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Abstract

The real world is full of problems with multiple conflicting objectives.
However, Reinforcement Learning (RL) traditionally deals with only a sin-
gle learning objective. Recently, several Multi-Objective Reinforcement
Learning (MORL) algorithms have been proposed. Nevertheless, many
of these algorithms rely on tabular representations of the value function,
which are only suitable for solving small-scale problems. In addition,
although some existing MORL techniques can learn the Pareto optimal
solutions, they can only be applied to simple multi-step problems in a
discrete Markov environment. However, many real-world problems in-
volve partially-observable continuous environments, where continuous
environments are often discretise before the systems learn the best poli-
cies from a starting to a goal state. Therefore, effective MORL techniques
are needed to address these problems.

Learning Classifier Systems (LCSs) have been widely used to tackle RL
problems as they have a good generalization ability and provide a sim-
ple, understandable rule-based solution. The rule-based solution has good
scalability to solve large-scale problems. In addition, the rule-based solu-
tion is explainable. Thus the user is not only able to know what the so-
lution is but understand why the solution is suited to the task and when
to trust the solution. Moreover, the accuracy-based LCS, XCS, has been
adopted successfully for single-objective RL problems. Thus, LCSs, espe-
cially XCS, have huge potential to solve MORL problems.

In this thesis, LCSs are enabled to learn the Pareto optimal policies for
discrete, partially-observable, discrete and continuous MORL problems.
The objectives are to develop XCS-based algorithms to learn the Pareto



optimal policies for MORL problems, improve the generalization ability
of the multi-objective XCS-based algorithm where possible, evaluate the
generalization ability of developed multi-objective XCS-based algorithms
for solving MORL problems, and apply multi-objective XCS-based algo-
rithms to solve large-scale partially-observed MORL problems. The fol-
lowing tasks have been completed in this thesis.

A new multi-objective LCS-based algorithm MO-XCS has been devel-
oped based on XCS for multi-objective learning. This algorithm is de-
signed to learn a group of Pareto optimal solutions through a single learn-
ing process. For this purpose, four technical issues in XCS have been
identified and addressed. Experimental studies on three bi-objective maze
problems further demonstrate the effectiveness of MO-XCS.

A new multi-objective LCS-based algorithm MOXCS, different from
MO-XCS, has been developed based on XCS and MOEA/D. It employs a
decomposition strategy based on MOEA/D in XCS to approximate com-
plex Pareto Fronts. The experimental results show that on complex bi-
objective maze problems, MOXCS can learn a group of Pareto optimal
solutions for MORL problems without requiring huge storage. Analysis
of the learned policies shows successful trade-offs between the distance to
the reward and the amount of reward itself. With integer inputs, MOXCS
can address the partially observable Markov problem Deep Sea Treasure.
Lastly, the generalization ability of MOXCS is tested in the Multi-Maze
and Multi-Maze Connection environments. However, it is shown that the
Multi-Maze Connection domain is not a proper benchmark for testing the
generalization ability of the MORL algorithm.

CoinRun is a continuous domain, unlike the previous Maze and Deep
Sea Treasure, which are discrete. Two bi-objective CoinRun environments
are developed in this thesis for testing the generalization ability of the
MORL algorithm. Several changes in the developed bi-objective CoinRun
environments have been made. First, they have been changed from con-
tinuous environments to the discretized environments by the technique



of discretizing continuous inputs. Second, those environments have been
changed from the non-Markov environments to Markov environments by
adding extra characters. Third, in order to enable the agent to sense the
environment a sub-actions technique has been developed; when the agent
takes action several following actions will be taken automatically. With
these changes and techniques, the developed bi-objective CoinRun prob-
lems are solved by MOXCS. The generalization ability of MOXCS will be
evaluated by exchange those two bi-objective CoinRun environments as
the training and testing environment. The evidence shows MOXCS has
the generalization ability for solving the MORL problem in an unseen en-
vironment with proper training in a similar environment.

The single-objective Mountain Car is extended as a bi-objective MORL
problem by adding another objective for the mountain car to take more ac-
tion, ‘zero-throttles’. MOXCS is implemented to resolve the multi-objective
mountain car problem. The result shows that MOXCS has good potential
to resolve this large-scale Markov problem.

This research work has shown that the LCS-based algorithms can learn
Pareto optimal policies for the discrete, partially-observed, and adapted
continuous MORL problems and have the potential to scale to complex,
large-scale MORL problems.
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Chapter 1

Introduction

1.1 Scope

Reinforcement Learning (RL) is a machine learning technique that learns
the correct behavior to maximize reward from the interaction with the en-
vironment by itself. The main difference between RL and other machine
learning methods, such as supervised learning, is that there is no existing
teacher for training the RL agent. The agent has a specific goal and aims
to learn the correct behavior to achieve that goal or maximize its reward
by the “trial and error” method. For example, if the agent wants to open
the door on its right, it should make sequential decisions to take a set of
actions such as turn right, go straight, open the door, to achieve the goal.
When taking an action, the agent will receive an immediate reward, which
could be earned if the ultimate goal is not reached. Thus, the goal of RL is
to find the optimal policy that maximizes the expected cumulative reward.

RL is applied to many real-world tasks such as robot control [49], game
playing [79] and control of elevators [18]. The RL problem not only has the
practical applications above but also benefits many other research areas,
such as operations research [84], optimal control theory [31], and game
theory [20]. In the operations research, RL methods are used to solve chal-
lenging benchmark problems, such as job-shop scheduling problems [29].

1



2 CHAPTER 1. INTRODUCTION

In the optimal control theory, RL methods are applied to solve the adap-
tive optimal control problems, for example, the adaptive control of the
walking machine [42]. In economics and game theory, RL may be used to
explain how equilibrium may arise under bounded rationality [20].

RL has a long history, which started from three research directions. One
direction concerns the optimal control problem. The research on the “op-
timal control problem” started in the 1950s, which is a mathematical op-
timization method for deriving control policies. Dynamic programming
(Bellman, 1957a) [77] and policy iteration (Ron Howard 1960) [77] are very
important solutions to the optimal control problem. The other direction
concerns learning by “trial and error”, which comes from the animal learn-
ing psychology [77], which is also be called “Law of Effect” [Thorndike,
1911, p. 244]. The last direction concerns temporal-difference methods,
which were proposed by Arthur Samuel in 1959 [77]. This has played
a particularly important role in the field of RL. In the 1980s, these three
threads joined together and formed the modern field of RL [77]. There
are many methods developed to resolve RL problems, where the value
function approaches [77] and direct policy search [23] are two major RL
methods. Value function approaches attempt to find a policy that maxi-
mizes the long-term payoff by maintaining and updating a set of expected
long-term payoffs for current policies. Another method is to search the
optimal policies in the policy space directly.

When a problem can be defined as a Markov Decision Process (MDP),
it can be addressed by RL algorithms [74]. In the MDP, the probability
of the next state can be determined by the current state and action. A
partially observable Markov decision process (POMDP) is a generalization
of a Markov decision process (MDP). A POMDP models an agent decision
process in which it is assumed that the system dynamics are determined
by an MDP, but the agent cannot directly observe the underlying state.

Though there are many techniques to solve RL problems, however, the
“black box” solution, for example, deep neural network [36] is hard to
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meet the requirement when a user wants to understand not only what is
the solution but also why is the solution. Explainable AI (XAI) is artificial
intelligence (AI) in which the results of the solution can be understood by
humans. It contrasts with the concept of the ”black box” in machine learn-
ing where even its designers cannot explain why an AI arrived at a specific
decision. Explainable AI (XAI) is artificial intelligence (AI) in which the re-
sults of the solution can be understood by humans. It contrasts with the
concept of the ”black box” in machine learning where even its designers
cannot explain why an AI arrived at a specific decision. LCSs are the ma-
chine learning algorithms that can generate the rule-based solution, where
the rule-based solution is easily understandable by the user. In this case,
the user can see the rule-based solution but also can understand why a
specific solution is suggested by the LCSs in that situation.

In practice, there are many problems with multiple conflicting objec-
tives. For example, while making scheduling decisions on a shop floor,
the objectives are minimizing not only the makespan but also the total
tardiness and the energy consumption [47]. To find a control policy for
releasing water from a dam requires balancing multiple uses of the reser-
voir, including hydroelectric production and flood mitigation, where RL
has been used to balance the two conflicting objectives: economic bene-
fit and environmental pollution [87]. MORL has an important value in
practice as well as in theory. It is widely used in many applications. For
example, in the process of the chemical reaction [85], the control system
is designed to accelerate the chemical reaction, economically and energy
saving by adjusting the higher temperature or adding the catalyst. But a
higher temperature needs to cost more electricity and the catalyst is ex-
pensive. Therefore, the two objectives are saving electricity and saving
the expense of catalysts. On the other hand, it is a sequential decision-
making problem, as the situations are based on the decision made. In this
case, MORL will provide a solution for these multiple objective sequen-
tial decision-making problems that balance these two objectives above to
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accelerate the chemical reaction. Also, MORL algorithms provided a solu-
tion for the sequential decision-making problem with multiple objectives
simultaneously. Hence, MORL becomes more and more popular recently.

When an RL problem needs to deal with multiple conflicting objectives
at the same time, it is called a Multi-Objective RL (MORL) problem. There
are many differences between the single-objective RL and MORL prob-
lems. In the MORL problem, the reward is a vector instead of a scalar, as
each element in the vector is used to evaluate each objective. Besides that,
the goal of MORL is, instead of optimizing one single objective, to obtain
the optimal policies that optimize multiple criteria simultaneously. In a
single-objective RL problem, where the reward is a scalar, the expected
long-term payoff is a scalar as well. Thus, the optimal policy is the pol-
icy that maximizes the expected long-term payoff. However, considering
the MORL problem, the reward is a vector, the expected long-term pay-
off is a vector as well. Therefore, it is impossible to employ the optimal
criteria in single-objective RL that simply determines the policy with the
maximum total reward as an optimal policy. In this case, the concept of
Pareto Dominance [86] is employed to learn the multiple Pareto optimal
policies [86]. More details will be discussed in Chapter 2, which will show
the increasing popularity of MORL approaches.

However, MORL research is still limited. Currently, the MORL ap-
proaches can be categorized into two groups: single-policy approaches
and multi-policy approaches. Single-policy approaches aim to find one
optimal policy of a weighted sum of objectives that maximizes the total
rewards according to the known preference in a single run. In the single-
policy methods, the multiple objectives need to be aggregated together to
produce a single objective for learning. Therefore, the MORL problem can
be transformed into the single-objective RL problem, then solved by the
classic single-objective RL approaches. However, as highlighted in [65],
for many problems, it is very difficult to determine the relative importance
of each objective without knowing the actual solution (i.e. before apply-
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ing the RL algorithms). Instead, each objective has to be treated separately
during learning. In this case, multi-policy approaches, whose aim is to
find a set of Pareto optimal policies, can be applied. Apparently, for this
kind of MORL problem, a different learning technique is highly desirable
as it does not need any prior knowledge to learn all the optimal policies
and the user can choose the optimal policy according to their requirement
later.

Many existing multi-policy algorithms including Pareto Q-Learning
(PQL) follow the tradition of adopting a tabular representation of the value
function [6][69][86]. Consequently, they may face difficulty when tack-
ling large-scale problems (scale in terms of the number of states and ac-
tions). To achieve better scalability, rule-based representation has been de-
veloped in XCS for scalable RL [15]. However, only Stanley and Bull have
attempted to solve MORL problems by using XCS [75]. Their research con-
siders those problems where one or more objectives can be conveniently
treated as part of the state input, thereby leaving only a single objective
as the learning target. In this thesis, a different type of problem is consid-
ered where no objective can be treated as part of the state input through
an extended state input. Therefore, rather than learning a single optimal
policy, the goal of this thesis is to learn a group of policies that jointly
form the Pareto Front (PF), The PF consists of a set of non-dominated so-
lutions, where no objective can be improved without sacrificing at least
one other objective. In addition, the neural network-based representation
used previously in [24] provides a more compact and flexible solution to
Multi-Objective Problem (MOP) [91]. In this thesis, how to improve the
existing network-based solutions method [91] to make it more efficient for
MORL problems will be considered as well.

The performance assessment method of a MORL system is different
from the single-policy approaches and multi-policy approaches as the num-
ber of solutions in each run are different. In single-policy approaches,
the performance can be accessed by evaluating the performance multiple
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times. At each run, the performance is evaluated according to one given
preference metric. In the multi-policy approaches, the performance of the
MORL system will be evaluated by comparing the approximate Pareto
front with the true Pareto front. Several benchmarks with the known
Pareto front are presented in [83], such as Bi-Objective Maze, Deep Sea
Treasure will be used to evaluate MORL algorithms in this thesis. Several
single objective benchmarks, CoinRun and Mountain Car, will be consid-
ered to extend as multi-objective benchmarks for evaluating the perfor-
mance as well.

1.2 Motivation

Though the research of RL is promising, the research into MORL especially
the MORL solutions on multi-policy approaches is still limited. Therefore,
in this part, first, the challenges of existing Multi-Objective RL approaches
are discussed. Afterward, the potential solution: XCS-based algorithms
are proposed, together with the reasons why the algorithms are consid-
ered. Finally, the challenges of developing the XCS-based algorithms for
the MORL problem are discussed.

1.2.1 Challenges of Existing Multi-Objective RL approaches

As discussed above, MORL is an important research area, but developing
the MORL algorithms is challenging because:

1. The tabular representation of the solutions of MORL has poor scala-
bility. Despite the successful developments in MORL theory and al-
gorithms, the tabular-based solution lacks scalability, as it cannot ad-
dress the ‘curse of dimensionality problem. In a reinforcement learn-
ing problem, the curse of dimensionality means that the algorithm’s
computational requirements grow exponentially with the number of
state variables [77]. In addition, the tabular representation is not
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straightforwardly applicable. For example, the tabular representa-
tion is not easy to apply to a real system because it needs a large
computational space to store the solution to a large problem. Conse-
quently, they may face difficulty when tackling large-scale problems
(scale in terms of the number of states and actions).

2. The Non-Markov environment is the environment that the current
state could not be determined with the condition. Research in the
area of the Non-Markov MORL environment is very limited [86]. To
date, most RL and MORL work has focused on learning tasks that
can be described as Markov Decision Processes (MDP). If a problem
can be defined as an MDP, it can be solved by RL algorithms [74].
However, while those algorithms are useful for modeling a wide
range of sequential-decision problems, there are important tasks that
are inherently Non-Markov. A small-scale Non-Markov problem can
be solved by encoding the historical environment information into
the states. However, it is impossible to record all the historical infor-
mation and embed it into the states in a large-scale MORL environ-
ment. For example, when a robot system has a limited set of sensors
that do not always provide adequate information about the current
state of the environment [90]. In this case, the existing MORL cannot
handle them. Therefore, developing compact solutions with good
scalability to resolve the large-scale Non-Markov MORL problems
efficiently is highly required.

3. Research in the area of the continuous MORL environment is very
limited [63]. Though some existing MORL techniques can learn the
Pareto optimal solutions, they can only be applied to the solution to a
discrete environment [86]. However, most robotic applications of re-
inforcement learning require continuous state spaces defined using
continuous variables. For example, when driving a car, the wheel an-
gle of the car is a continuous signal. The usual approach has been to
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discretize the continuous variables, which quickly leads to the com-
binatorial explosion and the well-known “curse of dimensionality”
(The computational requirements grow exponentially with the num-
ber of state variables [77]). In addition, in the continuous environ-
ment, the solution space is much bigger than that in the discrete
environment as the solution to the continuous environment is infi-
nite. Hence, the number of policies will be much larger than that in
the discrete space, therefore how to express the solutions more com-
pactly is also a challenge. Therefore, developing compact solutions
with good scalability to resolve the continuous MORL problems ef-
ficiently is required.

4. Research in qualifying the generalization ability of MORL algorithm
is very limited [17]. Though MORL algorithms can solve complex
tasks, they struggle to measure the generalization ability of a MORL
algorithm. This is because the existing MORL benchmarks still train
and test the MORL algorithms on the same sample space in an envi-
ronment. However, in the real world, it would be quite common that
the testing environment is a different data sample from the training
environment. In this case, existing MORL benchmarks cannot mea-
sure the generalization ability of MORL algorithms. Therefore, de-
veloping a benchmark that can measure the generalization ability of
the MORL algorithm is required.

1.2.2 Why Evolution Computation Algorithms for MORL

As discussed above, the existing MORL algorithms based on tabular rep-
resentation can not scale well. Therefore, the traditional MORL can only
be applied to some small problems. To improve the scalability of meth-
ods to learn the Pareto optimal policies. This thesis, a new engine-rated
approach is requited considers that Evolutionary Algorithms (EAs), espe-
cially the symbolic approach of Learning Classification Systems (LCSs),
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are suited to address MORL due to the following reasons.

1. Evolution Computation Algorithms are less sensitive to the shape or
continuity of the Pareto front than other techniques, such as Neural
Network, and can easily deal with the complex Pareto front. This is
because Evolution Computation Algorithms are search-based opti-
mization algorithms used to find optimal or near-optimal solutions
for search problems and optimization problems. On the other hand,
a neural network is a mathematical model that is capable of solving
and modeling complex data patterns and prediction problems. In
MORL problems, the Pareto Front shape changes according to the
specific problems. Especially, in a continuous or large-scale environ-
ment, the Pareto front might be very complex [26]. In this case, other
methods, such as using a linear function to approximate the Pareto
front can not be used [6].

2. Due to their population-based nature, Evolution Computation Algo-
rithms can explore the solution space to a MOP in different direc-
tions in a single run rather than focusing on only one direction. Thus
evolutionary algorithms can approximate the whole Pareto front of
a MOP [98]. The benefit of learning the Pareto Front is identifying
the trade-off between objectives, thus Pareto Optimization has be-
come the dominant method for multi-objective nonlinear optimiza-
tion problems. Many algorithms such as gradient descent can only
explore the solution space of a problem in one direction at a time. If
the solution they discover is not optimal, they will abandon this so-
lution and start over to search for another solution. However, since
Evolution Computation Algorithms are population-based methods,
they can explore the solution space in multiple directions at once. If
one solution turns out to be not good, they can easily eliminate it
and continue work on other individuals with better potential, thus
giving them a greater chance of finding good solutions on the Pareto
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front.

3. Evolution Computation Algorithms are particularly well-suited to
solving problems where the space of all potential solutions is huge
[98]. In Evolution Computation Algorithms, the mutation is a diver-
gence operation. It is intended to potentially explore and discover
a new or better solution in a possibly huge solution space. On the
other hand, crossover with selection is a convergence operation that
is intended to pull the population towards a good solution. Since
the end goal is to bring the population to convergence, selection and
crossover happen more frequently. Mutation, being a divergence op-
eration, should happen less frequently, and typically only affects a
few members of a population in any given generation. In this case,
Evolution Computation Algorithms can search in the large solution
space to find the optimal solutions.

4. Evolution Computation Algorithms support different solution rep-
resentations, for example, the rule-based solution and the neural
network-based solution. The EA method XCS can develop a rule-
based solution, where a rule-based solution to multi-objective prob-
lems is one of the solution types that will be developed in this work.
This is because it has good scalability as the condition of a rule is dy-
namic rather than fixed. In addition, the rule-based solution is easier
to understand than the tabular-based solutions and is explainable to
the user.

5. There are some Multi-Objective Evolution Computation Algorithms
to solve Multi-Objective Problems (MOPs) [96], thus, they have the
potential to solve MORL problems. For example, MOEA/D is a
Multi-objective Evolutionary Algorithm Based on Decomposition.
It decomposes a multi-objective optimization problem into several
scalar optimization sub-problems and optimizes them simultaneously.
Each sub-problem is optimized by only using information from its
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several neighboring sub-problems. The result has been shown that
MOEA/D can generate a set of very evenly distributed solutions for
some benchmarks of MOPs.

1.2.3 Challenges to Developing EC-based Algorithms for

MORL

In this thesis, rule-based EC-based Algorithms are considered to solve the
challenges of existing MORL problems. In this section, the challenges of
developing the rule-based solution for MORL will be discussed.

1. In most of the existing MORL algorithms [86], they assume a tab-
ular representation of the value function, thus their applicability is
limited to small applications. To tackle this issue, XCS is considered
a potential solution that can extend the MORL algorithms for large
applications and provide a rule-based solution. XCS’s fitness bias
prefers general but accurate rules. Combined with GA algorithms
that work as the rule discovery component, where the rule discov-
ery component can help generate new rules and tend to delete the
rules those are not useful, XCS aims to find accurate, general rules
[15]. However, this thesis is aiming to seek a set of Pareto optimal
policies, in which the solution space is huge. Therefore, how to use
a collection of rules to cover multiple Pareto-optimal policies to ap-
proximate the whole Pareto front is a big challenge.

2. When a multi-objective sequential problem can be defined as a Markov
Decision Process (MDP), with proper training by the RL algorithm,
the agent can make the correct decision at different states. However,
when an environment is partially observable, for instance, a robot
with a limited sensor, it cannot always know what is the current state
according to the information from the sensor. Thus, it cannot make
the correct decision in the current state. Although there is some exist-
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ing research in solving the Non-Markov problem, for example, An-
ticipatory Classifier Systems (ACS) [11], it provides the solution to
the small-scale single objective Non-Markov problem. ACS can be
considered as a potential solution to multi-objective PO-MDP, but it
is still challenging. First, the strategy of ACS to a PO-MDP problem
is to backup one historical state in the memory, thus the algorithm
can tell what in the current state is different from the information of
the previous state. However, in a large-scale PO-MDP environment,
sometimes, with the information of just one previous historical state,
the LCS still cannot tell what is the best action in the current state.
In addition, multi-objective PO-MDP needs a large memory to back
up the previous state information for different objectives, which is
another technical challenge.

3. The generalization ability of MORL algorithms is uncertain as the
data sample is used for training and test. However, it is common
that the testing environment is different from the training environ-
ment in the real world. However, there are limited benchmarks for
measuring the practical generalization ability of MORL algorithms.
There are existing benchmarks for MORL algorithms, for example,
Deep Sea Treasure and Multi-Objective Mazes [83]. However, they
use the same environment for both training and testing, thus it could
not measure the practical generalization ability of MORL algorithms.
In this case, a new benchmark needs to be built for evaluating gen-
eralization by creating training and testing data sets with separate
samples. The criteria to evaluate this benchmark should be 1) the
training and testing environment can be resolved by the algorithm
separately 2) know how much differences between the training and
testing environment 3) the solutions to the testing environment can
be learned from the training environment.

4. In the continuous MORL problem, as the continuous states and ac-
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tion need to be handled, both the search space and solution space are
even larger than that in the discrete MORL environment. In this case,
the need for generalization of the solution is pronounced, and the
generalizing is not just over the states but also actions. Therefore, it
is necessary to use the generalization capabilities of Learning Classi-
fier Systems to learn the Pareto Optimal solutions on the continuous
Pareto front. However, as the number of Pareto optimal policies in
the continuous environment is infinite, it is not possible to learn all
of them. In this case, how to learn the limited Pareto optimal solu-
tions that give a well-distributed approximation of the Pareto front
effectively and efficiently (using limited solutions to approximate) is
a huge challenge.

1.3 Thesis Goals

The overall goal of this thesis is to determine compact and effective solu-
tions to the MORL problems by developing LCS-based algorithms. The
specific research objectives of this thesis are listed as follows.

1. Develop XCS-based algorithms to learn the Pareto optimal policies
for MORL problems.

(a) Adding Pareto Dominance method to XCS to learn the Pareto
optimal policies for MORL problems.

There are many technical challenges when dealing with the MORL
problem with XCS. First, how to update the prediction with the
observation is an issue. As the prediction becomes a set of vec-
tors in MORL problems, the prediction cannot be updated re-
cursively with the observation as in a single-objective RL prob-
lem. To solve this issue, using the idea of Pareto Q-Learning in
the multi-objective XCS will be considered, which uses the ob-
servation to replace the prediction. Second, how to calculate the
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error estimation (the difference between the prediction and the
observation) in multi-objective XCS is another challenge. The
error estimation, which is used to calculate the fitness of the
classifier, becomes the distance of two sets of vectors. There
are many methods to calculate the distance between two sets
of vectors, however, different methods may lead to different re-
sults. In this case, the results of the distance between two sets of
vectors infect the values for the error estimation. Therefore, the
cooperation of different methods to find one of the best methods
for error estimation needs to be investigated. In this work, an
XCS-based algorithm to learn the Pareto optimal policies will be
developed to cope with those issues above. To our knowledge,
this work will be the first multi-objective XCS-based algorithm
to learn the Pareto optimal policies.

(b) Improve the accuracy of the predictions learned through Pareto
Q-Learning in multi-objective XCS.
In XCS, when the agent reaches a new state, an action is selected
to be performed in the current state according to the fitness-
weighted average of the predictions of all classifiers matching
the current state. When the predictions in XCS are poor, the ac-
tion suggested by the XCS could be wrong. Therefore, the pre-
diction is important for the XCS. In the traditional XCS, the pre-
diction of the general classifier is expected to reflect the average
prediction of all the states it matches. However, in the prelimi-
nary work of the multi-objective XCS, rather than reflecting the
average prediction, the prediction of the general classifier has
only reflected the prediction of one state. Therefore, improving
the accuracy of the prediction for the general classifiers is an-
other technical challenge in multi-objective XCS. To resolve this
issue, an adaptive control strategy will be performed on the pre-
diction calculation to make the prediction not only for one state.
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In this case, it will improve the accuracy of the multi-objective
XCS to make it more effective.

(c) Investigate new methods to trace a specific optimal policy from
a set of learned Pareto optimal policies.
In the preliminary work, once one policy is selected, it must be
followed until achieving the final state, otherwise, the agent will
be trapped. For example, suppose there are two Pareto optimal
policies p1 and p2, which have opposite action directions on two
connected states s1 and s2 (s1 is on the left of s2). p1 suggests the
agent go to s2 from s1, whereas p2 suggests the agent go to s1

from s2. In this case, the agent will oscillate between s1 and s2.
To solve this issue to follow one optimal policy, the long-term
payoff in each state generated by this optimal policy is traced.
But this strategy is not reliable when one vector on the path is
not exactly learned, it will fail to get to the final state sometimes.
Therefore, it would also be interesting to investigate approaches
for policy trace.

2. Developing a new multi-objective XCS algorithm to discover multi-
ple optimal policies simultaneously that generalize where possible,
without large storage requirements.

(a) Employ a decomposition strategy based on MOEA/D in XCS to
approximate complex Pareto Fronts.
It is hypothesized that the decomposition of MOEA/D for multi-
objective tasks can sufficiently approximate the complicated PF
shapes to enable such policy learning within XCS. MOEA/D
first employs a decomposition approach to transform the MORL
problem into N single objective RL sub-problems. Then XCS
can be used to solve each single objective RL problem simul-
taneously, such that relevant learned knowledge can be shared
amongst XCS rules.
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(b) Update XCS to learn and maintain multi-objective predictions.
First, to enable XCS to maintain multiple objectives, the clas-
sifier structure, e.g. prediction, error, and fitness needs to be
extended from a number to a vector for storing those values
for multiple objectives. Secondly, according to the changes in
the classifier structure, how XCS updates classifier parameters
need to be amended from updating a number to a vector. Third,
correspondingly, the Genetic Algorithm (GA) process needs to
be updated to discover multi-objective optimal rules.

3. Evaluating the generalization ability of developed multi-objective
XCS-based algorithms for solving MORL problems.

(a) Developing an environment for evaluating the generalization
ability of MORL algorithms.
Among the most common benchmarks in Reinforcement Learn-
ing, it is common to use the same environments for both train-
ing and testing. OpenAI introduced a new environment called
CoinRun, designed as a benchmark for generalization in RL
[17]. To test the generalization ability of MORL, the CoinRun
environment will be updated to a multi-objective reinforcement
learning environment by adding another objective.

(b) Evaluating generalization ability of multi-objective XCS-based
algorithm on multi-objective CoinRun problems.
The CoinRun environment is designed as a continuous RL prob-
lem, thus the multi-objective CoinRun environment is designed
in the continuous space as well. However, the XCS-based al-
gorithm is designed for solving the discrete MORL problems,
therefore, the continuous inputs of the states and actions from
the CoinRun environment need to be discretized.

4. Developing XCS-based algorithm to address large-scale MORL prob-
lems.
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The mountain car problem is commonly applied as a benchmark for
the RL algorithm because it requires an agent to learn two contin-
uous variables: position and velocity. Although there is existing
research to discretize the continuous environment to discrete envi-
ronment, the mountain car problem cannot be solved manually as
it is a large-scale Markov problem and the optimal policy contains
over a hundred steps. In this research, the mountain car problem
will be extended as a MORL problem. First, the continuous environ-
ment will be discretized as integers. Second, to handle the Markov
MORL problem, the XCS-based MORL algorithm needs to be up-
dated to consume integer inputs from the environment. In addition,
the value function will be plotted for analyzing the effectiveness of
RL algorithms to find what is the strength of the success algorithm.

1.4 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 presents essen-
tial background and reviews the related works in some existing Multi-
Objective Reinforcement Learning algorithms. Chapter 3 presents an LCS-
based algorithm MO-XCS, which adding Pareto to XCS to solve Multi-
Objective Reinforcement Learning Problems. Chapter 4 presents a Multi-
Objective Reinforcement Learning algorithm MOXCS, which is a decomposition-
based Multi-Objective evolutionary algorithm in XCS for solving Multi-
Objective Reinforcement Learning problems. Chapter 5 is quantifying the
generalization ability of MOXCS in Multi-Objective Reinforcement Learn-
ing problems. Chapter 6 is using MOXCS to solve large-scale Non-Markov
MORL problems. Chapter 7 concludes this work.

Chapter 2 provides an overview of reinforcement learning, multi-objective
reinforcement learning, algorithms for solving reinforcement learning prob-
lems. First, a reinforcement learning problem definition is described as a
Markov Decision Process or a Partially Observable Markov Decision Pro-
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cess. Secondly, it reviews the multi-objective reinforcement learning prob-
lem. Third, traditional reinforcement learning algorithms are reviewed.
Fourth, it reviews the evolutionary computation algorithms for RL. Fifth,
the evolutionary computation algorithms for MORL are reviewed.

Chapter 3 presents the methodology of developing the MORL algo-
rithm MO-XCS, which is adding Pareto Dominance to XCS to solve Multi-
Objective Reinforcement Learning Problems. MO-XCS is tested on three
bi-objective mazes to show the effectiveness of solving MORL problems.

In Chapter 4, a Multi-Objective Reinforcement Learning algorithm MOXCS
is proposed, which is a decomposition-based Multi-Objective evolution-
ary algorithm in XCS for solving Multi-Objective Reinforcement Learning
problems. MOXCS will solve the three bi-objective mazes. With integer
inputs, MOXCS can solve the Non-Markov problem Deep Sea Treasure.
Lastly, the generalization ability of MOXCS is tested in the introduced
Multi-Maze and Multi-Maze Connection environment, but the Multi-Maze
Connection is not a proper benchmark for testing the generalization ability
of the MORL algorithm.

In Chapter 5, CoinRun Env1 and Env5 are introduced and solved by
XCS, and the generalization ability of XCS is tested and demonstrated by
crossover Env1 and Env5 in each experiment as the training and testing
environment. Then the CoinRun environment is extended as a bi-objective
CoinRun environment and solved by MOXCS and tested the generaliza-
tion ability of MOXCS by crossover the training and testing environment.
After that, the Pareto Front learned by MOXCS in a bi-objective CoinRun
environment is discussed.

Chapter 6 is MOXCS is used to solve the continuous MORL problem
in a large sparse domain. First, XCS and Q-Learning are implemented to
resolve the mountain car problem. The result shows XCS converges better
than Q-Learning. Then, the mountain car problem is extended as a bi-
objective MORL problem. MOXCS is implemented to resolve the multi-
objective mountain car problem. It shows MOXCS has the potential to
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resolve the multi-objective mountain car problem.
Chapter 7 presents a summary of work from each contribution chapter,

contributions, future work, and the thesis summary.
Chapter 8 list some algorithms we may use in this thesis.
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Chapter 2

Literature Review

This chapter covers essential concepts of RL and MORL for a better under-
standing of RL and MORL. The related works are divided into four parts,
namely, Explainable Artificial Intelligence (XAI), traditional RL, MORL
approaches, and the evolutionary computation (EC) methods for RL. For
XAI, the difference between traditional AI and XAI is introduced. For tra-
ditional RL, important classic algorithms are introduced, such as value
function-based approaches, and policy search approaches. For the MORL
approaches, the single-policy and multi-policy approaches are reviewed.
However, few MORL algorithms can learn the Pareto optimal policies [86]
and solutions with tabular representation lack scalability to large prob-
lems. Though some methods can cope with the scalability issues, such
as Policy Search [64] and EC [91], we consider EC as the solution in this
work as it is more suitable for the multi-objective problems. Therefore, the
EC methods for RL are reviewed in this chapter, especially the rule-based
and neural network-based EC algorithms. The EC methods have been
much researched for the single-objective RL, but there are limited works
on MORL. With its good scalability and the evidence from the literature,
we can see the potential of EC for handling MORL problems, which is this
proposed work aims to achieve.

21
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2.1 Explainable Artificial Intelligence

Nowadays, Artificial Intelligence is widely used in many industries and
our daily life. For example, it provides personalized recommendations to
people based on their previous searches and purchases or other online be-
havior; it predicts the sales of the products according to the sales histories
and other factors; it can even give financial advice to people according to
their financial situation.

However, the explainability of the algorithm is critical for AI applica-
tions. To accept and use the AI prescriptions, human needs to trust the
AI algorithms, and explainability of the algorithm results are critical to
buildup the trust [32]. Another reason for seeking explainability of AI al-
gorithm results is because AI systems sometimes learn undesirable tricks
that do an optimal job of satisfying explicit goals on the training data,
but that do not reflect the complicated implicit desires of the human sys-
tem designers. For example, a 2017 system tasked with image recognition
learned to “cheat” by looking for a copyright tag that happened to be as-
sociated with horse pictures, rather than learning how to tell if a horse was
pictured [32].

In this case, with Explainable Artificial Intelligence (XAI), users should
be able to understand the AI’s decision and should be able to determine
when to trust the AI and when the AI should be distrusted [39]. Explain-
able Artificial Intelligence (XAI) is Artificial Intelligence (AI) in which the
results of the solution can be understood by humans. It contrasts with the
concept of the “black box” in machine learning where even the designer
of the algorithm cannot explain why an AI arrives at a specific decision
[32]. XAI is a “white box”, which is not only able to tell the user what is
this solution but also enable the user to understand why it is this solution
when its application will lead to success, and when to trust its output and
why it erred if errors occur.

For example, although a deep neural network can yield highly effective
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results according to the data set size and data set quality, it is inherently
a dark black box by nature. A network is embedded in thousands of neu-
rons, which are stacked and learned through multiple layers. Each of the
neurons in the first layer receives input and then performs a calculation
before sending a new signal as an output and the input to the next layer,
and this process continues until a final output at the last layer is produced.
However, as a user, you could not see and understand what is the input
and output from every single layer of a deep neural network as some of
the outputs in the middle layers. The middle layers do support the final
output, so they are meaningful in this sense. Middle layers output is often
not in a realistic space, i.e. There does not exist an equal in real life, in-
stead, they operate in latent space. On the other hand, Learning Classifier
Systems work as a “white box”. The output of Learning Classifier Sys-
tems is a rule-based solution, each rule is associated with the long-term
payoff of an action under a condition. Under a specific condition, the sys-
tem will suggest the action with the maximum long-term payoff at that
condition. Users can observe what is the long-term payoff of an action at
that condition, thus understand why the system suggests that action at the
condition. When the suggested action has the maximum long-term payoff
compared to other actions under the same condition, the result is reliable.
In this case, the user can know when to trust the solution and why the
solution erred.

2.2 Machine Learning

Machine Learning is the study of computer algorithms that improve auto-
matically through experience and by the use of data. It is seen as a part of
artificial intelligence. Machine learning algorithms learn the pattern from
data and create a machine learning model. With the learned model, new
data set can be predicted according to the pattern. There are many ma-
chine learning algorithms.There are several types of Machine Learning al-
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gorithms, supervised learning, unsupervised learning and reinforcement
learning. Supervised Learning algorithm is to train the model with a set
of labeled data. With the label, a model can learn from it. Labeled data set
means, for each data set given, an answer or solution to it is given as well.
This would help the model in learning and hence providing the result of
the problem easily. The supervised learning task can be classification and
regression. The major difference between supervised and unsupervised
learning is that there is no complete and clean labeled data set in unsu-
pervised learning. The machine learning algorithm is trained with a set of
unlabeled data without any guidance and learn the pattern in it. The unsu-
pervised learning task can be aggression. Whereas reinforcement learning
is when a machine or an agent interacts with its environment, performs
actions, and learns by a trial-and-error method. Generalization is a term
that used to describe a model’s ability to react to new data. As an user al-
ways expect the learned model can predict the unknown data accurately.
Generalization is a common challenge in Machine Learning.

2.3 Reinforcement Learning

RL is an important AI technology, which lets the agent learn the correct be-
havior from the interaction with the environment by the “trial and error”
method [78]. The main difference between RL algorithms and other ma-
chine learning methods, like supervised learning, is that there are no ex-
isting optimal solutions provided to the learner [78]. Instead, the learner
must learn solutions that maximize the long-term payoff from the inter-
action with the environment. When taking an action, the agent will re-
ceive a reward or punishment from the environment. Finally, the agent
learns how to take action in an environment to maximize the cumulative
total reward, namely, the long-term payoff. To calculate the long-term
payoff, it not only considers the immediate reward but also the rewards
received by the agent. RL has been widely used in many real-world ap-
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plications, for example, a cleaning and maintenance robot has been de-
ployed to complete coverage path planning using reinforcement learning
[51]. With proper training, the model is minimizing the transformation
and rotational actions and time to generate the path with lower cost than
tiling methods and is able to determine the optimal solution for each en-
vironment with different obstacle settings.

