
Representing, matching, and generalising

structural descriptions of complex

physical objects.

by David Brian Andreae

A thesis

submitted to the Victoria University of Wellington
in fulfillment of the requirements for
the degree of Doctor of Philosophy

Victoria University of Wellinglon
1994

Abstract

This thesis addresses the problem of representing, matching, and generalising descriptions

of complex structured physical objects, in the absence of functional and domain-specific

knowledge. A system called cRAM is described, which includes a reprdsentation scheme, an

instance-constructor, a matcher, and a generaliser. These components incorporate and extend

ideas from a number of other sfiuctured-object learning systems, as well as introducing several

new ideas.

A central contribution of this thesis is to show that descriptions of complex physical objects

can be matched and generalised effectively and efficiently by exploiting their structure. GRAM

does this by a number of means, such as by representing objects at multiple levels of detail;

using 'neighbour relationships' to allow a more flexible traversal of object graphs during

matching; explicitly distinguishing between substructure and context to allow partial matching

and a simple form of disjunction; and using an explicit representation of groups to describe

several similar objects as a single descriptive entity.

A second contribution is to show that complex objects can be matched without having to

enforce consistency between object correspondences. This is possible partly because of the

richness of physical objects, and partly because cRAM represents concepts as simple entities

defined by relationships with other concepts, rather than as a complete set of subcomponents

defined locally within the concept description itself. This scheme leads to greater simplicity,

effi ciency, and robustness.

lll

Acknowledgements

I would like to thank my supervisor, Peter Andreae, for giving such good advice and support

throughout this thesis, even when I ignored his suggestions. His feedback during the writeup

stage was invaluable.

I am very grateful to my parents and my sister, Gillian, for their love and support throughout

this project. Thankyou to my friends for their friendship throughout this sometimes-difficult

time, and especially to my friends in the Free Daist community who have helped me to complete

this thesis.

Thanks also to Pat Langley for his motivating comments when he visited this department.

I was financially supported by a University Grants Committee scholarship, an IBM schol-

arship, a William Georgeni scholarship, and various teaching positions in the Department of
Computer Science at Victoria University. I am very grateful for this support which made my

living situation considerably easier.

lv

{\

Contents

Introduction I
l.l The Domain and Task 6

1.1.1 Kinds of classification tasks. 6

1.1.2 Kinds of leaming tasks. 7

1.1.3 Characteristics of classification and leaming tasks in a physical domain. 7

1.1.4 The domain and tasks of the cReu system. 12

1.2 RelatedWork 16

1.3 Representation 19

1.3.1 An instance is represented as an object graph, with parent, neighbour,

and subpartrelationships. 20

1.3.2 Structure and context are explicitly distinguished. . 2A

1.3.3 Groups are represented by a multi-relationship to a typical-member

concept. 2l

|.3.4 A concept is a generalised object, defined in terms of other concepts. 22

1.3.5 Stnrcture and context can each be described disjunctively U
1.3.6 Concept descriptions are probabilistic. . 25

1.3.7 Concepts can have a variety of interpretations. . 25

1.3.8 The richness of the representation scheme can be exploited by the

matcher and generaliser. 26

1.4 The Instance Constnrctor . 26

1.5 The Matcher 27

1.5.1 The Cnrura matcher does not maintain or enforce a set of consistent

correspondencebindings. 30

1.5.2 A breadth-first beam search with iterativedeepening is used. . . . - . 31

1.5.3 Neighbour relationships largely resolve the "level-hopping" problem. . 3l

1.5.4 Classification of a scene can begin at any seed correspondence 32

vr colvrEMns

1 .5.5 Two types of similarity scores are distinguished: Fit-scores and Proximity-
scores 32

1.6 The Generaliser 33

1.7 cRAM in a larger system. 33

1.7.1 Classification 34

1.7.2 Multiple Concept Learning. 35

Related Work

2.1 Winston's "Arch Learnef'

2.2 ACROI{YM

2,3 CLUSTER/S

2.4 MARVIN

2,5 MERGE

2.6 Noddy

2.7 Connell and Brady

2.8 Labyrinth and COBWEB

29 PARVO

Representation

3.1 Requirements of the Representation. .

3.1.1 Structural descriptions should include functionally important informa-

tion.

3.1.2 The representation should support the performance of the matcher.

3.1.3 Objects must be describable at multiple levels of abstraction and ap-

proximation

39

39

43

45

47

49

52

53

55

60

63

64

64

&

&
65

66

66

67

69

69

69

70

70

3.r.4

3.1.5

3.1.6

3.r.7

3.r.8

3.1.9

3.1.10

3.1 .l l

3.r.t2

The representation language should be richly expressive.

The context of an object must be explicitly representable.

Structure and context should be explicitly distinguishable to allow

disjunctive concepts and partial matching.

Groups must be explicitly representable. .

The representation should include descriptive entities and relations that

humans seem to use.

Concept descriptions must be probabilistic

Partial descriptions must be representable. .

The representation must be extendible.

Description construction mechanisms must be available.

1

coMrEMrs

lnstance representation. 7l

3.2.1 cRAMrepresentsthephysicalworldasanobject-decompositionhierarchy. Tl

3.2.2 Neighbourrelationshipsiuenecessarytocapturethecontextof each part. 7l

3.2.3 Each relationship is a rich descriptive entity. 72

3.2.4 Each object has its own set of parent, neighbour, and subpart relationships. 74

3.2.5 Structure and context are explicitly distinguished, to allow disjunctions

and partial matching. 74

3.2.6 A multi-relationship is a generalised relationship to a concept. 75

3.2.7 An object may be a grouped object defined by a typical-member concept. 77

Properties and relationships. 78

3.3.1 Each object has a frame-of-reference for describing properties and

relationships. . 78

3.3.2 Types of attribute value. 79

3.3.3 Structure properties. 80

3.3.4 Context properties. 8l

3.3.5 Parent and subpart relationships. . 82

3.3.6 Neighbour relationships. . 83

3.4 Concept Representation. 87

3.4.1 Context or structure may be 'imported' from other concepts. 88

3.4.2 Concept variability is expressed by attribute distributions, instance-

counts, and disjunction. 89

3.4.3 Concepts can have a variety of interpretations. . 98

Groups 104

3.5.1 There are several types of group, distinguished by their inter-member

relationships.. 104

3.5.2 Group properties. 109

3.5.3 The typical-memberconcept. 110

3.5.4 A non-member object may have a multi-relationship to a typical-

memberconcept.. 110

3.5.5 Individual subparts of a grouped object may or may not be included in

the description. ll2
3.5.6 The structure of a typical-member concept may be imported from

anotherconcept. I 14

3.5.1 The structure of a typical-member concept may be disjunctive. I 15

3.5.8 Groups of groups I 16

3.5.9 Generalised groups. 119

Reference summary of the representation scheme. 122

vlt

3.2

3.3

3.5

3.6

vlll CONTEMTS

The Matcher l2l
4.1 Requirements. . LZ4

4.1.1 Input and output requirements. . 124

4.1.2 An 'any-time' matcher with effort-control and scope-restriction pa-

rameters is required. 124

4.1.3 The matcher should not assume canonical descriptions . 125

4.1.4 The objects being matched may be generalised or ungeneralised. 125

4.1.5 Two types of scoring are required: fit-scoring and proximity-scoring. 125

4.2 Issues and Contributions. . 127

4.2.1 The two primary issues are similarity and search. 127

4.2.2 Object similarity evaluation is complex and recursive. . 127

4.2.3 Requiring a globally consistent set of correspondence is expensive and

unnecessary 128

4.2.4 The "Level Hopping" problem. 128

4.2.5 A description may need to be augmented. . . . 129

4.2.6 Estimates of similariry should be obtainable from superconcept or
subconcept similarity scores. 130

4.2.7Instance-countsandfeaturevariancesaffectsimilarity.

4.2.8 Object similarity depends on axis correspondences, and may require

attribute coercion. 130

4.3 Similarity. 132

4.3.1 The basic definition of similarity 132

4.3.2 Attribute similarity 133

4.3.3 Relationship and relatee similarities. 137

4.3.4 Local consistency between correspondences is not enforced. . 142

4.3.5 Global consistency between correspondences is not enforced 145

4.3.6 Weightings. 147

4.3.7 Scope restriction is used to measure structure-only or context-only

similarity. 149

4.3.8 Proximity-scoringversusFit-scoring.151
4.3.9 Structure and context interpretations affect similarity. 153

4.3.10 Superconcept and subconcept similarity can be used to estimate the

score. . 157

4.4 The Matching Algorithm 163

4.4.1 Match results are represented in cnoter. . 163

coJqrHvrs ix

165

173

175

t77

177

180

188

4.4.2

4.4.3

4.4.4

4.4.5

4.4.6

4.4.7

4.4.8

4.4.9

4.4.t0

The "lncremental-Spread" search strategy.

An example

Level-hopping is implicitly performed.

Disjunctive structures and contexts are also evaluated using incremental-

spread.

Scope Restriction.

Augmentation: Dealing with missing relationships and relatees.

Using the AKO hierarchy.

Fit-scores are obtained by traversing winning conespondences in the

cnote graph

Details of the algorithm.

190

l9l

The Generaliser 197

5.1 Input and Ouput. 199

5.1.1 The input is explicitly a single cnote, but implicitly an entire cnote graph.l99

5.1 .2 A "side effect" of a generalisation is many other generalisations. I 99

5.1.3 Scope restriction parameters are required 199

5.1.4 Parameters for determining generalisability and modifiability are needed.200

5.1.5 The input objects may be concepts or instances 200

5.2 Issues and Contributions. . 203

5.2.1 Over-generalisation and under-generalisation should be avoided. 203

5.2.2 A relationship/relatee may be unmatched' 2O3

5.2.3 Partial similarity may require disjunct formation. 204

5.2.4 Several kinds of ambiguity must be resolved. . 2M

5.2.5 Stnrcture and context interpretation must be considered . - - . 2O5

5.2.6 The cnote-graph may contain inconsistencies. ' . . . 205

5.2.7 Objects can be generalised independently from other objects' . . 2O5

5.3 The generalisation algorithm. . 207

5.4 Atfribute generalisation . . 210

5.5 Determining what is to be generalised. . 212

5.5.1 Scope restriction can be achieved by marking the generalisable objects. 212

5.5.2 Scope restriction can be achieved by specifying the required spread. . 213

5.5.3 Proximity-scores and fit-scores determine whether to generalise or

modify. -.-.216
5.5.4 The matcher may need to be reinvoked. 216

5.6

5.7

COIVTEJVTS

Dealing with unmatched parents, neighbours, and subparts . . . 217

5.6.1 Method-l: The generalisation refers to the original unmatched object. 218

5.6.2 Method-2: Unmatched objects are copied. . . . 219

Partial similarities and disjunct formation. . . . 222

5.7.1 Generalisation (by disjunct formation) may be justified by stmcture-

onlyorcontext-onlysimilarity.222
5.7.2 Some examples of disjunct generalisation and formation. . . . 222

5.7.3 Impon-from relationships could be created. , . 224

5.7.4 Disjuncts could be converted to an 'any' interpretation. 224

Ambiguity. ...228
5.8.1 Similar-similarity ambiguity anddifferent-similariryn ambiguity. 228

5.8.2 Local and global ambiguity. . . 232

5.8.3 \r'ertical and horizontal AKO ambiguity. 233

Structure and context interpretation affects generalisation. 236

The Instance Constructor 239

6.1 Object-Formation ...242
6.1.1 Object-FormationCriteria243

6.2 GroupFinding251
6.2.1 GroupingCriteria ...252
6.2.2 Group Finding Search Strategies. . . . 259

6.2.3 TheSeed-ExpansionAlgorithm263
6.2.4 The Propose-and-Prune Algorithm . . . 268

6.3 Relationship Selection . 270

6.3.1 Criteria for Selecting Neighbour Relationships. . . 272

6.3.2 Criteria for Selecting Subpart Relationships. 276

6.3.3 Criteria for Selecting Parent Relationships. . . 279

6.3.4 Search strategies for selecting relationships. . . . 279

Evaluation 281

7.1 Effectiveness of the Matcher . . 282

7 .l.l Matching identical descriptions of the same object . . 282

7 .1.2 Matching different descriptions of the same object . . 282

7.L3 Matching two different bicycles 285

7.1.4 Matching large numbers of objects against each other . 289

5.8

5.9

COIVTEI{IS

7.2 EfficiencyoftheMatcher ...297
7.2.1 Comparison with an exhaustive and 'all-pairs' strategies . . . 298

7.2.2 Efficiency of matching identical objects 300

7.2.3 A summary of the bicycle matching results 301

7.2.4 The matcher is conducive to a parallel implementation 301

7.3 Effectiveness of the Generaliser 302

7.3.1 Matching and generalising the generalised bicycle. 303

7.3.2 Disjunction 303

7.4 EffectivenessofGrouping... 306

7.5 LimitationsandFutureWork.311

Conclusion 317

8.1 Representation . 318

8.1.1 Multiple levels of approximation and abstraction are important for

matching and generalising. . 318

8.1.2 The distinction between parent, neighbour, and subpart relationships

helps guide and constrain the matcher. 318

8.1.3 Generalisation is simplified by giving each concept and instance its

own set of relationships. . . 319

8.1 .4 Physical objects are represented in terms of context as well as structure. 3 l9

8.1.5 Concepts can be conveniently defined by relationships to other con-

cepts, rather than by a local part graph. 320

8.1.6 The explicit distinction between structure and context supports partial

matching and a simple form of disjunction. 32O

8.1.7 Explicit groups reduce memory usage, support efficient matching, and

enable different-sized collections of similar objects to be generalised. . 32O

8.1.8 Multi-rclationships allow relationships to be grouped. . . . 321

8.1.9 Instance-counts are necessary to specify the degree of optionality of a

component. 322

8. I . 1 0 The distinction between c ontents and arrangement is necessary in some

domains.322
8.1.11 \\e impon-fiom relationship provides a flexible way of reducing re-

peated information, and increasing information transfer. 322

8.1.12 Itisusefultoexplicitlydistinguishbetweenseveraldifferent'interpre-
tations' of structure and context descriptions 323

8.1.13 Structure and context disjunction can be conveniently specified by

subconcepts in the AKO hierarchy. 323

xi

xll coN:rENrs

8.1.14 Enriched representation of properties and relationships support partial
matching.

8.1.15 Important information should be made explicit, to prevent loss of in-
formation during generalisation.

Matching

8.2.1 A matcher can and should exploit the structural organisation of objects.

8.2"2 Relationships enable direct indexing for classifying an instance.

8.2.3 Efficient and effective matching of structural descriptions is possible

without maintaining bindings between conespondences.

8.2.4 Robust matching is made possible by searching in any direction through

the object graph,starting from any hypothesised seed classification. .

8.2.5 Efficient 'any-time' matching is possible by using a breadth-first 'iter-

ative deepening' search.

8.2.6 The level-hopping problem is resolved by exploiting neighbour rela-

tionships.

8.2.7 Instance-counts are important for syntactic recognition.

8.2.8 A concept is a "probabilistic predictor" of parents, neighbours, and

subparts

8.2.9 Mismatches can sometimes be confirmed or resolved by augmenting

an instance description.

8.2.10 Fit-scores versus proximity-scores. 329

8.3 Generalisation 330

8.3.1 Generalisation is simplified by representing concepts as small inde-

8.2

323

324

325

325

325

326

326

327

327

327

328

328

8.4

pendent descriptive entities.

8.3.2 Various forms of ambiguity have been distinguished.

8.3.3 The representation supports a simple form of disjunction creation.

8.3.4 Over-generalisation is reduced by requiring a minimum match effort,

a minimum fit-score, and a winning classification

8.3.5 Fault-finding is possible without using negative examples

Instance Construction

8.4.1 GRAM'S instance constructor augments primitive descriptions to sup-

port more efficient and effective matching and generalisation. . 333

8.4.2 Group construction during instance construction pre-empts group for-

mation during generalisation. . 333

8.4.3 Groups are found using the Seed Expansion algorithm. 333

330

330

331

331

33r

333

Chapter I

Introduction

This thesis addresses the problem of building a system that can represent, construct, match,

and generalise descriptions of complex structured physical objects, without using functional

or domain-specific knowledge. The thesis describes an implemented system, called GRAM,

which operates in a domain of static two-dimensional structured objects, such as those shown

in Figure l.l.
The original inspiration for building cRAM was based on a long-term vision of building an

"instructable autonomous robot" that could leam to perform tasks rn the physical world. Tasks

such as vacuuming a room, finding and retrieving objects, or drying and putting away dishes,

require the robot to have effective and efficient classification mechanisms for recognising the

objects encountered in the world. The robot must also be able to learn descriptions of object

categories (or 'concepts') so that it can adapt to new or changing environments. The robot

should be able to leam either on its own in response to encountering a new instance of a known

category, in response to explicit instruction from a teacher, or in response to demands from

other components of the robot system.

A basic strategy for classifying an object consists of several steps. First, a description of the

object is constructed from image data. Indexing mechanisms are then used to access a selection

of concepts in a potentially vast memory. A matcher then compares the object (or instance)

with each concept.

The central component of a leaming system is a generaliser, which generalises an existing

concept to cover an observed instance. The learning system must also be able to create and

add new concepts to concept memory, and to reorganise concept memory if necessary.

cRAM provides four components to support the classification and leaming tasks: a repre-

sentation scheme, an instance constructor, a matcher, and a generaliser. This thesis discusses

the issues in designing each of these components, and presents the new ideas and mechanisms

that have been developed. Mechanisms for indexing and memory organisation, and the way

in which all of the mechanisms are to be integrated into a complete classification and leaming

systenL are the subject of future research.

There has not been a great deal of other research that encompasses all four of the above

components (representation, instance construction, matching, and generalisation) in the domain

CHAPTER I. IMTRODUCITON

3

of complex structured objects. Most of the work in visual object representation and recognition

does not address the problems of concept learning, and most of the systems developed for

concept leaming do not deal with or exploit the characteristics of complex structured physical

objects. Therefore, although the work in this thesis draws on the research done in each of these

areas, it presents some new ideas and techniques which directly support the development of an

integrated classification and leaming system.

One claim of this thesis is that complex structured objects can be effectively matched and gen-

eralised without functional or domain-specific knowledge. Lebowitz [Lebowitz, 1986] made a

similar claim some ye:rs ago, although with less emphasis on structural objects, and certainly

not addressing the complexity that cRAM deals with. cRAM achieves this by using a represen-

tation scheme that is richly expressive and allows redundancy, so that functionally important

information is more likely to be implicitly embodied in the explicit structural descriptions, and

less likely to be lost during the generalisation process. Representing objects at multiple levels

of approximation and abstraction is an important aspect of this. Another aspect is the explicit

distinction between structure and context. This enables GRAM to notice that two objects have

similar isolated structure (or 'form') but different contexts (or 'role'), or vice versa, and also

allows a simple form of disjunction to be represented.

In a structured domain in which scenes and objects may be composed of hundreds or

thousands of components, an exhaustive or simple general-purpose matching strategy cannot

provide sufficient efficiency (or even effectiveness) in a real-time system. Therefore, a second

claim of the thesis is that complex objects can be matched more effectively and efficiently by

exploiting the structural relationships between components of the objects to guide and constrain

the search. This is a somewhat obvious claim, and other systems have also used it, primarily

by representing objects in multiple levels of detail to allow top-down traversal of the objects

[Wasserman, 1985], [Connell, 1985], [Marr, 1982]. However, GRAM's contribution is to show

that context information can be exploited as well as substructure information by distinguishing

between three types of inter-part relationships - parent, neighbour, and subpart relationships

- each of which is itself a rich descriptive entity. Relationships can be used by the matcher

to guide the search, not only down the decomposition hierarchies, but also via parent and

neighbour relationships, thus providing multiple paths to the correct correspondences. This

resolves the 'level hopping' problem in which corresponding components are on different

levels of the decomposition hierarchies and would not be found by a strict top-down search.

A further consequence is that cRAM is more robust since it does not require canonical object

descriptions.

Another aspect of exploiting the structure of objects is the formation of groups of similar

and similarly related components, where each group description summarises its members in

terms of a 'typical member'. If the individual members are then removed, the overall object

description is reduced in complexity, hence reducing the search required by the matcher when

comparing such descriptions.

A third claim of the thesis is that descriptions of physical objects can be matched effec-

tively and efficiently without enforcing global consistency between corre.spondences during

the search. This approach is significantly different from the usual graph matching approach,

CHAPTER I.,NTTRODUCTION

and has surprising advantages in terms of simplicity, efificiency, and robustness: It avoids the

need for a backtracking mechanism by keeping multiple competing hypotheses active simulta-
neously; it permits a much greater degree of parallel implementation; and it enables components
of an object to play multiple roles when matched with another object.

As an example of what the implemented cRAM system I is able to do, the matcher was

presented with descriptions of the two bicycles shown in figure 1.2, each consisting of 80

and 100 composite and primitive parts respectively, organised as a part hierarchy. cRAM

correctly found 65 ofthe 69 desired correspondences, and then successfully generalised 57 of
them. Two identical descriptions of BIKEI were also matched, and cR.tu identified all 80

of the correct correspondences. Furthennore, a description of BII(EI was matched against a

different description of the same bike, with significant differences between the decomposition

hierarchies, thus testing cRAM's level-hopping ability. The matcher correctly found 73 of the74
of the desired correspondences. The one incorrect correspondence was only marginally higher
scoring than the correct correspondence, which GRAM also found. These results are described

in more detail in chapter 7 which also presents the important result that cRAM's efficiency

seems tobe linear relative to the number of components in the objects being matched.

A methodology that is used throughout this thesis to address each problem, is to first identify
the kinds of requirements, situations, characteristics, etc, of the problem, and only then consider

the mechanisms that could be used to solve it. This helps to ensure that the solutions are fitted

to the problem, rather than fitting the problem to some arbitrary solution.

Outline of this section and the thesis.

This introductory chapter begins the thesis by giving an overview of the main issues and ideas

considered in the thesis. Section 1.1 describes the characteristics of the domain and task which

the cRAM system supports, and which form the basis for justifying the various design decisions

made throughout the development of cRAM. It presents several examples of the kinds of tasks

that cRAM can perform.

Sections 1.2 to I .6 give ao overview-summary of the main issues and ideas presented in the

five main chapters of the thesis.

Section 1.2 places this thesis in the context of other related research, and summarises the

limitations of that research. This is explored in more detail in chapter 2.

Section 1.3 outlines the issues of how to representcomplex structured physical objects, in

generalised and ungeneralised form, and gives a brief overview of the key contributions of the

GRAM representation scheme. This section is a summary-overview of chapter 3.

Section 1.4 briefly presents the issues of constructing a description of an observed object,

based on information that is assumed to be available from a low-level vision system. Various

components of this instance-construction process that have been developed for GRAM are briefly

described. This includes a discussion of the various criteria used to justify the formation of

lThe system is written in Common Lisp, and works directly from postscript data produced by a graphics package

calted nnew and a text file that specifies the part decomposition hierarchy.

Figure 1.2: TWo bicycles matched and generalised by cRAM.

composite objects within an instance description, and the criteria for forming explicit rela-

tionships between objects. Criteria and mechanisms for finding $oups of similar components

within a scene or object, are also discussed. This section is a summary-overview of chapter 6.

Section 1.5 introduces the main issues of how to match complex structured physical objects

(both instances and concepts), and briefly describes how the cRAM matcher addresses these

issues. The two main issues addressed are, firstly, how to measure the similarity between

a concept and an instance, and secondly, how to search for correspondences between their

CHAPTER T. IT\ITRODUCTION

components. This section is a summary-overview of chapter 4.

Section 1.6 outlines the main issues of how to generalise a concept description so that

it accounts for a new instance. The main characteristics of the GRAM generaliser are also
presented. This section is a summary-overview of chapter 5.

The implemented cRAM system is partially evaluated in chapter'1, and the main ideas and

conclusions of the thesis are summarised in chapter 8.

An understanding of the main contributions of this thesis can be obtained by reading the

introduction and conclusion chapters. The section headings throughout the thesis (and in the

table of contents) can also be read as a rough summary.

1.1 The Domain and Thsk

Although the long term goal of cRev is to be a component of an "instructable autonomous

robot", which might be used as a household helper or a workshop assistant, this thesis is just one

smallcontribution towards it, since such a project will also require many other mechanisms for
planning, procedure learning, reasoning, language understanding, and so on, to be developed,

covering almost all areas of Artificial Intelligence research.

cRAM is focussed specifically towards supporting the tasks of classiffing physical objects and

learning descriptions of categories of physical objects. ln particular, it addresses the problem

of representing, constructing, matching, and generalising object descriptions.

This section gives a brief overview of the kinds of classification and leaming tasks that

cRAM supports, and the characteristics of these tasks which have implications for the design

of the system. It then briefly outlines the main features of cRAM's simplified two-dimensional

domain and explains why this is sufficient for demonstrating the potential of cRau to operate

in a real-world three-dimensional domain.

1.1.1 Kinds of classification tasks.

There are several different kinds of classification tasks that need to be supported by cnau. The

simplestkindof classificationtaskisof theform "Is thatanegg-beater?". Sincetheconcept

is given, there is no need to search concept memory. The instance is simply compared with the

concept, and a measure of similarity is produced.

