.1) 2.6(0.1)
Uval10D 0.7(0.04) 1.0(0.0) 0.96(0.005) 0.98(0.002) 4.1(0.1) 2.7(0.1)

• Large-sized instance (Uval10C with 97 tasks),
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For each instance, we consider decision situations where the vehicle is (a)
empty; (b) half-loaded; or (c) full.

5.3.4.1 Ugdb2

The GP-evolved routing policy for Ugdb2 has the test performance of
361.78 (vs 414.50 of the path scanning heuristic [113]). It contains 55 nodes
and 9 unique features.

In the first decision situation, the decision-independent feature FULL =

0, i.e., the vehicle is completely empty. The linear model obtained by LRE
is as follows. Its consistency is 1, and correlation is 0.97.

priorityUgdb2
empty = 0.1 · CFD + 0.46 · CFH − 0.07 · CTD − SC. (5.10)

Explanation. Note that when the vehicle is empty, it must be at the depot. In this
case, CFD and CFH are essentially the same. From the linear model, the vehicle
prefers the tasks close to it (0.1 · CFD + 0.46 · CFH) and have large serving costs
(−SC). It also slightly prefers the tasks whose tail nodes (the end node of the edge)
are far away from the depot (−0.07 · CTD). This is consistent with our intuition
that when a vehicle is empty, its route should be in an outgoing direction, and the
closer tasks are more preferred to minimise the total cost. Furthermore, the vehicle
prefers the heavier tasks with larger serving costs, since leaving them to the end
of the route can lead to large recourse cost if a route failure occurs then.

In the second decision situation, FULL = 0.58, i.e., the vehicle is a bit
over half-loaded. The linear model is as follows. Its consistency is 1, and
correlation is 0.97.

priorityUgdb2
half = CFH + 0.1 · CTD + 0.03 · SC. (5.11)

Explanation. The vehicle prefers the tasks close to it (CFH) and with small serv-
ing cost (0.03 · SC), and the emphasis on serving cost decreases as the vehicle
becomes more loaded. However, it prefers the tasks whose tail node is closer to the
depot (0.1 · CTD) now. This is because after half-loaded, the vehicle should be on
the way back to the depot.
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In the last decision situation, FULL = 0.71. The linear model is shown
below. Its consistency is 1, and correlation is 0.99.

priorityUgdb2
full = 0.6 · CFD + CFH + 0.33 · CTD. (5.12)

Explanation. When the vehicle is nearly full, the serving cost becomes redun-
dant, and the vehicle prefers the tasks close to it (CFH) and also to the depot
(0.6 · CFD + 0.33 · CTD). Compared to Eq. (5.11), the coefficient of CTD is
smaller in Eq. (5.12), but the coefficient of CFD is larger, which indicates that
although the vehicle is concerned with similar characteristics after the vehicle is
half-loaded. The focus on CTD and CFD vary according to the vehicle load.

Overall, the local explanations of the three different decision situations
show that the routing policy for Ugdb2 always prefers the tasks close to
the vehicle. In addition, the serving cost and the costs from and to the
depot play different roles in different planning stages. All the patterns are
consistent with our intuition.

5.3.4.2 Ugdb9

The GP-evolved routing policy for Ugdb9 has the test performance of
357.15 (vs 419.23 of the path scanning heuristic). It has 79 nodes and 6
unique features.

We select three decision situations for Ugdb9 with different vehicle
loads. The first decision situation has Full = 0, i.e., the vehicle is com-
pletely empty. The linear model is as follows. Its consistency is 1, and
correlation is 1.

priorityUgdb9
empty = 0.65 · CFH − CTD. (5.13)

Explanation. The vehicle simply prefers the tasks close to it (0.65·CFH) and with
tail nodes far away from the depot (−CTD). Both features are very important for
the decision, since their coefficients are both large.

In the second decision situation, FULL = 0.49, i.e., the vehicle is half-
loaded. The linear model is shown as follows. Its consistency is 1, and
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correlation is 0.99.
priorityUgdb9

half = CFH. (5.14)

Explanation. This is a surprisingly simply linear model. The vehicle simply
selects the task that is closest to it (ties are broken by selecting the one with the
lowest index). This indicates that for Ugdb9, the nearest neighbour heuristic can
work just well in the middle of the routing stage.

