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Abstract

This thesis is a study of geometric algebra and its applications to relativistic
physics. Geometric algebra (or real Clifford algebra) serves as an efficient
language for describing rotations in vector spaces of arbitrary metric sig-
nature, including Lorentzian spacetime. By adopting the rotor formalism
of geometric algebra, we derive an explicit BCHD formula for composing
Lorentz transformations in terms of their generators — much more easily
than with traditional matrix representations. This is used to straightfor-
wardly derive the composition law for Lorentz boosts and the concomitant
Wigner angle. Later, we include a gentle introduction to differential geome-
try, noting how the Lie derivative and covariant derivative assume compact
forms when expressed with geometric algebra. Curvature is studied as an
obstruction to the integrability of the parallel transport equations, and we
present a surface-ordered Stokes’ theorem relating the ‘enclosed curvature’
in a surface to the holonomy around its boundary.
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Geometric Algebra and
Special Relativity
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Chapter 1.

Introduction

The Special Theory of Relativity is a model of spacetime — the geometry
in which physical events take place. Spacetime comprises the Euclidean
dimensions of space and time, but only in a way relative to each observer
moving through it: there exists no single ‘universal’ ruler or clock. In-
stead, two observers in relative motion find their respective clocks and
rulers are found to disagree, according to the Lorentz transformation
laws. The insight of special relativity is that one should focus not on the
observer-dependent notions of space and time, but on the Lorentzian
geometry of spacetime itself.

The study of local spacetime geometry amounts to the study of its in-
trinsic symmetries.1 These consist of spacetime translations and Lorentz1 This insight is part of

Felix Klein’s Erlangen
programme of 1872 [1],

wherein geometries
(Euclidean, hyperbolic,

projective, etc.) are studied
in terms of their symmetry

groups and their
invariants.

transformations, the latter including rotations in space and hyperbolic
rotations in spacetime, or boosts. The standard matrix representation of
the Lorentz group, SO+(1, 3), familiar to any relativist is the connected
component of the orthogonal group

O(1, 3) = {Λ ∈ GL(R4) | ΛTηΛ = η}
with respect to the bilinear form 𝜂 = ±diag(−1, +1, +1, +1). The rudi-
mentary tools ofmatrix algebra are sufficient for an analysis of the Lorentz
group, but are not always the most suitable tool available.

The last century has seen many other mathematical objects be ap-
plied to the study of generalised rotation groups such as SO+(1, 3) or
the R3 rotation group SO(3). Among these tools is the geometric alge-
bra, invented2

2 Clifford algebra (an alias)
was independently

discovered by Rudolf
Lipschitz two years later

[2]. Lipschitz was the first
to use them to the study
the orthogonal groups.

by William Clifford in 1878 [3] building upon the work
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of Hamilton and Grassmann, which constitute the main theme of this
thesis.

Geometric algebra remains largely unknown in the physics commu-
nity, despite arguably being far superior for algebraic descriptions of ro-
tations than traditional matrix techniques. To appreciate this, we ought
to glean the history that led to the relative obscurity of Clifford algebras.

I. The quest for an optimal formalism for rotations

Mathematics has seen the invention of a variety of vector formalisms
since the 1800s, and the question of which is best suited to physics has a
long and contentious history. Complex numbers had been long known3 3 Since Wessel, Argand

and Gauss in the 1700s [4].to be useful descriptions of planar rotations. William Hamilton’s efforts
to extend the same ideas into three dimensions by inventing a “multipli-
cation of triples” bore fruition in 1843 when the quaternion algebra H,
defined by

̂𝒊2 = ̂𝒋2 = �̂�2 = ̂𝒊 ̂𝒋�̂� = −1,

famously came to him in revelation. In following decades, WilliamGibbs
developed the competing vector calculus of R3 with the usual vector
cross and dot products. The ensuing vector algebra “war” of 1890–1945
saw Hamilton’s prized4 quaternion algebra pitted against Gibbs’ easier- 4 Hamilton had a

dedicated following in the
time: the Quaternion
Society existed from 1895
to 1913.

to-visualise vector calculus, with Gibbs’ calculus eventually dominating
because of their relatively easier learning curve. Today, quaternions are
generally regarded as an old-fashioned mathematical curiosity.

Despite this, various authors, in appreciating quaternions’ elegant
handling ofR3 rotations, have tried coercing them intoMinkowski space
R1,3 for application to special relativity [5–7]. This has been done in
various ways, usually by complexifyingH into an eight-dimensional al-
gebra C ⊗ H and then restricting the number of degrees of freedom as
seen fit [8, 9]. However, it is fair to say that quaternionic formulations
of special relativity never gained notable traction.

3



Chapter 1. Introduction

II. The superior vector formalism for physics

Today, relativists aremost familiarwith tensor calculus, differential forms
and the Dirac 𝛾 -matrix formalism, and have relatively little to do with
quaternions or derived algebras.5 Arguably, this outcome of history5 See [4, 10] for more

historical discussion of
quaternions and their
adoption in physics.

is unfortunate: matrix descriptions of rotations cannot match the ef-
ficiency of quaternions, yet quaternions remain ‘peculiar’ to many and
are intrinsically tied to three dimensions.

In this respect, geometric algebra is a perfect middle-ground. Its rotor
formulation of rotations is algebraically efficient like the quaternions,
but is not specific to R3 — indeed, geometric algebra is general to any
dimension or metric signature. Furthermore, objects like vectors, bivec-
tors and 𝑘-vectors (familiar from exterior differential calculus) are first-
class objects in the geometric algebra, yet obey identical rotor transfor-
mation laws. Unlike exterior calculus, multivectors are often invertible,
making algebraic manipulation easy.

In quantum theory, Dirac’s 𝛾 -matrix formalism is simply a matrix rep-
resentation of a geometric algebra (see section 3.2.3). Although some
physicists come away from quantum theory with the impression that
Clifford algebra is something inherently quantum, this is a misconcep-
tion: geometric algebra is applicable to vast areas of geometry and physics,
classical and quantum, and from elementary levels.66 See [11] for discussion of

diverse applications of
geometric algebra.

III. Outline of this thesis

Part I of this thesis introduces geometric algebra with emphasis on its re-
lation to other common structures in physics. The principal focus is then
on its applications to special relativity, where Lorentz transformations
are described as rotors in the geometric algebra. In chapter 5, this leads
to a novel technique for composing Lorentz transformations in terms of
rotor generators (also described in [12]).

Seven years afterAlbert Einstein introduced this theory,7 he succeeded
in formulating a relativistic picture which included gravity. In this Gen-
eral Theory of Relativity, gravitation is identified with the curvature of
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spacetime over astronomical distances. Both theories coincide locally 7 Einstein’s paper [13] was
published in 1905, the
so-called Annus Mirabilis
or “miracle year” during
which he also published
on the photoelectric effect,
Brownian motion and the
mass-energy equivalence.
Each of the four papers
was a monumental
contribution to modern
physics.

(i.e., when confined to sufficiently small extents of spacetime, overwhich
the effects of curvature are negligible). In part II, we extend the ideas of
part I to curved manifolds, and investigate some applications of the ge-
ometric algebra formalism in differential geometry.
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Chapter 2.

Preliminary Theory

Many of the tools we will develop take place in various associative alge-
bras. As well as the geometric algebra of spacetime, we will encounter
tensors, exterior forms, quaternions, and other structures in this cate-
gory. Instead of defining each algebra axiomatically when needed, it is
easier to develop the general theory of associative algebras and then to
look at special cases.

Therefore, this section is an overview of the abstract theory of asso-
ciative algebras, which more generally belongs to ring theory.8 Algebras,8 A ring is a field which

does not require
commutativity nor the

existence of multiplicative
inverses.

quotients and gradings are defined, as well as tensors,multivectors and ex-
terior forms. Most definitions in this chapter can be readily generalised
by replacing the field F with a ring. The excitable reader may skip this
chapter and refer back as needed.

2.1. Associative Algebras

Throughout,F denotes the underlying field of some vector space. (Even-
tually, F will always be taken to be R, but we may begin in generality.)
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2.1. Associative Algebras

Definition 1. An associative algebra𝐴 is a vector space overF equipped
with a product ⊛ ∶ 𝐴 × 𝐴 → 𝐴 which is associative and bilinear.

Examples. Any field forms
an associative algebra
when considered as a
one-dimensional vector
space. The complex
numbers can be viewed as
a real 2-dimensional
algebra by defining ⊛ to
be complex multiplication;
(𝑥1, 𝑦1) ⊛ (𝑥2, 𝑦2) ≔
(𝑥1𝑥2 − 𝑦1𝑦2, 𝑥1𝑦2 + 𝑦1𝑥2).

Associativity means (𝑎 ⊛ 𝑏) ⊛ 𝑐 = 𝑎 ⊛ (𝑏 ⊛ 𝑐) for 𝑎, 𝑏, 𝑐 ∈ 𝐴, while
bilinearity means the product is:

• compatible with scalars: (𝜆𝑎) ⊛ 𝑏 = 𝑎 ⊛ (𝜆𝑏) = 𝜆(𝑎 ⊛ 𝑏) for 𝜆 ∈ F;
and

• distributive over addition: (𝑎 + 𝑏)⊛ 𝑐 = 𝑎 ⊛ 𝑐 + 𝑏 ⊛ 𝑐, and similarly
for 𝑎 ⊛ (𝑏 + 𝑐).

This definition can be generalised by relaxing associativity or by letting
F be a ring. However, we will use “algebra” exclusively to mean an
associative algebra over a field (usually R).

I. The free tensor algebra

The most general (associative) algebra containing a given vector space
𝑉 is the tensor algebra 𝑉⊗. The tensor product ⊗ satisfies exactly
the relations of definition 1 with no others. Thus, the tensor algebra is
associative, bilinear and free in the sense that no further information is
required in its definition.

As a vector space, the tensor algebra is equal to the infinite direct sum

𝑉⊗ ≅
∞
⨁
𝑘=0

𝑉⊗𝑘 ≡ F ⊕ 𝑉 ⊕ (𝑉 ⊗ 𝑉 ) ⊕ (𝑉 ⊗ 𝑉 ⊗ 𝑉 ) ⊕ ⋯ ‘≡’ denotes notational
equivalence

(2.1)

where each 𝑉⊗𝑘 is the subspace of tensors of grade 𝑘.

2.1.1. Quotient algebras

Owing to the maximal generality of the free tensor algebra, any other
associative algebras may be constructed as a quotient of 𝑉⊗. In order
for a quotient 𝑉⊗/∼ to itself form an algebra, the equivalence relation
∼ must preserve the associative algebra structure.
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Chapter 2. Preliminary Theory

Definition 2. A congruence on an algebra𝐴 is an equivalence relation ∼
which is compatible with the algebraic relations, so that if 𝑎 ∼ 𝑎′ and 𝑏 ∼ 𝑏′
then 𝑎 + 𝑏 ∼ 𝑎′ + 𝑏′ and 𝑎 ⊛ 𝑏 ∼ 𝑎′ ⊛ 𝑏′.

The quotient of an algebra by a congruence naturally has the structure
of an algebra, and so is called a quotient algebra.

Lemma 1. The quotient 𝐴/∼ of an algebra𝐴 by a congruence∼, consist-
ing of equivalence classes [𝑎] ∈ 𝐴/∼ as elements, forms an algebra with
the naturally inherited operations [𝑎]+[𝑏] ≔ [𝑎+𝑏] and [𝑎]⊛[𝑏] ≔ [𝑎⊛𝑏].

Proof. The fact that the operations + and ⊛ of the quotient are well-
defined follows from the structure-preserving properties of the congru-
ence. Addition is well-defined if [𝑎] + [𝑏] does not depend on the choice
of representatives: if 𝑎′ ∈ [𝑎] then [𝑎′] + [𝑏] should be [𝑎] + [𝑏]. By
congruence, we have from 𝑎 ∼ 𝑎′ so that [𝑎 + 𝑏] = [𝑎′ + 𝑏] and indeed
[𝑎] + [𝑏] = [𝑎′] + [𝑏]. Likewise for ⊛.

Instead of presenting an equivalence relation, it is often easier to de-
fine a congruence by specifying the set of elements which are equivalent
to zero, from which all other equivalences follow from the algebra ax-
ioms. Such a set of all ‘zeroed’ elements is called an ideal.

Definition 3. A (two-sided) ideal of an algebra𝐴 is a subset 𝐼 ⊆ 𝐴which
is closed under addition and invariant under multiplication, so that

• if 𝑎, 𝑏 ∈ 𝐼 then 𝑎 + 𝑏 ∈ 𝐼 ; and

• if 𝑟 ∈ 𝐴 and 𝑎 ∈ 𝐼 then 𝑟 ⊛ 𝑎 ∈ 𝐼 ∋ 𝑎 ⊛ 𝑟 .

We will use the notation 𝐼 = {{𝑎𝑖}} to mean the ideal generated by
the relations 𝑎𝑖 ∼ 0. For example, {{𝑎}} = span{𝑟 ⊛ 𝑎 ⊛ 𝑟 ′ | 𝑟 , 𝑟 ′ ∈ 𝐴} is
the ideal consisting of sums of products involving the zeroed element 𝑎.
{{𝒖 ⊗ 𝒖 | 𝒖 ∈ 𝑉 }}, or simply {{𝒖 ⊗ 𝒖}}, is the ideal in 𝑉⊗ consisting of sums
of terms of the form 𝑎 ⊗ 𝒖 ⊗ 𝒖 ⊗ 𝑏 for vectors 𝒖 and arbitrary 𝑎, 𝑏 ∈ 𝑉⊗.
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2.1. Associative Algebras

Lemma 2. An ideal uniquely defines a congruence, and vice versa, by the
identification of 𝐼 as the set of zero elements, 𝑎 ∈ 𝐼 ⟺ 𝑎 ∼ 0.

Proof. If ∼ is a congruence, then 𝐼 ≔ {𝑎 | 𝑎 ∼ 0} is an ideal because it is
closed under addition (if 𝑎, 𝑏 ∈ 𝐼 then 𝑎 + 𝑏 ∼ 0 + 0 = 0 so 𝑎 + 𝑏 ∈ 𝐼 )
and invariant under multiplication (for any 𝑎 ∈ 𝐼 and 𝑟 ∈ 𝐴, we have
𝑟 ⊛ 𝑎 ∼ 𝑟 ⊛ 0 = 0 = 0 ⊛ 𝑟 ∼ 𝑎 ⊛ 𝑟 ).

Conversely, if 𝐼 is an ideal, then we show that ∼ defined by 𝑎 ∼ 𝑏 ⟺
𝑎 − 𝑏 ∈ 𝐼 is a congruence. Let 𝑎 ∼ 𝑎′ and 𝑏 ∼ 𝑏′. Both addition

𝑎 − 𝑎′ ∈ 𝐼
𝑏 − 𝑏′ ∈ 𝐼 } ⟹ (𝑎 + 𝑏) − (𝑎′ + 𝑏′) ∈ 𝐼 ⟺ 𝑎 + 𝑏 ∼ 𝑎′ + 𝑏′

and multiplication

(𝑎 − 𝑎′) ⊛ 𝑏 ∈ 𝐼
𝑎′ ⊛ (𝑏 − 𝑏′) ∈ 𝐼 } ⟹ 𝑎 ⊛ 𝑏 − 𝑎′ ⊛ 𝑏′ ∈ 𝐼 ⟺ 𝑎 ⊛ 𝑏 ∼ 𝑎′ ⊛ 𝑏′

are respected, so ∼ is a congruence.

The equivalence of ideals and congruences is a general feature of ab-
stract algebra.9 Furthermore, both can be given in terms of a homomor- 9 E.g., in group theory,

ideals are normal
subgroups and define
congruences, which are
equivalence relations
satisfying 𝑔𝑎𝑔−1 ∼ id
whenever 𝑎 ∼ id.

phism between algebras,10 and this is often the most convenient way to

10 A homomorphism is a
structure-preserving map;
in the case of algebras, a
linear map 𝛹 ∶ 𝐴 → 𝐴′

which satisfies
𝛹(𝑎 ⊛ 𝑏) = 𝛹(𝑎) ⊛′ 𝛹(𝑏).

define a quotient.

Theorem 1 (first isomorphism theorem). If 𝛹 ∶ 𝐴 → 𝐵 is a homomor-
phism, between algebras, then

1. the relation 𝑎 ∼ 𝑎′ defined by 𝛹(𝑎) = 𝛹(𝑎′) is a congruence;

2. the kernel 𝐼 ≔ ker𝛹 is an ideal; and

3. the quotients 𝐴/∼ ≡ 𝐴/𝐼 ≅ 𝛹(𝐴) are all isomorphic.

Proof. We assume𝐴 and 𝐵 associative algebras. (For a proof in universal
algebra, see [14, §15].)

To verify item 1, suppose that 𝛹(𝑎) = 𝛹(𝑎′) and 𝛹(𝑏) = 𝛹(𝑏′) and note
that 𝛹(𝑎 + 𝑎′) = 𝛹(𝑏 + 𝑏′) by linearity and 𝛹(𝑎 ⊛ 𝑏) = 𝛹(𝑎′ ⊛ 𝑏′) from

9



Chapter 2. Preliminary Theory

𝛹(𝑎 ⊛ 𝑏) = 𝛹(𝑎) ⊛ 𝛹(𝑏), so the congruence properties of definition 2 are
satisfied.

For item 2, note that ker𝛹 is a vector subspace, and that 𝑎 ∈ ker𝛹
implies 𝑎 ⊛ 𝑟 ∈ ker𝛹 for any 𝑟 ∈ 𝐴 since 𝛹(𝑎 ⊛ 𝑟) = 𝛹(𝑎) ⊛ 𝛹(𝑟) = 0.
Thus, ker𝛹 is an ideal by definition 3.

The first equivalence in item 3 follows from lemma 2. For an isomor-
phism 𝛷 ∶ 𝐴/ker𝛹 → 𝛹(𝐴), pick 𝛷([𝑎]) = 𝛹(𝑎). This is well-defined
because the choice of representative of the equivalence class [𝑎] does
not matter; 𝑎 ∼ 𝑎′ if and only if 𝛹(𝑎) = 𝛹(𝑎′) by definition of ∼, which
simultaneously shows that 𝛷 is injective. Surjectivity follows since any
element of 𝛹(𝐴) is of the form 𝛹(𝑎) which is the image of [𝑎].

With the free tensor algebra and theorem 1 in hand, we are able to
describe any associative algebra as a quotient of the form 𝑉⊗/𝐼 .

Definition 4. The dimension dim𝐴 of a quotient algebra 𝐴 = 𝑉⊗/𝐼 is
its dimension as a vector space. The base dimension of 𝐴 is the dimension
of the underlying vector space 𝑉 .

Algebras of finite base dimension may be infinite-dimensional, as is
the case for the tensor algebra itself (which is a quotient by the trivial
ideal).

2.1.2. Graded algebras

Associative algebras may possess another layer of useful structure: a
grading. An example grading for the tensor algebra has already been
exhibited in eq. (2.1). Gradings generalise the degree or rank of tensors
or forms, and the notion of parity (even/oddness) for functions or poly-
nomials.

Informally, an algebra’s grading provides a labelling for some of its el-
ements, such that labels are combined simply (usually by addition) under
the algebra’s multiplication.

10



2.1. Associative Algebras

Definition 5. An algebra 𝐴 is 𝑅-graded for (𝑅, +) a monoid 11 if there 11 A monoid is a group
without the requirement
of inverses; i.e., a set with
an associative binary
operation + for which
there is an identity
element.

exists a decomposition

𝐴 = ⨁
𝑘∈𝑅

𝐴𝑘

such that 𝐴𝑖 ⊛ 𝐴𝑗 ⊆ 𝐴𝑖+𝑗 , i.e., 𝑎 ∈ 𝐴𝑖, 𝑏 ∈ 𝐴𝑗 ⟹ 𝑎 ⊛ 𝑏 ∈ 𝐴𝑖+𝑗 .

Themonoid is usually taken to be additive overN orZ, possibly mod-
ulo some integer. For instance, the tensor algebra 𝑉⊗ isN-graded, since
if 𝑎 ∈ 𝑉⊗𝑝 and 𝑏 ∈ 𝑉⊗𝑞 then 𝑎 ⊗ 𝑏 ∈ 𝑉⊗𝑝+𝑞 . Indeed, 𝑉⊗ is also Z-graded
if for 𝑘 < 0 we understand 𝑉⊗𝑘 ≔ {0} to be the trivial vector space. The
tensor algebra is alsoZ𝑝-graded, whereZ𝑝 ≡ Z/𝑝Z is addition modulo
any 𝑝 > 0, since the decomposition

𝑉⊗ =
𝑝−1
⨁
𝑘=0

𝑍𝑘 where 𝑍𝑘 =
∞
⨁
𝑛=0

𝑉⊗𝑘+𝑛𝑝 = 𝑉⊗𝑘 ⊕ 𝑉⊗(𝑘+𝑝) ⊕⋯

satisfies 𝑍𝑖 ⊗ 𝑍𝑗 ⊆ 𝑍𝑘 when 𝑘 ≡ 𝑖 + 𝑗 mod 𝑝. In particular, 𝑉⊗ is Z2-
graded,12 and its elements admit a notion of parity: elements of 𝑍0 = 12 Algebras which are

Z2-graded are sometimes
called superalgebras, with
the prefix ‘super-’
originating from
supersymmetry theory.

F ⊗ 𝑉⊗2 ⊗ ⋯ are even, while elements of 𝑍1 = 𝑉 ⊗ 𝑉⊗3 ⊗ ⋯ are odd,
with parity respected by ⊗ as it is for the integers.

Just as not all functions 𝑓 ∶ R → R are even or odd, not all elements
of aZ2-graded algebra are even or odd. More generally, not all elements
of a graded algebra belong to a single graded subspace.

I. Graded derivations

Derivative-like operators which obey the product rule enjoy the alge-
braic properties of a derivation. In graded algebras, operators can also
obey a ‘graded product rule’.

Definition 6. A 𝑑-derivation or derivation of degree 𝑑 on a graded
algebra (𝐴, ⊛) is a linear operator D satisfying

D(𝑎 ⊛ 𝑏) = (D 𝑎) ⊛ 𝑏 + (−1)𝑑𝑘𝑎 ⊛ (D 𝑏) (2.2)

for all 𝑎 ∈ 𝐴𝑘 and 𝑏 ∈ 𝐴.

11



Chapter 2. Preliminary Theory

A derivation is short for a 0-derivation, always obeying D(𝑎 ⊛ 𝑏) =
(D 𝑎)⊛𝑏+𝑎⊛(D 𝑏); and an anti-derivation is short for a 1-derivation.

Lemma 3. If D1 and D2 are derivations of degree 𝑑1 and 𝑑2, respectively,
then the commutator [D1,D2] = D1D2 −D2D1 is a (𝑑1 + 𝑑2)-derivation if
and only if 𝑑1 + 𝑑2 is even. Similarly for the anti-commutator {D1,D2} =
D1D2 +D2D1, only instead when 𝑑1 + 𝑑2 is odd.

Proof. By unpacking [D1,D2](𝑎 ⊛ 𝑏) where 𝑎 is of grade 𝑘 and applying
eq. (2.2), we see that the last unwanted term in

[D1,D2](𝑎 ⊛ 𝑏) = ([D1,D2]𝑎) ⊛ 𝑏 + (−1)(𝑑1+𝑑2)𝑘𝑎 ⊛ ([D1,D2]𝑏)
− ((−1)𝑑1𝑘 − (−1)𝑑2𝑘)((D1 𝑎) ⊛ (D2 𝑏) − (D2 𝑎) ⊛ (D1)𝑏)

vanishes when (−1)𝑑1 − (−1)𝑑2 = 0, or when 𝑑1 + 𝑑2 is even. The case
of {D1,D2} is identical except that the unwanted term involves (−1)𝑑1 +
(−1)𝑑2 rather than a difference, vanishing when 𝑑1 + 𝑑2 is odd.

II. Graded quotient algebras

A grading structure may or may not be inherited by a quotient — in
particular, not all quotients of 𝑉⊗ inherit itsZ-grading. When reasoning
about quotients of graded algebras, the following fact is useful.

Lemma 4. Quotients commute with direct sums, so if

𝐴 = ⨁
𝑘∈𝑅

𝐴𝑘 and 𝐼 = ⨁
𝑘∈𝑅

𝐼𝑘 then 𝐴/𝐼 = ⨁
𝑘∈𝑅

(𝐴𝑘/𝐼𝑘 )

where 𝑅 is some index set.

Proof. It is sufficient to prove the case for direct sums of length two. We
then seek an isomorphism 𝛷 ∶ (𝐴 ⊕ 𝐵)/(𝐼 ⊕ 𝐽 ) → (𝐴/𝐼 ) ⊕ (𝐵/𝐽 ). Ele-
ments of the domain are equivalence classes of pairs [(𝑎, 𝑏)]with respect
to the ideal 𝐼 ⊕ 𝐽 . The direct sum ideal 𝐼 ⊕ 𝐽 corresponds to the con-
gruence defined by (𝑎, 𝑏) ∼ (𝑎′, 𝑏′) ⟺ 𝑎 ∼ 𝑎′ and 𝑏 ∼ 𝑏′. Therefore,
the assignment 𝛷 = [(𝑎, 𝑏)] ↦ ([𝑎], [𝑏]) is well-defined. Injectivity and
surjectivity follow immediately.

12



2.2. The Wedge Product: Multivectors

The general non-preservation of gradings motivates strengthening
the notion of an ideal:

Definition 7. An ideal 𝐼 of an 𝑅-graded algebra 𝐴 = ⨁𝑘∈𝑅 𝐴𝑘 is homo-
geneous if 𝐼 = ⨁𝑘∈𝑅 𝐼𝑘 where 𝐼𝑘 = 𝐼 ∩ 𝐴𝑘 .

Not all ideals are homogeneous.13 The additional requirement that an 13 For example, the ideal
𝐼 = {{𝒆1 + 𝒆2 ⊗ 𝒆3}} is
distinct from
⨁∞

𝑘=0(𝐼 ∩ 𝑉⊗𝑘) =
{{𝒆1, 𝒆2 ⊗ 𝒆3}} because the
former does not contain
span{𝒆1}, while the latter
does.

ideal be homogeneous ensures that the associated equivalence relation,
as well as respecting the basic algebraic relations of definition 2, also
preserves the grading structure. And so, we have a ‘graded’ analogue to
lemma 1:

Theorem 2. If 𝐴 is an 𝑅-graded algebra and 𝐼 a homogeneous ideal, then
the quotient 𝐴/𝐼 is also 𝑅-graded.

Proof. By lemma 4 and the homogeneity of 𝐼 , we have

𝐴/𝐼 = ⨁
𝑘∈𝑅

(𝐴𝑘/𝐼𝑘 ).

Elements of 𝐴𝑘/𝐼𝑘 are equivalence classes [𝑎𝑘]where the representative
is of grade 𝑘. Thus, (𝐴𝑝/𝐼𝑝 )⊛ (𝐴𝑞/𝐼𝑞 ) ⊆ 𝐴𝑝+𝑞/𝐼𝑝+𝑞 since [𝑎𝑝]⊛ [𝑎𝑞] =
[𝑎𝑝 ⊛ 𝑎𝑞] = [𝑏] for some 𝑏 ∈ 𝐴𝑝+𝑞 . Hence, 𝐴/𝐼 is 𝑅-graded.

2.2. The Wedge Product: Multivectors

Perhaps the simplest (yet most useful) nontrivial quotient of the tensor
algebra is the exterior algebra, first popularised in 1844 [15] by Hermann
Grassmann, who called it the theory of “extensive magnitudes”.14 14 Ausdehnungslehre in the

original German.

Definition 8. The exterior algebra over a vector space 𝑉 is

∧𝑉 ≔ 𝑉⊗/{{𝒖 ⊗ 𝒖}} {{𝒖 ⊗ 𝒖}} ≡ {{𝒖 ⊗ 𝒖 | 𝒖 ∈ 𝑉 }}
is the ideal defined by
𝒖 ⊗ 𝒖 ∼ 0 for any vectors
𝒖 ∈ 𝑉 .

.

The product in ∧𝑉 is called the wedge product, denoted ∧.

13



Chapter 2. Preliminary Theory

The wedge product is also called the exterior, alternating or antisym-
metric product. The property suggested by its various names is easily
seen by expanding the square of a sum:

(𝒖 + 𝒗) ∧ (𝒖 + 𝒗) = 𝒖 ∧ 𝒖 + 𝒖 ∧ 𝒗 + 𝒗 ∧ 𝒖 + 𝒗 ∧ 𝒗.
Since all terms of the form 𝒘 ∧ 𝒘 = 0 are definitionally zero, we have

𝒖 ∧ 𝒗 = −𝒗 ∧ 𝒖
for all vectors 𝒖, 𝒗 ∈ 𝑉 . By associativity, it follows that 𝒗1 ∧ 𝒗2 ∧ ⋯ ∧ 𝒗𝑘
vanishes exactly when the 𝒗𝑖 are linearly dependent.1515

Proof. Blades of the form
𝑎 = 𝒖1 ∧⋯∧𝒖𝑘 vanish when
two or more vectors are re-
peated. If {𝒖𝑖} is linearly
dependent, then any one 𝒖𝑖
can be written in terms of
the others, and thus 𝑎 can
be expanded into a sum of
such vanishing terms.

The ideal {{𝒖 ⊗ 𝒖}} is homogeneous with respect to the Z-grading of
the parent tensor algebra,16 and hence ∧𝑉 is itself Z-graded (by theo-
rem 2). In particular, the decomposition into fixed-grade subspaces

∧𝑉 =
dim 𝑉
⨁
𝑘=0

∧𝑘𝑉 where ∧𝑘𝑉 = span{𝒗1 ∧ 𝒗2 ∧ ⋯ ∧ 𝒗𝑘 | 𝒗𝑖 ∈ 𝑉 },

is respected by the wedge product, i.e., (∧𝑝𝑉 ) ∧ (∧𝑞𝑉 ) ⊆ ∧𝑝+𝑞𝑉 .

Definition 9. An element of ∧𝑘𝑉 is a (homogeneous) 𝑘-vector. An ele-
ment of ∧𝑘1𝑉 ⊕⋯⊕∧𝑘𝑛𝑉 ⊆ ∧𝑉 is an (inhomogeneous) {𝑘1, … , 𝑘𝑛}-mul-
tivector.16 This follows because

{{𝒖 ⊗ 𝒖}} is generated by
grade 2 elements

𝒖 ⊗ 𝒖 ∈ 𝑉⊗2.
All non-zero multivectors are the sum of one or more ‘irreducible’

elements, called blades.

Definition 10. A 𝑘-blade is a term of the form 𝒖1 ∧ ⋯ ∧ 𝒖𝑘 for 𝒖𝑖 ∈ 𝑉 .

Note that not all 𝑘-vectors are blades. For example, the bivector 𝒖1 ∧
𝒖2 + 𝒖3 ∧ 𝒖4 is generally not factorizable into a single 2-blade.

By counting the number of possible linearly independent sets of 𝑘
vectors in dim 𝑉 dimensions, it follows that in base dimension dim 𝑉 = 𝑛,

dim∧𝑘𝑉 = (𝑛𝑘), and hence dim∧𝑉 = 2𝑛.

14



2.2. The Wedge Product: Multivectors

In particular, note that dim∧𝑘𝑉 = dim∧𝑛−𝑘𝑉 . Elements of the one-
dimensional subspace ∧𝑛𝑉 are called pseudoscalars.17 17 The prefix ‘pseudo’

means 𝑘 ↦ 𝑛 − 𝑘. Hence, a
pseudovector is an
(𝑛 − 1)-vector, etc.

Blades have direct geometric interpretations. The bivector 𝒖 ∧ 𝒗 is in-
terpreted as the directed planar area spanned by the parallelogram with
sides 𝒖 and 𝒗 . (Note that blades have no ‘shape’; only directed magni-
tude.) Similarly, higher-grade elements represent directed (hyper)vol-
ume elements spanned by parallelepipeds (see fig. 2.1). In fact, any 𝑘-
blade may be viewed as a subspace of 𝑉 with an oriented scalar magni-
tude:

Definition 11. The span of a non-zero 𝑘-blade 𝑏 = 𝒖1 ∧ ⋯ ∧ 𝒖𝑘 is the 𝑘-
dimensional subspace span{𝑏} = span{𝒖1, … , 𝒖𝑘}. The span of the trivial
blade is defined to be the zero-dimensional subspace.

𝒖 ∧ 𝒗
𝒖

𝒗

𝒖 ∧ 𝒗
𝒘 𝒖 ∧ 𝒗 ∧ 𝒘

Fig. 2.1.: Bivectors and
trivectors have
orientations induced by
the order of the wedge
product.

Notably, a blade’s span is independent of the particular ∧-decomposition
of the blade into vectors. (E.g., if 𝒖1 ∧ ⋯ ∧ 𝒖𝑘 = 𝒗1 ∧ ⋯ ∧ 𝒗𝑘 are two such
decompositions, then span{𝒖𝑖} = span{𝒗𝑖}.)

2.2.1. As antisymmetric tensors

The exterior algebra may equivalently be viewed as the space of anti-
symmetric tensors equipped with an antisymmetrising product. Con-
sider the map

Sym±(𝒖1 ⊗⋯ ⊗ 𝒖𝑘) = 1
𝑘! ∑𝜎∈𝑆𝑘

(±1)𝜎𝒖𝜎(1) ⊗⋯ ⊗ 𝒖𝜎(𝑘) (2.3)

where (−1)𝜎 denotes the sign of the permutation 𝜎 in the symmetric
group of 𝑘 elements, 𝑆𝑘 . By requiring linearity, Sym± ∶ 𝑉⊗ → 𝑉⊗ is
defined on all tensors. A tensor 𝐴 is called symmetric if Sym+(𝐴) = 𝐴
and antisymmetric if Sym−(𝐴) = 𝐴.

Denote the image Sym−(𝑉⊗) by 𝑆. The linear map Sym− ∶ 𝑉⊗ → 𝑆
is not an algebra homomorphism with respect to the tensor product on
𝑆, since, e.g.,

Sym−(𝒖 ⊗ 𝒗) = 1
2(𝒖 ⊗ 𝒗 − 𝒗 ⊗ 𝒖) ≠ 𝒖 ⊗ 𝒗 = Sym−(𝒖) ⊗ Sym−(𝒗).

15



Chapter 2. Preliminary Theory

However, Sym− is a homomorphism if we instead equip 𝑆 ≡ (𝑆, ∧) with
the antisymmetrising product ∧ ∶ 𝑆 × 𝑆 → 𝑆 defined by

𝐴 ∧ 𝐵 ≔ Sym−(𝐴 ⊗ 𝐵). (2.4)

With this algebra homomorphism, by theorem 1 we have

𝑆 ≅ 𝑉⊗/ker Sym− . (2.5)

Furthermore, note that the kernel of Sym− consists of tensor products
of linearly dependent vectors, and sums thereof,1818

Proof. If 𝐴 = 𝒖1 ⊗ ⋯ ⊗ 𝒖𝑘
where two vectors 𝒖𝑖 = 𝒖𝑗
are equal, then Sym−(𝐴) =
0 since each term in the
sum in eq. (2.3) is paired
with an equal and opposite
term with 𝑖 ↔ 𝑗 swapped.
If {𝒖𝑖} is linearly dependent,
any one vector is a sum of
the others, so 𝐴 is a sum
of blades with at least two
vectors repeated.

ker Sym− = span{𝒖1 ⊗⋯ ⊗ 𝒖𝑘 | 𝑘 ∈ N, {𝒖𝑖} linearly dependent},

which is exactly the ideal {{𝒖 ⊗ 𝒖}}. Therefore, the right-hand side of
eq. (2.5) is identically the exterior algebra of definition 8. Hence, we
have an algebra isomorphism Sym−(𝑉⊗) ≅ ∧𝑉 ,where the left-hand side
is equippedwith the product (2.4). This gives an alternative construction
of the exterior algebra as the subalgebra of antisymmetric tensors.

I. Note on normalisation conventions

The factor of 1
𝑘! present in eq. (2.3) is not necessary to derive the isomor-

phism Sym−(𝑉⊗) ≅ ∧𝑉 . Indeed, some authors omit the normalisation
factor, which has the effect of changing eq. (2.4) to1919 Written here with Sym−

including the factor 1
𝑘! , as

in (2.3). 𝐴 ∧ 𝐵 = (𝑝 + 𝑞)!
𝑝!𝑞! Sym−(𝐴 ⊗ 𝐵)

for 𝐴 and 𝐵 of respective grades 𝑝 and 𝑞. These different normalisations
of ∧ lead to distinct identifications of multivectors in ∧𝑉 with tensors in
𝑆 ⊂ 𝑉⊗, as in table 2.1.

Both conventions are present in literature. We employ the Kobayashi–
Nomizu convention for ∧𝑉 as this coincides with the wedge product of
geometric algebra (see chapter 3). However, the Spivak convention is
dominant for exterior differential forms in physics.2020 E.g., Misner, Thorne,

Wheeler [18]; Flanders
[19]; Sharpe, Chern [20].
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2.2. The Wedge Product: Multivectors

Kobayashi–Nomizu [16] Spivak [17]

𝐴 ∧ 𝐵 ≔ Sym−(𝐴 ⊗ 𝐵) 𝐴 ∧ 𝐵 ≔ (𝑝+𝑞)!
𝑝!𝑞! Sym−(𝐴 ⊗ 𝐵)

𝒖 ∧ 𝒗 ≡ 1
2(𝒖 ⊗ 𝒗 − 𝒗 ⊗ 𝒖) 𝒖 ∧ 𝒗 ≡ 𝒖 ⊗ 𝒗 − 𝒗 ⊗ 𝒖

Table 2.1.: Different embeddings of ∧𝑉 into 𝑉⊗.

2.2.2. Exterior forms

The wedge product is most frequently encountered by physicists as an
operation on exterior (differential) forms, which are alternating21 multi- 21 An alternating linear

map is one which changes
sign upon transposition of
any pair of arguments.

linear maps. We could use the exterior algebra ∧𝑉 ∗ over the dual space
of linear maps 𝑉 → R as a model for exterior forms, though we will not
choose to do this, instead defining them separately.

As to why, consider ∧𝑉 ∗ as a model for exterior forms. Any element
𝐹 ∈ ∧𝑘𝑉 ∗ has component form 𝐹 = 𝐹𝑖1⋯𝑖𝑘𝒆𝑖1 ∧⋯∧𝒆𝑖𝑘 for a basis {𝒆𝑖} ⊂ 𝑉 ∗.
By identifying ∧𝑉 ∗ ⊂ (𝑉 ∗)⊗ as antisymmetric tensors, each component
acts on 𝒖1 ⊗⋯ ⊗ 𝒖𝑘 ∈ 𝑉⊗𝑘 as

(𝒆𝑖1 ∧ ⋯ ∧ 𝒆𝑖𝑘 )(𝒖1 ⊗⋯ ⊗ 𝒖𝑘) = 1
𝑘! ∑𝜎∈𝑆𝑘

(−1)𝜎𝒆𝑖𝜎(1)(𝒖1)⋯ 𝒆𝑖𝜎(𝑘)(𝒖𝑘)

= 1
𝑘! det[𝒆

𝑖𝑚(𝒖𝑛)]𝑚𝑛. (2.6)

However, this differs from the standard definition of exterior forms (as
in [17, 18]) in two important ways:

1. In eq. (2.6), the dual vectors 𝒆𝑖 ∈ 𝑉 ∗ are permuted while the order
of the arguments 𝒖𝑖 are preserved; but for standard exterior forms,
the opposite is true. This forbids the proper extension of ∧𝑉 ∗ to
non-Abelian vector-valued forms, where the values 𝒆𝑖(𝒖𝑗) may not
commute.

2. More trivially, we shall insist on the Kobayashi—Nomizu conven-
tion of normalisation factor for ∧𝑉 ∗; but the Spivak convention
for exterior forms is much more common in physics.

For these reasons, we define exterior forms as distinct from ∧𝑉 ∗.
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Chapter 2. Preliminary Theory

Definition 12. For a vector space 𝑉 over F, a 𝑘-form 𝜑 ∈ Ω𝑘(𝑉 ) is an
alternating multilinear map 𝜑 ∶ 𝑉⊗𝑘 → F.

