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Abstract

Program visualisation uses computer graphics and animation techniques to produce pictures illustrating
the dynarnic behaviour of a running computer program. Most progra^rn visualisation systems display
either language'level details of programs or highJevel overviews of the program's algorithm. This thesis
investigates the use of abstraction in program visualisation. The goal of the project was to find techniques
which could produce displays of programs at all levels of abstraction, and which would not require a large

amount of info:mation about the implementation of the program to be visualised. Based upon analyses

of program visualisation and abstraction in programming, a model of abstract program visualisation is
developed. This model uses object orientation to explicitly represent abstractions in the programs to be

visualised. An object oriented framework for the design of an interactive program visualisation system

(a program exploratorium) is developed based upon this model. This framework is used to construct
Ta"rraingim, a prototype prograru exploratorium, as a proof of concept for the model. Ta,rraingfm produces

multiple views of object oriented programs at multiple levels of abstraction, by invisibly monitoring the
progra,rns' execution and using the information gathered to control graphical animations. Tarraingim is

written in the Snl,r programming language, and visualises programs written in that language. A series

of examples is presented to illustrate Tarraingfm in action.
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Introduction

An atgorithm animotion enaironment is an "euploratoriurn" for i,nuestigating the

dynam,i,c behaa,ior ol programs. . . .It presents multiple graphical displays of an

algorithm in action, exposing properties o! the program that might otheruise be

dfficult to understanil or might euen remain unnoticeil.

Ma,rc Brown, Introduction to Algorithm Animation 133)

1.1 Abstraction and Program Visualisation

Program Visualisation is the application of computer graphics techniques to computer programs' in

the same way that scientific or engineering visualisation applies these techniques to scientific data or

engineering artifacts. Visualisations can assist programmers in constructing, debugging and maintaining

ptogtrttt.. They can also be used in teaching general principles of computer science, including the design

of data structures and algorithms.

The existing work in program visualisation can be grouped into two broad categories, according to

the kinds of views presented. Algorithm Animotion systems display highJevel pictures of the operation

of an algorithm, while Graphical Debuggers display languageJevel views of a program.

Algorithm animation systems illustrate an algorithm's intent, and may bear no relation to that al-

gorithl's implementation. Such views must be specially designed because the intent of a,n algorithm

is somewhat intangible and ca,nnot in general be determined automatically. Typically, the algorithm to

be visualised is implemented using facilities provided by the visualisation system, so that as it runs the

animated displays are updated.

Graphical debuggers (and graphical programming environments) display information about a pro-

gram's implementaiiln. A graphical debugger illustrates run-time control flow and data structure, while

i progra^rnming environment presents static views which may be edited to create programs' For example,

a debogger may display a data structure constructed of records and pointers using a "box-and-a,rrows"
dia$am, a,nd a programming environment could display the intermodule dependencies within a program

as a graph. These views are typically updated by request, rather than continuously'

The difierence between these categories is one of the level of. abstraction. Graphical debugging works

at the language level, while algorithm animation displays high-level features of the program. Note that
abstraction in this sense does not concern simply the amount of detail a visualisation contains. For
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example, a graphical programming environment may produce a histogram of a program's execution
profile, or a graph summarising its heap memory usage. These displays present information about the
execution of a program in a compressed form, and are useful aids to understanding a prograrn. However,
they do not provide insight about the intent of. the programmer and the abstract ideas used in the
construction of the target program.

L.2 Goals of this Research

Programs are generally constructed from many interacting abstractions, with highJevel abstractions
implemented by lower-level abstractions, which are eventually implemented in the primitive facilities
of the programming language. Algorithm animation systems typically present views at only one level
of abstraction - the highest level in the program, and graphical debuggers display only programming
language level views.

Marc Brown's seminal thesis .Algordthm Animstion [33] described the design rationale of the Bnt,sn
system. The first prograrn visualisation system to become widely used and well known, Balse produced
multiple illustrations of the execution of a"n algorithm, and gave its user control of the animation using
an interactive environment. BALsA's user could choose a^n algorithm to watch, and select several views
to display different illustrations of the algorithm. This is Brown's algorithm erploratoriurn - a computer
system for exploring the behaviour of algorithms.

Our ultimate aim is to build a program exploratorium - {}n interactive system for investigating
programs in all their multifaceted complexity. BAlsA, although flexible, performed algorithm animation,
and the views it presented were limited to those describing high-level aspects of algorithms. A program
exploratorium should take a broad-spectrum approach, capable of dynamically visualising a program
at multiple levels of abstraction. For example, a program exploratorium could show how a program
implements a given algorithm by presenting views at ma^ny levels of abstraction simultaneously.

The practical aim of this thesis is to investigate the design of such a program exploratorium.

1-.3 Program Visualisation with Explicit Abstractions
In order to produce an abstract visualisation we must determine the abstractions used within the program
to be visualised. We then need to establish a connection between the program and the pictures to be
produced, so that pictures ca,n be updated as necessary during program execution. Since the pictures
should depict ideas embodied in the program design, this means that we need to associate pictures with
the program components corresponding to these abstract ideas.

This approach will work provided that the abstract ideas on which a program is based are represented
in the program in an easily identifiable way - that is, they are explicit in the program's structure.
Our approach is to use object orientation to organise the program to be visualised. An object oriented
program is structured as a collection of self-contained objects, which package data together with the
behaviour to process those data. Assuming the program is well designed, each object should represent
an individual abstraction in the program, and every important design idea should be represented as an
object.

The abstractions can then be visualised by monitoring the objects representing them, and drawing
appropriate pictures as the program executes. This monitoring must be efficient, so that the visualisation
can proceed at a reasonable rate, and unintrusive, so that it does not affect the operation of the monitored
program.

To provide some empirical evidence that this approach is practical, we have designed and implemented
a prototype prograrn visualisation system cilled Tanaingtm (from the Galic for druwing). Tarraingim
produces multiple views of object oriented programs at multiple levels of abstractions, by transparently
monitoring the programs'execution and using the information gathered to control graphical animations.

Tarraingfm is built as an object oriented framework, that is, as a collection of reusable objects which
can be composed to produce an actual working system. It uses encapsulator objects to monitor the
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progriln, uieur objects to display visualisations, and watcher objects to link views to encapsulators. This

gives Tarraingfm a very flexible architecture, which can be specialised and extended to produce many

kinds of visualisations.

L.4 The Organisation of this Thesis

This thesis is structured as follows:

Chapter 2 starts by describing the PMV (program, mapping, and. uisualisation) model of program

visualisation, and then reviews the evolution of program visualisation techniques over the last

fifteen years. It also surveys related work in prograrn monitoring'

Chapter B discusses in detail the various r6les of abstractions in program visualisation. It argues that

the existing approaches to ha.ndling abstraction are not adequate to support a program explorato-

rium, and describes a novel approach based upon design abstractions which are explicitly repre-

sented in the program to be visualised. This chapter then investigates several alternative paradigms

of abstraction in programming, and identifies object orientation as suitable for further investigation.

The chapter concludes by introducing the novel APMV abstract progam visualisation model.

Chapter 4 describes how the APMV model can be employed within a program visualisation system. It
addresses two main issues: do objects capture sufficient information about a program's abstractions

to allow them to be visualised, and can this information be used efficiently by a visualisation system?

This chapter introduces the idea of a monitoring strategy, which describes the information about

an abstraction that is required to produce a display of that abstraction'

Chapter 5 introduces Tarraingim, a novel prograrn visualisation system designed to test the concepts

developed in Chapters 3 a,nd 4. This chapter describes Tarraingim's architectural design as an object

oriented framework, and then discusses implementation issues such as the choice of programming

language and graphics system. It also introduces the Splr programming language, in which both

Tarraingim, and the programs that Tarraingfm visualises, are written.

Chapter 6 describes the design of Tarraingim's display subsystem. This subsystem consists of uiew

objects which are responsible for generating Tarraingfm's graphical display and handling user in-

teraction.

Chapter 7 presents the design of Tarraingfm's strotegy subsystem. This subsystem consists of. watcher

objects which connect the display subsystem's views to the objects in the target program. Watchers

embody the strategies described in Chapter 4.

Chapter 8 presents the design of Tarraingim's monitoring subsystem. This subsystem collects informa-

tion about the program and supplies it to the strategy subsystem'

Chapter g discusses the encapsulotor objects which actually monitor the target SnlF program. It
evaluates several alternative encapsulator designs in terms of their effects on the program to be

visualised and the kind of information they can supply to the monitoring subsystem'

Chapter 10 presents several examples of Tarraingim in use. It begins by describing Tarraingfm from the

user's perspective, showing how interface views are used to select objects and views. The chapter

then uses several reflexive displays to illustrate the way Tarraingim's components cooperate to
produce visualisations. It finishes with a la,rger example, showing how Tarraingim's views can be

used to portray the design abstractions within a parser for a Pl/0-like la.nguage'

Chapter 11 concludes this thesis with a summary of the contributions that we claim for this work, and

an indication of directions to be pursued in future.
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Related Work

This chapter reviews previous a,nd current work which has influenced our research. We begin by discussing

a model of program visualisation that has been proposed by several researchers in the field, and then

survey the systems which have been built. We also consider some research in program monitoring'

The first surveys of program visualisation (abbreviated PV) appeared in the mid-1980s, generally

a^s components of general ,*iu*, of the applications of graphics to programming 
-[175, 

47]' The most

comprehensive survey is Myers' [151, 152], and Brown's and Stasko's dissertations [33' 199] also include

detailed analysis of pievious systems. These surveys typically group systems into broad categories accord-

ing to the type of dlsplays thly produce - whether they portray a program's code, data, or algorithm,

and whether they display static or dynamic images'

More recent surveys have attempted to evaluate the field, rather than simply presenting an overview of

work [3b, 207, LTI]. iypicalty seveial axes or categories are defined, describing attributes of PV systems.

Real or hypothetical ry.t"t* are then evaluated against those definitions. Several empirical studies of

the effectiveness of proga.rn visualisation systems have also been carried out, particularly with regard to

use in computer science education [71, 37, 206].

Much of the work cited in this chapter was first presented at tlrre IEEE Workshop on Visual Languages,

arrd subsequently appea,red in the Joumol o! Visual Languoges and' Computotion. Glinert's collection

visuol Programming Enuironments [81, 82] reprints many important papers.

The first section of this chapter describes a generic model of program visualisation. Section 2.2

then describes visual tools (such as graphical debuggers) which produce visualisations in terms of the

programming la.nguage. We then describe algorithm animation systems, which are based upon either

i",oit.tiol tiZ.gt oimapping rules (g2.4). The final section ($2.5) surveys the program monitoring

techniques which have been used by program visualisation systems.

2.L A Model of Program Visualisation

Several researchers have constructed conceptual models to describe the architecture of program visualisa-

tion systems. We use the architectural model developed by Stasko [199, 200] and Roman and Cox [186].

This model considers program visualisation to involve a mapping between the program to be visualised

(the target program) #d a visualisation to be produced (see Figure 2.1). We call this the PMV model

after its three components (Program, Mapping, atd Visualisation). We use the term actions to denote

the information about the target prograrn gathered by the prograrn component, and the term changesfor

the input to the visualisation component. For example, an action could record that a procedure named
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insert had been called, while its corresponding cha.nge would inform a view that a new element had been
added to a list.

Figure 2.1: The PMV Model

Roman and Cox's and Stasko's presentations of the PMV model substantially agree. Stasko originally
introduced the model to describe his TeNco algorithm animation system [200], and so he named the
components Algorithm, Mapping, and Andmation. Roman and Cox use the model to motivate the design
of their Pevalvn system ($2.4.1), and they also use it to analyse two other systems including Telrco.

A similar model underlies the taxonomy recently presented by Price et. al. [1?3]. The main difference
between Price's model and PMV is that Price includes other components represeniing the context of the
program visualisation system.

2.L.I Program Component

The program component presents the target program to the visualisation system. Most PV systems work
within a specific torget programming language, and can in theory visualise any program in that language.
Some (such as Auttvt [18]) are applicable to programs written in several targei languages, ana a tew (su-ch
as the L,lustRe'rnD coMprlgn [fl) only work with one specific targer program.

The program component sends information to the mapping component describing the octions of the
target program. Different PV systems characterise these actions in different ways. Some describe the
target program in terms of its data structures, and others in terms of its control flow. Some systems pro-
duce correctraess information about the actual values within the program, while others supply performince
data, such as memory usage or execution speed.

Different PV systems not only require different information about the target program's actions but
they also gather it in difierent ways. A common approach is to modify the program so that it provides
data about its actions to the PV system - this is known as annotatin-g the prograrn. Alternatively, the
target language's implementation or even the hardware executing the target progru* may be modified.

The program's actions must be communicated to the monitoring component of the system. Actions
9an be logged as the program executes, and then interpreted by the PV system in a post mortemanalysis
[40]. More commonly, the PV system and target program execute as coroutines, and when the pV.yriu*
is executing the target program is suspended. If parallel hardware is available, actions may be transmitied
to the PV system in a continuous stream.

2.L.2 Mapping Component

The mapping component receives information about the target program's actions from the program
component' and sends changes to the visualisation component. While actions describe the target program
in its own terms, changes package this information so that it can be understood by the visualisation
component.
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The mapping component va,ries widely across the systems studied, from Gostunnl [66] where a

change is diiectly (andgraphically) associated with an action in the program, to systems such as PAvanp

[tSZ]lvnicn ,rr" ih" po*ut lf u full programming language to perform the mapping. Whatever its design,

ihe mapping component may perform the following tasks:

Tbanslation The actions received from the program component may be translated so they can be under-

stood by the visualisation component. This provides a measure of independence between the names

and data types used in the target progriun, and those expected by the visualisation component.

For example, the progra,rr componeut may detect that the target prograrn has called a subroutine

na,med swap. The mapping component would then generate a change notification indicating that

the progra,m is performing- a swap operation. A difierent program may name the corresponding

subroutine exchangeralher than swap. The mapping subsystem could translate this name and send

a change named swap to the visualisation component. In this way, the visualisation component can

be insulated from the precise details of the target progran'

Selection The mapping component may focus the system upon particular actions of interest. The

execution of a moJerately sized program can involve billions of instructions and miliions of bits of

data. This is too much information to handle directly, especially as most of it is uninteresting at any

given time. The mapping component filters this flood of information, presenting the visualisation

Jomponent with only those changes relating to the parts of the program currently being displayed.

For example, the mapping component may receive an action describing each memory reference in

the target program. If the visuatisation system is displaying the values of a few variables, it should

only receive changes describing assignments to those va'riables'

The mapping component often has to filter information, because the program component may

collect unnecessaJy information. Ideally, the program component's monitoring of the target prograJrl

would be sufficiently precise that only actions of interest to the visualisation component would be

monitored. Unfortunately, most monitoring systems are rather blunt instruments, so some support

for selecting actions is required in the mapping component'

Aggregation The mapping component may produce aggregate data. As with selection, this helps to

ensure only relevant information is passed to the visualisation component.

For example, rather than produce an exhaustive trace of the ta,rget program's execution, the number

of invocations of each subroutine may be accumulated to produce a procedure call profile. Although

some information is lost (the precise sequence and arguments of each subroutine call), in many

situations such a profile provides more useful information than a detailed trace, and is easier to

analyse [87].

Abstraction Recovery The mapping component transforms the target program's actions into change

notifications used to produce displays. Abstract displays such as those produced by algorithm

animation systems (and our proposed program exploratorium) require changes expressed in terms

of the abstractions lhey disptay, rather than the operations of the target program. For example,

a view displaying a sorting algorithm requires changes comprising abstract compaxe and swap

operations rather than procedure calls or memory references [35]'

Generating these abstract changes is the most important task of the mapping component. The above

techniques (tra,nslation, selection and aggregation) a^re used to redescribe the actions received from

the progra,m component, translating them from the domain of the program to that of the abstract

visualisation. Much of the remainder of this chapter describes abstraction recovery techniques

which have been used in previous work, including writing display procedures, annotating the ta,rget

prograrn, writing mapping rules, and using infereucing techniques'

2.1.3 Visualisation ComPonent

The visualisation component handles the system's output, and input if any. It receives changes from

the mapping component and uses them to draw and maintain the images comprising the visualisation.
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Many PV systems can display several independent images simultaneously, each comprising a single uieur
of the ta.rget program. Some visualisation systems allow the user to define target ptogt"* rp"cific views.
This allows the user to tailor the appearance of the displays, and is required io produce target program
specific views.

Each view may be drawn only once, or dynarnically updated to produce an animated display. It is
important to realise that static information may be displayed in a dynamic view, and vice versa. For
example, systems such as Znus [36] and Attltvt can produce history views containing a series of static
snapshots of a dynamic view.

2.1.4 R6les

The users of a program visualisation system fall into several different groups depending upon the way
they use the system [33, 173].

o Programmers write ta.rget programs. In general, they do so without any knowledge that their
programs are to be visualised.

o Visualisers construct visualisations of target prograrns, specifying the mappings and images to be
used. Depending on the type of view, this may be a trivial task, requiring no a priori knowledge
of the target program, for example as when specifying a simple display of the target program's
structure. Alternatively, specifying an algorithm animation view can require a detailld koortedge
of the target prograrn and its implementation, so that the view can be tailored carefully to highlight
the crucial properties of the target algorithm.

r FinaIlS end-users use visualisations to explore and investigate the target prograrn.

The way these rdles are filled depends on the way a particular system is used. For exa.rnple, prograrn-
mers debugging their own work may fill every r6le at various times. Fbr educational applications, *huru
end-users may be inexperienced in using computers (let alone programming) there is a much greater
separation of r6les.

2.2 Visual Programming Tools

In the practical application of program visualisation systems there is a "grand divide" between those
systems used in production programming, and those used mostly for a few classroom exercises. This
division is as follows: target program specific systems (algorithm animation systems) are used mostly
in the classroom, while target prograrn independent systems producing more generic displays (perhaps
based upon a progra,mming language) are used in production programming.

The main advantage of target progriun independent systems is that they make few demands on the
visualiser, as they can be applied to any program in the target language without previously prepa^ring
the program, specifying complex mappings, or designing specialised images. A debugger (whether visual
or textual) is used to find bugs in the target prograrn in the easiest possible -"oolt, often as a last
resort. A visualiser is unlikely to expend much efiort in learning to use a debugger, let alone in designing
specialised visualisations.

This section describes several types of visual programming tools, which require little or no preparation
of the target prograrn. These include a variety of tools to develop and debug programs in traditional
textual languages, completely visual programming languages, and tools to handle the maintenance of
very large programs.

In terms of the PMV model, visual programming tools have a program component which is as close
as possible to the production environment, but which sends some information to the visualisation tool. A
visual programming tool's mapping component is typically very simple, allowing the end-user to choose
what is displayed, but providing no abstraction recovery. Most of these tool's visualisation components
a,re also very simple, and display only predesigned visualisations, although some (such as INcnNie [150]and cnnno-Il [73]) do allow visualisers to design their own displays.
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2.2.L Visual Tools for Textual Languages

In this section, we describe visual tools for la.nguages with a traditional textual syntax.

animated interpreters and various types of graphical debuggers'

We consider

Animated Interpreters

An animated interpreter displays the operation of an idealised interpreter for the target language. An

animated interpreter may be used to understand the operation of an interpreter, or (especially where

the language itself is complex) understand an interpreter's interaction with the target program. Sever{

such systems have been implemented, including SpBPs visualising a Display Postscript interpreter [136],

Lieberman's Three.Dimensional system [128] which displays the execution of programs in a Lrsp dialect,

and Tpr't which animates pnoloc [70]. These systems generally illustrate the execution of the ta.rget

program in great detail. For example, ter,a displays all aspects of a Pnoloc program's search tree,

io"toaing ba&tracking and the incremental binding of logical variables via unification.

The views produced by animated interpreters a.re usually drawn automatically by the system and

are not configurable by the end-user. They are usually generated in real-time as the target progriun

is run. Tpvr is the exception to this, as its displays may be generated as the program runs, or built

from a post-mortem tracl. Tprra also supports several different views. This flexibility, and its portable

implementation, may be why Tpu is one of the few program visualisation systems to find widespread

use [173].

Graphical Debuggers

Graphical debuggers illustrate the execution of the target progTam in terms of the basic objects and

operations provided by the target language. They perform no abstraction recovery, as they display

the ta,rget irogram's call stack a^ud data using views produced automatically. For example AtrlnntYsr

[f$] cin airpf"y all Pnscel's data types including records, arrays, and pointer structures. In this way

Ar'rpuryst ca,n visualise most of the data structures found in Pesclr, programs. Similar (although less

comprehensive) systems have been implemented for other programming languages [167' 14]' and are now

becoming commercially available.

Graphical debuggers generally cannot produce animated or continuous displays. Like a conventional

textual debugger, graphicat debuggers wait until the target progra.m's execution is suspended (typically

due to a user interrrrpf or breakpoint) and then retrieve the data to be displayed from the target program's

memory space. Graphical debuggers have been built by extending existing textual debuggers [194]. hr

such systems, the functions of iie program component are carried out by the textual debugger, the

mapping component provides an interface to the textual debugger, and the visualisation component

aispiays ttre retrieved data. Sophisticated graphical debuggers axe now available commercially l2?f,,1.{l'

Debuggers can also display a program's control flow, either statically or dynamically. Flow of control

through iirio,s functions, objects, or classes within the target program has been visualised by tracing

a path representing the execution stack of the current thread through a graph describing the program's

stiucture in systems such as GnnpsTne.cn [116], Gnoovn [193], and Cunningham Diagrams [55]. Tnecx

[22] provides u d"tul"a graphical formalism for both specifying control flows of interest and monitoring the

program's execution. Th"-Os.rnct Vtsull,tzBR [165, 166] introduces several interesting displays which

combine information about an object oriented program's control flow, data structures, and program

performance, and has inspired several simila,r systems. Of course, static graphical representations of

control flow have long been displayed by traditional program profilers such as GPROF [87].

Section 11.5.4 compilres several object oriented graphical debuggers with the prototype system which

we developed as part ofthis project.

Parallel Debuggers

Several graphical tools have been designed to assist debugging parallel or distributed programs. These

include multi-process versions of coutrol flow displays, which often include extra information about the
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state of monitors, queues, and processes: for example, see ppr [162] and P,c.Rnoocs [1?2]. These are
known as cortectness debuggers in the parallel processing communitS-to distinguish them from the more
numerous perfortnance debuggers, which display information about the target program's performance.
For example, PIE [126] and PaneGRAPH [216] can present various displays of the target program's effective
parallelism, including Gantt charts and Kiviat diagrams as well as barcharts and histograms.

IJser Defined Displays in Debuggers

Although most graphical debuggers allow the user to select which data are to be displayed, they usually
provide only one graphical presentation of the data. The mapping component of AuprHysr and the other
systems described above simply queries the program component to determine the data to be displayed, and
then sends this data to the visualisation component. Some systems do include support for a visualiser to
define specialised pictures to display their data. In IncnNsp [150], one ofthe earliest graphical debuggers
and Aun'rgYsr's direct predecessor, a visualiser defines arlist procedures which *up b"tr""n the actual
program data structures and the graphics to be displayed. These procedures recover abstractions by
traversing the target program's data structures and generating calls to a graphics subsystem.

Several systems have retained the facilities for user-defined pictures but without requiring the user to
write the code to generate them. Vtcx, a visualisation construction kit for Sunura t"x [24j, includes a
graphical editor which a visualiser can use to build a composite display by combining smatlir display com-
ponents. The individual display components are created by programming. Unlike most data visualisation
s;rstems, Vlcx produces continuous displays, as it uses Trucx ($2.5.2) to monitor the target prograrn.
Csnno-II 1731, a graphical debugger for the object oriented PRor,oc dialect SwaRr, uses a declarative
langlage to specify the displays to draw. The FInlo [181] programming environment includes GB1o
[183], a multipurpose prograrnming-by-example graphicil layout tool, which can describe visualisations
of program data structures.

2.2.2 Visual Programming Environments

Graphical debuggers and animated interpreters present information about the dynamic behaviour of the
ta^rget program, Graphics can also be used to illustrate a program's static structure. Many interactive
programming environments (such as the SvnILTALK environment [84]) maintain complete representations
of the target program's structure, but do not present these graphically. More modern programming
environments, however, are making increased use of visualisation and graphical manipulation [5].

PscaN [178, 179] is the first programming environment to make la.rge-scale use of graphical displays. A
synta:<-directed editor is used to enter the target prograrn in P,tscal. Poc.lx then provides several views
which display the program's algorithmic structure using va^rious visual syntaxes such as conventional
flowcharts, Nassi-Schneiderman diagrams, and expression parse trees. Other PscA.N graphical views
display the program's source code, type structure, and symbol table. Pscen also includes textual views
of the program's runtime stack and data.

Fnlo [181, 180, 182] is a successor to Puc.tN, built as a collection of independent tools which
cooperate via messages distributed from a central server. Ftnl,o incorporates many specialised tools,
including an annotation editor, several debuggers, cross-referencers, call graph and profile visualisers,
as well as the GBto data structure display tool ($2.2.1) and the Tawco algorithm roi*"tio.r system
($2.3.1). All FIeLn tools communicate by broadcasting events via the central ,"ruer. For example, when
a debugger notices that the target program has stopped at a breakpoint, it broadcasts messages telling
other tools that the program has stopped and the location of the appropriate source code. Upon receiving
these notifications, the editor highlights the current line in the program, and data structure displays ari
updated.

The Spp environment [89, 91] is a more recent system which is built using a framework for constructing
multi-view environments. Like Flnlo, Srn integrates a variety of difieient tools, and includes both
graphical and textual views.

PecAru, Fmln and Sps all produce multiple views of the program under development, generally
including source code text, graphical debuggerJike diagrams ofdata structures, and statistical charts for
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profile information [143]. The progra.rnming environments for the Snr,r programming language - Ssttv

i+5, +A1a,nd the Snir ur [19?] - take the opposite approach, and produce only a single display of the

whole progrr*. The display is similar to that of a graphical debugger, but it includes prograrn source

code and can be edited to develop Srlr programs. These systems try to provide an environment where

the programmer thinks of the objects in the display as the ultimate representation of the program, rather

than diJplaying information about a program hidden inside the environment - for example, objects a,re

displayei as thre*.dimensional boxes. Sprry also uses cartoon-like a,nimation to increase the impression

of solidity [45].

2.2.3 Visual Programming Languages

Visual programming languages, such as PRocR.a,pH [54, 86], LeeVtnw [13], and Suntus [123], have a

visual r "t*, rathei than a traditional textual synta:r. A progra,rr in a visual programming language

is an a,rra^ngement of figures on a page, rather than a stream of text. In one sense, visual programming

languages uod ttt"it programming environments perform a kind of program visualisation by default: these

,yrt"*, have an internJ representation ofthe prograln, and preseut it graphically to the user. A visual

ta"nguage difiers from a visual environment for a textual language because the language's visual syntarc is

the primary mea,ns of manipulating the prograrn.

The 1gg4 Vi,sual Languages Comparison [95] describes an exercise where several visual languages were

used to solve three smai piogra,mming problems - the Sieve of Erastothenes, balancing a checkbook,

a,nd simulating a wagon wheefroiling down an incline. Solutions to all of the problems were implemented

in at least two visual languages, with the Sieve problem being implemented in five, as well as the textual

language C. Each of the solutions for the Sieve problem required roughly the same number of operators

- rtoo"a 13 - regardless of language. This included the C solution, which took up markedly less screen

space than any of the solutious written in visual languages. The visual language solutions generally made

the fine details of data and control flow more explicit than the textual solution.

Programmers have been slow to adopt visual languages. A variety of reasons have been suggested

for this lack of interest - from the inefficiency of early visual languages and the amount of screen space

they required to display prograrns, to programmers' fear that the increased cla,rity a,fforded by visual

uyotoo would remove the esoteric mystique of their trade [53]. More obviously, since most programmers

have not been taught visual programming languages, they would have to learn them before they could

use them. Programmers would also have to learn the specialised editors and programming environments

which visual languages require [98, 152],

Sxercupno and PYcu.u,tott

The earliest visual progtamming language (and one of the first interactive graphical systems of any type)

is Ivan Sutherland's Sxprcupen [212]. SxercHPAD programs a,re diagrams containing purely graphical

symbols (the points and lines of Euclidean geometry) to whictr the user attaches constraints' These

clnstrainis are again purely graphical, requiring, for example, that two lines should be pa.rallel, or should

have the ru-" t*$n. Sxpfcgpep prografl$ are run whenever the user moves or alters an element of

the diagram. SrptCgpeD then solves the constraints by relarcation, moving diagram elements to ensure

the constraints axe maintained.

David Smith,s Pycrrler,ror.r [196] is another influential early visual progra,rnming language. Like

Sxntcspeo, PycM.u,toN prograrns have a purely visual syntax, although PvcuelloN introduced the

now ubiquitous icons - graphical signs which represent concepts other than their appearance. For

example, Pycunlron includes icons whidr represent assignment and selection statements. Executing a
pycrulr,roN prograrn, as in SrptcHpAD, is primarily a graphical operation, in that the graphical picture

of the progra^rn evolves to reflect the program's execution. For example, when a user-defined icon (similar

to a user-defined procedure) is executed, the screen is cleared to show the icon's definition, and when the

icon's execution has completed, the screen is restored to show the icon's originaul context, and execution

proceeds in that context.

11
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Systems like Sxnrcnp.q.n and Pvcueltott naturally provide program visualisation. These systems,
programs and data are graphical figures, and as progra^rns are run, the graphics change to reflect the
execution of the prograrn. These visualisations provide no abstraction - all displays are in terms of the
languages' visual syntarc.

Visual Syntaxes for Tbaditislal f,anguages

The early visual languages such as Sxntcupno and PycnaelroN, although highly graphical, a.re not
particularly practical programming languages - SrcprcHpe,D programs are limited to diagrams with
attached constraints, and, while Pvctrlaltow does include more conventional control and data structures,
its implementation is limited to very small programs. To create more powerful visual languages, visual
syntaxes have been attached to existing textual languages. For example, TrxrunTov [6fl provides a
visual syntax for LISe, TslrvrnnTov [92] and MolrEnn [2fl provide visual synta:ces for Sl,rairtelK, and
C2 [83] provides a visual synta:< for C. These visual *yoi*r use the semantic models of the underiying
textual languages, so the resulting visual languages provide the firll power of general purpose programming
languages.

Most visual syntaxes for traditional languages are static, and quite similar to the flowchart or Nassi-
Schneiderman diagram views produced by Pncan ($2.2.2). Visual syntaxes for traditional languages
can, however, also incorporate dynamic animation of running programs. For example, the plcr flowchart
language [83] provides execution visualisation using coloured highlighting to illustrate control flowing
through the program flowchart.

Modern Visual Lnnguages

Modern visual language research has focused upon designing visual languages from scratch, producing
visual languages which do not depend upon existing textual languages. Some of these languages, in
particular PRocRapu [54, 86, 1g1] and LesVrnw [lB] are in commercial use [41].

PRocRapg and LenVrcw are both dataflow languages: a program is represented as a graph, within
which nodes represent operations which transform data, and edges carry data between operation nodes.
As with other visual syntaxes, this representation of a program makes the static algorithmic structure
explicit. This is particularly important for dataflow languages, because a program's topology is a graph,
which is difficult to describe using a conventional textual syntax. PRocR.c,pH and Le.sVrpw also provide
procedural abstraction - a subprocedure can be defined by its own diagram, and then invoked by a
single dataflow node in other diagrams. Procedural abstraction can be used to reduce the amount of
extra screen space required by a visual program, because progratns can be subdivided along natural
boundaries so that every procedure can be displayed in a single screenful [bB].

Visual languages can use visual synta:<es for purposes other than simply displaying the program's
code. For example, a L.tnVlnw dataflow procedure can be displayed as a front panel (modelied on
the front panel of a laboratory instrument) with dials, sliders, knobs and buttons which display data
values as the prograrn executes. PRocRepu simila.rly provides application build,er editors which can
be used to graphically edit objects representing user interface components [191]. Visual languages can
provide dynamic visualisation. For example, PRocnnen's graphical views can illustrate control flow
by highlighting the program's visual syntax. PRocRepn's programming environment includes graphical
debugger style views which illustrate the program's data structures, module organisation, inheritance
hierarchies, a.nd call graph. These displays, like L,tnVrEw's front panels, are updated dynamically as the
program executes.

_ Some visual languages specifically address the visualisation of visual language execution. VrslVls
[171] is a visual functional language which includes higher-order functions. VliaVrs prograrns have been
visualised in a ma"nner similar to those of PycueltoN: as the computation proceeds, icons representing
functions to be evaluated are replaced by the function's definition with arguments instantiated, anJ
eventually the function's result is substituted into the calling context [170]. The visualisation models the
definition of the VlseVrs language as a term-rewriting system, and cin be controlled by controlling the
precise rewriting strategy used.
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The CnnuTRens language [15] is another rewriting system. A CsnUTnAINS progran is a set of

rewriting rules which are applied to a data store, the areno,. Both CurN,ITRAINS rules and the arena data

store are defined graphicallg and consist ofgraphical objects (text, boxes, ovals, and sketches) connected

by unidirectional or bidirectional graphical links. When a CsniraTna,INS progran runs, it applies the

rules which change the contents of arena. Displaying the changing arena visualises the evolution of the

program's data structures. This is in contrast to the visualisation in VtslVts, which illustrates the

rewriting of the program and so focuses on algorithmic structure-

Visual Programming and Program Visualisation

Perhaps the most importa^nt difference between visual programming and program visualisation is that
visual programming focuses upon writing programs from scratch, while prograrn visualisation focuses

upon displaying existing programs. A visual progam is usually defined by a particular visual representa-

tion, designed by the programmer when the program is written. A change to that visual representation

generally implies a change to the prograrn. In contrast, prograrn visualisation displays do not generally

depend upon the way the programmer wrote a pa.rticular program, and visualisations may be created,

modified, and disca.rded without affecting the program.

In spite of these diferences, visual programming and prograrn visualisation obviously have much in

"oro*o.r, 
as both are concerned with applying computer graphics to computer programs. Because of this

commonality, it should be possible to combine both in a single system. Visual languages like VrcaVts
and CsBvrTnerus which visualise the execution of visual programs exemplify one possible combination.

2.2.4 Visualisation for Maintenance and Reverse Engineering

Software maintenance and reverse engineering involve modifying prograrns after they have been placed

into service [50, 233]. The modifications may be small localised changes, or they may globally reorganise

a program's-structuie or even rebuild a progran in a difierent programming language' Arnold's tutorial

Si1twire Reengineering [8] provides a general introduction to this area and reprints many important
papers.

This section describes specialised visualisation techniques and systems which have been developed to

support maintenance and reverse engineering. These techniques are able to display information about

large commercial programs, which can incorporate millions of lines of code. Compared with the visualisa-

tion techniques described elsewhere in this chapter, visualisations for software maintenance are generally

static views of a program's orga,nisation and structure, because such views can be produced without any

manual prepa,ration of the target program.

Structural Visualisation

The most basic maintenance or reverse engineering views are module structure graphs and call graphs.

For example, VrFon [176] and Cmn [130] display intermodule dependency graphs and structure charts for

F9RTRAN and C programs respectively - similar to the views produced by a programming environment.

These systems paxse a program's source code and then display the graphs.

A more powerful approach was pioneered by the C IttpoRtrl.qrloN ABSTRAcToR (or Cn) [a9]. The

Cn parses ta,rget programs (written in C) and extracts structural and dependency information which

is stored in a relational database. Clt collects a wide variety of information, such as the nalnes of the

files comprising a program and the finclude relationships between them, the definitions of functions and

variables and their locations, and the use of those functions and variables elsewhere in the program. To

produce views, the user queries Cn's database to retrieve the information of interest, and then uses the

stand-alone graph layout tool Dnc [80] to visualise the results.

Any information in the database can be displayed, so Cn can display module dependency diagrams,

structure charts, call graphs, and so on. The relational database means that Ct,q' can store a large a,rrount

of information about the target prograrn, while allowing the user to retrieve efficiently only that portion

13
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of the information which is of current interest. Separating program analysis (filling the database) from
visualisation means that independent tools can perform each function.

Cn has given rise to similar systems for difierent languages, for example CrA++ [S8] for C++ and
APAS [115] for Aoe. A program information database and associated visualisation tools have also been
incorporated into the Fmr,o programming environment ($2.2.2) [184].

Software Metrics

As well as visualising software structure, software metrics (such as complexity, volume of comments, or
execution profiles) or development metrics (such as age of source code, or number of changes to a line)
can be visualised.

SpsSort [68, 69] was one of the first systems to visualise software metrics. SppSom's main display
is a condensed view of all the source files of the program, drawn so that an entire prograrn can fit onto
a single screen. The display is coloured to visualise statistical information about the target pro$am.
SppSvs [12] extends SppSort to handle very large systems (up to a million lines of code). SuBSvs
uses a variant of bzemaps [10fl to present a large amount of information with a single display, and then
animates these displays to illustrate the way a software system has evolved over time. Snn-Ao,r [195]
takes a more basic approach to visualising softwa,re metrics. Snp-Aoe displays call graphs and module
dependence diagrams, and also uses colour to overlay program metric information onto these displays.

Reverse and Reengineering

Structural and metric visualisations indirectly assist reverse and reengineering by helping prograrnmers
find information about a program. More sophisticated tools can support the process directly, by producing
editable visualisations which the user can manipulate graphically to restructure the program.

Rtct [148, 
'l'49, 232], for example, is a structural visualisation tool for C which displays the target

program's module dependency graph - simila^r to Cn or CARe. In addition to browsing, Rrcr al-
lows the user to manipulate the dependency graph, by moving functions between prograrn modules aud
creating new modules to group existing modules and functions. This is known as modulorisation (or seg-
mentation), and can be used to improve the program's structure by increasing cohesion within modules
and decreasing coupling between them. After modularisation, the module structure should reflect the
program's architectural design. Once the module structure has been rearranged, Rrcr can rebuild the
program source files to reflect the new structure.

Conol/snn [118, 119, 157] is similar in philosophy to Rrcr, although it works with Cosol rather than
C. Conol/sRE can restructure the source code within function and data definitions, as well as moving
whole functions between modules like Rrcr. The most important difierence between the two systems is
that CoBol/snn's display is based on textual source code, rather than dependency graphs. Coror,/snn
visualises progralns by selecting and highlighting parts of programs based on a variety of program slicing
techniques [222] which can precisely identify statements according to a va^riety of conditions. For exa,mple,
Coeol/snu can highlight only those statements which depend upon values of particular input va.riables
(forward slicing), or those statements which determine the values of particular output variables (backward
slicing).

The Destnp l20,zll system also uses program slicing to modularise C programs, but displays depen-
dency graphs and call graphs as well as sliced soruce code. Both graphical and textual views can be used
to manipulate the target prograrn. Dnsmp includes a connectionist knowledge base which can be used
to locate candidate modules.

The SoFtwARE REFINERY [42, 135] is the most sophisticated reengineering system commercially
available. Unlike the other systems described in this section, the SonrweRn REFTNERv is customisable,
and has been adapted to handle programs in a variety of languages. The SorrwARE REFrr.rpRy can be
used for a variety of program manipulation tasks, including automatic translation between programming
languages as well as program modularisation. The Soptwrq.ns Rrrweny uses program visualisation in
two ways - to display target prograrns, and to support its own customisation. To support reengineering,
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the Sorrwnnp RnnrNsRy displays the call graphs, module dependency graphs, and sliced text of the
ta.rget program. To support customisation, it displays the grammar rules and abstract syntax trees of
the target programming language.

2.2.5 Summary

Visual programming tools are increasingly common, and several varieties (including graphical debuggers,

visual programming environments, visual languages, and visual tools for program maintenance) are in-
creasingly being used commercially. These tools typically visualise the target prograrn directly at the
level of the programming language, and have the advantage that the target program does not have to
be specially prepared before it can be visualised. This is, of course, precisely what is required for de-

bugging or analysing existing programs in detail. Because visual programming tools generally display
low-level information, the amount of information presented can easily overwhelm a user interested in the
higher-level aspects of the program [32].

2.3 Annotation

Producing higher-level views of a program requires that the abstractions within that program must
be recovered by a PV system so that they can be displayed. The most common (and probably the
most general) abstraction recovery technique is to modify the target program so that it automatically
produces information at the required level of abstraction. Student programmers are taught to insert urife
statements into their prograrns at strategic places to display the control flow through the program and

report the values of important variables. This strategy is also used by experienced programmers. The
write statements can use a^rbitrary computations, and so can produce information about any abstractions
within the program.

This technique can be adapted for program visualisation: the visualiser simply inserts calls to graphics
primitives, rather than textual output statements 177,120), so that when the program is executed these

routines draw dynamic images of its operation. To make the results more permanent a,nd accessible (an

importa.nt concern when dynamic computer graphics devices were raxe and expensive) the output can be

recorded on film, as in Baecker's Sorting out Sorting [10], or videotape.

This approach has several drawbacks. The target program must be edited to insert the graphics

calls, and the inserted calls obscure the original text of the program. To change the visualisation, the
program must be edited again. This repeated modification can introduce bugs into either the program
or the visualisation, and any abstraction recovery, graphical layout, or animation must be programmed
explicitly.

To avoid these disadvantages, the program can be annotated or instramented with eaent marl+ers,

rather than with direct calls to output statements. These annotations may be nothing more than stylised
urife statements or calls to PV system procedures which then notify the program visualisation system

about the target program's actions, rather than directly producing graphical output. Programming
environments can provide special support for these annotations, distinguishing them from the main text
of the program by displaying them in the margin or in a distinguished font [181].

In most a,nnotation-based PV systems, event markers are the only link between the target prograrn
and the visualisation system. This provides a measure of independence between the two, in contrast
to graphical debuggers which may directly access the ta,rget program's memory. Provided annotations
are maintained in correct positions, the rest of the program may be altered or even replaced, and the
visualisation will continue to function. Similarly, the visualisation may be changed or replaced without
reference to the target program.

This technique has many advantages. Any action of the target program that the visualiser consid-
ers significant can be monitored, provided the prograrn's code is suitably annotated. If necessary, the
structure of the target program can be a,rbitra,rily modified to compute any information necessa.ry for
aggregation. No changes a,re required to ha,rdware, the language processor or other softwa,re. Annotation

15
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is relatively efficient, since the event markers are simply executed as part of the execution of the target
program.

These advantages have corresponding limitations. Annotation is implemented by editing the progra,m's
code, and this is its greatest disadvantager to annotate a program one must make semi-permanent
changes to it. The annotations remain with the progriun, obscuring its source code. These efiects can
be reduced somewhat with programming environment support, but annotating a program requires an
iutimate knowledge of its structure and implementation. Event markers or print statements are very
flexible monitoring tools because they can be positioned precisely to capture important parts of the
program's execution. However, they generate misleading information if they are not positioned correctly.

In terms of the PMV model, annotation systems' program components are often simply the annotated
target programs. Annotation systems' mapping components consist of the annotations in the prograrns
which perform abstraction recovery. Some systems send information from annotations directly to the
visualisation component, while others also include more complex mapping components, which can be
used to transform the data generated by the annotations. Many annotation based systems employ
sophisticated graphical animation systems as their visualisation components.

2.3.t BRIsR and successors

Marc Brown's BALSA and Ber,sl-II systems [33, 34] popularised the use of aanotation in program
visualisation. BAlse's ta.rget program is written in a dialect of Pnscal supporting independent modules.
As B,use is an algorithm animation system, Bc,s.t simply terms the target prograrn the algorithm. The
algorithm must conform to Bema's coding sta,ndards - it must be a single, self-contained module
exporting several procedures with predefined names, and interesting event annotations must be added
into its source code.

Belse's annotations are written as Pescel procedure calls. They have a name (the name of the
procedure) and use the procedure's arguments to transmit information from the program. An executable
Belse system is built by a preprocessor which combines algorithm modules with the Bar,sl kernel and
other modules which define visualisations. The annotation procedure calls a,re linked to eaent routers pro-
vided by Bnr,sa's kernel. At runtime, as Bema executes the ta.rget program, the annotation procedures
call the kernel routers, which then invoke BAlse's visualisation component.

BAls.q.'s Rendering Pipeline

Figure 2.2 illustrates BALSA's basic architecture, which Brown describes as an object oriented pipeline.
The annotated algorithm's event markers generate output euentswhen the algorithm is executed. These
are convertedby adaptorsto update euents which are sent to those uieus interested in the algorithm. A
view consists of. a modeler and a renderer.

Unlike the graphical debuggers described above, BALsA's views are not able to access their target
prograrn's data structure - views only communicate with the algorithm via events. A modeler uses the
event notifications to construct a model of the program's data, and renderers use this model to draw and
animate images using a low-level graphics package. The particular model built by a modeler depends
upon the needs of the renderers that will use it: a model can contain any information received from the
annotations in the algorithm.

Adaptors are used to translate between the events sent by the algorithm a^nd those expected by the
views. This is useful if one view is to visualise more than one algorithm and the algorithms do not
generate the same events, and similarly if several different views are attached to a particular algorithm.
Adaptors, modelers and views are written as modules in Bals.e,'s Pescnr, dialect and can perform any
computation required for the visualisation.

BALsA's architecture may take more complex configurations. The data in a modeler may be shared
between several renderers (see Modeler-2 in Figure 2.2). Modelers may include submoilelers which use the
main modeler's data to construct their own more detailed model which is then used by further renderers.
If the modeler's data is sufficiently complex, the code manipulating it may itself be annotated with event
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Figure 2.2: Be,lse's architecture (from [33])

markers to allow fully independent views (i.e. further modeler/renderer combinations) to visualise this

intermediate data.

Ber,sa was designed long before architectural models of program visualisation (such as PMV) were

developed, indeed, BAl,sA's lesign has influenced the construction of the architectural models' BALsA's

algoritlms, adaptors and views fit tt. three components of the model, and its output and update events

correspond to PMV's actions and cha,nges

BAIsA's other features

Belse is able to supply initial input to the target program' and allows the user to interact with the

program being run. th"r" features are managed by input genemtors - further P.tscel modules written

ily ifru visualiier. Input generators communicate with the target program by input eaentmarkers, which

are similar to interestinfevent markers but which supply data to the target pro8rarn. The programmer

must replace any traditional I/o statements in the target program with input event markers' when an

input event **k", is executed, the input generator provides an appropriate input value'

Belse also includes an interactive environment with the ability to run several algorithms in parallel,

and support for recording, editing, and replaying interactive sessions.

BAr,sA,s flexibility is bought at the price of complexity. A Bnlse system is built by linking algorithms,

renderers, modelers, adaptors and input generators using a preprocessor which processes the module

constructs used to descrite each component, and links the components to the Bllsl kernel' Building

and testing visualisations in B,q,lsl involves a large amount of programming' This complexity does bring

benefits. No other prograrn visualisation system has been as ambitious in scope or provided a compa'rable

environment.

Tbngo

Ta,Nrco [1gg, 201, 202] is a successor to Bemn. While B,c,LsA's aim was to provide a powerful environment

for algoiithm animation, Tanco sought to reduce the complexity of constructing a visualisation, so that

u prof,"-o could be animated with no more expertise than was required to write it'

Teuco makes three main changes to the Belse architecture. It is not a standalone program' rather

it is integrated into the Frplo programming environment ($2.22)' It uses FtEt o's annotation editor to

insert marks into the program, instead of editing code directly. Event messages are sent to TANGo's views

via FrELo's distributed bioadcast mechanism. Most importantly, the animated graphics are described us-

ing the path Tfansition, animation language [200] in place of simple graphics calls. This-language describes

bo"th graphical figures that can be disphfd, and paths that describe movements and transformation of

these figures.
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A WYSIWYG dynamic grophics editor Dencn, [203], can be used to generate much of an animation.
like a standard graphics editor, DencB supports tll aesign ofgraphicalhg,rr"r, but it also supports the
direct entry of those figures' transition paths. The path tr*rlition animation definition subsumes the
functions of BAr,se's modelers, renderers, and graphics package.

Tnnco has recently been extracted from Ftsl,o and can function as a standalone prograln. XTlNco
[208, 204] supports only a single view of an algorithm, and does not include the specialised annotation
or animation editors, so it is used programmatically. Annotations are made with irocedure calls as in
Beme. XTli'lco has been used in teaching, and as it relies only upon the X window system and the C
programming Ianguage it has been very widely distributed.

XTaxco is also one of the few prograrn visualisation systems to undergo any sort of empirical evalua-
tion. XTltrtco was used to produce an animation of a pairing heap, a^nd this animation was used as part
of a lesson. The performance of students using the animatioriwas iompared against a control group who
did not have the benefit of the animation. Unfortunately, probably due to aetaits of the exferimental
design, the results were inconclusive [206].

Zerrc

znus [38, 36] is Marc Brown's second system after Belse. Its main focus is upon extending prograrn
visualisation to include colour a.nd sound. ZEus's architecture is derived from Bame, but simplified and
written in Moour.l-3' As in B.e'lse, the target program must be annotated with event markers and
must conform to the system's structural requirements. Znus combines BALsA's modelers and renderers
into unitary ofeus and does not include any adaptors. It also supports input and has been used as the
substrate for implementing the multi-view editor FoRrvrsVBT [g].

The most interesting change from B.c.LsA, is that views in Zeus are able to access the target program,s
data structures. This reduces the need for explicit modelers, but at the cost of increased .ouptirr! between
the application and view. This is especially problematic because Monula-3 is a parallel ia,nguage and
Zsus is able to visualise parallel prograns.

Zpus has been extended with support for alternative graphics languages and 3D graphics [1b4]. It has
also been extended to support some simple graphical debugger features - displays oi variable's values
and the source text of the executing program [87].

2.3.2 Other Annotation Systems

Many systems since Bnlse have used annotations to recover abstractions for visualisation.

Anim

Jon Bently and John Kernighan's-ANIrrl {1.7, 18] is a very simple program visualisation system - perhaps
a case of 20% of the work providing 80% of the benefit. On first inspection, ANru 

"ipu"r* 
trivial: its

main component is a simple script language which can describe pictures containing lines, text, boxes and
circles' The target program is annotated to write a trace in this language, using" the target language,s
standard output routines, so Atttu annotations are the target language's write statements. lA,x1r,t's-utility
comes from two factors: first, two flexible tools a^re presenied to view the scripts, and second, the scripts
can be manipulated post-hoc using standard Ur{lx tools.

ANIM's script viewers are MovIn and SrIt r,s, which (as their names imply) provide dyna.rnic and
static views respectively. MovtE allows the script to be presented a variour'rp""ir, paused, and even
replayed backwa,rds. Movtp can either connect to a running program using a UllIx pipe, or read a saved
script file. Sru,ls is a'rRoFp preprocessor which can easilylnr"r-t f..*u, o1 Ar.rn,r animations into paper
documents.

Because the script language is very simple, scripts can be manipulated using standa.rd Ut{tx tools.
For example, simple Awr programs can be used to interleave two separate scripts to generate algorithm
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races, or even to simulate 3D visualisation. As a last resort, the script files can be fine tuned by hand,

using a standard text editor. This has proved useful when the system is being used in practice, to plesent

a program via a visualisation, rather than merely to demonstrate yet another program visualisation tool

[18].

The Animation Kit

The ANnrlntroN Krr [133] is an extension to SullltnlK for algorithm animation. The target prograrn

is annotated with intiresiing event ma"rkers, which the Attllvl.trtoN KIT represents using the change

notifications of Srra41,r,rlr,x'i dependency rnechanism [85]. These a,re used to indicate general points

of interest in the progru.*', execution and to monitor putti"ulu,t implementation variables' Views are

programmed using an"extended version of the standard suAl,ltelx MVC library lL22l, and when the

target prograln runs, the dependency mechanism etrsures the views are updated.

Animus

Annraus [65, 
g0] is an extension to the THrNcLee constraint-based simulation system 128,291to handle

dynamic simulations and progra.rn visualisation. Attttvtus extends THrNcL,q,s's static constraints with

trigger and temporal consiraints which can be used to produce animations.

ANlMUs,s ta,rget prograrn is annotated with trigger constraints. A trigger constraint can be added to

any object by the ANTMUS programmer, and speciFes the graphical response to be performed when the

object receives a pa,rticular *"i."g". The graphical actions may take place over a period of time' using

Auwrus,s temporal constraints. TuINcLai's underlying constraint system can also be used to link the

graphics to variables in the underlying program'

AnttvtUS uses THINGLAS's basic object structure, and programs to be visualised must conform to

this structure. Annuus,s constraints are implemented by a preprocessor ($2.5.a) which transforms this

structure into Sulr,ltl't K without constraints'

The Illustrated ComPiler

The It t ustRATED Cotrlpu,nR (Icorr're) [7] is a single animated program (a PL/O compiler) and a'n

interactive environment for exploring that program, ,uth"t than a system for visualising programs' It is

interesting because it is probaily the largest visualised program presented in the literature'

Icot'tp presents approximately twenty different views of the PL/0 compiler, covering its scanner,

pa,rser, code generator, *a an interpreter running the compiled proEraln' End-users can choose which

views they wish to see, and control the executioriof the compiler using the underlying facilities of the

Iu'rsnr,rsP debugger.

The compiler is implemented in INtpRLtsp-D. The graphics are drawn using IntnnllsP's window

manager and graphics routines. The compiler source is annotated wilh hookpoinis (Ltse function calls)

whictr act as annotation ma,rkers. The graphics routines a,re then invoked using Iutnnltsp's AovIsp

facility. This allows arluice- arbitra,ry Llsp code - to be associated with a preexisting function'

When a,n advised function is called, the advice is executed as a side effect. IcotvtP uses advice to call

the appropriate visualisation functions whenever a hookpoint is evaluated' A single function can have

multipie pi""", of advice, so multiple views can receive notifications from each hookpoint'

2.3.3 DirectAnnotation

The annotation based systems described in the previous sections all require that the visualiser annotate

ih" progru*, and then design and program the visualisation. This section describes several approaches to

making annotation and animation of programs easier. Typically this involves three extensions to the tools

presented above: . ,i-pt. method oi aui"tiUi"g the annotations to be made (as in TlNco's annotation

editor), a method of describing the visual effects to take place when the event ma.rker is executed (simila"r
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to, but more extensive than DaNcn), and a method of dynamically inserting the markers into the targetprogram' We call the systems grouped in this section d,irect annotcfion system for two: reasons: theannotations and visualisations are defined using direct manipulation user inierfaces, and the annotations
are linked directly to the visualisation.

Gestural

Robert Duisberg's GpstuRer, [66] system was probably the first to provide fully graphical specification ofprogratn visualisation. It is built on top of Svt.u,ltel,K, and visualises standarJ Staelr,relx programs.
GnstuRel uses a dynamic graphics editor both to edit the graphical images used in animations, andto capture the user's gestures for moving or reshaping these images. A mGcal score.like editor can be
used to combine several gestures into a single unii, for example atlowing two images to simultaneously
excha^nge position.

Once the gestures have been defined, they can be connected to the target program by ,,pointing and
clicking" on some part of the program's text. Grsrun,c,L then invisibly *oJin", thl Suer,lrel,11 prograrn
to invoke the gesture when the annotation is executed. Annotations are shown by changing the font with
which the program text is displayed. Similar manipulations can be used to Uina tne end points of thegesture to variables or expressions in the prograrn. When the program is run, the modified program
invokes the gestures and the animation is generated.

The GrsruRal imp_lementation is very much a prototype, working with a single procedure in the con-text of a single object. Its graphical vocabulary is limited-tt black ,eciaogles or;,rying sizes. GpsruRelprovides only basic support for user defined data types - some limited 
-handling 

of uituy accessing wasbuilt in' It does however demonstrate that simple and efiective visualisation, .* bu built without anytextual programming.

Lens

John Stasko's r'ENs [1a7] is an extension to xranco which is very similar to GpsruRet,. LENs also uses
a dynamic graphics editor to specify images and manipulations, and an annotating editor to present the
target program.

To design a Lnrus animation the visualiser first creates the graphical objects, each of which may bebound to a variable in the target program. Lnns' graphicat vo"cabulary is L specially chosen subset ofTeNGo's but as it includes rectangles, circles, lines, ani text it is much richer than GEsruRAl,,s. Oncethe graphical objects have been defined, the visualiser may select the operations to be applied when theprogram reaches a particular point' Graphical objects may be moved, exchange positions, or change
colour.

To display the animation, LENS invokes a version of XTluco. The target pro$arn is run und.erthe nsx [131] debugger, with breakpoints in the program wherever the user has annotated the source.Wienever a breakpoint is reached, LENs locates the associated annotation and sends commands toXTewco to perform the appropriate animation.

2.3.4 Summary

Annotation is the abstraction recovery technique most commonly used in program visualisation, especiallyin algorithm animation systems. A good understanding of a progr* is required to annotate it, but given
this. understanding, annotation can be quick and u"r] to i"rrit*. of course, annotation has severalproblems: the target prograrn must be modified to insert annotations, annotations obscure the originalprograrn code, and annotations must be precisely positioned in the program. The annotation basedapproach is now quite-mature, so continuing resea.rch into annotation based systems is now focused uponthe overall usability of the systems, and the graphical details of the a.nimations they produce, rather thantheir general architecture"
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2.4 Mapping and Inference

Mapping based PV systems are an alternative to annotation based systems' Mapping based PV systems

*orrito, tt 
" 

low-level actions of the program, and then use inference rules to determine the higher-level

changes from the program's actions. Mapping can in principle avoid many of the problems of annotation

- in-particular, the visualiser need not annotate or modify the program. The program can be cha,nged

without a,fiecting the visualisation, as there are no annotations which must be preserved'

Mappings can be defined declaratively. Declarative mappings, according to the proponents of this

"ppro*ir, 
s=hould be simpler to specify than annotation based displays which depend upon the target

progt*n'r procedural behaviour. Some decla,rative mappings can be inverted, in which case a single

iennition can provide both program visualisation and visual programming or editing.