The last decision situation has FULL = 0.93, i.e., the vehicle is almost
full. The corresponding linear model is shown below. Its consistency is 1,
and correlation is 1.

priorityUgdb9
full = 0.46 · CFH + CTD. (5.15)

Explanation. The vehicle prefers the tasks close to it (0.46 · CFH and also close
to the depot CTD. This is consistent with our intuition, since when the vehicle
is almost full, it should go back to the depot, and serve the tasks on its way back.
Compared with the model Eq. (5.12) for Ugdb2, the cost to the depot is more
important than the cost from the vehicle (CTD has a larger coefficient). This
could be due to the different graph topology between Ugdb2 and Ugdb9.

Overall, the linear models obtained for the three different decision situ-
ations for Ugdb9 are also easy to interpret, and their patterns are consistent
with our intuition.

5.3.4.3 Uval10C

The GP-evolved routing policy for Uval10C has the test performance of
480.36 (vs 504.44 of the path scanning heuristic). It contains 59 nodes and
8 unique features.

For Uval10C, the first decision situation has FULL = 0, i.e., the vehicle
is completely empty. The linear model is shown below. Its consistency is
1, and correlation is 0.95.

priorityUval10C
empty = 0.12 · CFD + 0.82 · CFH − CTD. (5.16)
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Explanation. Note that CFD = CFH when vehicle is empty. Thus, the vehicle
prefers the tasks close to it 0.82 · CFH and tail nodes far away from the depot
(−CTD). It also slightly prefers the tasks whose head node (the start node of the
edge) is close to the depot (where the vehicle is when empty). This pattern is
similar to that in the linear models for Ugdb2 Eq. (5.10) and Ugdb9 Eq. (5.13)
when the vehicle is empty, and is consistent with our intuition.

The second decision has FULL = 0.47, i.e., the vehicle is a bit less than
half-loaded. The linear model is as follows. Its consistency is 1, and corre-
lation is 0.99.

priorityUval10C
half = −0.53 · CFD + CFH. (5.17)

Explanation. The vehicle prefers the tasks close to it (CFH) and whose tail nodes
are far away from the depot (−0.53 · CFD). The preference on small CFH is
consistent with the other cases and our intuition. The preference on large CFD
when half-loaded, although not considered in other cases, can be explained if the
graph contains more tasks that are far away from the depot. This suggests that the
vehicle still needs to travel outwardly when half loaded.

In the last decision situation, FULL = 0.96, which means that the vehi-
cle is almost full. The corresponding linear model is shown as follows. Its
consistency is 1, and correlation is 1.

priorityUval10C
full = CTD. (5.18)

Explanation. This linear model is surprisingly simple. It simply selects the tasks
whose tail node is closest to the depot. This makes sense since toward the end of
a route, it is highly likely to have route failures, and tasks with small CTD can
reduce the recourse cost. Interestingly, the vehicle does not even consider CFH,
which is known to be the most important routing feature. In other words, this local
explanation is specific to this decision situation where all the candidate tasks have
the same CFH. It also suggests the need for a more general global explanation.

Overall, we found some different patterns for the local explanations
of Uval10C from that of Ugdb2 and Ugdb9. However, these patterns are
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Figure 5.9: The distribution of the the coefficients of decision-specific attributes for each
cluster in Ugdb2.

explainable and dependent on the instance characteristics such as graph
topology. The local explanations seem to be over-specific to instance and
decision situation. Therefore, it is desirable to have a more general global
explanation that is independent of decision situation.

5.3.5 Further Analysis: Case Studies On Global Explana-

tions

In this section, we show two examples of the global explanations obtained
by Algorithm 15 (with K = 5) for Ugdb2 and Uval10C. Specifically, for
each instance, we first collect the local explanations (linear models) of all
the decision situations encountered in the 30 simulations (excluding those
with only a single candidate task). Then, we cluster the β vectors of the
local explanations into 5 clusters. The presence of too many clusters in the
global explanation would make it difficult for the user to understand the
whole global explanation. However, too few clusters can again lead to a
lack of clarity in the global explanation. Here, to retain good interpretabil-
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ity, we limit the maximal number of clusters to 5. We have tried 2, 3, 4, 5
clusters and found that 5 clusters showed the best clustering performance
on β. Then, we observe the distribution of the decision-independent at-
tributes in each cluster and explain the relationship between the decision-
independent attribute distribution (decision situation properties) and the
β vector (routing policy behaviour).

5.3.5.1 Ugdb2

Fig. 5.9 shows the distribution (violin plot) of the β vectors of each cluster
in Ugdb2. We can see that different clusters have different distributions of
the β vectors. In each cluster, the relative importance (coefficient magni-
tude) of different decision-specific attributes are very clear. For example,
in cluster 1, CFH and SC are much more important than others (their co-
efficients have much larger magnitude).