2.3.1 Markov Decision Process

An RL problem can be formulated as a Markov Decision Process (MDP)
which is described through a 5-tuple {S,A, P, r, γ} [58]. Here, S is the set of
states in the learning environment while A represents the set of actions; a
transition function P (s′|a, s) gives the probability of reaching state s′ upon
taking action a in state s; r(s, a) stands for a scalar reward provided by the
environment after performing action a. γ is a discount factor between 0 and
1, which represents the difference in importance between current rewards
and future rewards. Such a RL problem can be solved by identifying a
deterministic policy π that maps every state s ∈ S to a specific action π(s) ∈
A. Or it can also be solved by identifying a stochastic policy π that maps
every state s ∈ S and action a ∈ A to a probability π(s, a) ∈ [0, 1]. Given a
starting state s0, the long-term payoff of following policy π is defined as the
expected cumulative reward in the long run is as follows:

Jπ = Eπ{
∞∑
k=0

γkrt+k+1|st = s} (2.1)

where, t represents at any random time step, and E represents the expec-
tation under the policy π. Based on (2.1), the goal of RL is therefore to
learn the optimal policy π∗ that maximizes the long-term payoff. For the
single-objective RL problem introduced in this subsection, the reward sig-
nals r are always measured by a scalar. Therefore, the long-term payoff to
be maximized through RL is also a scalar.

In order to explain the RL algorithms, it is necessary to introduce the
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concept of Value Functions first. The value function-based RL algorithms
utilise value functions to estimate the long-term payoff of an action that
the agent performs in a given state. The value functions include functions
of states or state-action pairs, both of the functions are defined with respect
to particular policies. The value of a state s under a policy π, denoted
V π(s), is the long-term payoff when starting in s and following π:

V π(s) = Eπ{
∞∑
k=0

γkrt+k+1|st = s} (2.2)

The function V π is called the state-value function for policy π. Similarly,
the value of taking an action a in state s under a policy π, denoted as
Qπ(s, a), is the expected long term payoff when starting in s, taking the
action a and following π:

Qπ(s, a) = Eπ{
∞∑
k=0

γkrt+k+1|st = s, at = a} (2.3)

The function Qπ is called the action-value function for policy π.
On-Policy and Off-Policy Learning are two learning methods in RL.

The difference between them is how they obtain the policy that they are
trying to learn. In the On-Policy method, the agent selects a policy, evalu-
ates it, and moves on to better policies, whereas in the Off-Policy method,
the agent collects all available information so can update its policy assum-
ing it between greedily in future steps. The distinction disappears if the
current policy is a greedy policy.

2.3.2 Partially Observable Markov Decision Process

A partially observable Markov decision process (POMDP) is a generaliza-
tion of a Markov decision process (MDP). In POMDP, same with MDP, we
have a set of states S, a set of actions A, transitions P , immediate rewards
r and a discount factor γ we also have observations. The actions’ effects
on the state in a POMDP are exactly the same as in an MDP as well. The
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only difference is in whether or not we can observe the current state of the
process. In a POMDP, we add a set of observations O to the model. So
instead of directly observing the current state, the state gives us an obser-
vation, which provides a hint about what state it is in. In this case, since
we have no direct access to the current state, it must maintain a probability
distribution over the set of possible states, based on a set of observations
and observation probabilities.

2.3.3 Benchmarks

The RL field has been explored through the use of benchmarks for testing
the associated algorithms. The maze problem is widely used for testing RL
algorithms [35], as it is suitable for beginners. Recently, more feature-rich
domains have been introduced as challenging and widely-used bench-
marking domains, such as the Atari Learning Environment [7]. These
benchmarks enable fair and easy comparison of RL methods, which is use-
ful to properly evaluate progress and ideas assume the reader will know
this.

However, the current benchmark reinforcement learning (RL) tasks are
in many ways poorly suited to evaluate the generalization ability of RL al-
gorithms. By testing RL algorithms on the same environments as training,
these RL algorithms are often poor at generalizing beyond the very specific
domain. To combat this, there are several benchmark RL domains pro-
posed that separate the train and test environments. In order to investigate
the problem of overfitting in deep reinforcement learning, Karl Cobbe,
et al. [17] generated environments to construct distinct training and test
sets. They introduced a new environment called CoinRun, designed as a
benchmark for generalization in RL forward are to where it is processed.
As testing increasingly complex RL algorithms on low-complexity simu-
lation environments, we often end up with brittle RL policies that gener-
alize poorly beyond the very specific domain. Zhang, et al. [1] proposed
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natural environment benchmarks of RL domains that contain some of the
complexity of the natural world. They proposed three new families of
benchmark RL domains that contain some of the complexity of the natu-
ral world, while still supporting fast and extensive data acquisition. The
proposed domains also permit characterization of generalization through
fair train and test separation, and easy comparison and replication of re-
sults. This work challenges the RL research community to develop more
robust algorithms that meet high standards of evaluation as future work.

2.4 Traditional RL Algorithms

In this section, some traditional RL algorithms are investigated. The value
function-based approaches are reviewed first as they are quite straightfor-
ward and basic approaches. However, as value function-based approaches
have some limitations, such as they cannot learn the stochastic rules and
the convergence assurances issue, the policy search-based approaches that
are assumed to solve those problems are reviewed afterward [64]. Finally,
the MORL algorithms including the single-policy approaches and multi-
policy approaches are discussed.

2.4.1 RL Algorithms based on Value Function

In this section, several RL Algorithms based on Value Function will be
reviewed. It starts from TD-learning as it is the most basic value function-
based algorithm [80]. After that, Q-Learning and SARSA will be reviewed
[89] [66], which is respectively the offline TD-learning and the online TD-
learning method.

TD-learning

Before introducing the TD-learning algorithm, let us consider the follow-
ing issue. If the value functions were calculated without estimation, the
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state values have to be updated after the final reward is received. Once
the final reward is received, the trajectory to reach the final state would
need to be traced back and each value updated accordingly. In this case,
as the agent will learn only when the final reward is received, it will take
too long for the agent to learn.

The problem solving by TD-learning is estimating these value func-
tions for a particular policy. With TD methods, an estimate of the expected
final reward is calculated at each state. Thus, the state value can be up-
dated for every step. This can be expressed formally as:

V (st) = V (st) + α[rt+1 + γV (st+1)− V (st)] (2.4)

where rt+1 is the observed reward at time t+ 1.
The key idea of the TD method is: the value is updated partly using an

existing estimation and not a final reward.
Many other algorithms are based on the idea of TD-learning, such as

Q-learning and SARSA as following.

Q-learning

Q-Learning is an Off-Policy algorithm for Temporal Difference learning
[78]. The reason that Q-learning is off-policy is that it updates its Q-values
using the Q-value of the next state s′ with the greedy action a′ rather than
necessarily the action is taken. The Q-learning algorithm works by esti-
mating the values of state-action pairs rather than the values of states. The
purpose of Q-learning is to generate the Q-table, Q(s,a), which uses state-
action pairs to index a Q-value of that pair. The update rule for setting
values in the table is as below:

Q(st, at) = Q(st, at) + α[rt+1 + γmax
a+1

Q(st+1, at+1)−Q(st, at)] (2.5)

The parameter used in the Q-value update process is the learning rate,
α, which is between 0 and 1. If it is set to 0, the Q-values will be never
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updated, hence, nothing is learned. In the contrast, if it is set to a high
value, such as 0.9, the learning can occur quickly but the error will in-
crease. The discount factor γ is also set between 0 and 1. When γ is close
to 1, Q-Learning considers the future reward more than the immediate re-
ward. Q(st+1, at+1) is the Q-value when taking action at+1 in the next state
st+1, and the maxa+1 means at+1 maximizes the expected long-term payoff
when it is performed in the next state St+1.

SARSA

The SARSA algorithm is an On-Policy algorithm for TD-Learning. The
reason that SARSA is an On-Policy method is that it updates its Q-values
using the Q-value of the next state s′ and the current policy’s action a′ in
that state. It estimates the return for state-action pairs assuming the cur-
rent policy continues to be followed. The name SARSA actually comes
from the fact that the updates are done using the quintuple Q(s, a, r, s′, a′).
Where: s, a are the current state and action, r is the observed reward in
the following state s and s′, a′ are the next state-action pair. The major
difference between SARSA and Q-Learning is that the maximum reward
for the next state is not necessarily used for updating the Q-values. In-
stead of computing the difference between Q(s,a) and the maximum ac-
tion value in Q-Leaning, SARSA computes the difference between Q(s,a)
and the value of the actual action that was taken. The updating form of
the SARSA algorithm is comparable to that of Q-Learning:

Q(st, at) = Q(st, at) + α[rt+1 + γQ(st+1, at)−Q(st, at)] (2.6)

Similar to Q-Learning, α is the learning rate and γ is the discount factor.

In this case, the advantage of Q-Learning is able to learn solutions fast,
whereas, SARSA is able to learn the solution more steadily.
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2.4.2 RL Algorithms based on Policy Gradient

As discussed, the value function approach is very important in the RL
field. However, there are several limitations. First, it is oriented toward
seeking deterministic policies, but sometimes the policy is stochastic [67].
Second, during the learning process of the value function approach, a
small change may result in an action to be or not to be selected. To solve the
issues above, another method to find a good policy is proposed, namely,
search the optimal policy directly in the policy space. In this proposal,
we will review Policy Gradient Methods as they are highly related to our
work.

The policy can be represented as a parameterized function, where in-
put is a set of states, the output is the probabilities of action selection. Let
θ denotes the policy parameters, Jπ denotes the performance of the policy
as following.

Jπ = E[
∞∑
t=1

γt−1rt|s0, π] (2.7)

Then, in the policy gradient method, the principle of policy parameters
updating work like below,

∆θ ≈ α
∂Jπ

∂θ
(2.8)

where α is the learning rate, the ∂Jπ

∂θ
is the policy gradient. After the learn-

ing process in Algorithm 1, θ will help to maximize Jπ, thus obtaining
local optimal policy. Therefore, the key task of policy gradient method is
to approximate the value of ∂Jπ

∂θ
.

There are many ways to approximate the ∂Jπ

∂θ
[64] [93]. One method is

proposed by Sutton [64] as following.

∂Jπ

∂θ
=
∑
s

dπ(s)
∑
a

∂π(s, a)

∂θ
Qπ(s, a) (2.9)

where the dπ(s) is the stationary distribution of states under π. Based on
(2.9), several policy gradient methods are proposed [93] [64] as following.
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Algorithm 1 Step-Based Policy Gradient

procedure STEP-BASED POLICY GRADIENT

Initialize the policy parameter θ
REPEAT:

Take action a at current state s following the policy with parameter θ
Evaluate the policy performance of current policy with parameter θ
Adjust θ with equation (2.8)
Θ← Θ+ α∆Θ

s← s
′ , a← a

′

UNTIL:
Until Policy converges

end procedure

Algorithm 2 Episode-Based Policy Gradient

procedure EPISODE-BASED POLICY GRADIENT

Initialize the policy parameter θ
REPEAT:

Sample the trajectory following the policy with parameter θ
Evaluate the policy performance of current policy with parameter θ
Adjust θ with equation (2.8)

UNTIL:
Until Policy converges

end procedure
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REINFORCE

REINFORCE is proposed by Williams [93]. When calculating the policy
gradient in equation (2.9), Qπ(s, a) is approximated by the actual returns
J , which can be calculated as below,

J = E[
∞∑
k=1

γk−1rk] (2.10)

This leads to Williams’s episodic policy gradient method. However, the
issue with this method is that they may get stuck in local optima.

Actor-Critic with Policy Gradient

There are algorithms that mix value function and the policy search method,
such as Actor-Critic method [64]. The Actor-Critic method combines the
strengths of both value function and policy search methods. It is divided
into two parts. The policy structure is known as the actor, which is used
to select actions. The other value function structure is known as the critic,
which is used to criticize the actions made by the actor. When adding the
policy gradient method into Actor-Critic, there are two parameters added.
One parameter θ in π is used to adjust the policy, the other parameter w

with a state feature function Φ(s, a) is used to approximate the state-value
function Q(s, a) as below.

Qw(s, a) ≈ −→w T · −−−−→Φ(s, a) (2.11)

In each step, it first calculates the TD error, which is the difference δ be-
tween the observation long-term payoff and the current long-term payoff.

δ = r + γ ·Qw(s
′, a′)−Qw(s, a) (2.12)

In order to minimize the TD error, we calculate the gradient descent of the
mean squared error between the approximated Q function, and update w

following the direction as follows.

−→w = −→w + β · δ · −−−−→Φ(s, a) (2.13)
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Finally, the parameters θ in policy π need to be updated as follows.

θ⃗ = θ⃗ + α · ▽θ⃗logπθ⃗ · δ (2.14)

From (2.11), (2.12) and (2.13), we can see that the TD error δ affects w, w
affects Qw(s, a), and Qw(s, a) affects θ in a policy. In this case, according
to the trend of the TD error (positive or negative), there is a tendency to
strengthen or weaken the chance of selecting the action. When the proper
value of θ is achieved, Jπ will be maximized so as to get an optimal policy.

2.5 Multi-Objective Reinforcement Learning

The approaches to MORL can be divided into two groups: the single-
policy and multi-policy approaches according to the different solutions
they are trying to learn. The single-policy approaches are interested in the
policies that maximize the weighted long-term payoff over multiple objec-
tives, whereas the multi-policy approaches focus on the policies that better
balance different objectives.

Similar to a classical RL problem, a MORL problem is defined as a
MDP, where the inputs are the 5-tuple {S,A, P, r⃗, γ}, and the outputs are
a bunch of optimal policies mapping from states to actions according to
different objectives. S, A, P , γ bear the same meanings as in the single-
objective problem. However, in a MORL problem, the reward signal r⃗ is
no longer a scalar but a m-dimensional vector, i.e.,

−→r (s, a) =


r1(s, a)

...
rm(s, a)

 (2.15)

Hence the problem involves m different and potentially conflicting objec-
tives. Each objective corresponds to a separate dimension of r⃗ in (2.15).
Given a policy π and starting from state s0, the long term payoff of π is
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further defined as below.

J⃗π = Eπ[
∞∑
k=0

γkr⃗t+k+1|st = s0] (2.16)

In a single-objective problem, with respect to an arbitrary pair of poli-
cies π1 and π2, π1 is considered better than π2 whenever Jπ1 > Jπ2 . How-
ever, in a multi-objective problem, since the long-term payoff (2.16) be-
comes a vector, the Pareto dominance concept defined below can be em-
ployed as the optimality criterion for MORL. To simplify our definition,
let’s denote the long-term payoff of objective i for any policy π as J⃗π[i].

Definition 1. Given two policies π1 and π2, π1 Pareto dominates π2 (denoted
as π1 ≻ π2) subject to two conditions:

1. ∀i ∈ {0, 1, . . . ,m}, J⃗π1 [i] ≥ J⃗π2 [i];

2. ∃k ∈ {0, 1, . . . ,m}, such that J⃗π1 [k] > J⃗π2 [k].

Based on Pareto dominance, we can further define the Pareto optimal
policy, which is the outputs of the MORL algorithm. Any policy πi is called
a Pareto optimal policy if it is not Pareto dominated by any other policies
of a MORL problem. The set of all Pareto optimal policies is jointly called
the Pareto front.

So far, there are many techniques used in the MORL area. There are
two common approaches in the reinforcement learning area when dealing
with the MO problem, namely, the single-policy approach and the multi-
policy approach [86]. In single-policy approaches, they usually transform
a multi-objective problem to a single objective problem so as to resolve it
by a single objective reinforcement learning method, e.g. a Multi-Objective
Deep Reinforcement Learning Framework??. In contrast, instead of search-
ing for a single optimal policy for the problem, the multi-policy approach
searches for a set of optimal policies during a single run.
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Single-Policy MORL Algorithms

In a MORL problem, if the preferences for the multiple objectives can be
quantified, the MORL problem can be transformed into a single objective
problem, where the single-policy MORL algorithms are applied to seek
one optimal policy that can maximize the total reward. The main differ-
ence in single-policy approaches is the representations of preferences (dif-
ferent methods that assign the weights for the multiple objectives when
transferring the multiple objectives to a single objective), where several
approaches have been developed.

To transfer the multiple objectives to a single objective, the weighted
sum approach assigns a weight for each objective [69] [41], therefore, the
long-term payoff is the sum of the weighted long-term payoff for each
objective. However, it has a natural drawback, as the long-term payoff is
the linear weighted sum of each objective, any Pareto optimal policy not
on the convex hull may not be learned by the algorithm. Thus, it cannot
approximate well the Pareto front.

The W-learning approach is a single-policy MORL approach [41] fol-
lowing the idea above. Based on the winner-take-all methods, it ensures
that the selected action is optimal for at least one objective. At each step,
the Q-value Qi(s) is computed for each objective i, and it selects the action
with the highest Q-value Qi(s). As the Q-value depends on the reward
function, it is quite sensitive to the reward function setting.

The ranking approach is known as a sequential approach or the thresh-
old approach [9], which aims to solve the problem by ordering multiple
criteria and constraints on one or more objectives. One example in [30]
optimizes one main objective while putting constraints on other objec-
tives. In this case, it guarantees the optimization of the main objective and
satisfies the constraints on other objectives. When choosing the action, it
compares the actions for each objective in turn and selects the action that
maximizes the main objective and satisfies the constraints on other objec-
tives. However, the design of an appropriate ordering and the constraints
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on other objectives still requires some prior knowledge of the problem do-
main.

The Dynamic Preferences algorithm [60] is another single-policy algo-
rithm, which has been proposed by Natarajan and Tadepalli. The differ-
ence between the Dynamic Preferences algorithm and other single-policy
algorithms [69] [41] is that the aim of the Dynamic Preferences algorithm is
to learn multiple optimal policies for different preferences, whereas other
single-policy algorithms only learn one optimal policy for one specific
preference. The basic idea of this algorithm is to perform the single-objective
algorithm for multiple runs with different weights. Finally, it learns a set
of policies that are optimal for different weights respectively.

Multi-Policy MORL Algorithms

In contrast to the single-policy approaches, instead of searching for a sin-
gle optimal policy of the problem, the multi-policy approaches search for
a set of optimal policies during a single run. There are many multi-policy
approaches that have been developed as well. Different multi-policy ap-
proaches, also have different aims.

Some multi-policy approaches learn non-Pareto policies as they are
trying to learn multiple optimal policies where each optimal policy is ex-
pected to maximize the long-term payoff for one preference. Barrett and
Narayanan proposed a multi-policy approach: Convex Hull Algorithm
(CHVI) to MORL problems [6], which can learn optimal policies at once
for all linear preferences over multiple objectives. In the single-objective
RL algorithm, the algorithm is backing up the maximum expected re-
wards repeatedly rather the propagating the maximum expected rewards
to other states immediately. Here, the CHVI can be viewed as an extension
to the standard RL algorithm. When the preferences can be quantified as a
weight vector, they back up a set of expected rewards that are maximal for
some set of linear preferences on the convex hulls, so as to find the optimal
policy for any linear preference function.
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Instead of learning the optimal policies on the convex hull, it is highly
desirable to develop an algorithm that can learn a set of Pareto-optimal
policies (the concept of Pareto optimality was introduced in Section 2.5).
One algorithm that meets this requirement and is closely related to our
research is the Pareto Q-Learning (PQL) algorithm [86]. Kristof and Ann
claimed in [86] that PQL can learn all Pareto optimal policies provided that
every possible state-action pair is sufficiently sampled. This claim is only
valid if the state transition is deterministic and the rewards of performing
any action never change over time.

The PQL is a TD-based multi-policy algorithm. The long-term payoff
in the MORL is a vector, called Q-vector. PQL will initialize an empty Q-
set. During the run time, the Q-set is a set of non-dominated Q-vectors,
which converge to a set of non-dominated policies. After the Pareto opti-
mal policies are learned, the user can trace the Pareto optimal policies of
Q-set by applying a preference function. Because it is hard to identify the
correspondence during the bootstrapping process, especially when there
are new non-dominated Q-vectors that appear in the next state, the key
idea is to update a set of non-dominated Q-vectors and the average re-
ward separately. The Qset can be calculated by performing

Qset(s, a) = R(s, a)⊕ γNDt(s, a) (2.17)

The average immediate reward vector R(s, a) is updated fairly straightfor-
ward, as shown below.

R(s, a)← R(s, a) + (r −R(s, a))/n(s, a) (2.18)

The NDt(s, a) is updated using the non-dominated Q̂ − vectors in the
next state s

′ . where n is the number of times action a is taken at state
s. Once state s

′ is reached, the algorithm can collect the predictions from
all the actions a

′ . Using them, the non-dominated Q-vectors in state s
′

can be obtained and used to update NDt(s, a). This updating method is
described in (2.19).
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NDt(s, a)← ND

(⋃
a′
Q̂set(s

′
, a

′
)

)
(2.19)

where Q̂set(s
′, a′) is all the Q− vectors from s′ and ND() stands for a func-

tion that identifies all non-dominated Q-vectors from a given set of vec-
tors.

Single-Policy vs Multi-Policy MORL Algorithms

Single-policy methods aim to learn one optimal policy based on quanti-
fied preferences over multiple objectives. For example, there is one re-
search using XCS to solve MORL problem??, which considers treating one
or more objectives as part of the state input, thereby leaving only a sin-
gle objective as the learning target. But in practice, very often preferences
over different objectives may not be easily quantified into weights before
or during the learning process. Thus, the single-policy methods are not
considered in this thesis. On the other hand, multi-policy methods seek
to find a set of compromising policies without quantifying the preferences
in advance. However, as reviewed in the literature, many existing multi-
policy algorithms follow the tradition of adopting a tabular representation
of the value function, which lacks generalization ability. In this case, the
LCS-based algorithms are considered as a multi-policy approach to learn
compact and effective solutions for solving the MORL problems in this
work as they have good generalization ability.

2.6 Evolutionary Computation for RL

The basic concept of Evolutionary Computation (EC) and its strengths for
RL will be introduced first. After that, popular EC techniques for RL will
be reviewed, such as the approaches with rule-based solutions and neu-
ral network-based solutions. Moreover, the aim of this work is to find
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the Pareto optimal policies for MORL problems. As we discussed in Sec-
tion 1.2.2, EC techniques not only have huge potential to solve the deter-
ministic MORL problem, but also the continuous and stochastic MORL
problems. Therefore, the EC techniques with rule-based solutions and the
neural network-based solutions will be the starting points of this MORL
work.

2.6.1 What is Evolutionary Computation

Evolutionary Computation (EC) is a popular field of artificial intelligence
[37] [68] not only because EC is applicable over a wide range of prob-
lem categories, including classification, regression, clustering, design, op-
timization, planning, and generating computer programs. Moreover, EC
presents many important benefits over popular deep learning methods
[68]. The EC algorithms are based on adopting Darwinian principles [22].
EC is the optimization method that simulates the process of natural selec-
tion to find the best solutions for a given problem. One important feature
of all these algorithms is their population-based search strategy. Namely,
all the solutions developed through generated new species via selecting,
crossover, mutation, then reproducing the good species to adapt to the
environment. In detail, after each round of the simulation, the idea is to
delete the n worst design solutions and to breed n new ones from the best
design solutions. Each solution, therefore, needs to be awarded a merit,
termed fitness, to indicate how close it came to meeting the final goal,
which is generated by applying the fitness function to the test the results
obtained from that solution.

EC can be mainly categorized into three groups: evolutionary algo-
rithms, swarm intelligence, and others (as shown in Figure 2.1). They have
been successfully applied to many problems, such as job shop scheduling
[47], computer vision, and image processing [27].

EC techniques are also used in dealing with RL problems [91]. In the
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Evolutionary
Computation
       (EC)

     Swarm
  Intelligence
        (SI)

Evolutionary
  Algorithms
       (EAs)

     Others

Genetic Algorithm (GA)

Genetic Programming (GP)

Evolutionary Strategies (ES)

Evolutionary Programming (EP)

...

Ant Colony Optimization (ACO)

Particle Swarm Optimization (PSO)

Bees Algorithm

...

Memetic Algorithm (MA)

Learning Classifier System (LCS)

Estimation of distribution algorithm (EDA)

...

Figure 2.1: The categories of EC Algorithms.

RL tasks, the inputs are the 5-tuple {S,A, P, r, γ} in MDP, and the outputs
are the solution to this RL problem, namely the optimal policies mapping
from states to actions. In this case, the aim of EC is to search for poli-
cies that can maximize the expected cumulative reward. As EC has been
successfully applied to many RL problems [91] and with the strengths for
multi-objective problems [2] we mentioned in Section 1.2.2, we consider
EC as a proper method for solving MORL problems in my thesis.

2.6.2 Selection Strategy in EC

As discussed in Section 2.6.1, in EC, an initial set of candidate solutions
is generated and iteratively updated. Each new generation is produced
by stochastically removing less desired solutions, and introducing small
random changes. In the EC process, the population of solutions is sub-
jected to environmental selection, crossover, and mutation. As a result,
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the population will gradually evolve to increase in fitness. The selection
strategies will have a huge impact on the efficiency of the results of the
EC Algorithms. This section focuses on the selection and discusses dif-
ferent search types, such as objective-based search, novelty search, and
go-explore. They are suits for different search spaces and optimal solution
distributions. When search pace is small, objective-based search method is
best as the objective is specific; when search pace is large, and the optimal
solutions are evenly distributed, the novelty is the best strategy as it will
not stick with one solution; when the search space is huge but the optimal
solutions are sparse, the go-explore policy is the best strategy as it will
enable the system to store the most promising solution and fully explore
later.

Objective-based Search (Fitness Function-based Search)

Objective-based search in EC models is driven by an objective function,
such as the fitness function. It uses the fitness function to measure progress
towards an objective in the search space, so drives the selection based on
the measurement of the fitness function. The fitness function simply de-
fined is a function that takes a candidate solution to the problem as input
and produces as output how good the solution is with respect to the prob-
lem in consideration. For example, in an RL case, agents are rewarded
according to the Euclidean distance between their final position and the
goal point. Thus, a proper fitness function plays a key role in the success
of this type of objective-based EC algorithm.

Go-Explore

Reinforcement learning is attempting to solve sequential-decision prob-
lems by specifying a highly informative reward function. Unfortunately,
the reward can be ’sparse’ when it requires long string actions to achieve
the goal and ’deceptive’ when the reward function leads to a dead end.
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The research of Lehman [24] shows that sufficient exploration of the state
space enables discovering sparse rewards and avoiding deceptive local
optima. However, there are two major issues of exploration, namely de-
tachment, and derailment. Detachment means the algorithm stops return-
ing to certain areas of the search space, even those areas that are promising
for an optimal solution. Derailment is where the exploratory mechanisms
prevent the agent from returning to previously visited states, preventing
exploration directly and/or minimizing exploratory mechanisms so mini-
mal that effective exploration does not occur.

For solving the problems of detachment and derailment, The Go-Explore
family of algorithms are proposed [25]. To avoid detachment, Go-Explore
‘archives’ different visited states in the environment, thus ensuring that
states cannot be forgotten. The ‘archive’ process is starting from an archive
containing only the initial state, then archives iteratively: 1) the algorithm
selects a state from the archive probabilistically. 2) goes to that selected
state. 3) explores from the selected state. 4) maps encountered states to
cells 5) updates the archive with all novel encountered states. By first re-
turning before exploring, Go-Explore avoids derailment by first returning
before exploring, which can focus purely on exploration after. To maxi-
mize the performance, if a state is reached that is associated with a higher-
performing solution, the better solution will replace the stored solution of
that state in ’archive’.

Go-Explore solves many previously unsolved Atari games and sur-
passes the state-of-the-art on all hard-exploration games [25], e.g. it shows
the improvements on the grand challenges of Montezuma’s Revenge and
Pitfall. The practical potential of Go-Explore on a sparse-reward pick-and-
place robotics task is also demonstrated. This work presents the simple de-
composition of remembering previously found states, returning to them,
and then exploring from them appears to be especially powerful, suggest-
ing it may be a fundamental feature of learning in general. With the ad-
vantage of Go-Explore, it is able to explore and archive all the potential
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solutions and finally returns to fully explore the most promising solution.

2.6.3 Neural Network-based Solution

Neural networks [36] has provided a good way to present complex func-
tions. This is because a neural network consists of a number of ‘neurons’.
The first type of neuron is called perceptron, with the weighted sum and
activation function, it is able to approximate a linear function and deal
with bias with a threshold. The second type of neuron is called the sigmoid
neuron, with the sigmoid function, it is able to obtain the small changes
in the output and making small changes in weights or bias, thus it can
approximate the complex non-linear function. In this case, artificial neu-
ral networks can be used to solve RL problems as the solution, which are
the learned policies to RL problems, as they often can be approximated as
complex functions. Thus, Neural network-based solutios have good scal-
ability to present the solutions for RL problems. In addition, at each stage,
the difference of the expected reward with different actions is often small.
With the advantages of EC, for example, it requires fewer prior assump-
tions regarding the problem and it is able to search the solutions in paral-
lel, thus it can help Neural networks to adjust the parameters. In this case,
the basic idea of Neuroevolution is to involve evolutionary algorithms to
train artificial neural networks.

The basic steps of a neuroevolutionary algorithm work as following in
Figure 2.2. In each generation, each network in the population is evaluated
in the learning task. The networks with the best performance are selected.
The selected networks are then bred via crossover and mutation with the
new added to the population. Then the whole process is repeated during
the training process.

When using the artificial neural network to solve the RL problem, the
state feature usually is the input for each input node in a network, so the
value of the inputs together describes the agent’s current state. The value
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Figure 2.2: The basic steps of neuroevolution.

of the outputs could describe the action to be selected for the given state.
For example, each output node denotes one action, and the action with the
highest output value will be selected for the given state.

Both the weights and architectures, such as weights and nodes, can be
involved in the evolution process. The evolution of weights has shown its
strength in some problems like RL where gradient-based algorithms often
experience great difficulties, such as gradient disappearance. The evolu-
tion of architectures enables Artificial Neural Networks (ANN)’s to adapt
their topologies to different tasks without human intervention and thus
provides an approach to automatic ANN design as both ANN connection
weights and structures can be evolved. In this section, both evolutions of
weights and architectures will be surveyed.

Though a Neural Network-based solution is powerful, especially, it
supposes to perform better than other techniques when has a large amount
of data, it is extremely expensive to train due to complex data models. For
example, a neural network-based solution requires expensive GPUs and
hundreds of machines. These increases cost to the users. More important,
a Neural Network-based solution is not an explainable AI solution. There-
fore, in this thesis, the neural network-based solution is not considered as
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the ideal solution to MORL problems.

Evolving Weight Artificial Neural Networks

Evolution Algorithms can apply to various tasks to train Artificial Neural
Networks, for example, evolving ANNs connection weights, architectures,
learning rules, and input features [95].

for For the issues related to the evolution of Connection Weights, there
is a great interest to find a way to automate the discovery of good represen-
tations of the neural network. Evolutionary methods provide a solution to
this challenge. Especially, since neuroevolution already directly searches
the space of network weights, it can also simultaneously search the space
of network topologies. Methods that do so are sometimes called topology
and weight evolving artificial neural networks (TWEANNs) [70]. In order
to develop a successful TWEANN, three issues need to be addressed. First,
the competing conventions problem in neuroevolution, which means hav-
ing more than one way to express a solution with a neural network. It
may happen when using the crossover process to breed new networks.
When two parents represent different solutions are combined to generate
an offspring, the offspring may lose some functions from both parents. It
also could be two networks have the same solution but different repre-
sentations. Second, the system must protect topological innovations long
enough to optimize the associated weights. For instance, when a new net-
work topology is generated, it may get a low fitness even if the structure
of the topology is suitable for representing the solution. Because the net-
work is new, there is not enough time for training the weights of the net-
work. Third, how to keep the size of NN minimal and effective. Some
TWEANNs methods may initialize a population of random topologies. If
it qualifies some too complex topologies, this may lead to unnecessarily
searching in the solution space, and can lead to over-fitting.

The neuroevolution of augmenting topologies (NEAT) is one of the
most popular TWEANNs [70]. In this section, we briefly describe NEAT
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and how it copes with the three challenges in TWEANNs mentioned above.
In fact, NEAT differs from traditional neuroevolution only in the way that
it breeds. To represent networks of varying topologies, NEAT employs
a flexible genetic encoding. Each network is described by a list of edge
genes, each of which describes an edge between two node genes. Each
edge gene specifies the in-node, the out-node, and the weight of the edge.
During mutation, a new structure can be introduced to a network via spe-
cial mutation operators that add the new node or edge genes to the net-
work as shown in Figures 2.3 and 2.4.

Outputs

Inputs

Hidden
Nodes

Add Node
Mutation

Figure 2.3: Structural mutation operators in NEAT. A new node is added
by splitting an existing edge in two.

There are three main contributions of NEAT to cope with the issues in
TWEANNs.

• Avoid the competing conventions problem in neuroevolution. NEAT
deals with the catastrophic crossover by using an innovation num-
ber to track the historical origin of each gene. Whenever a new gene
appears, it is assigned a unique innovation number and the genes
having the same innovation number must represent the same struc-
ture. In this way, every gene in the system can be tracked. During
crossover, innovation numbers are used to determine which genes
belong to which parents. Genes that do not match are either disjoint
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Hidden
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Figure 2.4: Structural mutation operators in NEAT. A new link (edge) is
added between two existing nodes.

or excess, depending on whether they do not match in the middle
or at the end. When crossing over, genes with the same innovation
number are inherited as one gene. Genes that disjoint or excess are
inherited randomly. Therefore, NEAT avoids the competing conven-
tions problem.

• Protecting Innovation through Speciation. NEAT speciates the population-
based on topological similarity by the innovation number. It mea-
sures the distance δ of each speciation of networks according to the
equation as follows,

δ =
c1E

N
+

c2D

N
+ c3 ·W (2.20)

where E and D is the number of excess and disjoint genes, N is
the population size, W is the average weight differences of match-
ing genes, c1, c2, c3 are the parameters that adjust the importances of
the three factors. If the distance of networks is greater than δt, they
are different species. Explicit fitness sharing in the same species is
employed to protect innovative species.
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• Minimizing solutions. TWEANNs start with a uniform population
with random topologies without hidden nodes (i.e., all inputs con-
nect directly to outputs). In this way, it starts from minimal dimen-
sional space, and the new structure is introduced incrementally as
structural mutations occur. During the evolution, the structures are
evaluated by fitness, where only the ones with high fitness can sur-
vive. Since NEAT starts from a minimal structure and uses fitness to
control the mutation, minimal solutions are favored.

Hybrids

Many researchers have investigated hybrid methods to combine evolution
with other methods like supervised or unsupervised learning. During the
learning process, the fitness of evolved individuals is changed over time
by learning from the interaction with the environment. In this section,
very important evolutionary function approximation methods will be in-
vestigated.

Evolutionary function approximation is a way to combine evolution-
ary and temporal-difference methods into a single method. It can se-
lect function approximator representations that enable efficient individual
learning. The main idea behind this is to use temporal-difference methods
to update the value functions during each fitness evaluation rather than
just evolve the action selectors. In this way, the function approximators
can be learned via temporal-difference methods. These hybrid methods
have been applied to reinforcement-learning algorithms [91].

One evolutionary function approximation technique is NEAT+Q [92],
which is the combination of NEAT and Q-learning with neural-network
function approximation. The aim of NEAT+Q is to optimize value func-
tions instead of action selectors, as the inputs are still the same, the change
here would be the reinterpretation of its output values. As the structure
of neural-network action selectors is identical to the Q-learning function
approximators, the only method to amend is the updated weights of the
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networks. In this case, value functions instead of action selectors will be
effectively evolved. Therefore, the outputs of the network are the long-
term payoff of the associated state-action pairs rather than arbitrary val-
ues. Instead of only selecting the most desirable action, it also updates the
estimates of other state-action pairs. NEAT+Q combines the advantages
of TD methods with those of evolution. Especially, it uses the ability of
NEAT to discover effective representations of the neural network value-
function approximation. Unlike traditional neural network function ap-
proximators that just adjust the weights for a fixed topology to represent
the value function, NEAT+Q explores the space of weights and topology
to increase the chance to find a proper representation. Therefore, on cer-
tain tasks such as Mountain Car and Server Job Scheduling, this approach
has been shown to significantly outperform both TD methods and neu-
roevolution [92]. Because NEAT+Q not only selects function approxima-
tors for the NNs as NEAT does, it also trains the function approximators
with Q-learning.

Coevolution

Coevolution in EC refers to the interactions between two individuals that
are evolving simultaneously. It can be grouped into two categories, i.e. co-
operative and competitive coevolution. The cooperative coevolution cat-
egory includes the relationship between humans and the bacteria in our
digestive systems. The competitive coevolution includes the relationship
between wolves and caribou. In this section, both of those two methods in
EC will be investigated.

Though Neural Network-based solutions are powerful, especially, they
are supposed a better perform than other techniques in domains with a
large number of features in the data, they are extremely expensive to train
due to complex data models. For example, the neural network-based solu-
tion often requires expensive GPUs and hundreds of machines [73]. These
increases cost to the users. More important, Neural Network-based so-



2.6. EVOLUTIONARY COMPUTATION FOR RL 51

lutions are not explainable AI solutions. This is because, without the ex-
planation of why use the optimal solution under a specific condition, the
Neural Network-based solutions can ‘cheat’ on the reasons and make er-
rors when applying the learned optimal solution. Therefore, in this thesis,
neural network-based solutions are not considered as the ideal solution to
MORL problems.

2.6.4 Rule-based Evolutionary Computation

There are many EC paradigms can generate rules. A Rule-based solution
is the mapping of inputs to outputs, which can be expressed as a set of IF-
THEN rules. These rules, in many cases, allow a straightforward encoding
the knowledge as condition-action pairs, where the IF part of the rule spec-
ifies aspects of a condition leading to one or more actions as described in
the THEN part. Rule-based solutions have good scalability because the
condition of the rule is dynamic rather than fixed. Furthermore, one rule
can provide solutions for multiple situations, as the condition of the rule
can match multiple situations. In this section, the LCSs algorithms will be
reviewed as they generate the rule-based solutions, which are explainable
to the user. In this case, a user is able to know what is the solution, why is
the solution, and when to trust the solution.

