
Collegial
Computation

Jordan
Anderson

Processing
Architectural form

Figure 0.01	 Photograph of ‘Collegial Computation’ at the NZIA Student Design Awards 2020
	 David St. George (2020)

A 120-point thesis submitted to the
Victoria University of Wellington
in partial fulfillment of the
requirements for the degree of Master

of Architecture (Professional)

Victoria University of Wellington
School of Architecture

2021

Collegial
Computation

by 	 Jordan
Anderson

Processing
Architectural form

6

7

Acknowledgments

First, I want to acknowledge my supervisors;
Tane Moleta, Andre Brown, and Marc Aurel
Schnabel for your unwavering support
throughout this year. With your guidance,
I have reached a point in my studies that I
never thought were possible, so thank you
all.

Also, to my peers, and fellow DARA’ites,
thank you all for your support and guidance
throughout this entire year. We have each
produced interesting and compelling projects
that we should all be proud of.

I want to say a huge thank you to my parents.
Mum and Dad, thank you for everything you
have done for me over the last five years
at university. You both have supported me
every step of the way, whether it was a
home cooked meal, or helping me fulfil my
aspiration to do an international exchange to
the United States. This publication marks the
end of my Master’s of Architecture and my
studies, now onto the next chapter.

Lastly, I want to thank my partner, Brittany.
You have been there every step of the way
through this research project, through the
highs and lows, and everything in between.
Thank you for listening to my architecture
rants everywhere we go, and for that, I thank
you for everything.

Thank you, Victoria University of Wellington,
The Bach Boys, Tane, Andre and Marc.

8

9

PREFACE
Sec 00

My journey began on exchange at the ‘Rhode
Island School of Design’ (RISD) in Spring 2019.
The Department of Architecture, where I was
studying, had a map of the different courses.
This was much like a road map often used on
road trips with roads forked and spread out
in different directions. The courses all lead
to different destinations; however, they all
commonly lead all to an eventual ‘understanding’
of the course material, which was in this case,
Architecture.

In selecting my courses, the head of the school
asked me to describe my interests in three
words: Architecture, computers, and drawing to
which I responded. As I began to explain this
in more detail an associate professor within the
Department of Architecture walked in. By way of
coincidence, he happened to be the professor of
computational drawing research, Carl Lostritto.
He explained his course encourages students to
form a “relationship” with the computer, to view
the computer as a work colleague.

Carl mentioned he was in the process of
publishing a book titled ‘Computational Drawing
- From foundational exercises to theories of
representation’ (Lostritto, 2019). The book
teaches and documents drawing with code.
It highlights the ways in which designers can
capture the processing power of the computers
to ‘draw’ in a way that had not previously been
explored. This sounded like an obscure idea,
but my interest was piqued and I was eager to
explore further.

In his computational drawing course, Carl works
alongside his students and research assistants
hacking machines, writing computer instructional
language or code, sampling from history,
designing tools and adapting technology. This
acts to augment human authorship in pursuit
of architecture. Much of this work and that of
his student’s is representational. It invokes
an interpretation of ‘drawing’, as the drawings
themselves are situated within architectural
practice. The course teaches reflection, analysis
and critique of drawing relative to form and
space to achieve this link.

I began to consider how I could apply this
thinking, combine my interest in computers, and
use it to design. The course sounded perfect!
Unfortunately, that year the course was taught
in Fall, which was when I was due back in New
Zealand. Nonetheless, I couldn’t help but think
how I could use this idea for my thesis.

Programming was being taught in a school of
architecture. Could I use this back home as a
thesis research field? Would this be considered
by the Victoria School of Architecture in their
course road map?

This thesis began with this talk.

10

11

This diagram provides the road map illustrating
the relationships between project families and
the thought / action threads across this thesis
journey. The x and y axes connect the trajectory
of ideas over time, with the main concepts
spanning the full journey. It can be read
horizontally as a series of correlations, revealing
the evolution of ideas, or vertically as a snapshot
in time. Highlighted in yellow are the ideas that
are crucial to the end product of this thesis.

After a long discussion about courses and
eventually choosing what I was going to be
enrolled in, I set off back to my accommodation
with a mission to obtain a copy of the book.
Once the book had arrived, there was no
hesitation in getting to work. This involved
teaching myself to code, learning from my
mistakes, and ultimately, finding a love for
coding which I still carry today.

Using code to create architecture was still at the
forefront of mind upon returning to New Zealand
and continuing with fourth year second semester
architecture. However, I still did not know how
to bring this idea to fruition. I needed to learn
how to code from scratch, to produce something
that was not ‘random’ and that resembled
architecture. My aim was not to produce a
house or a building but to elaborate on how we,
as architects, work with spatial conditions to
invoke a mood or feeling within the given space.
I decided to set off on my journey to find the
place and position for code within architecture.

One thing Carl said to me still rang in my mind,
“we teach students to work with the computer
as a friend, not a slave” (C. Lostritto, personal
communication, 2019).This became a source of
inspiration throughout this thesis. However, in
the meantime, I needed to get a grasp on how to
produce that code.

Computing and drawing have intertwined
histories. The first computer art was drawn
by A. Michael Noll. Noll programmed a digital
computer at the Bell Telephone Laboratories
in Murray Hill, New Jersey (Noll, 1994). Noll
generated patterns solely for artistic purposes,
although his later computer generated works
simulated paintings done by Piet Mondrain
and Bridget Riley. These became ‘classics’
(Dietrich, 1986). Limits on processing power
and memory storage inhibited pixels and
images. Instead, computers were programmed
to control machines that moved pens to make
marks on paper. Initially, artists saw a utilitarian
advantage to using computers to generate art,
the computer was seen to be an ‘accelerator’ for
high speed visual thinking (Mohr, 1983).

Soon thereafter, the trajectories of computing
and drawing diverged. In addition to exploring
the meaning of computing and drawing, this
thesis will explore what computing and drawing
can collectively do. In most cases, combining
computing and drawing involves merging
cultures and methods. Typically, the “computing
territory” and “drawing territory” are largely
distinct. Deciding to ‘draw with a computer’
or ‘compute in the space of drawing’ may be
considered complex and abstract. Nonetheless,
such tasks are creative, exciting, and productive.

Prior to meeting Carl, I was fascinated and
excited by coding. My focus was animation
and graphic design using code, alongside
my architectural studies. I was seeking
computational methods that might inform
architecture by way of provoking animation to
perform in ways other than the simulation or the
diagram.

PREFACE
Sec 00

12

13

Firstly, anyone who is looking to learn how to
program, you are 99% of the way there already
believe it or not. If you can read and write, you

already have the foundation. Contemporary
programming languages such as Java and

JavaScript and libraries that augment their basic
capacities to establish “fussy and complex”

environments are often associated with the term
“code.” The term essentially means to write in a
language that can be interpreted and executed
by computers. The language can also be read

(interpreted and executed) by humans.

Secondly, you can start making computational
art immediately. You do not need to be an

expert in computer programming before you can
start applying computation to drawing. In fact,
learning to code within the context of ‘drawing’
will help the artist, architect or designer learn

to code more efficiently and effectively. It will be
more fun and more satisfying.

STARTING TO CODE

14

Readers within this discipline - architects and
architecture students - will recognise particular
concerns and questions. For example, an interest in
space and form, the question of scale, the capacity
of the drawing to become a work of architecture
through mental inhibition and interpretation.
These questions are not unique to architecture.

Those outside the discipline may not recognise
the quirks, hang-ups, and particular obsessions
of architecture when they appear. They may
be surprised by the lack of ‘buildings’ in this
thesis. Strictly defining a construct or product
as “architectural” versus “artistic” is avoided in
this thesis, with the hope that readers avoid the
temptation to “read-in” their own disciplines.

Architecture and Other Disciplines

Figure 0.02	 Thumbnails of design language used within this thesis. Hand drawing, by Author.

15

COLLEGIAL
COMPUTATION

CONTENTS
Sec 00

7 27

60

9-11 33

66

13 34

80

15 38

82

16-17 42

94

18-21 50

96

22 52

108

25 54

112

114

Acknowledgments A Guide to Defining
Generative Art

Modelling with
Processing V2

Preface Aims &
Objectives

Collegial
Design

Starting to
Code

Drawing with
Processing

Reflection

Contents Drawing
Experiments

Presentation

Thesis Roadmap Hand-drawing to
Code

Reflection

Abstract Reflection

Final Generations

Getting Started Modelling with
Processing V1

Conclusion

Glossary of Terms Reflection

List of References

List of Figures

16

This diagram provides
the road map illustrating
the relationships between
project families and the
thought / action threads
across this thesis journey.
The x and y axes connect
the trajectory of ideas
over time, with the main
concepts spanning the
full journey. It can be read
horizontally as a series of
correlations, revealing
the evolution of ideas, or
vertically as a snapshot
in time. Highlighted in
yellow are the ideas that
are crucial to the end
product of this thesis.

Figure 0.03	 Diagram of this Thesis’s journey. Hand Drawing, by Author.

17

18

Abstract

This research thesis is an
architectural inquiry into how
scripting techniques can be used
within the conceptual stage of
architectural design by architects,
students and lay-people as a method
to generate and create architectural
form.

The intention is to create generative
procedural programs using
Processing, that promote shared
agency throughout the design
process as a whole. This agency
looks at creating an engaging
‘conversation’ between the user and
computer, allowing the computer to
have an equal share in the design
process.