For another vector space 𝐴, an 𝐴-valued 𝑘-form 𝜑 ∈ Ω𝑘(𝑉 , 𝐴) is such
a map with codomain 𝐴 (instead of F).

The evaluation of a form is denoted 𝜑(𝒖1⊗⋯⊗𝒖𝑘) or 𝜑(𝒖1, … , 𝒖𝑘), and
the wedge product of a 𝑝-form 𝜑 and 𝑞-form 𝜙 is defined (in the Spivak
convention) as

𝜑 ∧ 𝜙 = (𝑝 + 𝑞)!
𝑝!𝑞! (𝜑 ⊗ 𝜙) ∘ Sym−. (2.7)

Equation (2.7) acts to antisymmetrise arguments. Explicitly, choose a
basis {𝜃𝜇} of Ω(𝑉 ), and compare to eq. (2.6),

(𝜃𝜇1 ∧ ⋯ ∧ 𝜃𝜇𝑘 )(𝒖1 ⊗⋯ ⊗ 𝒖𝑘) = ∑
𝜎∈𝑆𝑘

(−1)𝜎 𝜃𝜇1(𝒖𝜎(1))⋯ 𝜃𝜇𝑘 (𝒖𝜎(𝑘)).

I. Algebra–valued forms

If 𝜑, 𝜙 ∈ Ω(𝑉 , 𝐴) are 𝐴-valued forms, where 𝐴 is a vector space with a
bilinear product ⊛ ∶ 𝐴 × 𝐴 → 𝐴, then their wedge product is

(𝜑 ∧ 𝜙)(𝒖1 ⊗⋯ ⊗ 𝒖𝑘) = ∑
𝜎∈𝑆𝑘

(−1)𝜎𝜑(𝒖1 ⊗⋯ ⊗ 𝒖𝑝) ⊛ 𝜙(𝒖1 ⊗⋯ ⊗ 𝒖𝑞).

Note that ⊛ replaces scalar multiplication as the natural product be-
tween the forms’ valuations. Thus we may have matrix–valued forms
where ⊛ is matrix multiplication, or vector–valued forms with the ten-
sor product — but ⊛ need not be commutative nor associative.

In particular, we may have Lie algebra–valued forms, taking the Lie
bracket [ , ] to be the bilinear product. For example, if 𝜑, 𝜙 ∈ Ω1(𝑉 , 𝔤)
for a Lie algebra 𝔤, then

(𝜑 ∧ 𝜙)(𝒖, 𝒗) = [𝜑(𝒖), 𝜙(𝒗)] − [𝜑(𝒗), 𝜙(𝒖)].
Note that ‘wedge-squares’ 𝜑∧𝜑 do not necessarily vanish for non-Abelian
1-forms. For the example above, (𝜑 ∧ 𝜑)(𝒖, 𝒗) = 2[𝜑(𝒖), 𝜑(𝒗)].
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2.3. The Metric: Length and Angle

The tensor and exterior algebras considered so far are built from a vector
space 𝑉 alone. Notions of length and angle are central to geometry, but
are not intrinsic to a vector space — this additional structure may be
provided by a metric.

Definition 13. A metric 22 is a function 𝜂 ∶ 𝑉 × 𝑉 → F, often written 22 a.k.a. an inner product,
or symmetric bilinear form⟨𝒖, 𝒗⟩ ≡ 𝜂(𝒖, 𝒗), which satisfies

• symmetry, ⟨𝒖, 𝒗⟩ = ⟨𝒗, 𝒖⟩; and

• linearity, ⟨𝛼𝒖 + 𝛽𝒗, 𝒘⟩ = 𝛼 ⟨𝒖, 𝒘⟩ + 𝛽 ⟨𝒗, 𝒘⟩ for 𝛼, 𝛽 ∈ F.

By symmetry 𝜂 is bilinear. Note we do not require ⟨𝒖, 𝒗⟩ to be non-
negative, or for 𝜂 to satisfy the triangle inequality.23 23 ‖𝒖 + 𝒗‖ ≤ ‖𝒖‖ + ‖𝒗‖

where ‖𝒖‖2 = ⟨𝒖, 𝒖⟩
A metric is non-degenerate if ⟨𝒖, 𝒗⟩ = 0 for all 𝒖 implies that 𝒗 is

zero. With respect to a basis {𝒆𝑖} of 𝑉 , the metric components 𝜂𝑖𝑗 =
⟨𝒆𝑖, 𝒆𝑗⟩ are defined. Non-degeneracy means that det 𝜂 ≠ 0 when viewing
𝜂 = [𝜂𝑖𝑗] as a matrix, and in this case the matrix inverse 𝜂𝑖𝑗 is also defined
and satisfies 𝜂𝑖𝑘𝜂𝑘𝑗 = 𝛿 𝑖𝑗 . Throughout, we will not have need to consider
degenerate metrics,24 so we assume non-degeneracy. 24 Degenerate signatures

do find use in computer
graphics, especially via
projective geometric
algebra [21, 22].

A non-degenerate metric 𝜂 on a real vector space has signature (𝑝, 𝑞)
if it has a matrix representation

[𝜂𝑖𝑗] = diag(1, … , 1⏟⏟⏟⏟⏟⏟⏟
𝑝

, − 1, … , −1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑞

)

with respect to some basis. This is well-defined, because the metric has
this representation with respect to all orthonormal bases (up to permu-
tations on the basis vectors).

A vector space 𝑉 together with a metric 𝜂 is called an inner product
space (𝑉 , 𝜂). Alternatively, instead of a metric, an inner product space
may be constructed with a quadratic form:

Definition 14. A quadratic form is a function 𝑞 ∶ 𝑉 → F satisfying
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Chapter 2. Preliminary Theory

• 𝑞(𝜆𝒗) = 𝜆2𝑞(𝒗) for all 𝜆 ∈ F; and

• the requirement that the polarization of 𝑞,

(𝒖, 𝒗) ↦ 𝑞(𝒖 + 𝒗) − 𝑞(𝒖) − 𝑞(𝒗),

is bilinear.

To any quadratic form 𝑞 there is a unique associated bilinear form,
which is compatible in the sense that 𝑞(𝒖) = ⟨𝒖, 𝒖⟩. It is recovered25 by25 Except, of course, if the

characteristic of F is two.
We only consider fields of

characteristic zero.

the polarization identity

⟨𝒖, 𝒗⟩ = 1
2(𝑞(𝒖 + 𝒗) − 𝑞(𝒖) − 𝑞(𝒗)).

The prescription of either 𝜂 or 𝑞 is therefore equivalent — but the no-
tion of a metric is more common in physics, whereas the mathematical
viewpoint often starts with a quadratic form.

I. Covectors and dual bases

The dual space 𝑉 ∗ ≔ {𝑓 ∶ 𝑉 → F | 𝑓 linear} of a vector space consists
of dual vectors or covectors, which are linear maps from 𝑉 into its
underlying field. Summation convention dictates that components of
vectors be written superscript, 𝒖 = 𝑢𝑖𝒆𝑖 ∈ 𝑉 , and covectors subscript,
𝜑 = 𝜑𝑖𝒆𝑖 ∈ 𝑉 ∗, for bases {𝒆𝑖} ⊂ 𝑉 and {𝒆𝑖} ⊂ 𝑉 ∗.

A metric 𝜂 on 𝑉 defines an isomorphism between 𝑉 and its dual space.
Collectively known as the musical isomorphisms, themaps ♭ ∶ 𝑉 → 𝑉 ∗
and its inverse ♯ ∶ 𝑉 ∗ → 𝑉 are defined by

𝒖♭(𝒗) = ⟨𝒖, 𝒗⟩ and ⟨𝜑♯, 𝒖⟩ = 𝜑(𝒖)

for 𝒖, 𝒗 ∈ 𝑉 and 𝜑 ∈ 𝑉 ∗. The names become justified when working with
a basis: the relations

(𝒖♭)𝑖 = 𝜂𝑖𝑗𝒖𝑗 and (𝜑♯)𝑖 = 𝜂𝑖𝑗𝜑𝑗
show that ♭ lowers indices, while ♯ raises them.
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2.3. The Metric: Length and Angle

Even without a metric, a choice of basis {𝒆𝑖} ⊂ 𝑉 defines a dual ba-
sis {𝒆𝑖} ⊂ 𝑉 ∗ of 𝑉 via 𝒆𝑖(𝒆𝑗) ≔ 𝛿 𝑖𝑗 . Note that basis vectors and covectors
defined in this way do not exist in the same vector space, but are re-
lated by their evaluation on one another. Given a metric, we may use
the musical isomorphisms to transport basis vectors between 𝑉 and 𝑉 ∗,
leading to the relationship 𝒆𝑖 = 𝜂𝑖𝑗𝒆♭𝑗 . This motivates the definition of a
reciprocal basis 𝒆𝑖 ≔ 𝜂𝑖𝑗𝒆𝑗 , where the musical isomorphism is omitted,
and everything belongs to the same space 𝑉 . Then, dual and non-dual
(reciprocal) basis vectors are related via ⟨𝒆𝑖, 𝒆𝑗⟩ = 𝛿 𝑖𝑗 .

In practice, 𝑉 ∗ is never needed in the geometric algebra, but we still
speak of ‘dual bases’ and ‘dual vectors’, in the sense of reciprocal bases.

2.3.1. Metrical exterior algebra

In an exterior algebra∧𝑉 with a metric defined on 𝑉 , there is an induced
metric on 𝑘-vectors defined by

⟨𝒖1 ∧ ⋯ ∧ 𝒖𝑘 , 𝒗1 ∧ ⋯ ∧ 𝒗𝑘⟩ = ∑
𝜎∈𝑆𝑘

(−1)𝜎 ⟨𝒖1, 𝒗𝜎(1)⟩⋯ ⟨𝒖𝑘 , 𝒗𝜎(𝑘)⟩

= det[⟨𝒖𝑚, 𝒖𝑛⟩]𝑚𝑛. (2.8)

In particular, a metric on ∧𝑉 defines a magnitude for pseudoscalars.

Definition 15. Note that I is not the
identity matrix, 𝟙. It is
more analogous to the
complex unit 𝑖, with
square I2 = ±1 depending
on dimension and metric.
Similar notation is used in
[11, 23, 24].

Let 𝑉 be an 𝑛-dimensional vector space with a metric. The
two volume elements I ∈ ∧𝑛𝑉 of the metrical exterior algebra ∧𝑉 are
pseudoscalars satisfying ⟨I, I⟩ = 1.

Each volume element differs by a sign, and a choice of volume element
defines an orientation.

Given an ordered orthonormal basis {𝒆𝑖} with ⟨𝒆𝑖, 𝒆𝑖⟩ = ±1, the basis is
called right-handed if 𝒆1 ∧ ⋯ ∧ 𝒆𝑛 = I is the chosen volume element, and
left-handed otherwise.
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Chapter 2. Preliminary Theory

I. Hodge–dual multivectorsHodge duality: [18, 19],
[25, §16].

A useful duality operation can be defined in an exterior algebra∧𝑉 with
ametric and orientation, which relates the 𝑘- and (𝑛−𝑘)-grade subspaces.

Definition 16. Let ∧𝑉 be a metrical exterior algebra with base dimension
𝑛 and volume element I. The Hodge dual ⋆ is the unique linear operator
satisfying

𝐴 ∧ ⋆𝐵 = ⟨𝐴, 𝐵⟩ I (2.9)

for any 𝑘-vectors 𝐴, 𝐵 ∈ ∧𝑘𝑉 .

The Hodge dual ⋆ ∶ ∧𝑘𝑉 → ∧𝑛−𝑘𝑉 defines an isomorphism be-
tween pairs of fixed-grade subspaces of the same dimension; in particu-
lar, scalars with pseudoscalars via ⋆1 = I.

Lemma 5. The Hodge dual of a 𝑝-vector 𝐴 = 𝐴𝑖1⋯𝑖𝑝𝒆𝑖1 ∧ ⋯ ∧ 𝒆𝑖𝑝 has com-
ponents

(⋆𝐴)𝑗1⋯𝑗𝑞 = 1
𝑝!𝐴𝑖1⋯𝑖𝑝 𝜀 𝑖1⋯𝑖𝑝𝑗1⋯𝑗𝑞The Levi-Civita symbol

𝜀𝑖1⋯𝑖𝑛 is the unique
totally-antisymmetric
tensor with 𝜀1⋯𝑛 = 1. where 𝐴𝑖1⋯𝑖𝑝 = 𝜂𝑖1𝑗1 ⋯𝜂𝑖𝑝𝑗𝑝 𝐴𝑗1⋯𝑘𝑝 and 𝜀 𝑖1⋯𝑖𝑛 = 𝜂𝑖1𝑗1 ⋯𝜂𝑖𝑛𝑗𝑛 𝜀𝑗1⋯𝑗𝑛 .

Proof. Wewill show this by writing𝐴∧⋆𝐵 = ⟨𝐴, 𝐵⟩ I in component form
and rearranging for ⋆𝐵. The left-hand side is

𝐴 ∧ ⋆𝐵 = 𝐴𝑖1⋯𝑖𝑝 (⋆𝐵)𝑗1⋯𝑗𝑞 𝒆𝑖1 ∧ ⋯ ∧ 𝒆𝑖𝑝 ∧ 𝒆𝑗1 ∧ ⋯ ∧ 𝒆𝑗𝑞
= 𝐴𝑖1⋯𝑖𝑝 (⋆𝐵)𝑗1⋯𝑗𝑞 𝜀𝑖1⋯𝑖𝑝𝑗1⋯𝑗𝑞I,

while the right-hand side is ⟨𝐴, 𝐵⟩ I = 𝐴𝑖1⋯𝑖𝑝𝐵𝑖1⋯𝑖𝑝I. Equating coeffi-
cients yields

(⋆𝐵)𝑗1⋯𝑗𝑞 𝜀𝑖1⋯𝑖𝑝𝑗1⋯𝑗𝑞 = 𝐵𝑖1⋯𝑖𝑝 .

Finally, contracting with 𝜀 𝑖1⋯𝑖𝑝𝑘1⋯𝑘𝑞 gives

(⋆𝐵)𝑘1⋯𝑘𝑞 = 1
𝑝!𝐵𝑖1⋯𝑖𝑝 𝜀 𝑖1⋯𝑖𝑝𝑘1⋯𝑘𝑞
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2.3. The Metric: Length and Angle

since 𝜀𝑖1⋯𝑖𝑝𝑗1⋯𝑗𝑞 𝜀 𝑖1⋯𝑖𝑝𝑘1⋯𝑘𝑞 = (−1)𝜎𝑝! where 𝜎 is the permutation sending

𝑗𝑖 ↦ 𝑘𝑖. The factor of (−1)𝜎 is absorbed since (⋆𝐵)𝑗1⋯𝑗𝑞 = (−1)𝜎 (⋆𝐵)𝑘1⋯𝑘𝑞 .
Replacing 𝐵 ↦ 𝐴 is the result as written.

Lemma 6. The inverse Hodge dual of a 𝑘-vector 𝐴 is

⋆−1𝐴 = (−1)𝑠(−1)𝑘(𝑛−𝑘) ⋆ 𝐴

where 𝑠 = tr 𝜂 is the signature of the metric.

Proof. It is much easier to work in the (yet to be defined) geometric alge-
bra, referring forward to 3.2.4.II for the relation ⋆𝐴 = 𝐴†I. † is reversion; eq. (5.2).

𝓈𝑘 = ±1 is the reversion
sign; eq. (3.4).

Then, ⋆−1𝐴 =
(𝐴I−1)† since ⋆−1 ⋆ 𝐴 = (𝐴†II−1)† = 𝐴 and ⋆ ⋆−1 𝐴 = (𝐴I−1)††I = 𝐴.
Translating this back into ∧𝑉 ,

⋆−1𝐴 = (𝐴I−1)†
= 𝓈𝑛−𝑘 𝐴I−1 since 𝐴I−1 is of grade 𝑛 − 𝑘;
= 𝓈𝑘𝓈𝑛−𝑘 𝐴†I−1 since 𝐴 is of grade 𝑘;
= (−1)𝑠𝓈𝑛𝓈𝑘𝓈𝑛−𝑘 𝐴†I since I−1 = (−1)𝑠I† = (−1)𝑠𝓈𝑛I;
= (−1)𝑠(−1)𝑘(𝑛−𝑘) ⋆ 𝐴 by simplifying with eq. (3.4).
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Chapter 3.

The Geometric Algebra

In chapter 2, we defined the metric-independent exterior algebra over a
vector space 𝑉 , in which metrical operations may be later achieved by
introducing the Hodge dual. The geometric algebra, however, gener-
alises ∧𝑉 and has the metric (and its concomitant notions of orientation
and duality) directly built-in to the product.

Another point of difference is the role of inhomogeneous elements.
While they find little use in exterior algebra,26 inhomogeneous multi-26 In fact, some authors

[19] leave inhomogeneous
elements of ∧𝑉 undefined.

vectors in 𝒢(𝑉 , 𝜂) are central to the description of reflections, rotations
and spinors.

Geometric algebras are also known as real Clifford algebras 𝐶𝑙(𝑉 , 𝑞)
after their first inventor [3]. Especially in mathematics, Clifford algebras
are defined in terms of a quadratic form 𝑞, and the vector space 𝑉 may be
complex. On the other hand, in physics, where 𝑉 is taken to be real and
a metric 𝜂 is usually supplied instead of 𝑞, the name “geometric algebra”
is preferred.2727 This was Clifford’s

original name, but it was
only popularised by David

Hestenes in the 1970s
[24, 26]. 3.1. Construction and Overview

Informally put, the geometric algebra is obtained by enforcing the single
rule

𝒖2 = ⟨𝒖, 𝒖⟩ (3.1)
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for any vector 𝒖, along with the associative algebra axioms of defini-
tion 1. The richness of structure following from this simple rule is re-
markable. Formally, we may define the geometric algebra as a quotient,
as we did for ∧𝑉 .

Definition 17. Let 𝑉 be a finite-dimensional real vector space with metric
𝜂(𝒖, 𝒗) ≡ ⟨𝒖, 𝒗⟩. The geometric algebra over 𝑉 is

𝒢(𝑉 , 𝜂) ≔ 𝑉⊗/{{𝒖 ⊗ 𝒖 − ⟨𝒖, 𝒖⟩}} .

If the metric has signature (𝑝, 𝑞), then we also denote 𝒢(𝑉 , 𝜂) ≡ 𝒢(𝑝, 𝑞).

The ideal defines the congruence generated by 𝒖 ⊗ 𝒖 ∼ ⟨𝒖, 𝒖⟩, en-
coding eq. (3.1). This uniquely defines the associative (but not generally
commutative) geometric product which we denote by juxtaposition.

As 2𝑛-dimensional vector spaces,𝒢(𝑉 , 𝜂) and∧𝑉 are isomorphic, each
with a (𝑛𝑘)-dimensional subspace for each grade 𝑘. Denoting the 𝑘-grade
subspace 𝒢𝑘(𝑉 , 𝜂), we have the vector space decomposition

𝒢(𝑉 , 𝜂) =
∞
⨁
𝑘=0

𝒢𝑘(𝑉 , 𝜂).

Note that this is not a Z grading of the geometric algebra: the quotient
is by inhomogeneous elements 𝒖 ⊗ 𝒖 − ⟨𝒖, 𝒖⟩ ∈ 𝑉⊗2 ⊕𝑉⊗0, and therefore
the geometric product of a 𝑝-vector and a 𝑞-vector is not generally a
(𝑝 + 𝑞)-vector. However, the congruence is homogeneous with respect
to the Z2-grading, so 𝒢(𝑉 , 𝜂) is Z2-graded. This shows that the algebra
separates into ‘even’ and ‘odd’ subspaces

𝒢(𝑉 , 𝜂) = 𝒢+(𝑉 , 𝜂) ⊕ 𝒢−(𝑉 , 𝜂) where {𝒢+(𝑉 , 𝜂) = ⨁∞
𝑘=0 𝒢2𝑘(𝑉 , 𝜂)

𝒢+(𝑉 , 𝜂) = ⨁∞
𝑘=0 𝒢2𝑘+1(𝑉 , 𝜂)

where 𝒢+(𝑉 , 𝜂) is closed under the geometric product, forming the even
subalgebra.
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Chapter 3. The Geometric Algebra

I. The geometric product of vectors

By expanding (𝒖 + 𝒗)2 = ⟨𝒖 + 𝒗, 𝒖 + 𝒗⟩, it directly follows that

⟨𝒖, 𝒗⟩ = 1
2(𝒖𝒗 + 𝒗𝒖).

We recognise this as the symmetrised product of two vectors. The re-
maining antisymmetric part coincideswith the alternating orwedge prod-
uct familiar from exterior algebra

𝒖 ∧ 𝒗 = 1
2(𝒖𝒗 − 𝒗𝒖).

This is a 2-vector, or bivector, in 𝒢2(𝑉 , 𝜂). Thus, the geometric product
on vectors is

𝒖𝒗 = ⟨𝒖, 𝒗⟩ + 𝒖 ∧ 𝒗, (3.2)

and some important features are immediate:

𝒖 ∧ 𝒗 2
𝒖𝒗 1

⟨𝒖, 𝒗⟩ 0
Fig. 3.1.: Grade diagram

for eq. (3.2).
• Parallel vectors commute, and vice versa: If 𝒖 = 𝜆𝒗 , then 𝒖 ∧ 𝒗 = 0
and 𝒖𝒗 = ⟨𝒖, 𝒗⟩ = ⟨𝒗, 𝒖⟩ = 𝒗𝒖.

• Orthogonal vectors anti-commute, and vice versa: If ⟨𝒖, 𝒗⟩ = 0, then
𝒖𝒗 = 𝒖 ∧ 𝒗 = −𝒗 ∧ 𝒖 = −𝒗𝒖.

In particular, if {𝒆𝑖} ⊂ 𝑉 is an orthonormal basis, thenwe have 𝒆2𝑖 = ⟨𝒆𝑖, 𝒆𝑖⟩
and 𝒆𝑖𝒆𝑗 = −𝒆𝑗𝒆𝑖, which can be summarised by the anticommutation re-
lation 𝒆𝑖𝒆𝑗 + 𝒆𝑗𝒆𝑖 = 2𝜂𝑖𝑗 .

• Vectors are invertible under the geometric product: If 𝒖 is a vector
for which the scalar 𝒖2 is non-zero, then 𝒖−1 = 𝒖/𝒖2.

• Geometricmultiplication produces objects ofmixed grade: The prod-
uct 𝒖𝒗 has a scalar part ⟨𝒖, 𝒗⟩ and a bivector part 𝒖 ∧ 𝒗 .

II. Higher-grade elements

As with two vectors, the geometric product of two homogeneous multi-
vectors is generally inhomogeneous. We can gain insight by separating
geometric products into grades and studying each part.
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Definition 18. The grade projection operator is defined on blades by

⟨𝐴⟩𝑘 = {𝐴 if 𝐴 = 𝒖1 ∧ ⋯ ∧ 𝒖𝑘
0 otherwise

,

and on general multivectors by linearity.

We can generalise the definition of the wedge product of vectors 𝒖 ∧
𝒗 = ⟨𝒖𝒗⟩2 to arbitrary homogeneous multivectors by taking the highest-
grade part of their product,

𝐴 ∧ 𝐵 = ⟨𝐴𝐵⟩𝑝+𝑞 ,
where 𝐴 ∈ 𝒢𝑝(𝑉 , 𝜂) and 𝐵 ∈ 𝒢𝑞(𝑉 , 𝜂). Dually, we can define an inner
product on homogeneous multivectors by taking the lowest-grade part,
|𝑝 − 𝑞|. These are extended by linearity to inhomogeneous elements.

Definition 19. Let𝐴, 𝐵 ∈ 𝒢(𝑉 , 𝜂) be possibly inhomogeneous multivectors.
The wedge product is

𝐴 ∧ 𝐵 ≔ ∑
𝑝,𝑞

⟨⟨𝐴⟩𝑝⟨𝐵⟩𝑞⟩𝑝+𝑞 ,

and the generalised inner product, or “fat” dot product,28 is 28 Various distinct ‘inner
products’ have been
proposed, but the
definitions here (and in
section 3.3) are arguably
the simplest and best
behaved; see [27] for
detailed discussion.

𝐴 • 𝐵 ≔ ∑
𝑝,𝑞

⟨⟨𝐴⟩𝑝⟨𝐵⟩𝑞⟩|𝑝−𝑞|.

With the wedge product defined on all of 𝒢(𝑉 , 𝜂), we use language of
multivectors as we did with the exterior algebra, so that 𝒖1 ∧ ⋯ ∧ 𝒖𝑘 ∈
𝒢𝑘(𝑉 , 𝜂) is a 𝑘-blade, and a sum of 𝑘-blades is a 𝑘-multivector, etcetera.

The products in definition 19 work together nicely; the induced met-
ric on 𝑘-vectors introduced in section 2.3.1 is expressible in any of the
following ways.

⟨𝐴, 𝐵⟩ = 𝓈𝑘 ⟨𝐴𝐵⟩ = ⟨𝐴†𝐵⟩ = ⟨𝐴𝐵†⟩ = 𝐴† • 𝐵 = 𝐴 • 𝐵† 𝓈𝑘 = (−1)(𝑘−1)𝑘/2; see (3.4)., (3.3)

The reversion is necessary because the vectors in the product of two
blades (𝒆𝑖1 ⋯𝒆𝑖𝑘 )(𝒆𝑗1 ⋯𝒆𝑗𝑘 ) are paired ‘inside first’.
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Chapter 3. The Geometric Algebra

3.2. Relations to Other Algebras

An efficient way to become familiar with the geometric algebra is to
exemplify its relationships with itself and other common algebras.

3.2.1. Fundamental algebra automorphisms

Operations such as complex conjugation 𝐴𝐵 = 𝐴𝐵 or matrix transpo-
sition (𝐴𝐵)T = 𝐵T𝐴T are useful because they preserve or reverse mul-
tiplication. Linear functions with this property are called algebra auto-
morphisms or antiautomorphisms, respectively. The geometric algebra
possesses several important (anti)automorphism operations.

Isometries of an inner product space (𝑉 , 𝜂) are linear functions which
preserve the metric, so that ⟨𝑓 (𝒖), 𝑓 (𝒗)⟩ = ⟨𝒖, 𝒗⟩ for all 𝒖, 𝒗 ∈ 𝑉 . The
involution isometry 𝒖 ↦ −𝒖 is always present, as well as the trivial
isometry 𝒖 ↦ 𝒖.

An isometry 𝑓 extends uniquely to an algebra (anti)automorphism by
defining 𝑓 (𝐴𝐵) = 𝑓 (𝐴)𝑓 (𝐵) or 𝑓 (𝐴𝐵) = 𝑓 (𝐵)𝑓 (𝐴). Thus, by extending
the two fundamental isometries of (𝑉 , 𝜂) in the two possible ways, we
obtain four fundamental (anti)automorphisms on 𝒢(𝑉 , 𝜂).

Definition 20. Let 𝒖 ∈ 𝒢1(𝑉 , 𝜂) be a vector and 𝐴, 𝐵 ∈ 𝒢(𝑉 , 𝜂) possibly
inhomogeneous multivectors in a geometric algebra.

• Reversion † is the identity map on vectors 𝒖† = 𝒖 extended to gen-
eral multivectors by the rule (𝐴𝐵)† = 𝐵†𝐴†.

• Grade involution ⋆ is the extension of the involution 𝒖⋆ = −𝒖 to
general multivectors by the rule (𝐴𝐵)⋆ = 𝐴⋆𝐵⋆.

Note that if 𝐴 ∈ 𝒢𝑘(𝑉 , 𝜂) is a 𝑘-vector, then 𝐴⋆ = (−1)𝑘𝐴 and 𝐴† =
𝓈𝑘𝐴 where the reversion sign

𝑘 mod 4 𝓈𝑘
0 +1
1 +1
2 −1
3 −1 𝓈𝑘 ≔ (−1)( 𝑛2 ) = (−1) (𝑘−1)𝑘2 (3.4)
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is the sign of the reverse permutation on 𝑘 symbols.

Reversion and grade involution together generate the four fundamen-
tal automorphisms

⋆ ∘ † is also called the
Clifford conjugate [28]

id ⋆ automorphisms

† ⋆ ∘ † anti-automorphisms

which form a group isomorphic to Z2
2 under composition.

These operations are very useful in practice. In particular, the follow-
ing result follows easily from reasoning about grades.

Lemma 7. If 𝐴 ∈ 𝒢𝑘(𝑉 , 𝜂) is a 𝑘-vector, then 𝐴2 is a 4N-multivector, i.e.,
a sum of blades of grade {0, 4, 8, … } only.

Proof. The multivector 𝐴2 is its own reverse, since (𝐴2)† = (𝐴†)2 =
(±𝐴)2 = 𝐴2, and hence has parts of grade {4𝑛, 4𝑛 + 1 | 𝑛 ∈ N}. Similarly,
𝐴2 is self-involutive, since (𝐴2)⋆ = (𝐴⋆)2 = (±𝐴)2 = 𝐴2. It is thus of
even grade, leaving the possible grades {0, 4, 8, ...}.

3.2.2. Even subalgebra isomorphisms

As noted above, multivectors of even grade are closed under the geo-
metric product, and form the even subalgebra 𝒢+(𝑝, 𝑞). There is an iso-
morphism 𝒢+(𝑝, 𝑞) ≅ 𝒢+(𝑞, 𝑝) given by ̄𝒆𝑖 ≔ 𝒆𝑖 with opposite signature
̄𝒆𝑖2 ≔ −𝒆2𝑖 , since the factor of −1 occurs only an even number of times

for even elements.

The even subalgebras are also isomorphic to full geometric algebras
of one dimension less:

Lemma 8. There are isomorphisms

𝒢+(𝑝, 𝑞) ≅ 𝒢(𝑝, 𝑞 − 1) and 𝒢+(𝑝, 𝑞) ≅ 𝒢(𝑞, 𝑝 − 1)
when 𝑞 ≥ 1 and 𝑝 ≥ 1, respectively.
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Proof. Select a unit vector 𝒖 ∈ 𝒢(𝑝, 𝑞) with 𝒖2 = −1, and define a linear
map 𝛹𝒖 ∶ 𝒢(𝑝, 𝑞 − 1) → 𝒢+(𝑝, 𝑞) by

𝛹𝒖(𝐴) = {𝐴 if 𝐴 is even

𝐴 ∧ 𝒖 if 𝐴 is odd
.

Note we are taking 𝒢(𝑝, 𝑞 − 1) ⊂ 𝒢(𝑝, 𝑞) to be the subalgebra obtained
by removing 𝒖 (i.e., restricting 𝑉 to 𝒖⟂) so there is a canonical inclusion
from the domain of 𝛹𝒖 to the codomain. Let𝐴 ∈ 𝒢(𝑝, 𝑞−1) be a 𝑘-vector.
Note that 𝐴 ∧ 𝒖 = 𝐴𝒖 since 𝒖 ⟂ 𝒢(𝑝, 𝑞 − 1), and that 𝐴 commutes with
𝒖 if 𝑘 is even and anticommutes if 𝑘 is odd.

To show 𝛹𝒖 is a homomorphism, suppose 𝐴, 𝐵 ∈ 𝒢(𝑝, 𝑞 − 1) are both
even; then 𝛹𝒖(𝐴𝐵) = 𝐴𝐵 = 𝛹𝒖(𝐴)𝛹𝒖(𝐵). If both are odd, then𝐴𝐵 is even
and 𝛹𝒖(𝐴𝐵) = 𝐴𝐵 = −𝐴𝐵𝒖2 = 𝐴𝒖𝐵𝒖 = 𝛹𝒖(𝐴)𝛹𝒖(𝐵). If 𝐴 is odd and 𝐵
even, then 𝛹𝒖(𝐴𝐵) = 𝐴𝐵𝒖 = 𝐴𝒖𝐵 = 𝛹𝒖(𝐴)𝛹𝒖(𝐵) and similarly for 𝐴
even and 𝐵 odd. Injectivity and surjectivity are clear, so 𝛹𝒖 is an algebra
isomorphism.

The special case 𝒢+(1, 3) ≅ 𝒢(3) is of great relevance to special rel-
ativity, and is discussed in detail in section 4.1. Here the isomorphism
𝛹𝒖 is called a space/time split with respect to an observer of velocity 𝒖.
This provides an impressively efficient algebraic method for transform-
ing relativistic quantities between inertial frames.

3.2.3. Common algebra isomorphisms

Many familiar algebraic structures in classical, relativistic and quantum
physics are in fact special cases of geometric algebra.

• Complex numbers: 𝒢+(2) ≅ C

The complex plane C ≅ spanR{1, 𝒆1𝒆2} embeds into 𝒢(2) as the
even subalgebra, with the isomorphism

C ∋ 𝑥 + 𝑖𝑦 ↔ 𝑥 + 𝑦𝒆1𝒆2 ∈ 𝒢+(2)
Complex conjugation in C coincides with reversion in 𝒢(2).
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• Quaternions: 𝒢+(3) ≅ H

Similarly, the quaternions are the even subalgebra 𝒢+(3), related
by the isomorphism29 29 Note the minus sign.

Viewed as rotations
through their respective
normal planes, ( ̂𝒊, ̂𝒋, �̂�)
form a left-handed basis.
This is because Hamilton
chose ̂𝒊 ̂𝒋�̂� = −1, not +1.

𝑞0 + 𝑞1 ̂𝒊 + 𝑞2 ̂𝒋 + 𝑞3�̂� ⟷ 𝑞0 + 𝑞1𝒆2𝒆3 − 𝑞2𝒆3𝒆1 + 𝑞3𝒆1𝒆2.
Again, quaternion conjugation corresponds to reversion in 𝒢(3).

• Complexified quaternions: 𝒢+(1, 3) ≅ C ⊗H

The complexified quaternion algebra, which has been applied to
special relativity [6, 8, 9], is isomorphic to the subalgebra 𝒢+(1, 3).
The isomorphism

C ⊗H ∋ (𝑥 + 𝑦𝑖) ⊗ (𝑞0 + 𝑞1 ̂𝒊 + 𝑞2 ̂𝒋 + 𝑞3�̂�) ⟷
(𝑥 + 𝑦𝒆0123)(𝑞0 + 𝑞1𝒆23 − 𝑞2𝒆31 + 𝑞3𝒆12) ∈ 𝒢+(1, 3)

associates quaternion units with bivectors, and the complex plane
with the scalar–pseudoscalar plane. Reversion in 𝒢(1, 3) corre-
sponds to quaternion conjugation (preserving the complex 𝑖).

• The Pauli algebra: 𝒢(3) ≅ {𝜎𝑖}3𝑖=1
The algebra of physical space, 𝒢(3), admits a complex representa-
tion 𝒆𝑖 ⟷ 𝜎𝑖 via the Pauli spin matrices

𝜎1 = ( 0 +1
+1 0 ), 𝜎2 = ( 0 −𝑖

+𝑖 0 ), 𝜎3 = (+1 0
0 −1).

Reversion in 𝒢(3) corresponds to the adjoint (Hermitian conju-
gate), and the volume element I ≔ 𝒆123 ⟷ 𝜎1𝜎2𝜎3 = 𝑖 corre-
sponds to the unit imaginary.

• The Dirac algebra: 𝒢(1, 3) ≅ {𝛾𝜇}
3
𝜇=0

The relativistic analogue to the Pauli algebra is the Dirac algebra,
generated by the 4 × 4 complex Dirac matrices

𝛾0 = (+1 0
0 −1), 𝛾1 = ( 0 +𝜎1

−𝜎1 0 ), 𝛾2 = ( 0 −𝑖𝜎2
+𝑖𝜎2 0 ), 𝛾3 = ( 0 +𝜎3

−𝜎3 0 ).
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These form a complex representation of the algebra of spacetime,
𝒢(1, 3), via 𝒆𝜇 ⟷ 𝛾𝜇 . Again, reversion corresponds to the adjoint,
and I ≔ 𝒆0𝒆1𝒆2𝒆3 ⟷ 𝛾0𝛾1𝛾2𝛾3 = −𝑖𝛾5.

• Creation and annihilation operators

In an interesting examplewhich is fundamentally different to those
above is the algebra of ‘ladder operators’ appearing in the quan-
tum theory of fermions. Defined by the anticommutation relations

{𝑎𝑖, 𝑎𝑗} = 0, {𝑎𝑖, 𝑎∗𝑗 } = 𝛿𝑖𝑗 , {𝑎∗𝑖 , 𝑎∗𝑗 } = 0,

these operators are embedded in (complex) Clifford algebras as

𝑎∗𝑖 (𝜓 ) = 𝒆𝑖 ∧ 𝜓 and 𝑎𝑖(𝜓 ) = 𝒆𝑖 ⌊ 𝜓Right contraction ⌊ is
defined in section 3.3.

where 𝒆𝑖 represents a fermion in state 𝑖, and 𝒆𝑖 ∧ 𝒆𝑗 = −𝒆𝑗 ∧ 𝒆𝑖 a two-
fermion state [28]. Much more can be said about applications of
geometric and Clifford algebras to quantummechanics [11, §8–9],
though that would divert us from the present subject.

3.2.4. Relation to exterior forms

The geometric algebra differs from the algebra of exterior forms (defined
in section 2.2.2) in two independent ways: Firstly, 𝒢(𝑉 , 𝜂) is an associa-
tive algebra over 𝑉 , while Ω(𝑉 ) is an algebra of alternating maps which
act on tensor powers of 𝑉 . Secondly, the product in 𝒢(𝑉 , 𝜂) is an in-
trinsically metrical generalisation of the product in Ω𝑉 . We will address
these two aspects separately, to more clearly see how each is translated
between the two algebras.

I. Exterior forms as multivectors

Exterior forms can be mimicked in the geometric algebra by making use
of a reciprocal basis, as in the following lemma.
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Lemma 9. If 𝐴 ∈ 𝒢𝑘(𝑉 , 𝜂) is a 𝑘-vector and 𝜑 ∈ Ω𝑘(𝑉 ) is a 𝑘-form whose
components coincide (i.e., 𝐴𝑖1⋯𝑖𝑘 = 𝜑𝑖1⋯𝑖𝑘 given a common basis of 𝑉 ) then

⟨𝐴, 𝒖1 ∧ ⋯ ∧ 𝒖𝑘⟩ = 𝑘! 𝜑(𝒖1 ⊗⋯ ⊗ 𝒖𝑘),

where ⟨𝐴, 𝐵⟩ = 𝐴 • 𝐵† is the induced metric on 𝑘-vectors as in eq. (3.3).

The factor of 𝑘! is due to the Spivak convention for exterior forms (re-
place 𝑘! ↦ 1 for the Kobayashi–Nomizu convention). Note that there is
no space for a choice of normalisation convention within the geometric
algebra.

Proof. Unpacking the left-hand side with eq. (2.8), we have

⟨𝐴, 𝒖1 ∧ ⋯ ∧ 𝒖𝑘⟩ = ∑
𝜎∈𝑆𝑘

(−1)𝜎𝐴𝑖1⋯𝑖𝑘𝑢
𝑖1
𝜎(1)⋯𝑢𝑖𝑘𝜎(𝑘),

which since 𝐴𝑖1⋯𝑖𝑘 = 𝜑𝑖1⋯𝑖𝑘 is equal to

∑
𝜎∈𝑆𝑘

(−1)𝜎𝜑(𝒖𝜎(1) ⊗⋯ ⊗ 𝒖𝜎(𝑘)) = 𝑘! 𝜑(𝒖1 ⊗⋯ ⊗ 𝒖𝑘)

where all 𝑘! terms are equal due to the alternating property of 𝜑.

II. Pseudoscalars and Hodge duality

Since the metric is built into the geometric algebra, so are the features
of metrical exterior algebra from section 2.3.1, including Hodge duality.
In geometric algebra, the Hodge dual is identical to reversion composed
with multiplication by the volume element, ⋆𝐴 = 𝐴†I.