LCSs can be divided into two groups, namely the Pittsburgh and Michi-
gan styles. First, the differences will be reviewed. Then, Michigan style
has become more popular for RL, we will focus on this approach. There-
fore, such algorithms such as XCS [15], ACS [11] and XCSG [12] will be
investigated afterward.

LCSs were first invented by Holland [38] as a “cognitive system based
on adaptive mechanism” [81]. As a “modeling tool”, the classifier sys-
tem will evolve rules online, then generate the rules that provide a model
for an unknown dynamic system. In contrast, Kenneth De Jong and his
students developed a classifier system as an offline optimization process
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rather than the online adaptation process by Holland [46]. In this Pitts-
burgh classifier system, the genetic algorithm is applied to a population
of individuals, which represents a complete set of rules. A performance
measure happens at each cycle, then a genetic algorithm is used to guide
the exploration of the solution space. These two contrasting perspectives
on classifier systems are online adaptive systems and offline optimization
systems form two different types of LCSs.

The models of LCSs that have been inspired by the work of Holland
[38] at the University of Michigan are usually called Michigan Classifier
Systems, whereas the ones that have been inspired by the work of Smith
and De Jong at the University of Pittsburgh are usually termed Pittsburgh
Classifier Systems. There are several differences between the Michigan
and Pittsburgh classifier systems in an individual structure, problem-solution
structure, individual competition/cooperation, and Online vs. Offline learn-
ing.

For the individual structure, each individual in Michigan approaches
is one classifier, whereas each individual in Pittsburgh is a set of classi-
fiers. In the Pittsburgh approaches, the individuals are competing with
each other for reproductive opportunities. In the Michigan approach, the
classifiers cooperate with each other to solve the problem, while compet-
ing with each other for reproductive opportunities. Therefore, the solution
from the Pittsburgh system is the best set of classifiers, whereas the solu-
tion from Michigan approaches is provided by the whole population.

The Michigan approaches follow an online learning strategy, whereas
the Pittsburgh approaches follow an offline learning strategy. This is be-
cause, during the training process, the population is continuously evalu-
ated and evolved by GA in Michigan approaches. In Pittsburgh, the eval-
uation does not happen until the next generation of populations is gener-
ated, as it needs to calculate the fitness of the whole population. A con-
sequence is that the different competition mechanisms in Michigan and
Pittsburgh classifier systems produce different final solutions. Michigan
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evolves a large number of rules, Pittsburgh only evolves a few rule sets
in a population. Therefore, Pittsburgh systems are more suitable when a
compact solution with few rules works, while the Michigan systems are
suitable for distributed solutions.

Comparing Pittsburgh with Michigan systems, we will consider Michi-
gan systems as the potential solution. As the Pittsburgh system evolves
multiple rule sets simultaneously, it suffers from heavy computational re-
quirements. In this case, the Michigan systems can be applied to the larger,
more complex tasks [82]. Moreover, we will focus on XCS [15]. Because,
among all learning classifier systems, XCS has been most popularly used
for tackling reinforcement learning problems as it is able to general the
general and accurate solution[53].

XCS

XCS is widely demonstrated in the literature as an effective algorithm
for single-objective RL [53]. This algorithm contains several important
learning components, such as the performance component, reinforcement com-
ponent and discovery component [15]. As an evolutionary algorithm for
machine learning, XCS maintains and evolves a population of classifiers.
Each classifier cl consists of a condition cl.c that matches any given state
input, an action cl.a to be performed in matched states, and the prediction
cl.P that estimates the long-term payoff of the following classifier cl.

At any time t, upon reaching a new state st, the performance component
will be utilized first to determine an action at to be performed in st. For
this purpose, a match set [M ]t is formed to include all classifiers whose con-
ditions match the current state input st. If classifiers in [M ]t do not cover
all possible actions that a learning agent can perform, a covering mecha-
nism will be activated to generate new classifiers to be further included
in [M ]t. Based on [M ]t, the estimated payoff of performing every action
a ∈ A, i.e. PA(st, a), will be calculated as the fitness-weighted average
of the predictions of all classifiers in [M ]t advocating the same action a



54 CHAPTER 2. LITERATURE REVIEW

[15]. Subsequently, an action at is selected and performed by using the
ϵ-greedy strategy [15]. The environment then provides its reward r(st, at)

which will be further used in the reinforcement component to update all
classifiers in the action set [A]t. [A]t stands for the set of classifiers in [M ]t

that advocate the same action at.
In the reinforcement component, several parameters of each classifier cl ∈

[A]t will be updated. The details for updating other parameters except
the prediction and error can be found in [15]. We would like to highlight
particularly the updating rules for the prediction cl.P and the error cl.ϵ

respectively in (2.21) and (2.22).

cl.P ← cl.P + β ·
(
r(st, at) + γmax

a∈A
Pt(a)− cl.P

)
(2.21)

cl.ε← cl.ε+ β ·
(∣∣∣∣r(st, at) + γmax

a∈A
Pt(a)− cl.P

∣∣∣∣− cl.ε
)

(2.22)

The β is the learning rate, and the γ is the discount rate. Clearly, with
the prediction of each classifier updated as a scalar, XCS is designed to
solve merely single-objective problems. In the preliminary work, some
important changes will be introduced in our algorithms to enable XCS to
simultaneously pursue multiple objectives.

ACS and ACS2

ACS is another well-known Michigan system. In the partially observed
Markov environments, some of the distinct states of the environment will
be considered identical. In this case, the LCS may not be able to decide
the best action in those situations. Therefore, to deal with this issue, Stolz-
mann presented Anticipatory Classifier System (ACS) [11], then Martin
presented Anticipatory Classifier System2 (ACS2) [10].

ACS consists of three essential components: input interface, output in-
terface, and classifier list. Input interface acts as a sensor for the system;
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Output interface is like an actuator for the system; Classifier list is learned
during the training and represented by a population of rules. The struc-
ture of a classifier includes Condition C is used to match the current state;
Action A denotes the action to execute if this classifier is selected; Effect E
is the anticipation of the effect of action; Mark M indicates unsuccessful
situations; Quality q measures quality of anticipations and Reward predic-
tion r is the prediction of payoff.

Most of the Anticipatory Learning Process (ALP) in ACS works as the
same as XCS, such as the action selection strategy, classifier deletion. At
any time step t, it receives a string σ(t) matching the actual situation per-
ceived by the environment, and a payoff r. The system selects an action
a at time t and executes it in the environment to reach the current state.
After that, it will compare the expectation state with the current state. If
a classifier anticipates correctly, there is no new rule generated; otherwise,
the ALP generates a new classifier that specifies all changing attributes.
In the latter case, the original classifier is marked by the current situation,
and its quality q decreases. Suppose a classifier anticipates correctly, the
quality q of the classifier increases. If the classifier has a wild card, then
the ALP generates a new classifier with a more specific condition. In the
condition part of the new classifier, the attributes are specialized where
the current situation differs from situations in which the classifier did not
anticipate correctly.

ACS2 is quite similar to ACS, and the significant difference between
them is ACS2 has the genetic generalization process, but ACS does not
have the genetic generalization process.

In this case, ACS will be considered in future work to solve PO-MDP
problems, especially the large-scale PO-MDP. When the good classifier is
deleted in a potential optimal policy, especially at the early state in that
policy, it is hard for the system to learn it back.
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XCSG

As the applications of XCS in multi-step problems were restricted to very
small problems [50], Butz presented an algorithm, which is XCS with the
prediction updated based on gradient descent as XCSG in 2005 [12]. In Q-
learning, the value of state-action pair is updated according to the equa-
tion 2.5. In Q-learning with a function approximator parametrized by a
weight matrix W , when using gradient descent, each weight w changes by
∆w at each time step t

∆w = β(r + γmax
a∈A

Q(st, a)−Q(st−1, at−1))
∂Q(st−1, at−1)

∂w
(2.23)

The key idea in XCSG is to add gradient descent to XCS. As the predic-
tion P (at−1), which is corresponding to Q(st−1, at−1) can be computed as
follows:

Q(st−1, at−1) = P (at−1) =

∑
clj∈[A]−1

pj × Fj∑
clj∈[A]−1

Fj

(2.24)

where pj and Fj are, respectively, the prediction and the fitness of classifier
clj .

When the parameters of classifiers in [A]−1 are updated, the sum F[A]−1

of classifiers’ fitness in [A]−1 is computed as

F[A]−1 =
∑

clj∈[A]−1

Fj (2.25)

Then, for each classifiers clj ∈ [A]−1, the prediction pk is updated as

pk ← pk + β(r + γmax
a∈A

P (a)− pk)
Fk

F[A]−1

(2.26)

Though XCSG is able to approximate a complex function to repre-
sent the learned solution, however, the gradient descent method may en-
counter the gradient descent disappearance problem. Thus, XCSG is the
optimal method to solve the problems in this thesis.
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ZCS

As Zeroth-level Classifier System (ZCS)[94] is quite similar to its succes-
sor XCS, the following is a high-level description of ZCS, focusing on the
difference between XCS and ZCS and components necessary for our re-
search.

Same with XCS, a ZCS follows a cycle of performance component, rein-
forcement component, and discovery component [94]. It employs a pop-
ulation of classifiers, each encoding the environment of the problem do-
main, and thus, finally collectively forming the overall solution to the tar-
get problem. Same again, at each time step t, ZCS is able to receive a binary
encoded input st, determines an appropriate action at based on the match
set [M ]t. After the agent takes at, the reinforcement component receives a
Reward r(st, at), which will be used to update the classifiers in action set
[A]t.

However, there are differences between XCS and ZCS. First, in XCS,
PA(st, a), which is the estimated payoff of performing every action a ∈ A,
will be calculated as the fitness-weighted average of the predictions of all
classifiers in [M ]t advocating the same action a [15]. In ZCS, PA(st, a)

will be calculated as the average of the predictions of all classifiers in [M ]t

advocating the same action a [15]. Second, in the reinforcement compo-
nent, it only needs to update the classifier’s prediction with the equation
in (2.21).

We can see that ZCS is also designed to solve merely single-objective
problems. Again, in our work, some important changes will be introduced
in our algorithm to enable ZCS to simultaneously pursue multiple objec-
tives.

UCS

LCS is able to adapt to supervised learning. sUpervised Classifier System
(UCS) is a type of LCSs designed for supervised learning problems [43].
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As described in section 2.6.4, the reinforcement process updates the XCS
fitness based on the mapping of states and actions to rewards. The differ-
ence between UCS with XCS is that UCS’s fitness is calculated from a su-
pervised learning perspective. However, as supervising is hard to involve
in multi-step problems, UCS can be only applied to single-step classifica-
tion tasks. In this case, to address multi-step problems in thesis, XCS will
be a better solution than UCS.

NXCS

LCSs are rule-based machine learning technologies designed to learn op-
timal decision-making policies in the form of a compact set of maximally
general and accurate rules. Most of the existing LCSs focused on learning
deterministic policies in a Markov environment. However, when the envi-
ronment is partially observable, a desirable policy may often be stochastic,
which leads to Stochastic Decision Making.

To fill this gap, a new XCS-based algorithm Natural XCS (NXCS) was
developed [3]. NXCS and stochastic decision making in LCS to enable
learning of stochastic policies by utilizing a natural gradient learning tech-
nology under a policy gradient framework. The results show that NXCS
can achieve competitive performance in both deterministic and stochastic
multi-step problems. NXCS added stochastic decision making into XCS,
thus it is able to solve the PO-MDP problem with relatively high accuracy.
In this case, NXCS will be considered to be used to solve the PO-MDP
problem in future work.

Other LCS-based algorithms

There are many learning classifier systems-based algorithms developed
[21] [13] [54], which will be reviewed as well as they are related to our
future work, especially the Neural-LCS [21]. One of the issues of XCS
is that it may require a large number of rules to cover the input space.
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In order to solve this issue, Dam developed NLCS [21], which combined
Artificial neural networks with classifiers and used back-propagation to
train the neural network, in this case, to obtain more compact and also
accurate rules.

Butz proposed Function Approximation with XCS (XCSF) [13], in which
conditions are extended for numerical inputs, classifiers are extended with
a vector of weights−→w to compute prediction. XCSF just updates the weights
rather than the prediction. With the improvements, population size drops
dramatically. Lanzi [54] proposed XCSµ, which is an extension to the XCS
for stochastic environments. In order to distinguish the inaccuracy caused
by over-general classifiers and uncertainty in the environment, it added a
new parameter to estimate the degree of uncertainty that the classifier ex-
periences so as to deal with the uncertainty in the stochastic environment.

2.7 EC for Multi-Objective Reinforcement Learn-

ing

2.7.1 Multi-Objective Algorithm

Many real-world optimization problems involve multiple conflicting prob-
lems are called multiobjective optimization problems (MOPs). As the ob-
jectives are conflicting with each other, when optimizing one of them may
lead to the deterioration of another. In this case, a set of Pareto opti-
mal solutions are desired. The Evolutionary algorithms (EAs), with their
population-based nature, are able to search for the Pareto set or the Pareto
front in a single run, therefore, they have huge potential to solve MOP,
and these EAs are called multiobjective evolutionary algorithms (MOEAs)
[101]. In this section, several popular MOEAs, such as NSGA-II [52], SPEA
[44], SPEA2 [100] will be surveyed, which will help for the non-dominated
individuals’ selection process in future work.
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MOEA/D

A Multi-Objective Evolutionary Algorithm based on decomposition is pre-
sented to solve the MOP problem (MOEA/D) [96]. Decomposition is a
basic strategy in traditional multi-objective optimization. It decomposes a
multi-objective optimization problem into a number of evenly distributed
subproblems, then optimizes them simultaneously.

There are several approaches for converting the problem of approx-
imation of the PF into a number of scalar optimization problems. In this
thesis, the weighted sum approach in MOEA/D method will be integrated
with XCS to solve the MORL problem. In this approach, a weight vector
λ = (λ1, ..., λm) is evenly initialized, where λi > 0 for all i = 1, ...m and∑m

i=1 λi = 1. A neighborhood of weight for λi > 0 for all i = 1, ...n, where
n < m. An initial population x1, ..., xt is generated as well. An ideal so-
lution f ∗ is initialized as well. Then the optimal solution to the following
scalar optimization problem is maximize gws(x|λ) = ∑m

i=1 λifi(x). Then the
general framework for seeking for seeking the optimal solution is as fol-
lows. For each λi, it will randomly select two optimal solutions from the
neighborhood and generate a new solution xt, fi(x) will replace f ∗ only
when fi(x) is better than the best solution f ∗. For the neighbourhood solu-
tion, xi will pass to its neighbourhood, only when fi(x) is better than their
neighbourhood’s solutions.

NSGA-II

Multiobjective evolutionary algorithms (EAs) that use non-dominated sort-
ing and sharing have been criticized mainly for three main reasons: 1).
High computational complexity (O(MN3)) of non-dominated sorting, where
M is the number of objectives and N is the population size. 2). Lack of
elitism can speed up the performance of algorithms, and prevent the loss
of good solutions once they are found. 3). Need for specifying the shar-
ing parameter to protect the diversity in the population. Deb presented a
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nondominated sorting-based multi-objective EA (MOEA) [52], called non-
dominated sorting genetic algorithm II (NSGA-II), which alleviates all the
above three difficulties. The computational complexity is decreased to
O(MN2). Also, a selection operator is presented that creates a mating pool
by combining the parent and offspring populations and selecting the best
(with respect to fitness and spread) solutions. The non-dominated sorting
technique in NSGA-II is highly related to the work of this thesis, as we will
consider it as a potential strategy to select the non-dominated solutions in
an algorithm.

SPEA

Strength Pareto Evolutionary Algorithm (SPEA) [44] is similar to other
MOEAs in the following ways. First, it stores the Pareto-optimal solutions
found so far externally (archiving). Second, it uses Pareto dominance to
assign fitness values to individuals. Third, it performs clustering to re-
duce the number of nondominated solutions stored without destroying
the characteristics of the Pareto optimal front. SPEA has some unique as-
pects as well. The fitness of an individual is determined from the archive
of nondominated solutions; whether members of the population dominate
each other or not is irrelevant. All solutions in the archive participate in
the selection. A niching method is used that does not require any fitness
sharing parameters. SPEA has been a very successful algorithm and has
resulted in numerous improved algorithms, such as SPEA2 [100], SPEA2+
[48].

SPEA2

SPEA2 [100] differs from SPEA and NSGA-II only in how it does fitness
assignment and selection (this is a common theme among the most pop-
ular MOEAs.) The improvements of SPEA2 over SPEA are as following.
First, an improved fitness assignment scheme is used, which takes into ac-
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count, for each individual, how many individuals it dominates and it is
dominated by. Second, the nearest neighbor density estimation technique
is incorporated, which allows more precise guidance of the search process
(increased diversity). Third, a new archive truncation method guarantees
the preservation of boundary solutions. The diversity issue exists for solv-
ing the MORL problem. Therefore, the method nearest neighbor density
estimation technique in SPEA2 can be a potential method for solving the
diversity issue.

Pareto Evolutionary Neural Networks

There are some algorithms that using Evolutionary Neural Networks to
learn the Pareto front [28] [4] [19]. Those algorithms construct a methodol-
ogy for implementing multi-objective optimization within the evolution-
ary neural network (ENN) domain. Fieldsend [28] developed a method
called the Pareto evolutionary neural network (Pareto-ENN). The Pareto-
ENN evolves a population of models that may be heterogeneous in their
topologies inputs and degree of connectivity and maintains a set of the
Pareto optimal ENNs that it discovers. Finally, experimental evidence
is presented in this study demonstrating the general application poten-
tial of the framework by generating populations of ENNs for forecast-
ing 37 different international stock indices. Abbass [4] presents an Evo-
lutionary Artificial Neural Networks (EANN) approach based on Pareto
multi-objective optimization and differential evolution augmented with
local search, which is called the approach Memetic Pareto Artificial Neu-
ral Networks (MPANN). He shows that MPANN is capable of overcoming
the slow training of traditional EANN with equivalent or better general-
ization.

Though those Pareto-ENN algorithms have shown evidence that the
ENN algorithms can learn the Pareto front effectively. However, there are
still some shortages that need to be addressed. First, the diversity issues
on the Pareto front. Abbass tried to solve this issue by setting a threshold
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of the number of the non-dominated NNs (3 non-dominated NNs in his
work) [4]. However, how to set the threshold setting needs prior knowl-
edge, and it cannot guarantee diversity on the Pareto front (e.g. when
those non-dominated NNs are crowded). Second, the Pareto front conver-
gence efficiency issue. The ENN method used mutation to generate new
individuals and focuses on how to select the non-dominated NNs but it is
not effective in training the non-dominated NNs.

2.7.2 EC for MORL algorithms

EC has been applied in many areas related to MORL, such as the multi-
objective control [99] and multi-objective job shop scheduling problems
[61]. Haigen applied the EA on the Multi-Objective Control Optimization
for Greenhouse Environment [40]. In this research, they investigated us-
ing NSGA-II to tune the PID controller parameters in the greenhouse cli-
mate control system. Multi-Objective is needed to balance two objectives:
good static-dynamic performance specifications and the smooth process
of control. The results show that by tuning the parameters the controllers
can achieve good control performance. It can be applied to complex con-
trol systems, which have strong interactions among variables, nonlinear,
and conflicting performance criteria. Su investigated a multi-objective
genetic programming-based hyperheuristic (MO-GPHH) method on han-
dling multiple conflicting objectives in dynamic job shop scheduling prob-
lem [61]. MO-GPHH is used to evolve and seek a Pareto Front of non-
dominated dispatching rules that help the decision-maker to trade off the
different objectives. The experimental results suggest that the evolved
Pareto front contains a very wide range of effective and robust rules. From
the literature, we can see the huge potential of EC to deal with the MORL
problem.

Besides that, a search of the literature shows that only Studley and Bull
have attempted to solve MORL problems by using XCS [75]. Their re-
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search considers those problems where one or more objectives can be con-
veniently treated as part of the state input, thereby leaving only a single
objective as the learning target. In this work, we will consider a different
type of problem, where no objectives can be covered through extended
state input. Therefore, rather than learning a single optimal policy, our
goal is to learn group policies that jointly form the Pareto front.

2.8 Chapter Summary

This chapter reviewed the main concepts of Reinforcement Learning and
Multi-Objective Reinforcement Learning. The traditional MORL techniques
and EC techniques for solving MORL were also reviewed in this chapter.
The limitations of the existing work that form the motivations of this re-
search were also discussed, which can be summarized as follows.

1. Existing approaches for MORL problems can be grouped into two
branches: single-policy and multi-policy approaches. The single-
policy needs prior knowledge for the user’s preference to transform
a multi-objective problem to a single objective problem for solving it
with a single objective reinforcement learning method. In contrast,
the multi-policy approaches search a set of Pareto optimal policies.
However, limited multi-policy approaches have been investigated.
In addition, to our best knowledge, the solution of the existing multi-
policy approaches have a tabular-based representation, which lacks
scalability. Therefore, a MORL solution with good scalability for
learning the Pareto optimal policies is required.

2. Limited approaches have been developed for solving continuous and
stochastic MORL problems. Therefore, research needs to be con-
ducted to propose new solutions for learning the Pareto optimal poli-
cies for continuous and stochastic MORL algorithms.



2.8. CHAPTER SUMMARY 65

3. As discussed in the literature, XCS can generate rule-based solu-
tions with good scalability and are easier to understand than tabular-
based solutions.

4. There are some algorithms solving the MORL problems with Pareto
non-dominated NNs, thus providing a more compact and flexible
solution. NEAT has a good performance on the single-objective RL
problem. However, if using NEAT to solve the MORL problem, there
are some issues like the diversity on the Pareto front, the efficiency
for finding the Pareto front. Our research will not focus on coping
with those issues above.
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Chapter 3

MO-XCS: Adding Pareto
Dominance to XCS to Address
Multi-Objective Reinforcement
Learning Problems

3.1 Introduction

Existing studies of LCSs for Multi-Objective Reinforcement Learning (MORL)
are very limited, see Subsection 2.7.2, page 63. In particular, no research
has been proposed using XCS or other LCSs to learn multiple non-dominated
policies that together define the Pareto front of a MORL problem since
XCS is not able to maintain multiple predictions for different objectives.
However, there are full of MORL problems in practice. Given this lack of
support for MORL in the LCS community, the goal of developing a new
XCS based algorithm for MORL is set in this chapter.

67
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3.1.1 Chapter Goals

Since XCS was originally designed for single objective learning, it is not
a trivial task to enable it to learn multiple objectives. Four major techni-
cal issues have been identified and addressed to achieve this goal in this
chapter as follows.

(1) The classifier representation in XCS is extended to maintain all non-
dominated long-term payoffs of the policy of the affected classifiers.

(2) A new mechanism for controlling errors in general classifiers has
been proposed as well.

(3) The efficacy of two different methods for selecting promising actions
during learning is studied, where the action’s PA has the largest
number of non-dominated Q-vectors and has the largest hypervol-
ume.

(4) A separate process is developed for building the Pareto front once
learning is completed. In association with these technical improve-
ments, the new algorithm is experimentally evaluated on several
benchmark maze problems.

3.1.2 Chapter Organisation

The rest of this chapter is organized as follows. The new MORL algorithm
MO-XCS is proposed in Section 3.2, and the experiment for evaluating
this algorithm is designed in Section 3.3. The algorithm is experimentally
evaluated, where the results are discussed in Section 3.4. Finally, Section
3.5 concludes this chapter and highlights some potential future research
directions.
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3.2 Methodology

MO-XCS is designed to solve MORL problems by learning the Pareto front
through a single learning process. This goal is achieved by addressing four
important issues in XCS. These issues, together with their solutions, will
be discussed in Subsections 3.2.1, 3.2.2, and 3.2.3.

3.2.1 Multi-Dimensional Reward Handling in XCS

Several modifications of XCS are necessary to handle multiple learning
objectives (i.e. multi-dimensional rewards). Specifically, a new formula
should be developed to facilitate the accurate update of the prediction of
each classifier. Different from XCS, the classifier prediction in MO-XCS
is represented as a set of non-dominated Q-vectors (or long-term payoff
vectors) which will be further used as the basis to derive the Pareto front.
When a classifier’s prediction becomes a set of vectors, the way of updat-
ing the classifier’s error must also be revised. To cope with these issues,
new learning techniques will be developed in this subsection based on
Pareto Dominance.

Prediction Calculation in MORL

In a MORL problem, the reward r⃗(st, at) of performing action at at state
st at any time t is a m-dimensional vector. Based on the concept of Pareto
dominance and the Pareto Q-Learning (PQL) algorithm, see Section 2.5,
page 37, the prediction of a classifier in [A]t should be updated as a set of
non-dominated Q-vectors. Each Q-vector represents the current estimate
of the expected long-term payoff of following a Pareto optimal policy sup-
ported by the classifier. Because the prediction becomes a set, it is difficult
to update every individual in the set by using the standard updating rule
of the Q-Learning algorithm. This is because Q-Learning updates Q-value
based on the maximum observed Q-value but Q-vector needs to be up-
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dated based on the Pareto dominance rule. Instead, inspired by PQL, the
prediction of a classifier cl is replaced by another two parameters, i.e. (1)
the reward cl.R⃗ that measures the average immediate reward obtainable
by performing action cl.a and (2) the non-dominated next-step payoff cl.ND

gives the non-dominated Q-vectors of the next state after performing cl.a.
By using the two, the prediction of classifier cl can be determined instantly
as

cl.P = cl.R⃗⊕ γ × cl.ND (3.1)

Here,⊕ refers to an operation that adds vector cl.R⃗ to every non-dominated
Q-vector in cl.ND and γ refers to the discount rate in the learning process.
The result is another set of non-dominated Q-vectors. Because of (3.1), the
prediction cl.P does not need to be explicitly maintained in classifier cl.

At time t, for any classifier cl ∈ [A]t, the updating rule for cl.R is
straightforward, as shown below.

cl.R⃗← cl.R⃗ + (r⃗(st, at)− cl.R⃗)/n (3.2)

where n is the number of times for classifier cl to appear in any action set.
Once the state st+1 is reached, the predictions from all high-fitness classifiers
in the match set [M ]t+1 could be collected. Using them, the non-dominated
Q-vectors in state st+1 can be obtained and used to update cl.ND. This
updating method is described in (3.3) below.

cl.ND ← ND

 ⋃
cl′∈[M ]t+1

cl′.P

 (3.3)

where cl′.P is determined from (3.1), and ND() stands for a function that
identifies all non-dominated Q-vectors from a given set of vectors, see in
Section 2.5, page 37. The two conditions presented in Definition 1 explain
the dominance relationship between any two Q-vectors. The rules for up-
dating cl.R⃗ and cl.ND, i.e. (3.2) and (3.3), are similar to those used in PQL.
However, different from PQL, changes have been introduced in MO-XCS
to tackle the subtleties involved in learning classifiers (not present in a
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tabular representation used by PQL). Specifically,
⋃

in (3.3) applies only to
high-fitness classifiers in [M ]t+1. A classifier is considered of high fitness
if its fitness is higher than all other classifiers in [M ]t+1 that advocate the
same action.

Classifier Error Estimation in MO-XCS

For any classifier cl ∈ [A]t, its error cl.ε measures the average distance be-
tween the estimated prediction cl.P (Ref. (3.1)) and the observed prediction
(OP) calculated from (3.4) below

cl.OP = r⃗(st, at)⊕ γ ×ND

 ⋃
cl′∈[M ]t+1

cl′.P⃗

 (3.4)

Since cl.P and cl.OP are two sets of vectors, the distance between them
is the distance between two sets. Several mathematical methods can be
utilized to calculate this distance [59]. In consideration of learning effi-
ciency, we will specifically consider four efficient and frequently used dis-
tance measures, i.e. the single-link (SL) measure [59], the complete-link
(CL) measure [59], the core distance (CO) [59], and the Jaccard distance
(JA) [59]. Given that the distance between cl.P and cl.OP is measured as
∥cl.P, cl.OP∥, the error of classifier cl will be updated according to the rule
below.

cl.ε← cl.ε+ β · (∥cl.P, cl.OP∥ − cl.ε) (3.5)

It is interesting to note that the updating rule in (3.5) is new to the
existing LCSs methods. PQL does not use (3.5) since it operates directly
on value functions represented in tabular form.

Error Control in General Classifiers

As an accuracy-based LCS, XCS aims at learning both general and accu-
rate classifiers. However, whenever the accuracy of a general classifier
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becomes too poor, the accuracy of other classifiers might be negatively
affected. This may subsequently lead to sudden degradation of learning
performance. Therefore, the inherent error of each evolved classifier in
MO-XCS has to be properly controlled.

To demonstrate this issue in further detail, let us consider a maze prob-
lem in Figure 3.1. As depicted in this figure, there are 9 open locations in
the maze. Each location is indicated as a separate state (i.e. s1, . . . , s9) in
the learning environment. Besides that, the maze also contains two final
locations/states, denoted respectively as F1 and F2. Starting from an ar-
bitrary open location, a learning agent must eventually move to one final
state to obtain food. For this purpose, in any state st at time t, the agent
can perform one of four alternative actions: i.e. North, East, South, and
West. By doing so, it can move to an adjacent location in the correspond-
ing direction whenever possible. Its location may also remain unchanged
if its way is blocked by an obstacle indicated as T in Figure 3.1.

Figure 3.1: An example bi-objective maze problem.

Different from many single-objective benchmark maze problems stud-
ied previously [57], the agent has two objectives to pursue in our maze. The
first objective is to reduce the total number of actions to be performed to
reach a final state. The second objective is to get as much food as possible.
In association with the two objectives, there are three different rewards
that the agent can receive after performing an action at any time t:
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(1) r⃗t = {−1, 0} if the agent does not reach any final states at time t + 1,
i.e. st+1 ̸= F1 or st+1 ̸= F2

(2) r⃗t = {−1, 1} if st+1 = F1

(3) r⃗t = {−1, 10} if st+1 = F2

The agent can get more food (i.e. 10) when it finds the final state F2.
However, this might require it to perform more actions (depending on its
current location). Since every action produces -1 in the first dimension of
the corresponding reward, an agent must obtain a good balance between
the two objectives by learning the Pareto front.

Suppose that MO-XCS learned a classifier cl1 whose condition cl1.c

matches both states s1 and s3 (notice that an agent has identical local ob-
servations in the two states). Moreover, cl1.a = East. When the agent
follows the classifier cl1 and performs the action West in state s3, it will im-
mediately reach final state F1. Consequently, according to (3.3) and (3.1),
the prediction cl1.P of cl1 will become a set that contains only a single
non-dominated Q-vector, i.e. {−1, 1}. Clearly, the classifier cl1 has poor
accuracy after this update since its prediction completely ignores another
non-dominated Q-vector, i.e. {−3, 10}. As can be verified from Figure 3.1,
this missing Q-vector gives the long-term payoff (assuming that γ = 1) ob-
tainable by the agent if it follows classifier cl1 in state s1. Such inaccuracy
may prevent us from learning some Pareto optimal policies. Furthermore,
assume that there is another learned classifier cl2 whose condition cl2.c

matches state s2. When the agent follows cl2 in s2 and performs action
cl2.a = West, it will then reach state s1 matched by cl1. If cl1 is a high-
fitness classifier in state s1, the prediction cl2.P of cl2 will start to include
Q-vector {−2, 1} (see (3.3) and (3.1)). Apparently, the agent can never ob-
tain the long-term payoff of {−2, 1} by following cl2 in state s2. Classifier
cl2 is hence updated wrongly and loses its accuracy. This error can propa-
gate quickly from one classifier to another, resulting in a significant drop
in learning performance.
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Based on the example described above, it was found that the real cause
of the problem is because the parameter cl.ND of any classifier cl is not
incrementally updated. Instead, in (3.3) it is immediately replaced by the
prediction of the next state, which is possibly matched by low-accuracy
classifiers. Errors can easily transfer between classifiers in this way. To
solve this problem, the parameter cl.ND of every classifier cl in MO-XCS
is extended to a more complicated history parameter, i.e. cl.H . The history
cl.H keeps track of all the observed payoffs cl.ND in the past and continu-
ously measures their accuracy. At any time, the most accurate cl.ND in the
history cl.H will be utilized to determine the classifier’s prediction cl.P in
(3.1). By doing so, it can prevent any inaccurate cl.ND completely replac-
ing an existing cl.ND which might be more accurate. In other words, any
accurate cl.ND in classifier cl can be eventually recovered from the history
cl.H .

In line with the maze problem in Figure 3.1, suppose that classifier cl2
accepts Q-vector {−2, 1} in its prediction, i.e. Q-vector {−1, 1} has been
recorded in the history cl2.H . Initially, this Q-vector {−1, 1} has an average
error of 0. However, it will not replace any existing Q-vectors in history.
Instead, classifier cl2 will continue to measure its accuracy whenever cl2

is used again by the learning agent to perform an action. Since the agent
will never experience {−1, 1} as its real next-step payoff at state s2, over
time the average error of the Q-vector {−1, 1} will increase. Eventually,
classifier cl2 will learn to recover from its error by not using this Q-vector
to determine its prediction cl2.P . Experiments, to be reported in Section
3.3, show that this error control mechanism allows classifiers in MO-XCS
to learn their accurate predictions. This method helps the subsequent con-
struction of the Pareto front, as described in Subsection 3.2.3.
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3.2.2 Exploitation and Exploration

Similar to XCS, the ε-greedy strategy will be employed in MO-XCS for ac-
tion selection during learning, to achieve a good balance between explo-
ration and exploitation. Particularly, at any time t, with a probability of
ε, 0 ≤ ε ≤ 1, a randomly selected action at will be performed in state st for
exploring the learning environment. On the other hand, for a proportion
1 − ε of the time, the most promising action will be selected for exploita-
tion. In XCS, such an action at is associated with the highest estimated
long-term payoff, i.e. PA(st, at). In MO-XCS, because the prediction of
any classifier is a set of non-dominated Q-vectors, the long-term payoff of
performing any action a also becomes a set of non-dominated Q-vectors.
Specifically, suppose [A]t contains all classifiers that match state input st at
time t and advocate the same action a, PA(st, a) in MO-XCS is determined
as

PA(st, a) = cl.P, (3.6)

where cl ∈ [A]t and ∀cl′ ∈ [A]t, cl.ε ≤ cl′.ε

Given (3.2) and (3.7), it is clear to see that the ways of identifying the
most promising action in MO-XCS are not unique. In this chapter, two
commonly used approaches [86] are explicitly studied, as briefly summa-
rized below.

A1 The action a whose PA(st, a) has the largest number of non-dominated
Q-vectors is the most promising action.

A2 The action a whose PA(st, a) has the largest hypervolume, i.e. HV (PA(st, a)),
is considered the most promising action. Here HV () stands for the
function that calculates the hypervolume of a given set of non-dominated
Q-vectors. Whiteson [88] presents a good account of hypervolume as
an important performance measure for multi-objective optimization
problems.
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In Section 3.3, the usefulness of both approaches A1 and A2 are exper-
imentally studied during learning. It is important to note that, by follow-
ing any of the two approaches, there is no guarantee that a Pareto optimal
policy can be obtained eventually. Instead, after the learning process is
completed, a separate procedure as described in the next subsection will
be performed to determine Pareto optimal policies and the Pareto front.

3.2.3 Construction of the Pareto Front

In MO-XCS, the predictions of all classifiers learned from a MORL prob-
lem can be jointly used to identify the Pareto front. To achieve this goal,
first of all, a starting state s0 is fixed that can be either selected arbitrar-
ily among all possible states S of the problem or determined by human
users according to their practical interests. Next, based on the match set
[M ]0, the collection of actions A0, each of which follows a separate Pareto
optimal policy, can be obtained. For any action that belongs to the collec-
tion A0, its predicted long-term payoff in (3.7) must contain at least one
Q-vector that is not Pareto dominated by the payoffs of other actions. If
there are several such actions, to construct the whole Pareto front, the al-
gorithm has to iterate through all these actions and perform each of them
at state s0 to create each different Pareto optimal policy.

To construct a Pareto optimal policy π∗ and assuming that π∗(s0) = a0,
a weight vector ω⃗ = {ω1, . . . , ωm} can be automatically created at state
s0 such that performing action a0 in s0 will produce the highest weighted
sum of the long-term payoff. After performing action a0, state s1 is reached
at time 1. The match set [M ]1 and action collection A1 is built up. This time,
not every action in A1 is eligible for subsequent construction of policy π∗.
Instead, the action in A1 that yields the highest aggregated payoff (based
on the same weight vector ω⃗) will be selected and effected. This process
will continue until a final state is reached. Through this way, the algorithm
can eventually find a complete state-action mapping for policy π∗. The
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performance of this policy can also be evaluated accordingly.

In [86], an interesting tracing mechanism was designed for PQL to con-
struct Pareto optimal policies after learning. However, this tracing mecha-
nism only works when the rewards of performing any action consistently.
In addition, as the tracing mechanism is developed by tracing the value
of cl.p, in this case, only one of the classifiers from a state will be used
for constructing Pareto optimal policies. In this work, without requiring
stationary rewards, a different approach based on weighted sums will be
used. It is worthwhile to note that the learning process in MO-XCS does
not depend on any weight vectors, which will only be used for building
Pareto optimal policies from learned classifiers.

3.3 Experiment Design and Evaluation Strategy

3.3.1 Experiment Design

As the classic MDP problem, the single-objective maze problem was fre-
quently used as the benchmark for RL algorithms and used in the litera-
ture to study the performance of LCSs [8]. However, there are not many
benchmarks for evaluating MORL algorithms. To evaluate the learning
effectiveness, three bi-objective maze problems, i.e. bi-objective Maze4,
bi-objective Maze5, and bi-objective Maze6 are introduced and MO-XCS
has experimented on these bi-objective maze problems. These three prob-
lems have been depicted respectively in Figure 3.2, Figure 3.3, and Figure
3.4. In Subsection 3.2.1, the basic settings of the bi-objective versions of the
maze problems are introduced. In this experiment, these settings will be
followed exactly in all the experiments. In each bi-objective maze, there
are two final states, F1 and F2. The agent has two objectives to pursue in
the bi-objective maze. The first objective is to reduce the total number of
actions to be performed to reach a final state. The second objective is to get
as much food as possible. In this case, how to choose the learned optimal
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policy is depending on weighting steps and food.