2.4.1 Pavane

peveNn [182, 185] produces 3D animations of parallel programs, and works within the parallel shared-

dataspace language Swanu [1S7]. Animations are described by providing mappings between SuRu
tuple spaces n.irrg SwAnu tuies. Pevtlrn begins with the program's state available in the state space'

The state space is first mapped into the proof space. This proof mappi,ng must pass any relevant

information about the program's data into the proof space. This space is called the proof space because

pAvANE's authors believe that the properties of algorithms important in constructing their proofs should

be presented in a visualisation. For example, a view of an array being sorted may distinguish array

elements which are in their final position from those elements which will still be moved ($4.1.3).

The proof space is then passed through the object mapping into the object space. The object space

contains idealisations of the graphical objects which will eventually be displayed' The animation is

actually created by the animatl,oi mapping from the object space into an animation spoce which describes

primitive graphical objects for rendering.

Although it appears to be based around a program's data, PAvlttE can animate the control structure

of the progr*. 1.t ir ir because a SweRu program's data and control information are both contained

in the ,trt-u rpr"". The various mappings (especially the animation mapping) can access the previous

versions of their input and output spaces, and can use these to accumulate historical information or detect

changes which should be animated smoothly.

2.4.2 Tbip

The members of the Tnre fa,mily of systems a,re simila.r in approach to PlvellB - they describe visualisa-

tions as mappings between different stracture representotions. The TRle systems a.re written in PRol,oc

and manipulate structure representations as collections of asserted predicates in the PRoloc database.

Tnp1 [110] established the general architecture of these systems. Like P.arvnnn, visualisation is

described by three mappings. First, a textual representation of the application's data is parsed into

lhe abstract atructural iepisentation. This pa,rse corresponds to PAVaNE's proof mapping. The ab-

stract structural representation is then mapped into the visual stracturol representation, a collection of

predicates describing graphical objects to be presented to a constraint-based layout system. The vi-

sual structural representation is used to produce the actual images, in a simila,r manner to the P.lveNn

a^nimation mapping.

Tnrp2 1214, tgq extends TnIpl with a spotial porser and inuerse stracture rnoppings, which allow the

system to accept input. Diagrams produced by Tnrr2 can be edited freehand. The spatial parser then

,L"orr"r, the visual structural representation, and the inverse mappings translate this back into the target

language via the abstract structural representation. Tnp3 [144] uses graphical programming-by-example

to build the mapping rules.

The various TRrps do not provide the control visualisation or animation facilities of Peveun, and their

displays are only two-dimensional. TRIP's graphics system provides more layout support than PAVANE's

21
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animation system, although PavaxB is better at 3D animation. Visualisations are probably easier to
build in TnpS than Pevann - PRoLoc's DCG parser facility can be used to inte*ace to any target
language, and the visualisations can be defined graphically.

2.4.3 UWPI
The University of Washington Program Illustrator (uwer) [96] is the most ambitious mapping rule based
PV system yet built. It presents abstract visualisations of griph, list and array algorithms written in a
Plscal subset which provides integer variables and one and two dimensional rrtryr, but neither records
nor pointers. uwPI statically analyses the target program to determine the abstractions it contains, and
then uses the results to produce a visualisation.

uwPl's analysis proceeds in several stages. The target progam is parsed, and stored as an abstract
syntax tree. The tree is then traversed by a statement pattem matcher similar to a peephole optimiser,
and then by a sabrange inferencer. These look for clich6s (recurring patterns) in the ta,rget program,s
use of variables. For example, the subrange inferencer may report that a variable's value ranges over the
indices of an array, a^nd the pattern matcher may detect that the variable is used to index into the same
array.

The next stage, the ADT converier, uses this information to infer the way the prograrn variables
are used to implement abstract data types (ADTs). uwpr's rule base includes descripiions of about
ten ADT's, including linked lists, queues, and directed graphs. Each va^riable is ranked against ihe ADT
definitions a.nd the most plausible ADT is chosen for that variable. For example, uwpr would conclude the
variable described above is used as a pointer to the array's contents. uwpl's rules are ordered according
to the generality of the ADT. If it is unable to deduce the precise type of a variable, uwer assigns it a
less specific type. In this way animations gracefully degrade when uwpr is presented with programs it
cannot completely analyse.

Once all the va"riables' types have been identified, the layout strotegistis invoked to generate a visual-
isation plan. uwet determines the most important ADT and uses it for the backdrop of the visualisation.
Other variables are then animated as pointers or lozenges moving over this background. In the array
pointer example, the array would be the background and the integer would be animated as a pointer into
the array' Once the visualisation pla^n is complete, uwpr interprets the ta,rget prograrn and produces the
visualisation. Variables in the target program a.re monitored by the interpreter and their rralues used to
update the visualisation at runtirne.

In spite of its analysis of the target prograrn, uwpr is surprisingly efficient - it required fifteen seconds
to analyse a small breadth-first search procedure, and visualised the procedure traversing a seven element
graph in thirty seconds. The inferencer rule bases are resistant to small bugs in the target program, and
can operate across families of algorithms - once a selection sort was successfully visualised, several other
sorting algorithms could immediately be displayed.

The advantage of this approach is that the visualiser does not need to provide any specific informa-
tion about the target program - uwPl's analysis attempts to recover abstractions automatica,lly. The
visualisation is independent of the narnes used in the ta.rget program, and the precise representation used.
for an ADT. For example, uwPl's Pescu subset does not include Boolean types, and so Boolean values
must be implemented by integers, the language's only scalar data type. uwpl is able to recognise several
common integer representations of Booleans and visualise them appropriately.

Of course, knowledge about abstractions must be provided somewhere, and in uwpl it is embodied
in the rule bases of the statement matcher, subrange inferencer, and ADT converter. uwpt thus shifts
the burden from describing the abstraction structure of a particular program (either by annotating it or
writing program specific mapping rules) to writing rules for recognising abstractions in whole classes of
programs.

2.4.4 Summary

Program mapping has one large advantage over annotation: the visualiser does not have to annotate
the target program. Writing data mapping rules for systems like Trup or Pevnnn does require detailed
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knowledge about the target program, but is probably easier than inserting the corresponding annotations,

especiall"y as mapping irfur .." not sensitive to their position in the program. Writing abstraction

deiectin! rde bases, ai required for uwpl! is significantly more difficult, but should only need to be done

once for each implementation of any abstraction'

Apart from this, neither annotatiou or mapping seems to have a,n advantage over the other in the

kinils of.visualisations that they can produce. The most sophisticated mapping system described, uwPI'

is, however, able to generate uurtrr.t visualisations of some programs without any user or visualiser

intervention. It is didcult to see how this could be performed with an a"nnotation based approach.

2.5 Program Monitoring

This section sruveys techniques used for monitoring the execution of the target program' we include

the traditional ha,rdware.based approaches used in debuggers, theoretical techniques using reflexive lan-

guages, and ad-hoc solutions whicil modify the program to generate information about its actions' Our

ireiniation is oriented towards the use of monitoring techniques for supporting program visualisation'

More detailed information is available from the comprehensive surveys which have appeared in the last

decade [48, 156, 169,205].

Although we present each technique in isolation, many actual systems use a combination of techniques'

This is foriea"ons of efficiency, as no two techniques gather precisely the same information or impose the

same overheads. One common tradeoffinvolves monitoring itefinition as against monitoring zse' All calls

to a pa^rticular function can be monitored easily by monitoring that function's definition' Monitoring

every call site would produce the same information but is obviously more complicated. Conversely, if
we wish to monitor a single call to the function, monitoring the definition will provide a large amount

of spurious information, and may impose overheads upon other calls to the monitored function' This

definition vs. use distinction applies to many other constructs, including data type definitions and

.,ro#to, method definitions andmessage sends, class definitions and object instances, and whole objects

or classes (including all their associatedmethods a^nd variables) and particular messages or va,riables'

2.5.L Hardware Monitoring

Computer programs to be monitored must eventually be executed by some hardware processor' By

moniioring-thJ operation of the hardware it is possible to monitor the program's execution without

modifying the Program in anY waY.

Monitoring facilities provided by general purpose processors (such as the Vn x [61]' 8086 [139] or 68000

[1gg] familiesl include instruction, *"*ory a,ccess and timer interrupts, and special purpose internal

,egisters. The interrupts cause the pro"u.roi to execute a monitoring system routine whenever a particular

condition occurs - when the target prograrn executes an instruction' accesses a particular part of memory

or after a specified time intervaJ- The monitoring routine can then examine the execution state of the

target prograrn, generate action notifications, and then resume the target program. For exa'rnple, trace

intJrruptslan be used to invoke a debugger, thus single stepping the program; memory access traps

(whethir monitoring single addresses or eotit" pag".) can be used to monitor data structures, and timer

interrupts can be use toiollect profile information. An internal register can count the number of times

the CpU performs a particular operation, or record the utilisation of the CPU's functional units'

The mein advantage of hardwa,r*.assisted monitoring is that the target prograln does not have to

be changed in any *r!. Uring some suitable interfare, the programmer activates the monitoring and

then anilyses the information. It ir also quite efficient for that precise subset of actions which can be

monitored directly in the hardware. The disadvantage is that the monitoring is limited to those facilities

provided by the hardware a,nd supported by the operating system, and these vary widely from system to

system. For example, the CADR Lrsp machine [145] can monitor one contiguous 32K block of memory'

while g03g6 family dhip, ur" able to monitor only four addresses, but these addresses may be anywhere

in memory [139].
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Unless the language processor is also extended to provide information about the program's translation,
information will only be reported in terms of assembly language.

2-5.2 Postprocessing the Executable Form of the program

Rather than modifying the hardwa^re, similar results can be obtained by modifying the prograrn's exe-
cutable form - that is, postprocessing the la,nguage translator's output. Neither the hardware nor the
language sofbware need themselves be modified.

This techniqu* is rlqed by many debuggers (along with hardware monitoring), because the program
can be changed after the language processor has completed its work, euetr a,fter-ile hrget program has
been loaded and run. Breakpoints a"re typically implemented by changing the program,s memory image to
insert a call into the deb-ugger - when program execution reaches the breakpointftne debugger is entered.
By changing the compiled program, breakpoints can be inserted and removed without retranslating the
prograrn. The Acto [226] debugger makes particularly flexible use of this technique, as it provides
breakpoints' coverage analyses, and execution profiles by editing the binary ,"p."r"ot"tion of the target
program.

A disadvantage is that the only information this technique alone can provide is that contained in
the program binary. A common solution is to modifu the ianguage processor to include source level
information about the progra.rn in the binary file. Many language systems ca,n generate symbol tables
which can be used to direct the changes to the binary, allowing the user to worliin terms of the source
code.

This approach is not limited to "real" binary files to be executed by "real" hardware. Interpreters
must maintain an internal representation of the target program - similar effects can be achieved if this
can be modified. Structurally reflexive languages ($2.5.5) allow a program to modify its own internal
representation directly. For example, the standard Pnor,oc debugger provides procedure spypoints by
modifying PRoLoc's representation of the procedure [31]. A.t encapsulator [1M] or inaireciion [fzi]object is a Smalltnlx object which displaces an object within the iarget prlgru*, intercepts ati ttre
messages intended for the original object, and eventually forwards them to the original obleit. Encap-
sulators may be used for several purposes, depending upon how they process intercfrted messages: they
can enforce mutual exclusion or atomic transaction constraints as well as providing information to a
monitoring system.

This technique has also been used directly in PV systems. For example, TRrcK [2g,22] monitors
Suer,lrer,r methods by replacing their iuternal representations with spicially constructed wrappers
which notify the visualisation system then resume the original methods.

This technique has the following advantages: the program's internal form can usually be modified
without direct user intervention, and without having to reload or recompile the target program. If the
unmodified program representation ca.n be kept alongside the modified representatioi 1r" in-Tnrcx and
encapsulators), modifications can be hidden from queries about the program's structure by referring such
queries to the unmodified version, and the modifications can be reversed easily when monitoring is no
longer required.

2.5.3 Modifying the Language processor

Working only with low level representations of the ta.rget program (either modifying the binary or using
hardwa.re facilities) has the problem that any information piesented will be in those lowJevel terms,
rather that in terms of the original source program.

More radicallS the language processor may be changed to monitor the target proglrm directly: if
the processor is a compiler, to produce a prograrn which monitors itself *hen ruir; ii it ir an interpreter,
to monitor the programs it interprets. The translation or interpretation performed by the language
processor is extended to include the monitoring. For example, a tally variable may be updated whenever
a procedure is called, or a monitoring procedure may be called whenever a variable is referenced.
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Several control flow visualisation systems have used interesting variations of thr's t9$niaue' Gaepu-

tne,ce [116] modifies the message disiatch function of the Stnosn Lrsp dialect to build graphical traces

of process execution histories. Cu"ttingnatn and Beck [55] modified SuAt'lter'x's debugger [84] to col-

lect similar information. The Atun'ftrVSt graphical debugger' UW?I) and most animated interpreters use

custom interpreters specially designed to produce information about the target programs' control flow

and changes in its data values.

This approach does not require any modifications to the target program or hardware' but of course

the language translator itself must be modified. The cha,nges in the processor output may be visible

to lower-level tools. overall, this is quite an efficient technique because the monitoring can use the

information about the target plograln computed by the translator both to optimise the monitoring and

to present source'level information'

2,5.4 Preprocessing the Program Source

The target program can be preprocessed before being sent to the language translator, and the preprocessor

can insert statements to generate monitoring information as the pro8ra'm is run'

This technique has been used to build debuggers (or progra.m visualisation back ends) for several lan-

Sr#r. For exarnple the portable Scgprrln debugger Pso [1_13] uses this technique to trace the execution

of a SCsnUE program. Program so'rce pr"proi&tittg is alsoused to support PnOlOc visualisation in

Tevr ($2.2.1), *d C++ visualisation in Gnoovu [193]'

Tlanslating the target program's source has several advantages. It-is easy to implement' as no major

software or hardware 
""o-poieot, need to be modified. This visualiser need only specify what is to

be monitored, and does not perform the modifications directly. The preprocessor itself can be portable

between different target hardware or language implementations, since it works completely with the target

la,nguage. The maiJdisadvantage is that tlin"u itt" program is modified its behaviour may be altered'

,",J.u,i" must be taken to display the original program to the user'

2.5.5 Reflexive Languages

A reflexive language is one in which a prograrn can a,ffect its own computation [L34]' Reflexive languages

work at both the bose level - performing computation about the program's problem domain' and the

rnetalevel, whictr has the base level as iis domain. The 6ase language is that subset of the reflexive

language concerned with the base level: the full reflexive language includes the base la.nguage and a

refle,riue wtension-

The reflexive extensions of a language may be stnntural or computetioncl. A program in a structurally

reflexive language can inspect and alter its own structure' For example, a LISP progran can dynamically

create or delete n rr.tioor, and inquire about the existence and status of variables' Other structurally

reflexive languages include PRol,oc and Str'tlt't'tlr'x'

In a structurally reflexive language, a prograrn can alter its own structure but not the language's

sema,ntic model. While structurally reflexive l"ogrrugur cannot directly monitor the target program's

execution, they can b" us"d to support other moniioring techniques. In particula.r, a structurally reflexive

language can easily modify prograu$ to support dynamic,monitoring. For example, Pnoloc and Ltsp

;*ff; tracers ot{"n or.ih"r"l"ogoages'structurally reflexive extensions to add tracing statements to

their ta,rget Prograrns ($2.5.2).

A computationally reflexive language usually includes a structurally reflexive subset, but a progra;n

is also able to dyna,rnically manipulate its own execution' In these languages, it is possible to alter

the semantics of base.level programs as they are executing, typically by writing or extending a meta'

circularinterpreter - an interpieter for the extended language written in itself' A program visualisation

system requires information about the target progam and its execution - if the target language is

ctmputationally reflexive, this information can be obtained easily. For this reason' several prograrn

visualisation systems have used reflexive languages: the visualisation system and target prograrn axe
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written in the same reflexive language and the visualisation system uses the reflexive facilities of that
language to monitor the target prograln.

For exarnple, the C^t os object system [112] includes a reflexive extension, the Mere os.rncr pno-
Togo-L or MoP [114]. Clos is efiectively implemented by a set of standard objects supplied by the naoe,
and these can be altered or replaced to change Ct os's behaviour. The rvropis slot and, metioilobjects,
which implement Clos's variables and methods respectivelS can be altered so that any slot accesses orfunction calls are reported to a visualisation syster[g4].

2.5.6 Summary

All these methods of monitoring prograrns have been used with program visualisation systems. Eachprovides information about the target prograrn with an a.ssociated cosi.
Modifying the target program (typically to perform annotation) is probably the most common method,it is certainly the simplest as it requires no specialised supporting hardware or software. It is quite intru-

sive, however, because the visualiser must manually perform thetodifications. Automatically modifyingthe program's source, or, especially in a structurally reflexive language, its internal representation, is
almost as easy to implement, and has the advantage that the visualiser does not have to modify thetarget program directly. Modifying the program's executable form is also popular, especially if existing
tools, such as textual debuggers, can be employed.

Using a reflexive language, altering the language processor to provide monitoring, or using specialised
monitoring hardware are progressively more complex options, buf each of these pr#du. further benefits.
These methods can monitor a^n unmodified ta,rget program, and, since the language's implementation is
cognisant of the monitoring, the monitoring can be ca.rried out very efficientlyl Hldware monitoring isthe extreme end of this continuum: suitable hardware can monitor all aspects of the target prograrn,s
execution without altering the program's behaviour or performance in any way. However such hardware
is usually prohibitively inconvenient.

18. The best book on prograrnming for the layman is ,,Atice in wonderlaruI',:
but that's because it's the best book on anything for the layman.

Alan Perlis, Epi,grams On programrning ll6gl



Abstraction

Abstraction: the decision to concentrate on properties which are shared bg many

objects or situations i,n the reol world,, and, to ignore the differences between them'
- 

It i,s my betief that the process of abstraction, which underli,es attempts to apply

mathematics to the real world, is eractly the process which unilerlies the

opplications ol computers in the reol world'

C. A. R. Hoare, Notes on Data Shacturingl99l

Abstraction is central to both programming and visualisation. In programming, we concentrate on the

essential features of the program to be *iitt"o, and map these to the implementation programming

language or computer. In visualisation, we wish to draw attention to the important features of the data

being displayed, and deemphasise the inconsequential'

Abstraction is crucial to programming because of the complexity inherent in even small programming

tasks. Programs should not be constructed as monoliths: rather they should be designed piecemeal,

ideally as J set of components each allowing consideration in- isolation. The design of a program is a

colleciion of abstractions that limit the complexity that must be considered at any time'

A progla,m exploratorium should both illustrate and alleviate this complexity. It should illustrate

this complexity because complexity is part of the very nature of programs, but it must also mitigate this

complexity because a,ny nontrivial program will otherwise be too difficult to comprehend'

This chapter attempts to answer some high-level questions. IIow is abstraction used in programming?

How is abstraction rrrui io proglarn visualisation? How can a program exploratorium lake cognisance of

the abstractions within a prog-ram? The presentation here is necessa,rily somewhat idealised; following

chapters discuss pragmatic details.

The fust part of this chapter (Sections 3.1 and 3.2) investigates the r6le of abstraction in program

visualisation with reference lo the previous work reviewed in Chapter 2. The second part (Sections

3.8 to 3.6) surveys various programming paradigms with respect to their suitability for supporting the

visualisation of the abstractious in programs' designs. Section 3.7 then presents a novel scheme for

exploring programs based upon displraying the abstractions contained within them. Finally, Section 3'8

summarises the chaPter'

27
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3.1 Abstraction in Visualisation

We consider that three separate uses of abstraction can be distinguished in program visualisation systems:

1' Visual abstractions present information visually. Every progra,m visualisation system, even the
most basic graphical debugger ($2.2), uses visual abstractionslo produce the graphics to be pre-
sented to the user.

2' Prograrn abstractions capture the important ideas in the target program's design. A program,s
design is a structure of abstractions, and these abstractions are essential to understandin! tfrl pro-
Sram' so we call these abstractions "program abstractions". Progra.rn abstractions are indLpendent
of visual abstractions, and can usually be displayed in many difllbrent ways, using different visual
abstractions. Program visualisation systems which illustrate LigherJevel aspects of1 program (such
as algorithm animation systems, $2.3, $2.4) must somehow recover abstractions from the progriun,
so that they can display the important ideas inherent in the program's design.

3' Aggregate abstractions provide information about a program's structure or performance. Ag-
gregate abstractions often synthesize information ranging across the whole of tle program (thus
their name), in contrast to program abstractions, which iepresent the design of a single progru*
component' Aggregate abstractions, like program abstractions, are indeplndent of i particular
visualisation, and can be displayed in different ways. Parallel prograrnming tools ($2.2.i) and vi-
sual programming environments (92.2.2) typically display aggregate abstraciions that summarise a
program's performance.

We have found these categories a useful aid in understanding program visualisation, even though they
are not rigidly defined. A particular visualisation will always use visual abstraction, but whether it in
addition uses program or aggregate abstraction may be a matter of opinion.

The following subsections present each of these categories in turn, by discussing a series of visu-
alisations representative of those in the literature [37, 152, 173]. The exa.mple illustiations have been
generated using our Tarraingfm program visualisation system, described in Clapter E,

3.1.1 Visual Abstraction

Sorting algorithms were one of the earliest subjects of program visualisation [10, gg]. They are often
visualised by displaying the data to be sorted, typically 

"n 
,"ruy of numbers. As the sort progress€s,

the elements in the array are moved or exchanged, and the animation system updates the display of the
array's elements.

Figure 3.1 shows three illustrations taken from a dynamic visualisation of a sort. Two views (the
sticks histograrn view and dots scatter plot view) pr"r"rrt graphical illustrations of array element valuesplotted against their position in the array, and the third vector view simply lists the uairr"* of the array
elements, in the order of their position in the array. In the figure, the array is unsorted - the dots and
sticks views appear random, and the list of numbers in the velor view is in no particular order.

All these views display the same information about the contents of the array, but each view presents
this information differently. The graphical views display the shape of the data especially well and, as
the sort progresses, give an impression of the properties of va.rious different algorithms. precise values of
individual elements can be more easily read from the textual view.

Each view is a separate uisual abstraction of. the array - a mapping from a lower level (the a.rray in
th-e-program) to a higher level (the illustratiou). For example, the sticks view maps each array element to
a filled rectangle. The element's value is mapped to the rectangle's height, and its position in the array is
mapped to the rectangle's horizontal position in the view. The Jots view is similar - an element,s position
is represented by the horizontal position of a square dot, while the dot's vertical position represents the
element's value. The vector view simply maps each element's value into one or more character glyphs.

Visual abstractions can illustrate the behaviour of a.n algorithm, as well as the data it is manipulating.
Several behavioural views of quicksort are illustrated in Filure 3.2. The call tree view illustrates the tree
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Figure 3.1: The Data within an ArraY

of recursive calls made by quicksort while sorting the array. Each box in the call tree view represents a

call to quicksort, the numbers in the box being the bounds of ihe partition to be sorted. The partition

view shows the progress of the sort - a curve is drawn to connect bounds of partitions of array elements

imagined u.rorr the bottom of the view. The trace view displays a textual list of the recursive calls to

qui&sort, and the swaps of array elements. Each of these views is a visual abstraction of the underlying

behaviour of the sorting algorithm.
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Figure 3.2: The Behaviour of Quicksort
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3.t.2 Program Abstractions

The array data views in Figure 3.1 all display the same information about the array: the values of the
artay's elements. These views display an abstraction of the array, rather tha^n the a,rray itself. The array
is being used as a sequence - an abstract list of numbers. Details of the actual arraS such as the exact
types, sizes, or addresses of the array elements, are irrelevant to the sequence abstraction and a^re omitted
from the views. The behavioural views in Figure 3.2 similarly display essential information about the
algorithm's execution: the partition or swap operations performed by quicksort.

The sequence is an example of. a progrom abstraction - an important idea in the internal design
of the prograrn. Each view in Figures 3.1 and 3.2 embodies a diferent visual abstraction of the same
underlying progra.rn abstraction. Note that these views could alternatively be described as different
visual abstractions of the array, i.e., visual abstractions of a concrete prograrnming language construct.
We introduce the idea of an underlying program abstraction (the sequence) because all these views present
the same subset of all the possible information about the a^rray.

A program abstraction can be seen from two different perspectives: from its interface and from its
implem,entation. Seen from its interface, an abstraction appears as a single unit which can be understood
in isolation. An abstraction's implementation describes how the interface is realised. The views in Figures
3.1 and 3.2 rely only upon the sequence interface, not on any particular implementation details, so they
can be drawn for any kind of sequence? or any implementation of the quicksort algorithm sorting a
sequence.

Some implementations (such as arrays) are primiti,ua they are built into programming languages.
Others are constructeilby combining simpler abstractions. A linked list can be built from link records, or
a hash table from an array. A sequence can then be used to implement a stack in a parser, or to contain
the terms representing a polynomial.

In this way, a program is built as a hierarchy of abstractions. A few key abstractious, such as arrays,
numbers, a.nd characters, are supported directly by the programming language, while the bulk of the
program consists of abstractions constructed by the programmer from the language primitives. This
abstraction hierarchy describes part of the design of the program.

Figure 3.3 illustrates these multiple levels of abstraction. The stack abstraction view shows a push
down stack of integers. Each stack element is displayed by the length of a horizontal bar. The stack
currently contains seventeen elements, with the top element (numbered 0) drawn at the top of the view.

The stack implementation view shows how the stack is implemented. This view has three subordinate
views' The first of these, labelled components, contains icons for the main components of the implemen-
tation: a parent which supplies the stack's operations ($5.4.4), an array holding the stack's contents, and
an integer index. The other two views display these components. The contents view displays the contents
array as a sequence in the same way as the bar view from Figure 3.1: the height of the bar gives the value
of the array element, and elements a.re drawn from left to right. The index view illustrates the value of
the index component as an index into the contents a^rray,

The contents implementation view shows the primitive vector that implements the stack's contents
array. This vector also contains a parent component, and components for each array element.

Several interesting features of the stack implementation can be gleaned by comparing these views.
For example, the value of the index va"riable is the size of the stack. The contents array contains twenty
elements (the stack only seventeen), so presumably when an element is removed from the stack it is
not removed from the array, but the index is adjusted so that it is inaccessible to the stack operations.
This can be seen quite clearly by watching the evolution of the display as elements are added to and
removed from the stack. Finally, the order of items in the stack is the reverse of that in the array. The
stack is "pushed down" the screen, so that the element most recently added is on the top of the stack.
Elements are stored in the array in its natural order (drawn left to right), so that the top stack element
can be anywhere in the array (actually one element to the left of the index), and the first (leftmost) array
position holds the bottom stack element. To traverse the stack in its natural order, the portion of the
array containing valid stack elements must be traversed in reverse order.

The stack abstraction and stack implementation views present the interface and implementation per-
spectives of the stack abstraction, and the stack's contents component view and the contents implemen-
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Figure 3.3: A Stack Abstraction and Implementation

tation view present the corresponding perspectives of the stack's component array' Note that these two

porpu"ti"". display difierent infot*"tioo about an abstraction. In contrast, difierent visual abstractions

of the sa,me program abstraction present the same information in different ways'

A progra"rn visualisation system should be able to display both perspectives of program abstractions

at any level in the program's iesign. In this way, the user can cgmpare displays of abstractions and their

implementations to ,"i ho* the piogram is constructed from a hierarchy of abstractions'

3.L.3 Aggregate Abstractions

Many progra,rr visualisation systems produce views of progriilns whic.h a"re neither displays of program

abstractions nor displays of the prograrn's code and data. often these views focus upon the form of the

program, as against views showing pro$am abstractions which display the progra'ur's content' Such views

may display the structure of the ta,rget program or performance information, and often use statistical

data reduction and visualisation techniques io display large amounts of information' We say such views

display aggregote obstractions, since they display information collected from large parts of the prograrn'

views of aggregate abstractions are more common in progra,rnming tools or environments ($2'2'2) than

in graphical debuggers or algorithm arrimation systems'

Figure J.4 illustrates several views of aggregate abstractions. The abstraction structure view displays

the relationships between abstractions witii-n a-small recursive descent parser. The parser uses a lexical

*"lyru, (lexer) and a stack; the lexer uses an rnput stream; and the stack (as in Figure 3'3) uses an

*ruy lu"itor) and an integer (smalllnt). The opeiation profile and read/write profile views display some

performance information aUoui tt e stack. The operation profile displays a histogram of the number of

times the stack has performed each operation, and the read/write profile shows ho-n' many times each

element of the array implementing the stack has been read (light bars) or written (dark bars)'

Figure 8.4 also shows an importa,nt point about aggregate abstractions: like visual abstractions,

aggregate abstractions are often 
"*prurr"d 

in terms of program abstractions. For exa'rnple, the operation

piJile"vie* displays performance information about the stack program abstraction, and the abstraction

structure view expliciily displays the structure of program abstractions making up the target program'
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Figure 3.4: Aggregate Abstractions

3.L.4 Summary

This section has discussed three kinds of abstractions used in program visualisation: visual abstractions,
program abstractions, and aggregate abstractions.

All progra'm visualisation must by definition involve visual abstraction, and the graphical techniques
required are quite well known. Visualisations of aggregate abstractions are similaily well understood,
with graphical profilers and performa^nce monitorr b"co*ing commonplace ($2.2.1).

Both visual abstractions and aggregate abstractions belong to the context ofa visualisation: they are
not part of the progra,m itself. Program abstractions represent the design ideas within the program and
are independent of any pa^rticular visualisation. Thus they are the key ti portraying a program in terms
of its design in a program exploratorium.

The focus of the remainder this chapter (and indeed the remainder of this thesis) we call abstractprogram visualisation: the explicit use of prograrn abstractions in progra,m visualisation. Flom thispoint, where "abstraction" is used unqualified it refers specifically to program abstraction. The following
section examines abstract program visualisation techniques in more detail.

3.2 Visualising Abstractions in programs

All the example illustrations in the previous section can be produced by many of the existing methods ofprogram visualisation. This includes those views especiallylllustrating program abstraction, such as the
views shown in Figure 3.3. This section begins by evaluating this previous work, to determine the extentto which it supports visualisation of program abstractions,-drawing upon the detailed survey containedin Chapter 2' It goes on to introduce an improved approach, based upon explicitly recognising program
abstractions from the target program's structure.
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3.2.1 Previous APProaches

Visual Progra'nming Tools

visual programming tools such as graphical debuggers ($2'2) typically provide very little support for

prograrn abstraction, ;il;;" a"_i-is1ea. to work at the programming language level' Although more

advanced systems ,,r"t, * INCONS' ($2-.2.1) 
"uo* 

ur., defined visualisations of the program's data struc-

tures, there is no differentiation betwee' uiJ a.nd program abstraction' New views are defined by artist

procedures which directly traverse the- progra,m's data structures and simultaneously build an illustratiou'

Writing tfr"ru pro."a,ir", ,uq.'rir., " 
a"taiteJ knowledge of the program's implementation on the part of

the visualiser.

Annotation

Annotation-based algorithm animation systems such as BAI'se and ANIU ($2'3) provide some support

for program aUstraciior, UV 
"ffo*irr8 

tt.-r,izuJisur to choose the events which are communicated from

the program to the .\rirrrrfirttion ,yiu.. Views are defined in terms of these events' rather than by the

details of the underlYing Program'

Event annotations Can be chosen to reflect a consistent abstract model of the program' although no

such discipline is enforced by these systems' Any program annotated according to the same convention

is compatible with ,o.r, , view, and ""r*;;i;,-"*t 
view which understands the event annotations will

be compatible with that program. In any "*"i*oot"tions 
must be inserted by the visualiser to describe

theabstractionswithintheprogram,andthevisualisationsystemcanonlydisplaythoseabstractions
previously identified by annotation'

Directannotationsystems($2.3.3)provideevenlessprogTamabstractionsupport.Theannotations
in systems like GssruRAL are d"nn"i 6v "*Ji"it 

tut r"o"" io the target program's code, and operation

pa.rameters ou a"riu.j directly from the t*g"t program's data. By simplifying the connection between

program and visualisation, a direct appro""rt"*"Lr aefining visualisations much easier, but the resulting

definitions axe very tightly coupled to the details of the target plogram'

Mapping

Mappingsystemsusedeclarativemappingstolinktheprogramandthevisualisation($2.4).Themapping
is written as a set of rules in a functiond;; lfi;"irtvr","*ta describes the visualisation in terms of the

ta,rget program's t"*t- Cfri* is generally simpleithan it'9 t*o previous approaches because the definition

is declarative and the ta'rget piogt"- does not need to be modified'

Somemappingsystems(suchasTnre$2.4.2)allowseveral:"'ppi"q-to*:::o*"dtodefinea
visualisation. This provides ,orrr. ,rrpport?, prog,uo' abstraction, as one mapping may be used to

define a,n abstract model of the program, and anolher to portray that model' The model represents

prograrn abstractions in the sa,rne way as tire choice of events in an annotation system' As with the other

approaches, a program abstraction must be described by the visualiser in terms of its implementation

before it can be visualised'

Program AnalYsis

uwpr ($2.4.3) uses general rules to a.nalyse the target program' This analysis produces a description of

the abstractions within the program without userlnvolvement. When the program is executed, these

descriptions """ 
or"J io "*tr*iudh 

d;;;;J behavior' information to control the visualisation' As

far as program abstractions a,re concerned, uwpt is like an extended mapping system with general rules

describingmanypossibleimplementationsofarrabstraction,ratherthanjusttheimplementationused
within a particular target program'
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Summary of previous Approaches

Although they difier in detail, the process to construct an abstract visualisation is roughly the same foreach method' The visualiser must inspect the target prog*; 
""a 

understand how the abstractions to bevisualised are implemented' The visualisation then is difinea in terms of this implementation. we calllhis a bottom ap visualisation.

several svstems (including lepe ($2.3.1), Tnre ($2.4.2), and uwer ($2.4.8)) include an intermediatestage which can be used to model ptog."* abstractions. rnir allows the visu#ser to explicitly identifyinformation about prog-ram abstraciioris, so that several views of the same abstraction can be constructedwithout each view's definition re-quiring lhe visualiser to reexamine the target program. Any intermediatemodel is still defined in terms of the ditails of the abstractioni implementation.

3'2.2 Top Down visualisation via Explicit Abstractions
Bottom up visualisation a.ssumes that information about the abstractions in a program,s design is onlyimplicitly present in its implementation. Program abstracuon, must be embodied somewhere withinthe program' If a program uses a stack, it must contain an implementation of the stack, that is, datastructures to contain the stack's elements, and statements to implement operations to push and popdata' determine if the stack is full, and so on. unfortunately, the relationship between an abstraction andits implementation is not necessarily obvio-us. For 

"*r*ptl, a stack may be implemented by a block ofmemory and a pointer variable manipulated.by several wiiety separated parts of ihe target program. Thestack's data may not be easily distinguishable from other uses of the underlying memory, and similarlyits operations may be spread throughout the code of the whole program.
If' however, the abstractions in a prograrn could be identified etpticitly from its text, visualisationscould be constructed top down - *oit ing from the definitions of abstraciions in the prograrn to theirimplementations' A program visualisation system could simply inspect the program to determine theabstractions it contained. The information required by viewstf trr"r" abstraciion-s could be acquired byrelying upon the explicit definition ofthe abstractions, rather than by reverse engineering the abstractions,implementations.

consider the stack described above. If abstractions ire represented explicitly in a program,s structure,the stack can be detected simply by inspecting the abstractions the program contains. When a view needsinformation about the stack, the stack-'s definition can be 
"ooJt"a to determine how that informationcan be retrieved, rather than the implementation being accessed directly.

Abstractions of both Data and Behaviour

Most PV systems are biased towards visualising either the data or the behaviour of the target program.For example, graphical debuggers typically visualise a program's data ($2.2), as do data-mapping systemssuch as TRtp and PevLNr' ($2.4). io .,r"tr systems, if thJehaviour of the program is to be displayed itmust be inferred by comparing changes between successive states. Annotation based systems like Bels.q($2'3) are biased towards dispiaying-the behaviour 
"f " 

prd;;-- trg" data struct'ies (such as arrays

:i"T:*"i1"ff:rL*o'"a 
pL"etne-ut bv sending a series o"f events to inform the visuatisation systems

Abstract program visualisation requires information about both code and data. Many useful views ofprograrns show the behaviour of the prograrns (see F_u3re s.il, *a views of data benefit from receivingincremental notificationsof the changes in the data. Thereforuit i, important that any explicit model ofabstraction used by a pv systern 
"oJo*p*, both the progr*rrl data and code.

3.2.3 Abstractions, paradigms, and Languages
Explicit representation of abstractions withiq-the target program requires consideration of a model ofabstraction within the target proBrarn' as well * u roia.iof;;grr- visuarisation per se. A graphicat
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debugger is designed to display programs written in a particula,r programming language. Therefore,

the model of visualisation it uses must be closely related to the programming model adopted by that
language. Algorithm animation systems, on the other hand, are less strongly related to the target

progtu*. Systems such as Znus or Awrrra ($2.3) can visualise many different types of prograrns' written
in different languages, provided the programs can be annotated to produce events' The annotation model

of visualisation, which treats the target program solely as a source of interesting events, is unrelated

to the programming language model. A model of program visualisation which is based upon explicit

,"pr"u"otution of abstractions within the target program must be coupled to the model of abstraction

used within the program, in the same way the design of a debugger is related to the language being

debugged.

In discussing abstraction in programming, we :use parad,igm to mean a conceptual model of abstraction

which underliesthe design and expression of programs. Different paradigms emphasise different types of

abstractions. Take, for example, procedural decomposition, object orientation, and logic programming,

which we consider as three separate paradigms. A program written using procedural decomposition is

seen as a layered hierarchy of procedure definitions, where each procedure implements a single task,

whereas an object oriented prograrn is seen as a collection of communicating objects' a^nd a logic program

is seen as a collection of facts and inference rules'

Programming languages are the most visible artifacts of programming paradigms, and oflen act as

exemplirs for a paradigm. Pasclt,, for example, exemplifies the recursive structure of code and data,

Sueilrelx exemplifies object orientation, and Pnoloc exemplifies logic programming. A pa.radigmatic

prograrnming language provides constructs which allow the abstractions of a particular paradigm to be

wriiten elegantly. An abstract program visualisation system based on a paradigm should be able to

recognise these language constructs and use them to identify the abstractions within the program.

The obvious problem which arises with this approach is that the use of a paradigmatic programming

Ianguage cannot gua.rantee that a program will be written according to a particular paradigm' For

u*"irpl", consideia visualisation system such as Ppcln (82.2.2) which displays structured flowcharts

t62]. if tfie programming language provides structured control statements (such as case, while and repeat)

itrir t""t is quiie simple: the target program's control flow graph can be derived easily from its abstract

synta:c, because the language's control statements explicitly represent the progra;n's control flow. If the

language only provides goto statements, a much more extensive analysis is required to find the program's

flow graph [3].

Even in a language with structured control statements, a program's control flow can only be deter-

mined from its abstract syntax if the progra^rn is actually written in a structured style. An unstructured

program can be written in a structured language, using structured statements to emulate gotos by using

, f"op around a case statement. In this case, an abstract synta,x based analysis would appear to work,

but its results would be misleading. The analysis would reveal only the loop and the case statement, that

is to say, it would show that clauses of the case statement could be executed in any order.

If, therefore, a prograrn is written in good style, and the constructs provided by a paradigmatic

progrannming languige are used to express the abstractions important in the program's design, a prograrn

visualisation system should be able to use the programming language's constructs to recover the target

program's abstractions. If a suitable paradigm to express prograrn abstractions can be identified, a

visuatisation system should be able to display a program's abstractions top down, without the use of

bottom up techniques such as annotations or mapping rules.

It follows from the above discussion that the choice of pa,radigm is very important' The pa^radigm

determines what kinds of abstractions can be represented explicitly in the target prograrn, and thus what

can be identified easily by the visualisation system. For this reason, the following four sections are devoted

to the evaluation of four pa.radigms with respect to their support for abstract program visualisation' The

paradigms we have chosen to evaluate are procedural decomposition ($3.3), structured data types ($3.4),

uU*tt*.t data types ($3.5), and object orientation ($3.6). These paradigms are well known to computer

science. All a^re meniioned in Dijkstra, Hoare and Dahl's Structured Programmind [56] first published

ateessays.Tbefirst,Dijkstra,sNotesonStructuredProgrcmming|62|
describes procedural decomiosition. The second essay, Hoare'a Notes on Dota Structuring [sol, describes both structured

35
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in 1970, and thus are at least twenty-five years old. As will be seen from the discussion, we favour the
object oriented paradigm.

The descriptions of the paradigms and the examples are not original but draw in particular upon the
more comprehensive surveys found in Collberg's thesis [51] and Stroustrup's wonderfully-narned Si,rteen
Ways to Stack a Cat l?Lll.

3.3 Procedural Decomposition

Procedural decomposition is one of the oldest established programming paradigms. Its evolution is
usually traced to Dijkstra, who, quoting the doctrine of Diuide and RuIe [62], realised that procedures
could be used to organise abstractions within programs. Following this approach, a program is designed
by breaking the original problem into several smaller subproblems which can be solved independently.
This subdivision is captured by writing a procedure which calls subprocedures for each subproblem.
The decomposition terminates when each subproblem is sufficiently small that it can be implemented
by writing a single procedure. The process of repeated subdivision is known as stepwise refinement
[228], as each subdivision incrementally refines a high-level abstract specification towards a concrete and
executable program.

Procedural decomposition captures procedural abstractions: a procedure is used to implement a
particular task. The requirements of the task form a specification for the procedure. Provided a procedure
meets its specifications (is implemented correctly) its implementation details are unimporta,nt as far as
users of the procedure are concerned. As described by Dijkstra, a procedure at a given level of the
decomposition can be considered as a program for a virtual machine - its subprocedures being the
virtual machine's instructions. In the sarne way that a prograrn written in a highJevel language can be
understood without knowledge of the machines upon which it may run, a procedure can be understood (or
visualised) regardless of the implementations of the subprocedures, if their specifications are understood.

3.3.1 A Procedural Program

Figure 3.5 presents a simple example of a procedural program written in an idealised P,c,scel-like lan-
8ua8e, and structured using procedural decomposition alone. The example program reproduces its input
with lines reversed, like the unix filter rev, then prints the number of lines read. The main task is
implemented by the reverse procedure. It is decomposed into three tasks: initialising the data structures,
performed by the initialise procedurel processing each input line, performed by the handle-line procedure;
and printing the number of lines read, performed by a single write statement in reverse.

The handle-line procedure counts and reverses each line. To perform the reversal, it accumulates
characters into the contents array using the index variable index. When an entire line has been processed,
characters are read out from the array in reverse order. The subtasks of moving cha.racters in to and
out of the array are implemented by the charin and charout procedures - note that bounds checking has
been omitted to keep the exa,rrple to a manageable size. The va^riable lines accumulates the number of
lines read.

This program captures the structure of the task quite well: each procedure corresponds to a subtask
in the decomposition.

3.3.2 Visualising Procedural Programs

Procedural prograrns can be visualised in va.rious ways. Information about procedures can be gathered
by analysing the static structure of the program, or by monitoring procedure calls as they o"",ti 152.S;.
Programming environments may display call graphs showing the relationships between the procedures
comprising a progrilm, or graphical profiles which show the amount of a program's execution time spent

e,sHiemrchicaIPrognmStructures[57]describestheesgenceofobject
oriented programming.
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var
contents: array[80] of char;

index: integer;
lines: integer;

procedure charin (c: char);

begin contents[index] :: c; index :: index * 1; end;

procedure charout returns char;

begin index := index - 1; return contents[index]; end;

procedure initialise;
begin index :: 0; lines := 0; end;

procedure handle-line;
begin
while (not eoln) do charin(read) od;

while (index > 0) do write(charout) od;

lines :: lines * 1;

end;

procedure reverse;

begin
initialise;
while (not eof) do handle-line od;

write('Reversed:',lines,' liues\u' );
end;

Figure 3.5: A Procedural Progra,m using a Stack

in a particula,r procedure. The trace view from Figure 3.2 and the operation profile view from Figure

3.4 are examples of views ihat can be coustructed Jasily by monitoring procedure calls. Unfortunately

most views of procedural progra^rns display aggregate abstractions rather tha.n program abstractions:

illustrations of progra,m abstractions based sotely ufon procedural decomposition seem very hard to find'

In visualising programs, the data a prograrn manipulates is at least as important as the functions a

progr; p"rro.ir (EJ.z.z).'Classical prlcedural decomposition doesn't concern itself with data, so data

structures will be invisible to a program visualisation system based upon procedural decomposition. For

example, in Figure 3.5, there is notting in the code to indicate that the contents array and the index

va,riable can be understood together as part of the implementation of a stack, while the counter variable

lines is unrelated to either.

3.3.3 SummarY

procedural decomposition models the tasks a program performs. Although task-based information is

sufficient to produce useful aggregate views, because this pa,radigm gives little attention to the data a

program manipulates, it is noi a food candidate to capture abstractions for a program exploratorium'

3.4 Structured Data TYPes

A strict procedural decomposition does not provide a satisfactory foundation for program visualisation,

principaliy because it doeJ not take account of the data ma^nipulated by the program. This is a general
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problem with the paradigm, so in the 1960's attempts were made to find methods of structuring a
program's data as well as its code. These resulted in the idea of Stractured, Data Tfupes (,gD?s), fi-rst
developed in languages such as Plscel.

A structured data type builds a new data representation from a set of primitive types and a set of
type constructors [99]. Primitive (or unstructured) types represent atomic values taken from a particula.r
domain, such as integers, floating point numbers, or cha^racters. Structured types, constructed from
arrays' records, sets, and unions, are produced from the atomic types using type constructors. The
structure of these types is recursive, as type constructors may be applied to othei constructed types as
well as to primitive types.

3.4.1 Structured Data in Programs

Figure 3.6 presents a version of the example from Figure 3.5 using an explicit stack implemented with a
structured data type, also using an idealised Pescnllike language. The stack is embodied in the stack
named type, which is constructed as a record containing the contents array and the index variable. The
charin and charout procedures from Figure 3.5 now become push and pop piocedures which operate upon
the stack, and the stack is initialised via the initialisertack procedure. A global variable s embodies the
actual stack manipulated by the program. The lines variable is not part of the stack's implementation,
so it is not part of the structured type.

The push, pop, and initialise-stack procedures have an argument (stk of type stack) which represents
the stack to be operated upon, so these procedures can be seen to implemeni stack operations. This is
not enforced by the language, and the program can also access the stack directly. tnis is illustrated by
the handle-line procedure in Figure 3.6, which simply inspects the data structuie to check whether the
stack is empty.

3.4.2 Visualising Structured Data

Structured data types have been visualised successfully in several graphical debuggers, the earliest proba-
bly being ltrrcB}{sn ($2.2.1). A structured type is generally displayed by decompiiing the type according
to its type constructors. Primitive types can be drawn either with text strinjs, otluith simple graphil
cal representations similar to user interface widgets, and constructed types are iilustrated by-combining
displays of their elements. The structure of the view pa.rallels the structure of the data type being dis-
played. To keep views up-to-date as the program runs, its d.ata must be monitored and the views redrawn
whenever the data changes.

This is illustrated in the stack implementation view of Figure 3.3. The stack record contains two
fields, contents and index, displayed in separate subviews in the stack implementation view. The contents
implementation view similarly displays each component of the contents array implementation.

UnfortunatelS decomposition of structured data types does not suffice to produce displays of program
abstractions, such as the stack abstraction view from Figure 3.3. To create zuch a displag the visualiser
must know how the representation is used to build a stack (whether the index variable denotes the last
stack element or first empty space, and the direction in which the stack grows in the array), and how
modifications of this representation a^ffect the abstraction. This information is distributed among the
procedures manipulating the abstraction: it is not explicit in the program, and is certainly not contiined
in the definition ofthe structured type.

3.4.3 Summary

For abstract program visualisation, using structured data types remedies the major problem of procedural
decomposition: structured types can be used to g.onp and identify the target prog.am,s data structures.
Unfortunately, as a structured data type is only a well organisei concrete implementation, it d.oes not
provide much assistance for visualising the program abstraction it implements.
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tYPe

stack : record

contents: anaY[80] of char;

index: integer;

end;

var
s: stack;
lines: integer;

procedure initialiseJtack (var stk: stack);

begin
stk.index := 0;

end:

procedure push (var stk: stack' c: char);

begin
stl.contents[stk.index] : = c;

stk.indo< := stk'index * 1;

end;

procedure pop (var stk: stack) returns char;

begin
ttk.indo := stk'index - 1;

return stk.contents[stk'i ndex] ;

end:

orocedure initialise;

iesin initiatise-stack(s); lines := 0; end;

procedure handleJine;

begin
wtile (not eoln) do Push(s'read) od;

while (s.index > 0) do write(pop(s)) od;

lines := lines * 1;

end;

procedure reverse;

begin
initialise;
while (not eof) do handleline od;

write(;R.,rersed:',lines,' f ines\n' );
end;

Figure 3.6: A Prograrn using a Stack Data Structure

3.5 Abstract Data TYPes

Abstmct Dato fupes (ADTs) [93, 99, rpllyere proposgd in the 19?0's as a technique for building truly

abstract data structures in prograrns' ADTs use prlcedures to provide abstract interfaces to data' thus

;"id d;" the benefits of procedures' abstraction'

There are two mutually reinforcing perspectives on ADTs [r2tr]: from a procedural perspective' an
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ADT is a type' and a group of procedures sha^ring common data of that type; from a data type perspective,an ADT is a set of values taken from some dom-ain and a ,"i oiop..utions upon those varues. The mostimportant feature of an ADT is expresseJ in both definitions: 
"" 

aor organises both procedure and data
i$itff 

^f,1:roirT;i*"""n 

of ADrs in this thesis draws r,.r'ny upon-the *orr oiiirr.ov and Gurtag

An ADT has an interfocewhich is a list of operations that can be performed upon its instances. Animplemented ADT must also have an internal description ;f ;"* that ADT is implemented in terms oflower level concepts' An ADT i*pr"*u"i.tion.consists ;i ;-;;or"^tation and,a set of procedures. Therepresentation is a structured type containing the information ie-quired by each instance of the ADT, andthe procedures perform the operatio"r i"n""a in the ADT', irri"rr*" upon the representation.
The most important feature of paradigmaticADT style is the separation of ADT,s interfaces and im-plementations' This is- klown as tifonnaiion.ltdinq(^l"i oitri or encaytsurafion). The implementationof an ADT should only be availabie wittin its definition, in tt" rest of the program, the ADT shouldonly be manipulable via operations in its interface. 

; rtDL ur rre program,

supporting information hiding is the focus of modular programming languages such as Mooul.q-2[230] and Aoa [6]' Thes.e'?Tt:"tL aiuiJ" irograms inro *iaa"r(called packiseiinAoe) which may becompiled separately and which provide lo"al rr-u*".p"""r. io u'rio* one module (a cli,ent)to use an ADTdefined in another module (a sipptler),tt" *rrppti"imodule declares that some of its locar definitions areavailable fot enport; the client tien'i'iportittrosl aen rit;;;. ;;;"chrations which are nor exporred arehidden inside that module' a".gof it i*plemented by a modure which export, ;;;;;"s correspondingto the ADT's operations, and hides the ripresentation type.
An informal specification of the interface of a stack ADT is shown in Table 3.1. Each operationsupported by the ADT is listed, and the operation,s behaviour des*ibed.

Stack Interface

constructors
newJtack

mutators
push(stack, e)
pop(stack)

accessors

top(stack)
size(stack)
isEmpty(stack)

Create a new stack

Push element e onto the stack.
Remove the top element from the stack.

Return the top element on the stack.
Return the number of elements in the stack.
Return true if the stack is empty.

Table 3.1: Stack ADT interface

ADT operations can-be grouped into several categories [132, 140j. operations which create an ADTinstance (newstack in the tuur") 
"." il;" as constructors; operations which change the value of anADT instance (push and pop) *t tt"*'** 

-mutators;and operaiions which retrieve information from aninstance but do not change iis value ri"p, ,ir", and isEmpty) are known as accessors.
A program using ADTs may be designed using stepwise refinement, as discussed in section 3.3. Theoverall design strategy remains divide anl rule, uuiAnr, 

"r" 
r*a as the main design element rather thanprocedures' The decomposition may be focused upon data, ;;L, than function, but often both dataand function a'e considerea sjy-urlg;t 

.rhe ,"r,rturrg il;;;; is structured as a hierarchy of ADT'.Rather than implemelting all ADTs ai""iuv in the p;""g;;;;g language, many are impremented interms of lower level ADTs' unlike tt"p*i.",r"nrr.-uot, 
-t'ni, 

J.igo stro.ture is not limited to the tasksthe program must perform, but "* #; ftude the program,s data structures.
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3.5.1 An ADT Program

Figures 3.7 and 3.8 revisit the stack example, this time using ADTs' These flgures use an idealised

Mooule-2-like tanguage, with a syntarc * ri*it* as possible lo the previous examples in this chapter'

The most important f""utrrr" of tUis example is that the proglam is now in two separate modules: the

definition of the ADT (Figure 3.7) and its use (Figure g.b). The stack definition is similar to the SDT

version in FigUre 3.6 - a record type, named stack[p in Figure 3'7, holds the stack's contents and index'

The stackrep type is not exported outside the ADi definition module; rather arl opaque type narned

stack is exported. The stack'module's clients can use variables of type stack to refer to stacks, but cannot

manipulate them directly because u ,tact', trti definition (the stalt<rep type) is visible only within the

stack module.

3.5 Ansrnecr DATA TYPPs

module stack;
export newJtack, push' pop, isEmPty, stack;

tYPe

stack: stackreP;

stackrep: record

contents: arraY[8O] of char;

index: integer;
end:

procedure new-stack returns stack;

var stk: stack;
begin
stk := new(stackreP);
stk.index :: 0;

return stk;
end:

procedure Push (stk: stack, c: char);

begin
stk.contents[stk.index] := c;

stk.indo< :: stk.index * 1;

end:

procedure pop (stk: stack) returns char;

begin
stk.index :: stk'index - 1;

return stk.contents[stk.index] ;

end;

procedure isEmpty(stk: stack) returns boolean:

begin return (stk.index - 0); end;

end:

Figure 3'7: A Definition of a Stack ADT

The main program (Figure 3.8) is atso a sepaxate module' It imports the stack module' but is otherwise

similar to the Previous versions'

The ADT exports the constructor procedure new-stack, the mutator procedures push and pop' and the
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module main;
import stack;
export reverse;

var
s: stack;
lines: integer;

procedure initialise;
begin s :: new_stack; ljnes := 0; end;

procedure handle_line;
begin
while (not eoln) do push(s, read) od;
while (not isEmpty(s)) do write(pop(s)) od;
lines :: lines * 1;

end;

procedure reverse;
begin
initialise;
while (not eof) do handleJine od;
write( tReversed: r ,lines, ' lines\u' );

end;

end:

Figure 3.8: A Program using a Stack ADT

accessor function isEmpty. This accessor is required because the handleJines procedure has to determinewhether the stack is empty' Previous versions of the procedure examined the stack,s representationdirectlS but this is no longer possible because the data structure is encapsulated within the ADT,sdefinition.

3.5.2 Visualising ADT programs

Implementation data can be retrieved directly from SDTs ($8.4.2). By analogy, abstract data can beretrieved from ADT instances by calling accessor operations which return that information. Becausethe data returned is abstract 
"nd 

iod"pJrdent of a particular implementation, the pv system does nothave to reinterpret any implementation data-structures. This requires that the pV system is able to callprocedures defined in the target prograrn when information is required, rather than simply inspect itsmemory.

The behaviour of ADTs can be monitored by a simila^r analogy; rather than indiscriminately mon-itoring procedures, we monitor those procedur., i*pl"*entinj tliJ'6;f; 
"o#,ri."r. Because ADT,simplementations are hidden behind their interfa."*, rn operatiins upon abstractions must be performedthrough their interfaces-. By monitoring the procedures exported from an ADT, we are assured of moni-toring all the computation performed in the context of that abstraction.

since an ADT's representation is essentially a SDT and a collection of procedures, implementationviews of a"n ADT can be produced by inspecting the state of the sDT ($8.4.2) and monitoring theprocedures ($3.2).
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3.5.3 SummarY

ADTs contain both data a,nd code, and so avoid the largest disadvantages of the previous approaches;

that procedural decomposition only describes control flow, a,nd that sDTs only orga^nise data' unlike

structured data types, ADTs are alstract: they hide their implementations behind their interfaces' and

therefore ADTs can be visualised top down, by working from their interfaces to their implementations'

Abstract views of ADTs can retrieve the information they need by calling accessor operations in the

ADT,s interface, and can detect changes in instances by monitoring operations applied to that instance'

The encapsulation of abstract data types, observed by the programmer and supported by the lan-

guage, 
"ororu. 

that ADT instances can be considered in isolation. In particular, all operations upou an

abstraction can be detected by monitoring the interface of the instance representing that abstraction'

Abstract data types surpass both procedural decomposition and structured data types for reifying

abstractions within ptogtu*r. ADTs sirould be sufrcient to explicitly represent all the types of program

abstractions shown in Section 3.1 in a target program'

3.6 Object Orientation

The term obiect oriented (abbreviated OO) was coined b{ Al* Kay at the Xerox PARC Learning

Research Group as part otite design efiort ihat produced the Sualltalr language and programming

.o.riron-.ot 1ri11. tnis and severalielated neologir-t *"t. introduced to signify the paradigm developed

by the group, in much the same way as the relational database community replaced traditional terms

.rr"h ,s-6t", 
-record, 

and fielit with table, row, and colutnn l58l'

The most important of these new terms is of course obiect, used in a specialised sense to mean a

runtime progran component - a dynamically allocated memory record containing data and procedures'

others include clcss fir an object type definiiion (similar to a structured record declaration) , method for

function or procedure definition, and message for procedure call, from which comes mess\'ge sending for

procedure calling.

