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Abstract

In this thesis we tackle one of the issues of a well-known hard-to-solve
problem. The problem is the Vehicle Routing Problem (VRP), specifically
in its large-scale version, also known as the Large Scale VRP (LSVRP). The
LSVRP has a number of customers much larger than what traditional ap-
proaches can solve with ease, bringing extra challenges due to the amount
of resources required to compute the solutions. Even when considering
non-exact approaches, the scale of the problem demands reductions to the
size of the solution search space. A challenge arises when doing this re-
duction while trying to maintain most or all of the very good solutions.

The issue we tackle is the number of manual decisions that exist in cur-
rent method design. Most of the existing literature for the VRP utilises
decisions that are seemingly arbitrary or based on expertise design, some-
times with little experimentation. This leads to methods that fail to gener-
alise well for some instances or, especially, for large-scale problems. Con-
sidering the goal of minimisation problems, such as the VRP, to be re-
ducing costs as much as possible, in several scenarios these manually de-
signed fixed decisions often lead to a higher cost. We argue that it is possi-
ble to improve the effectiveness of the methods without manually setting
up parameter values for each instance.

We approach this issue by considering the local search framework,
which is arguably the most used engine in most methods for the VRP.
We then consider its main design components: initialisation, improve-
ment and acceptance. We apply several machine learning and evolution-
ary computation approaches as hyper-heuristics to reduce the amount of
manual decisions in these three design components.



Hence, the overall goal of this thesis is to build hyper-heuristics as tech-
niques for automatically improving and configuring local search-based
methods in the context of the LSVRP.

For the initialisation step, first we consider its impact to the search pro-
cess by analysing several baseline methods’ performances. We then intro-
duce ways to utilise known and new features to predict best performing
existing heuristic or build new solutions that can be easily improved. For
predicting, we utilise several machine learning techniques to validate the
results independently. The results show that cost is not the main feature
in an initial solution. We show that some other characteristics, such as the
compactness or width of a solution, have a stronger correlation than cost,
leading to faster or better improvement phases.

This thesis also develops three evolutionary hyper-heuristic methods
to automate the improvement phase. We consider new chromosomes in-
corporating pruning strategies that evolve to automatically design a heuris-
tic configuration. These strategies minimise the amount of manual deci-
sions leading to more generalisable methods. The results show that the
improvement phase can be positively affected when automatically opti-
mised, often outranking the manually designed methodologies.

We also consider an adaptive heuristic strategy which improves the ef-
ficiency of the local search. We apply this stochastic online approach to a
robust framework, increasing its effectiveness due to the extra efficiency.
Among the results, we observe a significant increase in the number of it-
erations given the same time-frame. We also observe a significant cost
reduction for most instances considered, especially very-large cases. The
proposed strategy also works independently of the instance, increasing
the framework’s generality.

The fourth and final contribution regards how to predict which ac-
ceptance criteria can be used to escape local optima more effectively. We
utilise machine learning and evolutionary computation to make such pre-
dictions by considering the same robust local search-based framework.



The problem was modelled as both classification and regression tasks. The
latter was added in an attempt to avoid bias on the labelled data. How-
ever, the results show that this task is difficult to correlate and predict. We
are still able to find success for several cases, improving the quality in a
number of scenarios.

In summary, this thesis develops strategies and methods that can be
used in combination with existing and new local search-based methods
to solve the LSVRP. The developed techniques have shown ability to re-
duce the search space effectively and improve the efficiency of the consid-
ered approaches for several cases, whilst minimising manual decisions in
method design.





To my dear friend Apsara.
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Chapter 1

Introduction

Recent increases in e-commerce and other related activities have led to an
expansion of most supply-chain operations. One of the steps in this chain,
and perhaps the most influential one, is transportation, which takes up
to one-third of the logistics costs [203]. Roughly speaking, in the supply-
chain the transportation is the process of moving goods or produce, from
suppliers to consumers. It starts from transporting the raw materials from
their respective sites of origin to the industries which processes them.
Then, a final product is transported from those industries to stores or dis-
tribution centres, which can then be delivered to the final customers1 (this
step is also known as last-mile delivery). In several cases, there are addi-
tional steps before delivering to the final customers, for example, trans-
porting the products from distribution centres to different warehouses,
which are smaller and closer to said customers. No matter how many sub-
steps, the overall idea of transportation is the same: moving items from
one place to another, usually requiring the use of vehicles (such as trucks,
trains, ships, car or even bikes), until they reach their final destination.

When looking at its direct negative impact to society, the transportation

1Customers in this process can be companies, other industries or individuals, and will
be considered as the same throughout this thesis, as distinguishing the products’ end
goals is not in beyond the scope of this thesis.

1
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phase affects the overall population the most. Although most of the trans-
portation occurs within industries and other large companies, the use of
typical large vehicles, such as trucks, airplanes and ships can overflow the
general transportation grid. These vehicles directly or indirectly affect lo-
cal traffic, air and water quality levels (due to most large vehicles also pro-
ducing more pollution gases) — consequences that are felt by everyone.
Not to mention the prices of goods and products are directly impacted by
the effectiveness of the transportation phase. These points (and more) can
be seen in the reviews [87, 106].

In this thesis, we consider one strategy that is viable to be implemented
without drastic changes in the existing systems: finding better routes.
Each cargo transported can usually be done by different paths. Since there
are so many, there is a positive ripple effect if these paths are optimised
to minimise their distances. The use of more efficient routes can signifi-
cantly reduce costs and have a direct repercussion to the aforementioned
impacts, whether being by reducing the operation costs or by minimising
the overflow on the transportation grid — this problem is known in the
scientific literature as the Vehicle Routing Problem (VRP).

One of the main challenges of the VRP regards a large number of cus-
tomers, which becomes a computational burden due to the complex net-
work. Another challenge regards the manually designed decisions in the
development process, requiring a great deal of expertise to set-up a good
method, which might not even work well for different scenarios. Hence,
this thesis focuses on this optimisation task in large-scale scenarios and on
how to find more automatic methods which can learn how to solve it.

1.1 Problem Statement

The formal definition for the VRP is based on the work of [46] in 1959,
which has been extensively studied since then. The traditional VRP can
be represented by a graph G = (V,E), where the set of vertexes V =
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{0, 1, 2, · · · , n} represents the customers, each with a demand qi that needs
to be fulfilled. There is a special point, usually the node 0, which is the de-
pot, and whose demand q0 = 0. The set of edges E = {(i, j) ∈ E, i ̸= j} ex-
presses the selected paths between customers’ pairs. In the classical VRP,
all nodes are fully connected and the space is Euclidean2. A solution to the
VRP needs to contain a set of routes which visit every customer, attending
every demand without exceeding any vehicle’s capacity Q. The overall
objective is to find the routes which minimise the total distance travelled.

The VRP is a combinatorial optimisation problem (COP) belonging to the
class of NP-hard problems, as proven in [117]. The VRP and variants
have an exponential number of possible solutions mainly based on the
number of nodes. When the instance being solved has a large number of
customers, the problem can be referred as the Large-Scale VRP (LSVRP).
Today3, that number is arguably considered to be more than 200 [9, 75, 95,
167]. This number could be related to how effective exact approaches are
in solving problems of up to this size, meaning it might keep changing
with the years. For this thesis we consider 200 to be the lower bound on
what constitutes a large scale problem, with anything between 100 and 200

being considered an intersection zone between large and small, similar to
what was done in [6].

Although claimed as large, real applications can easily reach up to thou-
sands of customers. Such sizes make it very hard to find a balance between
exploration and exploitation. These two concepts are related to how to
search for solutions. Exploration is concerned with the finding of good ar-
eas of the search space, while exploitation aims to find the best solution in
the nearby region. The most efficient algorithms will correctly harmonise
these two orthogonal investigation strategies.

The methods which solve the VRP can be divided into two categories:

2This implies that the distance d(a, b) + d(b, c) ≤ d(a, c),∀(a, b, c) ∈ V
3Some authors claim that 100 customers is enough to classify an instance as Large-

Scale, as in [106], however that seems less common in recent literature.
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exact and non-exact [73, 111], although they are not exclusive, as it is pos-
sible to combine them. The exact methods, such as Branch-and-Price or
Column Generation, will find the mathematically proven optimal solution
for the problem, i.e. they find the best possible solution [73]. The exact
methods will perform both exploration and exploitation to their fullest,
covering every region of the search space through (usually implicit) enu-
meration. This task, however, will come at a very high cost of computa-
tional resources such as memory and, especially, time. Alternatively, the
non-exact4 methods aim to find good solutions within a reasonable time5.

Typically, these non-exact approaches only search throughout some
sub-regions of the solution search space, utilising some sort of randomi-
sation or some expert-designed decision to define those regions. Here,
heuristics and metaheuristics are the go-to-method, with the latter taking
dominance in the recent VRP literature. The decades of development re-
garding the non-exact methods have led to an efficient template for solv-
ing the VRP revolving around Local Search [10]. Algorithm 1.1 sum-
marises the local search-based methods. First, they build and evaluate
an initial solution, which we are going to be referring as the Initialisation
Step. Second, the solution is improved considering some iterative process.
In this Improvement Step the solution is modified according to the chosen
perturbation heuristics (also called neighbourhoods moves or operators).
Consequently, the heuristics search for a better solution. However, it is the
Evaluation and Acceptance Step that decides whether the changes pro-
voked by the heuristics will be accepted or not, regardless of their quality.
This step is especially important in problems which are hard to compute

4The non-exact approaches include heuristics and metaheuristics (and arguably
hyper-heuristics in a third category, although this is not consensus, as some authors con-
sider hyper-heuristics as a type of metaheuristic [71]). Regardless, it is common for using
the word heuristic when talking about any non-exact method.

5Reasonable here means at most a few hours, but mostly within minutes. Exact ap-
proaches can take up to days or months of execution time, depending on the scale of the
problem.
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the solution value, or problems that contain several local optima. The Im-
provement and Evaluation and Acceptance steps are repeated until a stop-
ping criteria is met, returning the final solution.

Algorithm 1.1 The Local Search Framework for the VRP
1: procedure LOCAL SEARCH(Problem Instance)
2: s← Initial Solution()

}
Initialisation Step

3: while Stop Criteria do
4: s′ ←Modify Solution(s)

}
Improvement Step

5: Evaluate(s′)

6: if Acceptance Criteria is satisfied then

}
Evaluation and
Acceptance Step

7: s← s′

8: return s

The quality of this final solution, therefore, depends on the starting
point, which moves are used over time to modify the solution and which
criteria are used to accept the modifications. A problem, therefore, arises
when building a local search method: which local search components to
use to improve the method’s performance?

1.1.1 Manually Designed Decisions in Local Search

As each component in a local search method contributes in a different
way to the overall search task, it becomes a challenge to select the ones
that are going to be performing the best for a given scenario. The tradi-
tional heuristics might not find good solutions across different datasets
and the most recent metaheuristics are increasingly complex. These most
advanced methods select the components based on how they can con-
tribute to the search, complementing each other [10]. Doing so, however, is
not trivial, requiring a vast knowledge on how the VRP works and consid-
erable experiments. Therefore, several applications just combine known
neighbourhoods and components, because the developers expect that they
will complement each other’s weaknesses.
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Such concept could be wasting resources by spending time in non-
promising neighbourhoods as the local search still has to evaluate them
fully, or at least partially, before going to the next one — resources that are
especially important in large-scale problems (which will be further cov-
ered next in Section 1.1.2). This waste is partially due to the previous point,
as these components are selected aiming to minimise a specific character-
istic, whereas their viability is limited to certain scenarios. For example,
the classic 2-OPT is good for removing intersections in a route. However,
without the presence of those intersections, this neighbourhood is not as
effective. Hence, local search-based methods that apply the 2-OPT at all
iterations/routes, might be significantly less effective in certain scenarios.

Therefore, when manually creating the more advanced methods, it re-
quires that the components to be either carefully selected with comple-
menting and powerful moves (as in [10] and [184]), or to accept some loss
of effectiveness from components that are general enough. Even if trying
to do a careful selection, it would be difficult to do so, either because of
the need to specific tune methods for the given scenario or due to having
little information available on how these components work on the search
space, and therefore, on how to work with them more efficiently. Addi-
tionally, this type of information only recently became available and it is
still deemed as difficult as shown in [137], which did a fitness landscape
analysis for the VRP, including the Exchange, Relocate and 2-OPT moves.

Another point that can be taken from this is that any manually de-
signed algorithm is sub-par. In other words, any algorithm that finds its
solution based on the developer’s intuition or the instance’s characteris-
tics can actually be under-performing. That is because they lack adapta-
tion to the particularities of the solution type, the instance configuration
or the search process. Additionally, the selected components might not
cover the search space well enough — limiting the method’s ability to
find possibly outstanding solutions (or even the optimal). Some meth-
ods try to overcome these blind-spots by incorporating exact approaches
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to their methods. These, however, require a deep understanding of both
the problem and the exact solvers. These are called matheuristics, such as
in [125,147,157,176], and they require very efficient (and often monetarily
expensive) solvers, while often requiring the addition of complex math-
ematical pruning by experts. As our goal is to find better solutions, re-
ducing costs and improving quality of life for everyone along the supply-
chain, we want to step away from making premature decisions or limiting
the application development to involve too many experts.

Rather than trying to understand each possible scenario and every so-
lution characteristic, which can lead to better solutions, we can aim to
design algorithms whose decisions and parameter values will learn and
adapt to those scenarios and characteristics automatically. The algorithms
would evolve themselves to the best possible fit for the given instances.
Such idea might seem impossible if considering a single method for solv-
ing several problems, as the ”no free lunch” theorem attests [194]: any
good performance over one class of problems is counterbalanced by an-
other class underperforming. But there have been advances in methods
which aim to have less dependency on manually designed decisions, solv-
ing a wide range of problem types. This is possible due to these methods
actually being ”unique” for each instance, as they have components de-
fined at execution time.

However, the automatic tuning of parameters has been considered and
explored by packages like the IRACE [123]. As IRACE is a generic tool
which can be used to tune parameters, it can be used to tune existing
metaheuristics in order to make them more general and less dependent
on arbitrary tuning or limited testing. Nonetheless, these tunings would
still be dependent on the overall design of the metaheuristic considered,
which might still suffer with the aforementioned issues and with the large
search space.
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1.1.2 Dealing with Large Search Space in Local Search

The main issue in solving the LSVRP is the computational cost of the
utilised neighbourhoods in the local search Improvement Step. Although
these are generally much more affordable than the exponential search space
from the exact approaches, they still can have a fairly large search space,
such as O(n4) for the Cross-Exchange move. For the smaller instances
(where n ≤ 100), we have a large but still within millions number of pos-
sible moves, which the standard computer can perform fairly well. How-
ever, for larger instances, such a neighbourhood would be too expensive
time-wise, especially across several iterations.

To deal with this issue, several methods in literature have utilised two
main approaches (which are not exclusive to local search): divide-and-
conquer, where they split the search space into smaller easier-to-solve
pieces, or by pruning the search space, where some solutions are disre-
garded from search. Of course these two can also be utilised simultane-
ously, although this practice is not as common. Regardless of their pros
and cons, both approaches require a deep understanding or experience
with VRP, since any form of changing the search space might damage the
overall search, i.e., if not done correctly it might remove good solutions
from the pool. For example, as pointed out by [90], in a 532-city Travelling
Salesperson Problem (TSP)6 instance the optimal solution utilises the 22nd

nearest neighbour of one of the endpoints. Therefore, any pruning method
which searches for less than that will never find this solution. Although
the example is for the TSP, the principle is the same for to the VRP.

Although finding the optimal solution might not be the goal of most
heuristic designs, it is still desirable to have the best solutions, as these
are translated to cost reductions in real applications. Because of this, such
limits to the solution search space should be considered carefully. Methods

6The TSP is a similar problem to the VRP, although only having one ”vehicle” or
salesperson and no capacity constraints. The problem consists in finding a minimal-cost
Hamiltonian cycle in a graph.
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that have such reductions rely on the designer’s expertise to set-them-up.
As this is a non-trivial task, they tend to give up on some other aspects,
such as the method’s generalisability or for it to be too parameter depen-
dent. This argument on generalisability goes back to what was discussed
in Section 1.1.1, but in this case, the consequences can be more severe — as
limiting the search space even further (considering the limitations already
given by the selected local search components) may drive the search to
poor solutions. It is important to note that we are not considering GPU
techniques as ways to improve the handling of the large-space, as was
done in [197], as these types of improvements would not handle the expo-
nential space directly, limiting the gains up to a certain point.

1.2 Motivations

From the previous section we can identify two limitations in the develop-
ment of local search methods for the LSVRP: the number of parameters
and components that can be used — each taking a portion of the process-
ing time even when not promising; and the search size which is too large
— requiring additional pruning of the search space. In this section, we
expand on those limitations to build our motivations. Here we go back to
the Local Search framework steps: Initialisation, Improvement and Eval-
uation and Acceptance. These three components are often manually ar-
ranged in heuristic design, but there has been some research which at-
tempts to automate the creation and configuration of such methods, and
we will present them next, before introducing our motivations.

1.2.1 Complexity of the Heuristic Search Space

It is not a brand new idea to develop methods that search through the
heuristic space in order to automatically build or configure methods for
COP. This is done mainly with what is known as Hyper-Heuristic (HH)
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[29] or, more recently, the General Combinatorial Optimisation Problem
(GCOP)7 [156]. HH methods are formally defined as high-level algorithms
which search the heuristic space rather than solution space [28]. As pointed
in [30] the HHs are a semi-automated process, where the human designs
the search space and the computer designs the heuristic and how to search
in such space. They aim to be generalisable across different problems, vari-
ants or instance types. Although this statement seemingly contradicts the
no free lunch theorem already mentioned, the HHs actually develop a dif-
ferent configuration for each problem in hand. The resulting method will
likely be unique, considering problem characteristics and available com-
ponents, reducing the need for an expert to set decisions based on the
problem characteristics.

HH has, therefore, the potential to find better solutions when com-
pared to any manually designed method, if given the same components
and moves to search for. For example, given an expert-created algorithm
that utilises a specific set of local search operators and finds solution xi

for instance i. Any HH that utilises the same set of local search operators
would be able to find at least the same result xi, which would consist of
using the same local search operators and in the same order as the expert
has. But, the same HH would allow to find a solution x′

i better than xi,
which is a combination of the same components not considered nor tested
by the expert. On top of that, a HH can also introduce new components
that itself designed and were not considered by any human.

However, one challenge in using such types of algorithms to search
heuristic configuration is the size of the heuristic search space in itself.
Even if considering only the local search framework, there are several
possible neighbourhoods, stopping criteria, acceptance criteria, initial so-

7The GCOPs are a much more recent methodology which is a especial case of HH.
The GCOPs aim to create a standard way to build search algorithms for COPs. As their
definition is still recent, with little literature presence, we refrain to utilise GCOPs in our
scopes, and otherwise utilise only HH for referring to automatic solvers for COPs, even
if they are similar in nature.
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lution methods etc., some with their own parameters (for example, the
Cross-Exchange neighbourhood has a maximum-exchange-size parame-
ter), all with different levels of impact on the search process. In some
cases, the number of possible designs with parameters can be of exponen-
tial size [156]8 — which makes this problem as hard as solving any COP.
On top of that, we also have a complex solution search space where the se-
lected heuristic configuration has to work with (in the case of the LSVRP,
another COP of exponential search size of likely even larger size). These
two complex layers make it challenging to find methods which perform
well across distinct instances.

Hence, finding the configuration that allows to find an x′
i ≤ xi is a

computationally expensive task. This is corroborated by the fact that there
is still a considerable gap between the state-of-the-art metaheuristics and
hyper-heuristics, at least when looking at the VRP and variants9. This is
noted in [165] and [172], where the HHs are mostly not competitive amidst
the specialised metaheuristics.

When analysing current HH methods for the VRP and LSVRP (as can
be seen in Section 2.5.5), most of them fail to present concerns about the
scalability for larger scale problems. Although a considerable amount of
algorithms for the VRP employ the template shown in Algorithm 1.1 (both

8Although this is shown in the reference, the scale can be easily illustrated by con-
sidering a simple Genetic Algorithm and the number of crossover operators, mutation
operators and their rate parameters, which can vary from 0% to 100%. If we have a pool
of only 5 different crossover operators and another 5 mutation ones (which is a rough
underestimation), including only these two rate parameters we have 25000 possible con-
figurations, considering a step of 10% — not even accounting that these rates can be
changed during the learning process. If we include additional steps, such as selection,
elitism etc., the number of possible configurations would be even higher.

9Specifically for non-dynamic problems, as dynamic ones have seen HHs been the
state-of-the-art for some time. The dynamic are variants which present changes to the
problem at runtime. For example, in the VRP, a dynamic variant has new customers being
added or removed after the vehicles already left the depot, requiring re-optimisation of
the routes.
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HH-based and other metaheuristics), it is not uncommon to see that HHs
are still using manually designed decisions in some of the steps. It is fairly
standard for HHs to focus only on the initialisation, like the GP-based HH
as in [83], or the improvement step, like in [167].

One of the reasons for that under-performance is because HHs trade
quality for generalisation. In other words, a lot of HH designs aim to focus
on simplicity, considering components which are simple and for general
purposes. Thus, it is understandable that they perform worse than meta-
heuristics since the HHs utilise less expertise knowledge regarding each
problem. However, considering a metaheuristic will utilise a combination
of components and decision-making options based on expertise, and since
this combination is within the heuristic search space, we expect HHs to at
least find the same results as metaheuristics.

The recent increasing interest in the VRP, at least in number of pub-
lished work [168], comes by solving the variants of the problem, such as
uncertain, dynamic and electric. Since each have their own particularities,
it is valid that a new technique is developed to tackle them. However, as
already criticised by [187], developing a method for each possible variant
seems like a waste of resources. As all variations still face the problems de-
scribed in Section 1.1, i.e. the manual decisions and the large search space,
we want to focus on the basic formulation, from which it can be extended
for these variants.

Hence, in this thesis we want to look at these common points and look
into them as stepping points for future works. We can look at the differ-
ent steps involved in a local search-based metaheuristics and try to auto-
matically optimise them, individually or as a whole, since the manually-
designed methods are prone to bias and the lack of generalisation. We
present why these steps are important next.
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1.2.2 Initialisation

The Initialisation Step affects the performance of the local search-based
methods (as shown in [143]), by defining the starting point on the solution
search space. When looking at the recent work, most of them use a generic
construction technique in the initialisation step which provides a feasible
solution, such as the Clark and Wright Savings heuristic [37], the Nearest
Neighbour [18], the Sweep heuristic [76, 195] and one of the pioneers to
focus on large-scale, the heuristic of [158].

More recently, the work of [9] made some improvement on the Clark
and Wright Savings for large-scale problems, trading up a bit of its ef-
fectiveness for efficiency. All these methods, with the exception of the
Savings modification, are over 50 years old (with the exception of [158]
with only 30 years, which is the least popular among these), and are still
heavily used today. These methods are selected based on them being easy-
to-implement or by the designer’s affinity to that heuristic. This is due to
being much easier to find improvement of a not-so-good solution rather
than creating a very good one. Hence, this step has gotten less attention of
the scientific community.

A counter argument for such concept could be: an already good solu-
tion leads to a local optimum much faster, and escaping it could be harder
for the next local search steps, hence the initialisation methods that per-
form a worse initial cost are less bound to such traps. However, if that is
the case, and given the complexity of the search space of a problem such as
the VRP, it would be also equally easy to trap the worse initial solutions in
their own bad local optima, not allowing for a better solution to be found
given the same operators.

Given that the automatic heuristic design methods for initialisation
heuristics are failing to provide an advantage in the search process, either
due to the use of wrong initialisation components or by underestimating
its impact (which often leads to ignoring this step). As there is no proper
study to validate these, we are motivated to propose ways to do so.
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1.2.3 Improvement — Operator Selection Strategies

The core phase of a local search-based heuristic, the Improvement Step
requires a set of neighbourhoods which modify the solution. These neigh-
bourhoods are mainly manually selected, as discussed in Section 1.1.1.
Therefore, we turn to HHs to overcome this limitation. Considering one of
the main types of HHs [28], a Selection HH focuses on selecting the utilised
move operators, either at the decision point or by learning the order of the
operators to be applied. A Selection HH strategy would avoid bias over a
specific neighbourhood and let the HH learn which ones work better for
the instances considered. Unlike metaheuristics, which handle the solu-
tion space more directly, the HHs only deal with the heuristic space and is
only partially aware of improvements or worsening of the solution. This
extra layer separating the solution to the method can become a liability
(due to the addition of extra computational steps) for larger scales, where
execution times become more sensitive, easier to escalate very rapidly.

Considering that a local optima for an operator’s neighbourhood is of-
ten not a local optima for another one, the order in which they are applied
can change the direction of the search completely. For example, if a meta-
heuristic method focuses on inter-route moves before intra-route moves,
it could lead the number of routes and their positions to a very differ-
ent place if done the other-way around. For some instances, the first-case
might be a good strategy, but not for others, which can prefer the second
one, or either a completely different mix of the operators.

A Selection HH approach could identify these trends and optimise this
order, whether doing it online or offline. For online ones, the strategy
is to select the next operator at certain times (for example, after reaching
a local optima, if using a Hill Climbing strategy). For offline Selection
HHs, however, they pre-determine the order of the operators and fix them
throughout the execution. Although the training process to find such or-
der can be expensive, after trained the method becomes just as fast (if not
faster) than an online approach, since several online strategies might have
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to calculate which operator to select at each decision point. This fixed
operator order sounds less optimal, since they are not adapting to each
instance being solved. This, as is in several method decisions, is a trade-
off. Even if the instances are not uniform, such technique could find an
average one that performs fairly well across them, avoiding having in-
stances under-performing with a manually-set fixed strategy. And these
offline approaches have additional advantages implementation-wise and
interpretation-wise, as the developers can check the trained models.

In the Selection HH literature, however, there is a disregard for the
search space size of each local search operator, which goes back to the
problem of the large-scale not being dealt. For example, in the work of
[127] a Grammatical Evolution method is proposed, but there is no men-
tion of handling large scales. As one of their improvement options is a
full metaheuristic (the ILS), we can assume that this method does will not
scale well for large-scale problems.

For non-evolutionary-based methods, one pioneer HH work of [68] in-
troduces a hill climbing HH which builds a sequence of constructive and
improvement operators to build and improve routes in sequence. How-
ever, even back then, the results were still slightly worse when compared
to the much more simplistic metaheuristics of the time — and also with-
out concern for scalability. In this category, we have found one online
work that handles large-scale problems. In [167] the authors introduced a
two-phase HH for the LSVRP with Time-Windows (LSVRPTW, a variant
where each customer has a specific time-window to be visited). But even
in this case, the large scale is dealt with by splitting the instance in the
early stages of the method, without considering the improvement phase
later.

Other work, such as [172] finds a hybrid method, where it uses a GP
to generate a set of solutions for the VRP. Followed by a Selection HH
which randomly selects modifications that are going to be applied to the
solutions. No concern is given to large-scale problems.
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Hence, due to the lack of work here and by considering their lack of
success, we investigate new Selection HH methods by also considering
the scalability for large-scale problems.

1.2.4 Improvement — Operator Search Space Size

In VRP method design, it is common to have the selected neighbourhoods
search for all neighbouring solutions, no matter if selected manually or
automatically. This is because they are not considering the scale of the
instances or because they are designed for small-scale. As expanding these
to large-scale is not a trivial quest, a challenge arises.

Some methods try to prune their search for the Improvement step.
However, the strategies selected can be just as manually designed as the
rest of their methods. For example, in [118] the authors apply a Simulated
Annealing (SA) for solving LSVRP instances with up to 1200 customers.
Their SA limits the number of neighbours to be explored to the 40 nearest
connected nodes. The work of [9] presents the Knowledge-Guided Lo-
cal Search (KGLS), solving instances of size up to 30000 customers. They
manually selected a few but powerful neighbourhood moves, in order to
maximise effectiveness. These powerful neighbourhoods, however, have
a very large search space, which was dealt with by limiting the operator to
only consider the moves that connects a customer with one of its 30 clos-
est customers. Similarly, other work such as [131], also limit some of their
operators to a sub-set of closest customers.

Other methods limit the search space through fixed-clusters. For ex-
ample, in [88], the authors propose a balanced K-Means to find a set of
clusters to reduce the search space in large-scale instances. In a more re-
cent work, an evolutionary multi-objective method based on route group-
ing was proposed in [196]. This kind of technique can be very efficient, as
instead of solving a VRP with, for example, 1200 customers, they can solve
6 VRPs of size 200, a size much easier to deal with. However, the cluster-
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ing strategy is very susceptible to the clusters created, especially if limiting
the exchange of customers between them. Additionally, for specific cus-
tomers geographical distributions or with high variation of demand, it can
be nearly impossible to find efficient ways to split the customers10.

More unique methods have also been proposed, whether by exploiting
CPU/GPU parallelism, as in [182] and [197], the use of reduction strategies
to improve the efficiency, as in [107] and [9] (this work adds more layers
of improvement rather than just limiting the number of customers), or
the use of solution-based characteristics in [121], where they compare the
distance between routes before exploring the operators’ moves.

These works represent the state of how the search space is considered
for large-scale problems. Although there has been a recent increase in in-
terest to solve these larger instances, they still heavily rely on manually
adjusted or fixed strategies. We want to consider a method which auto-
matically learns how to adapt to the search space of the instance being
solved at runtime.

1.2.5 Evaluation and Acceptance Criteria

The Acceptance and Evaluation step have their own characteristics which
impact the performance of the methods. The evaluation part, which calcu-
lates the new solution cost, can be quite expensive to compute, especially
since it is done on each iteration. The traditional strategy would just check
all routes length (edge by edge) and return the total cost. However, this
was proven to be too slow for large scale, with O(n) cost. There has been

10This can be easily verified with an example: in a highly dense population of cus-
tomers (for example, a big city); if the number of customers within a cluster has to be
balanced, there will likely be several neighbours (in the actual sense of the word — street
neighbours) in different clusters. Although possible, it makes more sense to allow these
types of customers to be considered together in the search, something that would not
happen if tight clusters are used. Unbalanced groups is also possible, but it is perhaps
more challenging to do without manual input.
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an effort to improve the efficiency of solution evaluation, such as in [187]
where the routes are not fully calculated after moves, but rather only the
parts involved in the move. This became the standard for several meta-
heuristics, showing to be very efficient.

On the other hand, the acceptance part is the polar opposite. Each meta-
heuristic utilises its own acceptance criteria. From the most simple ones,
such as the Hill Climbing (HC) strategy, which accepts only improving
moves, to a more complex one, such as the ones employed in HHs in-
cluding stochastic strategies [54] or such as tabu-list, simulated-annealing-
based, etc. Determining what kind of acceptance strategy can determine
the effectiveness of the search process. This can be easily explained with
an example: given an initial solution x that has been perturbed with opera-
tor f , resulting in x′, such that x′ < x. As this move improved the solution,
the new x′ can substitute the current solution (x ← x′). However, x′ is a
local optima to operator f . If in the next iteration we utilise the operator
g, such scenario is possible: g(x) = x′′, where x′′ is equal to the initial x.
If such move is accepted, and no other operators are given, this method
might enter an endless loop. Although this is a very simplistic example, it
shows the traps that are possible if this step is not well crafted.

When it comes to large scale, there is no obvious specific modifica-
tion in that step that can be done to improve its efficiency directly, as
this would require the landscape of the search space to be known a pri-
ori. However, the implications of a non-effective strategy can be seen as a
loss of efficiency, since they would go through more solutions, using ex-
pensive improvement operators (expensive due to the scale) to find new
solutions. Among the most recent strategies, the KGLS [9] uses a strategy
which changes the evaluation function, plus three different penalisation
criteria that are used alternatively, to make stuck solutions cost more than
they actually do. Those penalisation modes are based on the cost of the
edges, their width or both, hence, the method is aiming to use a ”smart”
strategy, since it is penalising the routes that are more costly.
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We focus on this work due to it being one of the state-of-the-art meta-
heuristics for the LSVRP, especially since it is entirely built on a local search
framework. However, we question whether a fixed penalisation criteria is
the most effective way to utilise the solution characteristics. We argue that
we can optimise this process by learning when to apply each mode —
since different instances present different characteristics.

1.3 Research Goals

The main goal of this thesis is to develop a new Automatic algorithm de-
sign approach to the Large-Scale Vehicle Routing Problem, as in automat-
ically designed heuristics and/or combined with learning methods which
minimises the input of expert-based decisions. The approaches need to
be efficient, i.e. scaling well for a larger number of customers, and show
generalisation on different instance types and configurations.

We approach this goal by considering applying automatic decision pro-
cesses in all main steps of the local search framework: Initialisation, Im-
provement and Acceptance. Although these steps are dependent on each
other, they will have their own contributions to each respective step.

Our overall goal can be divided into theses four key objectives:

1. Learning Effective Initialisation

We ask a couple of vital questions that allow us to understand and
improve the initialisation step as a whole:

How much impact does an initial solution of a local search-based
metaheuristic have? And can we learn to utilise this solution in
favour of our search?

The overall idea in literature is that, given a Large-Scale VRP in-
stance, any search method becomes more sensitive to the starting
point, because of the extra amount of time required to improve it.
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However, we argue that it is not only the solution cost which af-
fects that performance, but also the initial solution’s characteristics.
Although better starting points are more likely to lead to a better lo-
cal optima, these points might also be harder to escape. Hence we
propose an experimental study to show whether worse-performing
heuristics can provide a better final solution, and in which condi-
tions. We also learn to utilise these results to build a classifier to
predict better performing methods, and to utilise some characteris-
tics to build new solutions that lead to better improvement. Hence,
our first objective in this thesis is to develop automatic initialisa-
tion methods which improves the effectiveness and efficiency of a
given local search-based metaheuristics for the LSVRP.

2. Operator Selection and Bounds with Evolutionary Hyper-Heuristics

Considering Selection hyper-heuristic methods and their lack of con-
sideration for large-scale instances, we aim to answer the following
research questions:

Does the order of the neighbourhoods operators affect the search?
If so, can we optimise it? And can we automatically incorporate
proper limits to their neighbourhood scope without reducing their
effectiveness?

In the improvement step, the neighbourhood operators represent the
most impactful decision when designing new methods. The utili-
sation of these operators affect the effectiveness and also efficiency
of the method. On top of that, when dealing with large-scale, re-
ducing the search space size is a tough challenge in COPs, as these
reductions can remove good solutions from the pool. Here we ex-
plore the use of Genetic Algorithm (GA) as a HH to optimise the
order and the size of these components. We introduce new chromo-
somes which can be used to automatically define a new local search
improvement step and how much to limit the solution search space,
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using the evolution pressure to determine the safe limits and the best
order of operands. The second objective of this thesis is to develop
Selection HHs using a genetic algorithm with new chromosomes
which incorporate a local search-based method improvement step,
including efficient search space limits for the LSVRP.

3. Learning to Guide Solution Search Space

Considering that most metaheuristics utilise a fixed search space strat-
egy, we question:

Can we limit the neighbourhood search space for each operator
adaptively? Does that improve the efficiency? Does it come with a
loss of effectiveness?

When dealing with the large search space, most methods apply some
sort of divide-and-conquer strategy directly to the customer space.
While some work limit the operators’ scope by a fixed limit, we de-
bate whether these strategies are the most effective in improving the
efficiency. We analyse the behaviour of the search space for a tradi-
tional fixed strategy to observe if these limits are similar for different
neighbourhoods. We then compare this fixed operator limit with an
adaptive one, which tries to optimise the search in an online way.
Hence, in the third objective we introduce a new strategy that adap-
tively changes the search limits for each inter-route operator when
solving the LSVRP.

4. Learning Acceptance Strategies to Escape from Local Optima

Getting stuck in local optima is one of the main challenges of local
search-based methods. As most metaheuristic strategies have been
using manually designed decisions to jump out of local optima, we
drive this objective with the following questions:

Can we learn to automatically select the acceptance criteria? Is hav-
ing a pool of criteria beneficial? Can we automatically learn a new
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method to drive out of local optima?

A large search space also comes with several local optima. Because
of that, this step of a local search framework can become even more
sensitive to the fluctuations on the solution landscape across differ-
ent instances. The traditional methods, however, do not differenti-
ate utilising the different strategies available, and even most hyper-
heuristics do not consider this part of the process. We want to over-
come this by analysing the impacts of different strategies under the
same framework. We utilise ML methods to learn when these strate-
gies will be more efficient and how to build new ones. Therefore,
for the 4th and final objective we introduce the use of ML tech-
niques to differentiate the most-suitable acceptance criteria and to
build novel ones, increasing the effectiveness in the search for bet-
ter LSVRP solutions.

1.4 Major Contributions

This thesis makes the following scientific contributions:

1. This thesis shows an analysis of the impact of an initial solution to
the local search performance. We present arguments that the ini-
tialisation process can be relevant and should be considered more
carefully, as they can direct the search to a better space more quickly
— even with the same operators. We achieve this by running the
same local search-based method initialised by different constructive
heuristics. We utilise the information extracted to build a machine
learning (ML) model which utilises the solutions characteristics as
input and outputs the predicted best heuristic, producing better re-
sults than a fixed strategy approach. We also introduce the use of
Genetic Programming Hyper-Heuristic (GPHH) to utilise solution
characteristics to build initial routes. Our results show that even with
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simple route construction steps, we are able to initialise a solution in
a specific region of the search space which provides faster and better
improvement than those initialised by traditional methods.