Figure 3.2: Bi-objective Maze4

Figure 3.3: Bi-objective Maze 5
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Figure 3.4: Bi-objective Maze 6

3.3.2 Performance Evaluation

In this chapter, two different performance measures will be utilized to
jointly examine the effectiveness of MO-XCS. To obtain these measures,
each time, after a certain number of problem instances have been learned,
the performance of the learned classifiers at every open location (or non-
final state) in the maze environment will be evaluated.

First, the hypervolume of the learned Pareto Optimal policies by MO-
XCS can be compared with the hypervolume of the true Pareto front. For
example, for an open state si, the optimal policies for each weight

−→
λo (o =

1, ...n) of a set of initialized weights is calculated by enumeration, which is
a costly procedure. Each optimal policy will achieve a different long-term
payoff as {J⃗1, . . . , J⃗m}. Note, if 10 weights (i.e.,

−→
λ1, . . . ,

−→
λ10) are initialized,

they are associated with 10 long-term payoffs (for example, J⃗1, . . . , J⃗10).
Based on these values, the procedure to calculate the hypervolume in state
s1 is as follows:

HV (s1) = HV
(
{J⃗1, . . . , J⃗m}

)
(3.7)

With (3.7), the total hypervolume over all states of the maze can be cal-
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culated:

THV =
L∑
i=1

HV (si) (3.8)

where L is the number of open states in the maze. The higher the THV ,
the better the XCS performance on the learning problem.

Second, the match rate of the learned optimal policies and the theoret-
ical optimal policies is measured. For this purpose, from every open state
si, the learned optimal policies will be compared against the theoretical
optimal policies for the selected weight

−→
λn (n = 0, ...k). Only when they

match, will it be counted in the policy match rate. Given this, the percent-
age of true Pareto optimal policies %OP is calculated in all the open states of
the maze. Note, in these experiments, the number of weights in Subsec-
tion 4.2.1 is set as 11, so 11 evenly distributed weights between (0, 1) and
(1, 0) are initialized. In result analysis, the result of weight

−→
λ1 = (0.1, 0.9)

is discussed as the trend is similar between different weights.

3.4 Results and Discussions

In this section, the results of the experiments are presented. To evaluate
the learning effectiveness of MO-XCS, the experiments on multi-objective
mazes will be implemented to test the performance of MO-XCS on those
MORL problems.

To determine the effectiveness of MO-XCS, the performance of the learned
classifiers will be evaluated for 5000 problem instances at every open state
in the maze environment. Both THV and %OP will be calculated by av-
eraging the results of 30 independent runs of MO-XCS. In all the exper-
iments in this chapter, typical parameter settings recommended in [14]
have been followed. Particularly, the crossover probability χ = 0.8, the
mutation probability µ = 0.001, the error threshold ε0 = 0.05, the classifier
deleting threshold θdel = 200, and the subsumption threshold θsub = 20.
The GA subsumption is set to false. Meanwhile, the threshold for per-
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forming the niche GA is set to 500, which is much higher than 25 in single-
step problems, as the reward is encountered infrequently and policy learn-
ing is slow to converge. Finally, the population size N in all maze prob-
lems is set to 6000.

The first experiment is conducted on the bi-objective Maze4 problem.
As can be seen from Figure 3.5, a total of 8 different combinations over the
four alternative distance measures (introduced in Subsection 3.2.1) and
the two action selection approaches (introduced in Subsection 3.2.2) have
been considered. Each combination has been tested separately in our ex-
periments.

4

8

12

16

0 1000 2000 3000 4000 5000

Number of Leaning Problems
(a)

THV

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000 5000

Number of Leaning Problems
(a)

% OP

A1−SL

A1−CL

A1−CO

A1−JA

A2−SL

A2−CL

A2−CO

A2−JA

Theoretical optimal THV

Figure 3.5: Learning performance, i.e. THV and %OP , on the bi-objective
maze4 problem. A1 and A2 denote the two action selection approaches in
Subsection 3.2.2. SL, CL, CO and JA represent the four distance measures
introduced in Subsection 3.2.1.

As clearly evidenced in Figure 3.5, depending on the distance measure
and action selection method used, MO-XCS can manage to achieve the-
oretical optimal THV after learning through a small number of problem
instances. Particularly, among all the 8 combinations in this figure, the
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combinations A2-CO and A2-CL appear to be the most effective and sta-
ble. For example, when the combination A2-CO was used, after 450 prob-
lem instances, the highest average THV of 15.78 was witnessed, identical
to the theoretical optimal value (indicated as a flat black line in Figure 3.5).
On the other hand, although the combinations A1-CL, A2-JA, and A2-SL
managed to reach a high average THV initially, large fluctuations of THV

were observed afterward, suggesting unstable learning behavior in MO-
XCS. This indicates with the combinations A1-CL, A2-JA, and A2-SL, the
accurate classifiers have a high chance to be deleted than other combina-
tions when the population size exceeds the maximum population size.

Meanwhile, when certain combinations, such as A1-SL and A2-SL, were
used, MO-XCS can never achieve close-to-optimal THV . The observed
performance differences have also been verified statistically. In particular,
the one-way ANOVA test over all the results in Figure 3.5(a) produces a
p-value of 0.0013. The follow-up Tukey’s post hoc analysis at the standard
confidence level of 0.05 further confirmed that the performance differences
between the three combination pairs, i.e. A1-CO and A2-SL, A2-SL and
A2-JA, A2-SL and A2-CO, are of statistical significance.

Besides THV , the change of %OP during the whole learning process
has also been depicted in Figure 3.5(b). As can be easily verified, after less
than 500 problem instances, several combinations including A2-C and A2-
CL, achieved an average %OP close to 100%, indicating that the MO-XCS
can successfully learn Pareto optimal policies in every state of the maze.
This observation is consistent with the THV results. Again ANOVA test
was performed, resulting in a p-value of 0.018. Tukey’s post hoc analysis
further showed that A2-JA and A1-SL performed significantly differently
from other combinations in terms of %OP (i.e. A2-JA achieved better-
than-average performance and A1-SL achieved lower-than-average per-
formance).

The bi-objective Maze5 problem is more challenging than the Maze4
problem, as there are ten more open states in bi-objective Maze5 than that
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Figure 3.6: Learning performance, i.e. THV and %OP , on the bi-objective
maze5 problem.

in Maze4. However, as evidenced in Figure 3.6(a), MO-XCS can still man-
age to successfully solve this problem under certain combinations of dis-
tance measures and action selection approaches. In particular, after 2500
problem instances, close-to-optimal average THV of 22.03, 20.89, 20.89,
and 22.00 has been obtained for A2-CO, A1-CO, A2-JA, and A2-CL re-
spectively. In the meantime, A2-SL, A1-CL, and A1-SL failed to produce
desirable learning performance in Figure 3.6(a). Besides THV , it is also
easy to verify that, for certain combinations (i.e. A2-CO, A2-CL, and A2-
JA), the %OP measure was very close to 100% after about 1000 problem
instances, further confirming that MO-XCS can effectively learn all Pareto
optimal policies on Maze5. Statistical analysis (both ANOVA and Tukey’s
post hoc analysis) has been conducted, indicating that A2-CO achieved
the best performance amongst other combinations.

The experiment results on the Maze6 problem have been summarized
in Figure 3.7. As shown clearly, the theoretical optimal THV of 21.17 (i.e.
the black flat line in Figure 3.7(a)) has been successfully reached by MO-
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Figure 3.7: Learning performance, i.e. THV and %OP , on the bi-objective
Maze6 problem.

XCS after about 1000 problem instances under 5 different combinations,
i.e. A1-CO, A1-JA, A2-CL, A2-CO, and A2-JA. The results of other combi-
nations did not appear to as good as these 5 combinations. Meanwhile, the
performance results in terms of %OP follow the same pattern as witnessed
on the maze5 problem. In particular, the most effective combinations are
A2-CO and A2-CL. Combinations that are not so successful are A1-SL and
A1-CL. The above observations have been verified statistically through
ANOVA tests and Tukey’s post hoc analysis.

3.5 Chapter Summary

In this chapter, motivated by the practical importance of multi-objective
reinforcement learning (MORL), a new reinforcement learning algorithm
based on XCS has been successfully developed. Different from many re-
cently proposed learning algorithms that rely on tabular representations
of the value function, the algorithm MO-XCS facilitates a more scalable
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representation in the form of a population of classifiers. It was also de-
signed to learn multiple Pareto optimal policies concurrently through a
single learning process. According to the literature review, MO-XCS is the
first XCS-based algorithm for this type of learning task.

The newly developed algorithm has been experimented on three bench-
mark maze problems, each having two separate objectives. In the exper-
iments in this chapter, the learning effectiveness of four alternative dis-
tance measures and two separate approaches for action selection have
been specifically examined. From the results, it can be seen that the ac-
tion selection method has more influence on learning performance than
the distance measure. Specifically, hypervolume-based action selection
(i.e. Approach A2 in Subsection 3.2.2) helps explore promising regions
of the learning space more effectively and therefore helps to achieve more
effective learning.

The developed multi-objective XCS algorithm can learn a group of
Pareto optimal solutions through a single learning process. Here the clas-
sifiers must store the whole history of predictions for the states the LCS
visited, and select one such stored prediction as the prediction of the clas-
sifier. However, this work exhibits several limitations. First, the stored
strategies may consume a large amount of storage. Second, the tracing
mechanism employed for constructing Pareto optimal policies will only
choose one of the classifiers in the next state, thus removing the gener-
alization ability of XCS. In the next chapter, a new multi-objective XCS
(MOXCS) will be developed to discover multiple optimal policies simul-
taneously that generalize where possible, without large storage require-
ments.



86 CHAPTER 3. MO-XCS: ADDING PARETO DOMINANCE TO XCS



Chapter 4

MOXCS: Decomposition based
Multi-Objective Evolutionary
Algorithm in XCS for
Multi-Objective Reinforcement
Learning

4.1 Introduction

In Chapter 3, a multi-objective XCS (MO-XCS) has been developed by
learning a group of Pareto optimal solutions through a unique learning
process. Here, the classifier must store the complete prediction history
for the visited states and select one of these backup predictions as the
classifier’s prediction. However, this work has several limitations. First,
the backup strategy can consume a large amount of storage. Secondly,
the tracing mechanism for constructing the Pareto optimal policies has re-
moved the generalization capability of XCS.

87
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4.1.1 Chapter Goals

In this chapter, a new multi-objective XCS algorithm, MOXCS is devel-
oped to discover several optimal policies simultaneously that are general-
ized as much as possible, without large storage requirements. As MOXCS
supersedes MO-XCS, the name is deliberately similar. It is assumed that
the decomposition of MOEA/D for multipurpose tasks can sufficiently
approach the complicated forms of Pareto Front to allow for such policy
learning within XCS. Five major technical issues have been identified and
addressed to achieve this goal in this chapter as follows.

(1) It decompose a MORL problem to N single objective RL sub-problems
by different weights with MOEA/D.

(2) The classifier structure is updated to maintain multiple objectives.

(3) The process of updating classifier parameters is updated as it will
update classifier parameters with multiple objectives.

(4) The Genetic Algorithm (GA) process, classifiers with similar weights
will be used to search for the optimal solutions.

(5) The condition of the classifier is updated to consume the integer in-
put to address the environment with integer input.

4.1.2 Chapter Organisation

The rest of this chapter are organized as follows. Section 4.2 uses a sim-
ple bi-objective corridor problem to explore the effects of MORL prob-
lems. Section 4.3 described the experiment settings and evaluation. Three
MORL experiments results from testing on bi-objective maze, Deep Sea
Treasure, and Multi-maze are presented in Section 4.4, 4.5 and 4.6. Finally,
the Section 4.7 presents our conclusions and highlights potential future
work.
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4.2 Methodology

This Chapter aims to employ a decomposition strategy based on MOEA/D
in XCS to approximate complex Pareto Fronts. To achieve multi-objective
learning, new MORL algorithms have been developed in this chapter based
on XCS and MOEA/D as MOXCS. The methodologies of MOXCS are de-
scribed in Section 4.2.1. In order to handle the integer input in MOXCS,
the Min-Max Representation (MMR)[72] in Section 4.2.2 has been used.

4.2.1 Adding MOEA/D to XCS

In this section, the Multi-Objective XCS (MOXCS) algorithm is proposed,
which combines MOEA/D into XCS to enable learning the Pareto optimal
policies for MORL problems. A schematic view of the MOXCS general ar-
chitecture is presented in Figure 4.2. MOEA/D is employed to decompose
the multi-objective problem into multiple single objectives by initializing a
set of evenly distributed weights. For XCS, the classifier structure is mod-
ified to maintain multiple objectives. The parameters updating process in
classifier reinforcement and GA in rule discovery is implemented by the
weights.
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Figure 4.1: Bi-objective Corridor, where block T is impassable.

A simple bi-objective corridor problem in Figure 4.1 is used to illus-
trate the functionality of the novel MOXCS algorithm. There are four open
states (s1...s4); two goal states (F1, F2); and only two possible actions that
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an agent can take (left, right). An episode can start from an open state
and finishes once the agent enters a goal state. When the agent reaches a
goal state it immediately receives a reinforcement from ‘gold’ reward (to
differentiate it from the “reward” signal in single objective RL updates).
There are two objectives, to minimize the steps and maximize the gold re-
ward. Therefore, the immediate reward signal is a two-dimensional vector
r⃗, which is received for each step. The first element is always -1 as the cost
per step, the second element is the amount of the reward that is received at
the current state. For example, r⃗ = {−1, 0} at an open state; r⃗ = {−1, 100}
at state F1; r⃗ = {−1, 900} at state F2.

Initialization of weights and neighbour size

The main idea of MOXCS is to decompose a MORL problem to N single
objective RL sub-problems by different weights

−→
λi (i = 1, ..., N), λi

k ≥ 0

for all k = 1, ...,m and
∑m

k=1 λ
i
k = 1. Then use XCS to solve each single

objective RL problem simultaneously. This enables knowledge learnt from
one combination of weights to improve another, which is not possible in
the weighted sum approach. For each weight

−→
λi , it will use the m closest

neighbours information to address the current sub-problem.

Following the MOEA/D methodology, the number of weights N , num-
ber of neighbours T and a reference point for the best performance for
the prediction of each classifier on each dimension will be initialized. In
addition, classifier cli with related weight

−→
λi will also be also initialized.

For example, suppose N = 6 and T = 3, MOXCS will initialize 6 clas-
sifiers cl1, cl2, cl3, cl4, cl5, cl6 with 6 weights

−→
λ1 = (0.0, 1.0),

−→
λ2 = (0.2, 0.8),

−→
λ3 = (0.4, 0.6),

−→
λ2 = (0.6, 0.4),

−→
λ2 = (0.8, 0.2) and

−→
λ2 = (1.0, 0.0). Then for

each−→λ , for example
−→
λ1, it will calculate the distance between

−→
λ1 and other

weights. When updating the prediction of cl1, if one of the prediction from
cl2, cl3 and cl4 is better than the prediction of cl1, the prediction of cl1 will
be updated. More details will be introduced in the next subsection.
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Figure 4.2: General architecture of MOXCS.

Classifier Structure

For the classifier structure, each classifier cli will be extended with a weight
−→
λi , and used to solve the specific single problem with

−→
λi (i = 0, ...N), where
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N is the number of initialized weights. In standard XCS, the prediction
(cl.p), error (cl.ε) and fitness (cl.f ) of classifier are scalars. However, in our
work, to solve an m objective MORL problem, the prediction −→cl.p, error
−→
cl.ε and fitness −−→cl.f are m dimensional vectors. In order to maintain the
predictions of m objectives, each classifier has m predictions, errors and
finesses. Following the example in Figure 4.1, classifier cl1 should have a
weight

−→
λ1 = (0.0, 1.0), parameters cl.p1, cl.ε1 and cl.f1 for objective 1, and

parameters cl.p2, cl.ε2 and cl.f2 for objective 2.

Note, as the predictions for objective 1 and objective 2 may have huge
differences, when updating the parameters, the error of a classifier −→cl.ε
needs to be normalized between 0 and 1. In this case, the fitness of classi-
fier −−→cl.f is calculated according to the normalized error.

Updating Classifier Parameters

When the agent moves to a new state, the reinforcement component pro-
cess that updates the classifier parameters will go through for each weight
−→
λi . Note, in the prediction calculation process, the prediction array for
each objective is calculated separately first, and then a normalization pro-
cess will be implemented to ensure that the value of each prediction is
within 0 and 1 inclusively. So the goal reward and the step can be consid-
ered without bias.

Compared with XCS, there are two changes in updating the max(PA)

in formula for calculating cl.p in standard XCS [14]. 1) The max(PA) is
formed by the classifiers that match not only the current state but also the
current weight

−→
λi . 2) The following formulas are employed to calculate

the weighted-sum prediction PA−→
λi
[a]a∈A for the current weight

−→
λi :

PA−→
λi
[a]a∈A =

m∑
o=1

−→
λi

o ∗ PAo[A] (4.1)

where the PAi[a] is the prediction for the objective i for action a, and m

is the number of objectives. Following formula (4.1), the largest action
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prediction array PA can be calculated as follows:

max
a∈A

(PA)← max
a∈A

(PA−→
λi
) (4.2)

where the max(PA−→
λi
) is the maximum weighted-sum action prediction

for
−→
λi in the prediction array PA−→

λi
.

Suppose the agent moves from s3 to s4, and the weight is
−→
λi , where

λi
0 = 0, λi

1 = 1. The PA for each objective can be calculated separately
using the same method as in XCS [14]. Suppose the prediction array for
objective 1 at s4 for left, right is PA1s4 = (4, 1), and the prediction array
for objective 2 PA2s4 = (65, 810). Following formula (4.1), as λi

0 = 0, the
weighted-sum PA−→

λi
should equal PA2s4 , thus PA−→

λi
= (65, 810). With for-

mula (4.2), for
−→
λi , largest weighted-sum action prediction max(PA−→

λi
) =

810 is selected, so the agent takes the second action to go right.

Rule Discovery

Inspired by MOEA/D, the sub-problems with similar weight will have
similar solutions. Therefore, in the Genetic Algorithm (GA) process, clas-
sifiers with similar weights will be used to search for the optimal solutions.
The GA process will also loop by weight as follows.

(1) For
−→
λi , compute the Euclidean distances between any two weight

vectors and then get the T closest weight vectors to
−→
λi . Group the

classifiers with weights
−→
λi or T closest weight vectors to

−→
λi as [T ].

(2) Select two parents classifiers from [T ] based on fitness and generate
two new child classifiers.

(3) Update reference point
−→
z∗ . Suppose it is a maximize multi-objective

problem, for each cli, if zj < cli.pj , then set zj = cli.pj .

(4) Update of neighboring solutions. Suppose it is a maximize multi-
objective problem, for classifier cll in [T ], if gte(cll.pj|λi, z

∗
i ) < gte(cli.pj|λi, z

∗
i ),
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then set cll.pj = cli.pj . where gte is the distance between these two
prediction value of these two classifiers.

Following the example bi-objective corridor in Figure 4.1, suppose the
agent moves from s3 to s4, now MOXCS updates the classifiers with weight
−→
λi = (0, 1) and cl.a = right step by step. That is:

(1) Calculate the Euclidean distance Dis between
−→
λ1 and each other weight

−→
λm. For example, the distance between

−→
λ1 and

−→
λ2 is

Dis12 = 2

√
(0− 0.2)2 + (1− 0.8)2 = 0.283, similarly, other distance

can be calculated Dis13 = 0.566, Dis14 = 0.849, Dis15 = 1.131, Dis15 =

1.414. As T = 3, the classifiers with
−→
λ1 or

−→
λ2 or

−→
λ3 will be collected in

[T ].

(2) Suppose there are 3 classifiers in [T ], where cl1.f = 0.9, cl1.p1 =

1.75, cl1.p2 = 810, cl2.f = 0.7, cl2.p1 = 1.25, cl2.p2 = 710 and cl3.f =

0.3, cl3.p1 = 1, cl3.p2 = 300. The GA selects cl1 and cl2 as two par-
ents. Following the GA process in XCS, two child classifiers will be
generated through crossover and mutation. For example, child clas-
sifiers cl3 and cl4 have the same fitness and prediction, for example,
cl3.f = cl4.f = 0.8, cl3.p1 = cl4.p1 = 1.50, cl3.p2 = cl4.p1 = 760, but
may have different conditions cl.c.

(3) Update the reference point
−→
z∗ if the prediction of cl3 or cl4 is better

than
−→
z∗ . For example, when cl3.p1 and cl4.p1 is less than z∗1 , or cl3.p2

and cl4.p2 is larger than z∗1 , as this algorithm is aiming to minimize
the first objective and maximize the second objective. Suppose z∗1 =

3.50, z∗2 = 780, the new value of
−→
z∗ should be z∗1 = 1.50, z∗2 = 780.

(4) In this work, the Tchebycheff method [97] is employed to update the
prediction of classifiers in [T ]. Considering cl3.p1 and cl4.p1 are better
than cl1.p1, cl3.p2 and cl4.p2 is better than cl2.p2 and cl3.p2, the updated
prediction for cl1, cl2, cl3 should be cl1.f = 0.9, cl1.p1 = 1.50, cl1.p2 =
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810, cl2.f = 0.7, cl2.p1 = 1.25, cl2.p2 = 760 and cl3.f = 0.3, cl3.p1 =

1, cl3.p2 = 760.

Deterministic Result

In this section, the bi-objective corridor is manually explored in Figure 4.1
to get the deterministic result, aiming to demonstrate how gold reward
settings affect the multi-objective optimal policies. The total gold reward
for both F1 and F2 is 1000, the reward ratio for F1 and F2 starts from 0 to
1, and increases 0.1 by each time (for example, 0 vs 1000, 100 vs 900...1000
vs 0). The discount rate is 0.9. Two episodes are implemented for each
reward setting. Suppose the first episode starts from s1, and the agent only
takes action right until it arrives at F2; whereas, the second episode starts
from s4, and the agent only takes action right until it arrives at F1. In this
case, for each state, the perdition of long-term payoff for action left and
right can be calculated. For example, if gold setting is 100 vs 900, the left
prediction of gold for s1 is 100×0.9 = 90, the right prediction of gold for s1
is 900× (0.5)3 = 590.49. Next, the difference of the prediction for right and
left ∆R can be calculated. In this case, for s1, ∆Rs1 = 590.49− 90 = 500.49.
Next, the maximum reward for each state is calculated, for example, the
maximum reward of s1 is 590.49. The ∆R and maximum reward for all the
open states and reward settings plots in Figure 4.3.

When the ∆R < 0, the agent will go right; otherwise, go left. Two
things should be noticed. First, if the states are symmetrical about the final
states (for example, s2 and s3, s1 and s4), they will have the symmetrical
reward settings affection. Second, the policy of a state that is far from
both final states (for example, s2 and s3) will be more influenced by the
change of reward setting than the states closer to one of the final states
(for example, s1 and s4). As s2 and s3 are affected by the reward changes
of both final states, but s1 is less affected by the reward of F2, also s4 will
be less affected by the reward of F1.
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Figure 4.3: Bi-objective corridor deterministic results showing maximum
predicted reachable reward for each state compared with the differences
in the two predicted rewards as the actual difference ∆R varies.

4.2.2 Integer Input

To enable MOXCS and MOZCS to learn Pareto policies with integer-valued
inputs, a method similar to Min-Max Representation (MMR) [72] is intro-
duced. In this method, each attribute in the condition of the classifier is
represented as an interval predicate in the form of (li, ui) where li, ui are
the minimum and maximum bounds of the interval respectively. The ge-
netic operators such as covering, mutation, crossover, and subsumption
also need to be changed.

(1) The covering technique generates a new classifier into the system
when the population does not contain any classifier to match the
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current input. The covering process creates a classifier containing
intervals (li, ui) given by li = xi−R[0, s0); ui = xi +R[0, s0) where s0

is a constant number, R[0, s0) is a random number between 0 and xi,
and xi is an input value.

(2) In the mutation process, the li or ui might be added or minus R[0, s0)

by chance.

(3) In the crossover process, two classifiers will be selected, li or ui of
them might be switched by chance.

(4) It follows the subsumption process in the MOXCS and MOZCS, but
when li > lm and ui < um means classifier i is more general than
classifier m.

4.3 Experiment Settings

In order to evaluate the learning effectiveness of MOXCS, the experiment
will be implemented on two multi-objective Markov problems: multi-
objective maze, deep sea treasure corridor and one multi-objective PO-
MDP problem: deep sea treasure to test the performance of MOXCS on
those MORL problems.

In order to determine the effectiveness of MOXCS, the performance
of the learned classifiers will be evaluated for 3500 problem instances at
every open state in the maze environment. In this work, two different
performance measures total hypervolume over all states (THV ) and the match
rate of the learned optimal policies and the theoretical optimal policies (%OP ) as
described in subsection 3.3.2, page 79 will be used to evaluate the learned
Pareto Front and the learned optimal policies.

For this purpose, from every open state si, the learned optimal policies
will be compared against the theoretical optimal policies for the selected
weight

−→
λn (n = 0, ...k). Only when they match, will it be counted in the
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policy match rate. Given this, the percentage of true Pareto optimal policies
%OP is calculated in all the open states of the maze. Note, in the experi-
ment, the number of weights in 4.2.1 is set as 11, so 11 evenly distributed
weights between (0, 1) and (1, 0) are initialized. In result analysis, only
the result of weight

−→
λ1 = (0.1, 0.9) is demonstrated as the trend is similar

between different weights.

Both THV and %OP will be calculated by averaging the results of
30 independent runs of MOXCS. In all the experiments, typical param-
eter settings recommended in [14] has been followed. Particularly, the
crossover probability χ = 0.8, the mutation probability µ = 0.001, the
error threshold ε0 = 0.05, the classifier deleting threshold θdel = 200, and
the subsumption threshold θsub = 20. The GA subsumption is set to false.
Meanwhile, the threshold for performing the niche GA is set to 500 which
is much higher than 25 in single step problems, as the reward is encoun-
tered infrequently and policy learning is slow to converge. Finally, the
population size N in all maze problems is set to 6000.

4.3.1 Benchmarks

The test problems, tested algorithms, baselines, and why they have been
chosen are described as follows: The effectiveness and efficiency of MOXCS
have been tested in bi-objective mazes, and more testing for discussion
of Pareto Front follows in subsection 4.4. MO-XCS, which was tested in
Chapter 3, has been chosen as a baseline to evaluate the effectiveness and
efficiency of MOXCS as MOXCS is designed to improve the limitations
of MO-XCS (eg. consuming a large amount of storage, lack of general-
ization ability). In subsection 4.5, the following experiments are imple-
mented. MOXCS, MOZCS, and PQL have been tested in the Deep Sea
Treasure Corridor problem. PQL functions as a baseline because it is an
existing MORL algorithm for DST, thus it should solve DSTC. MOXCS-
integer and PQL have been tested in the Deep Sea Treasure problem for
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evaluating the effectiveness and efficiency of the PO-MDP problem. PQL
works as a baseline because it is an existing MORL algorithm for the PO-
MDP problem DST. MOXCS and XCS have been tested in the Deep Sea
Treasure Corridor (DSTC) for comparing the number of solutions on the
PF learned by the algorithms. MOXCS is the baseline, and it compares
with XCS to show whether MOXCS can learn more optimal solutions to
DSTC than XCS. Note, though PQL can solve DSTC as well, it lacks gen-
eralization ability thus it is not tested here and for further problems.

MOXCS and MOZCS have been tested in the DSTC problem, which
analyzes the relationship between learning more solutions on a PF and
learning problem itself. From the previous testing problems, MOXCS has
demonstrated its effectiveness, efficiency, and generalization ability, thus
MOXCS is the algorithm that is taken forward and works as a baseline for
this test. The result shows MOXCS is more efficient (faster to learn) on
learning solutions on the PF than MOZCS. MOXCS has been tested in the
DSTC problem for analyzing the relationship between more solutions on a
PF and different weights and exploring PF shapes. This is because MOXCS
is more efficient in learning solutions on PF than MOZCS on DSTC, so it
had been adopted for testing to learn solutions with specified weights, and
testing with different shapes of PF to see if the Pareto optimal policies can
be learned to address different shapes of PF.

The Novel MOXCS and MOXCS have been tested in a small Multi-
Objective maze for evaluating the search strategy. The baseline is MOXCS
for comparing the performance of MOXCS with novelty search strategy
and without novelty search strategy on MORL problems, however, the
experiment result shows novelty search cannot help to improve the capa-
bility of MOXCS to learn more multi-objective optimal solutions. In sub-
section 4.6, MOXCS, MOZCS, and PQL have been tested in Multi-Maze.
PQL works as a baseline for comparing the generalization ability of the
other two LCS-based algorithms, where PQL cannot generalize the envi-
ronment while MOXCS and MOZCS can generalize the environment by
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encoding the inputs. Then, MOXCS has been planned to be tested in the
Multi-Maze connection problem for evaluating its generalization ability
of it. However, during the testing, it has been found that the environment
does not work for testing the MORL algorithm.

4.4 Results: Bi-Objective Maze

To evaluate the learning effectiveness of MOXCS, experiments are con-
ducted on three complex bi-objective maze problems (bi-objective maze4,
bi-objective maze5, and bi-objective maze6) in Figure 3.2, Figure 3.3, and
Figure 3.4 respectively. The results will be demonstrated and discussed in
this section. Here ‘food’ is reached with ‘gold’ to align the terminology
with Deep Sea Treasure problem description.

4.4.1 Bi-Objective Maze4

As all the learning curves for the different gold reward settings have a
similar trend, Figure 4.4 only shows the performance of gold reward for
F1 and F2 as 30 vs 100 with 4 weights (

−→
λ1...
−→
λ4) for MOXCS on bi-objective

maze4. The result is divided into two parts, the Total Hypervolume (THV)
of each open location and the Optimal Policy match rate (%OP ). In Figure
4.4, there are three lines in the same color used to represent the perfor-
mance for each weight. The middle line is the average value of the results
from 30 runs for THV and %OP , whereas the other two lines demonstrate
the variance of the performance. Note, in the first 1000 problem instances,
the variance is large, but not much difference after 1000 problem instances,
which means MOXCS becomes much more stable after 1000 problem in-
stances. It shows that MOXCS can manage to achieve the theoretical opti-
mal THV after learning 800 problem instances. It is also shown that %OP

has the almost same trend as THV , but %OP converges faster than THV .
%OP achieves 100% after only 400 problem instances, as small changes in
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Figure 4.4: Learning performance, i.e. The average value and variance of
THV and %OP , on the bi-objective maze4 problem.

THV sometimes do not affect the action selection.

The full results of different weights and gold reward settings for MOXCS
on bi-objective maze4 are shown in Table 4.1, where the R1 is the reward
for ‘F1’ in Figures 3.2, and THV ∗ is the optimal total hypervolume over all
states for the reward settings in R1.

It can be seen that MOXCS reaches the optimal performance for THV

and %OP for all the gold reward settings after 1200 and 550 learning prob-
lem respectively. Note, when there is a huge difference between the re-
ward settings on ‘F1’ and ‘F2’, THV ∗ is much high than that when the re-
ward settings on ‘F1’ and ‘F2’ is similar. In this case, the learning problems
increase a bit, but it is reasonable in order to achieve a better performance.
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Table 4.1: Learning performance on the bi-objective maze4

R1 20 30 40 50 60 65 70 80 90 100 110

THV* 22396 20615 19225 18015 17016 16727 16695 16932 17606 19552 21217

THV 1200 800 650 650 550 450 450 600 700 800 800

%OP 300 400 450 550 350 350 250 300 300 550 55

Table 4.2: Learning performance on the bi-objective maze5

R1 20 30 40 50 60 65 70 80 90 100 110

THV* 28754 26842 25368 24185 23537 23336 23318 23530 24275 25314 26930

THV 1400 1300 1100 900 900 750 650 1100 1200 1500 1450

%OP 600 550 850 650 900 750 650 900 900 900 950

4.4.2 Bi-Objective Maze5

Similar trends of maze4 were observed in the performance of maze5. The
optimal performance for THV and %OP for bi-objective maze5 is achieved
after 1400 and 950 problem instance respectively, see Table 4.2.

4.4.3 Bi-Objective Maze6

The experiment on maze6 has the same trend with maze4 and maze5. The
performance of gold reward for F1 set from 20 to 10 on bi-objective maze6
is shown in Table 4.3.

Table 4.3: Learning performance on the bi-objective maze6

R1 20 30 40 50 60 65 70 80 90 100 110

THV* 26373 24589 23036 22051 22024 22171 22654 24090 25962 28119 30314

THV 1250 1250 900 950 750 1000 750 900 1000 1350 1050

%OP 500 550 600 850 750 650 550 750 850 900 900
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4.4.4 Discussion of Pareto Front

In Subsection 4.2.1, the deterministic result of the influence of the reward
settings on PFs was demonstrated. In this section, the result of varying
the reward settings at the final state F1 and F2, and weights settings on bi-
objective maze policy learning problems will be tested. Certain states are
selected to compare the influence of varying gold rewards and weights, as
the influence is not only affected by the current weight and gold reward
settings but also highly related to the position of states in the maze. All
analysis data was generated only for one single run to analyze the behav-
ior. Results were collected after 3500 training problem instances in each ex-
periment because the learned policies are converged and stable after 3500
training problem instances.

Reward Settings

In order to demonstrate how the reward settings affect the action selection
for states having two objectives, the weights are fixed as −→λ = (0.0, 1.0),
which means the agent only favors the larger reward. The total reward for
both F1 and F2 is 130, the reward for F1 starts from 20, and increase 10 by
each time, until it reaches 110, whereas, the reward for F2 starts from 110,
and decreases to 20 finally. There are 10 reward settings that are tested for
each bi-objective maze problem.

In Figure 4.5, the axis is the difference of reward from F1 and F2, i.e.
the value of average prediction of action following policy to F1 subtracted
by the average prediction of action following policy to F2. If the Differ-
ence of PA for F1 and F2 is positive (∆PA > 0), the action following policy
to F1 will be selected, otherwise the action following policy to F2 will be
selected. In this experiment, the influence of reward settings is studied on
the states s10, s14, s22, s8 in bi-objective maze4. A few points from Figure
4.5 should be noticed. First, s8 has less affect than s10 (same with s22 com-
pared with s14), as s8 is further from F2, so the affect of the reward from
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Figure 4.5: Influence of Gold Settings on Action Selection in Maze4

F2 is discounted by the discount rate γ in equation. 2.21. In addition, the
trend of action selection is symmetrical according to its position. For ex-
ample, s10 and s22 have an opposite trend on action selection policies when
changing the reward ratio of F1 and F2. Similarly, these two findings are
also observed in bi-objective maze5 and maze6.

Weights and Rewards

Figure 4.6, Figure 4.7 and Figure 4.8 show how the weights of objectives
and ratio of gold setting in the second objective (gold collection) affect the
policy for action selection for three open positions s10, s3, s13 in bi-objective
maze 4, 5, 6 respectively. In each figure, each line with different shape
shows the influence of the gold reward varies as in Subsection 4.4.4. Dif-
ferent lines represent different weights settings. The figures show that



4.5. PO-MDP ENVIRONMENT 105

Figure 4.6: Reward and Weights Influence on Action Selection in Maze4

when placing more weight on gold, the action selection policy will be sim-
ilar to the policy only considering the gold setting on the second objective.
On the other hand, when the weights vary, the learned optimal policy will
change as well.

4.5 PO-MDP Environment

As the results of Bi-Objective Maze problems in Section 4.4, MOXCS can
solve the MORL problems in Markov environments. In this section, MOXCS
is modified by two approaches to address a Multi-Objective Reinforce-
ment Learning problem, Deep Sea Treasure problem. The first approach
is adding extra characters in the DST environment to transform DST as
an Non-Markov environment, which called Deep Sea Treasure Corridor
(DSTC). The second approach is to edit the condition of the classifiers as
integers to cope with the DST environment.
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Figure 4.7: Reward and Weights Influence on Action Selection in Maze5

4.5.1 Deep Sea Treasure Corridor

The original Deep Sea Treasure (DST) is one of the benchmarks for testing
MORL algorithms [86]. In Figure 4.9, the DST environment is a grid of 11
rows and 10 columns. A submarine is moving in the grid and trying to find
one of the treasures at the bottom of the sea. The submarine can perform
four different moves (up, down, right, left). In case the action applied takes
the ship off the grid or into the sea floor, the submarine’s position does not
change.

When applying the traditional MORL algorithm to solve the DST prob-
lem, the inputs are the x-axis and y-axis index of the current position [86].
However, MOXCS receives a binary encoded input from the observation
of the current state. In this case, there will have lots of aliased inputs from
the states in the environment. For example, for states with the same color
in Figure 4.9, they have the same binary encoded inputs. To cope with the
non-Markov MORL problem in this DST environment, here, some walls
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Figure 4.8: Reward and Weights Influence on Action Selection in Maze6

’T ’ and ’N ’ will be added into the top right part of DST environment to
make it as an observable Markov problem. As shown in Figure 4.10, the
open states are the only a set of states near those treasures (final states with
reward points. eg. 3000), which looks like a corridor, which is why it is
called “Deep Sea Treasure Corridor (DSTC)”.

In Figure 4.10, the grey squares represent the treasures and the num-
bers on the squares are their reward values. The black squares are the sea
floor and the white ones are the open states that the submarine can go
through freely. In the training process, each trail starts at any open state
of the grid and ends when the submarine picks one of the treasures. In
the testing process, each trail starts from the top left state of the grid and
ends when picking one of the treasures. This problem has two objectives:
to minimize the number of moves performed while maximizing the value
of the treasure found. The immediate reward signal is a two-dimensional
vector r⃗, which is received for each step. The first element is always -1
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Figure 4.9: Deep Sea Treasure

as the cost per step, the second element is the amount of reward that is
received at the current state. For example, 0 is received at any open state;
when the agent moves into a treasure location, the value indicated in Fig-
ure 4.10 is received. Note, the treasure value settings in the experiment are
different from the standard DST problem, as when the discounted value
from different treasures to the start state is higher, it is easier for MOXCS
to collect those treasures.

