
112 NZMJ 22 May 2020, Vol 133 No 1515
ISSN 1175-8716                 © NZMA
www.nzma.org.nz/journal

Inhaled modi� ed angiotensin 
converting enzyme 2 (ACE2) 

as a decoy to mitigate 
SARS-CoV-2 infection

Rohan Ameratunga, Klaus Lehnert, Euphemia Leung, Davide Comoletti, 
Russell Snell, See-Tarn Woon, William Abbott, Emily Mears, Richard Steele, 

Je�  McKee, Andrew Muscro� -Taylor, Shanthi Ameratunga, Natalie Medlicott, 
Shyamal Das, William Rolleston, Miguel E Quiñones-Mateu, 

Helen Petousis-Harris, Anthony Jordan

COVID-19 is an emerging zoonotic 
disease, caused by SARS-CoV-2, which 
appears to have been transmitted to 

humans in late 2019 in the Hubei province 
of China, probably from an intermediate 
host in a live animal market. The viral se-
quence bears close similarity to bat (Chirop-
tera) coronaviruses,1 although the proximate 
animal host source for this spillover event 
remains unidentifi ed.2 SARS-CoV-2 belongs 
to the family of beta coronaviruses, which 
have previously caused pandemics including 
SARS-CoV in 2003 and the Middle Eastern 
respiratory syndrome (MERS-CoV) in 2012.3

Following the initial outbreak in Wuhan 
City, there has been rapid spread of the virus 
across the globe with catastrophic health, 
economic and societal consequences.4 The 
virus spreads from human to human via 
respiratory droplets, aerosols, fomites and 

by other body contact including the hands. 
Countries around the world have been 
attempting to block transmission of the 
virus by physical distancing and restricting 
movement of individuals including extreme 
measures of quarantining entire regions 
and countries.5 Occult transmission of the 
virus by presymptomatic and asymptomatic 
persons may challenge healthcare systems 
attempting to eliminate the virus.6 

Morbidity and mortality 
Current case fatality rates (CFR) vary 

widely between countries from approx-
imately 0.1% to 11% with a more recent 
overall estimate closer to 0.99%.7 There 
appears to be a steep age-related mortality 
gradient with rates approaching 20% in 
those over 80 years of age.8 Younger patients 
have also been severely affected, including 
medical and nursing healthcare workers 
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COVID-19 is a new zoonotic disease caused by the SARS-CoV-2 virus. Since its emergence in Wuhan City, 
China, the virus has rapidly spread across the globe causing calamitous health, economic and societal 
consequences. It causes disproportionately severe disease in the elderly and those with co-morbidities, 
such as hypertension and diabetes. There is currently no proven treatment for COVID-19 and a safe and 
e� ective vaccine is at least a year away. The virus gains access to the respiratory epithelium through cell 
surface angiotensin converting enzyme 2 (ACE2). The receptor binding domain (RBD) of the virus is unlikely 
to mutate without loss of pathogenicity and thus represents an attractive target for antiviral treatment. 
Inhaled modified recombinant human ACE2, may bind SARS-CoV-2 and mitigate lung damage. This decoy 
strategy is unlikely to provoke an adverse immune response and may reduce morbidity and mortality in 
high-risk groups.
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(HCW) who were exposed to high concentra-
tions of the virus before the use of personal 
protective equipment (PPE).9 

Epicentres in Europe have experienced 
large numbers of cases and deaths, which 
have overwhelmed healthcare systems. 
At the time of writing, the US death toll is 
rapidly approaching 100,000 and modelling 
by various authorities predict up to two 
million deaths depending on the effec-
tiveness of preventative measures. 

Individuals with co-morbidities such 
as hypertension, obesity, ischaemic heart 
disease, chronic pulmonary disease and 
diabetes are at increased risk of severe 
outcomes. Current advice is that patients 
on ACE inhibitors (ACEi) and angiotensin 
receptor blockers (ARBs) should continue 
treatment for hypertension.8 Patients at risk 
of severe morbidity and death may expe-
rience rapid spread of the virus through 
the respiratory tract leading to viral pneu-
monia, sepsis, acute respiratory distress 
syndrome (ARDS) and multi-organ failure. 
Many patients have died in spite of invasive 
ventilation and extracorporeal membrane 
oxygenation (ECMO).8 

Receptor for SARS-CoV-2
Like SARS-CoV (2003), SARS-CoV-2 enters 

human cells through the angiotensin 
converting enzyme 2 (ACE2) expressed on 
the membranes of type 2 pneumocytes of the 
respiratory tract.10 There are two subtypes of 
ACE in humans.11 ACE1 catalyses angiotensin 
1 to its more active form angiotensin 2. ACE2 
has approximately 40% sequence similarity 
to ACE1. Its main function is to produce 
angiotensin 1–7 and 1–9, which are physio-
logical antagonists to angiotensin 2.12 ACE2 
also hydrolyses apelin, a pleiotropic peptide 
ligand with multisystem effects.