Parts of this contribution have been published in:

Joao Guilherme Cavalcanti Costa, Yi Mei, Mengjie Zhang. Learning
Initialisation Heuristic for Large Scale Vehicle Routing Problem with
Genetic Programming. IEEE Congress on Evolutionary Computa-
tion (CEC 2021) (pp. 1864-1871). IEEE

Joao Guilherme Cavalcanti Costa, Yi Mei, Mengjie Zhang. Learning
to Select Initialisation Heuristic for Vehicle Routing Problem. (Ac-
cepted by GECCO 2023)

2. This thesis shows how effective and efficient Hyper-Heuristics strate-
gies can be achieved by evolving the operator order and their limits
simultaneously. We achieve this by considering a Selection HH using
a Genetic Algorithm as the base HH framework, and by introduc-
ing two new distinct chromosomes and a new embedded clustering
method. The chromosomes have the following attributes: the first
one has two layers — one for the operator to be used and another
one for limiting the search space of said operator; the second chro-
mosome adds a third layer to further limit the search space, but also
adds a few extra alleles to select the initialisation heuristic and the
penalisation functions for a Guided Local Search framework. The
clustering technique utilises a classic chromosome but we introduce
a new form of evaluating it — where we separate the intra-route and
inter-route operators, adjusting the initial clusters based on the inter-
route moves, guiding the space towards the routes changes. Our
results show that the use of the Selection HHs and the new chromo-
somes and non-manual limits to the search space were able to in-
crease the efficiency and effectiveness across different instances and
even under different local search frameworks.
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Parts of this contribution have been published in:

Joao Guilherme Cavalcanti Costa, Yi Mei, Mengjie Zhang. Cluster-
based Hyper-Heuristic for Large-Scale Vehicle Routing Problem. In
2020 IEEE Congress on Evolutionary Computation (CEC 2020) (pp.
1-8). IEEE

Joao Guilherme Cavalcanti Costa, Yi Mei, Mengjie Zhang. Adaptive
Search Space through Evolutionary Hyper-Heuristics for the Large-
Scale Vehicle Routing Problem. IEEE Symposium Series on Compu-
tational Intelligence (SSCI 2020) (pp. 2415-2422). IEEE

Joao Guilherme Cavalcanti Costa, Yi Mei, Mengjie Zhang. An Evolu-
tionary Hyper-Heuristic Approach to the Large Scale Vehicle Rout-
ing Problem. IEEE Congress on Evolutionary Computation (CEC
2021) (pp. 2109-2116). IEEE

3. This thesis shows the use of adaptive strategies to learn how to limit
the search space at runtime. We achieve this by introducing a new
stochastic heuristic which attempts to learn the appropriate size of
the search for each inter-route operator. These limits are set based
on a number of closest customers that can be explored during the
search. We measure the worst-case scenario in which we observe the
customers that have the best improving move is usually far below
the upper limit, hence we apply an strategy to reduce such limit. If
new solutions are not found, the limit automatically increases again,
allowing for a flexible and efficient search. Our results show that
doing this allows a significant increase in the number of iterations
that can be performed in the same time-frame, and better solution
can be found due to these extra iterations.

Parts of this contribution have been published in:

Joao Guilherme Cavalcanti Costa, Yi Mei, Mengjie Zhang. Guided
local search with an adaptive neighbourhood size heuristic for large
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scale vehicle routing problems. Proceedings of the Genetic and Evo-
lutionary Computation Conference (GECCO 2022) (pp. 213-221). ACM

4. This thesis shows an analysis of the impact of the penalisation crite-
ria to a Guided Local Search framework. We show that each instance
has a preferred penalisation mode which can provide a significant
change in the solution quality. We do this by running the same GLS
method and fixing the penalisation strategy. We utilise the solutions
characteristics to build two ML models which predict the best pe-
nalisation mode, using a classification and a regression model. Both
were able to estimate the best mode, resulting in better results when
compared to a fixed penalisation strategy.

Parts of this contribution have been published in:

Joao Guilherme Cavalcanti Costa, Yi Mei, Mengjie Zhang. Learning
Penalisation Criterion of Guided Local Search for Large Scale Vehicle
Routing Problem. IEEE Symposium Series on Computational Intel-
ligence (SSCI 2021) (pp. 1-8). IEEE

1.5 Organisation of Thesis

The remainder of this thesis is organised as follows. Chapter 2 presents
some basic concepts used in this thesis, as well as the literature review
on the Vehicle Routing Problem and the methods used for solving it. In
Chapters 3-6 we present the main contributions of this thesis. We end
each contribution chapter by giving a brief discussion on scalability and
computational costs. Finally, Chapter 7 concludes this thesis and presents
potential future work. The main chapters are detailed next. An overview
of all chapters distribution is given in Figure 1.1.

Chapter 2 presents an overhaul on the basic concepts discussed in this
thesis, including neighbourhood, local search and heuristic methods. Then,
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Chapter 1
Introduction

Chapter 2
Literature Review

Chapter 7
Conclusions

Chapter 3
Learning Effective Initialisation

Initialisation effect on search

ML to predict init. heuristic

GP to build initial solution

Chapter 4
Operator Selection and Bounds

with Evolutionary Hyper-Heuristics

Cluster-based EHH

Pruning-based EHH

GLS-based EHH

Chapter 5
Learning to Guide

the Solution Search Space

Adaptive pruning strategy

KGLS + strategy

Pruning Accuracy

Chapter 6
Learning Acceptance Strategies

to Escape from Local Optima

Penalisation effect on search

ML to predict pen. function

ML + Regression approach

Figure 1.1: Outline of thesis chapters and main contributions.

an overview of the relevant work in both Large-Scale Vehicle Routing
Problems and Hyper-Heuristic for VRP are detailed.

Chapter 3 describes our first contribution considering the initialisa-
tion step. We present a study on the impact of the initial solution to the
search and develop two methods to improve the quality of LSVRP solving.
The first one utilises ML methods to predict which existing initialisation
heuristic will be more effective. The second method utilises GPHH to cre-
ate initial solutions in specific regions of the search space from which it is
easier to find improvement.

Chapter 4 explores the use of Selection HH to improve the order of and
limit the operators used in the improvement stage of a local search-based
heuristic. We present three different strategies, all based on Genetic Algo-
rithms, each with its own novel genetic components, such as chromosome
or decoding scheme.

Chapter 5 contributes to the automatic pruning of the search space in
an online way. Here we present our method which adaptively learns each
operator limits, considering their performance on the previous iteration.

Chapter 6 describes our strategy to predict the penalisation criteria to
be used in the KGLS context. We introduce labels to the data and ap-
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ply several ML methods modelled as classifier and regressor, including a
novel GP method, to predict the class or value on unseen instances.

Finally, Chapter 7 presents the overall conclusions from each chapter
and the thesis. Then, a future prospect of possible next steps is given.
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Chapter 2

Literature Review

In this chapter we first introduce some basic concepts that are used through-
out this thesis. We also present some of the related work regarding the
Vehicle Routing Problem and automated approaches.

2.1 Basic Concepts

In this section, we present and briefly explain some basic concepts of Op-
timisation problems and related concepts that are used in this thesis. We
are following the description order based on the books of [143] and [117],
where most of the chosen definitions are mathematically defined. Addi-
tionally we present some descriptions on search emphasis and types of
methods, which we judged to be important concepts that needed to be
added and are based on other references. These general concepts are fairly
common in the optimisation field and are going to be used throughout this
thesis.

2.1.1 Combinatorial Optimisation Problem

Combinatorial optimisation is a field of study situated between computer
science, mathematics and operations research, where a set of decision

29
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making problems (usually NP-hard) containing discrete options, i.e. has
discrete variables, are studied and solved [1]. A combinatorial optimisa-
tion problem (COP) is defined as a problem which contains a set of dis-
crete variables, constraints and either minimisation or maximisation func-
tion as cost. Additionally, the number of possible solutions is usually so
large that an exhaustive search is too costly.

Formally (based on [117, 143]) an instance of a COP is defined by the
mapping: f : S → R, wherein the pair (S, f), S is the domain set with
feasible points, and f is a cost function. The problem is to find x ∈ S for
which: f(x) ≤ f(y) for all y ∈ S, given a minimisation function1. This x

is known as the global optimum, since no solution in S has a lower cost,
and is usually denoted as x∗, with f ∗ being the optimal cost of function f

when x∗ is applied.

2.1.2 Neighbourhood

A neighbourhood is composed of a set of solutions that are nearby in some
sense, given a specific problem [143]. In other words, given x ∈ S the
neighbourhood set N(x) contains the solutions similar to x in some aspect.
Formally, a neighbourhood N is defined as [143]: given the pair (S, f), the
mapping function N : S → 2S .

Briefly explaining, what a neighbourhood means is that any solution x

which can be transformed with a specific modification function. For exam-
ple, given the list of integers x = (1, 2, 3, 4), then some of the neighbours of
x according to a simple swap function (which swaps between two given
positions in the array) are y = (1, 2, 4, 3) or z = (2, 1, 3, 4). The set com-
posed by y, z and the other swap possibilities starting from x, is the neigh-
bourhood of x given the swap function (N(x)). However, a w = (2, 1, 4, 3)

is a neighbour of both y and z but not a neighbour of x (again, considering

1The standard for any optimisation problem is to be a minimisation problem, and any
maximisation problem can be easily converted.
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N as the swap function), since you cannot reach w from x with a single
swap. Although this example might be simple, the neighbourhoods can
be quite complex and not even symmetric (x can be the neighbour of y,
but not the other way around, given some neighbourhood N ).

A larger neighbourhood, therefore, is more probable of containing bet-
ter local optima since it covers more possibilities of solutions [143]. How-
ever, they will take longer to be searched on, while smaller neighbour-
hoods are faster.

2.1.3 Local and Global Optima

A local optimum is the solution with the best value of the cost function
f in a given neighbourhood N , given a value (or set of values) x. For-
mally: a solution x ∈ S is a local optimum if f(x) ≤ f(y) for all y ∈ N(x),
considering a minimisation problem.

The global optimum happens when the inequality holds true for every
N . Or, as formally defined by [1], considering Ŝ as the set of locally op-
timal solutions, the neighbourhood N is exact, i.e. is globally optimal, if
Ŝ ⊆ S∗. In simpler terms, the global optimum is no worse than any other
solution in the complete solution space.

2.1.4 Local Search

Local Search is a type of heuristic approach which explores solutions in
neighbourhoods starting from an initial solution. Since there is no limit
to the number or shape of these neighbourhoods, local search success de-
pends on the types of neighbourhoods applied when solving a COP. The
biggest advantage comes from the speed of exploring these neighbour-
hoods. As put by [1]:

‘Local search provides a robust approach to obtain high-
quality solutions to problems of a realistic size in reasonable
time.’
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In the definition of [143], given the initial solution, a local search al-
gorithm will explore all (or only part) of the neighbouring solutions until
a local optimum is found. The neighbourhood can be changed and this
process can be repeated until satisfactory improvement has been reached,
Algorithm 2.1 shows this process. The choice of neighbourhood is usu-
ally based on intuition since not much theoretical information is available
and is some form of art, as put by [143]. Although this definition might
be outdated, there still some truth in it. As put by two recent works, [10]
which shows that complementing neighbourhoods work more efficiently
and in [184] who selects a new neighbourhood for their local search based
on new evidence, there is now more information available, but this infor-
mation is still challenging and yet to be formalised.

On the other hand, the complexity of the neighbourhood may affect the
speed of the algorithm. For example, the simplex algorithm [105] can have
an exponential number of steps to find the global optimal solution, but it
also uses the exact neighbourhood for the problem. Usually, the more
complex the neighbourhoods, the more likely they are to find promising
results, but are slower to compute. There is a trade-off between the com-
plexity of the neighbourhood structure and speed of search. The good
local search algorithms will find a balance between these two.

Algorithm 2.1 Local Search Algorithm
1: procedure LOCAL SEARCH(Problem Instance)
2: s← Initial Solution()

3: while Stopping Criteria do
4: Choose a Neighbourhood
5: s← Explore Chosen Neighbourhood(s)

6: return s

How the neighbourhoods are searched represents the next main design
decision of a Local Search algorithm. For example, iterative improvement
(also known as first improvement) is a known way of searching a neighbour-
hood, where at each improvement the current solution is changed. The de-
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scent method (or steepest descent) will search for the whole neighbourhood
and change the solution to the best one found. A lot of heuristics apply a
local search algorithm with a different search method, where they apply
some unique stopping criteria, such as Tabu-Search [79], which searches
the neighbourhoods based on a tabu list avoiding repeated moves.

Determining these decision of which neighbourhoods to use, in which
order and how to search them are the main decisions for proposing a local
search algorithm for COPs. There also seems to be a correlation between
the starting point and the quality of the local optima [143]. Therefore, the
initial solution is another important decision. It is from that point that
the Local Search procedure starts to look for better solutions. Finding a
balance between the exploration and exploitation of the neighbourhoods
are fundamental to have good solutions in a viable time.

2.1.5 Exploration vs Exploitation

The two cornerstones of search, Exploration is concerned for looking for
new regions, while Exploitation visit these regions more carefully through
neighbourhoods [44,57]. These two concepts regard search emphasis simi-
lar to Diversification and Intensification, respectively. In more elaborated
heuristics (and other non-exact methods), these concepts are applied in
some form of strategy, aiming to find a balance between both.

In general, the longer heuristics run, the better solution they will find
[25]. However, this trade-off of time versus quality needs to be questioned,
based on what is important as a result. For example, a large investment in
diversification strategies will allow for finding all kinds of regions, includ-
ing the possible best one. But if little to no emphasis is given to exploita-
tion, the optimal region can be found but the best solution might not. On
the other hand, if the method invests a lot to intensify the search in a given
region, then searching for different regions will take a long time. Finding
this balance is one of the main goals of specialised search methods. The
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design of techniques needs to take this into account.

To bring these concepts closer to the previously introduced concepts,
we can consider a local search method which aims to solve the VRP. In the
regular heuristic design process, a series of neighbourhoods are selected
to be used such as 2-OPT, 3-OPT, Cross-Exchange, etc. How far do you
explore each neighbourhood is an intensification decision, whether until
the local optimum is reached or just based on some number of iterations
(or any other stopping criteria). In other words, the decision is: given the
current configuration of the routes, how much time we invest in finding
nearby moves which can improve our solution given a 2-OPT neighbour-
hood. The decision on which neighbourhood to look for next is part of the
diversification strategy: should the search focus on a inter-route neigh-
bourhood such as Cross-Exchange? Or should it look for more intra-route
moves?

Although this example is simple, it is probably clear to the reader now
that finding this balance is not straightforward. A lot of decisions need to
be made when designing a method such as the pool of neighbourhoods to
be considered, the stopping criteria given to each neighbourhood, where
to go next with the search.

2.1.6 Exact methods vs Heuristic vs MetaHeuristic vs Hyper-

Heuristic

These terms are used a lot throughout this thesis. Here we specify each
and what are their meaning in our context.

Exact methods are the approaches which not only utilise mathematical-
based formulations, but also do so in a way that the final solution is the
proven optimal. Most exact methods will enumerate all the possible so-
lutions (even if implicitly). Doing this requires an enormous amount of
effort, resulting in very slow methods for several scenarios. However,
these methods are very important for discovering how the structure of



2.1. BASIC CONCEPTS 35

the problems are in reality, with their results serving as a baseline for non-
exact methods. Additionally, the mathematical formulations are usually
used as base for understanding a problem, allowing for other methods to
be developed following a single and universal definition.

According to [166], Heuristics are a type of informed search strategy.
In other words, they mainly utilise some problem-specific knowledge to
find solutions. Historically, heuristics are the simple methods which apply
iterative steps and have no way of leaving local optima, as most heuristics
follow a deterministic function, i.e. producing the same result if given the
same input. In this thesis we use these concepts interchangeably, both re-
ferring to non-exact search methods (metaheuristics and hyper-heuristics
are heuristics in this definition), but also to the methods which apply no
form of escaping local-optima traditionally used, such as constructive and
improvement methods.

Metaheuristics are, as put by [71] in the Handbook of Metaheuristics:

‘(...) solution methods that orchestrate an interaction be-
tween local improvement procedures and higher level strate-
gies to create a process capable of escaping from local optima
and performing a robust search of a solution space.’

Therefore, metaheuristics differ from heuristics by having mechanisms
that allow the escape of local-optima. Also unlike heuristics, metaheuris-
tics often incorporate a stochastic component, producing a random out-
come which works as an exploration strategy.

Hyper-Heuristics (HHs) are methods that aim to automate the design
and adaptation of non-exact methods [28,29]. Although having some simi-
larities with metaheuristics, HHs goal is to produce a heuristic which then
provide the solution, as they operate on the space of heuristics and not
solutions [109]. The resulting heuristic will be in charge of delivering the
final solution. More recently, in [156] (including authors from [28]) have
proposed a new COP where the problem is to select the components which
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solve other problems. Their General COP (GCOP) considers automatic al-
gorithm configuration, selection and composition as variables, where the
goal is to optimise the resulting algorithm very much like what HH pro-
poses. Since HH can be considered for more types of problems and their
definitions involve only problems with discrete variables, it is likely to be-
come a new standard in upcoming years for automatic algorithm design
and Hyper-Heuristics development.

2.2 Vehicle Routing Problem

In this section we describe the main problem studied in this thesis, the
VRP, and the large scale ”variant”. We begin by giving the overall and
formal definitions for this COP. We present the main existing methods for
solving it in Section 2.5.

The VRP was first described by [46], where a fuel delivery problem was
studied. The original problem consisted in a fleet of trucks which needed
to serve several stations, respecting the capacity of each truck. The prob-
lem has several parallels with the Travelling Salesperson2 Problem (TSP)
(in fact, the VRP is a generalisation of the TSP [153]), as in every customer
(station) needs to be visited exactly once and the goal is to find the route
with minimum cost, traditionally the distance travelled. The main differ-
ences from the original work from [46] are the number of vehicles (multi-
ple instead of a single salesperson), and the added capacity of each vehicle.
Figure 2.1 shows an example of VRP. The VRP is one of the most important
and studied problems in the combinatorial optimisation field, with practi-
cal relevance and very difficult to solve [181]. The VRP can be applied in
the industry for finding routes for transporting produce and raw materi-
als [20,21], moving products inside or between storehouses and ports [61],
or delivering to end customers. It has applications in mail [99] and gro-

2Originally and often called as Salesman. Salesperson is a more recent inclusive ter-
minology.
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ceries delivery [174], waste collection [84, 108, 136], recycling [102], and
within health applications [32, 192]. More recently, the VRP was used in
a study to protect people in vulnerable situations due to a pandemic [26].
The VRP has several variants, based on additional constraints which can
make the problem more realistic to different scenarios, such as the VRP
with Time-Windows (VRPTW) [169], where each customer has a specific
time-window to be served, the VRP with Multiple-Depots (VRPMD) [163],
where several depots are available as starting and end points, the Split-
Delivery VRP (SDVRP) [7], where customers can have their delivery de-
mands served by multiple vehicles or, more recently, the VRP with Drones
(VRPD) [41, 53], where drones work in tandem with the vehicles to serve
multiple customers simultaneously, among many other variants and com-
binations. The classical variant was later labelled as the CVRP [22], or
Capacitated Vehicle Routing Problem.

(a) Instance (b) Solution

Figure 2.1: Example of how the VRP solution looks like. A set of vertexes
are visited in some sequence.

The VRP (and so do other variants) is NP-hard [117], and can be de-
fined as the problem of determining the optimal set of routes which serve
a set of customers, performed by a fleet of vehicles [181]. Formally, the
VRP is defined as, based on [111]: let a directed graph G = (V,A), where
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V is the vertex set and A is the arc set. The vertex set represents the cus-
tomers to be visited, i.e. V = 0, 1, 2, ..., n, and generally the 0 represents
the depot point. The arc set represents the links between the vertices,
A = (i, j) : i, j ∈ V, i ̸= j, and are associated with a cost cij , which in the
classical formulation is the distance between the two vertices i and j. If
the arcs are symmetric, i.e. aij = aji, then they are called as edges (thus
the set is called as Edge set). A set of homogeneous vehicles M with equal
capacity Q is used to serve the customers. Each customer i has a demand
qi that needs to be served, and can be visited exactly once by only one ve-
hicle. All routes start and end at the depot. The goal is to find the routes
which respect all these constraints, minimising costs.

The classical mathematical formulation for the VRP based on [113,114],
is such that:

Min
∑

(i,j)∈E

cijxij (2.1)

subject to
n∑

j=1

x0j = 2m (2.2)

∑
i<k

xik +
∑
j>k

xkj = 2 (k ∈ V 0) (2.3)

∑
i,j∈S

xij ≤ |S| − v(S) (S ⊆ V 0) (2.4)

x0j = 0, 1, 2 (j ∈ V 0) (2.5)

xij = 0, 1 (i, j ∈ V 0) (2.6)

The objective function 2.1 is used to find the minimal cost routes, re-
specting the following constraints. Constraints 2.2 and 2.3 are degree con-
straints, with m being a constant or a variable, specifying the degree of
each vertex. Constraints 2.4 eliminate subtours that are not fully con-
nected and enforce the capacity restrictions, since v(S) is a lower bound
on the number of vehicles needed to serve all customers in S (S is a subset
of V ). The discrete variables xij represent the number of times the arc (i, j)
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is traversed, being 2 only in the special case where a vehicle serves exactly
one customer and return to the depot. The original works in [113,114] can
be checked for the proofs and more details on this model. Other formula-
tions have been proposed, more in [111], but they all present some discrete
decision variable such as x here.

Overall, the VRP is an important problem that can help save money, by
reducing costs, time, by reducing the route length, and even aspects such
as air quality, since not only the vehicles spending less time on the streets,
but also because it is possible to minimise the use of vehicles as well.

2.2.1 Large-Scale Vehicle Routing Problem

Based on the classical CVRP described above, the Large-Scale Vehicle Rout-
ing Problem (LSVRP3) can be considered another variant of the VRP since
it needs to account for new methodologies perspectives. Although it is not
a rule, and this can likely change within a few years, to be considered large
scale the VRP instance needs to have at least 200 customers [9, 75, 95, 167].

The challenges arise from the sheer size of the number of possible so-
lutions. Additional precautions need to be taken in almost every aspect,
since the traditional heuristics utilised for solving the problem, fail to keep
the good performance. Simple neighbourhoods which are usually used in
the VRP such as 2-Opt and 3-Opt, which have complexities of O(n2) and
O(n3), respectively, will become expensive operations when n becomes
large. These operators will start to become a slow-down factor in the
search process. Even if assuming the increase is from a few milliseconds
to a few seconds, the number of times these operators are used to search
for better solutions during an optimisation process can be huge. Hence,
the ripple effect will be notorious. In such conditions the traditional VRP
methods will show themselves having performance issues and become
unreliable for several practical applications. Therefore, when dealing with

3Sometimes referred as LSCVRP
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large scale new ways of approaching the problem are needed.

The most well known techniques to reduce the search space for large
scale are based on divide-and-conquer. Divide-and-conquer is a prob-
lem solving approach where a bigger problem is broken into smaller sub-
problems which can be solved more easily, and then a new solution is
formed when combining them. For example, clustering approaches are
fairly common with VRP methods, such as in [133] [199] and [38], where
the customers are grouped into subsets from where a solution can be searched
from this smaller space, or use them to limit the search to some limited ar-
eas.

Another approach which is fairly common when solving the VRP and
variants is related to limiting the search space based on distance. In a given
neighbourhood the number of compared moves depends on some metric,
mostly distance-based. For example, when comparing an exchange neigh-
bourhood which swaps customers between two distinct routes, the naive
approach would compare every possible customer for this move. How-
ever, it is unlikely that some customer very far away from the current route
will improve the overall distance. Although this can have drawbacks, as
pointed in [90], it can be very successful, such as in [9].

The complexity of neighbourhoods is not the only issue when solving
large scale problems. The developer needs to take into account other is-
sues that are usually not present in smaller instances, such as a high mem-
ory consumption, and other optimisation techniques are usually required
as well. For example, parallelisation is a quite common approach, focusing
on exploiting hardware characteristics to improve the search time, such as
in [182]. These topics, however, are out of the scope of this thesis.

Large-scale problems have several applications that are perhaps even
more easy to occur than that of the regular VRP. If considering a garbage
collection task, for example, even a small city would easily have thousands
of streets/points of collection. Companies that operate at national level,
such as mailing [99], or that have to serve several customers regularly, like
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in soft-drink distribution [47, 48], or even in disaster relief applications
[188]. The LSVRP is a relevant application that justifies its study.

2.3 Hyper-Heuristics

In this section we further explain what Hyper-Heuristics are and how they
are classified. We briefly discuss how machine learning (ML) can be used
in a hyper-heuristic.

As a counterpoint to the metaheuristics, Hyper-Heuristics are heuris-
tics to choose heuristics aiming to reduce the difficulties of applying ex-
isting heuristics methods to new problems or unseen instances [28]. HHs
methods are unlikely to ever beat hand-crafted, CPU-intensive problem-
specific methods [165], but this can be upset by the more general design
aspect. They also aim to reduce parameter and configuration dependency,
which is a common problem in metaheuristics approaches. HHs can be
seen as high-level methods which utilise low-level heuristics (LLH) as
components, by finding an appropriate combination of these components
to solve a search problem [28]. In a recent review of this definition in [31],
the authors state that HHs are in the bound between ML and optimisation.

Hyper-Heuristics are methods which offer a possible way for adjusting
the approach according to the problem or characteristics of the instances,
without having to manually update the method for doing so. However for
a HH to be successful it needs to take into account some design features
such as (from [165]): the type of information available (online or offline?),
the sets of heuristics to be chosen in the underlying levels should be com-
plimentary, and since the evaluation of every solution might be expensive,
if possible consider only subsets. These features influence the design deci-
sions which usually follow some patterns. We explain how these patterns
are used to classify the HHs in the next section, but first, we present a
formal definition of Hyper-Heuristics.

As formally specified by [150], a HH framework searches in the heuris-
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tic space H a configuration h ∈ H , which is optimal for a given prob-
lem, denoted as h∗. The quality of this solution is measured by a function
F (h)→ R, being formally defined as:

F (h ∗ |h∗ → s∗, h∗ ∈ H)← f(s∗, s∗ ∈ S) = min{f(s), s ∈ S} (2.7)

In other words, a Hyper-Heuristic goal is to find the optimal heuris-
tic configuration h∗, h∗ ∈ H where the low-level functions f(s) → R are
mapped into the solution space S, and is optimal regarding S (in this case
considering a minimisation problem without loss of generalisation).

2.3.1 Classification of Hyper-Heuristics

According to Burke et al. [28], the HH can be classified by two different na-
tures: nature of the heuristic search space, and the nature of the feedback
type used, illustrated in Figure 2.2.

Figure 2.2: Classification of Hyper-Heuristics according to [28].

When looking at the nature of the heuristic search space, it can be di-
vided into two main types, selection and generation. The first type is
based on selecting existing heuristics and applying to the problem solu-
tion. The second type generates new heuristics based on the components
of existing ones. These can also be subdivided based on which type of
components they search or use, perturbation heuristics, where existing
solutions are modified based on a neighbourhood move, or construction
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heuristics, where solutions are built step-by-step; a mix of those is also vi-
able. Hence, there are 4 types of possible combinations, if not considering
mixed approaches.

The feedback classification is related to the learning process, if any. The
learning can be Online, Offline or, in the case no learning process is ap-
plied, No-Learning. When there is Online learning, the HH method will
learn while solving the problem. In other words, the method learns with
the given instance of the problem and adapts the high-level strategy to
determine the heuristic to be used [29]. For offline, the learning approach
will happen in different stages. First, the problem instances are split into
training and test sets, and are fed to the method in this training period.
Then, the knowledge is gathered by the method, aiming to generalise to
unseen instances [29].

2.3.2 Machine Learning as HH

The use of ML methods in combinatorial optimisation is not new, but only
recently it started taking some spotlight. Some methods have used ML
techniques to solve the VRP (or other COP) directly, like in [138] which
uses Reinforcement Learning (RL) to solve VRP. In [191] a Deep RL is used,
as well a survey on RL methods for solving transportation problems (TSP
and VRP). Neural Networks were also used to solve VRP as in [94] and
in [81], which also utilises fuzzy systems, or in [60], where they utilise
fuzzy systems to a clustering technique for the VRP. Even some guidelines
have been recently published in the use of ML with VRP in [2], and for
COP in general [19], also presenting a survey on ML applied to COPs.

However, there is also the utilisation of these techniques as assistants
to the problem-solving methods, mainly metaheuristics. In this case, these
ML work more as HHs, since they are used to optimise the heuristic space.
The benefits of this approach are not only linked to the philosophy of the
HHs, as they are independent of the solution search space, but also the
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use of robust and well-known techniques to automate some hard tasks
on the design process. A good example comes from the iRace package,
from [123], which applies ML as a way to find automatic algorithm con-
figuration for several types of problems. Or in [203], where they utilise
Support-Vector Machines (SVM) in order to assist in the parameter set-
tings. A recent review of ML-assisted methods for VRP is given in [12].

2.4 Evolutionary Algorithms

Evolutionary Algorithms (EA) are a group of techniques inspired by Dar-
win’s evolutionary process, where a population of individuals compete
for some resources causing natural selection, or in other words, the sur-
vival of the fittest [58, 175]. In EA a group of solutions evolve over time to
better solve a problem. Although there are different techniques, they all
work similarly and can be summarised in an algorithmic way, as shown
by [132], and can be seen in Algorithm 2.2. The main idea behind EA
revolves around a population P which consists of individuals that can
be evaluated, being either a set of functions which are used as a prob-
lem solver or a solution to a single function. This population will then be
fed to an evolutionary process, which selects individuals from the pop-
ulation, modify them in some way (generating the children or offspring
using genetic operators) and are re-evaluated to be added back in the pop-
ulation. Each individual in the population is represented with a chromo-
some, usually an array of numbers or a tree-like structure. Each number
or node is a gene of this chromosome. The modification step is usually
achieved through applying a crossover, which is the process of trading
genes between parents producing a new offspring, and mutation, which
is the process of modifying one or more genes [161]. We briefly expand on
two EA methods which are being used in this thesis: Genetic Algorithm
(GA) and Genetic Programming (GP).

The traditional GA consists of 4 main phases given an initial popula-
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Algorithm 2.2 Evolutionary Algorithm Overall Scheme

1: procedure EVOLUTIONARY ALGORITHM

2: Initialise(P )

3: Evaluate(P )

4: while Stop Criteria do
5: Select(P )

6: Breeding(P )

7: Evaluate(P )

8: return Best(P )

tion: evaluation of the individuals in the population; selection of parents;
application of crossover and mutation operators; and replacement of old
population [153]. To exemplify each phase we will show the most com-
mon GA representation which is the binary vector, as can be seen in Figure
2.3 (a). What the genes represent vary from each application, but to illus-
trate let us assume we are using a GA to solve a Knapsack problem. In
this problem a number of items need to be selected in order to maximise
overall value, but is restricted to a weight. The classical GA chromosome
for this problem will then have one position for each item, and the selected
items will a value of 1. A simple one-point crossover is shown in Figure 2.3
(b) to illustrate how this operation works. After selecting two parents (in
white and grey in the figure), one point is chosen to split the chromosome.
Each part of a chromosome will then be combined with the other part of
the other parent, generating two children which have half the information
from each parent. In a mutation the genes are modified according to some
rule. In Figure 2.3 (c) we show an example where three random bits are in-
verted. It is important to note that this example only shows a fixed length
chromosome, which although common, might be insufficient for several
problems. It is not uncommon for HH based on GA to use variable-length
chromosomes.

The main difference for a GP is that it is used to evolve rules and pro-
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(a) Example of GA chromo-
some.

(b) Example of GA crossover. (c) Example of GA mutation.

Figure 2.3: Examples of representation and basic operations in a Genetic
Algorithm.

grams rather than direct solutions. In a GP approach the usual representa-
tion is tree-based, where each leaf (or terminal) represents some variables,
while the internal nodes (or functions) are the operators [109]. Figure 2.4
shows an example of a simple tree structure used in GP. This tree can be
translated as min((x + x), (x + (3 ∗ y))), where {x, y, 3} are the terminals
and {+, ∗,min} are the operators. Like the GA, they also go through the
crossover and mutation processes as part of the evolution process, the dif-
ference being the type of operators used, which are usually specific for
tree-based representations. For example, crossover and mutation opera-
tors are shown in Figure 2.5. The crossover transfers a sub-tree from one
parent to the other, while the mutation adds a new sub-tree to the parent.

2.4.1 Evolutionary Hyper-Heuristics

Evolutionary Hyper-Heuristics are the ones which utilise EA methods as
part of the Selection or Generation process. These methods provide some
clear advantages when applied to each type. For example, for Selection
HH they provide a clear way to improve the order in which operators
are applied. This is because EA has an implicit online learning mecha-
nism through its evolution process, carrying knowledge from the previ-
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Figure 2.4: Representation of a Genetic Programming Tree.

Figure 2.5: Examples of Genetic Programming Crossover and Mutation
operators.

ous generation to the next. They can also be easily used for offline learn-
ing, where the evolution process is applied considering evaluating more
instances during convergence.

GP is used as HH when the evolved trees are used to build a policy or
heuristics. In [30], the authors explore the potential of GP as HH, apply-
ing it on SAT and bin packing problems. Several works have successfully
applied GP for solving COPs, such as Job Shop Scheduling [23,201], Team
Orienteering [129], Arc Routing [122] and VRP [97, 172].
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There are also GA-based Hyper-Heuristics. Usually used for select-
ing perturbation heuristics, the GA-based HH will evolve a sequence in
which the operators (LLH) will be applied to an initial solution. It has been
mostly applied in timetabling [148, 159], scheduling [85] and bin packing
problems [149]. A recent review on EA as ML, including as HH, was pre-
sented in [5].

2.5 Related Work

In this section we talk specifically about the works developed for the VRP
and LSVRP. As the VRP is not a new problem, the number of existing
published work is over thousands4, therefore we try to limit the scope of
this survey to relevant work. We cover some of the baseline and state-
of-the-art algorithms in both exact and non-exact approaches, as well as
some of the manually and automatically designed methods that tackle the
LSVRP specifically. We divide these methods by the type of approach and
their size (VRP vs LSVRP).

2.5.1 Exact Methods for the VRP

Exact methods for the VRP often rely on branch-and-bound techniques
(or similar, such as branch-and-cut, branch-and-price etc.). Branch-and-
bound is an algorithm that intelligently searches partitions of the feasi-
ble solutions space into smaller subsets which can be solved more easily
and producing better lower bounds [116]. The challenge is to find better
branching points, or valid additional cuts that reduce the number of possi-
ble solutions. For example, one of the first branch-and-bound algorithms
for the VRP was proposed in [35], where the authors add artificial de-
pots to a TSP branch-and-bound approach. These artificial depots serves

4A Google Scholar search for the term ”Vehicle Routing Problem” returns around
121000 results.
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as splitting points for the TSP route, so each visit to them make a VRP
route. They also propose using a minimal spanning tree to determine bet-
ter bounds5. The number of artificial nodes, however, is a parameter N ,
and might be infeasible, which makes several runs necessary until a valid
answer is reached. More recent branching-based approaches, such as the
branch-cut-and-price by [144], will work similarly but adding very care-
fully designed valid cuts, requiring a vast knowledge in the mathemati-
cal background and techniques. Other notable branching-based methods
are [13, 66, 96, 160].

Another technique is based on Set partitioning and Column Gen-
eration methods, where the problem is formulated as a set partitioning
problem, considering routes rather than edges as decision variables. But
since the number of possible routes is also very large, a column genera-
tion method is used to generate these routes iteratively. Examples of this
approach can be found in [4, 14, 49].

The authors of [146] have proposed a generic solver for the VRP using a
Column Generation and Branch-cut-and-price (BCP) method, finding bet-
ter results than techniques created specifically for some of these variants,
and is considered the state-of-the-art of the exact approaches.

Dynamic programming was also used for exactly solving the VRP, as
in [36, 59], but have been since poorly explored for the classical variant.

A recent case is shown in [6], where a large-scale instance is broken
into clusters to find and assign the number of vehicles, and a TSP is used
to build the routes of the assigned vehicles. The gap to the optimal values,
although better than some other exact methods, are still worse than those
that heuristics find given the same time frame.

Although there is an active pursuit of more efficient exact methods,
especially the branch-and-bound type of approach, they still fail to get
competitive times when compared to non-exact approaches. Especially

5A few years later the work of [89] have shown that the shortest spanning 1-tree is a
very good bound for the TSP.
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for larger instances, where even days of execution time are required for
some problems with less than 1000 customers. For example, in [144], an in-
stance with only 320 customers took 39 days of execution time. Therefore,
the study of heuristic methods are essential for finding feasible solutions
within the minimal amount of time possible. More about exact methods
can be found in [22, 110, 111, 152].

2.5.2 Heuristics for the VRP

The first heuristics go back to 1964 and were the method of choice for
solving the VRP until the 1980s [186], and can be divided into the con-
structive heuristics, which greedily builds a solution step by step, and
local improvement heuristics that improve an initial solution iteratively.
Although these heuristics are not very efficient, they are essential to pro-
vide good initial solutions and improvement moves for more advanced
methods. Here we present some of these heuristics from both types.

The first known heuristic for the VRP, the savings algorithm was pro-
posed in [37]. The savings algorithm is based on a simple idea of connect-
ing pairs of routes. The algorithm starts with trivial routes (n vehicles serv-
ing the n customers in back and forth routes), which are merged at each
iteration maximising the loss of distance when connecting them, if feasi-
ble. Even though it does not have the best results, the algorithm is very
fast and easy to implement, which is why to this day the savings algorithm
is still used for creating decent initial solutions for other approaches.

Another constructive heuristic, the sweep algorithm [76, 195], builds
the routes by considering an initial angle and ”sweeping” a line segment
across the customers starting a new route whenever the vehicle is full. This
method attempts to put the customers that are close to each other (con-
sidering the angulation from the depot, forming sort of ”petals”) in the
same route. The routes generated are usually not very effective depend-
ing on several features, such as the depot and customers locations, their
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demands etc. But the method is also used as a starting solution which can
be improved by other methods.

The Route-First Cluster-Second approach, from [139], builds a single
TSP-like tour and then splits it according to the capacity of the vehicles.
The Cluster-First Route-Second [62] creates clusters (groups) of customers
and then find a TSP tour inside these clusters. Other proposed construc-
tive heuristics can be found in [115].

The local improvement heuristics need an initial solution to improve
on, which can be seen as a post-optimisation step [111]. This initial solu-
tion can be created using a constructive heuristics as the ones above, or
can even be randomly created with little to no attention to feasibility. The
improvements are based on the neighbourhoods chosen. For the VRP and
variants, these neighbourhoods can be divided into intra-route and inter-
route [111]. The intra-route neighbourhoods make improvements within
each route as if a single TSP-tour, while inter-route moves happen to mul-
tiple routes simultaneously.

For intra-route neighbourhoods, the λ-opt is perhaps the most known,
especially when λ = 2 or 2-opt (Two-Opt) [64], and the 3-opt (λ = 3) [45].
This heuristic, originally for the TSP, deletes edges in the tour to try to
find a better way of reconnecting the nodes, and was generalised as λ-
opt in [119]. However, it is known to be tricky to be efficiently imple-
mented, requiring sophisticated data structures and programming tech-
niques [112]. The parameter λ represents the number of deleted edges,
and is also the complexity of the neighbourhood, i.e. O(nλ) [90,186], which
is the main reason the lower degree versions are more popular (2-opt and
3-opt). Finding the λ-optimal solution considering every customer will
result in the optimal solution for that tour [90], when a TSP-tour has n

cities if no improvement can be made considering the n-opt neighbour-
hood, then the solution is optimal. However, the complexity of such a
neighbourhood is so expensive (O(nn)) that this is not a process which is
pursued, with very rarely any method applying a value for λ > 3 [90].
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There is a popular implementation of the λ-opt being used to solve TSP
(and even VRP) in [90], called the LKH2 (later improved and expanded to
the LKH3 version [91]), exploring up to 5-opt moves (or even 6-opt moves
in some special cases).