Similar to bi-objective maze problems, the result is divided into two
parts, the Optimal Policy match rate (%OP ) and the Total Hypervolume
(THV), but the THV is only calculated on the start position (S1). In Figure
4.11, we can see that %OP achieves 100% after only 50 problem instances
for MOXCS and 200 for MOZCS. To treat bi-objective maze problems as
benchmark, the PQL is tested on the problem as well, PQL achieves 100%
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Figure 4.10: Deep Sea Treasure Corridor

after 500 learning problems. On the other hand, MOXCS and MOZCS
can manage to achieve the theoretical optimal THV after learning 2500
problem instances, but PQL achieves the theoretical optimal THV after
500 learning problems. Clearly, PQL can learn more optimal policies with
the Pareto strategy as it stored all the potential solutions. For MOXCS
and MOZCS, the diversity is maintained with GA, enable them to find the
some of the optimal policies earlier. As the result shown in Figure 4.11, the
MOXCS converges faster than MOZCS on %OP , and they have a similar
performance on THV . In this case, MOZCS is not considered as a solution
to the other similar MORL problems.

4.5.2 Deep Sea Treasure

As mentioned in Section 4.5.1, the deep sea treasure is a 11 × 10 grid in
Figure 4.9 with 10 final states. It looks similar to the conventional DST
problem. For the traditional LCSs, the inputs of the current position are
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Figure 4.11: Learning performance, i.e. THV and %OP , on the Deep Sea
Treasure Corridor problem.

the status of the 8 squares around the current position. In this case, the
DST becomes a PO-MDP problem, where there are some states that have
the same inputs to make this problem more difficult to solve by LCSs. XCS
has no standard mechanism to disambiguate these states.

The two integers of the current coordinate are employed as the imme-
diate inputs. For example, the inputs of the left top corner are (1, 1); the
inputs of the right top corner is (10, 1). In this section, Min-Max Repre-
sentation (MMR) [72] is employed to handle integer inputs. In the MMR,
the interval predicate is represented as (li, ui) where li, ui are the minimum
and maximum bounds of the interval. For crossover in the run GA pro-
cess, it will crossover li or ui by chance; for mutation, it will randomly add
or minus a small amount of li or ui.

Similar to the DSTC problem, the result is divided into two parts, the
Total Hypervolume (THV) of each open location and the Optimal Policy
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Figure 4.12: Learning performance, i.e. THV and %OP , on deep sea trea-
sure problem.

match rate (%OP ). In Figure 4.12, we can see that MOXCS can manage
to achieve the theoretical optimal THV after learning 1200 problem in-
stances, whereas PQL achieves it after about 400 problem instances. The
THV of PQL is a little higher than MOXCS as PQL can learn more pareto
optimal solutions. %OP achieves 100% by MOXCS and PQL after only 50
and 100 problem instances respectively, but both of them include many
trails that only go from state (1,1) to (1,2).

4.5.3 Discussion of Pareto Front

MOXCS Versus XCS on Deep Sea Treasure Corridor

In order to compare the performance of MOXCS and XCS on solving MORL
problems, both of them will be run on DSTC problem for 30 times for 3000
iterations to see what treasure can be collected by these two algorithms.
One example of policies learned by XCS and MOXCS are shown in Fig-
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Figure 4.13: Policies learned by XCS. Two different rules shown blue and
red in Deep Sea Treasure Corridor

From Figure 4.14, we can see that MOXCS can learn different policies
for different weights to collect treasures: 20, 100, and 3000. Moreover, XCS
learns one policy every single time and only collects treasure: 1200. In this
case, it is clear that MOXCS has better performance than XCS on searching
multi-policy in MORL problems.

How to Get More Treasure Locations

In Subsection 4.5.1, it is demonstrated that the Deep Sea Treasure Corridor
problem can be solved by MOXCS. However, there are 10 treasures (final
states) in the DSCT problem, so there are some treasures that may not be
found by the agent sometimes. To improve the performance, how to find
more treasure locations will be studied.
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Figure 4.14: Policies learned by MOXCS. Four rules shown with different
weights: red, purple, blue, green in Deep Sea Treasure Corridor

First, stopping training at the proper time may help get more treasures.
In Table 4.4, it shows the treasures were collected in DSTC problem by
MOXCS and MOZCS from 1000 to 10000 Learning Problems (LPs) in a sin-
gle run. From the results in Table 4.4, it is clear that the treasures collected
by the agent may vary with the number of learning problems. For exam-
ple, the agent collects the treasures with MOXCS with value 20, 100, 1200,
and 3000 at 1000 number-of-learning problems, and collects the treasures
with value 20, 100, 3000 at 2000 problems.

Secondly, adjusting the weights range may help collect more treasures.
The hypothesis behind it is that the agent only initializes 26 evenly dis-
tributed weights from [0, 1] to [1, 0] in the experiment, and those weights
are corresponding to treasures with values: 20, 100, and 3000. For exam-
ple, the relationship of treasure value and weights found in experiments
is shown in Table 4.5.
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Table 4.4: Treasures collected on different number of learning problems

Number of LPs Treasures MOXCS Treasures MOZCS
1000 20, 100, 1200, 3000 20, 100, 1200
2000 20, 100, 3000 20, 100, 3000
3000 20, 100, 2000, 3000 20, 100, 3000
4000 20, 100, 3000 20, 100, 3000
5000 20, 100, 3000 20, 100, 1200,3000
6000 20, 100, 3000 20, 100, 3000
7000 20, 100, 3000 20, 100, 3000
8000 20, 100, 3000 20, 100,2000, 3000
9000 20, 100, 3000 20, 100, 3000
10000 20, 100, 2000, 3000 20, 100, 3000

Table 4.5: Treasures collected on different weights

Treasures Weights
3000 λ1 less than 0.60
100 λ1 between 0.60 and 0.70
20 λ1 larger than 0.70
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Table 4.6: Treasures collected based on more weights

Treasures Weights
1200 λ = 0.445
130 λ = 0.453
200 λ = 0.493
800 λ = 0.517
800 λ = 0.617
800 λ = 0.645

In order to find the treasures were not found in Table 4.4, 137 weights
are initialized where λ1 between 0.431 and 0.703, which are supposed to
find treasure values between 100 and 3000. The new treasures obtained
from 3000 training problem instances is in Table 4.6. From the results, we
can see that with proper weight settings, more treasures are possible to be
found by the agent under MOXCS algorithm.

Note, the treasure 3000 is found by most weights where λ is less than
0.60. This means even initializing an evenly distributed weight in the
problem space, MOXCS cannot guarantee to find a distributed solution
in the solution space if the partition is too large.

PF Shapes: Deep Sea Treasure

In this subsection, MOXCS is tested with different shapes of PF to see if
the Pareto policies can be learned to address different shapes of PF. The
results are shown in Figures 4.15 and 4.16. In those Figures, the solutions
on the Pareto front are demonstrated as orange and blue dots, where the
solutions are found by MOXCS are in blue, and the solutions not found by
MOXCS are in orange.

In Figure 4.15, there are some solutions on the middle range of the
PF niche cannot be achieved. This is because the gradient between each
treasure is too small. In this case, the agent cannot get enough information
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Figure 4.15: Treasures found by MOXCS on Convex PF

Figure 4.16: Treasures found by MOXCS on Concave PF

from learning, so it cannot find the treasures in the middle of the domain.

In Figure 4.16, we can see if the gradient between two treasures is large
enough, which means that with enough information, all treasures to the
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left are found by the agent. However, there are solutions to the right of
the Concave PF not found, which is because the discounted rewards at the
start position of those solutions are smaller than the discounted rewards
from other solutions. For example, the discount rate in the experiment is
0.85, so the discounted reward of the fifth treasure at the start position is
599.4, whereas that of the fourth treasure is 641.2.

Novelty Search for PF

The fitness function normally measures the progress towards an objective
in the search space as the objective function in Evolutionary Computation.
However, it shows that the objective functions themselves may actively
misdirect the search towards dead ends, or it might lead to a local opti-
mum. In this case, novelty search in Evolutionary Computation is used to
avoid the bias from the fitness function. Novelty search selects for ”novel
behavior”, by some domain-dependent definition of novelty. For exam-
ple, a novelty in a Maze-solving domain might be ”difference of routes ex-
plored”. Eventually, the networks that take every possible route through
the maze will be found, and the use could then select the fastest. This
would work far better than a naive ”objective”, like distance to the goal,
which could easily result in local optima that never solves the maze.

In order to compare the performance of MOXCS with novelty search
and without novelty search on MORL problems, both of the two strategies
are run on a small Multi-Objective maze problem in Figure 4.17. For each
algorithm, the experiment runs on three different rewards settings for 500
iterations to see what treasure can be collected by these two algorithms.
The results are collected from 10 trials.

As the results in Table 4.7, there is not much difference between nov-
elty MOXCS and without novelty search strategy, except there is 1 of 10
times that MOXCS without novelty search found the treasure of 100 when
the reward setting is (20,100,180). This means the novelty search does not
work very effectively in the multi-objective maze problem. This is because
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Figure 4.17: A small Multi-Objective maze problem

Table 4.7: Treasures collected by novelty MOXCS and MOXCS

Treasures Treasures found by novelty MOXCS Treasures found by MOXCS
20,100,130 20(10),100(10) 20(10),100(10)
20,100,180 20(10),100(0),180(10) 20(10),100(1),180(10)
20,100,150 20(10),100(10),150(10) 20(10),100(10),150(10)

novelty search strategy suits for the large space but the reward distribu-
tion is evenly.

Another of note is that the treasure of 130 was never being found when
the reward setting is (20,100,130), the treasure of 100 is only found once
when the reward setting is (20,100,150), which means the MOXCS algo-
rithm is high sensitive to the reward setting. It can only work on the re-
ward setting when the discounted reward from the further final state is
smaller than that of the closer final state.

4.6 Generalization

MOXCS is a rule-based algorithm, which towards evolves accuracy with
implicit and explicit pressures encouraging maximal generality. In this
chapter, the multi-maze is developed to evaluate the generalization ability
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of MOXCS.

4.6.1 Multi-Maze

In Figure 4.18, the multi-maze environment is a maze, which is connected
by three same small bi-objective mazes. Each small bi-objective maze has
14 open states and 2 final states, thus multi-maze has 52 open states and
6 final states. The reward for F1, F3, F5 is 20, the reward for F2, F4, F6 is
60. Same with other problems, the agent can perform four different moves
(up, down, right, left). Each trail starts from any open state and ends at one
of the final states.

For testing the generalization ability of MOXCS, the agent is trained in
one of the mazes and tested in the three same small bi-objective mazes.

Similarly, in Figure 4.19, there are two different colors used to represent
the performance of each algorithm (MOXCS and PQL). Each line is the
average value of the results from 30 runs for %OP and THV.

For the %OP , PQL converges after 100 learning problems, whereas
MOXCS reaches the optimal performance for %OP after about 80 problem
instances respectively. This indicates the power of a rule-based solution,
because the rule-based solution can be reused if the environment of the
current state is the same as another state.

From the THV result, we can see PQL can learn the largest THV (about
94000) after 1200 learning problems. The THV learned by MOXCS con-
verges to a good solution after only 50 learning problems, where it keeps
slowly raising. There are some differences on the highest THV learned by
PQL and MOXCS, which is due to the limitation of weighted sum opti-
mization strategy of MOXCS.

4.6.2 Multi-Maze Connection

In this environment, three mazes in Figure. 4.18 are connected by adding
two states S43 and S44 for testing the generalization ability of MOXCS.



120 CHAPTER 4. MOXCS: DECOMPOSITION BASED MOEA IN XCS

T TTTTT TT

T s
11

s
10Ts

9T TT

T s
7Ts

6
s

5T Ts
8

T s
4

s
3Ts

2
s

1 TF
1

T s
16

s
15

s
14

s
13

s
12 Ts

17

T s
20

s
19Ts

18T Ts
21

T Ts
24

s
23

s
22

F
2 Ts

25

T
TT

TTT
TT

T TTTTT TT

T s
10

s
10Ts

9T TT

T s
7Ts

5
s

5T Ts
8

T s
4

s
3 T s

2
s

1 TF
1

T s
12

s
15

s
11

s
13

s
12 Ts

17

T s
13

s
19Ts

18T Ts
21

T Ts
24

s
23

s
22

F
2 Ts

25

T
TT

TTT
TT

 T s
3

F
1 T

s
4

s
8

T

T

T

F
2

T

T

s
9

F
2

T

s
6

N

N

N

T TT TF2T N s
14

T

T

T

T

T

T

T

T

T

T

T

T

T TTTTT

T

s
11

s
10Ts

9

T

T

s
7Ts

6
s

5

T

T

s
4

s
3Ts

2

s
1

T

s
16

s
15

s
14

s
13

s
12

T

s
20

s
19Ts

18

T

T

Ts
24

s
23

s
22

F
2

T

TTTT

T

T TTTTT

T

s
10

s
10Ts

9

T

T

s
7Ts

5
s

5

T

T

s
4

s
3 T s

2

s
15

T

s
12

s
15

s
11

s
13

s
12

T

s
13

s
19Ts

18

T

T

Ts
24

s
23

s
22

F
2

T

TTTT

T

 T s
3

F
1

s
18

s
22

T

T

T

F
2

T

T

s
9

F
4

T

s
6

N

N

N

T TT TF2T N s
14

T TTTTT

T s
11

s
10Ts

9T

T s
7Ts

6
s

5T

T s
4

s
3Ts

2
s

1

T s
16

s
15

s
14

s
13

s
12

T s
20

s
19Ts

18T
T Ts

24
s

23
s

22
F

2

T TTTTT

T TTTTT

T s
10

s
10Ts

9T

T s
7Ts

5
s

5T

T s
4

s
3 T s

2
s

1

T s
12

s
15

s
11

s
13

s
12

T s
13

s
19Ts

18T
T Ts

24
s

23
s

22
F

2

T TTTTT

 T s
3

F
1

s
4

s
8

T

T

T

F
2

T
T

s
9

F
2

T

s
6

N

N

N
T TT TF2T N s

14

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

TTT

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

TTT

TT

TT

Ts
8

TF
1

Ts
17

Ts
21

Ts
25

TT

TT

TT

Ts
8

TF
1

Ts
17

Ts
21

Ts
25

TT

T

T

T

T

T

T

T

T

T

T

T

T

T

TTTT TTTT

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

TTT

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

TTT

TT

TT

Ts
8

TF
1

Ts
17

Ts
21

Ts
25

TT

TT

TT

Ts
8

TF
1

Ts
17

Ts
21

Ts
25

TT

T

T

T

T

T

T

T

T

T

T

T

T

T

TTTT TTTT

T

T

T

T

T

T

T

T

T

T

T

T

T

T

TTT

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

TTT

TT

TT

Ts
8

TF
1

Ts
17

Ts
21

Ts
25

TT

TT

TT

Ts
8

TF
1

Ts
17

Ts
21

Ts
25

TT

T

T

T

T

T

T

T

T

T

T

T

T

T

TTTT TTTT

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

TTT

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

TTT

TT

TT

Ts
8

TF
1

Ts
17

Ts
21

Ts
25

TT

TT

Ts
8

TF
1

Ts
17

Ts
21

Ts
25

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

TT

TT

Ts
8

TF
1

Ts
17

Ts
21

Ts
25

TT

TT

Ts
8

TF
1

Ts
17

Ts
21

Ts
25

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

TTT TT TT TT

TTTT TT

s
11

s
10Ts

9 TT

s
7Ts

6
s

5 Ts
8

s
4

s
3Ts

2 TF
1

s
16

s
15

s
14

s
13 Ts

17

s
20

s
19Ts

18 Ts
21

Ts
24

s
23

s
22 Ts

25

TT TT

TTTT TT

s
24

s
10Ts

9 TT

s
21Ts

19
s

5 Ts
8

s
4

s
3 T s

16 TF
1

s
26

s
15

s
25

s
13 Ts

17

s
27

s
19Ts

18 Ts
21

Ts
24

s
23

s
22 Ts

25

TT TT

 T s
17

F
3 T

T

T

T

T

s
23

s
20

N

N

N

T TT TF2T N s
28

T

T

T

T

T

T

T

T

T

T

T

T

T TTTTTT TTTTT

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

TTT

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

TTTTT TT

T

T

s
1

s
12

T

F
2

T

T

T

s
29

s
12

T

F
2

T

s
32

s
36

F
2

T

F
6

T

TT TT

TTTTT T

s
11

s
10Ts

9T T

s
7Ts

6
s

5T s
8

s
4

s
3Ts

2T F
1

s
16

s
15

s
14

s
13T s

17

s
20

s
19Ts

18T s
21

Ts
24

s
23

s
22T s

25

TTT T

TTTTT T

s
38

s
10Ts

9T T

s
35Ts

33
s

5T s
8

s
4

s
3 T s

30T F
1

s
40

s
15

s
39

s
13T s

17

s
41

s
19Ts

18T s
21

Ts
24

s
23

s
22T s

25

TTT T

 T s
31

F
5 T

T

T

T

T

s
37

s
34

N

N

N

T TT TF2T N s
42

T

T

T

T

T

T

T

T

T

T

T

T

TT TTTT TTTT TT

TT TT

TT

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

TTT

T

T

T

T

TT

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

TTT

Figure 4.18: Multi-maze environment is a environment which is consisted
by three same small bi-objective mazes

Similar to the previous experiment, the agent is trained in one of the
mazes in Figure 4.18, but tested in the environment in Figure. 4.20.

However, the environment does not work well for testing two-objective
RL algorithm. For example, when training the agent in one of the mazes
in Figure 4.18, the agent learns take action up at state S14 to get 20 reward
from final state F1. However, when in the connected maze in Figure 4.20,
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Figure 4.19: Multi-Maze results of PQL and MOXCS

the agent has to take action down to get 60 reward from F4. In this case,
the testing will fail due to the action of the same state not being consistent
in the training and testing session.

4.7 Chapter Summary

In this Chapter, a new LCS-based MORL algorithm MOXCS, is developed
based on the hypothesis that the decomposition of MOEA/D for multi-
objective tasks can sufficiently approximate the complicated PF shapes to
enable such policy learning within XCS. According to the literature review,
it is the first LCS-based algorithm that can solve the Deep Sea Treasure
problem.

In order to test the efficiency of MOXCS for solving MORL problems,
MOXCS has been tested on three bi-objective mazes. The performance
has been measured by evaluating the hypervolume and policy match rate.
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Figure 4.20: Multi-Maze Connection environment is an environment,
which consists of three same small bi-objective mazes

From the results, we can see that MOXCS can solve bi-objective maze prob-
lems successfully.

MOXCS has been used to solve two MORL benchmarks, Deep Sea
Treasure Corridor and Deep Sea Treasure. For the Deep Sea Treasure Cor-
ridor problem, the PO-MDP environment is converted to a MDP environ-
ment by adding extra characters. For Deep Sea Treasure problem, MOXCS
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handles the PO-MDP environment by updating the condition to include
the integer input of each state in the environment. The learned Pareto
Front by MOXCS is discussed as well. First, it shows MOXCS is capable
to learn more optimal solutions on the Pareto Front than XCS. Second, it
discussed how to get more solutions on the Pareto Front, for example, stop
training at a proper time, or adjust the weights settings in MOXCS. Third,
MOXCS is tested to learn the solutions on different shapes of the Pareto
Front. It shows MOXCS is able to find Pareto Optimal Policies with both
Convex and Concave PF. Lastly, the novelty search strategy is integrated
in MOXCS aims to learn more solutions on the Pareto Front. However,
the experiment result shows novelty research cannot help to improve the
capability of MOXCS to learn more multi-objective optimal solutions.

The generalization ability of MOXCS has been evaluated by solving the
Multi-Maze, where the agent trained by MOXCS in one maze, but tested in
several same mazes at the same time. The evidence from the results shows
MOXCS resolves the Multi-Maze problem successfully. However, the ex-
periment will fail when the maze in the testing environment is slightly
different from the maze in the training environment. The next chapter
will evaluate the generalization ability of MOXCS in a new MORL envi-
ronment.

Although MOXCS is able to solve observable MORL problems, DST
has limited states for the agent to explore. In chapter 6, MOXCS will be
evaluated on a larger scale MORL space.
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Chapter 5

Quantifying the Generalization
Ability of MOXCS in
Multi-Objective Reinforcement
Learning problems

5.1 Introduction

In the previous chapter, MOXCS was used to solve a variety of MORL
problems, such as multi-objective mazes, Deep Sea Treasure Corridor, and
Deep Sea Treasure Corridor. Although the trained agents can solve those
complex tasks, it is unknown how well they transfer their experience to
new environments. For example, for the existing common benchmarks in
the previous chapters, it is common to use the same environments for both
training and testing. In this case, it is hard to evaluate the generalization
ability of MORL algorithms. However, in the real world, it would be quite
common that the testing environment is slightly different from the training
environment. For example, when training the robot to explore open case
mines, the real work environment is different from the lab environment as

125
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it will be windy and rainy on some days.

5.1.1 Chapter Goals

The goal of this chapter is to evaluate the generalization ability of MOXCS
in solving MORL problems. For achieving the goal, CoinRun is intro-
duced, where CoinRun is a training environment that provides a metric
for evaluating the agent’s ability to transfer its experience to novel situa-
tions.

In this chapter, the generalization ability of XCS is tested by CoinRun.
Furthermore, the CoinRun environment is updated as a bi-objective re-
inforcement learning environment for testing the generalization ability of
MOXCS.

Three major technical issues have been identified and addressed to
achieve this goal in this chapter as follows.

(1) The position of the agent in the original CoinRun game is discredit-
ing into discrete from continuous.

(2) The PO-MDP environment is transformed to MDP by adding extra
characters.

(3) A sub-actions strategy is used to enable the movement of agent ob-
vious enough to let the XCS and MOXCS sensor it.

5.1.2 Chapter Organization

This chapter is structured as follows. Section 5.2 introduces CoinRun and
multi-objective CoinRun problems as the benchmark for testing the gen-
eralization ability of RL and MORL algorithms. Next, Section 5.3 presents
the methodology that uses XCS and MOXCS algorithms to solve the single-
objective and multi-objective CoinRun problem. The results of using XCS
to solve single-objective CoinRun and evaluate the generalization ability
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of XCS are given in Section 5.4 and 5.5. While the results of using MOXCS
to solve multi-objective CoinRun and evaluate the generalization ability
of MOXCS are given in Sections 5.6 and 5.7 respectively. Then, the dis-
cussion is given in Section 5.8, and the chapter is finally summarized in
Section 5.9.

5.2 Problem Description

5.2.1 CoinRun Problem

CoinRun is a training environment from Open AI, which provides a metric
for evaluating reinforcement learning algorithms, especially for the gener-
alization ability of reinforcement learning algorithms [17]. The issue of the
most common benchmarks is using the same environment for both train-
ing and testing. CoinRun addresses this issue by generating environments
to construct distinct training and test sets. Thus, the agent can be trained
in the training set and tested in a slightly different environment.

Figure 5.1: The figure is adapted from
OpenAI(https://openai.com/blog/quantifying-generalization-in-
reinforcement-learning/). Each level of CoinRun has a difficulty
setting from 1 to 3. Two levels are displayed above: Difficulty-1 (left) and
Difficulty-3 (right)

The goal of each CoinRun level is simple: collect the single coin that
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Action Number Action
a0 do nothing
a1 right
a2 left
a3 jump
a4 right-jump
a5 left-jump
a6 down

Table 5.1: Actions in CoinRun environment.

lies at the end of the level. Several obstacles, both stationary and non-
stationary, are laid between the agent and the coin. There are many types
of obstacles, like different monsters, that need to be avoided between the
agent and the coin. As shown in Table 5.1, the agent can take seven differ-
ent actions: right, left, jump, right-jump, left jump, and step down in the
environment. There are different difficulty levels in CoinRun, as shown
in Figure 5.1. Each level of CoinRun has a difficulty setting from 1 to 3.
Two levels are displayed above: Difficulty-1 (left) and Difficulty-3 (right).
The goal of the agent is to get the coin in the CoinRun environment with
minimum steps.

The agent’s position x and y in the environment is not only impacted
by the action but it is also impacted by gravity and the constraints like
max jump and max speed, thus the agent must learn not only the correct
direction to the final state but also how to handle the constraints. Here are
the technical settings of the CoinRun problem, which are not available to
the agent.

Technical Settings
gravity = 0.2 units (5.1)

max jump = 1.5 units (5.2)

max speed = 0.5 units (5.3)
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Shift Calculation

vx = (random(0, 1) ∗ 2− 1) ∗ 0.5 ∗max speed units (5.4)

vy = (0.8 + 0.2 ∗ random(0, 1)) ∗max jump− gravity units (5.5)

The vx is the movement on the x-axis, and vy is the movement on the y-
axis.

In each trial of the CoinRun game, the agent starts at the left-hand side
and ends when the agent collects the coin, as shown in Figure 5.1. A colli-
sion with an obstacle (not including walls, floor, and boxes) results in the
agent’s immediate death. The level terminates when the agent dies, the
coin is collected, or after 1000 time steps. The only reward in the environ-
ment is obtained by collecting the coin, and this reward is a fixed positive
constant.

In this thesis, to build up an environment for testing the generalization
ability of MORL algorithms, there are two restrictions and changes are
applied to the CoinRun environment.

Firstly, although the goal of this thesis in this chapter is to build up
an environment based on CoinRun Environment to test the generalization
ability of MORL algorithms, it is easier to start with a simple environment
and explore the complicated environment in future work. In this case, two
simple environments from the original CoinRun game developed by Ope-
nAI have been selected for implementing the experiments in this chapter.
The original experiments are implemented by OpenAI come across differ-
ent levels of difficulties. As the implemented agents are moved with an al-
locentric view usually in deep NNs, which can handle large input spaces,
the solution of the deep NNs is robust to different difficulties. However, it
needs lots of resources, such as GPU and data to train. For LCS, normally
the agent is only equipped with a local egocentric view of its state, but it
can learn the solution for a specific situation with limited inputs on the
situation, and the solution can generalize to another similar situation. In
this case, to test the generalization ability of LCS and avoid its limitation
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of limited inputs, the training and testing environments for LCS should be
selected properly. For example, in Difficulty-3 environment on the right-
hand side in Figure 5.1, there are many moving obstacles, such as mon-
sters, that are relatively fast-moving, if the agent would not sense them
before a collision that would end learning. As MOXCS is equipped with a
local egocentric view of its state, it is hard for it to sense the moving objects
in time. Thus, rather than test the MOXCS algorithm on the Difficulty-3
environment, the Difficulty-1 environment on the left-hand side will be
considered. In this case, only two Difficulty-1 CoinRun Environments,
Environment 1 (Env1) and CoinRun Environment 5 (Env5), are employed
as is shown in Figures 5.2 and 5.3. In these two environments, the agent
needs to find the shortcut to get the coin, but there are no monsters in these
environments.

Secondly, the actions that are affected need to be operated over a group
of time steps to enable the movement of the agent to be larger than one
unit, so LCS can sensor the difference of the inputs. In this case, the agent
cannot decide an action at each time step, so may not be able to make the
most effective action in some states. In this case, instead of terminating af-
ter 1000 time steps in the original setting, each trail terminates after 20000-
time steps in the training process of each experiment. Therefore, the time
step is increased to give the agent more time to learn to solve the problem.
However, as observed, if the agent has learned the optimal policy to col-
lect the coin, then the agent can collect the coin within 90-time steps, or if
the agent has learned the potential optimal policy to collect the coin, then
the agent should be able to collect the coin within 180-time steps. In this
case, to evaluate if the agent has learned the optimal policy or a poten-
tial optimal policy, each trial terminates after 900-time steps in the testing
process.
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Figure 5.2: CoinRun Environment 1 (Env1).

Figure 5.3: CoinRun Environment 5 (Env5).
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5.2.2 Multi-Objective CoinRun

For evaluating the MORL algorithm, the second objective is added in Coin-
Run Env1 and Env5; thus, two bi-objective reinforcement learning exper-
iments, ‘CoinRun Action Bias’ and ‘CoinRun Step VS Reward’ are de-
signed.

CoinRun Action Bias

In the CoinRun environment, there are two optimal solutions for the agent
to get the coin. The first optimal solution is to get the coin on the right-
hand side by taking as much as action right-jump. The second optimal
solution is to get the coin by maximizing the long-term payoff. In this
case, to encourage the agent to choose the first solution, another objective
is added to push the agent to get the coin by taking more action right-
jump. This experiment is called ‘CoinRun Action Bias’. There are two
objectives in ‘CoinRun Action Bias’. The first objective is encouraging the
agent to take as much as the action right jump to get the coin, and the
second objective is minimizing the steps to get the coin. In this bi-objective
environment, it will return a reward of 150 if the agent takes an action right
jump and returns a reward of 150 when the agent gets the coin for the first
objective, and the agent will get a reward of 1000 when it gets the coin for
the second objective. For the first objective, both strategies reach a coin,
but the policies are conflicting at the last step, where one is to reach the
coin as soon as possible, the other account policy takes as many as right
jumps. However, it would not affect the result much when the agent is
close enough to the coin at the last step, because no matter whether the
agent takes action go right or right jump, it will get the coin. The action
bias is not only useful in a bi-objective MORL testing environment but also
can be applied in practice. For example, it can be used to train a robot to
complete a certain task with actions that have a low power consumption.
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CoinRun Step VS Reward

Another bi-objective experiment derived from CoinRun is called ‘Coin-
Run Step VS Reward’. In this environment, another coin is added in the
CoinRun Environment where the coin is closer to the start state but has
less reward. In this case, there are two objectives in ‘CoinRun Step VS Re-
ward’, the first objective is collecting the coin with a large reward, and the
second objective is collecting the coin with fewer steps. The first coin that
is closer to the start state has a reward of 30, and the second coin that is
away from the start state has a reward of 60. Thus, steps and rewards are
conflicting.

5.3 Techniques Used to Solve CoinRun

The CoinRun problem is originally a continuous space for testing agents
with allocentric knowledge of the domain. However, XCS and MOXCS
can only solve the problem in the discrete space with an egocentric state
representation. Thus, several changes need to be made to XCS and MOXCS
for solving the CoinRun problem, where the existing technique for dis-
cretizing continuous input has been used and the sub-action technique for
transforming PD-MDP to MDP is developed.

Note, XCS has been evaluated in solving single-objective CoinRun in
Section 5.4 and Single Objective CoinRun Generalization problem in Sec-
tion 5.5, the reasons are:

(1) Solving single-objective CoinRun works as a stepping stone for de-
veloping multi-objective approaches.

(2) Solving Single Objective CoinRun Generalization problem works as
a stepping stone for evaluating the generalization ability of multi-
objective approaches.

(3) Solving both of these two problems can help investigate issues that
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occur during developing multi-objective approaches and evaluating
the generalization ability of multi-objective approaches as it provides
a baseline of only setting one objective in the MORL problem.

(4) Solving both of these two problems work as benchmarks for com-
parison purpose: The single-objective problems tested by XCS has
been transferred as one of the multi-objective in the MORL prob-
lems (Multi-Objective CoinRun and Multi-Objective CoinRun Gen-
eralization) for evaluating the effectiveness and generalization abil-
ity of MOXCS in the later research. In this case, it is able to identify
how the added/new objective in the multi-objective environment af-
fects the performance of the original objective (the single-objective
tested by XCS) in the MORL problem.

5.3.1 Discretizing Continuous Input

The original CoinRun environment can be divided into two parts: the
background (e.g., walls, boxes, platform) and the agent.
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Figure 5.4: Character Coding of CoinRun Env1.
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Figure 5.5: Character Coding of CoinRun Env5.

The first part is a set of characters that can be used to present the back-
ground in CoinRun as shown in Figure 5.4 and Figure 5.5. For instance,
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the space is represented by ‘.’, a wall is represented by ‘A’, the surface
is represented by ‘S’, a box is represented by ‘%’, and the coin is repre-
sented by 1. Then the program will render the characters into images.
Furthermore, there are colorful CoinRun environments in Env1 and Env5
in Figures 5.2 and 5.3.

Agent

The second part is the agent. The agent position is represented by two
floats x and y as described in the shift calculation in Section 5.2.1 that gov-
erns how the agent moves. However, XCS and MOXCS are not able to en-
code the continuous float input, so the discrete float input will be rounded
up to the nearest integer. For example, as is shown in Figure. 5.6, if the
agent’s position is x = [0, 1) and y = [0, 1), it will be considered that the
agent is at the state S1, and the condition of S1 is consists of the 8 char-
acters surrounding it with an order from the top to bottom by row then
left to right within each row, which is ‘A..A.ASS’. Similarly, if the agent’s
position is x = [1, 2) and y = [0, 1), it will be considered the agent is at the
state S2, and the condition is ‘.....SSS’.
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5.3.2 PO-MDP Environment
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Figure 5.6: Discrete environment representation in CoinRun Env1.
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Figure 5.7: Discrete environment representation in CoinRun Env5.

There are many aliased states in CoinRun Env1 and Env5, where some
positions have the same condition to make them a PO-MDP problem. To
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demonstrate the problem clearly, the first example will be S2 and S3 in
CoinRun Env1 and Env5 as shown in Figures 5.6 and 5.7. If the agent is at
state S2 or S3 in both Figure 5.6 and Figure 5.7, the input string would be
‘.....SSS’ for both state S2 and S3. However, at state S2, the agent has to
take action go right, whereas at state S3, the agent has to take action right-
jump. In this case, a simple Learning Classifier System could not solve the
problem, as it could not tell what is the best action for the current state. As
introduced in Section 2, such aliased states create a PO-MDP problem.
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Figure 5.8: Removing Aliasing in CoinRun Environment 1.

To remove aliasing, new characters T and N are added in the environ-
ment as shown in Figure 5.8 and Figure 5.9. As a result, the input string
for state S2 is ‘.....SST ’, whereas the input string for state S3 is ‘.....STS’.
Similar to the states S2 and S3, other states have a Non-Markov property;
in this case, T and N are added in the character CoinRun environment to
resolve the non-Markov issue. To be noted, there are still some states that
have the same condition in Figure 5.8 and Figure 5.9; for example, the con-
dition for many states on the top of the environment is ‘........’. However,
the action for those states with input ‘........’ is consistent, which should be
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taking action right or right-jump; thus, there is no need to distinguish those
states.
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Figure 5.9: Solving Non-Aliased problem in CoinRun Environment 5.

5.3.3 Sub-action Strategy

Besides the discrete-continuous inputs and aliased environment, another
challenge is that the movement of the agent in one step is not obvious
enough to be detected by the Learning Classifier System.

For example, the agent is supposed to learn to take action right-jump
from state S4 (see Figure 5.6 and 5.7). However, sometimes after the agent
took action right-jump from state S4, it still stays at S4. This is because,
in those discrete environments, one character represents a distance of 1
unit, however, according to the technical details in equation 5.2.1 in Sec-
tion 5.2.1, page 127, the vx and vy could be less than 1 unit. In this case,
even the agent makes a correct action and moves in the correct direction;
it will stay in the same state. This eventually makes the domain Non-
Markov as there is a probability distribution for the state transition, which
the agent cannot learn as it depends on other previous states or actions.
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A sub-action strategy is designed to address this problem. With the
sub-action strategy, when taking one action a, the agent will take several
following actions to ensure that the distance of movement is larger than 1.
In the following actions, the first n1 actions are the same with action a so that
the action has enough impact on the agent’s movement. Then the agent
will take another n2 actions do nothing. This will give the agent a window
to enable the action a to make a difference to its position in the CoinRun
environment and simulate the inertia on the agent for any action. With
such a sub-action strategy, the environment is transformed from a Non-
Markov problem to a Markov problem.

5.4 Single Objective CoinRun

To test the performance of XCS on solving CoinRun problems, XCS is im-
plemented on CoinRun Env1 in Figure 5.10 and Env5 in Figure 5.11. For
example, 1 represents the coin, S% represents box can walk through, S$

represents a box cannot walk through.
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Figure 5.10: States of CoinRun Environment 1(Env1).
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Figure 5.11: States of CoinRun Environment 5(Env5).

5.4.1 Experiment Settings

All results in this chapter are calculated by averaging the results of 30 in-
dependent runs of XCS for single objective experiments and MOXCS for
multi-objective experiments. In the experiments in subsection 5.4, 5.5, 5.6
and 5.7, most of the typical parameter settings recommended in [14] have
been followed. Particularly, the number of bits in the state is 24, the num-
ber of actions and the minimum number of elements in the match set in
this system is 7, the probability of the system exploring the environment
is 0.5, α and nu which are used to update the classifier’s fitness is 0.1 and
5, the learning rate for prediction, error, and fitness β is 0.2, the classifier
deleting threshold θdel = 200, the threshold of average fitness for calculat-
ing the deletion vote of a classifier in the system δ is 0.1, the subsumption
threshold θsub = 20, crossover rate in GA is 0.8.

Three parameter settings were added in the experiments in this chap-
ter. First, a parameter ifG is added, which denotes if the system runs in
the generalization environments (i.e. different training and test environ-
ments), and it is highly related to the deletion process. When it is false,
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Table 5.2: Optimal results achieved manually in Env1 and Env5

Env R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 Avg
env1 66 54 53 68 75 55 52 70 65 53 61.1
env5 63 60 60 60 70 59 63 63 61 70 62.9

namely, the system runs in the same environment. In this case, the clas-
sifier will be decoded to measure the influence on the population. Thus,
it will only delete the classifier if any action set is still larger than one af-
ter deleting the classifier. When it is true, as the P# in the generalization
environment is high, it is costly to decode the condition. In this case, it
will only reduce the numerosity of choice in the deletion process. Second,
a parameter cha is added; where if it is set to true, the error and fitness
of the child in GA are equal to the initial settings of the error and fitness.
Third, a parameter chc is added; if it is true, the error and fitness of the
child in GA are equal to the initial settings of the error and fitness when
the crossover is applied in GA.

In the experiments in this section, the following parameters are set in
both CoinRun Env1 and Env5. For example, the threshold for performing
the niche GA θga is 2000, the payoff decay rate gamma is 0.9, the probability
of generating a hash in a condition P# is 0.18, the mutation rate µ is 0.04,
the prediction p, error e and fitness f are 20, 0.001 and 10, as cha is true,
chc would not affect child’s error and fitness. In addition, the population
size N is 8,000,000 and ifG is false in Env1, but the population size N is
800,000 and ifG is true in Env5.