By programming a range of varying
design tests that experiment with
conceptual form finding and
massing studies, this research aims
to experiment with agency through
the development of procedural
design processes. Together these act

19

Figure 0.04	 A superimposed gallery view of work generated within this thesis. Prints generated with Processing and Illustrator, by Author.

20

as a vehicle to activate the research
question, ‘how can we use scripting
techniques within the conceptual
design stages of architectural design
to generate and create architectural
form?’.

The results of this research, while
provocative, will contribute to
understanding how architectural
form produced through scripting
techniques influences the design
outputs, and design process as a
whole.

The term ‘generative’ is used in this
context to define the iterative design
process; which involves a program
that generates outputs, which meet
certain constraints, from a series
of input variables, ranges and
distributions. This process allows
the designer to fine tune the desired
region by selecting specific outputs
or changing the inputs.

21

Research and discovery through
design was used to develop the
final generative programs which
interpret architectural form. The
results show that designing with a
digital ‘partner’, and the sharing
of design agency throughout the
design process; can generate
conceptual architectural form
from infrequently investigated
computational design methods.

22

Packing the Vehicle
What should / would you take on a
road trip? I always pack the biggest bag I

can find and never wear or use half of it...

In this opening section, Packing the Vehicle, the
background of this research thesis is explained
in terms of “generative art”.

As we do on a road trip, we prepare ourselves
by packing the necessary items we will need
while we are away from home. Much like this
analogy, the background research situates itself
as a learning opportunity as well as a tool kit for
moving forward through this research.

This research follows the ‘generative art’ culture,
which began in the 1960’s. The development of
computers with high processing power. Their
increased accessibility and availability has led
to an exponential increase of generative art. This
has made this field of artistic expression and
generation more attainable. In this section, I will
provide a guide to defining generative art.
 Beginning with algorithmic artists in the
1960’s, to myself in 2020, this art form of using
computers to create art has expanded across
the globe.

His background research should be read as
a case study of this niche field. One simple
but useful definition is that Generative Art is
art produced by programming a computer to
intentionally introduce randomness as part of its
creation process. The “randomness” commonly
leads to two distinct viewpoints that inhibit
individuals from appreciating the beauty and
variation of generative art.

Myth One: The artist has complete control
and the code is always executed exactly as
written. Generative art lacks elements of chance,

accident, discovery, and spontaneity that often
makes art great, if not at least human, and
approachable.

Myth Two: The artist has zero control and the
autonomous machine is randomly generating the
designs. The computer is making the art and the
human deserves no credit, as it is not really art.

In reality, generative artists skillfully control both
the magnitude and the locations of randomness
introduced within the work. Controlled
randomness may sound contradictory; however,
artists have always sought ways of introducing
randomness into their work to stimulate their
creativity.

Harold Cohen was one of the first to become
involved with computer drawing in 1968. He
wrote that the emerging generative artworks
have “well defined rules and with the use of
random number generators, have guaranteed
the creation of never-ending variations of
drawings with a very distinctive style (Cohen,
1982). The process of coding generative art is
comparable to painting or sketching. In fact, we
see that the tool favoured by most generative
artists refers to the individual artworks produced
as “sketches” (Bailey, 2018).

Those artists that first experimented with coded
artistic procedures included Hiroshi Kawano,
Herbert Franke, Manfred Mohr, Freider Nake,
Georg Nees, Vera Molnar and Edward Zajec
(Wrigley, 2015).

Getting Started 0.0

23

Figure 0.05	 Image based on Georg Nees ‘Schotter’ circa 1965, made in
Processing., by Author.

24

Georg Nees’ 1968 work Schotter (Gravel) is
one of the earliest and best known pieces of
generative art. Schotter starts with a standard
row of twelve squares and gradually increases
the magnitude of randomness in the rotation
and location of the squares as you move down
the rows. Imagine you drew the image yourself
using a pen and paper. Assuming it took one
hour to produce, it would take you another ten
hours to add ten times the number of squares.
Comparably, Nees could add thousands of
additional boxes to the composition through
small changes to the code. This is an intelligent
and important characteristic of generative art.

Unlike analog art, where complexity and scale
require exponentially more effort and time,
computers excel at repeating commands and
processes without exhaustion. As we will see
throughout this thesis, computer aided design
testing and calibration create complex images,
contributing to the aesthetic of generative art.

As with many innovations, there were several
pioneers exploring the potential of generative
art in its first few years as an emerging artistic
culture. These pioneers, Nake and Noll along
with Nees were all using computers which
typically had no monitors, and the works were
shared by printing the art on plotters (large
printers designed for vector graphics).

Throughout this thesis, there will
be terms used to describe actions
and processes within the practice
of art and design.
I have provided a glossary of
terms used by designers in the
field. The terms will be defined
with a colloquial meaning,
and an example for ease of
understanding.

What will be developed in this thesis
is not considered solely artwork, but
a systematic manner of thinking to
create architectural form through the
use of programmatic tools.

25

Java is a class-based,
object-oriented programming
language that is designed to
have as few implementation
dependencies as possible.

Having the power or function
of generating, originating,
producing, or reproducing.

In terms of a ‘Processing
Sketch’, a sketch is defined as
being an experiment or visual
display of the code results.

Parametricism is a process
based on algorithmic thinking
that enables the expression
of parameters and rules that,
together, define, encode and
clarify the relationship between
design intent and design

Processing is a free graphical
library and integrated
development environment built
for the electronic arts, new
media art, and visual design
communities.

Fortran is a general-
purpose, compiled imperative
programming language that is
especially suited to numeric
computation and scientific
computing.

a system of words, letters,
figures, or symbols used to
represent others, especially for
the purposes of secrecy.

The use of a procedural or rule
based system, provides the
user with a toolkit of possible
actions to be combined
infinitely.

Generative design is an
iterative design process that
involves a program that will
generate a certain number
of outputs that meet certain
constraints.

A plotter produces vector
graphics drawings. Plotters
draw lines on paper using a
pen.

Expressed as or using an
algorithm or computational
procedure.

The terms design computing
and other relevant terms
including design and
computation and computational
design refer to the study and
practice of design activities
through the application and
development of novel ideas and
techniques in computing.

Glossary
Of

Terms

Java

Generative

Sketch

Parametric

Processing

Fortran

Code

Procedural

Generative
Design

Pen
Plotter

Algorithmic

Computational
design

26

Figure 0.06	 A series of ‘random’ rectangles generated in the
sketch window. Made in Processing, by Author.

27

A Guide to
Defining Generative Art

From an artists’ point of view | Leading to a general overview

“Generative art refers to any art or design
practice where the designer uses a system,
such as a set of natural language rules, a
computer program, a machine, or other
procedural intervention, which is set into
motion with some degree of autonomy
contributing to or resulting in a completed

work of art” (Galanter, 2003).

Generative art refers to art that in whole or
in part has been created with the use of an
autonomous system. An autonomous system in
this context is generally one that is non-human
and can independently determine features of an
artwork that would otherwise require decisions
made directly by the artist (Wrigley, 2015).

There are clusters of contemporary generative
art activity that include; Electronic Music and
Algorithmic Composition, Computer Graphics
and Animation, The Demo Scene and VJ Culture,
and in terms of this thesis, Graphic Design and
Architecture (McClintock, 2020).

Design practice has always included an
iterative process or creation of a number of
samples. The designer then selects among
these samples, making incremental changes,
additions, and improvements to make hybrid
samples, again evaluating the results and so
on. This manual and time-consuming process is
fairly reminiscent of the evolutionary process of
genetic variation and natural selection.

 It was seemingly inevitable that after the
adoption of the computer by designers as a
manual tool for CAD, there would follow the
adoption of genetically inspired algorithms
for the creation and selection of variants. In
fact, generative artist William Latham initially
used a system that is based on evolution, that
existed on paper, and only later did he move to
computerised versions (Kemp, 1998). Latham
describes the adoption of computer art as not
being a tool that is to perform old artistic tricks,
but rather a more profound identification of the
new territories computers and art might inhabit
in terms of the inherent nature of computational
procedures (Kemp, 1998).

Latham explains that standard computer-aided
design programs which are aimed specifically at
artists are seen to provide ingenious extensions
to hand driven techniques. Nonetheless, at
this time there were only a handful of others
conducting a broader exploration of art forms
that can be generated only with computers
(Kemp, 1998).

The question “what is art” can be useful. Viable
contemporary definitions of art include a notion
blurred toward set theory such that some of
which may be considered more “art-like” than
others.
In an equivalent way we can expect that
some works are more generative than others.
In addition, current notions surrounding art
recognise it as a social and historical activity
that evolves over time.

The word ‘generative’ simply directs attention
to a subset of art, system, and process. A
subset where potentially multiple results can be
produced by using a kind of generating system.
These generative methods are characterised
by the generation of different solutions, wherein
the decision maker has to choose one solution
among them.

A useful definition of generative art should one,
include known clusters of past and current
generative activity, two, exist as a subset of all
art whilst allowing for the definition of “art” to be
contested, and three, be restrictive enough that
not all art is generative art (Galanter, 2003).

28

“Generative art/design can help automate
the creation of options, which satisfy a variety
of goals that the designer wants to achieve.
It can be an exploratory tool to open up a
designer’s thinking - not necessarily solving
the problem or providing the right answer but

aiding this exploration’’ (Galanter, 2003).