The Or-exchange (or Or-opt) heuristic [141] is a special case of the λ-
opt, which is a sub-set of the 3-opt with size O(n2), achieving that by re-
locating sequences of visits [186]. Other than edges exchanges, another
common approach is based on chain exchanges, i.e. relocating a sub-set of
consecutive costumers to another part of the route.

For Inter-route neighbourhoods, the shift (also called insert) neigh-
bourhood [142] will move a customer from one route to another. A swap
(or 1-interchange) will exchange customers from two different routes. The
2-opt* (Two-Opt-Star) [154], deletes two edges from two routes and rein-
serts them into the other, therefore they assimilate some part of each other’s
route, as illustrated in Figure 2.6. The Cross-Exchange [178] will exchange
two sequences of customers between two routes, one can be empty. There-
fore it is a generalisation of the shift, swap and 2-opt* algorithms [186]. The
inverse version of Cross Exchange, I-Cross [24], will do the same but will
invert the order of visits for one of sequences. These two neighbourhoods
have a complexity of O(n4), but can be limited by the size of the sequences,
resulting in O(S2n2), where S is the maximum size of the sequence. The re-
location chain [10] is a recently proposed inter-route neighbourhood based
on ejection chains [77]. The idea consists of relocating one customer into
another route, and from that route relocate another customer to some other
route, and so on. But the method requires some additional pre-processing
and searching procedures, as well as some pruning techniques to make its
use feasible since this move neighbourhood grows exponentially with the
number of route chains [10].

Another type of neighbourhood that can be considered a third way
(against intra and inter routes) are the destroy-and-recreate heuristics (or
ruin-and-recreate). They work by deleting edges or customers in several
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Figure 2.6: A simple example of the 2-Opt* operation.

points of the VRP solution, which are then reconnected in a different way,
as in [171] and [170]. Somewhat similarly, the heuristics of [65] and [180]
fix some customers, while the unfixed are re-assigned between the fixed
ones. They do that re-assignment with an integer-programming model.

The complexity and size of these improvement heuristics, although
seemingly small, are actually one of the biggest issues for larger scale
problem. The number of necessary evaluations and solutions generated
become the most time-consuming step of any method. Although not men-
tioned here, several other heuristics have been proposed for the VRP and
variants. They usually use a combination of the neighbourhoods shown,
apply different techniques, such as parallelism, or do a mix with different
methods, especially exact methods for solving some sub-problem. More
about heuristics for the VRP can be found in [25,39,67,103,111,115,179,186]

However, these heuristic methods are insufficient to find better solu-
tions for more complex problems (other variants or different types of cus-
tomer distribution), since they did not have mechanisms allowing escap-
ing local optima [22, 111]. In other words, these heuristics heavily rely on
exploitation and are mostly greedy. But as shown in the next section, they
became integral parts of most metaheuristics, guaranteeing themselves as
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necessary components for solving the VRP.

2.5.3 Metaheuristics for the VRP

After the heuristics boom, metaheuristics became the leading methods
for solving the VRP. They incorporate strategies that allow escaping lo-
cal optima, finding a better balance between exploration and exploita-
tion. We consider two types of metaheuristics here for the sake of or-
ganisation: individual-based (or neighbourhood-centred as put by [186])
and population-based. The first group focuses on iteratively applying im-
provement heuristics on an incumbent solution, while the second has sev-
eral solutions which exchange information in some way to create new so-
lutions. We also talk about some hybrid methods, which combine two or
more algorithms in order to take the advantages of each one, and have
achieved the best results overall.

For individual-based metaheuristics, several have been successfully
applied for solving the VRP, we list some important work and briefly ex-
plain how they work. More about metaheuristics for the VRP and variants
can be found in [39, 70, 74, 153]

The Simulated Annealing (SA) [104] will allow a solution to deterio-
rate based on a temperature parameter. This method was inspired by the
process of physical annealing, i.e., heating and cooling down a crystalline
solid [140]. For optimisation problems, the algorithm allows worsening
moves as part of the heating analogy (exploration phase), while improve
the solution during the cooling down process (exploitation). The tempera-
ture parameter works as the probability of accepting worsening solutions,
and it will decrease over the execution time (as if cooling down over time).
Therefore, the algorithm starts with a focus on exploration, and turns to
exploitation over time. For the VRP, the SA starts with an initial solu-
tion, usually from a constructive heuristic, and improves on it with a set
of neighbourhoods which are chosen randomly [74]. Some improvements
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have been done for the SA in the VRP context based on Record-to-Record,
such as in [56, 118], where they add a limit to how much worse a solution
can be accepted in the heating process.

Tabu Search (TS) [79] is a metaheuristic approach which keeps a record
of previous moves in a list called tabu (hence the name). This list will
be used to avoid repeating the same move for a given amount of time,
based on a parameter, allowing worsening moves if the other available
moves are in the tabu-list [72]. The works of [69] and [40] have successfully
applied the TS to solve the VRP and VRPTW, respectively.

The Guided Local Search (GLS) [189] alters the objective function in
order to leave locally optimal solutions. It does that by penalising the
function considering some features of the problem [190]. The challenge
comes from how to select these features. The standard one is the longest
edges. A very efficient approach was recently proposed for the LSVRP
by [9], where the authors consider routes characteristics discussed in [11]
as part of the penalisation function, obtaining state-of-the-art results.

A Variable Neighbourhood Search (VNS) [134] will iterate through
three main steps: shaking, local search and move [86]. When shaking, a
random move in the neighbourhood is selected. A neighbourhood is then
selected (either randomly or deterministically) and searched. Finally, if
an improvement is found the method will start repeating the neighbour-
hoods, otherwise it advances to the next unexplored one. For the VRP, it
has found some work have found success when adding some additional
perturbation mechanisms and TS-like memories, such as in [107] for the
LSVRP, [63] for the OVRP6, and [33] for the VRP.

The Iterated Local Search (ILS) [16] does not consider the full search
space, but rather based on some underlying algorithm, usually a local
search. The ILS will explore a neighbourhood until a local optimum is
found, then change the neighbourhood through a perturbation phase [124].

6Open VRP, a variant where the vehicles do not need to return to the depot at the end
of each route.
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The perturbation usually employs some sort of history and try to move the
solution to another part of the search space. The solution found can also be
accepted or not based on some acceptance criteria. The ILS works similar
to a Hyper-Heuristic, since it can be combined with other metaheuristics
approaches in its core. For the VRP and also other variants, perhaps the
most well-known and still considered a state-of-the-art approach is the
work of [176]. Their hybrid ILS combines an exact Set Partitioning formu-
lation as one of the underlying algorithm while dynamically controlling
the size of the exact model to avoid losing performance with larger scales.
The authors find good results, improving several best results at the time,
for several variants. One of the downsides of this approach is the require-
ment of a good solver for the exact model to be efficient. The algorithm
also scales badly for larger instances (500+ customers).

The population-based metaheuristics will usually have a hybrid phase
with some local search to be more effective. We list some of these meta-
heuristics and how they are applied to solve the VRP.

The Ant-Colony Optimisation (ACO) algorithm [50,51] is based on the
behaviour of some ants species, which lay down pheromone in their trail
allowing other ants to communicate. The main steps of the ACO meta-
heuristic consists of a construction phase, where the m ants will build so-
lutions, then an optional search phase where each ant will explore using
local search, ending it with the pheromone parameter being updated ac-
cording to each ant experience [52]. The pheromone parameter and the
decay factor (how fast this pheromone dissipates) play a huge role in the
effectiveness of the algorithm. For the VRP, several ACO applications have
been proposed, such as [17,27,162,198], where each ant will represent a ve-
hicle and their goal is to build a feasible route, hence most are constructive-
based. The pheromone enters as historical data and local search is also
incorporated to improve each route.

Originally just an intensification step, the Path-Relinking (PR) [78,164]
is an evolutionary metaheuristic which use solution recombinations to



2.5. RELATED WORK 57

evolve their populations. PR explores trajectories between elite solutions
through neighbourhood moves in an attempt to find better solutions when
moving from one point to another. It was applied to the VRP in [92], where
it was combined with a TS to better explore the path between the points.

The Particle Swarm Optimisation (PSO) is a metaheuristic where each
individual in its population is a particle associated with an objective value
and velocity [101, 153]. The velocity replaces crossover and mutation in
classical GAs, as it modifies and interacts with different particles pushing
them to new solutions [153]. For the VRP, the work of [120] applies a PSO
algorithm where each particle is a matrix of probabilities for each element
(customer/column) to be in the vehicles’ route (row).

Perhaps the most well-known population-based algorithm, the Ge-
netic Algorithm [93] is inspired in the natural evolution process and has
been extensively used for solving VRP and its variants. The work of [155]
was the first to successfully propose an effective GA for the VRP. The
author proposed several key design choices which managed to result in
a competitive Hybrid-GA (HGA) for the VRP. The main differences are
the addition of an improvement procedure as the mutation step, as well
as additional specialised algorithms for population management, chro-
mosome translation and evaluation. In other words, when mixing local
search methods and neighbourhood moves. More recently, another Hy-
brid GA [185], later generalised for other variants in [187], got state-of-
the-art results and is still considered one of the most relevant works for
solving VRP and variants. The UHGS (Unified Hybrid Genetic Search,
as they call it) also adds more specialised algorithms regarding popula-
tion management (similar to the work of [155]) and more efficient evalu-
ation procedures. This work was later improved for the VRP and LSVRP
in [184], we talk a bit more about it in the next section, as the modifications
also focused large-scale.

In [34] the authors introduce a series of ruin and recreate moves by ex-
ploiting VRP characteristics, through the use of Slack Induction by String
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Removal (SISR). It became one of the state-of-the-art metaheuristics since
it was able to find very good results for several of the datasets in literature.
The SISR also presents an easy-to-reproduce algorithm, making it popular
fairly quickly.

The Google OR-Tools7, is also a tool for VRP that became popular re-
cently due to being open access and provided by Google. However, it
often performs much worse than the state-of-the-art metaheuristics.

All state-of-the-art algorithms for the VRP such as the UHGS [187], the
Hybrid-ILS [176], utilise a hybrid approach with local search mechanisms.
This is because local search has shown to be most effective when searching
for a good solution. However, when purely used, they lack the capability
to escape local minima, whereas the metaheuristics have carefully elab-
orated plans for such case. Therefore, the most efficient algorithms are
the ones that have selected the best pool of neighbourhoods for their local
search, and also have chosen efficient exploration methods which allows
escaping those minimal points. Additionally, as pointed out in [9], they
show that both the UHGS and the Hybrid-ILS, although keeping a very
good solution quality, take up to hours of execution time for solving in-
stances of 600 or more customers

Therefore, the main issues with the metaheuristic approaches for the
VRP are regarding the large number of parameters and design decisions
needed for achieving these good results, on top of their lack of scalability,
which is covered next.

2.5.4 Addressing the LSVRP Heuristically

Traditional metaheuristics for the VRP might not scale well for the LSVRP,
specially considering most of them ignore the size of the neighbourhoods.
Another common issue is memory management, which is mostly disre-
garded by the above algorithms for non-large-scale problems. Most meth-

7Available in https://developers.google.com/optimization/
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ods consider a distance table which is often calculated before execution,
size increases can make this table unfeasible for several computer sys-
tems, with tables of up to 1.5GB for a 20.000 customer instance (accord-
ing to [9]). Since this is only one of the data structures utilised in such
heuristics, it can easily become a problem if unchecked. We now list some
relevant work that solves the LSVRP and briefly report how they deal with
the large scale.

The work of [158] proposes a constructive heuristic method for a real-
world application for pick-up of employees in specific points. The heuris-
tic is based in finding the outermost points and add them first, making
their way through closer points, respecting capacity. Since it is construc-
tive, the algorithm has no scalability issues regarding neighbourhoods.
Although simplistic, the application of this method reduced both the total
distance by around 10% and the number of utilised vehicles, and is one of
the first work aiming a large-instance.

For metaheuristic development, in [118] the authors apply a SA for
solving instances of up to 1200 customers. Some of these instances are
proposed in the paper. Their SA limits the number of neighbours to be
explored to the 40 nearest. The results are within 3% of the best-known
solution at the time, and is achieved very quickly, averaging less than 4

minutes of execution time.

A two-phase method is proposed in [131]. The first phase focuses on
creating an initial solution based on the cheapest reinsertion with a com-
posite local search. The second phase is a GLS penalising longest edges,
storing the values to avoid recalculation. Additionally, they employ a
ranking system for the customers closer to the penalised edge, consider-
ing only some closest customers (based on parameters). Then, a destroy
and recreate heuristic is applied to improve the solution, also considering
a limited number of closest customers. Although they find very good re-
sults, even improving some best known solutions, the execution times are
inconsistent and are still somewhat slow, taking up to 11 hours.
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In a similar approach, the Guided VNS (GVNS) of [107] has achieved
good CPU time and results. The algorithm also has two phases, where
the first one is a VNS-like approach, building a solution starting from the
farthest customers, adding more customers and applying neighbourhood
moves. The second phase is a VNS which penalises the longest edges of
two given route pairs, followed by inter-route moves. Then, the intra-
route operators are applied if any modification happened.

A Quantum Annealing (QA) approach is proposed in [177]. QA is a
metaheuristic based on the Path-Integral Monte Carlo method. The method
works somewhat similarly to a SA, but with different energy equations
and representations. Although they find competitive results, the method
takes too long for finding such solutions.

A parallel heuristic method is presented in [182]. The approach con-
sists of splitting the search space into smaller cells that can be solved with
a parallel local search based on a ILS framework. The ILS is addition-
ally applied in the border regions (where cells meet) trying to find better
improvements since different routes are likely close in those areas. The
authors do some analysis on how to split the regions, finding that some
types of division are more effective in certain scenarios. They were able to
solve real-world instances with up to 20000 customers within 30 minutes.

The work of [121] applies two distinct operators to determine whether
a pair of routes are likely to have improving exchanges. Their Variable
Neighbour Descent (VND) method explores the full neighbourhood, ap-
plying the inter and intra-route moves in pairs of routes if they have a
distance or difference in angle between their centres of gravity smaller
than a given threshold parameter. As no comparison to other methods is
given, they only measure the effect of this threshold and how it improves
execution time, without much loss of quality.

The work of [202] has shown an hierarchical decomposition method,
based on an ILS framework. The LSVRP instance is divided into sub-
groups, finding a permutation of tasks and then splitting them to find a



2.5. RELATED WORK 61

solution, which is solved recursively. Then the solution is given to the
adapted ILS procedure. The result is improved with a local search which
are then fed to a new hierarchical decomposition scheme. The results,
however, are not competitive, not even beating the traditional Savings al-
gorithm for some instances.

An evolutionary multi-objective approach based on route grouping
was proposed in [196]. The authors considered a divide-and-conquer strat-
egy to do the decomposition based on three distinct objectives: intragroup
distance, intergroup distance and intergroup balance in size. These objec-
tives are considered to find better clusters which are then optimised with
a Tabu Search-based local search. They show that their multi-objective ap-
proach outperforms another considering the K-means to create the groups.
Overall, the method shows competitive results with execution times of less
than 1 hour for instances of up to 1200 customers.

In [157] the authors propose a POPMUSIC8 algorithm, which utilises
the already mentioned BCP from [146] as a heuristic, hence it is a matheuris-
tic. However, the method showed to be highly dependent on very good
initial solutions and is seen more as way to improve already reasonable
good solutions. Although it is able to solve large-scale problems, it does
so by taking a long time (several hours). It was, however, able to improve
some of the best-known-solutions from some of the benchmark instances.

Although these methods contribute to the literature of the LSVRP, some
get more attention and importance due to their outstanding contributions,
we list those next, starting with the one we use as baseline for most of our
contributions in this thesis, the KGLS.

The Knowledge-Guided Local Search and other State-of-the-Art

The Knowledge-Guided Local Search (KGLS) [10] is a deterministic algo-
rithm that was introduced by adapting an existing classical heuristic, into

8Partial optimization metaheuristic under special intensification conditions.
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a powerful VRP solver. It was later expanded to deal with large-scale prob-
lems, in [9], solving instances of size up to 30000 customers (these come
from a new dataset also introduced in [9]). The main differences between
the standard GLS and the KGLS are in the carefully elaborated neighbour-
hood pruning9, powerful local search moves (including a simplified ver-
sion of the Lin-Kernighan heuristic [90,119], the Cross-Exchange [178] and
the new Relocate-Chain) and the use of the width as part of the penalisa-
tion criteria. The width of a route was found to be a common characteristic
of the better solutions in [11], and it can be defined by Equation 2.8. Hence,
minimising the width could lead to better solutions.

width(i, j) = max(diE, djE)−min(diE, djE), E = Line(D,G) (2.8)

The width is the distance to a line (E) that is traced from the depot (D) to
the centre of gravity of a route (G), where diE and djE are the distances to
E. More details on the width are presented on the original work [11].

The KGLS method works as follows: from an initial solution (they use
a modified version of the Savings heuristic [37]) the solution is improved
until a local optimum is reached. From this, there is a perturbation phase,
where the solution is guided according to three different penalisation func-
tions which are applied after each iteration (the badness functions, pre-
sented in Equations 2.9, 2.10 and 2.11). Then, another optimisation is ap-
plied, repeating these two phases until the stopping criteria. Equation
2.12 is utilised as the new objective to be optimised during the penalisa-
tion phase, which considers the penalised edges (with L being a parameter
based on the Savings heuristics). Therefore, guiding the solution towards
solutions that have a smaller width.

bw(i, j) =
w(i, j)

1 + p(i, j)
(2.9)

9Among the pruning techniques, a preliminary evaluation of a possible move which
calculates the possible gains, avoiding the search if not positive. Another one saves only
a pre-determined number of distances in memory, based on the closeness of the nodes.
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bc(i, j) =
c(i, j)

1 + p(i, j)
(2.10)

bw,c(i, j) =
w(i, j) + c(i, j)

1 + p(i, j)
(2.11)

g(i, j) = c(i, j) + λp(i, j)L (2.12)

Here p(i, j) represents the number of penalties the edge (i, j) already has.
Then, the objective function (Equation 2.12) will indirectly remove the
worse edges considering these three penalisation criteria alternatively and
in this fixed order (W → C → WC). In function 2.12, λ represents the
weight of the penalised edges (i, j), while L is the average cost of an edge
on the initial solution.

More recently, [184] improved their original work (the already men-
tioned UHGS [187]) specifically to the CVRP (and LSVRP). In this new
version, a new neighbourhood operator is introduced, the SWAP*. In it,
there is an exchange of two customers between two distinct routes without
an insertion in place.

Another method often ranked among the state-of-the-art is an exten-
sion of the already mentioned Lin-Kernighan-Helsgaun heuristic, from
[91], the LKH3. It solves the VRP and LSVRP by transforming them into
a symmetric TSP with some additional handling made for each specific
variant of routing problems. Although it can be effective in solving large-
scale problems, it is rather slow, as shown in [9], taking from days up to
a month of execution time. Still, it is often used as a baseline for evaluat-
ing the quality of other LSVRP methods since it is able to solve the large
instances without extra tuning.

2.5.5 Hyper-Heuristics for the VRP and LSVRP

Several HHs have been proposed to solve the VRP, across the different
types of HH. As shown by [150], with the exception of the combination
Generation HH and perturbation heuristic, all major types of HH have
been used in some way to solve this problem, until the year 2018. The
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used construction heuristics for the VRP are either the classic construc-
tive heuristics such as the Savings (from [37]) used in Selection HH, or
a set of functions and problem attributes for Generation HH [150]. The
perturbation-based HH will use the neighbourhoods to modify a solution.

Although the Constructive Selection HH is mentioned in the VRP liter-
ature, it is never alone, always being accompanied by perturbation heuris-
tics. This is because the traditional constructive heuristics employed, such
as Sweep, Savings, Insertion [135] or other greedy heuristics, do not find
competitive results and need to be further improved. For example, in [130]
the authors utilise a greedy insertion algorithm and the sweep heuristic
not only for generating an initial solution, but also as exploration opera-
tors. They apply six different neighbourhoods for exploitation.

Not named a Hyper-Heuristic, the work of [151] employs the same
concepts of a Perturbation Selection HH. Their Adaptive Large Neigh-
bourhood Search (ALNS) was designed to solve five VRP variants (VRP,
VRPTW, MDVRP, S-DVRP10 and the OVRP) which are converted to an-
other more general problem to be solved by their framework, the Rich
Pick-up and Delivery Problem with Time Windows (or RPDPTW). Af-
ter conversion they solve the RPDTW through a series of neighbourhood
moves which are selected by the proposed new adaptive layer to the LNS
of [171]. This layer works similar to other HHs, operating at a higher-
level when choosing which type of perturbation heuristics to apply in this
unified type of problem. Although effective, converting these problem
variants is not so straightforward, requiring additional design effort.

The work of [172] combines both Selective and Generation HHs in a
two-stage algorithm. The first stage will build a heuristic using a Genetic
Programming (GP) approach. GP can be viewed as a type of Generation
HH since its tree-based structure results in a program rather than a solu-
tion itself. In their work, the GP builds a constructive heuristic using a set

10Site-Dependent VRP, a variant where a sub-set of the customers can only be served
by some specific vehicles.
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of several functions and nodes. The resulting constructive heuristic is then
used to create the set of initial solutions. The second stage uses a perturba-
tion Selective HH to improve the solutions from the previous stage, util-
ising a set of local search heuristics and crossover operators as the LLHs,
selected at random. Although an improvement is shown regarding the
initial solutions created by the resulting method, the overall improvement
after the two-stages is not competitive with other metaheuristics.

In [55], the authors use a Generation HH method using a grammar-
based form of GP, known as Grammatical Evolution (GE). GE uses strings
expressed in Backus Naur Form which are translated into the resulting pro-
gram. The pre-defined grammar translates these strings, having several
steps such as finding an initial solution, ruining and recreating rules, and
terminal points and functions where the routes components and functions
are stored, respectively. The resulting heuristic is used to feed a VNS sys-
tem to evolve a solution. In other words, the method creates a constructive
heuristic and neighbourhoods which are used in a traditional VNS algo-
rithm. The work, however, explores very little on the results, not finding
competitive results even for small scale instances (less than 40 customers).

Firstly in a short paper [128] and later expanded in [127], the authors
of this work propose another GE method for the VRP where the result-
ing string also contains the calls for improving the solution (perturbation
heuristics). One of the possible improving moves is a deterministic varia-
tion of the ILS, basically a full metaheuristic. The grammar consists of four
main elements which are applied consecutively. First a strategy is defined
to create an initial solution (or partial solution). Then, constructive opera-
tors are used to build a feasible solution. The third phase will improve the
solution. And, finally, a fourth phase where the process is repeated by a
number of cycles to find a final and improved solution. The authors also
do some tests for online and offline learning, however not much details
are given, other than training with different instances for the offline mode.
In the short version they present few good results for instances with up to
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80 customers. On the new version, they found the best results for most of
the 40 instances of up to 101 customers, even improving some of them.

Not many HHs have specifically dealt with the LSVRP. We could only
find the paper of [167], which does tackle a large scale variant, but for
the VRPTW. Nevertheless, we comment on it since the approach is rele-
vant for this study. The authors apply a two-stage Math-Hyper-Heuristic
to solve the problem and to deal with the large scale. The first stage di-
vides the instance into m sub-parts which are fed into a column gener-
ation method to find an initial solution. The second stage is the Hyper-
Heuristic phase, where a Perturbation Selection HH is applied to improve
the solution given in the previous stage. The heuristics are selected using a
Multi-armed bandit mechanism (MAB) which rewards each LLH accord-
ing to its performance over time. Additionally, after the MAB selects the
next heuristic, a Monte-Carlo approach is utilised to accept the resulting
solution based on a probability, if it is a worsening move, since improving
moves are always accepted. They utilise a set of 7 different LLH, find-
ing competitive results against state-of-the-art algorithms. However, the
impact of each stage is not clear. Column generation might be too slow
for larger instances (they limit the tests on instances from 200 to 400 cus-
tomers), and determining m experimentally might be unsuitable for other
types of instances. No attention to scalability is given to the HH phase.

2.6 Summary

In this chapter we presented an overall idea of the current state-of-the-
art for the LSVRP, introducing some basic concepts of the field, HHs, as
well as an overview of classical heuristics and metaheuristics for solving
the VRP. Most approaches apply, at least on some level, a manual expert-
driven design decision. Although these decisions can perform well in
several scenarios, there is no guarantee that they are generalisable. Not
only these manual decisions might not work well on different kinds of in-
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stances, they are also loosing on potential effectiveness, as they opt for pa-
rameter values or elements that are good on average, but might not cover
well some cases.

The HH approaches that aim to minimise these downsides, however,
are far from solving these issues. Not only that, but most of them fail to
deal with the scalability of instances. In summary, the limitations that can
be found in the LSVRP literature are:

• The metaheuristics and most common methods applied are tailored
for specific benchmark instances that might not be generalisable for
other applications, customer distribution or demands.

• Most methods heavily depend on manually designed pruning. This
is done by experts and might not be the most suitable approach for
different sizes or instance configurations.

• There are a limited number of HHs considering large scale problems.
Most HHs do not present specific concerns regarding the scale of the
problem. Therefore, a lot of possible approaches can be considered
and tackled to find results that could not only be used across differ-
ent datasets, but also lead to discoveries in understanding VRP solu-
tions more closely. This is one of the motivations that [165] listed as
why to study HHs: to understand more about the problem.

• The HHs also fail to provide any competitive advantage. Although
several authors seem to agree that HHs should exchange quality to
generality, theoretically they can be competitive as the manual de-
signed decisions are one of the possible configurations of the heuris-
tic search space. Hence, there is room to improve the quality of the
HHs while also keeping their ability to be general, adapting or learn-
ing how to solve the problem in a better way.

This thesis aims to investigate and develop new methods to address
these limitations.
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Chapter 3

Learning Effective Initialisation

In this chapter we tackle the use of learning techniques to find effective
initial solutions.

3.1 Introduction

Examining the search space of a complex problem such as the VRP is a
challenging task. Some recent work attempts to understand the landscape
of such a space [3], but still not much information can be extracted. If such
a landscape could be fully known a priori, we could utilise that informa-
tion to search for solutions directly in the most promising regions. As that
is not the case, we still need to start the search from some point. There
seems to be a correlation between the starting point and the quality of the
local optima [143], therefore, where the search starts will have a high sig-
nificance for the methods’ performance. Hence, predicting the algorithm
which performs best in such a task could be seen as a meta-learning prob-
lem [173]. However, determining the initial point is only the first step in
the process, which will be improved afterwards.

Several VRP methods choose a random initialisation approach, espe-
cially the population-based ones, spreading their chances of landing in
good regions of the search space. However, the LSVRP methods are still

69
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prone to the quality of a single initial search space, since these commonly
use a local search framework with one single solution. Therefore, it is cru-
cial for such a point to provide some advantage.

However, this starting point was not heavily considered in recent lit-
erature, as it is thought to provide little gain when compared to high-
performing improvement techniques. Hence, what ends up happening
is that a generic construction method will be used based on just its overall
quality or the designer’s affinity to that heuristic.

We consider this an oversight. If a better initial region can be found, the
search method would prove even more effective1. Machine Learning (ML)
can help automatically identify those regions that have potential to include
better local optima — and this could be achieved with some training data,
not requiring expensive landscape analysis methods. For example, consid-
ering each constructive heuristic builds a solution in a certain way, leading
to a specific region of the solution search space, the ML techniques could
learn when to select each method to land on more promising regions. The
approaches developed in this chapter attempts to learn where to land on
the solution search space.

3.1.1 Chapter Goals

The key goal of this chapter is to learn how to effectively use the initial solution
to improve the search efficiency. We introduce an analysis of the effects of
the initial solution and evaluate them with ML techniques. We then use
some of the solutions features to build novel GPHH terminals and a fitness
function which are used to construct new initial solutions for a guided
local search framework. This chapter has the following main objectives:

1. Provide an analysis of the impact of common initialisation heuristics
to the improvement process.

1This argument could be valid for population-based methods as well, but it is not in
the scope of our thesis to examine such cases.
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2. Utilise different instance and solution characteristics as features in a
learning model to predict which initialisation heuristic will perform
better for a specific instance.

3. Introduce a new fitness function and terminals which are used in a
GPHH approach to build solutions in specific regions of the search
space that are easier to optimise.

3.1.2 Chapter Organisation

This chapter is organised as follows: Section 3.2 presents an analysis of the
initial solution impact. Section 3.3 introduces the learning strategy applied
to predict the best initialisation heuristic. In Section 3.4 we introduce our
GPHH approach which builds a new initialisation heuristic. Finally, an
overall Chapter summary is given in Section 3.5.

3.2 The Initial Solution Impact

There is little evidence of how much the starting point affects the perfor-
mance of local search-based methods in the recent literature for the VRP.
Most of these local search-based methods utilise a simple constructive
heuristic to build the initial solution (as shown in Chapter 2), since they
are mostly very fast (most implementations can find full solutions in less
than one second, even for large-scale instances), and focus on the improve-
ment phase which is more expensive (minutes to hours of execution). In
this section we discuss this and present some experiments on the impact
of the initial search and argue their relevance.

3.2.1 The KGLS and the Initialisation Heuristics

The Knowledge-Guided Local Search (detailed in Chapter 2) was chosen
for most of the experiments in this thesis for two main reasons. First, the
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KGLS is a framework fully built on a local search. While other state-of-
the-art methods, like [184], use local search in their search process, they
also perform different types of exploration unrelated to the local search,
like crossover or the use of exact approaches (like in [176]). The KGLS, on
the other hand, has all its steps involving the local search process, which
matches our goals of optimising the local search configuration.

The second reason is the scalability. The KGLS was shown to perform
efficiently even when the problem size increases, solving instances of up
to 30000 customers within a very reasonable time (a couple of hours), hav-
ing almost the same quality as LKH [91] that requires days for execution.
Although this thesis focuses on the KGLS, the principles applied through-
out the thesis can also be applied to other local search methods, includ-
ing those within the other state-of-the-art metaheuristics, such as the local
search steps used in [176, 184].

The KGLS originally uses a modified version of the savings heuris-
tic introduced in [37]. Clarke and Wright’s savings heuristic (CW) builds
the solution by starting with trivial routes (n vehicles serving the n cus-
tomers in back-and-forth routes), they are then merged at each following
iteration maximising the loss of overall distance when connecting them, if
feasible, based on a savings table (hence it is popularly known as the sav-
ings heuristic). The modified version introduced in [9] works about the
same way, but it is optimised for large instances, where the savings table
only holds the 100 closest customers (hence we use the acronym CW100),
to avoid a very large (memory-wise) table to be recorded. Although this
modification limits the search space, it was shown to be almost as good
as the original CW heuristic for a lot of instances. We confirm this simi-
larity in our results, but also argue that the original CW might still be a
valid heuristic to be considered even in large-scale instances, as memory
limitations tend to be fairly easy to overcome by technological advances.

Apart from these two methods, we also utilise other two popular ap-
proaches that are used in VRP as constructive heuristics: the Nearest Neigh-
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bour (1-NN) and the Sweep heuristic (SWEEP). The first was originally in-
troduced in [18] for the Travelling Salesman Problem but was then adapted
for the VRP. The idea is simple, starting from the depot, select the nearest
customer and add to the first’s vehicle route. Next, add the closest cus-
tomer from the first customer and repeat the process until the vehicle’s
capacity is reached, skipping the closest customers which do not allow
for a feasible addition (whose demand added would exceed the vehicle’s
total capacity load). Then, the next vehicle is chosen while selecting the
closest unvisited customer from the depot, repeating the process as the
previous vehicle. This greedy heuristic tends to perform very badly when
compared to other constructive heuristics since it does a poor job of ac-
counting for the next routes.

The Sweep heuristic [76, 195] builds the routes by considering an ini-
tial angle and ”sweeping” a line segment across the customers starting a
new route whenever the vehicle is full. This method attempts to put the
customers that are close to each other (considering the angulation from
the depot, forming sort of ”petals”) in the same route. The routes gen-
erated are usually not very effective, as the method also suffers from the
greediness of maximising the vehicles’ load. An example of the solutions
generated by the four constructive heuristics for the X-n176-k26 instance
and their total costs are shown in Figure 3.1. We can clearly see that there
is a big difference in cost and route structure (apart from the two savings
methods, CW and CW100, which are fairly similar to each other), which
illustrates how far these solutions are from each other.

3.2.2 Analysing the Initialisation Heuristics Performance

For the analysis, we first ran the above four constructive heuristics over
the 100 instances of the ”X” VRP dataset [183]2. This dataset provides in-

2The instances’ name represented as ”X-ni-kj” are a code for their number of nodes
(i) and the minimum number of vehicles (j).
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Figure 3.1: Example of routes created by the 4 heuristics considered — for
instance X-n176-k26: (a) CW100 (with cost 52570) (b) CW (with cost 52551)
(c) 1-NN (with cost 66134) (d) Sweep (with cost 95138)

stances with different customer distributions (network topologies), such
as Clustered (customers can be easily grouped), Random (customers are
spread randomly) and the mix Random-Clustered (RC, where both clus-
ters and random customers are present). The results presented here were
obtained by changing only the algorithm utilised in the construction of the
initial solution.

As can be seen in Table 3.1, it is clear that both CW and CW100 perform
much better than the other 2 heuristics (CW wins overall by a bit, which
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Table 3.1: The initial costs given by the different initialisation heuristics for
some representative instances. The average represents the value over the
100 instances of [183].

Instance Topology CW100 1-NN CW SWEEP
X-n125-k30 C 59659 69054 59659 73647
X-n157-k13 C 17831 18979 17831 26418
X-n172-k51 RC 48228 64976 48228 69382
X-n233-k16 RC 20433 30950 20433 42959
X-n247-k47 C 40870 52358 40870 61692
X-n367-k17 C 25348 28746 25343 64245
X-n384-k52 R 69524 74913 69526 128751

X-n420-k130 RC 112317 140018 112604 147419
X-n469-k138 R 235279 242364 234913 330625
X-n524-k137 R 166509 217803 165536 240520
X-n641-k35 RC 68128 71182 67988 214738

X-n670-k126 R 158564 206695 158545 270490
X-n749-k98 C 79313 105117 79698 158132

X-n837-k142 RC 201348 207337 201119 355154
X-n979-k58 C 123528 143373 123224 328968

Average — 66395.86 76384.24 66352.22 129836.1

is expected as it does not limit the savings table). Although Table 3.1 is
showing only a few randomly selected representative (topology-wise) in-
stances, the averages presented are for all 100 instances from the dataset,
which are not fully presented due to space limitations. There is also no
clear pattern on which topology is preferred for each instance. Based on
this table, one might expect the same distribution for the solutions’ quality
after the local search phase, as both CWs are leading the ”race” for a good
final solution by quite a big margin. These results would match the find-
ings of [15], which shows that some greedy heuristics can be impractical
as starting solution for some problems.

However, as Table 3.2 shows, that is not true. The table presents a sum-
mary of the instances from the ”X” dataset [183] (the same instances from
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Table 3.1 are shown, with averages from all 100 instances as well), after 10
runs3 of 15 minutes of the KGLS algorithm with each initial heuristic. A
fixed time approach was selected rather than a number of fixed iterations
as the first are dependent on the instance being solved4, while time is a
criterion that is employed in real-world applications.

Surprisingly, the 1-NN heuristic actually has a better overall final value
over the 100 instances. Considering it is much worse in the initial stage at
around 15% higher cost, the starting point was able to overcome the large
gap and provide a final better solution on 34 instances (52 if including the
ones where it matches the CW100). Perhaps even more surprising is the
Sweep heuristic, which starts at an enormous 95% GAP to the CW100 and
still was able to finish by a mere 0.04% higher cost in the same time frame.
The topology also does not seem to have any influence on this, just like in
the initial solution. All constructive methods were able to perform the best
for at least 13% of the 100 instances considered. These additional statistics
are condensed in Table 3.3.

Table 3.3 also shows why just choosing a fixed option such as the Near-
est Neighbour (or any other in particular) is a sub-optimal strategy. The
table shows that although overall the performance can be better (improve-
ment of up to 0.11%), it would also hinder a lot of solutions (39 out of 100
which would have an average worsening of 0.15%, if considering the 1-
NN). This agrees with the No-Free Lunch theorem [194] since it is clear
that some instances are better solved by different methods, but also per-

3As the KGLS is deterministic, unlike the original GLS, and so are the selected heuris-
tics, there is no need for statistical analysis on these runs. We still run it 10 times to
account for possible oscillations in computer performance.

4It would not be fair to give a fixed number, e.g. 5000 iterations, for a 100 customers in-
stance and the same number to a 1000 one, as the first would obviously benefit more than
the second. Although time can be argued the same, some instances have a more complex
search space. In those cases, a fixed number of iterations could be very expensive. For
example, the larger instances can take a couple of seconds per iteration (multiplying that
by a big number can easily lead to hours of execution).
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Table 3.2: The results obtained by KGLS with different initial solutions on
some representative instances. The average represents the value over the
100 instances of [183].

Instance Top. CW100 1-NN CW SWEEP Best
X-n125-k30 C 56167.6 56144.5 56169.5 56129.3 -0.07%
X-n157-k13 C 16876 16876 16876 16876 0.00%
X-n172-k51 RC 45664.0 45789.8 45664.0 45643.0 -0.05%
X-n233-k16 RC 19360.0 19363.6 19360.0 19359.9 0.00%
X-n247-k47 C 37701.0 37662.0 37685.0 37701.6 -0.10%
X-n367-k17 C 23442.8 22898.3 23415.5 23033.0 -2.32%
X-n384-k52 R 66585.0 66599.0 66475.0 66490.0 -0.17%

X-n420-k130 RC 108374.5 108370.9 108425.0 108379.3 0.00%
X-n469-k138 R 223403.0 224029.8 223263.0 224154.3 -0.06%
X-n524-k137 R 157292.0 156045.5 157716.2 157529.0 -0.79%
X-n641-k35 RC 64175.0 64302.5 64223.0 64444.0 0.00%

X-n670-k126 R 152500.0 149960.8 152206.0 152102.7 -1.67%
X-n749-k98 C 78365.0 78344.5 78273.0 78258.0 -0.14%

X-n837-k142 RC 195403.0 195258.7 195393.0 195419.0 -0.07%
X-n979-k58 C 120061.0 119889.8 119794.0 119855.0 -0.22%

Average — 63699.1 63630.0 63688.1 63721.5 -0.16%

form worse for others.

Table 3.3: A summary of additional statistics for the preliminary experi-
ments over the 100 instances of [183].