Membrane-bound ACE2 is cleaved by a 
metalloproteinase, tumor necrosis factor 
alpha convertase (TACE, ADAM17)13 to 
produce a soluble ectodomain that is shed 
into the extracellular space. This cleaved 
ACE2 appears to maintain its catalytic 
function. Its exact physiological role is 
uncertain but it may act as a negative regu-
lator of blood pressure control.14 

Strategies to combat the virus
Apart from the effective public health 

strategies to self-isolate and maintain social 
and physical distancing, a variety of anti-
viral methodologies have been considered to 

combat the virus. These include the recent 
trials of COVID-19 candidate vaccines in 
several countries. 

Multiple clinical studies are evaluating 
the effi  cacy of antiviral drugs such as favi-
piravir, remdesivir and ritonivir as well 
as other drugs including hydroxychloro-
quine and azithromycin, which appear to 
be less effective.15 The cell surface protease, 
TMPRSS2 plays a critical role in activating 
both SARS-CoV and SARS-CoV-2 viruses.16 
In vitro studies suggest drugs such as 
camostat mesilate, which inhibits TMPRSS2, 
are effective in preventing viral entry into 
respiratory epithelial cells.17,18 Large clinical 
studies will determine the precise effi  cacy of 
these treatments. Currently there are limited 
supplies of some drugs.

Passive immunisation with convalescent 
neutralising sera has also been considered.19 
It is however concerning that some patients 
with high titres of anti-SARS-CoV-2 sera had 
high viral loads.9 Although such antibodies 
neutralised virus in vitro, they seem to be 
less effective in vivo. There is also concern 
about antibody-dependent enhancement 
(ADE) of disease.20 It is likely patients who 
recover from COVID-19 have qualitative 
differences in antibody responses analogous 
to hepatitis B. 

Similarly, monoclonal antibodies to the 
receptor-binding domain (RBD) have been 
considered but have not yet been deployed 
in clinical trials.21 Competitive inhibition 
with peptides has been used in animals to 
counter SARS-CoV, but given the differences 
in spike protein sequences, it remains to be 
determined if SARS-CoV-ACE2 interaction 
is identical to that of SARS-CoV-2-ACE2.22,23 
Such peptides, particularly if coupled to IgG 
Fc fragments, also risk provoking an adverse 
immune response. 

Inhaled modified soluble 
recombinant human ACE2 to treat 
COVID-19

We believe the Achilles heel of SARS-
CoV-2 is the RBD sequence of the spike 
glycoprotein, which is critical for viral 
entry. Viral evolution of SARS-CoV-2 RBD 
is unlikely to be tolerated without loss of 
pathogenicity. Our strategy is to produce 
modifi ed recombinant soluble human ACE2 
(shACE2) molecules, which are similar 
to those cleaved from the cell surfaces of 
the respiratory mucosa.24 Two amino acid 
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substitutions will abolish the catalytic 
activity of ACE2 (R273A) and reduce N-gly-
cosylation (N90D) to increase affi  nity for the 
RBD of unactivated SARS-CoV-2 to inhaled 
shACE2. If the structure of these inhaled 
modifi ed shACE2 molecules is preserved, the 
virus will bind to these decoy receptors.25 

Soluble human ACE2 has high affi  nity 
(14.7 nM) for the SARS-CoV spike (S) glyco-
protein and has been demonstrated to block 
the SARS-CoV virus from infecting cells in 
culture.26 This is comparable to the affi  nity 
of a single-chain variable region fragment 
neutralising antibody against SAR-CoV-S.27 
As the SARS-CoV-2 S spike glycoprotein 
shares 77% protein sequence similarity to 
SARS-CoV S glycoprotein, it is anticipated 
that modifi ed shACE2 will bind SARS-CoV-2 
with similar high affi  nity. 

The shACE2 will be delivered to the 
lungs by the Respimat® inhaler to newly 
diagnosed infected patients, particularly 
those with co-morbidities and the elderly, 
who might not be offered ventilation.28 
The Respimat® is an ideal drug delivery 
device as it induces lower shear stresses, 
which is less likely to denature the protein. 
Furthermore, since it is a closed system, 
it does not pose an additional danger to 
HCWs or family members. Unlike nebu-
lisers, the Respimat® does not generate 
hazardous aerosols and more of the drug 
will be deposited in the respiratory system. 
Dry powder inhalers are unsuitable as they 
generate high shear stresses which could 
denature the proteins.

Binding of SARS-CoV-2 to the modifi ed 
shACE2 decoy could alter the trajectory 
of the infection, delaying or halting the 
destruction of the pulmonary epithelium 
and allowing appropriate protective immune 
responses to the virus. Soluble ACE2 has 
been shown to inhibit in vitro SARS-CoV-2 
infection of human organoids, supporting 
our approach.29,30 We shall check the binding 
affi  nity of modifi ed shACE2 by ELISA and its 
in vitro effi  cacy by viral cytopathic inhi-
bition studies both before and after passage 
through the Respimat® inhaler.

The proposed strategy includes admin-
istering several treatments over a few 
days until there is clinical evidence of 

improvement in terms of fever, cough, 
dyspnea, myalgia and lethargy. Early reso-
lution of fever, improved gas exchange and 
reduction in infl ammatory markers may be 
reliable signs of effi  cacy in randomised trials. 