‘’When there are several inputs to the design,
it becomes increasingly hard for the human
mind to keep track of all the combinations
of input. The computer is not limited and will
surprise one with the combination of different

inputs and outputs’’ (Galanter, 2003).

 The use of a complex autonomous system for
art making is the defining aspect of generative
art. The generative systems can be used to
automate or help the designer in their design
process, allowing the designer to run through
iterations faster and more efficiently and
providing the designer with a seemingly infinite
number of possible solutions to a design
problem.

This is the beauty of a generative system. The
algorithm defined by the designer may be simple
in concept. In practice however, if the designer
‘instructs’ the computer through code to
compute the position of a sphere on the surface
of a pyramid a thousand times, the computer will
‘think’ of all of the places in which it can place
the sphere. Ultimately, it may defy human logic
and produce a surprising outcome.

In this research thesis, I am not suggesting the
computer is being powered by AI in the general
sense of the word. That is, the computer’s ability
to simulate human intelligence or to think and
act like a human. Rather, I am referring to the
computer’s ability to exhibit traits associated
with the human mind such as problem solving
and developing an idea.

The computer and processor are reading a
set of instructions it can understand: the code.
The designer interacts with the computer by
writing code in English. This is then interpreted
and translated by the computer into rules and
instructions which it will follow. In writing this
code, the designer provides the computer with a
‘choice’ or ‘chance’. Chance being the ability to
choose a number based on another, much like
a multiplier. The computer then makes its own
decision based on a ‘chance’ value.

For example, if I were to instruct the computer to
choose a number between one and 100, it may
choose 59 or 63. These two numbers may be
different to those I would have chosen. Given the
results, I may choose to repeat this exercise and
provide additional parameters or boundaries,
such as “choose a number between one and
100, but only if the number is larger than 58 and
smaller than 64.” This is the way in which the
computer and designer interact throughout the
programming process.

 Terms and applications such as “generative
design” are often thought of as forward-thinking
and cutting edge. Programmatic artists have
used this creative method since the 1960’s.
Fifty years ago, Vera Molnar, a Hungarian
computer artist working on developing the early
programming language ‘Fontran’, used her
expertise to generate images examining theme,
variation, automated generation, and display
of options. Digital artist Manfred Mohr, another
pioneer in algorithmic art, generated variations
of 3D geometry in the 1960’s and 1970’s.

Using algorithms to guide the creation of design
options, the computer will provide the ‘best’
options, given the goals and the size of the
exploration that have been specified.

Figure 0.07 Beside	
Emulation of ink using particles through a Gaussian noise field ,
made using Processing by Author.

29

30

31

This thesis was a journey
filled with options,
detours, wrong turns,
potholes, and forks in the
road. By implementing
one thought or idea,
reflecting upon it with my
supervisors and peers, new
very different ideas and
routes became apparent.
Despite this, the aims
and objectives remained
constant throughout.

32

How can we
use scripting
techniques within
the conceptual
design stages
of architectural
design to generate
and create
architectural
form?

33

Research Aims
& Objectives:

1

2

3

Use computer code as a procedural method
of creation to generate architectural form and
spatial qualities.

Expand the architectural potential for a
generative system to aid conceptual design
methodologies in the context of architectural
education.

Explore how designers can use computer code
to enable a generative approach to creation.

34

Drawing With
Processing

For this initial phase, I want to understand
how Processing works. To achieve this, I will
use the program to create computational art.
I experiment with the program’s multitude of
possibilities and teach myself how to ‘code’.
During this opening section, I will be exploring
the basics of the program, and seek to uncover
a hidden architectural possibility to this visual
design program.

Processing is a free graphical library and
integrated development environment (IDE) built
for the electronic arts, new media art, and visual
design communities. The purpose is to teach
non-programmers the fundamentals of computer
programming in a visual context (What Is
Processing?, 2021).

Processing uses the Java programming
language, with additional simplifications such
as additional classes, mathematical functions
and operations. It also provides a graphical user
interface (GUI) for simplifying the compilation
and execution stage. Users can download
Processing and use it for their own projects.
Processing uses textual notation that consists
of up to 95 percent Java syntax. It is easy to
transfer the code and examples to many other
textual development environments. Processing
is cross-platform, which means the same source
code can be used on all operating systems
for which a Java platform exists (e.g., Mac OS,
Windows, and Linux) and can also be integrated
into websites.

Getting Started 1.0

An ever-growing, vital, and supportive online
Processing community exists that actively
exchanges ideas on the Processing website.
The website contains online references
of all language elements and an index of
supplementary libraries.

Processing was founded and initiated in 2001
by Casey Reas and Ben Fry, both formerly of the
Aesthetics and Computation Group at the MIT
Media Lab. In 2012 they started the Processing
Foundation along with Daniel Shiffman.
Programming with Processing features an easy
to learn Creative Coding methodology, which
makes it easier for the non-programmer to use.
With visual feedback in the way of a ‘Sketch’,
learning to code/ design in a generative
computational sense is made interesting and
rewarding from the beginning.

Processing is regarded as being a Creative
Coding software, where Creative Coding is a
type of computer programming in which the goal
is to create expressively, instead of functional
outputs.

35

36

Initially what interested me about computational
drawing was the unlimited variation one would
obtain from a ‘simple’ script. By using the inbuilt
power of code, variation is accessible to the
designer. Building this variation into a script
takes time, and experience. Learning to code
is made simpler as a lot of computer code is
‘open source’. This means that the code is
designed to be publicly accessible; anyone can
see, modify, and distribute the code as they see
fit. Learning this, as well as reading blog’s and
watching Youtube tutorials at the beginning of
my journey to code was very helpful. This was
a good way to learn the basics of coding. Along
with the visual feedback implemented into the
program, making changes to the code to obtain
a certain ‘look’ the designer is after is made
more streamlined.

Processing programs are called “sketches”.
Hence, Processing can be understood as an
environment for the quick creation of digital
artefact’s. The main folder where the user-
created programs are stored is called the
“sketchbook folder”. This in turn, invokes a
creative aspect to a purely text based art form.

My aim is not to blur the lines between drawing
with a pen and paper, and with the computer,
but to draw a parallel between these two modes
of graphical representation and their inherent
interpretations.

To reiterate, this thesis aims to explore a
generative approach to design within the field
of architecture. Specifically, how this approach
to design in a field that heavily relies upon the
designers own unique robust creative process
can be employed alongside to streamline the
conceptual design process by augmenting
pieces of the conceptual exploration process.

Through this first stage, there is emphasis
placed upon architectural design elements such
as, form and scale in two dimensions.

Starting at the foundational level, I began with
detailed research into Processing’s syntax
(the arrangement of words and phrases to
create well-formed sentences in a language,
or in computer science, the structure of
statements in a computer language). While
doing this research, I was introduced to “Open
Processing”.

Open Processing is a web based open source
designing platform built around the focus of
teaching coding. With its minimalist design,
it removes the complex coding jargon many
platforms use. This allows students to focus on
the code and visualise their results with a single
click. Open Processing uses Java, Javascript,
and p5.js. This allows students to access the
most important features of the program without
leaving their code.

Open Processing allows access to many pre-
written code examples which can be used
to build your own works. Alongside Open
Processing, working through tutorials of Daniel
Shifman’s YouTube channel “The Coding Train”,
I learned how to understand code and how to
write the code myself.

37

Figure 1.01	 Mapping of overlapping squares, circles and rectangles. Made
using Processing, by Author.

38

1.1

To begin this stage of investigation, diving
into the code was my first step. Looking at
how to use code to create drawings, which
are primarily viewed on the computer screen,
began with opening Processing and typing in
simple commands (such as those I had been
introduced to while watching ‘how-to’ coding
videos). This was an interesting exercise as it
taught me the ins and outs of Processing’s code
syntax.

Displayed beside in are some initial drawing
experiments. Form, scale, and weight were
the three primary drivers to create these
compositions.

From this initial investigation, it was apparent
that this process or methodology was
somewhat similar to drawing or taking notes.
The user opens a text editor and begins to
write down their thoughts. However instead of
the user writing a poem, essay, or fiction, the
thoughts are more about organising logic and
procedures. In this case, the writing of code
produces images. When an iteration of interest
to the user is created, the user may develop
a piece of the iteration by making incremental
changes to the code.

A compilation of simple rules of code can
produce creative artefact’s that are visually
different and go far beyond what was initially
expected. This is the interesting part about
code. This showed me the power of using a
rule based design mechanism. The process
of coding can be likened to “music”. Every
music performance is different. The producer
and performer inject their interpretation on
top. With respect to “processing,” the software
has been curated together and is “performed”.
Each performance (command executed by
the computer) is performed differently by the
software and computer. The elements unfold
differently each time.

Drawing
Experiments

39

Figure 1.02	 Initial drawing experiments examining form. scale, and weight.
Made using Processing, by Author.

40

41

Figure 1.03 Left	 Initial drawing experiments, circles , rectangles, and lines. 	
		 Made using Processing, by Author.

Figure 1.04 Above	 Initial drawing experiments, pixel based randomisation. 	
		 Made using Processing, by Author.

42

1.2

Hand Drawing
to Code

After my initial investigation into drawing with
code, I wanted to investigate whether I could
sketch (with pen and paper) a desired visual
outcome prior to writing the code necessary
to create it. I wanted to explore how I could
plan the desired drawing to be created rather
than sporadically writing code and seeing what
comes of it. Particularly, I wanted to develop my
own creative method from mind to paper, from
paper to text, then from computer to final.