CW100 1-NN CW SWEEP
Total Best 28 34 16 22
Avg. GAP to CW100 — -0.11% -0.02% 0.04%
No. of instances worse
performing than CW100

— 48 38 57

Avg. GAP when worse — 0.13% 0.16% 0.17%

One might argue that it is much easier to find improvement in a worse
solution than for an already good one. Although that is true, it would not



78 CHAPTER 3. LEARNING EFFECTIVE INITIALISATION

explain how the worse solution ended up being better. A counterargu-
ment for that could be: an already good solution leads to a local optimum
much faster, and escaping it could be harder for the selected local search,
hence the initialisation methods that produce worse initial solutions are
less bound to such traps. However, if that is the case, and given the com-
plexity of the search space of a problem such as the VRP, it would be also
equally easy to trap the worse initial solutions in their own bad local op-
tima, not allowing for a better solution to be found given the same oper-
ators. In fact, given that this experiment is bound in time (all heuristics
run for 15 minutes), we can argue that the time lost to make the obvious
improvements on the worse initial solutions would make up for the best
initial solutions escaping their local optimum. Therefore, there should be
other factors contributing to such differences.

This analysis shows that (1) a better initial solution does not necessar-
ily lead to better final solution after the search; (2) no initialisation method
is always the best. This leads us to believe that there are some character-
istics in each initial set of routes that allow for the local search method to
find an ”easier” path to a better final solution. If such characteristics exist,
they could be extracted and, therefore, a machine learning method could
be used to learn their patterns. Doing so would allow for the local search
methods to be tuned for the given instance based on the extracted charac-
teristics of these easy (and fast) to compute heuristic methods. Although
the gains are potentially small, learning which initial method to be used
can provide a gain that is essentially free, as there is no need to modify the
underlying complex local search method. This concept could theoretically
be applied to systems already deployed with minimal effort (if the initial
solution process is detached from the main core of the search).



3.3. LEARNING TO SELECT INITIALISATION METHOD 79

3.3 Learning to Select Initialisation Method

Since different initialisation heuristics can perform the best on different
instances/scenarios, a natural research question is whether we can use
machine learning to automatically select the best initialisation heuristic for
a given instance. In this section, we will investigate this research question.

The idea is that there are features in the solutions that can give a hint
on how the search space ”looks like” to the search method, and we could
use those features to do such prediction. However, it would be a chal-
lenging task to define those features. For that we turn to literature, where
several features and how to extract them have already been proposed. As
shown in Chapter 2.5.4, the features proposed by [11] were applied suc-
cessfully to distinguish good and near-optimal solutions, so they were the
primary candidates for our approach. At first glance, some features would
also make sense for this task, such as the number of vehicles used and the
total solution cost for each method. Therefore, we also added those two
additional features. A brief description of the features is presented in Ta-
ble 3.4, where we divide them based on whether they are specific to the
solutions built by the heuristics, or to the instance-specific ones, which
are used as a form of normalisation, since they remain the same between
different heuristics. For more details on the other features the reader can
follow [11].

To learn the relationship between these features and the best initialisa-
tion heuristic we need a classifier. Since it is not in the scope of this thesis
to find the most suitable classification algorithm for this task, we utilise a
diverse set of ML techniques, which are described in Section 3.3.3.

3.3.1 Labelling the Data

Having the features and the ML methods, we still need one final ele-
ment for training them: the labelled data. Although there might not be
a ground-truth solution since that would depend on several factors such
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Table 3.4: Solution-specific (∗) and Instance-specific (+) features. All fea-
tures are proposed in [11], except for Cost and NTS.

Feature Description
∗ Cost Total cost
∗ NTS No. of vehicles/trucks used
∗ S1 Avg. number of intersections per customer
∗ S2 Longest distance between two connected customers per route
∗ S3 Average distance between depot to directly-connected customers
∗ S4 Average distance between routes centres of gravity
∗ S5 Average width per route
∗ S6 Average span in radian per route
∗ S7 Average compactness per route, measured by width
∗ S8 Average compactness per route, measured by radian
∗ S9 Average depth per route
∗ S10 Standard deviation of the number of customers per route
+ I1 Number of customers
+ I2 Minimum number of routes
+ I3 Degree of capacity utilisation
+ I4 Average distance between each pair of customers
+ I5 Standard deviation of the pairwise distance between customers
+ I6 Average distance from customers to the depot
+ I7 Standard deviation of the distance from customers to the depot
+ I8 Standard deviation of the radians of customers towards the depot

as the operators used and the time given to run them, we still believe their
difference in performance (as shown in Section 3.2) is not a coincidence,
but rather their characteristics that lead to specific regions of the solution
search space. Therefore, we utilise the difference in performance of the
KGLS in a 15 minutes run as the label for each class, where the label is
the best performing initialisation heuristic. For example, the instance ”X-
n469-k138” has the best performing solution starting with the CW heuris-
tic, hence its class would be labelled as CW. We do the same labelling for
all instances, and, in case of ties (such as instance ”X-n157-k13”, which all
heuristics find the best solution) the instance gets labelled with the default
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method (CW100). Hence, the number of instances in each class is the same
as presented in Table 3.3.

3.3.2 Machine Learning Approach

Given the labelled data, we can now train our ML methods and learn
how to select the initialisation heuristic. The training and test processes
are shown in Figure 3.2. For each training instance, first, we extract the
instance-specific features. Then, we apply the 4 methods (CW100, CW,
1-NN and SWEEP) to the instance to generate the corresponding solu-
tions and extract the solution-specific features. These are fed into the ML
method of choice which will predict the output considering the labelled in-
stance class as the expected output. Then, when applicable (as it depends
on the ML method), the feedback process happens. After the training, we
obtain the best classifier for selecting the best initialisation heuristic. Then
we move on to the test phase. During the test phase, the 4 methods are
first applied to the test instance. From each of the 4 solutions, we extract
the solution-specific features, which are used in the ML prediction step.
The ML output will be matched to the generated label (as specified above)
and we can calculate the accuracy.

In the case of deployment of the method for a real operation, which
would include unseen and unlabelled data, the ML would still output a
predicted initialisation heuristic, which would then be used by the KGLS
as its starting solution, moving on to the improvement phase. It is impor-
tant to note that this process is feasible due to the heuristics used being
incredibly fast, allowing us to collect all these features within the first few
seconds of execution, and not damaging the overall performance of the
algorithm across most scenarios (which we assume would require the al-
gorithm to run for more than a couple of minutes).
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Figure 3.2: An overall flowchart for the: (a) Training phase (b) Test phase

3.3.3 Experiment Design

The experiments were done using the ”X” dataset presented in [183]. Apart
from the different topologies as already mentioned in Section 3.2, this
dataset has instances with distinct: depot locations (either at a Random
location, at the Centre or at a Corner), customer demand distribution (ei-
ther the same demands or varying them, and also with different ranges),
number of vehicles (from small to large) and number of customers (rang-
ing from 100 to 1000). This dataset provides sufficient diversity of features
and topologies for our methodologies.

The ”X” dataset is randomly split into 70 : 30 for training and testing,
respectively. Additionally, we perform the training and test on 30 inde-
pendent random data splits, allowing us to measure the robustness of the
features across distinct data splits. As mentioned in Section 3.3, all the 100

instances were labelled by running the KGLS for 15 minutes and selecting
the best-performing initialisation heuristic.

The utilised ML methods are the following:
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• Random Forest (RF)

• Linear Support Vector Machines (SVM)

• Decision Tree (DT)

• Multi-layer Perceptron (MLP)

• K-Nearest Neighbour (KNN)

• Gaussian Process (GPC)

• RBF Support Vector Machines (RBF)

• Ada Boost (ABC)

• Gaussian Bayes Network (GNB)

• Quadratic Discriminant Analysis (QDA)

These classification algorithms are taken with their default implemen-
tations and default parameters from the Scikit python library [145]. These
methods were selected because they are diverse enough to validate that
the learning is not by random chance. The use of some of these meth-
ods could also help identify some feature relevance. For example, RF has
a built-in feature importance method in the Scikit library, allowing us to
evaluate which features are more relevant. We do not enter the merit of
explaining these methods, not only because of it being out of scope for
this thesis, but due to the complexity required to do so.

3.3.4 Results and Discussions

Now we explore the results of the ML test, comparing them to the use of
a single initialisation heuristic. It is important to note that the accuracy of
the results is not of the type ”correct-or-wrong”. This is because selecting
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the wrong class does not mean the solution will be worse due to the exis-
tence of ties. For example, in an instance where CW100 and CW have the
same final solution, its label would be CW100, but selecting CW would
provide the same solution quality.

As can be seen in Table 3.5, which shows one single test run (out of the
30) to exemplify the data, the accuracy for some methods can be quite low.
However, when looking at the overall costs, most ML methods were able
to learn how to select initialisation heuristics with some degree of success.
When comparing to the baseline (i.e. when utilising the default approach
of only using one fixed initialisation heuristic, the CW100), most of the 10

methods were able to learn how to improve it, with the exception of GPC,
for several of the runs. We also compare these predictors to the optimal
selection, i.e. if all best heuristics were to be selected perfectly. Several
methods were just barely worse, even with very low accuracy, indicating
that the learning strategy was able to succeed.

Table 3.5: Results for all the considered ML methods and their respective
costs for one of the runs with 30 randomly selected test instances. They
are also compared to the default mode (using only CW100) and to a theo-
retical 100% accuracy method.

Method CW100 Best possible RF DT SVM KNN
Accuracy — 100% 43.33% 43.33% 33.33% 60.00%

Average Cost 85466.8 85192.8 85430.2 85446.5 85230.1 85228.2
Difference to Default — -0.3206% -0.0428% -0.0237% -0.2769% -0.2792%

Difference to best possible 0.322% — 0.279% 0.298% 0.044% 0.041%

Method MLP GPC RBF ABC GNB QDA
Accuracy 33.33% 16.66% 53.33% 46.66% 26.66% 46.66%

Average Cost 85236.2 85448.9 85234.1 85243.3 85458.7 85240.5
Difference to Default -0.2699% -0.0210% -0.2723% -0.2616% -0.0095% -0.2648%

Difference to best possible 0.051% 0.301% 0.048% 0.059% 0.312% 0.056%

To verify that these values are not random, Figures 3.3 summarise the
performance of the chosen methods over the 30 runs. The first violin-plot
(Figure 3.3 (a)) presents the accuracy, which varies quite a lot, but also
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shows that KNN seems to perform the best, followed by the RBF-SVM
and MLP. Both linear-SVM and GPC also are able to find good peaks, but
fail to generalise well, having a very large variance, although this can be
argued for most methods.
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Figure 3.3: The overall performance of the ML methods over the 30 runs
by two different statistics: (a) Accuracy (b) GAP in solution cost to optimal
classification.

When looking at their ability to select good heuristics (i.e. not the best,
but still better or equal to the baseline), we see a slightly different trend.
The second violin plot (Figure 3.3 (b)) presents this information, with the
GAP to the best possible selection. Here we also add the baseline perfor-
mance (as CWH) — which shows how the default strategy would miss on
quality over the different splits of the data, and the additional initialisation
heuristics (CW, 1-NN and SWP), in order to verify whether it is worth to
select a fixed mode. In the figure, we can see that a lot of the methods are
consistently better than the baseline. In this graph we see less variability
to the results, meaning the methods are likely miss-classifying instances
with either one of the same quality or with the second-best heuristic. Here
we notice that KNN also performs the best, but this time followed by the
linear-SVM as well as the RBF. Although a few outliers exist, these meth-
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ods still have a higher chance of finding a heuristic selection that improves
over the baseline. A notorious exception, when compared to fixed strate-
gies, can be seen in the Nearest Neighbour. The 1-NN shows a good per-
formance overall and with less variance than other heuristics and is ar-
guably better than half the methods.

3.3.5 Further Tests and Feature Analysis

To verify the generality of the applied learning, since we have a limited
number of instances to train, we also test the ML methods in both Li [118]
and Golden [80] datasets. As they have very different characteristics from
the ”X” VRP dataset, we can validate if the features used are enough to dif-
ferentiate the initialisation heuristics performance. These datasets vary by
the number of customers from 240 up to 1200, although having a smaller
number of instances (12 for the Li dataset and 20 for the Golden one). In
Table 3.6, we show the number of instances in which each initialisation
heuristic performs the best. We test with all the 32 instances after each
training split from the previous experiment.

Table 3.6: Number of instances that each initialisation heuristic outper-
forms the others, Li [118] and Golden [80] datasets.

CW100 CW 1-NN SWEEP
Li 9 1 2 0
Golden 9 2 7 2

As for testing the algorithms in this new data, we show the results in
Figures 3.4 (a) and (b). Accuracy-wise, we see a different behaviour, where
most methods have a higher classification accuracy. The most notable dif-
ference is the drop in performance from the KNN method, while the MLP
and SVM actually improve their performance. Performance-wise, we see
a different picture from the first test. Here, most methods struggle to out-
perform the baseline. However, it is important to note that the lack of
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instances and how closely their solutions are, play a big role in this perfor-
mance. For example, the difference between the best-performing mode,
the baseline CW100, and the second-best, 1-NN, is only 0.002%, indicating
that they are almost the same in the 10 minute run. These results, how-
ever, do not discourage our findings, as they still show some insights into
initialisation heuristics behaviour.
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Figure 3.4: The overall accuracy and performance of the ML methods over
the 30 runs considering the Li and Golden datasets.

We also look into the features for more clarification on the ML be-
haviour. For this, we look into Random Forest’s ability to rank the im-
portance of the features. We show the top 15 features in Figure 3.5 for the
RF’s best run. We can see that the solution features are playing a bigger
role in the classification (which is expected from the showings in [11]), and
varying between the heuristics, which is expected as a way to differenti-
ate them. As can be seen, the two features introduced (cost and NTS) also
seem to be relevant in distinguishing the methods’ performance. These
features make sense as they are often quite different between methods (as
clearly seen in Figure 3.1). The only instance characteristic that showed
in the top 15 was the average distance to the depot (feature i6), which can
indicate the density of the instance can be decisive for normalising the so-
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lution’s characteristics. One thing is important to note, however, is that
the importance of these features is never of high value — meaning they
are used to differentiate the classes but not strong enough to make a clear
distinction.
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Figure 3.5: Feature ranking from one of the runs of the Random Forest.

3.3.6 Summary

In this section we introduced the use of different ML techniques to pre-
dict the best performing initialisation heuristic. We utilise several features
from the considered constructive heuristics and feed them to our training
model — in addition to the data that we labelled with some preliminary
experiments. We were able to achieve good classification accuracy and
improve over the default implementation.
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3.4 GPHH for Effective Initialisation

In the previous Section we developed a learning strategy to predict the
best initialisation heuristic. In this section we present the idea for using
one of the most relevant solution characteristics to build a new solution.
Our proposed Genetic Programming Hyper-Heuristic is mainly based on
evolving a rule which is used to build a LSVRP solution in a more promis-
ing region of the search space. This is done by considering the width of
a route, which was shown to be one of the main common metrics to the
closeness to optimal solutions, as shown in [11].

3.4.1 Novel Terminals using the Width

The proposed GPHH utilises the standard tree-based representation, as
most GPHH do (such as in [8,97,172,193,201]). The GPHH utilises a termi-
nal and a function set to build the routing policy given a fitness function,
which undergoes an evolutionary process to learn how to do so. The nov-
elty of this algorithm takes place on the new terminal set and the fitness
function. For the terminal, 3 new ones are proposed, as follows:

• WINACR - The width of the current position after adding the node
considered. This terminal calculates the width of the current route
when adding a new customer. Equation 3.1 is used, by considering
the last customer from a route (i) and the candidate customer (j).

• WICR - The average width of the route being considered. This ter-
minal calculates the average width of the current route evaluated.
Equation 3.2 is used for the route considered.

• AVGWI - The average width of all routes in the solution. Calculated
with Equation 3.3.

The equations that are used to calculate the new features are:

width(i, j) = max(diL, djL)−min(diL, djL) (3.1)
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RouteWidth(r) =

∑
(i,j)∈r width(i, j)

||R||
(3.2)

AvgWidth(s) =

∑
(i,j)∈E width(i, j)

||E||
(3.3)

Equation 3.1 calculates the width of a single edge between customers i
and j and the line L = Line(D,G), for more details please refer to Chapter
2. Equation 3.2 calculates the width of the route r by calculating the width
of all sequential edges (using Equation 3.1) and dividing by the number
of nodes in the route. It is important to note that the two edges from the
depot are utilised in this calculation and, hence, ||R|| is the number of
edges in the route minus one (or number of nodes including the depot
once). Finally, Equation 3.3 calculates the average width for solution s. It
does so by calculating the widths of all edges used in the solution divided
by the number of edges.

3.4.2 Incorporating Width to the Fitness Function

The second novelty for this approach, the fitness function (as can be seen
in Equation 3.4), also takes into account the width metric.

N t
p =

∑
(j,k)∈E djkxjk

BKSt
+ AvgWidth(t) (3.4)

The function determines the fitness value N by normalising its cost to
the Best-Known-Solution (BKS) for instance t and invidual p. The same is
not done to the average width (Equation 3.3) because there is no standard
value for the width — some longer width solution can also have a lower
cost. This implies a greater weight towards the width, which is the new
component that we want to exploit. The rest of the equation is detailed as
follows: djk is the distance between nodes j and k, and the variable xjk is a
binary value which is 1 if there exists a connection between j and k in the
current solution, and 0 otherwise.
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We do this to mimic the behaviour of the penalisation step of the KGLS.
Although that step is used to escape local optima (hence making the so-
lution slightly worse), it also guides the solution to a place where it finds
the next local optimum (often better than the original one — although not
necessarily the case). An example of this can be seen in Figure 3.6, where
a best-so-far versus current solution is plotted for two instances. In the
figure we clearly see that some steps of the penalisation phase driving the
solution upwards, these points are worse but can be closer to new bet-
ter local optimum. As finding these very good local optima is very hard,
we introduce the fitness function with the width expecting it to build a
solution in one of the peaks near them. These runs were gathered with
our own implementation of a GLS with the same penalisation functions as
the [10], which we will call KGLS*.

Figure 3.6: Examples of how the penalisation criteria guides the solution
into new local optima.

The KGLS*, however, is an expensive algorithm. To evaluate the effec-
tiveness of the new terminals and fitness function we would need to run
the GLS for each individual tree’s initial solution of each generation of our
evolutionary process. On top of that, the instances considered have a wide
range of cost values which makes it more difficult for the training process
to evaluate the effectiveness of a given individual. We opted utilising only
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the proposed fitness function to evaluate the individuals.

As to avoid bias towards instances that have a larger width — as these
can vary a lot by instance — and also to speed-up evaluation, we apply the
function to all training instances during one evaluation. As one instance is
evaluated with Equation 3.4, the individual (p) of the population will have
its fitness value by considering the sum for all instances, which is shown
in Equation 3.5, representing the fitness for one individual. How to build
the routes that provide these fitnesses is presented next.

Fp =
∑

t∈Instances

N t
p (3.5)

3.4.3 Route Construction

The route construction algorithm is used to build the solution consider-
ing the current GP tree and instance. As shown in Algorithm 3.1, the
procedure builds the routes simultaneously, unlike the standard approach
which builds them in sequence (i.e. one route after the other). This way
we expect to build a solution in a more balanced way between routes, as
this algorithm considers the global scope rather than a local one. The GP-
tree will be translated into a rule which is used to rank the routes in which
the customer can be added. This translation is done by calculating the ter-
minals values for each route and the customer being added. All customers
are evaluated by their index sequence and the target route is selected ac-
cording to the GP-tree. The algorithm tries to add all customers with a
minimal number of routes. The initial number of routes is an approxima-
tion considering the capacity and total demand, calculated by dividing the
total demand of the instance by the vehicle’s capacity. The customers are
ranked one at a time for each route. The highest-ranked route will have
the customer added there.
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Algorithm 3.1 Route construction method.
1: procedure ROUTE CONSTRUCTION(GP Tree T , Instance I)
2: Find initial solution to i according to F ’s Initialisation part heuristic
3: Number of routes = ⌈ TotalDemand

V ehicleCapacity ⌉
4: for each Customer c ∈ I do
5: for each Vehicle v do
6: Apply function tree T (c, v)

7: Calculate and Select highest ranked vehicle
8: if No vehicle is feasible then
9: Add new vehicle

10: Select new vehicle
11: S = Add customer c to selected vehicle’s route last position

12: return Built solution S

3.4.4 Genetic Operators

Algorithm 3.2 Genetic Programming training method.
1: procedure GP TRAINING(Training Set T )
2: Find initial solution to i according to F ’s Initialisation part heuristic
3: Initialise Population at random
4: while Number of Generations not reached do
5: for each Individual i ∈ Population do
6: for each Instance t ∈ T do
7: Evaluate i with given t by Equation 3.4

8: Compute fitness of i by Equation 3.5

9: Select Parents
10: Crossover
11: Mutation
12: return Best individual S

As the focus of this algorithm is more related to validate the new termi-
nals and fitness function, the genetic operators are chosen from traditional
methods, with a limited depth for avoiding very large trees. The over-
all algorithm for the GP training can be seen in Algorithm 3.2. First, the
population is created at random. Then, the population is evaluated ac-
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cording to the methods mentioned beforehand. The selection method is a
Tournament Selection. The best individual is always kept in the popula-
tion, unchanged. The crossover is a one-point crossover, where sub-trees
are exchanged from the selected parents. For mutation, a new random
sub-tree is added in the place of one of the leaves. Both crossover and
mutation operators do not overflow the maximum depth of the tree.

3.4.5 Experiment Design

For the GPHH experiments, the ”X” dataset is also used and we split it
into training and test sets. But here the training set is fixed and includes all
the instances with less than 200 customers (total of 21 training instances),
while the test set includes all the remaining instances (79 instances). We
introduced three new terminals for our GPHH, here we also list the set of
all terminal nodes used, shown in Table 3.7. The other terminals are the
traditional ones already utilised in the construction of VRP solutions.

Table 3.7: Set of terminals for the GPHH

Acronym Description
DFD Distance from considered customer to the depot
DEM Demand of considered customer
DFCP Distance from considered customer to the last customer

added to the route
AVGD Average distance from remaining non-served customers

to the customer considered
AVGP Average distance from remaining non-served customers

to the last customer added to the route
CWD Clarke and Wright [37] savings distance

MCDC Most constrained demand
WINACR Width of the current route after adding considered node

WICR Width of the current route
AVGWI Average width of all routes

To fully evaluate the performance of the proposed operators and that
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they are indeed guiding into a better region of the search space, the exper-
iments were designed in a way to validate this. The solution created with
the proposed GPHH is expected to be improved quickly into a better final
solution. To measure this, the solutions created with the proposed GPHH
approach are improved by the KGLS* algorithm.

The KGLS* uses the parameters in Table 3.8 and utilised the following
set of intra and inter (bold) route moves:

• Swap: Swaps the position of a pair of customers within the same
route.

• Two Opt: Removes two edges and adds two new ones within the
same route.

• Three Opt: Removes three edges and add three new ones within the
same routes.

• Cross Exchange: Exchanges a pair of sub-routes of size k between
two routes.

• Swap Star: Swaps the position of a pair of customers on different
routes.

• Relocate: Relocates a customer to a different route.

Table 3.8: Knowledge-Guided Local Search parameters.

Parameter Value
Execution time 10 min

Number of Penalised Moves (P) 10
Number of Closest Customers 30

lambda (λ) 0.1

Another GPHH (GPHH2) was also trained to compare the effect of the
new terminals. The GPHH2 utilises the same function set (Table 3.7) and



96 CHAPTER 3. LEARNING EFFECTIVE INITIALISATION

fitness function (Equation 3.5) as the proposed GPHH. The only difference
is that it is trained without any of the width-based terminals. Therefore,
this GPHH2 can measure whether these terminals are influential in find-
ing a better solution. The compared GPHH methods use the parameters
present in Table 3.9.

Table 3.9: Genetic Programming parameters.

Parameter Value
Population size 1000

No. of Generations 50
Cross. Rate 0.8

Mut. Rate 0.2
Max depth 8

Tournament Size 7
Number of runs 15

Two main experiments were realized. The first experiment compares
the proposed GPHH as the starting point versus the traditional Savings
initialisation heuristic [37] (CW), also used the KGLS*. The best individual
from the proposed GPHH will create the initial solution for the KGLS and
measure how much the final solution was improved, in a fixed amount
of time (10 minutes in these experiments). Additionally, the methods are
compared on how fast do they improve the solution. The solution is also
compared to the original KGLS implementation5, also run for the 10 min-
utes.

The second experiment compares the proposed GPHH versus the GPHH2,
to validate the effectiveness of the newly designed width-related terminals
in helping GP finding better initialisation heuristics.

5Available in the website: https://antor.uantwerpen.be/routingsolver/
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3.4.6 Results and Discussions

The first results show the performance of the predicting model of our Ma-
chine Learning approach. Next, we present our GPHH results comparing
the search performance from our initial solution to the original CW100.
Then, we compare the performance of our method without the fitness
function proposed and do a brief analysis of the top tree generated.

We compare the classification accuracy and the overall quality given
by the different methods. We also present some analysis on additional
instances and feature relevance for one of the approaches.

Impact of initial solution: To measure how much the initial solution
influenced the evolution, the experiment was done to compare how the
final solution was improved with the same amount of time. Table 3.10
compile these results in comparison to the Best-Known-Solution (BKS)6.

Table 3.10: Results compared to the Best Known Solution (BKS). In bold
show significance in the comparison between the KGLS* and our GPHH.
Underlined are the overall best.

Instance
KGLS
to BKS

KGLS*
to BKS

Proposed GPHH
Avg. to BKS

GPHH Best
to BKS

X-n200-k36 0.29% 2.28% 1.70%± 0.63% 0.84%
X-n204-k19 0.52% 1.05% 1.16%± 0.19% 0.35%
X-n209-k16 0.25% 1.69% 1.68%± 0.29% 0.62%
X-n214-k11 0.67% 2.46% 3.78%± 1.70% 1.75%
X-n219-k73 0.07% 0.15% 0.15%± 0.02% 0.07%
X-n223-k34 0.59% 1.79% 1.55%± 0.18% 1.26%
X-n228-k23 0.37% 1.37% 1.90%± 0.65% 1.13%
X-n233-k16 0.54% 1.12% 1.47%± 0.33% 0.93%
X-n237-k14 0.24% 0.82% 1.29%± 0.55% 0.29%
X-n242-k48 0.47% 1.23% 1.34%± 0.15% 0.72%
X-n247-k47 1.11% 2.60% 2.06%± 0.36% 1.34%

6Values gathered from the dataset website: http://vrp.atd-lab.inf.puc-
rio.br/index.php/en/
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Table 3.10: Results compared to the Best Known Solution (BKS). In bold
show significance in the comparison between the KGLS* and our GPHH.
Underlined are the overall best (cont.).

Instance
KGLS
to BKS

KGLS*
to BKS

Proposed GPHH
Avg. to BKS

GPHH Best
to BKS

X-n251-k28 0.60% 1.64% 1.61%± 0.15% 1.01%
X-n256-k16 0.05% 0.80% 1.58%± 1.01% 0.75%
X-n261-k13 0.43% 2.00% 2.53%± 0.97% 1.41%
X-n266-k58 0.64% 1.31% 1.33%± 0.12% 0.91%
X-n270-k35 0.45% 0.95% 1.10%± 0.12% 0.95%
X-n275-k28 0.16% 0.97% 1.17%± 0.16% 0.81%
X-n280-k17 0.56% 2.28% 3.59%± 0.72% 2.96%
X-n284-k15 0.80% 2.31% 2.92%± 0.52% 2.25%
X-n289-k60 0.86% 1.56% 1.63%± 0.17% 1.16%
X-n294-k50 0.41% 1.65% 1.61%± 0.17% 0.97%
X-n298-k31 0.41% 1.34% 2.02%± 0.37% 1.55%
X-n303-k21 0.61% 1.72% 2.05%± 0.45% 2.06%
X-n308-k13 1.17% 2.39% 3.97%± 0.96% 1.64%
X-n313-k71 0.93% 1.49% 1.61%± 0.13% 1.19%
X-n317-k53 0.07% 0.41% 0.66%± 0.15% 0.28%
X-n322-k28 0.58% 1.94% 1.86%± 0.17% 1.53%
X-n327-k20 0.40% 1.33% 1.82%± 0.38% 1.43%
X-n331-k15 0.24% 1.28% 1.71%± 0.45% 1.14%
X-n336-k84 1.03% 1.66% 1.82%± 0.18% 1.42%
X-n344-k43 0.71% 1.57% 1.71%± 0.16% 1.43%
X-n351-k40 0.82% 2.58% 2.56%± 0.33% 1.52%
X-n359-k29 0.93% 1.52% 2.11%± 0.22% 1.42%
X-n367-k17 0.51% 2.04% 3.63%± 0.63% 1.43%
X-n376-k94 0.09% 0.32% 0.30%± 0.04% 0.24%
X-n384-k52 0.44% 1.39% 1.31%± 0.16% 0.89%
X-n393-k38 0.53% 1.93% 1.99%± 0.24% 1.42%
X-n401-k29 0.54% 1.05% 1.56%± 0.58% 0.81%
X-n411-k19 1.89% 2.70% 4.94%± 1.44% 4.81%
X-n420-k130 0.56% 1.35% 1.18%± 0.11% 0.71%
X-n429-k61 0.43% 1.58% 1.77%± 0.11% 1.54%
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Table 3.10: Results compared to the Best Known Solution (BKS). In bold
show significance in the comparison between the KGLS* and our GPHH.
Underlined are the overall best (cont.).

Instance
KGLS
to BKS

KGLS*
to BKS

Proposed GPHH
Avg. to BKS

GPHH Best
to BKS

X-n439-k37 0.39% 0.93% 0.96%± 0.14% 0.71%
X-n449-k29 0.75% 2.55% 2.87%± 0.23% 2.44%
X-n459-k26 0.20% 1.80% 2.33%± 0.32% 1.84%
X-n469-k138 0.66% 1.20% 1.11%± 0.08% 1.06%
X-n480-k70 0.38% 1.27% 1.60%± 0.21% 1.28%
X-n491-k59 0.75% 1.78% 2.03%± 0.18% 1.90%
X-n502-k39 0.11% 0.57% 0.63%± 0.06% 0.58%
X-n513-k21 0.44% 2.16% 2.72%± 0.39% 2.05%
X-n524-k137 1.77% 2.66% 2.44%± 0.47% 1.82%
X-n536-k96 0.81% 1.55% 1.45%± 0.19% 1.22%
X-n548-k50 0.25% 1.00% 0.91%± 0.09% 0.83%
X-n561-k42 0.63% 1.71% 2.24%± 0.26% 1.75%
X-n573-k30 0.19% 1.39% 2.36%± 0.47% 2.04%
X-n586-k159 0.53% 1.19% 1.08%± 0.14% 0.94%
X-n599-k92 0.54% 1.22% 1.35%± 0.15% 1.30%
X-n613-k62 0.72% 2.27% 2.51%± 0.26% 2.33%
X-n627-k43 0.31% 1.78% 2.80%± 0.61% 1.99%
X-n641-k35 0.39% 1.90% 3.18%± 0.52% 2.40%
X-n655-k131 0.19% 0.49% 0.51%± 0.04% 0.45%
X-n670-k126 3.28% 5.33% 2.68%± 0.59% 1.94%
X-n685-k75 0.70% 1.72% 2.05%± 0.21% 1.62%
X-n701-k44 0.22% 1.55% 2.24%± 0.25% 1.73%
X-n716-k35 0.69% 2.60% 3.44%± 0.49% 3.48%
X-n733-k159 0.61% 1.39% 1.65%± 0.14% 1.43%
X-n749-k98 0.58% 1.69% 2.14%± 0.30% 1.75%
X-n766-k71 1.04% 2.84% 5.65%± 0.91% 4.34%
X-n783-k48 0.49% 1.60% 4.03%± 0.54% 3.37%
X-n801-k40 0.07% 0.96% 3.14%± 0.84% 1.62%
X-n819-k171 0.61% 1.16% 1.58%± 0.22% 1.37%
X-n837-k142 0.46% 1.26% 1.37%± 0.18% 1.15%
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Table 3.10: Results compared to the Best Known Solution (BKS). In bold
show significance in the comparison between the KGLS* and our GPHH.
Underlined are the overall best (cont.).

Instance
KGLS
to BKS

KGLS*
to BKS

Proposed GPHH
Avg. to BKS

GPHH Best
to BKS

X-n856-k95 0.34% 0.83% 0.99%± 0.13% 0.73%
X-n876-k59 0.42% 1.67% 1.95%± 0.23% 1.86%
X-n895-k37 0.20% 2.54% 4.53%± 0.90% 3.26%
X-n916-k207 0.43% 0.91% 1.30%± 0.14% 1.15%
X-n936-k151 3.40% 6.22% 3.79%± 0.94% 2.97%
X-n957-k87 0.47% 0.84% 1.35%± 0.22% 1.05%
X-n979-k58 0.55% 1.23% 4.03%± 1.75% 1.92%
X-n1001-k43 0.40% 2.85% 4.06%± 0.50% 3.44%
Average 0.61% 1.54% 2.09% 1.64%

A statistical test (Wilcoxon Rank-Sum test with a significance value
of 0.05) was performed to validate the proposed method’s performance
when compared to the KGLS* with the Savings as initialisation heuris-
tic. Table 3.10 highlights the cases where there was an advantage for the
GPHH. The values in boldface mean that there is a significant advantage
over the proposed GPHH or the KGLS*. The best values found are also
highlighted when the GPHH achieves that. In total, the proposed GPHH
was able to have a significant advantage in 8 out of the 79 instances, and
no advantage was found in other 23 instances. In other words, for about
40% of the instances the proposed method was just as good or better on
the average case for all runs. Even though the initial solution has a much
worse value when compared to the Savings heuristic, as can be seen in
Figure 3.7. Additionally, when analysing the best-case performance, the
proposed GPHH shows very promising results. In this case, the proposed
starting solution was even able to beat the state-of-the-art for 4 different
instances, using simpler heuristics. It also beats the KGLS* on average.
Figure 3.7 also shows the performance of the best-case, which starts badly
but outperforms the KGLS* in the end.
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Figure 3.7: Comparison between the proposed GPHH average and best
case to the KGLS* performance.

Impact of proposed terminals: This test measures if the GP novel
terminals have any influence on the quality observed. Surprisingly, by
comparing to the GPHH2 (which only uses the objective function)the re-
sults show that the fitness function is the major contributor to the quality
achieved. As can be seen in Table 3.11, the GPHH2 outperforms the ver-
sion with the terminals. This can be an indication that the extra terminals
make the search more difficult by increasing the size of the search space.
Whereas the fitness function is enough to guide the solution towards a
region of the search space which can be quickly improved.

Table 3.11: Results compared to the Best Known Solution (BKS) for the two
compared GPHHs.

Instance
GPHH

Avg. to BKS
GPHH2

Avg. to BKS
Instance

GPHH
Avg. to BKS

GPHH2

Avg. to BKS
X-n200-k36 1.70% 1.89% X-n429-k61 1.77% 1.66%
X-n204-k19 1.16% 1.03% X-n439-k37 0.96% 0.92%
X-n209-k16 1.68% 1.64% X-n449-k29 2.87% 2.71%
X-n214-k11 3.78% 2.55% X-n459-k26 2.33% 2.47%
X-n219-k73 0.15% 0.14% X-n469-k138 1.11% 1.12%
X-n223-k34 1.55% 1.56% X-n480-k70 1.60% 1.51%
X-n228-k23 1.90% 1.68% X-n491-k59 2.03% 2.07%



102 CHAPTER 3. LEARNING EFFECTIVE INITIALISATION

Table 3.11: Results compared to the Best Known Solution (BKS) for the two
compared GPHHs (cont.).

Instance
GPHH

Avg. to BKS
GPHH2

Avg. to BKS
Instance

GPHH
Avg. to BKS

GPHH2

Avg. to BKS
X-n233-k16 1.47% 1.33% X-n502-k39 0.63% 0.58%
X-n237-k14 1.29% 1.24% X-n513-k21 2.72% 2.36%
X-n242-k48 1.34% 1.35% X-n524-k137 2.44% 2.55%
X-n247-k47 2.06% 2.49% X-n536-k96 1.45% 1.45%
X-n251-k28 1.61% 1.50% X-n548-k50 0.91% 0.88%
X-n256-k16 1.58% 1.34% X-n561-k42 2.24% 2.15%
X-n261-k13 2.53% 2.49% X-n573-k30 2.36% 1.78%
X-n266-k58 1.33% 1.29% X-n586-k159 1.08% 1.11%
X-n270-k35 1.10% 1.00% X-n599-k92 1.35% 1.47%
X-n275-k28 1.17% 1.01% X-n613-k62 2.51% 2.39%
X-n280-k17 3.59% 2.57% X-n627-k43 2.80% 2.11%
X-n284-k15 2.92% 2.43% X-n641-k35 3.18% 2.60%
X-n289-k60 1.63% 1.67% X-n655-k131 0.51% 0.52%
X-n294-k50 1.61% 1.65% X-n670-k126 2.68% 2.60%
X-n298-k31 2.02% 2.17% X-n685-k75 2.05% 2.10%
X-n303-k21 2.05% 2.16% X-n701-k44 2.24% 1.95%
X-n308-k13 3.97% 4.18% X-n716-k35 3.44% 2.80%
X-n313-k71 1.61% 1.66% X-n733-k159 1.65% 1.58%
X-n317-k53 0.66% 0.50% X-n749-k98 2.14% 2.08%
X-n322-k28 1.86% 1.74% X-n766-k71 5.65% 4.42%
X-n327-k20 1.82% 1.90% X-n783-k48 4.03% 3.59%
X-n331-k15 1.71% 1.54% X-n801-k40 3.14% 2.10%
X-n336-k84 1.82% 1.82% X-n819-k171 1.58% 1.54%
X-n344-k43 1.71% 1.72% X-n837-k142 1.37% 1.41%
X-n351-k40 2.56% 2.38% X-n856-k95 0.99% 1.07%
X-n359-k29 2.11% 1.98% X-n876-k59 1.95% 1.79%
X-n367-k17 3.63% 3.20% X-n895-k37 4.53% 3.62%
X-n376-k94 0.30% 0.29% X-n916-k207 1.30% 1.35%
X-n384-k52 1.31% 1.41% X-n936-k151 3.79% 3.28%
X-n393-k38 1.99% 2.01% X-n957-k87 1.35% 1.15%
X-n401-k29 1.56% 2.05% X-n979-k58 4.03% 2.44%
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Table 3.11: Results compared to the Best Known Solution (BKS) for the two
compared GPHHs (cont.).

Instance
GPHH

Avg. to BKS
GPHH2

Avg. to BKS
Instance

GPHH
Avg. to BKS

GPHH2

Avg. to BKS
X-n411-k19 4.94% 4.27% X-n1001-k43 4.06% 3.57%
X-n420-k130 1.18% 1.14% Average 2.09% 1.91%

In fact, when comparing to the KGLS*, the GPHH2 converges much
faster than the proposed GPHH with the terminals. As shown in Figure
3.8, the time required for the GPHH2 initial solution to surpass the KGLS*
is less than half of that of the proposed GPHH. Additionally, the improve-
ment for the best case is on average 1.39% at the end of execution. Hence,
the new fitness function plays a bigger role for the quality of the final so-
lution presented. This can be linked to the selection pressure guiding the
solutions towards the minimisation of the width.