The object oriented pa"radigm is an extension of the ADT paradigm' A class can be considered an

ADT implementation, and objects which are instances of that class correspond to instances of the ADT

[140]. In this thesis we prefer ihe object oriented terms when our discussion is within that paradigm, and

ihe mote traditional terms otherwise'

Identity and State

objects have iitentity and, stote. An object's identity is a unique distinguishing mark assigned to each

object when it is creied, and an objeci's state is a set of variables. Two objects otherwise containing

the same state can be diderentiated by comparing their identities. If objects are implemented simply as

dyna.nrically allocated memory records, an oLlectk identity could be the address of the record holding its

state.

The variables comprising an object's state often include references to other objects. The topology of

an OO proga,m is then a alnamic Sraph (the obiect graph), lith nodes representing objects and edges

references between objects. 
-pactr 

node is labelled with the unique identifier given to its object when it

was created.

Message Sending

Message sending is the OO analogue of procedure calling. Methods (procedure definitions) are attached

to parlicular objects. Like a pro"-dt r" call, a message send may take arguments, but unlike procedures'

all messages have one distinguished argument, the receiuer. This is the object to which the message is

sent, and where a method implementing the message, if a,ny, will be found. The receiver argument is

usually implicit in method definitions in OO languages, and methods execute in a scope containing the

receiver and its local state.
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Responding to a message is a two stage process. The receiver is searched for a method with the same
name (seJector) as the message; such a method implements the message. If a suitable method is found,it is executed. The particular method chosen depends upon the dynamic type of the method receiver,
so message sending is known as d,ynamic ilispatch. This is in contrast to the overloading (a.k.a. stotic
dispatch) common to etf y Anl and other languages, where the actual function called depends upon the
static types of the supplied arguments.

The set of messages implemented by an object is known as the object's protocol, and the object is
said to unilerstand these messages. Depending upon the type discipline adopted, some messages may not
be successfully dispatched - that is, a message may be r"ot to an object which does not understand it.
This causes a run-time error, known as an undefineil selectorexception, which is handled similarly to an
array bounds exception in structured languages.

Encapsulation

An object's local state and behaviour (local method definitions) arc priaate: they are only accessible from
methods scoped within the object. This is similar to the information hiding provided ty modules, and
ensures a barrier is maintained between the implementation of an object ug1J it, ,rr".

Suar,lrRr,r enforces encapsulation on a per-object basis, that is, a method may access only its
receiver's private components. The encapsulation provided by other la^nguages is significantly weaker,
granting access to all instances of an object's class (e.g., CLU [1g2]), or-irrr6o"u, oiuottr the object's
class and other nominated classes (Elrnnl [tal] and Cl+ [210]).

Inheritance

Object oriented programming includes inheritance. Inheritance allows new types of objects to be defined
as extensions to thedefinitions of existing objects, by adding new local state and rddiog or replacing
method definitions. The preexisting class is called the superclass a.nd the new class the szbclcss. When
an object of a subclass receives a message, both the subclass and the superclass are searched for match-
ing messages, with the subclass taking precedence. In this way code can be reused easily as cornmon
definitions can be placed in a superclass, and then inherited by more specialised subclasses. More impor-
tantly, inheritance can be used to ensure that several subclasses share the same interface (the superciass,
protocol should be common to all subclasses).

3.6.1 An Object Oriented program

An object oriented version of the stack example is presented in Figures J.g and 3.10. These figures arewritten in an idealised OO language with a general style similar to ttre earlier examples. This is similar
in many respects to the ADT example presented above ($3.5.1) - the basic data structure is unchanged,
and the program is again in two parts, separating the definiiion of the stack from its use. The stack
itself is an object, with public push, pop and isEmpty methods, and a private contents variable and index
array' The main difference is that there are no types defined explicitlg as the stack class is both a type
and a module. The methods do not manipulate an explicit stacha.rgument, rather, the receiver is passed
implicitly. No extra stackrep type is required, as the class construct itself encapsulates the contents aud
index variables. The stack class in Figure 3.9 performs the functions of both the stack type and the
stackrep type from Figure 8.7.

The differences between the ADT main program (Figure 3.8) and the OO main progra.rn (Figure 3.10)
are more subtle. The main program is now an object, rather th* a module. A variable, 

"orrt^inirrg "stack is declared and all operations upon the stack are performed by sending messages to this variable.

3.6.2 Visualising Object Oriented programs

Most of the benefits of ADTs for visualisation apply equally to objects. In particular, objects, like ADTs:
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class stack;

private
contents: array[80] of char;

index: integer;

public
method new returns stack;

begin
index :: 0;
return self;

end;

method push (c: char);
begin
contents[indd := c;

index := index * 1;

end;

method pop returns char;

begin
index := index - 1;

return contents[index];
end;

method isEmptY returns boolean;

begin return (index < 0); end;

end;

Figure 3.9: A Definition of a Stack object

o organise both code and data.

o a,re abstract, in that they separate their interface and implementation.

. axe ea*sy to identify in the program.

Objects can therefore be visualised in much the sa,me way as ADTs, by working top down from their

interfaces to their implementations ($3.5.2). The messages received by an object can be monitored to

detect the operations performed upon the abstraction represented by that object, and messages can be

sent to objects to retiieve their abstract state. Implementation views can be built by illustrating an

object's local state and monitoring its methods.

ADTs are quite adequate for representing abstractions in prograurs, however, several technical features

of OO languages provide advantages over their nodula.r counterparts for progra,m visualisation:

o Classcs combine modules and types'

o Objects uniformly organise the entire proglaln.

r Inheritance supports common interfaces between objects.

We discuss each of these points in turn.

45
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class reverser;

private
s: stack;
lines: integer;

method initialise;
begin s :: new stack; lines := 0; end;

method handle-line;
begin
while (not eoln) do s.push(read) od;
while (not s.isEmpty) do write(s.pop) od;
lines :: lines * 1:

end;

public
method reverse;

begin
initialise;
while (not eof) do handle-line od;
write('Reversed: t,lines,, lines\n');

end;
end;

Figure 3.10: A Program using a Stack object

Classes, Modules, and Types

Object classes define types, and simultaneously encapsulate those types. Modules, in contrast, provide
encapsulation control only [231], they can contain types and procedures to implement ADTs, but also
have other uses. Booch [25] groups Ap,q, modules into four categories.

1. Groups of related structured type and constant definitions.

2. Groups of related procedure definitions.

3. Abstract Data Types.

4. Abstract State Machines.

An example of the first category is a module defining the values of configuration pa^rameters for a
compiler implementation, and of the second, a module containing a library of mathematical functions
[51]. These two categories illustrate one important use of modules: to organise software into components
to solve problems such as code library management a,nd separate compilation.

The third and fourth categories use modules to represent abstractions. An Abstract State Machine
module is roughly equivalent to a single ADT instance. It exports procedures which operate directly
upon the data hidden within the module; there is no explicit type. If multiple instances are required the
program must contain multiple modules. The main program module in Figure 3.8 could be considered
an Abstract State Machine. The stack ADT module from Figure 3.7 unsurprisingly belongs to Booch's
ADT category.

Note that modular languages in practice impose no restrictions upon the relationships between mod-
ules and types. In particular, a module could well be used to implement two or more of Booch's categories.
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A module could group procedures and structured data types together with an abstract state machine' or

could contain several ,q,b1. aefinitions. A pV system visuatisiog a-modular program wou d therefore have

to be sensitive to the various types of modulls, especially the difference between ADTs and Abstract

state Machines - one with an explicit type a^nd one without - and to the possibility that modules may

in practice combine several categlries. A class, in contrast, associates each module with a single type,

and so roughly corresponds to alodular prograrn in which every module implements an ADT'

UniformitY

A pure object oriented language (such as stvtll,ltelx [85] or EtnFpl [141]) uses objects uniformly to

organise proglams; even the-laJguage's basic data types isuch as integers and Booleans) are provided by

objects. Objects can also be used to represent 
"tgotiilr*t 

and procedures, afi well as data structures [79]'

For example, a compiler front end may be made up of a lexical analyser, a parser' and a symbol table'

The lexical analyser may itself be implemented using an input stteam, and the stack by an array and an

integer index variable (see Figure 3.4). The symbol tiable, sia"k, array, and integer variable are essentially

data structures, while the lexer and parser are essentially procedures' All of these (including the lexer

and parser) can be represented using objects, whereas o.ttv ttt" symbol table, stack, and possibly the

array would be represented as ADTs in a modular language'

Inheritance

The use of inheritance supports a common vocabulary of operations across different types of objects'

In modula.r languages, each abstraction is typically designed 
-and 

implemented indepeudently' Although

there is no reason *fr'.i*itr* ADTs shouli not bL designed in simila'r ways and have similar interfaces'

there is no support for this within most moJular lang;ges. Since inheritance is an important part of

object oriented programming, simila,r objects axe very likely to have similar interfaces'

Since an abstract view of an object depends only upon that object's interface, an abstract view should

be able to display any object with a suitable interface'

3.6.3 SummarY

object orientation is essentially an extension of the ADT paradigm: a class implements an ADT' with ob-

jects as the type,s instances. Like ADTs, object orientation should provide a good vehicle for representing

abstractions for program visualisation'

In comparison with modular languages, object oriented languages use a single language construct (the

object) to represent program abstractions. o"u5ect oriented scope and encapsulation rules promote the

independence of objects, and inheritance and -"rr"g" passing ensure that common nalnes may be used

to denote similar operations while distancing the use of those operations from their implementations'

For these reasons, an object oriented la^nguage should provide more support for abstract program visu-

alisation than a modula,r laigoage, provideJtUat the target program is written in a suitable paradigmatic

style.

3.7 A Model of Abstract Program visualisation

we have developed the Abstmcf Program Mapping visualisation model (APMV) to describe a design

for an abstract program visualisation system wtrictiaisptays the program abstractions present in a well-

written object orientJ program. The APMV model is based upon the PMV model, and it consists of

the same three component{ ho*"u", it difiers from that model in two important respects' First' each

component of the model is no longer monolithic. The program is viewed as a collection of abstractions

represented by objects. Each abstiaction can be visualised independentlS using independent mappings

(which we call ,t ot"gi"i ;J displays (ui,eus). Second, the components are connected bidirectionally' In
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the PMV model, the program component reports the program's actions to the mapping component whichforwards these as changes to the visualisation component. In the APMV model, it 
""progr"*,s 

actions
are monitored and changes generated, but views can also send messages to objects in the target prograln(via-the mapping component's strategies) to recover abstract information directly. These message sends
are known as callbacks, as the visualisation system "calls back,' into the target progru-.

The APMV model is illustrated in Figure 3.11 (compare with the pMV model, Figure 2.1).

Messages

_Visualisation

Callbacks

Actiow Changes

Figure 8.11: The APMV Model

3.7.1 Program Component

The program component contains the target program, and connects it to the mapping component. Mostimporta^ntly, the program component monitors the actions of objects in the target piogr*, as directedby the mapping component's strategies. The actions that can be detected depend upon the targetprogramming language, and may include the receipt and return of messages, and tire reading and writingof variables.

The program component also gathers structural information about the objects in the target program,
and provides this information to the mapping and visualisation components. The mapping component
uses this information to decide how best to monitor the objects, and the visualisation component usesthis information to allow the user to choose which objects to display and to present language level views.

3.7.2 Mapping Component

The mapping component mediates between the program and visualisation components. Each view inthe visualisation component is linked to an object iln tne program via a particular mapping. We callthese mappings strategi,es because their main task is to determine how an object should be monitored.
Strategies ca'n also adapt the view's callbacks to suit the target object, or adapt the object,s changes tosuit the target object

. Views and strategies are complementary. A view's purpose is to display an image and handle userinteractiorr' A strategy supplies information to a view, using actions reported by the prograrn componentto send changes to the view, and routeing the view's callbicks to the target object. This separation ofconcerns between views and strategies factors out common behaviour and allows both views and strategiesto be reused.

Strategies are written by the visualiser in a general purpose programming language, and then associ-ated with views' When a view is created, its strategy inspects ihe target object, and requests that theprograrn component monitor the ta^rget object,s actions.
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Consider the dots and sticks views of sequences from Figure 3.1. Both views could be used to display

an axray (a type of sequence) using a suitable strategg such as monitoring low-level array operations.

A linked list is anothritypu of sequence, and should be able to be portrayed by sequence views, but a

linked list must be monitoied differently from an array. The dots a.nd sticks views can be used unchanged

to display a linked list, provided the a,rray strategy is replaced by another more suited to linked lists,

such as monitoring high-level sequence operations.

Strategies receive notifications of actions from the program component' The actions may be processed

by the strategy, passed unmodified to the target progruun, or ignored. A strategy may even send messages

to objects in the target prograrn before forwarding changes to the view. Callbacks are received from the

view, and may be pro"urr"d similarly: sent directly to the target object, delayed, or ignored (although

the strategy 6ust at least ma"nufacture a value to be returned to the view). Most simple strategies

relay the iitiottr detected by the program component directly to their views, and forwa,rd their view's

callbacks directly to the target object. More complex processing is used principally to provide aggregate

abstractions, or adapt the view to the target object'

Strategies can be used to support views of aggregate abstractions. For example, the operation profile

from Figuie 3.4 can be implemenied by a strategy which monitors the target object and updates a profile

database object to record the target object's actions. The strategy sends its view changes referring to the

profile database, rather than the target object, and redirects its view's callbacks to the profile database

also. The view is efiectively attached to the database profile object, not the actual object in the target

prograrn. The view is unaware that it is displaying an aggregate abstraction (the proflle) rather than a

prolt* abstraction (the target object). If the database is stored as a sequence, it can be displayed by

any sequence view.

A view must be able to understand the changes it receives from its target object, and similarly it must

only send callbacks the target object understands. This is similar to type compatibility in programming

la'g.ages, and is based upon the ta.rget object's interface. Strategies can be used to ensure that vies's

are-coipatible with their target objects, by translating the target object's changes so that they are

understood by the view and translating the view's callbacks so that they are understood by the target

object.

3.7.3 Visualisation ComPonent

Vieus arethe subcomponents of the visualisation component of the APMV model. Each view corresponds

to an individual visual abstraction, typically appearing in a single window on a bitmapped display, and

displays a particular object in the target progran, known as that view's target object An object can be

aisptayea in several difierent views, giving multiple illustrations of the same object' Views also provide

the user interface for the visualisation system.

Views are written by the visualiser using a graphics system and progra,rnming language. The visualiser

also specifies a strategy to be used by the view. When a user requests a view of a target object, a new view

is created from the uisualiser's definition, and this in turn causes a new strategy object to be instantiated

for that view.

A view communicates with its target object indirectly, with its strategy as an intermediary. A view

receives changes from its strategy, *d th"ru describe the actions of the target object of interest to the

view. A view may respond to changes in several ways; stotic views display static pictures of their ta,rget

object and simply ignore any cha,nges (they typically employ a strategy which does not generate any

changes); Datcfi-views use callbacks to retrieve the target object's current state, and then update their

display;'and incrementalviews use information from the cha,nges to update their display.

A view can also send callbacks to its target object via its strategy. A callback is a message (i.e' a
message selector a,nd one or more a^rguments) which the strategy sends to its target object. The message

is executed by the target object, and ttre result returned to the view. Views may send callbacks for several

purposes: to gather ii.itial ittfotmation about a view's target object as soon as the view is created; to

g"th"t informi,tion in response to changes the view receivesl and to perform operations upon the target

object in response to user inPut.
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3.7.4 Callbacks and Changes

Callbacks and changes form a complementary pair. Callbacks are initiated by views, while changes result
from actions within the target progra.rn. Callbacks may be dispatched at any time with tespu.t to the
target program (we say they are asynchronous), while the reverse is true of changes, which a,re generated
at precise points in the ta,rget program's execution (they are synchronous). Callbacks are typically sent
from a view via a strategy to a single target object, while each target object many send changes to many
strategies and views.

The following table summarises this relationship.

Callbacks Changes

Originate from view Originate from program
Asynchronous
Many to one

Synchronous
One to many

3.8 Summary

This chapter has presented three important ideas: that program abstractions are important in program
visualisation; that explicit representation of program abstractions is very useful in constructing visuali-
sations; and that object orientation should be able to provide this representation.

We began by identifying three separate kinds of abstraction used in program visualisation, two of
which (visual abstraction and aggregate abstraction) concern only the preseniation of the program and
are well understood. The third, program abstraction, represents the design ideas within ih" progru*,
and is crucial for understanding any moderately complex program.

Existing progra,rn visualisation techniques do not support progra.tn abstraction well, since they rely on
the visualiser to provide information about the abstractions within the target prograrn. We proposld a
novel approach, based around the explicit representation of abstractions within a program. This afproach
in principle allows visualisations to be constructed top down, working from identifiable definitions of
abstractions contained within the program, rather than their implementations.

We reviewed several models of abstraction in programming to determine their suitability for visualising
prograrn abstractions, and determined that those paradigms based upon abstraction of both code and
data provide the best support. In particular, objects contain both code and data while maintaining a
strong encapsulation barrier between their interface and implementation.

We then described the APMV model, a novel model of abstract program visualisation derived from
the PMV model. The APMV model visualises the program abstractions within an object oriented target
pro8rarn.

This scheme can be summarised in the following principle:

The pictures we draw correspond to the abstract'i,ons in the design, which are the objects
in the program.

The various aspects of the APMV model will be discussed in detail in the subsequent chapters of this
thesis. Chapter 4 examines the r6les of strategies within the model, and the following chaptlrs describe
the Tarraingim program exploratorium prototype, which we have built as a proof-of-concept of the model.

38. Structared Programming supports the law of the ercluded mud,dle.

Alan Perlis, Epigrams On Programming [168]



Abstract Program Visualisation

The APMV model visualises the target program by using objects to represent prograln abstractions. This

chapter investigates several pragmatic considerations in the realisation of that model. In particular, it
focuses on the information required from an object in the target prograrn to produce an abstract view,

and the two mechanisms used to retrieve this information: callbacks and changes.

An abstract prograrn exploratorium should be able to produce views at many levels of abstraction:

showing a"n object in the target program as an abstraction, showing how that abstraction is implemented

il terms of other abstractions, and showing its realisation in the prograrnming language' This chapter is

phrased in terms of producing an abstract view of an object. This is because the recovery of abstractions

from the target program is the key to the APMV model. Implementation views, or views of objects

at other levels of abstraction, can be drawn by treating each of the object's components as separate

abstractions, and combining this information to create the view.

The first section ($4.1) discusses the representation of program abstractions in the structure of the
target progrem. The second and third sections discuss the use of callbacks ($4.2) and changes ($a.3) to
retrieve the abstract information from a running program. These two sections discuss issues the visualiser

must consider when writing strategies, and depend upon the assumption that the target program does

not involve object aliasing. Section 4.4 discusses this assumption, and describes how it may be lifted.

4.L The Design of the Target Program

The APMV model determines a program's design abstractions from its structure. This section discusses

the relationship between this approach and the detailed design of the target program.

This section begins by considering the design of the objects ($4.1.1) and operations ($4'1'2) within
the target progralm. Section 4.1.3 investigates visualising information related to a program's correctness,

and Section 4.1.4 describes how abstract information is retrieved by callbacks.

4.1.1 Modelling Abstractions

The objects represented by the target progra,m's structure should represent the abstractions the pro-

grammer considered importaut. These abstractions are not necessa,rily those the user wishes to see. For

example, the user may wish to visualise the lexical analysis performed by a compiler. The design of the

target compiler may distribute the lexical analysis throughout va^rious parts of the compiler, and may not
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incorporate a separate lexer to visualise. In general, a program can be designed in more than one way.
The programmer may have chosen one design (".g., u parser without a separate lexer), while the user of
the animation system may assume another.

The advantage of using the target program's structure to capture program abstractions is that infor-
mation about these abstractions can be obtained easily. This advantage applies only to those abstractions
explicit in the program's design ($3.2.2). Program visualisation implies a relationship between the ta,rget
program and the resulting illustrations. The user of a prograrn exploratorium is investigating a real,
concrete, implemented program.

Views which present an idealised picture of the ta,rget prograrn, or illustrate alternative designs are
also very useful, especially if they can be displayed alongside views illustrating the progam as it actually
is. Such views can be provided within the APMV model, by using strategies to provide aggregate
abstractions. Since strategies are written using the full power of a programming language, almost any
aggregate abstraction can be constructed, given sufficient effort on the part of the visualiser. The closer
the aggregate abstractions a.re to the program abstractions represented within the target program, the
easier the strategies to model them should be to write.

4.L.2 Modelling Operations

The APMV model relies upon the program abstractions the user wishes to see being represented as objects
within the target program, or being synthesised as aggregate abstractions. The important operations upon
those abstractions must similarly be represented as messages sent between corresponding objects.

Consider visualising Quicksortl. Figure 4.1 shows Quicksort implemented with a single procedure
acting on an array, using array element accessor and assignment operations to sort the array. The APMV
program component can monitor the program's actions in calling these operations, plus the recursive
invocations of the Quicksort procedure.

procedure Quicksort (1, r: integer);
var...;
begin

v :: a[r]; i := | - l;j := r;
repeat

repeat i :: i * 1 until a[i] > v;
repeat j:: j - l until a[] < u;

t :: 31;1' a[i] :: a[j]; a[j] := t;
until j < i;

a[] :: a[i]; a[i] := a[r]; a[r] :: t;
Quicksort(|, 

' 
- t)'

Quicksort(i + 1, r);
end;

Figure 4.1: Quicksort [35]

Sorting algorithms a.re usually analysed in terms of array elemeut compa^risons and exchanges [192].
Similarly, views of Quicksort require information about changes in the array in terms of these operations,
rather than low-level a,rray accesses. In Figure 4.1, all comparisons are carried out by the ( and )
operators. Exchanges are not explicitly identified as they are performed by sequences of several array
assignments. The primitive array assignment operations can be identified easilS and important element
comparisons can be detected if the program component's monitoring distinguishes comparisons of array
elements from those of indices. Unfortunatelg this approach cannot detect that the assignments were
part of an implicit exchange operation.

lThe quicksort code examples in Figures 4.L,4,2, and 4.3 are adapted from Brown [35] and are written in P.Lscer,,
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Of course, if an Exchange operation is provided to swap array elements, the Quicksort procedure may

be rewritten to use it (see Figure 4.2). This makes the exclange operations explicit, so Exchange actions

can be detected within the program and forwarded as changes to views.

begin
v :: a[r]; InitleftPtr(l - 1); lnitRightPtr(r);
repeat

repeat IncleftPtr(i) until Compare(a[i],v,' >=' );
repeat DecRightPtrfi) until Compare(a[j],v,' <=' );
Exchange(a[i],a[j]);

untilj ( i;

Exchanse(a[i],.[j]);
Exchange(a[i],a[r]);

Quicksort(l, i - 1);

Quicksort(i + 1, r);
end;

Figure 4.2: Quicksort with Explicit Exchange operations [35]

This option is discussed by Brown, but is dismissed in favour of an:rotating the target program' In

the following extracts, his enti,ties and deltos are essentially om progrom abstractions and changes:

Given a properly modularised Smalltalk program, one just needs to specify how the objects

and messages map into entities and deltas . . . which could then be monitored automatically.

It is tempting to believe that such a strategy is a panacea' I{owever algorithms from

:::t0""* 
a^ni;ournats a,re given in "straight-line" codel they a,re not broken into procedures'

The approach we have taken . . . is to annotate algorithms with "events" rather than forcing

the algorithmatician to radically proceduralize his algorithm to encapsulate each meaningful

operatlion. This approach minimizes the changes to the algorithm, since the algorithm is

augmented, not transformed.

Marc Brown, Algorithm Animation 1331.

Brown rejects using explicit procedure calls to represent abstract operations for two main reasons:

the target prlgr*r in which he is interested, examples from standard textbooks, are not written in that

style, and lnserting annotations is less effort than restructuring the target program. As described in

tie previous ctrapter ($3.2.3), in this study we are willing to assume that the target program is written

in paradigmatic style,-so that its abstractions are explicit in its text, and we wish to avoid the need

for post-hoc a,nnotation or restructuring. Operations which a.re explicitly present in the target program

can be visualised easily within the APMV model, and strategies can be employed by the visualiser to

synthesize particular operations if that is required.

This is a design trade.ofi related to the different application domains of Brown's algorithm animation

and our ptogt* visualisation. Algorithm animation addresses small programs which contain great

procedural complexity: the detailed operations occurring in these programs are very important in their

visualisation. Abstract program visualisation addresses moderately sized progra,ms made up of program

abstractions, where each abstraction, considered individually, is not particularly complex. Presenting

serviceable views of all the abstractions in the progra,rn is more important than presenting very detailed

views of any particular abstraction.
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4.L.3 Proof Properties

Pa,rt of Brown's annotated Quicksort is shown in Figure 4.3. As well as Exchange annotations, it includes
another annotation, InPlace, which does not correspond to any operation in the target program. Rather,
this annotation describes a property of the execution of the algorithm. When it is reachedfthe i'th array
element has reached its final position in the sorted sequence - thus it is "in place". Ba6e's views use
colour to differentiate between those elements which are in place, and those elements which are yet to
reach their final positions.

9o* and Roman [186] consider that algorithm animation should illustrate those aspects of an algorithm
which are important to its correctness - the algorithm's proof prvper-ties. Their Paveup system includes
a^n explicit stage (the proof mapping, $2.4.1) to extract this information from the program. When
visualising Dijkstra's shortest path algorithm, for example, they have rules identifying the current shortest
path so that it can be highlighted in the display.

t :: a[i]; a[i] :: a[j]; a[j] := t;
Event( Exchange, i, j );

untilj J i;
a[i] :: a[il; a[i] := a[rl; a[r] :: 1;

Event( Exchange, i, j );
Event( Exchange, i, r );
Event( InPlace, i );

Figure 4.3: Flagment of Annotated Quiclaort [3b]

The InPlace annotation in Figure 4.3 captures a proof property of Quicksort - that a.fter the
(sub)array to be sorted has been partitioned, the pivot element is then in place. Whereas annota-
tions such as Exchange correspond to abstract operations within the program, proof annotations such
as InPlace (and PavnwE's proof mapping rules) correspond to assertions about the program [138]. The
Exchange annotation indicates that an operation has just been executed, whereas the lnPlace a"rnotatio.,
indicates that a particular condition now holds.

Proof properties describe correctness properties of a program's design, rather than the abstraction
structure ofthat design. They are thus much closer to aggregate abstractions than program abstractions.
They are unlikely to be parts of the structure ofthe program2, although, like aggregate abstractions gen-
erally, they are usually expressed in terms of program abstractions. In Figure a-.i, ttre InPlace annotaiion
describes a property of the sequence abstraction being sorted - it does not depend upon that sequence
being implemented as a PescAL array.

Proof properties can be visualised within the APMV model, using the techniques employed to support
aggregate abstractions. Strategies can use callbacks and changes to monitor objects in the program and
evaluate their proof properties. For example, the array abstraction could be queried and each element
checked to determine if it was in place. These strategies may not be particularly simple, for example,
determining which array elements are in place involves first sorting all the elements and ihen checking the
position of each element. Alternatively, Section 4.3.4 describes how the APMV model can be extended
to support annotation directly.

4.1.4 Retrievability

Views send callbacks to objects to retrieve information about those objects' state. Callbacks can only be
sent to accessor messages defined by objects. Unfortunately, objects do not necessarily provide suitable

- 
tloT" languages, such as Flrrrnr., provide syntax for expressing assertions and loop invariants withia the program text.

The lnPlace annotation is really an assertion about the Quickaort algorithm, so in such a language perhaps ii could be
captured in the program.
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accessors. consider a more basic version of the stack presented above (Table 3'1) which provides only

new-stack, push, pop, and isEmpty operations. This interface is sufficient to provide a^n unbounded stack:

the ta^rget program ca,n push elements onto the stack and pop them off in LIFO order' The stack must

maintain a record of ali the elements it currently contains' Unfortunately, these elements cannot be

retrieved through the stack interface without aitering the stack' All elements can be accessed in turn

by a series of pop op"rurionr, but as each pop ,.*oiu", an element from the stack' at the end of the

series the stack will be empty. ff this teclrnique is used to recover state information from a program' the

visualisation will have rather strange effects'

The minimal stack,s interface does allow some information about its state to be retrieved without side

efiects: the isEmpty operation returns true if there are no elements in the stack' An abstract view of a

minimal stack could dispt"y only an indication of whether or not the stack is empty, ignoring the number,

t1rye, or values of the siacl's elements, since this extra information is not available through the stack's

interface. This perspective of a stack is similar to the approach of many soft-drink dispensing machines'

which do not display the number of cans of product remaining, but simply illuminate an indicator lamp

when the supply of a given product is exhausted [142]'

If this minimal view is not acceptable, a more complete view can of course be constructed by examining

the stack,s implementation. The siack's interface andencapsulation can be ignored, and its representation

accessed directly, as in a graphical debugger. But such ,'ttiu* illustrates the stack's implementation' not

the stack abstraction'

An aggregate abstraction can also produce a more informative view' For example' a strategy could

monitor all the push and pop messages the stack receives, and use this information to build a model of

the stack's contents.

4.L.5 SummarY

The APMV model exploits a correspondence between the ta,rget progra.m'5 structure and its design' a

correspondence which^we berieve *nt r" found in many wen-designed object oriented programs. To be

visualised easily, the target program must be written in a style which uses the language's structuring

facilities to capture its desigu, and that design must explicitly r-epresent the abstractions and operations

which the visualiser and u-ser consider imp"ortant. 1'ie LitUV model ca'n also be used to visualise

abstractions which a,re not well represented in the target prograrn, as strategies can be used to build

aggregate abstractions which model the abstractions the user wishes to see'

4.2 Callbacks

Callbacks are messages sent from views via strategies to objects in the target program. They are used for

several purposes, including providing initiai information to a view, updating a view after its target object

has cha,nged, and executing commands from the user' strategies can also send callbacks themselves; this

is particiariy usefirl for constructiug aggregate abstractions'

The use of callbacks is an important strength of the APMV model, as it allows the program visualisa-

tion system to employ the definitions of abstrictions within the ta,rget program' There are two particula'r

dif6culties with thisipfroach, however. First, since the callbacks may be sent wlril-e the target program is

running, their execution must be synchronised with the target program' Second' because strategies (and

through them, views) rely on the results callbacks return, uty ettois in the target plogran can afiect the

correctness of the visualisation'

4.2.L Synchronisation

callbacks are essentially message sends, and will invoke methods in the target object in the same v/ay

a^s messages sent from within the target proglam. Like an-r other sends, ttrer wllt- work correctly only

when the ta,rget object is able to receive tt eml Untottunately the target program could be modifying the
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target object at the same time as that object receives a callback. callbacks can therefore be sent onlyto objects which are quiescent (not executing any messages), and once a callback is executing, the targetprograrn must be prevented from modifying any objects used by the callback.
Consider a linked-list object while a new member is being added to the list. The representationdata structure of the list will pass through several inconsistent states - it is possible the list couldbe temporarily circular. A callback sent to the list object at this time is unlikely to return a correctresult, indeed it mayloop continually around the list o, iu,,rr" the entire computation to abort. A similarsituation can occur-if the target prograrn attempts to access the list while the list is being modified by acallback (presumably a callback sent in response to a command from the user). Thus callbacks must besynchronised so that they do not interfere with the target program's execution, and vice versa.

- When the PV system needs to send a callback to some object in the program, it must first determinewhether it is safe to do so, i'e., whether the target object is qr.riescent. If so, the callback can be performeddirectly, otherwise it must be delayed until itls safe to execute. The target prograrn can be preventedfrom interfering with an executing callback simply by ,uspending the tarjet iro["o, until the callbackhas returned.

The safety of a callback can be determined in various ways:

e The ta'rget object may be sufrciently simple that its state is always consistent.

o The active threads of control within the target object can be monitored.

o Synchronous callbacks can be sent only when it is certain the ta.rget object can receive them.

Simple Target Objects

Some objects, such points, rectangles, and a.rrays, are sufficiently simple that their representation cannever be in an inconsistent state. Callbacks can always be sent to such objects, without any need forfurther synchronisation.

Monitoring Object's Activity

The program component can monitor objects in the program to detect when they receive messages andwhen those messages return. The PV system ca.n thus keJp track of objects actively processing messages,i'e' those objects which have received messages which have not yet reiurned ($4.3).'If a callback is sentto an active object, it must be delayed until the object is no lonler active.
Delaying callbacks if tny messages are active within the ta^rget object is a conservative approach:it will avoid any errors.but may delay the callback unnecessarily. If both the callback and all activemessages are accessors (i'e' they do not change the internal state of the target object), their executioncan be interleaved without any ill effects. This is a common situation in-concurrent systems wheremultiple reader processes may access a shared data structure.

Synchronous Callbacks

If a view uses callbacks to update its display, then presumably it can only respond to changes whencallbacks can be sent to the target object. Rather tha.n forwarding cha.rges to the view and then syn-chronising the resulting callbacks expltitly, a strategy can forward changes only when the target objectis able to receive callbacks' We call such callbacks-synchronozs, as they sent as a direct response to acha.nge detected in the target object.
Strategies which use the progra,m component to monitor the target object,s actions can implementthis approach simply. A strategy only senis changes to its view in response to a top leuel actionin thetarget object: either a message received by an oblect known to be quiescent, or the return of the lastactive message send within an object.



57
4.2 Cll,t,secxs

fnitialising Views

Callbacks used to initialise views pose a unique problem. The techniques for synchronising callbacks

described above depend upon information about the recent execution history of the target object - in

particular, whether urry ttt..ua, of control are active within the object' This information can be discovered

by the prograrn compJnent, provided the target object is being monitored' When a view is first attached

to an object, it will not have been monitor*d] so execution information is not available' In this case' the

callback must be delayed (and the view initialisation postponed) until the required information can be

gathered.

4.2,2 Dealing with Errors

A program visualisation system based on the APMV model makes a useful debugging tool' because it

can display ttre target plogrurn in terms-of the important design abstractions within it' This gives the

user precisely the informattn needed to find and correct bugs in the ta'rget program' The APMV model

can present multiple views at multiple levels of abstraction,-so the user can see different perspectives of

the program. For example, an abstiaction can be directly compared with its implementation' Since the

ApMV model automatically monitors the program, thesl abstract and dynamic views can be produced

without the user needing to modify the progra-m or write mapping rules'

Unfortunately, like any other software system! an APMV model system can contain errors due to

incorrect design or programming. compared with a mote conventional debugger' the APMV model

introduces two additiorll ,onr""i of error. First, the system's intercha.ngeable subcomponents (views

a.nd strategies) can contain bugs. Second, mismatches between correct subcomponents and correct target

prograrns can cause errors if the subcomponents use callbacks ($4.1.4, $4'2'1)'

This section first describes how the user can detect all these kinds of errors using visualisations

produced by an ApMV model visualisation system. The section then describes how the user can diagnose

errors, either by locating them accurately in the target proSlaln, or by determining that they are caused

by the visualisation rvi"* itself. The- section to*lod"t ty discussing our experience with using our

piototype APMV model system as a debugger'

Detecting Errors

An ApMV model visualisation system can detect some kinds of errors and bring them directly to the

user,s attention. whether or not an error ca,n be detected depends upon the characteristics of the

pa,rticular error, rot 
"p"" 

tft" location of th* 
"rror. 

For exampler an error in the target prograln' in the

visualisation system, or in a subcomponent can raise an exception, such as an arithmetic overflow trap'

a failed a,rray bounds check, or a message lookup error. A c{fuack can succeed, yet return a value which

cannot be correct, for insta,nce a negative inteier as the value of the sum of an a'rray of small positive

integers. A callback can simply not return *it"nin a specified time' views are able to catch exceptions'

inspect callbacks' return .rrulues, and use timers to check that callbacks return' and so detect these kinds

of errors. U a view can proviae'usefirl information despite the presence of an error, it should continue to

operate after informir,gih" user of the error, otherwise, it should cease operation'

Some errors can only be detected with detailed semantic knowledge about the desigu and implemen-

tation of the target fi;; - knowledge that a visualisation system cannot always have' For example'

a callback 
"ur, 

,rt.rri .ierfectly plausible result, of the correct type and magnitude, but which is simply

wrong. since a visualisation system cannot in general have the knowledge to detect these kind of errors'

it cannot bring them directly to the user's attention. The target progftIm and associated displays will

presumably continue to run, as no error has been detected to interrupt them' The user caJI' however'

detect these errors Uv *ut"t i,'* the displays produced by the visualisation system, and actively building

up a mental model oi trr" proslr- from the information presented by those displays. since the visualisa-

tion system has not detected i.r,y 
"rrorr, 

it will continue io function, and its displays will show the effects

of the error. The user can eventually notice an anomaly in a view affected by an error, and investigate

further - either t;;;;rt* the error if one is present, or to correct their mental model of the target
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prograrn if there is no error - even though the visualisation system cannot bring these kinds of errorsdirectly to the user's attention.

Diagnosing Errors

When the user becomes aware of an error or anomaly they may not be able to determine whether theerror or anomaly is a real bug in the target program, a symptom of an error in the visualisation systemor one of its subcomponents, a mismatch between a subcomionent and the target program, or the resultof misundersta.nding the program. If the anomaly is a result of a bug in the"tariet program, the usermay not be able to determine precisely where the bug is located froir a single view. For this reason,many prograrnming environments and graphical debuggers provide multiple vi'iews which can be used tohighlight parts of the program which are particut*ty-ritspect [143] (see also gz.iry. Le ApMV model
uses multiple views to display the program at different levlk oiabsiraction, so the u*"r.rn identify bugsby comparing the displays of abstractions and their implementations.

Imagine a doctor examiaing a patient with a suspected fractured leg. The doctor will use severaldifferent techniques to locate the injury. For exa,mple, the doctor will inspect the skin around thesuspected fracture fo-t list of bruising, ask the patient ii the Ieg will support their weight, and attemptto feel the contour of the leg bones. Ifthese high level tests indicate the leg is likely to be fractured, thedoctor will use a lower level test such as X-yyihotography to check the siate of the bones directly, andwill take several x-ray photographs from diffeient ai.ectil"s to be sure of locating the fracture. Similarly,the APMV model's multiple views can be used to identify bugs in the target piogr*. When one viewindicates an anomalS the user's natural course of action is tJopen one or more other views to displaythe anomaly from different perspectives.

Consider debugging a target program using a linked list, where, due to a bug, the list stores only everysecond element inserted into it, rather than every inserted element. Perhaps by Jbserving anomalous viewsof other parts of the program, the user may suspect that there is a bug in the list. ihe user can thenrequest alternative views of the list in order to locate and diagnose the problem. An abstract view of thelist will show the list elements clearly, focusing on element uJu.r, so that the user will easily be able tosee the efiects of the bug - that only every second expected element is stored in the list. A languagelevel view of the list will show the list's implementation in detail, including link records, pointers betweenlinks, and so on' This detail can obscure the elements'values, but once the presence ofthe bug has beenconfirmed from the abstract view, the language level view can be used to isolate the cause of the bug inthe list's implementation.

The APMV model's multiple views enable the user to detect errors in the visualisation system withoutany special vigilance' When presented with a^n anomalous view, the user will naturally open one or moreadditional views on the object displayed in the anomalous view, and each of these views will use differentsystem subcomponents. By comparing these views, the user can determine whether the visualisationsystem or the program is erroneous.

- consider again an abstract view of a linked list which displays only every second expected list element.Seeing only this view, the user cannot know whether the view is Lorrect a"nd somehow every second elementhas been omitted from the list, or whether the list's contents are correct and the view is erroneous. upondetecting the anomaly in the view, the user ca.n request additional views of the list, such as a languagelevel view, or perhaps a library view at the same level of abstraction as the list view, but with a simplergraphical design and a simpler implementation. If the additional view shows all the expected elements inthe list, then the abstract linked list view is more likely to be at fault, but if the additional view showsonly half the expected elements, the fault is more likely to lie in the target program.
Mismatches between subcomponents (views and strategies) and the target program can be identifiedin the same way. For example, a third possible rer$on for ihe prout*., in the linked list view is that theprogram and the view are correct in isolation, but the view dtes not operate correctly when displayingthat particular target object. Perhaps the view sends a callback message which the list object implementsby returning every second list element. Alternative views which use different callbacks would display thelist correctly, and the user could detect the location of the error by comparing the views.
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Our Experience

we have found the prototype ApMv system Tarraingim (described in the fonowing chapters of this thesis)

to be a usefirl debugging toor in practice. For exa,riple, we visualised va^rious sorting algorithms, using

implementations descl-ib?i i' S"e"*i"t'" Afgori;ni, 
^ifOZ1. fn"tt algorithms are.written in Pescer" and

use arrays indexed from one. The Tarraingiln prototype is written in Snlr' ($5'4) and' as a consequence'

uses axrays (known * u".to,,; indexed qo* t"to. We Lverlooked this difierence in transcribing Shellshort

and the resulting prosr; is"ored the first element of the SBLp vector being sorted'

WevisualisedShellsortusingTarraingirn,firstusingatextualcollectionview(thevectorviewfrom
Figure 3.1). Since the errol was uury ,*uli, a,fiecting'only one element' it did not stand out in the

textual view. we cross-checked this resglt ,ming 
" 

grufhi""i view (the dots view from Fi8ure 3'1) as an

alternative to the texbual view. This graphical ii"*-*ua" the dynamics of the algorithm very clear' and

it was immediately outiou, that the ,"rotrt element of the vector was not participating in the sort'

UsingTarraingimasadebuggeralsotendedtoexposebugsinitsimplementation,inparticular,bugs
involving subcomponeot, "tta "luIUU".f.r. 

not u*"*ple, one oithe first piogru*t we debugged involved a

circular doublyJinked list object. Displayin;tnir "uj*t 
with a.n abstract graphical lpView (see Figure

10.gg) repeatedly caused botil Ta,rraingim ana the target program to crash' The cause of this bug was

not obvious.

we therefore tried various difierent visualisations of the list to isolate the bug' Firstn we used low

level object views to check the implementation of the individual objects making up the list' These views

sufiered no errors, and their displays showed that the list's implementation seemed to be functioning

correctly. These views also showed trrat irre poi"ter-s within the list were often drastically rearranged

whenever a ne* ere-"ot was added. su"onJ, we disprayed the whore list with a simpler textual abstract

view. We expected that if there was an error in the iist object, this view would trigger the same error as

the graphical abstract view, but against ourexpectations ihe textual view performed correctly'

Atthispoint,wehypothesisedthattheerrormustliewithinthelpView'ratherthanthelinkedlist
object. To confirm,rrir, *" tested the list *iirt "" 

lpView, several low level object views and an operation

trace view attached to the list, and u ,""oJ-opo"tion trace view attached to the lpView. As expected,

theprogramcrashedagain,butthis.time'thealternativeviewswerestillvisible,ifnolongeroperating'
The low level objeci ui-"*r'rt o*"d that the list's internal pointers were being rearranged at the time of

the crash, and the operation trace views showed that a callback messa8e had just been sent from the

lpView to the list.

Bycombiningtheinformationdisplayedintheseviews,wecouldfinatlyidentifythebug-thelpView
wassendingacallbacktothelistobjectwhilethatobjectwasactivelyprocessinganotheroperation.The
list object,s internal structure was in 

"o 
io"ontistent siate' so the calLack caused the system to loop' trig-

gering the crash once the available *"tnorv tt exhausted' In short' this bug was carrsed by a mismatdr

between the view and the target object I in particula,r, a synchronisation error' Once diagnosed' the

problem *u^, uotu"Jiy uoroffi trr"-i91li9* o."i u synchronous strategy which only sent callbacks when

its target object ** l.,*"*,isa.z.il. ite si*ptet textual abstract view used a synchronous strategy

thus avoiding the Problem'

4.2.3 SummarY

TheAPMVmodelusescallbackstoretrieveabstractinformationfromthetaxgetprogram.Callbacks
are efiective because they use the targel program itself to provide information at the correct level of

abstraction. Unfortunately this depend"nce,rfon the target proglaln can cause some practical problems

with callbacks, In particular, callbacks, execuiion must be synchronised with the target program' where

possible by using synchronous callbacks r*t ; response to cirange notifications' {iews 
sending ca1lbacks

must also be awa,re that the target proSram may contain 
",,o,.-*hi.h 

can afiect both the Success of the

callbacks and the veracity of a^ny results returned'
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Changes

A change is an event in the execution of the target program of interest to a view. The program componentmonitors the target object as directed by theiiew's"strategy, and provides raw information about theprogram's actions to the strategy. The strategy 
"rn 

pro"".r1his information and forward changes to itsview' The strategy used by a view determines the changes that view receives.
some views' displays are directly determined by the changes they receive. For example, trace views(as in Figure 3'2) display a textual list of.the ct ang". trr"f t8..i*. one trace view may use a srrategywhich forwards all the target object's actions r, .h*g", io the view; another may forwa,rd only thoseactions which modify the target's local state; and a thiri only those actions whose *"r.ug. selectors begin

;11li""J."ing 
foo' The difference in strategies will be reflected directly in the information displayed in

Many views do not depend on the details of the changes they receive. For example , an actiuity uiewillustrates whether its target object was active or quiesceit. This type of information is also required tosynchronise callbacks ($4'2'1). These views only_need to keep track of whether their target object hasreceived a message which has not yet returned. Details of the message, such as its name and argumentvalues, are unimportant to such a view.

Batch views completely redraw themselves when their target object changes, using callbacks to retrieveinformation about their target's current state. These viewi need more iriformatioln about their targetobject than just its activity, but less than a full trace. ,q"truiusy should send a change to a batch viewwhen it detects an action that modifies its target object. Like activity views, batch views do not inspect

l:t 3;3tJ 
of the changes they receive: thev simply use the changes as a signal that their display should

An incremental view, in contrast, is redra-wn by detecting the way in which its target object haschanged and redrawing only those pa.rts of its display which arefnvalid. Like a batch view, an incrementalview does not need be notified about every operation performed by its target object, but it requires preciseinformation about the target object's changes - it needs to know how the object has changed.

Monitoring Plans

The program component needs to know how to monitor the target program. A strategy supplies thisinformation to the program component as a monitoring plan. A monitoring plan is a set of instructionsthat specifies which objects are to be monitored by the progr* .o*pon.nt, and which actions of thoseobjects are of interest.

A strategy computes. a monitoring plan when it is initialised, sends the plan to the prograrn component,and then relays the actions it receives from the proqram 
""-p""*t as changes to its view. A strategymonitoring all the actions of a particular object ro,ita *orr. i,i tlri, 

"nuy.A strategy may also inspect the target object when building its plan. For example, to monitor all ofan object's variables, a strategy could eiamine the target obiec"t, deiermine its *riautur, and then builda plan monitoring assignment actions to each of these"variabie..'
A strategy may require more selective monitoring than the program component can provide. In thiscase' a superset of the required actions must be moniored, and ihe strategy must check each action, andonly forward changes for those actions which its ,ri"* ,*q,riro. 

-r'o, 
u*"*ple, the program componentmay not be able to monitor only the target program's u.iion, whose message selectors begin with foo.A strategy could request that the prograir component monitor all the actiois of the target object, andonly forward changes for those acti,onJmeeting the criterion.

The Rest of this Section

The remainder of this section discusses issues in the design of strategies regarding the monitoring plansthey produce and the changes they forward to their views.

60
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Section 4.8.1 discusses strategies which monitor modifications to their target objects. Sections 4"3'2

and 4.3.8 describe how the actions monitored by a strategy can be chosen to deliver only the information

,equir"a by a view. Section 4.3.4 then describes alternative strategies which do not depend solely upon

the progra^rn component monitoring the target program. Section 4.3.5 presents an example showing how

these stiategies can be used to improve the efficiency of the monitoring system' The discussion of changes

in summarised in Section 4.3.6.

4.3.1 Monitoring Modifications

Many views depend on their ta"rget object's state. Such views must be updated whenever that state is

modified. A strategy can detect operations which alter its ta.rget object, and then send changes to inform

its view.

Mutators vs. Accessors

Messages can be categorised as either accessors (which return information about the object but do not

change it) or mutator"r 1*ni"h change the object) by analogy with the classification of ADT operations

($3.5). Constructor messages a,re not gurr".Jly sent to objects since the object to be constructed does

"lt V"t exist. If they a,re sent directly to objects (as in Suer'LTALK's new or SEIF's clone) they can be

treated as accessors which return a new object as a side.effect. Since accessors do not alter the target

object, they can be ignored by views interested only in modifications to the object's state'

To ignore actions involving accessors, a strategy must be able to determine whether a message is an

accessor or a mutaror. unfortinately, makins this hecision ab initio requires a detailed global analysis of

the target program. But since this distinction is part of the program's design, methods in the program

ca,n betarked to indicate whether they a^re accessors or mutators [101].

Several progra,mming la,nguages support this distinctiou. Etrrnl, for exa^rnple, differentiates between

routines declared using ihe fr-n.tion keyword that should not change the object's state, and those declared

using the procedure keyword that a,re unrestricted [141]. C++ simila^rly allows accessor member functions

io UI -"r[d const [zio]. .O.tternatively, ff this information is not provided in the program' the visualiser

can explicitly identify accessors when writing the strategy'

ImrnutabilitY

Some objects a,re immutable, that is, their state never changes' An immutable object has no mutators:

all its messages a,re accessors. In ma,ny object oriented languages, integers, floating-point numbers and

characters are immutable; some languages include immutable versions of other types such as strings,

symbols or records. Since an immutable object cannot change, its does not need to be monitored'

tiU3ects can also be ma.rked as immutable in some languages. This is the case in C**' which uses const

to declare immutable objects3 (all const objects' member functions must also be const)'

An object may be immutable when considered as an abstraction, having only accessor messages, but

its implementation may modify local state, presumably for reasons of implementation efficiency' For a

simple example, considlr a^n object providing a read-only interface to a large external database' To avoid

repeated database accesses foifrequently-retrieved entries, the interface object may cache them in its

local state. This cache, and the mutable state used to implement it, is hidden within the object and

invisible outside its interface.

Whether such an object can be visualised as immutable depends upon the level of abstraction of the

view. If the view displajs an interface perspective of the object, the object can be considered immutable;

but if the view dispiays an implementutioo p"trpuctive, the object must be treated as mutable, and its

actions monitored.

sedwhileremainingconst,providedtheinitialieationisperformedina
constructor.
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Summary

Both accessor messages and immutable objects can be identified to the visualisation system via the
programming language or information supplied by the visualiser. If a view only needs to be notified when
its target object's state changes, a strategy can simply ignore accessor messages and immutable objects
when building a monitoring plan.

4.3.2 Operation Granularity

Operations in the design of an object oriented program are represented as messages sent between objects
in the program's structure. For example, a Quicksort procedure sends messages io read and to write the
array to be sorted, exchange two elements, and recursively sort a partition. When the target program
executes, this task structure is reflected in the dynamic structure of its actions. In particulur, *".=rug"
sends can be nested. For example, the main Quicksort message makes a nested recursive call to euicksoitto sort each partition, and the exchange operations make nested calls to individual element operations.

Many views do not need information about all of these operations. A view displaying euicksortpartitions (say Figure 3'2) needs information only about the recursive calls, while a view analysing the
algorithm may be only interested in the exchanges.

We say that each of these messages implements diferent granularity operations. The idea of granu-
larity is similar, but not identical, to that of the level of abstraction in procedural decomposition [Oz].Operations of different granularities do not form independent layers, urrliku operations structured by
procedural decomposition ($3.3). Rather, large granularity operations are used in addition to smallei
granularity operations, a.nd operations of different granularities may belong to the same level of abstrac-
tion' For example, the Quicksort operation is implemented by using exchange operations, which in turn
use element indexing operations. A client of an array may use the large gt."ntuiity euicksort operation
to sort the array, but must also use smaller granularity operations to initialise each element of the arrav
and to retrieve the sorted information.

The visualiser can take account of messages' granularities when designing strategies. Strategies can
safely ignore large granularity messages, if the large granularity message, u.e s*"ll"r granularity rri"rrug",
to do their work. Alternatively, small granularity operations can be ignored, provided they a,re calied
from other operations which are sent as changes to the view. For e*"-plu, a view displaying the internal
operation of Quicksort may wish to ignore the actual Quicksort operation, and update itself using the
smaller granularity excha,nge operations. A suitable strategy would send exchange actions as changes to
the view, and ignore Quicksort actions. The exchang" opemtion, will presumabty-catt single element-array
operations, but the view does not have to be notified of these actions, as their behaviour is subsumed by
the exchange operations.

4.3.3 Choice of Actions

The program component monitors the actions of objects in the target program. Each message send in
the program can cause two actions to be sent to a strategy: a receiptaction when the message is received,
and a return action when its execution is completed. .4, strategy can forward either or both of these as
changes to a view. A monitoring plan can request that the p.ogt* component monitor either or both
of these actions.

Receipt Action

Responding to a change resulting from a receipt action allows a view to react as soon as a message is
received by the target object. The target object's state cannot have been affected by the execution of
the message. A view can then send callbacks to retrieve old values from the object. This information
is useful when implementing incremental views, allowing them to era,se any old values displayed ($6.4).
New values can sometimes be retrieved from the arguments of the message causing the change.
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Return Action

Views can alternatively respond to the final action, that is, they can be notified when messages have

completed execution. 'iti, U", several 
"auunt"tut' 

First, the-change notification can record whether the

operation has completed normally or exceptioially, so t'he view 
-ca,n 

react appropriately' Second, when

an action is complete, any changes to the t.rget ofj""t caused by the message must also be complete'

The view may now send callbacks to retrieve t"Ue new (i.e. current) values from the.target object' so this

is often used by batch views. Finally, the value returned from a message send is only available once that

send has completed. of course, a view which is updated in response to final actions will only be updated

once the detected operation is complete'

Both ReceiPt and Return Actions

Responding to both receipt and final actions provides a view with all the information mentioned above'

Two types of views io p*ti.ot"t need this information: control flow views and smooth animations'

Control flow views (such as execution traces, call trees and call graphs) present information about

message sends and method activations. The precise shape of the.call tree is very important for such views'

and in particular, th;-;;il; structure otri*rug" ,"rrdt. Both actions are therefore necessary' receipt

actions to signal that a particula,r method has started executing (any further receipt actions indicating a

nested message send) and completion actions to signal that the current method has returned'

smooth a.nimations can be used to display operations. whcn the view receives the change from the

receiptaction,theanimationissta,rted,anditiscompletedwhenthechangefromthematchingreturn
action is detected.

4.3.4 Alternative Strategies

The ApMV model is designed with the idea that strategies receive actions from the program component'

and that these actions are generated by monitoring ttre target prograrn. The APMV model is flexible

enough that alternative stritegies, whiih t""y not loofo'm ttti"lty to this model' can also be used' In

this iction we briefly discuss some alternative strategies:

NultThesimplestpossiblemonitoringstrategyisnottomonitorthetargetobjectatall.Staticviews
use null strategies ($3.?.3), that is, tU"yltt" a callbach to obtain an initial display which will not

change. static"views are'obviously quii" umgient since the target object need not be monitored,

andcanbealsousedtoprovideasnapshotofanobjectataparticulartime'

Lrser Request A view can be updated only when the user explicitly requests it' --This 
strategy is in

practicesimilartothenullstrategydescribedabove,exceptthattheviewwilloccasionallysend
callbacks to retrieve the cunent state of the target object' Of course' such callbacks are not

synchronous, u"rJ ,o must be synchronised with the target progra,m ($4.2.1).

Polling This strategy is very similar to the user request strategy, but rather- than a view being updated

irregularly according to the,rser's ,equest, callbacks are sent at regular intervals' Like the user

request strategy, the callbacks are not synchronous'

Local state change As well as detecting the messages a,n- object receives, many monitoring systems

can detect cha,nges to the target ptogt";;t *"*o.] - thatls, to an object's local state' Depending

upon the *orritlriog system, monitJring memory mav b.e more efficient than monitoring messages'

A view can be updated ir, ,esponse to iate changes iather than the messages it receives' When a

change in the ta,rget object,s implementation state is detected, a callback can retrieve its abstract

state. This ,t "i.fo,, 
rlrk ,"r, is ttrat it cannot detect the details of the way an object has changed,

since it ao"r ".t 
tiil" 

"ogoirun"u 
of the operations within the program' It is suitable for batch views'

but not incremental views ($3'7'3)'
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caching Many strategies, both those which monitor the program's actions and the alternatives describedin this section, can benefit by caching information reirieied trom trr" tatet ou;ect. e poling or localstate strategy, for example, could cache the target object's state. Wien i#ormation is retrievedfrom the target object it is compared with the cacf,e. II they differ, a change notification is forwardedto the view, and the cache is refilled with the new information. If they match, no change notificationneeds to be generated as the current display will stilr be correct.
Annotation In BRme and enur'r ($2-3), annotations a.re implemented as extra procedure calls addedto the program by the visualiser. Annotations can be used within the ApMV model in much thesarne way: the visualiser can insert an empty method into the program for each type of annotation,and code may !e annotated by sending those messages. The monitoring system will detect actionsresulting from these messages, which can then be pro"cessed by views. It"ruqoireJ, a custom strategycan be used to discard all other actions.