The next visual experiments show an indirect,
yet close resemblance to my drawings through
the interpretation of the drawing into code.
Evidently, some outputs are vastly different to
my initial sketches. This links back to my initial
investigation of generative systems ‘chance’ and
resulting outputs. When translating “thoughts”
into “text,” a layer of information can be negated
or translated incorrectly.

Unlike drawing, code employs a rule based
system of creation which allows the user to
interact with various parameters that are set
up at the beginning of the code. A rule based
system, with minimal input from the user, has
the ability to run through tens of iterations
before the user could have otherwise created an
artefact of their own. This is the beauty of code.

Typically with design, the iterative process can
slow down the creative process. Employing
a rule-based system into design workflow
would enhance the efficiency of the otherwise
prolonged process as it enables a greater scope
of ideas to be tested. Commonly, this iterative
process is a given for many designers, and
acts to inspire and test potential ideas. For this
reason, I see the rule-based approach to design
a useful supplementary tool, not a replacement.

43

Code, as a rule based system, is not biased
toward the want or eye of the designer. There
is no emphasis placed upon the look of the
artefact’s. They are produced one after another,
with either the user stopping the process, or
the computer running to an iteration count.
Another beauty of generative systems for me,
is the virtually endless timeframe of creating
the coded artefact’s. The computer will not tire
of producing artefact’s, and there will always
be something new the computer has not yet
produced.

Variables written into the code allow the user to
alter the way the computer interprets the code,
therefore showing a visual representation of the
computer’s interpretation. If the user allows the
computer to choose from a range of numbers,
such as in a ‘random’, ‘smaller than’, or ‘more
than’ operation, the computer has the ability to
‘randomly’ choose a number or numbers to use
to create the visual output. This creates a larger
scope of opportunity for the user having written
code, and allows the power of the computer to
choose and run through many different options.

Before I was able to write the code to initiate
this design options variable, the same design
was repeatedly produced. How could I design
the code to allow for the input of a number to
control the number of iterations produced?
Pictured alongside is a series of iterations where
I was able to instruct the computer to make a
small change to the design, and produce it twice
and with a different combination of the input
variables.

This ability to iterate faster and more efficiently
led me to consider how this could be used
in the creation of architecture. Much of
architectural designers’ time is spent in the
developed design phase. In other words,
allowing a conceptual design to be built in real
life. Although the developed design phase takes
the most time, the conceptual design phase can
be a struggle for an architect. Deriving a design
from a meeting with the clients, site conditions
and site specific restrictions can be a prolonged
process, and slow down the completion of a
project. Implementing a rule-based “coded”
system for creation could overcome the time
constraints. In this way, the architect could
design the code that an architectural piece is
derived from and implement this into a computer
such that the computer produces different
iterations for them. Thus allowing the computer
to iterate through some of the initial design
pieces, such as massing options, positioning on
site, and form restraints, leaving the architect
with this time back in their hands.

Through working in the industry, it has become
evident how this methodology could be
implemented in practice. Many architectural
practices pride themselves on their conceptual
design, which is usually done by a principal
designer of the firm. Implementing a computer
driven workflow into their process, as opposed
to a pen and paper conceptual workflow may
be challenging. This is because architects often
form a relationship with their design, which they
have poured their heart into. To have a computer
inherit this position instead may be seen as a
“red-flag”.

A conceptual approach to design is looking at a
problem or an opportunity creatively as opposed
to pragmatically.. This involves looking at the
‘ídea’ rather than a combination of approaches
and processes. The computer looks at a set of
problems, and without programming a set of
rules, the computer will remain static. Rather
than exploring different design options, it will
not know what to do. This is the draw back from
this conceptual mindset of using a computer
to create architecture. A programmer would
be needed initially to set up a set of rules for
the computer, which the computer could test
upon. Although the need to hire a computer
programmer for an architectural practice may be
perceived as a step in the wrong direction.

44

Figure 1.05	 Hand drawing and coded
output. Made using Processing, by Author.

45

Figure 1.06	 Hand drawing and coded
output. Made using Processing, by Author.

46

Figure 1.07	 Hand drawing and coded
output. Made using Processing, by Author.

47

Figure 1.08	 Hand drawing and coded output.
Made using Processing, by Author.

48

The next set of drawings places the mode of
creation into the architect or designers’ hands.
The ability to interact with code from the sketch
window without needing to stop the sketch to
change variables is built into the sketch. This
interaction may be an input from the mouse,
keyboard, or even sound.

In the examples pictured beside, I have built
in the ability to communicate with the code
using the mouse and keyboard. For these
explorations, I have built in the ability to pause,
play and alter the overall look of the sketch in
multiple ways. The ability to rotate around the
model in three-dimensional space to see the
reverse side of the model can be enough to
spark the creativity of the architect. Even one
small piece of the produced artefact can be
taken away and further developed. Allowing
the designer to interact with the program in an
intuitive way, much like the software packages
we use in practice, allows for the use of this tool
by anyone in the industry.

The strength of interactivity comes from humans
wanting to influence things around us. In the
context of this thesis, this would be considered
‘interaction design’. Interaction Design is about
making the connection between a device, its
interface and the user (Good Interaction Design
= Good UX, 2021). It facilitates actions that we
might want to make to a given system.

If a designer wants to change the look of a
line either by using a thicker pen or changing
a line weight variable, interaction design is
what responds. It creates a framework which is
learnable and intuitive for the user. It delivers
that “human element” that makes technology
enjoyable and pleasant to interact with (Good
Interaction Design = Good UX, 2021).

A conductor in front of their orchestra is
leading the tempo, signifying the beginning
of a new bar, and prompting an instrument
to enter and when to exit the piece; small
changes to their movements will alter the way
the music sounds to the audience. This musical
analogy is productive in relation to this thesis.
Creating alongside another distant entity
(the computer) symbiotic to the overall piece
produced resembles a musical performance.
For example, if the trombone in a brass band
were played louder or if the musician were to
introduce another note into the harmony, the
overall musical piece would be altered resulting
in a new song. Similarly, the script produces
different variations of a drawing with different
input variables.

Figure 1.09 Above	
Communication with code in three dimensional space.
Made using Processing, by Author.

49

“The most important part of art
is innovation. This means you do
something which was not there
before.” Manfred Mohr (2016)

Figure 1.10 Above	
Looping lines forming filled squares rotating in three dimsneional space. Made using
Processing, by Author.

50

Reflection
1.0

Processing will be the program of choice moving
forward throughout the design stages in this
thesis. This is because of its simple to use
interface and developability. That is, the ease in
which limitless data types can be entered within
the program. The possibilities to create freely
are opened by the ability to input video, audio,
string data, infrared/ point clouding (Kinect),
and mathematical data to be visualised by
projection, CSV file format, Arduino, and/or pen
plotter. Processing caters to a wide range of
possibilities for this thesis, with few bounds for
creativity. As mentioned in the last example of
work, Interactivity within Processing can be built
in, whether it be simply by the use of the mouse
and or keyboard.

The strengths of interactivity include
engagement of the user, greater diversity of
outcomes with minimal input from the user,
and increased satisfaction of the user creating.
Creating these rules for a designer to use and
alter the way the script looked and acted was
a satisfying task. The ability to diversify the
outcomes by a greater amount each time may
prompt use of the program for a greater length
of time. In turn, this may leave the user more
satisfied with the outcomes created together
with the computer.

A major limitation of the exemplified Processing
techniques is the inability to record and save
conceptual designs that may be opened and
edited at a later date. On several occasions,
the drawings I produced were not ‘recorded’
and therefore not saved. This led to the loss of
potential design iterations. The inability to rewind
meant I was unable to reproduce the lost output.

Drawing with a pencil and paper does not have
this same limitation. A drawn line creates a
visual marking on the paper. Further, an indent
remains even if the pencil marking is erased. In
practice, layering design options one-on-top-
of-the-other (often with butter paper) allows an
architect to draw freely and use inspiration from
previous drawings earlier in the layers.

With respect to code and visual outputs on a
screen, the longevity of design is limited by
the user closing the window or the computer
beginning a new set of iterations.

Moving forward, I will explore this in a manner
that resembles drawing and layering up in the
context of the computer screen.

In the next design stage, Interactivity through
processing is further explored in-depth.
Particularly, this interactivity makes the design
process more engaging for the user, and adds
another dimension to the work if the user is able
to create for their own within the bounds of the
written script.

51

Figure 1.11 Above	
Three dimensional planes rotated in sketch window to aquire different views. Made
using Processing, by Author.

52

2.0

Modelling with
Processing v1

Following on from drawing in the previous
section, I wanted to learn how to create/
generate form and space using Processing.
As humans, we view this as three-dimensional
objects and space. The drawings in the previous
design testing phase were intriguing but lacked
three-dimensional form. Until now, I have worked
only in two dimensions within the sketch window.
Without any research into the modelling side of
processing, I was unaware that processing had
the ability to manage a three-dimensional object.

Linking back to my initial research question:
“how can we use scripting techniques within the
conceptual design stages of architectural design
to generate and create architectural form”.
Creating two-dimensional drawings was a step
in the right direction. However, translating these
two-dimensional works into three dimensional
(3D) works would result in a flat plane. This
would hover in the sketch window and would
have to be rotated to visualise the reverse face
of the drawing, Creating a three-dimensional
view of these works requires the use of the ‘Z
axis’, in addition to the X and Y axes.