Figure 3.8: Comparison between the GPHH2 average and best case to the
KGLS* performance.

Analysing the GPHH with the novel terminals, looking at the tree gen-
erated by the best run, in Figure 3.9, we see that the terminals are used in
several leaves. Although the repetitions might be happening due to the
lack of bloat control in our algorithm — this can be argued because it was
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not in our scope to increase the GP algorithm quality in itself — it also
shows that the method selected these nodes without any pressure to do
so, indicating their contribution to the method’s performance.

min_two

add sub

add WINACR add IGTZ

sub min_two protectedDiv add WINACR WICR protectedDiv

IGTZ DFD DFCP AVGD min_two max_two AVGD min_two IGTZ 0.737

sub DFD add

WINACR ADCP IGTZ add

DFD protectedDiv add max_two add

WINACR 0.737 0.737 DEM WINACR WINACR DEM DFD

DEM DEM MCDC sub protectedDiv min_two ADCP min_two CWD

MCDC mul WINACR 0.754 DFCP add

AVGD DEM 0.962 CWD

DEM AVGD

Figure 3.9: Evolved tree with the new operators.

3.4.7 Summary

This section presented our novel GPHH which aimed to create solutions
that are not necessarily better, but are able to be improved faster than the
traditional savings heuristic. We introduced some new terminals and fit-
ness function to achieve this. The results, although underwhelming, were
able to show some good best-case scenarios that motivate this research on
being further developed.



3.5. CHAPTER SUMMARY 105

3.5 Chapter Summary

In this chapter, the goal was to bring light to the use of the initial solution
as a way to improve the local search performance — and that such goals
were not necessarily achieved by finding better initial solutions. To do so,
we introduce two new machine learning approaches to predict the best
initialisation heuristic and to build a new easier-to-improve route.

We show an analysis of the impact of the initial solution performance
with some preliminary experiments, measuring the difference in perfor-
mance across four constructive heuristics — CW, CW100, 1-NN and Sweep.
In order to take advantage of these findings, we proposed a classification
approach that uses several solution and instance features to learn which
of the traditional constructive heuristics would outperform in a given sce-
nario. We also define a strategy to label the data and show the effective-
ness of the approach on unseen instances. The results showed that the
prediction was successful even when misclassifying the instances, shown
by the difference in performance being small. This was achieved by ran-
domly splitting the training data over 30 runs and showing that the over-
all costs are reduced. The KNN method seemed to outperform the others
in both prediction accuracy and solution quality. An unexpected result
comes from the outperformance of the Nearest Neighbour heuristic across
most instances considered, a heuristic that is often used as a bad example
of a greedy heuristic.

We also introduce a GPHH approach that is used to build a new solu-
tion without the focus on solution cost, but rather on a mix between cost
and width, with the latter having a larger weight. We also achieve that
by proposing new terminals, a new route construction method and a new
fitness function. These components were able to work together and pro-
vide solutions that improve faster than the default heuristic, and in a few
cases even outperforming the original KGLS with CW100. Although the
new proposed terminals have shown to be less effective towards the goal
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of improving the solutions, the overall results still show the effectiveness
of the proposed GPHH successfully guiding towards a different region of
the search space which is more promising. And when considering the time
in which the solution outperforms the KGLS* (in the best-case), as shown
in Figures 3.7 and 3.8, GPHH can also be seen as more efficient. Especially
considering that this is achieved just by changing the starting solution.

3.5.1 Consideration on Scalability and Computational time

The two approaches introduced in this chapter scale well with the prob-
lem size. The first approach has a very small increase in computational
time based on the instance size, almost negligible. This is because the ML
method only considers the set of features as its input. Although some of
these features are built using the initial solution, they are mostly calcu-
lated either by the number of customers or number of routes, which are
very small. Of course, the following KGLS step with the selected initial
heuristic will keep the same complexity, as that step is independent from
the ML output. The second approach, will also only be slightly affected
by the scale of the problem. The calculation of routes when evaluating
the heuristics, as well as when applying the best heuristic to build the ini-
tial solution, can be calculated by iteration the number of customers. The
tree evaluation might be a bit more expensive than the previous approach.
This is because each customer must be evaluated individually.

Regarding computational time, a similar expectation can be found. The
first approach will have insignificant impact on time, as calculating the
features is very fast. In our tests no instance took more than one second
for calculating the features. As for the GPHH approach, the training is
will likely take a long time (hours to days of training depending on the in-
stances used). The test, however, will likely only take a couple of minutes.



Chapter 4

Operator Selection and Bounds
with Evolutionary
Hyper-Heuristics

In this chapter we utilise a genetic algorithm-based hyper-heuristics to
find effective and efficient local search configurations.

4.1 Introduction

Recent developments for the VRP have been driven towards complex and
domain-knowledge-powered approaches [10, 176, 187]. Although these
approaches have been more and more effective and efficient, current state-
of-the-art metaheuristics need to apply several layers of domain knowl-
edge/expertise to achieve good quality. This makes these algorithms hard
to be replicable, time-consuming to design and very expensive due to this
domain expertise. Moreover, it is unknown whether the existing manu-
ally designed heuristics can be generalised to different scenarios. When
facing an unseen instance where the current best heuristic does not per-
form well, it is hard to manually design a specific effective heuristic again,
as it highly relies on human expertise. The problem of selecting the best

107
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heuristics for the given instance becomes a search problem in itself. When
it comes to large-scale problems, these methods have a parameter-based
and/or fixed limit on the search space, whether by experimentation or
manually set. This limit can become a liability when searching for better
solutions since the improving steps can be outside this restricted region.

Which bring us to one of the main techniques used to avoid those man-
ually designed decisions: Hyper-Heuristics. HHs try to tackle the design
level complexity by building a more general framework using low-level
and easy-to-implement heuristics, usually having a trade-off on quality
over time [28] [172]. However, the current HH studies do not employ
pruning techniques at the lower-level heuristics (LLH) level, and there-
fore have limited scalability. When looking for LLH to apply in routing
problems, even though HHs might efficiently look for the most suitable
LLH, a conflict arises if simply applying these traditional pruning tech-
niques to existing HHs and their LLHs: since these limits are manually
designed, applying them would contradict the purpose of HHs. It can be
argued that by doing so, we still reduce the amount of manual decisions
— as the HH is still doing the high level design. However, as we want to
improve the independence of the HH from expertise-based decisions we
argue that it makes more logical sense to also have the search space be de-
fined by the HH. Additionally, the manual limits are another optimisation
task, since they can be either too small, avoiding finding better solutions,
or too large and making it very slow. It would be fitting to give such a task
to the heuristic space to control.

In other words, the goal of a HH is to find the optimal heuristic config-
uration, given a set of building blocks that solve a specific search problem.
In other words, the HH will search for the best possible use of these blocks
which will solve the problem. Therefore, a HH is theoretically able to find
a configuration in the heuristic space better than (or similar to) a human-
designed one, which is a possible definition of HHs as formalised by [150].

One of the most popular methods for HHs are based on Evolution-
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ary Algorithm (EA) techniques. Probably the biggest advantage of EA
techniques is their flexible representation scheme, which can be used to
simplify the design of the search space. A Genetic Algorithm (GA) HH’s
chromosome provides a way to improve the order in which operators are
applied through its evolutionary process, while also allowing for new ele-
ments to be explored.

Therefore, in this chapter we propose HH methods which consider au-
tomatically limiting the neighbourhood size generated by the LLH. We
achieve this by automatically evolving the search space configuration with
the help of a GA as our base HH algorithm. The GA, apart from its con-
tribution to the search with its parallel concept, also permits a flexible rep-
resentation.The GA chromosome can be modified to contain extra infor-
mation, optimise the order and the selection of the operators, it can be
evaluated differently and still be generic enough to be replicated for other
problems (although we do not explore this attribute in our thesis due to
being out of scope).

4.1.1 Chapter Goals

The key goal of this chapter is to learn how to select the LLH operators and
their limits to improve the search efficacy. We achieve this by three different
approaches. The first approach introduces an adaptive clustering tech-
nique which models the search space based on evolving clusters under a
GA framework; the second approach introduces a new chromosome with
an additional layer used to limit the corresponding operator search space;
the third and final approach expands on the previous one by also consider-
ing an additional layer as well as some metaheuristic-specific parameters,
including the initialisation heuristic. All of these methods contribute to
reduce the search space while also selecting which operators to be used
and in which order. This chapter has the following main objectives:

1. Show if the order of the operators matter and how they affect the
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local search performance.

2. Provide an analysis on whether the traditional clustering techniques
can be improved if they are adaptively changed through the runtime
to better fit the problem being solved.

3. Propose a new GA chromosome that also limits the search space for
each local search operator considered.

4. Present a GA chromosome that incorporates the different steps of the
local search framework, including a new layer for further reductions
of the search space, the initialisation heuristic and the penalisation.

4.1.2 Chapter Organisation

This chapter is organised as follows: Section 4.2 presents the cluster-based
approach. In Section 4.3 introduces the dual-layered chromosome and the
hyper-heuristic approach. Section 4.4 presents a third method which in-
cludes a rich chromosome that incorporates all stages of the KGLS. Finally,
Section 4.5 summarises the chapter.

4.2 Cluster-based Hyper-Heuristics Approach

In this section we revisit one of the most famous techniques for reduc-
ing search space: clustering. The traditional approach utilises clustering
techniques such as K-Means [126] to build a set of clusters of customers in
which the routes can be contained in. This limits the search space size quite
well, but also damages the ability of good solutions from being found, es-
pecially when these clusters do not allow exchange of information, mak-
ing the quality of the solutions limited to the a random process (K-means
is inherently stochastic). Not only that, once the clustering is done, it is
usually fixed that way. This can be translated to sub-optimal searches, as
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the optimal number of clusters might be lower or higher than the speci-
fied.

The K-means and other clustering techniques also try to have an even
number of customers within each cluster, to which we have no proof that
it is a good strategy and, perhaps more relevant, ignoring other features
such as demand. We propose a new method which automatically updates
the clusters based on the search directions. It can increase or decrease the
number of clusters, changing them based on the routes being modified.
We also allow information to be exchanged between clusters, thus avoid-
ing a damaging reduction of the search space, while keeping it efficient.

The proposed Cluster-based Hyper-Heuristic (CbHH) is a HH based
on a GA framework. It searches the heuristic space and also automatically
trims the search space adaptively during the evolution of the solution.
The CbHH does not require a sophisticated design and explores the so-
lution space based on adaptive clusters. Additionally, two different types
of chromosome decoding schemes are explored.

The idea is to initially create clusters based on the customers’ loca-
tion, and let the clusters evolve according to where the better solutions
are heading to, as seen in Figure 4.1. In the example, there is a randomly
created customer-distribution, Figure 4.1 (a), then the initial clusters are
created (Figure 4.1 (b)), and as the evolution process progresses, the clus-
ters will adaptively change, as in Figure 4.1 (c). These changes are guided
through the use of local search neighbourhood moves, where we divide
them into intra-cluster, where the moves only happen inside the cluster,
and inter-cluster, where they happen between distinct clusters. A result-
ing route modification that affects both clusters will then trigger a cluster
update. More details are given in the next sections. First, we present the
solution chromosome.
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(a) Original instance (b) Initial Clusters (c) Adapted Clusters as a
result of the framework

Figure 4.1: A fictional example of how the cluster-based search adaptively
changes the cluster space.

4.2.1 Solution Representation

In the CbHH, a solution represents a sequence of low-level heuristics that
will be applied to improve an initial solution, this sequence represents the
set of neighbourhoods to be explored in a local search framework. The
GA chromosome used is a string of integers (as shown in Figure 4.2) where
each allele represents the index of one of the LLH. Each value is unique for
intra and inter clusters heuristics. In the Figure, for example, the value 3

can be a Two-Opt* applied only inside each cluster, while the value 4 could
be Two-Opt* applied inter-cluster. Additionally, the chromosome has vari-
able size, it can grow or shrink depending on the evolution process, which
will be detailed in Section 4.2.3.

Figure 4.2: Example of a CbHH chromosome.

The LLHs are classical local search operators which are here divided
into two groups based on how their neighbourhoods are explored: the first
group considers the whole cluster of a given route, the intra-cluster group
named as ”regular”; and the second group will consider M closest clusters,
here named ”cluster-based”, or the inter-cluster group. This division would
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allow for the evolution process to determine when it is the best time to
do exploitation within a cluster, while also allow for exploration between
different clusters. Some of the LLH are utilized in both groups but are
characterized by a different integer for the chromosome. Next, a list of
these LLH, totalling 11 possible, as the ones in bold are utilized in both
groups, otherwise, it is specified where they are applied.

• Cross-Exchange, swaps a sub-string of customers between two routes.
Indexes 0 and 1, respectively for each type (intra and inter).

• 2-OPT, modifies two edges in a given route. Used only in the local
cluster. Index 2.

• 2-OPT*, swap two edges in two given routes. Indexes 3 and 4, re-
spectively for each type.

• OR-OPT, transfers a sub-string with a length of 2, 3 or 4 to another
position. Used only in the local cluster. Index 5.

• OR-OPT*, transfers a sub-string with a length of 2, 3 or 4 to another
route. Used only between clusters. Index 6.

• MERGE, combines two different routes into one, by concatenating
one into any position of the other. Indexes 7 and 8, respectively for
each type.

• Reverse 2-OPT*, swap two edges in two given routes, but reversing
the order of the remaining route. Indexes 9 and 10, respectively for
each type.

Given this list of LLH and the chromosome structure, we can now ex-
plain the framework used.
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4.2.2 CbHH Framework

The overall idea of the framework is based on the local search framework,
but here we evolve the sequence of operators that will improve the ini-
tial solution, and also can change the search space on each iteration. Each
operator in the chromosome sequence will consider the limits set by the
clusters based on its group (regular or cluster-based), modifying the clus-
ters according to the result of each move and repeating the process for
each allele, always starting from the same initial solution given by the ini-
tialisation heuristic. The evolutionary process evolves the population of
sequences. The final output of the framework will be the sequence of op-
erators (and implicitly the sequence of cluster moves) which resulted in
the best improvement. Figure 4.3 show the flow chart.

Create Clusters

Hyper-Heuristic Stage

Initialise Population Evaluate Individual

Start

Yes

No

Last
individual?

Adapt clusters according to
Algorithm 4.3

No

Yes

Stop
Criteria?

Crossover
Mutation

End

Apply solution

Return to original cluster

Return best individual

Figure 4.3: Overall flow chart of the proposed framework.

Following Algorithm 4.1, the initial clusters are created using the K-
means algorithm (Line 2), a partitioning algorithm which is easy to imple-
ment, fast and efficient [98]. Then the initial routes are created respecting
the clusters’ limits (Line 3). For this initial solution, the savings algorithm
of Clark and Wright (CW) [37] was selected, since it is a fast deterministic
algorithm with fairly good results. Next, the evolutionary process (Lines
6-18) starts by creating the initial population (Line 4). The main loop starts
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by selecting each individual in the population (Lines 6-7), and copies of
the initial solution and clusters are created (Lines 8-9), only the copies are
updated by the LLH. Then, for each allele in the individual (Line 10) the
corresponding LLH is applied to the current solution (Line 11). The de-
coding process, shown in Lines 13-14, determines if the next LLH will
be the first one or the next one, based on the type of decoding chosen.
Here, decoding can be seen as the type of local search approach. We con-
sider both the simple sequence of operators translated once or the Variable
Neighbourhood Search (VNS), which changes neighbourhoods after each
improvement (in this case goes back to the first allele). Then we verify if
the current solution is better than the best-so-far solution, and replace it
if the current solution is better (Lines 15-16). The crossover and mutation
steps occur (Line 17). The loop is repeated until the stopping criterion is
met (maximum number of generations), and then the algorithm returns
the best individual (Line 18).

The clusters are updated according to the type of LLH applied, as
shown in Algorithm 4.2. The cluster-based type is the one which explores
more than the cluster for improvements and is composed of only inter-
route LLHs. Their neighbourhoods consider the M closest clusters con-
sidering their centroids Ci (defined by Equations 4.1, 4.2 and 4.3, with Cli

being the cluster i), where M is a percentage of the total number of clus-
ters. For example, in an instance with 10 clusters, if the next selected LLH
is Two-Opt* and M = 20%, then for each cluster, the two (20% of 10) clos-
est clusters will be considered. This is the main diversification step (other
than the genetic process), since it allows for a larger, yet limited, neigh-
bourhood to be explored. The clusters are updated based on the resulting
route changes and whether they are majority inside a cluster or not.

x̄i =

∑
j∈Cli

xj

|Cli|
(4.1)

ȳi =

∑
j∈Cli

yj

|Cli|
(4.2)



116 CHAPTER 4. OP. SEL. & BOUNDS W/ EHH

Algorithm 4.1 Clustering-based Selection Perturbative Hyper-Heuristic
1: procedure CBSPHH(an instance, a list of LLHs)
2: clusters← Kmeans()

3: initial solution← CW Savings(clusters)

4: population← InitializePopulation()

5: best← ∅
6: while Stopping Criteria not met do
7: for each individual ∈ population do
8: new s← initial solution

9: new c← clusters

10: for each allele ∈ individual do
11: new s← LLH(allele, new s, new c)

12: Eval(news)

13: if Improvement and VNS mode then
14: Restart from first Allele
15: if Best Improvement then
16: best← individual

17: Evolve the population by Crossover and Mutation

18: return best

Ci = (x̄i, ȳi) (4.3)

Algorithm 4.2 Low-Level Heuristic Phase
1: procedure LLH(Integer allele, Routes solution, List clusters)
2: repeat
3: Limit search-space based on allele type
4: Call allele function from LLH database

▷ For example, if allele is Cross-Exchange cluster-based, invoke it.
5: if allele is cluster-based then
6: UpdateClusters(solution, clusters)

7: until No improvement

The procedure, summarized in Algorithm 4.3, receives the clusters and
the routes from a VRP solution. Then for each route, it verifies whether
a new cluster will be created or just update the current ones. It does that
with the function ClusterWithMajority, which returns the cluster in which
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most of the customers belong to, if it has at least 50% of the route, oth-
erwise returns 0. It can be noted that a new cluster will only contain
the customer from one route, however in the next iteration of the selec-
tion process, new customers can be added (or even removed), dynami-
cally changing the clusters and search space. As an example, suppose in a
given solution, one of the routes starts at a given cluster A, passes through
cluster B, and ends in cluster C, as a result of applying the Two-Opt* al-
gorithm on cluster A, with B and C being considered neighbour clusters.
And suppose this route contains 15, 14 and 17 customers in each cluster,
respectively. Then this route will flourish as a new cluster D since the ma-
jority of the route is not within one cluster (the majority would be at least
50% of 15 + 14 + 17). Another example, if some route had 10, 4 and 6 in
each cluster, respectively, then the customers from B and C would become
part of cluster A. If these customers were the only customers in either B or
C, these clusters would be removed from the cluster list.

Algorithm 4.3 Cluster Update Phase
1: procedure UPDATECLUSTERS(Routes solution, List clusters)
2: for each Route r ∈ solution do
3: cluster ← ClusterWithMajority(r)

4: if cluster = ∅ then
5: RemoveFromClusters(r)

6: AddNewCluster(clusters, r)

7: else
8: RemoveFromClusters(r)

9: AddInExistingCluster(clusters, cluster, r)

4.2.3 Genetic Component

The Genetic Algorithm (GA) utilized is specified in this section. The al-
gorithm follows the common GA framework where there is a string type
chromosome, a crossover is applied, as well as a mutation step according
to some rate. Each initial individual is created as a random permutation
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that allows repetition of the LLH, with a fixed initial size but that can grow
up to a δ (delta), for example, if the initial size is 10 and δ is 5, the individ-
uals can have anywhere from 10 to 15 alleles.

Two crossover operators are selected here. The first one is the same uti-
lized in [85], called best-best, where for each parent the best-improving se-
quence of the chromosome is passed on to the children. The best-improving
sequence can be determined by measuring how much each allele improves
the solution, with the sub-string that provides the highest improvement
being selected. For example, given an individual with 5 operators that has
already been evaluated, if the sequence of improvements for the solution
was [3%, 4%, 5%, 3%, 2%], then the largest improving sequence would be
[3%, 4%, 5%]. This sequence will be concatenated to the child part between
the other parent’s best-improving sequence, as denote by the black colour
in Figure 4.4. The second one works similarly, but instead of the best-
improving sequence, the cut points are at random, in a way to increase
diversity. Each type has a 50% probability of being chosen. The top 10%

individuals are saved for the next generation, while the remainder is com-
posed by the resulting crossover of the current population. The parents’
selection is done by random pairs, but one given parent can breed at most
two times, being removed from the selection pool after the second time, to
avoid oversampling of a given scheme.

For the mutation step, similarly to the crossover, two methods are ap-
plied with a 65 : 35% chance, if the mutation occurs. The first one re-
moves the worst improving sequence of a chromosome, called remove-
worst, also from [85]. The remove-worst works in the opposite way of the
best-improvement, where the sub-string with the least contribution to the
solution’s quality gets removed. For example, considering the sequence
of improvements to be [3%, 0%, 5%, 0%, 0%, 6%], by removing the worst
improving sequence we would get [3%, 0%, 5%, 6%]. The second muta-
tion operator randomly adds new LLH, up to one fifth of the selected
chromosome length, at random positions, increasing diversity. After the
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crossover step, a mutation step with a 10% rate is applied. Additionally,
and to avoid falling in a local optimum schema, half the population is re-
set (a new random permutation) every 20 continuous generations without
improvement, where the 50% best individuals are kept (considering their
fitness value).

Figure 4.4: Example of a best-best crossover, based on [85].

Since each individual in the population will have a different order in
which the LLH are applied, there is a second implicit diversification step
(other than the cluster-based LLH mentioned above). To explain a bit fur-
ther, with a different order in which the LLH are applied, then the changes
in clusters and in routes will ripple into the next selected LLH. Because
applying a cluster-based Cross-Exchange first into the initial solution and
then applying a Two-Opt in each cluster will most likely result in a differ-
ent set of routes and clusters than if doing the other way around (Two-Opt
first and CE second). Therefore, the method explores the heuristic space
while also exploring the solution space.

4.2.4 Experiment Design

In this section, the experiment details are described. The algorithms com-
pared in this experiment were coded in C++1 with the library VRPH (cre-
ated by [82]), from which the VRP basics and some of the implemented
heuristics were directly reused. The experiments were run on computers
with an Intel®Core™i7-8700 @ 3.2GHz and 15GB memory.

1Version 11 compiled with g++ and optimisation flag -O2.
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4.2.5 Experiment Goals

The objective of these experiments is to validate the idea of the Cluster-
based Hyper-heuristics. For this purpose, four types of experiments were
conducted, all considering the LSVRP:

• Experiment 1: the goal is to show the effects of changing the search
space with the parameter M (the percentage of neighbour clusters
which are considered in a search), by considering a larger or smaller
size, and to compare with fixed clusters, or no clusters at all. This
experiment was conducted by having three different instances being
run varying the parameter M to 25% and 50% (0% would not con-
sider inter-routes between clusters and therefore was not tested, and
100% is the same as no clusters since all are considered). Expectations
are that with a larger number of neighbouring clusters, the solution
will improve at the cost of higher computation time, and the exact
opposite for a lower value. However, by how much, and what point
has the best trade-off between quality and execution time?

• Experiment 2: this experiment investigates how much the starting
clusters affect the solution. To achieve that, two approaches are cho-
sen: the first one is a route-first cluster-second approach, where the
K-means is used after the initial routes are created, this way the start-
ing clusters will have multiple routes passing and the cluster evo-
lution will happen accordingly; the second is a cluster-first route-
second, where the K-means is run 30 times (since the clusters depend
on the initial random points, they can have different outcomes) and
the one having the best initial solution is chosen (creating the clusters
first, will make the initial routes obey the cluster delimitation).

• Experiment 3: it shows the effects of different chromosome decoding
approaches. The objective is to show by how much solution quality
changes from a VNS-based type decoding to a single pass, and how
is the execution time affected.
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• Experiment 4: it compares the Cluster-based HH solutions to the
best-known solution, as well as to a deterministic algorithm (CW)
and to a manually designed combination of the same LLH that we
built for this experiment. The objective of this experiment is to show
whether the proposed method is competitive to existing methods, in
both solution quality and execution time. This experiment utilizes
the best configuration found by experiments 1 and 2, aiming to be
the most competitive.

The results and discussions regarding these experiments are given in
Section 4.2.7. But first, the dataset and parameters are shown.

4.2.6 Dataset and Parameters

The instances utilized are a sub-set from the CVRPLIB dataset of [183],
which ranges from 100 to 1000 customers, varying both geographical dis-
tribution and vehicle capacity. The size of these instances meet the large-
scale definition and have known optima or a good solution is known.

Unless otherwise mentioned in a given experiment, the parameters use
the default values described in Table 4.1.

Table 4.1: Default parameters.

Parameter Name Value
M (for closest clusters) 25% of the number of clusters

K (for K-means) 10% of instance size
VNS Type Explore Sequence

Generations 100

Population size 30

Minimum individual size + δ 22 + 11

Number of runs 10
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4.2.7 Results and Discussions

This section discusses the results of the experiments described above.

Experiment 1

This experiment considers the effect of changing the search space, as well
as comparing it to its counterparts: not using the cluster limit on the
search, and not updating the clusters in the proposed method. Table 4.2
presents the results, showing for each case the average solution with stan-
dard deviation, the best result and the average execution time in minutes.
As expected, the cases in which the search space includes more clusters
(such as No Clusters and 50%) take longer, since the number of evalua-
tions needed is significantly higher, while the quality increase is not much
different. The fixed clusters also have a worse performance overall, since
the search space is likely larger than the proposed approach, and it avoids
different search areas, searching the same clusters throughout execution.

Table 4.2: Results for Experiment 1: the effectiveness of the proposed
method when changing the search space size. The average solution, as
well as the standard deviation and best solution, are shown, followed by
execution time in minutes.

No Cluster Fixed Cluster (25%)
Instance Avg(s.d.) Best Time Avg(s.d.) Best Time
X-n200-k36 60898(429) 60537 216.6 61024(460.22) 60537 126.84
X-n251-k28 40401.5(96.62) 40266 250.68 40298.15(173.65) 39847 47.51
X-n308-k13 27580(155.32) 27361 1032.72 27736.65(187.08) 27343 170.40

CbHH (25%) CbHH (50%)
Instance Avg(s.d.) Best Time Avg(s.d.) Best Time
X-n200-k36 60996.89(194.96) 60600 6.53 60826.50(368.22) 60543 40.84
X-n251-k28 40339(129.52) 39974 8.48 40428.41(146.38) 40195 73.83
X-n308-k13 27973.73(386.11) 27205 33.66 27353.5(160.12) 27016 297.8 3
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Experiment 2

In this experiment, the starting solution is explored. As shown in Table
4.3, the route-first solution is worse than its counterpart. One possible ex-
planation is that the initial Savings algorithm will make the clusters adapt
to its routes and reach a local optimum much faster. In fact, all converge
to the same solution. While for the cluster-first the initial routes are freer
to be updated.

Table 4.3: Results for Experiment 2: a comparison between both methods
of initialization. The solution average and standard deviation are shown.

Route-First Cluster-First
Instance Avg(s.d) Avg(s.d)
X-n200-k36 60993(0) 60996.89(194.96)
X-n251-k28 40406(0) 40339(129.52)
X-n308-k13 28242(0) 27973.73(386.11)

Experiment 3

This experiment investigates the difference in time and quality based on
how the chromosome is decoded. Table 4.4 shows the effects of different
decoding of the chromosome on quality and performance for the given in-
stances. The VNS is expected to have a better result since it explores the
search space more heavily, at the cost of more time. However, the differ-
ence between the two is smaller than expected, with a GAP of less than 2%
between the two modes. Less surprisingly, it finds the best solution in all
test cases. We can also notice that the extra computational cost is higher
on the smaller instances when compared to the sequential decoding.
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Table 4.4: Results for Experiment 3: a comparison between the two types
of decoding for the chromosome. Showing the average, standard devia-
tion and execution time in minutes.

Explore Sequence VNS
Instance Avg(s.d) Time Avg(s.d) Time
X-n200-k36 60996.89(194.96) 6.53 61034(358.25) 33.91
X-n251-k28 40339(129.52) 8.48 40277.88(166.18) 15.48
X-n308-k13 27973.73(386.11) 33.66 27435.82(117.88) 35.49

Experiment 4

This final experiment compares the proposed method with the best-known
solution 2, a manually designed combination of the LLH and to the Sav-
ings algorithm. The manually designed version is based on creating chro-
mosomes of fixed length which uses all the selected LLH (therefore of
length 11), chosen in random order, and are not put through the GA pro-
cess (all other parameters are the same as in 4.1). This aims to simulate the
process of selecting the LLH and using them in some specific order, which
is commonly done in heuristics design. Table 4.5 summarizes the com-
parison. The proposed method performs better than the other two and is
within 5% of the best-known solution for all instances.

Overall the results seem promising in showing that having the adap-
tive clusters improve the search speed, without much loss of quality. It
performs better than some of the compared cases. We performed a Wilcoxon
Ran-Sum test to verify the statistical significance of this performance com-
paring the base case with the tested variants: the fixed clusters, regarding
parameter M , cluster-first and decoding type VNS. The results, as seen in
Table 4.6, show that the method is significantly better for most cases.

2Taken from the CVRPLIB website (http://vrp.galgos.inf.puc-rio.br/
index.php/en/)
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Table 4.5: Results for Experiment 4: comparison between different BKS
and different algorithms with the proposed method. The best, the average
with standard deviation, as well as the GAP from the best solution to the
BKS are shown. BKS with (*) indicate that they are the optimal.

Manually Designed Savings-CW Cluster-based HH (25%)
Instance BKS Best Avg. (s.d) GAP Cost GAP Best Avg. (s.d) GAP

X-n200-k36 58578* 61220
61892.17
(437.72)

4.5% 61167 4.4% 60600
60996.89
(194.96)

3.4%

X-n251-k28 38684* 40846
41096.2
(250.2)

5.5% 40576 4.9% 39974
40339

(129.52)
3.3%

X-n308-k13 25859 27970
28106.4

(136)
8% 28555 10.4% 27205

27973.73
(386.11)

5%

Table 4.6: Wicolxon Rank-Sum test: p-values of the comparison between
the base method (CbHH 25%) and the other evaluated variations.

Instance
Fixed

Cluster (25%)
CbHH50 Route-First VNS

X-n200-k36 0.27 0.01 0.82 0.55
X-n251-k28 0.24 0.04 0.06 0.06
X-n308-k13 0.006 0.00 0.01 0.00

4.2.8 Summary

In this section we explored our Cluster-based Hyper Heuristics. The method
focus on simple local search methods to measure the efficiency of different
neighbourhood orders and our novel adaptive clustering approach. The
clustering technique applied evolves their distribution with each iteration
— including the number of clusters. We show that this method is able
to find more efficient search when compared to the traditional fixed ap-
proach. Additionally, even though the evolution process can still be con-
sidered slow when compared to other meta-heuristics, this can be done
offline, and the application of the resulting chromosome takes very little
time (less than a minute for all instances).
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4.3 The Dual-Layered Chromosome GA

This section presents our second Selection HH. This approach considers
automatically limiting the neighbourhood size generated by the LLH, based
on an evolutionary process and a new chromosome. The idea is to let each
LLH have its own neighbourhood size (i.e. subset of neighbouring cus-
tomers to be examined) adaptively evolved according to its effectiveness
in the evolution, which leads to an adaptive search space for each LLH.
The goal is to investigate whether HHs could automatically find an adap-
tive neighbourhood size strategy that can successfully find quality results,
especially when compared to fixed ones.

This method utilizes an Evolutionary Hyper-Heuristic framework based
on a Genetic Algorithm to evolve the selection of LLH available to the best
order and their limits, up to a fixed number of generations. But before
going into more details, we present the solution representation.

4.3.1 Solution Representation

The solution chromosome utilizes a two-dimensional array with variable
length, where the first level is an integer ID which represents a given LLH,
and the second level is the percentage of the closest neighbours that the
LLH will search for. Even though all alleles have the two levels, the search
space limit is only applied for inter-route neighbourhoods. This is because
an intra-route operator will only perform the search within the same route,
which is usually a very short number of customers due to the capacity
constraints. In inter-route operators, however, all other customers can po-
tentially be searched for a move. In a large scale problem the number of
customers outside the route can be quite large, making it a very expensive
evaluation, which is why we want to limit only these operators. The limits
are still kept for all alleles because crossover operations can alter the struc-
ture of the alleles in such a way that an intra-route allele might affect an
inter-route one. These operators are further explained later.
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For the utilized LLH, we have selected a set of intra and inter perturba-
tive operators. Some are very frequently used and historically show good
improvements, such as Two-Opt and Cross Exchange. But more impor-
tantly, they are all relatively easy and straightforward to implement and
use, which is one of the arguments of using Hyper-Heuristics [28]. The
LLH used are the same set as the previous method, presented in 4.2.1, but
without the clustering-related differences, i.e. just the original implemen-
tations. Figure 4.5 is an example of the representation. As the ID 3 in the
first position of the first dimension represents a two-opt* move, then it will
consider the closest 50% of all customers to perform the move; the next ID
3 represents the same operator, but now only considers 30% of them.

3 1 5

50% 30% 20%

2 0 4

20% 50% 20%

1 3 0

10% 40% 30%

Figure 4.5: An example of chromosome for the Genetic Algorithm.

4.3.2 Evolutionary Hyper-Heuristic

The hyper-heuristic framework has an evolution process where each indi-
vidual, represented by the above mentioned two-dimensional array, will
apply its sequence of LLH to a single starting solution. Algorithm 4.4 sum-
marizes the process. First an initial solution is created heuristically (line
2), using either the Savings heuristics [37] or a simple round-way trip for
each costumer, both cases are tested to see which performs better. Next,
the initial population of heuristics, each represented as a LLH sequence, is
created at random (line 3). In an individual, each LLH is associated with
the percentage of closest neighbours it considers. The main loop starts
(line 5) and each individual will be evaluated by how much they improve
the initial solution. Each allele and its correspondent LLH will modify the
current solution if that improves it (lines 8-9), i.e, the acceptance criteria is
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Only Improvement, as shown in Algorithm 4.5. If the solution of the cur-
rent individual is the best found, we save or update that individual (lines
10-12). Finally, if the stopping criteria are not met (line 13), the crossover
and mutation operators are called to evolve the population (line 14). The
algorithm returns the result given when solving the instance with the best
individual (line 16).

Algorithm 4.4 Adaptive-based Selection Perturbative Hyper-Heuristic
1: procedure ABSPHH(Dataset instance, List LLH)
2: initial solution← FindInitialSolution()

3: population← InitializePopulation()

4: best← ∅
5: while Stopping Criteria not met do
6: for each individual ∈ population do
7: new s← initial solution

8: for each allele ∈ individual do
9: new s← LLH(allele, new s)

10: Eval(new s)

11: if Improvement then
12: best← individual

13: new population←top 10% individuals
14: while new population ̸= Full do
15: Select 2 parents at random from population

16: new individuals← Crossover selected parents
17: Mutation of new individuals according to probability PM

18: new population← new individuals

19: population← new population

20: return best(instance)

The evolutionary operators are responsible for improving the individ-
uals over the generations. They will diversify the population and try to
exploit the best individual characteristics. Before this process, however,
elitism is applied to the top 10% best individuals, which are kept for the
next generation. The remainder of the population is replaced with the chil-
dren. The parents selection occurs by random chance, but no individual
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Algorithm 4.5 Low-Level Heuristic Phase
1: procedure LLH(Array allele, Routes solution)
2: repeat
3: Limit search-space based on allele[1]

4: Call allele[0] function from LLH database, update solution accordingly ▷ For
example, if allele[0] is Cross-Exchange invoke it.

5: solution← correspondentLLH()

6: until No improvement
7: return solution

can be chosen more than twice.
For crossover, similarly to our previous method, two operators were

chosen aiming to create different diversification aspects, but this time they
have the same probability of happening. The first operator is the classi-
cal two-point crossover, where two points are chosen at random, and the
middle portion of each parent is swapped between both to generate the
offspring. For this operator, the solution search space limit at the second
dimension of the resulting array will be updated by the average between
the parents’ limits, considering the same positions, as shown in Figure 4.6.
If a child has a larger size, the original values are kept. This operator is
mainly used to produce some diversity in the population by considering
new neighbourhood limits and by not considering the solution quality.
The second operator is the Best-sequence crossover, based on [85]. The

Figure 4.6: Example of a two-point crossover for the two-dimensional
chromosome.
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best improving sequence from both parents, i.e. the largest subset of con-
secutive operators that contribute the most for the solution, are inherited
by the children. It works similar to the first operator, but the average is not
applied. Instead, the sequences are copied exactly the same, since its goal
is to keep the good parts of the solution.

Mutation has a probablity PM = 10% chance of happening for each
individual of the new population, and also has two operators with equal
chance of being chosen. The first one, also presented in [85], removes the
worst performing consecutive sequence of operators from the individual
which do not contribute to the solution, as used in our previous method
(seen in Section 4.2.3). The second one adds new random operators from
the LLH pool as if newly created, which can vary between 1 and up to
20% of the length of the chromosome, and can be added in any place at
random. These mutation operators aim to remove the bad performing
schemes from the population and to add new elements for diversification.
The two operators are illustrated in Figure 4.7.

Figure 4.7: Example of the mutation operators. On the left, the worst im-
proving sequence is removed. On the right, new random LLHs are added.

Note that the order of the operators will result in different final solu-
tions. But also the limits play a role in this, since even having the same
operators sequence, the search limits may be different and will result in a
distinct solution.



4.3. THE DUAL-LAYERED CHROMOSOME GA 131

4.3.3 Experiment Design

The experiments were designed aiming to test the method’s ability to limit
the search space. However the evolution can be sensitive to the initial so-
lution and a test was designed to measure this. We also want to show
whether there is a trade-off between the size of the limits and the quality
of the final solution. We designed three main experiments for this prelim-
inary work, which are detailed next.

Experiment 1 measures the impact of different initial solutions on the
performance of the HH approach. As traditional perturbation operators
might not escape from local minimums too easily, the initial solution can
significantly change the outcome. We test an obvious feasible approach
which is a round trip between the depot and all customers, and compare
it with the traditional Savings from Clarke and Wright [37]. The Savings
algorithm is a deterministic constructive heuristic which starts building
routes by connecting different round trips, whose connection will bring
the most savings. This test will also identify wheter the chosen simplistic
LLHs are enough to produce sufficient improvement without any local
minima escape mechanism given the two different starting points.