Fig. 5.10 shows the distribution of the decision-independent attributes
of the decision situations in each cluster of Ugdb2, where each point stands
for a decision situation. Note that there are four decision-independent at-
tributes: CR, FULL, PRT and RQ. In the figure, we show only two decision-
independent attributes FULL and PRT, and omit CR and RQ to facilitate
visualisation. By definition, we have RQ = (1 − FULL) · Q, thus RQ is
redundant if FULL is already shown. Second, CR is omitted because it has
essentially no effect on the clustering results. Other decision-independent
attributes are sufficient to represent a decision situation. In addition, it is
easier to observe the clustering results in two dimensions.

From Figs. 5.9 and 5.10, we can see the following patterns of the routing
policy for Ugdb2.

• (Cluster 1.) The cluster 1 contains the red circle points on the left
of Fig. 5.10 with FULL = 0, which are overlapped with the blue
points (cluster 3). IF the vehicle is empty, THEN the vehicle tends
to select the tasks close to its current location (large positive coef-
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Figure 5.10: The distribution of decision-independent attributes of the decision
situations in each cluster of Ugdb2.

ficient of CFH) and large serving cost (large negative coefficient of
SC). It slightly prefers the tasks whose head nodes are close to the
depot (slight positive coefficient of CFD) and tail nodes are far away
from the depot (slight negative coefficient of CTD), i.e., the tasks with
outward directions. However, the importance of CFD and CTD are
much less than CFH and SC. DEM1 is completely redundant, as its
coefficient is always 0.

• (Cluster 2.) IF toward the later service process (PRT < 0.5) or in the
early stage (0.5 < PRT < 0.8) and the vehicle is less than half full
(FULL < 0.5, THEN the vehicle prefers the tasks close to it (large
positive coefficient of CFH) and with small serving cost (large pos-
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Figure 5.11: The distribution of the coefficients of decision-specific attributes for each
cluster in Uval10C.

itive coefficient of SC). All the other decision-specific attributes are
much less important, as their coefficients are close to 0.

• (Cluster 3.) This points in cluster 3 heavily overlap with that in clus-
ter 1 in Fig. 5.10 with FULL = 0. By comparing the decision-specific
attribute distributions of these two clusters in Fig. 5.9, we can see
that the clusters 1 and 3 have similar distributions, except that the
coefficients of CFD and CFH are swapped. Note that when the ve-
hicle is empty, it is essentially at the depot, and CFD is essentially
equal to CFH. Therefore, these two clusters essentially represent the
same situation, i.e., IF the vehicle is empty and at the depot, THEN
the vehicle prefers the tasks close to it and with a large serving cost.

• (Cluster 4.) IF at the very beginning of the service process (PRT >

0.9) or during the first half of the service process (0.5 < PRT < 0.9)
and the vehicle is more than half full (FULL > 0.5), THEN the vehi-
cle highly prefers the tasks close to it (largest positive coefficient of
CFH). The importance of other decision-specific attributes are almost
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Figure 5.12: The distribution of decision-independent attributes of the
decision situations in each cluster of Uval10C.

negligible (their coefficients are close to 0).

• (Cluster 5.) IF in the later stage of the service process (PRT < 0.5)
and when the vehicle is substantially loaded (0.5 < FULL < 0.7),
THEN the vehicle tends to select the close tasks (large positive CFH
coefficient) and close to the depot (large positive CTD coefficient). In
addition, it prefers the tasks whose head nodes are far away from the
depot (its direction is towards the depot) and with small serving cost
(small recourse cost if route failure occurs).

Overall, the global explanation of the routing policy for Ugdb2 is as
follows. The vehicle always prefers the tasks close to it. When the vehi-
cle is empty, it prefers the tasks withe outward directions from the depot
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and large serving cost. However, toward the later stage of the service pro-
cess and when the vehicle is more loaded, the vehicle gradually switches
its focus on the tasks with smaller serving cost, and whose directions are
towards the depot.

5.3.5.2 Uval10C

Fig. 5.11 shows the distribution of the decision-specific attribute coeffi-
cients for each cluster in Uval10C. Note that the routing policy for Uval10C
is different from that for Ugdb2, and contains a different set of decision-
specific attributes. Specifically, the routing policy for Uval10C considers
DEM, while ignores DEM1 and SC. The corresponding distribution of
decision-independent attributes (FULL and PRT) of the decision situations
in each cluster of Uval10C is shown in Fig. 5.12.

From the figures, we can observe the following patterns.