In this section, I will explore further the creation
of three-dimensional works. I will begin to
explore three-dimensional objects in space,
drawing back to spatial relationships that are the
basis of all architecture.

53

Figure 2.01 Above	
Three dimensional planes in space. Made using Processing, by Author.

54

Reflection
2.0

Building in more interactivity throughout the
sketches as discussed resulted in the creation
of interesting proactive drawings, and enabled
the creative freedom to alter more of the
sketches properties within the sketch window.
Assigning the number keys to facilitate change
during the animation gave freedom to design
new outputs. Having built in the ability to
produce three-dimensional forms that could
be replicated and developed upon an infinite
number of times was exciting.

The ability to save the output as a PDF
(including its parameter values, hue, saturation
and brightness colour values), enabled the
user to return to a given iteration for further
development. Designing these interactions into
the script allowed the program to become more
useful as a design visualisation and ideation
tool.

Moving forward, I want to investigate how the
designer writing and using the code can work
collectively with the computer. The idea to work
alongside the computer came from watching
the computer work through design iterations
on its own and myself selecting ‘cool’ looking
options. I thought to myself, I want to be able
to watch the computer design and add my own
ideas and interpretations into the design. One
way of doing this, without altering the look of the
overall object, was to “zoom” into the object far
enough such that I was able to reside within the
artefact, and thus viewing it as a different scale.
This scale change is something that architects
are playing with all the time. Designing objects
to be represented at a larger scale, and some
sympathetic objects at another to create design
harmony and ultimately beauty.

55

Figure 2.02	
Rectangular planes disappearing into space. Made using Processing, by Author.

56

Figure 2.03
Exploring generated three dimensional planes. Made using Processing, by Author.

57

Figure 2.04	
Exploring generated three dimensional planes. Made using Processing, by Author.

58

Figure 2.05
Exploring generated three dimensional planes. Made using Processing, by Author.

59

Figure 2.06	
Exploring generated three dimensional planes. Made using Processing, by Author.

60

3.0

Modelling with
Processing v2

User interaction within a program, especially
involving design, is imperative. When designing,
the user ‘wants’ to make it personal, whether
that be to change object parameters, or simply
change the colour of the paint brush. The user
enjoys being in control of the design process.

Experimentation made it evident that even
when a drawing or model does not resemble
a building, it still may be interpreted as
architectural. This was inspiring and drove
my thinking away from producing viable
‘architecture’ and to a form that could be read
as architectural.

Whilst searching for ways to implement
“architectural design-type thinking” into
processing, I came across the work of Frederik
Vanhoutte, otherwise known in the developing
world as W:Blut. Vanhoutte is a physics Ph.D
Scholar and works as a medical radiation expert
at a university hospital in Belgium. Together
with a team of radiation oncologists, physicists,
and nurses, Vanhoutte turns medical data into
effective treatments for cancer patients. In
his spare time, Vanhoutte is a creative coder,
whereby he walks the fine line, between art and
science, between utility and aesthetics.

I drew inspiration from Vanhoutte (W:Blut) in a
number of ways. Firstly, isometric projection is
used to explore design possibilities for point,
line and plane. Secondly, how animation can be
used as a dynamic element within the design
process.

After investigating the works of W:Blut, I made
contact via email to ask a few questions, and
whether he would be happy to share some of his
expertise. Specifically, in creating architectural
form within processing.

After an initial email conversation, I began to
experiment with these concepts. Despite my
work diverging from “conventional architecture,”
my supervisors and I agreed that the work was
interpreted as “architecture” through their form
and aesthetic spatial qualities.

For instance, an extruded rectangle to one
person might just look like a box on the screen,
but to an architect or designer, it could be
read as being a volume. This interpretation
is interesting because of the subjectivity it
presents. To a lay-person, contractor and a
designer, these interpretations are all different
and subject to personal experience. As
mentioned above, an extruded rectangle may
look like a box at one scale to one person, but
to another it may look like a vestibule or a space
to be inhabited at another scale. This scale
shift was interesting and something that I will
be experimenting with throughout the coming
design tests.

61

Figure 3.01	
Inter-connecting boxes and grid. Made using Processing, by Author.

62

Figure 3.02	
Conceptual floor plan iterations. Made using Processing, by Author.

63

Asking the question,
‘What do you think this
is?’, may have many
possible reactions.
I think that this
makes design and
its interpretation
exciting and personal.
This brings me to the
matter of perspective.

Not the perspective of the person, but the
position the object is viewed. In most of my
design experiments so far, I have opted for
the Orthographic projection as a personal
preference in the current stage of designing.

Adjusting the zoom and focal length
parameters within the sketch window was
an excellent way to maximise depth and
dimension of drawings in a perspective view.

64

Using this technique when modelling in three
dimensions gives the viewer and modeller
a sense of reality, proportion and hierarchy.
Perspective is somewhat useless from a
construction point of view as the ‘proper
dimensions’ are skewed and not relative to the
angle of incidence. When modelling in SketchUp
or Rhinoceros for example, the user has the
ability to change the view mode to view their
design from a different point of view.

Perspective view is excellent for rendering as
this gives the designer a sense of the design’s
reality. As with Orthographic views, these give
the designer a sense of scale. Here the scale of
surrounding objects is as they were modelled.
This is perfect for a cross section or elevational
view as it is used to rationalise pieces of a
design positioning to each other.

When writing the code for the next design
experiments, I will be focussing on
experimenting with these view modes. Switching
between the two view modes, Perspective and
Orthographic, and documenting the differences
in interpretation of the object from the computer
screen.

Linking back to
something that Carl had

said to me, is that we
“can teach students to
see the computer as a

colleague”
(C. Lostritto, personal

communication, 2019).
I began to think, how
can I make my design

process collegial?

This began to be a source of inspiration for
this stage of the design.

Figure 3.03	
Communicating with the computer to alter the arrangement of objects into a plane,
sphere, cube and line. Made using Processing, by Author.

66

4.0

Collegial Design

“A person who
works with you,
a fellow worker”.
(Colleague Definition & Meaning, 2012).

A colleague is defined as
being,

Linking collegiality
and how this process is
collegial, some further
explanation is required.

67

Within this phase of design, the computer
performs a set of instructions outlined by
the code. The rules the code has specified are
not familiar instructions to a person, but to
the computer this is how it understands and
executes a set of commands.

Whether it be a simple set of rules to follow,
or a complex formula, inherently, there is a
conversation occurring. This conversation is
not conventional as it is happening behind the
scenes.

The conversation between the designer (via
the code) and the computer is ongoing. The
computer communicates/responds to the
designer via a visual representation of the
code.

68

Figure 4.01	
Communicating with the computer examining point, line, and plane. Keys on
keyboard used to rotate view. Made using Processing, by Author.

Figure 4.02	
Communicating with the computer examining point, line, and plane. Keys on
keyboard used to rotate view. Made using Processing, by Author.

70

Figure 4.03	
Communicating with the computer examining point, line, and plane. Keys on
keyboard used to rotate view. Made using Processing, by Author.

Figure 4.04	
Communicating with the computer examining point, line, and plane. Keys on
keyboard used to rotate view. Made using Processing, by Author.

72

Within this phase of design, the computer
performs a set of instructions outlined by the
code. The rules the code has specified are
not familiar instructions to a person, but to
the computer this is how it understands and
executes a set of commands. Whether it be
a simple set of rules to follow, or a complex
formula, inherently, there is a conversation
occurring. This conversation is not conventional
as it is happening behind the scenes. The
conversation between the designer (via the
code) and the computer is ongoing. The
computer communicates/responds to the
designer via a visual representation of the code.

Many papers and articles describe the co-
operative design process as passing part of
the design agency to another entity or group so
that they can collectively come to an informed
and non biased decision (Bødker et al., 2000).
Although this research is productive, my
research primarily focuses upon co-operative
design with the computer as the entity ‘group’,
not other members of the public concerned
with a design outcome. This is where I see this
research to be different.

I am seeking to write code from its conception in
an iterative and opportunistic way. That is: build
a set of instructions that instruct a computer
in more of a progressive adaptive manner. For
example, instructing the computer in a “do
this or this, then this” type way. This gives
the computer the opportunity to make its own
decisions about what to do next.

Giving the computer agency in the design
process and allowing it to make decisions is
where this process becomes collegial. The back
and forward conversational structure is one that
is full of opportunity, interest and provocation.
This sits at the core of this design phase and
this thesis.

The computer actively produces design options
from a combination of variable instructions.
While the sketch is running from the Processing
window, the animation is essentially building
itself, reaching a point and then breaking itself
down again. This process of growth and decay
is not often seen in other conventional rule
based programs.

The initial mass can be altered before the sketch
is run by simply changing the lengths of three
variables; X, Y, and Z. Working in each of the
three dimensions adds complexity to the script,
allowing unlimited combinations of input values
to form the overall shape.

With an element of interaction built in, the user
can inform the computer whether to save this
iteration or to restart. This gives both parties
shared agency throughout the entirety of the
design process. Building this ability to pause
an iteration had its positives. Firstly, the ability
to save an iteration at a particular point in
time during the animation allows the designer
to capture a particular moment in time (as
discussed in Section 01 Drawing). Secondly,
to slow the creative process down in order to
reflect and react accordingly. The concept of
reflective practice fostered critical thinking,
resulting in a different approach to be taken.
Schons’ model of ‘reflection in action’ suggests
that reflecting on unexpected experiences and
conducting experiments serve to generate a new
understanding of the experience and change in
the situation (Schon, 1983).