Experiment 2 aims to evaluate both the efficiency and performance of
the adaptive limits to the search space when compared to a fixed limit.
To achieve that, we apply the same Hyper-Heuristics framework but set
a fixed limit to the neighbourhood search. The fixed limit used as rule of
thumb has all alleles set to 25%. On the other hand, the adaptive limits are
randomly chosen for each LLH, ranging from 10% to 50%. For this exper-
iment we assume that the full neighbourhood (i.e, 100% size), would not
find results a lot better given the extra amount of time necessary to do so.
Hence this experiment aims to show how having a fixed neighbourhood
size (like most works do) compares to having different limits throughout
execution. Since we have only a set of few LLHs and are comparing this
fixed size based on our own framework, all claims made here would be
true at least considering the tested circumstances. But at least if finding
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positive results we can show that this idea is worth investigating. For
example, with this experiment we can analyse whether our HH would al-
ways give priority to the LLHs which have a larger neighbourhood, which
could be expected since they will cover more possibilities.

Finally, Experiment 3 compares the proposed method with two man-
ually designed heuristics, as well as the best known solutions. Two man-
ually designed heuristics, which use the limits to the search space as pro-
posed in this paper, were created based on intuition from the authors. Both
share the same work process, listing all operators used in our LLH pool
twice. For example, with the six operators used numbered from 1 to 6, the
manually designed heuristic would be [1,2,3,4,5,6,1,2,3,4,5,6]. Then, we
apply it to the initial solution generated by the Savings heuristic [37] in this
fixed order. The difference between the two manually designed heuris-
tics are obtained by changing the neighbourhood limits between the two
groups of operators. The first heuristic simulates a top-down approach,
where we apply broader (50%) search spaces to the first group of oper-
ators and narrower (10%) to the second. The second manually designed
heuristic is the bottom-up approach, which is the exact opposite of the
previous one, applying the narrower size for the first group of operators,
and broader size for the second. We will use MHTD and MHBU when
referring to each heuristic, respectively, in the next sections.

The program was coded in C++3 with the VRPH library [82], from
which the VRP structure and some of the implemented operators were
used. The experiments were run on a Intel®Core™i7-8700 @ 3.2GHz and
15GB memory. Table 4.7 shows the parameters of the Genetic Algorithm.
Since the individual size has a variable length, the δ value indicates the up-
per bound for the initial population chromosomes. Additionally, in order
to speed-up the process and escape local minima, if the GA finds no im-
provement for 10 consecutive generations, the lowest performing half of
the population is replaced by randomly generated individuals, and if the

3Version 11 compiled with g++ and optimisation flag -O2.



4.3. THE DUAL-LAYERED CHROMOSOME GA 133

lack of improvement persists for another 10 generations, the main loop is
finished. Next we present and discuss the results.

Table 4.7: Genetic Algorithm parameters.

Parameter Name Value
Generations 100

Population size 30

Initial chromosome size + δ 18 + 9

Crossover rate Every generation
Mutation rate 10%

Elitism 10% top rated
Number of runs 30

4.3.4 Results and Discussions

All the experiments were conducted by using a sub-set of instances from
the CVRPLIB proposed by Uchoa et al [183], which vary between distri-
bution, size, demand and capacity.

4.3.5 Effect of initial solution

The first experiment aims to show the impacts of initial solution to the al-
gorithm convergence. As shown in Table 4.8, both the Round-Trip and the
Savings heuristic [37] were used as initial solution. To verify if the results
are significant, a Wilcoxon rank-sum test was also performed comparing
the two approaches. If the p-value is less or equal to 0.05 we say that the
algorithm is statistically better when solving that instance. The instances
in which there are significant advantage are marked in the table with (+).
For this case, all results are significantly better, when considering Savings
as the initialisation heuristic.

Analysing Table 4.8, the impact of the two different starting solutions
is more clearly noticeable when looking at the execution time. This is be-



134 CHAPTER 4. OP. SEL. & BOUNDS W/ EHH

Table 4.8: Results comparing the initial solution impact. Execution time in
minutes

Round Trip CW Savings [37]
Instance Initial Solution Avg(s.d) Time Initial Solution Avg(s.d) Time
n200-k36 295558 61205.2(124.66) 31.39 61167 60993(0)(+) 15.11
n251-k28 290890 41045.73(200.84) 55.82 40576 40385(0)(+) 22.29
n308-k13 410930 27453.33(129.41) 191.77 28555 28040.3(7.97)(-) 49.80
n351-k40 28240 28049.7(184.59) 200.54 27123 26978(0)(+) 52.20
n376-k94 558384 151778.77(430.00) 487.78 149659 148957.2(8.26)(+) 279.02
n401-k29 755820 69031.8(311.91) 250.22 68975 68666.1(84.26)(+) 90.81
n420-k130 318530 113619.77(332.58) 1002.74 112604 112286.63(29.26)(+) 517.06
n449-k29 704352 59424.9(285.00) 322.63 58614 58395(0)(+) 75.60

cause Savings can provide a much better initial solution than Round Trip,
making the fitness evaluation (improving the solution until convergence)
much less time consuming. In addition, as can be noticed by the average
and standard deviation, the Savings solution tends to converge to a single
point or a very close one. This means most solutions reach the same local
minima when considering the used LLH.

On the other hand, the round trip version does not converge to a sin-
gle point and has a greater relative improvement. This behaviour allows
us to investigate the use of the neighbourhoods limits more clearly, as it
provides a longer range of possible solutions. Therefore, next tests shown
will utilise this method for generating the initial solution.

4.3.6 Effectiveness of the adaptive size limit

The second experiment is focused on showing how the proposed chromo-
some and evolutionary strategy performs for different search space limits,
given the same Hyper-Heuristic framework. Considering a fixed neigh-
bourhood search limit of 25% and the adaptive one, which range from
10% to 50%. This experiment aims to test if they have significant differ-
ence regarding both quality and execution time. Since starting with the
Savings heuristic led to prematurely convergence (as seen in the previous
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experiment), this test will use Round Trip starting solutions.

Table 4.9 summarizes these results. Although the adaptive limit does
not outperform the fixed one in every scenario, the larger instances show
better results. We also compare the p-value given the Wilcoxon rank-sum
statistical test. Like in the previous experiment, the (+) sign means that
the results are significantly better. The (=) sign means that there is no clear
advantage when using the approach and the (-) sign means it performs
worse. As the table shows, the adaptive method outperforms the fixed
one for most instances, especially in larger scenarios. Although there is a
somewhat significant increase in time, we deem this result as encouraging
to keep exploring adaptive-based limits. Additionally, the ones that the
adaptive method do not outperform, can also be an indication that our
evolutionary mechanisms could not find solutions with similar (or better)
schemes of limits.

Table 4.9: Results comparing a fixed search space size and an adaptive one.
Execution time given is in minutes

Fixed size (25%) Adaptive size
Instance Best Avg(s.d) Time Best Avg(s.d) Time
n200-k36 60659 61270(304.61) 39.19 60959 61205.2(124.66)(=) 31.39
n251-k28 40560 41022.76(204.00) 62.34 40512 41045.73(200.84)(=) 55.82
n308-k13 27041 27331.26(102.96) 210.52 27150 27506.76(151.49)(-) 191.77
n351-k40 27748 28240.63(360.46) 187.08 27641 28049.7(184.59)(=) 200.54
n376-k94 150591 152397.93(1009.14) 502.00 150715 151778.76(430.00)(+) 487.78
n401-k29 68484 69303.18(403.75) 274.30 68466 69031.8(311.91)(+) 250.22
n420-k130 112976 114116.67(420.37) 731.18 112963 113619.77(332.58)(+) 1002.74
n449-k29 59075 59773.9(351.28) 270.56 58783 59424.9(285.00)(+) 322.63
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4.3.7 Comparison with other methods

The third experiment compares the proposed approach with the Best Known
Solution4 (BKS) and with the two manually designed heuristics specified
in previous section, MHTD and MHBU. The solutions generated by the
Savings algorithm [37] are shown as a comparison baseline. The proposed
approach, as does the manually designed heuristics, uses the Round-trip
as initial solution, where each customer is served by a different vehicle.
The adaptive search approach is described in Section 4.3.2, and range of
neighbourhood limits is between 10%-50%.

Table 4.10 shows these results. When compared to BKS the proposed
solutions are significantly close, specially considering our approach does
not have local optima escape mechanisms. This indicates that the neigh-
bourhood limits can be effective regarding solution quality. The better or
similar performance by the Savings algorithm, however, proves that the
starting point is far too bad to lead to better solutions given the chosen pa-
rameters and LLH. The results also show that the proposed method does
have an overall better solution quality than the manually designed heuris-
tics which have fixed search limits, outperforming them for all cases, even
in the average case. Therefore, this suggests that having the different order
and search sizes improves the search space exploration.

4.3.8 Further Analysis of the evolved solutions

In this work, we want to show whether the automatic evolution of the
search space size will give benefit to the overall search. Experiments 2 and
3 measure this more directly, while experiment 1 tries to show whether
the initial solution is the only factor making the results seem like they are.
As shown in Experiment 2, some of the fixed size search performed just
as good as the proposed approach. However, this can be explained if we

4Collected from the CVRPLIB webiste (http://vrp.galgos.inf.puc-rio.br/
index.php/en/)
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Table 4.10: A comparison between BKS and the manually designed heuris-
tics with the proposed method. The GAP shows how close to the BKS
the average solution is. BKS with (*) indicates that they are the optimal.
The best solution for each instance is highlighted. The Savings algorithm
from [37] (CW) is shown as a point of comparison.

MHTD MHBU CW [37] Proposed Method
Instance BKS Best GAP Best GAP Best GAP Best Average(sd) GAP
n200-k36 58578* 62306 6.3% 62067 5.9% 61167 4.4% 60959 61205.2(124.66) 4.4%
n251-k28 38684* 41787 8.0% 41960 8.4% 40576 4.8% 40512 41045.73(200.84) 6.1%
n308-k13 25859 29012 12.2% 28374 9.7% 28555 10.4% 27150 27506.76(151.49) 6.3%
n351-k40 25928 29253 12.8% 28263 9.0% 27123 4.4% 27641 28049.7(184.59) 8.1%
n376-k94 147713* 159458 7.9% 152638 3.3% 149659 1.3% 150715 151778.76(430.00) 2.7%
n401-k29 66187 73098 10.4% 70183 6.0% 68975 4.2% 68466 69031.8(311.91) 4.2%
n420-k130 107798* 115910 7.5% 115640 7.3% 112604 4.4% 112963 113619.77(332.58) 5.4%
n449-k29 55269 61982 12.1% 60376 9.2% 58614 6.0% 58783 59424.9(285.00) 7.5%

analyse the evolved heuristics. As shown in Table 4.11, the evolved best
individual for each case has an average of their search space limits around
the 29%, meaning the fixed approach was actually a good approximation
of this. Figure 4.8 shows one run’s best individual for instance n308-k13.

This also gives insight on how larger neighbourhoods might not al-
ways translate to better solutions. Other work might use smaller neigh-
bourhoods assuming they get a time benefit in exchange for some reduc-
tion of the overall quality, but these results actually tell otherwise. As
these evolved limits barely do not converge to using the largest available
limit, since we are only measuring quality. In fact, as already mentioned,
on average all best individuals limits’ are around 29%, when considering
all non-fixed solutions. Additionally, on average only 29% of the chro-
mosome have a limit of 40% or higher (up to 50%), considering the same
best individuals. This means that the evolution process does not prefer
larger neighbourhoods, and uses them only for around 1/3 of the alleles.
And around 35% of the chromosomes have neighbourhood sizes of equal
to or less than 25%. This means that the evolution process brings balance
between large and small neighbourhoods.
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Table 4.11: The average neighbourhood limit for each Low-Level Heuristic
and the average in total for each given instance.

Instance Two-Opt Or-Opt Cross-Exchange Two-Opt* Or-Opt* Merge Total
n200-k36 30.08% 30.32% 29.96% 29.13% 30.46% 27.39% 29.52%
n251-k28 30.36% 29.60% 30.18% 30.50% 29.67% 28.93% 29.99%
n308-k13 30.54% 30.45% 29.32% 29.79% 31.07% 28.57% 29.93%
n351-k40 29.23% 30.10% 30.25% 29.51% 30.74% 26.03% 29.39%
n376-k94 28.92% 30.57% 29.89% 30.26% 30.78% 26.44% 29.46%
n401-k29 30.64% 30.34% 30.19% 29.49% 29.51% 26.85% 29.70%
n420-k130 29.78% 29.75% 30.59% 29.78% 32.41% 26.63% 29.62%
n449-k29 28.66% 29.91% 30.25% 30.51% 30.88% 27.40% 29.69%
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Figure 4.8: Example of an evolved chromosome.

4.3.9 Summary

In this section we present our novel dual-chromosome-based hyper heuris-
tic. The dual-layered chromosome has two objectives: find the optimal
order of the neighbourhood operators used and their respective search
sizes. We also introduce a crossover and mutation operator specific for
this new chromosome. The method is able to find better solutions than a
manually designed strategy. Another finding regards the pattern among
the evolved heuristics, which do not give preference to larger limits over
smaller ones. This can indicate that the search limits actually are an ef-
fective way of improving performance of LSVRP algorithms, since they
improve efficiency (when compared to full neighbourhood size) without
loss of quality. However, there are still some questions raised from look-
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ing at results. For example, since one of the possible permutations for the
adaptive approach can be the same as the fixed one, then how did it not
find something similar? Perhaps the genetic operators did not allow the
adaptive search to find the same (or better) limits.

4.4 Evolutionary Hyper-Heuristic for Knowledge-

Guided Local Search

Our third proposed approach applies an EHH to optimise the order in
which simple operators are used to solve the LSVRP, reducing the pre-
configuration required which is usually done by an expert. The evolu-
tionary process tries to find the best neighbourhoods to be used and their
sequence, as well as the solution construction method and local optima es-
cape mechanism. Additionally, the EHH also evolves the heuristic prun-
ing process through a new chromosome, letting the evolutionary process
determine the best heuristic configuration.

In this section, we describe the Evolutionary Hyper-Heuristic (EHH)
developed. The overall idea is to use a Genetic Algorithm (GA) to evolve
three different parts of the KGLS, which is based on local search and has
its phases clearly distinct, and also the order in which the operators are
applied (as a Selection Hyper-Heuristics), together with how much of the
neighbourhood should be searched for each operator, and the order of pe-
nalization criteria. Although these other parts are related to other steps in
the local search framework, we still consider its main contribution in the
improvement step.

4.4.1 Representation

The chromosome for this GA has three parts, as shown in Figure 4.9. The
first part of the array, or Initialisation part, decides which initialisation
heuristic to use. The integer value represents the algorithms that will
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build the initial solution. We consider a Random initialisation, the Sav-
ings heuristics from [37], and a Round-Trip (all customers are served by
one vehicle each), with values 1, 2, 3, respectively.

Neighbourhoods:

Limits:

Decay:

I P1 P2 P3

Initialisation
part

Optimisation part Penalisation part

N1

L1

D1

N2

L2

D2

...

...

...

Nk-1

Lk-1

Dk-1

Nk

Lk

Dk

Figure 4.9: Chromosome for our evolutionary hyper-heuristic.

The second part, or Optimisation part, utilises a three-layer array: the
Neighbourhoods layer, the Limits layer and the Decay layer. The first layer
represents the sequence in which the operators are to be used. This layer
searches for the most effective order in which to apply the operators to all
instances through the evolutionary process. This concept has been applied
to other problems before and have shown competitive results, such as [43,
85, 100, 159] and was explored for the VRP in [42]. The second layer, or
Limits layer, contains the limits applied to the number of customers to
be searched, ranked by the closest ones for every single customer. For
example, if the operator has 30% in the second layer, it means that only
the 30% closest customers can be considered for the move. The Decay
layer also trims the search space by reducing the number of routes that
can be evaluated in inter-route moves. For example, if the third layer has
a value of 50%, the correspondent operator will only consider 50% of all
routes which are closest to the current one being evaluated. This closeness
is calculated by the distance between the route’s centre of gravity.

For the Optimisation part, the operators are easy-to-implement tradi-
tional VRP ones. They are, with index (bold ones are inter-route):

1. Swap: Swaps position of two customers within the same route.

2. Two Opt: Exchanges two edges within the same route.
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3. Cross Exchange: Exchanges two sub-routes of size k between two
routes.

4. Swap*: Swaps two customers on different routes.

5. Three Opt: Exchanges three edges within the same routes.

6. Relocate: Moves a customer from one route to another

The Penalisation part is the final part of the chromosome and repre-
sents the order of the three badness functions in which the KGLS penalises
the solution (which are explained next). These are mapped as integers,
each representing one of the three functions (Equations 4.4, 4.5 and 4.6).
However, these badness functions are not limited to inter-route moves
only, nor does the heuristic follow the same pattern of inter to intra, as
the original work does. This flexibility allows for more degrees of free-
dom regarding how to apply the penalisation.

4.4.2 The KGLS badness functions

We already explained the KGLS [9] at Chapter 2, but we recall some of its
functions here for an easier connection to our chromosome.

The functions b(.) measure the badness of an edge in the penalisation
phase of the KGLS. The original work utilises three different functions
b(i, j), as described in Equations 4.4, 4.5 and 4.6. The first function is the
standard penalization function for the GLS, penalizing long edges. While
the other two penalise based on the width. The width of a given edge (i, j)

is the distance between the customers i and j and a line (E) which crosses
both the depot (D) and the centre of gravity (G) of the route which the
edge belongs to, shown in Equation 4.7. These equations compute the pe-
nalization cost based on the number of penalisations already made to the
edge (p(i, j)). Whenever an edge (i, j) has the worst value of b(.), the value
of p(i, j) is incremented. More details can be found in the study of [10,11].
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bc(i, j) =
c(i, j)

1 + p(i, j)
(4.4)

bw(i, j) =
w(i, j)

1 + p(i, j)
(4.5)

bw,c(i, j) =
w(i, j) + c(i, j)

1 + p(i, j)
(4.6)

w(i, j) = max(diE, djE)−min(diE, djE), E = Line(D,G) (4.7)

Their work follows a similar algorithm structure as the one presented
in Algorithm 4.7. The paper [10] also adds a new improvement heuristic,
namely Relocate-Chain, which moves a customer to another route, even if
this breaks the feasibility of the route. In the cases this happens, it is fixed
by relocating another customer to make it feasible. This can lead to a chain
reaction of infeasible moves until one route is found where the feasibility
is restored. Although this move improves the solution quality, it also re-
quires an exponential number of chains and evaluations. The authors [10]
avoid that by limiting the number of jumps a move can make. This is an
example of how domain knowledge is applied to the problem solution.
Our work employs a similar KGLS but as a HH, which reduces some of
the domain-specific parameters tuning and allow for a more independent
heuristic pool.

4.4.3 GA Hyper-Heuristics

The framework utilises the traditional GA approach where the individuals
go through the evolutionary process to optimise the fitness of the individ-
uals. The process is divided into the training and the test phases and is
summarised in Figure 4.10.

Training Phase

The training phase consists of a population that goes through the evo-
lutionary process and is initialised at random. At each generation, each
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Figure 4.10: Flowchart for the HH framework.

individual is first evaluated. The rest of the evolutionary process follows
with an elitism step which saves the best individuals and a crossover and
mutation steps that try to improve the population quality for the next gen-
erations. These steps are summarized in Algorithm 4.6.

For the evaluation step, each individual is evaluated by applying the
GLS framework (summarised in Figure 4.11). Then, a normalised function
based on how much the solution was improved compared to the initial
solution (from CW, which is pre-calculated before execution). This is done
to avoid biases towards a larger absolute improvement value. This fitness
is calculated by the following equations:

NF
i =

f(xi)

CWi

(4.8)

fitnessF =
T∑
i=0

NF
i (4.9)
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Algorithm 4.6 Hyper-Heuristic Genetic Algorithm’s Training Phase.
1: procedure GAHH TRAINING(Training Set T , Number of Penalised moves P , Elitist

rate L, Crossover rate C, Mutation rate M )
2: Calculate CWi and Li, i.e. the CW Savings for all Instances i ∈ T with their

average edge cost
3: Create a random initial Population
4: while Stopping criteria not met do
5: for each Individual F ∈ Population do
6: for each Instance i ∈ T do
7: NF

i ← GLS(Individual,Instance, P)/CWi

fitnessF ←
∑

i∈T NF
i

8: Rank population by fitness
9: Hb ← Rank #1 of population

10: Save best individuals according to rate E

11: Apply one-point crossover to the population with rate C, following Tourna-
ment Selection as the Selection process

12: Apply mutation to the population with rate M

13: return Hb

In Equation 4.8, we calculate the normalized improvement (N ) for one
instance i, for individual F , given the VRP solution xi and the evaluation
function f , which is the standard CVRP minimization function, minimiz-
ing total distance. The solution after the improvement given by the in-
dividual will likely be better than the initial solution constructed by the
savings heuristic (CWi). Therefore, the final value of NF

i will be between
0 and 1, where the smaller the better. In Equation 4.9, we calculate the fit-
ness of individual F as the sum of the values of N for all the instances in
the training set T .

For the elitism step, a percentage of the population is saved for the next
generations according to the parameter E. The best individuals are added
back to the population after the crossover and mutation steps finish, but
are still included in the population for the selection process since they can
generate better offspring.

As part of the crossover step, a Selection process applies a Tournament
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Figure 4.11: Flowchart for the GLS framework.

Selection (TS) to select which pair of individuals to crossover. TS will select
random individuals based on the tournament size parameter, and return
the fittest individual among them. We apply TS twice to get both parents.
Given the pair selected, there is still a probability of mating considering
the parameter Crossover rate C. The two parents are replaced by the new
offspring in the next generation, keeping the population with the same
number of individuals. The parents pair selected is passed to a one-point
crossover, which is only applied for the Optimisation part, the other parts
of the individuals are passed to each child with the same as the parents.
The one-point crossover selects a random position from the array and each
child will get one of each parents part.

During the mutation step all the components of the individuals can be
changed. If a given individual passes the mutation rate M , its Initialisa-
tion part and Penalisation part will get a new random initial heuristic or
random order (by shuffling the penalisation part), respectively. The Opti-
misation part will get one of its heuristics modified to a random one.

This model allows the heuristic definition to be controlled by the GA,
rather than being manually designed. The elitism guarantees good indi-
viduals to be kept in the population. The exchange of information of the
crossover operator as well as the randomness of the mutation operator al-
lows for an increase in diversity. The resulting best fit heuristic, i.e. the in-
dividual which got a better result across all instances in the training set (on
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average), will be the output of the algorithm and will be applied to the test
instances 5. Since larger neighbourhoods might contain better possibilities,
it would be expected for the larger limits to obtain better fitness and dom-
inate the population. However, as the running time for each individual
is the same, the ones that find better solutions will be more fit, regardless
of limits. This way the selection pressure acts in the algorithm and selects
the best limits, regardless of the developer’s idea of what should be better
or faster. If the outcome results in smaller limits, it means that those are
enough to find good solutions compared to larger ones6.

Test Phase

Given the best individual from the previous phase, the unseen instances
can be used to measure how effective the trained algorithm is. As the
KGLS requires a set of complicated move sets for achieving its maximum
capabilities, we re-implemented the algorithm with simpler moves, the
same used in our HH, as shown in Section 4.4.1. The KGLS* was also re-
quired to do a more fairly comparison to our HH since both use the same
components. The test phase simply applies the KGLS* (Algorithm 4.7),
with this best individual. The test instances are then evaluated individu-
ally by their fitness, just as a regular meta-heuristic.

4.4.4 Experiment Design

In order to avoid unnecessary computation by running the training set
for a long amount of time, we performed preliminary experiments with

5Regarding time spent searching each neighbourhood, which although is not directly
accounted for, there is an underlying factor which will try to optimise it.

6Comparing the same operator, if one searches its full neighbourhood for 5 seconds,
and it takes the full time to do so, versus another which searches only half its neighbour-
hood, but does it in half the time, the second version can move from one local optimum
from the first search and then to another one for the second run, given the same 5 seconds
in total. This can lead to a better overall solution, although it is not guaranteed.
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Algorithm 4.7 KGLS* used to evaluate the individuals.
1: procedure KGLS EVAL(Individual F , Instance i, Number of penalised moves P )
2: Find initial solution to i according to F ’s Initialisation part heuristic
3: while Stopping criteria not met do
4: while Local Optimum not reached do
5: for each LLH ∈ F ’s Optimisation part do
6: Apply LLH with its limits to the current solution

7: Change penalisation function b to the next one in F ’s Penalisation part j
8: while Number of penalised moves ≤ P do
9: Penalise current solution with current penalise function bj

10: Select penalised edge e

11: for each LLH ∈ F ’s Optimisation part do
12: Apply LLH with its limits to edge e considering penalised edges

13: if A move was made then
14: Increment number of penalised moves

15: return value of best solution

the KGLS* adaptation to determine fair parameters for our EHH. Those
experiments consisted of running the KGLS* for all instances for the same
amount of time (10 minutes) and analysing their convergence speed and
curves. Figure 4.12 shows the quality of the solution over time for the
test set. The graph shows how much the solution has improved from the
starting solution, relatively. As can be seen from the figure, most of the
improvement happens within the first seconds of execution. Therefore, we
determined that the training time limit for each individual in our hyper-
heuristic would be of 30 seconds, which should be enough for finding
the best improvement application of the heuristics. A similar trend was
observed for the training set.

The experiment was designed to verify whether our EHH can find a
better heuristic configuration than the manually designed KGLS. In this
experiment, the EHH is compared to how good the final solution is, given
the same amount of time. This aims to show whether our approach can
find a better final solution compared to the KGLS*. This experiment also
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Figure 4.12: Improvement over time for the KGLS* implementation con-
sidering the test instance set.

compares the final result to the original KGLS [9] and to the Best-Known-
Solution (BKS)7. The results for the KGLS were collected by running the
available online tool the authors provided8.

Finally, in order to have the experiments running faster, and to take
advantage of modern computers with multi-threaded CPUs, we added a
parallel evaluation of the individuals in a given generation. Since each
individual evaluation is independent of one another, we can safely do this
and save a significant amount of time in the training phase. Since we are
running the training set with the instances which have a smaller number
of customers, memory is also easier to be handled, as it will not require as
much as the larger instances.

4.4.5 Training and Testing

The experiments were realized with the VRPLib dataset [183], which con-
tains 100 instances varying in size (from 100 to 1000 customers), in the

7Retrieved from the dataset website: http://vrp.atd-lab.inf.puc-
rio.br/index.php/en/

8Available on the website: https://antor.uantwerpen.be/routingsolver/
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distribution of customers (randomly distributed, clustered, mixed), in cus-
tomers demand (from 1 to 100, with different combinations of sizes), ve-
hicle capacity (varies according to the demand for the instance) and depot
location (central, eccentric and random). These different instances try to
simulate several real-world scenarios in which the VRP can be applicable.
A good solution method would perform well in all scenarios, even though
that is hard to achieve since in general different heuristics work better un-
der different situations.

The training set used was composed of all instances smaller than 200
customers, containing 21 instances (from 100 to 199). While the rest (79 in-
stances) were used as the test set. We assume the sample of the 21 instances
have enough variety for the algorithm to learn properly and apply the
knowledge efficiently for the larger instances. The instances with fewer
customers are also easier to compute due to the reduced search space and
are able to find better solutions within a small amount of time. And al-
though this does not necessarily translate to better quality for larger in-
stances, it is a good indication according to our preliminary experiments
(as shown in Figure 4.12).

4.4.6 Parameters

One of the main parameters of the KGLS is the number of penalised moves
before moving to the optimisation phase. The authors of the original work
have tried with 10, 100 and 1000, for different configurations of their KGLS
(by comparing with different components). Although their final perfor-
mance was better with 100, the 10 was actually better for the simple ver-
sion of the KGLS with less advanced components. We compared this value
and confirmed that 10 is better for our version too, and the value was used
for our EHH.

For our EHH, the parameters are as shown in Table 4.12. The pop-
ulation size and number of generations were determined by a few pre-
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liminary experiments, finding that larger numbers would take too long to
evaluate all 21 training instances. The bounds for the optimisation part of
the chromosome are wide enough to allow for the evolution to determine
the better values.

Table 4.12: The GA Hyper-Heuristics parameters.

Parameter Value
Population size 20

No. of Generations 50
Cross. Rate 0.8

Mut. Rate 0.1
Elite Rate 0.1

Lower bound (for limit and decay) 0.1
Upper bound (for limit and decay) 0.9

Number of runs 30

All tests were conducted in a Intel®Core™i7-8700 @ 3.2GHz and 15GB
available memory, using half of the 12 threads for the parallel evaluation,
and the implementation was done with C++ version 17.

4.4.7 Results and Discussions

This section shows the results obtained from the experiments of this given
method. The results compared are for the test set only. We comment on the
results based on the average case, best case and the evolved individuals
over the 30 runs. The rank-sum Wilcoxon statistical test was performed to
verify the significance of the results (p-value = 0.05).

Average Case: For the average case, we can observe that the EHH pro-
posed performs relatively poor, as shown in Table 4.13. On average, the
EHH only beats (with significance, on the table in boldface) the KGLS* in
11 out of the 79 instances and drawing in 12 of them (no significant advan-
tage or disadvantage). The results are even more significant if compared
to the original KGLS, not beating it in any case. This, however, is to be
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expected since they apply some complex neighbourhood moves (such as
the LK heuristic and the Relocate Chain).

Table 4.13: Results compared to BKS. In bold are the best between KGLS*
and EHH, while underlined are the overall best.

Instance
KGLS
to BKS

KGLS*
to BKS

EHH Avg. to BKS
EHH Best
to BKS

X-n200-k36 0.29% 2.28% 1.37%± 0.57% 0.84%
X-n204-k19 0.52% 1.05% 1.09% ± 0.26% 0.35%
X-n209-k16 0.25% 1.69% 1.22%± 0.48% 0.62%
X-n214-k11 0.67% 2.46% 3.29%± 1.01% 1.75%
X-n219-k73 0.07% 0.15% 0.20%± 0.07% 0.07%
X-n223-k34 0.59% 1.79% 1.57%± 0.25% 1.26%
X-n228-k23 0.37% 1.37% 2.34%± 0.52% 1.13%
X-n233-k16 0.54% 1.12% 1.89%± 0.46% 0.93%
X-n237-k14 0.24% 0.82% 0.65%± 0.39% 0.29%
X-n242-k48 0.47% 1.23% 1.19%± 0.23% 0.72%
X-n247-k47 1.11% 2.60% 2.07%± 0.62% 1.34%
X-n251-k28 0.60% 1.64% 1.33%± 0.20% 1.01%
X-n256-k16 0.05% 0.80% 1.52%± 0.54% 0.75%
X-n261-k13 0.43% 2.00% 2.57%± 0.64% 1.41%
X-n266-k58 0.64% 1.31% 1.33%± 0.19% 0.91%
X-n270-k35 0.45% 0.95% 1.27%± 0.21% 0.95%
X-n275-k28 0.16% 0.97% 1.19%± 0.22% 0.81%
X-n280-k17 0.56% 2.28% 3.74%± 0.43% 2.96%
X-n284-k15 0.80% 2.31% 2.84%± 0.42% 2.25%
X-n289-k60 0.86% 1.56% 1.61%± 0.26% 1.16%
X-n294-k50 0.41% 1.65% 1.43%± 0.22% 0.97%
X-n298-k31 0.41% 1.34% 2.09%± 0.32% 1.55%
X-n303-k21 0.61% 1.72% 2.71%± 0.46% 2.06%
X-n308-k13 1.17% 2.39% 3.77%± 0.95% 1.64%
X-n313-k71 0.93% 1.49% 1.57%± 0.22% 1.19%
X-n317-k53 0.07% 0.41% 0.53%± 0.21% 0.28%
X-n322-k28 0.58% 1.94% 2.26%± 0.41% 1.53%
X-n327-k20 0.40% 1.33% 2.10%± 0.55% 1.43%
X-n331-k15 0.24% 1.28% 1.90%± 0.48% 1.14%
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Table 4.13: Results compared to BKS. In bold are the best between KGLS*
and EHH, while underlined are the overall best (cont.).

Instance
KGLS
to BKS

KGLS*
to BKS

EHH Avg. to BKS
EHH Best
to BKS

X-n336-k84 1.03% 1.66% 1.82%± 0.34% 1.42%
X-n344-k43 0.71% 1.57% 1.92%± 0.30% 1.43%
X-n351-k40 0.82% 2.58% 2.15%± 0.29% 1.52%
X-n359-k29 0.93% 1.52% 2.04%± 0.37% 1.42%
X-n367-k17 0.51% 2.04% 2.65%± 0.64% 1.43%
X-n376-k94 0.09% 0.32% 0.38%± 0.07% 0.24%
X-n384-k52 0.44% 1.39% 1.34%± 0.26% 0.89%
X-n393-k38 0.53% 1.93% 1.96%± 0.33% 1.42%
X-n401-k29 0.54% 1.05% 1.19%± 0.28% 0.81%
X-n411-k19 1.89% 2.70% 6.11%± 0.58% 4.81%
X-n420-k130 0.56% 1.35% 1.24%± 0.41% 0.71%
X-n429-k61 0.43% 1.58% 2.09%± 0.38% 1.35%
X-n439-k37 0.39% 0.93% 1.42%± 0.22% 1.10%
X-n449-k29 0.75% 2.55% 2.75%± 0.51% 1.84%
X-n459-k26 0.20% 1.80% 3.48%± 0.54% 2.86%
X-n469-k138 0.66% 1.20% 2.10%± 0.28% 1.44%
X-n480-k70 0.38% 1.27% 1.78%± 0.27% 1.32%
X-n491-k59 0.75% 1.78% 2.00%± 0.25% 1.60%
X-n502-k39 0.11% 0.57% 0.56%± 0.12% 0.44%
X-n513-k21 0.44% 2.16% 6.51%± 1.28% 4.05%
X-n524-k137 1.77% 2.66% 3.55%± 0.49% 2.50%
X-n536-k96 0.81% 1.55% 2.19%± 0.37% 1.60%
X-n548-k50 0.25% 1.00% 1.03%± 0.16% 0.71%
X-n561-k42 0.63% 1.71% 3.16%± 0.61% 1.96%
X-n573-k30 0.19% 1.39% 2.21%± 0.23% 1.82%
X-n586-k159 0.53% 1.19% 2.18%± 0.28% 1.63%
X-n599-k92 0.54% 1.22% 1.67%± 0.15% 1.39%
X-n613-k62 0.72% 2.27% 2.93%± 0.27% 2.43%
X-n627-k43 0.31% 1.78% 2.45%± 0.26% 1.99%
X-n641-k35 0.39% 1.90% 3.37%± 0.38% 2.68%
X-n655-k131 0.19% 0.49% 0.53%± 0.08% 0.40%
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Table 4.13: Results compared to BKS. In bold are the best between KGLS*
and EHH, while underlined are the overall best (cont.).

Instance
KGLS
to BKS

KGLS*
to BKS

EHH Avg. to BKS
EHH Best
to BKS

X-n670-k126 3.28% 5.33% 6.28%± 0.32% 5.83%
X-n685-k75 0.70% 1.72% 2.90%± 0.22% 2.37%
X-n701-k44 0.22% 1.55% 3.12%± 0.17% 2.72%
X-n716-k35 0.69% 2.60% 4.42%± 0.19% 3.96%
X-n733-k159 0.61% 1.39% 1.67%± 0.14% 1.33%
X-n749-k98 0.58% 1.69% 1.56%± 0.12% 1.36%
X-n766-k71 1.04% 2.84% 3.69%± 0.12% 3.47%
X-n783-k48 0.49% 1.60% 3.31%± 0.25% 2.72%
X-n801-k40 0.07% 0.96% 2.47%± 0.25% 1.82%
X-n819-k171 0.61% 1.16% 3.00%± 0.29% 2.51%
X-n837-k142 0.46% 1.26% 2.21%± 0.17% 1.83%
X-n856-k95 0.34% 0.83% 1.53%± 0.21% 1.28%
X-n876-k59 0.42% 1.67% 1.86%± 0.12% 1.71%
X-n895-k37 0.20% 2.54% 6.05%± 0.43% 4.88%
X-n916-k207 0.43% 0.91% 2.56%± 0.25% 2.10%
X-n936-k151 3.40% 6.22% 8.03%± 0.41% 7.32%
X-n957-k87 0.47% 0.84% 1.67%± 0.26% 1.49%
X-n979-k58 0.55% 1.23% 2.53%± 0.20% 2.16%
X-n1001-k43 0.40% 2.85% 5.10%± 0.19% 4.79%
Average 0.61% 1.67% 2.37% 1.77%

Best Case: The best case, however, shows encouraging results. Also in
Table 4.13, the best EHH gap to the BKS is shown. The best EHH beats the
KGLS* in 46 of the 79 instances, and even beating the original KGLS for
one instance. However, even considering this case, the overall average is
still shy of the KGLS*.

By analysing the results, we can see that most of the EHH best results
are on the smaller side (less than 600 customers), losing in most of the
larger instances. This could indicate that the heuristic configuration that
performs well for the training set is not generalisable for larger instances.
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When looking at the best-evolved heuristics, shown in Figure 4.14, and
how they perform over time, we see that they present very similar be-
haviour. Showing that our EHH is robust to the randomness of the initial
population, being all individuals within the 2 ∼ 2.5% relative improve-
ment range, with only one outlier.

Without surprise, all best heuristics had the Savings algorithm as the
initialisation method, since it provides a much better initial solution. The
order of the penalisation operators appears to be less relevant, with most
methods presenting the same order as the original KGLS* (sometimes shifted).
Figure 4.13 shows an example of one of the best heuristics evolved.

Savings BWC BW BC

Initialisation
part

Optimisation part Penalisation part

5

17%

72%

4

35%

38%

3

60%

27%

2

82%

81%

6

36%

78%

5

73%

81%

Figure 4.13: Example of heuristic evolved individual.

4.4.8 Summary

In this section we present our third hyper-heuristic with a novel chromo-
some which incorporates the three main steps of the KGLS — initialisa-
tion, optimisation and penalisation. The training process tries to optimise
the order for which these components perform better across the different
instances. We also introduce some chromosome-specific evolutionary op-
erators in the new crossover and mutation. On one side, the results show a
competitive performance even with simpler LLH. On the other side, how-
ever, it showed that the new HH only perform well for the instances with
up to 500 customers. One possible reason for the unsatisfactory perfor-
mance on the larger instances is the evaluation of each training instance
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Figure 4.14: Performance of the final heuristic over time, for all 30 runs.

bound by a fixed time. Therefore, the EHH would only learn to efficiently
solve the instances with a similar number of customers to those of the
training set.