Inference A strategy can perform arbitrary computations on the actions it receives before forwardingchanges to views - indeed the changes a strategy produces may bear only a tenuous relation tothe actions it receives from the monitoring systeril. i strategy can embody a set of inference rulesacting on the program's code or data to reconstruct prograrn abstractions which are not accessiblefrom the program's design ($2.4). This is very simili f trr" way strategi", 
"u' 

be used to buildaggregate abstractions.

The APMV model was-not really designed to support strategies such as these, although it is flexibleenough to admit theT' rf the target program is dlsigned in accordance with the model, annotationsand inference rules should not be ."qr,it.d to identifi.lriru.tiorm and operations. These strategiescan, however, be accommodated within the basic structure of the model, facilitating a hybrid approachto program visualisation, involving monitoring, inference, and annotation. We believe that a hybridapproach is worth study-, even if only because it provides a neutra"l basis for comparison of the variouscomponent techniques. Such a study is not an aim of this project, so we have not pursued it.

4.3.5 Efficiency

Annotation based systems describe a program's abstractions to the visualisation system in a form whichfacilitates efficient visualisation. when ainotating a prograrn, the visualiser identifies only those eventsrequired by the view' This avoids generating *p*iou. 
"i"ntr, 

drastically reducing the amount of infor-mation the PV system must process.

. For example, an annotated Quicksort sorting a fifty-element array generates about five hundred ex-change events in ANItu ($2.3'2). Naively monitoring ihu 
"rr"y 

oblett alone could easily generate fivethousand events, and a system processin! a[ these eients *ould prur,rmably run ten times as slowly.
The number of changes a view receives determines the efficiency of the system. If a view is notifiedof a change after every action of its target object (rather than every action which actually results inthe view's display changing) the view 

""t b" redrawn unnecessarily. This may slow the execution of thevisualisation system, but will not alter the information presented in the view.
consider the quicksort trace view illustrated in Figure 4.4. This shows all the actions of Quicksortexecuting upon a two'element vector4. The two elemenis of the vector begin in reverse orderl one exchangeoperation is required to sort the array.
The operations appearing Figure 4.4 are explained in Table 4.1. The trace lists the receipt andcompletio-n-of messages in the target program; completion actions display a return value after the ,,)),,symbol' when quickSort is called, the vector's size is.t""rJl*"tiorr* z *J t,;;artition is found

lX"ffH.- 
to 9), the two elements are exchanged (actions ro io rs) and then the cormputarion gently

A Belse-style annotated Quicksort (such as Figure 4.3) would generate one Exchange event, possiblyan InPlace event, a^nd perhaps two evenis to mark a Quicksort's call and return. Ar,lirra, being a morebasic system, would generate only one Swap event.

,"r*iiltt" 
5'9 contains the SELF source code for the Quicksort which was used to generate Figure 4.4 in our Tbrrainglm
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Quicksort protocol
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stze
quickSort

at: e

at: e Put: v

quickSonFrom: f To: t Quicksorts the partition between f and t.

Returns the size ofthe vector to be sorted.

Quicksorts the vector.

Returns vector elemeut e.

Assigns v to vector element e.

swap: a And: b Exchanges two vector elements.

Table 4.1: Quicksort protocol

quicksort tr.cc
n- I quic*Sort

2 its6
3 size rr 2
4 quickgorlFrom: 0 To: 1

5 rt:0
6 al:0 r> I
7 at:o
I al:0 >> 1

I al:l
10 at:l rr0
1 | emp:0 And: I
l2 at:0
13 at:0r> I
14 at: I
15 at:1 rr0
16 at:0 Put:0
17 at:0 Pui: 0:r vcctorp,0]
l8 al: I Put: 1

19 at: I Put: I rr vecior{0, l}
20 svp:0 And: I rr veclaP, l)
21 +dck$ortFrom:0 To: I rr veclor{0, l}
22 quicksryt )r vostor0, ll

Figure 4.4: Quicksort Tiace View

Unfortunately the trace in Figure 4.4 contains twenty-tv/o sepaxate actions. Assuming all actions take
the same time to process, a naive APMV visualisation could run between five and twenty times slower

than a^n annotated visualisation, without considering any overhead imposed by the use of a monitoring
system rather than annotations. This is unacceptable. The techniques described in this section can,

however, improve this in a variety of ways:

L. Accessor messages (size and at) can be discarded ($4.3.1). This saves twelve actions - 2 a^nd 3, 5
to 10, and 12 to 15.

2. Large granulaxity messages, quickSort, quickSortFromTo and swapAnd can be discarded ($4.3.2).

This eliminates six actions - 1, 4, LL, 20,21, arfi,22.

3. Eliding the swapAnd event is a little counterproductive, but the nested smaller granularity actions
can be ignored ($4.3.2), which will prune the eight deeper actions 12 to 19.

4. Either all receipt actions or all return actions can be iguored ($4.3.3). This removes eleven actions.

5. The visualiser cam write a custom strate6y to capture only those actions actually required - perhaps

receipts and returns of quickSortFromTo and returns from swapAnd.

Using one or more of these techniques ensures that only three or four events, roughly corresponding
to the annotations, will be generated. Unlike an annotation-based system, the actions ca.n be identified
without modifying the target program, or even inspecting the code of Quicksort itself.
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The trace view in Figure 4.4 is generated using a very simple strategy: all the ta^rget object's actions
a,re monitored. The sa"rne is true for the graphical views of Quicksort in Figures 3.1 and 3.2. Customising
the strategy as outlined in this section can increa,se the speed of the displag but is not necessary to
produce visualisations. This is an important feature of our approach. The complex strategies described
in this section are principally concerned with the efficiency of the progrilm visualisation system. In
general, they do not involve the correctness of the visualisation, a,nd so they do not have to be used. An
inefficient preliminary visualisation can be constructed using simple, conservative strategies, which ca,n

be replaced by more optimised strategies as more information is gathered about the program's behaviour,
or better performance is required.

4.3.6 Summary

The APMV model uses cha.nges to send views abstract information about the execution of the target
program. Changes are effective because they use the target prograrn itself to provide information at the
coffect level of abstraction. Visualisers writing strategies can use several techniques to filter the actions
the strategies receive, so that views are sent only those changes they really require.

4.4 Aliasing

Aliasing within the target program causes problems for the APMV visualisation model. The model relies
upon monitoring an object's actions to detect all the changes to the program abstraction implemented by
that object. In the presence ofaliasing, a program abstraction can be changed without sending messages
to its corresponding object.

The Geneua Conaention on the Ileatment of Object Aliosing [102] includes a good survey on aliasing
in object oriented programming.

4.4.t Aliasing in Object Oriented Programs

Aliasing can cause problems for the APMV model whenever a program abstraction is implemented by
more than one object in the target program. We call the set of objects implementing suctr an abstraction
anobjectcomplex [146] (alsoknown asademesnesl22Sloran'island [101]). Oneof themembersof the
complex, the head object, provides the interface to the whole abstraction, and thus to all member objects
of the complex.

Aliasing causes problems for program visualisation whenever an alias to a complex's member object
exists outside the complex. Messages ca,n be sent to that member object via the alias, without reference
to the head object. These messages can modify the member object, and thus the program abstraction im-
plemented by the whole complex. A view of the abstraction receiving changes from a strategy monitoring
the head object would not be notified of this modification, because the head object was not involved.

Consider the stack example from Section 3.1.2. The stack is implemented by the stack object, and two
components: an integer and an array, stored as variables named index and contents in the stack object.
The stack object is the head of the complex, which also contains the integer and the array. If a reference
to the contents array exists from outside the stack object (that is, if the array is aliased) the contents of
the stack can be modified by sending a message directly to the array object, without sending a message
to the stack object itself. A strategy monitoring the stack abstraction would not detect this message,
since it is not sent to the stack head object.

Object oriented languages provide encapsulation: an object's private local state is not accessible from
outside that object ($3.6). The member objects of a complex can be stored within the head object's local
state, but this protection is not strong enough to protect the members from aliasing. A method attached
to the head object can return a reference to a member, bypassing the head object's encapsulation. An
object complex can also include objects created outside the abstraction the complex is implementing,
and these objects may have been aliased before they become members of the complex. An object's
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encapsulation barrier protects only that individual object, and that object's private local state: the
members of a^n object complex are not efiectively encapsulated.

For example, references to all the elements of a stack must have existed outside the stack before the
elements were pushed onto it. If these references are retained outside the stack, the stack elements will be

aliased. Alternatively, a stack operation (such as top) can directiy return a reference to a stack element,

and this immediately creates an alias.

4.4.2 Managing Aliasing in Program Visualisation

The problem with visualising programs in the presence of aliasing is not the aliasing per se, but the
possibility that an abstraction implemented by an object can be changed without a message causing that
change passing through the object's interface'

Many aliases cause no problems for the APMV visualisation model. Immutable objects ($43.1) can

be freely aliased, because they cannot be modified. Aliases to a.n object complex's head object cause no

problems, since they do not bypass the head object's interface. The members of an object complex may

freely alias one another, provided they are accessible from outside the complex only via the complex's

head.

Aliasing only aftects changes produced by monitoring the program's actions. Callbacks sent to the

head of an object complex will return correct values from the abstraction, since the methods in the target
program used by callbacks will correctly retrieve the current va,lues from the members of the complex,

assuming the callbacks do not use caching, ($4.3.4). Aliasing does not a,ffect strategies which do not
rely on monitoring the ta^rget program's actions, such as polling ($4.3.4). Unfortunately, such strategies

cannot produce information about abstract changes in their target objects.

Monitoring-based strategies can be adapted to deal with aliasing. If the visualiser can determine the

members of an object complex, a strategy can be written that monitors the whole complex, rather than
just the head object. If a complex member is modified, and the modification is not the result of a message

sent to the head object, the strategy can notify its view that its target object has changed, and the view

can be redrawn using a callback to gather information.

4.4.3 Summary

The APMV model does not cope well in the presence of aliasing in the target program. If an alias is
used to subvert an object's encapsulation barrier, any changes caused by that alias will not be detected
by program component's monitoring of the target prograln.

Strategies can mitigate the efiects of aliasing. For example, strategies which rely only upon callbacks

are immune to aliasing. If all the objects participating in the target object's implementation can be

monitored, any actions caused via aliases can be detected.

1. One rnan's constant is another nlan's uariable.

Alan Perlis, Epigrams On Programrnilzg [168]

67



68 4 AssrRacr Pnocnau Vmuer,rsarron



A Program Exploratorium Prototype

The previous two chapters have described the APMV model of program visualisation' and how this model

might be used to aesign a frogr"* exploratorium' This chapter introduces the design and implementa-

tion of Tarraingim, a proof-of-concept protolype we have Uuitt- to explore that model' The first section

describes the requirements of an abstract prtgr"* explorator^ium ($5.1). Section 5'2 discusses the ar-

chitectural desigu decisions behind rarrainsim] and section 8.3 introduces Tarraingim's detailed design,

based upon ,r, oU5ect uii"ot"a Ar*"*ork. 
-S""iioo 

5.4 iutroduces the Spln programming language upon

which Tarraingim is based.

5.1 Requirements

Ta^rraingfm is a program exploratorium based upon the APMV model' As such' it attempts to fulfill the

aims of the project as a whole ($1.2). f" pr"ii"ofut, Ta'rraingim provides multiple views of prograrns'

illustrating both their code and tiieir data, itu-ioo, ievels of abstraction. Views are created on demand,

to allow dynamic exploration of the target ;;;tt",* desisn- an{ execution' Target programs do not have

to be modified to be visualised by Tarraingiri, utttto"gtithe desiSn abstractions to be visualised must

be explicitly represented in the target profr"-'r obSeJt oriented structure, or synthesised as aggregate

abstractions.

This section describes Tarraingfm's requirements' The three components of the APMV model are

considered in turn: program' mapping, and visualisation'

5.1.1 ProgramComPonent

The program component must provide information about the target program to the mapping component''

and indirectly to the visualisation component. This includes static information about the structure of

the target prograrn, ana aynaroic information which must be gathered by monitoring the ta'rget program

as it executes' 
r-- r^nmror, be seen as outside

Theactualtargetprogramandtargetprogramminglanguageimplementationcan
the progra"m u*ptor.tlriri* proper. it"'prJgrt* component p'ouid"t an interface to these external

facilities.
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The Target Program

The program component must provide an interface to the target program. we assume that the targetprogram is written in good object oriented style ($3.2.3). This requirement is easier to meet if theprograJn is written in a language supporting such a style, i.e. an object oriented language. To supportthe production of realistic e*amptes, itre language impiementation must be capable of running medium-sized prograrns reasonably quickly. This component must also route callbacks sent from views or strategiesto appropriate target prograrn objects ($4.2).

Static fnformatiou

The program component must provide static information about the structure of the target program.If the target programming language is structurally reflexive ($2.8.8), some of this information can besupplied via the language's reflexive extension.

Dynarnic Information

The program component must provide dynamic information about the target program,s actions, moni-toring the program's execution in accordance with monitoring plans produced by strategies ($4.3).
Monitoring the target program incurs a run-time cost in two ways. First, the act of monitoring aprogram directly slows its execution. Second, the information gathered by moniioring ias to be processedby the visualisation sy:t-em',even if only to be discarded, Ioa *hi, also imposes an overhead. Themonitoring system should seek to minimise this cost by detecting only the information actually requiredby strategies and views.

In particular, monitoring needs to be ca.rried out on a per-object basis. A view is typically attachedto a single target object and information should-be gatherei only about the particular objects ofinterestto views' A medium-sized program could easily cJntain r"u.i"t thousand ou;""tr, *ost of which willnot be of interest to-the user at any given time, and thus should not be monitlred. For example, if themonitoring system always monitored all the instances of a class, information about most of the instanceswould have to be disregarded. Information should be about the use of the class (the instances), ratherthan the class definition itself ($2.b).

SimilarlS only those actions of monitored objects actually of interest to strategies and views shouldbe monitored' A particular view may be interested only in assignments to an object,s local state, oronly a particular set of messages ($a.3): only these assignments or messages should be forwarded to themapping component.

As the user can request views of any object at any time, objects in the prograrn must be able to bemonitored dynamically.

5.1.2 Mapping Component

The mapping component consists of strategies which connect objects from the prograln component toviews in the visualisation component. Strategies promote the reuse of views, insulating views, visualabstractions from the. details of supplying the information to be displayed. unlike the program or vi-sualisation components, the mapping .o-:ponunt does not rely on facilities external to the visualisationsystem.

The main requirement of the mapping component is that it must be must be able to express all thestrategies described in Chapter 4.

5.1.3 Visualisation Component

The visualisation component is responsible for Tarraingim's user interface. views actually produce graph-ical displavs, and respond to input from the user. The actual *""#;;id#;;;Tilrut handring will
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be managed by a graphics and user interface system external to the PV system ploper: the visualisation

componentmustprovideaninterfacetothisexternalservice.

Graphical OutPut

The graphics system must support multiple windows which can be created and ma'nipulated interactively'

Views must be ay"J"Jrv ,rpa*tua to reflect the current state of the program (based upon information

about the program receivei from the mapping component)' Graphics system design is not a focus of this

project, and so any modern output system should suffice'

Graphic Design

Devising new graphical designs for progra,rr visualisation is also not a focus of this project: indeed, we

are happy to display *oroo-"r-1"r. 'btanda"d' illustrations of program abstractions using basic graphic

desigu techniques. We are not concerned with the application of novel techniques, such as colour, sound,

BD, or virtual rearityif;;h;.;*; sake [38, 112].-iliew presentations are continuatlv being developed

1g7,761, and i,cteally Ta^rraingim should be able to display these'

tlser Interface

The user interface must allow end-users to mana8e the display windows, navigate through the target

program, alter the visual properties of views, and p-rovide directinput to program abstractions displayed

in views. The requirea f*inii"" (adjusting window layout and ha^ndling locator input deviecs) are con-

ventional a,nd are provided by most interface systems'

5.2 Architectural Design

This section discusses several a^rchitectural issues in the design of Ta'rraingim'

1.. should the visualisatiou system and target program share an address space' or should they use

difierent sPaces?

2. should the visualisation system use the same prograrnming language as the ta'rget prograrn, or

should two (or more) la^nguages be used?

3. Which progra,mming language(s) should be chosen?

4. How should the target progran be monitored?

5. How should the graphics be produced?

6. How should the nominally concurrent tasks of handling user input, updating displays, and running

the ta"rget Program be scheduled?

This section addresses these architectural issues in the order given above' Although this order is

not arbitra,ry, neither is it a simple sequential progression, as these choices a,re not independeut' Fbr

exarnple, the choice of the target progra,urmin! hgu"g" (and the particular implementation of that

language) partially determines [n" a"rigt of the prograrn component of the visualisation system, which

must monitor the target program. The requirernents of the program component's monitoring influence

the choice ol progrt*;ittg tigUtg". Simila,rly, user interface facilities may be more accessible from one

language than from another.
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5.2.1 Address Space
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The partition of a program into several sepa^rate address spaces greatly afiects the subsequent designof the program' For a program visualisation system there are 
"ss"nti"lly 

two choices: either the targetprogram and visualisation system cohabit within a single address space, or the prograrn and visualisation
system are split over two or more spaces.

Multiple Address Spaces

Using several separate address spaces produces a flexible architecture. For example, the system can easily
be distributed and executed on several different machines. There are several disa.dvantages to this design,however' The connection between the various address spaces, used to transmit actions and callbacks
between the target prograrn and visualisation system, 

"rn 
b".o*e a bottleneck. Objects in the targetprogram have to be pickled (packaged for transfer or storage [155]) to be transmitted to the visualisation

system' and similarly a callback's arguments must be pickled before being sent to the prograrn. objects
and arguments must then be unpickled on receipt.

Using multiple address spaces raises the question of precisely how the program is partitioned betweenthe various spaces. Should the mapping subsystem be placei with the tar-get program (the easier toconstruct and control monitoring plans), placed with the visualisation 
"o*pJo"rrt, 

divided between thetwo, or allocated a separate address space of its own?

A Single Address Space

A single address space design does not promote a clear separation between the va.rious components ofthe system, nor does it facilitate the distributiou of the system between several difierent machines. An
error jn the target program can directly corrupt the visualisation system, for exarnple by overwriting thevisualisation system's data structure.

A single address space design does have several advantages. In particular, it allows a more flexibleinternal design of the visualisation system, as the various coniponents can communicate easily. Callbacksmay be sent by simple procedure calls to the target prograrn, without pickling or passing information
across address spaces.

Thrraingimns Architecture: A Single Address Space

tarrlnsim is designed to be a testbed for the APMV model, rather than a production-strength progriiln
visualisation system. The virtues of distribution and reliabiiity provided by the use of multiple address
spaces are thus less important than the simplicity of the single-uddr"r, spacl model. In particulal, views
a-nd strategies (which must be ptogtu--"d by tle visualisei to produce displays) will be easier to writeif they do not need to deal with multiple addiess spaces.

Tarraingfm thus uses a single address space containing both the visualisation system and the targetprogram.

5.2.2 Programming Language

The first question that must be addressed with regard to the choice of programming language is whetherasingle language will serve for both the target program and visualisation system, oriuhuthu, the demandsof the target program and visualisation system are better served by using several difierent languages.

Multiple Languages

Using different languages for the target prograrn and the visualisation system provides several advantages.The target program can be written in a language best suited to capturing abstractions, while the rest
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of the visualisation system can be written in language with good user interface and graphics facilities'

For example the Znus system ($2.3.1) animates algorithms written in Moout l-3, but Zpus views are

written in the OsLtQ scripting language [154].

Using two or more languages requires that objects and communications exchanged between the target

progr"*-*rd pV system-have to be translated or shared between the different languages, similar to

if."-pi"lliog which is required if more than one address space is used' This is not a major problem for

an event-based system like Znus, because the communication is in terms of named events with simple

arguments. The APMV model uses callbacks and changes whose arguments can be complex objects, and

th; pV system must be able to inspect the structure of the target program'

A Single Language

Using only a single language is obviously not as complicated as using multiple languages. In particular,

if ojy u 
"iogt" 

l*rgo":g" is used, communication between various parts of the system is facilitated'

The languagJ's structuLl o, .o*putational reflexive facilities (if any) can be- used very easily by the

visualisation system. A visualisation system written in the same language as the programs it visualises

should be able to be used reflexively to visualise its own execution.

If a single language is chosen, it must be suitable both for representing the abstractions in the target

program 
""ta 

i*pt"ti.nting the visualisation system. It must have sufncient performance to produce

animated graphics while simultaneously monitoring the target program.

Thrraingim's Architecture: A Single Language

Tarraingfm is implemented using only one language - that is, it illustrates prograrns in the language in

whictr it is written. The choice of a single address space and a single programming language minimises

the distance between Tarraingim and the target program. Ideally, a program exploratorium would merge

programming and visualisation into a seaml.rr *noi"r using one language and one address space should

make this ea.sier to achieve.

Using a single language and single address space also considerably reduces the amount of effort

required to manage the communication between the system's compouents. This simplicity of design a^nd

implementation is quite important in a prototype'

5.2.3 Choice of Programming Language

Given that a single la,nguage will be used to implement Tarraingfm and serve as the target language,

this section evaluates por*itt" languages. The language must meet the requirements of the program

component described rto.r" ($5.1.fj: iimust be object oriented, provide suitable graphics facilities, and

supfort dynamic monitoring of medium sized programs ($2'5)'

This section reviews four languages and their available implementations: C++, Clos, SMALLTALK,

and SBlr.. We did not consider designing our own specialised programming language or reimplementing

an existing la,nguage to provide the structuring and monitoring support required by the APMV model.

C++

C++ [210] is the most widely used object oriented language. It is a hybrid language, as it adds object

oriented facilities to the structured language C. It is strongly typed, and includes definitions of the

mutability attributes of functions and objects ($4.3.1). Because C++ is tlpically implemented using

traditional compilation technologS it is an efficient language, but fine.grained dyna,rnic monitoring is

difficult to implement without compiler support ($2.5.3).



74 5 A Pnocneu Expr,onaroRruM pRorotvpn

Cr,os

Clos [112] was developed as part of the Common Lisp standa.rdisation efiort to unify several existing Lisp
object systems. Like C++, Clos is a hybrid language. Clos has the advantage that is fully structurally
and computationally reflexive ($2.5.5), so prograrns can be monitored within the language. Clos uses
multiple dispatch and does not really provide encapsulation.

Snaallrelx

Sualr,tar,x [85] was the language which really popularised the object oriented paradigm ($3.6). Unlike
C++ and Clos, Strl.a,ll're,lx is a pure OO language: it is not deiived from any pt""*irtiog iangurg",
and all computation_is modelled a^s message sending. Slrellrnlx is structurally reflexive 1fz.s.s), *athe Snaar,ltl,LK's reflexive facilities have been used to build several monitoring systems (SZ.S.ZI. 

"
Su.rutalx is typically implemented by sophisticated dynamic compilation [60]: to the user a Srraell-

TALK system appears to be interpreted. Glru Slvt.lr,lret,x, a recent, freely-available implementation, uses
a naive bytecode interpreter implemented in C++; this is an order of magnitude slower than commercial
Suar,r,tALx implementations, however, the interpreter can be modified very easily ($2.5.8).

Splr

Srlr [218] is a language designed a,s a successor to SuaILTALK. Splp is simpler than Suallr:alr,
which is quite a feat since Suelltelx is itself a small language. SBlr, is based upon prototypes rather
than classes, and subsumes both method invocation and variable access into message r"ttding [z-rS1. Srrr
includes inheritance, although between objects rather than classes, and also supports dynamic inheritance
and delegation. Like SnaAlr,tar,x, SELn is structurally reflexive, but dynamic monitoring should be easier
to implement because of Splr"s minimal desrgn.

Thnaingimts architecture: SELF

The most widely used language considered above is C++. Unfortunately, C*+ appears to be the most
difficult of these languages to monitor dynamically. In contrast, Cr.os programs .r" tu monitored easily,
by taking advantage of the reflexive features of the language. Cl,os, tit<e Cl+, is a hybrid language: they
can be used to support many other programming styles beside object orientation. These are also both
rather large and complex languages.

This leaves Svtru,LtLlr and Srln from this list above. We chose Ssr,F.over Suelr,relx for several
rea,sons. SnLF's use of prototypes rather than classes ($5.4.4), and message sends for variable accesses
(55'4'2)' significantly simplifies the language and so shouid maice monitoring easier. Snlr"s encapsulation
support is more flexible than SuellrAl,K's - individual methods and variables can be declared either
public or private. Finally, the Solr compiler is freely available.

Ta,rraingfm is thus implemented in the Snr,r programming language, and visualises prograns written
iu that language. Section 5.4 contains a brief tutorial introduction to Snlr,.

5.2.4 Monitoring the Target Program

The program component must monitor the actions of the target prograrn. Section 2.8 categories tech-
niques for monitoring prograrns as follows:

1. Hardware monitoring.

2. Postprocessing the executable form of the prograur.

3. Modifying the language processor.
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4. Preprocessing the prograrn source.

5. Reflexive languages.

Special purpose hardware ($2.5.1) was not available to this project: even if it were, we would not

wish to use it since it is not generally available. We prefer to avoid modifying a language compiler or

interpreter ($2.5.3) for essentially the same reason: we do not wish our work to depend upon a special-

purpose language implementation.

A fully computationally reflexive language ($2.5.5) would be ideal. Snlr', although structurally re-

flexive is not computationally reflexive, so it cannot directly monitor programs' execution'

The two non-invasive techniques axe pre- and post-processing the target program. Preprocessing

requires parsing the target program source code and producing a modified version with monitoring state'

ments added ($2.5.4). In a structurally reflexive language, postprocessing can be performed very easily,

as the language's reflexive facilities can be used to modify the target program to detect the required

actions as it executes ($2.5'2).

Tarraingim therefore uses postprocessing to monitor the target program, transparently modifying ob-

jects to be monitored so that they report their actions to the program component. Since the modification

is implemented a.nd controlled within Snln, this is effectively the same as using the structural reflexive

facilities of the language to implement a computationally reflexive metasystem' The program component

performs the modifications automaticatly and camouflages them so that the user is unaware that the

target program has been modified'

5.2.5 Graphics System

A progra,m visualisation system would ideally use a specialised graphical animation system [154, 200]' The

exploratorium we are building does not require great graphical sophistication ($5'1.3). All the Ianguages

discussed above, and Snlr in particular, can provide access to graphics libraries. Tarraingim uses the X
window system [189] since it is widely available and well supported locally. Since X is a network-based

window system, more than one user can use Tarraingfm simultaneously.

5.2.6 Process Design

A program exploratorium must handle several tasks concurrently. It must simultaneously execute the

target program, update animated views, and obey user cornmands. Concurrency in a prograln can be

handled in-two ways: either by emulation using a serial progran, or supported directly in a parallel or

concurrent program.

An essentially serial program can emulate concurrency by iterating through several tasks. For example,

the ta,rget progra,m may be executed until a monitored action occurs, then suspended while strategies

and views are executed. User input can then be handled, and finally the target progran can be resumed.

This is essentially the scheme used by Bem.r ($2.3). Programming in this style is complicated, but the

details of the emulated concurrency can be precisely controlled'

Alternatively, if the language or runtime system supports multiple processes, each task can be exe-

cuted within its own process. The resulting system will be simpler, as scheduling logic is not distributed

throughout the progra,m. On the other hand, several potentially fatal global prograrn conditions (dead-

Iock, shared resource protection) must be dealt with.

Like Spr,u,l,mlx and several Llsp va,riants, SELr provides lightweight processes' and Tarraingim uses

these threads to schedule the concurrent tasks. The target program runs in a foreground process' calling

Ta,rraingfm as a co-routine when an action must be sent to a strategy. Concurrent background processes

handle user input, animation, and any other asynchronous processing. The additional care required to
synchronise the va,rious processes can be isolated within the core of the system, and the resulting view

and strategy definitions are simpler tha^n in the single-process case.

/D
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5.2.7 Summary

Tanaingfm is implemented in Snlr and visualises programs written in that language. The target program
is monitored by using SELF's structurally reflexive facilities to automatically modify the target prograrn,
so that it notifies the visualisation system whenever an action of interest to a view occurs. Both the
target program and Tarraingim execute in a single address space, using multiple lightweight processes to
handle asynchronous requests from the user. Graphical input and output is handled by the X window
system.

5.3 An Object Oriented Framework

The previous section has described Tarraingim's architectural design. This section describes Tarraingim's
internal design, which is based on the APMV model. The design is an object oriented frameuor,t consisting
of three subsgstems (Monitoring, Strategy, and Display), each corresponding to one part of the model
(see Figure 5.1).

The Tarraingfm system itself consists of libraries of objects which are used within the framework,
providing both a program visualisation environment and an extensible prograrn visualisation kit.

5.3.1 trtameworks

An object oriented framework [109, 108] is an abstract description of an object oriented design. Tar-
raingfm's framework specifies how the objects from the various subsystems collaborate to visualise a
program. The figures in this chapter describing the framework present run-time a^rrangements of objects,
and the relationships between them.

A framework is classically described as a static specification of several abstract classes, and the
dynamic arrangement of their instances. A program is built from a framework by replacing the abstract
classes with concrete objects.

A framework is accompanied by libraries of concrete objects. By using these objects within the
framework, it can be put to immediate use without programming. A fra,mework can be extended by
writing new objects which meet the abstract specifications. The library objects serve to desmibe the
operation of the framework, and as examples when extending it.

The first frameworks to be widely distributed were part of Stvt.lt,lrArx. The use of frameworks then
spread to other user interface systems such as MecApp [190]. F]ameworks have also been developed for
progra,mming environments (for example MVmws [89, 9U) and progra,rn monitoring systems (such as
Bnr++ [40]).

5.3.2 Framework Objects

Most of the objects in Tarraingfm's framework belong to one of the three subsystems (see Figure 5.1).

Tarraingim
Model Program Mapping Visualisation
Fbamework
(subsystems)

Monitoring Strategy Display

Objects controller
encapsulator

watchers vtews

events

Figure 5.1: Model and Subsystems
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Monitoring

The monitoring subsystem irnplements the Program component of the model' This subsystem monitors

the target program to gather the information about the program's actions required by the rest of the

visualisation system.

Two main kinds of objects are used in this subsystem. The ta^rget program is actually monitored

by encapsulators. The prJgramming style withh encapsulators is severely restricted. The interface to

encapsulators is therefore piovided by controll.rs, which also route the information encapsulators gather

to the rest of the sYstem.

This subsystem is covered in detail in Chapters 8 and 9'

Strategy

The strategy subsystem corresponds to the Mapping component of the model. It is responsible for linking

the monitJring suLsystem to tire display subsystem. This involves translating the actions of the prograln

(detected Uy lfre monitoring subsystem) into changes to be applied to the display. This is prima'rily

carried out by watcher objelcts, described in chapter 7. Different kinds of watchers embody different

strategies for performing the mapping'

Display

The display subsystem implements the Visualisotion component of the model. This subsystem has three

tasks, of which the most important is to draw the graphical ima€es making up the visualisations' It also

provides the user interface for the rest of Ta^rraingim, and handles any user input to the visualisations'

The main object in this subsystem is the view, described in Chapter 6. A view implements a display

of a particular oLlect in the ta^rget prograrn. Different kinds of views provide different displays'

Events

Event objects are essentially typed data packets. They are used to carry information around the Tar-

raingim framework, and do not belong to any particular subsystem.

Most events arc up eaents, which are sent from controllers to watchers to describe the actions of the

target prograrn. Watchers forward events to views to describe the changes required in the view' Views

send doun euentswhich are eventually routed via watchers to the objects in the program. Down events

are used to implement callbacks, urrd *uy be either queries to determine the state of objects in the

program, or user commands to alter the objects'

The same event object can represent both a concrete action of the ta,rget program (when it is sent

from a controller to a viatcher) ani a highJevel change (when it is sent from a controller to a view)'

The implementation of events and their distribution around the frarnework are covered in more detail

in Section 8.3.

5.3.3 Ftamework Arrangement

The dyna,mic arrangement of Ta,rraingim's framework is illustrated in Figure 5.2. Objects are a'rranged

in a pipeline. An encapsulator monitors an object in the progra,m. A controller packages the encapsulator's

execution informationinto event objects and sends them to a watcher. The watcher processes the events

before finally sending them to the view, which produces the graphical output' some views are able to

accept user input -"if so, they will generate events a^nd pass them in the opposite direction along the

pipeline.

The watcher, view and event objects are abstract. Ta^rraingim's library includes many different concrete

implementations of these objects, and the visualiser can write new versions to extend the system' The

controller and encapsulator objects are concrete, and suitable for all types of visualisation' They are not

replaced by the visualiser'
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Monitoring Subsystem

actions - - - -----,---->changes' upevenb

messaqes<-
down events

:

Figure 5.2: Tarraingim's Flamework

Multiple Views

Figure 5.2 shows the visualisation of one object. Multiple objects can be displayed using several parallel
pipelines. Each visualised object will have its own -n.aptul.tor, 

controller, watcher,'and view. The
pipeline can be generalised into a tree, allowing multiple views to display one object. 

'Each 
view has its

own watcher, while all views and watchers monitoring a single object rtr""L u singlJ controller-encapsulator
pair (see Figure 5.3).

Figure b.B: Parallel pipelines

Composing Views and Watchers

A view can contain one or more independent sa&uieus. These may display difierent representations of
the same object, or information about several related objects lsee figure r.i). Simitarly watcher objects
can rely on subwatchers when implementing complex strategies. Subwatchers can also be used to allow a
single view to monitor multiple objects.
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Figure 5.4: Views and Subviews

Figure 5.5 illustrates the overall scheme. The displays a're produced by a forest of views' each of which

can use a tree of watchers. The leaves of the watcher trees are attached to controllers and encapsulators

associated with the objects they a're visualising'

Figure 5.5: Multiple Views and Multiple Watchers

6.9.4 Inheritance HierarchY

Ftarneworks a,re organised by inheritance. Abstract objects provide common or default behaviour which

is inherited by more specialised objects. For exampleita"ta;"gim's view object is abstract: it provides

behaviour for initialisation and finalisation, but does not draw any graphics. A concrete view such as a

bargraphView inherits from the abstract view, reusing the common behaviour and adding code to draw a

bar graph.
part of Tarraingim,s inheritance hierarchy is illustrated in Figure 5.61. Most of Tarraingim's objects

inherit from tgimObject. Objects whictr tranite events also inherit from eventClient ($8'6)' The objects

making up the fra^mework (view, watcher, controller, and event) inherit from tgimobject or eventclient as

appropriate, and specialised concrete objects inherit from them. Figure 6'l' illustrates the hierarchy of

views, Figure ?.1 watchers, and Figure 8'5 events'

flpie,,."5.6iu"",o.uyu,"floiu"view:iti8anillustrationofTb,rraingfmgeneratedusingTbrraingimitself.
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Figure 5.6: Tarraingim Inheritance Ilierarchy

5.3.5 Summary

Tarraingim is implemented in SBlr as a framework of cooperating objects grouped into three subsys-tems' The monitoring subsystem corresponds to the ptog.u- component of the ApMV model, and usesencapsulator and controller objects to monitor the ta^rlet !rogr*. The mapping subsystem uses watcherobjects to embody strategies linking the monitoring ana disilay subsystems; it corresponds to the map-ping component of the model. The display subsystem uses uiew objects to produce graphical displaysand handle user input, and corresponds to the visualisation component of the model. Data about theprogram s actions and Ta.rraingim's changes and callbacks a,re passed around the framework using event
oDJects.

5.4 Self

This section introduces the Snlr programming language [21s, 218] and is intended to provide enoughbackground to allow a reader to undeistana tne seir I*#ptL presented in the rest of this thesis. Itbegins with a description of objects and expressions, describes the organisation of a Sulp program, andthen revisits the object oriented stack example from section 3.6.r.
Spr'n has evolved in various ways through the duration of this project. This section presents the basicsof the Snr'r language; more information about the various versions of SsLF,and Snln,s-implementation isseafe.insd in Chapter g.

5.4.L Objects

sulr objects are collections of named slots, and a.re written as lists of slots enclosed by ,,fl,,*d *l),.
Each slot is associated with a message selector and may hold either a constant, a variable, or a method.For example, the example below defines an object nu*aa "fred" which defines tie constant slot ,,pi,,, theone-argument keyword message "circ:" e.nd the data (or variable) slot ,,size,'.

fred = (l
^ pi :3.14159265. "constant',
- circ: r : (2 '* pi * r). ,omethod,,

size <- 3. *vafiableo

t)

"comments are enclosed in double quotes,,
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Privacy

Slots may be ma,rked explicitly as being priaate or public by prefixing the declaration with "-" (for

private) Jr u^u (for public). An object's private slot is accessible only from within that object, and that

oUlect'. close reiatives by inheritanie. A slot's privacy may also be left unspecified: in such cases it acts

as a public slot. In the above example, "pin is public, "circ:" is private, and "size" is unspecified, so it is

in practice public.

Object Creation

Within an executing prograrn? new objects are created as clones (slot-by-slot copies)- of other objects'

Each object has a uniq,ri trlentity ($3.6). Two objects may have the same slots, and the sa,rre values

contained within those slots, tut ititte oU5ects were created separately, they can be distinguished on the

basis of their identities. In particula^r, if the value of an object's variable slot is cha^nged, no other objects

will be a,fiected [11].

Objects intended to be used as patterns for cloning are known as prototypes. Like Ltsp or SMALT'TALK,

a garbi,ge collector is used so that objects do not have to be disposed of explicitly'

Some types of objects can be created using simple literals. These include numbers, strings, and blocks'

5.4.2 Expressions

SElF,s expression synta:< is directly derived from Strlelltnlx. Since SsLF is a pure object oriented

language, almost ali expressiorr u." either literals or describe message sends to a particular receiuer

oblict.-Tlere a^re threeiypes of messages: unaxy, bina,ry, and keywordl a message's type depends upon

its selector and the number of arguments it takes'

Unary messages simply name an operation and provide no arguments other than the message receiver

object. For example, ,,toptt, ttisEmptytt and "iSFull" axe unary messages'

Binary messages provide one argument as well as the receiver. Their selectors must be composed of

nonalphabetic characters. "i", *-' and "*" are binary messages for addition, subtraction, and

multiplication. Simila^rly, "@" creates a point from two numbers, and "##" creates a recta'ngle from

two points.

Keyword messeges are the oddest part of SUellr6lr and SBIF syntax. They provide messages

with one or more a^rguments. A teyword message has a particular arity, and the message selector

is divided into that Lany parts. A keyword *er.ug" is written as a seguence of keywords with

argument values interspeised. For example, "at:Put:" is a two-argument keyword message for array

assignment. The Pescn'l code

a[i] := i;

is written in Solp as

a at: i Put: j'

Messages can be sent directly to the results returned by other messages' Parentheses ca'n be used for

grouping. For examPle:

draw : (style drawLineFrom: start negated To: finish negated)'

c = ( (a squared * b squared) squareRoot )'
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Implicit Self

The only expression that is not a literal object or message send is the keyword o,self,. This denotes
the current object, that is, the receiver of the currently executing method. A message sent to ,,self, is
known as a self-send. Because "self is used pervasively in Snlr (especially as *"rrrg"*- 

^re 
used to access

va'riables, as described below), it is elided from the syntax wherever possible. The language is named
"sELF" in honour of this omnipresent but mostly invisible keyword.

Accessing Variables

A variable or constant slot is read by sending a unary message corresponding to its name, and a variable
slot is written by a one-argument keyword message, again coiresponding to the variable slot's name. The
Snlr code

foo: 43.
bar: foo.

is roughly equivalent to the pasc,tl

foo :: 43;
bar :: foo:

if "foo" and "bar" a,re variables, but equivalent to

foo(43);
bar(foo);

if t'foot' and ttbartt are methods.
The use of messages to access variables is one of the main differences between Srlr and Sualr,tu,x.

5.4.3 Blocks

Blocks represent lambda expressions. For example, the expression ),ry,r * y when written in Solr, is:

[:x.:y. l*+y].
A block optionally may have arguments and temporary variables: these are written at the start of the
block surrounded by " 1" symbols. Arguments are prefixed by colons: temporary variables are not. Blocks
are used to implement control structures, in concert with keyword messages. ior example,

n isEven ifTrue: ['n is even! ' printline]
False: ['n is odd! ' printLine].

There is nothing special about the "ifTrue:False:" keyword message: unlike Ltsp it is not a special form
or macro. Its arguments must be enclosed in blocks to avoid premature evaluation: ,,ifTrue:False:" will
evaluate the appropriate argument block.

Iterators

Blocks can be used as mapping functions and iterators. For example, collections provide a ,,do:,, message
which applies a one-argument block to each element of the collection in turn. The total of the items in
a collection can be computed by passing "do:" a block which accumulates each element:

total: 0.
collection do: [ :item. I total: total * item].
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Returns

The "^" prefix operator is used to return prematurely from a method. Its semantics are essentially the

siune as the C returu statement. A linear search of a collection for the string o" f oo "' can be performed

by combining an iterator a.nd a return operator.

collection do: [l :item. I item - 'foo' ifTrue: [^true]l'
^false.

5.4.4 Inheritance

Since SSLF does not have classes, objects can inherit directly from other objects by using parent slots. A

parent slot's declaration is suffixed by an asterisk u*'. When a message is sent to an object , a Tnef"ssge

lookup algorithm is used to find a method to execute or variable to access. SsLF's message lookup

utgoritnr;r"a,rches the message's receiver, then recursively sea.rches any of the receiver's parents- If an

imlplementation oJ the message ca^nnot be found, an undefined selector exception is raised ($9.1.2)'

foo : (l
fred = ('ftnplenented in foo' printLine)'

t).

bar: (l

Parent{' : fOO'

nigel = (' Inplenented in barr printLine)'

l)

For example, in the two objects above, sending "fred" or "nigel" messages to the "bar" object will

execute successfully, but sending "nigel" to "foo" or "thomas" to either will result in a,n undefi.ned selector

exception.

Tlaits and Prototypes

Inheritance is often used to divide objects into two parts - a prototype and a trait, Typically the trait
object contains method slots shared by all clones of the prototype, while the prototype contains the
,,plr-instance" va,riables of each clone and a parent slot referring to the trait object. Prototypes roughly

correspond to SuAt t tlt,K's instances, and traits to SUnllmlX's classes 1217, 43).

Multiple and Dynamic Inheritance

An object may contain more than one parent slot to provide multiple inheritance: if the method lookup

algorithm finds more than one matching method, an ambiguous lookup exception is signalled. Parent

slo'ts may be variable slots as well as constant slots: this provides dynamic inheritance, which allows the

inheritance hierarchy to change at runtime. For example, a binary tree node can be implemented using

one variable parent slot but two alternative trait objects. One parent is used by empty tree nodes, a,nd

the other by iree nodes containing values. A node is created empty, and uses the empty node trait object'

When a node receives a value, it alters its parent slot so that it inherits from the non-empty node trait
object.
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Resends

A method can use the resend operator (prefixed to a message selector) to call an inherited version of
the method. In the example below, both "Inpleneuted in bar" and "Implernented in foo" will be
printed if ufred' is sent to "bar".

foo : (l
fred : ('fnplenented in foo' printLine).

t)

bar: (l

Parent* : fOO'

fred : ('Inplenented in barr printLine.
resend.fred).

t).

5.4.5 The SeLr Library

Splr includes a libra^ry containing over two hundred prototype objects. These are divided into va,rious
categories:

Control Structure Objects such as blocks, true and false provide messages like '(ifTrue:False:', which
implement basic control structures.

Numbers Splr includes both integers and floating point numbers.

Collections The largest category of SnLF'objects, collections a,re containers that hold other objects.
SELF's containers include vectors and bpeVectors which are fixed size arraysl seguences and or-
deredCollections which are like arrays but can grow or shrink to accommodate a variable number of
argumentsl strings which are special collections of characters; sets and dictionarys which are imple-
mented either as hash tables or trees; doubly-linked lists; and sharedQueues which can be used to
synchronise multiple processes.

Geometry Objects such as points, extents and rectangles provide basic two-dimensional geometry.

Mirrors SolF is structurally reflexive. This is provided by mirror objects, which reflect upon other
objects. Each mirror is associated with one other object, the mirror's rcftectee. Mirrors understand.
messages such as names, localDataSlots, aad localAssignmentSlots, which respectively return the
names of all slots, all data slots, and all assignment slots in the mirrof s reflectee.

Foreign Proxies Various proxy objects provide access to functions and objects written in C or C++.
Ta^rraingfm uses proxies to provide graphical output using the X window system.
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5.4.6 Example Snm Programs

Figures 5.7 and E.g contain a Splr version of the stack exarnple from Section 3.6.1. This is in essence a

dirLt translation: the data structure, algorithms, and encapsulation are unchanged'

"definition of stack"
traits stack = (l

- parent* = traits coJlection.

^ push: s = (contents at: index Put: c. index: index *
^ pop : (index: index - 1. contents at: index).
^ isEmpty = (index = 0)'

^ clone = (resend.clone contents: contents clone).

l)

stack = (l
- parent* = traits stack.

- contents {- vector coPYSize: 80.

- index <- 0.

l)

1).

Figure 5.7: Splr Definition of a Stack Object

Figure b.Z contains the definition of the stack object. This is split into two objects, traits stack

contaiiing method declarations, and the stack prototype, which inherits from traits stack. The push and

pop methlds a,re publicly exported from traits stack, while in the stack prototype, all the slots are private'

b"""rrr" the prototype Ltrerits from the traits object, the methods defined in traits stack are able to

access the data slots defined in the prototype. The traits object similarly inherits extra behaviour from

traits collection.

main = (l
- lines <- 0.

- s ts stack.

_ handleLine = (

[eoln] whileFalse: [s Push: read].

[s isEmpty] whileFalse: [s pop write].
lines: lines + 1).

- initialise : (s: stack clone).

^ reverse: (

initialise.

[eof] whileFalse: [handleLine].
('Reversed: ' ,lines,' linee\n') printLine).

t)

Figure 5.8: SoLF Progtarn using a Stack Object

The traits stack object provides a definition of clone to create new stacks. This uses the resend operation

to call the clone operation defined in traits collection, and then clones the contents vector, which should
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not be shared between difierent stacks. Figure 5.8 illustrates a S31,p version of the stack main progrem.
Blocks are used widely to implement the looping control structures.

Figure 5'9 shows a Spu'implementation of Quicksort. This was used to generate the quicksort trace
view in Figure 4.4.

Cuick = (l
^ quickSort = (quickSortFrom: 0 To: size predecessor).

- quickSortFrom: I To: r = ( | i. j. x. I

i: l.
j: r.
x:at:(l +r)/2.

I
[(at: i) < x] whileTrue: [i: i successor].

[x < (at:j)] whileTrue: [j: j predecessor].
i< j ifTrue: I
i - j iffalse: [swap: i And: j].
i: i successor.
j: j predecessor.

I.
luntilFalse:Ii<jl.

I < j ifTrue: [quickSortFrom: I To: j].
i < r ifTrue: [quickSortFrom: i To: r].
self).

t)

Figure 5.9: Quicksort in Sulr

19. A language that doesn't afrect the wW Uou think obout programmdng,
is not wofth }nlowing.

Alan Perlis, Epigmms On Programming 1168)



Display Subsystem

The display subsystem centres around view objects. As the main component of the subsystem, views are

,.rpo*ibt" for implementing all the subsystem's requirements: displaying graphics, handling the user

interface, and accepting input to particular visualisations'

To produce a visualisation with Tarraingim, the visualiser must either write a view from scratch,

or obtain (and modify if necessary) a view from Tarraingim's view library. This chapter describes the

implementation of views from the visualiser's perspective. Section 6.1 presents an overview of the view

objects, and describes their position within the wider system. Sections 6.2 to 6.6 show the construction of

several example views. Section 6.2 concludes the chapter with an outline of the contents of Tarraingfm's

view library.

6.1- Views

Figure 6.1 shows the structure of the view inheritance hierarchy. The view object is the abstract view in

Tiraingim,s pipeline (see Figure b.2) and inherits from eventClient and tgimObject ($5.3.4). Because they

inherit from eventClient, all views can use the client event protocol to handle events they receive from

watchers ($8.g.6). Concrete view objects inherit from view to implement displays of pa,rticula,r objects in

the program. Tarraingim provides a library of concrete view objects ($6.7) and new concrete views can

be written by visualisers.

The basic view object supplies a publicprotocol which provides an external interface to views, and a

priaateprotocol which is used to structure the view's implementation. Table 6.1 contains the essential

messages of these protocols. Private messages a,re placeholders for view-specific tasks, and a,re called

by public messages when necessa.ry. Each concrete view object implements these messages in a mellrner

appropriate to its type. For example, a bar cha,rt view would handle the private drawModel method by

diawing a bar chart, while a scatter plot view would draw a scatter plot. The visualiser creates a new

type of-view by implementing the private messages to perform the behaviour required by the new view.

6.1.1 Views in Context

A view must communicate with other objects. Figure 6.2 shows a view in the context of the objects with

which it collaborates.

87



88 6 Dtspr,.ry Sussysrnrvr

lnh?rltd1c' lderilchy (parf ial)

Figure 6.L: View Inherita.nce Hierarchy

view protocol

Public
watch: object
copyWatch: object
aim
model

Private
initialise
drawModel

callback
command

View Hierarchy
subViews
addSubView: v
removeSubView: v

Instructs the view to display objea. This sets the view's aim to that object.
Creates a new copy of the view which is then sent watch: object.
A view's aim is the object it is requested to visualise.
A view's model is the object it is displaying.

This is sent when the view is initialised.
This is sent when the view needs to be redrawn. Particular views should
implement this by redrawing their display. This is sent when the view is first
displayed, and whenever the view receives a change event from its watcher
which the view does not otherwise handle.
Sends a query callback to the view's model.
Sends a command callback to the view's model.

This returns a collection of the view's subviews.
This adds a new subview v to the view.
This removes subview v from the view,

. . . and events d,ispatcheil using the client euent protocol

Table 6.1: Basic view protocol.

View Tlee

A view can belong to a tree of views, with a single superView and several subviews. The abstract view
object includes behaviour to manage this tree dynamically. A view can add, delete, or rearrange its
subviews in response to changes received from the target program or user interaction.

View Parameters

The display produced by a view can be customised by variables within the view object. These variables
are the view's porameters. They allow the user to tailor the view's appeaxance as the system is running.
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arm Superview

Watcher View

model

Subview Subview

Figure 6.2: A View in Context

For example, a view's colour scheme, font, graphics scale, or the type of its subvievrs may be set by its

pararneters.

6.1.2 Watchers

A view is responsible for drawing the visualisation of an object' but does not itself monitor that object'

This is handied by its associateJwatcher, which links the view to the object it is displaying.

Thrget Objects

A watcher links a view to two objects in the target prograrn' the aim and the model. A view's aim is the

object the user has requested be iisplayed. Views send their aim to their watcher. The watcher computes

the model, whictr it then sends to the view. A view's model is the object the view will actually display,

and is usually the same as the view's aim.

The distinction between aim and model is particularly usefirl for views displaying aggregate abstrac-

tions ($2.4.1). For example, a bar graph view can be used to display an invocation profile of a particular

ollect. tfre view's aim is the object being profiled, a,nd the model is the object holding the actual profile

daiabase. Informally, a view's or watchei'i target objects are all the objects in the program upon which

the view depends.

Events

Watchers send views event notifications describing changes of interest to the view' By default, views

simply clea,r and redraw their display upon receMng an event. Specific events or event categories can be

nanatea using the client event protocol, inherited from traits eventClient ($8.3.6).

Views themselves use events to send callbacks to their models. They generate these events by sending

messages to callback for query callbacks which do not alter the state of the target object, or command for

commandcallbacks *rticu *uy change the target object. These events a^re directed through the view's

watcher.

Section 8.3 discusses events in more detail.
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6.L.3 Navel

The mechanics of input and output are handled by the Navnlr graphics library, which we have written
to provide a layer over the X window system [189]. Nevnl creates and manages'an X window hierarchy
which parallels Tarraingfm's view tree. It provides messages to views for callinl x graphics functions and
handling X events (see Table 6.2).

view protocol

Returns the area of the view,s window as a rectangle.

Draw the string s at position p, in the foreground colour.
Draw the outliue of rectangle r, in the foreground colour.
painf lscfangle r solidly, in the foreground colour.
Paint rectangle r solidly, in colour c.

Clear the windorrv to the background colour.

The left mouse button has been released at pt.
The middle mouse button has been released at pt.
The right mouse buttou has been released at pt.
Key k was pressed.

The window has been exposed, and needs to be redrawn.

Table 6.2: Nevsl graphics protocol used in examples.

A Nevsl view receives two kinds of events - those from the X window system describing user actions
and requests to refresh the view, and those from its watcher. These two event strea.urs are unrelated and
are handled separately by the view. Receiving an X event, for example a notification of a mouse press,
may cause the view to send another, perhaps a callback to the ta.rget program, but this is under the
control of the view.

In the remainder of this thesis, euent rcferc to the events exchanged between views, watchers, and
controllers, rather than the X window system events associated with input/output.

6.2 A Simple View

Figure 6.3 shows a display produced by a simple view - a cubist picture of a trafficLight object. A
trafficLight object is implemented by a single variable slot holding ihe trafficLight's colour, and a few
simple messages (see Figure 6.4). The view is implemented by the tlView objectlsee Figure 6.b), which
inherits from the abstract view object. Since this view is so simple, the only beharriou, required in 1View
is to draw the picture' To do this, the view implements the private drawModel message, which is received
by a view when the view is created, needs to be repainted, or is notified of changes Jiini" its model.

The trafficlight object is very simple: it is essentially a single variable. The tlView object depends
upon the local state of a trafficlight, so it needs to be informed whenever the local state changes 1ga.S.a).This monitoring strategy is implemented by a localWatcher (57.2.4), installed as the tlView,s watcher.
Any assignment actions to the target trafficlight object's locai-state'(i.e. its colour va,riable slot) will be
reported as changes to the view.

The graphics for the view consist of three rectangles, each representing one aspect of the trafficLight,
and are drawn by the drawModel method. First, various locai variables (w, h, top etc.) *" ur.J to

TNAvEL 
- a window system for looking at your SELF.

Accessing
area

Graphical Output
drawAt: p String: s

drawRect: r
fillRect: r
fillRect: r Colour: c
clear

Input Events
leftUp: pt
middleUp: pt
rightUp: pt
key: k
expose
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Figure 6.3: trafficlight View

traits trafficlight = (l "shared behaviour for trafrcLights"

- parent,F = traits clonable.

^ printString = ('a ', colour, ' traffic light')'
^ copy = (reseni'copy red). 'hrew trafficLights are always ted"

^ red = (colour: 'red')'
^ amber = (colour: 'anber').
^ green = (colour: 'greeat).

^ cycle - (red. amber. green. red).

^ isRed : (colour - 'red').
^ isAmber = (colour - 'aruber').
^ isGreen : (colour - 'greeu')'

l)

trafficLight = (l
^ parent* = traits applications trafficlight'

- thisObjectPrints : true.
^ colour F rredr . locd state"

t)

Figure 6.4: trafficLight Object

calculate the sizes and positions of the rectangles used in the display' The drawModel-method uses the

N.lvpr, message .r"r, *Li"h returns the size oithe X window displaying the view, so that the view will

always fill the X window.

The rectangles representing the trafficLight's aspects a're then drawn' The rectangle representing

the illuminated aspect is draw-n filled, while the other two axe outlined. The tlView must determine

which aspect is illumina,ted. To get this information, it sends callbacks (the isRed, isAmber, and isGreen

*"rr"gus) to its model. The catlbacks are sent as messages to callback, which will create the appropriate

callbackEvent and forward it to the view's watcher. This will eventually send the message to the target

trafficlight in such a way that it wilt not be detected by any other views upon the same object ($8'2'3)'

The cailback for the illuminated a.spect will return true, and thus the rectangle corresponding to the

active aspect will be filled.
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traits tlView - (l

- Parent+ : traits view.
_ drawModet : flw. h. top. mid. bot. m _ 5l

"calculate sizes',
w: area width - m double.
h: (area height - (r * 4)) I 3.
top: ((m@m)ff(w@@h)).
mid: ((m@(m double + tr))ff(w@@h)).
bot: ((m@((m * 3) + h double))Sf(w@@h)).

"draw rectangles',
callback isRed ifTrue: [fillRect: top] False: [drawRect: top].
callback isAmber iffrue: ffillRect: mid] False: [drawReci:'mid].
callback isGreen ifTrue: ffillRect: botl False: [diawRect: bot]. 

'
self).

l)

tlView: (l

- Parent* : traits tlView.

"install watcltef'
- watcher +- localWatcher.

t)

Figure 6.b: trafficlight View Implementation

Generic Views6.3

The trafficlight view above is specific to one type of object - a trafficLight. It is possible to design views
which can visualise many different kinds of objects. Thise generdc views interact *ith th"i, target objects
using only an abstract interface ($3.6.2). For example, a [eneric collection view can display a list, hash
table, array tree, string, or priority queue, since all these objects conform to the collection protocol -that is, they are different ways of implementing a collection.

Two instances of a simple generic view (the dots scatter plot sequence view from Figure 3.1) areillustrated in Figure 6.6, and the dots view implementation is given in Figure 6.2. Each dot correspondsto an element in a sequence of integers. The vertical position oia dot reprisents the value of the element,
and its horizontal position corresponds to the element's position in the sequence.

The dots view's display is drawn in the drawModel method, which iterates over the view,s model aud
draws a dot for each element' The view accesses its model's elements by sending a query callback (the
"d-o:" message) to its model, paesing a block which is then called once for each element in the model
collection.

- 
This view is generic because the interface it uses to communicate with its model is abstract. It sends

only one callback, the message do:, and can visualise any object which implements this message with the
required semantics - mapping a block over the object's elements. This message is part of the collectionprotocol, and is implemented by all collection objects. A dots view can disptav any type of collection
object containing numbers (the two views in Figure 6.6 illustrate a vector and a list respectively).