A beauty of procedural design is random seed
generators. Building this into the programs
previously discussed means that every iteration
will be different. Each time the program is run,
a new ‘seed value’ is generated, producing a
new design iteration. Having the ability to pause
and save throughout the animation gives the
designer extra control, more particularly, version
control. With the code outputting the seed
number each time the animation is executed, the
designer is able to input the given seed value
to achieve a repeatable design. This output
variable is a paradox toward random seed
generators. This paradox shifts when looking
at this design ‘helper’ from the lens of a design
iteration tool. Having the ability to generate the
same iteration time and time again removes the
‘randomness’ from the design process making
each iteration special. However, a designer may
perceive this as useless as it is not repeatable.

73

Looking back to Design
Phase 1 (“Drawing with
Processing”), interactivity
built into a program brought
active user engagement
and a wider diversity of
outcomes, with minimal
code input for future
changes.
In this section, I want to
explore the ability for
the designer to use their
keyboard and mouse to
control certain elements
within the design process.

74

- Translation

- Control

- Zoom +/-

Translation (where the object is on the screen)
of the form - using the mouse position in the
sketch window,

Ability to pause using the spacebar, and rewind
and go forward in time using the left and right
arrow keys,

Zoom in / out - using the up and down arrow
keys and the mouse scroll wheel.

The scripts developed
have unlimited
variation built into
the program with the
use of a ‘seed’ value,
discussed previously.

75

A seed is defined as being a number which
is used to initialise a pseudorandom number
generator (or random number generator). Also
to prevent the same number or sequence being
generated each time, this seed value must be
changed (JavaMathBits, 2021).

For a seed to be used in a pseudorandom
number generator, it does not have to be
random. For instance, in this program, I have
built in a million different seed values, which
have an associated ‘predetermined’ design
iteration. The seed is essentially a version
control mechanism. It allows the designer to
enter a ‘seed value’ of choice at the beginning
of the animation to return a favoured outcome.
If this seed value becomes constant within the
program, the program will listen and produce
the same iteration repeatedly until instructed to
choose another random seed from the list via
the ‘Random’ command.

The designer has infinite possibilities for
conceptual architectural massing within these
programs, making them a powerful tool for
design iteration generation.

Using a procedural way of working, the outcome
and visualisation of a potential design iteration
is also altered with one simple change to
the code. By altering the “view mode” within
the code from ORTHO to PERSPECTIVE, the
spatial relationship and inherent architectural
qualities of the output is changed. Moving from
the interior of an iteration to the exterior is
performed through changing one line of code.
For example, changing the zoom parameter
value from 0.5 to 3.

While experimenting with these forms, I
observed the lack of 3 dimensional spatial
qualities. Although the code was generating
three-dimensional outputs, the artefact’s
looked flat. One way I was able to achieve an
output that looked more three dimensional
was the addition of an atmospheric element.
Upon consideration, I realised that this was
happening as there were no shadows being cast
by the model. For a designer, light and shadow
are critical aspects of design, specifically
architectural design. To add a sense of reality
to the program and thereby replicate the “real
world”, I needed to add lighting to the scene.
Adding light to the scene allowed idiosyncrasies
in the design to be highlighted by a bright area
of light, followed by a shadow cast on the model.
This also added to the spatial qualities of the
forms produced.

76

Pictured beside the same iteration has been
produced with the lights turned on versus off.
Small details cannot be seen with the lights off.
This mode can be used for form finding without
the need to dwell on the details. The “lights on”
iteration highlights the details and shows the
viewer a textural version of the same iteration,
giving it depth.

Some may be thinking that for an Architect,
the site situates an architecture and that the
constraints of the site influence the design. The
programs I have created are for conceptual
massing studies without the need for a site.
This matter was one that I had thought about
and attempted to implement into a program
previously. In doing so, it took the conceptual
idea away from the programs designed thus far.

Many of my peers had concerns that this
program and way of working was potentially
removing the need for an architect altogether.
My answer to this was always, no. The program
augments the initial conceptual design phase
for an architect. It does not replace a pen and
paper. It acts as a guiding tool for ideation
and creation. A designer can do whatever
they like with the outputs created, whether it
be a conceptual massing model for further
development, or even just a tool a designer
would use in times where there is little to no
design inspiration.

Coding can be a creative practice and not
merely a tool for graphic representation. It is
also a particular design medium with its own
affordances and resistances. Using code as
a medium for design provides a specific form
of feedback that influences the design process
and its outcomes as a whole. In other words,
code and coding can be attributed agency in
architectural design. Students of the Vienna
University of Technology (TUW) researched
attitudes towards attributed agency and the
collaboration of humans and robots. They
found an increased level of agency given to the
robots throughout their study was associated
with negative attitudes towards robots (Zafari &
Koeszegi, 2020).

Figure 4.05	
The same iteration seed generated with the ‘lights’ on and off.
Made using Processing, by Author.

77

When individuals feel a lack of control in
a collaboration context with robots, the
findings suggested that perceived control can
mitigate negative attitudes and foster a social
relationship between humans and robots. This
perceived control of the designer using the
script can increase user satisfaction during the
creative process by not giving all of the design
agency away to the robot, or the computer
in this case. The designer is still in complete
control of their design helper.

The design process I am proposing is a sketch
discussion. A discussion where trial and error is
the main driver. During testing when the outputs
did not work or look the way I had envisaged,
I adjusted the values and tried again. This
process of reflection bears resemblance to the
“Schon Model of Reflection” (Schon, 1983).

Figure 4.06	
A potential design iteration generated by the computer.
Made using Processing, by Author.

78

KNOWLEDGE

DIVERSITY PEDAGOGY

PROFESSIONALISM

PLAN

ACT REFLECT

Figure 4.08
A structure of reflection (Schon,
1983), based on Kolb (1984).

Figure 4.07	
Schon’s reflective model (Schon,
1983).

79

Reflection in action, and reflection
on action were both used throughout the
trial and error process of producing viable
concept ideas. Experiencing what was occurring
on the screen, thinking of what I could do to
the code next while it was running and acting
upon what needed to be changed immediately..
Thinking about something that has happened,
thinking about what I would do differently to the
code next time. Taking my time with the code
and thinking it through rather than sporadically
typing variables. These are all reflections in
action (Schon, 1983). Reflecting using these
two methods allowed me to progress my codes
further and faster, while thinking about what
needed to be done to get a particular code
working streamlined my design process.

80

Reflection
4.0

Through the development of the various
programs discussed within this section I found
that a designer is able to conceptualise and
generate architecture using code. Whether
individually seen as being an ‘architecture’ or
not, an interpretation is needed. Interpretation in
design is crucial. An individual is offered a piece
of design, and in very few cases, two individuals
will experience a piece of design in the same
way. I am not going to sit here and say, what I
have created and have the ability to generate is
‘architecture’, but what I will say is that what is
being generated with each frame that goes by, to
me, has architectural interpretation.

This is because I interpret these forms as
being architectural, as in designing the code,
architectural influence and provocation has
been at the forefront. When writing the code,
using architectural design language (even
though the computer does not know much
of the jargon used) for me brings an element
of architectural design intent. If I were to use
programming jargon throughout the designing of
the scripts, inherently, it might remove some of
this architectural interpretation.

For someone reading the code, or learning from
it, seeing this architectural design terminology
may have an effect on their own interpretation
of the design outputs. This was one of my goals
when writing the code, to inform a layperson,
or another designer of the design intent, even
before they have viewed what the scripts
can create. To me, I think, if I can convey an
architectural message within the code, and also
within the outputs, I have achieved what I set out
to do.

This architectural interpretation also is derived
from the different view types used within the
output stages of the script. Architects are used
to realising their designs in perspective, but
often when we draw, we use the orthographic

projection to describe and develop scale and
proportion. Being an easy shift from perspective
to orthographic, it is easy for the designer
to alter the way the design is viewed by both
designers and also a layperson. A layperson
may take a little longer to understand the output
if it were only to be viewed in orthographic, as it
is somewhat unconventional for someone not in
the industry of design to view an object in this
way. Personally, I find viewing architecture from
an orthographic perspective very informative, in
the case of proportion. This view type definitely
has a particular look and feel which may not be
desirable for a design presentation for instance.
An orthographic view is usually situated along
each of the object’s axes, or from a set angle
above the object. This angle will tend to skew
the view of the object and negate a real life
view. This is when the perspective view is used,
for describing the interaction between different
objects at human scale from the perspective of
the human.

Taking away from this exploration, the
interpretation of an object is defined by
the way in which the object is viewed. This
understanding comes with personal experience
and the interpretation thereof is linked to this
experience. Deciding on a particular view type
should be dictated by the intended audience
and also the intended use.

Figure 4.09	
A potential design iteration generated by the computer.
Made using Processing, by Author.

82

5.0

Presentaion

Toward the end of the academic year, and
nearing the conclusion of my thesis, I was
selected for the New Zealand Institute of
Architects Student Design Awards (NZIA
Awards). It was an honour to represent Victoria
University at the highest level.

After being selected, I had to brainstorm how I
wanted to present my work to make it compelling
and cohesive to an audience that would be
seeing the work for the first time.