5.4.2 Optimal Solution

To estimate the optimal solution that minimizes the steps to get the coin
in both CoinRun Environment Env1 and Env5 in Figures. 5.2 and 5.3, the
game is practiced and then played ten times manually.

The steps that are manually played are counted and shown in Table
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5.2, and the average steps that minimize the steps to reach the coin are
61.1 and 62.9 in CoinRun Env1 and Env5, respectively. In this chapter, the
solution that minimizes the steps to reach the coin in each experiment by
XCS or MOXCS that is similar to or less than 61.1 steps in Env1 and 62.9
steps in Env5 is considered as an optimal solution. As only the main steps
are counted in the result of the experiment in this chapter, and one main
step consists of 9 steps, the solution with 6 to 7 main steps is considered as
an optimal solution that minimizes the steps to reach the coin in CoinRun
Env1 and Env5.

5.4.3 Experiment Result

CoinRun Env1.

Figure 5.12: Single Objective CoinRun Environment 1(Env1).

The experiment is first conducted on CoinRun Env1 with XCS. As clearly
evidenced in Figure 5.12, XCS can solve the problem after learning through
a small number of problem instances. Particularly, the number of steps for
solving the problem in Env1 drops from 100 to 9.6 main steps within 30
learning problems rapidly and achieves the best performance of 6.0 main
steps (54 steps), which can be considered as the optimal solution, as it is
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better than the manual result (61.1 steps). The performance fluctuates from
100 to 260 learning problems and keeps stable after that.

CoinRun Env5.

Figure 5.13: Single Objective CoinRun Environment 5(Env5).

The result in Figure 5.13 demonstrates that XCS can solve the RL problem
in CoinRun Env5. Similar to Env1, the number of steps for solving the
problem drops dramatically within 100 learning problems, then becomes
stable. Particularly, the steps for solving the problem in Env5 drop from
96.9 to 6.7 at 70 learning problems. The best performance is 6.23 main
steps (equals or less than 57-time steps) at 190 learning problems, which
is better than the manual result (62.9 steps). However, the result fluctu-
ates slightly after convergence as classifiers lack training, new classifiers,
or over general classifiers with low accuracy affecting the long-term pre-
diction at some states.

5.5 Single Objective CoinRun Generalization

The CoinRun environment can be used to measure how successful algo-
rithms generalize from a given set of training environments to an unseen
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set of testing environments. In this section, Env1 and Env5 are used as
training and testing environments, and then respectively reversed, namely,
uses Env5 as the training environment and use Env1 as the testing envi-
ronment.

As shown in Figures 5.10 and 5.11, the main difference between train-
ing and testing environments is the height on the right-hand side of S4,
where the platform on the right-hand side of S4 is two layers higher in
Env1 than that in Env5. Therefore, the gap between the train and test per-
formance determines if the agent learns to jump over to a platform with
different heights.

5.5.1 Experiment Settings

In this section, the experiment settings are mostly the same as the settings
in 5.4.1 including the parameters of XCS and the rules for collecting re-
sults. Some parameters that different from 5.4.1 are listed. When doing
the cross-training and testing in both environments, the population size N

is 8000, the threshold for performing the niche GA θga is 200000, the payoff
decay rate γ is 0.93, and fitness f is 0.0005. The mutation rate µ is 0.05, and
the probability of generating a hash in a condition P# is 0.7 when training
in Env1 and testing in Env5. µ is 0.04, and P# is 0.79 when training in Env5
and testing in Env1.
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5.5.2 Experiment Result

Training in Env1 and testing in Env5

Figure 5.14: Learning performance of training in Environment 1 and test-
ing in Environment 5, i.e. the average steps to the coin.

The agent is trained to play CoinRun in Env1 with XCS, and then it is
tested in Env5. From the result in Figure 5.14, it can be seen that when the
agent is trained with XCS in Env1, it has the potential to solve the problem
in Env5. The main steps for solving the problem in Env5 drop dramatically
at the beginning and then fluctuate in a range. More details, within 20
learning problems, which drops from 94.4 to 63.3. However, after that, the
main steps fluctuate in a range between 63.3 to 79 most of the time. But
it achieves the best performance of 57.3 at 330 and 410 learning problems
and jumps to 81.5 at 350 learning problems.
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Training in Env5 and testing in Env1

Figure 5.15: Learning performance of training in Env5 and testing on
Env1, i.e. the average steps to the coin.

In this section, the agent is trained with XCS in Env5, then tested in Env1.
As evidenced in Figure 5.15, it shows that the agent trained with XCS in
Env5 has the potential to solve the problem in Env1. Similar to the re-
sult in Figure 5.14, the main steps for solving the problem in Env5 drop
dramatically at the beginning, then fluctuate in a range. More details, the
main steps for solving the problem in Env1 drop dramatically within 60
learning problems from 97 to 59.9 with fluctuation, where 59.9 is the best
performance. Then, the main steps fluctuate in a range between 66.2 to
81.5 most of the time. However, it achieves the best performance of 63.2 at
310 learning problems and jumps 84.7 at 360 learning problems.

Compare the results from training and testing in the same environment
in Figures 5.12 and 5.13 and in the different environments in Figures 5.14
and 5.15, we can see that XCS can solve the CoinRun problem when train-
ing and testing in the same environment, and has the potential to solve
the generalization problem. However, there are still some issues that have
not been addressed for solving the generalization problem, thus the per-
formance of the generalization is not as good as training and testing in



148 CHAPTER 5. QUANTIFYING GENERALIZATION OF MOXCS

the same environment. The low performance of generalization may be
due to there is lack of a match set for some states or new classifiers and
over general classifiers with low accuracy have a negative influence on
the long-term prediction.

Although XCS can solve Env1 and Env5 successfully, there are still
some test domains that cannot be solved due to the sub-action method-
ology 5.3.3. For example, there is a specific requirement on the agent’s
position on the right-hand side of Figure 5.1 as the agent has to jump to
the left-hand side corner of the first higher foreground to avoid the mon-
ster. However, it will be difficult and sometimes impossible for the agent
to achieve this. This is because the movement of vx and vy is larger than
1 unit with the sub-action strategy. Thus, the agent may jump over the
left-hand side corner of the first higher foreground and collide with the
monster. In this case, the experiments in this chapter will focus on the
environment without monsters, but the experiments in the environment
with monsters will be explored in future work.

5.6 Multi-Objective CoinRun

5.6.1 CoinRun Action Bias

Experiment Design

In the previous experiment in Section 5.4.3, there are different optimal
policies to solve the problem in Env1. Those optimal policies have the
same total number of steps but with different actions, as shown in Table
5.3.
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Policies a0 a1 a2 a3 a4 a5 a6 Total Steps
1 0 4 0 0 1 1 0 6
2 0 4 0 0 2 0 0 6
3 0 5 0 1 0 0 0 6

Table 5.3: Equal number of total steps can arise from different actions com-
binations.

From the Table 5.3, if the agent attempts to find the shortest route from
state S1 to get the coin at the final state, it needs to take more actions related
to go right and jump, like actions a1, a3, a4, a5. However, different actions
may lead to different optimal policies. In this case, to see how the actions
lead to different optimal policies, another objective is added to force the
agent to take more action a4 right-jump. Thus, there are two objectives in
the CoinRun environment. The first objective is to get the coin with actions
a4 right-jump as many as possible, for each action a4 it will get a reward of
150 and get a reward of 150, at the final state. The second objective is to
minimize the steps to get the coin with a reward of 1000.

Experiment Settings

To test the performance of MOXCS on solving MORL problems, MOXCS
is implemented on multi-objective CoinRun Env1 and Env5. Both results
of these two environments will be calculated by averaging the results of
30 independent runs of MOXCS.

In the experiments of this section, the typical parameter settings [14]
have been followed. The experiment settings are mostly the same as the
settings in Section 5.4.1 including the parameters of XCS and the rules for
collecting results. The following parameters are different: In both training
and testing in Env1 and Env5, the population size N is 80,000, the thresh-
old for performing the niche GA θga is 20,000, the error, fitness, prediction
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for both objective1 and objective2 are 20, 0.001 and 10, and ifG is true.
Note, the population size N is higher than normal settings to decrease the
chance that a useful classifier is deleted. Finally, the maximum number of
steps for the testing process is 500 as the objective is related to taking as
much right-jump with weights [0.5, 0.5] and [0, 1].

In the ‘CoinRun Action Bias’ experiments, the agent is trained and
tested by MOXCS with three different weights of two objectives in the
environment, the first and last weights can test the two objectives directly,
while the weight at the middle can test how these two objectives influ-
ence the learned policy at the same time. In the figures of results, there are
three different colors in Figures 5.16 and 5.17 used to represent the differ-
ent weights. Each line is the average value of performance, namely, the
steps for getting the coin.

Results and Analysis

Figure 5.16: Learning performance, i.e. The average steps to get the coin
in CoinRun Environment 1 (Env1).
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Figure 5.17: Learning performance, i.e. the average steps on CoinRun En-
vironment 5 (Env5).

It can be seen in Figure 5.16, MOXCS is managed to solve the problem with
three weights in Env1. The number of main steps for solving the problem
is first starting from 100, 82, 85 and drop to 9.3, 9.4, 6.8 at 20 learning prob-
lems with weights [0, 1], [0.5, 0.5] and [1, 0] respectively. At 70 learning
problems, the performance of those three weights [0, 1], [0.5, 0.5] and [1,
0] are most similar, which are 6.0, 6.1 and 6.7. However, after that, those
results increase slightly before 170 learning problems, then there is a drop
with weights [0, 1] and [1, 0], but an increase of weight [0.5, 0.5]. Finally,
the performance of those three weights [0, 1], [0.5, 0.5] and [1, 0] is 15.5,
31.5 and 10.6 respectively. In this case, we can see weight [1, 0] converges
best, while the weight [0.5, 0.5] converges worst than other weights. It
may be because weight [0.5, 0.5] was influenced by two weights, thus los-
ing the focus. The best performance to solve problem in Env1 is 6.1, 6.1,
6.8 main steps for weights [0, 1], [0.5, 0.5] and [1, 0] respectively.

It can be seen in Figure 5.17, MOXCS is managed to solve the problem
with three weights in Env5. In most cases, the performance of weight [1,
0] is better than [0, 1], and the last is [0.5, 0.5]. With weights [0, 1], [0.5, 0.5]
and [1, 0], the number of main steps for solving the problem drops from
93.76 to 6.5, from 72.9 to 13.2, from 89.2 to 9.96 within 60 learning prob-
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lems. After that, they fluctuate in a range but are more serious than that in
Env1. With weight [0, 1], it fluctuates between 6.4 to 19.2 but reaches 25.3
at 180 learning problems. With weight [0.5, 0.5], it fluctuates between 13.7
to 28.9 but reaches 38 at 180 learning problems. With weight [1, 0], it fluc-
tuates between 7 and 14.1 steps. Similar to Env1, weight [1, 0] converges
best, while the weight [0.5, 0.5] converges worst than other weights may
due to weight [0.5, 0.5] being influenced by two weights, thus losing the
focus. The best performance to solve problem in Env5 is 6.4, 13.2, 7.0 main
steps for weights [0, 1], [0.5, 0.5] and [1, 0] respectively.

As discussed in Section 5.6.1, MOXCS can solve the ‘CoinRun Action
Bias’ problems when training and testing the agent in the same environ-
ment. The performance difference of those three weights in Env1 is less
than that in Env5, especially before 170 learning problems.

Figure 5.18: The average number of action right-jump in CoinRun Envi-
ronment 1.
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Figure 5.19: The number of right-jump on CoinRun Environment 5.

In Env1, as shown in Figure 5.18, in general, the number of right jumps
in weights [1, 0] is higher than [0.5, 0.5], then is [0, 1]. In more detail,
for weight [1, 0], the number of right-jumps drops from 18.46 to 4.7 at 20
learning problems, then it fluctuates between 4.73 to 8.9 until 200 learning
problems. With weight [0.5, 0.5], it first drops from 20.26 to 2.6 with 30
learning problems, then, it fluctuates between 1.4 and 4.4 until 200 learn-
ing problems. For weight [0, 1], the number of right jumps increases to 4.8
within ten learning problems, then drops to 0.93 at 30 learning problems,
after that, it fluctuates between 0.76 and 1.1 most of the time.

In Env5, as shown in Figure 5.19, the result is more diverging than that
in Env1. In general, the number of right jumps in weights [1, 0] is higher
than [0.5, 0.5] and [0, 1]. For weight [1, 0], the number of action right jump
in the main steps drop from 17.6 to 3.8 within 20 learning problems, then it
fluctuates between 4.5 and 6.1 except 7.36 at 120 learning problems. With
weight [0.5, 0.5], the total right-jump actions in the main steps drop from
12.76 to 3.7 within 20 learning problems, it then fluctuates between 2.6 to
8.73 until 70 learning problems, after that, it fluctuates between 3.1 and
6.9. With weight [0, 1], it increases from 0.26 to 4.50 within 10 learning
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problems and then fluctuates between 1.26 and 4.5.

From the discussion, we can see that, in general, the number of right
jumps in weights [1, 0] and [0.5, 0.5] is higher than that of weight [0, 1], as
the first objective is to take more actions right jump and the second action
is to get the coin as soon as possible. In addition, the number of the action
right jump for each weight has less fluctuation in Env1 than that in Env5
as the performance to solving the problem in Env1 converges better than
that in Env5.

Discussion

As shown in Figures 5.16 and 5.17, the results converge better in Env1
than in Env5, especially before 110 learning problems, but they are similar
at 200 learning problems. To find the reason behind the different perfor-
mances in Env1 and Env5, the examples of the learned policy at 70 and 200
learning problems are explored for analysis. Note that not all the states re-
lated to the policies learned in Env1 and Env5 are plotted in Figures 5.10
and 5.11 as the space is limited. In this case, the Figures 5.10 and 5.11 are
extended as shown in Figures 5.20 and 5.21 to analyze the learned policies
in Env1 and Env5.



5.6. MULTI-OBJECTIVE COINRUN 155

Figure 5.20: Extended States of CoinRun Environment 1(Env1).

Figure 5.21: Extended States of CoinRun Environment 5(Env5).
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Figure 5.22: Learned policies in ‘CoinRun Action Bias’ Env1.

As shown in the top of Figure 5.22, all the policy of three weights can
solve the problems with 6 main steps at 70 learning problems, where there
are 4, 1, and 0 of a4 with weights [1, 0], [0.5, 0.5], and [0, 1] respectively.
In this case, it converges well at 70 learning problems. At 200 learning
problems, with weight [0.5, 0.5], the policy cannot converge in some cases
(as it shows at the right-hand side of the bottom in Figure 5.22), thus it
has the highest average main steps. In this case, at 200 learning problems,
weights [1, 0] and [0, 1] performs better than [0.5, 0.5]. For weight [1, 0], it
has more steps than [0, 1] is because the optimal policies have more steps
and more a4 (as it shows at the left-hand side bottom in Figure 5.22), which
makes sense for the objective of taking more action right jump. However,
though there are more steps in the optimal solution of weight [1, 0] and
[0, 1], weight [1, 0] performs better than [0, 1] may due to the optimum
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policy of [1, 0] is easier to learn than that of [0, 1]. This is because the
optimum policy of weight [1, 0] just needs to take the same actions right
jump at different states, but the optimum policy of weight [0, 1] has to take
different actions according to the conditions.

Figure 5.23: Learned policies in ‘CoinRun Action Bias’ Env5.

As shown in Figure 5.23, at 70 learning problems, with the learned
policy, the best policies with weights [1, 0], [0.5, 0.5] and [0, 1] can solve
the problem in Env5 with 6, 8, and 6 steps under the best cases (as shown
on the top of Figure 5.23). With 200 learning problems, the policies with
three weights are possible to converge, but with weight [0.5, 0.5], it may
stick at S%2, thus increasing the average steps for solving the problem. In
addition, same with Env1, there is more action a4 in the optimum policy
of weight [1, 0] than that of [0, 1] as the difference on the goals of different
objectives.

From the discussion, we can see that in both Env1 and Env5 1) with
weight [0.5, 0.5], the policy is harder to converge than other weights, thus
the performance is slightly less optimum than weights [0, 1] and [1, 0],
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especially at 200 learning problems. 2) there are more actions right jump in
the optimum policy which makes sense for the objective of weight [1, 0].
3) weight [1, 0] performs better than [0, 1] as the optimum policy of [1, 0]
is easier to learn than that of [0, 1].

5.6.2 CoinRun Step vs Reward

In ‘CoinRun Action Bias’, the agent is trying to learn two objectives: take
more action right-jump to reach the coin and minimize the steps to reach
the coin, where the first objective is to test if the agent can generalize the
action, and the second objective is to test if the agent can maximize the
long term payoff with MOXCS. In this subsection, to test if the agent can
minimize the steps to reach the coin with MOXCS, another objective is
added in the CoinRun environment. Each result obtained in this work is
the average of 30 independent runs.

Experiment Design

Another two-objective CoinRun experiment is developed by adding an-
other coin in Env1 and Env5, which is closer to the start state but with
less reward. Thus, as it shows in Figure 5.24, there are two coins in the
environment, where if the agent collects the red one, it will get the reward
of 30, or if the agent collects the yellow coin, it will get the reward of 60.
In this case, the two objectives are to minimize the steps to get the final
reward and to maximize the long-term payoff to get the coin with a larger
reward with more steps.
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Figure 5.24: Two Objectives in CoinRun Environment 5.

Figure 5.25: Two Objectives in CoinRun Environment 1.

In Section 5.6.2, the experiment is first conducted in Env1 and then
Env5, where the results will be shown and analyzed.
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Experiment Settings

In the experiments of this section, the typical parameter settings recom-
mended [14] have been followed. In this section, the experiment settings
are mostly the same as the settings in Section 5.6.1 including the parame-
ters of MOXCS and the rules for collecting results.

In the experiments of this section, some parameters are set in both
‘CoinRun Steps vs. Reward’ in both Env1 and Env5. For example, the
threshold for performing the niche GA θga is 2000, the payoff decay rate
gamma is 0.9, the probability of generating a hash in a condition P# is 0.18,
the mutation rate µ is 0.04, cha is true, chc is false and ifG is true. When
training and testing in Env1, N is 8000000, the prediction p, error e and
fitness f for the first objective are 0.2, 0.0001 and 10, those for the second
objective are 20, 0.001 and 10. When training and testing in Env5, N is
800000, the prediction p, error e and fitness f for the first objective are 0.3,
0.000001 and 10, those for the second objective are 20, 0.001 and 10.

Results and Analysis

The experiment results of MOXCS are collected in training and testing in
Env1 and Env5. As the trends of the results are quite similar in those two
environments, in this section, the results are demonstrated and discussed
together.

Figure 5.26: Percentage of the agent reaching final reward in Env1.
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Figure 5.27: Percentage of the agent get to the final reward in Env5.

The experiment results of MOXCS are collected in training and testing
in Env1 and Env5. As shown in Figures 5.26 and 5.27, in those two envi-
ronments, the percentage of the agent to get one of the coins starts from
40% and 70% in Env1 and Env5, but after that, the trends of them are quite
similar. The agent can get one of the coins in both Env1 and Env5 every
trial with 10 learning problems. At this stage, the agent collects the near-
est coin most of the time. Then there is a drop for both of them after that
when the agent is learning how to collect the coin further away but with
a larger reward in the second objective. For example, it drops to 81.6% at
50 learning problems in Env1 and 83.3% at 70 learning problems in Env5.
The percentage of the agent to get one of the coins increases back to over
90% shortly when the agent learns how to collect the coin further away
but with a large reward. For example, it increases to 95% with 210 learn-
ing problems in Env1 and 96.6% at 190 learning problems. After about 500
learning problems, the performance is relatively stable. Between 500 and
1500 learning problems, the percentage of the agent to get one of the coins
keeps between 93.3% and 98.3% in Env1, and between 93.3% and 100% in
Env5. But at the final stage, there is a drop in Env1, the percentage drops to
86.6% and 83.3% at 1910 and 1990 learning problems. There is a drop after
1500 learning problems as well. For example, in 1990 learning problems
in Env5, the percentage of getting one of the coins drops to 83.3%. This
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may be due to a new poor classifier or an over general classifier with high
error being added, thus influencing the accuracy of the long-term payoff
at some states.

Figure 5.28: Ratio of different coin types obtained by the agent with num-
ber of learning problems in Env1.

Figure 5.29: Ratio of different coin types obtained by the agent with num-
ber of learning problems in Env5.

In Figures 5.28 and 5.29, the ratio of an agent to get one of the coins
are plotted. The results in Env1 and Env5 are quite similar. As the total
ratio to get coin0 and coin1 is 100%, in this case, only the percentage to get
coin1 is analyzed here.

As shown in Figure 5.28 in Env1, the ratio to get coin1 is 1.7% with 10
learning problems, it increases to 50% at 320 learning problems. The ratio
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to get coin1 can go as high as 52.94% at 1960 learning problems and as low
as 48.2% at 1700 learning problems. Note, the ideal value of the ratio to get
coin1 is 50% as if it is higher than 50%, which means the ratio to get coin0
is under 50%. As shown in Figure 5.29 in Env5, the ratio to get coin1 starts
with 8.6% at 40 learning problems, then increases to 50% at 300 learning
problems. However, the performance fluctuated afterward, for example,
the percentage to get coin1 drops to 45.4% at 1590.

From the discussion, we can see that though there are some fluctua-
tions after they achieve the best performance, however, there is a clear
trend that the agent can collect coin0 and coin1 over at least 45% after the
performance has converged in both Env1 and Env5. In addition, the per-
formance of collecting different coin types in Env1 performs better than
that in Env5.

Figure 5.30: Number of steps in result in Env1.
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Figure 5.31: Number of steps in result in Env5.

To analyze how many steps that the agent learns to get one of the coins,
the total main steps to get one of the coins for each test are counted in both
Env1 and Env5. Note, as the goal is to understand the common case of
how many steps that the agent requires to get the coins for other analysis
later, for example, to define the number of steps in the optimal solution.
In this case, the details of the counts for each number of steps in the tests
are not our focus. In Figures 5.30 and 5.31, the total steps to get coins are
plotted. First, the agent takes one or two steps to get a coin most of the
time, i.e., the agent gets coin0. Second, in most common cases, it uses 6
main steps in Env1 and 6,7 or 8 main steps in Env5 to get coin1. Besides
the most common cases, when the agent uses less or equal than 15 steps
to collect coin1, it shows the potential to learn the optimum policies, thus
it can be considered as the sub-optimal policy. Third, some records show
the agent occasionally uses 16 to 50 steps to get a coin, but these records
could be ignored for two reasons: 1) the number of steps between 16 to 50
to get a coin is really rare. 2) the policy with 16 to 50 to reach a coin is not
an optimal policy and does not show any potential of learning optimum
policy. Last, when the agent spends 100 steps in the trail, as 100-time steps
are the settings of the maximum step in the test; thus, it means the agent
has not reached any coin.
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Figure 5.32: Obtaining coin with large reward in Env1.

Figure 5.33: Obtaining coin with large reward in Env5.

In Figures 5.32 and 5.33, the results focus on whether the agent obtain-
ing the coin with a large reward in Env1 and Env5 with an optimal policy
or sub-optimal policy. Following the distribution of the number of steps
in the learning policies, the results are divided into three groups. Group 1
is getting coin1 with less than and equal to 15 steps, which supposes the
agent finds the optimal policy or sub-optimal policy to get coin1. Groups 2
and 3 are collecting coin1 with 15 to 50 steps, or over 50 steps to get coin1,
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which are considered as the non-efficient policy, or could not find a policy
to reach the coin at all. Note, there are only two groups in these figures as
there is no data for Group 3.

From the results from Figures 5.32, we can see that the agent learns
to use an optimal policy to get coin1 at 100% of the time with 220 learn-
ing problems, and the performance is quite stable afterward in Env1. The
chance to learn and use the non-optimal policy achieves 0% after 210 learn-
ing problems and keeps stable in most cases. From the results of Env5 from
Figures 5.33, we can see that the percentage of using an optimum policy
to reach coin1 achieves 100% at 150 learning problems, but with a slight
drop to 96% after 1700 learning problems. The chance to learn and use
the non-optimal policy achieves 0% after 140 learning problems and keeps
stable in most cases, but there is a slight chance (0.03 to 0.04) to use the
non-optimal policy at over 1700 learning problems.

In addition, from both of the figures, we can see that with the training,
the ratio of Group 2 is reduced dramatically from about 20% to 0%. This
is means the agent stop using the sub-optimal rules to solve the problem
after learning the optimal rules.

5.7 Multi-Objective CoinRun Generalization

Experiment Settings

In the experiments of ‘CoinRun Action Bias Generalization’, the typical
parameter settings recommended [14] have been followed. The experi-
ment settings are mostly the same as the settings in 5.6.1 including the
parameters of MOXCS and the rules for collecting results, except the P#.
The P# is 0.6 when training in Env1 and testing in Env5, and it is 0.7 when
training in Env5 and testing in Env1.

In the experiments of ‘CoinRun Step vs Reward Generalization’, the
typical parameter settings recommended [14] have been followed as well.
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Some parameters are setting for this generalization experiments are listed.
For example, the prediction p, error e and fitness f for the first objective
are 0.2, 0.00000001 and 10, those for the second objective are 20, 0.0005 and
10, gamma is 0.93, cha is true, chc is false ,and ifG is true. When training
in Env1 and testing in Env5, N is 8000, θga is 200000, P# is 0.7, µ is 0.05.
When training in Env5 and testing in Env1, N is 8000000, θga is 2000, P# is
0.74, µ is 0.04.

5.7.1 Result of CoinRun Action Bias

As the evidence shows in Figures 5.16 and 5.17, MOXCS is able to solve the
multi-objective reinforcement learning problem (‘CoinRun Action Bias’) in
Env1 and Env5. In this subsection, the agent is trained in one environment
and tested in another environment to evaluate the generalization perfor-
mance.

Results and Analysis

The experimental results of MOXCS are collected by training in Env1 and
testing in Env5 (Env15), then training in Env5 and testing in Env1 (Env51),
respectively. As the trends of the results are quite similar in those two en-
vironments, in this section, the results will be demonstrated and discussed
together.
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Figure 5.34: Learning performance of training in Env1 and testing in Env5
(Env15).

Figure 5.35: Learning performance of training in Env5 and testing in Env1
(Env51).

It can be seen in Figure 5.34, in Env15, only weight [1, 0] is tend to
converge. The best performance for weights [1, 0], [0.5, 0.5] and [0, 1]
is 43.9 at 140 learning problems, 61.2 at 50 learning problems, and 69.6
at 20 learning problems respectively. Similar to the result in Env15, only
weight [1, 0] is tend to converge in Env51 as shown in Figure 5.35. The best
performance for weights [1, 0], [0.5, 0.5] and [0, 1] is 24.3 at 200 learning
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problems, 62.9 at 110 learning problems, and 72.7 at 130 learning problems
respectively.

From the results above, we can see that the results are hard to converge
with weights [0, 1] and [0.5, 0.5], but much easier with weight [1, 0] in both
Env15 and Env51.

Figure 5.36: The number of right-jumps when training in Env1 and testing
in Env5(Env15).

Figure 5.37: The number of right-jump when training in Env5 and testing
in Env1(Env51).
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As shown in Figure 5.36, in Env15, there are more actions right jump
in weight [1, 0] than weights [0.5, 0.5] and [0, 1]. With weight [1, 0], the
number of right jump in main steps for solving the ‘CoinRun Action Bias’
problem increases from 10.1 at the beginning to 16.4 at 60 learning prob-
lems, then drops to 12.2 at 90 learning problems, then fluctuates between
12.2 and 16.2 until 200 learning problems, except 11.3 at 150 learning prob-
lems. With weight [0.5, 0.5], the number of right jumps fluctuates between
2.0 to 7.1 most of the time, except 1.4 at the 160 learning problems. For
weight [0, 1], the number of right jumps fluctuates between 1.1 to 3.7, ex-
cept 6.9 at 10 and 4.2 at 150 learning problems. As shown in Figure 5.37,
in Env51, similar to that in Env15, weight [1, 0] has more right jumps than
weights [0.5, 0.5] and [0, 1] as well. However, with weight [1, 0], there is an
increasing trend in Env15 and a decreasing trend in Env51. In Env51, first,
with weight [1, 0], the number of right jumps for solving the ‘CoinRun
Action Bias’ problem increases from 10.2 to 19.8 at 20 learning problems,
then drops to 7.4 at 160 problems with huge fluctuation, finally slightly in-
creases to 9.1 at 200 learning problems. With weight [0.5, 0.5], the number
of right jumps fluctuates between 1.06 to 6.8 most of the time, except 0.4
at the 150 learning problems. For weight [0, 1], the number of right jumps
fluctuates between 0.6 to 5.0, except 5.8 at the beginning.

From the discussion above, we can see that more right jumps can help
to resolve the ‘CoinRun Action Bias’ problem. For example, with weight
[1, 0], in both Env15 and Env51, it has more right jumps, thus the result
converges better than other weights.

Discussions

As shown in Figures 5.34 and 5.35, as the whole trends of three weights
are consistent, where only the performance of weight [1, 0] is keeping im-
proving, but weights [0, 1] and [0.5, 0.5] cannot converge. In this case, to
find out the reason why weight [1, 0] converges better than other weights,
some of the examples of the learned policy at 200 learning problems are
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explored for analysis.

Figure 5.38: Learned policies of training in Env1 and testing in Env5
(Env15).

From the policies learn from Env15 at 200 learning problems in Figure
5.38, we can see that, first, with weights [1, 0] and [0.5, 0.5], there learned
policies can solve the problem with 11 and 12 steps, and hard to find the
policy to solve the problem with weight [0, 1]. It explains why weight [0, 1]
performs worse than other weights, and weight [1, 0] converges slightly
better than weight [0.5, 0.5] in Figure 5.34. Second, for both of the suc-
cessful and unsuccessful policies, there are more actions right jump with
weight [1, 0] than weight [0.5, 0.5] and [0, 1], which makes sense of the ob-
jectives for different weights. Third, some policies cannot reach the final
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state and are stuck in some states. There are two reasons for that. First,
it cannot find the match set at that state, thus taking action a0. Second,
it takes the wrong action as the new classifier and over general classifier
affect the prediction for the actions at that state.

Figure 5.39: Learned policies of training in Env5 and testing in Env1
(Env51).

Figure 5.39 shows the learned policies at 200 learning problems in Env51.
First, with those three weights [1,0], [0.5, 0.5], and [0, 1], the problem in
Env5 can be solved by training in Env1 with 9, 8, and 7 steps, respectively,
and there are more optimum policies with weight [1, 0]. It explains why
weight [1, 0] performs better than other weights. Second, weight [1, 0]
has more action right jump than other weights among all the other optimal
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policies. For example, it has 9 action right jump in the optimal policy with
weight [1, 0], but only 1 and 2 action right jump in the optimal policies with
weights [0.5, 0.5] and [0, 1].

From what has been discussed above, we can see that in both gener-
alization experiments, with weight [1, 0], the agent is easier to reach the
coin, as it only needs to general the action right jump in different states,
whereas for other weights, it is trickier to general the inputs from different
states. This is because when generalizing the inputs from different states
if the P# used for generalization is too low, it is hard to generate enough
match set to some state at the testing environment. On the other hand, if
the P# used for generalization is too high, the over general classifier with
the high error may have a negative influence on the predictions of some
states. Therefore, generalizing action is easier than generalizing the envi-
ronment.

5.7.2 Result of CoinRun Step vs Reward

For testing the performance of MOXCS to learn the larger reward, another
objective is added in Env1 and Env5, as shown in Figures. 5.24 and 5.25.
In this section, the agent is trained by MOXCS in one environment and
tested in another environment for evaluating the generalization ability of
MOXCS.

Results and Analysis

The experimental results of MOXCS are collected by training in Env1 and
testing in Env5 (Env15), then training in Env5 and testing in Env1 (Env51),
respectively. As the trends of the results are quite similar in those two en-
vironments, in this section, the results will be demonstrated and discussed
together.

When training and testing in different environments, the performance
is not as good as training and testing in the same environment as shown
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in Figures 5.40 and 5.41. However, we can still see the potential of MOXCS
to solve the generalization problems across different environments. More
details, in those two environments, the percentage of the agent to get
one of the coin starts from 50% when training in Env1 and testing in
Env5(Env15), but after that, the trends of them are similar. In Env15, the
performance jumps to 74% first, then the performance reduces to 42% at
120 learning problems and fluctuates in a range of 34% and 56% between
100 to 1000 learning problems, and fluctuates in a range of 28% and 54%
between 1000 to 1500 learning problems, and fluctuates in a range of 28%
and 50% between 1500 to 2000 learning problems. When training in Env5
and testing in Env1(Env51), the performance starts from 65% then jumps
to 81.6% first, then the performance reduces to 61.6% at 50 learning prob-
lems and fluctuates in a range of 56.6% to 73.3% until 1500 learning prob-
lems except for 75% at 670 learning problems. After 1500 learning prob-
lems, it keeps in the range from 61.6% and 73.3% most of the time except
75% and 76.6% at 1740 and 1750 learning problems.

Figure 5.40: How many times the agent achieves the final reward when
training in Env1 and testing in Env5.
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Figure 5.41: How many times the agent achieves to the final reward when
training in Env5 and testing in Env1.

Figure 5.42: Different final reward obtained by the agent with number of
learning problems when training in Env1 and testing in Env5.
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Figure 5.43: Different final reward obtained by the agent with number of
learning problems when training in Env5 and testing in Env1.

In Figures 5.42 and 5.43, the percentages of the agent to get one of the
coins are plotted. Same with the analysis in subsection 5.6.2, only the per-
centage to get coin1 is analyzed here. In Env15 and Env51, the ratio to
get coin1 is 0% at the beginning, and the agent starts to learn the policy to
collect coin1 shortly. In Env15, the agent starts to get coin1 at 40 learning
problems and the ratio to get coin1 is 3.3%, then it increases to 33.3% at
470 learning problems. After that, in Env15, it stays in a range from 9.5%
to 36% until 1480 learning problems. Then, the ratio to get coin1 decreases
to 5.5% at 1730 learning problems, and jumps back to 27% at 1750 learning
problems, and continues to fluctuate 5.5% to 31.1% afterward. In Env51,
the agent starts to get coin1 with a ratio of 4.8% at 30 learning problems,
and then it increases to 31.8% at 560 learning problems. After that, it stays
in a range from 8.5% to 30.2% until 1250 learning problems. Then, the ra-
tio to get coin1 drops to 1.1% at 1350 learning problems, and increases to
34.7% a with fluctuation at 1750 learning problems and drops to 19.5% at
1800 learning problems. Then achieves 26.8% at 2000 learning problems
with fluctuation. From the discussion above, we can see with training by
MOXCS in one environment, the agent has the potential to get coin1 in a
slightly different environment. The agent learned to collect coin1 after 500
learning problems in both Env15 and Env51. But after 1500 learning prob-
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lems, the performance is decreasing in Env15 and increasing in Env51.

Figure 5.44: Number of total steps in result when training in Env1 and
testing in Env5.

Figure 5.45: Number of total steps in result when training in Env5 and
testing in Env1.

In Figures 5.44 and 5.45, the total steps to get coins are plotted. In
Env15, the agent takes one or two steps to get a coin most of the time, i.e.,
the agent gets coin0. Then it gets coin1 with between 6 to 11 main steps.
In Env51, the agent takes one step to get a coin most of the time, i.e., the
agent gets coin0. Then it takes 6 to 10 steps to get coin1, and sometimes,
it takes 11 and 12 steps for coin1. There is a large amount of step 100 in
Env15 and Env51 (i.e., 171450 and 121560) when the agent cannot learn
any policy to get a coin. Same with Env11 and Env55, some records show
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the agent uses 16 to 50 steps to get a coin, but the records could be ignored
for two reasons: 1) the number of steps between 16 to 50 to get a coin is
really rare. 2) the policy with 16 to 50 to reach a coin is not an optimal
policy.

Figure 5.46: Get maximum coin when training in Env1 and testing in Env5.

Figure 5.47: Get maximum coin when training in Env5 and testing in Env1.

The results in Figures 5.46 and 5.47 shows the if the agent get the max-
imum coin with optimal policies or sub-optimal policies in Env15 and
Env51, respectively. In Env15, as shown in Group 1, the agent uses the
optimal policy or optimum policies to get the large coin more consistently
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before 500 and after 1450 learning problems. During 500 to 1500 learning
problems, the ratio fluctuates between 50% to 100%. However, the ratio
can go as low as 40%, 33.3%, 25% at 680, 1110, 1570 learning problems.
For Group 2, the agent uses the non-efficient policy to solve the problem
quite a lot at the beginning but is not very stable. For example, the ratio
of Group 2 is 100% at 40 and 60 learning problems, but 50% at 50 and 70
learning problems. After that, the policies in Group 2 first drop to 11.1%
at 470 learning problems with fluctuation, and then it increases to 66.6%
with huge fluctuation, then drops to 14.2% at about 1400 learning prob-
lems. After 1500 learning problems, in general, the ratio of Group2 is low,
but it reaches 75% to 1570 learning problems. In Env51, the usage of poli-
cies in Group 1 is more consistent. The ratio of policy in Group 1 is 100%
most of the time, but it drops to 80% at 1260, 87.5% at 100, 370 and 480,
and 90.9% at 1660 learning problems. In Group 2, the non-efficient policy
has been used with 12.5% at 100 and 480 learning problems and 20% and
9% at 1260 and 1760 learning problems.

5.8 Discussion

5.8.1 Pareto Front

In this subsection, first, the Pareto Front(PF) learned by MOXCS in ‘Coin-
Run Action Bias’ and ‘CoinRun Step VS Reward’ will be analyzed, then a
new PF shape will be proposed for a future experiment. Only the PF in the
testing environment is analyzed.
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Figure 5.48: Pareto Front of Env1 in ‘CoinRun Action Bias’.

Figure 5.49: Pareto Front of Env5 in ‘CoinRun Action Bias’.
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Figure 5.50: Pareto Front of Env1 and Env5 in ‘CoinRun Step VS Reward’.