The scale and size of dots in the display are governed by view parameters. The variable dotSize
controls the size of the dots, while dotWidth and dotHeight control x-axis and y-axis scales respectively.
By changing the parameters, difierent visualisatiorr, 

"*1u produced from one view definition. The two
views in Figure 6.6 have different settings for their parameters.



93
6.4 Dvuautc UPoltntc

Figure 6.6: Two dots Views

traits dots = (l
- parent* = traits view.

- drawModel : (

x: leftMargin.
callback do: I l:val. Y' I

y: (baselini - (dotHeight * val))'-.
iitt R..t' ((x@v)## (aotSize@@dotSize))'

x: x * dotWidth].
self).

l)

dots = (l
- parent* : traits dots.

"view patametets"

- dotSize +- 5.

- dotHeight <- 2'

- dotWidth e 4.

l)

Figure 6.7: dots View Implementation

6.4 Dynamic UPdating

The dots and trafficLight views preented above a're batch views' as they update their entire display

whenever they a,re ootin"a that their t*g.t-oi:".ila" $*rged (gg.z.g). Any current output is clea'red

*J tu"ir drawModel method is called to refresh the display.

This is expensive. The view's entire output must be redrawn even if only a small portion has changed'

It is impossible to ittroau." any animation to d'u* smooth transitions between states without first

determining in which way the target objeJ has changed' In order to animate their output' or update

their displays incrementally, views can inspect the received event and take specialised action' rat'her tha'n

recreating the entire picture from scratch'
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Figure 6'8 shows an event ha.ndling method which provides incremental refresh for the dots view ofFigure 6'7' whenever an element of tle visualised corlction2 is changed, this methoJ directly updatesthe dot in the view representing that element.

The changeEvent: e message is sent to a view when the view receives a changeEvent from its watcher($8'3'6)' These events are sent to the view whenever an action occurs in the view,s model which theview's watcher considers a change. When an event arrives, it is checked to see if is an event that theview can handle incrementally - in this case, any event caused by an at:put message. If not, the eventis resent to be handled by the view,s default behaviour.

- changeEvent: e = (l elem. old. new. x. y. 
I

"determine if this message js suitabJe for dynanic update,,(,at:put:' f e name)
ifTrue: [^ resend.changeEvent: e].

efem: e at: 0. ,,get event pmameters,'
new: e at: 1.

old: callback at: elem. "and old. vaJ.ue,,

"erase old dot"
x: leftMargin * (a * dotWidth).
y:.(baseline - (dotHeight * otd)).
fillRect: ((x@y)ffS(dotSize@@dotSize))

Colour: background.

"and draw new,,
y.:.(baseline - (dotHeight * new)).
fillRect: ((x@y)Sf (dotSize@@doisize))

self).

Figure 6.8: Dynamic Updating of a dots View

The parameters of the event a.re obtained from the event object. The position of the element thathas changed (the first argument of the at:Pu; ;;;;.g" t;."i*i u, the view,s model) is assigned to theelem variable' and the rrew value (the second *gu*uit of trru *"rr"ge) is assigned to new. The variableold is set to the old value of the eiement at thai positiorr, ,uiri"*d by the at callback. The current dot(representing the old element's value) is then erased, and a new dot drawn. The view is thus updated toreflect the model, with a minimum oi efiort. Note that because the target object is queried to determinethe previous value to :1T",. the change event must be received before thetarget object actually executesthe at:Put message ($4'3'3). such i strategy is provided by a. preLocalwatcher, a,s compared to thelocalwatcher' which sends changes to its view-after the target"object has changed (s7.2.4).

The same technique is used to produce an animated view, although rather than simply erasing theold parts of the display and drawing the new, the visualiser must draw as many frames as required toproduce an illusion of smooth motion.

2To simplify the presentation, the rnethod in Figue 6.8 is only applicable to views of indexable collections, such asvectors, where each element is accessed by an integer index.
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6.5 l{ierarchical Views

Tarraingim views can be arranged into a tree, allowing a view to include one or more subviews ($5.3.3).

This feature is common in window and user interface systems, but rare in program visualisation - only

a few graphical debuggers, such as Cnnno-II and Gnlo ($2.2.1), provide flexible hierarchical views. We

have found hierarchical views useful for the following reasons:

r Complex views can be factored into component parts, and then each part can be written and tested

independently.

r The user can build composite views of particular objects by grouping several preexisting views.

o A hiera^rchical view can be used with different types of subviews.

o A view can be reused as a subview of several different types of hierarchical views.

Views can be used as subviews without any extra effort on the part of the visualiser. The decision

to use subviews (rather than simply one larger view) must be made when a view is being designed. One

or more of a hierarchical view's paxarneters will be view prototypes. When the view is displayed, the

prototypes a^re cloned to produce the required subviews'

6.5.L Browser Views

As an example, Figure 6.9 displays two versions of Tarraingim's browserView. Each element in the browser

is displayed by a subview. The two browsers pictured are the same type, but each is pa,rameterised by

different subviews. The implementation of a browseiliew is outlined in Figure 6.10.

Figure 6.9: Two Browser Views

A browser view is first drawn when it receives a drawModel message. This creates the required subviews

using the copyWatch message to clone the prototype subview (the browserView's elemProto parameter)

and configure each subview to display one of the model's elements. Once the subviews have been created,

they are laid out within the main view (by the layoutSubViews message, not shown in Figure 6.10), and

a title specified by another parameter is drawn.
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traits browserView : (l

- Parent{' : traits view.

- drawModel : (

((subViews isEmpty) && [callback isEmpty not])
ifTrue: [makeSubViews].

"draw title"
drawAt: 10@10 String: title.
self).

_ makeSubViews = |trpl
callback do: fl :val 

I

addSubView: (elemProto copyWatch: val)1.
layoutSubViews).

t)

tgim browserView: (l

- Parent* = traits browserView.

"view parannetets"

- elemProto <- slotView.

- title F rBrosserr 
.

- watcher <- localWatcher.

t)

Figure 6. 10: browserView Implementation

Note that if the browserView is redrawn (i.e., drawModel is called again) the title will be redrawn, but
the subviews are not recreated, as they exist in their own right. They are not redrawn by the browserView
because they are fully independent - they are redrawn by their own definitions. Each subview has its
own watcher, and so receives and handles changes regarding its model independently ofboth the superview
and any other subviews (see Figure 5.4).

6.5.2 Structural Constraints

If the superview's model changes, the arrangement of subviews may need to change also. This is a
structural constraint: the structure of the view tree must pa,rallel the structure of the taxget objects.
When the model adds or deletes elements, the superview must add or delete the subviews visualising
those elements.

Figure 6.11 shows how Tarraingfm handles structural constraints. The browserView can include a
changeEvent method which is received when a change is detected in the view's model. When the browser
receives this message, it reassesses its subviews, comparing their structure to the changed structure of its
model, and reorganises itself appropriately.

Tarraingfm uses auxiliary adjuster objects to ma^nage structural reorganisation. An adjuster compares
two lists and executes a series of editing actions to transform one into a parallel of the other. Similar
facilities are used in UNtoRew [221] and GrN.l [19]. The adjuster compares the current subview's aims to
the new requirements, and adds or removes subviews so every element of the view's model is displayed by
a subview. Once the structure has been altered, the subviews'layout within the main view is recalculated.

The changeEvent method sends an '(adjust:Keys" message to an adjuster to actually make the necessary
changes. This method's arguments are: the current list of subviewsl a block for determining a views's
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-changeEvent:e:(

"enswe subViews cotrespond to the model's contents"

adjuster adjust: subViews
Keys: [l:svl sv aim]
To: callback
Create: [l:aiml addSubView: (elemProto copyWatch: aim)]

Keep: I
Destroy: [l :viewl removeSubView: view].

'lecompute layout"
layoutSubViews).

Figure 6.11: Structural Constraint for a browserView

aim; a list of the model's current contents; and three action blocks which are called as necessaxy to create

a new subview, keep a subview intact, or destroy a subview' The "adjust:Keys" method checks each

subview on the list in turn, using the "keys" a,rgument block to determine the subview's aim' It sends a

,,callback,, to retrieve the browsei's model, and compa^res the subviews's aims with this callback' Finally'

it uses the ,'Creater,, ,,Keep,, and 'sDestroytt argument blocks to update the subviews as necessary'

6.6 lJser Interaction

A program exploratorium must be a dynarnic and interactive environment. Users must be able to con-

trol what is visuatised and how it is displayed, a,nd interact with the visualised prograln' The display

subsystem provides support for user interaction. Views are able to receive information about a user's

commands and either handle them internally or call upon the rest of the system. This section describes

how Tarraingim supports the three main user interface tasks - selecting the objects to be visualised,

sending comiands io thor" objects, and customising the visualisation. Section 10.1 presents Ta'rraingim's

user interface from the user's perspective'

6.6.1 View Navigation

Tarraingim's users choose objects to be displayed by navigating around the target program' Tarraingfm

starts b] displaying the lobby (the root of the dnln o*o" space [21fl) with a browser like those illustrated

in Figure 6.g. When one of ihe slots in a browser is selected with the mouse' a new browser is created for

the jject contained in that slot. AII objects in the progra,rn are reachable from the lobby, so a'ny object

in the prograrn can be located in this way - the effeciis similar to the Macintosh Finder 1224)' ff the

title of a browser view is selected, a view palette appeaxs' inviting the user to open another view'

"create a new browset fot this object"
^ leftUp: pt : (browserView copyWatch: model)'

"pop up a menu"
^ rightUp: pt = (viewMenu copyWatch: model)'

Figure 6'12: View Navigation

As views can be created dynamically, navigation can be implemented easily in Tarraingfm, as shown

in Figure 6.12. The t.ftUp *"rmg. isent Uy ttre teft mouse button) creates a new browser for the object;

the rightup message pops up a menu of difrerent views of the ta.rget object'
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These messages are defined by the abstract view object, and so are inherited by other views by default.

6.6.2 LJser Input

Event handling and command callbacks can be used to allow the user to interact with the underlying
objects in the prograrn. For example, the dots view of Figure 6.7 can be extended to allow the user to
change values in the view's model, by adding the method rho*n in Figure 6.18. When the user clicks on
the view with the middle mouse button, the model is updated so the eiement under the mouse is altered.

"change a collection element,,
^ middleUp: pt = (lmin. max. x. yl

"scaf,e co-ordinates of input point,
x: (pt x - leftMargin) /- dotWidth.
y: (((baseline - pt y) / dotHeight)) astnteger.

"if within bounds, perform assignment,
(x isBetween: 0 And: callback size)

ifTrue: [command at: x Put: y].
self).

Figure 6.13: User Input

The middleUp message is received whenever the user clicks the middle button in the view - its
argument is a point representing the location of the mouse click. The point at which the mouse click
occurred is scaled to match the view, and, if the point rqfers to a legitimaie collection element, the model
is updated by sending a command callback. The callback message atrPrt changes the element positioned
horizontally under the mouse to a value depending on the *our-.', current u"rii.ul position.

6.6.3 View Parameters

The user can customise the operations of Tarraingfm's views - for example, adjusting the scale of a
dots view - by changing the view's parameters. 

-Ta.rraingim 
is reflexive, so it is able to visualise its

own operation, including its view objects. We therefore build property sheet views which display the
parameters of another view' A view's property sheet can be reached by a navigation command. The
property sheet view interprets user actions by altering the original view's parametJrs, so the original view
can be altered via the property sheet.

Section 10.1.4 further discusses view's property sheets.

6.7 Tarraingfm's View Library
Tarraingim includes a library containing approximately forty views, most of which appear as examples
throughout this thesis. We conclude our discussion of views *ith 

" 
description of the vi#s in Ta.rraingfm,s

library.

Text Views The library includes several views which simply display text. These ca^n be used for a
variety of purposes: for example, the trace views from Figures 3.2 and 4.4 arc textViews using
traceWatchers. A streamView, a variant of the basic textView, displays text indexed by a carel
to show the cursor position of a stream reading from a file (see Figure 10.g4). A printSiringView
displays the printed representation of any object.
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Textual Collection Views Collections are the largest category of objects in the SsLr library ($5'4'5).

We have therefore built several textual and graphical views of collections. These views can generally

be applied to any pa,rticula,r collection implementation. For example, the vector view in Figure 3'1

is a basic collView, showing the collection's elements. The views of dictionarys in Section 10.2.3

are displayed by coll2Vie* ,ri.*r, which show both the keys and values of the collection's elements.

Coupled with suitable watchers, textual and graphical collection views can be used to display

aggregate abstractions, such as the profiles in Figure 3'4'

Graphical Collection Views The libra,ry also contains graphical views of collections. These a,re gener-

ally restricted to collections indexed by integers and containing numbers, for example, the dots and

sticks views from Figure 3.1. Other graphical collection views include the lpView, which displays

linked-list * " 
,.qrrirrce of boxes and urto*s (see Figure 10.39). A horizPointer view provides a

pointer to an elemint in another collection view. This view is used to display the index component

in the stack abstraction view in Figure 3.3.

Tlee Views The nTreeView provides a generic view of an n-ary tree. This view can produce many

difierent displays, depending upon the watcher and subview prototypes it is configured with' For-

exa,mple, the call tree view o1 figntu 3.2, the structure tree view of Figure 3.4, the parse tree view of

Figurl 10.8, and the view structure views described in Section 10.2.1, are all different versions of

the basic nTreeView.

I;ser Interface Views Ta"rraingim's user interface consists of various browser and inspector views that

display an object as a list oi slots (see Figure 6.9) . These a.re implemented by browserViews, which

can be pa,rameterised with difierent slotView prototypes to produce textual and iconic browsers. A

browserView va,riant is also used to produce Tarraingfm's menus a^nd property sheet views'

Miscellaneous Views We have also built several custom views of various objects. Figure 10'35, for

exa,mple, shows an fsmView of a finite state machine, which uses fsmstateViews to display individual

states. Other custom views a.re illustrated in Figure 3.2, which includes a partition view of quicksort;

Figure B.J, which includes the stack implementation view combining several independent subviews,

Fi'ue 6.1, which shows a cubist tlView of a tra,ffic light; and Figure 10.14, which shows a view of

a controller's dispatdr database ($8.1.3).

3g. Re graphics: A picture is worth 10K words - but only those to ilescribe the picture'

Hardlg ony sets of 10K worils con be adequately ilescribed with pictutus.

Alan Perlis, Epigrams On Programrning [168]
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Strategy SubsYstem

The strategy subsystem implements the mapping component of the APMV model ($3'7)' This subsystem

links the target program tothe display, anddeteiminJs how the target program is to be monitored' Each

individual d[phy (implemented Uy a view) is linked by a strategy (implemented by one or more watchers)

to its target ob3ects. The particula,r strategy chosen will depend upon the view, the object to be visualised,

and the user's preference.

The remainder of this chapter describes the strategy subsystem. Section 7.1 reviews the subsystem's

place in the framework as a wiole, describes the main watcher protocol, and outlines the main categories

of watchers. Sections 7.2 to 7.5 describe each category of watcher in turn, and Section 7.6 concludes the

chapter with a discussion of Ta.rraingfm's watcher library'

7.1 Watchers

A watcher embodies a strategy for connecting a view to a,n object within the progra.ur. Tarraingim

includes a libra.ry of general pirpor" watchers,-and specialised watchers ca,n be written by the visualiser

in Splr. Like a viewiaspects of a watcher's operation can be altered by changing its para"meters'

A tree of watchers can be used to implement a complex strategy, in the same way a hierarchical view

can implement a complex display (see $s3.e and Figure 5.5). A superwotcher can use several subwatchers

to assist it in monitoring its targlt oUje*. Subwatchers are specified as parameters to their superwatchers,

in the same way as the-para,rnet.r, of hi.t*chical views ($6.5)' The precise use to which a subwatcher

is put will depend upon th" type of watcher that is parameterised. The root of a watcher tree is a view

ttrat ultimately receives changes from the watchers in the tree.

Tarraingim,s users a,re not aware of the distinction between watchers and views. Instead, users think

in terms of combinations of watctrers and views presenting pa.rticular visualisations. This is because a

watcher can completely cha^nge the information displayed by a view. For example, a collection view can

display either thl contents of a collection object in the ta'rget program' or a profile of the collection

obj'ecis execution, depending upon the type of watcher used with the collection view'

7.f .1 Types of Watchers

The structure of Ta,rraingim's library of watchers is organised by inheritance, as illustrated in Figure 7.1'

All watchers a,re Tarraing"im objects and can handle events, so they inherit from tgimObject and eventClient

101
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($5.3'4). All watchers inherit from the abstract watcher traits, and are grouped into categories depending
upon the number of subwatchers they use leof watchers use no subwatchers; filter watchers use one
subwatcher; indirectwatchers use two subwatchers; and multiplewatchers use any number of subwatchers.
Each category has an abstract watcher from which its concrete watchers inherit. This allows code common
to all watchers to be inherited from the abstract watcher traits, and commonalities between watchers in
each category can be inherited from the abstract category watchers.

Figure 7.1: Watcher Iaheritance Hierarchv

Leaf Watchers

Lea,f watchers form the leaves of the watcher tree, and do not use any subwatchers. If a view uses a simple
strategy implemented by only one watcher, that watcher must be a leaf watcher. Most leaf watchers use
controllers to interface with the monitoring component to gather execution information about the target
program - for example, traceWatchers, which monitor all the actions of the target object ($4.8),"or
localWatchers, which detect changes in an object's local state ($4.3.4). Leaf watchis are the only iype
of watchers which communicate with controllers. If another type of watcher needs to use a controllei,-it
uses a lea.f watcher as a subwatcher. Leaf watchers are described further in Section 2.2.

Filter'Watchers

Filter watchers use one subwatcher. A filter watcher acts as a wrapper around its subwatcher, intercepting
arrd modifying its event tra^ffic. For example, a tlAdaptor watcher alters the callbacks and changes passinf,
through it so that a tlView ($6.2) ca,n be linked to a vector. A cacheWatcher filters changes to remove
duplicates ($4.3.4). Filter watchers are discussed further in section 2.3.

Indirect Watchers

Indirect watchers redirect their model, so that it is not the same as their aim. They use two subwatchers,
one to monitor their aim (the object the user requests the view displays) , *d orr" to monitor their
model (the object the view actually displays). Indirect watchers can be used to specify a view,s model
as a,n indirect reference from its aim, which is useful in implementation views displaying an object's
components (such as the stack implementation view in Figure 3.3). They can aruL Ue used to build
aggregate abstractions, when the model is a new object which is updated by the watcher. For example,
the profile views in Figure 3.4 are implemented by indirect watchers which create and maintain profile
database objects. Indirect watchers are described further in Section 7.4.

vatch0r Inh?dtance hicrarchy (putial)
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Multiple Watchers

Multiple watchers use any number of subwatchers. They take a single watcherparameter which is cloned

i$ many times as needei to create the subwatchers. Multiple watchers can be used for purposes such

as managing the effects of aliasing ($4.4.2) which need low-grade information about a large number of

objects. trrtuttipt" watchers are discussed further in section 7.5'

7.\.2 Watcher Attachment

A watcher is always in one of three states - it is either ottached', prouisionally attacheil, ot d,etached'

A watcher is attactred if it is part of a watcher tree which is currently monitoring the program' It will

handle events passed up from controls or subwatchers, and passed down from its view or superwatchers'

If a watcher is attachei or provisionally attached, all watchers between it and the root of the watcher

tree must also be either attached or provisionally attached, since they will receive events passed up the

watcher tree.

A detached watcher is not monitoring the target program. It may be pa,rt of a watcher tree, although

all subwatchers of a detached watcher must be aetactrea.-note that an attached watcher may have several

subwatchers which are not attached, and in a watcher tree there may be several detached subtrees'

A watcher must be attached explicitly. A view's watcher tree is attached when the view is initialised,

and subwatchers are generally attached by their superwatchers. Attaching a watcher is not necessa'rily

successful. If a watch"er is noi compatiblowith its iarget object, or the monitoring system is unable to

monitor it, the watcher will not become attached. If it may be able to become fully attached in the future

it will become provisionally attached, otherwise it will remain detached. A provisionally attached watcher

receives events, and operates in the watcher tree like an attached watcher - in particula'r, it may have

fully attached subwat'chers. If a watcher is provisionally attached, it presumably cannot gather all the

information required by its associated view, so its view will not present a display' Because a watcher's

target objects may change as the result of ihe events the watcher receives, an attached or provisionally

attached watcher's state may change at any time'

Behaviour to maintain these constraints upon watcher attachment is inherited by all watchers from

the abstract watcher object.

7.1.3 Watcher Interface

The watcher protocol is divided into four categories: accessing, iloum, up, and priuate- We discuss each

category in turn.

Accessing Protocol

Accessing methods (see Table 7.1) retrieve information about a watcher's state: its aim, model, and

whether the watcher is attached. These messages a,re implemented in the abstract watcher object'

watcher protocol

Accessing
aim
model
attached

Returus the watcher's aim.

Returus the watcher's model'

Returns true if the watcher is attached.

Table 7.1: Watcher accessing protocol
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Down Protocol

The down protocol messages (see Table 7.2) aresent down the watcher tree - from a view to its watcher,
or a watcher to its subwatchers. They are used to attach and detach watchers, to establish the topology oithe watcher tree, and to control event routeing ($7.1.a). These messages are implemented in the abstract
watcher object, and call private messages to perfdrm type specific tasG (see Taue ?.a). Watchers also use
messages in the cli,ent euent protoenl inherited from eventClient (see Table 8.2) to dispatch d,own euents
down the watcher tree (g8.3.6).

watcher protocol

7 SrRntBcy Sussystnlvr

Requests the watcher to attach itself. This implies that the watcher's view or
superwatcher is ready to receive events.
Detaches the watcher and any subwatchers.
Sets the watcher's aim, and attaches the watcher.

Down
attach

detach
watch: aim
up: up Sets the watcher's superwatcher and upEvents pointer to up.
upEvents: upEvents Sets the watcher,s upEvents pointer.

. , . ond d,own eaents dispatched using the client eaent protocol

Table 7.2: Watcher down protocol

Up Protocol

The watcher up protocol consists of messages sent up the watcher tree from watchers to views, or sub-
watchers to superwatchers (see Table 7.3). This protocol comprises the sub:Model, sub:Warning and
sub:Error messa8es describing the current state of a pa,rticular sulwatcher, and messages from the client
event protocol used to dispatch events up to views. The sub... messages are sent by a subwatcher toits immediate parent whenever the subwatcher's state changes. The firs=t a.rgument of th".u messages isthe subwatcher that is sending the message. Default versiois of these *urrJg", are implemented in theabstract watcher object.

watcher protocol

Up
sub: sw Model: m Subwatcher sw has acquired m as its model. It is now fully attached.
sub: sw Object: obj Warning: string

Subwatcher sw has found an anomalous situation (described in string) when
monitoring the object obj. This object is not necessarily sw's model. sw is
now provisionally attached.

sub: sw Object: obj Error: string
Subwatcher sw is unable to watch its model. The error relates to the object
obj and is described in string. As a result, sw is no longer attached.

... and up euents dispatcheil using the client eaent protocol

Table 7.3: Watcher up protocol

A watcher is typically attached using the down protocol watch message. This is sent by a view to its
associated watcher when the view is being initialised, and gives the watcher its aim. When the watcher is
successfully attached, it sends the sub:Modelmessage back to its superwatcher (or view). The m argumentof the sub:Model message is used to set the superwatcher's model. In this way, the user chooses a view,s
aim, but the view's watcher tree determines the view's model. The aim is propagated down the watchertree, while the model is propagated up the tree. This mechanism is used Uy inJirect watchers to visualise
aggregate abstractions and implementation component views ($2.4).
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Private Protocol

The abstract watcher object defines private messages which ca,n be overridden in a concrete watcher to

implement that watcher's type-spe"idc behaviour. ih"r" messages are sent appropriately by the methods

implementing the up and down protocol messages. The private messages are listed in Table 7'4'

watcher protocol

Private
localAttach
localDetach

This is sent when a watcher is being attached to allow it to initialise itself'

This is sent when a watcher is being detached to allow it to release lesources'

Table 7.4: Watcher private protocol

To implement a new kind of watcher, the visualiser typically defines localAttach to customise the

watcher,s initialisation. A default definition of localDetach is provided in the abstract watcher object

which simply detaches all subwatchers, so localDetach does not have to be defined unless localAttach

allocates other permanent resources. To adjust the new watcher's handling ofcallbacks and changes' one

or more event handlirrg *ursrgus from the thent event protocol can be implemented' The visualiser can

Jso implement watchJr up prJtocol messages' to handle state messages from subwatchers'

7.L.4 Message and Event Routeing

Messages and events are generally sent only one step in 
-the 

appropriate direction in the watcher tree'

A watcher or view sends tessages down to its direCt subwatchers, and subwatchers send messages up

to their immediate parent. The one exception to this rule concerns up events travelling up the tree'

watchers include an upEvents pointer which is used to direct events to one of the watcher's ancestors'

rather than to its immediate parent'

The upEvents pointer is provided for two rea*sons. First, up events comprise most of the tra'ffic within

the watcher tree, and marry simple watchers forwa^rd all the up events they receive to their superwat'cher'

Routeing these events directty avoids the cost of unnecessary event dispatches' Second, events a're received

by a watcher using the client event protocol ($8.3.6). unlike the sub. . . messages' the client event protocol

messages axe not tagg; by the sui*atcter from which they have arrivedl' A watcher with more tha'n

one subwatcher canno"t detlrmine from which subwatcher events have arrived, so events received from all

subwatchers must be treated similarly. In some situations, events from different subwatchers need to be

processed difierently. The division is often between two sets of subwatchers: some generating events to be

processed by the watcher, others generating events to be handled further up the watcher tree' This can

be arranged by setting 
"rch 

srrb*Jtcher's uf,Event appropriately' The upEvent pointer of the top watcher

in a watcher tree is # to point to that subwatcher's view, and the other watchers' upEvent pointers are

set to the siune a.s their pa,rent watcher's pointer, unless they need to intercept up events'

Figure 2.2 illustrates routeing within a watcher tree. Each watcher is directly connected to its neigh-

bouring subwatchers and superwitchers. The attach, watch and sub. . ' messages are sent along these links'

These messages transmit thl view's aim to the watchers, and return the modet to the view' The watchers'

upEvents pointers are used to route events up from subwatchers to superwatchers, while the view sends

callback events down the watcher tree'

7.2 Leaf Watchers

This section describes several example leaf watchers. Most leaf watchers monitor their target object'

so the abstract leaf category object contains default behaviour for attaching and detaching monitoring

using controllers ($g.1.2[ ieaf watchers typically implement the localAttach message by computing a

hI'h" ,rrtch., up protocol wa.s designed some time after the client event protocol.
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Figure 7.2: Watcher event and Message Routeing

monitoring plan and sending the plan to their model's controller. Leaf watchers are associated with only
one object in the target program, so their model is the same as their aim.

Section L0'2.1 presents several illustrated examples of the use of leaf watchers.

7.2.1 Null Strategies

The simplest monitoring strategy is the null strategy, which ignores its target objects ($4.g.4). Tar-raingfm's nullWatcher implements this strategy. A nuttWatctrer is=efiectively a p'laceholder, as it makes noattempt to monitor its model. A nullWatcher is passed as a parameter for other watchers and views whenno actual monitoring is required.

7.2.2 Monitoring an Object's Actions

The most basic local strategy is to monitor all events occurring within a particular object generated bythe target program ($4.3). This strategy is implemented by a tiaceWatcher, shown in Figure z.S.
The ffaceWatcher defines the localAttach message to register the traceWatcher with its model,s con-troller' The control variable used in Figure z.g is initialiseJ by leaf watchers' default behaviour to referto their model's controller. The add message sent to control is part of the controller registering protocol,

described in fuU in Section 8.1.2.

traits traceWatcher = (l
- Parent* = traits leafWatcher.
_ localAttach = (control add: self).

t)

Figure 7.3: tace Watcher Implementation

When the tracewatcher is attached, the localAttach method is executed, and this causes the con-troller to record the tracewatcher in its dispatch database ($8.1.s). The controlt"itt.o monitors thetraceWatcher's model, and sends events representing the model's actions to the traceWatcher. The trace.watcher has no special definitions of eveni hand[nt methods, so its inherited behaviour will forward allup events it receives up the watcher tree to its superwatcher or view. SimilarlS the traceWatcher willforward any down events it receives to its controllei, and thus to its ta.rget object.
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When the traceWatcher is detached, the leaf category watcher's default behaviour will deregister the

traceWatcher from the controller, and so the traceWatcher will no longer receive events.

7.2.3 Selective Monitoring

Leaf watchers can embody more selective strategies than monitoring all their ta^rget objects' actions.

Ta.rraingim provides extra leaf watchers which supply more selective monitoring plans to their controllers,

so that actions which are not required by their views do not need to be monitored ($4.3). These more

selective watchers are equivalent to using a filter watcher attached to a more basic leaf watcher ($7'3'1).

For example, the singleMsgWatcher, illustrated in Figure 7.4, monitors only actions caused by the

single specifiC -"rgg" named by its message parameter. The singleMsgWatcher uses tbe add:For message

to r-egisier itself withlts controller. This message is also part of the controller registering protocol, ($8.1.2).

traits singleMsgWatcher = (l
- parent* : traits leafwatcher.

- localAttach = (control add: self For: message).

t)

singleMsgWatcher: (l

- parent* = traits singleMsgWatcher.

"pata,rneter"
^ message {- rfoo'.

t)

Figure 7.4: Single Message Watcher Implementation

Another selective local strategy is implemented by the topWatcher, shown in Figure 7.5' The top'
Watcher forwards a change to its view whenever the last thread of control leaves its model ($8.2.1)' that
is, whenever the model has completed processing a large granularity operation ($4.3.2)' Since the model

is now quiescent, a view can send synchronous callbacks in response to these changes ($4.2'1)'

traits topWatcher = (l
- parent+ = traits leafWatcher.

- localAttach : (control addTopLevelReturn: self).

t)

Figure 7.5: Top Level Return Watcher Implementation

By using information about the target prograrn's behaviour, the program can be monitored more

efficiently (Sa.g.f). For exa,mple, accessor methods, such as printString or size, do not change an object's

abstract state, and thus do not need to be forwarded to the view-

The changeWatcher, shown in Figure 7.6, is an example of a watcher implementing a strategy whidt
takes information about the progra,m into account. The changeWatcher is a development of the top-

Watcher, but whereas the topWatcher generates events for all messages executed by its model, the change-

Watcher sends changes to its view for only those messages the visualiser considers significa,nt' In Figure

7.6 the messages monitored are at:Put and removeAll, which are the messages sent by a profileWatcher to
its tally collection ($7.4.1).

7.2.4 Monitoring Local State Changes

A view can be updated by monitoring its target object's state cha,nges, rather than the messages it
receives ($4.3.4). In Snlr, changes to an object's local state are made by message sends to assignment

107
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traits changeWatcher : (l

- Parent* : traits leafWatcher.

_ localAttach = (
control addToplevelReturn: self For:
control addTopLevelReturn: self For:
self ).

t)

rat:Put: r.

'rernoveAll : '

Figure 7.6: Top Level Change Watcher Implementation

slots ($5.4'2). Assiguments ca.n be detected by monitoring these assignment messages, and so all cha^nges
iu a single object can be detected by monitoring all that object's assignment messages.

This strategy is implemented by the localWatcher, shown in Figure 7.7, which simply determines the
n€unes of its model's assignment slots, and requests monitoring of these m€ssages. The localWatcher's
localAttach method first assigns a mirror object ($5.4.5), reflecting on the localWatcher's model, to the
modelMirror temporary variable. The watcher's controller is then requested to monitor all the model's
assignment slots.

traits localWatcher : (l

- Parenti' = traits leafWatcher.

- localAttach = ( | modelMirror. 
I

"get a mirror on the model"
modelMirror: (reflect: model).

"monitor all assignment slots"
control addReturn: self

ForAIl: modelMirror localAssignmentSlots.
"and if vector, monitor wrapper method too"

model M i rror is Ref lecteeVector
ifTrue: [control addReturn: self For: rat rPut: IfAbsent']).

t)

Figure 7.7; Local Change Watcher Implementation

Some SnlF objects, such as vectors, are primitiue - they are implemented within the SBlp virtual
machine (vvt). Section 9.3.2 describes how Tarraingfm monitors these object's actions by monitoring the
SnlFJevel wrapper messages which are used to access them. The localWatcher checks whether its model
is a vector: if so, its model's at:Put:lfAbsent wrapper method is also monitored.

The localWatcher sends changes to its superwatcher (or view) after the action causing the change is
complete - for exa.mple, when a message to an assignment slot has returned. As described in Section
4.3.3, some views need to receive notifications before (or both before and after) the change has taken
place. Tarraingfm's library therefore includes prelocalWatcher and allLocalWatcher prototypes. These
are variants of the localWatcher which forward message receipt events (or both receipt and completion
events) as changes to their view. The implementations of the prelocalWatcher and alllocalWatcher are
basically the same as the localWatcher shown in Figure 7.7, but they request difierent events from their
controllers.

Local change strategies are generally quite efficient, since most objects only have a few data slots
which must be monitored. However, local change strategies can only be used when an abstraction is
implemented by a single, self-contained target object ($4.3.4). Any changes generated by a local change
watcher are not synchronous, that is, they do not correspond to atomic oputitions of the target object-'s
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abstraction, unless the object has a very simple representation ($a.2.1). A small (but important) set of

Snlr objects do meet these conditions: those objects, such as vectors' which are used as if they were

structured data types. These basic objects are cornmonly used in the implementation of more abstract

objects, and can-be monitored efficiently by local state change strategies, implemented by variants of

localWatchers.

7.2.5 Alternative Strategies

Tarraingim's framework is sufficiently flexible that it can work with events from a variety of sources, a^s

well as the events generated by the monitoring subsystem's encapsulators. Leaf watchers can be used to

inject these events into the rest of the frarnework. For example, the localTimerWatcher shown in Figure

Z.g implements a strategy based upon polling ($4.3.4). The localTimerWatcher provides much the sa,rre

information as a localWitcher, but it gathers this information by periodically inspecting its model, rather

than monitoring the program directly.

traits localTimerWatcher : (l

- parent* : traits leafWatcher.

- localAttach = ( | modelMirror. I

"get a mirror on the model"
modelMirror: (reflect: model).

"initialise and stut the ticket"
ticker message: (message copy receiver: self Selector: 'tick')'
ticker interval: interval.
ticker start).

,,ticker will send the wateher this mess4ge every interval seconds"

^ tick = (modelMirror localDataSlots do: [ | :slot I

(timerEvent coPYFor: model

Name: (slot,' : ')
With: (modelMirror at: slot) contents)

sendTo: upEvents.

1).

_ localDetach : (ticker stop).

l)

localTimerWatcher: (l

- parent* = traits localTimerWatcher.

"pa,rar!'etexs"
^ interual +- 60.

'trafiables"
- ticker +- ping.

- modelMirror.

l)

Figure 7.8: Timer Watcher Implementation

The localTimerWatcher's localAttach method starts a process (managed by a ticker object) that re'

peatedly sends the watcher a tick message. When the localTimerWatcher receives this message, it uses

a mirroi to inspect its model, and generates timerEvents describing the current contents of its model's

slots. These timerEvents a,re dispatched up the watcher tree (along the upEvents pointer $7.1.4) using the

sendTo message from the event dispatch protocol (see Table 8.6).
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The localTimerWatcher implementation shown in Figure 7.8 is quite naive, as the tick method always
sends a change (i.e', a timerEvent) for every data slot in the model. If a particular data slot has not
actually changed in the interval between ticks, the timerEvent will be sent unnecessarily. To eliminate
these duplicate changes, the naive localTimerWatcher can be composed with a cacheWatiher ($2.3.2).

7.3 Filter Watchers

Filter watchers use one subwatcher. They can be inserted above another watcher in the watcher tree
(which becomes the filter watcher's subwatcher) to modify the efects of that watcher without having to
modify its implementation.

Filter watchers generally do not change their aim or model. They pass the aim they receive from their
superwatcher down the watcher tree to their subwatcher, and return the model they receive from their
subwatcher up to their superwatcher.

This section presents examples of three kinds of filter watchers. Basic filters ($2.3.1) simply delete
some of the events they receive from their subwatcherl caches ($7.3.2) remove dupficate eventsl and
adaptors ($7.3.3) translate callbacks and changes so that a view can be used to display a,n object for
which it was not designed.

7.3.1 Filters

Filter watchers can be used to filter events generated by their subwatchers. They are used to restrict
the changes received by a view, so that the view receives only those changes to which it should respond
($4.3).

When a filter watcher receives an event (via the changeEvent message), it checks the event against
its filter condition. If the event meets the conditions it is fiorwarded by the filter; if not, it is discarded.
Figure 7.9 shows a simple filter watcher, a prefixWatcher, which passes only those events whose message
name begins with foo.

traits prefixWatcher : (l

- Parent* : traits filterWatcher.
-changeEvent:e:(

(,foo' isPrefixof: e name)
ifTrue: [e sendTo: upEvents]).

t)

Figure 7.9: Filter Watcher Implementation

7.3.2 Caches

A cache watcher is a development of the basic filter watcher. Whereas a filter watcher discards events on
the basis of a simple predicate, a cache watcher removes duplicate events. For example, a cacheWatcher
placed between a view and a localTimerWatcher will remove the duplicate events generated by the local-
TimerWatcher. Thus the view will then receive changes only when ils model has actually changed.

Figure 7.10 shows a simple implementation of a cacheWatcher, which caches only one.argument events,
such as those produced by a localWatcher or localTimerWatcher. The cache is a 3olr, diciionary object,
held in the cacheWatcher's variable named cache. Events a^re handled by the changeEvent message. When
a^n event arrives, it is checked to see that it has only one argument: if not, it is routed up the watcher
tree ($7.1.4). The names of one argument events are then looked up in the cache, and the cached value
compared with the message's argument. If the cached value is different from the new event's argument
value, or the message name was not found in the cache, then the event is passed up the watcher tree, and
the cache updated with the message's argument.
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traits cacheWatcher = (l
- parent* : traits filterWatcher.

- changeEvenl' s: (loldl

"forward unsuitable events"
e arguments size { L

ifTrue: [^e sendTo: upEvents].

"get old vaJue"
old: cache at: e name lfAbsent: sentinel.

"if the ralue is different, update cache and forwa,rd event"
(old : (e at: 0))

iffalse: [cache at: e name Put: e at: 0.

e sendTo: upEventsl).

"sentinel - not equal to anything, including itself'
sentinel : (l : *: (0 false) l).

l)

cacheWatcher : filterWatcher -Add: (l

- parent{, : traits cacheWatcher.

"v4riables"
cache <- dictionary copy.

l)

Figure 7.10: Cache Watcher Implementation

7.3.3 Adaptors

Filter watchers can implement adaptors [163, 79]. An adaptor allows a view to visualise an object with
which it would not normally be compatible. Adaptors translate events flowing through them, altering

the event's parameters - the na,me of the message causing the event, and the values and types of the

event's a,rguments ($8.3.2).

Consider an alternative representation of a traffic light (an altlight). Unlike the abstract object
presented in Section 6.2, an altLight represents a tra,ffic light as a vector containing three integers. An

element value of 1 represents a"n aspect that is illuminated; any other value represents an aspect that is
not illuminated. An altLight has no protection or interface - objects wishing to manipulate it do so by

sending messages directly to the vector.

"create an altLight slowing an anber aspect"

altLight: vector copySize: 3 FillingWith: 0.

altLight at: 1 Put: 1. "seJf raecfors arc indexed from 0'

The tlView view illustrated in Figure 6.5 cannot visualise an altLight. In order to redraw itself, the

view sends the isRed, isAmber and isGreen messages to its model, but an altlight does not implement

these messages. A trafficlight view expects to receive changes about a colour assignment slot, a,nd red,

amber and green mutator messages. An altLight will simply generate two array accesses whenever it is

changed - one as the current aspect is turned off and another as the new aspect is turned on.

"change the amber light to green"

altLight at: 1 Put: 0.

altLight at: 2 Put: 1.
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traits tlAdaptor : (l

- Parent* : traits filterWatcher.

"handle upDvents"
^changeEvent:e=(

I names - ('red' & 'amber' & 'green') asVector 
I

((e name) = rat: Put : IfAbsent: ') && [(e at: 1) : 1]
ifTrue: I

(e copyName: names at: (e at: 0))
sendTo: upEvents]).

"handle downEvents"
^ callbackEvent: e: (

I names - ('isRed, & 'isAnber' & 'isGreen') asVector 
I

(e copyName 'at:' With: (names keyAt: e name))
sendTo: down).

t)

Figure 7.11: Adaptor Watcher Irnplementation

To enable a trafficLight view to visualise an altLight, the callbacks sent by the view must be translated
into vector assignments, and the vector actions of the altlight must be translated into trafficLight messages.
This translation is implemented by the tlAdaptor watcher, illustrated in Figure 7.11.

When the tlAdaptor receives a changeEvent travelling up the watcher tree, it first checks that this event
describes a vector assignment (i.e., that it is an at:Put:lfAbsent: message) and that the vector element is
being set to 1 (i.e., that an aspect is being illuminated). If so, a new event which can be understood by
the tlView is created and forwarded up the watcher tree. When a callbackEvent is received from the tlView
(via the callbackEvent message in the tlAdaptor) a new callbackEvent interrogating the altlight vector is
created and forwarded down the watcher tree. Each method uses a literal vector called names to translate
between the names used by the trafficlight (and the tlView) and the vector positions used by the altLight.

7.4 Indirect Watchers

Indirect watchers separate their aim and their model. We call these watchers i,nd,irect because the model

- the object actually displayed by the view - is not specified directly by the user. The user specifies
the aim, and the indirect watcher computes the model and sends it to the view. For this reason, indirect
watchers use two subwatchers - a main subwatcher to monitor the model, and an aux subwatcher to
monitor the aim.

Indirect watchers have two main purposes. First, aggregate abstractions ($3.1.3) can be visualised
by monitoring the aim, and using the information produced by the monitoring to maintain a database
which is assigned to the watcher's model ($7.4.1). Second, implementation views displaying an object's
components (such as the stack implementation view from Figure 3.3) can use indirect watchers to specify
the components by reference (97.4.2).

Section 10.2.3 presents two illustrated sxa.mples of the use of indirect watchers.

7.4.1 Aggregate Abstractions

Aggregate abstractions can be displayed by a watcher interposing a new model between a view and its
aim. For example, an execution profile (such as the operation profile view from Figure 3.4) can be created
by monitoring an object, and building a database of event frequencies into a table. This table is then
monitored a^nd displayed by a suitable view.
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A simple operation profile is provided by the profileWatcher illustrated in Figure 7'12' The profile-

Watcher uses two subwatchers, held in the profileWatcher's main and aux va.riables. The profileWatcher's

aim is monitored by its aux subwatcher. The aux subwatcher is a recvWatcher, which is simila,r to a
traceWatcher ($7.2.2) but sends changes for all message receipt events. Events received from the aim are

used to update a dictionary (held in the profileWatcher's profileTally variable) which maps message narnes

into the uumber of times particular messages have been called. The view's model is set to refer to the

profileTally, which is monitlred by the main subwatcher. Events detected from the profileTally by the main

subwatcher are forwarded up the watcher tree. The view thus receives events rega^rding the profileTally,

rather than the original object, and any callbacks it generates will also be directed to the tally. This

routeing is illustrated in Figure 7.13.

traits profileWatcher = (l
parent* : traits indirectwatcher.

"attach subwatchers"
^ localAttach : (

main upEvent: upEvent' "events from main b;pass us"

main watch: profileTally' "attach main watchet"

attached ifTrue: [aux watch: aim]). "and aux watcltet"

"haadle events from the aux watcher"
^changeEvent:e=(

command at: e name Put; (callback at: e name lfAbsent: 0) succ)'

"route caJlbacks to main watcher and model"
^ callbackEvent: e = (e sendTo: main).

"handle confi guration messages fr om subwatchers"
^ sub: sw Model: mod = (

main : sw ifTrue: [model: mod. up sub: self Model: mod])'
^ sub: sw Warning: fitsg = (up sub: self Warning: msg)'
^ sub: sw Error: msg - (detach. up sub: self Error: msg).

l)

profile = (l
- parent* : traits Profile.

^ profileTally +- dictionary.
^ aux {- recvWatcher.
^ main + changeWatcher.

t)

Figure 7.12: Profile Watcher Implementation

The profileWatcher's localAttach method is called to attach the profileWatcher's subwatchers. The

main waicher (monitoring the tally) is attached first, a,nd its upEvents pointer is set to forward any

events it generates to bypass the profileWatcher. If the main subwatcher is successfully attached, the

aux watcher is attached. Events from the aux watcher are handled by the changeEvent method, which

increments the entry in the tally for the message name of the event, by sending a command callback.

Configuration messages (sub:Warning and sub:Error) are generally passed up the watcher tree, but any

sub:Model messages from the aux watcher are ignored, as the main watcher determines the model for the

whole profileWatcher ($7.1.3).
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Figure 7.13: Event Routeing in a profileWatcher

7.4.2 Passing Models by Reference

Consider the stack implementation view presented in Figure 3.3. This view illustrates the implementation
of the stack abstraction by displaying the components of the stack object. In particular, it includes a
view of the contents component of the stack. The contents component is a vector which is assigned to
the contents variable of the stack object. Since SELr vectors have a fixed size, if a stack needs to hold
more elements than will fit into its current contents vector, it must allocate a larger vector, fill it with the
elements of the old contents vector, and then replace the old contents vector with the nevl vecror.

If a view of the contents component of a stack simply displays the original contents vector object, when
that object is replaced within the stack object, the view will not notice this change and will continue to
display the original vector object which is no longer pa"rt of the stack implementation. The model for a
view of the stacks contents vector must be specified by reference (i.e., as the value of the contents slot of
the stack object), rather than directly (i.e., as a particular vector object).

An indirect reference watcher can be used to dynamically redirect a watcher's model. By using an
indirect reference watcher, a view's model can be specified by reference, and kept correct as the target
program evolves. By using several indirect reference watchers, a view's model ca,n be specified by a path
of arbitrary length from its aim. This is similar to the use of pointer variables to denote objecis in
constraint systems [219].

Slot Watcher

A slotWatcher (see Figure 7.14) is a simple example of an indirect reference watcher. A slotWatcher
monitors a particular slot of its aim and sets its model to that slot's contents. The aim is monitored by
a cmplMsgWatcher: a version of a singleMsgWatcher ($7.2.3) which monitors only completion events.

When a slotWatcher is attached, its localAttach method is executed, which attempts to attach the aux
subwatcher. When this subwatcher successfully acquires a model, it will send a sub:Model message up to
the slotWatcher. The slotWatcher responds to this message by attempting to attach its main subwatcher
to its model using the attachMain method. Whenever an event is received from the aux watcher, it is
handled by the changeEvent method, which attaches the main watcher to the new model.

A slotWatcher will become provisionally attached if its main subwatcher cannot be attached, provided
that its aux subwatcher is attached. This is because the slotWatcher's model can change (such a change
being detected by the aux subwatcher), and so the main subwatcher may be able to attach to a different
model in the future. Any sub:Error messages indicating attachment errors from the main subwatcher
are therefore translated into sub:Warning messages, to indicate that the slotWatcher is now provisionally
attached.
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traits slotWatcher : (l

- parent* = traits indirectWatcher.

"attach the aux watcher"

- localAttach = (
aux message: (slot,' : ') canonicalize, "select slot"
aux watch: aim). "attach aux watchet"

"atta,ch the main watcher whenever the local watcher changes"

- attachMain: inter : (l mir 
I

mir: reflect: inter'
(mir names includes: slot)

iffalse: [^up sub: self Warning: 'No such slot: ' ,slot]'
attached ifTrue: I

main uPEvent: uPEvent.

main watch: (mir at: slot) contents reflecteel)'

"toute callbacks to model"
^ callbackEvent: e : (e sendTo: main).

"handle events from the aux watcher"
^ changeEvent: e = (main watch: e at: 0).

"handle confrguration messages ftom snbwatchers"
^ sub: sw Model: m : (

aux: 5w

ifTrue: [attachMain: m]

False: [model: m' up sub: self Model: mod])'
^ sub: sw Error: msg = (

aux : sw

ifTrue: [detach. up sub: self Error: msgJ

False: [up sub: self Warning: msgl).

t)

slotWatcher : (l

- parent* : traits slotWatcher.

"parar.etets"
^ slot e tf oor .

^ main <- localWatcher.
^ aux e cmplMsgWatcher.

t)

Figure 7.14: Indirect Slot Watdrer Implementation

If the aux subwatcher is unable to attactr itself to the slotWatcher's aim (and thus sends a sub:Error

message to the slotWatcher), the indirect watcher as a whole can never become attached, as it will never

be able to determine its model. If the slotWatcher receives a sub:Error message from its aux subwatcher,

it therefore detaches itself and relays the sub:Error message up the watcher tree'

Figure 2.15 illustrates the routeing within a slotWatcher. The view's aim is monitored by the aux

subwJtcher. The slotWatcher inspects this object to retrieve the value of the slot containing the model

whenever the aux subwatcher indicates that it has changed. The model is itself monitored by the main

subwatcher, which has its upEvents pointer set to route events directly to the slotWatcher's superwatcher

115
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Figure 7.15: Event Routeiug in a slotWatcher

Message Watcher

A slotWatcher allows an object to be specified relative to the contents of another object's slot. Other
kinds of indirect reference watchers can also be constructed. For example, a messageWatcher specifies a
view's model by refereuce to the result of a message sent to its aim, that is, according to the result of an
abstract operation.

Consider again the stack exa,rnple. A slotWatcher can be used when constructing a view of its imple-
mentation, looking inside the stack object and visualising each of its component objects separately. To
produce a view of the object on top of the stack, the top object must be retrieved from the stack's im-
plementation. A messageWatcher solves this problem, by calculating its model by sending a top message
to the stack object, rather than directly inspecting the stack object's implementation. The stack must be
monitored, and the model recomputed when it chenges.

A messageWatcher is implemented by making two changes to the basic slotWatcher. First, the main
subwatcher's model must be retrieved by sending a callback to the aim, rather thau simply accessing a
slot. Second, the whole abstraction represented by the stack must be monitored, rather than just one of
stack object's slots, so the cmplMsgWatcher acting as the aux subwatcher must be replaced by a watcher
implementing a more powerful strategy, such as a changeWatcher or topWatcher ($2.2.8).

7.5 Multiple Watchers

A multiple watcher employs many subwatchers. In this way, a watcher can monitor any number of
objects. As with binary watchers, multiple watchers do not mouitor these objects directly, rather a
multiple watcher combines information gathered by a number of subwatchers, one for each object being
monitored.

Multiple watchers are similar to hierarchical views ($6.5) in many ways. Hierarchical views and
multiple watchers both allow information about multiple objects to be displayed in a single window. But
whereas a hierarchical view uses a separate subview (and associated watcher) to display each object, a
multiple watcher (and several subwatchers) can be used by a unitary view to display a number of obiects
directly, without intervening subviews.

A multiple watcher obviously requires multiple target objects to watch. Tarraingfm's framework is
designed so that watchers and views accept only a single object as their target - for Jxample, the watch
messages in the view public protocol (see Table 6.1) and watcher down protocol (see Table 2.2) have
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only one argument. Multiple watchers therefore take a single object as their model, which by convention

contains the multiple target objects to be monitored. Depending on the particular multiple watcher, this

object may or may not b-e pari of the program, and may or may not be monitored by the watcher'

Event routeing within multiple watchers is simpler than routeing within binary watchers' Generally,

up events received from subwatchers are passed directly up to the multiple watcher's view or parent

watcher, and down events are sent directly to the object which is the multiple watcher's model'

7.5.L Aggregate Algorithmic Strategies

Multiple watchers can be used to produce aggregate views of algorithmic abstractions. For example, a

standard trace or profile view, combined with a multiple watcher, can display the messages processed by

;;;;p of objects, whereas the sa.rne views display only 1 singleobject if a leaf or filter watcher is used'

Other aggregate visualisations, such as timing diagrams [124], object call clusters [165]' and road maps

[104], coiu-ld 6e produced using multiple watchers given suitable views.

The simplest multiple watcher is the multipleObjectWatcher, illustrated in Figure 7.16. A multipleOb-

jectWatcher simply aeitoys subwatchers to, monitor all the elements of the collection object it receives as

its model, and forwa,rds events it receives from these subwatchers up the watcher hierarchy'

traits multipleObjectWatcher = (l
parent* = traits multipleWatcher.

"attach subwatchets"
^ localAttach : (

main watch: model.

attached ifTrue: [callback do: [l:targetl
add SubWatcher: (su bProto copyWatch : target)l]'

attached ifTrue: [up sub: self Model: model])'

'1aandle upEvents"
^ changeEvent: e = (e sendTo: upEvents)'

'handle downEvents"
^ callbackEvent: e = (e sendTo: main)'

l)

multipleobjectWatcher : (l

- parent* : traits multipleObjectwatcher'

"variables"
^ subWatchers e list coPY'

"pa'ranetets"
^ subProto {- tracewatcher.
^ main <- nullWatcher.

t)

Figure 7.L6: Multiple Object Watcher Implementation

When a multiplegbjectWatcher is attached, it must attach its subwatchers - a main subwatcher which

refers to its model (the collection object contarning the actual target objects), and a series of other sub-

watchers to monitor the actual target objects. As i,'itn any other watcher, when a multipleObjectWatcher

is attached, its localAttach method is executed, and this metho{ begins by attaching the main subwatcher

to its model. The multipleObjeaWatcher does not require any dynarnic information about the collection,

so a nullwatcher is usei ($2.i.1). once the main subwatcher is successfirlly attached, the multipleobiea-

Watcher must monitor thJ actual target objects the model contains. To do this, it first sends a callback
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to its model (using the do message) to enumerate the actual target objects, then creates a series of sub-
watchers to monitor each of them' The subwatchers a^re createJby cllning the multipleobjectWatcher,s
subProto watcher pa,ra,meter, in much the same way that hierarchical views clone their view prototype
parameters ($6.5). The resulting subwatchers monitor the actual target objects and send change uu"ot,
describing those objects' actions back up to the multipleobjectwatcher.

When the target p,rogxam is running, the multipleObjectWatcher simply forwards any change eventsit receives from its subwatchers up the watcher hierarchy (via the chanieErent method), a.nd-forwards
any callbacks it receivcs from its superwatcher down to its model via the main subwatcher (via the
callbackEvent message.)

7.5.2 Anti-Aliasing Strategies

A multipleObjectwatcher simply monitors a group of objects. A shadowWatcher is a more complex multiple
watcher which implements a strategy to mitigate the effects of aliasing, by detecting whenever an object is
modffied by a message sent via a^n alias rather than via the object's interface ($4.4). A shadowWatcher ca.n
be used to produce views of program abstractions where their implementatio.r i, ,us.eptible to aliasing
problems.

A shadowWatcher inspects its model's structure, and attempts to determine the members of the object
complex of which its model is the head ($4.4.1). The complext members are then monitored in addition
to the model. A view using a shadowWatcher is thus informed when an aliased subcomponent of its
model may have changed. We call this watcher a shadowWatcher because it depends upon a heuristic
approximation of the model's object complex, since the precise object complex cannot be determined
easily' We call this approximation the model's shad,ow rut, *a it is computed as a transitive closure
over objects' variable slots (references to other objects), startiug at the model. The shadow set is thus a
subgraph of the object graph ($3.6), rooted at the moJel. The shadow set is an approximation becauseit can both underestimate and overestimate the object complex. The shadow set can underestimate the
complex by not enumerating all references upon which the complex depends - for example, Tarraingim,s
definition of the shadow set ignores references through inherited objects. The shadow set can overestimate
by enumerating objects which the head object does not in fact depend upon - for example, by including
objects which are reachable from the head object, but which a^reencapsulated parts of another object,s
implementation. The shadowWatcher enumerates the shadow set, and monitors the local state of each
object in the set. When an object's state changes, the shadow set is recomputed, and the monitoring is
adjusted to correspond to the new shadow set.

An implementation of a shadowWatcher is outlined in Figure 7.17. When it is attached, its localAt-
tach method is invoked. This attaches a main subwatcher, Jhi.h, as in the multipleobjectWatcher, is a
nullWatcher used mainly for handling callbacks. The localAttach method sends the recalcShadow mes-
sage, which then sends the computeShadowSet message to a mirror on the model. The computeShadowSet
message computes the shadow set using a depth-first search, and returns a set of mirrors reflecting the
objects contained in the shadow set. Once the shadow set iras been calculated, an adjuster ($o.slz) is
used to create a subwatcher to monitor each object in the set. These subwatchers are created by cloning
the subProto parameter.

When an event is received by a shadowWatcher from a subwatcher, it is handled by the changeEvent
message' This passes the event up the watcher tree, then sends recalcShadow to recompute the shadow
set and adjust the subwatchers. Any new objects in the shadow set will have a subwatcher cloned and
attached to them, and any objects no longer in the set will have their subwatcher removed.
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traits shadowWatcher = (l
parent* : traits multiPleWatcher.

"attach subwatehers"
^ localAttach : (

main watch: model.
recalcShadow.
attached ifTrue: [up sub: self Model: model]).

"recalculate extent of object complex"
_ recalcShado* = (l shadow I

shadow: modelMirror computeShadowSet.

adjuster adj ust: subWatchers
Keys: [l:swl (reflect: sw model)]
To: shadow

Create: [l:mirl
addSubWatcher:

(subProto copyWatch: mir reflecteel

Keep: []
Destroy; [l:oldl removeSubWa cher: old]).