The brainstorm (pictured below) involved
mapping out where this journey began right
through to where I wanted to end up. This
enabled me to piece together the presentation in
a sensible fashion, and in a way which is easily
understandable from the outset.

Throughout this process I had guidance from my
supervisors, and one outside supervisor, Sam
Kebbell. Sam was my first point of call for the
work I was producing leading up to the awards.
Sam gave a unique perspective as (unlike my
original supervisors) he had not seen my work
develop throughout the year from its conception.
This meant he could view my work as would be
viewed by the judges and a practicing architect
would.

I wanted to design my exhibition presentation
as firstly, involving the judges in a specific way.
I wanted to make them feel part of the design
process. My thesis entailed ‘conversing’ with
the computer as a colleague. So, I wanted the
judges to ‘sit’ around a table as would occur in
a design meeting, bounce ideas off one another,
and ‘talk’ to the computer as they would a
colleague.

Thinking about how I was going to present my
screen based work was an easy one. I did not
want to bring my work to the awards not as
print outs as this would only capture a moment
in their evolution from starting object to final
output. Instead, I wanted to bring my work as
dynamic elements in their original format. I
saw this as an opportunity and the beauty of
the work I had created. I knew that if I were
to present as purely screenshots, the whole
idea of my thesis, creating architectural form
together with the computer, would not have
been recognised and would have required a
far more explanation. The beauty for me was
in the movement and the progression of form
throughout the animation.

From the raw script presented on the screen at
the beginning of the presentation, to the high
fidelity and dynamic creation of generating the
finished output. I wanted the judges and the
entire audience to witness the entire process
from beginning to end.

83

84

Figure 5.01	
Diagram of my NZIA SDA 2020 exhibition layout.
Hand drawing, by Author.

Pictured above is a diagram showing the layout
of my NZIA SDA exhibition. Having the judges
seated close to the computer screens, with
myself sitting down at the same level, forming a
circle around the middle screen and created an
inherent conversation.

This conversation between the computer, myself
and the judges, with the judges playing an equal
part throughout the presentation, and an equal
part of the exhibition presentation was my key
driver when designing my exhibition. The layout
of the computer screens also revolved around
this mentality. Forming a semicircle of computer
screens also allowed this design driver to flow
throughout the entire exhibition and surround
the judges.

The semicircle of computers was created to
follow a similar layout to the judges, and used
to focus the attention to the centre of the circle
where myself and the judges would all be sitting
throughout our conversation. I wanted this circle
to feel and act like a round table discussion,
with each colleague sitting next to one another
around a table, sharing ideas, and designing
together.

85

86

NZIA Te Kahui Whaihanga
Student Design Awards 2020

87

NZIA Te Kahui Whaihanga
Student Design Awards 2020

Figure 5.02	 Photograph of ‘Collegial Computation’ at the NZIA Student Design Awards 2020
	 David St. George (2020)

88

89

Figure 5.03	 Photograph of ‘Collegial Computation’ at the NZIA Student Design Awards 2020
	 David St. George (2020)

90

NZIA Te Kahui Whaihanga
Student Design Awards 2020

Project Description

The annual Te Kāhui Whaihanga Resene Student
Design Awards programme brings together the
top four students from each of New Zealand’s
three schools of architecture: The University
of Auckland, Unitec and Victoria University of
Wellington.

Each finalist, a fifth-year student, presents their
project to a panel of judges. The jury assesses
each work and determines the top student of
architecture in New Zealand (NZIA, 2020).

Collegial Computation, at its core, is a conversation, a Korero.
However, this is not a conversation with another human designer, but
with a computer as a partner in the conceptual design process. The
collegial aspect of this project looks at giving the computer shared
agency in its interpretation of the ‘unknown’ and bringing it into the
‘known’.
Coding can be a creative practice within architecture, and this
project argues that coding is not a mere tool for designing or
graphic representation, but a particular design medium with its own
affordances and resistances. Using code as a design medium provides
a specific form of feedback which influences the design process and
its outcomes as a whole. Code is technological and conceptual support
for design thinking and generation. In other words, code and coding
can have agency in architectural design and its processes.
This research is based on a number of cases from design practice
and theory, from small personal design experiments through to
developing a software tool.

91

Figure 5.04	 Spaces 02. A print generated in Processing, and post edited in Adobe Illustrator, by Author.

92

Figure 5.05	
Structures 00. A series of design iterations generated in Processing, and post edited in
Adobe Illustrator, by Author

93

A bold, unconventional vision that reconsiders
the computer / human interface in the design
process and stretches the idea of collaboration
into the digital realm. This is a brave proposal,
one that voluntarily relinquishes key parts of the
designer’s role and instead vests agency into
a non-human ‘colleague’. Using code, Jordan
has succeeded in generating forms which
were compositionally and spatially compelling
with limited or no active input. Although the
designer’s role was limited by the nature of the
process, his design sensibilities were still readily
apparent in the computer-generated forms.
The protocol developed has a wide range of
applications beyond the field of architecture.

A brave and future-facing body of work that
invites us to consider the relationship between
designing and computation. The notion posited
by Jordan sees ‘Colegial-Computation’, not as
a series of blunt tools, or simple mechanisms
to enact orders, but as a rich process of
negotiation and discussion. This is a brave
proposal, one that rightly acknowledges the
role of non-human creativity, and vests agency
into how the human colleague can play a larger
role in the design. Using code, Jordan maps
the new landscape where a more cooperative
relationship between creative identities can
co-inhabit. Because the designer’s role and
engagement with digital tools were extended
a range of compelling design solutions were
arrived at. The protocol developed has a
wide range of applications beyond the field of
architecture.

Well done, Jordan a genuinely compelling new
way of creating.

Judges Citation Tanes’ Citation

94

Upon reflection of the NZIA Student Design
awards 2020, and returning to Wellington
to complete the remainder of this thesis
document got me thinking. This project was
very different to the rest of the projects that
had been exhibited. It was definitely exciting
and motivating. While I was at the awards, many
people had approached me and had said, “Wow,
I have never seen architecture being portrayed,
represented, and created in this way before”. I
think this is what made my project stand out at
the awards. It was provocative, interesting, and
unique.

The judges wrote in their citation that my
project “voluntarily relinquishes key parts of
the designers role and instead vests agency
into a non-human colleague”. In fact I see this
being on the contrary. The designer still plays a
central role in the design process, even though
the computer is generating concepts for the
designer. The computer will only give you as
much as you give it. Although the designer
is able to generate hundreds of designs in a
fraction of the time, the design process still
remains within the designer’s hands. The
computer is only there to listen to the designer
and aid them in the creation of a concept. Once
a ‘final’ concept has been reached, the designer
can do what they like with the output. The
output may only serve as a massing exploration,
exploring the various ways an architecture can
inhabit a specific site, or how the designer could
use shadow to invoke a certain feeling within a
space.

Sometimes I think that change, especially
in the world of architecture, is daunting and
slow moving. But with a tool like this, having a
digital colleague by your side during the design
process would benefit architecture for the
better. To use this process within a design and
architecture firm would take some convincing
and some serious work, but I can see this way of
designing becoming an industry standard in the
years to come. It may not be using Processing
by that time, and it may well be mass produced,
but I think using a similar methodology to the
one that I have posed throughout this thesis is
something to think about.

The forms and spaces created and designed
throughout this thesis are subjective to my own
design sensibility. I like to call this ‘our’ design
sensibility, as it was not only me who created
the forms to look the way they do, the code,
my colleague also input their own design flair
on top. I, like the judges, can see this protocol
for designing being used beyond the field of
architecture as a learning and teaching tool,
even an engineering tool. The possibilities are
endless.

Reflection
5.0

95

Figure 5.06	
A potential design iteration generated by the computer.
Matrix Cube. Made using Processing, by Author.

96

Final Generations
All of the following outputs have been generated in Processing, and exported as a RAW format High-
Definition PDF.

97

Figure 5.07 & 08 - Beside and Above	
A metrix of slicer iterations, beginning at 0
and finishing at 500 iteration ‘clicks’. Made
using Processing, by Author.

98

Figure 5.09 & 10 - Beside and Above	
Isometric maze generator. Keyboard commands prompted removal of ‘
gaussian noise’ sections. Made using Processing, by Author.

99

100

101

Figure 5.11 & 12 - Beside and Above	
A collegial architectural generator. The script begins with a rectangle, and
breaks the shape into equal planes, columns, and slabs. Keyboard commands
prompt alterations in quantity or elements. Made using Processing, by Author.

Figure 5.13 & 14 - Beside and Above	
Matrix showing evolution of base form pictured first. Inhabition of form is
achieved through ‘zooming’into the model. Light conditions provoke an
architectural interpretation. Made using Processing, by Author.

103

105

Figure 5.15 & 16 - Beside and Above	
A collegial architectural generator. The script begins with a cube, and breaks
the shape into shard-like shapes. Keyboard commands prompt alterations in
quantity of slices made before returning to a cube. Made using Processing, by
Author.

106

107

Figure 5.17 - Above	
One of my Colleagues multitude of conceptual iterations. Made using
Processing, by Author.

108

In conclusion, this research addresses the
question of ‘how we can generate architecture
using code and procedural systems’ within the
practice of architectural design. This research
addresses how architects and designers alike
can incorporate a generative procedural tool
into their day to day workflow It establishes a
conceptual methodology in which I feel can be
built upon in the years to come.