• (Cluster 1.) IF in the early stage of the service process (PRT > 0.6,
THEN the vehicle prefers the tasks close to it (coefficient of CFH close
to 1) and whose head node is far away from the depot (negative CFD
coefficient). This indicates that the vehicle aims to travel to the re-
gions far away from the depot as early as possible.

• (Cluster 2.) IF the vehicle is close to full (route failures are more
likely to occur), THEN the vehicle tends to select the task close to
it (positive CFH coefficient), whose directions are towards the de-
pot (negative CFD coefficient and positive CTD coefficient), and with
small expected demand (positive DEM coefficient) to reduce the like-
lihood of route failures.

• (Cluster 3.) IF the vehicle is substantially loaded but not very full
(0.4 < FULL < 0.8), THEN the vehicle highly focuses on the tasks
close to it (CFH coefficient close to 1), and slightly considers the tasks
whose head nodes are far away from the depot (slightly negative
CFD coefficient).
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• (Cluster 4.) IF the vehicle is empty and at the depot, THEN the ve-
hicle tends to select the tasks close to it (positive coefficients for CFH
and CFD) and whose directions are outward from the depot (positive
CFD coefficient and negative CTD coefficient).

• (Cluster 5.) IF the vehicle is less than half loaded, THEN the vehi-
cle prefers the task close to it (CFH coefficient is 1) and whose head
nodes are far away from the depot (negative CFD coefficient).

Overall, we can give the following global explanation of the routing
policy for Uval10C. The vehicle always prefers close tasks. When the ve-
hicle is empty and at the depot, it prefers the tasks with outward directions
from the depot. When there are many unserved tasks and the vehicle is
at the beginning of its route, it aims to travel to the regions far away from
the depot as early as possible. Then, towards the later stage of the route,
the vehicle prefers the tasks pointing towards the depot and with small
demand to reduce possible route failures.

5.3.6 Summary

In summary, the results and analysis showed that the new proposed ap-
proach can get better consistency, correlation and complexity, which indi-
cates that it can better explain the corresponding routing policy than the
approach in [200]. In addition, the new proposed approach not only pro-
vides local explanations for the corresponding routing policy but can also
provide a global explanation to users to understand the whole routing pol-
icy, which cannot be achieved in previous local ranking explanation work.

5.4 Chapter Summary

This chapter aims to explain the complex GP-evolved routing policies for
UCARP. This goal has been successfully achieved by the proposed local-
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global ranking explanation method. The local ranking explanation can ob-
tain a simple linear model that accurately explains the ranking behaviour
of the routing policy in each decision situation. The global explanation
method can summarise the local linear models into an if-then explanation.
We provide a number of case studies to show how a complex GP-evolved
routing policy for UCARP can be explained by the proposed method. Our
method is not restricted to UCARP, but can be easily generalised to other
optimisation and machine learning problems where decisions are made
based on ranking.

In this chapter, this work firstly propose two metrics that can evaluate
the quality of a local explanation for GP-evolved routing policies. Then,
this work investigate the feasibility of using a linear model to construct a
local explanation. After that, this work further improve the local explana-
tion method and finally this work extend the local explanation method to
global explanation method.

The techniques presented in this chapter offer novel contributions to
the field of interpretable machine learning, with a specific focus on Ge-
netic Programming (GP)-evolved routing policies for the Uncertain Ca-
pacitated Arc Routing Problem (UCARP). These contributions stand out
in several key ways compared to the existing literature in interpretable
machine learning. Firstly, the chapter introduces the concept of local ex-
planations tailored for the intricate routing policies in UCARP, acknowl-
edging that numerous decisions are made in diverse decision situations,
which require micro-level understanding. The chapter also innovatively
introduces two novel metrics, ”consistency” and ”correlation,” designed
to evaluate the quality of local explanations, catering specifically to the
complexity of UCARP’s routing policies.

Furthermore, the exploration of the feasibility of employing linear mod-
els for local explanations represents a distinctive approach. While linear
models are common in interpretable machine learning, applying them to
elucidate GP-evolved routing policies in combinatorial optimization prob-
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lems like UCARP presents unique challenges and opportunities. This in-
vestigation adds a new dimension to the field.

Another significant departure from the conventional literature is the
extension of local explanations to global explanations by identifying pat-
terns in local explanations across different decision situations. This trans-
formation allows for the development of overarching insights into routing
policy behavior, bridging the gap between micro-level understanding and
macro-level insights.

Perhaps the most critical differentiation lies in the problem-specific ap-
plication of these techniques. UCARP is a complex, real-world problem
with applications in logistics and transportation, where interpreting GP-
evolved routing policies is essential for practical deployment. The pro-
posed techniques are explicitly tailored to meet the interpretability needs
of UCARP, distinguishing them from more generic applications in inter-
pretable machine learning.