'?nalr.dle up events"
^changeEvent:e:(

e sendTo: upEvents.
recalcShadow).

l)

shadowWatcher = (l

- Parent* = traits shadowWatcher.

'\afiables"
^ subWatchers {- list coPY'

upatanetetst'
^ subProto e localWatcher'
^ main e nullWatcher.

l)

Figure 7.17: Shadow Watcher Implementation
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Tarraingfm's Watcher Library
Tarraingfm's watcher library, currently containing approximately fifteen difierent watchers, is about a
third of the size of Tarraingim's view library. The watchers presented in this chapter have therefore
described a la^rge proportion of the content of the watcher library. We conclude our discussion of watchers
with a description of our use of watchers to support the views in the view library.

7.6.1 Leaf Watchers

The majority of watchers in Ta^rraingim's watcher library are leaf watchers, and these are also the type
of watchers most often used by views, The basic leaf watchers described in Section 7.2 (especialtv iil"
nullWatcher, traceWatcher, topWatcher and localWatcher) are the watchers we have used most often,
followed by customised variants of these watchers - for example, the Quicksort hops view in Figure 3.i
uses a variant of the cmplMsgWatcher.

Leaf watchers ultimately provide views aud other watchers with access to the facilities provided by the
controllers and encapsulators of the monitoring subsystem. Controllers and encapsulators are discussed
in the following two chapters.

7.6.2 Filter'Watchers

Most of the filter watchers we have used have been cacheWatchers, used in conjunction with localWatchers,
as described in Section 7.3.2. Views which use a localWatcher can generally replace it with a cachingLo-
calWatcher (a combination of a localWatcher and a cacheWatcher) to eliminate spurious updates with no
other effects.

The library views do not make much use of the basic filter watchers. The event dispatch mechanisms
provided by Tarraingfm's controllers ($8.1.3) effectively provide filtering on event parameters to lea,f
watchers, without the use of filter watchers. If the monitoring component is not able to provide such
precise monitoring, frlter watchers can be combined with leaf watchers to provide the same effect. Dynamic
filtering, especially if based upon the current properties of the target prograrn, is easier to implement in
filter watchers than in controllers.

The library similarly does not make much use of adaptors, since we have had the luxury of constructing
views to match their target objects. This may be in part because, in practice, target objects fall into
one of two categories: either they are part of the Splr libra^ry, have a well defined interfacl, and can be
displayed by generic views without adaptation; or they are custom objects, pa-rt of a particula"r prograrn,
and so require the construction of a custom view tailored to be compatible with them. Adaptors could
prove more useful if Tarraingim was used to visualise a new program in a domain for which views had
already been written, however, we have not yet carried out such erperiments.

7.6.3 Indirect'Watchers

Tarraingfm's library contains several indirect watchers which provide aggregate abstractions of a pro-
gram's behaviour or structure. The basic profileWatcher can be adapted to-generate a variety of difeient
profiles by changing the aux watcher used to monitor its aim. For example, a profile of assignments to
an object's variable slots can be produced by replacing the recvWatcher by a locilWatcher, or a profile of
top level operations produced by using a topWatcher. We have also implemented several other aggregate
abstractions of an object's behaviour. For example, an objectStackWatcher keeps track of the active mes-
sage sends in an object and displays them as a stack, and the objectTreeWatcher calculates a tree of the
history of an object's message invocations.

Several other watchers also produce aggregate abstractions which can be displayed by tree views.
For example, the childTreeWatcher and parentTreeWatcher can be used to display inheritance hierarchies
(such as Figure 7.1), and the structureTreeWatcher can display abstraction structure diagrams (such as
the stack abstraction view in Figure 3.4).



7.6 Tannerxciu's WercnpR LrsneRy

Indirect watchers also provide an alternative to adaptors. An indirect watcher can be used to construct
an aggregate abstraction based upon the original target object, that is directly compatible with the view.
This changes the view's model, in contrast to an adaptor, which translates the view's callbacks and changes
but does not change the model. Using an aggregate abstraction can be easier for the visualiser where
complex objects are involved, as the target object can be translated in one batch pass when the watcher
is initialised, rather than writing a,n adaptor which must translate every change and callback. Using
an aggregate abstraction has some disadvantages if incremental updating or user input is required, as
incremental changes from the original ta,rget object (the view's aim) must be translated into incremental
changes in the aggregate abstraction model, and the user's commands must be translated from the model
to the aim.

Indirect reference watchers (the slotWatcher and messageWatcher $7.4.2) a.re unique, since they can
be used with any view and any other watcher. Although these watchers redirect their model, callbacks,
and changes, they do not alter the event tra"fifc in any way. We have found indirect reference watchers
indispensable in constructing implementation views.

7.6.4 Multiple Watchers

The main application of multiple watchers has been for managing aliasing, as in the shadowWatcher.
Very few of the views in the view library have had problems with aliasing in the target progrEun, so,
as with filter watchers, we have not used multiple views very much. There are two main reasons for
this. Firstly, although aliasing is endemic in object oriented programs, the mere presence of aliasing
does not necessarily a,fiect a visualisation. A visualisation is only affected when an object is changed
via an alias crossing the boundary of an object complex ($4.4.1). Ma.ny Seln objects (including most of
the collections) only function correctly under the assumption that they will not sufier from the effects of
unintended aliasing.

Secondly, we have avoided many potential aliasing problems by using multiple views instead of multiple
watchers. For example, the elements of a collection can often be modified without reference to the
collection containing them. A monolithic view displaying the collection is therefore affected by aliasing
problems. A hiera.rchical view of the collection uses separate subviews to display each element: these
views monitor the elements they a,re displaying, and are notified of any changes in their target element.
The hierarchical view only needs to receive changes about the structure of the collection itself, and for
this, monitoring only the collection object is usually sufficient.

Finally, it is interesting to note that there is one view which is very susceptible to aliasing. This view
is the printStringView, a very simple view which displays an object's printed representation (known as
the object's printString). The printString of a Sulr object can include the printStrings of a large number
of other objects, many of which are not normally considered part of the original object being printed.
For example, a sequence responds to printString by recursively sending printString to each of its elements.
If any of these elemeuts are also sequences, they will print their elements, a,nd so on. Although few of
the objects printed will be part of the original sequence, a cha,nge in any of these objects can change
the original sequence's printString. A watcher which handles aliasing must therefore be used with a
printStringView.

22. A good system can't have a weale command language.

Alan Perlis, Epi,grams On Progmrnrruing lL68l
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Monitoring Subsystem

This chapter describes the design of the monitoring subsystem that implements the program component
of the APMV model ($3.?). The first section ($8.1) describes the controller objects which provide an

interface between this subsystem and the rest of Tarraingfm. The next section ($8.2) describes how

controllers manage the flow of control between the target program and Tarraingim. Section 8.3 describes

the event objects which carry information around Tarraingim's framework. Although events do not belong

to any particula,r subsystem, by far the majority of events a,re created by controllers in response to the
monitored actions of the target program - therefore they are discussed here. Section 8.4 concludes the
chapter.

Tarraingim's encapsulator objects, which are used by controllers to perform the actual monitoring of
the target program, are described in Chapter 9.

S. L Controllers

Controllers have two main responsibilities within the monitoring subsystem. First, they provide the
interface used to create and manage encapsulators. Second, they package data from encapsulators into
events and distribute the events to the rest of the system. Controllers act as dynamic meta-objects
within Sur, in much the sarne way that mirrors are static meta-objects. Both controllers and mirrors
provide information about other objects in the program: a controller dispatches execution events, while
a mirror describes object's slots. The interface provided by controllers is not specific to encapsulators.
Encapsulators could be replaced by another monitoring technique organised around objects in the target
program without changing the controller interface protocols.

This section discusses how controllers are created, then describes how they provide information about
the ta^rget prograJn. Note that for technical reasons, some behaviour properly local to encapsulators is

implemented within controllers. This is described in Section 9.1.4.

8.1.1 Creating Controllers

Flom outside the subsystem, controllers are located via SELF's mirror objects ($5.4.5). Tarraingim adds
the controller message to all mirror objects. Sending the controller message to a mirror returns the controller
associated with the mirror's reflecteel. Unlike mirrors. controllers are canonical - there is at most one

rA mirror's rcflectee is the object upon which that mirror reflects.

L23
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controller for any object in the target program. Once a controller has been created for a particular target
object, it is shared by all other objects interested in that ta.rget object. The intended model is that every
object has a unique airtual controller, yet only those controllers required in practice are created. Like all
Srlr objects, controllers are recovered by a garbage collector when they are no longer required.

8.1.2 Registering Clients

Once a controller has been created, it can be used to obtain information about the execution ofits target
object. A controller's client (typically a watcher) may register its interest in the ta.rget object by sending
the target object's controller its monitoring plan using the controller registering protocol (see Table 8.1).
A client object must be able to receive event notifications from a controller, that is, it must support the
client event-handling protocol ($8.3.6). Both views and watchers support the client event protocol, but,
in the current confi.guration of the framework, watchers are the only objects used as clients of controllers.

controller protocol

Registering
add: client

remove: client

Registers client with the controller. In the future, any (non-meta) events

occurring within the target object will be dispatched to client.
Deregisters client. No more events will be dispatched.

Table 8.1: Controller registering protocol

A controller continues to dispatch events to a client as long as that client remains registered. Once
a client is no longer interested in the target object (perhaps a view has been closed by the user, or an
indirect reference watcher has changed its model $7.4.2), the client sends a remove: message to deregister
itself from the controller.

Although some watchers need to be notified about events occurring within the target object, many
other watchers are not interested in most of the messages a controller could send to them ($7.2.3). For
exa.rnple, while a trace view needs to be notified about every action of its target object, a simple data
structure view needs to be notified only when one of its target object's slots changes - in effect when
one of a small set of messages has been completely executed by the object. The controller registering
protocol includes optimised messages which allow a controller's clients to choose the events they wish to
receive (see Table 8.2).

Creating Encapsulators

When a controller's client requests dynamic information about its ta^rget object, the controller will attach
a,n encapsulator to its target. This encapsulator will remain attached while there is at least one client
registered. When all clients axe no longer interested in the target object, the encapsulator is removed.
There are no explicit commands sent from a client to attach or remove an encapsulator. Instead, this is
managed automatically, by the controller. For debugging purposes, controllers provide attach and detach
messages, messages to determine whether an encapsulator is currently in use, and a message to return
the controller's target object (see Table 8.3). Since removing an encapsulator is slow ($9.1.1-) there is
an option to defer removing an encapsulator if the user considers that the target object may have an
encapsulator reattached at some future time.

8.1.3 Dispatching Events

A controller dispatches events to all interested clients. The events may originate from the controller's
encapsulator or may have been sent from another part of Tarraingim. The encapsulator sends events to
its controller using a private protocol, while other objects use the client event protocol ($8.3.6).
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controller Protocol

Optimised Registering
add: client For: message

Register client's interest iu all actions caused by the message named message'

add: client ForAll: collection
Register client's interest in all actions

caused by the messages na,med in the collection'

addTopLevel: client Register client's interest in all top level actions ($8'2'1)'

addReceipt: client Register client's interest in all receipt actions.

addReturn: client Register client's interest ia all return actions'

addTopLevelReturn: client
Register client's interest in top level return actions ($8'2'1)'

add: client MetaDePth: md

Register client's interest in all meta-events

with a metaDepth less than or equal to md ($8'2'3)'

...this is incomplete. There is one rnessage in this protocol tor each table in the ilispatch

d,atabose G8.1.3), but this giues the flaaour!

Table 8.2: Controller optimised registering protocol

controller protocol

Debugging
attach
detach
retain: flag
isMonitoringActive
target

Attempt to attach an encapsulator to the target object'

Remove any encapsulator from the target object'

Ifflag is true, then never automaticatly detach an encapsulator'

true if monitoring is in process, i.e., if an encapsulator is attached.

Returns the controller's target object.

Table 8.3: Controller debugging protocol

when dealing with events from encapsulators, the controller receives the event type, name' argu-

ments, return vJue and self from the encapsulator. The controller calculates the remainder of the event

para,rneters, such as recursion depth, and meta-depth ($S'2), packages all the parameters into an event

ob;ect, then dispatches the event to interested clients ($8'3'6)'

These events must be dispatched so that Tarraingim, and in particular the event's client watchers and

views, remain synchronised with the target ptogt"*19a.2.1)' In practice, synchronisation can be ensured

by usir,g Selr sta^rrda"a message sends-to airput"t wents. Evgnts are therefore sent to controllers from

encapsulators using standard *irr"gu send,s. iontrollers similarly use standard message sends to forward

these events to their client watch.rr *d views. Event clients therefore execute serially in the same process

the controller uses to dispatch the events, that is, the target prosraln process which originally caused the

event to be generated. The target program is not restarted until all event processing has been completed

and the dispatch message sends return.

Dispatch Database

A controller maintains a database of clients which are interested in that controller's target object' .Since

clients are able to select the parameters of events about which they wish to be notified ($8'1'2)' the

database is organised to allow the controller to notify its clients about only the actions in which they a^re

interested. Note that clients (such as filterWatchers, $7.3.1) may further restrict the events they handle'

The dispatch database is illustrated in Figure 8.1. Program events are indexed by level, type and

narne, while other events are essentially not indexed. The indexed and nonindexed tables are implemented
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by Snlr's standa.rd dictionaries and hash tables respectively.

Progra.m Events Receipt Top Level one table indexed by message na-e
one table tbr all messages

All Levels one table indexed by message na,me
one table lor all messages

uompleted 'Ibp Level one table indexed by message nams
one table tor all messages

All Levels one table indexed by message name
one table tor all messaqes

Unwind Top Level one table indexed by message name
otre table tor all messaqes

All Levels one table indexed by message nams
one table tor all messages

Meta Events one table for all messaees

Figure 8.1: The controller,s Dispatch Database

Optimised Event Creation

A controller may receive a message from an encapsulator when there axe no clients interested in that
particular type of event' In such cases, the controller will not create an event object. This happens
surprisingly often, since Tarraingfm's encapsulators intercept every message, and notify their cont;;llers
twice for each one ($9.1.2). Avoiding the creation of such unnecessary event;bjects increases Tarraingfm's
efficiency, especially with respect to the garbage collector.

8.2 Control Flow

Controllers manage the flow of control within Tarraingfm. When an encapsulator detects an action within
its ta^rget object, the encapsulator notifies its associated controller. The controller then dispatches events
to its client watchers.

Controllers calculate two event parameters ($8.3.2) which describe the flow of control within the
target program' and between the target program and Tarraingfm. These parameters are the depth of
method invocations within an object and the metaDepth of recirrsive monitoring within Tarraingfm. In
this section, we describe how these parameters are used to manage the flow of control within Tarraingim.

8.2.L Event Depth and Top Level Events

Informally, the depth parameter of an event is the number of active method sends within the event,s
object when the event occurs. A common use of depth is to format a trace visualisation, as in Figure g.2.
This displays a trace of the behaviour of a trafficLight object (see Figure 6.4) which is sent the iessages
cycle and print' Each line representing a message receipt or return event is indented by the event,s aepltr.
The send of cycle in the first line of Figure 8.2 has a depth of one, the send of red in the second line of
the figure has a depth of two, and so on.

Figure 8.2 includes a number in angle brackets before each message send. This is the identifier of
the SBIF process executing each message. Thus process <92> executes the cycle message (lines L to 1g),
while process <94> executes the printString message (lines L9 to22). The effects of proJesses in Ser,r,are
discussed further in Section 8.2.2.

Depth

We define the depth of an event in terms of the depth of the event's object at the time the event occurs.A controller maintains a value for the depth of activations within its target object. An object's depth is

8 MonrroRtNc SuBsysrEM
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Figure 8.2: A Tlace View

defined as follows:

1. When no messages are being evaluated within the object, the depth is zero'

2. When a message is received, the object's depth is increased by one before a receipt event is Benerated'

S. When a message returns (either locally or non-locally), the object's depth is decreased by one after

a return event is generated.

An event,s depth is simply the object's depth at the time the event is generated. The matching call

and return events caused by a single message send normally have the same depth ($8'2'2)' This is the

case in Figure 8.2 where matching call and return events are indented by the salne amount'

Note that messages sent from one object to another do not directly a,fiect the sending object's depth

(although the receiving object's depth is increased for the duration of the message). If a send results

in the second object rJtrai"s messages back to the first, these messages will a,ftect the depth of the first

object when they are receive'd by that object. A self-send (such as the sends of red, amber and green from

cycle in Figure g.2, see also $5.4.2) altersihe depth ofthe sending object because the sending object itself

receives the self-message. TLus depth does not distinguish between inter-object and intra-object sends.

Top Level Events

An event is a top leael event if it occurs due to a top leuel message send to an-object, that is, when no

other message sends are active within the object. Top level 
"ygtttt 

appear at the very left of a message

trace - for exa"rnple, in Figure 8.2, the receipts and returns of the cycle and printString messages are top

level events.

Using the definition of an event's depth, an event is a top level event if it has a depth of one' That is,

if the event is a message receipt the object's depth was zero before receiving the event; if it is a return

event the object,s depth will be zero once the event has returned.

Top level events are importa,nt because they mark transitions in an object's activity status' When

an object's depth is zero, it is quiescent, and, assuming its implementation is correct, the object is in a

consiJtent staie ($4.2.1). A top level receipt event indicates that a quiescent object is about to become

active. A top level return uln"nt 
"onuurselyindicates 

that an active object is about to become quiescent,

that is, that an active object has just completed a la^rge granularity operation ($4.3.2). Several watchers
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therefore implement strategies using top level events (especially top level returnEvents) to synchronise the
visualisation system and the target program ($?.2.A).

The event parameter topLevel is true if the event is a top level event. Because top level events are
commonly distinguished within Tarraingim, controllers' dispatch databases are optimised according to
this parameter (98.1.3).

Initial Depth

The initial value of an object's depth is defined to be zero. When a controller is created for an object,
its depth is set to zero. The controller's depth is updated once an encapsulator is attached to the targei
object and the controller begins to receive notifications of the target program's actions.

Initialising a controller's depth to zero can result in an incorrect value for an object's depth. An
initial value of zero assumes no processes are executing inside the object when its controller is created..
If_messages are being executed within the object, the depth maintained by the controller will be too low.
This can cause certain problems ($4.2.1). Any event depth parameters will also be too low, so trace views
will be formatted incorrectly. Spurious toplevel events will be generated, so callbacks will be sent to
objects unable to handle them.

To avoid these problems, the controller could determine an object's initial depth by inspecting all the
running processes in the Selr system, and computing the actual depth of activations within the target
object. We have not implemented this inspection for two reasons. Fiist, carrying out such an inspecttn
every time an encapsulator was attached to an object would slow Ta"rraingim,s-execution. Second, we
have not found the lack of this precaution to be a problem in practice.

Tarraingim typically begins monitoring objects (either at the user's request or via indirect strategies)
when the object is quiescent, or nearly so, a,nd thus zero is a reasonable estimate for the object,s depth-. In
cases where processes are active inside the object, Tarraingfm ensures that depth cannot become negative,
and thus the depth variable maintained by a controller eventually acquires the correct value.

8.2.2 Multiple Processes

Snlr provides multiple processes ($5.2.6) so it is possible for more than one process to be active within
a single object' A controller, however, maintains only one value for its tarlet object,s depth. By the
definition of depth, an object's depth is the sum of the depths of all the proceles inside the object. This
is because the definition of depth depends only upon the type of actions (receipts or returns) received by
controllers. The pa"rticular process in which the actions occur is ignored.

An effect of handling processes in this way is that an event will be considered top level only when
no other processes are active within the object. A top level send is thus caused only by the first process
entering the object and a top level return is caused only when the last process leavls. A second efiect is
that matching receipt and return events caused by a single message serd may occur at difierent depths.

These effects are illustrated in Figure 8.3 (compare with Figure 8.2). The messages cycle and printString
have again been sent to a trafficlight object, but in parallel using two different proiurr", (processes <t3+i
and <1'35>), and their execution has been interleaved. Only the receipt and return of cycte are now top
level events. Although the print message is sent from, and ."iurn. to, the outside of the trlfficLight objeci,
the cycle message is active within the trafficLight during the entire execution of print. Message ,"."ipt,
and returns no longer occur at the same depth. For example, the printString message received on line 3
of Figure 8.3 now occurs at the same depth as the return of the colour *"r*gu on line 8.

We have chosen this approach because SELF's object model provides no integrated support for par-
allelism. Although Su,r provides some special objlcts (the Itra.y includes imaphore, process and
sharedQueue prototypes), Snr,r objects in general are not concurrent. Most Srlr, programs contain only
one process' and when multiple processes are used, the language does not permit any assumptions aboul
their interaction within non-concurrent objects.

Our definition of depth is conservative: it allows views to function sensibly in the presence of mul-
tiple processes, but avoids the complexity of explicitly managing these pro."rr"r. Trace views (such as
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Figure 8.3: A Trace View with Multiple Processes

Figure8.3)continuetofunctioninthepresenceofparallelism,evenifthedisplaystheypresentappear
somewhat odd. More importantly, top t"J "u""tt 

*n only be sent when an object activity status

changes from quiescent to active' or vice uu"u, 
'o 

views relying on top Ievel events for synchronisation

can oPerate without Problems'

MostofTarraingim,sviewsdonotpresentinformationabouttheStructuleofanyconcurrentprocesses
executing the target program ($6'7). l.t-*;;il, the trace views elsewhere in this thesis do not include

process identifiers. Gir; thai most s""r ililtr-r"" .iosr*threaded, presenting process information

would be an unnecessiry complication. Infoimation about an event's process is always available as

the event,s process parameter ($g.g.2), *d-;i;;;may use this to visuarise the process structure of the

application program. If necessary, views or watchers can request notification of all events from a controller'

a.nd then maintain tUeir own viue for depth on a per-process basis'

8.2.3 Meta-DePth

Ta,rraingim,s views depend 99on- 
inforr,nation about the actions (the message sends) within the target

program. Views 
"r*o 

,JJ""rtuacks to objects in the ta'rget prograrn - to retrieve information or execute

user commaoas. m*se-crluacks are ,i*prv *oosu ,"ria* ilJ t"e executed by the objects in the target

prograrn, so their *ti"", *iff be detecte-d il;;;;" way as the actions of the actual target program'

callbacks and monitoring can thus interact in two ways which have the potential to cause problems for

Tarraingim. firrt, *rJ*l*u's*urullv rr""a-lo ai'play the 
""t'-o": 

of the target program' not the incidental

effects of the ,iroairuii* io, 
"*u*plu, 

if;;;; view includes events [enerated from callbacks in its

display, it gives " 
*irilrai"S impression of the target program' SeconJ' if a view sends callbac'ks in

response to receivinf;;;", ,h- 
"Amu"m 

could cause events to be sent back to the view' which in turn

could cause the vie*;;;h;;;ruu.r.r. irri, can easily result in an infinite recursive loop (or' as

described by The New Hscker's Dictionafi ti?4, Tarraingim enters sorcerer's opprentice moile)'

Toavoidtheseproblems,Tarraingimmaintainsavalueforthemeto-ilepthofaprocessoranevent'
which measures the aurount of recursion Jthi; th" tystem' Meta-depth can be used to determine whether

an event is caused by the target prosru,o o; it lU" 'e"'tt 
of some action within the monitoring system'

Processes and Callbacks

Ta^rraingim maintains a meta-depth value for each process in the Snlr system' This is stored in the

metaDepth slot of 
"".f, 

Sr", proi.r, object' When an event occurs' the evlnt's metaDepth pa^rameter is
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set to the value of the current process's metaDepth slot. The metaDepth of the target program processesis set to zero' and thus events caused by the target ororru* o*" a metaDepth parameter of zero.when views and watchers send callbacks to query objects ryithin the target progriln, the callbackprocess's metaDepth (and thus the metaDeptrr oroty 
"uerrr"."rr"a by thecallback) is incremented, so thatit is greater than zero' By default, encapsulatorr igro." 

"""nt. 
generated by processes with a metaDepthgreater than zero' so views are not notified about 

"i.nt"o""*ring as the ,"ilrt ortrrese callbacks ($g.1.4).command callbacks are used to alter the target program, rather than passively retrieve information(56'6'2)' when the user edits information in u rri"*, ."iru".L, are sent back to the progra.rn to updatethe underlying objects' Tarraingim ri*itr.ty or", .o--*J.uul*ro to update the intermediate modelsmaintained by indirect watchers- ($7.4. 1).
command callbacks can change the state of the target prograrn, and as such, have to be treated aspart of the program's execution' A view which ignore. Eu"ni*'g"nerated by command callbacks will notcorrectly reflect the state of the target prograrn. command cirbacks *" trru.uro." executed as if theywere part of the target prograrn' i'e' at a metaDepth of;"rq ,o uu"nr, generated by these callbacks willbe monitored by the rest ofthe system.

Avoiding Recursion Within Tarraingfm

fi"fiffitd *"fii:f-:t 
is also used to control recursion within Ta*aingim. Encapsulators manipulate

r A process's metaDepth is olwaysincremented when entering an encapsulator. since controls, watch-ers' views' and callbacks generally execute in the current process, they will run at a metaDepthhigher than that of the target program.

I Any other background processes supporting views ($b.2.6) execute at a metaDepth of one.
o command callbacks generated in response to events, or any other process running at metaDepth ofzero' should never send messages to ihe object s.";r"r]trg the event or any other object that couldsend messages to that object.

In this manner' meta-depth is managed more or less automatically. The responsibility for handlingrecursion within Tarraingim is placed onto the visualiser *to-*ist", to write a watcher or view whichsends command callbacks as a rlsult of receiving an event.
Query callbacks used to retrieve information operate without any special handling in user code. Asencapsulators increase the process's metaDepth, such callbaarc a*ry, execute at a metaDepth of at leastone' and thus do not generate events' similarly, th" ;;.D;h of background processes must be setcorrectly when they are created, but will be maintained automatically a^fterwards.
If query callbacks send messages to the-target program which change it significantly, dependent viewswill not detect the change because they will t Jt ,9""iir" *y ."*,r. This is an error, but the Ta*aingimsystem will continue to function' It is tire responsibilityor ti. p.ogrammer writing the callbacks to detectthis situarion, and to use command callbacks insteaaigAi".ili"
command callbacks are the only difficult cases. if they are run in response to a user action, such asediting a view ($6'6'2), there is 

"o 
pot.ilirity for recursioru urra lrr", may be sent without problems. onthe other hand' if they are sent from within a watcher or view to handle a target prograrn event, updatingan intermediate database such as a profile or call tree_ for ;;;;i", then the programmer must take careto avoid any circularity' when writing views or watchers using command callbacks, the visualiser mustcheck for these cases, and act accordinlf

Monitoring Thraingim

As part of debugging watchers, views and callbacks, the visualiser may need to monitor objects belongingto Ta'rraingfm itself' similarly, the 
"t"i *uy wish to monitor ii tn"side effects mr"ii"ri"g ha.s upon the
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targetprogram,includingallquerycallbacks.wecalllhisreflerivevisualisation'becauseTarraingimis
being used to visualise its own executlon'

Tarraingim supports reflexive visualisation by allowing a process's metaDepth to exceed one' A

metaDepth of zero is used by the ta,rget pr;#, " 
metadeptl of one is used by Tarraingim to mon-

itorthetargetprogram'andmetaDepths.greaterthanoneareusedtomonitorTarraingim,smonitoring.
weca]l.u"ot'withanon-zerometaDepthmeta-euents'

Meta-events are ignored by most watchers, but custom- watchers ca"n be written by the visualiser

to accept events witrr-u.r, a^rbiirarily r*g.;.ilD"pth - a-leaf watcher can request meta-events when

it registers with its target object,s controlle. ($8:1.2). Th3 .lgntroller 
then configures its associated

encapsulator to generaie?eta-events ,1 tt" gi""X;utl-a"pttt ($9'1'4)' In this way' watchers' views and

controllers can be displayed by Tarraingim'

8.2.4 DePth vs. Meta-DePth

Depth and meta-depth measure difierent things. Depth is maintained per object, and counts the number

of active message sends (i.e. the depth of riursion) within an object' Meta-depth is maintained per

process, *d *"*.rr".it J a"ptt of recursion within Ta,rraingim itsetf. Depth does not distinguish between

messages sent from the target prograrn' urrd it'o'" sent by tarraingim' whereas this is the main purpose

of meta-depth. Depth may be any natural o,,toU"' (depending "poi 
ttt" program)' while meta-depth will

typically be eithe*oo (-"*ini tll pr1""r, is running thetarget program-or command callbacks) or

one (when tt 
" 

pro.o, ir'i"""i"i*ithin Tarraingim or performing query callbacks)'

ThisisillustratedinFigureS.4,whichshowsthechangesindepthandmetaDepthduringtheprocessing
of rhe first few *"r,,, orir," trace in Ft;; 8;. i'ioii tr'rt aegtrr in111::_:T::h"ut the example'

whereas metaDepth alternates between 'ero 
and one' Whenever the target program is executing (lines I'

g,9, and 10 from Figure 8,a)-!he rnut.O.pl61. zero, and whcnever ttt" tonttotttr (lines 3' 4' 11 and 12)

.. 
""""t 

clients 1U""JS ana if; are executing' the metaDepth is one'

8.3 Events

Events are packages of data about a particular occurrence within Tarraingim - generally an action of the

target prograrn. Wfr* 
""""ts 

a,re created ,*"i-iir"*eters areinitialiseJto describe the occurrence that

;: "ni.p*r.tot 
notifies the controller, which increases depth'

L. receiptEvent for cycle is dispatched to watchers'

5. watchers and views execute'

6.watchersreturntocontro||er,andthustoencapsulator.
7. encapsulator resets the processts metaDepth'

8. taxget program continues execution of cycle message'

9. cycle method seuds red to self'

;b. 
"i..prrr.to, 

catc-hc the message and increases metaDepth'

ii. 
"i"rprrt.to, 

notifies the controiler' which increases depth'

L;:. releiptEvent for red is dispatched to watchers'

13. watchers and views ex€cute'

14. watchers return to t,he control|er, and thus.to encaPsulator.

-trafficL''ght 

tecein'es the message cycle'

;:. 
"i.rprur-r.tot 

catches the messige an{ 
11cr3ases i:ti?-t:Jn

i;. encapsulator resets the process's metaDepth'

16. ta.rget progran continues execution of red u
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Figure 8.4: DePth vs' Meta-DePth
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caused them' Event s^ arc dispatched by controllers to any of their clients which have registered an interestin receiving them' A client handle.g events by.inspecting-d"i, prrr*eters and then iaking appropriateaction' such as updating a^{!nlar or generating more ivents. Although 
"r"ot" 

*" t important partof rarraingfm's desig-n ($5'3'2); the eveits themselves ar; ilt,; simpre objects. The purpose of events issimply to package information, and they have little behaviour of their own.
This section first outlines the various types of events ($s.8.1) and describes the paramerers commonto all events ($8'3'2) ' The uses and parameters of pa,rticuil coricrete types of events are then discussed($8'3'3 - $s'3'5)' FinallS 

.the event iispatch.prot"."r i"r"Jto Jirp.t.[ Lu.nt, to their clients), and theclient event protocor (used by clients to tta"ate events)'rr* a"r.riu"d ($g.3.6).

8.3.1 Event Types

Tarraingfm categorises events according to their type. An event's type reflects its origin, and describesthe kind of occurrence the event recoids' Thus, 
-encapsulators 

monitoring program actions generateprogramEvents' while.the uset interface responds to user commands by generating commandEvents. Thevarious types of events are illustrated in Figure g.b.
The leaves of the event hierarchy are concrete objects which are instantiated by the system, and theinterior nodes are abstract objects which are used to organise the hierarchy but are never instantiated.Thus completedEvents. and unwindEvents, which *. g;"'";;;l l, *ur.ug" return actions, inherit fromabstract returnEvent objgct' Both these types of returiEvents *d*ur.ugu receiptEvents inherit from theabstract programEvent object.

Figure 9.5: Event Types

There are two mein categories of events - changeEvents and callbackEvents. change events a.re routedup from the leaves of a watcher tree towards its as]sociated il; while callback events are routed downthe watcher tree from the view ($b.8.2).

8.3.2 Event parameters

An event's parameters contain detailed information about the event. For example, when a receiptEventis created to record a message receipt action, tbe event's p*"-"i.* are initialised to describe the nameof the message' the messageL arguments, the object ru""iuiosll; message, and so on. some parametersi''e common to all events, whereas others depend on * 
"rruiti. 

iyp.. common parameters are definedin the abstract event object, and are thus inherited ;r;;;;yp". or events.
The most significant event parameters are the type of the event, and the object where the eventoccurred' Events are further described by a name *i'ro*" arguments, which provide more detail. The

cvcnl inhlrltanco hidrarchy
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precise meaning of an event's pararneters depend on the ev-e1t's tVne' For example' a receiptEvent's

name pararneter will contain the name of a, mersage received by the object in the receiptEvent's object

pararneter, whereas the name of a callbackEvent is- the o"roe oi a message to be sent to the object in

the callbackEvent,s oi"., fa^rameter. Table 8.4 lists the basic messages used to manipulate an event's

parameters, and to create 
-new 

events with particular parameter values'

event protocol

Accessing Parameters
type
o ject
name
arguments
at: n

process

Creating Events
copyFor: o
copyName: n

copyWith: a

The event's tYPe'

The object where the event was observed'

The event's message selector.

An array ofthe arguments to the event'

Returns the event's n'th argument'

The SuLr process that caused this event'

Copy the event, chauging its object parameter to o'

Copy the event, changing its neme to n'

Copy the event, changilg its fust argument to a'

Table 8.4: Event parameters protocol

8.3.3 Program Events

Progra,rr events are generated by encapsulators in response to the ta'rget program's actions' There are

three concrete types of program events - receiptEvenis, completedEvents, and unwindEvents' Both com-

pletedEvents and unwiniEvJnts mark the return of a message (a completedEvent is a local return' while an

unwindEvent is a non-local return); they are subtypes of ihe abstract returnEvent type' Program events

are generated i' pairs, wiinuu".yr"."iitEvent u','untn"tty matched by a returnEvent ($9'1'2)'

Program events inherit all the common para,meters Aom the basic event object' The name and

arguments paxarneters contain the name *J r"gu*"nts of the message causing the event' and the object

pi"*"t"t tefers to the object where the event was detected'

some pa^ra.rreters are unique to program events (see Table 8'5)' In particular' the receiver para'meter

contains the value of self wit-hin the mtnitoted -"tt.g" send. Note that in some circumstanc$ (if the

message is inherited) this may not be the same as the eient's object parameter' as this specifies tbe object

where the event was Jetectei - tt.t is, the encapsulator's ta,rget object ($9'1'3)' The depth parameter

measures the depth of recursion within the targei objegt' The topLevel pa'ra;neter is true whenever an

event,s depth is one (this is used for convenierr." il ia"tttifying top level events)' The metaDepth paxameter

measures the amount of recursion within Tarraingfm itself ($8.2)'

Return events are program events generated whenever a message returns' They extend progrtm

events with two u*tru pr""il"iers (see t"ur"-g.ij. ih" r"turnvarue par-arneter contains the value returned

by the message. The llcal p*u*"iu, ,pecifies whether the event is a local return: local is always true for

completedEvents and false for unwindEvents'

8.3.4 Alternative Events

Alternative events a,re change events generated by alternative strategies ($4.3.a)' For exarnple, timerEvents

are generated by a timerwitcher when that waicher detects that a sloi in its target object has changed

($z.z.s). rue name u,oi arguments of a titerEuent respectively contain the na'e and contents of the

changed slot.
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programEvent protocol
receiver The
depth The depth of the event. (SS.Z.f)
toplevel true if this event is a top level event.metaDepth The metaDepth of the eveut. (gg.2.B)

returnEvent protocol
returnV
local true if the event is a local return.

Table 8.5: Program Event parameters

Although Figure 8.5 shows only one concrete type of alternative events (timerEvents), more types arepossible' New types.of watchers a.re required if Tarraingfm is extended with a.nother strategy. rf theevents produced by these new watchers must be handled difierently from the existing event types, newtypes of alternativeEvent will be required.

8.3.5 Callback Events

Callback events are sent from views and watchers down the watcher tree, and a,re used to implementcallbacks sent to objects-in the target program ($3.7). callback events use the name and argument eventparameters to describe the message to be sent to ttre target object.
There are two concrete types of callbackEvents: queryEvents, by far the most common, which areused to retrieve information from the target object uring u.""rro, *"rmg", ($a.2); and commandEvents,which are used to send 

-mutator *es.tgo to change th'e target object l" .*po*u to ur", commands($6'6'2)' The type of callback is chosen by the visualiser whe]n designing views. A queryEvent callbackis generated by a message sent to callback (as_ in the trview i*prernentation illustraied in Figure 6.b),while a commandEvent callback is generated by sending r **r-r"g" to command (as in the dots viewupdating method illustrated iu Figuie 6'13). The only piactical diFerence u"t*.*rrttypls of callbacks isthe meta-depth at which they execute insije the taget progrr* (SS.Z.SI.

8.3.6 Dispatching and Handling

once an event has been created, it must be dispatched to all interested clients. This is implemented bythe dispatch message' which uses the event's object parameter's controller and dispatch database ($g.1.g).The controller calls sendro to send the event to each interested client in its database. The sendro messageis also used to route events around the watcher tree.

event protocol

dispatch
dispatch
sendTo: client

Dispatch this event to all interested clients via the event object,s controller.
Dispatch this event to client.

Table 8.6: Event dispatch protocol

A client needs to handle difierent types of events in different ways. For example, a trace view displaysreceipt events differently to return 
"u"ttr 

(see the quicksort trace view in Figure 4.4). Event handlingalso difiers between clients - a trace view will handle a return event by displaying it, while an ind.irectreference watcher may.adjust the configuration of other views. In programming language terms this isa multi'-method dispatch, as the requireld behaviour depends upon the types of both the client and theevent [78].
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spl. does not support multi-methods, but can simurate them using double'dispatching [106]. An

event implements the iendTo: client message by-sending itself to the client as the argument to another

message, the name of which encodes tfre eveni's type' These messages form the client event protocol

(see Table 8.7), and must be understood by all clieuts receiving events' clients can implement behaviour

which depends upon an event's type by implementing the appropriate message'

Client event Protocol

event handling
tgimEvent: e

changeEvent: e

programEvent: e

receiPtEvent: e

returnEvent e

comPletedEvent: e

unwindEvent: e

Handle the event e'

Handle the change event e'

Handle the Progra- event e'

Handle the receiPt event e'

Handle the return event e'

Handle the comPleted event e'

Handte the unwind event e'

callbackEvent: e Handle the callback event e'

...there is one method in this protocol for eoch euent type illustroteil in Figure 8'5'

Table 8.7: Client event Protocol

clients may need to handle several types of events in the sarne way' For example' views by de'

fault redraw themselves in response to ail types of changeEvents,($6'1'1)' watchers by default forward

changeEvents up and Jlu..r.Eu"nts down t#;;;h"t trel ($z'r'g)' This could be ha'ndled easilv within a

languagewithmulti-methodsbecausethemulti-methodlookupwouldconsidertheinheritancehierarchy
of the event object as well as that of the view, *fr"r"", Sslr's single'dispatch lookup considers only the

receiver's tYPe'

Tarraingim supports the grouping o-f gvents by providing a default implementation for the client event

protocol which treats an "u"it 
* if it belongs toiis pa,rent type.. This is implemented by the eventclient

object displayed i' ris*" to. All watchels und uiew' inherit from eventClient and often rely upon

its behaviour. For example, the views described in Chapter 6 which explicitly handle events do so by

defining a single changeEvent me]h9d G* ;ig;;'8 ;l 6'11)' All concrete changeEvents received bv

theseviewsareeventuallyroutedthroughthismessage.

traits eventClient = (l
parent* : traits tgimObject'

"top of hierarehY, do nothing"

tgimEvent: s = (self)'

'handle events by dispatehing to parcnt type"

changeEvent: e - (tgimEvent: e)'

progiamEvenll s = (changeEvent: e)'

rece-iptEvent: e - (programEvent: e)'

returnEvent: s : (ProgramEvent: e)' 
.

completedEvent: e = (returnEvent: e)'

"...thereisonemethodiathisobjectfoteacheventhandlingmessage"
l)

Figure 8.6: Client Protocol Mixin
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8.4 Summary

This chapter has presented the controller and event objects, which are used to gather information aboutthe target prograrn' and route it around rarraingim;s fra^mework. To summarise the chapter, Figure g.Zlists the sequence ofoperations used to process a"single receipt action-

1. The foo message is sent to the target object.

2' The encapsulator attached to the target object intercepts the message,s receipt.
3' If the current process's metaDepth is less than or equal to the encapsulator,s metaDepth ($g.2.8):

(a) The encapsulator increases the current process's metaDepth by one ($g.2.J).
(b) The encapsulator sends the message's nm.e^(fo_o), any axguments, and other parameters (thereceiver, self), to its associated controller fS8.i.gi.'

i' Because the event is a message receipt, the controller increases its depth by one ($g.2.1).ii' The controller searches the tables in its dispatch database for clients interested in the foomessage ($8.1.J).

o If the current ptocess's metaDepth is greater than one, the database,s meta eventstable is searched.
o If the controller's depth is one, the database's top Ievel events tables are searched.o Otherwise, the database's general tables are sea,rched.

iii' If any interested clients are found, a receiptEvent is created and its para.rneters initialisedto describe the receipt action ($S.B.A).

r The receiptEvent is dispatched to each interested client in turn ($g.3.6).
iv. The controller returns control to the encapsulator.

(c) The encapsulator decreases the current process's metaDepth by one ($g.2.J).

4. The encapsulator interception method returns.

5. The target object begins executing the foo method.

Figure 8.7: Handling a Message Receipt Action

29. For systems, the analogue of a face_t'ft is to aild to the controt gmph
an eilge that creates a cycle, not just an additional noile.

Alan Perlis, Epdgrams On programming 
[16g]



Encapsulators

Tarraingfm's encapsulator objects form the core of the monitoring subsystem. An encapsulator monitors

the actions of a single object within the ta,rget program, and passes this information to its controller'

Encapsulators' requirements were discussed in Section 5.1.1. The target prograrn must be monitored

on a per-object basis, and only those actions of monitored objects of interest to the controller's clients

should be monitored. The monitoring should be efficient, and an object must be able to be monitored

dyna.rnically. The user should be unaware of the monitoring.

This chapter presents our experiments with using encapsulators to monitor Snlr proggams. The first
section presents the basic encapsulator design, and describes how this design ca^n be adapted to work

within Ssr,F,. The second section describes how the basic encapsulator design suffers from the self problem

[127], then presents several alternative encapsulator designs which avoid this problem. The third section

i"rcriber how encapsulators handle primitive operations and messages implemented directly within the

Selr compiler. The chapter concludes with a srunmary of our work with encapsulators.

9.1 The Design of Encapsulators

Encapsulators monitor the actions of a pariicular object in the target program by postprocessing the

ta,rget program's structure ($2.5.2). The techniques behind encapsulators aud their basic design were

firsi dweloped by Pascoe in Stvt.tl,l'rar,x [16a]. Pascoe described several experimental applications of
encapsulators, such as implementing monitors and atomic objects for concurrency control, a,nd linking
models to views in Snallltl; x's MVC interface frannework [122]. The techniques behind encapsulators

have been used to build proxy objects in several distributed Strllr,ltnlr systems [16' 138] and object

oriented databases [174]. Encapsulators have also been used for tracing and debugging St',tlLl'relx
prograrns [121], and providing general reflexive facilities [75].

9.1.1 Attaching Ern Encapsulator to an Object

Figure 9.1 illustrates the basic design of an encapsulator. The ta.rget object is displaced from the program

and replaced by a,n encapsulator. All the objects in the program which originally referred to the target

object now refer to the encapsulator, and therefore any messages sent to the target object a,rrive instead

at the encapsulator. When the encapsulator receives a message, it notifies its controller of the message

receipt, then resumes the program by forwarding the intercepted message to the displaced target object.

When the forwarded message returns, the controller is again informed and the program continued. Thus
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the program executes as if the encapsulator was not present, and the controller is notified of all messages
the target object receives.

Figure 9.1: Monitoring an Object with an encapsulator

Displacing the Thrget Object

In order to monitor the actions of an object, an encapsulator must first displace the target object from
the program, while privately retaining it in order to be able to continue the execution of the program.
In other words, the encapsulator must assume the target object's identity, while the target object's slofs
must be preserved with a different identity ($5.4.1).

Pascoe's encapsulators are attached with Std,lr,l,ret,r's become operation, which exchanges the iden-
tities of two objects. Using become, an encapsulator can be simply substituted for the target object.
Tbaditional Strlar,lrnlx implementations refer to objects indirectly via an object table, so become can
be implemented very efficiently by simply swapping the object table entries referring to each object [85].
Ser,n [44], like more modern Stvt.c,LLtA,Lr implementations [60], refers to objects directly via pointers,
and implements become by an exhaustive search-and-replace operation, replacing all references to one
object with references to another.

The sea"rch-a^nd-replace technique is used to attach Tarraingim's encapsulators to SsLr objects. A slot
by slot copy is made of the target object, then the original target object is replaced by the encapsulator

- the encapsulator effectively assumes the target object's identity. The seardr-and-replace operation is
much slower than a simple become, because the program's entire memory image must be examined.

Primitives

Some SBIF objects axe primitiae objects, which are implemented directly by the Sn,lr compiler. Sec-
tion 9.3.1 describes how Tarraingfm's encapsulators monitor primitive objects.

9.L.2 Intercepting Actions

Figure 9.2 shows a Snr,rl version of the original encapsulator object. This figure is adapted from Pas-
coe's SMALI,TALK encapsulator [164]. The encapsulator contains two variable slots: controller contains
the encapsulator's controller, and target refers to the displaced target object. The encapsulator also con-
tains a single method, undefinedSelector: msg Arguments: args, which performs the actual catching and
forwarding of messages.

rThis figure is not quite "real" SELF - in particular, the undefinedSelector message should have geveral more parameters.
These parameters are not uged by encapsulators, a.nd so have been omitted.
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encapsulator = (l
"vatiables"

- target. "holds the encapsulator's displaced target"

- conlroller. "holds the encapsulator's controllet"

,,this will be called to handle ail messages the encapsulatot receives"

^ undefinedSelector: msg Arguments: args = (lrvl

controller encapReceipt: msg Arguments: args'

rv: msg sendTo: target WithArguments: args'

controller encapReturn: msg Arguments: args ReturnValue: rv.

rv).

t)

Figure 9.2: A Basic EncaPsulator

The encapsulator in Figure g.2 intercepts all messages it receives by using the unilefined selector

exception that is raised when a Srlr object receives 
" 

*"t.uge that it does not understand ($5' ' )' The

encapsulator does not define any messages itself, so it does not understand any messages it receives, apart

from messages accessing the target and control variables ($9.1.4). whenever the encapsulator receives

a message, SELF,s ,o"rJug" lootirp algorithm sends the undefinedSelector message to the encapsulator

io rigo"ithe euor. The parameters msg and args of the und_eflnedSelector method grve the name and

a,rguirents of the intercepted message. oenning only undefinedSelector allows the encapsulator to intercept

all-the messages it receives with a single generic method definition.

The encapsulator,s undefinedSelector method first sends an encapReceipt message to notifu its controller

of a message interception, including the message'8 name (msg) and arguments (args)' The intercepted

message is then sent to the displaced target (using the sendTo:WithArguments message, sELF's version of

Smalltalk,s perform), and its r"t,rrn value is stored in the encapsulator's local va,riable rv' The message's

return is communicated to the controller with an encapReturn message, which also sends the value re'

turned by the message. Finally, the undefinedSelector method itseU returns rv' the value returned by the

intercepted message.

Top Level Events OnlY

pascoe,s basic encapsulator of Figure 9.2 intercepts all messages sent to its (now displaced) target object,

from other objects in the target program. Once a message has been intercepted, it is sent directly to

its target object, which theripro.urlr"r the message without reference to the encapsulator' Pascoe's

"o""pril"toriherefore 
only intercepts top leael"ueott ($S.2'1). Many of Tarraingim's watchers and views

,eq,rir" information about all of their target object's actions.

Efficiency

pascoe,s encapsulators a,re notably inefficient, for two reasons. First, they catch oll the top level messages

the ta,rget object receives. Many strategies ($4.3) and watctrer.l_($7.2.3) only require information about

a few partic,ri." ,ourrug"s. The controllei's dispatch database ($8.1.3) ensrues that watchers only receive

events that the watcheis have requested, but monitoring unnecessary events imposes an overhea'd on the

target program. Second, the und-efinedSelector exception mechanism is slower than a standard message

,*""ipt. Th" .rr.uprulator must be unsuccessfully sea,rched for a slot matching the original message

name and the message's name and arguments must be specially packed into SELF objects, before the

undefinedSelector method can be called.
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Non-Local Returns

A single message send executed by the target prograrn consists of two actions: a message receipt action
and a message return action ($4.3.3). An encapsulator notifies its controller as soon as a message is
intercepted, and again when the message has returned from the target object. These events therefore
always occur in nested matching pairs. Every receipt event (marking the beginning of a message send)will eventually be matched by a return event (when a given message send terminates). Mosireturns
are local returns, which occur whenever a method completely e*"crri", its body. SnI,r also includes a
return operator which can return non-locolly from arbitrarily many message sends, unwinding the stack
as required (95.4.3).

Non-local returns cause several problems for encapsulators. Should a forwarded message return non-
locally from within the target object, it will return non-locally through an encapsulator, witlout notifying
the encapsulator's controller. The controller, therefore, will not send events to watchers and views, a,ndwill not correctly update its depth value ($8.2.1). In Figure g.2, a non-local return from the target
object would cause the sendTo message to return directly. the rest of the undefinedSelector method (the
controller's notification via encapReturn, and return of rv from the method) would be ignored.

Non-local returns can be intercepted in Snlr. An expression may have an associated exception
block: if the expression returns non-locally, the exception block is evaluated as the stack unwinds. An
encapsulator can use this facility to trap non-local returns. Whenever a message is sent to the target
object an exception block can be established. If the send performs a non-locJ return, the exception
block is executed. This notifies the controller that the message is returning non-locally, and inciudes
information about the value being returned. The program will ihen continueivith the non-local return.

Inheritance

Objects in Snlr can inherit from other objects ($5.4.4). For example, the stack object in Figure 5.2 in-
herits from the traits stack object. Similarly, the trafficLight object in Figure 6.4 inherits from traits treffi-
clight. Since SolF is a prototype'based language, traits siack and traits tiafficlight are completely normal
Sulr objects ($9.2.1), and encapsulators can be attached to them. Attaching u}*"o" styll encapsulator
to an inherited object will sever the inheritance link, and this may adversety a,fiect the target prograxn.

The problem of monitoring, or otherwise manipulating, inherited objects in a prototype-based lan-
guage is known as the split obiect problem [63]. Snlr's traits objects correspond to classes in languages
such as Su.a,r,ltar,x. Like a class, a^ny particular trait only deines pa,rt oi an object - the comptete
definition of the object is split across the object itself, and ,U ttuitr objects from which it inherits. The
split object problem does not arise in class based languages, because the partial definitions exist only as
classes' In a prototype language, partial objects ltraitsj are indistinguishable from any other objects,
and can be manipulated without regard for the other objects which they help define.

The split object problem has not affected Tarraingim in practice. This is because inherited objects do
not really represent abstractions in the target prograrn. Like classes, inherited objects instead represent
a partial definition. SelF programs do not manipulate traits objects directlg instead traits are inherited
by the concrete objects actually making up the program. It is these conciete objects, rather than the
partial inherited objects, which Tarraingim needs to monitor.

Primitives

S-ome SplF messages arc primitiue messages, which, like primitive objects, are implemented directly by
the Sulr compiler' Section g.3'2 describes how Tarraingim's encapsulators monitoi primitive *"urugur.

9.1.3 Notifying the Controller

When an encapsulator intercepts an action of the target program, it transmits data about the action toits associated controller. The controller packages the data into an event and distributes the event to the
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rest of the system. In the current version of Ta^rraingim, this notification is sent using an internal protocol

between encapsulators and controllers. The encapReceipt and encapReturn messages from Figure 9'2 are

part of this protocol.

The data sent are the narne of the message, the message's arguments, and (for a return event) the

message's return lalue. Tarraingfm's encapsulators also collect some extra information, most notably

self, thl receiver of the intercepted message ($8.3.3). If the encapsulator monitors traits objects, self may

uot be the sa,me as the target object. Other event parameters, such as the depth of message seuds within
the target object, are generated within the controller ($8.2.1).

An encapsulator's undefinedSelector method is executed by the target program process which sent the

message intercepted by the encapsulator. The ta.rget program is effectively suspended until the encapsulator

returns, This process is also used by the controllerto dispatch the generated events to interested watchers

or views. In this way, the target prograrn and the monitoring system remain synchronised while events

are being dispatched ($8.1.3)'

9.7.4 Reflexive Monitoring

In order for an encapsulator to intercept atl the messages it receives, it must not implement any messages

it could receive from the target prograln. The names of an encapsulator's local va,riables and methods

must therefore be chosen to avoid matching arly messages used in the target program [164]' Tarraingim

therefore adopts the convention that all encapsulator local narnes and messages are required to begin with
the prefix ,,e3-" (the "3" is for our third implementation of encapsulators). For this reason' Tarraingim's

encapsulator's slots narned "e3-Target" and "e3-Controller" rather than "target" and "controller".

Slot na,nres prefixed with "e3-" are legal Snlr, but unusual style and therefore unlikely to appear in

a^ny other program. An encapsulator cannot itself monitor messages with these nalnes' since if it receives

a message with the sarne narne a^s one of its local slots, the local operation contained in the slot will be

carried out, rather than the message being monitored. An encapsulator cannot therefore be monitored by

another encapsulator.

Ca^re is needed if other objects are used in an encapsulator's implementation. Ideally, an encapsulator

should be able to monitor any object in the Splr world. If a,n object used in the implementation

of encapsulators is monitored, the monitoring of the object may itself be detected by the monitoring

system, resulting in infinite recursion. To avoid this problem, we minimise the use of other objects in

encapsulators' implementation, and where this is unavoidable, a.rrange that encapsulators will not detect

their use.

For example, an encapsulator compa,res objects using the primitive message -Eq, rather tha^n the Splr'
language message =:, a,nd integers are manipulated with primitives -lntAdd and -lntEq rather than +
ot : 1[O.f.Z). Since primitives a^re handled directly and no Sulr code is invoked, an encapsulator will
not detect such operations. Where SeLr code is unavoidable (for example, all SPlr control structures

are implemented within the la^nguage), it is duplicated and rewritten specially for encapsulators, following

the na,rning convention for encapsulators.

These restrictions upon the programming style used within an encapsulator provide the major technical

reason for separating controllers from encapsulators. Controllers, being in all respects normal Splr
objects, do not have these limitatious. Moving functions fiom encapsulators to controllers minimises

the size of encapsulators, and reducee the possibility of errors in the encapsulators' implementation

accidentally breaching these restrictions. Sepa,rating encapsulators and controllers also increases the

amount of the Ta.rraingim system it is possible to visualise reflexivelS as controllers can be monitored,

while encapsulators cannot.

Meta-Depth

An encapsulator can monitor the actions of any sta"ndard Selr object. It should therefore be possible

to use encapsulators to reflexively monitor Tarraingfm, especially watchers, controllers, and views. As

described in Section 8.2.3, reflexive monitoring is controlled by processes' and encapsulators' metaDepth
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parameters. In particular, Tarraingim's encapsulators have an e3-metaDepth slot, which is also usually
zero. Before an encapsulator dispatches any event to its associated controller, it compares the current
process's metaDepth with its local e3-metaDepth slot. If the current process's value is less than or
equal to the encapsulator's value, the process's metaDepth is increased and the event is dispatched to the
encapsulator's controller ($8.4). If the process's metaDepth exceeds that of the encapsulator, the event is
ignored, and the target program continued without dispatching through the controller.

Maintaining metaDepth in encapsulators allows controllers to be monitored, but not encapsulators.
This is pa,rtly a necessary consequence of our implementation of encapsulators, in that some object has
to maintain metaDepth, and that object cannot itself be protected by the metaDepth mechanism. This is
also a side-effect of the subsystem's overall design goals. Encapsulators are supposed to be hidden from
the user, a"s well as from SELF's own reflexive facilities. The interface to the monitoring subsystem is
through controllers, not encapsulators. Ta^rraingim's model of program monitoring is that the controller,
when requested, generates events relating to the target object, but the target object itself is not changed.
Encapsulators are simply the implementation mechanism used by controllers. Tarraingfm's reflexive
facilities may be monitored by the usual meta-recursive "tower" [134] - an encapsulator cr.n be attached
to a controller, then a second encapsulator can be attached to the first encapsulator's controller, a third
encapsulator to the second encapsulator's controller, and so on ad infinitum.

9.2 The Self Problem

Pascoe's encapsulator, described in Section 9.1.1, has two practical shortcomings. First, the displaced
target object can easily "escape" from the encapsulator, that is, references to the target object can be
passed outside the encapsulator. Obviously, if the target object cafl escape, the encapsulator cannot
monitor its operation. Second, Pascoe's encapsulator only intercepts top level message sends ($8.2.1).
Throughout this thesis, we have assumed that the monitoring system is able to gather information about
all the target object's actions, not just those occurring at the top level - for example, the quicksort trace
example from Section 4.3.5 displays all the message sends involved in quicksort. Many of the strategies
discussed in Chapter 4 and the watchers from Chapter 7 likewise require information about the programs
actions at arbitrary depths.

These shortcomings a.re symptoms of the self problem [1271, a fundamental problem in the design of
object oriented languages. This section describes the selfproblem in detail, and presents three alternative
designs for encapsulators which avoid the self problem.