Another ACE2 product conjugated to 
an Fc domain will be created for systemic 
use.25 A shACE2-Fc construct could however 
aggravate the cytokine storm in such 
patients, although it may be more effective 
in removing the virus rapidly and reducing 
damage to the respiratory epithelium.19 It 
could be used in patients on ECMO to reduce 
the duration of pulmonary failure. Data 
from China shows patients who succumb 
to COVID-19 have persistent, unrelenting 
viral sepsis.8 This product, with the appro-
priate ethics approvals could be considered 
in severely affected individuals at a future 
date. There are now clear prognostic 
markers of death in such patients including 
unrelenting viremia, persistent lympho-
penia, raised d-dimers, etc.

Potential benefits
The use of modifi ed decoy shACE2 is a 

novel and relatively low-risk approach to 
mitigate the effects of a lethal infection. A 
decoy strategy is a compromise between 
safety and effi  cacy for a new class of 
biopharmaceutical agents. While ACE2-Fc 
constructs might generate rapid antiviral 
responses, they may also aggravate ARDS. If 
the strategy is successful, it may reduce the 
morbidity and mortality of COVID-19. It will 
convert those with severe disease to milder 
forms. Apart from reducing mortality, it may 
ease pressure on intensive care units and 
reduce the need for ventilators. 

It is also possible this treatment may 
enhance the effi  cacy of other antiviral 
drugs, which may have only modest effi  cacy 
against SARS-CoV-2. Similar to HCV or HIV, 
a combination of drugs may lead to rapid 
improvement of disease if administered 
early in the infection.

Such agents could be used prophylacti-
cally for family members of COVID-19 cases 
and HCWs, who are at high risk of infection 
and transmission to their families and 
other patients.31 The molecules may also be 
useful as prophylaxis in care homes experi-
encing outbreaks of infection. In countries 
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with widespread community transmission, 
deployment of these products in new 
infection clusters may allow development of 
protective herd immunity with a lower risk 
of death in the elderly. In countries without 
herd immunity such as New Zealand, these 
biopharmaceuticals could play a role in 
reducing the reproductive number (R0) of 
the virus. By decreasing the viral burden in 
an infected person, these molecules might 
decrease the risk of transmission.

The best-case scenario is shortening the 
duration of the current pandemic with 
saving large numbers of lives with low risk 
of adverse effects. These molecules may 
bridge the gap until a safe and effective 
vaccine is identifi ed. In the event SARS-
CoV-2 becomes more virulent by increasing 
its affi  nity to ACE2, these biopharmaceu-
ticals could become even more effective. 
This strategy may also mitigate future 
pandemics caused by novel coronaviruses 
utilising ACE2 for viral entry. 

E� icacy
It is not known if this experimental 

strategy will be effective. It is uncertain 
if the inhaled modifi ed shACE2 will bind 
the unactivated virus with the same high 
affi  nity as cell surface ACE2, following 
activation by the TMPRSS2 protease. It is 
possible larger doses of these biopharma-
ceuticals will be required but administration 
will be initially limited by the yields from in 
vitro production.

A similar product, APN401 (Apeiron 
Biologics AG, also known as GSK2586881) was 
well tolerated in high doses but ineffective 
when administered to ARDS patients intrave-
nously.32 Importantly, there was no evidence 
of disease enhancement. The key to effi  cacy 
in moderating the progression of COVID-19 
may be early administration through the 
respiratory route, with a product, which 
blocks viral entry and replication. 

Potential risks and adverse e� ects
Because of the sequence similarity of 

shACE2 to the physiologically cleaved 
wild-type ACE2, an immediate adverse 
immune response to the protein is unlikely. 
Even if the few amino acid differences prove 
immunogenic, treatment would have been 
discontinued before an adverse immune 
response develops. It is very unlikely 
shACE2 will provoke a long-term auto-
immune disorder.33–35

It is uncertain if there will be an adverse 
immunological response to SARS-CoV-2-
shACE2 complexes. These complexes are 
likely to be engulfed by macrophages, which 
are well equipped to eliminate the virus 
compared to pulmonary epithelial cells, 
which undergo cytopathic destruction. It 
is unlikely these soluble complexes will be 
internalised through the alternate endo-
somal pathway previously described for 
SARS-CoV leading to worsening damage to 
the respiratory mucosa.16 Other SARS-CoV-
2-shACE2 complexes will be removed by the 
mucociliary ladder and swallowed, likely 
resulting in hydrolytic destruction of the 
virus in the stomach. 

The risks of this experimental treatment 
must be considered in the context of the 
known morbidity and mortality of this 
infection for which there is no effective 
treatment. Given the rapid reduction of 
new COVID-19 cases in New Zealand, large-
scale randomised clinical trials of these 
biopharmaceuticals will be conducted inter-
nationally. Preclinical safety studies could 
be undertaken in New Zealand. If successful, 
these products will be made available to New 
Zealand patients and HCWs on a compas-
sionate basis once relevant ethics and 
regulatory approvals have been received. 
The clinical availability of such biopharma-
ceuticals will depend on how quickly each 
jurisdiction assesses and approves such 
novel products in this global crisis.
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