The innovations presented in this chapter, including problem-specific
adaptation, novel metrics, and the focus on local and global explanations,
set these techniques apart from the existing interpretable machine learning
literature. They offer a unique approach to address the complex challenges
posed by UCARP and have the potential to significantly enhance the un-
derstanding and adoption of GP-evolved routing policies in real-world
applications. Although the global explanation is not perfect yet (overlap-
ping among clusters), we will investigate more to develop more effective
way to generate global explanation.
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Conclusions

This thesis aims at improving the interpretability of GP-evolved routing
policies for the UCARP. This goal has been successfully achieved by propos-
ing both intrinsic and post-hoc methods. From the intrinsic aspect, we
have proposed a GP program simplification method to automatically sim-
plify the routing policies during the evolutionary process to get simpler
thus more interpretable routing policies. We have also designed several
multi-objective GP algorithms to optimise the interpretability along with
the effectiveness of routing policies. New MOGP methods produce a Pareto
front a routing policies with different tradeoff between the effectiveness
and interpretability so that end-users from different domains can choose
based on their preference. From the post-hoc aspect, we have proposed lo-
cal and global explanation methods to further improve the interpretability
of existing complex GP-evolved routing policies. Furthermore, the local
and global explanation methods not only produce text explanations but
also visual explanations.

The rest of this chapter highlights the achieved objectives in this thesis,
followed by the main conclusions. Then, insightful discussions are pro-
vided to help understand the key issues in this research area. Finally, this
chapter presents some potential research directions which are motivated
by the studies in this thesis.

215
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6.1 Achieved Objectives

The following research objectives have been fulfilled by this thesis.

1. This thesis has proposed an effective online simplification method
for GP to evolve simpler routing policies for UCARP (Chapter 3).
The new simplification approach use niching technique to group the
individuals in the population based on their phenotypic behaviour
(each group contains the individuals with the same behaviour), and
simplify all the individuals in each group by replacing it with the
smallest individual in that group. In this case, complex routing poli-
cies can be simplified to its simple version without losing effective-
ness. This approach also contains an archive to maintain the diver-
sity loss caused by the simplification. This work not only effectively
reduces the complexity of GP-evolved routing policies but also im-
proves the effectiveness of GP-evolved routing policies. This work
motivates the study of explainable GP method for uncertain capaci-
tated arc routing problems.

2. This thesis has developed different multi-objective GP algorithms to
produce Pareto front of routing policies with different degrees of in-
terpretability (Chapter 4). First, we investigate different strategies
to adapt the α parameter to handle the objective selection bias is-
sue. The α adaptation schemes are manually designed. The objec-
tive selection bias issue is partially addressed by manually designed
schemes. Second, we design new self-adaptive α adaptation scheme
to automatically adjust the α during the evolutionary process. The
results show that self-adaptive α scheme can better handle the ob-
jective selection bias issue. Third, we develop an archive strategy
to handle the stochastic evaluation issue. The archive is utilised to
maintain the potentially good individuals evolved during the evo-
lutionary process. The results show that the archive strategy effec-
tively maintain the diversity and produce relatively complete Pareto
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front. Finally, this thesis has developed a new multi-objective GP al-
gorithm to handle both objective selection bias issue and stochastic
evaluation issue simultaneously. The new MOGP algorithm contains
both the α dominance strategy and the archive strategy. The results
show that the proposed algorithms can evolve more complete Pareto
front than common used multi-objective GP algorithms. In addition,
it evolves more interpretable routing policies than single-objective
GPHH algorithms that only optimise effectiveness. This thesis also
shows how multi-objective optimisation can be used to improve the
interpretability of the evolved routing policies.

3. This thesis makes several significant contributions to the field of post-
hoc interpretability methods for GP-evolved routing policies in UCARP
(Chapter 5). Firstly, the chapter proposes two novel metrics that eval-
uate the quality of a local explanation for GP-evolved routing poli-
cies. Secondly, the feasibility of constructing local explanations using
a linear model is investigated, which suggests the effectiveness of
linear models in generating simple and interpretable explanations.
The chapter then introduces an improved method that combines lin-
ear models with feature selection algorithms for constructing local
explanations. Moreover, the chapter extends the local explanation
method to a global explanation method, providing insights into the
overall behavior of GP-evolved routing policies. Lastly, the chap-
ter recognises the importance of presenting explanations in different
formats and emphasises the flexibility of providing local and global
explanations in both text and visual formats. These contributions of-
fer a comprehensive framework for interpreting and understanding
the decision-making processes of GP-evolved routing policies, which
can assist in enhancing their performance and real-world adoption.
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6.2 Main Conclusions

This section describes the main conclusions for this thesis drawn from the
five major contribution chapters, i.e., Chapter 3 to Chapter 5.