9.2.L Delegation and the Self Problem

The self problem describes a difficulty many object oriented systems have in implementing delegation
[127]. The problem arises in the binding of self, when messages are seut between objects.

In a normal method invocation, self is bound to the current object, that is, the object that received
the message. Methods can refer directly to self, for example, to pass the current object as an argument to
another message, or to store it in a global variable. Self-sends send messages to self ($5.4.2) to implement
recursive functions or procedural decomposition, a,nd to access variables. If a message is sent to another
object, self is rebound to the new message's receiver, as that object responds to the message.

Forwarding

Message forwarding is illustrated (in the context of encapsulators) in the first frame of Figure 9.8. When
a message m arrives at an encapsulator, self within the encapsulator will be bound to the encapsulator
itself. As m is forwarded to the displaced target object, self is rebound so it refers to that object. At this
point, if the target object executes a self-send n, the message is sent to the object referred to by self, i.e.,
the target object, a,nd the encapsulator will not intercept the message. If the object passes self to another
object, or stores it in a global variable, other objects could directly access the target object [7b]. Pascoe's
encapsulators use forwarding, and can therefore be bypassed, even though all existing references to the
target object are changed to refer to the encapsulator when the encapsulator is attached ($9.1.1).



9.2 Tso SnLp Pnosletvt

. r il: l

| (forwanletl) |

tl
ll
ll

solf within self within
encapsulator targetobject

Forwarding

I
self within
encapsulator

Delegating or Inheriting

self within
target object

Figure 9.3: The self Problem

Delegation

The second frame of Figure 9.3 shows how the binding of self does not change when a message is delegated
to a,nother object, rather than being forwarded with a normal message send. The message p is intercepted
by the encapsulator, and as it arrives as a normal message send, self is bound to the encapsulator. The
encapsulator then delegates the message to its ta,rget object, rather than forwarding it. Thus self is not
rebound, and continues to refer to the encapsulator. If a self-send q is executed by the target object,
the message is received by the encapsulator, since this is the current value of self. Similarly, if the ta^rget

object transmits or stores self, it will use a reference to the encapsulator, rather than a reference to the
displaced target object.

The difference between forwa.rding and delegation is in the type of message send used to pass the
message from the encapsulator to the ta^rget object. Forwarding uses a standard message send, while
delegation uses a special type of send which does not rebind self [12fl. The self problem occurs when
the sema,ntics of delegation are required, but only forwarding is available. Since most OO la^nguages only
support forwarding, the self problem is quite corlmon.

l''fosjitnnce

Most class-based object oriented languages provide inheritance between objects and classes and between
related classes. The message resenil operations used in class inheritance a,re equivalent to a static form
of delegation [209, 129]. When an object in a class-based language receives a message, a method in the
object's class will be located, then invoked with self bound to the object that received the message. The
message may be subsequently resent to another class, for exarnple, using Str,tru,LTALK's super send, or
CLOS's call-next-method. A resend invokes a method in the new class, which is typically an ancestor of
self's class, but the binding of self is not changed.

A message resent between cla.sses is thus treated like a message delegated between objects. For
exarnple, the second frame of Figure 9.3 could also describe an encapsulator which inherits from its
ta,rget object. The encapsulator receives a p message, a,nd resends this to its target object: self remains
unchanged. Ifthe target object executes a self-send ofq, the method lookup algorithm begins its lookup
with self, i.e., the encapsulator.

Delegation and Inheritance in SELF

Classless languages such as Snr,r do not distinguish between classes and insta,nces, rather, all objects may
perform either r6le. Inherita,nce in SELF occurs between objects, but behaves like inheritance between

743
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classes in typical object oriented languages, and therefore much like delegation. SELF's inheritance is
implicit, that is, objects automatically resend any messages they do not implement to any objects they
inherit from, while delegation is usually explicit.

Snr,r' also provides some experimental support for explicit delegation. Our Spr,r' version of Pascoe's
encapsulator uses the sendTo operation (in Figure 9.2) to forward the intercepted message to the target
object. Using sendTo performs a normal message send, and so alters the binding of self: this type
of encapsulator suffers from the self problem. SsLr also provides a sendTo:DelegatingTo message, which
implements a delegateil perfortn. The sendTo:DelegatingTo message takes an extra argument, to which self
is bound for the duration of the send. Table 9.L compares the sendTo and sendTo:DelegatingTo messages.

message protocol

Message sending
sendTo: obj Forwards a message to obj. The message lookup algorithm begins at obj, and

self is bound to obj while the resulting method is executed.
sendTo: obj WithArguments: args

Forwards a message to the object obj with args as arguments. The method
lookup algorithm begins at obj, and self is bound to obj while the resulting
method is executed.

sendTo: obj DelegatingTo: del WithArguments: args
Delegates a rnessage to the object del with args as a,rguments. The message

is actually sent to obj. That is, the method lookup algorithm begins at del,

but self is bound to obj while the resulting method is executed.

Table 9.1: Message sending protocol

We have experimented with several alternative designs for encapsulators which use SEtF's support for
delegation and inherita,nce to avoid the self problem. Delegating encapsulators ($9.2.2) are very similar
to Pascoe's forwarding encapsulators, but use the sendTo:DelegatingTo message to delegate messages to
their target objects. Inheriting encapsulators ($9.2.3) use inheritance, and since they must inherit from
their target object, they can no longer use the undefinedSelector exception to intercept messages. Custom
encapsulators ($9.2.4) are a,n optimised development of inheriting encapsulators.

9.2.2 Delegating Encapsulators

Delegating encapsulators avoid the self problem by delegating messages to their target object. A Splr
implementation of a delegating encapsulator is illustrated in Figure 9.4. Like the basic encapsulator of
Figure 9.2, it intercepts all messages by defining only an undefinedSelector method. Once intercepted,
messages are delegated to the displaced target object, using the sendTo:DelegatingTo message. This
ensures that the delegated messages are invoked with self bound to the encapsulator. Any references to
self within the target object refer to the encapsulator, and any self-sends are received by the encapsulator.
The ta.rget object is prevented from escaping the encapsulator, and the encapsulator can monitor all its
self-sends.

Privacy

Slots in Seln objects may be eiLher public or pri,tate ($5.4.1). Public slots can be accessed from any other
object, while private slots can only be accessed from "the inside" of an object.

An encapsulator can be attached to a,n object containing private slots. This poses no problem for
Pascoe's forwarding encapsulators, since they only intercept top level messages, which by definition must
originate from the outside of an object and so be sent to public slots. Delegating encapsulators also
intercept the target object's self-sends, however, and self-sends can be used to access an object's private
slots, for example, to read or write a private variable. A delegating encapsulator is always considered
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delegating encapsulator = (l
"vatiables"

- target.

- controller.

"this handles messages the encapsuJator receives"
^ undefinedSelector: msg Arguments: args = (lrvl

controller encapReceipt: msg Arguments: args.

rv: msg sendTo: self DelegatingTo: target WithArguments: args.

controller encapReturn: msg Arguments: args ReturnValue: rv.
rv).

t)

Figure 9.4: Delegating Encapsulator Design

outside its target object, because there is no inheritance relationship between the two, so the encapsulator

ca,nnot access the target's private slots. Whenever the target sends a self-message to access one of its
private slots, the message will be successfully intercepted by the encapsulator, but cannot be delegated

back to the target, because the encapsulator does not have access to the private slot. For this reason,

delegating encapsulators cannot be used in versions of Snlr which enforce privacy ($9.2.5).

Inheritance

Delegating encapsulators also fare better than forwarding encapsulators if other objects inherit from their
target object. Although no explicit inheritance link is built from a delegating encapsulator to its target
object, the delegated send can mimic inheritance in many respects. Some objects will still not function
correctly if a delegating encapsulator is attached to an object from which they inherit. In particular, if
an object inherits from two or more objects, the lack of an explicit inheritance link may cause SELF's

message lookup algorithm to go awry, a,nd if an object itself defines an undefinedSelector method, it may
override the definition used by the encapsulator.

9.2.3 Inheriting Encapsulators

The design of inheriting encapsulators (Figure 9.5) is quite different from the design of forwarding FiS-
ure 9.2) or delegating (Figure 9.4) encapsulators. As with the previous designs, an inheriting encapsulator
contains a controller variable, which refers to its associated controller, and a target variable, which refers to
its displaced ta,rget object. In an inheriting encapsulator, the target is a pa,rent slot, and the encapsulator

inherits from its target object via this slot.

The major difference between the designs is that a,n inheriting encapsulator does not use a^n unde-

finedSelector method to intercept all incoming messages. This is replaced by a large number of wrapper
methods, each of which intercepts one particular message.

When a message is sent to a forwarding or delegating encapsulator, SELF's message lookup algorithm
sea,rches the encapsulator for a slot implementing the message. Of course, such an encapsulator does not
define any messages (except undefinedSelector), so an error is signalled by sending the encapsulator the
undefinedSelector message. An inheriting encapsulator inherits from the ta^rget object, so when it receives

a message, the lookup algorithm will search the target object for any messages the encapsulator does

not define. An inheriting encapsulator must therefore explicitly implement all the messages it needs to
capture. If an inheriting encapsulator does not define any messages, that message will be passed directly
to its target object.

All messages sent originally to the ta,rget are received by the encapsulator and the appropriate wrapper
method run. The body of a wrapper method is similar to a delegating encapsulator's undefinedSelector



t46 9 Encepsur,AToRs

inheriting encapsulator = (l
- target+. "dynamic inheritm,ce from target object"
- controller.

"wt appers for messages"
^cycle:(1rv+-nil. 

l

controller encapReceipt:
rv: resend.cycle.
controller encapReturn :

rv).
^colour:n:(lrv+nil. 

l

controller encapReceipt:
resend.colour: n.

controller encapReturn :

rv).
^colour=(1rv+-nil. 

l

controller encapRecei pt:
rv: resend.colour.
controller encapReturn :

rv).

l)

tcycle t 
.

'cycle' Returning: rv.

rcoLour:'With: n.

'colour:' Returning: rv With: n.

t colour t.

rcolourt Returning: rv

Figure 9.5: Inheriting Encapsulator Design

method. The wrapper first notifies the controller of the message receipt. The intercepted message is then
resent to the ta.rget object. This uses the Splr resend operator which resumes the message lookup while
keeping self bound to the initial message receiver. As the encapsulator inherits from the (displaced) target
object, this continues the target program. The return value from the resend is stored in the local variable
rv. The controller is then notified of the message's return, and of the value returned by the message.
The wrapper method then returns normally, passing the stored return value to the original sender of the
message in the target program.

'Wrapper Methods

An inheriting encapsulator needs to contain a wrapper method for each message it intercepts. To com-
pletely monitor the target object, it must be able to intercept all messages implemented by the target -either directly, or inherited. As Snln objects can change their inheritance structure dynamically ($5.4.a),
the messages implemented by an object cannot be determined by a simple static inspection. Inheriting
encapsulators therefore contain a wrapper for every message narne defined in the Snm system. They
are thus assured of intercepting any messages their target object actually implements. All inheriting
encapsulators share the same set of wrapper methods.

There a,re over 7000 message names used in the Snlr library, Tarraingim, and the examples from this
thesis. Since writing 7000 wrapper methods would require a large effort, and the actual set of methods
required depends on the particular target program, Tarraingfm automatically constructs the wrapper
methods. Every message name in the Snln system is stored as a canonicalString, SEIF's version of Ltsp's
atoms or Smalltalk's symbols. Ta,rraingfm enumerates all the canonicalStrings known to the SEIF system,
a^nd constructs wrapper methods for those which meet the syntactic criteria for Snlr message names.

The wrapper methods must be regenerated whenever a new message name is added to the Splr
system. We believe new wrapper methods could easily be created incrementallg however we have not
yet implemented this optimisation. In practice, we rebuild the wrapper messages approximately once a
month, or after any major change to Tarraingfm or to the example prograrns.
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The SB1p compiler limits the number of slots an object can contain to approximately five hundred'

Inheriting encapsulator's wrapper methods a,re therefore split across several objects, and shared by all

inheritinf encapsulators. SElr"s prioritised multiple inheritance [215] is used to ensure the wrapper

methods and the target object are searched in the correct order by the message lookup algorithm.

Evaluation of Inheriting Encapsulators

Inheriting encapsulators have several advantages over delegating encapsulators, although both types

capture essentially the sa,rre information. The specialised wrapper methods used to intercept messages

snbUa be quickeithan a generic undefinedSelector handler. The explicit inheritance link, maintained by

inheriting encapsulators to the target object, ensures they a,re considered "inside" their target objects,

and avoid delegating encapsulators-' privacy problems. Inheriting encapsulators also avoid ma^ny of the

problems delegating encapsulators have with inheritance - they do not disrupt the inheritance hierarchy,

and they do not depend upon undefinedSelector'

An inheriting encapsulator's wrapper methods will almost certainly define some messages which are

not defined by its target object. Ifother objects inherit from the encapsulator's target object, these extra

message definitions may cause ambiguous message lookup euors'

9.2.4 Custom EncaPsulators

Forwarding, delegating a,nd inheriting encapsulators all monitor every message received by the target

object. As many watcf,ers only need a subset of these messages, this is quite inefficient ($8.1'2). Custom

enlapsulato6 u,r" r development of inheriting encapsulators which contain wrapper methods only for those

messages actually required by their controller, so that they do not intercept any unnecessaxy messages'

When a controller attaches a custom encapsulator to an object, the encapsulator does not contain

any wrapper methods. As the controller is requested to monitor particular messages' the appropriate

s|r'upp"r'routhods should be created and added to the encapsulator. A custom encapsulator's wrapper

*"t-hod, should be built automatically in the siune way as an inheriting encapsulator's wrapper methods,

but as this has not yet been implemented, for the purposes of our experiments we have written the

wrapper methods manuallY'

Should the controller need to monitor all the messages the object receives (in practice, if more than a

few messages must be monitored) the encapsulator can be converted into an inheriting encapsulator by

simply including all the wrapper messages'

Custom encapsulators also function well in the presence of inheritance. Like inheriting encapsulators,

they maintain anexplicit inheritance link between themselves and their ta.rget object, but unlike inheriting

enclpsulators, they cannot introduce the possibility of a message lookup ambiguity, because they only

include wrapper methods for messages actually understood by their target objects.

9.2.5 SummarY

Figure g.6 compa.res the four types of encapsulators described in this section. The columns list the types

of"encapsulatoi, the technique used to intercept messages, the technique used to send the intercepted

message to the target object, and any problems to which encapsulators are susceptible.

Our choice of encapsulator has been determined in practice by the facilities of particular SELF versions.

Ta,rraingim was initially developed with Snlr versions 1.0 and 2.0, which supported prioritised inheritance

and enf6rced slot privacy. Inheriting encapsulators, which avoid privacy problems, worked well within

these versions. Tarraingf- as described in ttris thesis uses SnlF version 2'3, which adds support for

catching non-local returis. An "encapsulator", as used in the rest ofthis chapter, and indeed throughout

this thesis, therefore denotes an inheriting encapsulator, unless another type of encapsulator is specified.

Splr versions 3.0 and 4.0 do not support prioritised inheritance or privacy declarations. Inheriting

encapsulators rely on prioritised inheritance, so they will not work with this version of Sur'. The lack of
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Type Interception Send to Tbrget Problems

Forwarding
Delegating
Inheriting
Custom

undefinedSelector handler
undefinedSelector handler
generic wrapper messages
specific wrapper messages

message send
delegated send
resend
resend

self, inheritance
privacy, inheritance
inheritance

Figure 9.6: Types of Encapsulators

privacy declarations resolves the problems with delegating encapsulators described in Section g.2.2, and
we have verified that delegating encapsulators will perform satisfactorily in these versions of Sur,.

The dependence of encapsulators upon the details of particular version of Snr,r highlights another
advantage of the separation of controllers and encapsulators. Encapsulators are not visible outside the
monitoring subsystem, as they are always accessed indirectly via controllers. Controllers therefore insulate
the rest of Tarraingfm from the details of encapsulators' implementations. The type of encapsulator used
by Tarraingim can be changed without this change a,ffecting any watchers or views.

9.3 Primitives

Some low level operations and data structures cannot be expressed efficiently in Snlr, and are therefore
supported directly by the Selr compiler and vu. Just as the Snlr language provides objects and
messages' so the vM provides primitiue objects and primitiue methods. Primitive objects represent data
in the run-time system (such as integers, vectors or processes) or data provided by the op"ruting system
(for example TCP connections or X windows). Primitive messages implement fundamental operations for
all types of objects (e.g., lowJevel copying or identity comparison) and specialised behaviour lor primitive
objects (e.g., adding two integers, scheduling a process, or opening a window).

To monitor a program, we need to be able to observe primitive objects and monitor primitive messages.
This section begins by describing how encapsulators can be extended to handle primitive objects ($g.5.f )and messages ($9.3.2). Tarraingim's handling of two special cases is then described: cloning *.rrug"t
used to create objects ($9.3.3), and mirror objects used for structural reflexion ($g.g.4).

9.3.1 Primitive Objects

The vu implements Selr objects as if they were made up of three distinct parts - an object's iilentity,
a slots part, and a primitiue pcrf. Section 5.4.1 has described an object's identity and an object's slois
part' Most objects are plain objects, that is, they have no primitive part (equivalently, their primitive
part is empty). Objects with non-empty primitive parts are known as primitiue objects. A primitive
object's primitive part contains data interpreted only by the SsLr vM. This primitive data is accessed
using primitive messages specific to the type of primitive object. For example, an integer object contains
a fixed-precision integer value in its primitive part, and integer primitive *e.rage, are rised to manipulate
this value.

Figure 9.7 lists the various types of primitive objects in Snlr'. The figure groups the object types into
two categories - mutable and immutable. Most types of primitive objects, including all plain ob;ects,
ate mutable. A mutable object's data slots can be assigned to by the program; data in their primitive part
ca,n be changed by primitive messages; slots can be added to or removed from the slots part; and their
primitive part can be removed or replaced by another mutable object. A plain object can be changed
into a mutable primitive object, and vice versa.

Immutable objects (which are always primitive) cannot be changed. Primitive messages ca.n retrieve
data from their primitive parts, but cannot change them. Their slots part always consists of a single
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static parent slot (na,med parent) which inherits behaviour from a particula,r traits object ($5.4'4)' Each

different type of immutabie primitive object inherits from a difierent traits object. These traits objects

are used ty ttru Snlr library to supply behaviour for the immutable primitive objects'

Mutable Imrmrtable

vector (two subtyPes)

byte vector
miiror (sirteen subtYPes)

proxy (two subtgPes)

method (two sabtYPes)

process

integer
float
canonical string
block
activation (three subtYPes)

assignment

Figure 9.7: TYPes of Snlr' Objects

Mutable Primitive Objects

Encapsulators can be attached directly to mutable primitive objects' Such encapsulators must monitor

the operation of the object's primitive part, and 
"oror" 

the object continues to operate correctly' Since

the piimitive part is *"rnipotut"a by piimitive messages' its execution is monitored in the sarne way as

other primitive messages ($9'3.2).

Ensuring the object continues to operate correctly is more dfficult. The primitive messages used to

manipulate an objectk pri-itiu" pa*s (p*rnitiae obiect messages) axe sent to the ob:.e1t to be manipu-

lated, typicaly as self-sends frorrnormal methods inherited by the primitive object ($9'2'3)' When an

encapsulator is attached to an object, it displaces that object irom the program' and arra'nges that self

will refer to the encapsulator (gg.z). Any primitive object messages sent to the ta'rget object will then

a.rrive at the 
"n.rprutiior, 

but'ihe .n"rpiul.tor will not be able to handle them, since it does not include

the object's Primitive Part.

To avoid this problem, we displace only the ta,rget object's slots part' The primitive part remains

with the original object, that is,- it becomes the eicapsulator's primitive part' Any primitive object

messages sent to the iarget objeci find the encapsulators primitive part, and so execute successfully' This

is illustrated in Figure 9.8.

Figure 9.8: Attaching a split encapsulator to a Mutable Primitive object



150 9 Encepsur,AToRs

We call an encapsulator using this technique a splitencapsulator, since the various parts of the targetobject are split when an encapsulator is attached. A split encapsutator may be any type of encapsulatorwhich handles self correctly - delegating, inheriting, or custom ($g.2). Not" tnJtrtis problem did not
occur in Pascoe's forwarding encapsulators in Sult,itllr. SuIILTALK's primitives can only be sent to
self, and forwarding encapsulators do not change the target object,s binding of self.

fmmutable Primitive Objects

Immutable primitive objects cannot be altered. It follows that they cannot be displaced from the target
progruun' a.nd that encapsulators cannot be attached to them. Immutable primitive objects inherit from atraits object which is.always a mutable plain object. An immutable objeci can theref;e be monitored byattaching an encapsulator to the object's parent, rather than to the object itself ($g.2.4). As immutab[
objects only include a single parent slot, this encapsulator would not ,oir, *y *ilr"g". handled by theprimitive object before arriving at the parent. Unfortunately, it would monittr ail the primitive objects
of that type, not just the desired target object. While a filter watcher ($2.3.1) can be used so that views
receive only the actions of the object of interest, overall this approach is quite inefficient.

In practice, we have found little need to monitor immutable primitive objects. Although these objects
are used widely throughout Snlr programs, they are used in very mundane ways, and their behaviour is
usually implemented in the snlr librarg rather than user's programs.

9.3.2 Primitive Messages

Primitive messages are used by Snlr programs to perform fundamental operations for all object types
(such as creating and. comparing objects)-, and specialised operations for primitive objects. primitive
messages are essentially vu subroutines which are called from Snr,r programs. They a^re handled very
differently from other SELr messages.

The names of all ptimitive messages begin with an underscore "-". When a primitive message is to be
sent (for example "a -lntAdd: b"), its arguments and receiver are first evaluated, as for any other message.
Unlike normal message sends, SELF's message lookup algorithm ($5.4.4) is not invokeJ. Iostead, the vrr,r
recognises the primitive message syntax, and simply searches an internal table.

This special lookup poses a problem. Encapsulators monitor objects by intercepting the messages they
receive: this depends critically upon messages being delivered by the standard *"rr"gl lookup algorithm.
The vt't effectively executes primitive messages as soon as they are sent, with no Snlr-language levellookup' There is no way to intercept or cha^nge the behaviour of primitive messages apart from-1y1oiairying
the vM, so encapsulators cannot intercept these messages.

Primitive Message Wrappers

Primitive messages are in general a problem in Snlr. Because these messages are type.specific (-lntAdd
is distinguished from -FloatAdd), using them eliminates the possibility of polymo.pt ir*. Since primitive
messages may be sent directly to any object in the system, a,nd can atectty manipulate arr object,sprimitive part, they can bypass the encapsulation or data-hiaing provided uy ttre language. Code us-ing primitive messages is very sensitive to small changes in the irrrgurg" imilementation, because theprimitive messages are implemented directly by the vrra-.

Writing primitive messages is therefore considered bad style [zlb]. The Snlr library includes a normalmethod (found by the message lookup mechanism) 
"or."riorriiog 

to almost every primitive message.
These pri'miti'ue wrappermethods (not to be confused with an inheriting encapsulatoi,s-wrapper methods)simply invoke the corresponding primitive message (see Figure 9.g). Sending a wrapper message isthe usual way to invoke most primitives in Solr'.-This allois the primitive facilities to be used whilemaintaining the benefits of SplF such as polymorphism, encapsulation, and abstraction. Changes to thevM can be isolated within the wrappers, rather than propagaied throughout the whole program.
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times : (l
^ user 

'' 
= ( -TimeUser). "user time in msec used by SeIf'

^ system - ( -TimeSysiem). "system time in msec used by SeIf'
^ 6; = ('-TimeCFU). i'cpu time (user * system) used by SeIf'

t)

traits mirrors = (l
^ reflecteelffaii' fb : ( -MirrorReflecteelfFail: fb)'
^ nameslfFail: fb = ( -MirrorNameslffail: fb)'

t)

Figure 9.9: Some Primitive Wrappers

An encapsulator cannot monitor primitive messages' however, it can monitor the wrapper methods

since they are standard Splr methods reached by th" normal method lookup algorithm' This is only

a pa^rtial solution: the target prograrn may be *ritt"r, in a style that sends primitive messages directly'

and the user can always entei primitive sends interactively. In practice, monitoring only the primitive

*r"ppo methods and ignoring ihe actual primitive messa8es has proved a satisfactory solution'

Note that Strlelr,relx uses primitive methodsrather than primitive rnessoges and, since methods are

executed after a*"rrrg" toot up, effectively avoids this problem [85]' Always sending SUr's primitive

messages from within *i"pp", *"thoa, iseifectively treating the piimitive messages as if they were meth-

ods. For efficiency reasons, SVrellmlr includes Lome speciol selectors to perform common operations

(such as identity "o*puti*"j 
*r,i"rr, [k"- SEIF's primitive messages' bypass the normal method lookup

algorithm. Sr,aa1r,tel-X encapsulator impiementttioot have dealt with special selectors by removing them

from the target progr;b ro"rce code [16] or by changing the Sualt tll,x compiler [138' 1641 to generate

normal sends for the same messages'

Receivers and Arguments

some primitive messages (such as -Quit which ends the snlr session) take no arguments and ignore their

receiver. Most primitive messages, howevet, do take a,rguments, and do rely upon the value or structure

of their receiver. fo, exaorplel tie -Eq pii*itiuu message tests pointer equality between two objects

(similar to LtSP's .q 
"p".utio"j, 

*d the -ldentityHash message returns a hash value for an object such

that two objects which are -gq *itt have the same hash value. Section 9.3'1 described primitive messages

which are used to ma^nipulate an object's primitive pa.rt' These messaBes depend 9".tlu identity and the

primitive parts of theirieceiver and arguments. Split encapsulators do not alter the identity or primitive

pa,rts of their ta^rget objects ($9.3.1), ,o thur" -urrugut can be handled without any additional attention'

some primitive messages depend upon the slots part of their receiver or arguments, in additiou to

their primitive part and identity. Split encapsulatois displace their target object's slots part' so that

if an encapsulator is attached to tfre receiver or an argument to such a message the message will not

perform correctly. ro.-"*u*pr", the -clone primitive messaSe returns a low-Ievel copy of its receiver'

including both its primitive and slots parts. ff -clone is sent to an encapsulator, it will return a copy of

the encapsulator, not the ta^rget object'

The next subsection describes how we have extended Tarraingim's encapsulators to handle messages

(such as -clone) which depend upon their receiver's slots pa,rt' section 9'3'4 further extends these

techniques to deal with the primitive messages associated wiih mirror objects, which provide structural

reflexion in SPlr'.

9.3.3 Cloning Messages

The cloningprimitive messages (-Clone, -Clone:Filler and -CloneBytes:Filler) provide SElr's basic support

for creatin! new objects. As Ser,r is a prototype'based language, the programmer clones a prototype to
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create a new object, rather than creating the object ab initio ($5.4.1). Sending -Clone to an object returnsa new object with exactly the same structure, slots, and *lu.* as the ,""Jirru, of the -Clone message.
These messages depend upon an object's srots and primitive parts.

- When a'n object with an attached encapsulator receives a cloning primitive message the result is a clone
of the encapsulator. These two encapsulators will have the sa,rne target object and the-sa^rne controller. Thisis a problem: we must instead return a clone of the displaced object, without an encapsulator attached.To do this, it is necessary to intercept these primitive -"rrug"., or in practice, their primitive wrappers.
There are, however, no unique wrappers for these primitives."Atitrough ult the croning primitive messages
are wrapped by other methods, these messages are often redefined by the progr"*riu, to provide otherbehaviour.

For example, the message clone is defined in traits clonable as a wrapper for the -Clone primitive.
Alr clonable objects (those which can be cloned, either in the Solr,librarytr a user,s programs) inheritfrom traits clonable to get access to the -Clone primitive. In traits oddball (a traits object similar to traits
clonable, but for oddboll objects which can n9t 6e cloned), clone is defined to return r"if, thut is, to returnthe actual object receiving the message rather than a copy. This is because objects which inherit fromtraits oddball should be unique: only one copy of each of ihese objects should 

"*irt 
io the Snlp world.This restriction is implemented by traits oddball's definition of the clone message.

^- 
We cannot simply consider the clone message a wrapper for the -Clone primitive, even though the

-Clone primitive is only accessible via the clone iaessage. rnir is because clone does not necessarily callthe -Clone primitive message. We therefore modify the SBr,r' library source code to introduce a uniquewrapper message for each cloning primitive. After this modification, 
"uury 

use of -Clone is replaced with
a call to a new primitiveClone wrapper method which does nothing but call -Clone. Similar substitutions
are made for the _Clone:Filler and _CloneByt€s:Filler messages.

Primitive Override Methods

Calls to the cloning primitives can now be easily identified, since they will send one of these new wrapper
messages' To handle these primitives within an encapsulator, we add extra methods to the encapsulatorwhich override the standard behaviour of the cloning primitives. Theseprdrnitiue oaeni,demethods areinserted between the encapsulator proper and the tarsei object, that is, afier the encapsulator,s undefined-
Selector trap or wrapper methods.

For the cloning primitive messages, the primitive override methods return copies of the displaced ob-ject, not the encapsulator. If a split encapsulator has been used, the primitive override methods combine
copies of the various parts into a single object. Primitive overrides are invoked after the encapsulator
intercepts-the cloning wrapper message receipt, so the wrapper messages can be monitored by the encap-sulator' The actions of the primitives are then emulated by the ou"rrid"r, rather than being handled bythe actual wrappers and primitive messages.

- To summarise, when an object receives a message (such as clone) which will eventually invoke acloning primitive, the definition of that message !n the target object will eventually send the new prim-
itive, wrapper message (such as primitiveClon"f. lr u,lr encalsulator is not attached to the target object,primitiveClone will invoke -Clone, which will copy the objeci. If an encapsulator is attached to the targetobject,,the message will be handled by the appropriate primitive override method, which will return acopy of the target object, without an attached encapsulator.

Prograrnming and Debugging Messages

A small number of primitive messages provide low-level support for programming and debugging. Likecloning messages' these messages also dlpend on all parts orin"i, receiver and arguments. For example,
-Print directly prints the structure of its receiver, -Oefine replaces its receiver,s structure with that of itsaxgument, and _RemoveSlot deletes one of its receiver,s slots.

If -Print is applied to an object with an attached encapsulator it will display the structure of theencapsulator, not the target object. -Define may completely remove an encapsulator from its receiver, or
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duplicate a,n encapsulator in the same way as -Clone. A well-chosen -RemoveSlot can completely disable

a,n encapsulator.

Snlr programming style eschews these messages, which are designed to support interactive program-

ming and debugging. A much better interface for reflexive programming is provided by Srln's mirror

objects. The programming primitives are used directly from the SnlF command line, or in script files

used to load Selr programs, so no wrappers exist for these messages.

Tarraingim does not handle these primitives. This has not proven to be a problem, as these messages

do not appeax in typical Selr programs. If they were more common, primitive wrapper methods could be

written for these messages, so they could be handled with primitive override methods in encapsulators.

9.3.4 Mirrors

Mirrors are primitive objects which implement SELF's structural reflexive facilities. Both Snlp's debugger

and Tarraingim use information obtained via mirrors to ma"nipulate or display the structure of objects.

Each mirror object provides information about one particular object in the SELF world - that mirror's

reflectee (see Figure 9.10). Like other types of primitive objects, mirrors are manipulated by primitive
messages. Mirrors'primitive messages are sent by wrapper methods inherited by the actual mirror objects.
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@
Mirror on Encapsulator

Figure 9.10: mirrors and encapsulators

Mirrors inspect the actual structure of objects in the program. Attaching an encapsulator to an object
changes that object's structure, and such changes are visible through any mirrors reflecting the target
object. To hide the presence of encapsulators, Ta,rraingim must ensure mirrors transparently ignore any

encapsulators attached to the target object. When a mirror is applied to an encapsulator, it should report
information about the encapsulator's displaced target object, rather than the encapsulator itself. Since

SELF's inspectors and other higher-level reflexive utilities a,re implemented via mirrors, this change renders

encapsulators invisible to these tools. F\rrthermore, as Tarraingfm's views are implemented using mirrors,

they also display objects correctly, irrespective of the presence of any encapsulators required to monitor

the objects to maintain the views.

Mirror Primitive Messages

Mirror primitive messages must be treated differently from other types of primitive messages ($9'3'2).

Problems arise with most primitive messages because the receiver, or an argument of the message, may

have an encapsulator attached. Although an encapsulator may be attached to a mirror (see the centre
panel of Figure 9.10), this can be ha,ndled in the siune way as any other primitive object, by using a
split encapsulator ($9.3.1). The problem with mirrors arises when the mirror's reflectee (rather than the

f -"""*ltlw

Encapsulator on Mirror
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mirror itself) has an encapsulator attached (see the third panel of Figure 9.10). If this is so, the mirror
will provide information about the encapsulator, rather than about the original reflectee.

Note that only those mirror primitive messages which refer to the reflectee's slots part need to be
redirected. A split encapsulator does not change its target object's identity or primitive part, so mirror
primitives which refer to the mbror reflectee's identity or primitive part do not need to be redirected.

Tarraingfm therefore modifies the standard implementation of mirrors to detect when their reflectee
has a.n encapsulator attached, and if so, to ignore the encapsulator. This is done by altering the primitive
wrappers in the traits mirror object for those messages which would otherwise detect the encapsulator,
as shown in Figure 9.11. The new wrappers send mirror primitives to the result of a call to slotMirror,
rather than (implicitly) to self.

The slotMirror method determines if the mirror's reflectee has an encapsulator attached, using the
mirror's -MirrorNames primitive. If so, it returns a new mirror reflecting on the displaced slots part of
the target object, so the mirror primitive message will be redirected, and will now apply to the displaced
slots part of the target object. If not, slotMirror returns self, that is, the original mirror, which must be
reflecting an object without an encapsulator attached. In either case, the existence of a,n encapsulator is
hidden from the mirror's client.

traits mirror : (l

"normaf, wrappet method"
^ nameslffail: fb = ( -MirrorNameslfFail: fb).

" aJtered wr app er metho d"
^ nameslfFail: fb = (slotMirror -MirrorNameslfFail: fb).

"defrnition of slotMirror"
- slotMirror : (

-MirrorNames includes: I target'
ifTrue: [-MirrorContentsAt:' target' ]uthis pfimitive returns a mitror"
False: self).

l)

Figure 9.11: Primitive Method Wrappers within mirrors

These changes to mirror primitive wrappers comprise the largest single modification of the Snr,r
library source code that is required for Tarraingfm to operate. The source file containing the changes is
about one hundred lines of Snlr code. The changes required to insert cloning primitive methods wrappers
($9.3.3) amount to less than fifty lines. In order to implement Tarraingim, we have changed less than one
hundred and fifty lines of the preexisting Srr,r library comprising less than thirty methods.

Dynamic Reflexion

The SBIF system includes debuggers and profilers which can display a program's call stack. Installing an
encapsulator into the target prograrn causes additional method sends, which place extra frames onto the
stack, and are revealed by the Snlr debugger. These message sends are ignored by Tarraingfm, either
directly, because of their selector narnes ($9.1.4), or indirectly, by the meta-depth mechanism ($S.2.3).

Like the structural reflexive utilities, the Sur debugger is implemented using mirrors to gain access
to a reified control stack. The problem for these activationMirrors is not that the objects making up
the stack have been replaced by encapsulators, but that extra frames will have been introduced into the
stack by the messages sent within encapsulators. We believe that techniques similar to those used to hide
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encapsulators from object mirrors would also effectively hide encapsulators from activation mirrors. We

have not yet implemented these changes, as we have not found this to be a problem in practice.

9.3.5 Summary

SBlr uses primitive objects and messages to provide access to data types and operations implemented

by the Snr,i vryl. Primitive objects can be monitored by using split encapsulators, which displace the

target object's slots part while leaving the primitive part intact. Primitive messages cannot be moni-

torla directly, but they are usually called from Sslrlevel wrapper methods which can be monitored by

encapsulator* So-" of these wrapper methods have to be modified so that objects with encapsulators

""o 
b" cloned and to hide encapsulators from SELF's structural reflexive facilities.

9.4 Summary

This chapter has described four types of encapsulator. Forwarding encapsulators were originally described

by pascoe in Sualr,telK, and monitor the top level actions of their target objects. We have developed

dllegating, inheriting, and custom encapsulators, which avoid the self problem and can monitor all their

target objects' actions. The Tarraingim prototype program exploratorium described in this thesis uses

inhiritins encapsulators, but we believe that both delegating and custom encapsulators should also be

effective in appropriate environments.

Most types of encapsulators have some limitations upon their operation. Delegating encapsulators do

not work in versions of Snr,r' which enforce privacy; inheriting encapsulators' wrapper methods must be

updated whenever the target program is changed; most types of encapsulators do not operate correctly

in all situations when other objects inherit from their target object; and immutable primitive objects a,re

difficult to monitor with any kind of encapsulator.

The target prograrn's style must be constrained if it is to be monitored with encapsulators. In par-

ticular, the encapsulators' and target program's namespaces must be separated, and primitive messages

must always be sent from wrapper methods. These constraints have not been a problem in practice.

Encapsulators of all types impose overheads on the execution of the ta.rget prograln. Delegating,

inheriting and forwarding mcapsulators are quite inefficient, because they capture muury messages which

are uot required by the monitoring system. Custom encapsulators intercept only those actions that a,re

needed, but, as their name suggests, they must be tailored specially to suit a pa,rticular situation, and

this makes them more expensive to create than other types of encapsulators.

We found the construction of a monitoring subsystem for Tarraingfm more challenging than we an-

ticipated. Languages such as Sualltelx and SsLn generally have debuggers which are based upon

an Lterpretut 1Sn1, or require specialised support from the compiler [103]' and_ in general, debugging

techniques tor ib;ect oriented la^nguages are currently the subject of researtr [52].

Two interactions between this subsystem's requirements posed the majority of problems. First, Tar-

raingim's monitoring has to be selective with respect to target objects, and the message narnes and types

of tte objects' actions. Encapsulators are an efficient way to monitor all the actions of a single object,

while parlicular messages sent to any object can be monitored by wrapping message definitions [23]-

For Tarraingim's purposes, selecting actions on a per-object basis is more important than the particular

message narne or event type. Thus monitoring the target program with encapsulators and then filtering

the resulting actions with controllers and watchers is an effective solution.

Second, objects must be monitored dyaa,mically - encapsulators may be attached to (or removed

from) their tarlet objects while the ta,rget prograrn is running. Encapsulators with a fixed structure, such

a-s delegating uod itthutiting encapsulators, are quicker and easier to attach to their target objects than

more complex encapsulators, such as custom encapsulators. Once attached, though, custom encapsulators

can moniior the ta^rget prograyn more efficiently. Since inheriting encapsulators performed acceptably

a{fhin Ta,rraingim, we have not pursued custom encapsulators.
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10
Tarraingim in Action

25. One can only displag cornplex infonnotion in the rnind'
L'ike seeing, mouement or flow or olteration of aiew

is more important than the stotic picture, no rnatter how loaely.

Alan Perlis, Epigtams On Programrnrng [168]

This chapter presents several examples of the Ta,rraingfm system in use. Section 10.1 describes Ta,rraingim

from the useis point of view, and ihows how a program, or alry pa,rt of the SnlF world, can be explored

using Tarraingim. The second section ($10.2) describes how the component parts of Tarraingim are

combined to create visualisations, illustrating the use of views, watchers, and controllers. FinallS the third

section ($10.g) presents a la^rger visualisation, showing the operation of a parser for a small programming

language- ef il" figures io ttri* chapter, like all the screen dumps in this thesis, were created using

Ta^rraingim.

As the epigram quoted above indicates, static figures do not give a good impression of dynamic views.

This is do"tty the case when presenting an interactive system such as Ta,rraingim, where the user's

commands and choices are a.s important as the information presented. In this chapter, although we

present sequences of views the usei could request, or ttbefore" and ota,fter" versions of the same view, this

does not give a good impression of the feel of an interactive system.

10.1- Exploring The Self World

All the objects in a Snln program, including the libra^ry, the user's progr:un' and the Tarlaingim system's

implementation, are contained within SELr's object space, known as the Spr.r' uodd' The SulF world is

ortanised by structures built directly out ofobjects, rather than by using special packages (as in Lrse) or

dic'tiona.ries (as in Svr.u,lre,lr) [217]. The Suln world begins from an object known as the lobby, which

is the root of the Splr. ,ra*"sp""". Th" SsLn library is organised as a tree rooted at the lobby. The slots

of the lobby contain various category objects which are used to structure the namespace. The category

objects 
"ooiuir, 

further subcotegoryobjects, and these subcategories eventually contain the objects making

up SELr's libra^ry.

In this section, we describe how an end-user can use Ta.rraingim to browse SwF's namespace and

library. Figure 10.1 illustrates an iconic browser view displaying the lobby. This view is displayed by

defauit when Tarraingim is started from the SBlr command line. Each icon in the view represents the

contents of one of the lobby's slots.
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Figure 10.1: The lobby

The icon browser view is implemented by a hierarchical view ($6.5). Each slot in the ta^rget object is
visualised by a separate subview, which draws the name of the slot, and an icon representing the slot,s
contents. The subviews choose the icon for a particula^r object from a table supplied by the visualiser.
The icon chosen can depend upon the object's name (for important objects such as the lobby) or the kind
of object. If noiconisfound,theobjectisdisplayedusinga soapbubbleiconr. Thestructureof theicon
browser view is discussed further in Section 10.2.2.

The lobby object contains the following slots:

. testing contains va^rious objects related to testing the system.

c everywhere contains important system variables accessible from every object.

o globals contains various globally accessible objects: in particular, the prototypes of objects in the
Selr library.

e defaultBehavior contains behaviour common to most objects (including support for printing objects,
and comparing their identity).

o shell is the command line user interface.

. rts is a method used to install Tarraingfm.

. comment is a method which provides a comment about the lobby.

r lobby is a link to the lobby itself. This is how the lobby gets its name.

r mixins contains objects which a,re inherited by other objects (like traits), but are not associated with
a particular prototype.

o traits contains traits objects for the prototypes stored in globals.

o tarraingim contains system variables for Tarraingim.

All Tarraingfm's windows ca.n be manipulated (moved, resized, temporarily hidden and so on) using
the X window manager. This is controlled from the window's title tab. The title tab for the browsei
view in Figure 10.L, lobby <10>, displays the name and object ID number for the object displayed in the
view' A view's title tab display is implemented by N.+vur, ($6.1.3), and shows a view,s target object's
name and object ID number by default. A view's title is one of its parameters and can be 

"t 
uttg"a ty

the visualiser (96.1.1).

t Q ,"" the quotations at the end of this chapter.
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10.1.1 Navigation

The user can navigate around the SsLn world by clicking the lefb mouse button on the icons in browser

views ($6.6.1). Tarraingfm then produces a browser displaying the indicated object. For example, select-

ing glo[als from the lob-by browser shown in Figure 10.1 produces the view of the globals object displayed

in"Figuxe 10.2. Like the tbby, a,nd the other category objects described in the chapter, the globals object

is pa,rt of the standard Snlr library.

Figure 10.2: globals

The globals object contains fifteen slots, each containing a subcategory object. These objects (tgim,

views, testObjects, and so on) contain useful objects belonging to that category, or further subcategory

objecis. For-example, selecting collections from the globals browser produces a firrther browser, which

displays the collections subcategory (see Figure 10.3), containing various subcategories of collections'

Sellcting tgim would display " 
bro*r., o.r the tgim category object, which contains prototypes of the

objects implementing Tarraingim'

Figure L0'3: collections category

Selecting ordered from within cotlections displays the ordered collection subcategory (see Figure 10'4),

which contains actual object prototypes.

Figure 10.4: ordered collections

The ordered collection subcategory contains the following objects:

o sequence and orderedCollection a,re two alternative implementations of collections which are both

indexable (like arrays) and exbensible (like lists).
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r link is a doubly linked list record.

o list is linked list implemented using links.

r sharedQueue uses a linked list and a couple of semaphores to implement a queue which can be shared
between several concurrent processes.

o genTree is a generic n-ary tree.

Since the icon browser displays objects by showing their slots and contents, a prototype object can
be selected and a new view will appear displaying its internal structure. Figure f0.5 displays the SBlr,
library's shared Queue and seq uence prototypes.

Figure 10.5: sequence and sharedQueue prototypes

Each of these objects has a parent slot containing its corresponding traits object, and a slot thisOb-
jectPrints containing true, which is used by the SELF command line to determine that the object can be
printed. The sharedQueue prototype has a rep slot containing a list, a count variable, and two semaphores.
The sequence includes the elems array which holds the sequence elements, and also start and size pointers
which indicate the portion of the array containing sequence elements.

Iconic views can be used to explore these objects further. For example, if the sequence,s parent slot is
selected, its traits object will be displayed. This contains mostly methods, which can in turn be selected
and displayed, as illustrated in Figure 10.6.

10.1.2 View Selection

As well as navigating about the program, the user can request different views of any object ($6.6.1). Each
view supplies a pop-up menu (on the right mouse button) from which alternative views can be selected
($6.6.1). This is illustrated for a sequence in Figure 10.2.

The sequence view menu contains some views which can display a,ny kind of object, and others
which are applicable only to collections (such as sequences). Thi inspector view displays an object's
slots textually (it is a counterpart to the iconic browser, $6.5j; the print view displays the default pr'inted
representation of an object; the trace, profile and profile (bar) views display operation traces and profiles
respectively (some of these views a,re illustrated in Figures 3.2,3.4, and 6.9). All these views can display
any type of object. The dots, bigDots and sticks views (pictured in Figure B.l), also the collection and
keyed views, display only collections.

Note that although this menu is called the "view" menu, it really containg combinations of views a^nd
watchers- This is because end-users think in terms of complete visualisations, and are not aware the
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Figure 10.6: traits sequence and a sequence Method

Figure 10.7: View Menu for a sequence

distinction between watchers and views ($2.1). For example, the keyed (col) and profile menu entries both

create coll2View view objects ($6.7). trre coltedion menu entry invokes a coll2View using a topwatcher

($7.2.3), and so directly displays thevallgsin the sequence, while the profile menu entry invokes a coll2View

which uses an indirecf protiteWatctrer ($7.4.1), and so displays a profile of the collection's execution'

Selecting bigDots from the menu will produce a large scale scatterplot view of the sequence, similar

to the view of a vector displayed in Figure 10'8'

10.1.3 User Commands

The user can send messages to the object displayed in a view.- Each view supplies a command pop-up

menu listing *o*" *urr"i"s which the-view's target object understa,nds' The visualiser must construct

a suitable command meriu for each view. The c-ommand menu for a sequence is illustrated in Figure

L0.8, as requested from the big dots view. The menu contains commands to fill' shuffie and reverse the

sequence, to run several sorting algorithms, and to print out the sequence's contents'

Some views allow their target objects to be manipulated directly ($6.6.2). For example, a dot in the

view in Figure 10.8 can be dralged vertically to update the appropriate element of the sequence object'
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Figure 10.8: Command Menu for a sequence displayed in a bigDots view

10.1.4 View Commands

Although most view manipulation is carried out using the X window manager, some extra functions are
available via a third poPup menu, illustrated in Figuie 10.9. This menu is known as the ,,meta,, menu,
since it relates to the view itself, rather than the object displayed by the view.

The left column of the meta-menu sends commands to the view: close closes the view; redraw refreshes
the image (this can invoke user-driven update strategies, $4.3.4); name changes the title displayed in the
view's title tab; and layout recalculates the view's layout. ihe entries in the right column request reflexive
views of the view itself. Selecting props displays a property sheet for the view; browser displays an iconic
browser of the view objectl and meta requests a view of the view's structure, as described in Section
10.2.1.

Figure 10'9 also shows the property sheet for a dots view. This dialog box can be used to change the
view's display parameters_$0-a1. In Figure 10.9, the property sheet has been used to change the size and
scaJe ofthe dots displayed by the view from figure iO.S.
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Figure 10.9: Meta Menu and properties view for a bigDots view

Figure 10'10 shows an icon browser reflexively displaying a dots view. This browser displays the

,/

-Jf
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internal implementation of the dots view, which relies heavily upon

casual interest are the window, manager and display slots related to

iWatcher slot containing the view's watcher.

the internal graphics librarY.
the X window system, and
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Figure 10.10: Reflexive Browser for a bigDots View

l-0.2 Tamaingim's Structure

Tarraingfm's visualisations are constructed according to the APMV model by composing objects within

the Tariaingim framework. As described in Chapter 5, a display is drawn by a view object, which may use

several subviews. Every view is connected to a watcher, and each watcher may in turn use subwatchers'

Watchers use controllers and encapsulators to monitor the target program'

This section illustrates how these objects axe composed to produce visualisations, and begins by dis-

cussing simple displays employing only a single view and watcher ($10.2.1)' Section 10.2.2 describes more

complJx displays incorporating -ultipt" views, and Section 10.2'3 illustrates how compound strategies

can be constructed from multiple watchers.

10.2.1 Simple Views

Ma,ny displays can be implemented with only one view and one watcher. This section describes the

structure of three such views of collections: a scatterplot view, an operation trace view, and a simple

textual list.

Dots View

Figure 10.11 shows a dots view (titled vector <15>) displaying a vector' and also a view structure view

ltiTUa dots <16>) displaying the implementation of a dots view. A view structure view reflexively displays

the actual structure of controller, watcher, and view objects used in another view's implementation, in the

same way the line diagrams used in Section 5.3.3 display the arrangements of these objects in Tarraingfm's

framework. A view structure view is requested by selecting the meta entry in a view's meta menu (see

Figure 10.9).
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Figure 10.11: Dots View Structure

Reading the view structure view from left to right, it shows the three components of the ApMV model:
program' mapping, and visualisation. The program component is represented by the target object (the
object vector <15>) and the con-troller (controller <105>). The mapping component is represented by the
watcher (prelocalWatcher <66>), and the visualisation component is represented by the dots view itself
(dots <16>).

The title tabs of all the views in this section have been configured to display the name and object ID
of the view's target object. The view structure view in Figure 10.1t illustrates a dots view object with
the object ID <16> - the view object maintaining the dots view shown in that figure. The dots view
itself is displaying a vector (a primitive array of fixed size) with object ID <15>. This is the same vector
that is shown to be the dots view's target object in the view structure view.

The dots view implementation is quite simple, utilising only a single view and watcher. The dots view
object, described in deiail in Section 6.3, draws and maintains the graphical display of the scatterplot.
The prelocalWatcher notffies the dots view about changes in its target object's state before they are
applied (97.2.4).

The prelocalWatcher <66> uses the controller <105> to monitor the target object. ff the target ob-
ject needs to be monitored, the controller will automatically create and attach an encapsulator (gl.t.z).
Note that view structure views do not display encapsulators, since encapsulators a.re hidden within the
monitoring subsystem, and are always accessed via controilers2 ($g.1).

Tlace View

A trace view displays a textual list of the messages its target object has received recently. Figure 10.L2
shows the structure of a trace view. Again, this consists of three pa.rts: a controller monitoring the target
object, a watcher, and a view.

The target object is vector <15>, the same object displayed by the dots view in the previous figure, so
the controller (controller <105>) is also the same. The watcher (trJceWatcher <L45>) and view ltracJr <z+>;
are difierent: the traceWatcher monitors all the actions of its target object (gT.2.2i, and the view displays
a textual list of the messages the target object receives.

Collection View

Figure 10.13 shows the structure of a simple collection list view (a collView). This is similar to the two
previous cases, with the same target object and controller, but again, a dilierent watcher and view. In
this case, the watcher (topWatcher <156>) monitors top level message return actions of its target object
($7.2.3). When the view receives a chauge from the watcher, the view redisplays itself using acallback,

2The controlle, i"on $ was chosen to represent both encapsulators and controllers.
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Figure 10.12: Simple Tlace View

as described for the dots view in Section 6.3. The view is only notified oftop level return actions' so that
the execution of the callback is synchronised with the target progran ($4.2.1).

Figure 10.13: Simple Collection View

Dispatch Database

The three views described above have a similar structure, and sha,re the sarne target object a,nd controller.

Just as each is a different type of view, each has a difierent type of watcher to provide a monitoring strategy

suitable for that particular view.

When a watcher is attached to its target object, it registers its interest in the ta,rget object's actions

with the ta^rget object's controller ($7.2). As difierent watchers embody different strategies, they monitor
the target object in difierent ways. The immediate consequences of each strategy (i'e., each watcher's

monitoring plan $4.3) can be seen in the controller's dispatch database ($8.1.3) as displayed in Figure 10.14'

This viewlists each watcher registered with a controller, and shows which events will be reported to that
watcher. The figure displays the controller for the vector <15> object, so it lists three watchers' one

from each of the views discussed in this section. The prelocalWatcher <66> is monitoring receipts of the

at:Put:lfAbsent message to dynamically update the dots view, the traceWatcher <154> is monitoring all
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actions of all types for the trace view, and the topWatcher <156> is monitoring all top level completed
actions for the collection list view.

< | tls! for lraclor { | 5>

pnlocalwatchcr <80>

receipt mtions: at : Put: lfAbsent:
lnrcwalchcr <145r

a[ recoipt actione
r[ completed acllonr
all un$rlnd actions

lopwilohcr<1$6'
ill lop lcvol complolod rftione

Figure 10.14: Controller Dispatch Database

LO.2.2 Multiple Subviews

Section 6.5 describes the implementation of hierarchical views, which use subviews to produce their
display. This section presents two examples of hierarchical views: an icon browser and a generic tree
view.

Icon Browser

Figure 10.15 illustrates an icon browser view ($6.5.1) and a view structure view of that icon browser. The
icon browser is titled unordered <176> because it is displaying the unordered collections category object,
which has the object ID <176>. The icon browser is titled browserView <1.86> because it is displaying the
structure of the icon browser view which has the object ID <186>.

The main browser view (browserView <186>) has three slotView subviews, numbered <183>, <184>,
and <185>. Each of these subviews displays an icon and a name for a single slot in the target object.
The main browserView uses a localWatcher, which detects changes in its target object's local state, and
(unlike the preLocalWatcher of Figure 10.11) notifies its associated view after the changes have taken
place. However, the category object unordered <176> is immutable - it has no local mutable state, as all
its slots a.re constant slots. Thus it does not need to be monitored, so the localWatcher is not attached to
a controller or target object, and accordingly none a"re shown in the figure. Similarly, the slotViews are
configured to use nullWatchers ($7.2.1).

Many of Tarraiogim's views, especially those implementing the user interface, use this structure. For
example, the various menus (e.g. Figures 10.7 and 10.8) and the view property sheet (Figure 10.9) are all
implemented in this way. Of course, menus use different types of subviews (for exarnple, the view menu
uses viewButtons) rather than the slotViews used by the icon browser.

Tree View

Figure 10.16 illustrates a view of a tree. The tree consists of two generic tree (genTree) objects labelled
"phrase tree" and "noun tree" comprising the interior nodes, and four token nodes at the leaves.

Figure 10.17 shows the structure of the tree view from Figure 10.16. The view is ma"naged by an
nTreeView object, which itself uses a nullWatcher, since the actual work of displaying the tree is handled
by the tree subviews. Interior nodes (genTree objects) are displayed by treeNodeViews, while lea"f nodes
(token objects) are displayed by tokenViews. Both types of views use localWatchers to monitor their
target objects. No special icon for token objects has been supplied, so they a.re drawn by the default icon.
The lines between the nodes are drawn by the nTreeView and are updated whenever the arrangement of
treeNodeViews changes.
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Figure 10.15: Icon Browser

Figure 10.16: Tbee View

10.2.3 Multiple Watchers

In the same way that a single display can be implemented by more than one subview, a single view
cao use more than one watcher ($5.3). Section 7.5 describes several kinds of strategies implemented
using multiple watchers. This section focuses on two exarnples: the use of indirect watchers to build a^n

aggregate view, and passing models by reference in an implementation view.

Aggregate Abstractions

Views of aggregate abstractions (such as those illustrating the target program's performance or structure,
$3.1.3) can be implemented by first gathering information about the abstraction into a database object,
then displaying that database.

Figure 10.1.8 shows two views: a cubist picture of a trafficLight object ($6.2) and a bar graph showing
the number of times each message has been sent to the trafficLight object. The structure of the profile
view is shown in Figure 10.19. The profiling is completely implemented within the mapping component,
that is by watchers, and any collection view can be used to display the resulting profile database.
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Figure 10.17: Tlee View Structure
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Figure 10.18: trafficlight and barProfile Views

The actual profile view (barGraph <210>) is directly connected to one watcher, profileWatcher <204>,

which itself uses two subwatchers. One subwatcher, recvWatcher <207>, monitors all messages received

by the tra,ffic light object trafficlight <203>, and forwa^rds these to the profile watcher. In response to
these messages, the profiIe watcher constructs the profile by inserting or updating entries in its tally
database, here implemented by the object treeSet <206>. A second subwatcher, changeWatcher <205>

monitors the database: this subwatcher's event notifications are routed to the view, which displays the
tally object. Using two subwatchers (rather than using a single monolithic profileWatcher) means that
the strategies used to select events to be profiled and to update the view can be chosen independently of
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the construction of the profile. A difierent view may need to use a difierent strategy to monitor the tally

- if so, a subwatcher can be changed, without otherwise affecting the profileWatcher itself. Section 7.4'7
describes the implementation of profileWatchers in more detail.