Consider two 𝑘-vectors 𝐴 and 𝐵. The object 𝐵†I is thus a (𝑛 − 𝑘)-
vector, and its wedge product with 𝐴 a pseudoscalar. From associativity
of the geometric product, we immediately have

𝐴 ∧ (𝐵†I) = ⟨𝐴(𝐵†I)⟩𝑛 = ⟨(𝐴𝐵†)I⟩𝑛 = ⟨𝐴𝐵†⟩I = ⟨𝐴, 𝐵⟩ I Recall the induced metric
on 𝑘-vectors, eq. (3.3).

,
which is the definition of the Hodge dual, eq. (2.9). The reversion is
only necessary for exact agreement with ⋆; simple multiplication by the
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volume element is an appropriate dual operation, differing from ⋆ only
by an overall grade-dependent sign.

The I-duality has the advantage of being trivial to manipulate alge-
braically, while also enjoying a simple scalar square

I2 = (−1)𝑠𝓈𝑛 = (−1)𝑠(−1)𝑛(𝑛−1)/2Here 𝑠 is the signature of
the metric, so that

(−1)𝑠 = det 𝜂.

,
unlike the Hodge dual, whose square

⋆2𝐴 = (−1)𝑠(−1)𝑘(𝑛−𝑘)𝐴
depends on the grade 𝑘 on which it acts.3030 This follows from

lemma 6.

III. Imitating the geometric product in the exterior algebra

Using the Hodge dual, the geometric product (of vectors) may be defined
entirely within the exterior algebra as

𝒖𝒗 ≔ ⋆−1(𝒖 ∧ ⋆𝒗) + 𝒖 ∧ 𝒗. (3.5)

Indeed, eq. (3.5) reduces to the familiar formula

𝒖𝒗 = ⟨𝒖, 𝒗⟩ ⋆−1 I + 𝒖 ∧ 𝒗 = ⟨𝒖, 𝒗⟩ + 𝒖 ∧ 𝒗
by eq. (2.9). However, eq. (3.5) does not apply to general multivectors,
and the equivalent formulae for higher-grade objects are more complex
and tend to obscure the underlying simplicity of the geometric product.

3.3. More Graded Products

All operations in the geometric algebra can be expressed in terms of the
fundamental geometric product along with grade projection ⟨ ⟩𝑘 . For
example, we have seen that the wedge and fat dot product (definition 19)
are merely combinations of multiplication and projection.

There are other similar constructions which are useful enough to war-
rant their own symbols, including the contraction products.
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Definition 21.

left contraction 𝐴 ⌋ 𝐵 ≔ ∑
𝑝,𝑞

⟨⟨𝐴⟩𝑝⟨𝐵⟩𝑞⟩𝑞−𝑝
right contraction 𝐴 ⌊ 𝐵 ≔ ∑

𝑝,𝑞
⟨⟨𝐴⟩𝑝⟨𝐵⟩𝑞⟩𝑝−𝑞

Observe that (𝐴 ⌋ 𝐵)† = 𝐴† ⌊ 𝐵†, so these are in essentially the same
operation — only one is viewed in a mirror.31 31 I.e., every statement

involving ⌋ produces,
under reversion, an
equivalent statement
involving ⌊.

We declare the various products • , ∧ , ⌋ and ⌊ to have higher prece-
dence than the geometric product (aligning with [11, §2.5]), so that we
may write e.g., 𝐴 • 𝐵 𝐶 = (𝐴 • 𝐵)𝐶 and 𝒖 ∧ 𝒗 I = (𝒖 ∧ 𝒗)I unambiguously.

The fat dot product reduces to a contraction on homogeneous multi-
vectors, depending on which multivector has the higher grade. Specifi-
cally, if 𝐴 is a 𝑝-vector and 𝐵 a 𝑞-vector, then

𝐴 • 𝐵 = {𝐴 ⌋ 𝐵 𝑝 ≤ 𝑞
𝐴 ⌊ 𝐵 𝑞 ≥ 𝑝 ,

with 𝐴 • 𝐵 = 𝐴 ⌋ 𝐵 = 𝐴 ⌊ 𝐵 = ⟨𝐴𝐵⟩ when 𝑝 = 𝑞. While in some ex-
pressions the grades of multivectors are clear so that the sense in which
the fat dot product acts is obvious, the contractions are arguably better
behaved algebraically, allowing for more useful identities to be written
with fewer grade-based exceptions [27].32 32 E.g., 𝒖𝐴 = 𝒖 • 𝐴 + 𝒖 ∧ 𝐴

holds only if 𝐴 has zero
scalar part, but
𝒖𝐴 = 𝒖 ⌋ 𝐴 + 𝒖 ∧ 𝐴 holds
for any 𝐴.

Lemma 10. For any vector 𝒖 and multivector 𝐴,

𝒖 ⌋ 𝐴 = 1
2(𝒖𝐴 − 𝐴⋆𝒖), 𝒖 ∧ 𝐴 = 1

2(𝒖𝐴 + 𝐴⋆𝒖).

Proof. Begin by assuming 𝐴 is of grade 𝑘. The geometric product con-
tains two grades,

𝒖𝐴 = ⟨𝒖𝐴⟩𝑘−1 + ⟨𝒖𝐴⟩𝑘+1 ≡ 𝒖 ⌋ 𝐴 + 𝒖 ∧ 𝐴.

Now consider the reversed product, and rearrange terms using the fact
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that 𝑎† = 𝓈𝑝𝑎 if 𝑎 is a 𝑝-vector.

𝐴𝒖 = 𝐴 ⌊ 𝒖 + 𝐴 ∧ 𝒖
= 𝓈𝑘−1 𝒖† ⌋ 𝐴† + 𝓈𝑘+1 𝒖† ∧ 𝐴†

= 𝓈𝑘−1𝓈𝑘 𝒖 ⌋ 𝐴 + 𝓈𝑘+1𝓈𝑘 𝒖 ∧ 𝐴

With reference to eq. (3.4), notice that 𝓈𝑘±1𝓈𝑘 = ±(−1)𝑘 . Thus,

𝐴⋆𝒖 = (−1)𝑘𝐴𝒖 = −𝒖 ⌋ 𝐴 + 𝒖 ∧ 𝐴.

Taking the sum and difference of 𝒖𝐴 and 𝐴⋆𝒖 as above yields the two
results, respectively— at least for homogeneous𝐴. Since the expressions
are linear in 𝐴, and are written without reference to 𝑘, they extend by
linearity to general multivectors.

Corollary 1. Contraction by a vector is an anti-derivation;

𝒖 ⌋ (𝐴𝐵) = (𝒖 ⌋ 𝐴)𝐵 + 𝐴⋆(𝒖 ⌋ 𝐵).

Proof. By using lemma 10 to rewrite the contraction, the result follows
immediately.

𝒖 ⌋ (𝐴𝐵) = 1
2(𝒖𝐴𝐵 − (𝐴𝐵)⋆𝒖)

= 1
2(𝒖𝐴𝐵 − 𝐴⋆𝒖𝐵 + 𝐴⋆𝒖𝐵 − 𝐴⋆𝐵⋆𝒖)

= (𝒖 ⌋ 𝐴)𝐵 + 𝐴⋆(𝒖 ⌋ 𝐵)

This also implies that vector contraction is an anti-derivation with re-
spect to the wedge product, i.e., 𝒖 ⌋ (𝐴∧𝐵) = (𝒖 ⌋ 𝐴)∧𝐵+𝐴⋆∧(𝒖 ⌋ 𝐵).

I. Contractions in terms of Hodge duality

In 3.2.4.III, we showed that the vector metric ⟨𝒖, 𝒗⟩ = ⋆−1(𝒖 ∧ ⋆𝒗) may
be eliminated in favour of the metric-free wedge product using Hodge
duality. We may extend this idea to the contraction inner product 𝐴 ⌊ 𝐵,
valid not only for vectors, but objects of any grade.
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Lemma 11. Right contraction is expressible in terms of Hodge duality as

𝐵 ⌊ 𝐴† = ⋆−1(𝐴 ∧ ⋆𝐵).

Proof. Begin by reversing the left-hand side and inserting 1 = II−1,

𝐵 ⌊ 𝐴† = ((𝐴 ⌋ 𝐵†)II−1)†. (3.6)

If 𝐴 and 𝐵 are of grades 𝑎 and 𝑏, respectively, we can dualise the con-
traction into a wedge product with

(𝐴 ⌋ 𝐵†)I = ⟨𝐴𝐵†⟩𝑏−𝑎I = ⟨𝐴𝐵†I⟩𝑛−(𝑏−𝑎) = ⟨𝐴(𝐵†I)⟩𝑎+(𝑛−𝑏) = 𝐴 ∧ (𝐵†I).

Therefore, eq. (3.6) is equal to

((𝐴 ∧ (𝐵†I))I−1)† = ⋆−1(𝐴 ∧ ⋆𝐵)

using ⋆𝐴 = 𝐴†I and ⋆−1𝐴 = (𝐴I−1)†.

II. Interactions between graded products

The contractions and wedge products work together intimately, offering
universally valid rewriting rules such as

See table 3.2 for a larger
compilation of identities.

(𝐴 ⌊ 𝐵) ⌊ 𝐶 = 𝐴 ⌊ (𝐵 ∧ 𝐶), (𝐴 ⌋ 𝐵) ⌊ 𝐶 = 𝐴 ⌋ (𝐵 ⌊ 𝐶),
𝐴 ⌋ (𝐵 ⌋ 𝐶) = (𝐴 ∧ 𝐵) ⌋ 𝐶, 𝒖 • (𝐵 • 𝒗) = (𝒖 • 𝐵) • 𝒗,

as will be shown. The last equation is a specialisation of the upper right
for vectors, which in particular means that parentheses are unnecessary
when defining the components of a bivector 𝐹 = 𝐹 𝑖𝑗𝒆𝑖 ∧ 𝒆𝑗 with the ex-
pression 𝐹𝑖𝑗 = 𝒆𝑖 • 𝐹 • 𝒆𝑗 .

To prove these identities, it will help to establish the following two
lemmas.

Lemma 12. For 𝑖, 𝑗, 𝑘 ≥ 0, the following conditions are equivalent.
|𝑖 − 𝑗| ≤ 𝑘 ≤ 𝑖 + 𝑗, |𝑘 − 𝑖| ≤ 𝑗 ≤ 𝑘 + 𝑖, |𝑗 − 𝑘| ≤ 𝑖 ≤ 𝑗 + 𝑘.
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Proof. There exists a triangle in the Euclidean plane with side lengths
𝑖, 𝑗, 𝑘 if and only if |𝑖 − 𝑗| ≤ 𝑘 ≤ 𝑖 + 𝑗. By relabelling its sides, it follows
that the other relations are equivalent.

Lemma 13. The three terms

⟨⟨𝐴⟩𝑝⟨𝐵⟩𝑞⟩𝑘 , ⟨⟨𝐴⟩𝑘⟨𝐵⟩𝑝⟩𝑞 , ⟨⟨𝐴⟩𝑞⟨𝐵⟩𝑘⟩𝑝
all vanish unless |𝑝 − 𝑞| ≤ 𝑘 ≤ 𝑝 + 𝑞.

Proof. From eq. (3.12) it follows that ⟨⟨𝐴⟩𝑝⟨𝐵⟩𝑞⟩𝑘 ≠ 0 implies |𝑝 − 𝑞| ≤
𝑘 ≤ 𝑝 + 𝑞. By lemma 12, it also holds under permutations of the grade
projections.

Lemma 14. For any multivectors 𝐴, 𝐵, 𝐶 ,
(𝐴 ⌊ 𝐵) ⌊ 𝐶 = 𝐴 ⌊ (𝐵 ∧ 𝐶), 𝐴 ⌋ (𝐵 ⌋ 𝐶) = (𝐴 ∧ 𝐵) ⌋ 𝐶.

Proof. It suffices to derive the identities for homogeneous multivectors;
they extend by linearity to general multivectors. Thus, let (𝐴, 𝐵, 𝐶) be
multivectors of grade (𝑎, 𝑏, 𝑐), respectively.

Consider ⟨⟨𝐴𝐵⟩𝑘𝐶⟩𝑎−𝑏−𝑐 and assume it to be non-zero. By lemma 13,
this is zero unless 𝑘 ≤ 𝑐 + (𝑎 − 𝑏 − 𝑐) = 𝑎 − 𝑏. However, ⟨𝐴𝐵⟩𝑘 is zero
unless |𝑎 − 𝑏| ≤ 𝑘, hence 𝑘 = 𝑎 − 𝑏. Therefore,

⟨(𝐴𝐵)𝐶⟩𝑎−𝑏−𝑐 = ⟨⟨𝐴𝐵⟩𝑎−𝑏𝐶⟩𝑎−𝑏−𝑐 ,
since the only non-zero contribution from the product 𝐴𝐵 is the part of
grade 𝑎 − 𝑏.

Similarly, assume that ⟨𝐴⟨𝐵𝐶⟩𝑘⟩𝑎−𝑏−𝑐 is non-zero. Again by lemma 13
we have |𝑎 −(𝑎−𝑏−𝑐)| ≤ 𝑘 implying 𝑏+𝑐 ≤ 𝑘. Since ⟨𝐵𝐶⟩𝑘 is zero unless
𝑘 ≤ 𝑏 + 𝑐, we have 𝑘 = 𝑏 + 𝑐 exactly and

⟨𝐴(𝐵𝐶)⟩𝑎−𝑏−𝑐 = ⟨𝐴⟨𝐵𝐶⟩𝑏+𝑐⟩𝑎−𝑏−𝑐 .

By associativity of the geometric product, we have shown

⟨⟨𝐴𝐵⟩𝑎−𝑏𝐶⟩(𝑎−𝑏)−𝑐 = ⟨𝐴⟨𝐵𝐶⟩𝑏+𝑐⟩𝑎−(𝑏+𝑐),
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3.4. Rotors and the Associated Lie Groups

which is definitionally equivalent to

(𝐴 ⌊ 𝐵) ⌊ 𝐶 = 𝐴 ⌊ (𝐵 ∧ 𝐶).

Reversion yields the corresponding identity for left contraction.

Lemma 15. For any multivectors 𝐴, 𝐵, 𝐶 ,

(𝐴 ⌋ 𝐵) ⌊ 𝐶 = 𝐴 ⌋ (𝐵 ⌊ 𝐶).

Proof. In very similar vein to the proof of lemma 14, consider ⟨⟨𝐴𝐵⟩𝑘𝐶⟩−𝑎+𝑏−𝑐
and assume it to be non-zero. By lemma 13, we have 𝑘 ≤ 𝑏 − 𝑎, while
also |𝑎 − 𝑏| ≤ 𝑘 if ⟨𝐴𝐵⟩𝑘 is to remain non-zero, hence 𝑘 = 𝑏 − 𝑎.

⟨(𝐴𝐵)𝐶⟩−𝑎+𝑏−𝑐 = ⟨⟨𝐴𝐵⟩𝑏−𝑎𝐶⟩−𝑎+𝑏−𝑐 = (𝐴 ⌋ 𝐵) ⌊ 𝐶

Now consider ⟨𝐴⟨𝐵𝐶⟩𝑘⟩−𝑎+𝑏−𝑐 . Using the same argument but with 𝑎 ↔ 𝑐
swapped, deduce

⟨𝐴(𝐵𝐶)⟩−𝑎+𝑏−𝑐 = ⟨𝐴⟨𝐵𝐶⟩𝑏−𝑐⟩−𝑎+𝑏−𝑐 = 𝐴 ⌋ (𝐵 ⌊ 𝐶).

By associativity, these are equal.

3.4. Rotors and the Associated Lie Groups

There is a consistent pattern to the algebra isomorphisms listed in sec-
tion 3.2.3 (excepting the last). Note how the complex numbers C are fit
for describing SO(2) rotations in the plane, and the quaternions H de-
scribe SO(3) rotations in R3. Common to both their respective isomor-
phisms with 𝒢+(2) and 𝒢+(3) is the identification of each ‘imaginary
unit’ in C or H with a unit bivector in 𝒢(𝑛).

• In 2d, there is one linearly independent bivector, 𝒆1𝒆2, and one
imaginary unit, 𝑖.

• In 3d, there are dim𝒢2(3) = (32) = 3 such bivectors, and so three

imaginary units { ̂𝒊, ̂𝒋, �̂�} are needed.
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• In (1+3)d, we have dim𝒢2(1, 3) = (42) = 6, corresponding to three

‘spacelike’ { ̂𝒊, ̂𝒋, �̂�} and three ‘timelike’ {𝑖 ̂𝒊, 𝑖 ̂𝒋, 𝑖�̂�} units of C ⊗H.

In these examples, a bivector takes the role of an ‘imaginary unit’, gen-
erating a rotation through the oriented plane which it spans.

To see how bivectors act as rotations, observe that rotations in the C-
plane may be described as mappings 𝑧 ↦ 𝑒𝜃𝑖𝑧,whileR3 rotations are de-
scribed inH using a double-sided transformation law, 𝑢 ↦ 𝑒𝜃�̂�/2𝑢𝑒−𝜃�̂�/2,
where �̂� ∈ span{ ̂𝒊, ̂𝒋, �̂�} is a unit quaternion defining the axis of rotation.
Due to the commutativity of C, the double-sided transformation law is
actually general to both C and H. The same is true for rotations in a
geometric algebra, where a multivector is rotated by

𝐴 ↦ 𝑒𝜃�̂�/2𝐴𝑒−𝜃�̂�/2,
where �̂� ∈ 𝒢2(𝑉 , 𝜂) is a unit bivector. Multivectors of the form 𝑅 = 𝑒𝜎
for 𝜎 ∈ 𝒢2(𝑉 , 𝜂) are called rotors. Immediate advantages to the rotor
formalism are clear:

• It is general to 𝑛 dimensions, and to any metric signature.

Rotors describe generalised rotations,33 depending on the metric33 a.k.a., proper
orthogonal

transformations
and algebraic properties of the exponentiated unit bivector 𝜎 . If
𝜎2 < 0, then 𝑒𝜎 describes a Euclidean rotation; if 𝜎2 > 0, then 𝑒𝜎
is a hyperbolic rotation or Lorentz boost.

• Vectors are distinguished from bivectors.

One of the subtler points about quaternions is their transformation
properties under reflection. A quaternion ‘vector’ 𝑣 = 𝑥 ̂𝒊 +𝑦 ̂𝒋+𝑧�̂�
reflects through the origin under involution 𝑣 ↦ −𝑣 , but a quater-
nion ‘rotor’ of the same value is invariant. Indeed, the same object
(‘quaternion’) is used to represent objects with differing transfor-
mation laws (‘vector’ and ‘rotation generator’). Not so in the geo-
metric algebra: vectors are 1-vectors, and rotation generators, the
‘imaginary units’, are bivectors.

Enlarging the algebra like this to include more kinds of object may
appear finicky, but it is beneficial: the generalisation to arbitrary
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3.4. Rotors and the Associated Lie Groups

dimensions is immediate and elegant, and the geometric meaning
of algebraic objects becomes clear.34

34 See [4, 24, 29] for
impassioned testaments to
the elegance of geometric
algebra.

3.4.1. The rotor groups Rotors: [11, §4.2] [24, 30]

We will now see more rigorously how the rotor formalism arises. An
orthogonal transformation in 𝑛 dimensions is achieved by the composi-
tion of at most 𝑛 reflections.35 A reflection is described in the geometric 35 This is the

Cartan–Dieudonné
theorem [31].

algebra by conjugation with an invertible vector. For instance, the linear
map

𝐴 ↦ −𝒗𝐴𝒗−1 (3.7)

reflects the multivector 𝐴 along the vector 𝒗 — that is, across the hyper-
plane with normal 𝒗 . To see this, consider the

case where 𝐴 is a vector
parallel or orthogonal to 𝒗 .

By composing reflections of this form, any orthog-
onal transformation may be built, acting on multivectors as

𝐴 ↦ ±𝑅𝐴𝑅−1 (3.8)

for some 𝑅 = 𝒗1𝒗2⋯𝒗𝑘 , where the sign is positive for an even number of
reflections (giving a proper rotation), and negative for odd.

Scaling the axis of reflection 𝒗 by a non-zero scalar 𝜆 does not affect
the reflection map (3.7), since 𝒗 ↦ 𝜆𝒗 is cancelled out by 𝒗−1 ↦ 𝜆−1𝒗−1.
Therefore, a more direct correspondence exists between reflections and
normalised vectors ̂𝒗2 = ±1 (although there still remains an overall
ambiguity in sign). For an orthogonal transformation built using nor-
malised vectors, the inverse is

𝑅−1 = ̂𝒗−1𝑘 ⋯ ̂𝒗−12 ̂𝒗−11 = ±𝑅†

since ̂𝒗−1 = ± ̂𝒗 , and hence eq. (3.8) may be written in terms of reversion
instead of inversion:

𝐴 ↦ ±𝑅𝐴𝑅† (3.9)

All such elements satisfying 𝑅−1 = ±𝑅† taken together form a group
under the geometric product. This is called the pin group:

Pin(𝑝, 𝑞) ≔ {𝑅 ∈ 𝒢(𝑝, 𝑞) ∣ 𝑅𝑅† = ±1}
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Chapter 3. The Geometric Algebra

There are two “pinors” for each orthogonal transformation, since+𝑅 and
−𝑅 give the same map (3.9). Thus, the pin group forms a double cover
of the orthogonal group O(𝑝, 𝑞).

Spin+ Spin Pin

SO+ SO O

⊆ ⊂

⊆ ⊂

Fig. 3.2.: Relationships
between Lie groups

associated with a
geometric algebra. An

arrow 𝐴 ↠ 𝐵 signifies that
𝐴 is a double-cover of 𝐵.

Furthermore, the even-grade elements of Pin(𝑝, 𝑞) form a subgroup,
called the spin group:

Spin(𝑝, 𝑞) ≔ {𝑅 ∈ 𝒢+(𝑝, 𝑞) ∣ 𝑅𝑅† = ±1}
This forms a double cover of SO(𝑝, 𝑞).

Finally, the additional requirement that 𝑅𝑅† = 1 defines the restricted
spinor group, or the rotor group:

Spin+(𝑝, 𝑞) ≔ {𝑅 ∈ 𝒢+(𝑝, 𝑞) ∣ 𝑅𝑅† = 1}
The rotor group is a double cover of the restricted special orthogonal
group SO+(𝑝, 𝑞), which is the identity-connected part of SO(𝑝, 𝑞). Ex-
cept for the degenerate case of Spin+(1, 1), the rotor group is simply
connected to the identity.

3.4.2. The bivector subalgebra

Bivectors play a special role as the generators of rotors. Because the
even subalgebra 𝒢+ ⊃ 𝒢2 is closed under the geometric product, the
exponential 𝑒𝜎 = 1 + 𝜎 + 𝜎2/2 + ⋯ of a bivector is an even multivector.
To show that 𝑒𝜎 ∈ Spin+ is indeed a rotor, note that the reverse (𝑒𝜎 )† =
𝑒(𝜎†) = 𝑒−𝜎 is its inverse, and also that 𝑒𝜎 is continuously connected to
the identity by the path 𝑒𝜆𝜎 for 𝜆 ∈ [0, 1].

Indeed, this leads to the Lie algebra–Lie group correspondence shown
in fig. 3.3. To show this, it is helpful to establish some of the useful
algebraic features of the bivector subalgebra.

Spin+ SO+

𝒢2 𝔰𝔬
exp

≅

exp

Fig. 3.3.: The Lie algebras
𝒢2(𝑝, 𝑞) and 𝔰𝔬(𝑝, 𝑞) are

isomorphic, but
Spin+(𝑝, 𝑞) is the universal
double cover of SO+(𝑝, 𝑞).

The multivector commutator product

𝐴 × 𝐵 ≔ 1
2(𝐴𝐵 − 𝐵𝐴) (3.10)

enjoys several useful properties, particularly when acting on bivectors.
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3.4. Rotors and the Associated Lie Groups

Lemma 16. Commutation by a multivector 𝐴 is a derivation,

𝐴 × (𝐵𝐶) = (𝐴 × 𝐵)𝐶 + 𝐵(𝐴 × 𝐶).

Proof. By expanding both sides,

1
2(𝐴𝐵𝐶 − 𝐵𝐶𝐴) = 1

2(𝐴𝐵𝐶 − 𝐵𝐴𝐶 + 𝐵𝐴𝐶 − 𝐵𝐶𝐴).

Lemma 17. For a bivector 𝜎 and multivector 𝐴,

𝜎𝐴 = 𝜎 ⌋ 𝐴 + 𝜎 × 𝐴 + 𝜎 ∧ 𝐴, (3.11)

where 𝑎 × 𝑏 = 1
2(𝑎𝑏 − 𝑏𝑎) is the commutator product.

𝜎 ∧ 𝐴 +2
+1

𝜎𝐴 𝜎 × 𝐴 0
−1

𝜎 ⌋ 𝐴 −2
Fig. 3.4.: Grade diagram
for eq. (3.11). Grades are
labelled relative to the
grade of 𝐴.

Proof. Suppose 𝐴 is a 𝑘-vector. The geometric product with a bivector
then contains non-zero parts of three grades,

𝜎𝐴 = ⟨𝜎𝐴⟩𝑘−2 + ⟨𝜎𝐴⟩𝑘 + ⟨𝜎𝐴⟩𝑘+2 ≡ 𝜎 ⌋ 𝐴 + ⟨𝜎𝐴⟩𝑘 + 𝜎 ∧ 𝐴.

Consider the reverse product,

𝐴𝜎 = 𝐴 ⌊ 𝜎 + ⟨𝐴𝜎⟩𝑘 + 𝐴 ∧ 𝜎

and reverse each term, noting that 𝜎† = −𝜎 and 𝐴† = 𝓈𝑘𝐴,

Recall from eq. (3.4) that
𝐴† = 𝓈𝑘𝐴 for a 𝑘-vector
where 𝓈𝑘 = (−1) (𝑘−1)𝑘

2 .

= −𝓈𝑘(𝓈𝑘−2 𝜎 ⌋ 𝐴 + 𝓈𝑘 ⟨𝜎𝐴⟩𝑘 + 𝓈𝑘+2 𝜎 ∧ 𝐴)

simplifying with 𝓈𝑘𝓈𝑘±2 = −1.

= 𝜎 ⌋ 𝐴 − ⟨𝜎𝐴⟩𝑘 + 𝜎 ∧ 𝐴

Thus, ⟨𝜎𝐴⟩𝑘 = 1
2(𝜎𝐴−𝐴𝜎) ≡ 𝜎 ×𝐴, and so the result holds for homoge-

neous multivectors, and by linearity for general multivectors.

Lemma 18. Commutation by a bivector 𝜎 is a grade-preserving operation;
i.e., 𝜎 × ⟨𝐴⟩𝑘 = ⟨𝜎 × 𝐴⟩𝑘 .
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Proof. If𝐴 = ⟨𝐴⟩𝑘 then𝐴𝜎 and 𝜎𝐴 are {𝑘 − 2, 𝑘, 𝑘 + 2}-multivectors. The
𝑘 ± 2 parts are

⟨𝛢 × 𝜎⟩𝑘±2 = 1
2(⟨𝐴𝜎⟩𝑘±2 − ⟨𝜎𝐴⟩𝑘±2).

However, ⟨𝜎𝐴⟩𝑘±2 = 𝓈𝑘±2⟨𝐴†𝜎†⟩𝑘±2 = −𝓈𝑘±2𝓈𝑘⟨𝐴𝜎⟩𝑘±2 and the rever-
sion signs satisfy 𝓈𝑘±2𝓈𝑘 = −1 for any 𝑘. Hence, ⟨𝐴 × 𝜎⟩𝑘±2 = 0, leaving
only the grade 𝑘 part, 𝐴 × 𝜎 = ⟨𝐴 × 𝜎⟩𝑘 .

A corollary of lemma 18 is that the commutator is closed on the space
of bivectors, 𝒢2. Clearly eq. (3.10) is bilinear and satisfies the Jacobi
identity, so 𝒢2 in fact forms a Lie algebra with the bivector commutator
× as the Lie bracket.

We have shown that both the rotor group and its Lie algebra are di-
rectly represented within the mother algebra 𝒢(𝑝, 𝑞). There is no need
for matrix representations which obscure the underlying geometry.

3.5. Higher Notions of Orthogonality

As discussed at the start of this chapter, the lack of a Z-grading means
that a geometric product of blades is generally an inhomogeneous mul-
tivector. Geometrically, the grade 𝑘 part of product of blades reveals the
degree to which the two blades are ‘orthogonal’ or ‘parallel’, in a certain
𝑘-dimensional sense.

To see this, first consider the special case where the product of a 𝑝-
blade 𝑎 and 𝑞-blade 𝑏 is a homogeneous 𝑘-blade. This occurs when there
exists a common orthonormal basis {𝒆𝑖} such that

𝑎 = 𝛼𝒆𝑖1 ⋯𝒆𝑖𝑝 and 𝑏 = 𝛽𝒆𝑗1 ⋯𝒆𝑗𝑞
simultaneously, for scalars 𝛼, 𝛽 . Then, the product is

𝑎𝑏 = ±𝛼𝛽𝒆ℎ1 ⋯𝒆ℎ𝑘 .
Each pair of parallel basis vectors in 𝑎 and 𝑏 contributes an overall factor
of 𝒆2𝑖 = ±1, and each transposition required to bring each pair together
flips the overall sign.

𝑎 ∧ 𝑏 𝑝 + 𝑞
𝑝 + 𝑞 − 2

𝑎𝑏 ⋮ ⋮
|𝑝 − 𝑞| + 2

𝑎 • 𝑏 |𝑝 − 𝑞|

Fig. 3.5.: Grade diagram
for a 𝑝-vector and 𝑞-vector. 44
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The resulting grade 𝑘 is the number of basis vectors 𝒆ℎ𝑖 which are not
common to both 𝑎 and 𝑏; i.e., {ℎ1, … , ℎ𝑘} is the symmetric difference of
{𝑖1, … , 𝑖𝑝} and {𝑗1, … , 𝑗𝑞}. Thus, the possible values of 𝑘 are separated by
steps of two, with the maximum 𝑘 = 𝑝+𝑞 attained when no basis vectors
are common to 𝑎 and 𝑏. In terms of the spans of the blades, we have

𝑘 = dim span{𝑎}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑝

+ dim span{𝑏}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑞

−2 dim(span{𝑎} ∩ span{𝑏})⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
2𝑚

∈ {|𝑝 − 𝑞|, |𝑝 − 𝑞| + 2, …, 𝑝 + 𝑞 − 2, 𝑝 + 𝑞}. (3.12)

Solving for the dimension of the intersection, we have

𝑚 = 1
2(𝑝 + 𝑞 − 𝑘).

Thus, the higher the grade 𝑘 of the product 𝑎𝑏, the lower the dimension
𝑚 of the intersection of their spans.

We are used to the geometric meaning of two vectors being parallel or
orthogonal. In terms of vector spans, they imply that the intersection is
one or zero dimensional, respectively. Similarly, blades of higher grade
can be ‘parallel’ or ‘orthogonal’ to varying degrees, depending on the
dimension of their intersection, 𝑚. 𝜌

𝜎 𝜔

Fig. 3.6.: {𝜌, 𝜔} are
1-orthogonal (𝜌𝜔 = 𝜌 × 𝜔)
and {𝜎 , 𝜌} have both 0- and
1-orthogonal components
(𝜎𝜌 = 𝜎 • 𝜌 + 𝜎 × 𝜌).

For example, the intersection of (the spans of) two 2-blades may be
of dimension two, one or (in four or more dimensions) zero. The notion
of parallel (i.e., being a scalar multiple) remains clear (𝑚 = 2), but there
are now two different types of orthogonality for 2-blades (𝑚 = 1 and
𝑚 = 0). An example of the first type can be pictured as two planes
meeting at right-angles along a line; the second type requires at least
four dimensions.

Definition 22. A 𝑝-blade 𝑎 and 𝑞-blade 𝑏 satisfying 𝑎𝑏 = ⟨𝑎𝑏⟩𝑘 are called
𝛥-orthogonal where 𝛥 = 1

2(𝑘 − |𝑝 − 𝑞|).

Informally, 𝛥-orthogonality of 𝑎 and 𝑏 means that 𝑎𝑏 is of the 𝛥th
grade above the minimum possible grade |𝑝−𝑞|. The higher 𝛥, the fewer
linearly independent directions are shared by (the spans of) 𝑎 and 𝑏. Dif-
ferent cases are exemplified in table 3.1.
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Familiarity with some special cases may aid intuition when consid-
ering general products of blades. For instance, if the product of two
bivectors is 𝜎1𝜎2 = 𝜎1 · 𝜎2 + 𝜎1 × 𝜎2, then it is understood that 𝜎1 has
a component parallel to 𝜎2, and a component which meets 𝜎2 at right-
angles along a line of intersection. In other words, 𝜎1 and 𝜎2 are planes
that intersect along a line with some angle between them (see fig. 3.6).
On the other hand, if 𝜎1𝜎2 = 𝜎1∧𝜎2, then the bivectors exist in orthogonal
planes — a scenario requiring at least four dimensions.

𝑝 𝑞 𝑘 ⟨𝑎𝑏⟩𝑘 𝛥 𝑚 commutativity geometric interpretation of 𝑎𝑏 = ⟨𝑎𝑏⟩𝑘
1 1 0 𝑎 • 𝑏 0 1 commuting vectors are parallel; 𝑎 ∥ 𝑏 ⟺ 𝑎 = 𝜆𝑏
1 1 2 𝑎 ∧ 𝑏 1 0 anticommuting vectors are orthogonal 𝑎 ⟂ 𝑏
2 2 0 𝑎 • 𝑏 0 2 commuting bivectors are parallel 𝑎 = 𝜆𝑏
2 2 2 𝑎 × 𝑏 1 1 anticommuting bivectors are at right-angles to each other
2 2 4 𝑎 ∧ 𝑏 2 0 commuting bivectors are 2-orthogonal
1 2 1 𝑎 • 𝑏 0 1 anticommuting vector 𝑎 lies in plane of bivector 𝑏
1 2 3 𝑎 ∧ 𝑏 1 0 commuting vector 𝑎 is normal to plane of bivector 𝑏
2 3 1 𝑎 • 𝑏 0 2 commuting bivector 𝑎 lies in span of trivector 𝑏
2 3 3 ⟨𝑎𝑏⟩3 1 1 anticommuting 𝑎 and 𝑏 are 1-orthogonal
2 3 5 𝑎 ∧ 𝑏 2 0 commuting 𝑎 and 𝑏 are 2-orthogonal

Table 3.1.: Geometric interpretation of the 𝑘-blade 𝑎𝑏 = ⟨𝑎𝑏⟩𝑘 where 𝑎 and 𝑏 are of grades
𝑝 and 𝑞 respectively, and where 𝑚 = dim(span{𝑎} ∩ span{𝑏}).
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3.5. Higher Notions of Orthogonality

Product decompositions

𝒖𝒗 = ⟨𝒖, 𝒗⟩ + 𝒖 ∧ 𝒗
𝒖𝐴 = 𝒖 ⌋ 𝐴 + 𝒖 ∧ 𝐴 𝐴𝒖 = 𝐴 ⌊ 𝒖 + 𝐴 ∧ 𝒖

𝜎𝐴 = 𝜎 ⌋ 𝐴 + 𝜎 × 𝐴 + 𝜎 ∧ 𝐴 𝐴𝜎 = 𝐴 ⌊ 𝜎 + 𝐴 × 𝜎 + 𝐴 ∧ 𝜎
Associative identities

(𝐴 ⌋ 𝐵) ⌊ 𝐶 = 𝐴 ⌋ (𝐵 ⌊ 𝐶)
𝐴 ⌋ (𝐵 ⌋ 𝐶) = (𝐴 ∧ 𝐵) ⌋ 𝐶 (𝐴 ⌊ 𝐵) ⌊ 𝐶 = 𝐴 ⌊ (𝐵 ∧ 𝐶)

Derivations

𝒖 × (𝐴𝐵) = (𝒖 × 𝐴)𝐵 + 𝐴(𝒖 × 𝐵) (𝐴𝐵) × 𝒖 = 𝐴(𝐵 × 𝒖) + (𝐴 × 𝒖)𝐵
Anti-derivations

𝒖 ⌋ (𝐴𝐵) = (𝒖 ⌋ 𝐴)𝐵 + 𝐴⋆(𝒖 ⌋ 𝐵) (𝐴𝐵) ⌊ 𝒖 = 𝐴(𝐵 ⌊ 𝒖) + (𝐴 ⌊ 𝒖)𝐵⋆

𝒖 ⌋ (𝐴 ∧ 𝐵) = (𝒖 ⌋ 𝐴) ∧ 𝐵 + 𝐴⋆ ∧ (𝒖 ⌋ 𝐵) (𝐴 ∧ 𝐵) ⌊ 𝒖 = 𝐴 ∧ (𝐵 ⌊ 𝒖) + (𝐴 ⌊ 𝒖) ∧ 𝐵⋆

Dualities

(𝐴 ⌋ 𝐵)I = 𝐴 ∧ (𝐵I) I(𝐴 ⌊ 𝐵) = (I𝐴) ∧ 𝐵
⟨𝐴 (𝐵 ⌋ 𝐶)⟩ = ⟨(𝐴 ∧ 𝐵) 𝐶⟩ ⟨(𝐴 ⌊ 𝐵) 𝐶⟩ = ⟨𝐴 (𝐵 ∧ 𝐶)⟩

Table 3.2.: Useful identities valid for all vectors 𝒖 and 𝒗 , bivectors 𝜎 and multivectors
𝐴, 𝐵 and 𝐶 . The first line of dualities follows from eq. (3.6), and the last line from the
associative identities.
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Chapter 4.

The Algebra of Spacetime

Special relativity is geometry with a Lorentzian signature. The space-
time algebra (STA) is the name given to the geometric algebra of a
Minkowski vector space, 𝒢(1, 3) ≡ 𝒢(R4, 𝜂), where 𝜂 = ±diag(−+++).
Other introductory material on the STA can be found in [23, 32, 33].

We denote the standard vector basis by {𝜸𝜇}, where Greek indices run
over {0, 1, 2, 3}. This is a deliberate allusion to the Dirac 𝛾 -matrices,
whose algebra is isomorphic to the STA — however, the 𝜸𝜇 ∈ R1+3
of STA are real, genuine spacetime vectors. A basis for the entire 24-
dimensional STA is then

Double indices are cyclical;
(𝑗, 𝑘) ∈ {(1, 2), (2, 3), (3, 1)}.

1 scalar

{1
+
} ∪

4 vectors

{𝜸0
∓
, 𝜸𝑖
±
} ∪

6 bivectors

{𝜸0𝜸𝑖
+

, 𝜸𝑗𝜸𝑘
−

} ∪
4 trivectors

{𝜸0𝜸𝑗𝜸𝑘
±

, 𝜸1𝜸2𝜸3
∓

} ∪
1 pseudoscalar

{I ≔ 𝜸0𝜸1𝜸2𝜸3
−

}

where lowercase Latin indices range over spacelike components, {1, 2, 3}.
Blades shown on the left-hand side of { , } are called timelike, and
those in on right-hand side spacelike. The sign below each basis blade
shows the sign of its (scalar) square. Multivectors of any kind which
square to zero are called null or lightlike.

I. The pseudoscalar and duality

The right-handed unit pseudoscalar I represents an oriented unit 4-volume.
It anticommutes with odd elements of the STA (vectors and trivectors)
and commutes with even elements (bivectors and (pseudo)scalars).
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4.1. The Space/Time Split

Since I2 = −1, the scalar–pseudoscalar plane 𝒢0,4(1, 3) = spanR{1, I}
is isomorphic to the complex plane C. Thus, for the sake of compu-
tation, operations on {0, 4}-multivectors may be regarded as operations
on complex numbers. In particular, we define the principal root √𝑎 of
a {0, 4}-multivector 𝑎 ∈ 𝒢0,4(1, 3) in the same way as it is defined in C

with a branch cut at 𝜃 = 𝜋 . It is worth emphasising that there are many
square roots of −1 in the spacetime algebra, each with distinct geomet-
rical meanings.36 We single out √−1 = I as ‘the’ principal root as this 36 E.g., the spacelike

bivector (𝜸𝑖𝜸𝑗)2 = −1
represents a directed
spacelike plane.

proves to be useful.37

37 In electromagnetism,
the imaginary unit 𝑖 often
plays the role of I, e.g.,
with Riemann–Silberstein
vector [34], where 𝑖 and I

are Hodge-like duals [33].