If the system knows about other concepts that are similar to the specified concept, then it

may also need to match the instance with those. For example, if it knows that the concept

handdrill is similar to the egg-beater concept, then it may need to comparc the object with

that, since the measure of similarity between an observed handdrill and the egg-beater concept

might otherwise seem acceptable.

The task "What is wrong with that X?" is an extension to the "Is that anx?" task, because

it involves identifying and reporting the key differences between the concept and the instance.

1.1. TIIE DOMAATAND ?ISK

The most common classification task is of the form "What is that?", and involves observing

an object (such as a room or a hammer or a chair-leg), and classifying it by finding the best-

matching previously-learned concept in memory. This task might also be extended to an entire

scene, or to all of the components of an object, in the form "Classify the components of that

scene or object."

To perform the task "Find an X", the system does not need to search concept-memory, but it
must search the observed scene or environment for an object that matches the specified concept.

An autonomous robot might have to perform a task such as "Assemble those bicycle parts",

and this may involve all of the above, since it needs to classify the parts, find particular parts

(and tools) that it needs, and determine when the assembly is completed and correct. Similarly,

the task "Go to the bedroom and tidy it" has similar requirements.

1.1.2 Kinds of learning tasks.

Learning tasks come in two forms, supervised and unsupervised. The basic form of supervised

learning task occurs in response to the instruction "That is an X", and involves generalising

the concept features to take into account the features of the new instance. If the concept is not

already known, then the instance is recorded as new concept.

Unsupervised learning occurs in response to the system's own classification of an observed

object. Such learning is therefore susceptible to errors, since the classification may be incorrect.

Therefore, the system could also seek confirmation from a teacher after classification, especially

if the instance is unusual in some way. If an observed object is unrecognisable, then a new

concept can be automatically created.

Unsupervised concept leaming is made more complicated by the fact that each learned

concept may have a number of subconcepts, forming a concept hierarchy, such as for different

varieties of chairand different varieties of office-chair. Thus the system must be able to create,

reorganise, use, and maintain such hierarchies.

ln systems such as GRAM, where every component of an object is an instance of a concept,

supervised leaming is almostalways accompaniedby unsupervisedlearning. More specifically,

if an object is given a classification by a teacher, which enables a particular concept to be

generalised, the system is still responsible itself for determining the classifications of the

subcomponents of the objecg and for determining whether and how to incorporate the new

subcomponents into concept memory. Thus a leaming system in a structured domain always

involves some unsupervised learning, unless its concepts are represented as complete part

hierarchies rather than in terms of other concepts, or if the teacher specifies classifications for
every subcomponent.

1.1.3 Characteristics of classification and learning tasks in a physical domain.

The descriptions of the classification and learning tasks above do not indicate the complexity

of what is involved, and so this section discusses some of the characteristics of a real-world
physical environment which must be taken into account.

CHAP/|ER T. IIVTRODUCTION

Objects are composed of subcomponent objects, and concepts are therefore defined in
terms of subcomponent concepts.

One of the main characteristics of dealing with a structural domain, such as a real physical
environment, is that every observed instance of aconcept is composed of smaller subcomponent

objects which are themselves instances of other concepts. Therefore, the task "Is that an X?"
not only involves comparing the object with the concept X (such as chalr), but also involves

classifying and matching its subcomponents with other concepts by which X is defined (such

as chair-leg or cushion). Similarly, in order to recognise a room as being a bedroom, the system

must recognise its main components, such as bed, desk, etc. Each of these concepts may

exist within a hierarchy of concepts, and so the system must be able to deal with a potentially

complex inter-dependence between concepts in memory.

The world can be viewed at multiple levels of detail.

Objects in a real-world domain are often recognisable from a rough level of detail, as has been

discussed by [Biederman, 1985]. In many cases, classification is possible from just a few of
an object's largest subcomponents perceived as rough shapes (such as cylindec rod, cube, etc),

and rough spatial relationships between them. For example, humans can recognise an object

as being a bicycle without having to observe its exact shape and all of its details, which could

vary considerably amongst different specialised varieties of bicycle. This suggests that concept

descriptions should include abstract and approximate features to enable such classification, and

also suggests that the matcher should exploit this property to enable rapid recognition.

Howeveq finer details are also necessary for tasks such as fault-finding, which may require

that the matcher takes into account every subcomponent. Finer details are also necessary for
performing more specialised classifications, such as for discriminating between different kinds

of cars. This implies that objects and concepts need to be represented in multiple levels of
abstraction and approximation, and the classification system should exploit this.

A physical domain is characterised in terms of objects, relationships, properties, surfacesn

and edges.

There are a variety of basic descriptive entities and features that characterise the physical world

(for humans). The objectis perhaps the most obvious descriptive entity, but equally important

is the structural relationshipbetween two objects. There are many kinds of information that

humans seem to use to characterise a structural relationship, such as relative position, size,

orientation, and alignment. Various forms of connectivity are also distinguished, such as fixed
joins, articulated joints, contact, or 'same-piece' connections, such as between the bowl, stem,

and base of a wineglass.

Objects also have a variety of different kinds of properties, such as shape, colour, texture,

material, solidity, and so forth. Other kinds of components, such as surfaces, edges, corners,

and axes, also characterise physical objects. All of these types of descriptive feature need to

be taken into account by the classification and learning system.

THE DOMAIN AND ?ASK

Concepts may be highly varianl

An important characteristic of the kinds of domains in which a general-purpose autonomous

robot would operate, such as a household or workshop, is that concepts can be highly variant.

For example, there iue many variations of the concept hamme\ in terms of its shape, colour,

structure, erc. This situation contrasts with that of specialised classification systems that operate

in highly constrained environments, such as bin-picking robots or assembly-line quality-control

robots that can assume that each object category is highly or completely invariant.

One aspect of variance is that the attributes that characterise the concept can have ranges of
values, such as for length and colour. Another aspect is that components might be optional,

with some measure of frequency of occurrence. For example, a television may or may not

have an aerial on top of it, a chair may or may not have arms, and a door may or may not have

a keyhole. Since an important aspect of a classification and learning system is the ability to

make predictions, the variability of concepts suggests that concept descriptions should include

probabilistic measures for the presence or absence of its sub-components and neighbouring

objects.

In addition to having optional components, a concept may also be defined in terms of
alternative, or disjunctive, sets of components. For example, the definition of a door might

have to indicate that the door-handle can have any one of a variety of alternative door-handle

structures. The door-handle might be described non-disjunctively at a coarse level of detail,

with the disjuncts providing more detailed information to enable tasks such as fault-finding,

or discriminating between types of doors, to be performed. The disjuncts could be specified

simply by referring to a door-handle concept that has several subconcepts.

A concept may be defined in terms of its contentsn independent of their arrangement.

Most object categories are defined in terms of a fairly rigid well-defined substnrcture, as in the

case of a hammer, desk, or vacuum-cleaner. However, there are also some object categories

of which the arrangement of their subparts (or 'contents') is highly variable, and therefore less

important. For example, a bedroom typically contains a bed, desk, lampshade, wardrobe and

so on, but the arrangement of these within the room is highly variable. Similarly, concepts

such as shopping-center, childrcns-playing-are1 or computer-lab are also defined primarily in

terms of their contents. Some of the relationships between the components may be important,

but there is a great deal of variability.

Conversely, some concepts iue defined primarily by their arrangement only. For example,

the characteristics of the subcomponents of a tower or an arch are not particularly important,

since it is the structural organisation of those subcomponents which is crucial.

Objects may be only partially vlsible.

An object may be partially occluded, either by other objects or just by the fact that it can only

be viewed from one direction. There may also be insufficient time for more than a brief glance

l0 CHAPTER I. IATTRODUCTION

at the object, or the object may be observed from too far away to see more than a fuzzy blob.
Therefore, the system should be able to cope with partial information, and be able to predict
missing information on the basis of previously learned concept descriptions.

Object boundaries may not be available prior to classification.

Another dfficulty for classification is that the distinction between component objects may not
be available prior to classification. In other words, the 'objectness' of a region of a scene

may not be identifiable by the low-level vision system. For example, when finding a hammer

in a jumbled toolbox, the boundaries between objects can only be identified on the basis of
classification, rather than prior to classification. Thus the process of processing an image

cannot necessarily progress in a simple manner from lowlevel visual perception of pieces and

blocks and objects and so forth, up to abstract recognition. Rather, a two-way up-and-down

process may be necessary.

Concepts may be defined in terms of substructure (or 'form') and context (or 'role').

Although an object is often recognisable from its substructure, some concepts are defined just

as much, or even more, by their surrounding context For example, a chair-Ieg is defined in

terms of its relationships with the cbair concept, and other chair components. Similarly, a chair

needs to be partially defined, or at least described, in terms of its typical context (such as being

upright on a floor, and usually in a room). Context information can not only lead to the correct

classification ofan object, but can also be used in the reverse direction to predict classifications

of its surroundings. For example, if a chair has been recognised from its substructure alone,

then the context information in the chair concept can suggest that the object on top of it is a

person, and the object next to it is a desk.

Scenes and objects often contain groups of similar components.

Scenes and objects often contain groups of similar and similarly related items, such as buttons

on a shirt, windows on a building, fruit in a fruit bowl, or spokes on a bicycle wheel. The system

should be able to exploit this to enable more compact 'summary' description, since a group can

be characterised by a generalised description of its typical member, generalised descriptions

of the typical relationships between members, and properties of the group as a whole. The

formation of a group description, therefore, enables transfer of information between instances,

since each member is effectively being generalised by replacing it by the description of the

typical-member.

Groups also enable more efficient and effective matching, since two groups can be compared

as whole entities, rather than attempting to find correspondences between every member of
two groups, which might not be possible if the groups have different cardinalities. In fact, if
the groups have different cardinalities, it is necessary for the groups to be explicitly noticeable

and representable so that the generaliser can produce a generalised variable-sized group.

THE DOM/^IN A]VD ?ASK

Another reason why the system should explicitly notice groups, is that this is a form of
concept discovery. Normally a concept is learned by observing several instances over time, but

a concept should also be formed if several similar objects are observed within a single scene.

Thus, the creation of a typical-member description to characterise a group, is the creation of a

concept. It is an unusual conceptbecause is partially defined by relationships with itself, which

denote the typical relationships between members of the group.

A concept may be a pre-condition for a robot action.

Another kind of concept that a robot system needs to learn are action pre-conditions. ln fact,

this was one of the original motivations for the cRAM project, since it was intended to fit into

a procedure learning system developed by [Andreae, 1985] which required a subsystem that

could learn visual pre-conditions for actions in a generalised procedure. These conditions are

often partial scenes, rather than objects. For example, the concept "full shelf' could trigger

a dishwashing robot to start stacking plates on the shelf above, or the concept "untidy room"

would trigger a household robot to commence a tidying activity.

Objects art often characterised by the way they moyq the way they interact with other

objects, and their function.

There are aspects of objects other than their structural properties that are also important to the

definition of a concept. For example, an important characteristic of a bicycle is that the wheels,

pedals, and front fork (and many other parts) move in certain ways. Therefore, to fully capture

the definition of a bicycle, this kind of information should be representable.

Similarly, the kinds of activity that a bicycle is typically involved in, such as rolling along a

road from one location to another, is also important. [n fact, this kind of information would

comprise the definition of the function of a bicycle. Most man-made objects serve some

function, and therefore functional knowledge is clearly important in a concept description. It
should be noted that the function of an object is often partially defined by its structural context,

such as the way in which a bicycle is structurally related to the parts of a human body.

Rapid classification must be possible because scenes may consist of many components.

ln a real-world domain it is necessary to perform classification very rapidly because a scene

or object may contain a huge number of component objects. If a robot is navigating through

a room or building, such as when doing the vacuuming or searching for an object, its eyes are

presented with vast quantities of information which must be chunked into large numbers of
recognisable objects. This suggests that the mechanism for indexing from instances to concepts

must b€ very efficient, as must be the process of comparing instances and concepts.

ll

t2 CHAPTER I. AN:RODUCTION

There are a vast number of concepts that characterise a physical environment.

In addition to the problem of coping with scenes that contain huge numbers of objects, big
and small, there is also the problem of dealing with a vast number of different concepts. If
I look around the office I am in, every single object can be considered to be an instance of
a concept, such as telephone, lockable-door-handle, space-bar, dusf-speck, scratch-on-desk,

desk-keyhofte, and row-of-books. Some concepts, such as telephone, have labels associated

with them, while others such as desk-keyhole may not, since they are often referred to in speech

in the form "the keyhole of the desk" or "a row of books".

A concept might also be defined solely in terms of one particular instance, such as the

'concept' my-set-of-keys. Therefore, concept memory may be vast, and this suggests that

efficient memory access and organisation mechanisms must be available.

1.1.4 The domain and tasks of the cneru svstem.

The development of a classification and t"u*ing ,Vrtem which takes into account all of the

domain and task characteristics discussed above, is clearly not a trivial matter, let alone the

problem of building a complete autonomous robot. CRAM goes some way towards extending the

research in this area by focusing on three core components of such a system: a representation

scheme, a matcher and a generaliser. Some aspects of instance-construction are also addressed,

in particular the group-finding process. The discussion below explains in more detail what

cRAM actually does, and the domain in which it operates.

cRAM deals with a two-dimensional domain, where objects are comprised of simple

'blocks'.

I have chosen to work with a two-dimensional domain because it simplifies the development

of the system while still capturing most of the important features of a real-world domain

discussed in the previous section. Most of the objects dealt with in the thesis are, in fact,

very close to projections of three-dimensional objects. Recent work discussed in chapter 26 of

fWinston, 1992] shows that recognition of three-dimensional objects is actually possible from
just a few two-dimensional projections, without even requiring any volumetric description.

The only significant limitation of a strictly two-dimensional domain is that objects are always

completely visible, and the system does not have to deal with the problem of partial views. The

current system allows two-dimensional objects to overlap, but there is no notion of occlusion.

However, the issue of occlusion could be addressed without having to deal with a full three-

dimensional domain, by adding depth information. The problem of coping with the hidden

two-(and-a-half1-dimensional objects can be considered equivalent to the problem of coping

with the hidden portion of a three-dimensional object.

The input to the cRAM system is a description of an object or scene consisting of simple

primitive 'blocks' which can be rectangles, ellipses, or simple polygons, such as those in

Figure 1 l above. Each block is considered to have a bounding rectangular box which defines

1.1, TIIE DOMAINAATD ?{SK

its dimensions and orientation relative to other blocks, as illustrated in Figure I .3. Additionally,

the input also includes a set of 'fuzzy blocks' such as those indicated by the doned boxes for

the humanoid in Figure 1.4. These are visual approximations of a set of smaller blocks, at a

coarser level of detail.

Figure 1.3: Primitive block shapes.

cRAM assumes that a low-level vision system (such as described in [Connell, 1985]) is

available to produce descriptions of blocks at multiple levels of approximation, although at

present the input comes directly from a graphics/drawing program, However, an issue that

is not significantly addressed in this thesis is how the high-level recognition system should

interact with the low-level vision system, since it is not always the case that a vision system

can construct block descriptions bottom-up, without guidance based on the expectations of the

high-levelrecognition system. However, CnnM can cope with partial information, so that if the

vision system is not able to produce a full block description from an image, the matcher can

still make use of what it is given. ACROTIYM [Brooks, l98l] takes a different approach, in

which the recognition system works more in the opposite direction, generating expected two-

dimensional image features from its three-dimensional generic models, rather than producing

a three-dimensional model from the image.

13

Figure 1.4: Composite parts of a humanoid.

Each block in GRAM's domain can have various properties, such as aspect-ratio, shape, number

I4 CHAPTER T. NTRODUCTION

of edges, erc. Currently it does not include colour, texture, material, stiffness, etc, although
these could easily be added. A simple extension to allow blocks tobe generalised cylinders2
would also enrich the domain considerablS and would only require the representation language

to include a few additional properties specifying the spine and taper functions.

The system is able to obtain information about how pairs of blocks are spatially related to
each other, including relative size, proximity, direction, orientation, and alignment. Currently
there is no distinction between different kinds of connectionrelationship between blocks. For
example, there is no distinction between blocks that are fixed together, merely touching, or have

an articulated joint. Nevertheless, the description of relationships in GRaM are still sufficiently
rich to give good performance, and the addition of more connection types would only improve
its performance.

The simplified two-dimensional domain has made development of cRAM easier, because it
is has not been necessary to develop mechanisms for processing a mass of lowlevel details.

However, it also means that blocks are not as easily distinguishable on the basis of properties

alone, as can be seen in the examples in figure 1.1. Blocks are primarily distinguished by their

substructure and/or contextual relationships.

If the domain was extended to include more property and relationship distinctions, this would

certainly help GRAM to classify objects more effectively, since such information would help

discriminate between classes, as humans may find when looking at black and white photos.

However, the argument of this thesis is that if GRAM can work reasonably effectively without

such information, then it will certainly work even better in a domain in which more information

is available, and so I do not consider the simplified domain to indicate a limitation of cRau.
The thesis is primarily focusing on dealing with rich structure, in terms of substructure and

context relationships, rather than many kinds of property such as colour, texture, etc

This thesis claims that extending cRAM to deal with three-dimensions is straightforward:

Firstly, object properties would be modified to account for the three axes of the object. For

example, the aspect-ratio property could be split into two or three properties, specifying the

ratio of the longest axis with the middle-length axis, and with the shortest axis. Secondly,

relationships would need to be defined with respect to the three-dimensional coordinate frames

of the objects, rather than their two-dimensional coordinate frames. Thirdly, the matcher would

have to consider more alternative axis correspondences when comparing two objects. Other

than these relatively minor extensions, the representation, matcher, and generalisercan remain

unchanged.

Only structural (rather than functional or behavioural) knowledge is to be used.

One of the goals of this thesis was to find out whether effective concept learning can be

performed by a system which deals only with syntactic structural descriptions, without consid-

2Generalised cylinders are defined by a cross-sertional area swept along a spine with some taper function.

Systems such as Brooks' ACRONYM [Brooks, l98l] and Connell-and-Brady [Connell and Brady, 1985] use this

representation. In two-dimensions a generalised cylinder is perhaps better called a generalised rectangle, since the

cross-section is just a line-segment.

1.1. THE DOMAINAND TASK

enngfunctional or behavioural knowledge. GRAM therefore deals with only one static scene

or object at a time, without any notion of time between different observations, and without any

knowledge of, or ability of reason about, how the object is used, or intended to be used.

One justification for this approach is that in many cases there is no functional or behavioural

knowledge available for an observed object, and matching and generalisation must be able to

manage with only static structural information. For example, if a teacher asks a robot-helper

to find "one of these", while showing the robot an unfamiliar object, but does not say what it
is used for, then only structural information can be used. Similarly, a robot workshop assistant

should be able to learn to recognise a class of tool prior to learning what it is used for.

Another justification is that the 'function' of an object is often definable largely in terms

of structure anyway. For example, the function of a chair is that it allows a person to be

attached to it in a particular structural pose. Likewise, the function of a table-leg can be

defined (in part) in terms of the way in which it is vertically beneath the table-top. Obviously

knowledge about gravity, support, uses of tables, etc, may help to recognise an unusual table,

but for more standard tables, recognition from structure alone is simpler and more efficient than

having to perform functional reasoning about whether an observed object satisfies the required

function. Structural descriptions could be said to 'operationalise' functional descriptions.

Other arguments for the utility of structural descriptions, with no functional knowledge, have

been discussed by Lebowitz in [Lebowitz, 1986].

The task is to construct match, and generalise object descriptions.

GRAM performs three tasks. The first task is to construct a structured instance description

from the set of blocks provided by a low-level vision system. This involves creating an object

description for each block, by producing properties and relationships that characterise the

structure and context of the object. Also, various other composite objects may be created by

combining sets of smaller objects that collectively form some interesting abstract whole, such

as a group of similar items, or a topologically distinct structure. This can be considered a

form of con structive induction lDienerich and R., 1986]. In a future cRAM system, the process

of producing an instance description could also include classifying the component objects.

This would enable the system to predict missing or occluded information, and to suggest the

formation of additional composite objects. Thus, this first task would somewhat overlap with

the second task.

The second task is to match an object description with a specified concept description. The

object may be any component within an observed scene or some other enclosing object. To do

this, the matcher needs to match the descriptions of the object's subcomponents and structurally

related objects with the descriptions of the substructure and context of the concept. The result

of the matcher is a comparison description that specifies the similarity (and dissimilarity) of
the two descriptions, and the best conespondences between the components of their structure

and context descriptions, each of which also has its own comparison description.

The third task is to produce a generalisation of a concept to cover an observed object, making

use of the results of their comparison produced by the matcher. In doing this, the generaliser

l5

l6 CHAPTERI. INTRODUCNON

may need to generalise other concepts that define the substructure and context of the concept,
to cover the object's subcomponents and context. For example, Figure 1.5 shows a number of
chairs which could be shown to the cRAM system. It would create a new chair concept from
the first chair, and then for each successive chair observed it would generalise the cfiarconcept
to account for the features of the new instance.

Therefore the three components of cnana are the instance-constructor, the matcher, and

the generaliser. The issue of classifying an instance by indexing into, or searching, concept
memory, and the issue of how to reorganise concept memory in response to a new instance, are

discussed briefly later in this chapter, but are not significantly addressed by the thesis.

1.2 Related Work

There has been relatively little research done in the area of structured object learning, and even

less in the domain of physical objects. Chapter 2 describes some of the systems that address

this problem and are most relevant to this thesis. A brief outline of the main contributions and

limitations of these systems is given in this section.

Winston's learning system [Winston, 1975] (described in section 2.1) learned generalised

structured descriptions from examples, represented as semantic networks in which the nodes

were parts or properties. The system provided much of the motivational basis for this thesis,

and some of the ideas have been adopted and extended, especially the methods for finding
groups of similar objects and representing them as a single descriptive entity characterised by

a description of the 'typical-member'.

An important contribution of Winston's system was the idea of using "near-miss" negative

examples. GRAM, in contrast, uses only positive examples, using frequencies of observation to

indicate the importance of a each feature. In fact, this thesis argues that near-miss examples

(such as a chair with a missing leg) should still be classified as a chair. The missing leg is a

'fault', rather than a feature that, if missing in an instance, indicates that the instance is not a

chair. This issue is discussed futher in section 8.3.5.

Winston's system operated in a "toy" blocks-world domain and did not deal with complex

objects. It did not make explicit use of multiple levels of detail, such as for improving the

efficiency of the match algorithm, which was not described in the paper. The system was not

able to represent optional parts, or specify probabilities ofthe presence ofa part. The system

introduced several important generalisation operations for structured objects, although it did

not deal with ambiguity or disjunction formation.

Brooks's ACROI.IYM, discussed in section 2.2, has the most expressive representation

scheme of the systems discussed in this thesis. Objects are represented as a part hierarchy,

and properties and relations can be described in terms of conjunctions of complex arithmetic

expressions that can include variables and parameters of the parts (such as height, orientation,

1.2. RELATEDWORK t7

Figurc 1.5: Some chain.

l8 CHAPTER T. NMRODUCTION

etc). However, ACROT{LI\4 does not address the problem of leaming, which is why the repre-

sentation can be so rich, since it is not clear how the arbitrary arithmetic expressions could be

generalised.

An important contribution of ACROhInvI is that it addresses the problem that it is not
usually possible to obtain a complete volumetric description of an observed object using a
bottom-up data-driven approach. Instead, ACROl.nftI uses geometrical reasoning about three-

dimensional model descriptions to make predictions of expected two-dimensional features.

CLUSTER/S [Stepp and Michalski, 1986a] (discussed in section 2.3) is a non-incremental

unsupervised learning system that finds conceptual clusters of structured objects. The key idea

of relevance here is that it converts a structured description into an attribute-vector description

that can then be processed by the attribute-based CLUSTER/2 system [Stepp, 1987 al. This idea

has, in some sense been adopted by Labyrinth (discussed below) and also GRAM, by representing

concepts as simple entities defined in terms of a few relationships to other concepts, rather than

as a complex part hierarchy defined locally to the concept.

Wasserman's MERGE (described in section 2.5) performs incremental concept acquisition

and organisation for objects that have a hierarchical structure, such as physical objects or
corporate management structures. MERGE distinguishes between G-trees and F-trees, where

each G-tree is a subconcept hierarchy or taxonomy for a particular class of objects, and each

F-tree is a part hierarchy for a particular instance object or generalised object. A G-tree is a

hierarchy of F-trees, and an F-tree is defined by a set of subparts, which are in fact nodes in

a G-tree. Thus every component of an object is an instance of a concept, rather than merely

being an instance of a component of a concept. This approach has also been adopted by

Labyrinth (below) and cRav. The system allows inheritance, and deals to some extent with

the "level hopping" problem in which corresponding components in two objects cannot be

matched because they are on different levels of the part hierarchies.

The key limitation of MERGE is that an observed object and its parts are already pre-

classified, by their names, as belonging to a particular G-tree. Thus the classification and

matching problems are made relatively trivial.