In ‘CoinRun Action Bias’ (Env1), MOXCS learned a convex PF as it is
shown in Figure 5.48. The agent trained by MOXCS has collected the cu-
mulative reward of 1000, 5400, and 9000 with main steps 6, 73, and 80. In
‘CoinRun Action Bias’ (Env5), MOXCS learned a convex PF as well, and
it is shown in Figure 5.49. The agent trained by MOXCS has collected the
cumulative reward of 1000, 4350, and 8475 with main steps 6.5, 53, and 80.
In ‘CoinRun Step VS Reward’ (Env1 and Env5), as a result, shown in Fig-
ure 5.50, the PF consists of 2 points, namely, 1 step with 30, 6 steps with 60.
As in the current ‘CoinRun Action Bias’ and ‘CoinRun Step VS Reward’
environment, there are limited solutions on the Pareto Front, and it cannot
be determined as a convex or concave PF with limited information. In this
case, it is impossible to test if an algorithm can deal with the convex or
concave PF or how good an algorithm can find all the solutions on the PF.



182 CHAPTER 5. QUANTIFYING GENERALIZATION OF MOXCS

T T

T .

T s
1

T s
12

T T

T F
2

T T

A .

A

A .

A .

A .

A

A S

T.

T

.

s
1

s
12

T

F
2

T

.

.

.

.

S

T.

T

.

s
1

s
12

T

F
2

T

.

.

.

.

S

T.

T

.

s
1

s
12

T

F
2

T

.

.

.

.

S

T.

T

.

s
1

s
12

T

F
2

T

.

.

.

.

S

T.

T

.

s
1

s
12

T

F
2

T

.

.

.

.

S

T.

T

.

s
1

s
12

T

F
2

T

.

.

.

.

S

T.

T

.

s
1

s
12

T

F
2

T

.

.

.

.

S

T.

T

.

s
1

s
12

T

F
2

T

.

.

.

.

S

T.

T

.

s
1

s
12

T

F
2

T

.

.

.

.

S

T.

T

.

s
1

s
12

T

F
2

T

.

.

S

.

A

T.

T

.

s
1

s
12

T

F
2

T

%

.

S

.

A

T.TSTSTA TA

TSTSTA TA

T

.

s
1

s
12

T

F
2

T

.

.

.

.

S

T.

T

.

s
1

s
12

T

F
2

T

.

.

.

.

S

T.

T

.

s
1

s
12

T

F
2

T

.

.

S

.

A

T.

T

.

s
1

s
12

T

F
2

T

.

.

S

.

A

T.TSTSTA TA

TSTSTA TA

T

.

s
1

s
12

T

F
2

T

.

.

.

.

S

T.

T

.

s
1

s
12

T

F
2

T

.

.

.

.

S

T.

T

.

s
1

s
12

T

F
2

T

1

.

S

.

A

T.

T

A

s
1

s
12

T

F
2

T

A

A

A

.

A

T.TSTSTA TA

TSTSTA TA

S1 S3 S4S2

T T

T .

T s
1

T s
12

T T

T F
2

T T

A .

A

A .

A .

A .

A

A S

T.

T

.

s
1

s
12

T

F
2

T

.

.

.

.

S

T.

T

.

s
1

s
12

T

F
2

T

.

.

.

S

T.

T

.

s
1

s
12

T

F
2

T

.

.

.

S

T.

T

.

s
1

s
12

T

F
2

T

.

.

.

.

S

T.

T

.

s
1

s
12

T

F
2

T

.

.

.

.

S

T.

T

.

s
1

s
12

T

F
2

T

.

.

.

.

S

T.

T

.

s
1

s
12

T

F
2

T

.

.

.

.

S

T.

T

.

s
1

s
12

T

F
2

T

.

.

.

.

S

T.

T

.

s
1

s
12

T

F
2

T

.

.

.

.

S

T.

T

S

s
1

s
12

T

F
2

T

.

S34

S

.

A

T.

T

S

s
1

s
12

T

F
2

T

S%

1

S

.

A

T.TSTSTA TA

TSTSTA TA

T

.

s
1

s
12

T

F
2

T

.

.

.

.

S

T.

T

.

s
1

s
12

T

F
2

T

.

.

.

.

S

T.

T

S27

s
1

s
12

T

F
2

T

S18

S36

S

.

A

T.

T

S28

s
1

s
12

T

F
2

T

S19

S37

S

.

A

T.TSTSTA TA

TSTSTA TA

T

.

s
1

s
12

T

F
2

T

.

.

.

.

S

T.

T

.

s
1

s
12

T

F
2

T

.

.

.

.

S

T.

T

S

s
1

s
12

T

F
2

T

1

1

S

.

A

T.

T

A

s
1

s
12

T

F
2

T

A

A

A

.

A

T.TSTSTA TA

TSTSTA TA

S1 S3 S4S2

T F
2A T.F2T.F2T. F

2T. F
2T.F2T.F2T. F

2T.S1 S3 S4S2T F
2A T.F2T.F2T. F

2T. F
2T.F2T.F2T. F

2T.S5 S7 S8S6

T F
2A T.F2T.F2T. F

2T. F
2T.F2T.F2T. F

2T.S1 S3 S4S2T F
2A T.F2T.F2T. F

2T. F
2T.F2T.F2T. F

2T.1 S11S12S10

T F
2A T.F2T.F2T. F

2T. F
2T.F2T.F2T. F

2T.S1 S3 S4S2T F
2A T.F2T.F2T. F

2T. F
2T.F2T.F2T. F

2T.S13 S15S16S14

T F
2A T.F2T.F2T. F

2T. F
2T.F2T.F2T. F

2T.S1 S3 S4S2T F
2A T.F2T.F2T. F

2T. F
2T.F2T.F2T. F

2T.S S SS

T F
2A T.F2T.F2T. F

2T. F
2T.F2T.F2T. F

2T.S1 S3 S4S2T F
2A T.F2T.F2T. F

2T. F
2T.F2T.F2T. F

2T.S30 1 S33S31

S17

Figure 5.51: Multi-Coin CoinRun Environment 1 (MO-Env1).
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Figure 5.52: Multi-Coin CoinRun Environment 5 (MO-Env5).
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Figure 5.53: Pareto Front of multi-coin CoinRun.

As discussed above, although MOXCS learned multi-objective optimal
policies in ‘CoinRun Action Bias’ and ‘CoinRun Step VS Reward’, the PF is
not very consistent. In the future work, one more coin will be added in the
CoinRun Environment Env1 and Env5 as it shows in Figure 5.51 and 5.52,
and the game only terminate when the agent collects all coins. In this case,
the agent is supposed to learn a more consistent and complex PF as shown
in Figure 5.53 in both CoinRun Environment MO-Env1 and MO-Env5.

5.8.2 Parameters of Population and theta GA

In this subsection, to see if MORL needs a large amount of good generic
material to begin to function, the different combinations of population size
and the threshold for performing the niche GA will be implemented in the
experiment.

Several benchmarks were tested in this thesis, for example, Deep Sea
Treasure and multi-objective Mountain Car. However, the ‘CoinRun Steps
vs. Reward’ is considered as the best benchmark to test if MORL needs a
large amount of good genetic material to begin to function or not for the
following reasons:
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1. The two objectives in the experiment ‘CoinRun Steps vs. Reward’
are pretty straightforward to measure as the optimal policies for two
goals can be measured by counting the steps in the learned poli-
cies for reaching two coins, respectively. MOXCS begins to function
when the steps in the learned policies are closed to the optimal pol-
icy; otherwise, MOXCS does not begin to function.

2. Deep Sea Treasure is a good multi-objective benchmark. However, it
is a good benchmark to test if the MOXCS works effectively, for ex-
ample, how many treasures the agent collects, rather than if MOXCS
begins to function or not.

3. Multi-objective Mountain Car has been tested, but the performance
is unstable, so it would not be a good benchmark for testing the GA-
related experiment.

To test the influence of the population size and the threshold for per-
forming the niche GA, except for these two parameters, all the other pa-
rameters settings for training and testing in the same environment are the
same as the settings in subsection 5.6.2. For training and testing in differ-
ent environments, the parameters settings are the same as the settings in
5.7 including the rules for collecting results.

To show the difference in the results from different parameters settings,
only a few measurements are selected for analysis. Two measurements,
‘Ratio of reaches coin’ and ‘Ratio of reaches coin1’ are selected for the
result analysis as they can measure if the MORL algorithm enables the
agent to get the coin, especially if the agent reaches coin1. Another essen-
tial measurement, ‘Optimal policy reaches coin1’, is added to measure if
the agent can collect coin1 within 15 steps by optimum and sub-optimum
policies.

The results shown in Table 5.4 are collected with 500 learning problems,
where the results can converge when training and testing in the same en-
vironment, or the trends can be observed when training and testing in
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Table 5.4: The results of different combination of population size and the
threshold for performing the niche GA.

Test Env
Parameters
(Pop vs GA)

Ratio of
Reaches Coin

Ratio of
Reaches Coin1

Optimal Policy
Reaches
Coin1(steps<=15)

11 8000:200,000 0.96 0.5 1
80,000:20,000 0.98 0.49 1
800,000:2,000 0.98 0.508 1
8,000,000:2,000 0.96 0.5 1

55 8000:200,000 0.96 0.46 1
80,000:20,000 0.98 0.49 1
800,000:2,000 0.98 0.49 1
8,000,000:2,000 1 0.5 1

15 8000:200,000 0.48 0.17 1
80,000:20,000 0.30 0.05 1
800,000:2,000 0.53 0.15 0.8
8,000,000:2,000 0.44 0.23 1

51 8000:200,000 0.66 0.2 1
80,000:20,000 0.55 0.09 1
800,000:2,000 0.66 0.22 1
8,000,000:2,000 0.61 0.13 1
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different environments. It shows the evidence that MOXCS with differ-
ent combinations of population size and the threshold for performing the
niche GA can solve the ‘CoinRun Steps vs. Reward’ problem when train-
ing and testing in the same environment, and it has the potential to solve
the problem when training and testing in slightly different environments.
However, when training and testing in different environments, the results
haven’t converged and have a high standard deviation. In this case, the
results couldn’t be used to measure the influence of population size and
GA as many other factors are causing the results.

As when training and testing in the same environment, as the perfor-
mance is quite similar in both Env1 and Env5 at 500 learning problems
(as shown in Table 5.4) but with fluctuation and standard deviation, thus
it is hard to use the results at 500 learning problems for comparing the
performance of different combinations of population size and the thresh-
old for performing the niche GA. In this case, the converging stability of
percentage for the agent to get the final reward and ratio to get coin1 are
measured. Note, in this analysis, the percentage for the agent to get the
final reward is more important than the ratio to get coin1 as the perfor-
mance of the ratio to get different coin types are quite similar. In this case,
if the percentage for the agent to get the final reward is low, even the ratio
to get coin0 and coin1 achieves the best performance which should be 50%
of coin0 and 50% of coin1, the agent is still cannot collect much coin1.

First, as shown in Figure 5.54, in Env1, for the measurement of the
percentage of the agent get the final reward, the performance of Popula-
tion vs. GA of 8,000:200,000 and 80,000:20,000 are quite similar, and they
converge better than 8,000,000:2,000 and 800,000:2,000, where the perfor-
mance of 8,000,000:2,000 is better than 800,000:2,000. In this case, the mea-
surement of collecting different coin types by the agent for 8,000:200,000
and 80,000:20,000 are compared. As shown in Figure 5.55, in Env1, the per-
formance of Population vs. GA of 8,000:200,000 is better than 80,000:20,000
is the best because 8,000:200,000 achieves the best performance of reaching
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(a) 8,000,000:2,000 (b) 8,000:200,000

(c) 80,000:20,000 (d) 800,000:2,000

Figure 5.54: Percentage of the agent get to the final reward with different com-

bination of Population vs. GA in Env1.
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(a) 8,000,000:2,000 (b) 8,000:200,000

(c) 80,000:20,000 (d) 800,000:2,000

Figure 5.55: Ratio of different coin types obtained by the agent with different

combination of Population vs. GA in Env1.
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(a) 8,000,000:2,000 (b) 8,000:200,000

(c) 80,000:20,000 (d) 800,000:2,000

Figure 5.56: Percentage of the agent get to the final reward with different com-

bination of Population vs. GA in Env5.
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(a) 8,000,000:2,000 (b) 8,000:200,000

(c) 80,000:20,000 (d) 800,000:2,000

Figure 5.57: Ratio of different coin types obtained by the agent with different

combination of Population vs. GA in Env5.
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different coin types which should be 50% of coin0 and 50% of coin1 more
frequently than 80,000:20,000. In this case, in Env1, for the stability mea-
surement, the performance order of Population vs. GA is 8,000:200,000,
80,000:20,000, 8,000,000:2,000, 800,000:2,000.

Second, in Env5, as shown in Figure 5.56, for the measurement of the
agent gets the final reward, the performance of Population vs. GA of
80,000:20,000 is better than 8,000:200,000, and they are better than the other
two combinations in terms of the converging stability. The performance
of Population vs. GA 800,000:2,000 is better than 8,000,000:2,000 because
the measurement of reaching the final reward and reaching different coin
types, the worst performance is the same, however, 800,000:2,000 is less
frequently reach the worst performance than 8,000,000:2,000, especially
after 1500 learning problems. In this case, in Env5, for the stability mea-
surement, the performance order of Population vs. GA is 80,000:20,000,
8,000:200,000, 800,000:2,000, 8,000,000:2,000.

From the discussion above, the conclusions can be made. First, the
requirement of MORL on population is not the larger the better. For ex-
ample, a population size of 8,000 and 80,000 has a better performance than
a population size of 800,000 and 8,000,000 in both Env1 and Env5. Second,
a proper population with high GA works better than a high population
with low GA. For example, in both Env1 and Env5, the population size
of 8,000 and 80,000 are better than 800,000 and 8,000,000, while the GA of
200,000 and 20,000 are better than 2,000.

5.8.3 Generalization Ability

As the results are shown in subsection 5.6.1, MOXCS can generalize the
action right jump to get the coin at the right-hand side in both ‘CoinRun
Steps VS Reward’ Env1 and Env5. In this section, the experiments are de-
signed to test if MOXCS can jump when necessary and if it can generalize
other actions.
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Jump Block

As the results in subsection 5.6.1, the agent trained by MOXCS is able to
take action right jump to solve the ‘CoinRun Action Bias’ problem. How-
ever, we don’t know if the agent only takes right jump when necessary. In
this case, the environment is updated to see if the agent can jump over a
block at different positions in the environment to achieve the goal and if
the agent can jump only when there is a need for jump action rather than
take right jump action all the time. The first goal can be measured by the
ratio to reach coin, the ratio of getting coin1, and how many steps to reach
coin1. To measure the second goal, the average number of actions going
right, jump, and right jump in the optimal policies are counted.
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Figure 5.58: States of CoinRun Jump Block4 Environment 1(Env1).
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Figure 5.59: States of CoinRun Jump Block7 Environment 1(Env1).

The experiment environment is extended from ‘CoinRun Steps vs. Re-
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Table 5.5: The results of different settings of training testing blocks of Jump
Block experiments.

Train
Block

Test
Block

%
coin

%
coin1

OP
coin1

OP
steps

R J RJ LJ

4 4 0.816 0.387 1 12.51 4.9 0.637 4.9 0.619
7 7 0.816 0.387 0.894 12.3 5.669 0.635 5.26 0.675
4 7 0.66 0.275 1 12.1 6.27 0.616 4.45 0.612
7 4 0.816 0.387 1 12.8 5.817 0.634 5.73 0.604

ward’ in Env1. In this environment, the length of the ground floor is ex-
tended from 4 to 13 units, and a block A is added on the 4th and 7th po-
sition of the ground level as shown in Figures 5.58 and 5.59. In addition,
all the non Markov settings like T and N in subsection 5.3.2 are removed
from this environment.

The parameter settings are derived from that of ‘CoinRun Steps vs.
Reward’ in Env1, and population size N and niche GA θga is 8000 and
200000, as it is the best parameter settings for Environment 1 from the
result with ‘Population vs. GA’ experiment.

The data in results are collected at 500 learning problems and are shown
as follows. In the table, some titles are shorted as limited space; for exam-
ple, ‘%coin’ is the percentage of the agent reaches one of the coins, ‘%coin1’
denotes the percentage of the agent reaches coin1, ‘OP coin1’ denotes the
optimal policy to coin1, which means the agent can get coin1 within 15
steps, ‘OP steps’ denotes how many steps in ‘OP coin1’ on average, ‘R’,
‘J’, ‘RJ’ and ‘LJ’ denotes how many ‘go right’, ‘jump’, ‘right jump’ and ‘left
jump’ in the optimal policy to get coin1 ‘OP for coin1’ on average.

From Table 5.5, several conclusions can be drawn. First, the agent
trained by MOXCS can jump over a block at different positions and get
the coin. With 500 learning problems, when the block is in the same po-
sition for training and testing, the agent can get one of the coins in 81.6%
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of the time, and the percentage to get coin1 is 38.7%. The percentage of
an optimal policy when setting the block on the 4th and 7th unit is 100%
and 89.4%, and it may be because the agent takes more steps to the 7th
unit. Thus the search space is larger than that of setting the block on the
4th unit. When the block is in a different position for training and testing,
for training on the 4th block and testing on the 7th block, the agent can get
one of the coins in 66% of the time, the percentage to get coin1 is 27.5%.
For training on the 7th block and testing on the 4th block, the agent can get
one of the coins in 81.6% of the time the percentage to get coin1 is 38.7%,
as when the block is set at the 7th unit, the problem is trickier. Second, the
agent trained by MOXCS can jump when there is a need for jump action
rather than take right jump action all the time. When training and testing in
the same environment, the average steps in the optimal policy is 12.51 and
12.3 for setting block on 4th and 7th unit, and the average number of ac-
tion ‘go right’, ‘jump’, ‘right jump’ and ‘left jump’ are 4.9, 0.637, 4.9, 0.619
and 5.669, 0.635, 5.26, 0.675 for setting block on 4th and 7th unit respec-
tively. The average steps in the optimal policy are 12.1 and 12.8 for setting
block on 4th and 7th unit for training, 7th and 4th unit for testing when
different block settings for training and testing environment. The average
number of action ‘go right’, ‘jump’, ‘right jump’ and ‘left jump’ are 6.27,
0.616, 4.45, 0.612 and 5.817, 0.634, 5.73, 0.604 for setting block on 4th and
7th unit for training, 7th and 4th unit for testing respectively. From all the
testings, the agent takes most action ‘go right’, then is ‘right jump’, which
means the agent does not take right jump all the time. At the same time,
the agent takes a jump and left jump as well, which means the agent can
choose different jump types when there is a need.

Jump Left

In this section, to test if the agent trained by MOXCS can or has the poten-
tial to generalize other actions, like ‘jump’, ‘go left’, and ‘jump left’. The
data in results are collected with 100 learning problems at this stage.
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Figure 5.60: States of CoinRun Jump Left Environment 1(Env1).
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Figure 5.61: States of CoinRun Jump Left Environment 5(Env5).

The experiment environment is extended from ‘CoinRun Steps vs. Re-
ward’ in Env1 and Env5, with several changes as shown in Figures 5.60
and 5.61. First, the length of the ground floor is extended from 4 to 7 units.
Second, a second layer consisting of 7 blocks A is added, where starts from
the left and 2 units higher than the ground floor. Last, for the reward set-
tings, the position of the first coin moves 3 units closer to the start state,
and the reward value of those two coins are exchanged, where the coin on
the right-hand side has a small value and the coin on the top of the start
state has a large value.
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(a) Env11 (b) Env55

(c) Env15 (d) Env51

Figure 5.62: Percentage of the agent get to the final reward in different training

and testing environments of experiment Jump Left.

The parameter settings are similar to that of ‘CoinRun Steps vs. Re-
ward’ in Env55, but with some differences. More details, when training
and testing in the same environment, the population size N and niche GA
θga is 80000 and 20000, the payoff decay rate γ is 0.93, the mutation rate µ is
0.05, the fitness f for the first objective and second objective is 0.00000001
and 0.0005 respectively. Comparing the parameters in Env55 of ‘CoinRun
Steps vs. Reward’ experiment, when training and testing in different en-
vironments, the difference of the parameters as follows, the population
size N and niche GA θga is 8000 and 200000, the probability of generating
a hash in a condition P# is 0.6, the error e and the fitness f for the first
objective 0.2 and 0.0001.

The percentage for the agent to get the final reward is shown in Fig-
ure 5.62. From the result, we can see that the performance of training
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(a) Env11 (b) Env55

(c) Env15 (d) Env51

Figure 5.63: Ratio of different coin types obtained by the agent in different train-

ing and testing environments of experiment Jump Left.

and testing in the same environment is much better than that of training
and testing in different environments. In all the testing environments, the
performance increases dramatically to 0.48, 0.48, 0.20, and 0.16 within 10
learning problems in Env11, Env55, Env15, and Env51 respectively. Af-
ter that, the trend of the performance in different environments is getting
more stable, the best performance in those four environments are 0.76,
0.63, 0.25, and 0.16. Though the performance in Env15 and Env51 is not
as good as that in Env11 and Env55, it shows the potential of MOXCS to
solve the ‘Jump Left’ problem with its generalization ability.

The ratio of getting coin0 is much higher than that of coin1 in all the
environments as shown in Figure 5.63, where the coin0 is the coin with
a large reward on the left-hand side and coin1 is the coin with a small
reward on the right-hand side. It shows that the performance of learning
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Test
Env

OP for
coin0

OP avg
steps

R J RJ L LJ J% L% LJ%

11 1 10.42 3 0.72 0.76 2.66 2.38 6.91 25.53 22.84
55 1 10.73 3 0.57 0.64 1.96 3.61 5.31 18.27 33.64
15 1 10.69 3 0.58 0.71 1.51 4.31 5.43 14.13 40.32
51 1 10.58 3 0.41 1 1.89 3.95 3.88 17.86 37.33

Table 5.6: The optimum policies for reaching coin0 of Jump Block experi-
ments.

Test
Env

OP for
coin1

OP avg
steps

R J RJ L LJ J% L% LJ%

11 1 6.84 3.93 0.38 0.99 0.02 0.36 5.56 0.29 5.26
55 1 7.58 4.41 0.25 1.16 0.33 0.45 3.30 4.35 5.94
15 1 7.01 3.79 0.35 2.01 0.03 0.35 4.99 0.43 4.99
51 1 6.92 4 0.53 0.84 0.07 0.61 7.66 1.01 8.82

Table 5.7: The optimum policies for reaching coin1 of Jump Block experi-
ments.

the optimum policies by maximizing the long-term payoff of MOXCS is
better than minimizing the steps. However, as the goal of this experiment
is to test if the agent can generalize actions ‘jump’, ‘go left’, and ‘jump left’,
we will focus on the learned policies by maximizing the long-term payoff
for coin0 at this stage.

The percentage of optimum policies to reach coin0 and coin1, average
steps in those optimum policies, and how many ‘go right’ (R), ‘jump’ (J),
‘right jump’ (RJ), ‘left’ (L), ‘left jump’ (LJ), percentage of ‘left’ (L%), and
percentage of ‘left jump’ (LJ%) in those optimal policies on average are
shown in Tables 5.6 and 5.7.

From the results in Tables 5.6 and 5.7, we can see that when the agent
has collected coin0 or coin1, it collects the coin with the optimum poli-
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cies (within 15 steps) at 100% of the time in all the environments, and the
number of steps in the optimum policies for coin0 and coin1 is over 10
steps and about 7 steps. The ratio of action ‘left’ and ‘left jump’ in the op-
timum policies for coin0 is much higher than that for coin1 as the agent
needs to go left to reach coin0. For example, the sum of the ratio of action
‘left’ and ‘left jump’ in the optimum policies for coin0 is over 50% (except
Env11, where is 48.37%), but that for coin1 is maximum 10.29%. Obvi-
ously, with the training of MOXCS, the agent can generalize action ‘left’
and ‘left jump’ to collect coin0 as it needs to be collected with go left or
jump left. For those testing environments except Env11, the agent takes
most action ‘left jump’, then is ‘left’, after that is ‘jump’. This is because
if the agent moves to the middle of the environment, it can reach coin1
only by ‘jump left’. In Env11, the agent takes most action ‘left’, then is ‘left
jump’ and ‘jump’. However, the ratio of ‘left jump’ is slightly lower than
other environments, whereas the ratio of ‘left’ and ‘jump’ is slightly higher
than other environments. This is because when the agent takes more ‘left’
to get coin1, it needs to take more ‘jump’. In addition, the difference in the
performance of getting the final reward of Env11 and Env15 is higher than
that of Env55 and Env51 is because the pattern on the action distribution
(L, LJ) in the optimum policies is more similar of Env55 and Env51 than
that of Env11 and Env15.

From the discussion above, several conclusions can be made from the
‘Jump Left’ experiment. First, MOXCS can solve the ‘Jump Left’ problem
when training and testing in the same environment, and it can solve the
problem when training and testing in different environments with its gen-
eralization ability. Second, though MOXCS can learn the optimum poli-
cies by maximizing the long-term payoff and minimizing the steps, the
performance of learning the optimum policies by maximizing the long-
term payoff is much better than minimizing the steps. More importantly,
with the training of MOXCS, the agent can generalize action ‘left’ and ‘left
jump’ when the coin needs to be collected with go left.
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5.8.4 Stochastic Decision Making

Figure 5.64: Monster in CoinRun Environment (Stationary).

Figure 5.65: Monster in CoinRun Environment (Non-Stationary).
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As mentioned in Section 5.2, in some of the CoinRun environments, there
are several obstacles (monsters), both stationary and non-stationary, lie
between the agent and the coin. A collision with an obstacle results in the
agent’s immediate death. In this case, the game with obstacles becomes
more challenging than that without obstacles.

For the stationary obstacles in Figure 5.64, the monster can be coded as
a special character in the environment, then encoded in the condition for
LCSs. When the agent moves to a state close to the monster, for example,
the monster is on the right-hand side of the agent, then the agent can learn
to take an action jump or right-jump to avoid the monster but need to take
action at good timing.

The solution for the non-stationary obstacles in Figure 5.65 is challeng-
ing to solve. Firstly, most of the LCSs are rule-based machine learning
technologies designed to learn deterministic policies. However, the solu-
tion policy may often be stochastic. For example, the agent needs to learn
to take different actions at the same position, which is not possible using
an accurate-based system. In more detail, at any state S, when the monster
is not close to the agent, the agent should take action to go right. However,
if the monster is close to the agent, it needs to take an action jump or right
jump to avoid the monster. Secondly, most of the LCSs can only solve the
discrete RL problem. Especially for the methodology in Section 5.3, when
using XCS to solve CoinRun with sub-actions, if the monster moves con-
tinuously, the agent can easily die when taking the sub-actions as it only
senses the environment before taking the main action and ignores the en-
vironment before taking sub-actions. It would need allocentric sensors to
be added to detect the dynamic monster.
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Figure 5.66: Frozen Lake Environment from OpenAI.

Following the research, the Frozen Lake problem is considered as a
benchmark to evaluate if XCS can solve the Markov RL problem. The goal
of this game is to go from the starting state to the goal state by walking
only on frozen tiles and avoiding holes. However, the ice is slippery, so
the agent will not always move in the direction as intended. After that,
the multi-objective non-stationary RL can be designed as adding another
goal state, which is closer to the start state but with less reward.

5.8.5 Measurement of Broad Generalization Ability

Though CoinRun provides an environment to measure the generaliza-
tion of RL algorithms, it is still challenging to define and evaluate intel-
ligence, especially comparing the intelligence between systems and hu-
mans. There are two historical definitions of intelligence, one defines in-
telligence as a collection of task-specific skills, and another one defines in-
telligence as a general learning ability [16]. In the AI industry, the current
trend is to evaluate the task-specific skills, rather than trying to measure
the broad generalization ability, such as developer-aware generalization
[16]. The developer-aware generalization is the expectation a system can
handle situations that neither the system nor the developer of the system
has encountered before. For example, in the CoinRun environment, the
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generalization ability of RL algorithms can be tested in unseen generated
game levels, but it is still task-specific local generalization as it only eval-
uates a system in a known distribution rather than a new task.

ARC (The Abstraction and Reasoning Corpus) is developed as a gen-
eral artificial intelligence benchmark [16] to measure the developer-aware
generalization ability. There are 400 tasks in the training set and 600 tasks
in the testing set, and each task consists of a small number of demonstra-
tion examples and a test example. Each example consists of an ‘input grid’
and an ‘output grid’. The test-taker should learn the pattern from the ‘in-
put grid’ and an ‘output grid’ of the demonstration examples and draw
the output to the ‘output grid’ in the test example. Even though there are
training and testing sets in the ARC problem, the test-taker is not neces-
sarily trained on the complete sample distribution of the training set, as
all the tasks are assumed core knowledge priors such as reasoning and ab-
straction abilities, which cannot be learned from the training set. In this
case, the ARC system can focus on testing the broad generalization ability
of AI systems and humans.

Inspiring by the idea of the ARC system, instead of testing the gener-
alization ability of MOXCS in CoinRun game, to test the broad generaliza-
tion ability of MOXCS algorithm, the MOXCS can be trained in CoinRun
game to learn the ‘core knowledge priors’ such as go right when the path is
safe, and jump when encounters obstacles, and tested in another game such
as bi-objective Maze or Deep Sea Treasure Corridor in the future work.

5.9 Chapter Summary

CoinRun Env1 and Env5 were successfully addressed by XCS with the
technique of discretizing continuing input, adding extra characters in the
aliased environment, and utilizing sub-actions. In this case, the PO-MDP
is transformed as an MDP and is possible to be addressed by MOXCS.

Then Env1 and Env5 are extended as bi-objective RL environments. In
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the experiment ‘CoinRun Action Bias’, where the first objective is to take
as many actions right-jump to get the coin as possible, and the second
objective is to minimize the total steps to get the coin. In the experiment
‘CoinRun Step VS Reward’, the first objective is to minimize the total steps
to get any coin, and the second objective is to reach the coin with a larger
reward. MOXCS managed to resolve these two bi-objectives successfully
within 50 learning problems and 500 learning problems, respectively. In
the experiment ‘CoinRun Action Bias’, the first objective is to take as many
as actions right jump to get the coin, and the second objective is to reach
the coin with a larger reward. MOXCS managed to resolve these two bi-
objectives successfully within 50 learning problems.

The generalization ability of MOXCS is also tested on these two experi-
ments, ‘CoinRun Action Bias’ and ‘CoinRun Step VS Reward’, by crossover
the training and testing environments within each experiment. MOXCS is
not able to fully solve the generalization problem. However, the evidence
shows MOXCS has the potential of generalization ability for solving the
MORL problem in an unseen environment with proper training in a simi-
lar environment.

In the discussion, first, how the PF looks like in experiment ‘CoinRun
Action Bias’ and ‘CoinRun Step VS Reward’ is discussed. As the PF in
these two experiments is naturally sparse as shown in Figures 5.48, 5.49
and 5.50, the future work for MOXCS is designed to learn a more com-
plicated and consistent PF as shown in Figure 5.53. Second, the differ-
ent combinations of population size and the threshold for performing the
niche GA are tested on ‘CoinRun Steps vs. Reward’ to see if MORL needs
a large amount of good generic material to begin to function. The result
shows the requirement of MORL on population is not the larger the better,
and a proper population with high GA works better than a high popula-
tion with low GA. Then, the generalization ability of MOXCS is tested in
experiments ‘Jump Block’ and ‘Jump Left’. The ‘Jump Block’ experiment
shows that MOXCS can generalize the action right jump to get the coin at
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the right-hand side when necessary. The ‘Jump Block’ experiment shows
that MOXCS has the potential to generalize the action ‘go left’ and ‘jump
left’ when the coin needs to be collected with go left.

In addition, in future work, to enable MOXCS to solve environments
with non-stationary obstacles in the CoinRun environment, stochastic de-
cision making will be considered to add into MOXCS. To evaluate the abil-
ity of XCS and MOXCS to solve large-scale RL and MORL problems, XCS
and MOXCS will be tested in mountain car and multi-objective mountain
car in the next chapter.
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Chapter 6

Using MOXCS to Solve
Large-scale MORL Problems

6.1 Introduction

In Chapter 4, the Deep Sea Treasure is solved successfully by MOXCS.
However, the Deep Sea Treasure is a small discrete MORL environment,
where the optimal policy can calculate manually. However, in the real
world MORL problems, one of the common challenges is that the state
space can be very large and continuous. In this case, it is challenging as
learning can become intractably slow as the state space of the environment
grows. Note, in this thesis, a small-scale problem means the solution of
the problem can be manually calculated easily, and a large-scale problem
means the solution of the problem is hard to calculate manually (i.e. over
a day’s labour).

6.1.1 Chapter Goals

This chapter is intended to use MOXCS to address the continuous MORL
problem in a large sparse domain. Currently, following the MOXCS tech-
nique, it is supposed with the generalization capability of MOXCS, the

207
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agent can effectively learn in a sparse domain environment. To deal with
the continuous MORL problem, it is required to address the continuous
inputs for MOXCS by effectively discretizing the continuous input. In
this chapter, to evaluate the learning effectiveness of XCS and MOXCS for
solving RL and MORL problems, the experiments will be implemented
on single-objective mountain car and multi-objective mountain car. The
results will be presented and discussed in this chapter as well.

6.1.2 Organization

This chapter is structured as follows. Section 6.2 presents the mountain
car problem and multi-objective mountain car problem as a benchmark
for testing the single-objective and multi-objective reinforcement learning
algorithm. Next, Section 6.3 presents a methodology that uses XCS and
MOXCS to solve single-objective and multi-objective mountain car prob-
lems. The results and discussion are given in Section 6.5 and Section 6.6
respectively. The chapter is finally summarized in Section 6.7.

6.2 Problem Description

6.2.1 Mountain Car Problem

The mountain car problem is commonly a benchmark for RL algorithms.
In this section, first, the Mountain Car problem is introduced, then it will
be extended as a MORL problem and described in the next subsection.

Mountain Car

As shown in Figure 6.1, the Mountain Car is a problem in which a car must
learn to climb a steep hill to reach the goal marked by a flag. Since the car’s
engine is not powerful enough, even at full speed, the car does not have
enough momentum to reach the goal. The car is situated in a valley and
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Figure 6.1: Mountain Car problem.

must learn to leverage potential energy by driving up the opposite hill
before the car can make it to the goal at the top of the rightmost hill.

The mountain car problem has undergone many iterations. This sec-
tion will focus on the standard well-defined version from Sutton in 2008
[77]. The problem begins when the car is dropped into the valley and
given an initial position from -1.2 to 0.6 and velocity from -0.07 to 0.07 as
a vector. This is the car’s state. Our agent must then tell the car to take
one of three actions: reversing(-1), acceleration(1), or zero-throttle(0). This
action is sent to the Mountain Car environment algorithm which returns
a new state (position and velocity) as well as a reward. For each step that
the car does not reach the goal, the environment returns a reward of -1.
The termination condition is the car’s position >= 0.6.

Here are the technical details of the mountain car problem.

State variables
Two-dimensional continuous state space.
V elocity = (−0.07, 0.07)
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Position = (−1.2, 0.6)
Actions

One-dimensional discrete action space.
motor = (left, neutral, right)

Reward
For every time step:
reward = −1

Update function
For every time step:
Action = [0, 1, 2]

V elocity = V elocity + (Action− 1) ∗ 0.001 + cos(3 ∗ Position) ∗ (−0.0025)
Position = Position+ V elocity

Starting condition
Optionally, many implementations include randomness in both parame-
ters to show better generalized learning.
Goal: Position ≥ 0.6

Multi-Objective Mountain Car

Mountain car is frequently used to test the performance of the single-
objective reinforcement learning problem [76]. Here, the Mountain car
problem is extended as a multi-objective mountain car. Besides the orig-
inal goal, which is reaching the final state on the right side as soon as
possible, another goal is added to make the mountain car problem the
bi − objective mountain car problem which is minimizing the number of
reversing and acceleration actions. −1 is received in the corresponding el-
ement of the reward vector when the reversing and acceleration action is
executed. In the case when the car takes action1, it returns a reward of 0.
Here are the technical details of the reward setting in the multi-objective
mountain car problem.

Reward
For every time step:
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reward = −1 if action = left or right

6.3 Techniques Used to Solve Mountain Car

In this section, to evaluate the efficiency of different RL algorithms for
solving RL and MORL problems, Q-Learning, XCS, and MOXCS are im-
plemented to solve mountain car and multi-objective mountain car prob-
lems. Q-Learning is a standard benchmark for cooperation. However,
those algorithms are normally used for solving discrete RL problems. In
this case, to solve continuous RL problems, some changes need to be made
in the environment and those algorithms.

6.3.1 Discretization

As Q-learning, XCS and MOXCS can only consume discrete input, the
mountain car environment needs to be discretized. In this approach, two
continuous state variables representing the position in space and velocity
space are pushed into discrete states by bucketing each continuous vari-
able into multiple discrete states. For example, the position space from -1.2
to 0.6 is discredited to 12 bins, namely (-1.2, -1.05], (-1.05, -0.9] until (0.45,
0.6]. Similarly, the velocity space, which is from -0.07 to 0.07, is discredited
into 20 bins, namely (-0.07, -0.06] to (0.06, 0.07]. More details about how
to discretize position and velocity are in Table 6.1 and 6.2, where the steps
are discredited evenly. Q-Learning, XCS, and MOXCS, the velocity space
matches integers 0 to 19, and the position space matches integers 0 to 11.