As in ??, Hodge duality is accomplished by (right) multiplication by
the volume element. In particular, this establishes a duality between
vectors and trivectors, and between spacelike and timelike bivectors.

4.1. The Space/Time Split

While we actually live in R1,3 spacetime, to any particular observer it
appears that space is R3 with a separate scalar time parameter. This is
reflected in the fact that 𝒢+(1, 3) and 𝒢(3) are isomorphic by ‘flatten-
ing’ the time dimension. In fact, from lemma 8, there is a separate iso-
morphism associated to each timelike direction, corresponding to each
inertial observer’s experience of space and time. Such a space/time
split identifies evenmultivectors in the spacetime algebra 𝒢+(1, 3) with
𝒢(3)multivectors, and provides an efficient, purely algebraic method for
switching between inertial frames [23].

Let 𝐾 be an inertial observer and for simplicity choose the standard
basis {𝜸𝜇} so that 𝜸0 is the instantaneous velocity of the 𝐾 frame. The
three relative vectors 𝜎𝑖 ≔ 𝜸𝑖𝜸0 form a vector basis for 𝒢(3), since the
𝜸𝑖𝜸0 indeed satisfy 𝜎2𝑖 = −𝜸2𝑖 𝜸20 = 1 and 𝜎𝑖𝜎𝑗 = −𝜎𝑗𝜎𝑖 for 𝑖 ≠ 𝑗. Because of
the dependence on 𝜸0, the relative vectors 𝜎𝑖 are specific to the 𝐾 frame.
Note that the same volume element I = 𝜎1𝜎2𝜎3 = 𝜸0𝜸1𝜸2𝜸3 is shared
by both algebras and all frames. With respect to the 𝐾 frame, we may
view 𝒢(3) ⊂ 𝒢(1, 3) as embedded in the STA, allowing us to consider
multivectors as belonging to both algebras as convenient.
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Chapter 4. The Algebra of Spacetime

For example a spacetime bivector 𝐹 = 𝐹 𝜇𝜈𝜸𝜇𝜸𝜈 may be separated into
timelike 𝐹 𝑖0 and spacelike 𝐹 𝑖𝑗 components and viewed as a {1, 2}-multi-
vector in 𝒢(3). With respect to the 𝐾 frame,

𝐹 = 𝐹 𝑖0𝜸𝑖𝜸0 + 𝐹 𝑖𝑗𝜸𝑖𝜸𝑗 = 𝐸𝑖𝜎𝑖 + 𝐵𝑖I𝜎𝑖 = 𝐸 + I𝐵, (4.1)

where we use 𝜸𝑖𝜸𝑗 = (𝜸𝑖𝜸0)(𝜸𝑗𝜸0) = −𝜎𝑖𝜎𝑗 = −𝜀𝑖𝑗𝑘I𝜎𝑘 . This is the frame-
dependent decomposition of a spacetime bivector (or “2-form”) into two
R3 vectors familiar from electromagnetic theory. Note that the rela-
tivistic 𝐹 is equal to the frame-dependent representation — they are the
same spacetime object, only expressed in relativistic and non-relativistic
bases.

Of particular interest are space/time splits on the bivector genera-
tors of rotors. A proper orthochronous Lorentz transformation Λ ∈
SO+(1, 3) acts as a ‘sandwich’ product Λ(𝐴) = 𝑒𝜎𝐴𝑒−𝜎 , where the ro-
tor 𝑒𝜎 ∈ Spin+(1, 3) is generated by a spacetime bivector 𝜎 ∈ 𝒢2(1, 3).
This bivector 𝜎 can be represented in the 𝐾 frame as

𝜎 = 1
2(𝜉

𝑖𝜸𝑖 + 𝜃 𝑖I𝜸𝑖)𝜸0 = 1
2(𝝃 + I𝜽) (4.2)

where 𝝃 = 𝜉 𝑖𝜎𝑖 ∈ 𝒢1(3) is a rapidity vector and I𝜽 ∈ 𝒢2(3) is a rotation
bivector.

4.1.1. On the choice of metric signature

Both metric signatures (−+++) and (+−−−) are appropriate for rela-
tivistic physics, and both are used in the literature. While the overall
physics is agnostic to this choice, expressions written in the STA are
generally not independent of the overall sign. It is a useful reference to
note what changes and what is constant under both choices.

One of the most important properties of the space/time split is the
agreement of𝒢(3) and𝒢+(1, 3) volume elements, I = 𝜎1𝜎2𝜎3 = 𝜸0𝜸1𝜸2𝜸3.
If this equality is to hold, then switching themetric signature is concomi-
tant with a switch in sign of the relative vectors, 𝜎𝑖 ↦ −𝜎𝑖.

Another noticable difference is in the space/time split of a position
vector 𝑿 ∈ 𝒢1(1, 3) into components 𝑿0 = 𝑐𝑡 and (𝑿 𝑖) = 𝑥 , achieved by
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4.2. The Invariant Bivector Decomposition

multiplication with the frame velocity 𝜸0. For example, the equations

𝑿𝜸0 = 𝑐𝑡 + 𝑥, 𝜸0𝑿 = 𝑐𝑡 − 𝑥
hold in the (+−−−) signature, but both change by an overall sign in the
(−+++) signature.38 Both these points are summarised in table 4.1. 38 In all cases, reversion

𝑿𝜸0 ↦ (𝑿𝜸0)† = 𝜸0𝑿
simply negates the
spacetime bivector part,
𝑥 → −𝑥 .

signature preferred 𝜎𝑖 𝜸0𝑿 𝑿𝜸0
(+−−−) 𝜎𝑖 ≔ 𝜸𝑖𝜸0 𝑐𝑡 − 𝑥 𝑐𝑡 + 𝑥
(−+++) 𝜎𝑖 ≔ 𝜸0𝜸𝑖 −𝑐𝑡 + 𝑥 −𝑐𝑡 − 𝑥

Table 4.1.: Comparison of space/time split in each metric signature. The spacetime
vector 𝑋 has contravariant components 𝑋 0 = 𝑐𝑡 and (𝑋 𝑖) = 𝑥 in the 𝜸0-frame. Relative
vectors are defined so that the spacetime volume element and volume element under
a space/time split are equal.

A choice of metric signmay be avoided by using sign-agnostic expres-
sions. An invariant definition of relative vectors and their duals in the
𝜸0-frame is

𝜎𝑖 ≔ 𝜸𝑖𝜸0, 𝜎 𝑖 = 𝜸0𝜸 𝑖.
These satisfy I = 𝜎1𝜎2𝜎3 = 𝜸0𝜸1𝜸2𝜸3 and I−1 = 𝜎1𝜎2𝜎3 = 𝜸0𝜸1𝜸2𝜸3 in
either signature. In particular, the following expressions hold in either
signature, and are useful when performing space/time splits.

𝜸0𝑿 = 𝑐𝑡 − 𝑥 𝑿𝜸0 = 𝑐𝑡 + 𝑥
𝜸0 𝝏 = 1

𝑐
𝜕
𝜕𝑡 + ∇⃗ 𝝏 𝜸0 = 1

𝑐
𝜕
𝜕𝑡 − ∇⃗

Here, the spacetime vector derivative 𝝏 = 𝜸𝜇𝜕𝜇 decomposes into a scalar
time derivative 𝜕0 = 𝑐−1𝜕𝑡 and the spatial derivative ∇⃗ = 𝜎 𝑖𝜕𝑖.

4.2. The Invariant Bivector Decomposition

There is a clear analogy between the space/time split of a bivector (4.1),
into spacelike and timelike components, and the Cartesian form of a
complex number, 𝑥 + 𝑖𝑦 , into real and imaginary parts. This similarity
can be made more precise: just as we may express complex numbers in
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Chapter 4. The Algebra of Spacetime

polar form 𝑟𝑒𝑖𝜙 = 𝑥+𝑖𝑦 , wemay use the invariant bivector decomposition
to write 𝜌𝑒I𝜎 = 𝐸 + I𝐵, since I2 = 𝑖2 = −1. This is distinct from the
space/time split in that it is frame independent, and the bivector 𝐸 is not
necessarily timelike, and so need not correspond to any relative vector
𝐸 ∈ 𝒢1(3).

Non-null spacetime bivectors 𝜎 ∈ 𝒢2(1, 3) may be normalised, in the
sense that there always exists some 𝑁𝜎 ∈ 𝒢0,4(1, 3) such that

𝜎 = 𝑁𝜎 �̂� = �̂�𝑁𝜎 where �̂�2 = 1.
In the null case 𝜎2 = 0, we let �̂�2 = 0 instead. This is possible because
the square of a bivector is a {0, 4}-multivector (lemma 7), which always
has a principal square root (since 𝒢0,4(1, 3) ≅ C). Explicitly, let 𝜎2 =
𝛼 + I𝛽 = 𝜌2𝑒2I𝜙 for scalars 𝛼, 𝛽, 𝜌, 𝜙, so that

𝑁𝜎 ≔ √𝜎2 = 𝜌𝑒I𝜙 ,
assuming without loss of generality that 𝜌 > 0 and 𝜙 ∈ (−𝜋/2, 𝜋/2].
Thus, the invariant bivector decomposition

𝜎 = 𝜌𝑒I𝜙 �̂� = (𝜌 cos 𝜙)�̂�⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝜎+

+ (𝜌 sin 𝜙)I�̂�⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝜎−

separates 𝜎 into commuting parts, [𝜎+, 𝜎−] = 0, each of which satisfy
±𝜎2± > 0. This makes it a useful device for algebraic manipulations.
Furthermore, the decomposition is unique, and does not depend on any
particular space/time split.

The decomposition can be used to show the non-injectivity of the ex-
ponential map in the STA. Take some bivector written in decomposed
form, 𝜎 = 𝜆+�̂� + 𝜆−I�̂� . For 𝑛 ∈ Z, each bivector in the family

𝜎𝑛 = 𝜆+�̂� + (𝜆− + 𝑛𝜋)I�̂�
exponentiates to the same rotor, up to an overall sign:

𝑒𝜎𝑛 = 𝑒𝜎0𝑒𝑛𝜋I�̂� = (−1)𝑛𝑒𝜎0 (4.3)

Note that 𝑒�̂�+I�̂� = 𝑒�̂� 𝑒I�̂� since [�̂� , I�̂� ] = 0. All the rotors in eq. (4.3) cor-
respond to the same SO+(1, 3) Lorentz transformation. Equation (4.3)
also shows that every Lorentz rotor ±𝑒𝜎0 is equal to a pure bivector ex-
ponential 𝑒𝜎𝑛 with a shifted rotational part 𝜆− ↦ 𝜆− + 𝑛𝜋 .
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4.3. Lorentz Conjugacy Classes

4.3. Lorentz Conjugacy Classes

As shown above, every proper Lorentz transformation Λ ∈ SO+(1, 3) is
generated by a bivector exponential Λ(𝒖) = 𝑒𝜎𝒖𝑒−𝜎 . The rotor formu-
lation makes some of the more subtle properties of the Lorentz group
clearer, including its decomposition into conjugacy classes.

Definition 23. The conjugacy class of a group element 𝑔 ∈ 𝐺 is the set

[𝑔] ≔ {ℎ𝑔ℎ−1 | ℎ ∈ 𝐺} = {𝑔′ ∈ 𝐺 | 𝑔′ ∼ 𝑔}
of elements conjugate39 to 𝑔. 39 Group elements 𝑔 ∼ 𝑔′

are conjugate iff there
extists ℎ ∈ 𝐺 such that
𝑔 = ℎ𝑔′ℎ−1.Since conjugacy is an equivalence relation, the conjugacy classes form

a partition of 𝐺.

In the case of the proper Lorentz group, the set of conjugacy classes
further partitions into five categories, or ‘kinds’. With the STA, the kind
of a Lorentz transformation (or its associated rotors) is determined by
whether its generating bivector40 is spacelike, timelike, both or neither. 40 One rotor has many

generating bivectors, but
any one will do.

Definition 24. Let 𝜎 ∈ 𝒢2(1, 3) be a bivector. If 𝜎2 is a scalar, then 𝜎 is
called

• trivial if 𝜎 = 0;

• elliptic if 𝜎2 < 0 (i.e., if 𝜎 is spacelike);

• parabolic if 𝜎2 = 0 (i.e., if 𝜎 ≠ 0 is lightlike);

• hyperbolic if 𝜎2 > 0 (i.e., if 𝜎 is timelike); and

• loxodromic if 𝜎2 = 𝛼 + I𝛽 is not a scalar but a {0, 4}-multivector.

Lemma 19. The square of a bivector is constant within each conjugacy
class.

Proof. Let Λ ∶ 𝒖 ↦ 𝑒𝜎𝒖𝑒−𝜎 be a proper Lorentz transformation, and

53



Chapter 4. The Algebra of Spacetime

consider its conjugation with some other transformation Γ,

ΓΛΓ−1 ∶ 𝒖 ↦ 𝑒𝜌𝑒𝜎 𝑒−𝜌𝒖𝑒−𝜌𝑒−𝜎 𝑒𝜌 .

Note that 𝑒𝜌𝑒𝜎 𝑒−𝜌 = 𝑒𝑒𝜌𝜎𝑒−𝜌 by the automorphism property of rotor ap-
plication. Therefore, Λ ∼ ΓΛΓ−1 translates to the condition

𝜎 ∼ 𝜎 ′ ≔ 𝑒𝜌𝜎𝑒−𝜌 .

Hence, the conjugate bivectors have common square,

𝜎 ′2 = (𝑒𝜌𝜎𝑒−𝜌)2 = 𝑒𝜌𝜎2𝑒−𝜌 = 𝜎2

since 𝑒±𝜌 commutes with the {0, 4}-multivector 𝜎2.

Corollary 2. Conjugacy classes of SO+(1, 3) fall into the five categories in
definition 24 by considering the generating bivector of any representative
Lorentz rotor.

(a) Elliptical

(b) Hyperbolic

(c) Loxodromic

Fig. 4.1.: Lorentz
transformations on the
celestial sphere, taking
curves to themselves.

Elliptical Lorentz transformations are rotations, whose rotors are gen-
erated by spacelike 2-blades; hyperbolic transformations are boosts, with
timelike 2-blades generators. Parabolic transformations are sometimes
called null rotations, and fall in between the previous two, with null 2-
blades as generators.

The final class of loxodromic transformations are a combination of
a rotation and a boost where the axis of rotation is parallel with the
boost direction (in a particular frame). A loxodromic generator is not
a 2-blade, but a bivector comprising mutually 2-orthogonal41 2-blades,

41 in the sense of
definition 22, section 3.5

one timelike and one spacelike.

These can be helpfully visualised by making use of the isomorphism
SO+(1, 3) ≅ Aut(C ∪ {∞}) of the Lorentz group with the Möbius group
of conformal transformations on the sphere. An observer undergoing a
change of frame will see the celestial sphere transform conformally, as
in fig. 4.1.

54



Chapter 5.

Composition of Rotors in
terms of their Generators

In studying proper orthogonal transformations, it is often easier to rep-
resent them in terms of their generators 𝜎𝑖 ∈ 𝒢(𝑝, 𝑞) which belong to
the Lie algebra 𝔰𝔬(𝑝, 𝑞). A fundamental question is how such transfor-
mations compose in terms of these generators: “given 𝜎1 and 𝜎2, what
is 𝜎3 such that 𝑒𝜎1𝑒𝜎2 = 𝑒𝜎3?” This is of theoretical interest and is useful
practically when representing transformations in terms of their genera-
tors is cheaper. One may use the Baker–Campbell–Hausdorff–Dynkin42 42 Often simply Baker–

Campbell–Hausdorff and
permutations thereof.

(BCHD) formula 𝜎1 ⊙ 𝜎2 ≔ log(𝑒𝜎1𝑒𝜎2) which is well studied in general
Lie theory [35]. However, the general BCHD formula

𝑎 ⊙ 𝑏 = 𝑎 + 𝑏 + 1
2[𝑎, 𝑏] +

1
12[𝑎, [𝑎, 𝑏]] +

1
12[[𝑎, 𝑏], 𝑏] + ⋯ (5.1)

involves an infinite series of nested commutators and may not obviously
admit a useful closed form.

In the case of Lorentz transformations SO+(1, 3), some closed-form
expressions for eq. (5.1) have been found using a 2-form representation
of 𝔰𝔬(1, 3) [36, 37], but the expressions are complicated and do not clearly
reduce to well-known formulae in, for example, the special cases of pure
rotations or pure boosts. The rotor formalism of geometric algebra leads
to an elegant closed form of eq. (5.1) which, in the case of Lorentzian
spacetime, is inexpensive to compute.
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5.1. A Geometric BCHD Formula

Suppose 𝜎 ∈ 𝒢2(𝑝, 𝑞) is a bivector in a geometric algebra of dimen-
sion 𝑝 + 𝑞 ≤ 4. By their definitions as formal power series, we have
𝑒𝜎 = cosh 𝜎 + sinh 𝜎, where ‘cosh’ involves even powers of 𝜎 and ‘sinh’
odd powers. For convenience, define the linear projections onto self-
reverse and anti-self-reverse parts respectively as

{{𝐴}} ≔ 1
2(𝐴 + 𝐴†) and [[𝐴]] ≔ 1

2(𝐴 − 𝐴†). (5.2)

Since any bivector obeys 𝜎† = −𝜎 , it follows that (𝑒𝜎 )† = 𝑒−𝜎 = cosh 𝜎 −
sinh 𝜎 . Using the notation (5.2), the self-reverse and anti-self-reverse
projections of 𝑒𝜎 are {{𝑒𝜎 }} = cosh 𝜎 and [[𝑒𝜎 ]] = sinh 𝜎 , respectively.
Furthermore, these two projections commute, and so

[[𝑒𝜎 ]]{{𝑒𝜎 }}−1 = {{𝑒𝜎 }}−1[[𝑒𝜎 ]] = [[𝑒𝜎 ]]
{{𝑒𝜎 }} = tanh 𝜎

which leads to an expression for the logarithm of any rotor ℛ = ±𝑒𝜎 .

𝜎 = log(ℛ) = arctanh ([[ℛ]]
{{ℛ}} ) (5.3)

Note that the overall sign of the rotor is not recovered, and log(+ℛ) =
log(−ℛ) according to eq. (5.3). However, this does not affect the Lorentz
transformation R ∈ SO+(𝑝, 𝑞), since it is defined by 𝑅(𝒖) = ℛ𝒖ℛ†. The
exact sign can be recovered by considering the relative signs of [[ℛ]] and
{{ℛ}}, as in [38, §5.3].

Object Grade
𝜎 2
ℛ 0, 2, 4
C𝑖 0, 4
S𝑖 2
T𝑖 2

T1 • T2 0
T1 × T2 2
T1 ∧ T2 4
Fig. 5.1.: Grades of terms
appearing in formuale.

From eq. (5.3) we may derive a BCHD formula by substituting ℛ =
𝑒𝜎1𝑒𝜎2 for any two bivectors 𝜎𝑖 ∈ 𝒢2(𝑝, 𝑞). Using the shorthand C𝑖 ≔
cosh 𝜎𝑖 and S𝑖 ≔ sinh 𝜎𝑖, the composite rotor is

ℛ = 𝑒𝜎1𝑒𝜎2 = (C1 + S1)(C2 + S2) = C1C2 + S1C2 + C1S2 + S1S2.
For 𝑝 + 𝑞 < 4, any even function of a bivector (such as C𝑖) is a scalar,
and for 𝑝 + 𝑞 = 4, is a {0, 4}-multivector 𝛼 + 𝛽I. In either case, the C𝑖
commute with even multivectors, so [C𝑖,C𝑗] = [C𝑖, S𝑗] = 0. Therefore,
the self-reverse and anti-self-reverse parts are

{{ℛ}} = C1C2 + 1
2{S1, S2} and [[ℛ]] = S1C2 + C1S2 + 1

2[S1, S2]. (5.4)

Hence, from eq. (5.3) we obtain an explicit BCHD formula.
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Theorem 3 (rotor BCHD formula). If 𝜎1, 𝜎2 ∈ 𝒢2(𝑝, 𝑞) are bivectors in
𝑝 + 𝑞 ≤ 4 dimensions, then 𝑒𝜎1𝑒𝜎2 = ±𝑒𝜎1⊙𝜎2 where

𝜎1 ⊙ 𝜎2 = arctanh(
T1 + T2 + 1

2[T1,T2]
1 + 1

2{T1,T2}
) (5.5)

where we abbreviateT𝑖 ≔ tanh 𝜎𝑖. Note that this satisfies the rotor equation
with an overall ambiguity in sign.

We may wish to express eq. (5.5) in terms of geometrically signifi-
cant products instead of (anti)commutators. As in lemma 17, a bivector
product is generally a {0, 2, 4}-multivector

𝑎𝑏 = ⟨𝑎𝑏⟩0 + ⟨𝑎𝑏⟩2 + ⟨𝑎𝑏⟩4
= 𝑎 • 𝑏 + 𝑎 × 𝑏 + 𝑎 ∧ 𝑏. (5.6)

where 𝑎 × 𝑏 = ⟨𝑎𝑏⟩2 = 1
2[𝑎, 𝑏] is the commutator product. We may then

write eq. (5.5) so that the grade of each term is explicit:

𝜎1 ⊙ 𝜎2 = arctanh ( T1 + T2 + T1 × T2
1 + T1 • T2 + T1 ∧ T2

) (5.7)

The numerator is a bivector, while the denominator contains scalar (T1 ·
T2) and 4-vector (T1 ∧ T2) terms.

5.1.1. Zassenhaus-type formulae

It is interesting to generalise the BCHD formula (5.1) to three rotors
𝑒𝜎1𝑒𝜎2𝑒𝜎3 = 𝑒𝜎 in an algebra 𝒢(𝑝, 𝑞) with 𝑝 + 𝑞 ≤ 4. A solution to this
rotor equation is

𝜎 = log(±𝑒𝜎 ) = arctanh ([[𝑒
𝜎1𝑒𝜎2𝑒𝜎3]]

{{𝑒𝜎1𝑒𝜎2𝑒𝜎3}} ),

by eq. (5.3).

We will find it convenient to define the anticommutator product
𝐴 ∧. 𝐵 ≔ 1

2{𝐴, 𝐵} to complement the commutator product 𝐴 × 𝐵. The
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symbol “∧. ” is motivated by the fact that, for bivectors, we have 𝜎 ∧. 𝜌 =
𝜎 ⋅ 𝜌 + 𝜎 ∧ 𝜌 and thus

𝜎 ∧. 𝜌 ≔ 1
2(𝜎𝜌 + 𝜌𝜎) = {{𝜎𝜌}}, 𝜎 × 𝜌 ≔ 1

2(𝜎𝜌 − 𝜌𝜎) = [[𝜎𝜌]]. (5.8)

Because 𝑒𝜎1𝑒𝜎2𝑒𝜎3 ∈ 𝒢+(𝑝, 𝑞) is an even multivector, the anti-self-
reverse projection is exactly the bivector part, [[𝑒𝜎1𝑒𝜎2𝑒𝜎3]] = ⟨𝑒𝜎1𝑒𝜎2𝑒𝜎3⟩2,43 Recall 𝐴† = 𝓈𝑘𝐴 for a

𝑘-vector 𝐴 where
(𝓈1 ⋯𝓈4) = (+−−+).

and the self-reverse projection is the {0, 4}-multivector part.44 Decom-
posing 𝑒𝜎𝑖 = C𝑖 + S𝑖, we find 23 terms which separate into

[[𝑒𝜎1𝑒𝜎2𝑒𝜎3]] = S1C2C3 + C1S2C3 + C1C2S3 + (C1S2 + S1C2) × S3 + (S1 × S2)C3 + [[S1S2S3]],
{{𝑒𝜎1𝑒𝜎2𝑒𝜎3}} = C1C2C3 + (C1S2 + S1C2) ∧. S3 + (S1 ∧. S2)C3 + {{S1S2S3}}.

The {0, 4}-multivectors C𝑖 commute with the bivectors S𝑖, and products
of C𝑖 and S𝑗 are themselves bivectors. Therefore, terms containing one S𝑖
factor are bivectors, and terms containing two S𝑖 factors, such as S1S2C3,
are products of bivectors, or {0, 2, 4}-multivectors. These terms are split
into bivectors (S1 × S2)C3 and {0, 4}-multivectors (S1 ∧. S2)C3.

Cancelling factors of C1C2C3, we then have

[[𝑒𝜎1𝑒𝜎2𝑒𝜎3]]
{{𝑒𝜎1𝑒𝜎2𝑒𝜎3}} =

T1 + T2 + T3 + (T1 + T2) × T3 + T1 × T2 + [[T1T2T3]]
1 + (T1 + T2) ∧. T3 + T1 ∧. T2 + {{T1T2T3}}

(5.9)

where T𝑖 ≔ tanh 𝜎𝑖. This fraction is well-defined since the {0, 4}-multi-
vector denominator commutes with the numerator.

The next lemma is used to rewrite the rightmost terms with (anti-)
commutator products (5.8).

Lemma 20. For any bivectors 𝜎, 𝜌, 𝜔 ∈ 𝒢2(𝑝, 𝑞) where 𝑝 + 𝑞 ≤ 4,

[[𝜎𝜌𝜔]] = (𝜎 ∧. 𝜌) ∧. 𝜔 + (𝜎 × 𝜌) × 𝜔, {{𝜎𝜌𝜔}} = (𝜎 × 𝜌) ∧. 𝜔.

Proof. Observe that [[𝜎𝜌𝜔]] = ⟨𝜎𝜌𝜔⟩2 since 𝜎𝜌𝜔 is a {0, 2, 4}-multivector,
of which only the bivector part is anti-self-reverse. Using associativity
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5.1. A Geometric BCHD Formula

and linearity,

⟨𝜎𝜌𝜔⟩2 = ⟨(𝜎 ∧. 𝜌)𝜔⟩2 + ⟨(𝜎 × 𝜌)𝜔⟩2 = (𝜎 ∧. 𝜌)𝜔 + (𝜎 × 𝜌) × 𝜔.
The product (𝜎 ∧. 𝜌)𝜔 = (𝜎 ∧. 𝜌) ∧. 𝜔 is between a {0, 4}-multivector and
a bivector, which may only contain bivector components. The product
(𝜎 × 𝜌)𝜔 is between two bivectors, having bivector part (𝜎 × 𝜌) × 𝜔.

Similarly, note that

{{𝜎𝜌𝜔}} = ⟨(𝜎 ∧. 𝜌)𝜔⟩0,4 + {{(𝜎 × 𝜌)𝜔}} = (𝜎 × 𝜌) ∧. 𝜔,
where the first term vanishes since (𝜎 ∧. 𝜌)𝜔 is a bivector.

This allows us to collect the terms in eq. (5.9) as

[[𝑒𝜎1𝑒𝜎2𝑒𝜎3]]
{{𝑒𝜎1𝑒𝜎2𝑒𝜎3}} =

T12 + T3 + T12 × T3 + (T1 ∧. T2) ∧. T3
1 + T12 ∧. T3 + T1 ∧. T2

where T12 ≔ T1 + T2 + T1 × T2. This leads us to the following result.

Lemma 21. For bivectors 𝜎𝑖 ∈ 𝒢2(𝑝, 𝑞) with 𝑝 + 𝑞 ≤ 4,
𝑒𝜎1+𝜎2 = 𝑒𝜎1𝑒𝜎2𝑒𝜌

where

𝜌 = arctanh (𝐹 − 𝑅 − 𝑅 × 𝐹 + 𝑆 ∧. 𝐹
1 − 𝑅 ∧. 𝐹 + 𝑆 ),

𝐹 = tanh(𝜎1 + 𝜎2),
𝑅 = tanh(𝜎1) × tanh(𝜎2) + tanh(𝜎1) + tanh(𝜎2),
𝑆 = tanh(𝜎1) ∧. tanh(𝜎2).

5.1.2. In low dimensions: Rodrigues’ rotation
formula

It is illustrative to see how the BCHD formula (5.5) reduces in low-
dimensional special cases. Indeed, in two dimensions, all bivectors are
scalar multiples of I = 𝒆1𝒆2, and we recover the trivial case 𝑒𝑎𝑒𝑏 = 𝑒𝑎+𝑏 .
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Specifically, in the Euclidean𝒢(2) plane (or anti-Euclidean𝒢(0, 2) plane)
we have I2 = −1, and eq. (5.5) simplifies by way of the tangent angle ad-
dition identity

arctan( tan 𝜃1 + tan 𝜃1
1 − tan 𝜃1 tan 𝜃2

) = 𝜃1 + 𝜃2.

This identity encodes how angles add when given as the gradients of
lines; 𝑚 = tan 𝜃 .

Similarly, in the hyperbolic plane 𝒢(1, 1) with basis {𝒆+, 𝒆−}, 𝒆2± = ±1,
the pseudoscalar I = 𝒆+𝒆− generates hyperbolic rotations 𝑒I𝜉 = cosh 𝜉 +
I sinh 𝜉 owing to the fact that I2 = −𝒆2+𝒆2− = +1. Then, eq. (5.5) simplifies
by the hyperbolic angle addition identity

arctanh ( tanh 𝜉1 + tanh 𝜉1
1 + tanh 𝜉1 tanh 𝜉2

) = 𝜉1 + 𝜉2

which encodes how collinear rapidities add when given as relativistic
velocities; 𝛽 = tanh 𝜉 .

Less trivially, a rotation in R3 by 𝜃 may be represented by its Ro-
drigues vector44 𝒓 = ̂𝒓 tan 𝜃

2 pointing along the axis of rotation. The44 Olinde Rodrigues
originated the formula in

1840 [39, pp. 406].
composition of two rotations is then succinctly encoded in Rodrigues’
composition formula

𝒓12 =
𝒓1 + 𝒓2 − 𝒓1 × 𝒓2

1 − 𝒓1 · 𝒓2
(5.10)

involving the standard vector dot and cross products.

We can easily derive eq. (5.10) as a special case of eq. (5.7) as follows:
Let 𝜎1, 𝜎2 ∈ 𝒢2(3) be two bivectors defining the rotors 𝑒𝜎1 and 𝑒𝜎2 in three
dimensions. In 𝒢(3), the only 4-vector is trivial, so 𝜎1 ∧ 𝜎2 = 0 and for
the composite rotor 𝑒𝜎3 ≔ 𝑒𝜎1𝑒𝜎2 we have

𝜎3 = 𝜎1 ⊙ 𝜎2 = arctanh (tanh 𝜎1 + tanh 𝜎2 + tanh 𝜎1 × tanh 𝜎2
1 + tanh 𝜎1 · tanh 𝜎2

)

where 𝑎 × 𝑏 is the commutator product of bivectors as in eq. (5.6), not
the vector cross product. Observe that Euclidean bivectors 𝜎𝑖 ∈ 𝒢2(3)
have negative square (e.g., (𝒆1𝒆2)2 = −𝒆21𝒆22 = −1) and relate to their
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dual normal vectors by 𝒖𝑖 by 𝜎𝑖 = 𝒖𝑖I. Therefore, by rewriting tanh 𝜎𝑖 =
tanh(𝒖𝑖I) = (tan 𝒖𝑖)I, we obtain the formula in terms of plain vectors
and the vector cross product.

𝒖12 = (𝒖1I ⊙ 𝒖2I)I−1 = arctan (tan 𝒖1 + tan 𝒖2 − tan 𝒖1 × tan 𝒖2
1 − tan 𝒖1 · tan 𝒖2

)

Indeed, a bivector 𝜎𝑖 = 𝒖𝑖I generates an R3 rotation through an angle
𝜃 = 2‖𝒖𝑖‖ via the double-sided transformation law 𝑎 ↦ 𝑒𝒖I𝑎𝑒−𝒖I. Hence,
tan 𝒖𝑖 = ̂𝒗𝑖 tan 𝜃

2 ≡ 𝒓𝑖 are exactly the half-angle Rodrigues vectors, and
we recover eq. (5.10).

The necessity of the half-angle in the Rodrigues vectors reflects the
fact that they actually generate rotors, not direct rotations, and hence
belong to the underlying spin representation of SO+(3) — a fact made
clearer in the context of geometric algebra.

5.1.3. In higher dimensions

In fewer than four dimensions, the 4-vector T1 ∧T2 = 0 appearing in the
geometric BCHD formula is trivial, and so eq. (5.5) involves only bivec-
tor addition and scalar multiplication. In four dimensions, there is one
linearly independent 4-vector — the pseudoscalar — which necessarily
commutes with all even multivectors. However, in more than four di-
mensions, 4-vectors do not necessarily commute with bivectors, and the
assumptions underlying eq. (5.4) and hence the main result (5.5) fail.

On the face of it, the BCHD formula (5.5) in the four-dimensional case
appears deceptively simple— it hides complexity in the calculation of the
trigonometric functions of arbitrary bivectors,

tanh 𝜎𝑖 = 𝜎 − 1
3𝜎

3 + 2
15𝜎

5 + ⋯ and arctanh 𝜎𝑖 = 𝜎 + 1
3𝜎

3 + 1
5𝜎

5 + ⋯ . (5.11)

In fewer dimensions, 𝜎2 is a scalar, and so these power series are as
easy to compute as their real equivalents.45 But in four dimensions, 𝜎2 45 If 𝜎 2 = 𝑁 2𝜎 ∈ R, then we

have simply
tanh 𝜎 = (tanh𝑁𝜎 )𝑁 −1𝜎 𝜎 .

is in general a {0, 4}-multivector (by lemma 7) and the power series (5.11)
are more complicated. However, if 𝜎2 ≠ 0 has a square root 𝑁𝜎 = 𝛼 +𝛽I
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in the scalar–pseudoscalar plane, then one has 𝜎 = 𝑁𝜎 �̂� = �̂�𝑁𝜎 where
�̂� ≔ 𝜎/𝑁𝜎 so that �̂�2 = 1. With a bivector 𝜎 = 𝑁𝜎 �̂� expressed in this
form, the valuation of a formal power series 𝑓 (𝑧) = ∑∞

𝑛=1 𝑓𝑛𝑧𝑛 simplifies
to

(𝑓 even) 𝑓 (𝜎) =
∞
∑
𝑛=1

𝑓2𝑛𝜎2𝑛 =
∞
∑
𝑛=1

𝑓2𝑛𝑁 2𝑛𝜎 = 𝑓 (𝑁𝜎 ),

(𝑓 odd) 𝑓 (𝜎) =
∞
∑
𝑛=1

𝑓2𝑛+1𝜎2𝑛+1 =
∞
∑
𝑛=1

𝑓2𝑛𝑁 2𝑛+1𝜎 �̂� = 𝑓 (𝑁𝜎 )�̂� .

This is especially useful in the case of Minkowski spacetime 𝒢(1, 3) be-
cause the scalar–pseudoscalar plane is isomorphic toC and square roots
always exist (see section 4.2). From now on, we focus on the special case
of Minkowski spacetime, and consider practical and theoretical applica-
tions.

5.2. BCHD Composition in Spacetime

Because the geometric BCHD formula is constructed from sums and
products of bivectors, it involves only even spacetimemultivectors. There-
fore, in numerical applications, it is not necessary to represent the full
STA, but only the even subalgebra 𝒢+(1, 3) ≅ 𝒢(3).

The algebra of physical space 𝒢(3) admits a faithful complex linear
representation by the Pauli spin matrices (see section 3.2.3). The real di-
mension of both C2×2 and 𝒢(3) is eight, so there is no redundancy in the
Pauli representation, making it suitable for computer implementations.

An even 𝒢+(1, 3) multivector — or equivalently, a general 𝒢(3) mul-
tivector — may be parametrised by four complex scalars 𝑞𝜇 = ℜ(𝑞𝜇) +
𝑖ℑ(𝑞𝜇) ∈ C as

𝐴 = ℜ(𝑞0) + ℜ(𝑞𝑖)𝜎𝑖 + ℑ(𝑞𝑖)I𝜎𝑖 + ℑ(𝑞0)I,

where the 𝜎𝑖 may be read both as spacetime bivectors 𝜎𝑖 ≡ 𝜸0𝜸𝑖 ∈ 𝒢+(1, 3)
or as basis vectors of 𝒢(3) under a space/time split. The Pauli matrices
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𝜎𝑖 ∈ C2×2 form a linear representation of 𝒢(3) by the association 𝜎𝑖 ≡ 𝜎𝑖.
Explicitly, identifying

𝜎1 ≡ [ 0 +1
+1 0 ] 𝜎2 ≡ [ 0 −𝑖

+𝑖 0 ] 𝜎3 ≡ [+1 0
0 −1]

along with 1 ≡ 𝐼 and I ≡ 𝑖𝐼 where 𝐼 is the 2×2 identity matrix, we obtain
a representation of the multivector 𝐴 by a 2 × 2 complex matrix:

A ≡ [𝑞
0 + 𝑞3 𝑞1 − 𝑖𝑞2

𝑞1 + 𝑖𝑞2 𝑞0 − 𝑞3 ]. (5.12)

A proper Lorentz transformation Λ ∈ SO+(1, 3) is determined in the
𝐾 frame by a vector rapidity 𝝃 ∈ R3 and axis–angle vector 𝜽 ∈ R3.
The standard 4 × 4 matrix representation of Λ is then obtained as the
exponential of the generator

[0 𝝃 𝑇
𝝃 𝜀𝑖𝑗𝑘𝜃𝑘] =

⎡⎢⎢⎢
⎣

0 𝜉 1 𝜉 2 𝜉 3
𝜉 1 0 +𝜃3 −𝜃2
𝜉 2 −𝜃3 0 +𝜃1
𝜉 3 +𝜃2 −𝜃1 0

⎤⎥⎥⎥
⎦
∈ 𝔰𝔬(1, 3). (5.13)

In the spin representation, the transformation Λ corresponds to a rotor
ℒ = 𝑒𝜎 , and the generating bivector (4.2) may be expressed via eq. (5.12)
as the traceless complex matrix

Σ = 𝑞𝑘𝜎𝑘 = [ +𝑞3 𝑞1 − 𝑖𝑞2
𝑞1 + 𝑖𝑞2 −𝑞3 ], (5.14)

where 𝑞𝑘 ≔ 1
2(𝜉 𝑘 + 𝑖𝜃𝑘) ∈ C. Note that, since the square of a spacetime

bivector is a {0, 4}-multivector, its representative matrix Σ squares to a
complex scalar multiple of the identity matrix.

Given two generators 𝜎𝑖 with matrix representations Σ𝑖, the geometric
BCHD formula (5.5) reads

Σ3 ≔ Σ1 ⊙ Σ2 = tanh−1 (T1 + T2 + A
I + S

), (5.15)

where A ≔ 1
2[T1,T2], S ≔ 1

2{T1,T2} and T𝑖 ≔ tanh Σ𝑖.

63



Chapter 5. Composition of Rotors in terms of their Generators

To efficiently compute T𝑖, make use of the fact that Σ2𝑖 = 𝜆2𝑖 I is a
complexmultiple of the identitymatrix and evaluate T𝑖 = (tanh 𝜆𝑖)𝜆−1𝑖 Σ𝑖.
In the null case Σ2𝑖 = 𝜆 = 0, the power series (5.11) truncate and tanh Σ𝑖 =
tanh−1 Σ𝑖 = Σ𝑖 are equal. The commutator and anti-commutator terms
A and S may be efficiently computed by separating the single matrix
product Π ≔ T1T2 = A + S into off-diagonal and diagonal components,
respectively; i.e.,

A𝑖𝑗 = (1 − 𝛿𝑖𝑗)Π𝑖𝑗 and S𝑖𝑗 = 𝛿𝑖𝑗Π𝑖𝑗 .
The numerator of eq. (5.15) is therefore a matrix with zeros on the diag-
onal, and the denominator is a complex scalar multiple of the identity,
so the argument of tanh−1, call it M, is in the form (5.14). Computing
tanh−1M again simply amounts to Σ3 = tanh−1M = (tanh−1 𝜆)𝜆−1M
where M2 = 𝜆2I.

The Lorentz generator in the standard vector representation (5.13) can
then be recovered from Σ3 with the relations 𝜉 𝑘 = 2ℜ(𝑞𝑘) and 𝜃𝑘 =
2ℑ(𝑞𝑘), and the final SO+(1, 3) vector transformation is its 4 × 4 matrix
exponential.