I eF
trafFtighr <Al3) contollr (214)

&*S
trcrscl <2[S) cdrtro{Gr {215,

Figure 10.19: barProfile View Structure

Figure 10.20 shows the controller dispatch database for the trafic light and tally set objects. The tra.ffic

light's controller has two registered watchers: recvWatcher <207>, which is monitoring all receipt actions

to build the tally (this watcher appeaxs in the upper branch of Figure 10.19); aud localWatcher <202>,

which is used to produce the cubist view in Figure 10.18. The tally treeSet's controller has only one

registered watcher, changeWatcher <205>, which detects change actions (additions and removals) in the
database: this watcher appears in the lower branch of Figure 10.19. The localWatcher <202> does not
appear in Figure 10.19 because it is used to produce the cubist tra,ffic light view, rather than the profile,

and Figure 10.19 shows the structure of the profile view.
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Figure 10.20: Dispatch Databases for the barProfile View

Passing Models by Reference

In some circumstances, a view's target object must be determined indirectly, as the value of some other
object's slot or the result of a message send ($7.4.2).

Consider Splr"s dictionary object which implements a hash table to provide a mapping from keys

to ualues. Figure 10.21 displays a textual view of a dictiouary (dictionary <983>) containing a small

telephone directory. The dictionary's keys are the narnes of telephone users, and its values are their
telephone numbers.

Figure 10.22 shows an icon browser view displaying this dictiona,ry object. Note that the icon browser
in this figure uses a different slotView from the standard browser ($10.2.2). This alternative slotView
shows each slot's content's object ID.

The dictionary <983> object shown in Figure 10.22 stores its entries as a hash table in two parallel
arrays. These axrays a^re kept in the dictionary's keys and values slots and are the vector objects with ID's
<1088> and <1089> respectively. The hash table can be searched for a particular key: this is implemented

by open address hashing with rehashing on the keys a,rray.
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Figure 10.21: A dictionary containing a Telephone Directory

The dictionary includes a parent slot, two sentinels (emptyMarker and removedMarker) and several
integer variables. The two sentinels mark empty slots in the keys array. An emptyMarker marks an unused
slot: if a hash probe reaches an emptyMarker, the key is not contained in the array. The removedMarker
marks a slot from which an element has been removed: if a hash probe reaches a removedMarker, this
particular slot does not contain the object for which the probe is searching, but the hash probe must
continue. The size slot contains the number of elements in the dictionary. The highMark and lowMark
slots contain sizes at which the hash table must be expa^nded or contracted. The minBuckets slot holds
the minimum number of buckets to be kept by an empty hash table.

Figure 10.22: dictionary Implementation

The two parallel vectors are illustrated in Figure 10.23. The keys vector (on the left of the figure)
contains the keys of the dictionary (the names). The values vector contains values (telephone numbers)
stored at the same position as their associated key in the keys a,rray. Empty hash table entries are
indicated by the emptyMarker in the keys vector: the corresponding values vector entries contain nil, as
they will never be accessed.
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Figure 10.23: keys
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collection view ($10.2.1), except that they display both vector indices and elements (i.e., keys and values).

The abstract display of the whole dictionary in Figure 10.21 is produced by another coll2View.

The coll2Views in Figure 10.23 use a slotWatcher to specify their target object by reference. The
views' titles include the name and ID of the dictionary object, the slot name, and the name and ID of
the vector object they are displaying'

Figure 10.24 contains a view structure view reflexively displaying the keys vector view from Figure
10.23; the values view has the same structure. The target object (vector <1088>, in the bottom left
of Figure 10.24) is monitored by the localWatcher <986> object. A localWatcher is used instead of a
topWatcher, because vectors are primitive objects and are updated atomically. Thus their representation

can never be in an inconsistent state, aud callbacks can be sent at any time ($7.2.4).

fleB
\Ector < 1088) contro{6r <l[82>

Figure 10.24: dictionary View Structure

The localWatcher is not connected to the view, rather, it is a subwatcher of slotWatcher <984>. The

slotWatcher implements the indirection, and uses the cmplMsgWatcher <985> to monitor the keys slot of
the target object. Should the keys slot change (i.e. another object replace vector <1088> as the dictionary's

keys array), the coll2View's model and the localWatcher's target object will be changed by the slotWatcher

to refer to the slot's new contents.

Figure 10.25 shows the controller configurations of both the dictionary and vector objects. The dictio-

nary ha"s four registered watchers:

o localWatcher <1025> This is used to maintain the icon browser view in Figure 10.22 (see $10.2.2).

o cmplMsgWatcher <989> This monitors the values slot for the indirect values view in Figure 10'23.

r cmplMsgWatcher <985> This monitors the keys slot for the indirect keys view in Figure 10.23. This
watcher appears in the top branctr of Figure 10.24.

r topWatcher <1026> This monitors the whole dictionary for the abstract collection view in Figure

10.21.

The vector's controller has only a single localWatcher registered, which is used to update the view of
the array shown in Figure 10.23.

Updating the Dictionary

The dictionaxy can be updated by adding another name and telephone number. Figure 10.26 shows the
dictiona,ry's contents after James has been added with number 8577. Figure 10.27 shows the resulting
implementation.

Compared with Figures 10.21 a,nd 10.22, the dictionary now contains six elements. The dictionary's
size slot now contains six, which is the same as the value of highMark slot before a new element was

added (see Figure L0.22). The diaionary has expanded the size of the hash table to retain good hashing
performance. The old keys and values vectors (with room for eight elements) have been increased in

171
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Figure 10.25; dictionary and keys Vector Controllers
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Figure 10.26: dictionary after Update

length to sixteen (see Figure 10.28). Since SnI,r vectors are fixed size, two new vectors have been created
(ID <1095> and <1096>) and have replaced the old contents of the keys and values slots respectively.
The old vector's contents a.re rehaehed into the new arrays (this is obvious in the dynamic display as
each entry is added to the parallel arrays in turn). The lowMark and highMark variables have also been
increased.

Figure 10.27: dictionary Implementation after Update

The vector views from Figure 10.23 have responded to this change, and now display the new longer
vector objects, as shown in Figure 10.28. This is the result of the slotWatcher: the cmplMsgWatcher
detected when the dictionary's slots changed, and the slotWatcher then reconfigured the views.

The resulting view structure is shown in Figure L0.29 (compa.re with Figure 10.24). The watchers
and views are the same, but the target object (in the bottom left of the figure) is now the new keys
vector (vector <1095>, compared with vector <1.088> in Figure t0.24), and therefore has a new controller
(controller <1098> as against controller <1092>).

The controller dispatch databases are shown in Figure 10.30, and may be compared with Figure 10.25.
While the main dictionary object's controller has not changed, the old keys object (vector <1088>) now
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Figure 1.0.28: dictionary keys a^nd values Vectors
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Figure 10.29: dictionary View Structure

has no interested watchers, and localWatcher <986>, which used to monitor it, is now registered with the

new keys vector.
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10.3 Parser

10 Te,nmIxcfrr{ rr'r Acrror,r

The II,lustRATED Coir,tplLsR (Iootrlr, see [7] and Section 2.3.2) displayed twenty custom views of a PL/0
compiler [229]. Both the compiler and visualisation were implemented specially in Lsr, and linked by
annotatious. We have implemented a lexical analyser and top down parser for a Pl/0-like language
in Spr,r (tcotrlr also contained a pseudocode generator, and an interpreter) and have used views from
Tarraingim's library (and a couple of custom views) to illustrate our parser.

Figure 10.31 illustrates the abstraction structure of the example parser. The parser itself uses a lexer,
a grammar , a stack, and a genTree (the genTree generic tree holds the abstract syntax tree constructed
by the parser). The lexer in turn uses an inputStream, and an fsm comprised of states and dictionarys. The
grammar is comprised of a dictionary, ud rules and nodes.

rfirclrr. (puffC)

Figure 10.31: Parser Abstraction Structure

Figure 10.32 shows an icon browser displaying the parser object. The parser object includes lex, gram,
stack and parseTree slots containing the lexer, grammar, parse stack and parse tree respectively, and also
two auxiliary variables, printParse and keepTerminals.

Figure 10.32: The parser

L0.3.L Lexical Analysis

Figure 10.33 displays the implementation of the lexer object. The most important slots in the lexer are
the inputStream and fsm slots, containing the input to the lexer and a Finite State Machine (FSM) used
to recognise tokens respectively.
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Figure 10.33: The lexer

The lexer,s input handling is displayed in Figure 10.34. This figure contains four views: two, titled
,,lexer <7) Slot: inputStream...", display the inputStream slot of the lexer, a third view displays the

tokenChars slot of the lexer, and a fourth view, "lexer <7>", displays the output of the lexer.
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Figure 10.34: The inPutStream

The left and right hand views in Figure 10.34 are Tarraingim's standard textual trace views ($6.7)' In

the figure, these views are not displaying message traces. Instead, they provide traces of the inputStream's

a.nd llxer,s output. These views use a custom nextwatcher, which updates its associated view when the

target object finishes executing the next message. SoLF strearns respond to the next message by returning

their next element, so that these views provide a trace of the values returned by successive calls to

next. Both the inputStream and the lexer are implemented as Splr streams - the inputStream produces

characters, and the lexer produces tokens. Figure 10.34 thus displays the parser's lexical analysis as aa

abstract strea,m transformation: the input to the lexer (in the left hand view) is a stream of dtaracters,

and the output (in the right hand view) is a stream oftokens.

The two centre views iu Figure 10.34 display further information about the lexer's input processing.

The centre lexer inputStream view displays the text of the prograrn being parsed' The input stream's

cursor position is shown by a caret: in the figure it is just afber the utotu of total' This view was adapted

from the basic textView so that it retrieves and displays a ca,ret at the cursor position.

The lexer tokenChars view displays a bufier in the lexer accumulating characters from the input stream
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into the next token to be returned by the lexer. It currently contains the characters noto". Note that the
input stream (displayed in the left and centre inputStream views), has actually returned three characters
of total - presumably the lexer has read three characters, but transferred only two into the bufier. The
tokenChars view was also adapted from the basic collection view: it simply draws elements in a horizontal
rather than vertical list.

10.3.2 Finite State Machine

The main view we built specially for the parser visualisation is illustrated in Figure 10.35. This view
displays the nondeterministic finite state machine used to direct the lexer.

fgrn ( 13)

Figure 10.35: Finite State Machine

State machine states are drawn as named rectangles; the start state (named start) is drawn with a
triangle before its na,ure, and terminal states are drawn with a double border. tansitions are represented
by arrows linking states and are labelled with the input cha,racters or character ranges which cause the
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transitions to be taken. The current state of the FSM is shown bv a state drawn in reverse video. The
FSM is shown in the state identifier, which is a final state.

This view is a hierarchical view, with essentially the same structure as the tree and icon browser
views described in Section 10.2.2 and illustrated in Figure 10.17. Each FSM state is displayed by a
fsmStateView, which uses a localWatcher to monitor the corresponding FSM state and sends callbacks to
determine whether it is a start or a terminal state. The main FSM view draws the transition lines linking
states, using auxilia.ry objects to position the splines and labels. State views are laid out ma"nually by
the visualiser, although any particular layout can be stored and recalled by the FSM view.

10.3.3 Grammar Rules

The grammar rules view lists the EBNF rules for the language grarnmaxr it is a stock collView collection
view ($10.2.1). The paxser builds a,n abstract syntax tree top down. Rules ma,rked with an asterisk "+"
cause elements to be added to the abstract synta:r tree.

{16{)

fub'rihllfi ::. aofrctddr rd o(pfrtCil.
rub 'v? ::' var' ldrntithr'[tonrna' ldinlilicr? !.fli'.
ruF frcld :F lld.fiUf.f'I hutcr'I lpu.n'emr'ldm ?pu€nl.
ruls'ce1sl :t lddrilfcr'tq' ?mb6r'.
rule'asiEm€nl ::. Uantifhr' trS' a$frrclon'!ad'.
ruh 'cdfip(lnld ::. tcqh'Ftatfi|Gfrt) tnd' l's!$il.
rule llllb :F \ltlh'cmdtim fo'Ftafemttt) td'tttrnil.
rul6 "odd ::- bdtl'totprtldon.
rula'ca! ::. td'tbntf€t't fti'.
rulc 'p.o{frm ::' !roq' tlg|t|fi.r' '$rl't|.cllration} '.rd' 'dot'.
rulo'drprsE€bl :r l!lr3'I tn|arE'I I lorm {tl}r'| ffiilel t.rm}.
rde 'term ::. fetar {lttrn6s' I t|vldel filto'r},
rulc comts:F torut'cfisl {tofiru'cfilt} Sdri'.
rdc ?E :r Fec' ldmlifrr' !ari'bbd{.
rub rtalidfrit :f F!6trFflint lcil | cdnf.rnd llf I r'ti[. ll.
rula 1f ::' tf'cqrltld| fhdn'Stat{ncrit} tr'ltdtri'l.
rub blod( :r flc.fialion] tlfi'StalrsE r0 Ud'Jtt{t|l.
rutsrd:F [t@'ltq1.
rulc dcchnfon :r lconrtr | \rr I procl.
rub co.diliffi :r lodd lr6hlilrl.

Figure 10.36: Grammar Rules

The grammar rules themselves are represented as trees of grammar nodes. Figure 10.37 shows the
inheritance hierarchy of grarnmar node objects - the basic nonNode and termNode representing termi-
nal and nonterminal symbols, and the seqNode, selNode, it0Node, and itlNode representing sequence,

selection, and iteration (zero or more times, and one or more times, respectively).

mclq i*uiho fiaudy

Figure 10.37: Graurmar Node Inheritance Hiera,rchy

Figure 10.38 illustrates two rule trees, for expressions and terms. In Figure 10.38, nodes labelled

"?" a,re selection nodes, nodes labell€d "ot' are selection nodeg, and nodes labelled **' a,re zero-or-more
itONodes. The parser recursively traverses these grammar nodes, building an abstract syntax tree. Both
Figure 10.37 and Figure 10.38 are constructed using Tarraingim's tree view.

777
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Figure 10.38: Rules for Expressions and Terms

10.3.4 Parsing

The stack view in Figure 10.39 displays the parse stack: it is drawn so that the top of the stack is on
the left and the arrows point down the stack. Each stack item represents a single recursive call inside
the parser. The top line in each stack item is the part of the grammar being processed by that recursive
call. The grtunmar is EBNF, so this can include both nonterminal nodes and rule subnodes. The bottom
line of each stack item is the portion ofthe abstract syntax tree being built by that invocation, which is

eventually returned from the recursive call. This view is implemented by another custom version of the
basic collView.

Figure 10.39: Parse Stack

The parseTree views in Figure 10.40 display the abstract syntax tree being constructed by the pa,rser, at
two different magnifications. The large displays are created by the generic tree view, using treeNodeViews
and tokenViews in exactly the same way as the tree view described in Section 70.2.2. The smaller display
is essentially the same view, but configured differently: in particular, boxViews, which appear as small
recta.ngles, are used to display the nodes in place of treeNodeViews and tokenViews. The nodes in the tree
correspond to the rules in the grammar marked with an asterisk.

10.3.5 Summary

While our example parser and its visualisation here are less complete than those of lcotvtP, we consider that
this is a matter of the time and effort available, rather than a shortcoming of the visualisation approach
itself. Our display of the lexer and parser shows that our abstraction-based approach to visualisation
can produce displays of similar quality to hand-crafted techniques such as those used in tcotup. More
importa"ntly, only a few of the views presented in this section were written specially for this example: the
majority were taken from our view library.
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11
Conclusions

The aim of the research des6ibed in this thesis was to investigate the use of abstraction in program

visualisation. In pursuit of this aim, we developed the APMV model of abstract program visualisation,

and designed aud implemented the Tarraingfm prototype as a proof-of-concept for that model'

The first four sections in this chapter present the major contributions of this research. Section L1.1

reviews the APMV model of abstract prograrn visualisation. Section 11.2 describes how the model evolved

during our experiments with the Tarraingim prototype. Section 11.3 identifies some implications of the

use of the APMV model, and Section 11.4 reflects on our experience with the Selr language'

This thesis concludes by placing this research into the context of related work ($L1.5) and outlining
possible future developments ($11.6).

l-1.1 The APMV Model

The core of this thesis is the APMV model of program visualisation, which ca"n produce animated views

of programs at multiple levels of abstraction, including views of algorithms and views of data structures.

In this section we review the most important and novel features of this model - the use of a top down

approach to visualise abstractions, the visualisation of all kinds of abstractions, and the separation of

objects and visualisations from the mappings betweeu them'

11.1.1 Top Down Visualisation

The APMV model takes a top doumapproach to program visualisation: views of abstractions a,re produced

by using the objects in the program to work from abstractions'definitions down to their implementations.

These abstract visualisations display pictures specific to the target prograln, using images drawn from

the program's domain. Section 3.8 summa,rised this in the following principle:

The pictwes we draw correspond to the abstractions in the design, which a^re the obiects

in the progra,m.

Working top down, using objects which represent the program's abstraction structure, provides several

intrinsic benefits for visualisation. Most importantly, abstract views depend upon the external interfaces

of the abstractions they visualise, not the details of the abstractions' implementations ($3.5.2' $3.6.2).
Thus, to produce abstract views, the visualiser only needs to understand abstractions'interfaces, not their
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implementation details. The visualiser does not have to modifu the target program to permit monitoring,
because the target prograrn can be monitored automatically. The visualiser does not have to specify
which implementation procedures or data structures need to be monitored to produce a particular view,
although strategies can be used to provide fine control over monitoring if required. Objects' interfaces
provide a loose coupling between the program and the visualisation, which insulates the visualisation
from changes in the implementation of the abstractions in the program, and vice versa.

Top down visualisation, which bases visualisations of abstractions upon the objects which represent
those abstractions, is the most novel and significant idea in this thesis. It underlies the APMV model,
a simple, radical model of abstract progriiln visualisation. Indirect visualisation, which works top down
to build models of abstractions that are not explicitly represented in the prograrn, ensures the APMV
model can produce most program visualisations found in the literature.

Lt.l.z Visualisations of Algorithms and Data Structures

The APMV model does not distinguish between algorithmic visualisation (which illustrates the impor-
tant operations of the target program, see Figure 3.2 in $3.1.1) and data structure visualisation (which
illustrates the target program's data structures, see Figure 3.1 in $3.1.1). The abstractions making up a
program's design, and the objects implementing those abstractions, may be algorithms, data structures,
or any combination of the two. This is reflected in the equal use of two complementary connection mecha-
nisms - changes and callbacks - in both algorithmic and data views ($3.7.4). Algorithmic views receive
changes to notify them of the progress of the algorithm, and send callbacks to initiate computations
or retrieve results. Data structure views similarly receive changes which describe modifications to data
structures, and send callbacks to retrieve values.

The lack of distinction between algorithmic and data visualisation within the APMV model is es-
pecially important for producing abstract views. Many abstract algorithmic views require information
about data structures, and data structure views simila^rly need algorithmic information. For example,
views which primarily display algorithmic information, such as the target program's important opera-
tions and proof properties ($4.1.3), often need information about the values of data items manipulated by
the program, especially those passed as parameters to the operations. Similarly, views which primarily
display information about programs' data structures need dynamic information about modifications to
those structures - effectively algorithmic information.

The lack of distinction between algorithm and data structure visualisation is also valuable in the
implementation of indirect views. Data structure views can be used to display algorithmic information;
for example, bar graph views can display operation profiles, or tree views display call trees. Algorithmic
views can similarly be used to display information about data structuresl for example, trace views can
display histories of the values of data structures.

The complementary mechanisms of callbacks and changes also handle visualisation and graphical
editing in a uniform manner. Callbacks ca^n implement users' editing commands, assigning values or
invoking target program computations, in exactly the sa.rne way that they retrieve information for display.
Similarly, changes can notify other views of the consequences of editing commands in exactly the same
way that they notify views of the program's internal actions.

The uniform treatment of algorithmic structure visualisation and data structure visualisation greatly
increases the generality of the APMV model, while simplifying its implementation.

11.L.3 Separation of Mappings from Abstractions and Visualisations

The APMV model sepaxates the abstractions in the target progra,rn, the visualisation of those abstrac-
tions, and the mapping strategies required to connect abstractions and visualisations. The mapping
component of the APMV model manages the interface between programs and views - selecting changes,
synchronising callbacks, constructing monitoring plans, and building indirect visualisations. This is in
contrast to the generic PMV model ($2.1), and most other program visualisation techniques, where the
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mapping component must both recover abstractions bottom up and map the resulting abstractions to
meet the visualisations' requirements.

This novel sepa,ration allows the mapping component's strategies to be used for a variety of purposes

- to adapt a view to the properties of the particular implementation of an abstraction, to control the
amount of information a view displays, and to increase the efficiency with which the program is monitored'
The separation similarly facilitates indirect visualisation because views simply display abstractions, and

a.ny indirection is left to the strategy. The same view can be used to display abstractions present in the
prograrn and to display abstractions manufactured by indirect strategies.

This separation of concerns supports the separate development, debugging, and use of views and

strategies. When visualisations are being developed, the details of monitoring and synchronisation ca^n

be sepa,rated from the abstractions to be visualised and from the views of those abstractions. This

sepa,ration also promotes the independent reuse of both views and strategies, since a particular view may

be used with many strategies, and vice versa'

L]..z The Evolution of the APMV Model

The APMV model as presented in this thesis is the outcome of an evolutionary process - our conception

of the APMV model and the design of the Tarraingim prototype evolved together over time. Starting
from a simple initial version of the model, we designed Tarraingim (a,nd, in later iterations, updated it)
to implement the model. We then experimented with the resulting system by using it to construct a

va,riety of visualisations modelled on those in the literature. At the end of each evolutiona,ry iteration, we

refined the model in the light of the experiments, adding or elaborating components to meet the needs

revealed by these experiments. The views we produced in the early iterations were necessarily simple,

such as the trafficlight view ($6.2). As the model and prototype were refined, we were able to experiment

with progressively more complex views, such as Belsa-style sorting views ($3.1) a,nd the browser views

of the Snlr world ($10.1). The experiments culminated with the parser visualisation illustrated at the
end of Chapter 10.

We had two aims in working with an experimental prototype as well as a,n abstract model' First,

we wished to verify experimentally that the model could feasibly produce abstract visualisations, a.nd to
do so required an experimental prototype. Second, we needed to determine the components required by

a prograJn visualisation system which could implement the model, and this also required experimenting

with a prototype implementation. As a result of the evolutionary process, the developing APMV model

has always been embodied in a system which can produce actual visualisations, a,nd the final form of the

model contains only those components required in practice.

In this section we discuss the insights provided by these experiments in more detail. In particular,

we describe our initial explorations ($11.2.1), the refinement of the prograrn component ($11.2.2) a.nd

the mapping component ($11.2.3), and our developing understanding of the use of callbacks and changes

($ 1 1.2.4) a,nd indirect visualisation ($ 1 1.2.5).

I"1.2.1 Initial Investigations

The starting point for the development of the APMV model was Brown's annotation based approach

[33]. Brown popularised the idea of algorithm animation, and developed annotations as a means to this
end. As mentioned in Chapter 4, Brown suggested and then dismissed the approach we eventually chose

- basing visualisations on abstractions represented by objects in the target program.

At this stage, as well as exploring the literature on progre.rn visualisation and program design, we

experimented with several program visualisation systems, including BArsE ($2.3), XTeNco ($2.3.1), and

Aurrvr ($2.3.2). Inspecting the designs of visualisations used in these systems, it became apparent that
many of the visualisations were closely related to the important abstractions in their target programs'

designs. It became equally apparent that these abstractions could not be used directly by a visualisation
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system, because they could not be represented by the procedural decomposition and structured program-
ming models used in these systems ($3.3 and $3.4). As we described in Section 3.6, these abstractions
can be represented by the structure of the objects in an object oriented program.

With this background, we developed the first version of the APMV model [158, 159]. This version
was quite simple - based on object orientation, it linked objects in the prograrn which represented
abstractions in the program's design directly to their visualisations. The program component of this
version of the model consisted solely of encapsulators, and the mapping component was nonexistent.
Based on this model, we designed and built the first version of the Tarraingim prototype with an equally
simple design, consisting solely of views, encapsulators, and the objects in the target program.

11.2.2 Program Component

The first version of the APMV model was strongly centred on one particular monitoring mecha,nism,
namely encapsulators. The corresponding version of Tarraingim relied directly upon one particular im-
plementation of encapsulators. This model wari over-specific, as the monitoring mechanism could not
be changed. This problem beca,ne acute when we wished to improve the speed of the overall system
by changing the encapsulators' implementation. We realised the model required a sepa,rate component
which would be responsible for monitoring the target program and transmitting detected changes to the
rest of the visualisation system. This component could insulate the rest of the system from changes in
the monitoring mechanism.

This realisation was the genesis of the program component in the final APMV model, and we sub-
sequently modified the Tarraingim program to reflect the revised model. In the first prototype, an
encapsulator was a single object which monitored the program, dispatched the resulting changes, and
provided an interface by which views could control the monitoring [160]. In the revised prototype, we
reduced the function of the encapsulator objects solely to monitoring the program, a.nd introduced con-
troller objects to handle the dispatching and to provide the interface to the views. This version of the
model proved its worth when we later needed to modify the implementation of encapsulators (due to a
change in the Selr language). According to the revised model, this modification should have affected
only the program component, and in the version of Tarraingim based on this model, the modifications
were indeed limited to the encapsulator objects.

To summarise, we identified the need for a separate program component in the APMV model as
the result of our experience with the prototype, and the benefit of the separation was borne out by our
subsequent experience with the revised prototype.

11.2.3 Mapping Component

Just as the early versions of the APMV model lacked a well-defined program component, they also
lacked any notion of a separate mapping component. Instead, the visualisation component communicated
directly with the prograln component. In the ea.rly prototypes, views communicated with controllers (or
directly with encapsulators, before the developments described in Section 1L.2.2). This communication
was very simple, as encapsulators monitored every action of their target objects a.nd sent views change
events describing every action.

After experimenting with this design, it became apparent that many views were receiving a large
number of change events which were not related to the particular visualisation they were displaying, and
which they therefore ignored. A large amount of the prototype's execution time was spent generating and
processing these unnecessary events. Some kind of strategy mechanism was needed to reduce this over-
head. We consequently expanded the monitoring system so that it could selectively monitor the actions
of the objects in the program, and added monitoring strategies into views so that they could request only
the monitoring that they actually required. Since, iri this version of the model, the visualisation com-
ponent communicated directly with the program component, we implemented the monitoring strategies
within the visualisation component, that is, directly in the view objects. The monitoring strategies could
not have been implemented within the program component because different views needed to monitor
the same object in different ways.
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After some experience with this design, we realised that many views effectively re'implemented the

sa,me strategies for selecting monitoring, and several apparently independent views differed only in the

strategies they implemented. This appeared to indicate another problem with the model itself - strate-
gies were obviously quite important, but there was no place for them in the model. To deal with this
problem, we introduced the mapping component, producing the final version of the APMV model as

presented in this thesis. The mapping component managed the monitoring strategies required by views,

and the visualisation component was now solely responsible for handling user input and graphical out-
put. The prototype was updated to match the revised model, with the responsibility for implementing
the monitoring strategies being removed from the view objects and placed into the new watcher objects

contained in the mapping component [161].

The advantages of a separate mapping component became evident in our later experimentation with
the Tarraingim prototype. By factoring the common implementations out of the old view objects, we

constructed a library of watchers implementing most of the common strategies ($7.6). Whenever a new

visualisation needed to use one of the common strategies, the view object concerned could simply reuse

a strategy object taken from the library.

The insight required to recognise the need for a sepa,rate mapping component, and the confirmation
of the ad'uantages of this component, were in large part due to our experience in using the prototype.

Lt.2.4 Changes and Callbacks

All the versions of the APMV model used both callbacks and changes to link visua.lisations to the ta.rget

progriiln. We did not appreciate, at first, the fult capability of these two mechanisms and the relationship

between them. We were also unclear about whether they would sufrce to represent the information

needed to visualise the all abstractions in a program (including both procedural abstractions and data

abstractions) or whether some additional mechanisms would be required.

Based on the initial version of the APMV model, the ea^rly Tarraingim prototypes used callbacks and

changes to implement simple abstract views of objects. Indeed, the first abstract view we implemented

using the APMV model, the trafficLight view ($6.2), used both callbacks and changes [159]. As the rest of

the model evolved, we v/ere able to develop and experiment with more sophisticated views and strategies.

Some of these views displayed algorithmic structure, such as views of the call stack, call trees, or the

recursive behaviour of quicksort. Others displayed data structures, sudt as grammax rule views and the

reflexive visualisations of Ta^rraingim's internal objects.

Although the experiments inspired no alterations to the treatment of cha.nges and callbacks within
the APMV model or the design of the prototype, our understanding of the model developed as a result.

Originally we had considered changes and callbacks as minor, unrelated parts of the model, which simply
made the necessaxy link between the visualisations and the target progrilm. We had expected that changes

would be used exclusively by views displaying algorithmic structure, and that callbacks would be used

exclusively by views displaying data structure.

On inspecting the implementations of ma,ny abstract views, however, it became obvious that almost

all views used both ctranges and callbacks, irrespective of whether they were algorithmic views, data

structure views, or some combination. Reflecting on this, we recognised the complementary nature of
changes and callbacks, and thus the major difference between them - changes originate from the target
object, while callbacks originate from the view ($3.7.4). We also realised that no additional mechanisms

were needed to link visualisations to the ta,rget progran - changes could represent all the procedural

actions of every object $rithin the target progran, and callbacks could retrieve all the data contained

within every object. For these reasions, rather than treating callbacks a,nd changes merely as interesting
artifacts, we now consider them as important pa^rts of the whole APMV model. The discipline of building
and experimenting with the prototype was instrumental in helping us to recognise the sufficiency of
callbacks and changes, and their significance within the APMV model.
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11,.2.5 Indirect Visualisation

The development of our understanding of indirect visualisation parallels that of callbacks and changes. All
versions of the model have supported some form of indirect visualisation, but we did not fully appreciate
the utility and generality of this part of the APMV model. The initial indirect visualisations were
modelled on the indirect visualisations supported by Bnlsn [33]. They were basically algorithmic views
which used indirection to maintain a database of historical information. For exa,mple, a trace view's
database would contain the last few actions of the view's target object, while a profile view's database
would contain a count of the number of times each action was executed.

As we developed more sophisticated views, we were able to experiment with more powerful algorithmic
indirect visualisations, such as views of call trees, but also with indirect visualisations based on data
structures, such as histories of data structure accesses and views with models determined by reference
(57'4.2). Eventually, a^fter studying the indirect visualisations we had built, we realised that indirect
visualisation was a very general technique, although building an indirect visualisation could be quite
complex in practice. Ultimately, an indirect visualisation could monitor every action of every object in
the target prograrn, then construct an indirect model to support any computable abstraction of the ta,rget
program. Because of the generality of indirect visualisations, the APMV model catr produce essentially
any visualisation which can be produced by a,nother visualisation technique, if necessary by incorporating
the other technique directly into the model ($4.3.4). Indirect views thus ensure that the APMV model is
not limited by its reliance on the interfaces of objects in the ta^rget program.

The experimental prototype again proved very useful in investigating indirect visualisation. Even
though the actual design of the model was not changed as a result, the experiments the prototype made
possible gave us insight into the strengths and weaknesses of this part of the model, and increased our
confidence in the model as a whole.

11.3 The Implications of the APMV Model

The APMV model provides the most leverage when program abstractions and operations upon those
abstractions are captured as objects and messages in the target program's design. In our experience with
Tarraingim, we have found this style of design quite practical - after all, clear representation of design
abstractions is a major tenet of good object oriented design 126,22\. Probably for this reason, we have
found little problem visualising objects which were not designed with visualisation in mind, such as the
collection objects in the Seln library.

Unfortunately, good object oriented designs a,re not always immediately obvious, and can depend
upon some quite subtle details. For example, in our design of the example parser ($10.3), the decision
to structure both the input stream and lexer as independent SELF objects is very important, as the
input stream and lexer objects then represent the input strea.m and lexical a.nalyser abstractions in the
program's design. Making both these objects Snlr stream objects captures the commonality between
the two abstractions, and this in turn facilitates the reuse of Tarraingim's trace views. This feature of the
design was not obvious to us before we started work on the parser example, although it is very similar
to more recent work on object oriented paxser design [1].

The corollary to good object oriented design being required for program visualisation is that a pro-
gram which is amenable to visualisation is likely to be well designed. Therefore, considering possible
visualisations of a design may be a way to improve it. When designing a progran, a progriunmer can
investigate possible visualisations of that program, and can improve both the program design and the
visualisation design as a result. Similarly, a programmer ca,n experiment with visualisations when re-
designing an existing program. Based on our experience with Tarraingim, an APMV model visualisation
system is a very good tool to support this development style.

Of course, some kinds of object oriented designs provide the APMV model with less leverage than
others. In particula.r, the applicability of the model ca,n depend quite heavily on some aspects of the style
by which objects capture abstractions ($3.2.3). Two aspects of style which we have found particularly
important for the APMV model are aliasing and retrievability.
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11.3.1 Aliasing

Aliasing is endemic in the design of most object oriented programs [102]. Aliasing has the potential to
make program visualisation via the APMV model very difficult, if objects a.re modified via aliases, rather
than by sending messages via their interfaces ($4.4.1).

We have not found aliasing to be a problem in practice ($7.6.4). This is mostly due to the programming
style used in Solr, which generally avoids modifying objects through aliases. Spr,r' also uses immutable
objects (which are immune to problems caused by aliasing) much more often than other object oriented
languages such as Suelr,rerx or C**. For example, SELF's point and most commonly used string
objects are immutable. In general, it is clear that program designs which make less use of aliasing and
more use of immutable objects will be easier to visualise using the APMV model.

11.3.2 Retrievability

The APMV model uses callbacks to retrieve abstract information from target program objects ($3.7).
For callbacks to be effective, the target objects' interfares must provide messages which can be used
to process callbacks - that is, target objects must implement accessor messages which return abstract
information without changing the object ($4.1.4).

Unfortunately, objects do not have to provide such messages ifthe overall design ofthe target program
does not require them. Many useful objects provide access to the information they store only via messages
which change that information. For exa.rnple, Section 4.1.4 discussed a"n interface for a stack object where
the stack's top element was the only element directly accessible - other elements could only be retrieved
by popping the elements above them off the stack, thus changing the stack.

The APMV model provides the visualiser with several alternatives when information cannot be re.
trieved directly from a ta^rget object via its interface. The simplest alternative is to design an APMV
topdown view which only displays information which can be retrieved via accessor messages - for the
stack discussed above, such a view would show only the top element. This kind of view can be created
easily, as the visualiser can consider only the object's interface and does not need to understand the
object's implementation in detail. Also, the prograrnmer may intentionally have decided to restrict the
information retrievable via an object's interface. A view displaying only the information which can be
retrieved via accessor messages has the advantage that it respects the programmer's intention by not
displaying restricted information.

The APMV model can also be used to build indirect views which display more information to the user.
Because indirect views can perform any computation, they can construct essentially any visualisation of
an object. In particular, an indirect view can build an abstract model containing all the information
stored in an object, including information which is not retrievable through that object's interface, either
by directly accessing an object's implementation data structures or by tracing the object's actions and
simulating their efiects. Of course, to build these kinds of views the visualiser needs to understand the
implementation of the abstraction in detail.

Finally, the progra,mmer or visualiser could modify the target program to add one or more accessors
to objects which to not provide them. Modifying objects has several disadva,ntages - the visualiser
must understand the implementation of the objects in detail and have the skill to modify them, the
modifications (if incorrect) can create new bugs in the objects, and, if the accessors were intentionally
omitted from the prograrn, adding accessors may destroy the integrity of the objects' original design
(especially if they are later used in a revised version of the program). The advantage of modifying
objects to add accessors is that once the accessors have been added, the objects can be visualised easily
by APMV model views which depend upon the extended interfaces.

This is a good exarnple of the possible feedback between visualisation design and program design.
The programmer can choose to facilitate abstract visualisations that display particular information by
providing accessors which return that information, even if the accessors axe not required by the overall
design of the progmn. Similarly, the visualiser can choose to simplify the visualisation design by dis-
playrng only the information which can be retrieved directly, or can choose to display more information
by constructing more complex indirect views.

187



188 lL Coxct uslotts

In our experience visualising Sulr programs, we have not found retrievability to be a la,rge problem'

Following Sulr,lrl.lr, Solr objects typically have rich interfaces which provide accessor messages which

can be used to retrieve all the abstract information stored in the objects without side effects. It is clear that
a programming style which makes objects' information retrievable via accessors provides good support
for the APMV model.

LL.4 The Influence of SPlp

As Chapter 5 describes, we selected Snt,r as the implementation language for Tarraingfm. This decision

was motivated as much by theoretical concerns as by the practical considerations involved in building a
prototype system. We chose Sulr because, as a pure object oriented language, it would support target
programs written in an object oriented style, and it would ensure that only one visualisation mechanism

would be needed to provide both concrete (language level) and abstract views. As a prototype'based

language, we believed Snr,n would be easier to monitor than class-based languages such as Sue.llter,x.

Overall, the choice of SBlr worked out well in practice. Ta^rraingfm's ta.rget prograrns have to be

structured using objects, shce objects are the only program structuring feature provided by Selr. SplF's

object library, especially the collection objects, were useful in building Tarraingim and the example

programs, and also provided good stand-alone test cases for abstract views.

The APMV model was influenced by Solr's philosophy [198]. Most importantly, SELF's unification
of variable accessing, control flow, and computation into message passing [218] pointed the way towards

the APMV model's unification of algorithmic and data structure visualisation, and its independence

of the levels of abstraction in the target program. SELF's emphasis on behaviourism - "an obiect

is completely d,efined . . . bg how it responds to messages" 121 - is similar to ow emphasis on treating

objects as abstractions, although we see abstractions as encompassing both algorithms and data, rather

than subsuming data into algorithmic behaviour.

On the other hand, the APMV model diverges from Solr's philosophy in some important respects.

The APMV model focuses on the abstract, while SsLr focuses on the concrete. This is seen in other

visualisation systems for Selr, such as Sptrv [45, 46] and the Splr uI [197], whictr have been developed

by the Snlr group in conjunction with the language. Where the APMV model displays objects as

abstractions, the Sur systems display objects as slots and slot contents. While Tarraingim's gtaphic

design is quite spartan - minimal, black and white, and two dimensional - the SnlF systems are very

rich, using colour, three-dimensional objects, and smooth animation. Although using a rich graphical

design, the Splr systems are conceptually quite minimal - every object has at most one graphical image,

to maintain the illusion that every image represents a single language level object. ln contrast, Tarraingfm
adopts a minimal graphical language to a much more complex end: there is no one presentation of an

object, just a multitude of graphical perspectives and levels of abstraction.

Some aspects of SsLF''s design cause Tarraingim problems, especially concerning program monitoring
(the design of encapsulators) and as a result, monitoring Snlr programs proved to be more difficult than
we expected. For example, SnlF's primitive messages ($9.3.2) bypass the message lookup algorithm.
They cannot be monitored by encapsulators, and in general they make it impossible for Splp progrilns
to provide any guarantees about their behaviour, as primitives can be arbitrarily applied to objects.

Restricting primitives so that they could only be sent to self, effectively ensuring they would always be

used from within wrapper methods attached to the object they affect, and then providing a suitable set

of wrapper methods in the Srlr library, should resolve this in practice, but would require modification
of the Snln language definition and the SBlr vrra.

SpLF's support for inheritance and delegation is also problematic. Splr supports both dynamic
inheritance (an object's pa,rent slots can be variable, $5.4.4) and explicit delegation (the object to which
a message is delegated is evaluated at runtime, $9.2.1). SELr"s support for explicit delegation in particular
is very tentative, a,nd the interactions between delegation, inheritance, and privacy are not resolved well.

Srlr programs overwhelmingly use only inheritance, and so bypass this problem. We have used both
delegation ($9.2.2) and dynamic inheritance ($9.2.3) to construct encapsulators, but nevertheless consider

that both facilities could be better integrated into the core SELF language.
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The version of SB1r we used did not include graphical display facilities, and we assumed that providing

graphicat support would not prove to be too problematic. In practice, we built several versions of the

frou"" grupli", library to supply these faciliiies ($6.1.3). Tarraingim would obviously benefit from a

better interface library, wtrich-couta provide.nppoit for colour, three-dimensional graphics, sound, and

more adva,nced input devices [97]. 
-Sirr." 

pr"rLntation and interaction design were peripheral to this

project,s main aim of investigating abstraciion in program visualisation, the lack of these facilities has

not impeded our research.

The Sulr language was itself being developed concurrently with the work described in this thesis,

and some additions *ere orade specifically to assist this project' The most important of these was

unwind protection, which was added to enable Tarraingim to catch non-local returns, thus ensuring

controllers can maintain the correct depth ($s.3.3 and $9'1.2)' Extra behaviour was also added to the

,*rJ*jlffrary mirror objects to identity i'mmutable objects. In the course of developing Ta'rraingim,

we also identified several iugs aod limitations in the compiler and runtime system, which the Srlr'
group subsequently repaired. Section 9.2.5 describes how our choice of encapsulator implementation was

iltimately determined by details of the current dialect of SBlr.

Overall, we found Splr, a good language within which to experiment. We consider that using any of

the other languages we evaluated would have led to more serious problems than those we encountered with

S',p ($5.2.31. ffr" simplicity of Sslr's design, and especially the uniform use of objects and messages,

contributed ma"rkedly to the success of this research'

11.5 Comparison with Related Work

In this section we compare the APMV model (and the Tarraingim prototype) with the related work

described in Chapter 2 - visual programming tools ($2.2), and algorithm animation systems based

on annotation (gi.S) or mapping ($2.i). Graphical debuggers ($2.2'1) are discussed separately, since

Tarraingim,s architecture is closer to recent object oriented graphical debuggers than to other abstract

animation sYstems.

11.5.1 Visual Programming Tools

visual programming tools such as programming environments ($2'2'2), visual programming languages

($2.2.g), and reverse engineering ,y.t.*t $2.2.i), provide many examples of the possibilities offered by

grapt icul views in interactive environments for soitwae development. Visual programming tools have

some important strengths - they can be applied without special preparation of the target program,

they can display fine i"trit, of algorithmic and data structure, and they can be used to create and edit

programs from scratch. The focus of visual programming tools is the text, structure, and properties of

it *"p.ogr*r, itself - they display the program'Jcode and structure, and these displays can be edited to

change the program in the course of development'

In contrast, the focus of abstract program visualisation in general, and the APMV model in particular,

is upon providing abstract views which are updated as the program runs. The major advantage of these

abstract views is that they display abstractions important to the user at the level of abstraction that the

user understands, rather than the level of the program source text.

Displays produced by visual programming tools ca,n be considered reflexive, in that they display the

propurii", *d structure of the ta^rget program, rather than abstractions from the target program's domain
'iSZs.Sl. The ApMV model "* proau"" these kinds of displays, by visualising the program's objects

,efle*iuety, rather than directly. That is, callbacks can be used to retrieve meta-level information about

objects, structures and properiies, rather tha,n base.level information from the objects, and changes can

reiresent modification, to it 
" 

objects' structures, rather than the actions of the executing program' As

e*amples, Tarraingim's view library includes several views of program's structure which are implemented

using mirior objects to reflect on target program objects ($5 4.5). These include the structural and profile

view-s from Figlre 8.4, views of the inheritance hierarchy (including Figures 6.1 and 7.L), and the object

browser and method source views from Figure 10'6'
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As a result, VICx cannot visualise Suelr,tlr,x's collection classes, probably the most important part of
S uar,lrer,x's librarv.

Gelo

Gut o [183] (see also $2.2'1) is a data structure and program visualisation tool embedded within the Fmlo
programming environment and build on top of Frclo's distributed message-passing architecture [1g2, 1g0]
(see also 92.2.2).In FIEr,n, information aLout a program's execution is gathered by a debugger, and so
the user does not need to annotate the target program's source code ($z.s.z). GBr,o uses information
from the debugger to visualise programs' data stiuctures, presenting defautt displays based on data types
and custom displays designed by the visuariser using a graphical editor.

Gero and the APMV model have quite different models of the target prograrn. Gplo considers the
program as a collection of structured data type instances laid out in linear memory, and displays those
data types' In contrast, the APMV model considers the target program as a collection of intlracting
abstractions, and displays those abstractions and their interictionsf including algorithmic events and
changes to data structures. Thus Tarraingim's views can be defined top down, inlerris of the definitions of
the abstractions in the program, while Golo's views must be defined Lottom up, in terms of abstractions,
implementations. With respect to the PMV model, Gelo does not really have a mapping component,
because the graphical editor defines views directly in terms of the program's implementation, similarly to
direct annotation systems ($2.3.3). Gsl,o also amalgamates abstraction recovery, monitoring stratelies,
and view definition, where the APMV model separ.ies these concerns.

Cerno-II

Cpnruo-Il 172, 73,74] (see also $2.2.1) is a graphical debugger implemented as part of the Spn program-
ming-environment [89' 9l]. Cpnruo-Il and Spn are writtenln SNART, a hybrid object oriented language
based on PRoLoc, and CoRt'lo-II visualises programs written in this language. Since Sr,reRT is a hybrid
language, it includes structured data types such as PRoLoc's lists and terms, as well as objects. SNaRT
is also computationally reflexive ($2.5.5), and CERNo-II uses SnART's reflexive extension to moniior the
target program.

CnnNo-II has a three layer architecture, consisting of a program layer, an abstraction layer, and
a display layer. The three layers correspond to the ihree ctmponents of the pMV model, 

-and 
are

implemented as an object oriented framework. The program layer Lolds the target prograrn, and includes
SNant objects, PRoLoc data structures, and the call stick. The abstraction fuv* ir muie up of abstractor
objects, which monitor objects in the program layer and produce a d,i,splag lfst. An abstractor can monitor
a single SxaRt object directly, or can combine the outfut of one or more subordinate abstractors. The
display layer consists mainly of. icon d'escription objecti, which interpret the display list and create Spp
graphical objects for display to the user. Srn's change propagation mechanismi upilate records fgOl,communicates changes between abstractors, a,nd ensures the dispiay is redrawn whenever the disptay lisi
is modified' Cpnr'ro-Il has been extended with the SxrN visual lungoug., so that new visual desgns cal
be created by visual programming [t0b].

The most important difference between CBnNo-II and the APMV model is their support for abstract
visualisation' CnnNo-II is essentially a bottom up system: abstractors treat objects as structured data
types, and have to recover abstractions from their implementations. In contiast, the ApMV modelprimarily works top down, visualising abstractions based on object's interfaces. F'lor example, CnRuo-II's visualisation of a collection object (".g. 

" SlleRr list) is built from a large number of abstractors,
which know about the implementation of the list in detail. Tarraingfm's view of a Snlr collection object
uses one watcher for the whole collection, and that watcher is only aware of the abstract collection
interface.

The APMV model is based upon changes and callbacks - i.e. monitoring messages received by target
objects, and sending messages to target objects. CpRNo-II's abstractors can monitor messages within thetarget program' however, this facility is used only to produce algorithmic displays, such as timing diagrams
a'nd road maps [104]. Similarly, although Cnnr'ro-Iiincludes alprotocol for changing displayed data, icon
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descriptions do not typically send callbacks to their target objects. Like Gnlo, when visualising data

structures Cpnuo-II only monitors assignments - it does not use algorithmic monitoring to optimise

the visualisation of data structures. Thus, although Cnnuo-Il's facilities are about as powerful as

Tarraingim's, they are used in much more straightforward ways. ConNo-II's architecture is sufficiently

flexible,-however, that abstractors could be written to use changes and callbacks to recover program

abstractions, effectively implementing the APMV model within cnnno-Il.

11.5.5 SummarY

The most important difference between the APMV model and the work discussed in this section and in

Chapter 2 is that the ApMV model uses a top down approach to visualisation. Program abstractions

are visualised based on the interfaces of the objects representing them, so a visualiser does not have to

understand an abstraction's implementation in detail to be able to visualise it.

A second difference is that the systems reviewed separate the visualisation of data structure ftom the

visualisation of algorithmic structure, especially where abstract visualisation is concerned' The APMV

model can use algorithmic information even if it is producing a view of a data structure, and vice versal in

fact, these cannot really be distinguished. The APMV model's complementary mechanisms of callbacks

and changes also integrate visualisation with graphical editing.

Finally, the ApMV model separates the strategies used for monitoring programs from the rest of

the visualisation system. Those systems reviewed in this section which provide abstract visualisation

include one component which both recovers information about program abstractions and controls how

the program is monitored to recover that information'

1-1.6 F\rture Work

In this section, we describe some possibilities for the further evolution of the APMV model and the

Tarraingim prototYPe.

L1.6.1 An Alternative Programming Language

Although Sulr is becoming recognised in the object oriented programming language research community,

it is not used in 
"o**ur.-" 

or industry. It would be useful to investigate the reimplementation of the

APMV model in an alternative programming language. The APMV model is language independent, as

it relies only upon broad assumitio"r of object oiienied structure in the target program. The design of

Tarraingfm;s framework is also not pa,rticularly Snlr-specific'

pure object oriented la,nguages such as Sullltelx or DYLAN, which are at least structurally reflexive,

should supfort the construition of a system very similar to the Tarraingim prototype described in this

thesis. Ttansferring these ideas into a more conventional language such as C++ would make an interesting

experiment.

LL.6.2 Watcher and View l}ees

Tarraingim's watchers and views are organised into trees. This can cause a duplication of effort' For

example, both a bargraph view and a teitual collection view could be used to display operation profiles

of the same object. nactr view will be attached to the same type of watcher, subwatcher, and profile tally,

but each view will use its own copies of these objects, and this results in parallel watcher trees containing

the same kinds of watchers attached to the same target object. The profile will be calculated twice, once

for each view.

This duplication could be avoided if watchers and views could be shared, that is, if watchers and

views could be organised as directed acyclic graphics instead of trees. A single insta^nce of each kind of
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watcher or view would be constructed for each target object. If the same kind of watcher or view was
requested a second time for that object, the existing watcher or view would be substituted.

In the case of watchers, this cha^nge should be quite simple to implement. Watchers would have to
keep track of multiple parent watchers rather than one (for example, upEvents would have to hold a set
rather than a single object, $7.1.4). The interface between watchers and views ($7.1.J) would have to
change, with views registering themselves with a suitable watcher, rather than simfly creating and using
watchers directly.

This change would be more complicated to implement in the case of views, primarily because X
windows must form a strict hierarchy. The display subsystem would need to be altered to allow a single
view to be displayed in several different X windows.

L1.6.3 Composite Views

Tarraingim would benefit from more support for composite views - that is, for views which simply group
several other views, such as the stack implementation view in Figure 3.3, In the current version of Tar-
raingim, these views must be specially written by the visualiser. A generic composite view, parameterised
by a list of views and some layout information would allow these types of composite views to be created
without additional programming.

Composite view support would also allow some existing views to be built solely by composition.
Consider the tlView traffic light view, described in Section o.z. rnir view consist, oi th."" rectangles,
one of which is filled to represent the traffic lights active aspect, and is currently specially written 

-(see

Figure6.5). ThetlViewcouldbebuiltbyacompositionofthreebooleanViewr,"".haitachedtoadifferent
aspect of the traffic light via the isRed, isAmber, and isGreen messages, which all return a boolean value.

1L.6.4 Views of Multiple Objects

The APMV model provides little support for views of the implementation of an ADT, or overviews
of the collaboration between several objects which are not simply components of another ADT, The
implementation views shown in this thesis are typically simple composite views of each of the objects,
for example, see the stack implementation view in Figure 3.i, or the FSM view in Figure 10.J5. This
is because the APMV model and Tarraingfm's framework assume each view is primarily linked to one
object in the target program. Some implementation views need to produce an integrated display showing
several objects, and do not have one particular ta.rget object.

Two features of the APMV
model - watchers and hierarchical views - could be extended to support views of multiple objects. We
discuss each of these in turn.

Multiple watchers ($7.5) allow several objects to be associated with a single view. This view will
receive information about the changes of all of these objects, and can use these to produce a display like
any other view. The view can combine information about all objects of interest to iroduce an integrated
display' The graphical display is completely unconstrained by tle objects used to produce it, because it
is drawn by a single view. This approach has two disadvantages: a custom multiple watcher will probably
have to be written to monitor the correct set of objectr, urrJth. view is monolithic - all the individual
objects are displayed by a single view definition.

Hierarchical views($6.5) use multiple subviews to display multiple objects - each object is displayed
by a single subview' Hierarchical views are more flexibl"1h*, *orrolithi. uiews, for example, the displayof a particular object can be changed without afiecting the rest of the view. Hierarchical views are
also easier to write than monolithic views, as the visualiser can write and debug each subview without
reference to the rest of the view. In a hierarchical view, each subview is displaye? in an independent X
window.



19511.6 Futune Wonx

11.6.5 Mapping ComPonent

The most promising avenue for the further development of the mapping component is the design of

watchers which use information about the target program to implement higher-level strategies, and

adapt their monitoring to suit the details of their taigef objects. For exa^rnple, the localWatcher (97-2.4)

monitors changes to Jn object's local slots. A localWatcher inspects its target object, determines that

object's variable slots, and ihen requests that these slots are monitored. Any constant slots in the target

object are ignored, and so a ta,rget oU;ect which contains no variable slots (such as the unordered category

object $10.2.2) will not be monitored.

More sophisticated strategies could use other information about the ta^rget program in similar ways'

Consider thl topWatctrer ($z.I.e), which is widely used within Tarraingim to synchronise views which use

callbacks ($4.2.i). This strategy is conservative, because it reports a change whenever a top level message

returns, whether or not that message has actually modified the target object. A more sophisticated

topWatcher could use information about accessor and mutator messages to optimise its monitoring, in

the same way a localWatcher uses information about constant and variable slots ($4.3.1). W" call this

kind of watcher a globalWatcher, because it reports changes like a localWatcher, but for the whole of the

abstraction represented by its target object. A globalWatcher would ignore accessor messages (that is'

the globalWatiher would not request monitoring of these messages) while mutator messages would be

reported as changes to the view.

A globalWatcher could be implemented in the current version of Tarraingim, but the visualiser would

have ti explicitly list the *urrrg". to be monitored, as in a changeWatcher ($7.2.3). A generic glob-

alWatcher would require ,o*" *uy to dynamically determine which messages of its target object are

mutators and which axe accessors. Splr does not make this distinction, unlike C++ ana EtFFel' New

versions of Splr, include slot annotations which could be used to carry this information.

11.6.6 Program ComPonent

The addition of custom encapsulators ($9.2.a) is the most obvious future extension to the program

component. This should not be too difficult, as custom encapsulators are essentially a variation on the

inheriting encapsulators which are currently used by Tarraingim' Implementing custom encapsulators

would require some minor modifications to the procedure that creates inheriting encapsulators' wrapper

methods, so that only those wrapper methods required by a particular custom encapsulator are created,

instead of one *rupi", method for each message in the Snl,r system. Controllers' dispatch databases

contain all the information required to use custom encapsulators ($8'1.3).

The monitoring system's architecture could also be changed to represent monitoring plans explicitly

($4.8). Monitoring pl*r, *" currently represented implicitly in Tarraingim, being transmitted from

watcirers to controlleis via the messages in the controller registering protocol ($8.1.2). Explicit monitoring

plan objects would simply package tle information carried by this protocol' A watcher would construct

a monittring plan oUject, initialiie it to describe the watcher's monitoring requirements, and then send

the monitoring ptal oUj".t to the view. The controller registering protocol would be reduced to a single

message 
""""ptirrg 

a mdnitoring plan object a,s an axgument, and a simpler version of this protocol would

be used to initialise monitoring plan objects.

11.6.7 Synta:c for Visualisation

Tarraingfm does not provide any textual synta:< for representing visualisations (that is, for describing

trees of views and watchers). The visualiser must therefore construct these trees piece by piece. For

example, the profile view from Figure 10.19 must be constructed as follows:

I pw. barProfile I

pw: profileWatcher copy'

pw auxWatcher: recvWatchger coPY.
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pw mainWatcher: changeWatcher copy.

barProfile: barGraph copy.
barProfile watcher: pw.
barProfile name: lbar prof ile' .

We have not found this a problem in practice, because we have generally stored all the component
objects separately in the Spr,r' library. This has led to a proliferation of objects difiering only in parameter
settings. For exa.rnple, we have ten nTreeView prototypes and five browierView prototypes which difier
only in the type of view to use to display tree nodes or browser slots respectively

If Tarraingim was extended to include a more decla,rative synta:r for combinations of watchers and
views, the visualiser could describe a particular view by directly pararneterising a prototype. For example
the barProfile view above could be described as follows:

I barProfile I

barProfile:
('name, (- 'bar profile') &
('watcherr+-

profileWatcher:
('.o*' +- tracewatcher) &
('nain' +- changeWatcher)).

This syntax would allow the visualiser to construct correctly parameterised trees of views and watchers
declaratively, instead of constructing them piece by piece from specially pa.rameterised prototypes.

Visual Syntax

Tarraingim is a visual system, so a visual synta:c for visualisations would be preferable to a textual
syntax- A visual syntan could be provided by extending the existing view structure views and property
sheet views. The existing property sheets can set properties which are strings or numbers, ru"tr as "view's name, or the size of dots in a scatterplot. Some properties, such as a view's watcher, need to
specify arbitrary types of objects, and extending property sheets to ha^ndle arbitrary objects should not
be difficult. The view structure view could similarly be extended to give direct access to the property
sheets of the watchers and views it displays, and to allow a view's structure to be edited directly.

If Tarraingim was extended to support composition ($11.6.3), composite views could be constructed
using a graphical user interface. Composite views could be built indirectly, using their property sheets
which would describe the composite view's subviews, or directlS by allovrexistiig views to be selected
and "dragged-and-dropped" into the composite view.

31. Simplicity iloes not preceile complerity, but follows it.

Alan Perlis, Epigrams On Programming U6gl
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