NODDY [Andreae, 1985] (described in section 2.6) is a procedure-learning system of which

GRAM was originally intended to be a component. Since the actions of a general-purpose

robot system should be able to be conditional on visual input, GRAM was to be a subsystem

that could build generalised descriptions of visual observations, which could then be used in

the conditional statements of a generalised procedure. The process of matching and learning

procedures is similar to the task of cReu in that it involves matching and generalising structured

descriptions, and forming groups of repeated components. However, procedures have a simpler

sequential structure, without multiple levels of detail, and so the techniques used in Noddy are

not particularly extendible to the domain of physical objects.

Connell and Brady's system [Connell and Brady, 1985] (described in section 2.7) was built

with similar goals to cRAM. It learns descriptions of two dimensional objects, and was intended

to form part of a "mechanic's mate" project which would assist a mechanic in various ways,

such as finding a desired category of tool. It represents concepts and instances as a semantic

REPRESEMIIATION

network, with coarse details at the center of the network, and finer details nearer the fringe.

The matcher works by spreading outwards through the network, and this approach is similar

to that used in GRAM, except that Connell and Brady's matcher only searches from coarse

details to fine details, rather than in any direction through the network. It also does not address

the level-hopping problem. The representation does not support optional parts, groups, or

disjunctive substructure, and the generaliserdoes not deal with ambiguities. An important idea

of the system is the use of Gray Coding, which enables a unified matching and generalisation

scheme to be employed.

Labyrinth [Thompson and Langley, l99l] (described in section 2.8) is an incremental unsu-

pervised concept learning system for the domain of structured objects. It deals specifically with

the issue of acquiring and organising multiple concepts in memory. An instance is represented

as a part hierarchy, and each concept is defined by a set of subparts and the concepts of which

these subparts must be instances. Relationships between the parts are also represented, and

probabilities can be associated with features. To classify an instance, its subparts are classi-

fied, and then a modification of the COBWEB algorithm lFisher, 1987a] is used to traverse a

concept hierarchy to find the most similar concept. An important limitation of Labyrinth is

that it does not include context in its concept descriptions. A more significant limitation is

that its classification scheme relies on concepts not being defined in terms of context, since it
could not otherwise classify leaf nodes of an instance part-hierarchy prior to classifying parts

higher in the hierarchy, or even siblings. It also requires that every instance part is classified

separately, using the modified COBWEB algorithm, rather than directly accessing a candidate

concept via the expectations of other classifications.

The PARVO system [Bergevin and Levine, 1993] (described in section 2.9) performs object

recognition from two-dimensional line-drawings. It does not address the problem of learning.

The relevant contribution of PARVO to this thesis is that it demonstrates that physical objects

can often be classified on the basis of their coarse details alone, without requiring the finer

details to be matched (unless more specialised classifications are required, or for the rask of
fault-finding). This characteristic of the domain of physical objects also means that if the

matcher is able to operate from coarse levels of detail to fine levels of detail, then the coarser

levels of the description are likely to be conectly matched, and therefore will be able to guide

the matching of finer details.

1.3 Representation

The representation scheme is central to GRAM, since it underlies all of its other components.

The way in which concepts and instances are represented largely governs the design and the

performance of the rest of the system. This section gives a very brief outline of some of the

main principles and contributions of cRAM's representation language.

t9

20 CHAPTER I. IMTRODUCTION

1.3.1 An instance is represented as an object graph, with parent, neighbour, and
subpart relationships.

To describe a complex physical structure, it is necessary to represent it in multiple levels of
detail. GRAM does this in the form of an object decomposition hierarchy, in which each object
(except primitive objects at the bottom of the hierarchy) is an abstraction or approximation of
the subpart objects beneath it. Each object can be described by its set of subparts.

However, objects also need to be represented in terms of their context, not only their sub-

structure. The context of an object includes not only its enclosing objects (that are higher in
the decomposition hierarchy), but also the objects connected to it, close to it, or otherwise

interestingly related to it.

Therefore, GRAM's representation provides three types of relationship, namelyparent,neigh-
bour, and subpart relationships, where each relationship is a rich descriptive entity charac-

terising how one object is structurally related to another object in terms of position, size,

connectivity, alignment, orientation, erc. This allows objects to be represented not just as a

decomposition hierarchy, but as a graph. A description of an object also includes a set of
structure properties (such as aspect-ratio, shape, etc) and a set of contextual properties (such

as a connectivity profile).

Figure 1.6 shows an example of an object-graph, where each node denotes an object that has

explicit relationships with other objects. The solid lines denote parent or subpart relationships,

and the dotted lines denote neighbour relationships. 3

One new idea here is that the representation does not deal with arbitrary relations between

nodes, such as left-of, bigger-than, etc, but instead combines the information about the re-

lationships between objects into parent, subpart, and neighbour relationships, each of which

is defined by an attribute vector consisting of both qualitative and quantitative information.

Therefore, when comparing the relationships between two pairs objects, it is not necessary to

deal with a multitude of separate relations. Instead, a single aftribute-vector comparison is

performed, giving a single overall similarity score.

Each relationship is not only a descriptive entity that partially characterises the structure or

context ofan object, but also acts as a direct link between objects, in any ofthree directions

through the object graph. These links are exploited by the matcher to constrain and guide

the search for correspondences between objects and leamed concepts. The use of neighbour

relationships for this purpose is especially significant, since it enables the matcher to cross

levels of the hierarchy, rather than being restricted to a top-down search. This is discussed

further in section 1.5.

L.3.2 Structure and context arc explicitly distinguished.

Another contribution of the GRAM system is the explicit distinction between context (defined by

parent and neighbourrelationships, and various contextual properties) and structure (definedby

3Each line should actually be depicted as two distinct directed lines, since each object has its own set of
relationships, and they are not shared by other objects. This simplifies the generaliser.

'.3.
REPRESEMNATTON 2l

p a re ntlsubpa rt re lat io n s hip
neighbour rehtionship

'-k-=--

Figure 1.6: An object graph.

subpart relationships and various structural properties). This supports partial matching, since

it enables the matcher to notice that two objects have similar structure (or 'form') but different

contexts (or 'role'), or vice versa. The distinction also allows suucture and context disjuncts

to be represented.

1.3.3 Groups ane nepresented by a multi-relationship to a typical-member con-

cept.

A characteristic of everyday physical domains that was identified earlier is that scenes and

objects often contain groups of similar items, such as rows of books, or cookies in a bowl, as

illustrated in Figure 1.7. Groups should be explicitly representable for a number of reasons:

to enable several objects to be represented compactly in summary form as a single entity; to

enable properties of the group as a whole to be made explicit; to enable efficient matching

by comparing groups as single entities, rather than comparing individual members; to enable

generalisation of groups that have different cardinalities; and to provide transfer of information

22 CHAPTERI. D{TRODUCTTON

amongst group members.

Winston introduced the idea of representing a group in terms of a typical member. cRAM

extends this idea by allowing the typical member to be a complex structured generalised

concept. The group object has a multi-relationship to this typical-member concept, which is

a generalised subpart relationship with a howmany count indicating how many instances of
the concept are present in the group. In a generalised group, the howmany count may also be

generalised.

A typical-member concept can also have neighbour relationships to itself, which rcpresent the

typical inter-member relationships, thus capturing the topology of the grouping. Various kinds

of grouping topologies are possible, such as a linear chain, a grid-like array, an unstnrctured

cluster, or a loop.

cRAM takes this notion of a multi-relationship further by allowing any instance or concept

description to include multi-relationships to any concept, and this is interpreted to mean "there

are n instances of that concept related to this in such and such a way." Thus groupings

can be described without even having an explicit group-object. For example, a bedroom or

bookshelf might have a multi-relationship to the conceptpot-plant, without having to represent

the collection of potplants as an explicit entity.

1.3.4 A concept is a generalised object, defined in terms of other concepts.

A crucial component of cRnM's representation scheme which is largely responsible for enabling

complex structures to be dealt with in a manageable way is its representation of concepts.

During the earlier stages of working on this thesis, the representation included three types of
descriptive entity: the concept, the instance, and the part [Andreae, 1993]. Each concept and

each instance was represented as a compleie graph of parts, so that the definition of a concept

consisted of an explicit set of all parts and their relationships. To compare a concept with an

instance, the matcher needed to find non-conflicting one-to-one correspondences between the

parts of the two graphs.

For large complex objects, such as a bicycle or bedroom, this scheme proved very problematic.

One problem was that descriptions of concepts such as bicycles and bedrooms must allow

disjunctions, to represent alternative and optional substructure and context. This led to very

complex concept graphs which were unwieldy to match and generalise. For example, if all of
the chairs in Figure 1.5 are generalised to form a single part graph that characterises all of the

common and variant features, then the part graph will be very complex.

Another problem was that concepts must often be defined in terms of components that should

be concepts in their own right, such as wheels, handlebars, beds, pillows, etc, and which

should be recognisable directly without having to necessarily deal with an enclosing bedroom

or bicycle description. This suggests that subgraphs need to be extracted out when appropriate,

and the original graph somehow refer to them, perhaps via inheritance.

The complexities of this representation scheme were overcome by the development of a rep-

resentation scheme in which each concept description is a small compact chunk of information

I.3. REPRESEMPIrION 23

Figurc 1.7: Some examples of groups in a bookshelf.

24 CHAPTER I.,WTRODUCTION

that consists of a set of properties, and a set of parent, neighbour, and subpart relationships ro

other concepts. If a concept X has a relationship to a concept Y, then this is interpreted to mean

that for each instance of concept X, there exists an instance of concept Y which is related to
the X instance in the specified way. This means that there is no explicit set of parts stored in
a concept description, but only references to other concepts. A concept's part decomposition

hierarchy and its context are now less explicit, although concepts can still capture the richness

and complexity of the domain.

The simplicity and uniformity of this representation has significant implications for the

matcher and generaliser. There is no need to deal with two kinds of entity - concepts and

concept-parts. lnstead, memory consists only of concepts, each of which is a small manageable

description. Also, the matcher does not have to find a one-to-one correspondence between two

nodes of two graphs. Instead, a simpler, more flexible, and more robust method is possible, as

will be outlined later. Disjunction is now representable simply by defining a concept by a set

of subconcepts, and any other concept that is defined in terms of such a concept is therefore

implicitly disjunctive.

Labyrinth [Thompson and Langley, 1991] also used this idea to some degree, but the con-

tribution of cRR-tvt is, firstly, that it includes context in a concept description, thus making

each concept a more richly described and more constrained entity. This reduces the kinds of
problems that Labyrinth had due to the under-constrained nature of their concepts which were

defined only in terms of subparts. Secondly, the GRAM matcher exploits parent and neighbour

relationships to guide the search, allowing a multi-directional search, rather than a merely top-

down tree traversal which suffers from the "level-hopping" problem when two similar objects

have been decomposed into hierarchies that do not correspond level-to-level. Thirdly, GRAM

includes multi-relationships and groups (by referring to a typical-member concept) giving the

representation greater expressiveness, and thus improving the performance of the matcher and

generaliser.

1.3.5 Structure and context can each be described disjunctively.

cRAM explicitly distinguishes between structure (or form), defined by a set of properties and a

set of subpart relationships, and context (orrole), defined by a set ofproperties and a set ofparent

and neighbour relationships. This distinction also means that the structure (and/or context) of
a generalised concept can be described disjunctively. This is done simply by indicating that the

structure (and/or context) is disjunctive, which causes the matcher and generaliser to use the

structure (and/or context) of the subconcepts of the concept as the disjuncts. Each subconcept

is a disjunct, or variant, of its parent concept.

Forexample, the conceptdoor-handlecouldbe definedby multiple forms thatfulfill the same

role. More specifically, it could be defined by a single non-disjunctive context description

(consisting of a relationship to the concept 'door') and a disjunctive structure description

defined by the set of structures of the subconcepts of the door-ftandle concept.

Conversely, the concept swivel chair could be defined by a single form but multiple roles.

More specifically, it may have a single non-disjunctive structure description, and a disjunctive

I.3. REPRESE]VTATION

context description defined by the contexts ofthe subconcepts ofthe concept, each character-

ising a different role of a swivel chair, such as with and without a person on it.

Sometimes a concept has disjuncts of both structure and context. For example, instances

of the more general concept chaircan appearin a variety of contexts and can have a variety

of substnrctures. [n this situation, the structure and context disjuncts are not distinguished,

but are both defined by the complete set of subconcepts. Some of the subconcepts may have

a highly generalised context and a specific structure (such as the subconcept for a standard

four-legged chair); others may have a highly generalised structure and a specific context (such

as a chair with a person sitting on it); and others may have a specific structure and a specific

context (such as a dentists chair). The current GRAM representation scheme is not able to

explicitly distinguish between 'structure subconcepts' and 'context subconcepts', as this would

complicate the concept hierarchy considerably.

1.3.6 Concept descriptions are probabilistic.

Section l.l stated that concepts in cRAM's domain can have highly variable properties and

relationships. A generalised concept description in cnlv expresses the permissible variability

of its instances in fwo ways, both of which have been used in other earlier systems, most

notably COBWEB [Fisher, 1987a]. Firstly, each numerical attribute value (such as for size,

orientation, etc) is represented as a distribution with a mean and variance, and each nominal

aftribute value is represented as a frequency distribution. Secondly, each parent, neighbour, and

subpart relationship of the conceptdescription has an instance-coanrwhich indicates how many

observed instances of the concept included that relationship. The concept as a whole also has

an instance-count, which is the total number of instances that contributed to the generalisation.

Thus the ratio of the instance-count of a relationship over the instance-count of the concept as

a whole can be interpreted as a probability or expectation of a new instance having that feature.

For example, the concept 'door' may have a subpart relationship to the concept 'door-lock'

with an instance-count ratio of 0.3, meaning that 3OVo of doors have door-locks.

1.3.7 Concepts can haye a variety of interpretations.

cRAM allows concepts to be interpreted in several ways, depending on how the concept was

formed. If a concept is formed from the parent, neighbour, and subpart relationships that are

common to all or most of its instances, ignoring any atypical relationships, then the concept

has a partial interpretation, meaning that the matcher should permit a new instance of the

concept to have any additional parents, neighbours, and subparts, so long as it satisfies the

concept's structure and context properties. On the other hand, if a concept is formed by taking

the union of the instance's parent, neighbour, and subpart relationships, then it has a complete

interpretation. If a new instance has additional relationships that are not present in the concept

description, then these indicate a mismatch.

This distinction was made by [Stepp, 1987b]4, who pointed out that a number of learning

25

I

I

26 CHAPTER I. IAITRODUCNON

systems did not explicitly take the distinction into account, and therefore suffered from semantic
ambiguity. GRAM explicitly allows both interpretations, and therefore allows the generaliser

to perform either intersection or union when creating a concept. GRAM also distinguishes a

number of more specialised variants of these two intelpretations, which are used to define how
group concepts and disjunctive concepts are to be interpreted by the matcher and generaliser.

L.3.8 The richness of the representation scheme can be exploited by the matcher
and generaliser.

This section has shown that cRAM's representation scheme is sufficiently rich to enable the

important features of complex generalised physical objects to be explicitly represented. The

scheme allows explicit context and substructure, groups, optional and alternative features,

instance-counts associated with features, relationships and multi-relationships with other con-

cepts, and several alternative interpretations. This richness enables the matcher and generaliser

to exploit the structure of physical objects to achieve more efficient and effective performance.

1.4 The Instance Constructor

The instance constructor takes information obtained from a low-level vision system (which is

currently simulated manually by input from a drawing program) and produces a description

in GRAM's representation language. The information from the vision system specifies a set of
blocks described in some visual coordinate frame. Some of these may be'fuzzy' blocks which

are approximations of several smaller blocks.

More specifically, the instance constructor must construct an object graph, at multiple levels

of detail. One issue is to determine what objects should be created, where each object should

be a useful abstraction or approximation of other smaller objects. Most of these can be formed

directly from the blocks provided by the vision system, but some objects may be formed on the

basis of other object-formation criteria, such as groupness, connectivity, symmetry, etc. One

contribution of this thesis is to identifu the kinds of criteria that justify object-formation with

respect to the requirements of the matcher and generaliser. Another contribution is a set of
criteria for selecting which parent, neighbour, and subpart relationships should be explicitly

included in the object graph,

A more significant contribution of the instance constructor is the set of 'groupness' criteria

for justifying group formation in an instance. A mechanism for searching for groups has also

been developed, called seed-expansron, which first identifies seed groups consisting of two

objects that could potentially expand into a group, and then incrementally adds new objects

to the group until a clear group-boundary is reached, or until the group is abandoned. This

method contrasts with another method described called propose-and-prune, which begins with

a generous grouping, and then prunes off members until a stable group with a clear member-

nonmember boundary is reached.

1.5. TIIEMATCHER

The work on group-finding is based on Winston's early group-finding system [Winston, I975].

Winston seemed to use a seed-expansion approach to find sequences of similar and similarly

related objects, although the algorithm was not described, and seemed to deal only with simple

chains. His system also used a propose-and-prune algorithm to find groups of objects that

were similarly related to some other object. The seed-expansion algorithm presented in this

thesis extends Winston's work in several ways: It integrates the capabilities of Winston's two

group-finding techniques; it provides a more elaborate scheme for proposing an initial seed

groupings; it measures group strength and member typicality in a more general manner; and it
is applicable to cRAM's richer representation.

1.5 The Matcher

The purpose of the matcher is to compare two descriptions, usually a concept description

with an instance description. This involves finding and evaluating conespondences between

the parent, neighbour, and subpart relationships of the two descriptions, producing various

measures of similarity that indicate overall similarity, structure similarity, context similarity,

and the similarity of each pair of conesponding relationships and related concepts or objects.

ln an earlier version of CnnV when concepts were represented as a complete part-graph, the

matcher had to find the best set of one-to-one correspondences between the parts of the concept

part-graph and the parts of the instance part-graph. One approach to this is to exhaustively

evaluate all possible correspondences between the components of the two descriptions. Such an

approach did notuse the description structure to guide orconstrain the search, and was therefore

computationally expensive, and even infeasible for large objects such as the bicycles in Figures

1.8 and 1.9. The part-graph for bike-l, shown in Figure 1.10, has about 120 composite and

primitive parts, so there are roughly I 20 ! sets of correspondences between the parts of the two

bicycles. In fact this is an underestimate since it does not include conespondence sets in which

some parts are left unmatched. Also, it does not consider axis-correspondences: A pair of parts

may correspond in a number of ways depending on which axes are put into correspondence.

Two rectangular parts can be corresponded in 4 ways (or 8 if reflection is considered). So,

clearly, an exhaustive search is computationally infeasible.

Similarly, a purely top-down search that traverses subpart relationships of the two descriptions

(as in the systems by Brooks [Brooks, 1981] and Wasserman fWasserman, 1985]) is also

inadequate because we cannot assume canonical part decomposition hierarchies, and because

we may also want to compare the context of the two items. A more flexible method is necessary

which is able to search upwards and outwards via parent and neighbour relationships as well

as downwards via subpart relationships.

Therefore, anothermethod forpart-graph matching was developed. In this method [Andreae, 1993]

the matcher first chose a seed conespondence between two parts. The best corresponding par-

ent, neighbour, and subpart relationships were then used to propose new correspondences to

27

28 CHAPTER I. IMIRODUCTTON

Figure 1.8: A Bicycle

be added to a pool of candidate correspondences. Then the best candidate correspondence

was selected, in the manner of a "greedy" search, where 'best' meant not only having sim-

ilar properties, but also most consistent with the previously selected correspondence. Then

more candidate correspondences were proposed on the basis of the best conesponding parent,

neighbour, and subpart relationships. This "spreading activation" process continued until the

(hopefully) best globally consistent set of one-to-one correspondence bindings between all

parts of the two graphs was found.

Although the basic algorithm worked efficiently and effectively for straightforward cases,

extending the algorithm to cope with more complex situations proved difficult.

One aspect of the problem was that it was often necessary to compare significant portions

of the substructures of two parts before they could confidently be put into correspondence,

or before ambiguity between two competing correspondences could be resolved. This re-

quired that the matcher be invoked recursively to compare the two substructures, with their

contextual correspondences kept 'hidden', or at least made unchangeable, during the scope

of the recursive match. This meant that a new subgraph comparison description had to be

created, and then later integrated into the original graph comparison description if appropriate.

The recursive match sometimes needed to make use of previously-selected correspondences

between sunounding objects, and cope with any previously-selected conespondences of the

subparts of the subgraphs. Since there could be many levels of recursive matching, and hence

nested graph comparison descriptions, the maintenance of consistency, and the integration of

1.5. TIIEMATCHER 29

Figure 1.9: Another Bicycle

Figure 1.10: The object-graph for a bicycle

the nested comparisons, was complex.

30 CHAPTER T. INTRODUCTION

Another problem was that a corespondence might be selected and then later found to be a

bad choice, and this required some form of backtracking. The system had to determine which
correspondences to unselect, and when. One difficulty was that for backtracking to be effective
it was necessary to undo a set of correspondences, rather than just one at a time, since otherwise
the matcher would tend to get stuck on local maxima of the hill-climbing search space. The

system also needed to avoid cycles.

Another problem was that the representation scheme included a special kind of relationship

that referred to anotherconcept, ratherthan to another part within the same hierarchy. Therefore,

the matcher had to deal with both kinds of relationship, and be able to recursively apply the

matcher to that other concept and a subgraph of the instance, while also maintaining a globally

consistent set of bindings, thus adding another level of complexity, Also, structure and context

disjunctions of a concept were represented as sets of alternative substructure descriptions, and

each of these had to be matched with the structure and context of the instance. in the manner

of a recursive match. The problem of inheritance of complex structures, from superconcept

descriptions, also needed to be addressed.

Although consistent one+o-one bindings were required, it was required that the matcher notice

and record ambiguities so that groups could be created during the generalisation process. This

meant that the matcher needed to maintain multiple alternative subgraph comparisons. If a

group was already present in a concept description, but not in the instance description (or vice

versa), then it was necessary to maintain multiple alternative subgraph comparisons between

the typical member of the group, and individual parts of the instance (or vice versa).

Although a matcher for dealing with these issues could no doubt be developed, and many of
the individual issues have been dealt with in other systems, the complexity and cumbersomeness

of the process indicated that perhaps a different concept representation scheme was necessary.

Also, the earlier scheme did not take into account the fact that most of the components of most

physical objects are themselves instances of concepts, such as the buttons on a telephone, the

zip of a pencil case, and the cushion on a chair. The matcher did not exploit or even account

for this fact, since it was designed primarily for concepts that were represented as a complete

part hierarchy.

The new representation scheme takes the complete opposite approach, representing every

concept only in terms of other concepts, with no local part hierarchy. This means that a much

simpler matcher is possible.

1.5.1 The cneu matcher does not maintain or enforce a set of consistent corre-
spondence bindings.

The key idea in the new GRAM matcher is that there is no requirement that a consistent set of
correspondence bindings be created and maintained. This is a somewhat radical approach, but

has proved surprisingly successful. Consistency seems to be implicitly maintained by the rich

constraints inherent in physical objects themselves.

To determine how well a concept matches an instance, the conespondences between the

concept's parent, neighbour, and subpart relationships, and the instance's parent, neighbour,

1.5. TIIEMATCHER

and subpart relationships, are evaluated. A set of reasonable candidate correspondences are

chosen, and these are then evaluated more thoroughly by recursively applying the matcher

to compare the concept and instance to which each pair of relationships refers. The best

correspondences are then chosen, and similarity scores for these, and similarity scores for the

properties of the concept and instance, are used to compute overall measures of similarity.

Similarity scores are computed using weighted averages of numerical measures of similarity

of the attributes that characterise the properties and relationships.

Thus, the matcher employs a kind of backward-chaining manner, similar to the instantiation of
a Prolog Horn clause, since to evaluate a concept-instance comparison, other concept-instance

comparisons must be evaluated. Therefore, the matcher spreads up, out, and down through the

parent, neighbour, and subpart relationships, matching instances with concepts as it goes.

The main difference between this matcher and the old matcher is that each concept-instance

comparison is performed without taking into account the selection of best relationship corre-

spondences for any other concept-instance comparisons. Only the similarity scores of other

correspondences are used. There is no notion of "fixing" a correspondence, since all corre-

spondence selections are made only locally.

This approach works surprisingly well, and has made the matcher more simple, flexible, ro-

bust, and efficient, and it can be made significantly more efficient because it is more amenable

to a parallel implementation. Inconsistency amongst correspondences is not a problem, be-

cause a good classification only requires that the parent, neighbour, and subpart relationships

and relatees of an instance match sufficiently well with the parent, neighbour, and subpart

relationships and relatees of the concept. Consistency is implicitly enforced by the richness of
the domain, since inconsistencies will tend only to occur when there really are ambiguities, in

which case we want the matcher to produce multiple conespondences, since these can be used

by the generaliser to suggest the formation of groups or multiple 'roles' in the new concept.

1.5.2 A breadth-first beam search with iterative-deepening is used.

To ensure search efficiency, the matcher applies successively increasing levels of effort to
the comparison, thus preventing the matcher from spreading outwards except via the most

promising correspondences. This is done by a kind of breadth-first search using iterative-

deepening, pruning off poor branches as it goes. If rough and rapid matching is required, then

only a low-effort comparison is necessary. If a thorough detailed comparison is required, then

a high-effort comparison is performed. Also, if the match is clearly a bad match, then the

comparison may be abandoned early, before it has invested much effort.