4.5 Chapter Summary

In this chapter we present the automatic modelling of the improvement
step through the use of selection HHs. We present 3 different methods
for doing so, each with its unique modifications. The first one applies a
novel adaptive clustering technique which reduces the search space pro-
gressively while looking for the best order of neighbourhoods to be used.
Achieving comparatively good results to other heuristics methods, while
also being more efficient.

The second method introduces a new dual-layer chromosome, where
each allele represents a neighbourhood operator and its search size. The
use of this novel chromosome is tested in simple local search frameworks,
but is able to show its efficiency when compared to a fixed size strategy.
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The third method is a bit more complex, incorporating more steps of
the local search framework. For this method we introduce another novel
chromosome with a separate part for the initialisation heuristic and an-
other part for the penalisation steps of the KGLS, as well as an additional
layer to reduce searches between far routes.

This chapter showed that it is possible to build efficient selection hyper-
heuristics, but they show an impact in the effectiveness of the methods,
although this is not as significant for several cases.

4.5.1 Consideration on Scalability and Computational time

Three methods have been presented in this chapter. We comment their
relationship to the scalability and computational time individually.

For the first method, the creation of clusters scales with the number of
customers and the number of clusters being created. Following that, the
scale of the instances will also affect the local search performance, as each
neighbourhood considered will have more neighbours to evaluate. The
computational time for this approach, therefore, can be quite high, ranging
from minutes to hours, even with instances of less than 1000 customers.

The second approach has very similar concerns compared to the pre-
vious method. Although the effects on scalability and computational time
are lessened down because no clusters are considered, the neighbouring
solutions searched are still relatively high. This is especially true with
some given configurations of the individual at the end of the optimisa-
tion. For example, a HH solution that has an average of 30% in its second
layer, will have a very different number of solutions searched depending
on the problem. For an instance with 250 customers it would search 75

neighbours, while an instance with 1000 would search for 300. Again, it
can take several hours for a single run of the evolved heuristic.

The last approach is a bit less sensitive to the scalability as it adds an-
other limit to the search space with the third layer. This layer helps to scale
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down the number of neighbouring solutions by limiting how far the local
search can explore. When combining the KGLS framework on top of these
layers, we get to keep the computational time to a level that is comparable
to the original KGLS.
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Chapter 5

Learning to Guide Solution
Search Space

In this chapter we introduce our strategy for adjusting the solution search
space size in a more fine tuned and independent way.

5.1 Introduction

In a local search-based metaheuristic, the neighbourhood pruning strategy is
widely used to improve search efficiency, especially for large scale prob-
lems, without losing much effectiveness. Specifically, the neighbourhood
search adopts one or more move operators. Each move operator op leads to
a corresponding neighbourhood, i.e., Nop(S) := {S ′ | S ′ = op(S)}. Each
neighbour S ′ ∈ Nop(S) of S is a slight modification of S by the opera-
tor. The local search typically selects a better neighbour S∗ ∈ Nop(S),
where f(S∗) < f(S) (for minimisation problem), until a local optimum
is found [1, 140]. However, the neighbourhood size increases rapidly with
the increase of problem size. For example, the neighbourhood size of the
exchange operator is O(n2), where n is the number of customers. Neigh-
bourhood pruning can limit the search within a much smaller subset of the
neighbourhood N op(S) ⊂ Nop(S) to greatly reduce the search space with-

159
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out losing promising neighbours. The intuition of neighbourhood pruning
is that some neighbours are obviously unpromising (e.g., exchanging two
customers where their new positions are both distant from their adjacent
customers in the resultant solution), and thus do not need to be examined
in the neighbourhood. The neighbourhood pruning techniques attempt to
identify and remove such obviously unpromising neighbours to obtain a
much smaller neighbourhood. A common strategy is to use the closeness
between the moved customers and their adjacent customers. For instance,
a neighbouring solution is in the pruned neighbourhood only if the dis-
tance between each moved customer and its adjacent customers is lower
than a predefined threshold.

However, it is non-trivial and challenging to design an effective neigh-
bourhood pruning scheme for solving the LSVRP, as the best neighbour-
hood size depends on various factors such as the characteristics (e.g., graph
topology, demand distribution) of the LSVRP instance and the move op-
erator considered. Existing methods (such as [9]) design neighbourhood
pruning strategies that set the threshold on the distances based on the
graph topology (e.g., the distance threshold for a customer is set to its
distance to the Kth closest customer to it in the graph). Nevertheless, the
parameter K is instance and operator dependent, and thus it is challeng-
ing to find its best value.

There are two main approaches to finding the best neighbourhood prun-
ing parameters: (1) offline parameter tuning and (2) online parameter
adaptation. Offline parameter tuning empirically compares the perfor-
mance of different parameters on a set of (training) instances and selects
the parameter value with the best performance. The offline strategy was
mainly applied in Chapter 4. However, as shown, the generalisation could
be an issue, as it is difficult to ensure that the training instances are rep-
resentative enough of all the different kinds of LSVRP instances (graph
topology, demand distribution, number of vehicles, etc.) in the real world.
In addition, offline parameter tuning typically suggests a fixed parameter
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value, while different instances in practice might require different best pa-
rameter values. Online parameter adaptation, on the other hand, is more
flexible, as it can adapt to every single instance, learning the best param-
eter values during the search process. In this chapter, we focus on online
parameter adaptation.

5.1.1 Chapter Goals

The overall goal of this chapter is to develop an online neighbourhood
pruning adaption strategy for solving LSVRP more effectively and effi-
ciently. The specific research goals are:

1. To design a new heuristic to adapt the neighbourhood search size,
i.e., the distance threshold during the search process. This heuris-
tic increases or decreases the threshold based on the gap between
the current solution and the previous one. Intuitively, it retains or
decreases the threshold if there is an improvement in the previous it-
eration while increasing the threshold if the search is currently stuck
into a local optimum.

2. To embed the neighbour size adaptation heuristic into the KGLS
framework, which is a recent and state-of-the-art algorithm for LSVRP.

3. Verify the effectiveness of the KGLS with neighbourhood size adap-
tation on a wide range of LSVRP instances and analyse the behaviour
of the proposed heuristic.

5.1.2 Chapter Organisation

The rest of this chapter is organised as follows: the proposed KGLS with
the neighbourhood size adaption heuristic is elaborated in Section 5.2. The
experiment design is presented in Section 5.3. In section 5.4, the main
results are shown followed by Section 5.5 presenting further discussions
and analysis. Finally, the chapter summary is presented in Section 5.6.
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5.2 Proposed Method

The newly proposed approach adopts the KGLS framework [10], which is
a recent state-of-the-art guided local search algorithm for LSVRP. The only
difference is that our new approach incorporates a new heuristic to adapt
the neighbourhood size during the search. In the following, we will first
describe the overall algorithm and then describe the new neighbourhood
size adaptive heuristic.

5.2.1 Overall Framework

The KGLS is again utilised as our baseline local search-based metaheuris-
tic. Algorithm 5.1 shows the overall framework of the proposed method.
First, it initialises a solution using the Savings* heuristic (originally from
[37], adapted by [9]), and set the initial neighbourhood sizes to ∆CE =

∆RC = 30 according to [10]. Then, during the search process, it gener-
ates new solutions using three distinct move operators. For intra-route,
the Lin-Kernighan Heuristic (LKH) is used. For inter-route, the Cross Ex-
change (CE) and Relocation Chain (RC) are used. At each iteration, it
searches for a local optimum using the three operators. Then, it calculates
the penalisation term, changes the objective function through penalisation,
and continue the search under the new objective function to jump out of
the local optimum. Note that in Algorithm 5.1, the neighbourhood of CE
and RC are pruned by the parameters ∆CE and ∆RC . At the end of each
iteration, the neighbourhood sizes of CE and RC are adapted by the newly
developed heuristic. This is the main difference from the original KGLS
(lines 17–19 as highlighted in bold).

The details of the CE and RC operators under the pruned neighbour-
hood are given in Algorithm 5.2, with a unified notation op(·). At first,
for each node, the subset of the ∆ closest neighbours are obtained by
Closest(V \ vi, vi,∆). To this end, we sort all the neighbours v′ ∈ V \ vi in
the increasing order of their distance to vi, and then select the top ∆ ele-
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Algorithm 5.1 Newly Proposed Method
1: procedure KGLS(instance i)
2: Generate initial solution S using Savings heuristic
3: Set ∆CE = ∆RC = 30

4: while Stopping criteria not met do Start optimisation phase
5: while Local optimum not reached do
6: S′← CE(S, ∆CE)
7: S′′← RC(S′, ∆RC)
8: S ← LKH(S′′)

9: Change penalisation function Start penalisation phase
10: while Number of penalised moves not reached do
11: S′ ← Penalise(S)
12: Select penalised edge from S′

13: Change objective function
14: S′′ ← CE(S′, ∆CE), S ← RC(S′′, ∆RC)
15: if A move was made then
16: Increment number of penalised moves

S ← LKH(S)
17: Collect the best neighbour indexes ΩCE , ΩRC

18: Update ∆CE ← AdaptNS(∆CE , S, S
′,ΩCE)

19: Update ∆RC ← AdaptNS(∆RC , S, S
′,ΩRC)

20: return best solution

ments in the sorted list. Note that the subset for each node can be obtained
as a preprocessing stage to avoid duplicate computation. For each candi-
date move (neighbour) that adds new edges Enew, if, for any new edge, an
end-node is outside the closest neighbour subset of the other end-node,
then the edge violates the neighbourhood size limit, and the candidate
move is skipped. For CE, each exchange contains four new edges, while
for RC, each relocation can lead to up to eight additional edges.

5.2.2 Neighbourhood Size Adaption Heuristic

The newly proposed neighbourhood size adaption heuristic changes the
neighbourhood size based on the feedback of the current iteration (line



164 CHAPTER 5. LEARNING TO GUIDE SOLUTION SEARCH SPACE

Algorithm 5.2 S ′← op(S, ∆)
1: procedure OPERATOR(solution S, neighbourhood limit ∆) S′ ← S, sav∗ ← 0

2: for each vi ∈ V do
3: Vi ← Closest(V \ vi, vi,∆)

4: for each candidate move that adds new edges Enew do
5: if ∃e ∈ Enew, head(e) /∈ Vtail(e) then
6: continue
7: Calculate the savings by removing the old edges and adding the new edges
8: if sav > sav∗ then
9: S′ ← apply the move on S

10: sav∗ ← sav

11: return S′

17 in Algorithm 5.1). The feedback is represented as the best neighbour
indexes ΩCE and ΩRC . Specifically, for each node, its neighbours are in-
dexed in the increasing order of their distance to the node (i.e., the closest
neighbour has index 0). Then, for each move from S to S ′, for each moved
node, we record the index of its new adjacent node in S ′ in its neighbour
list and add this index into the corresponding set Ω. Since the neighbour
size depends on the operator, we keep two sets of indexes, namely ΩCE

and ΩRC . The depot is not considered for this, for obvious reasons.

Next, the neighbourhood size adaption is done based on the feedback
ΩCE and ΩRC as well as the start solution S and end solution S ′ of the
current iteration. Given a move operator (e.g., CE or RC), the neighbour-
hood size adaption heuristic is shown in Algorithm 5.3. First, it obtains
the maximal index stored in Ω, i.e., the index of the best neighbour in the
worst case among the moves in this iteration. Then, it adjusts the neigh-
bourhood size ∆ as follows. If the new solution S ′ is better than S, then an
improvement is found in the iteration. In this case, if the maximal index is
larger than ∆−δ (δ is a parameter), then it means that in the worst case the
best neighbour is close to the current neighbourhood size limit. Therefore,
there is a risk that the best neighbour in the next iteration will exceed the
current limit and cannot be found. To reduce such risk, we increase the
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neighbourhood size by δ with a predefined probability of θ. Otherwise,
even in the worst case, the best neighbour is in a safe region of the limit,
and there tends to be a low risk that the best neighbour in the next itera-
tion will exceed the limit. Furthermore, it suggests that the current limit
might be too large, and we can safely decrease it without losing the best
neighbour. Thus, we decrease ∆ by δ with the probability of θ. On the
other hand, if there is no improvement found in the iteration, then we in-
crease ∆ by δ with a probability of θ. This is done to increase the chances
of jumping out of the local optimum that was just met (as there was no im-
provement). Note that we always have a certain probability to retain the
neighbourhood size unchanged. This is to avoid changing the neighbour-
hood size too rapidly, leading to fluctuating and non-smooth behaviour.

Algorithm 5.3 AdaptNS(∆, S, S ′,Ω)

1: procedure AdaptNS(∆, S, S′,Ω)(Neighbourhood limit ∆, Old solution S, New solu-
tion S′, Best neighbour indexes Ω)

2: ∆′ ← ∆

3: i← max{i | i ∈ Ω}
4: if S′ is better than S then
5: if i > ∆− δ then
6: Change ∆′ ← ∆+ δ with probability θ

7: else
8: Change ∆′ ← ∆− δ with probability θ

9: else
10: Change ∆′ ← ∆+ δ with probability θ

11: return ∆′

To verify the idea of the adaptive neighbourhood size heuristic, we plot
the maximal index of the best neighbours for CE and RC over 50 iterations
of the original KGLS (with a fixed neighbourhood size of 30) in Figures 5.1
and 5.2. In both figures, we can see that most of the time the best neigh-
bour has a much smaller index than 30, which means that we can reduce
the neighbourhood size without losing them. However, a few neighbours
have indexes close to 30, meaning that we will lose them if setting a smaller
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fixed neighbourhood size. In addition, we can see some degree of auto-
correlation (i.e., a large/small index followed by a relatively large/small
index). This demonstrates the potential to adjust the neighbourhood size
based on the feedback of the current iteration.
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Figure 5.1: The index of the best neighbour for the Cross-Exchange in 50
iterations of KGLS.
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Figure 5.2: The index of the best neighbour for the Relocation Chain in 50
iterations of KGLS.
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5.3 Experiment Design

The datasets utilised in the experiments are two of the most recently pub-
lished. The first ”X” dataset [183] contains 100 instances ranging from 100

to 1000 customers. They present several customer distribution types, in-
cluding Random (R), Clustered (C) and Random-Clustered (RC), which
is a mix between both types. The dataset also has a diverse customer de-
mand, vehicle capacity, and position of the depot (in a corner, at the centre
or a random location). All these characteristics allow for simulating di-
verse real-world scenarios. Although some of the instances are not classi-
fied as large-scale (having less than 200 customers), they are still kept for
a fairer comparison to other methods.

The second dataset is the very-large-scale instances introduced in [9].
The number of customers ranges from 3000 to 30000 over 10 instances.
These instances are based on a real-life scenario and, therefore, have less
diversity regarding the distribution. However, they are suitable to validate
the effectiveness of methods in the real world.

The instances were divided in three categories for easier discussions
in the next section, a similar division is used by [6]: medium, for the ”X”
instances with sizes up to 350; large, for the remaining of the ”X” instances
(from 350 up to 1000); and very-large, for the instances from [9], which
have at least 3000 customers.

The KGLS is used as the baseline comparison algorithm and utilised
its default parameters as in [10]. For the new parameters for neighbour-
hood size adaption, θ is set to 75% and δ is set to 5 after some preliminary
experiments. In addition, we set an upper limit of 30 and a lower limit of
10 for the neighbourhood size during the search. For stopping criteria, we
set a maximal time limit of 10 minutes for all the compared algorithms for
a fair comparison. The parameter setting is shown in Table 5.1.
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Table 5.1: Parameter settings

Parameter Values
θ 75%

δ 5
Neighbourhood size upper limit 30

Neighbourhood size lower limit 10

Time limit 10 minutes

5.4 Results and Discussions

The expectation with the adaptive neighbourhood size adaption heuristic
is to find solutions of similar quality than the original fixed neighbourhood
size given the same number of iterations (or at least not worse than). In
addition, as the reduced search space would allow for a larger number of
iterations to happen in the same time frame, this could result in finding
new and better solutions.

Tables 5.2–5.4 shows the results of the compared algorithms and Best-
Known Solution (BKS)1 on the medium, large and very large instances.
For each instance, KGLS has a single number, since it is deterministic. The
proposed algorithm is run 30 times independently, and the best, mean
and standard deviation are recorded. We also compare with the results
of KGLS by the Wilcoxon rank-sum test with a significance level of 0.05.
The notation (+)/(-)/(=) indicates that the proposed algorithm performs
statistically better/worse/comparable with the original KGLS.

Table 5.2: Results of 30 runs on the Medium instances.

BKS KGLS Proposed Algorithm
Instance Total Cost Total Cost Best Average Std. Dev.
X-n101-k25 27591 27615 27591 27604.7 11.6 (+)
X-n106-k14 26362 26401 26387 26413.6 10.9 (-)

1The BKS for both the ”X” instances and the very-large-scale from [9] were collected
from the CVRPLib website: vrp.atd-lab.inf.puc-rio.br/index.php/en/
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Table 5.2: Results of 30 runs on the Medium instances (cont.).

BKS KGLS Proposed Algorithm
Instance Total Cost Total Cost Best Average Std. Dev.
X-n110-k13 14971 14971 14971 14971.0 0.0 (=)
X-n115-k10 12747 12747 12747 12747.0 0.0 (=)
X-n120-k6 13332 13332 13332 13332.0 0.2 (=)
X-n125-k30 55539 56140 55647 56091.9 113.4 (+)
X-n129-k18 28940 28973 28956 28966.0 6.8 (+)
X-n134-k13 10916 10916 10917 10935.0 7.9 (-)
X-n139-k10 13590 13590 13590 13590.0 0.0 (=)
X-n143-k7 15700 15726 15726 15729.1 2.7 (-)
X-n148-k46 43448 43539 43494 43540.4 31.1 (=)
X-n153-k22 21220 21389 21377 21698.9 291.7 (=)
X-n157-k13 16876 16876 16876 16876.1 0.5 (=)
X-n162-k11 14138 14147 14138 14146.6 1.7 (=)
X-n167-k10 20557 20589 20557 20578.1 16.7 (=)
X-n172-k51 45607 45684 45623 45664.0 23.9 (+)
X-n176-k26 47812 48786 47880 48508.4 347.8 (+)
X-n181-k23 25569 25615 25572 25596.2 7.1 (+)
X-n186-k15 24145 24184 24145 24169.3 14.8 (+)
X-n190-k8 16980 17036 17005 17029.3 19.6 (+)
X-n195-k51 44225 44453 44298 44417.1 38.2 (+)
X-n200-k36 58578 58811 58742 58802.4 35.8 (+)
X-n204-k19 19565 19666 19583 19655.7 44.2 (=)
X-n209-k16 30656 30733 30686 30715.0 14.0 (+)
X-n214-k11 10856 10919 10913 10951.2 20.1 (-)
X-n219-k73 117595 117674 117627 117669.2 19.6 (+)
X-n223-k34 40437 40708 40654 40705.6 22.2 (=)
X-n228-k23 25742 25838 25817 25874.1 33.3 (-)
X-n233-k16 19230 19333 19272 19331.0 24.2 (+)
X-n237-k14 27042 27074 27050 27101.8 20.5 (-)
X-n242-k48 82751 83265 83044 83202.6 55.9 (+)
X-n247-k47 37274 37691 37481 37673.0 36.2 (+)
X-n251-k28 38684 38916 38800 38880.5 39.2 (+)
X-n256-k16 18839 18890 18888 18891.7 4.9 (=)
X-n261-k13 26558 26720 26666 26713.5 34.7 (=)
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Table 5.2: Results of 30 runs on the Medium instances (cont.).

BKS KGLS Proposed Algorithm
Instance Total Cost Total Cost Best Average Std. Dev.
X-n266-k58 75478 75964 75766 75936.5 54.6 (+)
X-n270-k35 35291 35414 35399 35455.1 20.5 (-)
X-n275-k28 21245 21280 21253 21298.8 20.9 (-)
X-n280-k17 33503 33661 33609 33678.4 33.9 (-)
X-n284-k15 20215 20388 20318 20382.0 29.8 (=)
X-n289-k60 95151 96023 95735 95917.3 75.1 (+)
X-n294-k50 47161 47419 47395 47466.1 34.8 (-)
X-n298-k31 34231 34395 34348 34380.1 14.3 (+)
X-n303-k21 21736 21931 21819 21901.2 28.2 (+)
X-n308-k13 25859 26050 25969 26069.0 69.6 (-)
X-n313-k71 94043 94845 94748 94874.3 68.5 (-)
X-n317-k53 78355 78409 78382 78413.3 11.9 (=)
X-n322-k28 29834 30038 29955 30021.4 26.1 (+)
X-n327-k20 27532 27667 27611 27662.4 28.7 (=)
X-n331-k15 31102 31178 31106 31193.5 61.9 (=)
X-n336-k84 139111 140668 140589 140767.1 89.8 (-)
X-n344-k43 42050 42398 42225 42331.9 59.9 (+)

Table 5.3: Results of 30 runs on the large instances.

BKS KGLS Proposed Algorithm
Instance Total Cost Total Cost Best Average Std. Dev.
X-n351-k40 25896 26112 26096 26154.9 30.4 (-)
X-n359-k29 51505 51847 51760 51863.6 39.9 (-)
X-n367-k17 22814 22917 22853 22911.8 34.6 (+)
X-n376-k94 147713 148034 147787 147854.5 38.4 (+)
X-n384-k52 65928 66372 66304 66413.4 47.4 (-)
X-n393-k38 38260 38473 38378 38449.8 29.6 (+)
X-n401-k29 66154 66560 66458 66542.5 39.7 (+)
X-n411-k19 19712 20104 19862 20067.7 64.5 (+)
X-n420-k130 107798 108406 108191 108387.0 66.9 (=)
X-n429-k61 65449 65857 65724 65846.3 59.4 (=)
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Table 5.3: Results of 30 runs on the large instances (cont.).

BKS KGLS Proposed Algorithm
Instance Total Cost Total Cost Best Average Std. Dev.
X-n439-k37 36391 36534 36434 36497.5 31.2 (+)
X-n449-k29 55233 55753 55643 55783.3 53.1 (-)
X-n459-k26 24139 24243 24217 24242.3 14.0 (=)
X-n469-k138 221824 223481 223080 223430.9 158.5 (+)
X-n480-k70 89449 89972 89833 89965.5 54.9 (=)
X-n491-k59 66483 67189 67062 67161.8 48.3 (+)
X-n502-k39 69226 69329 69291 69325.9 20.7 (=)
X-n513-k21 24201 24307 24274 24305.8 18.4 (+)
X-n524-k137 154593 157556 156477 157722.0 517.1 (=)
X-n536-k96 94846 95829 95714 95867.9 45.7 (-)
X-n548-k50 86700 86929 86890 86979.4 44.6 (-)
X-n561-k42 42717 43024 42926 43024.2 57.9 (=)
X-n573-k30 50673 51136 50883 51006.7 71.6 (+)
X-n586-k159 190316 191488 191015 191397.2 130.6 (+)
X-n599-k92 108451 109327 109136 109335.1 70.4 (=)
X-n613-k62 59535 60235 60098 60204.7 61.1 (+)
X-n627-k43 62164 62559 62451 62558.5 43.5 (=)
X-n641-k35 63682 64074 64015 64150.3 64.9 (-)
X-n655-k131 106780 106941 106936 106969.6 16.5 (-)
X-n670-k126 146332 152154 150463 151334.0 550.7 (+)
X-n685-k75 68205 68941 68740 68890.2 54.0 (+)
X-n701-k44 81923 82462 82356 82486.1 55.0 (-)
X-n716-k35 43373 43875 43713 43811.6 46.0 (+)
X-n733-k159 136187 137175 136991 137158.5 94.3 (=)
X-n749-k98 77269 78207 78129 78217.1 48.9 (=)
X-n766-k71 114417 115872 115216 115765.0 165.8 (+)
X-n783-k48 72386 73157 73045 73145.4 47.5 (+)
X-n801-k40 73305 73642 73485 73654.7 74.2 (=)
X-n819-k171 158121 159711 159396 159584.0 78.5 (+)
X-n837-k142 193737 194943 194820 195091.7 102.0 (-)
X-n856-k95 88965 89273 89217 89318.0 45.9 (-)
X-n876-k59 99299 100152 100072 100146.1 49.9 (=)
X-n895-k37 53860 54377 54230 54331.9 50.7 (+)
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Table 5.3: Results of 30 runs on the large instances (cont.).

BKS KGLS Proposed Algorithm
Instance Total Cost Total Cost Best Average Std. Dev.
X-n916-k207 329179 331241 330643 331062.8 153.3 (+)
X-n936-k151 132715 138320 137062 137845.2 410.7 (+)
X-n957-k87 85465 85599 85707 85786.1 58.1 (-)
X-n979-k58 118976 120035 119962 120062.6 52.7 (=)
X-n1001-k43 72355 73128 72938 73129.5 74.7 (=)

Table 5.4: Results of 30 runs on the very-large instances.

BKS KGLS Proposed Algorithm
Instance N Total Cost Total Cost Best Average Std. Dev.
Antwerp1 6000 477277 483209 481872 482508.1 313.7 (+)
Antwerp2 7000 291371 303271 301217 302041.7 598.0 (+)
Brussels1 15000 501743 519679 517559 518447.0 756.8 (+)
Brussels2 16000 345496 370313 370313 370313.0 0.0 (=)
Flanders1 20000 7240389 7400659 7400659 7400659.0 0.0 (=)
Flanders2 30000 4373440 4641016 4641016 4641016.0 0.0 (=)
Ghent1 10000 469532 478003 475773 476351.2 437.3 (+)
Ghent2 11000 257749 274511 271323 272795.2 879.6 (+)
Leuven1 3000 192848 194844 194396 194609.6 108.7 (+)
Leuven2 4000 111395 116723 115317 116241.2 285.4 (+)

From the tables, we can see that the proposed algorithm reaches an
improvement or similar quality compared to the KGLS in most medium
instances (Table 5.2). Out of the 52 medium instances, 42% of them are bet-
ter and 25% are equal in quality. The average GAP to the BKS2 is, however,
the same for both methods (both at 0.46%). For the large instances (Table
5.3), there is a slight loss of quality overall, with the average GAP at 0.81%
for the KGLS and 0.87% for our heuristic. When looking at the statistical
test, however, 68.75% of the instances present a better (+) or similar (=)
quality, meaning the difference comes from the minority of instances.

2Calculated by: GAP = (cost−BKS)/BKS. The smaller GAP the better
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As seen in Table 5.4, the very-large-scale shows an improvement for 7
out of the 10 instances. For the remaining 3 instances, there is no signifi-
cant difference between the proposed algorithm and KGLS, because they
both reach the time limit, as 10 minutes is not enough to complete even
a full iteration. Additionally, when looking at the column Best, most in-
stances outperform the KGLS. Out of the 110 instances considered, 96 have
found a better or same solution than the KGLS.
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Figure 5.3: Solution progress curve of a single run of the KGLS and the 30

runs of the proposed algorithm (PH) on a very-large instance.

A few instances were selected to illustrate some of the observed pat-
terns. In Figures 5.3, 5.4 and 5.5, which show examples of the convergence
from the proposed method versus the KGLS in each group (medium, large
and very large, respectively). These observations are also seen throughout
several instances. The expected behaviour would be similar to the one
shown in Figure 5.3, with very similar quality for most of the run-time,
but since the pruning allows for a larger number of iterations, it allows for
the finding of better solutions. Figure 5.4 finds an interesting outcome of
improving the solution much faster than the original, observed by most
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Figure 5.4: Convergence curve of a single run of the KGLS and the 30 runs
of the proposed algorithm (PH) on a large instance.

runs getting a better result. This could be explained by the fact that the
pruning introduces a bit of exploration to the search, by removing possi-
ble neighbours that would be selected if considering the same limit. An-
other interesting fact here are the exceedingly high number of iterations
that some runs present. The last case, presented in Figure 5.5, shows what
can happen when the pruning is not successful. Even with the extra it-
erations, it was not able to find a solution better than the KGLS with its
original limit for most runs.

5.5 Further Analysis

5.5.1 Efficiency

The improvement on efficiency of the proposed method is quite signifi-
cant. When comparing the average number of iterations in the same time
budget (10 minutes), there is a difference of at least 33% on average, as
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Figure 5.5: Convergence curve of a single run of the KGLS and the 30 runs
of the proposed algorithm (PH) on a medium instance.

seen in Table 5.5. The difference is even more noticeable for the very-
large-scale, being close to 40%. This extra number of iterations allow for a
deeper search, which can be beneficial for several search strategies. This
is also noticeable in the Figures 5.3, 5.4 and 5.5, where it is clear to see that
most runs have more iterations. There are a few outliers with many more,
but the majority are within the expected.

Table 5.5: Comparison on the average number of iterations for the KGLS
and the proposed heuristic.

Instances KGLS Proposed Algorithm Diff. %
Medium 12914.3 19551.9 33.95
Large 5710.7 9284.1 38.49
Very-large 465.4 773.0 39.79
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5.5.2 Performance Instance-wise

In order to determine why some results improved, while others got worse,
an analysis by individual instance was performed. This was done by se-
lecting the instances which got worse when using the proposed method,
and verifying if there is a pattern regarding the customer distribution or
depot location. The customer distribution follow three patterns: Random
(R), where the customers are randomly distributed; Clustered (C), where
the customers follow cluster patterns; and Random-Clustered (RC), or a
mix between both types. As for the depot location, also three possible
values: Random (R), Cornered (Co) and Centred (Ce), which are self ex-
planatory. Out of the 100 instances, only 28 had a significantly worse per-
formance with the proposed method3. When analysing by the above men-
tioned categories, it is difficult to point out any standouts. The class ”C”
with depot in the centre had the most with 50% of the instances getting
worse. As the rest of the class ”C” performed the best, it could indicate
that only this combination is underwhelming. More details are given in
Table 5.6. Other than this, there is no clear pattern on why these instances
performed worse, at least when looking at these two characteristics.

5.5.3 Neighbourhood Pruning Accuracy

When analysing how far the proposed algorithm is from making the same
decision as to the KGLS, the results tell whether or not the decisions are
correct most of the time. Table 5.7 summarises the findings. These results
can be interpreted as follows: at a given iteration, which best-neighbour
that was selected by the KGLS, was also selected by the proposed method?
This is considering that at each iteration, only the neighbour with the high-
est index is saved (i), for each operator.

3As the solutions only got worse for the ”X” dataset, to simplify the terminology, only
the term instances will be used in this subsection, without differentiating from medium
or large.
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Table 5.6: Breakdown of instance characteristics for the solutions that got
worse.

Depot
Location

Customer
Distribution

R Ce Co Total

R 3/11 1/8 5/16 9/35
C 2/13 5/10 1/9 8/32

RC 4/10 3/14 4/9 11/33
Total 9/34 9/32 10/34 28/100

Table 5.7: Accuracy of the operators CE and RC versus the default pruning
size.

Instances
Cross-Exchange

(CE)
Relocation Chain

(RC)
Total

Medium 97.80% 79.66% 88.73%
Large 96.81% 77.52% 87.16%

Very-Large 90.48% 45.88% 68.18%
Total 96.81% 77.52% 86.86%

Looking at both inter-route operators (CE and RC), since they are tuned
independently, there are some interesting patterns to be observed. CE
has a higher accuracy rating, meaning that most of the time, the deci-
sions made by the algorithm did not remove the best neighbour out of
the search space. When looking at the RC, however, there is a drop in
performance. This can be because the RC looks into consecutive routes in
the same search, hence a sub-optimal size here would propagate through-
out the different routes searched. Despite that, the overall accuracy of
the algorithm is quite high, achieving 86.86%. Interestingly, the RC accu-
racy is even lower in the very-large scale instance, but as shown in Table
5.4, the solution found was better. This is likely since this operators is
too expensive, and just reducing its size would allow for more search to
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happen, and, consequently, to find better routes. Figures 5.6 and 5.7 ex-
emplify the correctness over 50 iterations (for simplification) by running
the proposed heuristic, but also calculating the best neighbour of the orig-
inal KGLS limit. The dots are the decision made by the KGLS, while the
exes are the decision made by the proposed method at the same decision
step, the lines were added for visual clarity. As seen, most of the time they
are the same, with the few misses that are usually followed from a lower
point, which likely guided the limit down.
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Figure 5.6: Index of the best neighbour for the CE operator in each iteration
by KGLS and the proposed algorithm (PH).

5.6 Chapter Summary

In this chapter, a novel neighbourhood pruning heuristic is introduced in
the context of the LSVRP, combined with the KGLS framework. The idea
of the heuristic is to reduce the ceiling of the number of customers to be
searched, which would translate to a more efficient search. We achieved
this by analysing the (lack of) patterns on the worst-index neighbour (mean-
ing the furthest to the current node) selected for a move in the search
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Figure 5.7: Index of the best neighbour for the RC operator in each iteration
by KGLS and the proposed algorithm (PH).

space. For several instances, it is often that the fixed limit of 30 is not even
close to being reached. We add an heuristic which probabilistically reduce
this limit to save computational time. The possible drawback is that the
limit does not allow better solutions to be found. However, we also add
mechanisms to increase the limit again.

Our results show this strategy to very successful, increasing the per-
formance of the KGLS across multiple instances, showing improvements
on 87% of the instances in the best case. This extra performance allows
the method to find even better solutions within the same amount of time.
The results also show that there is still room for improvement regarding
automatic pruning of the search space. Some of the presented results and
graphs (such as in Figure 5.4) show that by automatically tuning the prun-
ing size, there can be a significant increase of efficiency, which can also
translate to an increase in effectiveness.
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5.6.1 Consideration on Scalability and Computational time

The approach introduced here fully focused on making the KGLS more
scalable, as it reduces the size of the search space. These reductions re-
quire minimal overhead (of constant time) and are not affected by the size
of the problem. This can be achieved simply by saving the index of the
closest neighbour under the search that is already happening. Hence, the
computational time is expected to decrease for the same solution quality.



Chapter 6

Learning Strategies to Escape
Local Optimum

In this chapter we focus on the acceptance criteria of a local search and
how to learn the best one automatically.

6.1 Introduction

In the traditional Local Search framework, the acceptance criteria simply
decides whether to accept or not a move. However, the decisions that
guide this solution towards this acceptance step can also be considered
part of it, especially when we are trying to leave a local optimum. For
example, if one search is stuck at a local optimum, the next decision made
in order to escape that spot can be attributed as an acceptance step, as the
focus of the algorithm changes. Hence, changing its acceptance criteria to
allow a worse solution to be accepted. This can lead to modifications in
other parts of the framework.

The work of [11] has stepped toward a more rational use of the instance
and solution resources as part of the search process. Their deep analysis
and investigation of some common characteristics (such as the compact-
ness of a route) for the VRP solutions have led to an efficient method, the

181



182CHAPTER 6. LEARNING STRATEGIES TO ESCAPE LOCAL OPTIMUM

KGLS, in [10]. The KGLS utilises the width of a route as penalisation cri-
teria to guide their search. In total they utilise three distinct penalisation
criteria. This penalisation is used when a local optimum is reached. Af-
ter that, the algorithm enters a penalisation and escape step, where the
next selected criteria is used to penalise bad edges. These penalised edges
result in a new cost for the solution using a distinct temporary objective
function, indirectly forcing a change to the current solution. These changes
are reached by applying the same move operators as in the optimisation
step, but since the objective function is different, the step will modify the
solution.

However, when considering these distinct penalisation criteria across
different instances, only a short analysis was made in [10]. Based on few
instances, a default penalisation setting was experimentally defined with
a specific order of Width, Cost and Width with Cost. Although this penal-
isation criteria order has shown to be effective, it would be interesting to
understand if that is the case for most instances and whether using all of
them or not affects the search.

In our experiments, we observed that for some instances using the
route width-based penalisation actually damaged the search. Hence, we
could explore on when each penalisation criterion is better and gain addi-
tional performance on other scenarios. Since this type of problem is more
relevant to areas where the cost is important, any savings found are wel-
comed, especially if it comes from a parameter definition that can be auto-
mated to do so efficiently.

In order to tackle this issue and to find how to use the characteristics of
the instances being solved to answer it, we will investigate different Ma-
chine Learning (ML) techniques, including a novel two-phase multi-tree
Genetic Programming (GP) approach. These ML models are first used in a
training environment with experimentally generated labels of the best pe-
nalisation criterion for each instance, and tested to choose the best KGLS
penalisation criterion for unseen instances. We model the penalisation
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mode selection criteria as a classification and a regression problem.

6.1.1 Chapter Goals

Considering that these penalisation criteria and its application in the search
are an extension of the acceptance criteria, we evaluate this step using the
KGLS as our baseline approach. The goals of this chapter are as follows:

1. Understand the relationship between the instance configuration and
the best penalisation criterion of the KGLS.

2. Model the prediction as a classification problem (each penalisation
criterion has a label), and train classification models on it.

3. Model the prediction as a regression problem (each penalisation cri-
terion has an expected performance metric, i.e., cost improvement
over the initial solution by running KGLS with the penalisation) and
train regression models on it.

4. Compare the performance of the trained classification and regression
models with the baseline KGLS in terms of selecting the penalisation
criterion for different instances. Conduct further analysis on the be-
haviours of the trained models.

6.1.2 Chapter Organisation

The rest of this chapter is divided as follows: Section 6.2 presents the
methodology used, while Section 6.3 defines the experimental settings.
Finally, results are shown and discussed in Section 6.4 followed by final
remarks and future work in Section 6.5.



184CHAPTER 6. LEARNING STRATEGIES TO ESCAPE LOCAL OPTIMUM

6.2 Learning Instance-Specific Penalisation Cri-

terion

The idea of developing instance-specific penalisation criterion for the KGLS
came from the observation that some instances had a considerable gap be-
tween the runs with different criterion. A set of preliminary experiments
was performed to verify this on the ”X” dataset from [183]. In the experi-
ments, we had set the penalisation criterion to a fixed one and ran it across
all 100 instances. These criterion are: KGLS (same as the original work,
which alternates, in order, the badness equations 6.1, 6.2 and 6.3), Width-
only (considers only the width-based penalisation function 6.1), Cost-only
(considers only the cost-based penalisation function 6.2) and Width+Cost
(considers the width and cost addition penalisation function 6.3), which
will be labelled as K, W , C and WC for simplicity.

bw(i, j) =
w(i, j)

1 + p(i, j)
(6.1)

bc(i, j) =
c(i, j)

1 + p(i, j)
(6.2)

bw,c(i, j) =
w(i, j) + c(i, j)

1 + p(i, j)
(6.3)

Although the original mode, class K, has a better success rate overall in
average (in a ten minute run the gap to the Best-Known Solution (BKS) is
on average 0.52% on the above dataset1), this is not true for all instances.
To exemplify, we selected a few instances, as shown in Table 6.1, where in
bold we have the best value for each instance. The gap between the orig-
inal criteria (K) and the actual best criteria can be up to 2.5%2 in the con-
sidered experiment. In order to minimise the total cost, if a pre-processing

1BKS was taken from the CVRPLib website http://vrp.atd-lab.inf.puc-rio.
br/index.php/en/

2This is calculated by considering if the given criteria is smaller than K. If so, the
distance (FX − FK) is given, where X is the criteria selected.
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could find out which criteria was better, then a final better optimisation
across all instances could be found. In the perfect scenario, i.e. choosing
the best criteria for all 100 instances, the gap to the BKS would fall to 0.43%

(from 0.52%), with a total cut on costs of 9.05% (total distances saved over
the 100 instances).