The work undertaken in this study informs how
powerful a tool it can become and defines how
it can be incorporated more frequently into the
workflow of the conceptual and development
stages of architectural design. Presently, an
elementary design tool has been developed,
tested, and put into practice with room for
development. Enhancing the level of automation
and interaction within the program will provide
the end user, and their new colleague, extensive
conceptual iterations. It will also enhance the
user’s attention and satisfaction throughout
the design process. Shifting the mode of
general architectural conceptualisation and
representation, I hope, will expand the field of
architectural discourse substantially.

The use of a procedural or rule based system
provides the user with a toolkit of possible
actions to be combined infinitely, with room for
expansion. By studying procedural systems, I
have found that they are powerful mechanisms
in which architecture revolves around and works
with every day. General architectural rules, and
codes, govern the field of architecture and make
it the field it is today. By adding a new method of
designing and iterating, I hope to streamline the

conceptual design stage, allowing the Architect
to work more efficiently. This will allow them to
focus more of their attention on other crucial
areas of the architectural design process.

Further development of the idea, ‘can we
use code to create architecture’, will be the
implementation of ‘site’ into the procedural
design process. This one area of expansion
would allow the architect or client to discuss
with their colleague the site constraints, and
to help provide a solution to a possibly tricky
translation. Even for an architect drawing with
pen and paper, the first step of their process
is often to go to the site, to observe these
constraints, and to design for and with the site,
not against it.
Further development into these procedural
systems is one that I hope will expand from
what I have created so far, and allow this way of
working to proliferate through the field, and not
to scare architects away.

Looking at how this tool developed and how
it can be used outside of the architectural
profession takes me back to a question posed
by one of the judges at the NZIA Student
Design Awards. They asked; “Do you think
that this tool has potential applications outside
of the profession? As a design teaching tool
perhaps?”. I am glad that someone recognised
this potential of the program outside of the
profession and for another demographic from
the one I had intended the program to be used
by. Yes, this tool definitely has applications as
a teaching tool, in the way of teaching spatial
relationships and massing studies.

Conclusion

109

With a deep look into this research thesis, a
potential disadvantage in what I have created
so far is the lack of ability to alter the initial
volume of the animation past changing the X, Y,
and Z lengths. If an architect or student wanted
to undertake a massing study of a different
geometric form (other than a rectangle or
square), there would be no way for the program
to cater to such a need at present. Further
development of these programs may bring an
ability to input an existing geometry that their
‘colleague’ would work upon, exploring different
potential design iterations.

So, to readdress the initial question:

How can we use scripting
techniques within the conceptual
design stages of architectural
design to generate and create
architectural form?

The solution goes deeper than the
understanding of code, or the benefits of
working in a procedural manner. Rather, it is
the appreciation and understanding that we
as designers, and people alike, can see and
use computers in a different way. Not only for
their brute force processing power, but also for
their unlimited variability and developability. It
is the purpose of the architect, space, and fore
mostly the user, that we can understand how
a tool like this can be fully utilised in research
and in practice. Can we allow the computer
shared agency in the design process? Is it right
to give up a portion of ‘what architects do’ to a
computer?

This research has provided another step into the
‘Architectural Computation‘ realm, with further
design testing and experimentation, with regard
to interpretation and representation.

This begs the
question: “how would
YOU use this design
framework in your
architecture office?”.
Only then, can this tool
be further developed
into one that not only
assists creativity, but
extends into all areas
of architectural

design.

110

111

112

Bødker, S., Ehn, P., Sjögren, D., & Sundblad, Y. (2000). Co-operative Design—Perspectives on 20 years
with ‘the Scandinavian IT Design Model.’ 9.

Cohen, H. (1982). What Is An Image? IJCAI, 6, 1028–1057.

Colleague Definition & Meaning. (2012). Dictionary.Com. https://www.dictionary.com/browse/colleague

Dietrich, F. (1986). Visual Intelligence: The First Decade of Computer Art (1965-1975). Leonardo, 19(2),
159–169.

Fowler, W. (2016). Manfred Mohr – The groovy German who taught computers to make art. The
Guardian. https://www.theguardian.com/artanddesign/2016/feb/12/manfred-mohr-the-man-who-taught-
computers-to-make-art

Galanter, P. (2003). What is Generative Art? http://philipgalanter.com/downloads/ga2003_what_is_
genart.pdf

Good Interaction Design = Good UX. (2021). https://www.getfeedback.com/resources/ux/good-
interaction-design-good-ux/

JavaMathBits. (2021). Java Random Generation. MathBits. https://mathbits.com/JavaBitsNotebook/
LibraryMethods/RandomGeneration.html

Kemp, M. (1998). Latham’s life-forms. Nature, 391(6670), 849–849. https://doi.org/10.1038/36010
Lostritto, C. (2019). [Personal communication].

Kolb, D.A. (1984). Experimental Learning Experience as a Source of Learning and Development.
Englewood Cliffs, NJ: Prentice Hall.

McClintock, C. (2020, September 14). A Beginner’s Guide to Generative Design. https://www.ptc.com/
en/blogs/cad/beginner-guide-generative-design

Mohr, M. (1983). Artists Statement—The Computer and Its Influence on Art and Design. Sheldon
Memorial Art Gallery Catalog, University of Nebraska.

Noll, M. (1994). The Beginnings of Computer Art in the United States: A Memoir. Leonardo, 27(1), 39–44.

List of References

113

NZIA, N. I. of A. (2020). Student Design Awards. NZ Institute of Architects. https://www.nzia.co.nz/
awards/student-design-awards
Schon, D. A. (1983). The Reflective Practitioner: How Professionals Think In Action. Basic Books.

Vanhoutte (W:Blut), F. (2021). HE_Mesh [Java]. https://github.com/wblut/HE_Mesh (Original work
published 2019)

What is Processing? (2021). https://www.computerhope.com/jargon/p/processi.htm

Wrigley, K. (2015). Generative Art – Fascinating Things You Don’t Know About. Studio A N F. https://
studioanf.com/a-brief-history-of-generative-art/

Zafari, S., & Koeszegi, S. (2020). Attitudes Toward Attributed Agency: Role of Perceived Control.
International Journal of Social Robotics. https://doi.org/10.1007/s12369-020-00672-7

114

Figure 0.01

Figure 0.02

Figure 0.03

Figure 0.04

Figure 0.05

Figure 0.06

Figure 0.07

Figure 1.01

Figure 1.02

Figure 1.03

Figure 1.04

Figure 1.05

Figure 1.06

Figure 1.07

Figure 1.08

Figure 1.09

Figure 1.10

Figure 1.11

St George, D. (2020). NZIA Student Design Awards 2020 [Photograph]. Auckland,
New Zealand.

Hand Drawing, by Author.

Hand Drawing, by Author.

Image made using Processing and Adobe Illustrator, by Author.

Image made using Processing, by Author.

Image made using Processing, by Author.

Image made using Processing, by Author.

Image made using Processing, by Author.

Image made using Processing, by Author.

Image made using Processing, by Author.

Image made using Processing, by Author.

Image made using Processing, by Author.

Image made using Processing, by Author.

Image made using Processing, by Author.

Image made using Processing, by Author.

Image made using Processing, by Author.

Image made using Processing, by Author.

Image made using Processing, by Author.

List of Figures
Unattributed figures belong to the author

115

Figure 2.01

Figure 2.02

Figure 2.03

Figure 2.04

Figure 2.05

Figure 2.06

Figure 3.01

Figure 3.02

Figure 3.03

Figure 4.01

Figure 4.02

Figure 4.03

Figure 4.04

Figure 4.05

Figure 4.06

Figure 4.07

Figure 4.08

Figure 4.09

Figure 5.02

Figure 5.03

Image made using Processing, by Author.

Image made using Processing, by Author.

Image made using Processing, by Author.

Image made using Processing, by Author.

Image made using Processing, by Author.

Image made using Processing, by Author.

Image made using Processing, by Author.

Image made using Processing, by Author.

Image made using Processing, by Author.

Image made using Processing, by Author.

Image made using Processing, by Author.

Image made using Processing, by Author.

Image made using Processing, by Author.

Image made using Processing, by Author.

Image made using Processing, by Author.

Schon, D. A. (1983). The Reflective Practitioner: How Professionals Think In Action.
Basic Books. [Diagram]

Kolb, D.A. (1984). Experimental Learning Experience as a Source of Learning and
Development. [Diagram] Englewood Cliffs, NJ: Prentice Hall.

Image made using Processing, by Author.

St George, D. (2020). NZIA Student Design Awards 2020 [Photograph]. Auckland,
New Zealand.

St George, D. (2020). NZIA Student Design Awards 2020 [Photograph]. Auckland,
New Zealand.

116

Figure 5.04

Figure 5.05

Figure 5.06

Figure 5.07

Figure 5.08

Figure 5.09

Figure 5.10

Figure 5.11

Figure 5.12

Figure 5.13

Figure 5.14

Figure 5.15

Figure 5.16

Figure 5.17

Image made using Processing and Adobe Illustrator, by Author.

Image made using Processing and Adobe Illustrator, by Author.

Image made using Processing, by Author.

Image made using Processing, by Author.

Image made using Processing, by Author.

Image made using Processing, by Author.

Image made using Processing, by Author.

Image made using Processing, by Author.

Image made using Processing, by Author.

Image made using Processing, by Author.

Image made using Processing, by Author.

Image made using Processing, by Author.

Image made using Processing, by Author.

Image made using Processing, by Author.

List of Figures

117