6.2.1 Interpretability Improvement with Simplification

To improve the interpretability of GP-evolved routing policies for UCARP,
simplifying the evolved GP trees are the most straightforward approach.
However, two main challenges must be addressed: identifying redundant
materials in GP trees and removing them without negatively impacting
the evolutionary process.

Chapter 3 presents an effective simplification method for simplifying
GP trees during the evolutionary process. The proposed method identi-
fies redundant materials based on the phenotypic behaviors of GP trees.
Specifically, the niching technique is used to group individuals in the pop-
ulation based on their phenotypic behavior, with each niche containing
individuals with the same behavior. The method then simplifies all in-
dividuals in each group by replacing them with the smallest individual in
that group. To address the loss of population diversity resulting from nich-
ing simplification, the original population is preserved, and an archive is
established to store niche representatives. Additionally, this thesis pro-
poses a multi-source breeding mechanism to generate offspring from both
the original population and the representative archive.

The proposed method is evaluated and compared to existing methods
on 57 UCARP instances. Results indicate that the proposed method out-
performs all compared approaches in terms of test effectiveness. Further-
more, the effects of each component of the proposed method are analysed
through a set of controlled experiments, revealing that all new compo-
nents contribute to evolving smaller and better routing policies. This work
broadens the scope of GP simplification to UCARP and uses it to enhance
the interpretability of GP-evolved routing policies. Moreover, the work
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proposes a new simplification method that can replace algebraic and nu-
merical simplification. The proposed method has higher effectiveness and
efficiency, particularly for complex problems requiring large trees, such as
UCARP.

In real-world applications, end-users will not adopt routing policies
they cannot comprehend and trust. Using the proposed simplification
method can aid in evolving more interpretable routing policies, making
it more feasible to apply GP-evolved routing policies in practical settings.

6.2.2 Interpretability Improvement with Multi-Objective

GP

To consider the interpretability in GPHH, there are several challenges.
First, there is a trade-off between interpretability and effectiveness. GP
trees that are designed to be more interpretable may sacrifice effectiveness,
while more effective routing policies may be less interpretable. Finding the
right balance between the two can be challenging. Second, The definition
of “interpretable” can differ based on the targeted domain and audience.
It can be a difficult task to develop a GP tree that is easily understandable
and meets the requirements and inclinations of a particular user group.

Chapter 4 presents several Multi-Objective GP (MOGP) algorithms to
evolve interpretable routing policies for UCARP. MOGP algorithms have
shown great potential in solving UCARP because they can generate Pareto-
optimal solutions that provide a trade-off between multiple objectives.

Two main issues arise when designing MOGP algorithms for UCARP.
The first issue is the objective selection bias issue, which refers to the phe-
nomenon that some objectives are more likely to be selected by the MOGP
algorithm than others, leading to suboptimal or incomplete Pareto fronts.
To address this issue, Chapter 4 proposes an MOGP algorithm using α

dominance, a popular dominance relation that considers a trade-off be-
tween the objectives. The proposed algorithm incorporates manually de-
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signed α adaptation schemes to dynamically adjust the α values, allowing
for a more balanced representation of the objectives. The experimental re-
sults demonstrate that the proposed approach can evolve smaller routing
policies without sacrificing the test performance. However, the manual
design of α adaptation schemes can be time-consuming and requires do-
main knowledge. Thus, Chapter 4 further improves the MOGP algorithm
using α dominance by designing a new self-adaptive α scheme. The self-
adaptive α scheme adjusts the α values dynamically based on the bias
status of the objectives, allowing for a more efficient and effective search
for Pareto-optimal solutions. The experimental results show that the self-
adaptive α scheme generates much better Pareto fronts in terms of Hyper-
volume (HV) and Inverted Generational Distance (IGD) than manually
designed schemes, and can find different α value for different instances.

The second issue encountered when designing MOGP algorithms for
UCARP is the stochastic fitness evaluation issue, which refers to the ran-
dom rotation in the fitness values of the individuals due to the use of a
limited number of training samples. To handle this issue, Chapter 4 pro-
poses an archive strategy that stores a wide range of potentially effective
individuals, in case they are lost from the population due to the training
sample rotation. The archive strategy provides a more distributed Pareto
front of routing policies, making it easier for the end-users to select routing
policies based on their preferences.