Table 6.1: Some examples of the difference in performance between the
different penalisation criterion in the KGLS that runs for 10 minutes. Av-
erage and Total presented are across all 100 instances from the dataset.

Instance K W C WC
Largest
GAP to K

X-n153-k22 21953 21953 21379 21392 -2.615%
X-n157-k13 16876 16876 16876 16876 0.000%
X-n247-k47 37686 37702 37676 37682 -0.027%
X-n308-k13 26166 26008 26026 26076 -0.604%
X-n359-k29 51988 51988 51865 51894 -0.237%
X-n420-k130 108400 108315 108435 108411 -0.078%
X-n449-k29 55772 55821 55803 55724 -0.086%
X-n524-k137 157338 157098 158185 157978 -0.153%
X-n641-k35 64086 64204 64209 64252 0.0%
X-n783-k48 73123 72960 73222 73316 -0.223%
X-n979-k58 119832 119592 119878 119763 -0.200%
Average — — — — -0.126%
Total — — — — -9.05%

As can be seen in the data, some of the gaps are very close or even the
same, which makes it challenging to learn when each criterion is better.
Therefore, it would be easy to create a classifier that would be biased to-
wards a chosen class in case of draw. An alternative is to use a ML method
to learn how to predict the improvement given by each criterion. In other
words, by changing the problem from a classification to a regression one.
Nevertheless, the classification is still considered in our experiments.

Another challenge, and perhaps the biggest one, is determining which
characteristics to consider. The features selected will play a big role in
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determining whether we can predict the best penalisation criterion for un-
seen instances. Instance characteristics are the obvious choice, as they are
unbiased information about the problem and are promptly available be-
fore even searching for an initial solution. However, these characteris-
tics (apart from the very obvious ones like number of customers and to-
tal demand) require some expertise on which ones are representative and
comparable between different instances. The work of [11] have presented
some analysis on instance characteristics, which we are using here. The
features are the same instance features used in Chapter 3.3:

• I1 - Number of customers;

• I2 - Number of routes;

• I3 - Ratio between total demand and total capacity available;

• I4 - Average distance between customers’ pairs;

• I5 - Standard deviation of the distance between customers’ pairs;

• I6 - Average distance from all customers to the central depot;

• I7 - Standard deviation of the distance between all customer to the
central depot;

• I8 - Standard deviation of the angle between the customers and the
depot (in radians);

• I9* - Initial solution cost provided by CW1003;

Features I1 and I2 can be extracted directly from the instance (if the num-
ber of vehicles is not given, we can simply divide the total demand by
a single vehicle’s capacity). From the total capacity available from all
vehicles, we can calculate feature I3. The next 4 features (I4-I7) are also
straightforward, by utilising the distances between the nodes. Feature I8

3It is the initial solution algorithm used by the KGLS [9]
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considers the angles between the the pair customer and depot, for all cus-
tomers, which can be calculated with the arc tangent function. Feature I9
is an especial case, because it is only used for the regression process. This
feature considers the initial solution cost (considering only the distance).

Although the potential gains appear to be minimal, as shown in Ta-
ble 6.1 which gives a few examples, we still believe this contribution is
necessary in order to further the understanding on VRPs. The potential
gains can also be considered as inexpensive to achieve, since it would only
require a pre-training process which can be done offline. The outcome
would be almost instant, only requiring the calculation of the features for
the new instances.

6.2.1 Data Generation

The labels were created by experiments, which show how different cri-
terion perform in given time-frames. The criteria are the different types
of penalisation functions used by the KGLS. We run the KGLS consider-
ing these different criterion for the same amount of time for the whole
dataset. Each penalisation criterion is a possible class label. For example,
for an instance A the criteria that found the best value is the Width+Cost
mode, then A gets the class label WC, which would be later used for the
training process or test accuracy validation. We have run these criterion
for all 100 instances of the CVRPLib dataset [183], for 10 minutes and 15

minutes, to verify if the same class persists among runtimes. The results
have shown that it continues for most instances (at least 85%) and, there-
fore, were considered good enough for the rest of the process, considering
the 10 minutes the standard for our experiments.

The regression’s target variables are the improvement calculated in the
initial tests, for each of the classes. This provides a real value which can
be used in the regression process. The improvement is calculated based
on the initial solution cost, hence why it is fed as one of the input features.
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Given an instance and its initial solution constructed by the CW100, the
KGLS is ran for a set amount of time. After this time, the difference be-
tween the final cost (f ) and initial solution cost (i) is calculated such as:
i−f
i

. Since each class produces an independent final cost, we can generate
one target for each class, for each instance.

6.2.2 Classification Model

In order to learn the relationship between the features and the class labels
by each mode, some commonly used ML algorithms were used: Genetic
Programming (GP), Support Vector Machines (SVM) and Random Forest
(RF). These methods were chosen due to their efficiency and effectiveness
across different scenarios and problems. However, they are sufficiently
different for us to make conclusions on a more general level.

The classification model will try to predict which class an instance be-
longs to. In order to train the ML methods, the features are fed as input
and the class labels created are the expected class output. The expecta-
tion on these approaches is to learn a correlation between the class and the
features. Figure 6.1 (a) summarises the classification input and output.

For the GP approach, a multi-tree individual was used. For this, the
individual has 4 distinct trees, one representing each class. For each tree
output, the maximum value will indicate which class will be chosen.

6.2.3 Regression Model

The regression model will try to estimate the improvement given by each
of the 4 criterion and it considers the same algorithms as the classifica-
tion approach, since they can easily be adjusted to do regression. For this
model, an additional feature is given: the initial solution, calculated by the
adapted Clark and Wright savings heuristics, also proposed in the work
of [10], based on the classic savings heuristic from [37] (Feature I9, as men-
tioned above). This feature is exclusive to regression, because by doing so,
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(c) Hybrid GP

Figure 6.1: Training model used for the Machine Learning approaches.

the models have a value that is meaningful to the target variables. They
can utilise it to compute the expected improvement in some sort of func-
tion. The classification model would not require such since it is only trying
to find a correlation. Since the initial solutions can be quickly calculated
through the constructive algorithm and, therefore, add a negligible over-
head for the whole search process when added (as it will be calculated
regardless by the KGLS algorithm).

In the case of the GP, each tree in the multi-tree individual will try to
fit one of the classes. The individuals are evaluated by the mean squared
error, which should be minimised to approximate the trees’ output to the
target variables. Hence, the trees that try to learn how to approximate the
inputs (features I1-I10) to the improvement. The expectation is that each
tree on the best individual after the evolution process, would be able to
estimate the improvement given for other unseen instances for each class.
Therefore, the greater improvement shown would be the target class for
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the execution of the new instance. For example, if tree number 2 (con-
sidering the same order mentioned above: K, W, C, WC) has the greatest
output from all trees, the class selected would be W . Figure 6.1 (b) illus-
trates the regression model.

6.2.4 Hybrid Regression-Classification Model for GP

When developing the GP classification approach, it was observed that it
would make the decision process more prune to over-fitting, when com-
pared to the regression one. For this, a two-phase model was also consid-
ered in order to verify whether we could increase the ability to predict the
use of width rather than memorise the input, presented in Figure 6.1 (c).

In general, the algorithm trains the GP model in two phases. The first
phase follows the regression model, trying to estimate the improvement
given by an initial solution value. The second phase predicts which class
is the most suitable for the instance given the estimated value, while also
considering the target variables values as part of the fitness function. It
does so by calculating the mean squared error, and choosing the tree with
the smaller error to be the activated tree (and, therefore, class). Hence in
this second-phase the fitness is determined by the classification accuracy.

6.3 Experiments

As already mentioned, the dataset utilised was the CVRPLib [183], since it
gives a varied number of instances with different characteristics, such as
customers distribution, demand distribution, depot location and number
of customers, allowing for both large and ”non-large” variants.

Several experimental settings were tried in order to verify if the meth-
ods would learn to classify the instances correctly. Some preliminary ex-
periments (as already mentioned in Section 6.2) were performed in order
to verify the difference across all different criterion considered. The KGLS
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was run in all criterion for all instances, with two different running times:
10 or 15 minutes. This experiment shows how much each criteria would
contribute in the search process if done separately.

After the preliminary experiments, and observing the gap between the
criterion, we wanted to check the ability of ML methods to learn this. In
order to do so, a parameter tuning was firstly done. This parameter tuning
could have several steps, considering the different types of methods and
all their possible parameters. However, we decided to keep most of the
parameters in the default or most common setting used. Therefore, SVM
and RF are utilising the default parameters as implemented in the scikit-
library [145], with the exception of the RF, where we limited the max depth
to 6. Both of them are also used for both Classification and Regression
modes, where they try to match the labels (SVMC and RFC) or learn the
improvement (SVMR and RFR).

The GP, however, required a bit of extra tuning, since crossover and
mutation rate plays a big role in their performance. We tested two com-
mon configurations, as in [8, 200]: 80% crossover rate with 20% mutation
rate, and 30% crossover rate with 70% mutation rate. We found the first
(80%/20%) was slightly more accurate and were set as the standard.

The dataset required a consideration as well. Although a split in the
non-large and large variants can be utilised (there are 21 instances with
less than the 200 customer threshold to be considered large-scale, i.e. 79
instances are large-scale), we also considered a larger split to feed more
data for the ML algorithms to learn better, dividing the dataset in half (50-
50). The parameters are summarised in Table 6.2.
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Table 6.2: Parameters considered for the experiments. In bold are the de-
fault configuration.

Parameter Value
Population size (GP only) 1000
Initial Population (GP only) Ramped-half-and-half
Crossover rate (GP only) 80%
Mutation rate (GP only) 20%
Elitism (GP only) 10%
Number of generations (GP only) 100
Number of runs 30

6.4 Results and Discussions

6.4.1 Preliminary analysis on the original data

When analysing the data generated from the KGLS running in all four
considered criteria (K, W, C or WC), we looked for any visible patterns
on the instance distribution and the better performing class. Although it
would be expected for instances with depot on the edge preferably use
the criteria where width is considered (based on the somewhat correlation
found in [11]), the data does not clearly indicate that. We notice a fairly
even split on the instances, as shown in Table 6.3, where the number of
instances in which each criteria has performed the best is shown. The
values indicate the accumulated difference over those instances against
the default criteria K (same as in Table 6.1). Although class K has less
instances than class W, K is still better overall. However, this shows that
for most instances the best criteria is different from the default one. In fact,
if taken all the best criterion, the overall gap from the best-known solution
of the algorithm would improve from 0.52% to 0.43%, a 17% improvement.
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Table 6.3: Number of instances that each criteria has performed the best.
Values represent their relative difference to the default criteria (K). Taken
from a 10 minutes execution of the KGLS among all 100 instances.

Mode Number of instances Total difference to K
K 28 —

W 29 -3.458%
C 23 -4.148%

WC 20 -1.443%
Total 100 -9.049%

6.4.2 Results for different splits

Another test realised was regarding the amount of training data available
for the ML algorithms. Table 6.4 reports these results for both configura-
tions considered: a split between non-large instances and large-scale ones
(21:79), and a split of 50% on the instances (50:50). As this is the GAP, the
smaller the better. Across all algorithms, the test performance was rela-
tively the same, with the exception of the SVM, which performed slightly
better. The results presented are the GAP to the BKS, but since the target
best is different, we also present for each mode. Although namely the first
split (21:79) looks better, we have to compare to this target. The difference
(how far from the target each method is) between the methods for both
splits are less than 1% on average.

This, perhaps, is the most intriguing result. Although it was initially
intended to discover if the bad performance in the tests (which only con-
sidered 21:79 split) was because of a lack of data, this test shows that the
problem is within the data. As giving more data actually made it slightly
worse. Hence, we chose to keep using the 21:79. These results indicate
that the features cannot comprehend the difference on the data.
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Table 6.4: Summary of the performance when comparing two different
splits on the dataset. Values are GAP to the BKS, averaged for the 30 runs
and the respective instances. Column Best is the best run out of the 30.

ML Method Data Splits
21:79 50:50

Average Best Average Best
Best Penalisation 0.503% 0.540%
GP Classification 0.622% 0.588% 0.672% 0.628%
GP Regression 0.616% 0.572% 0.663% 0.625%
GP Hybrid 0.621% 0.572% 0.664% 0.608%
SVM Classification 0.626% 0.626% 0.617% 0.617%
SVM Regression 0.609% 0.609% 0.696% 0.696%
RF Classification 0.614% 0.602% 0.656% 0.631%
RF Regression 0.626% 0.608% 0.663% 0.642%

6.4.3 Training Performance

When looking at the training performance, we observed a fairly good ac-
curacy: 84% for the GP classification, an error of 0.006 for GP Regression
and 75% for the hybrid mode, on average for the 30 runs. Random Forest
in classification mode performed the best, with accuracy of almost 100%,
and the regression one was not much back. While SVM did not seem to be
able to separate the instances very well.

However, as pure accuracy and error are not the end goals of our task,
we need to compare the methods regarding our optimisation goal. Table
6.5 summarises the training models’ performance, in this aspect, where the
actual distance to BKS is compared. This show whether the methods can
pick the correct expected criteria during training, or even if not, how much
worse would they turn out to be. When analysing by these measures, the
results show the RF as a clear winner, while the GP methods were able
to find best individuals with very similar performance. Both RF and GP
can get better training performance than the baseline methods. We expect
this would indicate that the methods are able to learn how to correlate the
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input data to the output. However, as the next experiment shows, it is not
that straightforward.

Table 6.5: The training results. Presented values are the distance to the
BKS, averaged out across the training data. Columns 1-4 shows the values
for the KGLS criterion. Column Best shows the target value for the ML
methods. Next columns represent the average and best over the 30 runs
for the ML algorithms studied.

SVM RF GP
K W C WC Best Class. Reg. Class. Reg. Class. Reg. Hybrid

Average 0.39% 0.38% 0.16% 0.17% 0.38% 0.29% 0.30%
0.33% 0.38% 0.27% 0.28% 0.16% Best 0.39% 0.38% 0.16% 0.16% 0.25% 0.18% 0.20%

6.4.4 Test Performance

As Table 6.6 shows, the results across all the ML models test performance
are worse than that of the default criteria (K), with the best case of both the
GP-Regression and GP-Hybrid present a similar quality as K. This con-
flicts with the training data results, which would show the training was
able to learn the data (except for SVM, which always chooses either one or
two classes). This seems like a clear indication of over-fitting. However, as
the previous experiments showed, increasing the amount of data did not
improve the models performance significantly.

To analyse why the problem did not improve when increasing the num-
ber of instances and why the method does not appear to maintain perfor-
mance from the training to the test, we had to look at the data more closely.
Figure 6.2 is an example of a plotted instance improvement values and one
run attempt to match it for a random single GP run. The red cross shows
that the regression variable targets are too close to each other (improve-
ment is calculated by the relative difference between final and initial so-
lution, as explained in Section 6.2.1). On the other hand, the methods are
not able to learn the patterns with precision for most cases, as seen by the



196CHAPTER 6. LEARNING STRATEGIES TO ESCAPE LOCAL OPTIMUM

Table 6.6: The results for a subset of the test set. Presented values are the
distance to the BKS. Columns 2-5 shows the criteria of the KGLS run. Best
shows the best values from each criterion. Next columns represent the
average expected GAP over the 30 runs for the ML algorithms. Finally,
last rows present the average and best results over the 79 test instances.

SVM RF GP
Instance K W C WC Best Class. Reg. Class. Reg. Class. Reg. Hybrid
X-n209-k16 0.25% 0.18% 0.19% 0.23% 0.18% 0.19% 0.18% 0.19 % 0.25 % 0.19 % 0.21% 0.22%
X-n247-k47 1.11% 1.15% 1.08% 1.09% 1.08% 1.15% 1.15% 1.09% 1.09% 1.12% 1.11% 1.10%
X-n266-k58 0.64% 0.49% 0.60% 0.67% 0.49% 0.49% 0.49% 0.50% 0.64% 0.55% 0.59% 0.63%
X-n280-k17 0.56% 0.58% 0.45% 0.39% 0.39% 0.45% 0.58% 0.50% 0.56% 0.55% 0.50% 0.45%
X-n308-k13 1.19% 0.58% 0.65% 0.84% 0.58% 0.65% 0.58% 0.64% 1.19% 0.63% 0.77% 0.83%
X-n317-k53 0.07% 0.09% 0.06% 0.08% 0.06% 0.06% 0.09% 0.07% 0.07% 0.08% 0.08% 0.08%
X-n359-k29 0.93% 0.69% 0.83% 0.75% 0.69% 0.83% 0.69% 0.93% 0.93% 0.70% 0.77% 0.78%
X-n367-k17 0.45% 0.34% 0.28% 0.32% 0.28% 0.34% 0.34% 0.28% 0.30% 0.34% 0.34% 0.33%
X-n420-k130 0.56% 0.48% 0.59% 0.57% 0.48% 0.48% 0.48% 0.48% 0.57% 0.52% 0.54% 0.56%
X-n449-k29 0.75% 0.84% 0.80% 0.66% 0.66% 0.80% 0.84% 0.75% 0.75% 0.77% 0.78% 0.71%
X-n469-k138 0.66% 0.63% 0.75% 0.71% 0.63% 0.75% 0.63% 0.68% 0.66% 0.67% 0.69% 0.70%
X-n524-k137 1.77% 1.62% 2.32% 2.19% 1.62% 1.62% 1.62% 1.62% 1.74% 2.02% 1.97% 2.05%
X-n573-k30 0.19% 0.41% 0.25% 0.25% 0.19% 0.25% 0.41% 0.25% 0.24% 0.36% 0.29% 0.26%
X-n627-k43 0.31% 0.22% 0.34% 0.28% 0.22% 0.34% 0.22% 0.25% 0.31% 0.26% 0.27% 0.29%
X-n685-k75 0.66% 0.78% 0.58% 0.60% 0.58% 0.78% 0.78% 0.78% 0.60% 0.69% 0.68% 0.64%
X-n716-k35 0.68% 0.55% 0.87% 0.66% 0.55% 0.87% 0.55% 0.87% 0.71% 0.60% 0.66% 0.69%
X-n783-k48% 0.54% 0.32% 0.68% 0.81% 0.32% 0.68% 0.32% 0.56% 0.54% 0.57% 0.55% 0.70%
X-n819-k171 0.59% 0.82% 0.71% 0.61% 0.59% 0.82% 0.82% 0.82% 0.61% 0.74% 0.69% 0.66%
X-n856-k95 0.31% 0.26% 0.26% 0.34% 0.26% 0.26% 0.26% 0.26% 0.34% 0.29% 0.28% 0.30%
X-n895-k37% 0.20% 0.32% 0.43% 0.34% 0.20% 0.43% 0.32% 0.32% 0.22% 0.33% 0.33% 0.34%
X-n936-k151 2.98% 3.54% 2.95% 3.89% 2.95% 3.54% 3.54% 3.54% 3.79% 3.44% 3.33% 3.52%
X-n979-k58 0.54% 0.33% 0.57% 0.48% 0.33% 0.57% 0.33% 0.57% 0.54% 0.41% 0.45% 0.48%
X-n1001-k43 0.40% 0.27% 0.52% 0.50% 0.27% 0.52% 0.27% 0.28% 0.40% 0.39% 0.38% 0.45%
Average 0.572% 0.609% 0.644% 0.632% 0.503% 0.626% 0.609% 0.614% 0.626% 0.622% 0.616% 0.621%
Best — — — — — 0.626% 0.609% 0.599% 0.607% 0.588% 0.572% 0.572%

example in Figure 6.2, represented by the blue dots. The blue dots seem
to have a fairly different pattern than the target values, while also being a
bit off regarding the actual value. This behaviour is also observed across
several instances. Hence, a small mistake there would make the accuracy
drop by selecting a different class, which could affect the training process.
Nonetheless, the closeness of the targets variables would likely make it
difficult for the ML methods to learn the difference between the instances.

When analysing the case-by-case performance instead of the average,
as the average might be skewed towards the worse solutions (i.e. solutions
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Figure 6.2: An example of training instance considered. The red exes rep-
resent the actual improvement values, while the blue dots represent the
GP regression prediction.

which contribute the most to the average GAP), we start to see a better
performance scenario. As Table 6.7 shows, out of the 79 test instances,
most methods seem to choose about half correctly. The best case for each
shows that both the RF and GP regression models have selected a majority
correctly. As the best-case average GAP is not near the target value in
those cases, this can indicate that the wrongly chosen ones are damaging
the average significantly.

Table 6.7: Number of instances the models have outperformed the default
criteria K, out of the 79 test instances. Average and best case over 30 runs.

SVM RF GP
Class. Reg. Class. Reg. Class. Reg. Hybrid

Average 27 33 32 41 28 28 30
Best 27 33 40 45 35 59 34

Finally, to confirm that the results were significantly different among
the ML methods, we applied the Friedman statistical test and verified that
the p-value was ≤ 0.001. This indicated there is difference in the perfor-
mance. Then, we ran the Wilcoxon Rank-Sum test pairwise, which showed
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the difference were mostly related to the SVM performance. Test perfor-
mance across the ML methods is shown in 6.3.

Figure 6.3: Box plot for the performance of the different ML method used
with outliers removed. The values indicate the distance to the BKS, there-
fore, the lower the better.

6.5 Chapter Summary

In this chapter we introduce a Machine Learning approach to learn and
predict which penalisation criteria would be more successful in the KGLS
framework. This application as part of the acceptance criteria helps guide
the solution out of local optima. We first introduce how the original method
performs across different instances with the distinct criterion being ap-
plied. We show that there can be a considerable gap between the criteria.

We then apply three distinct learning processes: classification, regres-
sion and a hybrid approach. Each approach utilises the instance features in
order to predict which criteria will perform better for the specific solution.
We label the data experimentally and apply the methods on unseen data.
Showing that we are able to predict the best method in several occasions,
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however not consistently enough. The main drawbacks observed come
from the lack of distinction in the labelled data (for both classification and
regression), since for most instances the solutions are very similar, making
it very hard for the ML algorithms to learn.

6.5.1 Consideration on Scalability and Computational time

Similarly, as the first approach in Chapter 3, the approach introduced here
is safe regarding the scale of the instance being solved. The calculation
of features has very little difference for larger sizes. The trained models
will have the same input size regardless of instance size. The computa-
tional time will also be similar to original KGLS as fixing the penalisation
strategy does not affect the efficiency of the algorithm.
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Chapter 7

Conclusions

The overall goal of this thesis is to improve on the automation of differ-
ent steps of local search-based metaheuristics for the Large Scale Vehicle Rout-
ing Problem. This target was successfully achieved by breaking down the
main tasks of a local search framework and automating them individu-
ally, each contributing to the whole. These tasks include the initialisation
stage, through the use of ML and GPHH techniques, the improvement
stage, through hyper-heuristics and online learning, and, acceptance and
evaluation stage, through classification and regression approaches. The
employed techniques have shown improvement in effectiveness or effi-
ciency, and sometimes both, in solving the LSVRP. And even though some
of the results are underwhelming, we managed to improve HHs enough
to make them competitive with other state-of-the-art metaheuristics. The
computational time added to the search of the best heuristic, however, can
be a bit high in several of the HH frameworks introduced (hours to a day
of training, depending on the scale of the problem), especially the ones
introduced in Chapter 4. But considering some applications can spend
such training time, they can still be useful in some scenarios, for example,
finding a set of routes that will be executed several times.

The rest of this chapter is divided as follows: we discuss the objectives
from each contribution chapter and their overall achievements. Then, we
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expand on a high level discussion on the conclusions of each chapter. Fi-
nally, we discuss possible future work and research directions in the scope
discussed here in this thesis.

7.1 Research Questions and Main Conclusions

In this section we bring back the questions asked in our Introduction chap-
ter (Chapter 1.3) and evaluate whether we were able to successfully an-
swer them. We present the following objectives, respectively for each con-
tribution chapter (Chapters 3 - 6):

7.1.1 Learning Effective Initialisation

Our first objective in this thesis was to develop automatic initialisation
methods improving the effectiveness and efficiency of a local search-
based metaheuristics for the LSVRP. This objective was presented in Chap-
ter 3, we achieved it by considering two different approaches.

In Chapter 3, we argue that the initialisation heuristic plays a role in
the performance of Local Search-based methods and should not be ne-
glected when developing solution approaches. We present evidence that
even with very bad costs some initial solutions can still find better final
solutions than the ones with a good initial cost. For example, we observe
that the knowingly bad Nearest Neighbour heuristic ends up having the
best performance overall by the end of the KGLS run. Although we do
not claim this observation is generalisable for other metaheuristics, we be-
lieve similar behaviour could be found for other frameworks if the same
methodology is applied. When observing the difference in solution qual-
ity among different initial heuristics, we also utilise features from the so-
lutions and instances to train 10 ML methods to learn how to identify the
cases in which each of the four considered constructive heuristics can per-
form better. The different ML techniques show that there is some correla-
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tion between the features selected and the ability to predict which method
would find better performance as if learning how to predict in which part
of the search space the selected KGLS would perform better. Hence, we
can claim that learning to predict the initialisation heuristic improves the
effectiveness of our local search-based metaheuristic.

In Chapter 3, we also propose a Genetic Programming Hyper-Heuristic
to construct LSVRP solutions in a specific region of the search space. The
new proposed fitness function guides the solutions towards routes with
less width, which have shown to be a good indicator of near-optimal so-
lutions. The method is able to produce a solution that can be improved to-
wards better final solutions compared to a traditional heuristic method in
49 out of the 79 test instances. Additionally, the proposed GPHH was able
to achieve the best solution in the presented tests for a few instances, even
when using simpler heuristics than the state-of-the-art. Therefore, we can
also show an increase in effectiveness in some scenarios. The efficiency can
be argued when observing some of the better solutions are found faster.

The questions initially asked in our research were:

1. How much impact does an initial solution of a local search-based
metaheuristic have? 2. And can we learn to utilise this solution in
favour of our search?

We answer the first question by providing an initial solution compar-
ison, proving that there is a difference in performance that can be signif-
icant, simply by changing the initial solution — and that this difference
cannot be correlated to only the cost of the solution. We utilise that knowl-
edge to learn how to select the initial heuristics and that, although rela-
tively small, they provide a reduction in costs across the majority of the
instances tested, which answers the second question.

The second question can be answered by considering our GPHH ap-
proach, which shows it is possible to build a solution in a more promising
region of the search space. Although this approach has weaker results, it
was still able to find some better solutions despite having both a weaker
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framework and a worst starting solution.

7.1.2 Operator Selection and Bounds with Evolutionary Hyper-

Heuristics

The second objective of this thesis was to develop Selection HHs us-
ing a genetic algorithm with new chromosomes which incorporate a lo-
cal search-based method improvement step, including efficient search
space limits for the LSVRP. This objective was also achieved and we
present it in Chapter 4. For this goal, three different strategies were de-
veloped, each with its own particularities.

The first strategy proposes an adaptive clustering technique based on
solution evolution in combination with a Selection HH GA-based frame-
work. The experiments realised showed the effectiveness of both the clus-
tering technique introduced, as well as its combination with a GA for se-
lecting low-level heuristics. The results presented have shown that the
clustering technique significantly improves the performance when com-
pared to scenarios with no search limits or with fixed clusters, which would
be the more traditional approach. Therefore, the technique finds its pur-
pose of limiting the search space more efficiently, as in our goal.

Chapter 4 also presented a GA HH with a novel two-level chromosome
that limits the search space for each operator in an attempt to find more
effective neighbourhood sizes. The experiments realized have shown the
method’s ability to find better solution quality than the compared man-
ually designed approaches for all the test cases. And when compared to
a fixed limit Hyper-Heuristic, it also improved for most cases. We also
successfully show that not only the order of which operator are applied
impacts the solution, but also the sizes for each neighbourhood. Hence,
this new chromosome was able to improve the effectiveness and efficiency in
this improvement step.

A third approach is also introduced in Chapter 4, where a Selection
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HH is used to automatically configure the KGLS algorithm, as well as its
heuristics’ pruning, introducing another novel chromosome which incor-
porates all three main stages of the local search. The results, however, are
underwhelming as they fail to find competitive results when compared
to the original KGLS. This can be explained by the big search space con-
sidered, since having more layers and possible configurations, the heuris-
tic search space became too expensive to explore considering the scenar-
ios presented. Although this happens, we are confident that the goal of
providing a HH method that can automatically and effectively prune the
solution search space was achieved in this chapter, as all three methods
provide an insight or result that confirms their effectiveness or efficiency.

Considering the research questions asked for this objective:

1. Does the order of the neighbourhood operators affect the search?
If so, 2. can we optimise it? And 3. can we automatically incorporate
proper limits into their neighbourhood scope without reducing their ef-
fectiveness?

We answer the first question by showing that the order of the opera-
tors affected the performance when comparing to a fixed order. However,
this order is not something generalisable, as it depends on both the start-
ing point and the type of operators used. We are able to show that, and
answering question 2, some orders are more beneficial for some instances
and could be optimised individually.

The third question is answered by the different pruning strategies be-
ing successfully employed. The use of adaptive clusters and operator-
dependent pruning limits were shown to be the most successful part of our
approach and all strategies were able to find more efficient exploration.

7.1.3 Learning to Guide Solution Search Space

In the third objective of this thesis we wanted to introduce a new strategy
that adaptively changes the search limits for each inter-route operator
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when solving the LSVRP. Chapter 5 achieves this objective by presenting
a novel neighbourhood pruning heuristic.

The heuristic is used to reduce the ceiling of the number of customers
to be searched, translating to a more efficient search. The proposed method
was able to achieve better performance than the baseline KGLS with fixed
neighbourhood size on most of the instances, especially the very large
ones. Additional analyses have showed that the heuristic was able to
capture the best neighbour in most cases, about 87% in total. This high
accuracy together with the improved efficiency indicates that the proposed
method was able to adapt the neighbourhood size as intended by our ob-
jective.

Another note on the approach is that it did not add expensive overhead
to learn this decision-making process. This can be seen by the results,
which show that not only it did not damage the search, but was also able
to increase its the efficiency and effectiveness.

Bringing back the research question that led us to this objective:

1. Can we limit the neighbourhood search space for each operator
adaptively? 2. Does that improve the efficiency? 3. Does it come with a
loss of effectiveness?

Question 1 can be safely answered, as each operator’s limit is individ-
ually tailored by the proposed heuristic strategy. The results corroborate
question 2, showing an increase in the number of iterations quite signifi-
cantly in the same time-frame.

Question 3 is also shown to be true for most cases, as the method intro-
duces a way to reduce the limit and still outperformed the original limit.
This implies the limits used most of the time are quite large and could
be reduced without loss of effectiveness. However, that is not true for all
cases, as some instances had a decrease in performance, meaning they op-
erate on the limit of the search pruning. Hence an adaptive strategy seems
to be more reliable, as it is less likely to get it wrong for specific scenarios.
Another argument that can be seen as a consequence of the pruning em-
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ployed, is that changing the pruning limit may just be leading the search
direction to a different best neighbour at each stage. However, this also
might benefit the search as exploration, also allowing it to reach a better
final solution than the KGLS — thus effectively keeping its ability to find
competitive solutions.

7.1.4 Learning Acceptance Strategies to Escape from Local

Optima

In our fourth and final objective we aimed to introduce the use of ML
techniques to differentiate the most-suitable acceptance criteria and to
build novel ones, increasing the effectiveness in the search for better
LSVRP solutions. This objective was partially achieved in Chapter 6, be-
ing able to predict the best penalisation criteria in a KGLS framework.

In Chapter 6 we attempt to find the best improvement in the KGLS
based on observations of differences in quality between distinct penalisa-
tion criteria. Although the difference can be small, it can still be trans-
lated to a cut in costs, especially for larger scenarios. The presented anal-
ysis tries to show that there is a strong disconnection between what we
perceive (instance characteristics), to what is actually useful. Although
there seem to be correlation on some instance characteristics and the use of
width, as pointed in the work of [11], the utilised features are not enough
to make such correlation generalisable.

We considered different ML techniques, configurations and labelling
methods, and we still could not confidently and correctly predict the cri-
teria in which an instance should be run when executing the KGLS algo-
rithm. However, in the best case, we were able to choose more than half
correct instances, indicating that a model should exist which can make a
more accurate prediction. It also seems that the instances characteristics
do not provide enough information for the corresponding classes.

When we go back to the research questions related to this objective:



208 CHAPTER 7. CONCLUSIONS

1. Can we learn to automatically select the acceptance criteria? 2. Is
having a pool of criteria beneficial? 3. Can we automatically learn a new
method to drive out of local optima?

Our first question is partially answered by our ML approach, as we
had some ability to predict the penalisation criteria — which we argue as
one of the main stages of the acceptance criteria in the case of the KGLS.
Although the somewhat poor results in the prediction, question 2 is an-
swered by showing the difference in performance for different criteria,
where each criterion is able to outperform the others for some instances,
implying a pool can be beneficial. Question 3 was not fully answered as
we were not able to extend the method’s ability to generalise the learning
in the first place, not allowing for knowledge to be extracted in order to
build new methods to provide a more effective local optima escape.

7.2 Future Work

In this section we present what future directions our research can go in.
We present them according to the contribution chapters of this thesis, fol-
lowed by new directions that we judged important to address, but are not
necessarily connected to the contributions given.

7.2.1 Learning Effective Initialisation

The results found in Chapter 3 encourage us to explore more on the ef-
fects in which the initial search space has on the performance of the local
search heuristics. Although we use only one specific local search-based
method, we believe that the techniques presented are transferable to other
local search-based methods with minor adjustments. A relevant next step
that can be used across the different methods introduced, would be to ex-
plore in more detail how each feature influences the final classification or
performance of the considered methods. A fine-tuning on the parameters
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and a possible reduction in the feature space size or the addition of more
relevant ones are also good next steps across both methods.

Another interesting use for the ML technique is to rank solutions from
a population-based metaheuristic, increasing their selection chance as they
could be likely to provide better offspring. For example, combining the re-
cent GA from [184] with our ML approach, as the added overhead being
small with a limited number of features that needs to be recalculated at
each generation, it would be possible to use a trained model in order to se-
lect more promising parents, rather than using the traditional tournament
selection which only takes into account the total cost.

When considering a immediate next step for this approach, however,
the use of more construction methods would be the obvious choice. This
addition would have to consider if the gain in search performance out-
gains the loss of time in calculating all initial solutions. The use of our
GPHH approach, also introduced in Chapter 3, did not seem appropri-
ate as its construction time is relatively slow when compared to the other
constructive heuristics — and as it also lacks robustness.

For the GPHH approach, one clear weakness comes from the way the
routes are built, requiring a more competitive and efficient route construc-
tion method to be used. As GP has a large search space and we opted for
aiming to build generalisable trees, we might have lost some of its poten-
tial by including several instances in a single training evaluation. A future
work would do a better job in training the GPHH, especially since training
time can be disregarded, as long as it achieves a good result in the end.

7.2.2 Operator Selection and Bounds with Evolutionary Hyper-

Heuristics

Chapter 4 explores the automatic configuration of the improvement step
via evolutionary hyper-heuristics. The common challenge in the three
methods considered is the evaluation of each chromosome. It is an ex-
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pensive task to run a local search just to evaluate it, especially considering
the limited time given might not be enough to calculate each individual’s
true fitness. To answer this challenge, surrogate techniques which can es-
timate the fitness cost in a fraction of the time could be a decisive point
to make such approach more usable. Another consideration would be to
investigate whether evolving the population for multiple instances could
lead to a chromosome applicable to more cases, rather than training for a
single instance. The genetic components can also be tuned to increase the
efficacy of the evolutionary processes.

In our cluster-based approach, the parameter M is a weak-point, as
it requires tuning. We believe a similar approach to what was done in
Chapter 5 could be done, adaptively changing the parameter according to
recent progress. The lack of local optima escape mechanisms affects the
measurement of potential for this and the second approach.

For our second and third approaches, we notice that fine tuning the
percentage of limits is a difficult task. An idea to improve that is to apply
a local search to optimise the limits separately or through the use of a
separate phase for tuning them — as it showed to have a poor performance
in doing both the LLH and their limits simultaneously.

7.2.3 Learning to Guide Solution Search Space

In Chapter 5 we explore an adaptive approach for automatically setting up
the limit for each neighbourhood operator. Future work in this research di-
rection could be on to how to improve the accuracy of this type of pruning.
Removing the expertise element in the heuristic’s decisions is perhaps the
most obvious one, allowing the method to be fully automatic. This can be
done either by using statistical learning or by using some non-supervised
learning technique. Another consideration is to utilise this method with
a different framework since the proposed heuristic is generic and mostly
independent of the underlying algorithm. For example, rather than the
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fixed approach utilised in [184], which limits the search for the 20 closest
customers, we could apply the same method to improve its efficacy.

7.2.4 Learning Acceptance Strategies to Escape from Local

Optima

Finally, in Chapter 6 we utilise ML to predict the best penalisation criteria
for the KGLS local-optima-escape phase. In future work, introducing more
features might help to distinguish the classes better, especially if they are
related to how the penalisation works. Increasing the number of instances
to train and test on, utilising an automatic method to generate instances,
would provide more details to the ML methods on how to separate the in-
stances more effectively. Another idea would be to separate the instances
which present very similar results from the ones that do show some gaps
between different criteria. Doing so would be adding a bias observed on
the seen data and, hence, was not done in this work. However, this type
of strategy could help us identify the type of features that can be further
explored by other approaches.

7.2.5 New Directions

Among the future work that do not relate to our contributions directly, we
can say the use of techniques such as GP to build the operators is one of
them. Although the automatic selection of low-level heuristics through
hyper-heuristics or similar strategies minimise the manual design deci-
sions, the operators themselves are still manually designed. Generating
new ones have been attempted with different techniques, but seldom pro-
ducing any worthy results and, as far as the authors are aware, not built
considering large-scale. Using GP (or even Linear GP, a variant of GP
that allows graphs rather than trees) we could generate heuristics that can
be used for specific instance configurations or customer types, while also
considering the efficiency of the built operator, not only its effectiveness.
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Another possible new direction comes from the use of GP to generate
new penalisation modes for GLS-based methods. For example, consider-
ing the extensive use of domain knowledge to generate the penalisation
functions used by [10] (as presented in Chapter 2.5.4), we could use the
ability to generate new functions of GP to do so automatically. This would
allow for new combinations of cost and width, or even something unre-
lated, that can be more effective in the escape of local optima, improving
the quality of any GLS-based method in the given context.
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[199] YÜCENUR, G. N., AND DEMIREL, N. Ç. A new geometric shape-
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