1.5.3 Neighbour relationships largely nesolve the "level-hopping" prcblem.

An important conhibution of cRRu is the use of neighbour relationships to explicitly char-

acterise the structural relationship between connected, close, or interestingly related objects.

One of the reasons why this is significant is that it enables the matcher to "cross levels" of the

3l

32 CHAPTER I. INTRODUCTION

object decomposition hierarchy. Other systems such as Brooks [Brooks, l98l] and Wasser-

man [Wasserman, 1985] have suffered from the "level hopping" problem, since their matchers

worked by a top-down traversal of the part-hierarchy. Parts in two descriptions that are not

on corresponding levels, could not be matched except by using some kind of additional level-
hopping techniques. In cRAM, however, the matcher can raverse in any direction through the

object graph, not only up and down parent and subpart links but also along neighbour links.
Thus, even if two objects are on different levels of their decomposition hierarchies, neighbour

relationships from other objects will often allow their correspondence to be found.

1.5.4 Classification of a scene can begin at any seed corr.espondence

The multi-directional spread also means that the matcher can begin from any 'seed' corespon-
dence, notjust from the top node ofan instance hierarchy. Forexample, suppose an observed

object is partially occluded, but the system is able to index from one observed component to

the concept 'bicycle-seat'. When that component is matched with the concept 'bicycle-seat',

the matcher spreads outwards via parent, neighbour, and subpart relationships, and hence is

able to make the prediction that the object is a bicycle. ln the process, many of the surrounding

components (such as the frame, wheels, gears, etc) are also classified.

The above characteristic also helps resolve the problem of not being able to identify the

boundaries between objects. For example, if the task is to find a hammer in a jumbled toolbox,

but the vision system cannot identify the hammer as a distinct object but rs able to identify the

hammer head as a distinct part, then the matcher could spread outwards to establish a complete

match with the hammer concept.

The ability of the matcher to raverse neighbour relationships also means that the context of a

concept and instance can be matched, and this is important for classification of concepts which

are defined (at least partially) in terms of context, such as a door handle or bicycle wheel.

1.5.5 T\vo types of similarity scores are distinguished: Fit-scores and Proximity-
scores

The results of the matcher are used in different ways by different components of the system.

A consequence of this is that two different kinds of similarity scores have been distinguished:

proximity-scores andfit-scores. Proximity-scores measure the absolute similarity of two objects

within object-space, and fit-scores measure the typicality of an instance with respect to a
concept, where typicality is measured on the basis of the ratio of feature-differences to the

variance of the concept features.

Proximity-scores are used within the matcher itself for evaluating object correspondences,

and within the generaliser to determine whether two objects are similar enough to justify

generalisation. Fit-scores are used by the generaliser to determine whether an instance fits a

concept well enough to justify modifying that concept to cover the instance, rather than creating

a new concept. Fit-scores are also required for fault-finding to identify the faulty or unusual

features.

1.6. THEGETVERALISER

1,6 The Generaliser

The generaliser is responsible for generalising an existing concept description to include an

observed instance. It can either produce a new concept, or modify the existing one.

In its most basic form, the generaliser is quite straightforward, since most of the important

work is performed by the matcher. The basic method for generalising two descriptions is to

(a) generalise their properties, (b) generalise their best-corresponding relationships, and (c)

generalise their best-corresponding relatees, by recursively applying the generaliser to each

pair of relatees. Thus the generaliser spreads outwards like the matcher, but only via the

best-conespondences of parents, neighbours, and subparts that were found by the matcher.

The complexities of the generaliser lie in the areas of spread-control, disjunct generalisation,

ambiguity resolution, special cases that arise due to the different kinds of structure and context

interpretation, and deciding when to create a new concept, or modify or copy an existing

concept.

One problem of generalisation in a structured domain is that a classification may have been

obtained on the basis of a low-effort comparison that only takes into account the coarser

details of the concept and instance. This may be sufficient for recognition, but insufficient for

determining what generalisation action should be performed. Therefore, the generaliser needs

to be able to request the matcher to apply further effort to the comparison.

Another problem is determining whether generalisation should be performed before or after

matching has completed. If a robot is navigating through a room it will be continually

classifying what it observes, and each classification will lead to other classifications via parent,

neighbour, and subpart relationships. So in effect there is no notion of 'completing a match'.

Concept generalisation would have to occur concurrently with matching, which means that

the system's control strategy must be very flexible and robust. In the current GRAM system I
have made the simplifying assumption that a single scene or object is observed, then a seed

classification is provided for one instance object, and then the remaining instance objects are

matched via the spreading comparison process. Generalisation is performed only after this

process has completed. However, the nature of cRAM's matcher is such that it allows a great

deal of flexibility in the way it can be integrated with other components of the system. This

is because each concept is just a simple description, rather than an entire complex part graph,

and, more importantly, because it does not enforce global consistency during the search.

1,7 GRAM in a larger system.

The current version of cnnu only provides mechanisms for matching and generalising. This

section outlines the issues that need to be addressed for extending cRAM to perform full

33

34

classification and multiple-concept leaming,

1.7.1 Classification

CHAPTER I. IMTRODUCTTON

The kind of task that the classifier is responsible for is shown in Figure l.l l. On the right is
an object graph for an observation, with solid lines indicating parent relationships and subpart
relationships, and dotted lines indicating neighbour relationships. On the left is an illustration of
concept memory, in which the thick lines are AKO links, the thin lines are subpart relationships

and parent relationships, and the thin dotted lines are neighbourrelationships. Similarity-links
may also be included, which provide direct access between concepts that are similar. The

task is to find correspondences (i.e. classifications) between one, some, or all of the observed

objects, and the concepts in memory.

concepl menory

----__ --/
consists of concepts connected. by

-

subconcept links

-

parent relations
--- neighbour relationships
-

-
subpart relationships

... and others.

pare nt/s ub par t re latio ns h ip

- - - neighbour relationship

z------

,t'- .-- - - --
d-----.

object graph for an
observed scene or object

Figure l.l 1: The classification task.

There are three stages in classifying an observed object. Firstly, one or more concepts in

memory must be accessed. Secondly, each concept must be matched with the observation

to determine the similarity. Thirdly, a search may be required to find a more appropriate

classification, either via AKO-links to find a more abstract concept, or subconcept links to find

a more specialised concept, or similarity-links to find an improved match.

There are three ways of accessing a concept to match with an observed object:

From task specifications. If the larger task requires an observed object to be matched with a
specified concept, then concept access is not an issue. Such a task may be given by a

'.7.
GRAM INA LARGER SYSTEM.

teacher or by some other component of the robot system.

By direct indexing. A particular feature or combination of features of an observed object may

be used to directly access one or more concepts in memory. The concepts found are then

passed to the matcher for comparison with the instance. If too many concepts are found,

then multiple indexing can be used, and only the concepts that are accessed by all or

most of the indexes are considered. For example, if we index an object on the basis of
its colour alone we may obtain many concepts, but if we take the intersection of those

concepts and the concepts obtained by indexing on size or shape, then we might obtain

a smaller set of hypothesised classifications.

Via the classification of a related object, during matching. When cReu's matchercompares

two descriptions, it usually spreads upwards, outwards, and downwards, comparing their

parents, neighbours, and subparts. In other words, correspondences (1.e. classifications)

may be obtained on the basis of some other comparison. For example, the compari-

son of an observed object with the concept chair may lead (via neighbour-relationship

correspondence) to the classification of an object on top of the chair as being a 'person'.

Cunently cRAM does not include a direct-indexing mechanism, and therefore relies on the

first or the third of the access-mechanisms above. Although direct indexing would obviously

be essential for a full system, the concept access that results from the 'spreading comparison'

process is often sufficient for classifying many objects in a scene. For example, when you walk

into an office, knowing that it is an office, many of the contents are often recognisable based

on expectation, such as the desk, windows, telephone, chair, filing cabinet, etc. In other words,

if there is a relationship from one concept to another, then an instance of the latter will often

be classifiable on the basis of recognising an instance of the former.

Future work on the cRAM system will address the issues of indexing, and also of searching

for better classifications via AKO links and similarityJinks between concepts.

1.7,2 Multiple Concept Learning.

Concept learning is the overall process of building up an organised memory of concepts on

the basis of observed scenes and objects. Although this thesis focuses only on the generaliser

component of this, this section outlines some of the tasks and issues of the concept learning

system to show how the generaliser fits in to it, and also to indicate the kinds of future work

to be undertaken. Other systems such as Labyrinth have addressed concept learning (refened

to as concept formation in the Labyrinth work), but without the richness of representation

language, in particular the use of context relationships, groups, and disjuncts.

Figure Ll2 illustrates the kind of situation that faces the concept-leamer. It is the same

diagram that was shown earlier in Figure I .l l, except that some results of classification are

shown by the dotted lines from each instance part to concepts in memory. The number

on each line is a similarity score, and thus only the high-scoring correspondences are good

35

36 CHAPTER I. IMIIRODUCTION

some correspondences
produced by the natcher

.\- -_ 1(sone
good, sone bad)

.{ --- =T93=- .-

conststs ofconcepts connected by

-

54S66ncept links
parent relations
nei ghbo ur re lations hips

-

subpart relationships
... and others.

pa reny's ubpa r t re lat io ns hip

--- neighbour relationship

3==r*1ti,--
t- - --'2ffi^-----:trtf€:-E tr_5*H$=*l<= i -- -

^ ;"i,-; llh ., K--=ia:
=i:-f,-=

Figure l.12: The learning task.

classifications. Each classification could either have been obtained via direct indexing, or via

the spreading activation matching process, or from direct teacher or task specifications.

The concept learner must decide which of the classifications justify generalisation. If an

instance fits an existing concept sufficiently well (according to theTtr-score), then that concept

could be generalised to cover that instance. On the other hand, if the instance is similar to the

concept, but does not have a good fit-score (such as swivel chair with respect to the concept four-

Iegged-chair) then a new parent concept could be created which has the original concept and

the new instance as its two subconcepts. Various other reorganisations of the AKO hierarchy

are also possible, such as merging existing concepts, adding new subconcepts, removing a no-

longer-useful concept, or removing a concept and promoting its subconcepts. The COBWEB

system [Fisher, 1987a] performed this kind of process in domains of unstructured objects.

In a structured domain, the creation and maintenance of an AKO hierarchy is somewhat

more complex than in an unstructured domain. This is because concepts are defined in terms

of other concepts, and so each change in one concept may affect many other concepts. For

example, a concept may need to be removed from concept-memory if it becomes overly general,

overly specialised, or otherwise not useful, but it cannot simply be deleted, because the parent,

neighbour, and subpart relationships of other concepts may refer to it. Similarly, if a concept

is overgeneralised, this has the effect of overgeneralising all other concepts that are defined in

terms of it. Therefore, a conservative approach to generalisation is especially important in such

a domain. A basic heuristic is that when in doubt, create a new concept ratherthan generalising

I.7. GRAM AIALARGER SYSTEM.

an existing one. Howevet this can have the consequence of a complex cluttered memory. Also,

under-generalisation can mean that less is learned, since the information obtained from each

instance will tend not to be combined with information from other instances.

Although concept-memory must primarily be organised as an AKO hierarchy, it is useful

to maintain similarity-lin&s (or difference-Iinks) between some pairs of concepts. This can

enable the classification and concept learning systems to ffiverse these links to find better

correspondences, on the basis ofcorrespondences found via indexing or the matcher's spreading

activation. Since each comparison is represented as a match description, these descriptions can

be used as the similarity links, thus not only providing direct access between similar concepts,

but also speciffing the way in which they are similar.

Designing a concept leaming system for a domain of structured objects is non-trivial. The

"Background" chapter looks at a few systems that have addressed this problem to some degree.

The Labyrinth system was the first system to address this problem using a representation where

concepts were defined in terms of other concepts, and it proved not very successful in a number

of ways. The enriched representation scheme of cnnu addresses some of the main limitations

of Labyrinth, in particular the lack of context information, and also the inflexible matching

algorithm. However, it remains for future work to develop a complete concept learning system

on the basis of the work done for this thesis.

37

38 CHAWER I. MffRODUCTION

Chapter 2

Related Work

This chapter provides a background to the work in this thesis by discussing some of the most

relevant systems that have already been developed for representing, matching, or generalising

concepts in the domain of structured physical objects. Each section briefly describes the

relevant features of the system, and then outlines the main limitations with respect to the

requirements of the cRAM system discussed in chapter l.

2.1 Winstonts (tArch Learnertt

Winston made the first significant attempt to represent and learn structured descriptions of
physical objects. His learning system lWinston, 19751, which operates in a simple "blocks

world" domain, introduced many important ideas about representing, matching, and general-

ising suuctured objects, and has been a motivational basis for much of the work on the cRarvt

system in this thesis (as well as for much of the other work in machine leaming).

The system incrementally learns a concept by being shown individual instances by a teacher.

The system does not address the problem of discovering and organising multiple concepts, but

instead focuses on supervised learning of a single concept, from examples specifically chosen

by a teacher.

Instances are r€presented using a semantic network in which a node can denote either a part of
the object, or a qualitative predicate (such as rectangular, small, or standing'1. Nodes can have

rclations between then, such as has-property, supported-by, or one-part-is. A simple example

of this is given in Figure 2.1.

A concept is initially formed from a single instance provided by a teacher, and is generalised

by merging it with a new instance. To do this, the concept and the instance are matched

to find corresponding nodes and relations, and then a comparison description is created for

each correspondence. A variety of generalisation operations are available, and an appropriate

one is selected for each correspondence, based on the nature of the similarity. These include

39

40 CHAPTER2. RELATED WORK

Figure 2.1: Object representation in Winston's system.

operations such as "climb the AKO hierarchy" to find a common generalised concept, "drop

the feature" to remove the node or relation from the concept if it is not present in the instance,

or "ignore the feature" to ignore an ins[ance feature that is not present in the concept. An
example of the use of the drop-feature operation is when a concept television includes an aerial

component which is not present in a new instance. The aerial may be dropped from the concept

description.

An important contribution of the system is the idea of using near-rniss negative examples. If
a near-miss negative example has a feature that is not present in the concept, then this feature

is added to the concept, with the annotation "MUST:NOI:HAVE'. Conversely, if a concept

has a feature that is absent in the near-miss negative example, then that feature is given a

"MUST:HAVE" annotation.

In the kind of domain that cRAM is to operate in, such as a house or a workshop, it seems

unlikely that near-miss examples would be available, Instances of other similar concepts may

serve as negative examples, or even near-miss examples, such as a stool being a near-miss

for the concept cftair. But it does not seem feasible to rely on a teacher to provide near-miss

examples, perhaps by removing one leg of a chair, or misaligning the drawers of a desk. In fact,

in these two examples the 'fault' does not cause the instance to be a non-member of the class,

but simply indicates that a particular feature is important for the functionality of the object. A
chair with a missing leg is still a chair, but it is a faulty or broken chair.

One problem with Winston's system is that the use of the drop-feature (or ignore-feature)

operation implies that generalised descriptions must have a "contains" semantics, rather than an

"is" semantics, as discussed by [Stepp, 1987b]. A "contains" semantics means that a concept

description implicitly allows additional features that are not present in the concept description,

to be present in an instance. An "is" semantics means that an instance must not have additional

features that are not present in the concept. Therefore, Winston's system seems to necessarily

"'-*+;:

2.I. WINSTON'S "ARCH LEARI\IER"

have a "contains" semantics, since otherwise it would not allow an instance to have features

that had been observed in previous positive instances and then ignored or dropped because

they were not shared by all observations. However, this has the unsatisfactory consequence of
allowing an instance to have any fearures in addition to those in the concept. For example, a

chair and a person on it could, as a composite whole, be classified as a 'chair' simply because

it contains all the necessary components of the chair concept.

Winston does not directly address this issue, although the use of MUST-NOT-HAVE anno-

tations does help to constrain a concept to a small degree. However, this is not a practical

way of enforcing an "is" semantics, since it requires that every non-allowable feature has to

be explicitly included in the description. Also, each MUST-NOT-HAVE feature has to be

specified by a teacher via near-miss negative examples.

The problem could be alleviated by not using the drop-feature or ignore-feature rule, and

instead allowing each feature to have a frequency measure associated with it, to indicate how

many observed instances had that feature present, and therefore to indicate the importance of
that feature and the probability of it being present in a future valid instance. Even just the ability

to annotate a feature as being optional would avoid the need for the dropfeature operation,

therefore allowing a concept to have an "is" semantics, which in turn would make the need for
negative examples less necessary, except perhaps for giving a especially strong emphasis to the

required presence or absence of a particularly functionally significant feature.

Winston's system is not able to represent structural disjuncts (such as the back of a generalised

chair having several alternative substructures) except perhaps by referring to another concept

(such as chair-back) which has several subclasses. His paper does not address how such a

concept hierarchy is formed, hence the only disjuncts supported are those involving predefined

concept hierarchies (such as the bricft class and its two subclasses wedge and cube).

A contribution of Winston's system which has particular significance to the CRAM system

is that his representation allows groups of similar components (such as a tower of bricks) to

be represented as a single entity. A group is characterised by a typical-member, which is a

generalisation of the individual members, formed by extracting the features common to most

or all of them. His representation of groups has been extended in several ways in the GRAM

system, as have the algorithms for finding groups within an object. This is discussed in the

"Representation" and "lnstance Construction" chapters later in the thesis.

The issues involved in matching two descriptions, and the algorithm for doing it, are not

discussed in his paper. The focus of the work was on identifying different kinds of similarity

and the kinds of generalisation operation required for each of them. There is no mention of
using the structure of descriptions to guide the malching process. In particular, although the

representation includes a one-part-isrelation, the system do€s not provide a way of representing

large complex objects in multiple levels of detail, and of enabling the matcher to exploit the

decompositional nature of physical objects.

Overall, Winston's system presents a number of important ideas, but only implemented in

a simple way. The cnau system described in this thesis shows how some of these ideas

can be extended to cope with more complex objects, in particular those pertaining to group

4l

42

representation and group finding.

CHAPTER2. RELATED WORK

2.2. ACROI,IYIu/I

2.2 ACRONYM

Brooks's ACRONTYM [Brooks, 1981] is not a concept learning system, but is a system for

representing class-hierarchies of three-dimensional viewer-independent models of complex

physical objects, and using these models to interpret and predict two-dimensional image data.

A central contribution of the system is its geometric reasoning and constraint manipulation,

which is not directly relevant to this thesis, although it might be applicable in future work in

an extended cRAM.

One relevant aspect of ACRONYM for this discussion is its representation scheme, which,

in many ways, is more elaborate than the cRAM representation, since ACRONYM is not

constrained by the requirement that model descriptions should be learnable.

As in the case of many of the systems discussed in this chapteq ACROI{YM represents

multiple concepts in a hierarchy defined by the "subclass-of'relation, and represents individual

concepts as a part hierarchy based on the "part-ofl' relation. Each part is represented as a

generalised cone, which is the volume formed when a two dimensional planar cross-section is

swept along a spine curve while being held at a cons[ant angle to the spine and transformed

according to a 'sweeping rule' (such as a change in dimensions). Each generalised cone is

describable using just a few attribute values, and is therefore a simple but powerful way of

representing complex objects with a wide variety of shapes. Future work on the CRAM system

is likely to adopt this representation scheme, since it enriches the descriptions of objects

considerably, without affecting the rest of the system at all. It only requires the addition

of a few more attributes. However, it does also require a vision system which can produce

generalised cone descriptions.

A feature of ACRONYM that is not present in the other syst€ms in this chapter is that the

properties and relations characterising parts can be described using conjunctions of complex

algebraic expressions involving parameters of the parts (such as height, orientation, quantity,

and so on). This means that models can be extremely complex, capturing almost any spatial

constraint between its components. cRAM adopts a simpler, though not quite as general,

approach.

Groups are representable in ACRONYM by specifying a value greaterthan I in the 'quantity'

slot of an 'affixment' relation to a component. In fact, the value can be a free variable that is

constrained by algebraic expressions involving other parameters of other components. As a

simple example, a model could specify that there are n flanges and rn motors, with the algebraic

conshaint that n : (2 *rn) + 3.

A component that is optional can be represented by specifying its 'quantity' slot to be "0 or

1". Structural disjuncts arc not supported, although it is possible to state that an object has

either a flange or a base but not both, using an expression such as:

((flange-quantity = O) and (base-quantity = 111

ot (flange-quantity = I) and (base-quantity = 0))

or perhaps as: flange-quantity = l(1-base-quantity)l

43

44 CHAPTER 2. RELATED WORK

However, the prediction and interpretation systems are not able to deal with such constraints.
Such disjuncts could only be represented by referring to a special-purpose class which has two
subclasses, a flange, and a base.

In addition to the representation scheme, another relevant aspect of ACRONYM is that it
deals with the issue of comparing volumetric models with two-dimensional image data. Other
systems in this chapter that deal with physical objects, assume that instance descriptions are

in the same form as concept descriptions. That is, instance and concept descriptions are both

described in part-based viewer-independent volumetric models, and can therefore be directly
compared. Such systems assume that it is possible to form volumetric instance descriptions

from an observed image prior to classification, using a vision system that can recognise
primitive volumetric solids. Brooks argues that this may be impossible or very difificult, due

to ambiguities or lack of information in the image description. ACRONYM is significant
because it does not make the assumption that a volumetric model can be obtained from image

data produced by low-level visual mechanisms, and instead provides a means to perform

classification using two-dimensional image features. It does this by making predictions of
invariant two-dimensional observable image features, computed from the three-dimensional

viewer-independent concept description. These can be used to form rough hypotheses of model

to image feature correspondences. These predictions can also act as instructions on how to use

measurements of image features to deduce three dimensional information about the object to

which it has been hypothetically matched.

ACRONI-YM's matching task is more complex and computationally expensive than for sys-

tems that assume volumetric instance descriptions. Therefore, it seems undesirable, and in fact

unnecessary, to completely abandon the assumption that the volumetric instance descriptions

can be obtained. lnstead, a combination of a low-level volume-perception mechanism (such as

PARVOS in section 2.9, a volumetric matcher, and an ACRONYM-like image prediction and

interpretation mechanism, might be a more optimal approach. The volume-perception mech-

anism could produce volumetric descriptions to the extent possible by bottom-up techniques,

and an ACRONIYM-like system could produce classified volumetric descriptions of some of
the other components using its more top-down expectation-driven mechanism. The results

of these two systems could be used to classify other as-yet unclassified components, and the

object as a whole, by direct volumetric matching. The volumetric matcher could be applied as

soon as there are sufficient volumetric descriptions of subcomponents, produced by the other

systems.

The main limitation of ACRONYM relative to the domain and task requirements of this

thesis, is that it does not address the problem of learning object models, and the representation

was not specifically designed to support learning. Models are instead input to the system

manually via a graphical modelling system. Many features of an object are made implicit (via

quantitative algebraic expressions) rather than as explicit qualitative descriptors. Also, it is not

clear how these complex arbitrary algebraic expressions, and the free variables in them, could

be learned from example objects.

2.3. CLUSTERIS

2.3 CLUSTER/S

CLUSTER/S [Stepp and Michalski, 1986a] is a non-incremental unsupervised learning system

that finds conceptual clusters of structured objects. It is the least relevant to the work in this

thesis, but it is mentioned here because it is significant in the development of systems that deal

with structured objects. The key idea presented is to convert a structured object description into

an attribute-vector description so that anribute-based clustering mechanisms can be applied.

CLUSTER/S uses this technique to enable the previously developed CLUSTER/2 system

[Stepp, 1987a] to be applied in a structured domain.

CLUSTER/S represents objects using an annotated form of predicate calculus that was

developed for the earlier INDUCE systems [Michalski, 1983], but with the addition of n-ary

predicates. For example, the 'chair' object in Figure 2.2 could be represented in the following

way:

chair(x) :> ll P l ,P2,P3

[part-of pl Xl lpart-of p2X]

[part-of p3 X] lpart-of p4 X]

[color(p I)=brown] [shape(p I)=rss1atrg1.1

[color(p2)=$1own] [shape(p2)=rectangle]

[color(p3)=black] [shape(p3)=rectangle]

[color(p4)=$lack] [shape(p4)=rectangle]

Iorientation(p 1)=vertical] [orientation(p2)=horizontal]

[orientation(p3)=vertical] [orientation(p4)=vertical]

[on(pl,p2)]
[on(p2,p3)]
[on(p2,p4)]

lleft-of(p3,p4)l

45

Figure 2.2:

CLUSTEWS converts the descriptions of a set of structured objects into attribute-based

descriptions, which can then be clustered using CLUSTER/2. It does this by finding a 'core'

description that is the common substructure of the set of objects. This common substructure

enables the individual object descriptions to be converted to attribute-based descriptions, since

46 CHAPTER2, RELATED WORK

the corresponding parts can be treated as 'named parts'. When clustering, there is no need to
deal with structured object matching, since correspondences have already been found during
this preliminary stage.