5.2.1. Relativistic 3-velocities and the Wigner angle

As an example of its theoretical utility, we shall use the geometric BCHD
formula (5.5) to derive the composition law for arbitrary relativistic 3-
velocities.

The innocuous problem of composing relativistic velocities has been
called “paradoxical” [40–42], owing in part to the fact that irrotational
boosts are not closed under composition, and that explicit matrix analy-
sis becomes cumbersome. Of course, in reality there is no paradox, and
the full description of the composition of boosts is pedagogically valu-
able as it highlights aspects of special relativity which differ from spatial
intuition.

We may speak of a rotation or boost as being pure relative to the 𝐾
frame. Technically, 𝜎 generates a pure rotation (or pure boost) if, under
the space/time split relative to the 𝐾 frame, 𝜎 = ⟨𝜎⟩2 is a pure bivector
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(or a pure vector) in 𝒢(3). A pure rotation or pure boost relative to 𝐾 is
not pure in all other frames.

The restriction of the BCHD formula to pure boosts is not as simple
as the restriction to rotations (5.10), because pure boosts do not form a
closed subgroup of SO+(1, 3) as pure rotations do. Instead, the composi-
tion of two pure boostsℬ𝑖 is a pure boost composed with a pure rotation
(or vice versa),

ℬ1ℬ2 = ℬℛ. (5.16)

The direction of the boost ℬ lies within the plane defined by the boost
directions of ℬ1 and ℬ2, and ℛ is a rotation through this plane by the
Wigner angle [42]. Applying eq. (5.5) to this case immediately yields
formulae for the resulting boost and rotation.46 46 These results are

equivalent to those in [8]
which are formulated
using complexified
quaternions.

For ease of algebra, we conduct the following analysis under a space/
time split with respect to the 𝐾 frame. Under this split, a pure boost ℬ
is generated by an R3 vector 𝝃

2 , and a pure rotation ℛ is generated by

an R3 bivector 𝜃
2 ̂𝑟 . Here, 𝝃 ∈ 𝒢1(3) is the vector rapidity, related to the

velocity by 𝒗/𝑐 = 𝜷 = tanh 𝝃 , and the rotation is through an angle 𝜃 in
the plane spanned by the bivector ̂𝑟 ∈ 𝒢2(3). Equation (5.5) with two
pure boosts 𝝃1 and 𝝃2 is

tanh(𝝃12 ⊙ 𝝃2
2 ) = 𝒘1 + 𝒘2 + 𝒘1 ∧ 𝒘2

1 + 𝒘1 ⋅ 𝒘2
(5.17)

where 𝒘𝑖 ≔ tanh 𝝃𝑖
2 are the relativistic half-velocities, also defined in [8,

9]. The generator (5.17) has vector and bivector (namely 𝒘1 ∧ 𝒘2) parts,
indicating that the Lorentz transformation it describes is indeed some
combination of a boost and a rotation.

Similarly, for an arbitrary pure boost and pure rotation,

tanh(𝝃2 ⊙ 𝜃
2 ̂𝑟) =

𝒘 + 𝜌 + 1
2[𝒘, 𝜌]

1 + 𝒘 ∧ 𝜌 (5.18)

where 𝜌 ≔ tanh 𝜃 ̂𝑟
2 = ̂𝑟 tan 𝜃

2 is a bivector. In general, eq. (5.18) has vec-

tor, bivector and pseudoscalar parts (the commutator 1
2[𝒘, 𝜌] = ⟨𝒘𝜌⟩1 +

𝒘 ∧ 𝜌 and the denominator both have grade-three part 𝒘 ∧ 𝜌). However,
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Chapter 5. Composition of Rotors in terms of their Generators

eqs. (5.17) and (5.18) are equal by supposition of eq. (5.16). By compar-
ing parts of equal grade, we deduce the pseudoscalar part of eq. (5.18) is
zero. This requires 𝒘 ∧ 𝜌 = 0 or, equivalently, that 𝒘 lies in the plane
defined by 𝜌 — meaning the resulting boost is coplanar with the Wigner
rotation as expected. Hence, for a coplanar boost and rotation, eq. (5.18)
is simply

tanh(𝝃2 ⊙ 𝜃
2 ̂𝑟) = 𝒘 + 𝜌 + 𝒘𝜌. (5.19)

The term 𝒘𝜌 = ⟨𝒘𝜌⟩1 = −𝜌𝒘 is a vector orthogonal to 𝒘 in the plane
defined by 𝜌.

Equating the bivector parts of eqs. (5.17) and (5.19) determines the
rotation

𝜌 = 𝒘1 ∧ 𝒘2
1 + 𝒘1 · 𝒘2

, implying 𝜃 = 2 tan−1 ( 𝑤1𝑤2 sin 𝜙
1 + 𝑤1𝑤2 cos 𝜙

)

where 𝜙 is the angle between the two initial boosts (in the 𝐾 frame).
The angle 𝜃 is precisely the Wigner angle. Equating the vector parts
determines the boost

Note that 1 + 𝒘1 ⋅ 𝒘2 ∈ R

commutes and may be
written as a denominator,

while 1 + 𝜌 cannot.

𝒘 = 𝒘1 + 𝒘2
1 + 𝒘1 ⋅ 𝒘2

(1 + 𝜌)−1,

noting that 𝒘𝑖 and 𝜌 do not commute. Substituting 𝜌 leads to the remark-
ably succinct composition law𝒘 = (𝒘1+𝒘2)(1+𝒘1𝒘2)−1 exhibited in [8],
with the final relativistic velocity being 𝜷 = tanh 𝝃 = tanh(2 tanh−1 𝒘).
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Chapter 6.

Calculus in Flat Geometries

So far, we have been concerned with special relativity at a single point in
spacetime. We move now toward the description of fields — quantities
extending across spacetime. The first step in this direction is the calculus
of flat spacetime. In a flat geometry, we may assume that

• points in spacetime form a vector space, with differences of points
being physically–meaningful displacement vectors; and that

• fields are parametric functions of a point in spacetime.

We reserve the word field to mean a map with a fixed codomain. For
instance, the electromagnetic bivector field in flat space 𝐹 ∶ R4 → ∧2R4
is a function between vector spaces, and values of 𝐹 at different points
in spacetime belong to the same space, making expressions like 𝐹(𝑥) +
𝐹(𝑦) ∈ 𝐴 well-defined.

These assumptions are acceptable in special relativity, but in arbi-
trary regions of spacetime and in the presence of gravity, curvature pre-
vents spacetime from admitting a meaningful vector space structure. It
is then un-physical to compare field values at different points in space-
time. (Curvature leads to differential geometry and comprises part II.)

This chapter defines differentiation of fields, introducing the exterior
and vector derivatives as instances of the ‘algebraic derivative’, within the
exterior and geometric algebras, respectively. These devices combine
derivative information with the geometrical structure inherent in the
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algebra at hand. To demonstrate their utility, Maxwell’s equations of
electromagnetism are exhibited in both algebras.

6.1. Differentiation of Fields

The derivative of a vector field 𝐹 ∶ 𝑉 → 𝐴 in the direction 𝒖 ∈ 𝑉 at
𝒙 ∈ 𝑉 may be defined in the usual way,

𝜕𝒖𝐹(𝒙) = d
d𝜀 𝐹 (𝒙 + 𝜀𝒖)|

𝜀=0
= lim𝜀→0

𝐹(𝒙 + 𝜀𝒖) − 𝐹(𝒙)
𝜀 .

The directional derivative is linear in both its argument and direction.4747 By a change of
variables, 𝜕𝑢𝑎𝒆𝑎 =

d
d𝜀 𝐹(𝑥 + 𝜀𝑢𝑎𝒆𝑎)|𝜀=0 =

𝑢𝑎 d
d ̄𝜀 𝐹(𝑥 + ̄𝜀𝒆𝑎)| ̄𝜀=0 = 𝑢𝑎𝜕𝒆𝑎

(summation on 𝑎).

We define the notation 𝜕𝑎 ≔ 𝜕𝒆𝑎 for brevity, so long as it is understood
that this is not a partial derivativewith respect to a scalar coordinate, 𝜕

𝜕𝑥𝑎 .
Of course, it may be viewed as such by setting 𝑓 (𝑥1, … , 𝑥𝑛) = 𝑓 (𝑥 𝑖𝒆𝑖) so
that

𝜕𝒆𝑎𝑓 (𝑥 𝑖𝒆𝑖) =
𝜕
𝜕𝑥𝑎 𝑓 (𝑥

1, … , 𝑥𝑛),

though this is a basis-dependent definition, and we seek freedom from
coordinates wherever possible.

Suppose 𝐹 ∶ 𝑉 → 𝐴 is some algebra–valued field. It is useful to define
a kind of “total” derivative D 𝐹 which does not depend on a direction 𝒖
in 𝜕𝒖𝐹 , but instead encompasses, in a sense, all directional derivatives
in a single object D 𝐹 ∶ 𝑉 → 𝐴. The motivation for this is that the
soon-to-be-defined exterior derivative (of exterior algebra) and vector
derivative (of geometric algebra) are realised as special cases of such a
construction. The derivative D will be defined whenever an inclusion
𝜄 ∶ 𝑉 ∗ → 𝐴 of dual vectors into the algebra is given.

Definition 25. Let 𝐹 ∶ 𝑉 → 𝐴 be a field with values in an algebra 𝐴
with product ⊛, equipped with an inclusion 𝜄 ∶ 𝑉 ∗ → 𝐴. The algebraic
derivative of 𝐹 is

D 𝐹 ≔ 𝜄(𝒆𝑎) ⊛ 𝜕𝒆𝑎𝐹 (6.1)

(summation on 𝑎) where {𝒆𝑎} ⊂ 𝑉 and {𝒆𝑎} ⊂ 𝑉 ∗ are dual bases.
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To understand this definition, consider the simple case of the free ten-
sor algebra 𝐹 ∶ 𝑉 → (𝑉 ∗)⊗. We leave the canonical inclusion 𝜄 ∶ 𝑉 ∗ →
(𝑉 ∗)⊗ implicit. Given a basis {𝒆𝑎} ⊂ 𝑉 ∗, the algebraic derivative is D 𝐹 =
𝒆𝑎 ⊗ 𝜕𝑎𝐹 , which simply encodes the partial derivatives of a 𝑘-vector 𝐹 in
a (𝑘 + 1)-grade object. In component language, (D 𝐹)𝑎𝑎1⋯𝑎𝑘 = 𝜕𝑎𝐹𝑎1⋯𝑎𝑘 .
Definition 25 becomes more interesting when the algebra’s product ⊛
carries more structure.

6.1.1. The exterior derivative

Consider a vector field 𝐹 ∶ 𝑉 → ∧𝑉 ∗ with values in the (dual) exte-
rior algebra. The algebraic derivative in this case is called the exterior
derivative d, and eq. (6.1) takes the form

d𝐹 = 𝒆𝑎 ∧ 𝜕𝑎𝐹 ,

where {𝒆𝑎} ⊂ 𝑉 ∗ also determine a basis of∧𝑉 ∗ (so the canonical inclusion
𝜄 ∶ 𝑉 ∗ → ∧𝑉 ∗ may be omitted). More explicitly, if 𝐹 is a 𝑘-vector field,
then d𝐹 = 𝜕𝑎𝐹𝑎1⋯𝑎𝑘𝒆𝑎 ∧ 𝒆𝑎1 ∧ ⋯ ∧ 𝒆𝑎𝑘 is a (𝑘 + 1)-vector.

Viewing∧𝑉 ∗ as the subspace of antisymmetric tensors (see section 2.2.1),
the exterior derivative is the totally anti-symmetrised partial derivative.

[⋯] denotes
anti-symmetrisation over
the enclosed indices.
𝐴𝑎[𝑏1⋯𝑏𝑘 ] =1
𝑘! ∑𝜎∈𝑆𝑘 (−1)𝜎𝐴𝑎[𝑏𝜎(1)⋯𝑏𝜎(𝑘)]

In components, (d𝐹)𝑎1⋯𝑎𝑘 = 𝜕[𝑎1𝐹𝑎2⋯𝑎𝑘].

The treatment of exterior forms is identical. On an exterior form field
𝜑 ∶ 𝑉 → Ω𝑘(𝑉 , 𝑈 ), the exterior derivative is formally defined by its
action on vectors,

(d𝜑)(𝒖0, 𝒖1, … , 𝒖𝑘) = (𝒆𝑎 ∧ 𝜕𝑎𝜑)(𝒖0, 𝒖1, … , 𝒖𝑘)
= 1

𝑘! ∑
𝜎∈𝑆𝑘+1

(−1)𝜎𝒆𝑎(𝒖𝜎(0)) 𝜕𝑎𝜑(𝒖𝜎(1)⋯𝒖𝜎(𝑘))

=
𝑘
∑
𝑖=0

(−1)𝑖 𝜕𝒖𝑖𝜑(𝒖0, ..., 𝒖𝑖, ..., 𝒖𝑘),

under the Spivak convention (see 2.2.1.I). Note that the directional deriva-
tive acts on the position dependence of 𝜑 only — the vectors 𝒖𝑖 ∈ 𝑉 are
fixed input vectors to the field d𝜑. This changes when generalising to
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Chapter 6. Calculus in Flat Geometries

forms defined on a manifold, where correction terms are needed to ac-
count for partial derivatives of input vectors (discussed in 7.2.1.II).

6.1.2. The vector derivative

The algebraic derivative in the tensor and exterior algebras are some-
what uninteresting because they are easily expressible in component
form (e.g., 𝜕𝑎𝐹𝑎1⋯𝑎𝑘 or 𝜕[𝑎𝐹𝑎1⋯𝑎𝑘]). This is not possible in the geometric
algebra, however, because 𝒢(𝑉 , 𝜂) is not Z-graded, and we would face
the problem of notating inhomogeneous objects with a variable num-
ber of indices. The algebraic derivative is, however, still geometrically
significant and extremely useful in geometric algebra.

In 𝒢(𝑉 , 𝜂), the algebraic derivative is called the vector derivative,
denoted 𝝏. Explicitly, if 𝐹 ∶ 𝑉 → 𝒢(𝑉 , 𝜂) is a multivector field, then in
eq. (6.1) ⊛ is the geometric product and we take inclusion an4848 We could just as well

consider fields
𝑉 → 𝒢(𝑉 ∗, 𝜂), avoiding the
need for ♯ ∶ 𝑉 ∗ → 𝑉 . But

the metric is already
defined, and we prefer to
think about multivectors
over ‘dual multivectors’.

𝑉 ∗ ∋ 𝒖 ↦ 𝜄(𝒖♯) ∈ 𝒢(𝑉 , 𝜂).

Here, we use the canonical inclusion 𝜄 ∶ 𝑉 ≡ 𝒢1(𝑉 , 𝜂) → 𝒢(𝑉 , 𝜂) and the
metric to relate 𝑉 ∗ → 𝑉 . The vector derivative then reads

𝝏𝐹 = 𝒆𝑎 𝜕𝒆𝑎𝐹

(summation on 𝑎) where {𝒆𝑎} ⊂ 𝑉 and {𝒆𝑎} ⊂ 𝑉 ∗ are dual bases, and
juxtaposition denotes the geometric product. If 𝐹 is a homogeneous 𝑘-
vector, then we may write its components as 𝐹 = 𝐹𝑎1⋯𝑎𝑘𝒆𝑎1 ∧ ⋯ ∧ 𝒆𝑎𝑘 and
hence

𝝏𝐹 = 𝜕𝒆𝑎𝐹𝑎1⋯𝑎𝑘 𝒆𝑎(𝒆𝑎1 ∧ ⋯ ∧ 𝒆𝑎𝑘 ).

Note that these terms are not (𝑘 + 1)-blades, but geometric products of
vectors 𝒆𝑎 with 𝑘-blades — in general, (𝑘 ± 1)-multivectors.

We may regard the vector derivative itself as an operator-valued vec-
tor,

𝝏 = 𝒆𝑎𝜕𝑎,
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reflecting the fact that 𝝏 behaves algebraically like a vector. For instance,
the derivative of a vector 𝒖 has scalar and bivector parts, 𝝏𝒖 = 𝝏 •𝒖+𝝏∧𝒖,
just like the geometric product of two vectors, 𝒖𝒗 = 𝒖 • 𝒗 + 𝒖 ∧ 𝒗 . For a
general multivector 𝐹 , then, we have

𝝏𝐹 = 𝝏 ⌋ 𝐹 + 𝝏 ∧ 𝐹 .

The (𝑘+1)-grade part 𝝏∧𝐹 is the curl of 𝐹 , and coincides with the exterior
derivative d𝐹 . The (𝑘 − 1)-grade part involves the metric, and can be
related to the ‘interior’ derivative ⋆d⋆𝐴 via Hodge duality.49 Indeed, 49 Observe that

𝝏 ⌋ 𝐴 = ⟨𝝏I−1I𝐴⟩𝑘−1 =
±I⟨𝝏(I𝐴)⟩1+𝑛−𝑘 =
±I 𝝏 ∧ (I𝐴); also see
3.2.4.III.

using eq. (3.5), the vector derivative may be emulated in the exterior
algebra by the combination

𝝏𝐹 ≡ ⋆−1d ⋆ 𝐹 + d𝐹 ,

although it is easier to treat it as a vector in the geometric algebra.

6.2. Case Study: Maxwell’s Equations

Expressed in the standard vector calculus ofR3, Maxwell’s equations for
the electric 𝑬 and magnetic 𝑩 fields in the presence of a source are

∇ ⋅ 𝑬 = 𝜌
𝜀0

(Gauß’ law)

∇ ⋅ 𝑩 = 0 (Absence of magnetic monopoles)

∇ × 𝑬 = −𝜕𝑡𝑩 (Faraday’s law)

∇ × 𝑩 = 𝜇0(𝑱 + 𝜀0𝜕𝑡𝑬) (Ampère’s law)

where 𝜌 is the scalar charge density and 𝑱 the current density. The
constants 𝜀0 and 𝜇0 are the vacuum permittivity and permeability, re-
spectively, related to the speed of light by 𝜀0𝜇0𝑐2 = 1.
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6.2.1. With tensor calculus
Non-relativistic

quantity dimension
𝑬 𝑀𝑄−1𝐿𝑇−2

𝑩 𝑀𝑄−1𝑇−1

𝜌 𝑄𝐿−3
𝑱 𝑄𝑇−1𝐿−2
𝜇0 𝑀𝑄−2𝐿
𝜀0 𝑀−1𝑄2𝐿−3𝑇 2

∇, 𝜕𝑡 𝐿−1, 𝑇−1

𝑐 𝐿𝑇−1

Relativistic
quantity dimension

𝐹 𝑀𝑄−1𝑆−1
𝐽 𝑄𝑆−3

𝜇0, 𝜀−10 𝑀𝑄−2𝑆
𝜕 𝑆−1
𝑐 1

Table 6.1.: Dimensions of
physical quantities in

Maxwell’s equations. 𝑀 is
mass, 𝑄 is electric charge,

𝑇 is duration and 𝐿 is
length. In the relativistic
formulation, 𝑇 and 𝐿 are
unified and replaced by

spacetime interval 𝑆.

The above can be expressed relativistically as eight scalar equations,

𝜕𝜇𝐹𝜇𝜈 = 𝜇0𝐽 𝜈 , 𝜕𝜇𝐺𝜇𝜈 = 0 (6.2)

where 𝐹𝜇𝜈 = −𝐹 𝜈𝜇 is the Faraday tensor and 𝐺𝜇𝜈 its Hodge dual, both
encoding the electric and magnetic fields via

𝐹 𝑖0 = 𝐸𝑖
𝑐 , 𝐹 𝑖𝑗 = −𝜀 𝑖𝑗𝑘𝐵𝑘 , 𝐺𝜇𝜈 = 1

2𝜀
𝜇𝜈𝜌𝜎𝐹𝜌𝜎 , (6.3)

and where 𝐽 𝜇 encodes both the static charge density 𝐽 0 = 𝑐𝜌 and current
density 𝐽 𝑖 = 𝑱 . The left of eqs. (6.2) is the source equation, while the
right is the second Bianchi identity. These equations assume the metric
signature (+−−−), where the equivalent equations under (−+++) are
obtained by a change of sign 𝐹𝜇𝜈 ↦ −𝐹 𝜇𝜈 .

Proof. We show how the relativistic equations (6.2) reduce to the non-
relativistic vector calculus equivalents. The 0-component of the source
equation is 𝜕𝜇𝐹𝜇0 = 𝜕𝑖𝐸𝑖/𝑐 = 𝜇0𝐽 0 = 𝜇0𝑐𝜌 implying ∇ · 𝑬 = 𝜌/𝜀0 (Gauß’
law). The 𝑖-components are

𝜕0𝐹 0𝑖 + 𝜕𝑗𝐹 𝑗𝑖 = 1
𝑐 𝜕𝑡(−

𝐸𝑖
𝑐 ) − 𝜕𝑗𝜀𝑗𝑖𝑘𝐵𝑘 = 𝜇0𝐽 𝑖

or 𝜕𝑗𝜀 𝑖𝑗𝑘𝐵𝑘 = 𝜇0𝐽 𝑖 + 𝜇0𝜀0𝜕𝑡𝐸𝑖,
which is equivalent to Ampère’s law. The 0-component of the Bianchi
identity 𝜕𝜇𝐺𝜇0 = 0 is

1
2𝜀

𝑖𝑗𝑘𝜕𝑖𝐹 𝑗𝑘 = −12𝜀
𝑖𝑗𝑘𝜀𝑗𝑘𝑙𝜕𝑖𝐵𝑙 = −𝜕𝑖𝐵𝑖 = 0,

which using the identity 𝜀𝑖𝑗𝑘𝜀𝑗𝑘𝑙 = 2𝛿 𝑙𝑖 is ∇ · 𝑩 = 0. Finally, the 𝑖-
component gives

0 = 𝜕𝜇𝐺𝜇𝑖 = 1
2𝜀

𝜇𝑖𝜌𝜎𝜕𝜇𝐹𝜌𝜎 = 1
2𝜀

0𝑖𝑗𝑘𝜕0𝐹 𝑗𝑘 + 𝜀 𝑗𝑖𝑘0𝜕𝑗𝐹 𝑘0

= −14𝜀
𝑖𝑗𝑘𝜀𝑗𝑘𝑙𝜕0𝐵𝑙 − 1

2𝑐 𝜀
𝑖𝑗𝑘𝜕𝑗𝐸𝑘 = − 1

2𝑐 (𝜕𝑡𝐵
𝑖 + 𝜀 𝑖𝑗𝑘𝜕𝑗𝐸𝑘)

yielding Faraday’s law ∇ × 𝑬 = −𝜕𝑡𝑩.
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6.2.2. With exterior calculus

It is easy to translate between exterior calculus and tensor calculus by
identifying the former as the subalgebra of totally antisymmetric ten-
sors (as in section 2.2.1). We will employ the Spivak convention, which
in particular identifies 2-forms with tensors via 𝒆𝜇 ∧𝒆𝜈 ≡ 𝒆𝜇⊗𝒆𝜈−𝒆𝜈 ⊗ 𝒆𝜇
where 𝒆𝜇 are spacetime basis vectors (having physical dimensions of
spacetime interval, 𝑆). We then identify the electromagnetic bivector as
ℱ = 1

2𝐹𝜇𝜈𝒆𝜇 ∧𝒆𝜈 (the
1
2 is omitted in the Kobayashi–Nomizu convention).

Since the charge density 𝐽 ∼ 𝑄𝑆−3 has dimensions of charge per
spacetime 3-volume, it is natural to interpret it as a trivector

𝒥 = 𝐽 𝜇𝜈𝜆 𝒆𝜇 ∧ 𝒆𝜈 ∧ 𝒆𝜆 ≔ 𝐽 𝜇 ⋆ 𝒆𝜇 = 1
3!𝜀𝜇𝜈𝜆𝛼𝐽

𝛼𝒆𝜇 ∧ 𝒆𝜈 ∧ 𝒆𝜆

so that the coefficients 𝐽 𝜇𝜈𝜆 ∼ 𝑄 have dimensions of charge.50 50 Note that dual vectors
𝒆𝜇 have dimension 𝑆−1.

The relativistic Maxwell equations are then

d ⋆ ℱ = 𝜇0𝒥 , dℱ = 0.

Proof. The first equation written in component form is

1
4𝜀𝜇𝜈𝜌𝜎𝜕𝜆𝐹

𝜌𝜎 = 1
3!𝜀𝜆𝜇𝜈𝛼𝜇0𝐽

𝛼 ,

which, by contracting with 𝜀𝜇𝜈𝜆𝛽 and using the identities 𝜀𝜇𝜈𝜆𝛽 𝜀𝜇𝜈𝜌𝜎 =
2(𝛿𝜆𝜌 𝛿𝛽𝜎 − 𝛿𝜆𝜎 𝛿𝛽𝜌 ) and 𝜀𝜇𝜈𝜆𝛽 𝜀𝜆𝜇𝜈𝛼 = 3!𝛿𝛽𝜎 , reduces to

1
2(𝜕𝜆𝐹

𝜆𝛽 − 𝜕𝜆𝐹𝛽𝜆) = 𝜇0𝐽 𝛽

or 𝜕𝜇𝐹𝜇𝜈 = 𝜇0𝐽 𝜈 , the source equation. The Bianchi identity can be rewrit-
ten as

𝜕𝜇𝐺𝜇𝜈 = 1
2𝜀

𝜇𝜈𝜌𝜎𝜕𝜇𝐹𝜌𝜎 = −12𝜀
𝜈[𝜇𝜌𝜎]𝜕𝜇𝐹𝜌𝜎 = −12𝜀

𝜈𝜇𝜌𝜎𝜕[𝜇𝐹𝜌𝜎] = 0,

implying dℱ = 0.
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Chapter 6. Calculus in Flat Geometries

6.2.3. With geometric calculus

Using the spacetime algebra 𝒢(1, 3) with vector basis {𝜸𝜇} as introduced
in chapter 4, the electromagnetic bivector is5151 This coincides with the

electromagnetic bivector
2-form ℱ in the

Kobayashi–Nomizu
convention, because the

wedge product in
geometric algebra is

naturally normalised (see
table 2.1).

𝐹 = 𝐹 𝜇𝜈𝜸𝜇𝜸𝜈 (6.4)

and the current density is

𝑱 = 𝐽 𝜇𝜸𝜇 .

Maxwell’s equations are equivalent to the single multivector equation

𝝏𝐹 = 𝜇0𝑱 . (6.5)

Proof. The multivector equation 𝝏𝐹 = 𝜇0𝑱 separates into a vector part
𝝏 ⋅ 𝐹 = 𝜇0𝑱 and a trivector part 𝝏 ∧ 𝐹 = 0. In terms of components, the
left-hand side of the vector part is

𝝏 ⋅ 𝐹 = 𝜕𝜆𝐹𝜇𝜈𝜸𝜆 ⋅ (𝜸𝜇𝜸𝜈),

whose only non-zero components are those for which 𝜇 ≠ 𝜈 . If 𝜆, 𝜇 and
𝜈 are all distinct, then 𝜸𝜆 ⋅ (𝜸𝜇𝜸𝜈) = ⟨𝜸𝜆𝜸𝜇𝜸𝜈⟩1 = 0. There are then two
cases, 𝜆 = 𝜇 and 𝜆 = 𝜈 , which respectively simplify to

𝜸𝜇 ⋅ (𝜸𝜇𝜸𝜈) = ⟨𝜸𝜇𝜸𝜇𝜸𝜈⟩1 = 𝜸𝜈 ,
𝜸𝜈 ⋅ (𝜸𝜇𝜸𝜈) = ⟨𝜸𝜈𝜸𝜇𝜸𝜈⟩1 = −𝜸𝜇 ,

so that

𝝏 ⋅ 𝐹 = (𝜕𝜇𝐹𝜇𝜈𝜸𝜈 − 𝜕𝜈𝐹𝜇𝜈𝜸𝜇) = 𝜕𝜇𝐹𝜇𝜈𝜸𝜈 .

Equality with the right-hand side 𝜇0𝐽 𝜈𝜸𝜈 recovers the source equation.

It is clear that the trivector part

𝝏 ∧ 𝐹 = 𝜕𝜆𝐹𝜇𝜈𝜸𝜆 ∧ (𝜸𝜇𝜸𝜈) = 𝜕𝜆𝐹𝜇𝜈𝜸𝜆 ∧ 𝜸𝜇 ∧ 𝜸𝜈 = 0

is equivalent to the exterior algebraic Bianchi identity dℱ = 0.
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6.2. Case Study: Maxwell’s Equations

I. In terms of electric and magnetic fields

It is worth showing how the relativisticMaxwell equation (6.5) splits into
a frame-dependent description in the geometric algebra framework. As
in section 4.1, we use the notation 𝑢 to indicate relative vectors; i.e., time-
like bivectors of the spacetime algebra 𝒢(1, 3)which are simultaneously
grade-1 vectors in the observer’s algebra 𝒢(3).

From eqs. (6.3) and (6.4), the electromagnetic bivector is expressed in
the 𝜸0-frame as52 52 We assume (+−−−) for

concreteness; for (−+++)
replace 𝐹 ↦ −𝐹 .𝐹 = 1

𝑐 𝐸 + I𝐵, (6.6)

where 𝐸 = 𝐸𝑖𝜎𝑖 = 𝐸𝑖𝜸𝑖𝜸0 and

I𝐵 = 𝐵𝑖I𝜎 𝑖 = 1
2𝐵𝑖𝜀

𝑖𝑗𝑘𝜎𝑗𝜎𝑘 = 1
2𝐵𝑖𝜀

𝑖𝑗𝑘𝜸𝑗𝜸𝑘 .
Equation (6.6) should be compared with the Riemann-Silberstein vector
[34] which has the form 𝐹C = 𝐸 + 𝑖𝑐𝐵.

The current density spacetime vector 𝐽 may be viewed under the
space/time split by (left) multiplying by the frame velocity 𝜸0,

𝜸0𝑱 = 𝑐𝜌 − 𝐽 ,
where 𝐽 0 = 𝑐𝜌 and 𝐽 = 𝐽 𝑖𝜎𝑖. Similarly for the vector derivative, we have

𝜸0 𝝏 = 1
𝑐
𝜕
𝜕𝑡 + ∇⃗

in either signature.

Putting these together, the 𝜸0-frame equation 𝜸0 𝝏𝐹 = 𝜇0𝜸0𝑱 is

(1𝑐
𝜕
𝜕𝑡 + ∇⃗)(1𝑐 𝐸 + I𝐵) = 𝜇0(𝑐𝜌 − 𝐽).

By expanding and equating grades, we instantly obtain four equations:
1
𝑐 ∇⃗ · 𝐸 = 𝜇0𝑐𝜌 (scalar)

1
𝑐2
𝜕𝐸
𝜕𝑡 + I(∇⃗ ∧ 𝐵) = −𝜇0𝐽 (vector)

1
𝑐 ∇⃗ ∧ 𝐸 + I

𝑐
𝜕𝐵
𝜕𝑡 = 0 (bivector)

I(∇⃗ · 𝐵) = 0 (pseudoscalar)
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Chapter 6. Calculus in Flat Geometries

Note that the cross product relates to the bivector curl in 𝒢(3) by
𝒖 ∧ 𝒗 = I(𝒖 × 𝒗) so that ∇ × 𝑿 = −I(∇⃗ ∧ 𝑋).

Hence, by adjusting by factors of 𝑐 and I (and using 𝜇0𝜀0𝑐2 = 1), the above
equations reduce immediately to Gauß’s law, Ampère’s law, Faraday’s
law and the magnetic monopole equation, respectively.

The calculations in this section were performed assuming the metric
𝜂 = diag(+−−−). In the (−+++) signature, 𝜸0𝑱 = −𝑐𝜌 + 𝐽 differs by an
overall sign, which is absorbed by the change of sign 𝐹 ↦ −𝐹 .

II. Circularly polarised plane wave solutions

In a vacuum, Maxwell’s equation

(1𝑐
𝜕
𝜕𝑡 + ∇⃗)𝐹 = 0 (6.7)

admits plane wave solutions

𝐹± = 𝐹0𝑒±I(𝜔𝑡−�⃗�⋅𝑥), (6.8)

where 𝜔 > 0 is the frequency and �⃗� the wave vector. It should be em-
phasised that, in the geometric algebra, eq. (6.8) is a real multivector —
we are not invoking the unit imaginary 𝑖, and do not implicitly take the
real part of 𝐹± at the end of calculations. Instead, the ‘complex plane’ is
replaced with something geometrical: the 𝐸-𝐵 plane. Indeed, from the
geometric meaning inherent in the algebra, the solution (6.8) necessar-
ily describes circularly polarised light, with the 𝐸 and 𝐵 vectors rotating
within the plane normal to the propagation direction [43].

This can be established by substituting the plane wave eq. (6.8) into
eq. (6.7) to get

±I(𝜔𝑐 − �⃗�)𝐹 = 0.

The condition (𝜔/𝑐 − �⃗�)𝐹 = 0 encodes several geometrical relationships.
Firstly, by multiplying on the left by (𝜔/𝑐 + �⃗�), we see that

(𝜔
2

𝑐2 − 𝑘2)𝐹 = 0

76



6.2. Case Study: Maxwell’s Equations

which, since 𝐹 ≠ 0 gives the expected dispersion relation 𝜔 = 𝑐‖�⃗�‖.
Hence, by dividing by the magnitude of �⃗�, we have (1 − �̂�)𝐹 = 0 where
�̂�2 = 1. Reintroducing the unknown electric and magnetic field vectors,
this implies

(1 − �̂�)(𝐸 + I𝐵) = 𝐸⏟
1
+ I𝐵⏟

2
− �̂�𝐸⏟

0,2
− �̂�I𝐵⏟

1,3
= 0,

where the grades of terms as multivectors in 𝒢(3) are indicated. Taking
only the even or odd parts yields the condition

�̂�𝐸 = I𝐵,

which implies two things: firstly, by multiplying both sides by their re-
verse, we see that ‖𝐸‖ = ‖𝐵‖; secondly, by dividing the right by the vector
𝐵 we obtain

�̂��̂��̂� = I,

and conclude that (�̂�, �̂�, �̂�) forms a right-handed orthonormal frame.

Finally, to see the time dependence, evaluate the solution on the �⃗� •𝑥 =
0 plane, 𝐹+(𝑡) = 𝐹0𝑒−I𝜔𝑡 and expand noting that I𝐵0 = �̂�𝐸0 = −𝐸0�̂�.

𝐸(𝑡) + I𝐵(𝑡) = (𝐸0 + I𝐵0)(cos𝜔𝑡 + I sin𝜔𝑡)
= (𝐸0 + I𝐵0) cos𝜔𝑡 + (I𝐸0 − 𝐵0) sin𝜔𝑡

Taking only the vector part of this equation yields

𝐸(𝑡) = 𝐸0 cos𝜔𝑡 − 𝐵0 sin𝜔𝑡.

Thus, looking toward the approaching plane wave 𝐹+(𝑡) moving in the
�̂� direction, the 𝐸(𝑡) and hence 𝐵(𝑡) vectors are rotating clockwise; for
𝐹−(𝑡), anticlockwise.
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Geometry on Manifolds
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Chapter 7.

Spacetime as a Manifold

The investigations of part I were restricted to flat geometries. Special rel-
ativity models spacetime as a homogeneous, isotropic Minkowski vector
space. Removing reference to an origin, this is an affine space. However,
in the general theory of relativity, spacetime no longer has an intrinsic
affine structure, instead exhibiting curvature to incorporate gravity. The
mathematical demands of curvature call for the differential geometry of
smooth manifolds.

Here we give a condensed, pragmatic definition of a manifold as a
space which locally looks like R𝑛 upon which one can do calculus.53 53 See [25, §1] for a more

rigorous definition in
terms of charts and atlases.

Definition 26. A manifold ℳ of dimension 𝑛 is a nice54 topological
54 Here, a ‘nice’
topological space is:

1. Hausdorff: each distinct
pair of points have
mutually disjoint
neighbourhoods (so it
is “not too small”); and

2. second-countable: there
exists a countable base
(so it is “not too large”).

space which is locally Euclidean. This means for every point 𝑥 ∈ ℳ there
exists a neighbourhood 𝑥 ∈ 𝒰 ⊆ ℳ and subset 𝑈 ⊆ R𝑛 with a homeomor-
phism55 𝜑 ∶ 𝒰 ↪↠ 𝑈 , called a coordinate chart, between them.

55 continuous bijection
with continuous inverse

A smooth manifold is one for which all transition functions 𝜙 ∘ 𝜑−1 ∶
𝜑−1(𝒰 ∩ 𝒱 ) ↪↠ 𝜙−1(𝒰 ∩ 𝒱 ) between coordinate charts 𝜑 ∶ 𝒰 ↪↠ 𝑈 and
𝜙 ∶ 𝒱 ↪↠ 𝑉 are smooth (meaning infinitely differentiable).

Essentially, definition 26 is designed to guarantee that well-behaved
local coordinates always exist. A coordinate chart 𝜑 ∶ 𝒰 → R𝑛 defines
coordinate scalars {𝑥 𝑖} ≡ {𝑥1, … , 𝑥𝑛} by 𝑥 𝑖 = pr𝑖 ∘ 𝜑. These are called
global if𝒰 = ℳ is the entire manifold, and local if𝒰 ⊊ ℳ. We often
call a point 𝑥 ∈ ℳ by the same symbol as the coordinates 𝑥 𝑖 ∶ ℳ → R
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Chapter 7. Spacetime as a Manifold

without the index — but these objects are not strictly interchangeable.

A structure-preserving map between manifolds is a continuous func-
tion; and between smoothmanifolds, a differentiable function. For brevity,
we assume the definitions that follow take place in the category of man-
ifolds, and assume all maps between manifolds to be continuous. Further-
more, if the qualifier “smooth” is present, we operate in the category of
smooth manifolds and such maps are assumed differentiable. Thus, the
coordinate scalars 𝑥 𝑖 are continuous functions, and are differentiable if
the manifold is smooth, etcetera.

7.1. Differentiation of Smooth Maps

Manifolds themselves do not have inherent vector space structure. How-
ever, being locally Euclidean means there is a real vector space naturally
associated to each point:

Definition 27. The tangent space T𝑥 ℳ of a smooth manifold at a point
𝑥 ∈ ℳ is the vector space of scalar derivatives at that point.56 In any local56 More precisely, each

vector 𝒖 ∈ T𝑥 ℳ is an
equivalence class of

derivatives evaluated at
the point 𝑥 , where

different derivations
which agree at the point 𝑥

are identified.

coordinate chart {𝑥 𝑖}𝑛𝑖=1 of ℳ containing 𝑥 , this is

T𝑥 ℳ ≅ span{ 𝜕
𝜕𝑥 𝑖 |𝑥}

𝑛

𝑖=1
.

The tangent bundle Tℳ is the disjoint union of all tangent spacesTℳ =
{(𝑥, 𝒖) | 𝑥 ∈ ℳ, 𝒖 ∈ T𝑥 ℳ} equipped with an appropriate manifold topol-
ogy.5757 Specifically, the

topology of a fibre bundle
(see section 7.2). Given a smooth manifold, its tangent bundle comes for free: its con-

struction is canonical. Similarly, given a smooth function 𝑓 between
manifolds, there is a kind of ‘tangent’ or derivative d𝑓 which also comes
for free. In the same way that the tangent bundle consists of ‘direc-
tional derivatives of points’ in the manifold (i.e., tangent vectors), the
differential d𝑓 encodes the directional derivatives of 𝑓 at all points in
the domain.58
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Definition 28. The differential or push forward d𝑓 ≡ 𝑓∗ of a map
𝑓 ∶ ℳ → 𝒩 between smooth manifolds is the map d𝑓 ∶ Tℳ → T𝒩
defined by

(d𝑓 (𝒖))(𝜑)|𝑓 (𝑥) ≔ 𝒖(𝜑 ∘ 𝑓 )|𝑥 (7.1)

for each point 𝑥 ∈ ℳ, vector 𝒖 ∈ T𝑥 ℳ and smooth function 𝜑 ∶ 𝒩 → R.
58 This parallel is precise:
d and T form a functor in
category of smooth
manifolds, sending
𝑓 ∶ ℳ → 𝒩 to
d𝑓 ∶ Tℳ → T𝒩 . Some
authors use the symbol T
for both.