Finally, Chapter 4 proposes an MOGP algorithm that handles both the
objective selection bias issue and the stochastic evaluation issue simultane-
ously. The proposed MOGP algorithm involves both α dominance strat-
egy and archive strategy, allowing for a more robust and reliable search
for Pareto-optimal solutions. The experimental results show that the pro-
posed algorithm, αMOGP-a, evolves a relatively complete Pareto front
compared with previous work, providing end-users with a diverse set of
routing policies with different levels of interpretability.

Regarding the practical application of GP-evolved routing policies, end-
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users may come from different groups and have different domain knowl-
edge. Some users can understand very complex routing policies, while
others may only understand very simple routing policies. Different users
may have different needs for interpretability. Therefore, providing only a
single routing policy is not a good option. The proposed MOGP algorithm
addresses this problem by providing a set of routing policies with varying
interpretability, enabling end-users to select routing policies based on their
preferences. Thus, the MOGP algorithm proposed in this study advances
the practical application of GP-evolved routing policies.

6.2.3 Interpretability Improvement with Local and Global

Explanation

Improving interpretability of GP-evolved routing policies faces a chal-
lenge due to the application of complex nonlinear transformations to input
variables by GP trees, which makes it difficult to understand the input-
output relationship. Post-hoc interpretability methods are gaining popu-
larity in providing insights into complex machine learning models, partic-
ularly through text explanation and visualization techniques, which show
promise in the context of GP-evolved routing policies for UCARP. These
methods aim to explain the model’s decision-making process, factors in-
fluencing the policy’s design, and performance under different scenarios.
However, despite their potential, empirical studies are currently lacking
in investigating the effectiveness of such methods for GP-evolved routing
policies in UCARP. Therefore, it is essential to design novel interpretabil-
ity methods tailored to the specific characteristics and requirements of this
domain. Chapter 5 presents both text explanation and visualization tech-
niques to enhance the interpretability of GP-evolved routing policies for
UCARP.

Chapter 5 investigates the feasibility of using a simple linear regression
method to generate linear models as local explanations for GP-evolved
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routing policies. The results show that it is possible to use a linear model
to fit a routing policy in a decision situation. However, a new mechanism
is required to produce more accurate linear models. Therefore, Chapter 5
proposes a PSO-based local ranking explanation method to evolve linear
models. The results show that the PSO-based local ranking explanation
method generates simpler and more effective linear models that can fit
GP-evolved routing policies. Moreover, Chapter 5 extends local explana-
tions to global explanations using a clustering technique. Finally, Chapter
5 produces local and global text and visual explanations for GP-evolved
routing policies for UCARP.

In real-world applications, providing users with a complex model is
sometimes not a good choice. Even when a relatively simple model is pro-
vided, it often takes a long time for users to fully understand the model’s
internal mechanism. In such cases, post-hoc methods can come in handy,
as they provide a more user-friendly explanation that enables users to un-
derstand the model’s decision-making process more clearly. This article
presents a series of post-hoc methods for GP-evolved routing policies, pro-
viding the basis for the real-world application of GP-evolved routing poli-
cies.

While our research primarily focuses on enhancing the interpretability
of GP-evolved routing policies for UCARP, the techniques and methodolo-
gies we have developed hold promise for tackling a broader spectrum of
challenging combinatorial optimization problems (with suitable domain
knowledge adaptation). Combinatorial optimization problems often share
common characteristics, such as the need for effective yet interpretable so-
lutions, and the trade-off between complexity and performance. Our in-
trinsic methods, which include simplification techniques and multi-objective
optimization algorithms, can be adapted to various combinatorial opti-
mization domains. For instance, problems involving resource allocation,
scheduling, or network design could benefit from simplified yet effective
solutions. Moreover, our post-hoc interpretability methods, which encom-
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pass local and global explanations, are not limited to UCARP but can also
shed light on complex decision-making processes in other domains. By
applying these techniques to a wider range of combinatorial optimiza-
tion problems, we can democratise the use of AI-driven solutions, mak-
ing them more accessible and comprehensible to decision-makers across
different industries.