6.3.2 Transforming Integers to Conditions

In XCS and MOXCS, the position and velocity are converted from decimal
to a 5-bit binary code respectively. Then, the binary code of position and
velocity are merged as a 10-bit binary code, which consists of the condition
of the classifiers of XCS and MOXCS.
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Table 6.1: Position of Mountain Car

Continuous Input Integer Input
(-1.2,-1.05] 0
(-1.05,-0.9] 1
(-0.9,-0.75] 2
(-0.75,-0.6] 3
(-0.6,-0.45] 4
(-0.45,-0.3] 5
(-0.3,-0.15] 6
(-0.15,0] 7
(0,0.15] 8
(0.15,0.3] 9
(0.3,0.45] 10
(0.45,0.6] 11

Figure 6.2: Representation of position and velocity in the condition of XCS

As shown in Figure 6.2, the position and velocity of the mountain car
are two float numbers -0.25 and 0.029, then it will be converted to integer
5 and 14 respectively. After that, those two integers will be transferred to
two 5-bits binary codes 00101 and 01110. Finally, those two 5-bits binary
codes will be merged as 0010101110, which is the condition of the current
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Table 6.2: Velocity of Mountain Car

Continuous Input Integer Input
(-0.07,-0.063] 0
(-0.063,-0.056] 1
(-0.056,-0.049] 2
(-0.049,-0.042] 3
(-0.042,-0.035] 4
(-0.035,-0.028] 5
(-0.028,-0.021] 6
(-0.021,-0.014] 7
(-0.014,-0.007] 8
(-0.007,0] 9
(0,0.007] 10
(0.007,0.014] 11
(0.014,0.021] 12
(0.021,0.028] 13
(0.028,0.035] 14
(0.035,0.042] 15
(0.042,0.049] 16
(0.049,0.056] 17
(0.056,0.063] 18
(0.063,0.07] 19
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state.

6.4 Experiment Settings

The result of the Single Objective Mountain Car will be calculated by av-
eraging the results of 30 independent runs of Q-Learning and XCS, sep-
arately. In the experiment of XCS, the typical parameter settings recom-
mended in [14] have been followed.

Particularly, the state length of the classifier’s condition is 10, the prob-
ability of using a # in one attribute in condition P# is 0.00001, the minimal
number of actions that must be present in a match set θmna is 3, the GA
threshold θga is 8000000, the discount factor γ is 0.99, the population size
N is 4000000, the initial error ε is 0.01, the initial fitness f is 0.01, the initial
prediction value p is 0.01, the mutation probability µ is 0.04, the classifier
deleting threshold θdel is 25, and the subsumption threshold θsub is 20. In
addition, all the child initial error equals ε. The system will delete the
classifier when it is necessary.

θga usually is about 25, but here is 8000000 as the results with high GA
sometimes is better than small GA from the evidence in subsection 5.8.2,
page 127. The discount factor γ is as 0.99, which is usually 0.71, as the
policy in mountain car takes hundreds of steps, if discount factor is low,
the final reward is hard to learn by the states further from the final state.
The population size N is 4000000, which would normally be about 80,000.
Such a high population size is because the search space in the mountain
car is high.

The result of the Multi-Objective Mountain Car is collected from a suc-
cessful run of the experiments as the experimental result is not very con-
sistent. The parameters of the Multi-Objective Mountain Car are similar
to the Single-Objective Mountain Car with some changes. First, the popu-
lation size N is 80000000 as it needs more classifiers to maintain different
objectives. Second, as there are two objectives in Multi-Objective Moun-
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tain Car, the initial error for both objectives ε0 and ε1 is 0.01, the initial
fitness for both objectives f0 and f1 is 0.01, the initial prediction value for
both objectives p0 and p1 is 0.01.

6.5 Single-Objective Mountain Car

6.5.1 Result

Figure 6.3: Single Objective Mountain Car Result with XCS.

Figure 6.3 shows the number of steps needed to reach the goal in each
episode. As can be seen from the graph, the average number of steps for
solving the mountain car problem is reduced quickly within 90 learning
problems, where it drops from 929.7 to 315.0. It then increases to 378.1 at
105 learning problems, then drops to 300.2 slowly at 150 learning prob-
lems. After increases to 343.8 at 165 learning problems, it achieves the best
performance of 244.0 at 180 learning problems, then increases to 328.1 at
the 195 learning problems.
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Figure 6.4: Single Objective Mountain Car Result with Q-Learning.

Q-Learning is used to solve the Mountain Car problem and the result is
shown in Figure 6.4. As can be seen from the graph, the average number of
steps for solving the mountain car problem is reduced from 965.4 to 462.1
within 105 learning problems, but the result stays around 600 from 45 to
90 learning problems. After increases to 491.9 at 135 learning problems, it
drops to 428.8 at 150 learning problems, which is close to the best perfor-
mance. However, the result jumps to 549.3 at 165 learning problems, then
achieves the best performance of 426.3 at 180 learning problems. Finally,
the result increases slightly to 459.8 at 195 learning problems.

From Figures 6.3 and 6.4, we can see that XCS provides a better so-
lution than Q-Learning to Mountain Car problem. First, XCS converges
faster than Q-Learning, where XCS and Q-Learning converge at 90 and 105
learning problems respectively. Especially, the result of XCS converges to
315.0 at 90 learning problems. However, the result of Q-Learning achieves
615.8 at 90 learning problems, then converges 462.1 at 105 learning prob-
lems. Second, XCS provides a more stable solution than Q-Learning after
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they converge. For example, after 90 learning problems, the worst case of
the average number of steps for solving the mountain car problem of XCS
is 378.1 at 105 learning problems, but that of Q-Learning is 549.3 at 165
learning problems. Third, XCS provides a better solution than Q-Learning,
where the best performance of the average number of steps for solving the
mountain car problem of XCS is 244.0 at 180 learning problems and that
of Q-Learning is 426.3 at 180 learning problems. In addition, in the single
run, the best performance of the number of steps for solving the mountain
car problem of XCS is 94 and that of Q-Learning is 114.

6.5.2 Discussion

As we can see the result in Section 6.5, XCS can solve the mountain car
problem better than Q-Learning, especially when the result converges. For
finding out the reason behind it, the results of steps to goal at 195 learning
problems for XCS and Q-Learning are collected and counted in Table 6.3.
In this case, it is possible to find out why XCS has a better performance
than Q-Learning after they converge.

Optimum solutions

Note, the results for both XCS and Q-Learning are calculated by averag-
ing the results of 30 independent runs, and there are 30 tests in each run,
thus there are 900 testing for both of these two algorithms at 195 learning
problems. As shown in Table 6.3, the steps to goal are divided into differ-
ent ranges. The number of steps to goal from 100 to 199 can be considered
as the number of steps with the optimum solution. The number of steps
to goal from 200 to 299 can be considered as the number of steps with
the sub-optimum solution, which shows the potential of the algorithm to
solve the mountain car problem. In this case, the optimum solution and
sub-optimum solution can be considered the valid solution. If the number
of steps is between 300 to 999, the solution will be considered an invalid
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Steps to goal XCS Q-Learning
100-199 490 229
200-299 227 347
300-399 15 37
400-499 9 8
500-599 2 2
600-699 3 3
700-799 3 2
800-899 0 2
900-999 0 0
1000 151 270

Table 6.3: Counted steps to goal of XCS and Q-Learning at learning prob-
lems 195.

solution. Finally, if the number of steps is 1000, it means the algorithm
is not able to learn any policy. For comparing these two algorithms, it is
quite clear that in 900 tests, XCS and Q-Learning can solve the problem
with the optimum solution in 490 tests and 229 tests, respectively, thus
XCS has a higher chance to learn the optimum solution. For learning the
sub-optimum solution, there are 227 and 347 tests for XCS and Q-Learning
achieves this goal. In this case, the valid solution learned by XCS and Q-
Learning in 717 and 576 tests respectively. Obviously, XCS can learn more
optimum solutions and valid solutions than Q-Learning. In addition, there
are 151 and 270 tests that XCS and Q-Learning cannot learn any useful so-
lution, where XCS is less likely to get involved in this worst case. From the
analysis, we can see that XCS provides a better solution than Q-Learning
as it converges better than Q-Learning for learning the optimal solution
and is less likely to does not learn any useful solution.

In Table 6.4, the steps to goal of the optimum solutions less than 200
steps are divided into different ranges by the number of steps. The number
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Steps
XCS
(N)

XCS
(a0)

XCS
(a1)

XCS
(a2)

Q-L
(N)

Q-L
(a0)

Q-L
(a1)

Q-L
(a2)

90-100 2 0.40 0.03 0.56 0 0 0 0
100-110 9 0.26 0.11 0.63 4 0.35 0.21 0.44
110-120 26 0.23 0.18 0.58 6 0.34 0.24 0.42
120-130 9 0.25 0.18 0.56 9 0.35 0.21 0.43
130-140 53 0.27 0.20 0.53 5 0.36 0.20 0.44
140-150 170 0.33 0.23 0.44 10 0.33 0.24 0.43
150-160 108 0.34 0.22 0.44 79 0.36 0.24 0.40
160-170 41 0.29 0.24 0.47 48 0.33 0.23 0.45
170-180 21 0.28 0.28 0.44 42 0.31 0.26 0.43
180-190 53 0.27 0.29 0.44 26 0.31 0.25 0.44
190-200 48 0.27 0.27 0.46 46 0.29 0.28 0.43

Table 6.4: The ratio of taking different actions in the optimum solutions
learned by XCS and Q-Learning by each steps to goal range.
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of solutions in each range is counted, and the ratio of taking a0, a1, and a2

in each range by XCS and Q-Learning is calculated. For XCS, first, it learns
more optimum solutions within 140 steps than Q-Learning. More details,
for the optimum solutions with less than 140 steps, there are most action
go right a2 in it (over 0.53), then is action go left a0 and zero-throttle a1.
Note, the most optimum solution learned by XCS takes 0.56 of a2, and only
0.03 of a1, which means when there are more a2 and less a1, the mountain
car can get the flag on the right-hand side of the hill faster. The reason
why XCS can learn the optimum solutions with more a2 is due to it is
generalize a2 at different positions. Second, there are 170 (between 140 and
150 steps) and 108 (between 150 and 160 steps) optimum solutions learned
by XCS, which is clear evidence for the converge. It may be because XCS
can maintain the optimum solutions with its generalization ability, then
slight changes in the inputs would not affect the results very much. For
Q-Learning, there are not many optimum solutions learned by it with less
than 140 steps. The ratio of taking action a0, a1, and a2 in the learned
optimum solutions by Q-Learning is about over 0.3, 0.2, and 0.4, thus it is
less likely to learn the optimum solutions with more a2. In addition, there
is no clear evidence to show the result of Q-Learning converges.

From the discussion, we can see that XCS has a better solution than
Q-Learning for solving the mountain car problem due to its generaliza-
tion ability to generalize action go right a2 in the optimum solutions, and
maintain the optimum solutions.

6.6 Multi-Objective Mountain Car

As shown in Table 6.4, the ratio of taking action a1 zero-throttle in the
most optimum solution with 94 steps has only 0.03 of a1. In order to see
the trade off of using more zero-throttle and increasing total steps in the
optimum solutions, the experiment with 3 weights [1, 0], [0.5, 0.5] and [0,
1] are implemented.
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Weight Result zero-throttle
[1, 0] 164 26
[0.5, 0.5] 169 43
[0, 1] 305 119

Table 6.5: Multi-Objective Mountain Car Result.

6.6.1 Result

In this subsection, only one of the results of the successful run shows in
Table 6.5 as the experimental result is not very consistent. From the re-
sult in that Table, we can conclude that with 200 learning problems, the
bi-objective mountain car problem can be solved by MOXCS with three
weights. With weight [1, 0] and [0.5, 0.5], the mountain car achieves the
goal with 164 and 169 with 26 and 43 zero-throttle, respectively. With the
weights [0, 1], the number of action zero-throttle is higher than the weight
[1, 0] and [0.5, 0.5], which makes sense for the second objective.

6.6.2 Discussion

Step VS Position

As shown in Figure 6.5, MOXCS spends over 160 steps with weights [1, 0]
and [0.5, 0.5], and over 300 steps with weight [0, 1] for solving the multi-
objective mountain car problem. There is not much difference in the posi-
tion of weights [1, 0] and [0.5, 0.5], however, the mountain car with weight
[0, 1] moves back and forward more to gain enough momentum than other
weights to solve the problem.

Step VS Velocity

Similar to the position, there is not much difference in the velocity of
weights [1, 0] and [0.5, 0.5] as shown in Figure 6.6, they achieve the veloc-



222 CHAPTER 6. LARGE-SCALE MORL WITH MOXCS

(a) Weight [1, 0] (b) Weight [0.5, 0.5]

(c) Weight [0, 1]

Figure 6.5: MOXCS Learning performance, i.e. The position of each step with

different weights.
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(a) Weight [1, 0] (b) Weight [0.5, 0.5]

(c) Weight [0, 1]

Figure 6.6: MOXCS Learning performance, i.e. The velocity of each step with

different weights.
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(a) Weight [1, 0] (b) Weight [0.5, 0.5]

(c) Weight [0, 1]

Figure 6.7: MOXCS Learning performance, i.e. The action of each step with

different weights.

ity of 3 at over 100 steps, which enable them to gain enough momentum
to reach the goal on the right-hand side with over 160 steps. However, for
weight [0, 1], after it achieves the velocity of 4 at over 100 steps, it still does
not have enough momentum to reach the goal on the right-hand side. In
this case, it has to back to the left to gain enough momentum to reach the
goal on the right-hand side.

Step VS Action

As shown in Figure 6.7, the actions with weights [1, 0] and [0.5, 0.5] is
more similar and consistent than weight [0, 1]. More details, for weights
[1, 0] and [0.5, 0.5], the mountain car takes action left a0 first, whereas the
mountain car takes action right a2 first. For the consistency of the actions,



6.6. MULTI-OBJECTIVE MOUNTAIN CAR 225

(a) Weight [1, 0] (b) Weight [0.5, 0.5]

(c) Weight [0, 1]

Figure 6.8: MOXCS Learning performance, i.e. The action distribution with dif-

ferent weights.

for weights [1, 0] and [0.5, 0.5], the mountain car takes action right a2 more
consistently. In addition, the action zero-throttle a1 with weight [0, 1] are
much more than other weights.

Heat map

As it is shown in Figure 6.8, the actions at different states with those 3
weights are plotted. There are three actions go left, go right, and stay,
which are colored by red, blue and purple. The state plots with green mean
there is no match set for that state. In the plot, the ideal actions should be
taking actions right on the upper part of the figure, and actions left on the
second half. With weights [1, 0] and [0.5, 0.5], the action of going right
on the upper part of the figure is 46 and 42, the action of going left on the
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second half of the figure is 45 and 38. With weight [0, 1], the action of going
right on the upper part of the figure is 35, the action of going left on the
second half of the figure is 35. In this case, with weights [1, 0] and [0.5, 0.5],
there are more ideal actions taken by the mountain car than that of weight
[0, 1], thus the mountain car problem is solved faster with weights [1, 0]
and [0.5, 0.5]. For the distribution of action zero-throttle, there are 26, 43,
53 with weights [1, 0], [0.5, 0.5], [0, 1] respectively. From the distribution
of action zero-throttle, we can see that when there are less zero-throttle
and fewer steps in the solution when the objective is to minimize steps to
reach the goal with weight [1, 0], and there are more zero-throttle when
the objective is to reach the goal with more zero-throttle and more steps in
the solution with weight [0, 1]. When considering both of the objectives
with weight [0.5, 0.5], the steps in the solution is just 5 steps higher than
weight [1, 0], but there are 17 actions zero-throttle than that of weight [1,
0], which shows MOXCS can maintain both of the objectives with a proper
weight.

6.7 Chapter Summary

In this chapter, MOXCS is used to solve the continuous RL and MORL
problems in a large sparse domain. First, XCS and Q-Learning are imple-
mented to resolve the mountain car problem, and XCS converges better
than Q-Learning. Especially, for the best performance of the average steps
to goal, XCS and Q-Learning spend about 244 steps and 426 steps to re-
solve the mountain car problem. The generalization ability of XCS is the
key reason for XCS provides a better solution than Q-Learning, as it gen-
eralizes action goes right to enable the mountain car to gain enough mo-
mentum to reach the goal at the right-hand side, in this case, it helps the
mountain car to learn the optimum solutions with more action go right.
In addition, the generalization ability also helps maintain the optimum
solutions.
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Then, the mountain car is extended as a bi-objective MORL problem
by adding another objective to push the mountain car with more action
zero-throttle. In this case, there are two objectives, the first one is mini-
mizing the steps to achieve the final state and the second one is to reach
the final state with as many zero-throttle actions as possible. Only when
the mountain car takes zero-throttle, it gets a reward of 0, otherwise -1.
MOXCS is implemented to resolve the multi-objective mountain car prob-
lem, but the result is not consistent. In this case, a positive case in the
results is analyzed to show MOXCS has the potential to resolve the multi-
objective mountain car problem. In this positive case, it spends 164, 169
and 305 steps to resolve the problem with weight [1, 0], [0.5, 0.5] and [0,
1]. Though the steps in the valid solution with weights [0.5, 0.5] and [0, 1]
are higher than the weight [1, 0], there is more action zero-throttle in these
two weights, which meets the goal of the second objective.

XCS and MOXCS perform better than Q-Learning as XCS and MOXCS
have a better generalization ability than Q-Learning.
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Chapter 7

Conclusions and Future Work

The main academic issue addressed by this thesis is to solve the discrete
MORL problems utilising the LCS technique. There are four objectives
in the thesis. The first two of them are discrete problems, in Chapters 3
and 4. The other two of them are transferring continuous problems to dis-
crete problems by changing the environments then using the technology
of solving discrete problems to solve them, in Chapters 5 and 6. Similarly,
the partially observable problem in this work (mainly in Chapters 5 and
6) is solved by changing the environment rather solving it by algorithms.
Only one large-scale problem MORL has been investigated but not been
solved, in Chapter 6. The generality to similar tasks has been investigated
and solved in Chapter5. In this case, the main contribution of this thesis is
solving the discrete MORL problems by LCSs-based algorithms.

The overall goal of this thesis is to determine compact and effective
solutions to the MORL problems by developing LCS-based algorithms.
This was accomplished through the use of LCSs, especially the accuracy-
based classifier systems, by integrating them with multi-objective algo-
rithms. This updated the single-objective LCS algorithms to enable them
to handle multiple objectives. The developed systems were evaluated us-
ing various complex problems used in the literature and the results were
compared with the existing related systems.

229
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The rest of this chapter presents the summary of work from each chap-
ter, contributions, future work, and chapter summary that stem from this
research work.

7.1 Summary of Work

The following research objectives have been fulfilled by this work to achieve
the overall research goal.

7.1.1 MO-XCS: Adding Pareto Dominance to XCS to Solve

MORL Problems

In this work, a new reinforcement learning algorithm based on XCS is de-
veloped, which is called MO-XCS. The algorithm is designed to learn a
group of Pareto optimal solutions through a single learning process. For
this purpose, four technical issues in XCS have been identified and ad-
dressed in this work.

• The reward signal has to be updated as a multi-dimensional reward.

• As cl.P and cl.OP are two sets of vectors, the error estimation in MO-
XCS is the distance between those two sets, see section 3.2.1, page
71.

• The explore and exploit strategy is based on the largest number of
non-dominated Q-vectors or the largest hypervolume.

• Rather than tracking the maximum Q-value in XCS during the test-
ing process, MO-XCS constructs the Pareto Front and tracks the Pareto
Q-value when exploiting the learned policies.

Experimental studies on three bi-objective maze problems further demon-
strate the effectiveness of the algorithm. In the experiments, we have



7.1. SUMMARY OF WORK 231

specifically examined the learning effectiveness of four alternative dis-
tance measures and two separate approaches for action selection. The re-
sults of the experiments show that the action selection method has more
influence on learning performance than the distance measure. Specifically,
hypervolume-based action selection allows us to explore promising re-
gions of the learning space more effectively than alternatives and therefore
helps to achieve more effective learning.

Although MO-XCS can learn a group of Pareto optimal solutions through
a single learning process, the LCS must store the whole history of predic-
tions for the states it visited, and select one such backup prediction as the
prediction of the classifier. However, this work exhibits several limita-
tions. First, the backup strategy may consume a large amount of storage.
Second, the tracing mechanism employed for constructing Pareto optimal
policies will only choose one of the classifiers in the next state, thus remov-
ing the generalization ability of XCS.

7.1.2 MOXCS: Decomposition based Multi-Objective Evo-

lutionary Algorithm in XCS for Multi-Objective Re-

inforcement Learning

In this work, a new XCS-based multi-objective reinforcement learning al-
gorithm, MOXCS, is developed. With the help of a decomposition multi-
objective algorithm (MOEA/D), MOXCS can address problems with com-
plicated Pareto fronts. To achieve this goal, several technical issues in XCS
have been identified and addressed in this work by adopting the follow-
ing.

• Following the idea of MOEA/D, MOXCS is to decompose a MORL
problem to N single objective RL sub-problems by initialization of
weights and neighbor size.

• For the classifier’s structure, to maintain the predictions of m objec-
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tives, each classifier has m predictions, errors, and finesses.

• For updating classifier parameters, max(PA) is only formed by the
classifiers that match the current state and the current weight

−→
λi .

• Inspired by MOEA/D, in the Genetic Algorithm (GA) process, clas-
sifiers with similar weights are used to search for the optimal solu-
tions.

A new ZCS-based multi-objective reinforcement learning algorithm,
MOZCS, is developed as well. Similar to MOXCS, the standard ZCS is
updated in four aspects as mentioned before. The only difference between
MOXCS and MOZCS is when updating the classifier structure for main-
taining predictions, only the predictions of classifiers need to be updated,
as there are no errors and fitness in classifiers in ZCS.

Both MOXCS and MOZCS have been tested on three benchmark maze
problems with two separate objectives. The performance was measured
by evaluating the hypervolume and policy match rate. From the results,
the evidence shows that MOXCS and MOZCS can solve MORL problems
successfully. Analyzing the influence of reward settings, the results showed
that when placing more weight on ‘gold’, compared with ‘steps’ to ‘gold’,
the action selection policy will be similar to the policy only considering
the ‘gold’ setting on the second objective. On the other hand, when the
weights vary, then the learned optimal policy will change as well. It show-
ing the ‘gold’ setting will influence the learned optimal policy.

MOXCS and MOZCS are also used to solve two MORL benchmarks,
Deep Sea Treasure (DST) and Deep Sea Treasure Corridor (DSTC). For the
DST problem, MOXCS and MOZCS handle the PO-MDP environment by
updating the condition to consume the integer input of each state. The
DSTC problem, the PO-MDP environment is handled by adding extra
characters. The results of MOXCS and MOZCS show that they can suc-
cessfully solve DSTC and DST by %OP100% over 500, and 1000 learning
problems, respectively. In this work, the learned PF by MOXCS and XCS
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is compared, where the experiment results indicate that MOXCS can effec-
tively learn more non-dominated Pareto policies. In addition, the finding
shows MOXCS and MOZCS can find Pareto Optimal Policies with both
convex and concave PF.

The Multi-Maze and Multi-Maze Connection are introduced to test the
generalization ability of MOXCS. As the results of the previous testing of
Bi-Objective mazes, DSTC and DST show that MOXCS has similar per-
formance and MOXCS even has a better performance than MOZCS, only
the generalization ability of MOXCS is experimentally evaluated on Multi-
Maze. The agent trained by MOXCS can solve three same mazes in one
environment. However, when updating the testing environment slightly,
the problem cannot be solved in a deterministic analysis as the reward
settings changes the action distribution.

7.1.3 Quantifying Generalization Ability of MOXCS in Multi-

Objective Reinforcement Learning Problems

Two single-objective CoinRun environments (Env1 and Env5) were suc-
cessfully solved by XCS with the technique of discretizing a continuous
input, adding extra characters in PO-MDP Environment and sub-actions.
This creates a new test rather than solve the old one, unless the agent
learns to place the ‘blocks’ itself. Following the experiment, we test the
generalization ability of XCS by training the agent in one environment
and testing in another environment.

Then, these two environments are extended as MORL environments
called the bi-objective RL CoinRun. The experimental results show MOXCS
managed to resolve these two bi-objective CoinRun problems. The evi-
dence shows MOXCS has the generalization ability for solving the MORL
problem in an unseen environment or in a similar environment.

Finally, we discussed the Pareto Front learned by MOXCS, thus find
the potential solution to solve the non-stationary obstacles in CoinRun en-
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vironment.

7.1.4 Using MOXCS to Solve Large-Scale Non-Markov MORL

Problems

In this chapter, XCS was first used to solve the mountain car problem
by discretizing the environment and encoding integers to classifier con-
ditions. Then the multi-objective mountain car is introduced in this work
to test MOXCS. The position, action, and velocity related to different step
are plotted to demonstrate not only what is the result, but help to under-
stand why is the result. The value function is plotted to demonstrate what
actions are taken at different states.

7.2 Contributions

This work will have contributions to the fields of LCSs and MORL as be-
low:

1. MO-XCS is a novel multi-objective reinforcement learning algorithm
based on XCS. Most of the research on reinforcement learning algo-
rithms addresses only a single learning objective. Recently, several
multi-objective reinforcement learning algorithms have been proposed.
Different from many recently proposed learning algorithms that typ-
ically rely on tabular representations of the value function, this new
algorithm will facilitate a more scalable representation in the form
of a population of classifiers. In addition, it is designed to learn
multiple Pareto optimal policies through a single learning process.
According to our literature review, it is the first time to propose an
XCS-based algorithm for this type of learning task. The experimen-
tal results show that the proposed MO-XCS can learn Pareto optimal
policies on the introduced bi-objective mazes.
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2. The decomposition-based Multi-Objective evolutionary reinforcement
learning algorithms MOXCS and MOZCS were proposed for solving
MORL problems. Different from most existing multi-objective LCS
algorithms, they are not only able to solve the MORL problems, but
also keep a good generalization ability. We have measured the per-
formance of MOXCS and MOZCS by evaluating the hypervolume
and policy match rate. From the results, we can see that MOXCS and
MOZCS can solve MORL problems, i.e. bi-objective mazes and Deep
Sea Treasure Corridor. In addition, the evidence in the experimen-
tal results show MOXCS can learn both concave and convex Pareto
Front in complex scenarios.

3. In this work, new environments are generated for evaluating the
generalization ability of MORL algorithms, i.e. constructing distinc-
tive training and testing sets. More notably, we add the second ob-
jective into two selected environments from CoinRun as the bench-
mark for evaluating generalization in MORL, named CoinRun Ac-
tion Bias and CoinRun Step VS Reward. Using CoinRun Action Bias
and CoinRun Step VS Reward, we find that MOXCS can solve the
MORL problems by training and testing in a slightly different envi-
ronment.

4. In this work, a new technique is introduced into MOXCS to solve
the non-Markov MORL problem by updating the condition of clas-
sifiers in MOXCS for addressing the integer inputs. The experimen-
tal results show that the updated MOXCS can learn Pareto optimal
policies on the Deep Sea Treasure problem. Further, the updated
MOXCS has shown the potential to solve the large-scale MORL prob-
lem multi-objective mountain car. In addition, we demonstrated and
analyzed the advantages of MOXCS compared to other algorithms
by comparing the converge speed and the Value Function on each
state.
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5. The advantage, disadvantage and when to use them are listed as be-
low. For MO-XCS, the advantage is the prediction value for differ-
ent objectives is updated and stored at once. The disadvantage is
MO-XCS will consume a large amount of storage to store the explor-
ing history, and lack of generalization ability. MO-XCS suits solving
small-scale MDP problems, as it needs storage space and lacks gen-
eralization ability. On the other hand, for MOXCS, the advantage is
that it doesn’t need to consume a large amount of storage, and has
a better generalization ability than MO-XCS. In addition, MOXCS
converges faster than MO-XCS. The disadvantage is that prediction
value needs to be updated with all the weights, and some weights
may generate the same solution. MOXCS suits solving the large-
scale MDP problem due to MOXCS’s good generalization ability, and
it converges fast. It can also solve the PO-MDP problem, especially
when the correct action is the same in the aliasing states, but the ex-
pected value is different.

7.3 Future Work

Four hypotheses can be tested in future work:

The developed LCS-based MORL algorithms can solve several MORL
benchmarks, but they cannot learn all the optimal solutions on a more
complicated and consistent Pareto Front than the existing work in this
thesis due to limited time for the agent to explore and understand the
environment. In the future, more Multi-Objective algorithms will be con-
sidered to be integrated with LCS to help resolve the MORL problems.
NSGA II will be considered to resolve the multi-objective problem. This
is because in low dimension space or when the dataset has fewer features,
NSGA II has a better performance than MOEA/D.

The second potential future work can explore the continuous solution
for the multi-objective CoinRun problem. In this work, as the solution
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learned by MOXCS is discrete, especially when the agent takes an action,
then it will take several of the same sub-actions. Often, the obstacle is
in the position that the agent could not avoid in a sequence of continu-
ous sub-actions. To make the actions more flexible, XCSF will be used
to tackle multistep reinforcement learning problems involving continuous
inputs. The results in [13] shows that in domains involving continuous
inputs and delayed rewards XCSF can evolve compact populations of ac-
curate maximally general classifiers, which represent the optimal solution
to the target problem.

The third potential future work could focus on improving the general-
ization ability on solving large-scale partially observable MORL problems.
In this work, the integer-MOXCS solved the partially observable MORL
problems by hard coding the environment, so the generalization ability is
limited as the condition is specified no matter what action should take in
the current state. In future work, ACS will be considered for solving the
partially observable MORL problems. ACS evolves a model that specifies
not only what to do in a given situation but also provides information of
what will happen after a specific action is executed. In this case, the clas-
sifiers can be generalized to those states that should take the same action.

The fourth potential future work can focus on using MOXCS on a simu-
lated robot. There are three reasons for this research. Firstly, though many
researchers apply LCS on the simulated robot, they are mainly focusing on
solving single-objective problems. Secondly, the solution of LCS is inter-
pretable and can be made to be human interpretable IF:THEN statements.
Last, the computing resource requirement is relatively low, so it is more
feasible to implement on the simulated robot with reasonable cost on the
resource.
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7.4 Chapter Summary

This research work in this thesis has shown that LCS-based algorithms
can solve MORL problems. The proposed MORL algorithm MO-XCS in-
troduced a method to add Pareto Dominance to XCS for solving MORL
problems. The experimental results show the capability to solve three
introduced bi-objective maze problems. Inspiring by the decomposition-
based multi-objective algorithm MOEA/D and LCS, the MORL algorithm
MOXCS and MOZCS is developed. Both MOXCS and MOZCS can learn
Pareto optimal solutions on introduced benchmarks such as bi-objective
maze, Deep Sea Treasure, and MOXCS has similar performance to Pareto
Front in terms of the number of learned Pareto optimal solutions. The gen-
eralization ability of MOXCS is tested on a Multi-Maze connection but the
environment was found not ideal for testing the MORL algorithm. Then
tested XCS and MOXCS on CoinRun environment and Multi-Objective
CoinRun environment, the experimental results demonstrated the gener-
alization ability of XCS and MOXCS. Finally, use XCS and MOXCS to solve
the mountain car and multi-objective mountain car problem. It shows
the advantage of XCS for solving large-scale non-Markov RL problems
and the potential of MOXCS for solving large-scale multi-objective MORL
problems.
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Chapter 8

Appendix

8.1 Novelty Search

Though the objective-based search method is widely used in Evolution-
ary Computation algorithms, there researches[55] [56] that hypothesises
a fundamental problem in objective-based search: Most ambitious objec-
tives do not illuminate a path to themselves as the search space is huge
and often the searches terminates in the local optimal solution.

There are several indirect and direct evidence to support this hypoth-
esis. First, the result of the objective-driven search does not often lead
to great discoveries. For example, natural evolution innovates through
an open-ended process rather than a final objective. Similarly, the large-
scale cultural evolutionary processes, such as mathematics and art do not
have a fixed goal. Lastly, the non-objective based search Novelty Search
algorithm proposed by Lehman and Stanley[55] is direct evidence for this
hypothesis.

Instead of searching for a final objective, the Novelty Search learning
method employs a novelty metric to reward instances with functionality
significantly rather than rewards based on how close is the final objective.
For example, in a biped locomotion domain, the biped needs to learn to
walk. An objective function may reward falling the farthest, but it may
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lead to a local optimum as falling the farthest is not related to the objective
of walking. On the other hand, novelty search rewards different types
of falling, after different ways to fall are discovered, the only way to be
rewarded is to find a behavior that does not fall right away. Eventually,
the biped learns to walk.

The novelty search uses a novelty metric, which measures how differ-
ent an individual is from other individuals so creating a constant pressure
to take new behaviors. A simple measure of sparseness in the behaviors
space at a point is the average distance to the k-nearest neighbors of that
point, where k is a fixed parameter that is determined experimentally. The
sparseness ρ at point x is given by 8.1 as following:

ρ(x) =
1

k

i=0∑
k

dist(x, µi) (8.1)

where µi is the i th-nearest neighbor of x with respect to the distance met-
ric distance in the behavior space, which is a domain-dependent measure
of the behavioral difference between two individuals in the search space.
If the sparseness ρ at point x is large then it is in a sparse area and the be-
havior is more novel or it is in a dense region if ρ is small and the behavior
is less novel.

To test the performance of novelty search, three search methods (Nov-
elty, Fitness, and Random) were implemented on two randomly generated
maze problems created by the recursive division algorithm. The experi-
mental result shows 1) Novelty search is the most effective in terms of the
success rate among those three algorithms although its performance also
degrades with increasing problem complexity. 2) The solution of novelty
search converges faster to the maze complexity than fitness-based search
or random search [55].
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8.2 The Evolution of Connection Weights

In ANN, the aim of training Weights is usually to minimize an error func-
tion so as to get the expected output. Most training algorithms, such as
Back Propagation (BP) [62] and conjugate gradient algorithms [45], are
based on gradient descent. However, gradient algorithms are often trapped
in a locally optimal solution. Therefore, using evolutionary computation
methods to mutate and select the best neural network is a good solution
to overcome the local optima issue. Though, premature convergence may
happen because the progress of the population across iterations can be di-
rected to one or more local optima, making individual solutions progres-
sively more similar to each other. This process is also known as “diversity
loss”. Therefore, diversity maintenance is key for avoiding premature con-
vergence.

In the simplest form of Neuroevolution, it only involves neural net-
works with fixed representations. In this case, all the networks have the
same topology during the training process. For example, the hidden nodes
and the edges between the nodes are fixed. The only differences between
the networks are weights of these edges, which are optimized by evolu-
tion. However, the fixed network representations have a significant limi-
tation. The primary reason is that a good representation should be spec-
ified by the user in advance. Clearly, picking a network with too simple
representation will result in poor performance since it is impossible to de-
scribe high-quality solutions. However, choosing a representation with
too complex can be also harmful. Even this complex representation can
present good solutions, finding them may become infeasible and too ex-
pensive. Therefore, in most situations, the user is not able to specify the
right representation of the network.

A previous study showed that fixed-topology neuroevolution can solve
an challenging benchmark on RL problem: the double pole balancing task
[5] [33] [34]. However, Stanley and Miikkulainen have shown that evolv-
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ing topology can indeed increase performance in terms of speed on the
double pole balancing problem [71]. The reason why evolving topology
can improve the performance is because predefined topologies incur is-
sues. If the topology is too simple, it cannot solve the problem, whereas
evolving an overly complex topology will result in a high computational
time.

8.3 MO-XCS vs MOXCS

In the thesis, %OP (Percentage of true Pareto Optimal Policies) and THV
(Total Hypervolume) have been calculated evaluating the performance of
MO-XCS and MOXCS, but %OP is more direct for evaluating the learned
Optimal Policy as without achieving the best performance of THV the op-
timal policy still can be learned. In this case, %OP is used for comparing
the differences in terms of performance of MO-XCS and MOXCS in solv-
ing the MORL problem by evaluating the learned optimal policies.

However, there are some differences in calculating %OP of MO-XCS
and MOXCS. For MO-XCS, the %OP has been calculated in Formula 8.2

%OP =
Saopsn ⊆ Seopsn

Seopsn

X100% (8.2)

, which has been calculated based on the optimal solutions on the PF.
More details, for each open state, the number of steps of all the Pareto
Optimal Policy on the PF over each state is first manually calculated as a
policy set, and denoted as Expected Optimal Policy Step Number Policy
Set (Seopsn). Then the record of the number of steps of the learned Pareto
optimal policies over each state in the experiment result is collected for
each open state as a policy set, and denoted as Actual Optimal Policy Step
Number (Saopsn). Note, the redundant record in Saopsn will be deleted. Fi-
nally, calculate the percentage of how many optimal policies in Saopsn can
match that in Seopsn over all the open states to get the %OP of MO-XCS. On
the other hand, for MOXCS, the %OP has been calculated in Formula 8.3,
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which is based on the learned optimal policies.

%OP =
Saopsn ⊆ Seopsn

Saopsn

X100% (8.3)

In this case, while %OP of MO-XCS is measuring how much optimal poli-
cies on PF have been learned, %OP of MOXCS is measuring if MOXCS
learned the OP on the PF. Thus, in the result of MOXCS in this work,
though even %OP of MOXCS is 100% for all the weights, it could not prove
that all the solutions on PF have been learned for the following reasons, eg.
the learned optimal policies would be affected by changing the discount
factor, and the weights used for measuring the learned policy.

But, the result of %OP of MOXCS still valid because:

(1) As the discount factor changes the reward on the final state, the long-
term payoff at some state may change, then the learned optimal pol-
icy may change, thus some OP on the PF wouldn’t be learned. How-
ever, in the experiment, the discount factor is 0.99, thus the long-term
payoff for the start state wouldn’t be changed.

(2) As different weights may learn different solutions, if the testing weights
were not chosen properly, some of the solutions on PF may not be
learned. However, in the results of two-objective maze experiments
in chapter4, as the testing weights are set from preferring first objec-
tive 0.78, 0.22 to second objective 0.22, 0.78, all the solutions on the
PF should be learned if %OP of MOXCS is 100%.

For comparing MO-XCS and MOXCS on the efficiency of learning Op-
timal Policies on PF, the %OP achieve/close to 100% of MO-XCS and MOXCS
has been compared in Table 8.1 as below:
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Table 8.1: Number of learning problems for %OP close to 100%

Test Env MO-XCS MOXCS
Bi-obj Maze4 500 400
Bi-obj Maze5 1200 550
Bi-obj Maze6 700 550

From the table above, we can see that %OP of MOXCS achieve 100% (or
close to 100%) are faster than that of MO-XCS in all the bi-objective mazes.
More details, MOXCS spend 400, 550 and 550 to enable %OP close or
achieve 100% in three test environments: bi-objective 4, 5 and 6, while
MO-XCS spend 500, 1200 and 700 for that.