Since the clustering aspect of CLUSTER/S is not directly rclevant to the focus of this thesis,
the primary relevance of CLUSTER/S is its representation scheme, and the way in which
objects are matched to produce the 'core' description.

One limitation of the representation is that it allows arbitrary predicates and attributes, which
are not organised or partitioned in a way that enables the matcher to exploit the structure of the

description. There is no explicit notion of representing objects in multiple levels of detail, and

the matcher does not allow objects to be processed at a coarse level of detail before considering
the finer details. [n fact, the work on CLUSTER/S has not directly addressed the problem of
dealing with large complex structured objects, but is instead based on a more general form of
graph-matching, with some degree of pruning the search to prevent combinatorial explosion.
However, it seems that it would be unreasonably computationally expensive for dealing with
objects as complex as, for example, the bicycle in Figure l.l on page 2. The fact that it is non-

incremental also makes it inappropriate in a domain where learning must occur incrementally
in response to newly observed instances.

The representation scheme also does not support probabilistic information about the expected

presence of the features of a concept and instead seems to employ the "drop-feature" generali-

sation operation. This means that generalisations have a "contains" semantics, which has the

same consequences that were discussed earlier for Winston's system in section 2.1.

It seems that the central 'mistake' in the development of CLUSTER/S is that the problem of
concept acquisition in the domain of structured objects was addressed without first considering

the issue of what kind of representation would best support this task and domain. Instead,

CLUSTER/S uses a representation scheme and clustering mechanisms that were originally
developed for attribute-based domains, and it is not clear that these mechanisms are applicable

to structured domains, since they do not explicitly exploit the structure of descriptions.

2.4. MARVIN

2.4 MARVIN

MARVIN [Sammut and Banerji, 1986] is a semi-supervised concept-leaming system in which

concepts are described in terms of other concepts, and which can deal with stnrctured objects.

Concepts are represented as Horn Clauses, such as the example below for the chair in Figure

2.2 given earlier:

CHAIR(X) :- I Pl,P2,P3,P4,Y
(PARTOF Pl X) & (PARTOF P2 X)

& (PARTOF P3 X) & (PARTOF P4 X)
& (VERTTCAL Pl) & (HORZONTAL P2)

& (VERTTCAL P3) & (VERTTCALP4)

& (oN Pl P2) & (ON P2 P3) & (ON n P4)
& (CHAIRBACK PI) & (CHAIRSEAX P2)

& (ROD P3) & (ROD P4)

& (oN x Y) & (FLOOR Y)

The main idea proposed is that of iteratively learning a concept by automatically constructing

instances to test the validity of, and to refine, the concept. A concept is initially created from

a single instance, which is then generalised by performing a 'replacement' operation. This

involves replacing one or more of the predicates on the right hand side of the concept (or clause)

being leamed, with the left hand side of some other previously acquired clause.

For example, BRICK(A) might be replaced by tr!rty-5114p9(A) by using the clause:

AI.IYSHAPE(A) : -BRICK(A).

Similarly, the set of predicates

BRrCK(X) & BRrCK(Y) &BRICK(Z) &
oN(z,x) & oN(z,Y) & SEPARATE(X,Y)

might be replaced by a single previously-acquired predicate ARCH(X,YZ).

An instance is then constructed which satisfies the new concept but does not satisfy the

previous concept prior to the replacement. A teacher is asked whether the instance is valid,

and if so, then the generalisation is presumed to be acceptable. If not, then the concept must

be specialised by performing a further replacement which involves some of the predicates

previously removed. The new concept is then generalised again, and the above steps are

repeated. This process continues for all possible replacement operations.

This is similar to Winston's "near-miss" training in the sense that it involves making use of
instances that are 'almost correct', and refining the concept accordingly. However, Winston

relied on near-miss examples to be provided by the teacher, while MARVIN constructs these

itself. A teacher is only required to verify these instance.

Although the papers describing MARVIN deal with examples in the domain of physical

objects, such as 'arches', MARVIN was not developed particularly for structured objects, and

therefore (as for CLUSTER/S) the system does not exploit the structured nature of the concepts

it learns. All predicates are treated equivalently, and the structure of objects is not explicitly

47

48 CHAPTER 2, RELA'IED WORK

reflected in the structure of their descriptions. For example, there is no distinction made

between contextual and substructural components.

MARVIN uses an unusual method of representing groups of similar components, by recur-
sion. For example, the concept 'column' would be defined by the following clauses:

COLT MN(X) :- BRICK(X) & STANDING(X) & ON(X,Y) & COLLTMN(Y).
COLUMN(X) :- BRICK(X) & STANDING(X) & ON(X,Y) A cRoLJND(Y).

This definition means that an individual brick is an instance of the concept 'column'. This
does not seem to be a 'natural' way of representing groupings, and does not make the grouping

explicit, nor allow predicates on the group as a whole to be made explicit.

MARVIN learns from a single observed instance, which is then generalised via domain
knowledge and teacher feedback. It does not provide any method of incorporating newly
observed instances into the concept description, and this would prevent it from being applicable

to an autonomous robot that must leam and refine concepts on the basis of unsupervised

observation of new instances. It is not possible for such a robot to generate trial instances

for validation, except perhaps by pulling the legs of chairs or bending television aerials. It
could perhaps ask verbal questions, such as "can the seat ofa chair be elliptical?", or perhaps

draw pictures of a test instances, but primarily it must leam from positive examples, or from

discriminating between examples of similar concepts. In the domain of complex physical

objects there are so many possible generalisations that could be made, and so many possible

trial instances that could be proposed, that such an approach would be infeasible, unless there

was sufficient reasoning ability or domain knowledge to identify the important questions or

test instances.

It is not clear how well MARVIN would perform on more complex examples in a real physical

domain. The system does not make use of the decompositional structure of objects to constrain

and guide the classification and generalisation processes, but seems to take a more exhaustive

approach, in the manner of a PROLOG interpreter. It also does not address the issue of partial

structural matching, or of dealing with alternative partitioning of instances.

Despite the limitation of MARVIN for the domain of structured objects, a central idea which

has also been adopted in cReM, is that concepts are defined in terms of other concepts, rather

than in terms of a complete set of components that are organised as a part graph (as is the case

in Winston's learning system, Brooks's ACROT{-!1VI, and Connell&Brady's system (described

later)). This means that concept memory is essentially a leamed description language consisting

of clauses that can be used within other clauses. A concept description does not consist of a
global set of all of its components (structural and contextual), but only a local set of its directly

related components. The matcher only has to establish classifications of its components,

locally, rather than finding a consistent set of one-to-one conespondences between two graphs.

2.5. MERGE

2.5 MERGE

Wasserman's MERGE performs incremental concept acquisition and organisation for objects

that have a hierarchical structure, such as physical objects or corporate management structures.

MERGE represents an instance as a hierarchy of components, where the hierarchy is defined

by someTtrndamental relation such as "part-of'or "has-boss". Such a hierarchy is called an

F-tree. For the rest of this discussion we will assume an F-tree is a part hierarchy organised

according to a part-of relation.

F-trees are stored in memory in generalisation hierarchies called G-trees. Each node of a
G-tree is an F-tree, and the nodes below it are its subclasses, or variants. Since each variant

F-tree is similar to its parent F-Fee, MERGE avoids the need to store identical information

redundantly, by supporting inheritance in several forms: a variant can be defined by specifying

parts that are to be added, deleted, or substituted. All other parts are implicitly inherited from

the parent F-tree, and so do not need to be explicitly included in the description of the variant,

unless they are necessary for indicating the branch on which a lower-level part is to be added,

deleted, or substituted.

Every kind of part has its own G-tree, which is essentially a hierarchical clusterings of
instances of that kind of part. To illustrate this, figure 2.3 shows two chairs which have been

represented in memory as a number of G-trees. The notation is different from that used in

Wasserman's thesis, and has been chosen to enable a better comparison with the CRAM system.

Each node of a G-tree is an F-tree, although it is defined in the diagram by just specifying its

subparts, which are F-trees in other G-tree. The diagram only shows information relevant to

this discussion.

For example, the chair G-tree consists of a generalisation of both chairs, at the top, and

two variants beneath it. The subparts of the generalised chair are chairback, chairseat, and

chairsupport4, each of which is an F-tree in another G-tree. For example, chairsupport-# is

the top node of the chairsupport G-tree, and has two variants, one of which is the two-legged

support, and the other is the central-leg support.

The variants of the generalised chair inherit the details of their parent, although the generalised

chairsupport4is substituted with chairsupport-Ior chairsupport-2. The hierarchy could extend

to any number of levels if more instances were observed.

The representation also allows various properties to be associated with each F-tree node, and

also allows non-fundamentalrelations between components, such as "left-of' or "bigger-than".

Although this representation scheme seems reasonable, there is a significant assumption made

by the system which makes the task addressed by MERGE significantly different from that of
CRAM^ This assumption is that when a new instance is observed, and is to be incorporated

into memory, each part of the instance (and the instance itself) has already been classified as

belonging to a particular G-tree, by virtue of its name. For example, if a third chair is observed

which is identical to the second chair, the names of its parts, such as chairback-3, chairseat-3,

or chairsupporf-3, immediately enable the system to determine which G-tree each part should

be incorporated into. The only task required by the system is to determine which node of the

49

50 CHAPTERZ RELATTD WORK

G-tree should be generalised, or where the new instance should be added as a variant. This is
done basically by searching the G-tree, matching each F-tree with the instance F-tree to find
the best correspondence.

Two F-trees are matched by applying the MATCH procedure to the root nodes of the F-trees.

MATCH then recursively matches all pairings of the subparts of the nodes, to find the best set

of bindings. The similarity of leaf nodes is based on two measures, firstly a measure indicating
the hierarchical distance from the two nodes to their lowest common ancestor in their G-tree,

and secondly, a measure of the similarify of their properties and relations. The match process

is strongly constrained because such parts are only compared if they belong in the same G-tree,

and this is immediately known by their name.

MERGE addresses the "level-hopping" problem, in which similar objects are represented

with conesponding components on different levels of their F-trees, and thus cannot be matched

using a strict top-down traversal of the hierarchy. MERGE deals with this by inserting "null
nodes" into the hierarchy to test all possible adjustments of the hierarchies (by one level) in
the hope that a better match may be found. This scheme does not cope with level hops of more

than one level difference, and the strategy seems computationally expensive.

The assumption of named parts means that MERGE is not really able to classify objects

on the basis of their structure, other than identifying which node of a given G-tree an object

best corresponds to. The whole search is constrained dramatically by the pre-classification of
parts by their names. This assumption was presumably made because MERGE was based on

Lebowitz's work on reading patent abstracts for complex physical objects, where the parts of
the objects are identifiable by their names.

Therefore, MERGE does not support the task which cRAM is addressing, which is to be able

to match complex objects by comparing their unlabelled substructure and context.

It is not clear how much of the MERGE system could be extended to cope with unlabelled

objects. It would require searching through all G-trees in memory, and C-trees are not organised

or indexed in any manner which allows this. Also, the exhaustive recursive matcher would be

unacceptable for complex objects, especially if the pre-classification assumption does not hold.

One feature of MERGE that has also been used in cRAM is the idea of representing all
components of objects as concepts. The advantage of this is that it enables each concept to be

defined directly in terms of other concepts, rather than part hierarchies, and this results in a
simpler and more homogeneous representation scheme, without having to distinguish between

concepts and parts of concepts, or having to decide when to extract out portions of substructure

as concepts in their own right.

2.5. MERGE 51

subpans: substutute chairsupport-#
wili chairsuPPon-l

"chdrback" G-tree

,,chairleg,' G-tre€ "legtop" G-trec@ffi)@w\-
"legbot" G-tree "legbase" G-tree

Figure 2.3 : Wasserman's representation scheme.

52

2.6 Noddy

CHAPTER2. RELAflED WORK

NODDY [Andreae, 1985] is the system of which cRAM was originally intended to be a com-
ponent. NODDY incrementally learns robot procedures from examples, by matching the steps

of example traces of a procedure, and generalising the existing procedure description by form-
ing loops, conditional branches, and simple expressions of variables. Since the actions of a
general-purpose robot system should be able to be conditional on visual input, cRAM was to be

a subsystem that could build generalised descriptions of visual observations, which could then

be used in the conditional statements of a generalised procedure.

ln many ways, the procedure learning task is a similar to the physical object learning task, in
the sense that both involve representing, matching, and generalising structured descriptions.

For example, loop formation is similar to group-finding, since a loop is formed to summarise
a repetition of actions, and a group is formed to summarise a repetition of objects. However,
NODDY only forms loops during the matching process to resolve ambiguity, while GRAM

is also able to form groups prior to matching, thus avoiding ambiguity and improving the

efficiency of the matcher.

Another similarity between the two domains is that procedures and physical objects can both

be described in multiple levels of abstraction and detail (although NODDY deals only with
'flat' procedures), and procedures can have relationships with other procedures (i.e. procedure

calls). NODDY deals with components described by numerical properties, but has a much

simpler set of properties than GRAM.

One important difference between the two domains is that there is less complexity in the

structure of procedures, since procedures are sequential, with the relationships between compo-

nents basically limited to 'follows' and 'precedes'. The sequential ordering guides the matcher

in a way that is not possible for physical objects.

NODDY's matcher begins by finding a few 'seed' correspondences between distinct steps of
the current generalised procedure and steps ofthe example procedure trace (such as the first

and last), and then propagates linearly from these.

2.7. CONNELL AND BRADY

2.7 Connell and Brady

Connell and Brady's system lConnell and Brady, 1985] was built with similar goals to GRAM. It
learns descriptions of two dimensional objects, and was intended to form part of a "mechanic's

mate" project which would assist a mechanic in various ways, such as finding a desired category

of tool.

Instance descriptions are obtained from a low-level vision mechanism called the Smoothed

Local Symmetries program [Brady, 1983] which breaks a two-dimensional image into seg-

ments. Such a system could also be used to provide input to the GRAM system, which assumes

that a vision system is available.

Connell and Brady's system represents the results of the segmentation by a semantic net,

in which nodes denote object components (such as parts, part-ends, and part-sides) and edges

denote relations or properties (such as 'has', Join', 'very long', etc). T\e network spreads

outwards from a 'root' node via several kinds of relations, with larger and coarser details close

to the root node, and smaller and finer details further away.

An important aspectof the representation is the use of Gray Coding, in which each property is

described by a set of predicates, rather than a single predicate. Each predicate adds a distinction

to the property, such as the predicate 'very' which can be combined with the predicate 'long'.

This means that similarity can be measured simply by counting how many predicates are shared,

rather than requiring hidden domain-specific similarity metrics. This helps to support Connell

& Brady's requirement that semantic similarity is directly reflected in 'syntactic' similarity.

Gray Coding enables a single generalisation mechanism to be used, which simply 'drops'

predicates that are not common to both descriptions. However, this does require that predicates

be chosen carefully to ensure that the methods of matching and generalisation do in fact give

appropriate results.

The representation does not support optional components, or disjunctive sets of alternative

substructures. The only form of disjunction provided is at the level of the whole concePt, which

can be described in terms of a disjunctive set of models and non-models. Another limitation of
the representation is that it cannot explicitly represent groupings of similar components.

The matcher works by spreading outwards from the root node of the network, extending

the "match horizon" outwards via relations if the current similarity is sufficiently good. The

system keeps track of the best bindings between nodes of the two descriptions being compared,

and performs backtracking if necessary. Differences that are more distant from the root node

are treat€d as being less important than differences that are close to the root node. This is

based on the assumption that larger and coarser details are semantically (or functionally) more

important than smaller and finer details. If this assumption is valid, then the 'syntax' of the

semantic network reflects its semantics, as required.

This matcher is more similar to the cnnu matcher than any of the other systems discussed

in this chapter. One difference is that it deals with concepts and instances that are complete

graphs, and therefore must maintain a globally consistent set of bindings between nodes. This

means that backtracking is necessary, since it is not possible to always correctly determine the

53

54 CHAPTER2. RELATEDWORK

best correspondences of nodes at the horizon of the match without considering details that only
become available later as the matcher spreads outwards. The details of the algorithm were
not specified in the paper, and so it is not clear how effective the backtracking mechanism is,

since in theory it would require a complex ATMS-like system to correctly determine which
correspondences (or sets ofcorrespondences) should be unselected. [Provan, 1987] has shown
that an ATMS approach is infeasible for large objects, and therefore a backtracking scheme

that relies only on partial information would seem to be necessary. Also, it is not clear how
well Connell&Brady's backtracking scheme would perform in situations where ambiguities
are only resolvable by descriptive features that are several levels beyond the current horizon of
the match.

A second difference is that the matcher does not address the level-hopping problem, and

instead assumes that two objects can only be considered identical or very similar if they have

been partitioned in the same way, with corresponding components being at the same level in
the hierarchy.

The generaliser involves the single technique of 'ablation' in which common features are

retained in the generalised description, while unshared features are dropped. If two descriptions

differ significantly, then a new model can be added to the concept. Models may later be replaced

by a single model if more intermediate instances are observed. A concept may also include

non-models which are like Winston's censors [Winston, 1984], and achieve an effect similar

to Winston's 'MUST:NOT' conditions. If an instance matches a model but also matches a

non-model, then it is considered to fail the match. A non-model may also be ovenidden by

more models, which themselves may be ovenidden by more non-models.

One problem with this scheme is, as has been the case for several of the systems in this

chapter, that concept descriptions necessarily have a "contains" semantics, since the drop-

feature generalisation operation is employed. To a small degree this is alleviated by the use of
non-models, as for Winston's MUST-NCII conditions, but these non-models also suffer from
the same problem. Also, the use of non-models is an expensive way to constrain a description,

since they are themselves complete descriptions of a negative example, and must be matched

and generalised independently.

2.8. LABYRINTH AND COBWEB

2.8 Labyrinth and COBWEB

The Labyrinth system [Thompson and Langley, l99l] is an incremental unsupervised concept

learning system for the domain of structured objects. It deals specifically with the issue of
acquiring and organising multiple concepts in memory.

Labyrinth is built upon the COBWEB mechanism lFisher, 1987a] for incorporating instances

into a concept hierarchy in a way that maximises the measures of 'utility' for the concepts.

The key contribution of Labyrinth is that it extends the COBWEB mechanism to deal with

stnrcrured objects, rather than merely attribute vectors.

Instances are represented as a part decomposition hierarchy, in which each part in the hierarchy

is linked to its subparts via the 'part-of' relation. The topmost node of the hierarchy represents

the observed object as a whole, and the leaf nodes represent primitive parts that have no further

decomposition. Each part is also characterised by an attribute-vector specifying information

such as shape and colour. The subparts of each part can have arbitrary relations between them,

such as left-of,or connected-to.

Labyrinth does not make the assumption of MERGE that the parts of an instance are already

partially pre-classified by being implicitly associated with a concept hierarchy for a particular

kind of object. Rather, Labyrinth stores all concepts in memory in a single concept hierarchy,

and the system itself must classify the instance parts with no prior information. The concept

hierarchy acts as a kind of indexing structure, since it allows the classifier to traverse the

hierarchy top-down, following the branches on which the concepts best match the instance,

thus obtaining a successively more specialised classification.

Concepts are represented in a manner similar to instances, except that a concept's part-

hierarchy is only one level deep. The subcomponents of the concept are not decomposed

further within the concept description itself. Instead, each subcomponent is defined as being

an instance of some other concept. For example, a bedroom might be represented in terms of
three subcomponents, x, y, and z, which are defined to be instances of the concepts 'chair',

'bed', and 'desk', respectively. This avoids the problem of dealing with concepts that are large

complex part hierarchies or part graphs, since the substructure of each concept is 'hidden' in

the descriptions of other concepts. This particular aspect of Labyrinth is basically the same as

for MARVIN and MERGE, and is also the scheme used by GRAM.

The representation scheme supports a more precise form of feature prediction than the other

systems described in this chapter, in the sense that attributes, relations, and subcomponents of a

concept have probabilities associated with them, indicating how frequently they have occurred

in the observed instances of the concept.

Figure 2.41 illustrates the kind of concept memory that might exist after observing two chairs.

Each node is a concept, some of which are defined in terms of subparts, with occurrence

probabilities indicated. The properties and relations between subparts have not been shown.

rThis example was not generated by Labyrinth, but was created by hand for this chapter, and is only intended

to convey the general idea of the Labyrinth system, rather than giving precise details of exactly how the two chairs

would be represented in concept memory.

55

56 CHAPTER 2. RELATED IVORK

The names on each concept have been given only for readability, since instance parts are not
given concept names (in contrast with MERGE).

An instance is classified by first classifying its subpart objects. These in turn are classified by
classifying their subparts. This recursive process bottoms-out at the leaf nodes, which have no
substructure, and so can be classified by the attribute-based COBWEB system. This involves
searching the concept hierarchy, top-down, to find the best-matching concept.

After the leaf subparts have been classified, their parent parts at the next level up the hierarchy

can be classified, since their subparts are now labelled. This is done by using a modified
COBWEB algorithm that can deal with sets of subparts, each described by an attribute vector

specifying its properties, and by relationships with other subparts. (The previous COBWEB
only dealt with instances and concepts represented as a single attribute-vector). Each label is

represented as a property of a subpart. The modified COBWEB traverses the concept hierarchy

top-down, comparing concepts with the instance by comparing their overall properties, the

properties of their subparts (including the label property), and relations between the subparts.

The technique of labelling subparts, to simplify the classification task, is similar in principal to
the technique used by CLUSTER/S (described in section 2.3)to convert a structured description

into a non-structured description, or, in the case of Labyrinth, to a minimally structured

description.

The classifying process continues back up the instance part hierarchy until the root part

(i.e. the object as a whole) has been classified. Hence classification of an instance involves a

depth-first divide-and-conquer technique, breaking up the overall classification problem into

a series of simpler classifications, one for each subtree of the instance part hierarchy. During

the classification process, concept memory is also updated by generalising existing concepts,

creating new concepts, or reorganising concept memory.

The modified COBWEB mechanism compares a concept and an instance by an exhaustive

search of all possible sets of bindings between their labelled subcomponents. The label (1.e. the

classification) of each subcomponent contributes to the measures of similarity. This differs from
MERGE, which uses labels to directly constrain which subcomponent bindings to consider.

One significant limitation of Labyrinth (which was to be addressed in future work) is that

a concept is only defined in terms of its substructure, and does not include any context, or
'role', information. This means that there is less information in the concept descriptions to

distinguish between concepts, and also means that predictions about context cannot be made.

Over-generalisation tends to occur, since a concept can be generalised to cover a new instance

even if their contexts are very different.

An even more significant limitation is that Labyrinths' classification scheme relies on not

having context information. If concepts were defined in terms of contextual parent and neigh-

bouring parts, as well as subparts, then it could not classify an instance in its bottom-up fashion,

since to classify the primitive 'leaf' parts of an instance, the system would have to classify its

parents and neighbouring parts. It seems that the whole strategy used by Labyrinth would have

to be modified considerably to cope with this.

Another important limitation of the Labyrinth system is that every component of an instance

2.8. LABYRINTH AND COBWEB

is classified by an independent COBWEB search through the concept hierarchy. Since new

concepts are formed for every distinct kind ofcomponent ofevery observed object, the concept

hierarchy would be enormous for any real-world system (especially if context were also used,

since that would create even more distinctions between instances). Labyrinth does not provide

any indexing mechanisms for directly accessing concepts from instance features, and so it is
not clear that the scheme would be sufficiently efficient for rapid classification.

An important form of direct indexing, which is the basis of the cneu matcher, is not employed

in Labyrinth at all. This method is to use a hypothesised classification of one instance part to

directly suggest likely classifications of its structurally related parts. For example, if a concept

Cl is being matched with instance Il, and concept Cl has subparts which must be instances of
concepts C2,C3, and C4, then the subparts of Il can be directly compared with those concepts,

without having to search concept memory. Those comparisons can then provide positive or

negative confirmation of the Cl:Il correspondence, which may have been originally proposed

on the basis of its properties, or relations with other already-matched concepts and instances.

This process is discussed in detail later in this thesis. It could perhaps be incorporated into the

Labyrinth system, although the manner in which Labyrinth incorporates instances into memory

is somewhat dependent on a top-down hierarchical search. In any case, the process would not

possible via relations between connected or nearby parts, since context is not representable.

For example, if a chair-leg is roughly recognised as a chair-leg (perhaps on the basis of it being

a tall thin rod standing on the floor), then Labyrinth could not use this classification to lead

directly to the classification of the chair-seat as being a chair-seat. Rather, the chair-seat must

be classified independently, by searching down the concept hierarchy.

Also, Labyrinth's strategy of classifying in a post-order manner, beginning with the leaf

nodes, means that matcher cannot perform classification using just a coarse level of detail.

This could perhaps be achieved by simply ignoring the substructure of the instance parts below

some depth in the hierarchy, and treating them as primitive components. However, this may

have implications on other aspects of the system.

A related problem is that Labyrinth can only recognise sets of components that have al-

ready been partitioned into a distinct instance object. Partitioning cannot be driven by the

classification process itself. For example, if a chair and a person on it are treated as a single

object, then the classification mechanism cannot discover, on the basis of classification of the

subcomponents, that the chair and person can usefully be treated as distinct objects.