In the definition above, vectors act on scalar functions as derivations;
hence d𝑓 (𝒖), a vector, is defined by its action on an arbitrary scalar field.
Intuitively, if 𝒖 ∈ T𝑥 ℳ is a vector at a point 𝑥 ∈ ℳ, then the vector
d𝑓 (𝒖) ∈ T𝑓 (𝑥)𝒩 is interpreted as the derivative of 𝑓 (𝑥) ∈ 𝒩 in the
direction 𝒖.

Note that d𝑓 (𝒖) may not be defined everywhere on 𝒩 . If 𝒖|𝑥 ∈ T𝑥 ℳ
is now a family of vectors defined everywhere overℳ, then d𝑓 (𝒖)|𝑓 (𝑥) =
d𝑓 (𝒖|𝑥) is defined only at each 𝑓 (𝑥) ∈ 𝒩 . This means that if 𝑓 fails to
be surjective, then d𝑓 (𝒖) is not defined at those points lying outside the
image 𝑓 (ℳ) ⊂ 𝒩 . Likewise, if 𝑓 fails to be injective at a point 𝑦 ∈ 𝒩 ,
then d𝑓 (𝒖) ismultivalued at 𝑦 . Only if 𝑓 is bijective does d𝑓 (𝒖)|𝑦 have a
single value everywhere.

The meaning of definition 28 may become clearer when expressed in
coordinates. Suppose {𝑥 𝑖} is a local chart ofℳ containing a point 𝑥 ∈ ℳ,
and {𝑦 𝑗} a chart of𝒩 containing 𝑓 (𝑥). With associated coordinate bases
T𝑥 ℳ = span{ 𝜕

𝜕𝑥 𝑖 } and T𝑓 (𝑥)𝒩 = span{ 𝜕
𝜕𝑦 𝑗 }, eq. (7.1) takes the full form:

[d𝑓 (𝑢𝑖 𝜕𝜕𝑥 𝑖)]
𝑗 𝜕𝜑
𝜕𝑦 𝑗 |𝑓 (𝑥)

= 𝑢𝑖 𝜕𝜑 ∘ 𝑓
𝜕𝑥 𝑖 |

𝑥
= 𝑢𝑖 𝜕𝑦

𝑗 ∘ 𝑓
𝜕𝑥 𝑖 |

𝑥

𝜕𝜑
𝜕𝑦 𝑗 |𝑓 (𝑥)

The first equality is the definition itself, and the second is an application
of the chain rule. Since 𝜑 is an arbitrary smooth function, this holds as
an equation of differential operators, and we may remove reference to
any particular 𝜑 on which the operators act.

[d𝑓 (𝑢𝑖𝜕𝑖)]
𝑗 𝜕𝑗 |𝑓 (𝑥) = 𝑢𝑖 𝜕𝑓

𝑗

𝜕𝑥 𝑖 |𝑥
𝜕𝑗 |𝑓 (𝑥) (7.2)

We reduce typographical complexity with 𝜕𝑖 ≔ 𝜕
𝜕𝑥 𝑖 and 𝜕𝑗 ≔ 𝜕

𝜕𝑦 𝑗 , being
aware that these are basis vectors of different tangent spaces. We also
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abbreviate 𝑓 𝑗 ≔ 𝑦 𝑗 ∘𝑓 so that 𝑓 𝑗(𝑥) is the 𝑗th coordinate of the point 𝑓 (𝑥)
in the 𝑦 𝑗 chart. Thus, the coordinate form of d𝑓 is precisely the Jacobian
matrix,

[d𝑓 (𝜕𝑖)]𝑗 =
𝜕𝑓 𝑗
𝜕𝑥 𝑖 .

Turning back to eq. (7.2), the partial derivatives 𝜕/𝜕𝑥 𝑖 act on smooth
functions 𝑓 𝑗 ∶ ℳ → R to produce smooth functions 𝜕𝑓 𝑗/𝜕𝑥 𝑖 ∶ ℳ →
R. However, since we have an intuitive picture of the directional deriva-
tive of the point 𝑓 (𝑥) as 𝑥 is displaced, it is useful to formally extend the
notation 𝜕/𝜕𝑥 𝑖 so that we may write the partial derivative of a mapping
of points 𝑓 ∶ ℳ → 𝒩 . That is, 𝜕𝑓 /𝜕𝑥 𝑖 |𝑥 ∈ T𝑓 (𝑥)𝒩 is the infinitesimal

𝑥 ℳ

𝜕𝜇𝑥

Fig. 7.1.: The derivative of
the point 𝑥 ∈ ℳ along the
direction of increasing 𝑥𝜇

is a tangent vector
𝜕𝜇𝑥 ∈ T𝑥 ℳ. The vector is
tangent to the dotted line,

along which all
coordinates but 𝑥𝜇 are

constant.

displacement vector of 𝑓 (𝑥) ∈ 𝒩 caused by an infinitesimal variation in
the 𝑖th coordinate of the source point 𝑥 . This is the meaning of the last
term in eq. (7.2), so the desired shorthand is

𝜕𝑓
𝜕𝑥 𝑖 ≔

𝜕𝑓 𝑗
𝜕𝑥 𝑖 𝜕𝑗 or, in full,

𝜕𝑓
𝜕𝑥 𝑖 |𝑥 ≔ 𝜕𝑦 𝑖 ∘ 𝑓

𝜕𝑥 𝑖 |
𝑥

𝜕
𝜕𝑦 𝑗 |𝑓 (𝑥)

.

With this, eq. (7.2) may be written as

d𝑓 (𝒖) = 𝑢𝑖 𝜕𝑓𝜕𝑥 𝑖 . (7.3)

This condensed notation is useful, despite being implicit: take for in-
stance the coordinate functions 𝑥 𝑖 ∶ ℳ → R regarded as maps between
manifolds. Then eq. (7.3) yields the defining property of the coordinate
dual basis,

d𝑥 𝑖(𝜕𝑗) = 𝜕𝑥 𝑖
𝜕𝑥 𝑗 = 𝛿 𝑖𝑗 ,

where we have identified the one-dimensional vector space T𝑥 𝑖 R with
R itself.

Lemma 22 (Chain rule). If 𝑓 ∘ 𝑔 is a composition of maps between smooth
manifolds, then d(𝑓 ∘ 𝑔) = d𝑓 ∘ d𝑔.
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Proof. Acting on a vector 𝒖 and applying the forward-pushed vector to
a scalar field 𝜑, we obtain

(d(𝑓 ∘ 𝑔) (𝒖))(𝜑) = 𝒖(𝜑 ∘ 𝑓 ∘ 𝑔)
= 𝒖((𝜑 ∘ 𝑓 ) ∘ 𝑔) = (d𝑔(𝒖))(𝜑 ∘ 𝑓 ) = d𝑓 (d𝑔(𝒖))(𝜑)

by three applications of definition 28.

7.2. Fibre Bundles

For flat geometries, we have modelled “fields” as functions into a fixed
vector space, e.g., the electromagnetic bivector field 𝐹 ∶ R1+3 → ∧2R4.
Such a map makes no distinction between the vector space ∧2R4 evalu-
ated at one point in spacetime and another. This would suggest that
all values of a field are directly comparable, making expressions like
“𝐹(𝑥) + 𝐹(𝑦)” meaningful for different points 𝑥 and 𝑦 . However, these

R2

Fig. 7.2.: Vectors in
different tangent spaces,
and their basis-dependent
representation as an
R2-valued field.

kinds of expressions are ill-defined for general smooth manifolds, since
they depend on the way tangent spaces are identified. Instead, it is bene-
ficial to distinguish between codomains at each point in the domain, and
treat 𝐹(𝑥) and 𝐹(𝑦) as belonging to different spaces entirely.

For a concrete example of why this is necessary, take fluid flow on
the sphere 𝒮 2. Any representation of the fluid flow as a field 𝑓 ∶ 𝒮 2 →
R2 is only defined after the fixed codomain R2 is identified with each
geometrically–distinct tangent plane on the sphere. Notice, such an
identification is not canonical. Even worse, it is not even possible to
do this smoothly everywhere on the sphere59 (or more generally, for 59 Proof. Consider a

constant non-zero vector
field 𝑓 (𝑥) = 𝒖 ∈ R2. If all
tangent spaces are
smoothly identified with
R2, then 𝑓 represents a
fluid flow on 𝒮 2 which is
smooth and nowhere
vanishing. But this is
forbidden by the hairy ball
theorem (which states that
any smooth vector field on
the sphere must vanish at
some point).

any non-parallizable manifold). A basis-independent representation of
𝑓 requires treating each tangent space as distinct.

In doing this, we are led to the tangent bundle T𝒮 2, where all the
tangent planes of 𝒮 2 are collected in a disjoint union. The vector field
𝑓 on the sphere now becomes a section of T𝒮 2, or a map 𝑔 ∶ 𝒮 2 →
T𝒮 2 such that 𝑔(𝑥) belongs to the tangent space at 𝑥 . No longer is the
expression 𝑔(𝑥) + 𝑔(𝑦) well-defined.

The tangent bundle is a special case of a fibre bundle, which is a man-
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Chapter 7. Spacetime as a Manifold

ifold consisting of disjoint copies of a space (called the fibre) taken at
every point in a base manifold.

Definition 29. A fibre bundle 𝐹 ↪ ℱ 𝜋↠ ℳ consists of

• a bulk manifold ℱ ;

• a base manifold ℳ; and

• a surjection 𝜋 ∶ ℱ → ℳ, the projection, such that

• the inverse image 𝐹𝑥 ≔ 𝜋−1(𝑥) of a base point 𝑥 ∈ ℳ is homeomor-
phic to the fibre 𝐹 .

𝐹

ℳ

ℳ

𝑥 𝑦

𝐹𝑥 𝐹𝑦
𝑓

(a)

(b)

𝑓

𝒜
𝑓 (𝑥)

Fig. 7.3.: (a) A field
𝑓 ∶ ℳ → 𝐹 , where values

at any point can be
compared. (b) A fibre

bundle 𝐹 ↪ ℱ ↠ ℳ with
a section 𝑓 ∈ Γ(ℱ ) whose

individual fibres 𝐹𝑥 are
labelled by base point 𝑥 .

Definition 29 takes place in the category of manifolds, so the projec-
tion 𝜋 ∶ ℱ → ℳ is assumed continuous. In a smooth fibre bundle,
the projection 𝜋 is differentiable and 𝐹 , ℱ and ℳ are all smooth mani-
folds.

Many different kinds of fibre bundle may be considered by giving 𝐹
more structure. For example,

• a vector bundle is one where the fibre is a vector space;

• a principal bundle is one where the fibre is a group (usually a
Lie group); and

• an algebra bundle is a vector bundlewhere each fibre is equipped
with a (smoothly varying) algebraic product; and so on.

I. Trivialisations and coordinates

The bulk ℱ of a fibre bundle 𝐹 ↪ ℱ ↠ ℳ is itself a manifold (of
dimension dimℱ = dimℳ + dim 𝐹 ) so we may always prescribe local
coordinates on ℱ . If we already have coordinates {𝑥𝜇} on the base ℳ
and {𝑥𝑎} on a fibre 𝐹 , then we often want to use the same coordinates
{𝑥𝜇 , 𝑥𝑎} to describe the bulk ℱ . This requires locally splitting the bulk
ℱ → ℳ × 𝐹 into its base and fibre components, identifying each fibre
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7.2. Fibre Bundles

with 𝐹 so its {𝑥𝑎} coordinates carry over to all fibres. This splitting, if it
can be done globally, is known as a (global) trivialisation of the bundle.

Definition 30. A trivialisation of a fibre bundle 𝐹 ↪ ℱ 𝜋↠ ℳ is a
homeomorphism 𝜑 ∶ ℱ → ℳ × 𝐹 such that pr1 ∘ 𝜑 = 𝜋.

It is not always possible to find a global trivialisation of a fibre bundle,
but if it is, the bundle is called trivial and there may be many different
possible trivialisations.60 60 A simple non-trivial

fibre bundle is the Möbius
strip, viewed as a bundle
over the circle 𝒮 1 with
fibre [0, 1]. The trivial
bundle 𝒮 1 × (0, 1) describes
a strip without a twist.

However, it is always possible trivialise locally. That is, for any base
point 𝑥 ∈ ℳ, there exists a neighbourhood 𝑥 ∈ 𝑈 ⊆ ℳ for which

the subbundle 𝐹 ↪ 𝜋−1(𝑈 ) 𝜋↠ 𝑈 admits a trivialisation. Hence, it is
always possible to assign local coordinates {𝑥𝜇 , 𝑥𝑎} to the bulk of a fibre
bundle, where 𝑥𝜇 are coordinates on the base and 𝑥𝑎 are coordinates on
the fibres, such that 𝑥𝜇 do not vary along the fibres. In other words, local
trivialisations are equivalent to local coordinates {𝑥𝜇 , 𝑥𝑎}.

II. Sections of fibre bundles

In the language of fibre bundles, a field 𝑓 ∶ ℳ → 𝐹 is replaced by a
section, which is a ‘vertical’ map61 𝑓 ∶ ℳ → ℱ into the bulk ℱ such 61 The adjectives ‘vertical’

and ‘horizontal’ are used
in reference to e.g., fig. 7.3,
where fibres are drawn as
vertical stalks over a
horizontal base manifold.α

that 𝑓 (𝑥) ∈ 𝐹𝑥 .

Definition 31. A section 𝑓 of a fibre bundle 𝐹 ↪ ℱ 𝜋↠ ℳ is a right-
inverse of 𝜋 . The space of sections is denoted

Γ(ℱ ) = {𝑓 ∶ ℳ → ℱ | 𝜋 ∘ 𝑓 = id}.

(Again, sections 𝑓 ∈ Γ(ℱ ) are assumed continuous, and smooth sec-
tions are sections of smooth fibre bundles for which 𝑓 is smooth.)

For example, the instantaneous fluid velocity 𝒖 on a sphere 𝒮 2 is a
section 𝒖 ∈ Γ(T𝒮 2) of the tangent bundle, with a single vector at 𝑥 ∈ 𝒮 2
is denoted 𝒖|𝑥 ∈ T𝑥 𝒮 2.

85



Chapter 7. Spacetime as a Manifold

7.2.1. Algebra bundles

A general procedure to convert locally defined objects into structures
on a manifold is to form the associated bundle, with operations acting
pointwise on sections.

I. Geometric algebra bundles

For instance, a geometric algebra 𝒢(𝑉 , 𝜂) may be defined on a manifold
by taking 𝑉 to be the vector space of sections Γ(𝒱 ) for some vector bun-
dle 𝒱 . We write 𝒢(𝒱 , 𝜂) ≔ 𝒢(Γ(𝒱 ), 𝜂) to indicate this construction,
with ⟨𝒖, 𝒗⟩ |𝑥 = 𝜂𝑥(𝒖|𝑥 , 𝒗|𝑥). We require the metric to vary smoothly, so
that 𝐴𝐵 ∈ Γ(𝒱 ) is a smooth multivector section whenever 𝐴 and 𝐵 are.
Most often, we take𝒱 to be the tangent bundle 𝒢(Tℳ, 𝜂); multivectors
are then geometrical elements in physical spacetime.

II. Exterior differential forms on manifolds

Section 2.2.2 defined exterior forms Ω(𝑉 , 𝐴) as alternating multilinear
maps from the fixed vector space 𝑉⊗ into 𝐴. Exterior forms can be ex-
tended to exterior differential forms, existing on manifolds. Such objects
define alternatingmaps from (T𝑥 ℳ)⊗ for each point 𝑥 ∈ ℳ in a smooth
way.

Although the entire bundle Tℳ is not a vector space, the space of vec-
tor sections Γ(Tℳ) is. Hence, we may consider the space Ω(ℳ,ℰ) ≔
Ω(Γ(Tℳ), Γ(ℰ)) of Γ(ℰ)-valued exterior forms, for some vector bundle
𝑉 ↪ ℰ ↠ ℳ. As with exterior forms, the wedge product is defined as
in eq. (2.7), only now acting pointwise on sections of exterior forms.

An element of Ω𝑘(ℳ,ℰ) is called an ℰ -valued exterior differen-
tial 𝑘-form, where ‘differential’ distinguishes it as an object on a man-
ifold. For scalar–valued exterior differential forms, we take ℰ to be the
trivial line bundleℳ×R. We sometimes use the notation ∼𝛼 to emphasise
that 𝛼 is an exterior differential form.
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7.3. Vector Flows and Lie Differentiation

III. The exterior derivative revisited

For exterior differential forms Ω(ℳ,𝒜), the exterior derivative is de-
fined in the same way as in section 6.1.1 for exterior forms Ω(𝑉 , 𝐴) —
except it must now be made explicit that only the form itself is differ-
entiated, not its vector arguments. Indeed, since the exterior derivative
of a 𝑘-form 𝜑 is defined independently of vector arguments, it cannot
depend on their derivatives. Informally, we may write

(d𝜑)(𝒖0 ⊗⋯ ⊗ 𝒖𝑘) =
𝑘
∑
𝑖=0

(−1)𝑘(𝒖𝑖(𝜑))(𝒖0 ⊗⋯ ⊗ 𝒖𝑖 ⊗⋯ ⊗ 𝒖𝑘)

where 𝒖𝑖(𝜑)means that only 𝜑 is differentiated. Formally, however, vec-
tors may only act to differentiate scalars, not forms, so we may rewrite
this as

(d𝜑)(𝒖0 ⊗⋯ ⊗ 𝒖𝑘) =
𝑘
∑
𝑖=0

(−1)𝑘𝒖𝑖(𝜑(𝒖0 ⊗⋯ ⊗ 𝒖𝑖 ⊗⋯ ⊗ 𝒖𝑘))

−∑
𝑗<𝑖

(−1)𝑖+𝑗𝜑([𝒖𝑖, 𝒖𝑗] ⊗ 𝒖0 ⊗⋯ ⊗ 𝒖𝑖 ⊗⋯ ⊗ 𝒖𝑗 ⊗⋯ ⊗ 𝒖𝑘).

The first term involves scalar derivatives of 𝜑(𝒖0 ⊗ ⋯ ⊗ 𝒖𝑖 ⊗ ⋯ ⊗ 𝒖𝑘),
and the second cancels out unwanted terms involving derivatives of 𝒖𝑗 .
A useful special case is the exterior derivative of a 1-form, which reads

(d𝜑)(𝒖, 𝒗) = 𝒖(𝜑(𝒗)) − 𝒗(𝜑(𝒖)) − 𝜑([𝒖, 𝒗]).

7.3. Vector Flows and Lie Differentiation

In general, the derivative of a section of a fibre bundle is not defined, be-
cause there is no way of comparing fibres without additional structure
(such as a connection; see chapter 8). For some kinds of object, however,
it is possible to define transport between fibres using the flow of a tan-
gent vector section. We call objects for which this is possible flowable.
Generally, tangent vectors and objects built on top of the tangent bundle
are flowable.
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Chapter 7. Spacetime as a Manifold

In this vein, the value of a flowable object at a point 𝑥 may be directly
compared to its value at some other point 𝑦 by flowing the 𝑦-value back
to the 𝑥-fibre. This enables the definition of a kind of derivative with
respect to the flow — a construction called the Lie derivative.

Definition 32. The flow of 𝒖 ∈ Γ(Tℳ) is the 1-parameter family of
diffeomorphisms fl𝑡𝒖 ∶ ℳ → ℳ satisfying

d
d𝑡 fl

𝑡
𝒖(𝑥)|𝑡=0 = 𝒖|𝑥

for all values of the parameter 𝑡 .

Definition 33. The Lie derivative £𝒖𝐴 of a flowable object 𝐴 along a
tangent section 𝒖 ∈ Γ(Tℳ) is

£𝒖𝐴 ≔ d
d𝑡 fl

−𝑡
𝒖 𝐴 |

𝑡=0
.

Scalar sections 𝑓 ∶ ℳ → R are flowable by definingNote that the same symbol
fl𝑡𝒖 is used to denote the

flow of different kinds of
objects.

fl𝑡𝒖𝑓 ≔ 𝑒−𝑡𝒖𝑓 .
For example, if ℳ = R is one dimensional, fl𝑡𝜕𝑥𝑓 = 𝑒−𝑡𝜕𝑥𝑓 (𝑥) = 𝑓 (𝑥 − 𝑡)
is the Taylor series of 𝑓 translated by +𝑡 . Tangent vectors 𝒗 ∈ Tℳ are
also flowable, using the differential of a flow d(fl𝑡𝒖) ∶ Tℳ → Tℳ.
Specifically, we define the flow of tangent vectors

fl𝑡𝒖𝒗 ≔ d(fl𝑡𝒖) (𝒗)
in terms of the flow of points.62 Other flowable objects include struc-62 Risking overloaded

notation, fl𝑡𝒖 on the
left-hand side acts on
vectors, while on the

right-hand side on points.

tures built from the tangent bundle, e.g., tangent tensors (Tℳ)⊗ or mul-
tivectors 𝒢(Tℳ, 𝜂).

Lemma 23. The Lie derivative on scalar functions is £𝒖𝑓 = 𝒖(𝑓 ), and on
tangent sections is the Lie bracket, £𝒖𝒗 = [𝒖, 𝒗] ≔ 𝒖 ∘ 𝒗 − 𝒗 ∘ 𝒖.

Proof. For scalars, the result follows from £𝒖𝑓 = d
d𝑡 𝑒−𝑡𝒖𝑓 |𝑡=0 = 𝒖(𝑓 ).

For tangent sections, unpacking definition 33 for a vector argument,
and then using definition 28 to rewrite the pushforward, we have

(£𝒖𝒗)𝑓 |𝑥 = d
d𝑡 d(fl

−𝑡
𝒖 ) (𝒗|fl𝑡𝒖(𝑥))𝑓 |

𝑡=0
= d

d𝑡 𝒗(𝑓 ∘ fl−𝑡𝒖 )|fl𝑡𝒖(𝑥) |𝑡=0 .
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7.3. Vector Flows and Lie Differentiation

By the product rule over the two appearances of 𝑡 , this is equal to

𝒗( d
d𝑡 𝑓 ∘ fl−𝑡𝒖 |

𝑡=0
)|
𝑥
+ d

d𝑡 𝒗(𝑓 )|fl𝑡𝒖(𝑥) |𝑡=0 . (7.4)

Using the chain rule (lemma 22) and definition 32, we have d
d𝑡 𝑔 ∘ fl𝑡𝒖 |𝑡=0 =

d𝑔(𝒖) = 𝒖(𝑔).Taking 𝑔 to be 𝑓 and 𝒗(𝑓 ) for the left- and right-hand terms
of eq. (7.4) respectively, we find

(£𝒖𝒗)𝑓 = −𝒗(𝒖(𝑓 )) + 𝒖(𝒗(𝑓 ))

which is the Lie bracket acting on the arbitrary scalar section 𝑓 .

7.3.1. On tensors and differential forms

By requiring £𝒖 to be a derivation, we deduce from £𝒖 𝜑(𝒗) = (£𝒖𝜑)(𝒗) +
𝜑(£𝒖𝒗) the form of the Lie derivative on a covector 𝜑. Continuing in this
way, it follows that the Lie derivative of a general tensor 𝑇 = 𝑇 𝜇1...𝜇𝑝 𝜈1...𝜈𝑞𝒆𝜇1⊗
⋯ ⊗ 𝒆𝜇𝑝 ⊗ 𝒆𝜈1 ⊗⋯ ⊗ 𝒆𝜈𝑞 is

£𝒖𝑇 𝜇1...𝜇𝑝 𝜈1...𝜈𝑞 = 𝑢𝜆𝜕𝜆𝑇 𝜇1...𝜇𝑝 𝜈1...𝜈𝑞 −
𝑝
∑
𝑖=1

𝑇 𝜇1...𝜆...𝜇𝑝 𝜈1...𝜈𝑞𝜕𝜆𝑢𝜇𝑖 +
𝑞
∑
𝑖=1

𝑇 𝜇1...𝜇𝑝 𝜈1...𝜆...𝜈𝑞𝜕𝜈𝑖𝑢𝜆.

This sets the stage for how much simpler the form of the Lie derivative
is on exterior differential forms and multivectors.

On exterior differential forms
∼
𝜑, the Lie derivative may be expressed

in a basis-free fashion using Cartan’s “magic formula” 63

63 Sketch proof. d and 𝒖 ⌋
are anti-derivations, so
their anti-commutator is a
derivation (lemma 3).
Derivations agreeing on
scalars and exact 1-forms
(which generate the
exterior algebra) are equal.
Indeed,
𝒖 ⌋ d𝑓 = 𝒖(𝑓 ) = £𝒖𝑓 while
d(𝒖 ⌋ 𝑓 ) = 0; and for exact
1-forms, 𝒖 ⌋ d

∼
𝜑 = 0 while

d(𝒖 ⌋
∼
𝜑) = d

∼
𝜑(𝒖) = £𝒖 ∼

𝜑.

£𝒖∼𝜑 = 𝒖 ⌋ d
∼
𝜑 + d(𝒖 ⌋

∼
𝜑), (7.5)

which employs the interior derivative or hook product 𝒖 ⌋∶ Ω𝑘(𝑉 ) →
Ω𝑘−1(𝑉 ) defined by (𝒖 ⌋

∼
𝜑)(𝒖2 ⊗⋯⊗ 𝒖𝑘) = ∼

𝜑(𝒖 ⊗ 𝒖2 ⊗⋯⊗ 𝒖𝑘). Cartan’s
magic formula is the statement that the Lie derivative on forms is the
anti-commutator of the exterior and interior derivatives.

89



Chapter 7. Spacetime as a Manifold

7.3.2. The geometric bracket and Lie derivative

Similar to Cartan’s formula (7.5), the Lie derivative admits a simple form
when applied to tangent multivectors, i.e., elements of the geometric
algebra𝒢(Tℳ, 𝜂). This insight begins with the following generalisation
of the vector Lie bracket [𝒖, 𝒗] = 𝒖 ∘ 𝒗 − 𝒗 ∘ 𝒖 to general multivectors.

Definition 34. The geometric bracket of two tangent multivectors𝐴, 𝐵 ∈
𝒢(Tℳ, 𝜂) is

[𝐴, 𝐵] ≔ (𝐴 ⌊ 𝝏) ∧ 𝐵 − (𝐵 ⌊ 𝝏) ∧ 𝐴Recall the right
contraction

⟨𝐴⟩𝑝 ⌊ ⟨𝐵⟩𝑞 ∈ 𝒢𝑝−𝑞 from
section 3.3.

,
where 𝝏 acts on the multivector to its immediate right.

When acting on vectors, definition 34 reduces to the standard vector
Lie bracket,6464 𝒖 ⌊ 𝝏 = 𝒖 · 𝝏 = 𝜕𝒖 are

scalar operators, so the
wedge product is just

scalar multiplication. Also
note that 𝒖 · 𝝏𝒗 ≡ (𝒖 · 𝝏)𝒗 ,

and not 𝒖 · (𝝏𝒗).

(𝒖 ⌊ 𝝏) ∧ 𝒗 − (𝒗 ⌊ 𝝏) ∧ 𝒖 ≡ 𝒖 · 𝝏𝒗 − 𝒗 · 𝝏𝒖 = [𝒖, 𝒗],
so the use of the same notation [ , ] is appropriate. However, defini-
tion 34 is a significant generalisation of the vector Lie bracket, applicable
to multivectors of arbitrary grade.

Theorem 4. Let 𝐴 ∈ 𝒢(Tℳ, 𝜂) be a multivector and 𝒖 ∈ Tℳ a tangent
vector. The Lie derivative of 𝐴 along 𝒖 is

£𝒖𝐴 = [𝒖, 𝐴]. (7.6)

This is an elegant result: it applies to multivectors of any kind (vec-
tors, 𝑘-blades, even inhomogeneous rotors) and the Lie derivative has
the same simple form.

Proof. Since £𝒖 is linear, it suffices to prove the case where𝐴 = 𝒂1∧⋯∧𝒂𝑘
is a 𝑘-blade. Because £𝒖 is a derivation, we must have the result that

£𝒖(𝒂1 ∧ ⋯ ∧ 𝒂𝑘) =
𝑘
∑
𝑖=1

𝒂1 ∧ ⋯ ∧ [𝒖, 𝒂𝑖] ∧ ⋯ ∧ 𝒂𝑘 (7.7)
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7.3. Vector Flows and Lie Differentiation

where £𝒖𝒂𝑖 = [𝒖, 𝒂𝑖] is the vector Lie bracket. Expanding the right-hand
side of eq. (7.6), we have, by definition 34

[𝒖, 𝐴] = 𝒖 • 𝝏𝐴 − (𝐴 ⌊ 𝝏) ∧ 𝒖.
We will expand the two terms on the right-hand side.

The first term is

𝒖 • 𝝏𝐴 = 𝒖 • 𝝏(𝒂1 ∧ ⋯ ∧ 𝒂𝑘) =
𝑘
∑
𝑖=1

𝒂1 ∧ ⋯ ∧ 𝒖 • 𝝏𝒂𝑖 ∧ ⋯ ∧ 𝒂𝑘 (7.8)

since 𝒖 • 𝝏 ≡ 𝜕𝒖 is a scalar derivation.

The second term is (𝐴 ⌊ 𝝏) ∧ 𝒖. Recall that contraction by a vector is
an anti-derivation (corollary 1). Thus, for some vector 𝒗 ,

𝒗 ⌋ 𝐴 = 𝒗 ⌋ (𝒂1 ∧ ⋯ ∧ 𝒂𝑘) =
𝑘
∑
𝑖=1

(−1)𝑖−1𝒂1 ∧ ⋯ ∧ (𝒗 • 𝒂𝑖) ∧ ⋯ ∧ 𝒂𝑘 .

Wedging this with a vector 𝒖 produces

𝒖 ∧ (𝒗 ⌋ 𝐴) =
𝑘
∑
𝑖=1

𝒂1 ∧ ⋯ ∧ (𝒂𝑖 • 𝒗)𝒖 ∧ ⋯ ∧ 𝒂𝑘 , (7.9)

where the factor of (−1)𝑖−1 is cancelled by anticommuting 𝒖 to the 𝑖th
position. Now, note that 𝐴, 𝒗 ⌋ 𝐴 and 𝒖 ∧ (𝒗 ⌋ 𝐴) are of grades 𝑘, 𝑘 − 1
and 𝑘, respectively, allowing us to exploit reversion to obtain

𝒖 ∧ (𝒗 ⌋ 𝐴) = 𝓈𝑘 (𝒗 ⌋ 𝐴)† ∧ 𝒖† = 𝓈𝑘 (𝐴† ⌊ 𝒗†) ∧ 𝒖 = (𝐴 ⌊ 𝒗) ∧ 𝒖. (7.10)

The notation on the right-hand side lends itself better to the case where
𝒗 is instead the vector derivative 𝝏 acting on 𝒖, since 𝒖 is then to its
immediate right. Thus, with eqs. (7.9) and (7.10) we have shown that

(𝐴 ⌊ 𝝏) ∧ 𝒖 =
𝑘
∑
𝑖=1

𝒂1 ∧ ⋯ ∧ (𝒂𝑖 • 𝝏𝒖) ∧ ⋯ ∧ 𝒂𝑘 . (7.11)

Combining eqs. (7.8) and (7.11) yields

[𝒖, 𝐴] = 𝒖 • 𝝏𝐴 − (𝐴 ⌊ 𝝏) ∧ 𝒖 =
𝑘
∑
𝑖=1

𝒂1 ∧ ⋯ ∧ (𝒖 • 𝝏𝒂𝑖 − 𝒂𝑖 • 𝝏𝒖) ∧ ⋯ ∧ 𝒂𝑘

whose right-hand side is equal to eq. (7.7).
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Connections on Fibre Bundles

We have seen that it is more natural to describe physical fields in the lan-
guage of fibre bundles rather than simply as maps into a fixed codomain.
However, with a field 𝑓 ∈ Γ(ℱ ) now formulated as a section of a fibre
bundle, it no longer makes sense to directly compare values 𝑓 |𝑥 at differ-
ent points 𝑥 ∈ ℳ, since each value exists in its own fibre. But the ability
to compare across fibres is desirable, particularly because a notion of
derivative requires comparing values across ‘infinitesimally neighbour-
ing’ fibres. One way to accomplish this (at least for flowable objects) was
the Lie derivative of section 7.3. Another way which is applicable to any
bundle is to introduce the additional structure of a connection; this then
defines the covariant derivative of a section.

Fig. 8.1.: Parallel transport
of the northern vector

depends on the path taken.

A trivial example is the usual connection on (the tangent bundle of)
Euclidean space. There, tangent vectors at a base point may be parallel
transported (i.e., translated irrotationally) to any other base point in a
well-defined, path-independent way. This defines an isomorphism be-
tween every tangent space and tangent space at the origin, forming a
connection on TR𝑛.

We may try to define connections on general fibre bundles in this way
— by choosing an isomorphism from every fibre to a single ‘reference’
fibre.65 But defining a connection like this is needlessly strict, and is of65 This is equivalent to

choosing a trivialisation
ℱ → ℳ × 𝐹 , or

prescribing global
coordinates on ℱ .

course impossible for non-trivial bundles. (For example, T𝒮 2 is non-
trivial; there is no way of smoothly identifying its tangent spaces.)

Instead, it is sufficient to identify fibres locally. In other words, we
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need only prescribe howvalues can be compared over infinitesimal paths;
from this we can compare any path-connected fibres. A connection
obtained this way is much more general: it accomodates non-trivial
bundles and curved connections, where parallel transport may be path-
dependent. (For example, parallel transport on the sphere embedded in
R3 is path-dependent.)

I. On general fibre bundles: Ehresmann connections

The most general kind of smooth bundleℱ is one where the fibres have
the minimal structure of a smooth manifold. We will specify a connec-
tion by defining vertical and horizontal motion within the bulk of the
bundle.

A point 𝑝 ∈ ℱ in the bundle belongs to the fibre 𝐹𝜋(𝑝) rooted at the
base point 𝜋(𝑝) ∈ ℳ. If the point 𝑝 is moved within its fibre, the base
point remains fixed and the motion is said to be “vertical”. The tangent
space T𝑝 𝐹𝜋(𝑝) of the fibre (in isolation from the bulk) consists of those
displacement vectors which define vertical motion. Taken together, the
vertical tangent spaces of all fibres form the vertical bundle.

Definition 35. The vertical bundle of a smooth fibre bundle 𝐹 ↪ ℱ ↠
ℳ is a smooth (dim 𝐹)-dimensional tangent subbundle Vℱ ⊆ Tℱ de-
fined by V𝑝 ℱ = T𝑝 𝐹𝑝 for each point 𝑝 ∈ ℱ .

ℳ 𝜋(𝑝)

𝐻𝑝

𝐹𝜋(𝑝) ℱ

𝑝

𝑉𝑝

Fig. 8.2.: Illustration of an
Ehresmann connection.

On the other hand, a connection specifies how the value 𝑝 ∈ ℱ
changes when the base point 𝜋(𝑝) ∈ ℳ moves, if 𝑝 is to be considered
to move “horizontally”, i.e., if 𝑝 is to undergo parallel transport.

Definition 36. A horizontal bundle or (Ehresmann) connection𝐻 on
a smooth fibre bundle 𝐹 ↪ ℱ ↠ ℳ is a smooth (dimℳ)-dimensional
tangent subbundle𝐻 ⊆ Tℱ which is complementary to the vertical bundle
𝑉 ⊆ Tℱ , in the sense that T𝑝 ℱ = V𝑝 ℱ ⊕ 𝐻𝑝 for each point 𝑝 ∈ ℱ .

Note that while the tangent and vertical bundles Tℱ and Vℱ are
canonical constructions, the choice of a horizontal bundle𝐻 is not canon-
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Chapter 8. Connections on Fibre Bundles

ical: there may be many distinct horizontal bundles, corresponding to
different senses of “parallel transport”.

The requirement that𝐻 be complimentary to Vℱ implies𝐻𝑝∩V𝑝 ℱ =
{𝟎} at each 𝑝 ∈ ℱ . This means the restriction of d𝜋 ∶ T𝑝 ℱ ↪↠ T𝜋(𝑝)ℳ
to 𝐻𝑝 ⊆ T𝑝 ℱ is an isomorphism.66 It therefore has an inverse,66 Using the fact that

ker d𝜋 = Vℱ , implying
ker d𝜋|𝐻𝑝 = 𝟎. d𝜋|−1𝐻𝑝 ∶ T𝜋(𝑝)ℳ ↪↠ 𝐻𝑝 , (8.1)

which acts to “lift” tangent vectors from the base into the horizontal
subbundle at 𝑝. This proves to be a useful construction:

Definition 37. Let 𝐹 ↪ ℱ 𝜋↠ ℳ be a fibre bundle with an Ehresmann
connection𝐻 ⊆ Tℱ . The horizontal lift to the point 𝑝 ∈ ℱ is the linear
map

𝛤(𝑝) ≔ −d𝜋|−1𝐻𝑝 ∶ T𝜋(𝑝)ℳ → 𝐻𝑝 .

Also define the horizontal lift of a section 𝑓 ∈ ℱ at 𝑥 ∈ ℳ by

𝛤(𝑓 )|𝑥 ≔ −d𝜋|−1𝐻𝑓 (𝑥) .𝑥

𝑓 (𝑥)

ℳ

𝐻𝑓 (𝑥)

−𝛤𝒖(𝑓 )

𝒖

Fig. 8.3.: The tangent
vector 𝒖 at 𝑥 is lifted to the

horizontal bulk vector
𝛤𝒖(𝑓 ) at the point 𝑓 (𝑥).

The horizontal lift of a section 𝑓 is a horizontal-valued 1-form 𝛤(𝑓 ) ∈
Ω1(ℳ,𝐻) whose action on tangent vectors 𝒖 we may write as 𝛤𝒖(𝑓 ) ≔
𝛤(𝑓 )(𝒖). This device is designed so that tangent vectors 𝒖 are ‘lifted’
to horizontal bulk vectors −𝛤𝒖(𝑓 ) located on the section 𝑓 (see fig. 8.3).
‘Lifted’ means −𝛤𝒖(𝑓 ) projects onto 𝒖, so that we have −d𝜋(𝛤𝒖(𝑓 )) = 𝒖.
The minus sign is present to later align with the convention that a plus
sign is present in the covariant derivative of a vector section.67

67 E.g.,
“∇𝜇𝑋 𝑎 = 𝜕𝜇𝑋 𝑎 + 𝛤𝜇𝑎𝑏𝑋 𝑏”.

8.1. Parallel Transportation

With a connection 𝐻 ⊆ Tℱ defined on a bundle, a bulk value may
be moved between fibres so that the motion is always horizontal with
respect to the connection. This is called parallel transportation of
the value along a path.
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8.1. Parallel Transportation

More precisely, a path 𝛾 ∶ [0, 1] → ℳ representing the motion of a
value 𝑝0 ∈ ℱ from 𝛾 (0) = 𝜋(𝑝0) can be lifted to a unique horizontal
path 𝑝𝛾 ∶ [0, 1] → ℱ in the bulk. This path is ‘above’ 𝛾 in the sense that
𝜋(𝑝𝛾 (𝜆)) = 𝛾(𝜆), and ‘horizontal’ in the sense that d𝑝𝛾 (𝜆) ∈ 𝐻𝑝𝛾 (𝜆) (see
fig. 8.4). In other words, 𝑝𝛾 is an integral curve of the connection along
𝛾 through 𝑝0.

It is useful to describe this path–lifting process as an operator, associ-
ating fibre-mappings to each path in ℳ.

Definition 38. If 𝛾 ∶ [0, 1] → ℳ is a path, then the transport operator
trans𝛾 ∶ 𝐹𝛾 (0) → 𝐹𝛾 (1) is defined by trans𝛾 𝑝 = 𝑝𝛾 (1) for any point 𝑝 ∈
𝐹𝛾 (0) where 𝑝𝛾 ∶ [0, 1] → ℱ is the lifted path satisfying

𝜋(𝑝𝛾 (𝜆)) = 𝛾(𝜆) and d𝑝𝛾 (𝜆) ∈ 𝐻𝑝𝛾 (𝜆) (8.2)

for all 𝜆 ∈ [0, 1]. 𝜋(𝑝0)

𝑝0

𝛾

𝑝𝛾

𝐻𝑝0

Fig. 8.4.: The point 𝑝0
parallel transported along
a path 𝛾 , giving the lifted
path 𝑝𝜆.