This thesis not only advances the field of GP and its application to
solving complex combinatorial optimization problems but also makes sig-
nificant contributions to the broader AI literature, particularly in the do-
mains of Responsible AI (RAI) and AI ethics. In the context of RAI, our
work emphasises the importance of interpretability in AI-driven decision-
making, especially in domains where human lives and resources are at
stake, such as logistics and supply chain management. By proposing both
intrinsic and post-hoc interpretability methods, we provide a framework
for AI model transparency and accountability, aligning with the princi-
ples of RAI. Furthermore, our research addresses the ethical dimensions
of AI by enabling users and decision-makers to understand the decision
processes of GP-evolved routing policies. This transparency not only en-
hances trust in AI systems but also allows for the identification and miti-
gation of biases or unfair decision-making, promoting fairness and ethical
AI practices. Our work underscores the significance of considering not
only the performance but also the ethical and social implications of AI so-
lutions, fostering a responsible and ethical AI ecosystem.

6.3 Future Work

6.3.1 Further Improvements to the Proposed Simplification

Method

While the proposed method for simplifying GP trees during the evolu-
tionary process is effective, further research can be done to improve its
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efficiency and effectiveness. One possible direction is to explore new nich-
ing techniques or breeding mechanisms to improve the diversity of the
population and the representative archive. Another possible direction is
to investigate how the proposed method can be applied to other combina-
torial optimization problems beyond UCARP.

6.3.2 Further Improvements to the Proposed Multi-Objective

Methods

Our research has revealed that valuable knowledge can be extracted from
the final Pareto front. For instance, we noticed that even though two in-
dividuals located next to each other on the front may have only minor
differences in their genotype, the interpretation and validity of their rout-
ing policies can vary significantly. By closely analyzing these differences,
we gain a deeper understanding of the internal mechanism of GP-evolved
routing policies. To take our research to the next level, we propose using
a multi-objective algorithm as a post-hoc method to explain the routing
policy above in Pareto front.

6.3.3 Hybrid Approaches

A hybrid approach can be developed by combining the proposed simpli-
fication method and multi-objective GP algorithms to evolve more inter-
pretable routing policies. This approach can overcome the trade-off be-
tween interpretability and effectiveness by evolving routing policies that
are both small and effective. The proposed MOGP algorithms can gen-
erate Pareto-optimal solutions that provide a trade-off between multiple
objectives, including interpretability and effectiveness. The proposed sim-
plification method can further simplify the GP trees of the evolved routing
policies, making them more interpretable. The combination of these two
methods can lead to a more interpretable and effective set of routing poli-
cies.
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6.3.4 Counterfactual Explanations

Counterfactual explanations can be used to explain why a particular deci-
sion was made and how it might have been different under different cir-
cumstances. They can provide valuable insights into the decision-making
process and help to build trust and transparency. In the context of GP-
evolved routing policies, counterfactual explanations could be used to ex-
plain why a particular policy was evolved and how it might have been
different if different parameters or objectives were used. This can help
to improve the interpretability of the policies and make them more un-
derstandable to end-users. However, it should be noted that developing
effective counterfactual explanations can be challenging and requires care-
ful consideration of the relevant factors and assumptions.

6.3.5 Developing Domain-Specific GP-Evolved Routing Poli-

cies

Developing GP-evolved routing policies that are specific to a particular
domain or audience can be a useful direction for future research. This can
involve customizing the GP trees to match the preferences and inclinations
of a particular user group or developing domain-specific objectives that
are relevant to the domain.

6.3.6 GP-Evolved Routing Policies in Real-World Settings

To apply GP-evolved routing policies in practical settings, it is necessary
to investigate how end-users perceive and trust the evolved policies. Fu-
ture research can explore how end-users interact with GP-evolved routing
policies, and how the interpretability of the policies affects end-user adop-
tion and acceptance.
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6.3.7 Human in the Loop

Human-in-the-Loop (HITL) can be a direction to consider for future re-
search in the context of improving the interpretability of GP-evolved rout-
ing policies for UCARP. HITL refers to the integration of human feedback
and decision-making into the machine learning process. In the case of
GP-evolved routing policies, HITL can be used to evaluate and refine the
evolved policies in terms of their interpretability and usefulness in real-
world applications. HITL can be implemented in several ways, such as
providing feedback on the performance of evolved policies, ranking poli-
cies based on their interpretability, or even actively participating in the
evolution process. By incorporating HITL, the interpretability and effec-
tiveness of GP-evolved routing policies can be improved, and they can be
tailored to meet the needs of different user groups. However, incorporat-
ing HITL into the evolution process can also present some challenges. For
example, it can be time-consuming and costly to collect and incorporate
human feedback. Also, human biases and preferences can impact the evo-
lution process and lead to suboptimal results. Therefore, future research
should consider how to effectively integrate HITL into the evolution pro-
cess while mitigating these potential challenges. Singh et al. [176] incor-
porated human expert into AI route planning process and demonstrated
that human insight can be used in collaborative planning for resilience.
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