Anotherproblem with Labyrinth is that it does not address the level-hopping problem, where

instances that should belong in the same concept have been decomposed into different part

hierarchies. Labyrinth is not able to find correspondences between parts at different levels of
the hierarchy, and therefore must assume canonical descriptions of all insta:nces.

A representation issue that is not addressed in Labyrinth is that of representing explicit

groupings of similar objects. This means that an object containing several similar subparts

must specify all of the subparts individually, rather than in summary form. This has the added

consequence that there will be ambiguities when matching two such objects, and this has not

been addressed by the system. Also, if the objects have a different number of similar subcom-

ponents, then it is not possible to find a set of one-to-one bindings to enable generalisation to

57

58

be performed.

CHAPTER 2. RELATED WORK

592.8. LABYRINT'H AND COBWEB

gF
s*ES
E})
3A
s'tvrs

Eq
q)

$s
:€

e.) (-l
c.1 c.:oo
ax
b.o aoo)o

E

ss.a%
g

-; -.;
,<o
br} coc) a)

+E
FO 6-o.G-

6l

q€aa
----*{ e c.t 1..r Q
-E E -f-f=kHkh
GG€€H

-c.r:.E.El E
OOOO€

€qts
=33qe

EeEFs
EEEE e
F
EI

-=g
.Elo

c,! 6I) bo
BL-gl
Gdd€€€

Jq)€
-o
G
CJ

F
ctsS

>
Eo
S)Ea'bs
3"6
E€
F:x€-8g'
e'a
ii
E

Figure 2.4: Labyinth's representation scheme.

60

2.9 PARVO

CHAPTER 2, RELATEjD WORK

The PARVO system [Bergevin and Levine, 1993] performs object recognition from two-dimensional
line-drawings. Its approach is based on the idea proposed by [Biederman, 1985] that it is usu-
ally possible to classify physical objects from a relatively small number of components at a
co.use level of detail. PARVO demonstrates this by correctly classifying a number of common
man-made objects.

PARVO uses various feature extraction and segmentation techniques to produce a set of
parts that characterise an observed object at a coarse level of detail. Each part is associated

with a geon, which is a particular kind of simple volumetric shape, such as cone, cylinder,
banana-shape, pyramid, and so on. Parts are represented in a graph, where each edge of the

graph denotes a physical connection, of which there are several generic kinds. The system then

matches the instance graph against concept graphs (r.e. graphs of generic object models), to
find the best classification.

In order to reduce the number of concepts considered, PARVO prunes the search space by

finding, for each part in the instance graph, the set of concepts that contain a part of the same

geon type. The intersection of the sets of concepts obtained for all of the instance parts, is the

set of concepts that are then matched more thoroughly. This seems to be a robust and efficient

way of indexing directly from instances to concepts. However, the 'intersection' requirement

implies that concept descriptions always contain a superset of the components of observed

instances. This would not be the case if the system were dealing with incremental concept

learning, and an instance contains a feature not present in previously observed instances.

To match an instance graph with a concept graph, an exhaustive search of all sets of 'com-

patible' part bindings is performed. A compatible part binding is one for which both parts

are of the same geon type, and have a similar aspect ratio. This constraint prunes the search

considerably. For each set of bindings, PARVO computes a similarity score based on the

properties and connection-types between the nodes of the graphs. The similarity score for the

best binding set is used as the similarity score for the instance-to-concept comparison. The

mat,chercan cope with missing or extraneous parts and connections, and is thus able to perform

object recognition from partial views. This is possible because physical objects tend to be

characterised by a very wide variety of combinations of geons, and therefore a subset of geons

characterising an observed object is often sufficient to uniquely identify its generic class. This

is an important characteristic of the domain of common man-made objects, and is specifically

exploited by PARVO.

There are many issues of the domain and task requirements in chapter 1 that the PARVO

system does not address. Most significantly, since it deals only with coarse levels of detail, it
can be said to be based primarily on discriminanl descriptions of object categories concepts,

rather than characteristic descriptions, as distinguished by Michalski, 19831. In other words,

category descriptions consist of sufficient information to discriminate between categories, but

they do not actually provide a full description of the concept as a whole, in detail. This means

that tasks such as fault-finding are not possible except at a rough level of detail. Objects in

PARVO are not represented using multiple levels of detail, and object graphs are therefore

2.9, PARVO

'flat'n and do not capture the decompositional structure of the object.

This also means that PARVO does not have to address issues of matching complex structured

objects, since it only deals with the topmost level of the part hierarchy.

The work on PARVO is not intended to deal with the problem of learning generic object

models, and this is one reason why the representation and matching schemes are sufficient.

In many ways, PARVO can be compared with Labyrinth, since it transforms a complex task

into a simpler task by labelling the direct subcomponents of an object, so that a simple semi-

exhaustive match becomes feasible. PARVO labels each component as being an instance of
one of a predefined set of geon types, while Labyrinth labels each component as being an

instance of one of its previously acquired concepts. Labyrinth therefore allows concepts

to be richly described, in detail, but has also been found to be rather un-robust, due to

over-generalisation of concepts, and the lack of context information to help identify part

correspondences. PARVO seems to be more robust since geons are predefined, and are not in

danger of being overgeneralised by a concept leaming mechanism. Also, PARVO's indexing

scheme is more robust than Labyrinth's, since the latter relies on the traversal of a concept

hierarchy formed by the system itself, which involves comparisons for each node considered.

Labyrinth could perhaps altematively use an indexing scheme like PARVO's, where instead

of finding intersections of sets of concepts that share each component's geon-type, it finds

intersections of sets of concepts that share each component's concept classification. This

would simply require that every concept description includes a reference to all other concepts

that contained it.

PARVO does not deal with context information, or structural disjuncts, or occulrence-

frequency information, and therefore is not able to make predictions about occluded instance

features which depend on such information. However, PARVO's central and intended contri-

bution is very important, since it demonstrates Bierderman's claim that effective and efficient

recognition is possible on the basis of a small, simple description consisting of predefined

generic shape-types. This is encouraging for cRAM since it suggests that the coruser levels of
the description are likely to be conectly matched, without requiring a match of all of the finer

details, and therefore the coarser match will be able to guide the matching of finer details.

The system also demonstrates that partial descriptions, obtained from partial views, are

usually sufficient for classification, even without any kind of functional knowledge or reasoning

abilities. Since three-dimensional objects are always partially occluded, this is an important

property of the domain of common physical objects. Also, the mechanisms for producing

volumetric part descriptions from two-dimensional images could be directly applicable to a

system such as cRAM, which assumes the availability of such mechanism.

6l

62 CHAPTER2. RELATED WORK

Chapter 3

Representation

The design of a good representation scheme is crucial to most machine learning systems. This

is because the quality of the representation largely determines the possible performance of
the other components of the system, such as the matcher and generaliser, and also determines

which aspects of the domain can be explicitly described and processed. In other words, the

representation scheme must support and be consistent with the characteristics of the tasks and

domain.

Chapter I discussed the overall characteristics of cRev's domain and tasks, and on the basis

of this, a number of requirements of the representation scheme have been identified. Each of
these is presented in section 3.1.

Sections 3.2 through 3.5 describe cRAM's representation scheme in detail. Section 3.2

describes how ungeneralised instance objects are represented; section 3.3 explains how prop-

erties and relationships arc represented; section 3.4 describes how generalised concepts are

represented; and section 3.5 discusses the issue of group representation.

As with the other chapters, the boldface section headings provide a summary-overview of
the chapter. Section 3.6 gives a reference summary of the representation features discussed.

63

64 CHAPTER3. REPRESEIfThTTON

3.L Requirements of the Representation.

This section examines various characteristics of the representation scheme that are required to

support and be consistent with the characteristics of the domain and tasks discussed in chapter
l.

3.1.1 Structural descriptions should include functionally important information.

Section I .1 .4 explained that this thesis is only concemed with structural (rather than functional
or behavioural) knowledge about objects. However, since concepts in the domain of physical

objects are formed largely on the basis of common function, the structural description of an

object must include information that is likely to be important to its function. For example, a

functional description of a chair might state that a chair must be 'stable' and that it is used for
people to sit in. A structural description should, therefore, at least be able to explicitly specify

that the lengths of the legs of a chair are of the same length, and that its context may include a
person in a particular posture.

Another way of stating this requirement is that the functional similarity of objects in the

same category should be reflected or embodied in the measures of similarity of their structural

'syntactic' descriptions. If the representation is sufficiently rich, this will often be the case,

since the function of an object is 'implemented' in its structure, and therefore objects that have

similar function usuallv have similar strucure.

3.1.2 The representation should support the performance of the matcher.

In a system that deals with large numbers of complex real-world objects, it is essential that the

matcher be efficient, and this means that the representation scheme should capture the right

kind of information to enable the matcher to be guided and constrained by the structure of the

descriptions being matched.

The representation scheme should also enable the matcher to produce useful and meaningfrrl

comparison descriptions that can be used by the fault-finder and generaliser. In other words, the

language should be expressive enough to enable the important features of similarity between

two objects to be explicitly noticeable.

3.1.3 Objects must be describable at multiple levels of abstraction and approxi-
mation.

Physical objects need to be represented at multiple levels of detail, for a number of reasons,

each of which is discussed below.

Coarse descriptions are often suficient for recognition. Object recognition can often be

effectively and efficiently performed by considering only the overall structure and prop-

erties of an object, ignoring finer details unless or until a more refined classification

3.t. REQUTREMENTS OFTHE REPRESE I?ATION.

is required. For example, a bicycle can often be recognised on the basis of observing

two round components with several bars connecting them. Therefore, the representation

scheme should allow abstract and approximate descriptions to support this characteristic

of the domain and task.

The matcher can be guided by the abstraction/approximation hierarchy. The task of matching

two object descriptions can be achieved much more efficiently and effectively with multi-
ple levels of detail because the process of finding conespondences between components

can be guided by the decomposition hierarchy. Large coarse components can be matched

first, and these correspondences can form the basis for matching finer details.

Abstractions and approximations may reduce storage requirements. The finer details of an

object can often be summarised by a single abstract component, thus reducing storage

requirements. For example, it may not be necessary to remember the details of the

back of an observed chair since it could be summarised as a single rectangular 'block'.

Similarly, it is not necessary to record details of every apple in a bowl, since the collection

(or grouping) of apples can be represented as a single entity whose description refers to

a generalised description of the 'typical' apple.

Coarse levels of abstraction and approximation may make similarity explicit, and generalisa-

tions possible. Two objects might be similar only at a coarse level of approximation or

abstraction, and in order to match and generalise the two objects, abstract and approx-

imate features must therefore be representable. For example, the details of two chair

backs may differ considerably, but they may be very similar if they are viewed as single

simple'blocks'.

Coarse features must be representable because fine details mny be unavailable. Sometimes

the finer details of an object or scene are unavailable, and therefore it is necessary to be

able to represent the observation at a coarse level. For example, an autonomous robot

may only have time for a brief glance at an object, or the object may be too far away for

fine details to be observed.

Both coarse and fine details are neceEsary for fault-finding. Although coarse levels of
description may be sufficient for some tasks, finer details are usually necessary for
fault-finding. For example, it is obviously impossible to notice that a stereo turntable is

missing a stylus if the rumable concept is only described at a coarse level of detail.

Fine details may be necessary for discrimination during classification. An object category

may have a number of sub-categories which differ only in their fine details, and therefore

the representation must allow fine as well as coarse levels of descriptions.

3.1.4 The representation language should be richly expnessive.

A rich representation language is one that allows an object to be explicitly described in a wide

variety of ways, and allows redundancy. If a description contains a wide variety of information,

65

66 CHAPTER3. REPRESEIV?ATION

then it is more likely that functionally significant information will be explicitly present, rather
than merely implicit, and hence this information is less likely to be lost during generalisation.
AIso, redundancy (in the sense of having the same information specified in several ways) is

desirable because it means that the common properties of two objects are more likely to be

explicit in their descriptions, and so will not be lost during generalisation.

For example, if it is possible to specify that all four legs of a chair have the same length,

then the descriptions of two chairs that have different leg lengths, can be produced simply by
finding the common features of the descriptions, without losing the "same-length" constraint,

and without having to perform more complex constructive induction.

A representation language can be enriched in several ways. Firstly, a wide variety of possibly-
redundant descriptive entities and attribuks should be provided to represent the many kinds of
components, properties, and spatial relationships in the physical world, using values of various

kinds, including numerical, symbolic, boolean, categorical, and directional. Both qualitative

and quantitative values should be allowed.

Secondly, the representation should support a variety of schemes for describing an object,

such as "Generalised Cylinders", "Boundary Descriptions", and "Constructive Solid Geometry"

and groupings.l

Thirdly, the representation should allow a scene or object to be partitioned in a variety of
ways, rather than just as a single decomposition hierarchy in which each object is a subpart of
only one composite parent object. Composite objects should be able to overlapothercomposite

objects, since each may capture an important kind of approximation, abshaction, or surnmary

of its subparts.

3.1.5 The context of an object must be explicitly representable.

Chapter I discussed how some concepts may be defined largely on the basis of their context (or

'role') rather than their isolated structure (or 'form'). Their context is directly related to their

function, as in the case of the concepts chair-seat and telephone-button. Other concepts, such

as bicycle,are primarily defined by their structure (or 'tbrm'), although their expected context

may be useful to aid recognition (such as when recognising a bicycle being ridden on a road in

the distance), and to enable the system to predict unobservable surroundings ofan object.

3.1.6 Structure and context should be explicitly distinguishable to allow disjunc-
tive concepts and partial matching.

Concepts that have a relatively invariant structure may have a highly variant context, such as

bicycle or scissors. To describe such concepts it is useful to be able to specify a disjunction

of context descriptions. Conversely, a concept such as chair-back has a relatively invariant

rThe Generalised Cylinder scheme represents objects in terms of a central spine and a cross-section that sweeps

along the spine according to some function. The Boundary Description scheme represents an object as a set

of surfaces and/or edges. The Constructive Solid Ceometry scheme represents an object as a set of subparts or

subregions.

3.t. REQUTREME I?S OFTHE REPRESEIVXATTON.

context, but a variety of structures, and so the structure should be representable disjunctively.

To allow such disjunctive descriptions, the representation scheme must explicitly distinguish

between structure and context.

The distinction between structure and context is also necessary to support an important kind of
partid matching, where similarity is measured either with respect to structure alone, or context

alone. Two objects that have high structural similarity may still be considered generalisable,

even if their contexts are dissimilar, as in the case of two bicycles, one on the road, and one

in a bicycle shop, Likewise, two objects that have the same contextual role, but with different

structural form, could be generalised to create a 'role' concept.

3.1.7 Groups must be explicitly rcprcsentable.

The physical world is full of repetitions of similar objects, and this is the basis for forming gen-

eralised concepts that support prediction-based activity within the world. However, in chapter

I we also considered the fact that the physical world contains many groups of components that

are not only similar to each other (as are instances of a concept) but are also structurally related

to each other, and to other objects, in a similar way. In other words, the structural organisation

of the group as a whole is regular. Examples of such groups include books on a bookshelf,

chairs in a room, or petals on a flower. Since the primary purpose of a concept-learning system

is to notiee and make explicit the regularities in the world, it is clearly useful and necessary to

explicitly represent groups of similar and similarly related objects.

A description of a group should include the following information: a set of properties

characterising the group as a whole, a generalised description of its rypical member, and

a generalised description of the typical relationships between consecutive or neighbouring

members.

There are a number of more specific reasons for representing gtoups, and these are discussed

below.

A group males an N-ary relationship explicit. An obvious requirement of a representation

scheme is to allow relationships between pairs of objects. A group, however, captures

the structural relationship between several objects. This is especially important for

fault-finding in a situation where a multi-part constraint is functionally significant. For

example, a grouping of the legs of a chair can capture the requirement that all of the legs

be of the same length. This constraint might otherwise be lost through the generalisation

process if groups could not be made explicit.

Grouping allows collective properties of several objects to be made explicit. A grouping is a

way of forming an absffaction or approximation of several objects, and therefore makes

it possible to explicitly specify collective properties which would otherwise be hidden,

such as the overall shape and organisation of the set of objects. Thus grouping enriches

the representation.

67

68 CHAPTER 3. REPRESEMI){TION

Groups enable more fficient matching. As discussed earlier, the formation of absfiact
or approximate components from more primitive components supports more efficient
matching. Grouping is another form of this, since several objects are combined into a
single summary approximation. This allows the matcher to match the group as a whole,
simply by matching the overall group properties and the typical-member description,

rather than trying to find correspondences between every individual member.

Groups m"ay reduce memory usage. By summarising several similar objects as a single
generalised typical-member, the individual members can often be dropped from the

description, thus reducing storage requirements.

Groups enable the matcher to match two collections of objects that have diferent cardinalities.

Groups enable two different-sized collections of objects to be matched and generalised,

resulting in a description that explicitly allows a variable number of members. This is

because the matcher need only compare the typical-member descriptions, rather than

trying to match each possible pairing of members. For example, a desk with three

drawers can be matched with a desk with five drawers by matching the groups, rather

than getting "stuck" with ambiguous correspondences.

The typical-member concept transfers information amongst members. Since the typical-

member description is a generalisation of the group members, the formation of a group is

effectively generalising each member. The typical-member specifies that any member of
the group canhave any of the variations observed amongst the members. For example, in

Figure 3. I the formation of the group in object A results in a greater tolerance of variation

in each member than if each member was described individually, thus enabling object B

to be considered similar. The differences between the corresponding components of the

A and B groups are considered less significant due to the transfer of information via the

typical-member generalisation.

Figure 3.1; Transfer of information by group formation.

This is especially useful during instance-construction since the formation of a typical-

member concept from just a few observed members can be used to predict the details

of other members without having to look at more than a few details. For example, if
we see a room full of chairs that look very similar at a coarse level of detail, we can

form a typical-member concept by observing and generalising (in detail) just a few of

3.r. REQUIREMETVTS OF THE REPRESEMIIATTON.

the chairs. We can then infer that the remaining chairs in the group most likely share the

same details, without having to observe them closely. In other words, the typical-member

generalisation supports prediction not only of members of groups in future observations,

but also within the present observation.

Group formation is concept discovery. The process of finding and forming a group is really

a way of discovering a new concept from within a single observed scene (as opposed

to forming a concept from several observations at different times). ln other words, by

generalising the members of a group, the resulting typical-member description is a new

concept.

However, there is an important distinction between a group and a concept (or class), since

a group specifically characterises a particular set (or collection) of several objects that

are spatially related to each other, while a concept is simply a generalisation of several

objects that are similar and may have been observed at different times and places. This

distinction is discussed further in [Markman,19791.

3.1.8 The reprrcsentation should include descriptive entities and relations that
humans seem to use.

This thesis does not address cognitive modelling, and therefore the representation scheme is

not intended to model a human representation scheme. However, a general Purpose robot must

interact with humans, and must therefore be able to represent and learn concepts that were

originally created by humans. The descriptive features of the representation scheme should

correspond to descriptive features that humans seem to consider important.

3.1.9 Concept descriptions must be probabilistic.

Within a generalised description, the variability of the features should be explicitly representable

to enable the matcher to make probabilistic predictions of the presence or absence of features.

This is especially necessary for the fault-finding process, in which a missing feature of an

instance of a concept is significant only if the feature has appeared in a majority of the

previously observed instances. Since the system is not dealing with 'functional' knowledge,

and since the occurrence of particular features (such as an aerial on top of a TV) is not

necessarily directly dependent on other features of the object itself, the only way to capture the

expectedness of a feature is by recording probabilities based on frequency counts.

3.1.10 Partial descriptions must be representable.

An observed object may be partially occluded and details of an object may not be available from

the instance-constructor (perhaps until explicitly requested). Therefore, it must be possible

to explicitly state that details are either unavailable, or available only on request, so that the

matcher will not merely consider the features to be missing.

69

CHAPTER3. REPRBSEMDATTON

3,1.11 lhe representation must be extendible.

The rcpresentation should be designed so that importantextensions (such as converting to three-
dimensions) arepossible without having tocompletely redesign the existing scheme,orredesign
the matcher and generaliser. Some possible extensions to cItAM's current representation are

considered during the chapter.

3.1.12 Description construction mechanisms must be available.

The representation scheme must take into account limitations of the robot eye, viewing oper-

ations, and the instance-construction process. Mechanisms must be available (or able to be

developed) that can construct descriptions in the representation scheme, given the nature of the
domain and task.

3.2. INS?ENCE REPRESE]VI]A7TON.

3.2 Instancerepresentation.

This section describes the representation of an ungeneralised scene or object. This will be

refened to as instance representation.

3.2.1 cRAM represents the physical world as an object-decomposition hierarchy.

One of the representation requirements was that physical objects should be represented as

multiple levels of detail. cnnu achieves this by representing an observed scene or object as an

object-decomposition hierarchy, where an object is a single component, piece, or 'chunk' of
the observed physical world. It may either be a composite object comprising several subparts

(each of which may themselves be composite objects), or a primitive object that has no further

decomposition. Each composite object is an abstraction or approximation of its subparts.

This is illustrated in Figure 3.2, which shows a humanoid on the left, and the rectangular

bounding boxes of its composite parts shown on the right. The left foot is a primitive object,

while the left arm is a composite object, as is the humanoid as a whole. At the bottom of the

figure is the object-decomposition hierarchy. cRAM also allows an object to have more than

one parent, and thus the hierarchy is really an acyclic graph. This means that a scene or object

can be partitioned in a variety of ways.

A variety of criteria are considered in the process of partitioning an object into a decomposition

hierarchy, and these are discussed in detail in the "Instance Construction" chapter. The primary

criterion for creating a composite object is that its set of subparts, when treated as a whole,

has properties which capture a useful and hopefully 'functionally significant' abstraction,

approximation, or summary of the subparts, and which clearly distinguish the object from

its surroundings. Such properties may include shape, symmetry, repetition (i.e. grouping),

topology, and category.

3.2.2 Neighbour relationships ane necessary to captune the context of each part.

In the object-decomposition hierarchy for the humanoid in Figure 3.2, each object is only

related to its parent(s) and its subparts. One of the requirements of the representation was

that the context of each object should also be representable. Relationships with parent objects

capture the context to some degree, but we also need to be able to specify how 'neighbouring'

objects are structurally related to each other. For example, the description of a humanoid

should include a description of how the head is related to the torso, and how the left leg is

related to the right leg. Therefore, GRAM not only represents relationships with subpart and

parent objects, but also with neighbouring objects. Thus, each object is notjust a node of a
hierarchy, but a node ofan object-graph.

A 'neighbour' of an object is any other object which is interestingly related to it according to

a variety of neighbourlinesscirteria, which are intended to ensure that 'functionally important'

neighbour relationships are made explicit in a description. The criteria are discussed in detail

in section 6.3.1 and include factors such as proximity, connectivity, and alignment.

71

72 CHAPTER 3. REPRESETVI]ArION

Composite part

d
Primitivepart

Figure 3.2: Composite and Primitive Parts

Figure 3.3 illustrates the selection of parents, subparts, and neighbours for several component

objects of the humanoid "mary". Each shaded box denotes the bounding box of a particular

primitive or composite object. The boxes enclosed in it indicate its subpart objects; the finely-
dotted box(es) surrounding it indicate its parent objects; and the coarsely dotted boxes indicate

its neighbouring objects. Thus, the description of each object may be highly constrained since

it may include relationships with numerous other objects.

3.2.3 Each relationship is a rich descriptive entity.

Mostrepresentation schemes forstructuredobjects (suchas fWasserman, 1985],fWinston, 1975],

and [Connell and Brady, 19851) include a variety of relations such as on-top-of, bigger-than,

erc, each of which is a single atomic predicate on two objects. cRAM takes a different approach

3.2. INS?I NCE REPRASEMDAflOM

ilit!\J

the instance

parents of the instance

neighbours of the instance

subparts of the instance

(d)

Figure 3.3: Parents, neighbours, and subparts.

by representing all of the infonnation about how two objects are structurally related in a sin-

gle richly descriptive entity. More specifically, all of the relations between two objects are

represented in an attribute vector that includes qualitative and quantitative information char-

acterising the relative position, sir,e, orientation, proximity, alignment, etc of the two objects.

The rectangular bounding boxes of the objects are used as frames of reference for defining this

information. Each object has a primary axis with respect to which directions and orientations

are measured. Individual attribute values can be of a variety of types, such as numerical,

nominal, angula4 boolean, etc. Further details of these are given in section 3.3.

Throughout the rest of this thesis, the term relationship is used to refer to an attribute

vector of this kind. In this scheme, each relationship acts as a direct link from one object

73

I

i

I
/

/
I

:i
--t

I

I

I

I

I

I

I

I
I

I

I

I

I

I

I

kcy:
@
Gffiw

i'-'l

i....!

l--r
LI
ntlLI

n_

ffii,:

74 CHAPTER 3. REPRESEMNATTON

to another, and can therefore be exploited by the matcher, since it enables the matcher to
traverse the object graph to find correspondences between parent, neighbour, and subpart

objects. The exploitability of the representation by the matcher was one of the requirements

discussedinsection3.l. Also,therichnessofeachrelationshipdescriptionmeansthatcandidate

conespondences between the parents, neighbours, and subparts of two objects being matched,

can be quickly rejected on the basis of the comparison of their relationships.