The transport operator is invariant under path reparametrisation, since
any path 𝛾 ′(𝜆) = 𝛾(𝑓 (𝜆)) where 𝑓 ∶ [0, 1] → [0, 1] is smooth also satis-
fies eq. (8.2) if 𝛾 does. Furthermore, the transport operator respects path
concatenation 𝛾2 ∗ 𝛾1 and inversion,

trans
𝛾−1

= trans𝛾
−1, trans𝛾2∗𝛾1

= trans𝛾2
∘ trans𝛾1

.

Parallel transport along a path involves ‘integrating’ the connection;
and conversely, the ‘derivative’ of the transport operator is the horizon-
tal lift, in a way made precise in the following lemma.

Lemma 24. The transport operator along a path 𝛾 satisfies the ordinary
differential equation

d
d𝜆 trans

𝛾 (𝜆←0)
= −𝛤 ̇𝜸(𝜆) ∘ trans𝛾 (𝜆←0)

, (8.3)

where 𝛾 (𝜆 ← 0) denotes the sub-path of 𝛾 from 𝛾 (0) to 𝛾 (𝜆).
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Proof. If 𝑝 ∈ 𝐹𝛾 (0) then we have trans𝛾 (𝜆←0) 𝑝 = 𝑝𝛾 (𝜆)where 𝑝𝛾 is the lift
of 𝛾 through 𝑝, satisfying the conditions in definition 38. Differentiating
with respect to 𝜆,

d
d𝜆 trans

𝛾 (𝜆←0)
𝑝 = d𝑝𝛾 (𝜆) ∈ 𝐻𝑝𝛾 (𝜆), (8.4)

which is the horizontal by eq. (8.2). Additionally, from 𝜋 ∘ 𝑝𝛾 = 𝛾 we
have d𝜋 ∘ d𝑝𝛾 = d𝛾 . Thus, we see that d𝑝𝛾 (𝜆) is horizontal lift of d𝛾 (𝜆)
to the point 𝑝𝛾 (𝜆),

d𝑝𝛾 (𝜆) = d𝜋|−1𝐻𝑝𝛾 (𝜆)
(d𝛾 (𝜆)) = −𝛤 ̇𝜸(𝜆)(𝑝𝛾 (𝜆)). (8.5)

Finally, since 𝑝𝛾 (𝜆) = trans𝛾 (𝜆←0) 𝑝, combining eqs. (8.4) and (8.5) we
have the result.

Evaluating lemma 24 at 𝜆 = 0 yields the following useful result.

Corollary 3. Let 𝛾 ∶ [0, 1] → ℳ be a path and let 𝑝 ∈ ℱ𝛾 (0).
d
d𝜆 trans

𝛾 (𝜆←0)
𝑝 |

𝜆=0
= −𝛤 ̇𝜸(0)(𝑝)

An important consequence of this derivative relationship is that, since
trans𝛾 ∈ 𝐺 is an element of the group of fibre endomorphisms,68 the68 Technically, trans𝛾 can

only be called a group
element after a bundle
trivialisation (giving a

well-defined identity map
between fibres).

horizontal lift is Lie algebra–valued, 𝛤𝒖 ∈ 𝔤 ≡ 𝑇id𝐺.

8.2. Covariant Differentiation

We have seen that a choice of connection 𝐻 ⊂ Tℱ determines which
tangent vectors in the bulk of a bundle are horizontal. This in turn de-
fines the parallel transport operator. From this we may also define the
coordinate-independent covariant derivative as the rate of change of
a section with respect to the connection’s horizontal.

To decompose vectors into horizontal and vertical components ac-
cording to 𝐻 , we employ the projection and rejection maps

proj𝐻𝑝 ∶ T𝑝 ℱ → 𝐻𝑝 and rej𝐻𝑝 ∶ T𝑝 ℱ → V𝑝 ℱ (8.6)
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8.2. Covariant Differentiation

defined by proj𝐻𝑝𝒖 + rej𝐻𝑝𝒖 = 𝒖 ∈ T𝑝 ℱ and idempotence.

Definition 39. The covariant derivative ∼∇𝑓 ∈ Ω1(ℳ,Vℱ ) of a section
𝑓 ∈ Γ(ℱ ) is defined by

∼∇𝑓 = rej𝐻 ∘ d𝑓 . (8.7)

Equation (8.7) is a vertical-valued 1-form, i.e., a linear map ∼∇𝑓 |𝑥 ∶
T𝑥 ℳ → V𝑓 (𝑥)ℱ defined at each 𝑥 ∈ ℳ. Acting on a vector 𝒖 ∈ T𝑥 ℳ,
this reads

∇𝒖𝑓 ≔ ∼∇𝑓 (𝒖) = rej𝐻𝑓 (𝑥)(d𝑓 (𝒖)) ∈ V𝑓 (𝑥)ℱ .
This can be interpreted geometrically as follows. The true gradient vec-
tor d𝑓 (𝒖) ∈ T𝑓 (𝑥)ℱ of the section 𝑓 lies outside the fibre’s tangent space
V𝑓 (𝑥)ℱ ⊆ T𝑓 (𝑥)ℱ . But we do not want to measure horizontal motion
— just the effective vertical change of 𝑓 (𝑥) induced by moving 𝑥 in the
direction of 𝒖. Thus, the covariant derivative ∇𝒖𝑓 ∈ V𝑓 (𝑥)ℱ is the verti-
cal projection of d𝑓 (𝒖) obtained by discarding its horizontal component,
where ‘horizontal’ is of course specified by the connection (see fig. 8.5).

𝑓 (𝑥)

𝑥 𝒖

d𝑓 (𝒖)

−𝛤𝒖(𝑓 )

∇𝑓 (𝒖)

ℳ

𝐴𝑥

𝑓

Fig. 8.5.: Covariant
derivative of 𝑓 at 𝑥 ∈ ℳ
along 𝒖 ∈ T𝑥 ℳ. The
vector −𝛤𝑓 (𝒖) = d𝜋|−1𝐻𝑓 (𝑥)(𝒖)
indicates horizontal
motion under the
connection 𝐻 , and ∇𝒖𝑓 is
the derivative relative to
this horizontal.

Lemma 25. The covariant derivative as in definition 39 is equivalent to

∇𝒖𝑓 = d𝑓 (𝒖) + 𝛤𝒖(𝑓 ),
where d𝑓 is the push-forward of 𝑓 ∈ Γ(ℱ ) and 𝛤 is the horizontal lift as
in definition 37.

Proof. By the defining property of the projection and rejection (8.6),

d𝑓 = rej𝐻 ∘ d𝑓 + proj𝐻 ∘ d𝑓
since d𝑓 ∶ Tℳ → Tℱ is linear. Therefore, rewriting definition 39,

∼∇𝑓 = rej𝐻 ∘ d𝑓 = d𝑓 − proj𝐻 ∘ d𝑓 .
Using eq. (8.1), the projection operator at 𝑝 ∈ ℱ can be written as

proj𝐻𝑝 = d𝜋|−1𝐻𝑝 ∘ d𝜋.
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Finally, because 𝑓 is a section, 𝜋 ∘ 𝑓 = id and so d𝜋 ∘d𝑓 = id by the chain
rule (lemma 22). Thus, acting on a base vector 𝒖 ∈ T𝑥 ℳ,

∇𝒖𝑓 = d𝑓 (𝒖) − d𝜋|−1𝐻𝑓 (𝑥) ∘ d𝜋 ∘ d𝑓 (𝒖)
= d𝑓 (𝒖) − d𝜋|−1𝐻𝑓 (𝑥)(𝒖),

which by definition 37 gives the result.

I. Coordinate representation

At this point, we may introduce component forms of the above devices
for a general fibre bundle. Choose a (local) trivialisation of ℱ so that
{𝑥𝐴} = {𝑥𝜇 , 𝑥𝑎} are (local) coordinates on ℳ and the fibres, respec-
tively. (Capital Latin indices run over all components, so we may write
(𝑝𝐴) = (𝑥𝜇 , 𝑥𝑎) for a bulk value 𝑝 ∈ ℱ .) Vertical motion fixes the base
coordinates, but the fibre coordinates 𝑥𝑎 are not required to be constant
under horizontal motion.

Denote the associated coordinate basis of Tℱ by (𝝏𝐴) = (𝝏𝜇 , 𝝏𝑎). Re-
call that 𝛤(𝑓 ) ∈ Ω1(ℳ,𝐻) is a 1-form, and hence is linear in its tangent
vector argument 𝒖 ∈ Γ(Tℳ). Thus, we define the components

𝛤𝜇 ≔ 𝛤𝝏𝜇
so that 𝛤𝒖(𝑓 ) = 𝑢𝜇𝛤𝜇(𝑓 ). Since 𝛤𝒖(𝑓 )|𝑥 ∈ 𝐻𝑓 (𝑥) is a (horizontal) vector,
we may also define the 2-component object 𝛤𝜇𝐴 by

𝛤𝜇(𝑓 ) = 𝛤𝜇𝐴(𝑓 ) 𝝏𝐴.

Note that horizontal vectors have both fibre and base components,

𝛤𝜇𝐴 𝝏𝐴 = 𝛤𝜇𝜈 𝝏𝜈 + 𝛤𝜇𝑎 𝝏𝑎.

Indeed, the same applies to the push-forward d𝑓 = d𝑓 𝜇 𝝏𝜇 +d𝑓 𝑎 𝝏𝑎 since
d𝑓 is not vertical (the non-verticality of the usual derivative d𝑓 is what
the covariant derivative attempts to fix). However, since ∇𝜇𝑓 ∈ Vℱ as
a whole is vertical, the base components 𝛤𝜇𝜈 and 𝜕𝜇𝑓 𝜈 must cancel.
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This is verified by noting that

d𝜋(d𝑓 (𝒖)) = 𝒖 and d𝜋(−𝛤𝑓 (𝑥)(𝒖)) ≡ d𝜋(d𝜋|−1𝐻𝑓 (𝑥)(𝒖)) = 𝒖 (8.8)

are equal. In effect, d𝜋 projects onto components of the base, d𝜋(𝑋𝐴𝝏𝐴) =
𝑋 𝜈𝝏𝜈 , and so eq. (8.8) implies d𝑓 𝜈(𝒖) = −𝑢𝜇𝛤𝜇𝜈 . Therefore, in compo-
nents, the covariant derivative of a section is

∇𝜇𝑓 𝑎 = 𝜕𝜇𝑓 𝑎 + 𝛤𝜇𝑎(𝑓 ), (8.9)

with base components of d𝑓 (𝒖) and 𝛤𝒖(𝑓 ) suppressed.69 Note that 𝑓 69 In practice, one usually
works with a (local)
trivialisation in which
𝑓 ∶ ℳ → 𝐹 is given as a
field. Then, d𝑓 = d𝑓 𝑎 𝝏𝑎
has no base components
anyway, so we take
𝛤𝜇(𝑓 ) = 𝛤𝜇𝑎(𝑓 ) 𝝏𝑎.

need not be a vector section of a linear bundle — eq. (8.9) is general to
smooth fibre bundles of any kind.

8.3. Connections on Vector Bundles

So far, we have treated connections in the setting of a general smooth fi-
bre bundle. We now consider connections and their associated covariant
derivatives on vector bundles 𝑉 ↪ 𝒱 ↠ ℳ, withmore or less additional
structure.

In general, the transport operator over a path is an invertible map be-
tween the start and end fibres. For a vector bundle, we often require this
to be a linear map, in which case the connection is said to be linear. By
lemma 24, this means the horizontal lift is also linear in its fibre argu-
ment, ∼𝛤(𝜆𝑖𝑋𝑖) = 𝜆𝑖∼𝛤(𝑋𝑖), so we may regard 𝛤𝒖 as a matrix and ∼𝛤 as a
matrix-valued 1-form, acting on vectors 𝑋 ∈ 𝒱 by matrix multiplica-
tion, ∼𝛤𝑋 ≔ ∼𝛤(𝑋).

If {𝒆𝑎} is a basis for some vector bundle 𝒱 with a linear connection,
then we define 3-component connection coefficients,

𝛤𝜇𝑎𝑏 ≔ 𝛤𝜇𝑎𝒆𝑏 Our notation suggest a
1-form ∼𝛤 = 𝛤𝜇d𝑥𝜇 of
matrices 𝛤𝜇 = 𝛤𝜇𝑎𝑏𝒆𝑎 ⊗ 𝒆𝑏 ,
but index placement varies
in the literature: [18] uses
𝛤 𝑎𝑏𝜇 ; [44] uses 𝛤 𝑎

𝜇𝑏 .

.

We may write expressions in both basis-free and component forms;

𝛤𝒖𝑋 = 𝑢𝜇 𝛤𝜇𝑎𝑏 𝑋 𝑏 𝒆𝑎.
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Linearity also allows the covariant derivative to be expressed as the
limit of a difference, similar to the usual analytical definition of the
derivative of a real function.

Lemma 26. If 𝛾 ∶ [0, 1] → ℳ is a path and 𝑋 ∈ Γ𝛾 (𝒱 ) is a smooth vector
section defined on 𝛾 , then

∇ ̇𝜸(0)𝑋|𝛾 (0) = lim𝜀→0
𝑋|𝛾 (𝜀) − trans𝛾 (𝜀←0) 𝑋|𝛾 (0)

𝜀
= d

d𝜆 (𝑋 |𝛾 (𝜆) − trans
𝛾 (𝜆←0)

𝑋|𝛾 (0))|
𝜆=0

.

Proof. Using corollary 3, the right-hand side is equal to

d𝑋( ̇𝜸(0)) + 𝛤 ̇𝜸(0)𝑋,
which by lemma 25 is equal to ∇ ̇𝜸(0)𝑋|𝛾 (0).

I. Metric compatibile connections

A linear connection on a metrical vector bundle 𝑉 ↪ 𝒱 ↠ ℳ is called
metric compatible if for any vectors 𝑋, 𝑌 ∈ 𝒱 ,

⟨trans𝑋, trans 𝑌 ⟩ = ⟨𝑋 , 𝑌 ⟩
where the transport operators are over some common path.

Lemma 27. A metric compatible connection satisfies

⟨∼𝛤𝑋 , 𝑌 ⟩ = − ⟨𝑋 , ∼𝛤𝑌 ⟩ or 𝛤𝜇𝑎𝑏 = −𝛤𝜇𝑏𝑎
where 𝛤𝜇𝑎𝑏 = 𝜂𝑎𝑐𝛤𝜇𝑐𝑏.

Proof. Consider transport along a path 𝛾 (𝜆 ← 0), and abbreviate 𝑇𝜆 ≔
trans𝛾 (𝜆←0). Since ⟨𝑇𝜆𝑋, 𝑇𝜆𝑌 ⟩ = ⟨𝑋 , 𝑌 ⟩ is constant with respect to 𝜆, its
𝜆-derivative vanishes. But we also have

0 = d
d𝜆 ⟨𝑇𝜆𝑋, 𝑇𝜆𝑌 ⟩ |𝜆=0 = ⟨ d

d𝜆𝑇𝜆𝑋 |𝜆=0, 𝑌 ⟩ + ⟨𝑋 , d
d𝜆𝑇𝜆𝑌 |𝜆=0⟩

= − ⟨𝛤 ̇𝜸(0)𝑋, 𝑌 ⟩ − ⟨𝑋 , 𝛤 ̇𝜸(0)𝑌 ⟩ .
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8.3. Connections on Vector Bundles

Since 𝛾 is arbitrary, we have ⟨𝛤𝒖𝑋, 𝑌 ⟩ + ⟨𝑋 , 𝛤𝒖𝑌 ⟩ = 0 for all 𝒖 ∈ Tℳ.

Writing this in component form,

𝜂𝑎𝑏 𝛤𝜇𝑎𝑐 𝑋 𝑐 𝑌 𝑏 = −𝜂𝑎𝑏 𝑋 𝑎 𝛤𝜇𝑏𝑐 𝑌 𝑐

which implies 𝜂𝑎𝑏 𝛤𝜇𝑎𝑐 = −𝜂𝑎𝑏 𝛤𝜇𝑏𝑐 since 𝑋 and 𝑌 are arbitrary.

Metric-compatible connections are not unique. If 𝑛 = dimℳ and
𝑑 = dim 𝑉 , then there are 𝑛𝑑2 components of 𝛤𝜇𝑎𝑏, subject to 𝑛𝑑(𝑑 +1)/2
compatibility equations 𝛤𝜇𝑎𝑏 + 𝛤𝜇𝑏𝑎 = 0, leaving 𝑛𝑑(𝑑 − 1)/2 degrees of
freedom.

II. On algebra bundles

On vector bundles equipped with an associative product, we often want
the linear connection to be constrained so that ∼∇ is a derivation;

∼∇(𝐴 ⊛ 𝐵) = (∼∇𝐴) ⊛ 𝐵 + 𝐴 ⊛ (∼∇𝐵). (8.10)

This is equivalent to requiring that the transport operator respects mul-
tiplication,

(trans𝑋) ⊛ (trans 𝑌 ) = trans(𝑋 ⊛ 𝑌), (8.11)

similar to the metric compatibility criterion.

Proof. We will derive eq. (8.10) from eq. (8.11), showing their equiva-
lence. Denote 𝑇𝜆 ≔ trans𝛾 (𝜆←0) for some path 𝛾 . Using lemma 26, we
have

∇ ̇𝜸(0)(𝑋1 ⊛⋯ ⊛ 𝑋𝑘) = ∼d(𝑋1 ⊛⋯ ⊛ 𝑋𝑘)( ̇𝜸(0)) − d
d𝜆𝑇𝜆(𝑋1 ⊛⋯ ⊛ 𝑋𝑘)|𝜆=0.

We already know that ∼d is a derivation. For the rightmost term, eq. (8.11),
linearity and associativity imply

− d
d𝜆𝑇𝜆𝑋𝑖 ⊛⋯ ⊛ 𝑇𝜆𝑋𝑖 |𝜆=0 = −

𝑘
∑
𝑖=1

𝑋1 ⊛⋯ ⊛ d
d𝜆𝑇𝜆𝑋𝑖|𝜆=0 ⊛⋯ ⊛ 𝑋𝑘 ,

which by corollary 3 gives the result, after removing reference to the
arbitrary vector ̇𝜸(0).
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Chapter 8. Connections on Fibre Bundles

Consequently, a linear connection on a vector bundle 𝒱 induces a
unique ⊛-respecting connection on the algebra bundle generated by ⊛,
since the covariant derivative of a product may be reduced to a product
of covariant derivatives of vectors. For example, for a tensor bundle
𝒱 ⊗ with ametric compatible connection, we derive the familiar formula
for general type-(𝑝, 𝑞) tensors, written purely in tems of the connection
coefficients for 𝒱 .

∇𝜇𝑇 𝑎1⋯𝑎𝑝 𝑏1⋯𝑏𝑞 = 𝜕𝜇𝑇 𝑎1⋯𝑎𝑝 𝑏1⋯𝑏𝑞 +
𝑝
∑
𝑖=1

𝛤𝜇𝑎𝑖𝑐𝑇 𝑎1⋯𝑐⋯𝑎𝑝 𝑏1⋯𝑏𝑞 −
𝑞
∑
𝑗=1

𝛤𝜇𝑐𝑏𝑗𝑇 𝑎1⋯𝑎𝑝 𝑏1⋯𝑐⋯𝑏𝑞 (8.12)

8.3.1. Bivector connections on multivector bundles

Using the tools of geometric algebra, the covariant derivative associated
with a metric–compatible connection may be expressed as a bivector–
valued form. This representation has the advantage that it is indepen-
dent of the kind of multivector object being differentiated. (In stark con-
trast to eq. (8.12) for a general tensor, for example.)

To derive the bivector connection, begin with the covariant derivative
of a vector 𝑿 ∈ 𝒢1(𝒱 , 𝜂),

∇𝜇𝑿 = (𝜕𝜇𝑋 𝑎 + 𝛤𝜇𝑎𝑏𝑋 𝑏)𝒆𝑎.

Rewrite the non-derivative term as

𝛤𝜇𝑎𝑏 𝒆𝑎𝑋 𝑏 = 𝛤𝜇𝑎𝑏 𝒆𝑎(𝒆𝑏 • 𝑿)
= 1

2𝛤𝜇𝑎𝑏 (𝒆
𝑎(𝒆𝑏 • 𝑿) − (𝑿 • 𝒆𝑎)𝒆𝑏)

using the fact that 𝛤𝜇𝑎𝑏 = −𝛤𝜇𝑏𝑎 for a metric compatible connection, and
that 𝒆𝑎 •𝑿 = 𝑿 •𝒆𝑎 is a scalar commuting with 𝒆𝑏. Then, since for vectors
the inner product is 𝑿 • 𝒀 = 1

2(𝑿𝒀 + 𝒀𝑿), this is
1
4𝛤𝜇𝑎𝑏 (𝒆

𝑎𝒆𝑏𝑿 + 𝒆𝑎𝑿𝒆𝑏 − 𝑿𝒆𝑎𝒆𝑏 − 𝒆𝑎𝑿𝒆𝑏) = 1
4𝛤𝜇𝑎𝑏 (𝒆

𝑎𝒆𝑏𝑿 − 𝑿𝒆𝑎𝒆𝑏).

In the right-hand side, the scalar parts from the products between 𝒆𝑎 and
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𝒆𝑏 cancel, leaving a commutator product of the bivector 𝒆𝑎 ∧ 𝒆𝑏 with 𝑿 ,

1
2𝛤𝜇𝑎𝑏 (𝒆

𝑎 ∧ 𝒆𝑏) × 𝑿 = 𝜔𝜇 × 𝑿,

where we define the connection bivectors in the basis {𝒆𝑎} by

𝜔𝜇 ≔ 1
2𝛤𝜇𝑎𝑏 𝒆

𝑎 ∧ 𝒆𝑏.

Thus, we may write the covariant derivative of 𝑿 as

∇𝜇𝑿 = 𝜕𝜇𝑿 + 𝜔𝜇 × 𝑿, (8.13)

and define the connection bivector 1-form ∼𝜔 by ∼𝜔(𝒖) ≡ 𝜔𝒖 ≔ 𝑢𝑎𝜔𝑎.

The connection bivector is especially useful because the form of eq. (8.13)
is in fact general to all multivectors.

Lemma 28. The covariant derivative of any multivector 𝐴 ∈ 𝒢(𝒱 , 𝜂) is

∼∇𝐴 = ∼d𝐴 + ∼𝜔 × 𝐴.

Proof. The covariant derivative is a derivation if the connection respects
the geometric product. Therefore, the covariant derivative of a product
of 𝑘-many vectors is

∼∇(𝒖1⋯𝒖𝑘) =
𝑘
∑
𝑖=1

𝒖1⋯(∼d𝒖𝑖 + ∼𝜔 × 𝒖𝑖)⋯ 𝒖𝑘

= ∼d(𝒖1⋯𝒖𝑘) + ∼𝜔 × (𝒖1⋯𝒖𝑘),

using eq. (8.13) and the fact that commutation by a bivector is a deriva-
tion (lemma 16). Since all multivectors are linear combinations of prod-
ucts of vectors, the general result follows.

A rapid alternative derivation of lemma 28 starts from the observation
that parallel transport along a path may be written as

trans𝛾 𝐴 = 𝑅𝐴𝑅†,
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since any transformation continuously connected to the identity which
preserves the geometric product belongs to the rotor group, Spin+ (see
section 3.4). Any such rotor is of the form 𝑅 = 𝑒𝜎/2 for a bivector 𝜎 , so
we have

d
d𝜆 trans

𝛾 (𝜆←0)
𝐴 = 1

2𝑅(𝜎𝐴 − 𝐴𝜎)𝑅†

where 𝜎 = 𝜎(𝜆) and hence 𝑅 are functions of the path parameter. At
𝜆 = 0, the rotor is trivial, so by corollary 3 we find

d
d𝜆 trans

𝛾 (𝜆←0)
𝐴 |

𝜆=0
= −𝛤 ̇𝜸(0)(𝐴) = 𝜎(0) × 𝐴.

Thus, the horizontal lift is given by commutation with a specified bivec-
tor. Since this holds for arbitrary multivectors 𝐴, by lemma 25 we have
the universally applicable formula for the covariant derivative of a mul-
tivector

∇𝒖𝐴 = 𝜕𝒖𝐴 + 𝜔𝒖 × 𝐴

where 𝜔𝒖 is the required bivector.
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Chapter 9.

Curvature and Integrability

Given a connection on a fibre bundle, values in the bulk may be parallel
transported along a curve in the base manifold. If the curve is a closed
loop, then values are not necessarily mapped back onto themselves. The
action of parallel transport around a loop is known as its holonomy,
and its deviation from the identity operator measures the connection’s
curvature.

A connection is integrable if a bulk value may be parallel transported
to all other points in a self-consistent (i.e., path-independent) manner.
Curvature is then an obstruction to integrability. Therefore, the curva-
ture of a connection may be derived by finding the integrability condi-
tion of the parallel transport equations, which is most easily done via
Frobenius’ theorem [17, §6].

I. Tangent subbundles, integral manifolds and involutivity

A vector field may be integrated by finding integral curves which are
everywhere tangent to the vector field. This notion can be generalised to
higher-dimensional analogues of vector fields — objects which associate
to each point a vector subspace, instead of merely a vector.

Definition 40. A 𝑘-dimensional tangent subbundle𝒟 ⊆ Tℳ is a vector
bundle ℝ𝑘 ↪ 𝒟 ↠ ℳ where each fibre 𝒟|𝑥 ≅ ℝ𝑘 is a 𝑘-dimensional
subspace of T𝑥 ℳ.
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Definition 41. A submanifoldℐ ⊆ ℳ is called an integral manifold of
a tangent subbundle 𝒟 if T𝑥 ℐ ⊆ 𝒟|𝑥 for all 𝑥 ∈ ℐ . The subbundle 𝒟 is
called integrable if there exist integral manifolds through each point.

In the trivial case, an integral curve of a vector field 𝒖 is a 1-dimensional
integral manifold of the 1-dimensional tangent subbundle described by
𝒖. For an example in higher dimensions, any embedded submanifold is a
maximal integral manifold of its own tangent space viewed as a tangent
subbundle of the ambient space.

An integral manifold is maximal if T𝑥 ℐ = 𝒟|𝑥 , meaning the mani-
fold dimension ofℐ is the dimension of𝒟 . Indeed, any tangent subbun-
dle admits 1-dimensional integral curves, but is notmaximally integrable
in general. The existence of maximal integral surfaces requires a special
property known as involutivity.

Definition 42. A tangent subbundle 𝒟 is involutive if [𝒟 ,𝒟] ⊆ 𝒟 .
That is, if for any two sections 𝒖, 𝒗 ∈ Γ(𝒟) in the subbundle, their Lie
bracket [𝒖, 𝒗] ∈ Γ(𝒟) also lies in the subbundle.

II. Frobenius’ theorem: for tangent subbundles and forms

The importance of involutivity as the integrability condition for a tan-
gent subbundle is the content of Frobenius’ theorem:

Theorem 5 (Frobenius’).Proofs of Frobenius’
theorem: [25, §19], [20, §2]

If 𝒟 is a tangent subbundle, then

𝒟 is integrable ⟺ 𝒟 is involutive.

Frobenius’ theorem can be dualised into a statement involving exte-
rior forms instead of vector subbundles, which can be more useful for
calculation. This stems from the observation that a vector subspace
𝑈 ⊆ 𝑉 may be represented by the subspace 𝛺 of dual vectors with 𝑈
contained in their kernels,

𝛺 = {𝜔 ∈ 𝑉 ∗ | 𝜔(𝒖) = 0, ∀𝒖 ∈ 𝑈 } ⊆ 𝑉 ∗.
The original subspace 𝑈 is recovered as 𝑈 = ⋂𝜔∈𝛺 ker𝜔.
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Definition 43. The dual representation 𝐼 of a tangent subbundle 𝒟 is the
ideal 70 generated by the 1-form annihilators of 𝒟 , 70 Recall from definition 3

that an ideal (of forms) is
closed under addition and
satisfies 𝛼 ∧ 𝜔 ∈ 𝐼
whenever 𝜔 ∈ 𝐼 , for any 𝛼 .

𝐼 = {{∼𝜔 ∈ Ω1(ℳ) | 𝜔(𝒖) = 0, ∀𝒖 ∈ Γ(𝒟)}}.

The following lemma shows how the condition that ℐ is an integral
manifold translates between tangent subbundles and ideals. The pullback 𝑓 ∗

∼𝜔 of a
form by a map 𝑓 is defined
by (𝑓 ∗

∼𝜔)(𝒖1 ⊗⋯ ⊗ 𝒖𝑘) =
∼𝜔(d𝑓 (𝒖1) ⊗ ⋯ ⊗ d𝑓 (𝒖𝑘)).Lemma 29. Let 𝒟 be a tangent subbundle and 𝐼 is its associated ideal.

Suppose ℐ is a submanifold with the inclusion map 𝜄 ∶ ℐ → ℳ. Then,

𝒟|𝑝 = T𝑝 ℐ ⟺ ℐ is an integral manifold ⟺ 𝜄∗𝐼 = 0.

Proof. The first equivalence is by definition, included for readability. For
the second equivalence, assume ℐ is an integral manifold. Then, if 𝒖 ∈
Tℐ then the inclusion d𝜄(𝒖) ∈ 𝒟 lies in the tangent subbundle. Suppose
𝜔 ∈ 𝐼 so that 𝜔(𝒗) = 0 for all 𝒗 ∈ 𝒟 . The restriction of 𝜔 to ℐ via the
pullback 𝜄∗𝜔 is identically zero, because

(𝜄∗𝜔)(𝒖) ≡ 𝜔(d𝜄(𝒖)) = 0.
Since 𝒖 and 𝜔 ∈ 𝐼 are arbitrary, we write 𝜄∗𝐼 = 0.

We can also translate the involutivity condition from tangent subbun-
dles to ideals.

Theorem 6. If 𝒟 ⊆ Tℳ is a tangent subbundle and 𝐼 ⊆ Ω1(ℳ) is its
associated ideal, then

[𝒟 ,𝒟] ⊆ 𝒟 ⟺ 𝒟 is involutive ⟺ d𝐼 ⊆ 𝐼 .

Proof. The first equivalence is by definition, included for readability. For
the second, note that the ideal 𝐼 is generated by 1-forms 𝜔 which vanish
on 𝒟 . That is, 𝜔(𝒖) = 0 for all 𝒖 ∈ Γ(𝒟), so if 𝒖, 𝒗 ∈ Γ(𝒟) then

d𝜔(𝒖, 𝒗) = 𝒖(𝜔(𝒗)) − 𝒗(𝜔(𝒖)) − 𝜔([𝒖, 𝒗])
= −𝜔([𝒖, 𝒗]),

since 𝜔(𝒖) = 𝜔(𝒗) = 0. If 𝒟 is involutive then [𝒖, 𝒗] ∈ Γ(𝒟) and
d𝜔(𝒖, 𝒗) = 0. Thus, d𝜔 ∈ 𝐼 if and only if 𝒟 is involutive.
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Hence, by theorems 5 and 6, a tangent subbundle admits maximal in-
tegral surfaces if and only if its associated ideal 𝐼 is closed under exterior
differentiation, d𝐼 ⊆ 𝐼 .

Fig. 9.1.: “Ascending and
Descending” by M. C.

Escher, 1960 — perhaps the
most famous illustration of

an inexact 2-form (the
slope of the stairs) and its
inconsistent ‘integral’ (the

impossible staircase).

Stokes’ theorem 8 states that a differential form 𝜑 is integrable if it
is exact (i.e., if 𝜑 = d𝜙). On a contractible domain, this is equivalent
to 𝜑 being closed, by Poincaré’s lemma. In the same vein, theorem 6
states that an exterior differential system is integrable over a contractible
domain if and only if its associated ideal is closed.

9.0.1. Curvature as an obstruction to integrability

We may employ Frobenius’ theorem to find the integrability condition
for the connection on a vector bundle 𝑉 ↪ 𝒱 ↠ ℳ. A linear Ehres-
mann connection 𝐻 is integrable if there exist maximal integral man-
ifolds 𝑓 ∈ Γ(ℱ ) which are everywhere horizontal, T𝑝 𝑓 = 𝐻𝑝 . This
means that∇𝑓 = 0 everywhere, that parallel transport is path-independent,
and that loop holonomy is always trivial.

Elaborating the condition ∇𝑓 = 0, we have

∇𝒖𝑋 = 𝒖(𝑋) + 𝛤(𝒖)𝑋 = 0 or 𝜕𝜇𝑋 𝑎 = −𝛤𝜇𝑎𝑏𝑋 𝑏 (9.1)

everywhere for all 𝒖 ∈ Tℳ. These equations describe the tangent sub-
bundle 𝐻 . To express this, introduce coordinates {𝑥𝜇} of ℳ and linear
coordinates {𝑥𝑎} of 𝑉 with respect to some basis. A point 𝑋 ∈ 𝒱 is a
base point 𝜋(𝑋) ≡ (𝑋 𝜇) ∈ ℳ together with a fibre value (𝑋 𝑎) ∈ 𝑉 ,
having total coordinates 𝑋 = (𝑋 𝜇 , 𝑋 𝑎). Similarly, a vector in T𝑋 𝒱 has
components 𝛿𝑋 = (𝛿𝑋 𝜇 , 𝛿𝑋 𝑎).

Such a vector 𝛿𝑋 ∈ T𝑋 𝒱 satisfies eq. (9.1) if 𝛿𝑋 𝑎/𝛿𝑋 𝜇 = −𝛤𝜇𝑎𝑏𝑋 𝑏,
and hence the Ehresmann connection may be expressed as

𝐻𝑋 = span{(𝛿𝑋 𝜇 , −𝛤𝜇𝑎𝑏𝑋 𝑏𝛿𝑋 𝜇) | (𝛿𝑋 𝜇) ∈ T𝑋 ℳ} (9.2)

for each 𝑋 ∈ 𝒱 . Geometrically, this describes the change in vector com-
ponents 𝛿𝑋 𝑎 induced by a nudge in the base point 𝛿𝑋 𝜇 if𝑋 is constrained
to move along 𝐻 .
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To employ Frobenius’ theorem, we will find a dual representation of
eq. (9.2) in terms of forms. Any 𝑋 ∈ 𝐻 is of the form

𝑋 = 𝛿𝑋 𝜇(𝝏𝜇 − 𝛤𝜇𝑎𝑏𝑋 𝑏𝝏𝑎).

If 𝐼 is the ideal associated to 𝐻 , then any 1-form ∼𝜔 ∈ 𝐼 satisfies

∼𝜔(𝑋) = 𝛿𝑋 𝜇(𝜔𝜇 − 𝛤𝜇𝑎𝑏𝑋 𝑏𝜔𝑎) = 0

where 𝜔𝐴 ≔ ∼𝜔(𝝏𝐴), implying 𝜔𝜇 = 𝛤𝜇𝑎𝑏𝑋 𝑏𝜔𝑎 at 𝑋 . Written in the
coordinate dual basis { ∼d𝑋 𝜇 , ∼d𝑋 𝑎} ⊂ T∗𝒱 ,

∼𝜔 = 𝜔𝑎( ∼d𝑋 𝑎 + 𝛤𝜇𝑎𝑏𝑋 𝑏
∼d𝑋 𝜇) (9.3)

where 𝜔𝑎 are free scalar parameters. (We use ‘∼ ’ to label differential
forms for clarity.) Since eq. (9.3) is a general 1-form of the ideal 𝐼 , we
can see that 𝐼 is generated by the 1-forms

∼𝛺𝑎 = ∼d𝑋 𝑎 + ∼𝛤 𝑎𝑏𝑋 𝑏, (9.4)

where we define the connection 1-forms ∼𝛤 𝑎𝑏 ≔ 𝛤𝜇𝑎𝑏 ∼d𝑋 𝜇 .

The dual formulation of Frobenius’ theorem (theorem 6) states that
the tangent subbundle 𝐻 is involutive if and only if the ideal 𝐼 is closed.
This means that d∼𝛺𝑎 ∈ d𝐼 for every generator, which is equivalent to the
condition d∼𝛺𝑎 = ∼𝛼𝑎 ∧ ∼𝛺𝑎 for arbitrary ‘component 1-forms’ ∼𝛼𝑎. By direct
calculation,

d∼𝛺𝑎 = ∼d2𝑋 𝑎 + d∼𝛤 𝑎𝑏𝑋 𝑏 − ∼𝛤 𝑎𝑏 ∧ ∼d𝑋 𝑏

= (d∼𝛤 𝑎𝑏 + ∼𝛤 𝑎𝑐 ∧ ∼𝛤 𝑐𝑏)𝑋 𝑏 − ∼𝛤 𝑎𝑏 ∧ ∼𝛺𝑎

where we substitute eq. (9.4) on the second line. Therefore, d∼𝛺𝑎 ∈ 𝐼 if
and only if the residual term, called the connection 2-form

∼𝑅𝑎𝑏 ≔ d∼𝛤 𝑎𝑏 + ∼𝛤 𝑎𝑐 ∧ ∼𝛤 𝑐𝑏, (9.5)

vanishes. These ∼𝑅𝑎𝑏 measure the obstruction to integrability of the co-
variant derivative, and are identified as the primary object describing
the connection’s curvature.
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9.1. Stokes’ Theorem for Curvature 2-forms

Another way of showing that parallel transport is path-independent if
and only if the curvature (9.5) vanishes is by relating the holonomy of a
loop to the curvature across a surface bounded by the loop.

9.1.1. Path-ordered exponentiation

An initial value problem of the form

d𝑈 (𝑡)
d𝑡 = 𝐴(𝑡)𝑈 (𝑡) (9.6)

with 𝑈 (0) given has the solution

𝑈 (𝑡) = 𝑒∫
𝑡
0 𝑑𝜏𝐴(𝜏) 𝑈 (0)

provided that 𝐴(𝑡) commutes with itself at all other times, [𝐴(𝑡), 𝐴(𝑠)] =
0. If 𝐴(𝑡) is not necessarily commutative, then the solution may still be
written formally in the following way.

By a first-order Taylor expansion, the value after an infinitesimal time-
step 𝑑𝑡 step is

𝑈 (𝑑𝑡) = 𝑈 (0) + 𝜕𝑡𝑈 (0)𝑑𝑡 = (1 + 𝐴(0)𝑑𝑡)𝑈 (0) = 𝑒𝐴(0)𝑑𝑡 𝑈 (0).
The value at a finite time 𝑡 is then recovered by composing steps as above,
forming the path-ordered exponential

𝑈 (𝑡)𝑈−1(0) = ←
P𝜏 exp

𝑡

∫
0
𝑑𝜏𝐴(𝜏) ≔ lim𝑑𝑡→0

𝑡←0
∏
𝑡𝑖

𝑒𝐴(𝑡𝑖)𝑑𝑡 ,

where the product ∏𝑡←0
𝑡𝑖 is over values 𝑡 ≥ 𝑡𝑖 ≥ 0 in steps of 𝑑𝑡 where

each exponential factor appears right-to-left in order of increasing 𝑡𝑖.

From the observation that 𝜕𝑡(𝑈 (𝑡)𝑈−1(𝑡)) = 0 we obtain the ‘inverse’
of the original differential equation,

𝜕𝑡𝑈 (𝑡)−1 = −𝑈 (𝑡)−1𝐴(𝑡), (9.7)
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9.1. Stokes’ Theorem for Curvature 2-forms

which is identical to (9.6) only transposed and substituting 𝑈 (𝑡)𝑇 ↦
𝑈(𝑡)−1 and 𝐴(𝑡)𝑇 ↦ −𝐴(𝑡). Hence, (9.7) has solution

𝑈 (𝑡)−1 = 𝑈 (0)−1→
P𝜏 exp

𝑡

∫
0
𝑑𝜏(−𝐴(𝜏))

= 𝑈 (0)−1←
P𝜏 exp

0

∫
𝑡
𝑑𝜏𝐴(𝜏).