3,2.4 Each object has its own set of parenf neighbour, and subpart relationships.

The above discussion has implied that each pair of objects may have a parent-subpart relation-
ship or a neighbour relationship associated with it. However, cRAM actually associates each

relationship with just one object, not a pair of objects. Each object has its own set of parent

relationships, neighbour relationships, and subpart relationship,r, and a duplicate version of
each relationship is associated with each relatee. The reason for this is that it keeps each

object description independent. This means that an object can be generalised without directly
affecting the descriptions of its relatee objects.

In most of the diagrams of object descriptions throughout this thesis, the relationships between

two objects are depicted for convenience asjust one line on an object graph, but this should be

interpreted as two lines. For example, the bicycle in 3.4 is represented as the object-graph in

Figure 3.5, where each dotted line denotes two (identical) neighbour relationships, and each

solid line denotes parent relationship of the lower object, and a subpart relationship of the

higher object. This graph was generated automatically by GRAM. Most of the other diagrams

throughout this thesis were created by hand, and in these, the parent, subpart, and neighbour

relationships are all shown as solid lines. Neighbour relationships extend from the sides of the

rectangular boxes that denote objects; parent relationships extend from the top; and subpart

relationships extend from the bottom.

If a line between two objects in an object graph is shown with an arrow in one direction, then

this indicates that the relationship is only explicitly included in the description of the object at

the origin of the line.

3.2.5 Structure and context are explicitly distinguished, to allow disjunctions
and partial matching.

Another requirement of the representation is that structure (or 'form') and context (or 'role')

should be explicitly distinguished so that separate similarity scores can be produced by the

matcher, and so that disjunctions of them can be represented in a generalised description.

Therefore, each instance object description consists of, firstly, a structure description, which

includes a set of structural properties (such as shape, aspect-ratio, density profile, etc) and its set

of subpart relationships, and secondly, a context description, which includes a set of contextual

properties (such as connection profiIe) and its set of parent and neighbour relationships. Section

3.3 gives more details about properties and relationships.

3.2. INS?INCE REPRESEMI?{TTON.

Figure 3.5: The object graph for a bicycle.

3.2.6 A multi-relationship is a generalised relationship to a concept.

A feaurre of GRAM's representation that is not present in systems such as Labyrinth and

MERGE, is the multi-relntionship. A multi-relationship is a generalised relationship to a

75

Figure 3.4: A bicycle

76 CHAPTER 3. REPRESEMIATION

particular concept, and specifies that there are n instances of that concept that are related to
the source object in a particular way. This is, in fact, a way of representing groupings without
actually having an explicit 'group' entity (although explicit groups are also representable). For
example, a shelf could have a multi-relationship to the concept booft, with a howmany count
of 7, meaning that it has 7 books on it.

Multi-relationships are a simple and effective way of reducing the size of a description, and

also enabling better generalisation. For example, suppose two shelves are to be matched and
generalised, one of which has 7 books on it and the other 15. If multi-relationships were not
used, then each of the shelves would have to be described using many distinct relationships,
and the matcher could not find unambiguous one-to-one correspondences for generalisation.

Furthermore, it would not be possible to represent the fact that the generalised shelf can have a

varying number of books on it. The use of a single multi-relationship reduces memory usage

and enables the matcher to unambiguously match the two relationships of the shelves, which
can then be generalised. The resulting generalised multi-relationship can have a generalised

howmany count.

A multi-relationship also enables an instance description to be represented in a slightly
generalised form, since a multi-relationship is a generalisation of the individual relationships.

Forming a multi-relationship is a way of generalising a single instance.

Another example of multi-relationships is given in Figure 3.6. If we suppose that the small

attached parts of CI have been generalised to form the concept plinket, then the description

of Ci has two multi-relationships and two ordinary relationships, all referring to the same

generalised plinket, as shown at the right of the figure. The two multi-relationships represent

the two clusters of relationships to the plinkets at the top and to the right.

In aU of the diagrams in this thesis, howmany counts are shown as '*n' . Relationships shown

without howmany counts are ordinary relationships, and have a default howmany count of l.
(Note that instance-coanff shown on diagrams are distinguished by not having a '+'.)

More examples of multi-relationships are given in section 3.5 which discusses groups, since

multi-relationships commonly refer to the typical-member of a group.

<ffi,linket

plinket

Figure 3.6: Multi-relationships.

3.2. INS?WCE REPRESEMI]ATION

3.2.7 An object may be a gmuped object defined by a typical-member concepL

A requirement of the representation is that it should support group descriptions. GRAM does

this by allowing sets of similar objects within an observed scene or object to be represented

as a single composite object whose substructure is characterised by a single subpart multi-

relntionship to a concept which is a generalisation of its subparts. This concept is referred to

as atypical-member concept. The idea of representing a group in terms of a typical-member

was introduced by [Wnston, 1975], and cR.lu extends his representation in a number of ways.

However, since concept representation has not been explained yet, the discussion of groups

will be delayed until section 3.5.

77

78 CHAPTER3. REPRESEMPIrION

3.3 Properties and relationships.

This section describes the attributes that are used to characterise the properties and relationships
in GRAM's instance and concept representation scheme. There are many other attributes that
could also be included, but these capture the most important information, and form a basis

for future extensions. The purpose of this section is to show the kinds of information that are

required, and so the specific details are not particularly important.

3.3.1 Bach object has a frame-of-refenence for describing pnoperties and rela-
tionships.

Most of the attributes characterising properties and relationships of an object or objects require

a frame of reference for the objects involved, so that relative positions, orientations, sizes,

af ignments, erc can be described. Therefore, each instance object has a dominant axis (or

x-axis) and secondary axis (or y-axds) which define a coordinate system for specifying the

properties and relationships of that object. The dominant x-axis is also referred to as the spine

of the object.

Axes are defined to be the axes of the minimal rectangular box that bounds each object. It
does not matter which axis of this box is chosen to be the x-axis, since the matcher can 'coerce'

properties and relationships if two corresponding objects have been defined with different axes.

However, to minimise the amount of coercion needed, cRAtvt maximises the canonicality of
descriptions by choosing the x-axis to be the longest dimension pointing rightwards relative to

the 'world' in which the object appears. For example, Figure 3.7 shows the primary axes for
several primitive and composite objects.

Since a concept is a generalisation of several instance objects, its properties and relationships

are defined with respect to a generalised frame of reference.

'+
world orientati-on

Figure 3.7: Primary axes.

3.3. PROPERTIES AND RELAflONSHIPS.

3.3.2 lypes of attribute value.

Before considering the specific attributes used to characterise the properties and relationships

of a concept, this section first describes the generic types of attribute value included in cRAM's

representation scheme. A summary of these is given in Figure 3.8, and each is explained below.

Numerical

Ungeneralised: 0..1

Generalised: o rn€trl
. vaflance
. instance-count

79

Directional
Ungeneralised:

Generalised:

-180 .. +180 degrees

e lll€iD
. variance
r instance-count

Nominal
Ungeneralised:

Generalised:

Positional
Ungeneralised:

Generalised:

symbol: a single symbol (eg. 'red')

symbol-set a set of symbols (eg. {rectangular, square })

r instance-count
. { (symbol count) (symbolcount)...}

(0..1,0..1)

(generalised-numerical, generalised-numerical)

Boolean

Ungeneralised:'uue'or'false'

Generalised: . instance-count
. true-count

Ungeneralised:

Generalised:

(value, value, ... , value)
all of the same type.

(generalised-value, ..., ...)
all of the same type.

Figure 3.8: Tlpes of Attribute Value.

A Numerical attribut€ value in cRAM is a real-valued measurement btween 0 and l, which

gives quantitative rather than qualitative information. Many attributes, such as aspect-ratio,

relative sizn, and object-densify, have numerical values. Numerical attributes values are all

normalised to the 0..1 ftrnge so that the matcher can efficiently obtain a normalised similarity

measure when comparing any numerical attributes.

A generalised numerical anribute value is represented as a mean, variance, and range. The

80 CHAPTER3. REPRESEIVNATION

number of instances that contributed to the generalisation is also specified.

A directional attribute value is used to describe the orientation and direction of one object
with respect to the frame of reference of another object, and is in the range -180 to +180 degrees.

A generalised direction is represented as a mean, variance, range, and an instance-count, as for
a numerical value. Matching and generalising an direction value is slightly more complex than

for an ordinary numerical value because modulo arithmetic must be used.

A nominal attribute value specifies qualitative information, such as shape-name, alignment,

connectivity, etc. A nominal attribute can either be a symbol or a symbol-sef. A symbol is a
single nominal value such as connected, ted, etc. A symbol-set is a set of symbols, such as

(square rectan gle poly gon).

A generalised nominal attribute value (independent of whether it is a generalisation of
symbols orsymbol-sef) consists of a set of symbols and their instance-counts, where each count
is the number of observed instances having that symbol value. A count of the total number

of instances observed is also specified. The ratio of each symbol count to the total instance-

count indicates the probability of that value occurring in a future instance. This is the same

representation as used in COBWEB [Fisher, 1987a] and CLASSIT [Gennari et al., 1989].2

As an example of a generalised nominal value, suppose the system has observed 60 windows,

of which 56 are rectangular, 30 are square (and rectangular), and 4 are round. The generalised

value for the shape attribute of the generalised window will be as follows:

(count=60 (rect an gular: 5 6, squarc : 30, round:4))

A positiond attribute value is a pair of numerical values that specify a cartesian coordinate

in some reference frame, and a generalised position is a pair of generalised numerical values.

A boolean attribute value is a specialised form of nominal value which has the vatue true or

false. A generalised boolean value has a count of the total number of observations, and a count

indicating how many of these had the value true.

A profiIe is a fixed-length vector of attributes of the same type. For example, a profile of the

connectivity of an object might consist of a vector of boolean values, each specifying whether

the object has a connection along a particular portion of its edge. A generalised profile is of
the same form but consists of generalised values.

Now that we have identified the general types of attribute value, we can consider the specific

attributes used to characterise properties and relationships.

3.3.3 Structure properties.

The properties characterising the stucture of an object are represented as an attribute vector

consisting of the attributes listed in Figure 3.9. Each of these is explained as follows.

zSymbol-sets are based on the idea of Gray Coding proposed by [Brady et al., 1984], although the purpose

of Gray Coding was to allow the system to compare and generalise two attributes simply by computing their

intersection, while GRnM performs aunion when generalising, and takes into account the instance-counts on each

value when matching.

3.3. PROPERTTES AIVD RELATIONSHIPS.

The shape is a symbol-sef nominal value that specifies one or more of {circle, ellipse,

rectangle, etc\. ln the current version of GRAM, all composite objects have the shape rectangle

(and perhaps sguare), since mechanisms have yet to be developed to determine the shape of a

composite object.

The number-of-direct-subparts indicates the number of objects that are directly below in

the object-decomposition hierarchy. If the object is a grouped object, then this is the cardinality

of the group. Since this attribute is a numerical value, it is normalised logarithmically to the

range 0 and l, so that 0 means no subparts, and I means 'lots'.

The complexity of an object is the number of objects in the entire substrucfure, not just the

direct subparts.

The aspect-ratio is the width-to-length ratio, and is thus another way of characterising the

rough shape of an object. The dx-dy is the ratio of the x-axis length to the y-axis length (which

may or may not be the width and length, respectively). This attribute is necessary to help to

ensure that two objects being matched are given the correct axis correspondences, since the

aspect-ratio is independent of whether the x-axis is chosen to be the width or the length.

Density is a measure of how much 'solid stuff' there is within the rectangularbox that bounds

the object. All primitive objects have density 1. Some composite objects, such as a chair or a

bedroom, have relatively low densities, while others, such as a telephone, have high densities.

shape one or mare of: {circle, ellipse, triangle, sqwre, rectangle, polygon, etc}

number-of-direct-subparts (d grouped, then this is the number of members)

81

complexity

dx-dy-ratio

density

(the total number of descendents in the part hierarchy)

(ratio of width to length)

(ratio of the x-axis and y-axis dimensions)

(the ratio of solid material to space within the obiect's bounding box)

Figure 3.9: Structure attributes.

There,ue many other structure properties that could be added to the representation, such as

colour, texfire, etc, but those described above have been suf;ficient for giving reasonably good

results for the examples considered in this thesis.

3.3.4 Contextprcperties.

Context properties provide a summary of the surroundings of an object, and in the current

version of cneu these are represented as two profiIe attributes. The connection-profile

characterises the connectivity of each of a set of portions of the boundary of the object.

For example, Figure 3.10 shows an object (darkly shaded) with 9 portions of its boundary

indicated by the solid lines. The connection-profile has a numerical value associated with each

82 CHAPTER 3. REPRESEIfJATION

portion, indicating how much of that edge-segment is connected to another object. Similarly,
the distance-profile indicates the ratio of the perpendicular distance from that edge-segment

to the nearest neighbour, to the dimension of the object along that direction. The ratio is
logarithmically normalised to the range 0 to l, where 0 means touching, and I means far away.

The details of the normalisation formula are not important.

There are other alternative kinds of profiles that could be used, and the above two are just an

indication of what is possible. They are very useful for enabling the matcher to estimate the

similarity of the contexts of two objects prior to comparing their neighbour relationships.

connection-profile:
distance-profile:

eg. (0.6, 0, l, 0, 0, 0, 0, 0.5,

eg. (0, l, 0, l, 0.3, 0.3, l, 0,

0, 0, o,0)

0.7, r, I, l)

Figure 3.10: Context attributes.

3.3.5 Parent and subpart relationships.

Relationships are represented as an attribute vector that specifies the spatial relationships

between two objects. This section discusses the attributes used to characterise parent and

subpart relationships.

Parent relationships and subpart relationships are both described in terms of the orientation,

position, and size of the subpart relative to the frame of reference of the parent object. Figure

3.1 1 lists the attributes used in the current version of cneu.

The orientation is an directional value that specifies the rotation of the subpart's x-axis with

respect to the parent's x-axis. The x and y displacements are the numerical distances from the

centre ofthe parent to the centre ofthe subpart, along the parent's x and y axes, and relative to

the x and y dimensions, respectively. Coverage is a profile attribute that specifies the fraction

of each region of the parent (evenly subdivided) covered by the subpart. The size of the subpart

with respect to the parent is given in four values, each being a ratio of one of the subpart

dimensions to one of the parent dimensions.

A subcomponent of a object is only included as a direct subpart if it is considered directly

'important' to the description of the object. For example, it is not normally useful to include

each drawer-handle as a direct subpart of a desk, since the orientation, position, and size of each

3.3. PROPERTIES A]VD RELATIONSHIPS.

drawer-handle are better described with respect to the drawer it belongs to, rather than with

respect to the desk as a whole. As a general rule (for which there are numerous exceptions), a

subcomponent is not included as a direct subpart if that component is a subpart of one of the

object's other components, especially if the subcomponent is small compared with the object.

A more elaborate discussion of subpart-selection is given in chapter 6.

Figure 3.1 l: Representation of parenVsubpart relationships.

3.3.6 Neighbour relationships.

Neighbour relationships arc represented in a more complex way than parent and subpart

relationships because more frames of reference are involved. Parent and subpart relationships

are described solely with respect to the parent's coordinate frame, while a neighbour relationship

is characterisedby two attribute-vectors, each of which describes the relative size, position, elc,

of one of the objects with respect to the frame of reference of the other. Thus a description of a

chair could include a neighbour relationship to a desk, and the relationship would be described

both relative to the chair and relative to the desk. The description of the desk could include an

identical relationship. The attributes describing a neighbour-relationship are shown in Figure

3.12.

The orientation is the rotation of the x-axis of the neighbour with respect to the frame of
reference of the object. Direction is the direction of the centre of the neighbour with respect

to the object. The x and y displacements are the distances of the neighbour's centre from the

centre of the object, along the x and y dimensions of the object. Size is a list of ratios of the

neighbour dimensions with respect to the object dimensions.

Connectivity and alignment are both symbol-sets whose values qualitatively characterise

the way the neighbour is eonnected and aligned with the object. Each of the possible values

is an atomic predicate speciSing a connection or an alignment between a pair of axes, edges,

or vertices. If the objects arc composite objects, or non-rectangular primitive objects, then the

axes, edges, and vertices of their rectangular bounding boxes are used. The tables below shows

the possible connectivity and alignment values used in GRAM:

83

Orientation (rotation of the subpart's x-axis wn frc parent's x-axis)

x-displacement (Cade.siar distarce from center of parent to cenrer of subpart,
y-displacement with respect to the parent's coordinate frame)

Coverage

Size

(Fraction of each region of the parent thal is covered by the subpan.)

/ xdimension ofsubpan vdim ofsubpart xdim ofsubpan ydim ofsubpart r
\ xdimensionofparent ' ydimofparcnt ' ydimofparcnt ' xdimofParent ,,

value meanmg

separate

connected

enclosed

enclosing

overlap

ee

ev

ve

vv
Ieft
right
top

bottom

the neighbour is not connected to the object.

the neighbour is connected to the object.

the neighbour is completely within the region of the object.
the object is completely within the region of the neighbour.

the neighbour overlaps the object.

an edge of the object is connected to an edge of the neighbour.

an edge ofthe object is connected to a vertex ofthe neighbour.

a vertex of the object is connected to an edge of the neighbour.

a vertex ofthe object is connected to a vertex ofthe neighbour.

the neighbour is connected to the left edge ofthe object.

the neighbour is connected to the right edge of the object.

the neighbour is connected to the top edge of the object.

the neighbour is connected to the bonom edge ofthe object.

84

Connectivi

CHAPTER 3. REPRESEIfIATION

value

ment values:

value meanlng

parallel
perpendicular

xx

vv
xy
yx
il
Ir
bI

erc

the x-axes of the object and neighbour are parallel.

the x-axes of the object and neighbour are perpendicular.

the object's x-axis is collinear with the neighbour's x-axis.

the object's y-axis is collinear with the neighbour's y-axis.

the object's x-axis is collinear with the neighbour's y-axis.

the object's y-axis is collinear with the neighbour's x-axis.

the object's left edge is co-linear with the neighbour's left edge.

the object's left edge is co-linear with the neighbour's right edge.

the object's bottom edge is co-linear with the neighbour's left edge.

The choice of which pairs of objects are to be explicitly related as neighbours is based on a

number of factors, such as proximity, connectedness, and alignment. These and other factors

are discussed in section 6.3.1.

Multiple frames of reference are used to minimise loss of information during generalisa-

tion.

Section 3.1 talked about the need for a rich representation language to ensure that important

information can be made explicit to prevent it from being lost through the generalisation

process. The need for two frames of reference for neighbour relationships is another example

of this principle, and is illustrated in Figure 3.13 below.

Suppose the matcher is matching the relationship between Al and A2, and between Bl and

B.2. lt the two relationships were described only with respect to 42 and 82 respectively, then

there would be a mismatch, since the directions and displacements of Al relative to 42, and of
Bl relative to 82, are significantly different.

A

3.3. PROPERTIES AJVD RELATIONSIilPS.

Figure 3. I 2: Representation of neighbour-relationships.

Figure 3.l3: The need for multiple frames of references for neighbour relationships.

The frame of reference of a common parent could be used.

An extension to GRAM's neighbour relationship representation, which has only partially been

implemented, is to allow the relationship between two neighbouring objects to be also described

with respect to the frame of reference of a commonp arent object The benefit of this is illustrated

in Figure 3.14: When matching the relationships between C2 and C3, and between D2 md
D3, both descriptions match poorly, whether using the frame of reference of the rectangle,

or the frame of reference of the oval. However, the direction and distance between the two

objects relative to their respective enclosing composite objects (Cl and Dl) are very similar.

Therefore, if this information is able to be included in the representation, then bener matching

and generalisation performance is possible.

Figure 3.15 illustrates the minimum information that would be needed. This includes the

direction between the two objects, and the distances between their centres, with respect to

the x and y il(es of the parent. This information could either be included in each neighbour

relationship, or it could be stored in the description of the parent object.

85

Orlentation

Direction

x-displacement
y-disilacement

Connecdvity

Alignment

Size

(rotation of the neighbour's x-axis relative to the part's x-axis)
"

ffi

(directionofneighbour'scenrrrwithrespocttoftepan. angleinrange-180..t79)

't"-W

(displacemenr ofneighbour's centerwith resp€ctto the pan)

W
(a list of symbols characterising the connection, separation, or overlap of the two parts)

(a list of symbols characterising the alignment of ihe neighbour with respect to the pan)

z xdirnensionofneidrbou vdimofneiehbour xdimofneiehbour vdimof neishbow\
\ xdimensionofpan ' ydimofpan ' ydimofpan ' f,dimofpan ,

86 CHAPTER 3. REPRESEMNATION

Figure 3.14: The need for the frame of reference of a common parent.

Figure 3.15: Using the frame of reference of a common parent.

Direction

(from the center of subpartl to the center of subpart2,
with respect to the frame of reference of their parent.)

x-Distance
y-Distance

(from the center of subpartl to the center of subpart2,
with respect to the dimensions of tlte parent.)

3.4. CONCEP]" REPRESETfIATION.

3.4 Concept Representation.

A concept in the GRAM system is a descriptive entity in concept-memory that characterises

a class of physical objects. It is either a generalisation of several instance objects, or an

ungeneralised description of a single instance object that has been stored in concept-memory

as a concept in its own right. Concepts are organised in memory as an AKO hierarchy, where

each concept may have several subconcepts, and one or more superconcepts.

This section begins by giving a brief overview of the concept representation scheme, and

then sections 3.4.1 to3.4.3 address specific aspects in more detail.

A concept is represented in much the same manner as an instance: It includes a structure

description, which specifies a set of structure properties and a set of subpart relationships,

and a context description, which specifies a set of context properties and a set of parent and

neighbour relationships. It may also have multi-relationships to other concepts, and may be

represented as a generalised group. The main difference between concepts and instances is that

the attribute values characterising properties and relationship of a concept may be generalised.

Also, the structure and/or context of a concept may be represented disjunctively, or by referring

to another concept (which may or may not be a superconcept) by an impon-from relationship.

Another difference is that a relationship of an instance refers to a particular instance object,

while a relationship of a concept usually refers to another concept, and is interpreted to mean

"one of those". The interpretation of a concept, from the point of view of the matcher, is

roughly as follows: for an observed object to be considered a valid instance of a concept, the

relationships of that instance object must be similar to the relationships of the concept, and

the relatees of the instance should be valid instances of the corresponding concept relatees.

Chapter 4, on matching, explores this in more detail.

Throughout the thesis, concepts are depicted graphically. For example, Figure 3.l6 (a) shows

the definition of a single concept, where each link denotes a parent, neighbour, and subpart

relationship to some other concept. Figure 3.16 (b) shows multiple concepts depicted in the

same graph. Sometimes, for clarity, the diagrams only show one line between concepts, and

(unless the line has a single arrow-head) this is to be interpreted as wo distinct relationships.

The graphical depictions ofconcepts (or instances) do not convey the richness ofthe descrip-

tions, since the properties associated with each node, and the attributes characterising each

relationship, are not shown. It is hard to illusuate a concept graphically because attributes

are usually generalised. However, the graphical illustrations are sufficient for most of the

discussions in the thesis.

Unlike concept descriptions in systems such as Labyrinth [Thompson and Langley, l99l], a

concept description in cneu does not include explicit relationships between its subparts. This

is because the concepts that the subpart relationships refer to, have neighbour relationships

with other concepts, and this provides sufficient constraint. Figure (b) illustrates this, where

the required relationships between the subparts of an instance of concept Cl are represented

as the neighbour relationships of the concepts C2, C8, C4, and C3l. In Labyrinth, concepts

do not have context information, and so the inter-subpart relationships have to be explicitly
included in the concept description.

87

88 CHAPTER 3. REPRESEIfJhTION

C8

3l

C4

5c6
(a) A single concept depicted graphically.

Figure 3.16: Concepts depicted graphically.

In cRAM's scheme, each concept description is small and simple, since there is no need to

include a set of local variables representing its subparts, or a set of relationships between them.

However, since each concept is defined in terms of richly described relationships with other

concepts, in the manner of a semantic net, a concept may still be implicitly very complex. For

example, the description of the concept letter-box could implicitly include the constraint that

it has a door-handle nearby, if it is defined in terms of the concept ftouse which is defined in

terms of the concept front-door.

A consequence of cRAM's representation scheme is that when a new concept is formed

from an observed instance, every component of that instance must also be added to concept-

memory as a new concept (unless it is an instance of a previously learned concept). It is not

possible to createjust one concept defined by a local part-graph, since every concept is only

definable by relationships with other concepts (or instances interpreted as concepts). Therefore,

concept-memory could include a concept for left-chair-Iegs, bottom-screws-of-wall-sockets,

top-halves-of-Bic-pens, and countless other classes of 'object' that we do not normally think

of as being objects, and that do not have common names in the English language. The

Labyrinth system and the MERGE system [Wasserman, 1985] also share this characteristic,

although Labyrinth does not represent context and so it can leam a smaller variety of concepts,

distinguished solely by substructure.