Hence, the left-to-right ordered exponential
→
P exp is the same as a right-

to-left
←
P exp if the endpoints 0 ↔ 𝑡 are swapped and the integrand 𝑑𝜏 ↦

−𝑑𝜏 flips sign.

I. The transport operator as a path-ordered exponential

The transport operator satisfies the differential equation (8.3), which for
a linear connection is of the form (9.6). Therefore, using the initial data
trans𝛾 (0←0) = id, eq. (8.3) may be solved explicitly by

trans
𝛾 (𝑠←0)

= ←
P exp∫

𝛾
(−∼𝛤) =

→
P exp

0

∫
𝑠
𝑑𝑠 ∼𝛤 ̇𝜸(𝒔).

9.1.2. Surface-ordered exponentiation

Theorem 7 (Stokes theorem for curvature 2-forms). Let 𝛾 ∶ [0, 1] → ℳ
be a contractable loop with start and end point 𝑝. Let ℎ𝜆 be a contraction
homotopywith 𝜆 ∈ [0, 1] so that ℎ0(𝑥) = 𝑝 and ℎ1(𝑥) = 𝑥 . Define 𝜉 (𝜆, 𝑠) ≔
ℎ𝜆(𝛾 (𝑠)) as the surface swept out by 𝛾 under the contraction.

Let ∼𝛤 be a connection 1-form and let 𝑈 (𝜆, 𝑠) ≔ trans𝜉 (𝜆,𝑠←0) be the group
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element resulting from parallel transport along the path 𝜉 (𝜆, 𝑠 ← 0). Then,

trans𝛾 = ←
P𝑠 exp∫

𝛾
(−∼𝛤)

= →
P𝜆 exp

1

∫
0
𝑑𝜆

1

∫
0
𝑑𝑠 𝑈−1

∼𝑅(𝜕𝑠𝜉 , 𝜕𝜆𝜉 ) 𝑈 ,

where ∼𝑅 = d∼𝛤 + ∼𝛤 ∧ ∼𝛤 is the curvature 2-form. Note that 𝑈 ≡ 𝑈 (𝜆, 𝑠) and
𝜉 ≡ 𝜉 (𝜆, 𝑠).𝜉 (𝜆, 𝑠)𝑝 𝛾 (𝑠)

𝛾 = 𝛾(1 ← 0)

𝜉 (𝜆, 𝑠 ← 0)

Fig. 9.2.: The curve 𝛾 and
the surface of homotopy 𝜉 .
The bold curve represents
the portion of ℎ𝜆 ∘ 𝛾 from

parameter value 0 to 𝑠.

Proof. Define the abbreviations

𝛤𝜆 ≔ ∼𝛤(𝜕𝜆𝜉 ) and 𝛤𝑠 ≔ ∼𝛤(𝜕𝑠𝜉 ),
noting that 𝜆 and 𝑠 are not indices. In full component form, these would
be written, e.g.,

(𝛤𝜆)𝑎𝑏 |𝜉 (𝜆,𝑠) = 𝛤𝜇𝑎𝑏 |𝜉 (𝜆,𝑠)
𝜕𝜉 𝜇(𝜆, 𝑠)

𝜕𝜆 .
From corollary 3, we have

𝜕𝑈 (𝜆, 𝑠)
𝜕𝑠 |

𝑠=0
= d

d𝑠 trans
𝜉 (𝜆,𝑠←0)

|
𝑠=0

= −∼𝛤(𝜕𝑠𝜉 )

where 𝜉 ≡ 𝜉 (𝜆, 𝑠), which implies

𝜕𝑠𝑈 = −𝛤𝑠 𝑈 and 𝜕𝑠𝑈−1 = 𝑈−1𝛤𝑠
where 𝑈 ≡ 𝑈 (𝜆, 𝑠). From these two relations it follows easily that

𝜕𝑠(𝑈−1𝜕𝜆𝑈 ) = 𝑈−1(𝛤𝑠𝜕𝜆𝑈 + 𝜕𝜆𝜕𝑠𝑈 ) = −𝑈−1(𝜕𝜆𝛤𝑠) 𝑈
and 𝜕𝑠(𝑈−1𝛤𝜆𝑈 ) = 𝑈−1(𝛤𝑠𝛤𝜆 + 𝜕𝑠𝛤𝜆 − 𝛤𝜆𝛤𝑠)𝑈 .

The sum of the two equations above is

𝜕𝑠(𝑈−1(𝜕𝜆 + 𝛤𝜆)𝑈 ) = 𝑈−1(𝜕𝑠𝛤𝜆 + 𝛤𝑠𝛤𝜆 − (𝑠 ↔ 𝜆)) 𝑈 .
Note that 𝜕𝑠𝛤𝜆 = 𝜕𝑠(𝛤𝜇(𝜕𝜆𝜉 )) = (𝜕𝑠𝛤𝜇)𝜕𝜇𝜉 𝜇 + 𝛤𝜇 𝜕𝑠𝜕𝜆𝜉 𝜇 and similarly for
𝜕𝜆𝛤𝑠 , so that mixed partial derivatives cancel, leaving

𝜕𝑠𝛤𝜆 − 𝜕𝜆𝛤𝑠 = (𝜕𝑠∼𝛤)(𝜕𝜆𝜉 ) − (𝜕𝜆∼𝛤)(𝜕𝑠𝜉 ).
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Putting this together, we have

𝜕𝑠(𝑈−1(𝜕𝜆 + 𝛤𝜆)𝑈 ) = 𝑈−1((𝜕𝑠∼𝛤)(𝜕𝜆𝜉 ) + ∼𝛤(𝜕𝑠𝜉 )∼𝛤(𝜕𝜆𝜉 ) − (𝑠 ↔ 𝜆)) 𝑈
= 𝑈−1(d∼𝛤 + ∼𝛤 ∧ ∼𝛤)(𝜕𝑠𝜉 , 𝜕𝜆𝜉 ) 𝑈
= 𝑈−1

∼𝑅(𝜕𝑠𝜉 , 𝜕𝜆𝜉 ) 𝑈 . (9.8)

Recall that 𝑈 and 𝑈−1 are the group elements which parallel transport
vectors along 𝜉 (𝜆, 𝑠 ← 0) and back again, respectively. Also, note that ∼𝑅
is a 𝔤𝔩(𝒱 )-valued 2-form, which acts to infinitesimally transform vectors
in𝒱 . With these inmind, it is clear that eq. (9.8) is an infinitesimal linear
map from the fibre 𝒱𝑝 to itself.71 Thus, it is well-defined to integrate 71 Imagine the right-hand

side of eq. (9.8) acting on a
vector 𝑋 . First, 𝑋 is
transported by 𝑈 from
𝜉 (𝜆, 0) = 𝑝 to 𝜉 (𝜆, 𝑠), then
transformed
infinitesimally by ∼𝑅, and
finally transported back to
the fibre at 𝑝 by 𝑈 −1.

eq. (9.8) with respect to 𝑠, to obtain a finite linear transformation on 𝒱𝑝 .

Integrating the left-hand side of eq. (9.8) yields

1

∫
0
𝑑𝑠 𝑈−1(𝜆, 1)(𝜕𝜆 + 𝛤𝜆)𝑈 (𝜆, 1) = 𝑈−1(𝜆, 1)𝜕𝜆𝑈 (𝜆, 1) (9.9)

since 𝛤𝜆 = ∼𝛤(𝜕𝜆𝜉 (𝜆, 𝑠)) vanishes at 𝑠 ∈ {0, 1} because 𝜉 (𝜆, 0) = 𝜉 (𝜆, 1) = 𝑝
is constant. Thus, integrating both sides yields

𝑈−1(𝜆, 1)𝜕𝜆𝑈 (𝜆, 1) =
1

∫
0
𝑑𝑠 𝑈−1

∼𝑅(𝜕𝑠𝜉 , 𝜕𝜆𝜉 ) 𝑈 .

This is an initial value problem of the form 𝜕𝜆𝑈 (𝜆, 1) = 𝑈 (𝜆, 1)𝐴(𝜆),
whose solution at 𝜆 = 1 may be given as the path-ordered exponential

𝑈 (1, 1) = 𝑈 (1, 0)→P exp

1

∫
0
𝑑𝜆 𝐴(𝜆)

where 𝐴(𝜆) is the right-hand side of eq. (9.9). Since 𝑈 (1, 1) = trans𝛾 and
𝑈 (1, 0) = id, this shows the right-hand side of the theorem.

Corollary 4. Parallel transport is path-independent if and only if curvature
vanishes everywhere.
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Proof. If the curvature vanishes everywhere, then by theorem 7 the holon-
omy around any loop is trivial, implying the transport operator between
two fixed points is path-independent.

Conversely, if parallel transport is path-independent, then the trans-
port operator around any loop 𝛾 is the identity. By theorem 7, this im-
plies that the total curvature on a surface bounded by 𝛾 is zero. But
since the surface and loop are arbitrary, the curvature must vanish ev-
erywhere.

Theorem 7 doesn’t only apply to parallel transport on a tangent bun-
dle; the connection ∼𝛤 may be on any abstract vector bundle. For ex-
ample, in gauge theories, matter fields (or fermions, after quantisation)
are (more or less) represented as sections of a complex vector bundle
equipped with a connection ∼𝐴. The degrees of freedom in the connec-
tion coefficients 𝐴𝜇𝑎𝑏 also enter into the equations of motion, and repre-
sent force carriers (or bosons).Quantum electrodynamics

(QED) describes electrons
as quanta in a fermion
bundle, and photons as
quanta of the Abelian

connection 𝐴𝜇 ∈ C.
Quantum chromodynamics

(QCD) describes quarks
with a fermion bundle, and
gluons with a non-Abelian
connection 𝐴𝜇𝑎𝑏 ∈ 𝔰𝔲(3).

In this context, the trace of the holonomy
of the connection ∼𝐴 is known as a Wilson loop. In physicists’ notation,
theorem 7 then gives a non-Abelian Stokes’ theorem

𝑊[𝛾] = tr (P𝑒𝑖𝜆 ∫
1
0 𝑑𝑡 𝐴𝜇(𝑥(𝑡)) d𝑥

𝜇(𝑡)
d𝑡 )

= tr (P𝑒𝑖𝜆 ∫
1
0 𝑑𝑡 ∫

1
0 𝑑𝑠 𝑤(𝑥) 𝐹𝜇𝜈 (𝑥(𝑠,𝑡)) 𝑤−1(𝑥) 𝜕𝑥𝜇(𝑠,𝑡)𝜕𝑠

𝜕𝑥𝜈 (𝑠,𝑡)
𝜕𝑡 )

relating the Wilson loop 𝑊[𝛾] to the gauge field strength 𝐹𝜇𝜈 over the
enclosed surface [45].
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Conclusions

The focal result of part I was the discovery of a relatively simple BCHD
formula for Lorentz transformations (indeed, for proper orthogonal trans-
formations in any space of dimension at most four) [12]. The key to this
was the rotor formalism, where transformations Λ(𝒖) = 𝑅𝒖𝑅† are rep-
resented by rotors in the double covering spin group. This allows for a
more elegant ‘arithmetic of rotations’ via the geometric algebra. In the
case of (1 + 3)-dimensional spacetime, the algebra’s linear representa-
tion by complex 2×2matrices makes the formula easy to use implement
numerically.

The BCHD formula is also useful algebraically; in section 5.2.1 it was
used to directly derive the Wigner angle of the rotation resulting from
the composition of Lorentz boosts. This is facilitated by the space-time
split, whereby Lorentz boosts are generated by spacelike vectors and
rotations by spacelike bivectors — objects with clear geometric meaning
which are easy to work with.

Expanding the scope to include curved spaces in part II, the geometric
algebra is used to rewrite the Lie and covariant derivatives in invariant,
basis-free ways. Like Cartan’s formula (7.5) for differential forms, the
Lie derivative admits a formula £𝒖𝐴 = [𝒖, 𝐴] = 𝜕𝒖𝐴 + (𝐴 ⌋ 𝝏) ∧ 𝒖 for
multivectors of any grade. Similarly, the covariant derivative of a multi-
vector has the invariant form ∼∇𝐴 = ∼d𝐴+ ∼𝜔 ×𝐴when expressed in terms
of the connection bivector 1-form.

Finally, the curvature 2-form is exposited in two interesting ways: as
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an obstruction to integrability, and as the surface-ordered integrand ap-
pearing in theorem 7. Sections on a manifold can be integrated over
manifolds by parallel transporting values to a common fibre — but in the
presence of curvature, this is only possible along 1-dimensional curves.
The path-dependence of parallel transport induced by curvature means
a ‘surface ordering’ is needed to integrate sections over surfaces. A spe-
cial case of this the Stokes-like theorem for curvature 2-forms, adapted
from [46], which relates the curvature over a surface to the holonomy
around its boundary.
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Appendix A.

Integral Theorems

A.1. Stokes’ theorem for exterior calculus

Theorem 8 (Stokes’ theorem inR𝑛). If𝑅 ⊆ R𝑛 is a compact 𝑘-dimensional
hypersurface with boundary 𝜕𝑅, then a smooth differential form𝜔 ∈ Ω𝑘−1(𝑅)
satisfies

∫
𝑅

d𝜔 = ∫
𝜕𝑅

𝜔. (A.1)

Proof. Since 𝑅 is a 𝑘-dimensional region with boundary, every point 𝑥 ∈
𝑅 has a neighbourhood diffeomorphic to a neighbourhood of the origin
in either R𝑘 or 𝐻 𝑘 ≔ [0,∞) ⊕ R𝑘−1, depending on whether 𝑥 is an
interior point or a boundary point, respectively. 𝑅

R𝑘

𝐻 𝑘

𝑈𝑖

ℎ𝑖

ℎ𝑗

𝑈𝑗

Fig. A.1.: Neighbourhoods
in 𝑅 are diffeomorphic
either to interior balls or
boundary half-balls.

Let {𝑈𝑖} be a cover of 𝑅 consisting of such neighbourhoods. Since 𝑅
is compact, we may assume ⋃𝑁

𝑖=1{𝑈𝑖} = 𝑅 to be a finite covering. Thus,
we have finitely many maps ℎ𝑖 ∶ 𝑈𝑖 → 𝑋 where 𝑋 is either R𝑘 or the
half-space 𝐻 𝑘 , where 𝑈𝑖 ≅ ℎ𝑖(𝑈𝑖) are diffeomorphic (see fig. A.1).

Finally, let {𝜙𝑖 ∶ 𝑅 → [0, 1]} be a partition of unity subordinate to {𝑈𝑖},
so that {𝑥 ∈ 𝑅 | 𝜙𝑖(𝑥) > 0} ⊆ 𝑈𝑖 and 𝜔 = ∑𝑁

𝑖=1 𝜙𝑖𝜔. We need only prove the
equality (A.1) for each 𝜔𝑖 ≔ 𝜙𝑖𝜔, and the full result follows be linearity.

The form ℎ∗𝑖 𝜔𝑖 ∈ Ω𝑘−1(𝑋) can be written with respect to canonical
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coordinates of 𝑋 as

ℎ∗𝑖 𝜔𝑖 =
𝑘
∑
𝑗=1

𝑓𝑗(−1)𝑗−1d𝑥1⋯ ̂𝑗⋯𝑘

using the multi-index notation d𝑥 𝑖1⋯𝑖𝑘 ≡ d𝑥 𝑖1 ∧ ⋯ ∧ d𝑥 𝑖𝑘 , where the hat
denotes an omitted term. The factor of (−1)𝑗−1 gives the (𝑘 − 1)-form
the boundary orientation induced by the volume form d𝑥1⋯𝑘 for conve-
nience. Since pullbacks commute with d,

ℎ∗d𝜔𝑖 = d(ℎ∗𝑖 𝜔𝑖) =
𝑘
∑
𝑗=1

𝜕𝑓𝑗
𝜕𝑥 𝑗 d𝑥

1⋯𝑛.

There are then two cases to consider.

• Interior case. If ℎ𝑖 ∶ 𝑈𝑖 → R𝑘 , then the right-hand side of eq. (A.1)
vanishes because 𝜔𝑖 is zero outside the neighbourhood 𝑈𝑖 ⊂ 𝑅
which nowhere meets the boundary 𝜕𝑅.

∫
𝜕𝑅

𝜔𝑖 = ∫
𝜕𝑈𝑖

𝜔𝑖 = ∫
∅
𝜔𝑖 = 0

The left-hand side evaluates to

∫
𝑅

d𝜔𝑖 = ∫
𝑋

d(ℎ∗𝑖 𝜔𝑖) = ∫
R𝑘

𝑘
∑
𝑗=1

𝜕𝑓𝑗
𝜕𝑥 𝑗 d𝑥

1⋯𝑛

=
+∞

∫
−∞

⋯
+∞

∫
−∞⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑘

𝑘
∑
𝑗=1

𝜕𝑓𝑗
𝜕𝑥 𝑗 𝑑𝑥

1⋯𝑑𝑥𝑘

=
+∞

∫
−∞

⋯
+∞

∫
−∞⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑘−1

𝑘
∑
𝑗=1

𝑓𝑗 |
+∞

𝑥 𝑗=−∞
(−1)𝑗−1𝑑𝑥1⋯𝑑𝑥 𝑗 ⋯𝑑𝑥𝑘 = 0,

which vanishes because ℎ∗𝑖 𝜔𝑖, and hence the 𝑓𝑗 , vanish outside the
neighbourhood ℎ𝑖(𝑈𝑖) ⊂ R𝑘 .
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• Boundary case. If ℎ𝑖 ∶ 𝑈𝑖 → 𝐻 𝑘 , then the boundary 𝜕𝑈𝑖 ⊂ 𝜕𝑅 is
mapped onto the hyperplane 𝜕𝐻 𝑘 = {(0, 𝑥2, … , 𝑥𝑘) | 𝑥 𝑗 ∈ R}. Thus,
𝑑𝑥1 = 0 on this boundary, and the right-hand side of eq. (A.1)
becomes

∫
𝜕𝑅

𝜔𝑖 = ∫
𝜕𝑈𝑖

ℎ∗𝑖 𝜔𝑖 = − ∫
R𝑘−1

𝑓1𝑑𝑥2⋯𝑑𝑥𝑘

= −
+∞

∫
−∞

⋯
+∞

∫
−∞⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑘−1

𝑓1(0, 𝑥2, … , 𝑥𝑘)𝑑𝑥2⋯𝑑𝑥𝑘 .

The factor of−1 comes from the induced orientation of the bound-
ary 𝜕𝐻 𝑘 , which is outward-facing, so in the negative 𝑥1 direction.
For the left-hand side of eq. (A.1),

∫
𝑅

d𝜔𝑖 = ∫
𝐻 𝑘

ℎ∗𝑖 d𝜔𝑖 =
∞

∫
0

+∞

∫
−∞

⋯
+∞

∫
−∞

𝑘
∑
𝑗=1

𝜕𝑓𝑗
𝜕𝑥 𝑗 𝑑𝑥

1⋯𝑑𝑥𝑘

All terms
𝜕𝑓𝑗
𝜕𝑥 𝑗 𝑑𝑥 𝑗 in the sum for 𝑗 > 1 integrate to boundary terms

𝑥𝑗 → ±∞ where 𝑓𝑗 vanishes. This leaves the single term from the
integration of 𝑑𝑥1,

= −
+∞

∫
−∞

⋯
+∞

∫
−∞

𝑓1|
∞

𝑥1=0
𝑑𝑥2𝑘 ⋯ 𝑘𝑑𝑥 .

Thus, we have equality for all 𝜔𝑖, so

∫
𝑅

d𝜔 =
𝑁
∑
𝑖=1

∫
𝑅

d𝜔𝑖 =
𝑁
∑
𝑖=1

∫
𝜕𝑅

𝜔𝑖 = ∫
𝜕𝑅

𝜔

by linearity.
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A.2. Fundamental theorem of geometric
calculus

Theorem 9. Let 𝑓 (𝒙) be a multivector field. The vector derivative is

𝝏𝑓 (𝒙) = lim
|ℛ|→0

1
|ℛ|I ∮

𝜕ℛ
𝐝𝑆𝑓 ,

where ℛ is a volume containing 𝒙 with boundary 𝜕ℛ and volume |ℛ| =
∫ℛ 𝐝𝑉 . The limit is taken as the volumeℛ shrinks to the point 𝒙 .

Note that the integrand 𝐝𝑆𝑓 is the geometric product between the
hypersurface element and the field.

Proof. It will suffice to prove the case whereℛ is a box shape; arbitrary
regions can be approximated via tessellation in the limit of vanishing
voxel size.

Let 𝐵𝜀 = {𝑥 𝑖𝒆𝑖 | 𝑥 𝑖 ∈ [−𝜀, +𝜀]} denote the 𝑛-dimensional cube of diam-
eter 2𝜀 centred at the origin. If the surface 𝜕𝐵𝜀 is oriented outward,
then the face in the +𝒆𝑘 direction is orientated like the (𝑛 − 1)-blade
I𝒆𝑘 = (−1)𝑛−𝑘𝒆1 ∧⋯∧𝒆𝑘 ∧⋯∧𝒆𝑛. Upon this face the infinitesimal surface
element is

𝐝(𝑘)𝑥 = I𝒆𝑘𝑑𝑥1⋯𝑑𝑥𝑘 ⋯𝑑𝑥𝑛,
while the opposing face has surface element −𝐝(𝑘)𝑥 .

Consider the integral of 𝑓 over the surface 𝜕𝐵𝜀 , split into a sum of
𝑛 surface integrals over each pair of opposing faces. The 𝑘th pair are
the surfaces {𝑥 𝑖𝒆𝑖 ± 𝜀𝒆𝑘 | 𝑥 𝑖 ∈ [−𝜀, +𝜀], 𝑖 ≠ 𝑘}where 𝑖 sums over axes other
than 𝑘. Hence, we have

∮
𝜕𝐵𝜀

𝐝𝑆𝑓 =
𝑛
∑
𝑘=1

∫
[−𝜀,+𝜀]𝑛−1

𝐝(𝑘)𝑥 (𝑓 (𝑥 𝑖𝒆𝑖 + 𝜀𝒆𝑘) − 𝑓 (𝑥 𝑖𝒆𝑖 − 𝜀𝒆𝑘)), (𝑖 ≠ 𝑘).

By series expanding 𝑓 in each 𝑥 𝑖, and then in 𝜀, obtain
𝑓 (𝑥 𝑖𝒆𝑖 ± 𝜀𝒆𝑘) = 𝑓 (±𝜀𝒆𝑘) + 𝑥 𝑖𝜕𝒆𝑖(𝑓 (0) ± 𝜀𝜕𝒆𝑘𝑓 (0)).
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Since |𝑥 𝑖| ≤ 𝜀, the last term is 𝒪(𝜀2), and difference in the integrand is
hence

𝑓 (𝑥 𝑖𝒆𝑖 + 𝜀𝒆𝑘) − 𝑓 (𝑥 𝑖𝒆𝑖 − 𝜀𝒆𝑘) = 𝑓 (𝜀𝒆𝑘) − 𝑓 (−𝜀𝒆𝑘) + 𝒪(𝜀2)
= 2𝜀𝜕𝒆𝑘𝑓 (0) + 𝒪(𝜀2).

Therefore, after pulling constants outside the integrals, we have

∮
𝜕𝐵𝜀

𝐝𝑆𝑓 ≈
𝑛
∑
𝑘=1

2𝜀 𝜕𝒆𝑘𝑓 (0) ∫
[−𝜀,+𝜀]𝑛−1

𝐝(𝑘)𝑥

to order 𝒪(𝜀2). The integrands each evaluate to the area (2𝜀)𝑛−1, giving

∮
𝜕𝐵𝜀

𝐝𝑆𝑓 ≈ (2𝜀)𝑛I𝒆𝑘𝜕𝒆𝑘𝑓 (0) = |𝐵𝜀 |I 𝝏𝑓 (0),

to order 𝒪(𝜀2), which becomes exact in the limit,

𝝏𝑓 (0) = lim𝜀→0
1

|𝐵𝜀 |I ∮
𝜕𝐵𝜀

𝐝𝑆𝑓 . (A.2)

By translation, 𝑓 (𝒙) ↦ 𝑓 ′(𝒙) = 𝑓 (𝒙 − 𝒖), we obtain the integral form
of 𝝏𝑓 (𝒖) evaluated at an arbitrary position 𝒖.

Theorem 10. For an 𝑛-dimensional region ℛ with boundary 𝜕ℛ, and a
multivector field 𝑓 (𝒙),

∫
ℛ

𝐝𝑉 𝝏𝑓 = ∮
𝜕ℛ

𝐝𝑆𝑓 ,

where 𝐝𝑉 denotes an 𝑛-blade volume element, and 𝐝𝑆 an (𝑛 − 1)-blade
surface element, and where juxtoposition is the geometric product.

Proof. An arbitray volume ℛ with boundary 𝜕ℛ can be approximated
as tessellated boxes of arbitrily small size.72 Supposeℛ is approximated 72 It is not neccesary that

the surface area of the
approximation converge to
|𝜕ℛ|.

by a regular lattice of 𝑁 boxes of radius 𝜀. Consider the sum of 𝝏𝑓 over
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the lattice points, weighted by volume. From eq. (A.2) this can bewritten
in terms a sum of surface integrals,

𝑁
∑
𝑖=1

|𝐵𝑖|I 𝝏𝑓 (𝒙𝑖) =
𝑁
∑
𝑖=1

∮
𝜕𝐵𝑖

𝐝𝑆𝑓 .

Note that interior faces of the boxes come in oppositely-oriented pairs,
so that surface integrals over interior faces cancel. Therefore, the result
is obtained in the continuous limit 𝑁 → ∞.

122



Bibliography

[1] Klein, F. A comparative review of recent researches in geometry. Ameri-
can Math. Soc. Bulletin, 2(10):215–249 (1893). ISSN 0273-0979, 1088-9485.
doi:10.1090/s0002-9904-1893-00147-x.

[2] Lipschitz, R. Principes d’un calcul algébrique qui contient, comme espèces par-
ticulières, le calcul des quantités imaginaires et des quaternions : (extrait d’une
lettre adressée à M. Hermite). Gauthier-Villars (1880).

[3] Clifford, P. Applications of Grassmann’s extensive algebra. Am. J. Math.,
1(4):350 (1878). ISSN 0002-9327. doi:10.2307/2369379.

[4] Chappell, J. M., Iqbal, A., Hartnett, J. G. and Abbott, D. The vector algebra war:
A historical perspective. IEEE Access, 4:1997–2004 (2016). ISSN 2169-3536.
doi:10.1109/access.2016.2538262.

[5] Silberstein, L. Quaternionic form of relativity. The London, Edinburgh, and
Dublin Philosophical Magazine and Journal of Science, 23(137):790–809 (May
1912). ISSN 1941-5982, 1941-5990. doi:10.1080/14786440508637276.

[6] De Leo, S. Quaternions and special relativity. J. Math. Phys., 37(6):2955–2968
(Jun. 1996). ISSN 0022-2488, 1089-7658. doi:10.1063/1.531548.

[7] Dirac, P. Application of quaternions to Lorentz transformations. Proceedings
of the Royal Irish Academy. Section A: Mathematical and Physical Sciences,
50:261–270 (1944). ISSN 00358975.

[8] Berry, T. and Visser, M. Relativistic combination of non-collinear 3-velocities
using quaternions. Universe, 6(12):237 (Dec. 2020). ISSN 2218-1997.
doi:10.3390/universe6120237.

[9] Berry, T. and Visser, M. Lorentz boosts and Wigner rotations: Self-adjoint
complexified quaternions. Physics, 3(2):352–366 (May 2021). ISSN 2624-8174.
doi:10.3390/physics3020024.

[10] Altmann, S. L. Hamilton, Rodrigues, and the quaternion scandal.
Math. Mag., 62(5):291–308 (Dec. 1989). ISSN 0025-570X, 1930-0980.
doi:10.1080/0025570x.1989.11977459.

123

https://doi.org/10.1090/s0002-9904-1893-00147-x
https://doi.org/10.2307/2369379
https://doi.org/10.1109/access.2016.2538262
https://doi.org/10.1080/14786440508637276
https://doi.org/10.1063/1.531548
https://doi.org/10.3390/universe6120237
https://doi.org/10.3390/physics3020024
https://doi.org/10.1080/0025570x.1989.11977459


Bibliography

[11] Doran, C. and Lasenby, A. Geometric Algebra for Physicists. Cam-
bridge University Press (May 2003). ISBN 9780521480222, 9780521715959,
9780511807497. doi:10.1017/cbo9780511807497.

[12] Wilson, J. and Visser, M. Explicit Baker–Campbell–Hausdorff–Dynkin formula
for spacetime via geometric algebra. Int. J. Geom. Methods Mod. Phys., 18(14)
(Oct. 2021). ISSN 0219-8878, 1793-6977. doi:10.1142/s0219887821502261.

[13] Einstein, A. On the electrodynamics of moving bodies. Ann. Phys., 17(10):891–
921 (Jun. 1905).

[14] Gallian, J. A. Student Solutions Manual. Textbooks in mathematics. Chapman
and Hall/CRC (Jun. 2021). ISBN 9781003182306. doi:10.1201/9781003182306.

[15] Grassmann, H. Die Lineale Ausdehnungslehre ein neuer Zweig der Mathe-
matik, vol. 1. Cambridge University Press (2009). ISBN 9781139237352.
doi:10.1017/cbo9781139237352.

[16] Kobayashi, S. and Nomizu, K. Foundations of differential geometry, vol. 1. New
York, London (1963).

[17] Spivak, M. A comprehensive introduction to differential geometry, vol. 5. Publish
or Perish, Incorporated (1975).

[18] Misner, C., Thorne, K. andWheeler, J. Gravitation. Princeton University Press
(1973). ISBN 0716703440.

[19] Flanders, H. Differential Forms with Applications to the Physical Sci-
ences, vol. 11. Elsevier (1963). ISBN 9780122596506. doi:10.1016/s0076-
5392(08)x6021-7.

[20] Sharpe, R. W. Differential geometry: Cartan’s generalization of Klein’s Erlangen
program, vol. 166. Springer Science & Business Media (2000).

[21] Hestenes, D. and Ziegler, R. Projective geometry with Clifford algebra.
Acta Appl Math, 23(1):25–63 (Apr. 1991). ISSN 0167-8019, 1572-9036.
doi:10.1007/bf00046919.

[22] Vince, J. Geometric Algebra for Computer Graphics. Springer London (2008).
ISBN 9781846289965, 9781846289972. doi:10.1007/978-1-84628-997-2.

[23] Hestenes, D. Spacetime physics with geometric algebra. Am. J. Phys., 71(7):691–
714 (Jul. 2003). ISSN 0002-9505, 1943-2909. doi:10.1119/1.1571836.

[24] Hestenes, D. A unified language for mathematics and physics. In Clifford
Algebras and Their Applications in Mathematical Physics, pp. 1–23. Springer
Netherlands (1986). ISBN 9789401086028, 9789400947283. doi:10.1007/978-
94-009-4728-3_1.

124

https://doi.org/10.1017/cbo9780511807497
https://doi.org/10.1142/s0219887821502261
https://doi.org/10.1201/9781003182306
https://doi.org/10.1017/cbo9781139237352
https://doi.org/10.1016/s0076-5392(08)x6021-7
https://doi.org/10.1016/s0076-5392(08)x6021-7
https://doi.org/10.1007/bf00046919
https://doi.org/10.1007/978-1-84628-997-2
https://doi.org/10.1119/1.1571836
https://doi.org/10.1007/978-94-009-4728-3_1
https://doi.org/10.1007/978-94-009-4728-3_1


Bibliography

[25] Lee, J. M. Introduction to smooth manifolds. Grad. Texts Math. (2012). ISSN
0072-5285. doi:10.1007/978-1-4419-9982-5.

[26] Hestenes, D. Multivector calculus. J. Math. Anal. Appl., 24(2):313–325 (Nov.
1968). ISSN 0022-247X. doi:10.1016/0022-247x(68)90033-4.

[27] Dorst, L. The inner products of geometric algebra. In Dorst, L., Doran, C.
and Lasenby, J., eds., Applications of Geometric Algebra in Computer Science
and Engineering, pp. 35–46. Birkhäuser Boston, Boston, MA (2002). ISBN
9781461266068, 9781461200895. doi:10.1007/978-1-4612-0089-5_2.

[28] Lundholm, D. and Svensson, L. Clifford algebra, geometric algebra, and appli-
cations. KTH Royal Institute of Technology, lecture notes (2009).

[29] Lasenby, A. N. Geometric algebra as a unifying language for physics and en-
gineering and its use in the study of gravity. Adv. Appl. Clifford Algebras,
27(1):733–759 (Jul. 2016). ISSN 0188-7009, 1661-4909. doi:10.1007/s00006-016-
0700-z.

[30] Doran, C., Hestenes, D., Sommen, F. and Van Acker, N. Lie groups as spin
groups. J. Math. Phys., 34(8):3642–3669 (Aug. 1993). ISSN 0022-2488, 1089-
7658. doi:10.1063/1.530050.

[31] Gallier, J. Texts in Applied Mathematics, chap. The Cartan–Dieudonné The-
orem, pp. 231–280. Springer New York, New York, NY (2011). ISBN
9781441999603, 9781441999610. doi:10.1007/978-1-4419-9961-0_8.

[32] Gull, S., Lasenby, A. and Doran, C. Imaginary numbers are not real—The ge-
ometric algebra of spacetime. Found Phys, 23(9):1175–1201 (Sep. 1993). ISSN
0015-9018, 1572-9516. doi:10.1007/bf01883676.

[33] Dressel, J., Bliokh, K. Y. and Nori, F. Spacetime algebra as a powerful tool
for electromagnetism. Phys. Rep., 589:1–71 (Aug. 2015). ISSN 0370-1573.
doi:10.1016/j.physrep.2015.06.001.

[34] Bialynicki-Birula, I. and Bialynicka-Birula, Z. The role of the Riemann–
Silberstein vector in classical and quantum theories of electromagnetism. J.
Phys. A: Math. Theor., 46(5):053001 (Jan. 2013). ISSN 1751-8113, 1751-8121.
doi:10.1088/1751-8113/46/5/053001.

[35] Achilles, R. and Bonfiglioli, A. The early proofs of the theorem of Campbell,
Baker, Hausdorff, and Dynkin. Arch. Hist. Exact Sci., 66(3):295–358 (Apr. 2012).
ISSN 0003-9519, 1432-0657. doi:10.1007/s00407-012-0095-8.

[36] Coll, B. and Martínez, F. S. J. Composition of Lorentz transformations in terms
of their generators. Gen. Relat. Gravit., 34(9):1345–1356 (Sep. 2002). ISSN 0001-
7701, 1572-9532. doi:10.1023/a:1020018616308.

125

https://doi.org/10.1007/978-1-4419-9982-5
https://doi.org/10.1016/0022-247x(68)90033-4
https://doi.org/10.1007/978-1-4612-0089-5_2
https://doi.org/10.1007/s00006-016-0700-z
https://doi.org/10.1007/s00006-016-0700-z
https://doi.org/10.1063/1.530050
https://doi.org/10.1007/978-1-4419-9961-0_8
https://doi.org/10.1007/bf01883676
https://doi.org/10.1016/j.physrep.2015.06.001
https://doi.org/10.1088/1751-8113/46/5/053001
https://doi.org/10.1007/s00407-012-0095-8
https://doi.org/10.1023/a:1020018616308


Bibliography

[37] Coll, B. and San José, F. On the exponential of the 2-forms in relativity.
Gen Relat Gravit, 22(7):811–826 (Jul. 1990). ISSN 0001-7701, 1572-9532.
doi:10.1007/bf00764159.

[38] Lasenby, J. Guide to Geometric Algebra in Practice. Springer London (2011).
ISBN 9780857298102, 9780857298119. doi:10.1007/978-0-85729-811-9.

[39] Rodrigues, O. Des lois géométriques qui régissent les déplacements d’un système
solide dans l’espace, et de la variation des coordonnées provenant de ces déplace-
ments considérés indépendamment des causes qui peuvent les produire. J. Math.
Pures Appl. (9), 5(1):380–440 (1840).

[40] Ungar, A. A. The relativistic velocity composition paradox and the Thomas rota-
tion. Found Phys, 19(11):1385–1396 (Nov. 1989). ISSN 0015-9018, 1572-9516.
doi:10.1007/bf00732759.

[41] Mocanu, C. I. On the relativistic velocity composition paradox and the Thomas
rotation. Found Phys Lett, 5(5):443–456 (Oct. 1992). ISSN 0894-9875, 1572-
9524. doi:10.1007/bf00690425.

[42] O’Donnell, K. and Visser, M. Elementary analysis of the special relativistic
combination of velocities, Wigner rotation and Thomas precession. Eur. J. Phys.,
32(4):1033–1047 (Jun. 2011). ISSN 0143-0807, 1361-6404. doi:10.1088/0143-
0807/32/4/016.

[43] Hestenes, D. Vectors, spinors, and complex numbers in classical and
quantum physics. American Journal of Physics, 39(9):1013–1027 (1971).
doi:10.1119/1.1986363.

[44] Carroll, S. Spacetime and Geometry. Cambridge University Press (2019). ISBN
9781108488396.

[45] Hirayama, M. and Ueno, M. Non-Abelian Stokes Theorem for Wilson Loops
Associated with General Gauge Groups. Progress of Theoretical Physics,
103(1):151–159 (01 2000). ISSN 0033-068X. doi:10.1143/PTP.103.151.

[46] Bralić, N. E. Exact computation of loop averages in two-dimensional Yang-
Mills theory. Phys. Rev. D, 22(12):3090–3103 (Dec. 1980). ISSN 0556-2821.
doi:10.1103/physrevd.22.3090.

126

https://doi.org/10.1007/bf00764159
https://doi.org/10.1007/978-0-85729-811-9
https://doi.org/10.1007/bf00732759
https://doi.org/10.1007/bf00690425
https://doi.org/10.1088/0143-0807/32/4/016
https://doi.org/10.1088/0143-0807/32/4/016
https://doi.org/10.1119/1.1986363
https://doi.org/10.1143/PTP.103.151
https://doi.org/10.1103/physrevd.22.3090

	Abstract
	Acknowledgments
	Geometric Algebra and Special Relativity
	Introduction
	Preliminary Theory
	Associative Algebras
	Quotient algebras
	Graded algebras

	The Wedge Product: Multivectors
	As antisymmetric tensors
	Exterior forms

	The Metric: Length and Angle
	Metrical exterior algebra


	The Geometric Algebra
	Construction and Overview
	Relations to Other Algebras
	Fundamental algebra automorphisms
	Even subalgebra isomorphisms
	Common algebra isomorphisms
	Relation to exterior forms

	More Graded Products
	Rotors and the Associated Lie Groups
	The rotor groups
	The bivector subalgebra

	Higher Notions of Orthogonality

	The Algebra of Spacetime
	The Space/Time Split
	On the choice of metric signature

	The Invariant Bivector Decomposition
	Lorentz Conjugacy Classes

	Composition of Rotors in terms of their Generators
	A Geometric BCHD Formula
	Zassenhaus-type formulae
	In low dimensions: Rodrigues' rotation formula
	In higher dimensions

	BCHD Composition in Spacetime
	Relativistic 3-velocities and the Wigner angle


	Calculus in Flat Geometries
	Differentiation of Fields
	The exterior derivative
	The vector derivative

	Case Study: Maxwell's Equations
	With tensor calculus
	With exterior calculus
	With geometric calculus



	Geometry on Manifolds
	Spacetime as a Manifold
	Differentiation of Smooth Maps
	Fibre Bundles
	Algebra bundles

	Vector Flows and Lie Differentiation
	On tensors and differential forms
	The geometric bracket and Lie derivative


	Connections on Fibre Bundles
	Parallel Transportation
	Covariant Differentiation
	Connections on Vector Bundles
	Bivector connections on multivector bundles


	Curvature and Integrability
	Curvature as an obstruction to integrability
	Stokes' Theorem for Curvature 2-forms
	Path-ordered exponentiation
	Surface-ordered exponentiation


	Conclusions
	Integral Theorems
	Stokes' theorem for exterior calculus
	Fundamental theorem of geometric calculus