3.4.1 Context or structure may be'importedt from other concepts.

It is useful to be able to define the structure or context of a concept (or even an instance)

by refening to the structure or context of an existing concept, rather than including details

explicitly. This helps to reduce memory usage and enables a greater transfer of information

amongst descriptions. Suppose the system observes bedrooml in Figure 3.17 and creates an

ungeneralised concept for each of its components. Each of chairl, deskl, clockl, and bedl

have complete structure and concept descriptions. However, if the system has already learned

the generic concepts chair, desk, clock, and bed, then the description of bedroom-I should not

have to include complete descriptions of its subparts. Instead it should be able to make use of
descriptions of the existing concepts.

(b) Multiple con epts depicted graphically

3.4. CONCEPT REPRESEIVThTION.

One way of doing this is for bedrooml to refer directly to the previously learned concepts

chair, bed, etc, as shown in Figure 3.17 (a). However, it would then lose the information

about how these components are related to each other. The relationships of each component

with the bedroom as a whole would be explicit in the subpart relationships, but the neighbour

relationships between the subcomponents would not be, since they would be defined only in

terms of generalised concepts. ln some cases this is acceptable if only a rough description is

required, but in other cases the neighbour relationships between subparts are important.

Another way to deal with this is to use cRAM's import-from relationship. This allows

the structure or context of a concept (or an instance) to be specified by referring to another

concept. This is shown in Figure 3.17 (b), where the structure of concept chairl is defined by

an impon-from relationship to the more general chair. It is not necessary for chair to be an

explicit superconceptof chairl, and later we will see examples where a concept's import-from

relationship refers to a concept that is not even more general. Therefore,the import-from

relationship subsumes the usual form of inheritance.

If a concept is defined using imporf-from, it may also include explicit local relationships

which override or specialise the information imported from the other concept. For example,

if chairl had an unusual kind of back, but was otherwise just a standard chair, then it could

include a single subpart relationship to chairbackl, as shown in the figure. To be an instance of
chairl, the structure of an instance must not only match the structure of chair (vra import-from)

but must also include a matching subpart relationship to a back that matches chairbackl. The

description of chairl does not include explicit bindings to indicate that the subpart relationship

corresponds to a particular subpart relationship of the imported chair. Such bindings are not

necessary, since, when matching a new object with chairl, the appropriate correspondence can

be found by matching. This does require additional effort in that the matcher must compare the

local subpart relationship with instance subpart relationships, rather than being able to make

use of explicit bindings with the already-matched subpart relationships of chair (or vice versa).

However, it also avoids the need for dealing with bindings, and this is considered beneficial

because it simplifies the representation scheme, the matcher, and the generaliser. This is an

approach taken throughout the GRAM system.

An import-from specification may also refer disjunctively to several concepts. We will see

examples of this in section 3.4.2.

Import-from specifications could actually be added to an instance description, not just to a

concept description, so that details of classifiable components can be removed. This would

be done by the instance-conshuctor, although GRAM does not currently support this. Such a

process is actually generalising the instance, since the relationships of the modified instance

refer to generalised relatees.

3.4.2 Concept variability is expnessed by attribute distributions, instance-counts,

and disjunction.

Concepts are generalisations of instances, and must therefore caprure the variability of permis-

sible instance features. This is achieved in several ways:

89

90 CHAPTER 3. REPRESEMIhTION

backlfllegl).
seatl flegr

bedroomlI
lbedl l-->deskl

bedrooml

I
r-Ln-zchairl

,.4N \floorr

bedrooml

lwalll
deskl
floorl

chairltr
@<ili

bighand

dl
eilingl

rwalll

Refer directly to generic concepts.

esk Y beiC\. clock
floor ceiling

(b) Method-2: Use IMPORT-FROM relationship.

bedfOOml atry coilen

t -rwarr't'%lldffiflKo"rL1
l::tfl-,-.^..-^ ,/ '.... \ floorl .:1',1 cniurDacK. Zrchairleg\
'o"""':t'::y.- iii;;;i:--.. .-..----"""t' chairseat ichairlegchairbackl -L-rlora

chair
ls

tffi:;

Figure 3.17: Imported structure.

Attribute distributions

One kind of variability is characterised by representing attributes as value distributions. More

specifrcally, a generalised numerical attribute value is represented as a mean, standard deviation,

and range. A generalised nominal anribute value is represented by the frequencies of each

observed value. This was explained in section 3.3.2.

3.4. CONCEPT REPRESEIV?ITTON.

Instance-counts

The second way of representing concept variability is by giving each parent, neighbour, and

subpart relationship an instance-count indicating how many observed instances of the concept

included this relationship. The concept as a whole also has an instance-count, so that the ratio

of each relationship's instance-count to the concept's instance-count indicates the degree of
optionality of that relationship, and can therefore be used to make predictions about a partially

unobservable object, or for determining the significance of a missing feature. This ratio is

called the ins tanc e - c o unt - rat io .

Through the process ofgeneralisation, the sets ofparent, neighbour, and subpart relationships

of a concept may gradually increase in length as new instances are observed that have rela-

tionships that were not present in previous instances. For example, new models of telephone

might be observed, each with some different subparts and different relationships, although

retaining the basic telephone structure. The most common subpart relationships will have high

instance-counts, and these will be given most significance by the matcher.

Asanotherexample,considerthefourobjectsinFigure3.lS. Aftergeneralisingtheinstance-

concepts A, B, C, and D to form a new concept E, the subpart relationships of E have various

instance-counts as shown on the diagram. The ratio of the instance-count of each of these, to

the instance-count of E, is its instance-count-ratio, and can be treated as a probability for the

presence of that subpart relationship in a future instance. A larger number of observations will
result in probabilities that have greater predictive accuracy.

Figure 3. 18: instance-counts.

One apparentlimitation of cuu's representation is thatitdoes notallow aconceptdescription

to explicitly include the relationships between its parents, neighbours, and subparts. This also

means that the co-existence of optional relationships/relatees is not explicit. However, the

dependencies between the relatees are usually captured in the relatee descriptions themselves.

Consider the example in Figure 3.19. Object A and object B have been generalised to produce

the concept AB shown at the bottom of the figure. Concepts .{86 and AB7, which were each

9l

E = A+B+C+D
El =AI+Bl+Cl+Dl
E2.=N+C2.+D2
Ell = A3+83+C3+D3
E5= Al+B l+Cl+Dl

92 CHAPTER 3. REPRESEMIIATION

constructed from the single instances 46 and A7 respectively, are also shown. AB has subpart
relationships to .{86 and AB7, each with an instance-count of l. The problem is that there is
no indication of whether these must be both presenl or both absent in an instance of AB, or
whether they can be independently present or absent. However, the description of concept 486
has a non-optional relationship to AB7, and AB7 has a non-optional relationship to A86. Thus
if the matcher compares AB with an object that contains an AB6-like part but no AB?-like
part, then a mismatch would be detected, since the AB6-like part would not match the 486
concept perfectly.

Therefore, the neighbourrelationships ofoptional relatees ofa concept provide co-existence
constraints without having to represent them explicitly within their parent concept description.
Of course, this is only true if the optional relatees have explicit relationships between them.

When optional components ate not explicitly related via a neighbour relationship, then co-
existence is much less explicit, such as if A7 had been on the other side of object A, rather
than next to .4,6. However, this limitation is not a problem, since if two components are not

structurally connected or close to each other, then in general (in the absence of functional
knowledge) it is more likely that their presence or absence is independent.

A

I

I

-bAB7-r:lnt

AB

t
lEE6-ltr

Figure 3. 1 9: Co-existence dependencies between optional components.

3.4. CONCEPTREPRESEMNATTOM

Structune and Context Disjunction

Sometimes it is undesirable for the generaliser to simply merge two descriptions into single

lists of components with instance-counts indicating the degree of optionality. If two structures

or two contexts being generalised are significantly different, then it is better to represent the

structure or context as a set of structure disjuncts or context disjuncts, which means that co-

existence dependencies are explicit. This is tbe third way of representing concept variability.

For example, Figure 3.20 shows two doors with handles that are sufficiently different that

they cannot be generalised to form a single generalised structure without resulting in a large

list of optional subpart relationships, with coexistence dependencies specified only implicitly
via the subpart concept descriptions. To deal with this, the generalised handle concept should

be represented disjunctively.

Figure 3.20: A generalised door requires a disjunctive door-handle description.

Several ways of representing disjunctions have been considered for the cRAM system. The

first way is illustrated in Figure 3.2I (a), which shows a concept Al whose structure is dis-
junctively defined. The three small grey squares denote three altemative structure descriptions.

Each is represented by its own set of stnrcture properties and subpartrelationships. In addition

to the disjuncts, a disjunctive concept in this scheme can also include a set of properties that is

a generalisation ofall ofthe disjunct properties, and also a set ofany subpart relationships that

are common to all or most of the strucfire disjuncts.

Likewise, figure (b) shows a concept B I whose context is defined disjunctively, where each of
the contextdisjuncts has its own setofcontextproperties, neighbourrelationships, andparent

relationships. A concept can also include a set of parent and neighbour relationships common

93

94 CHAPTER 3. REPRESETVTATION

that are to all or most of the context disjuncts.

A concept may also have disjunctions of structure and context, such as for a concept chair,
which could be defined in terms of a variety of structures and a variety of contexts, with a few
structure and context features common to most chairs, such as being upright on a floor, and

having a vertical back and horizontal seat and some kind of support structure beneath.

partiall
contextt

partial
nonFdisjunctive
strutture

structurb

Figure 3.21: Method-l: Include a set of structure disjuncts and/or context disjuncts.

One limitation of this scheme is that it assumes that structure and context are always inde-

pendent. The generaliser creates disjuncts whenever there is a significant mismatch with the

existing structure or context descriptions of a concept and an instance that are to be generalised.

If successive generalisations of a concept result in it having both structure and contextdisjuncts,

then these must be interpreted to mean that any painng of structure disjunct and context disjunct

is permitted in an instance, since there is no information specifying co-existence dependencies.

Therefore, over-generalisation will tend to occur. In the case of a chair concept, the system

is not able to represent the fact that swivel chairs tend to appear in offices rather than living

rooms.

Another limitation of this scheme is that it cannot represent a multi-level taxonomy, since a

disjunction consists of just one level of disjuncts which are not further subdivided into more

specialised variants. However, concepts are represented in an AKO hierarchy anyway (although

this thesis does not address the details of this), and so the set of disjuncts is redundantly

specifying what is already specified as subconcept descriptions. For example, if a chair

concept has several structure disjuncts, one for each variety of chair it has seen, then each of
these varieties will also be represented as subconcepts of the chair. For example, Figure 3.22

illustrates how the description of Al from Figure 3.21 has its structure disjuncts redundantly

duplicated in the subconcept descriptions.

This suggests that perhaps it is sufficient to allow the AKO hierarchy to capture the disjuncts

of a disjunctive concept. Common features could be retained explicitly in the top-level concept

description, while its details would be defined as being "any of its subconcepts". Figure 3.23

shows the concept Al represented in this manner. This avoids the problems of duplicated

information, and also simplifies the representation scheme since there is no need to deal with

additional disjunct descriptions.

Figure 3.24 shows a more complex example where the structure and context of the concept

chafu are both defined disjunctively. A few features cornmon to all or most of the subconcepts

(such as relationships to the concept chair-back, chair-seat, floor, and room) are included in

iE;ry=

3.4. CONCEPT REPRESEMNATION.

AKg/
/

,/

i\---l
i,ffisl
,4f

'/' I
tr.,

+\

95

,rt \ ---..
lXCt ':_AKO

\
---\

$

,ffi< k
,/

\.

Figure 3.22: Method-l problem: Disjuncts are duplicated as subconcepts.

the chairconcept itself, as a partial description. (The distinction between partial and complete

descriptions is discussed in section 3.4.3\.

For an instance to match the chairconcept, its structure must match one of the subconcepts,

and its context must also match one of the subconcepts. The percentages on the AKO links

indicate the proportion of concept instances that were instances of each subconcept, and these

can be used for making predictions about the structure and context of a partially observed

instance.

There is no explicit distinction between subconcepts that define structure disjuncts, and

subconcepts that define context disjuncts, since that would require two different kinds of AKO
link, and a more complex memory organisation system.

This may seem to be a limitation of this scheme, since the marcher must match the structure

of a candidate instance with the structure of all of the subconcepts, and must also match its

context with all of the subconcepts. However, the use of the imporf-from relationship prevents

unnecessary work, and also reduces memory usage, since it can be used to define the structure

or context of a concept in terms of the structure or context of another context or a disjunction of
other concepts. For example, the armchair concept has its own local stmcture description, but

its context can be imported from either chair-in-Iiving-room or chair-in-office. The percentages

shown in the figure indicate the proportion of observed instances of the concept that had each

96 CHAPTER 3. REPRESEMII{TION

/
AKg, A
/

,/

$--l
RstrrY\ l

i

/t\,,

Dartiari F<l
;;;;";)f/ \

disiunbtive structure= anv subconcept

/J \!-.

KI ----tTo
\--i -\\

H* lF

Figure 3.23: Method-2: Disjuncts are represented only by subconcepts.

of the contexts. Similarly, the concept chair-in-officehas its own local context description, but

its structure is imported from swivel-chairor standard-chair.

As another example from Figure 3.24, the subconcept standard-chair-in-office of standard-

chajr has a context that is the same as chair-in-office, and a structure that is imported from

standard-chair. The latter case is like the usual form of inheritance. since it refers to a
superconcept.

The import-from relationship allows a concept to have overlapping subconcepts, some of
which define distinct kinds of structure, some of which define distinct kinds of context, and

others (such as the denrists-chair-in-dentist-office) which define a subconcept that is distinct

in both structure and context. Each structure-defining subconcept can refer to the context of
a context-defining subconcept, and vice-versa, and thus the impon-from enables a transfer

of information amongst concepts. If a concept is generalised, then any concepts that are

defined in terms of it, via import-from (or any other relationship, in fac$ are also implicitly
generalised. Of course, this has the danger of over-generalisation occurring, and the concept-

learning and memory-organisation systems must deal with this. This is a difficult problem

which is not addressed in this thesis. In fact, cRAM is not currently able to create import-from

relationships, since this is part of the larger learning and memory-organisation system, rather

than the generaliser. However, the matcher is able to deal with them.

It is important to note that the matcher is only required to match a new candidate instance

,r/
tr.

3,4, CONCEPT REPRESEMIIATION. 97

I
I

E

.e
ilt
EEfx
EE'

ljffi'il

E

I.T

e
tLl
TEg6

-la;
ol
et

s.H I

!{? |

..vll
EEEI

s€A€ i

=E I

E- _ __t

-t
^lsl

?

E
d

Ioo

?
E

'

g

\t/
EI

' lEl H

-E]HE

s

$.E ,=.'

eg lEl

,€gt IEF

a€
6

F^
6S0d
ioo
3€
llga

ii
rqr5r€tl

t*F
tv_

s

t4/<,

/s
FI

e\I'
q

t-

Figure 3.24: Method-2: A more complex example.

98 CHAPTER3. REPRESEMI]ATTON

with the subconcepts of a concept if the concept is defined disjunctively. In the case of the

standard-charr in the figure, whose structure is not defined disjunctively, the matcher does not
need to compare the strueture of an instance with standard-chair-in-office or standard-chair-

in-living-roorn, since all the required information is captured in the local structure description.

However, the classification system would need to match the instance with the subconcepts if a
more specialised classification is required.

A more elaborate scheme for representing disjunction is to allow arbitrary disjunctions of
parent, neighbour, and subpart relationships. However, dealing with arbitrary disjunctions is

a difficult problem because, when performing generalisation, there may be innumerable ways

of creating disjunctions, and it is difficult to backtrack later if a wrong decision was made.

Therefore, GRAM only allows disjunction of the larger chunks of information that characterise

structure and context.

Overall concept variance

A fourth way of representing concept variability is to include, in each concept, measures of
variance (or 'fuzziness') ofthe concept as a whole, ofstructure and context, and ofeach parent,

neighbour, and subpart relationship. It is useful to know how 'fuzzy' a generalised concept

is, since this indicates how useful it is for making detailed predictions. If detailed predictions

are required, and the concept has a high variance, then this indicates that it may be necessary

to consider its subconcepts. These measures are also used by the matcher as importance-

weightings when combining similarify scores of the features being matched. Measures of
concept variance could also be used by the larger concept-leaming system when reorganising

concept-memory, such as when determining whether a concept has become too general to be

usefully retained in concept-memory.

3.4.3 Concepts can have a variety of interpretations.

Stepp [Stepp, 1987b] made the distinction between two kinds of concept interpretation -
"contains" or "is". If a concept has an "is" interpretation then it requires that an instance has

all of the specified features, and no additional features. A "contains" interpretation is much

weaker: an instance is considered to be a valid instance of the concept if it has all of the specified

features, even if it also has additional features. For example, a "contains" interpretation of a

chair concept might allow a 'chair+person' object to be classified as a chair, since it contains

the required subcomponents and relationships between them.

It may seem that an "is" interpretation is obviously the most desirable. However, if an "is"
interpretation is required, then this means that when two or more instance descriptions are

generalised to form a new concept, the generaliser cannot employ the "drop feature" operation

[Michalski, 1980] which simply excludes features that are not common to all or most of the

instances. This is because after dropping features, the concept would need to have a "contains"

interpretation to allow the dropped features to be present in new instances without them being

treated as mismatches.

CONCEPI REPRESETVNATION.

If the "drop feature" operation is not used, then concept descriptions can become quite

cluttered with low-occunence relationships. Therefore, GRAM does allow the generaliser to

drop features, and does allow concepts to have a 'contains' interpretation in that situation.

This is acceptable because a concept has other features, such as its structure and context

propefties, and subpart-concept relationships, which usually constrain what instances can match

the concept. For example, suppose a chair concept is represented as a "contains" description

that specifies a relationship to a back and a relationship to a seat. Although additional parent,

neighbour, and subpart relationships in an instance are permitted without being considered a

mismatch, the structure and context properties, such as overall shape, aspect-ratio, density-

profile, erc, would prevent the chair concept from matching an observed 'chair+person' object.

Furthermore, the details of the subpart relationships of the chair to its seat and back would

not closely match the subpart relationships of the 'chair+person' to the chair and seat, since

the 'chair+person' has a different bounding-box with respect to which the relationships are

defined.

In GRAM, the "is" interpretation is referred to as complete, and the "contains" interpretation

is referred to as partial. Each concept description specifies the interpretation of its structure

description and the interpretation of its context description.

The idea of allowing a description to have either a pafiial or a complete interpretation, each

of which affects how the matcher and generaliser operate on it, has not been used in the other

systems reviewed in this thesis, although it is similar to the distinction between characteristic

and discriminant desciptions proposed by [Michalski, 1980]. A characteristic description is a

'full' description of the details of a concept, while a discriminant description include sufficient

details to distinguish instances of it from instances of other concepts. However, a partial

interpretation is not specifically intended for discriminant descriptions.

It is also possible for an instance description to have a partial interpretation, which means

that information is incomplete or unavailable. For example, if a bicycle is observed with a

brief glance, then its structure could be described partially. This indicates to the matcher

that, if possible, further observation of the instance should be performed if a more thorough

classification of the instance is required.

Although the above discussion has suggested that a partial interpretation is used when

features have been dropped, this is not always true: A paftial interpretation is normally used

in GRAM when relationships have not just been dropped, but when they have been replaced

by other information, such as a disjunction, a multi-relationship to a typical-member concept,

or an import-from specification. Consequently there are several different types of paftia|

interpretation.

The first kind of partial interpretation is partial+disjunctive, This indicates, firstly, that

the structure (or context) is disjunctive, and secondly, that the structure (or context) features

included explicitly in the description (non-disjunctively), are only partial. This means that

when the matcher comparcs the non-disjunctive description with a new instance, it allows any

additional subpart relationships (or parent and neighbour relationships for a context) without

treating them as a mismarch. However, the instance must also match at least one of the

disjuncts.

99

100 CHAPTER 3. REPRESEIVTI$ION

For example, the context of a charrconcept might also be described with a partial+disjunctive
interpretation, as illustrated in Figure 3.25, where a concept cfiair has been formed from the
instances chairl and chair2, and likewise for the concepts bac& and seaf. The contexts of chair,
back, and seaf are panial+disjunctive, and their structures are complete. In the case of charr,

no neighbour or parent relationships have been explicitly included in the example, but in the
case of the back and seat, both have include parent and neighbour relationships to the chair
as a whole and to its other parts. Since the description is partial, the matcher would allow a
candidate chair, back, or seaf instance to have other relationships as well (such as to a table, to a

person, or to an elephant). However, because their descriptions are also disjunctive, the context

of the instance must match one of the disjuncts, all of which have complere interpretations, and

which effectively override the partial interpretation.

Another kind of interpretation is partial+typical. This applies to structure descriptions
(and not context descriptions) for groups, and where most or all of the individual subpart

relationships have been removed, leaving only a multi-relationship to the typical-member

concept and perhaps a few subpart relationships to atypical members. This interpretation

allows the matcher and generaliser to ignore unmatched subparts of an observed instance, so

long as they match the typical-member concept. The discussion of groups in section 3.5 and

the discussion of group matching in section 4.3.3 explore this in more detail.

If a grouped structure has not had its individual subpart relationships removed, then it has an

ordinary complete interpretation, although the matcher and generaliser still treat these relation-

ships with less importance, since the multi-relationship to the typical-member characterises

them in summary form.

If a concept structure (or context) is imported from another concept, then it has a par-

tial+imported interpretation. From the point of view of the matcher, importing is very similar

to disjunction, since in the former case the structure or context of an observed instance must

match one of the specified concepts, and in the latter case the structure or context of an ob-

served instance must match one of the concept's subconcepts. In both cases, if the concept also

includes a partial local structure or context description, this must also match the instance.

Anotherkind of structure interpretation that I considered including in the cnAM representation

is confenfs-only. This was to be used for concept structures that are primarily defined by their

contents rather than the :urangement of their contents. Section 3.1 discussed a bedroom

as an example of this, and it is illustrated in Figure 3.26 which shows descriptions of the

components of bedroom2. At the bottom of the figure is a description of bedrooml2 which is

a generalisation of bedrooml (from Figure 3.17 on page 90) and bedroom2. The arrangement

of these generalised components is very variable and so the generalised bedroom is defined

primarily by what it contains, rather than how its contents are arranged. The advantage of
allowing an explicit contents-only interpretation is that it immediately indicates to the matcher

that the subpart relationships themselves are not useful fordetermining the best correspondences

amongst the subcomponents of such a concept and a new instance. The matcher needs to

compare the subpart object deseriptions themselves, without the guidance and constraint of
subpart relationship similarity.

However, a contents-only interpretation in not included in cRAM's representation because

3.4. CONCEPTREPRESEIVNAflON. l0t

l-fifrTF>Personl

*ftrr-"\or,
f6EEFf,l->tablel

o*ffih,"r,

chairl
A

ffii'=d<*#i
chairltbfi:li+r".+l<ffi}l

'fff>trb*'abreopr

Concepts defined using'partial+disjunctive' interpretation:

panial+disjunctive
disj unc t s = (c fu i r I,c hai r2)

structure=
complete seat

"nur'
o n'plrfr

it + di sj unc t i v e

t disiunas= (hackl, buk2)

,,-"F<li#
conplele

"nn
""n'r1,# u+dis i unc t ive

f 'diyrncls='(seatl,seu2)

--l- ;;rback

",',#Fifficomplete

Figure 3.25 : "partial+disjunctive" interpretation.

it does not specify the degree of arrangement-independence. This is better indicated by

the variances of the subpart relationships. High-variance relationships contribute less to the

similarity score computed by the matcher, and so the arrangement-independence is accounted

for more accurately than by using a contents-onlyinterprctation which would cause the matcher

to either use all of the subpart relationships or none of them.

One more kind of structure or context interpretation is any, which is almost equivalent to a

partial interpretation with no relationships specified, except that properties are also ignored.

t02 CHAWER 3. REPRESETfIAUON

clock2 fri42
ceiling2

bedroom2

t
I

@F<3iiiP*z
t'ffi'J3u'--{H}

bedroom2

t| .^wsTti
ffi'JTu". \floor2

{ desk }

bedroom2

t
lil*El*frl"",
ififuo'\ t*alI

lclockz)

bedroom2

t
.*rys
import-ftom

{chair}

rwal12
desk2
floor2

g ene ralis e d b edro om I + b edroom2 :

Figure 3.26: Structure may be characterised by contents not turangement.

To summarise the structure and context interpretations discussed above, each is listed and

briefly explained below.

Complete: An instance must match all of the concept's relationships, with no additional

relationships.

Partial: The concept's relationships must match the instance's properties and relationships,

but the instance may have additional relationships.

Disjunctive: An instance must match the structure [or context] of one of the disjuncts Q.e.

the subconcepts).

Any: An instance can have any properties and relationships.

Partial+Disjunctive: An instance must contain the specified structure (or context) relation-

ships, and must also match the structure (or context) of one of the disjuncts (r'.e. the

subconcepts).

chffi2 y'desk2Y bed

cnaflZZdeikl 2lbed lk clock I 2 R att t Z
lwall l2 flobrl2 ssfl;ng12

3,4. CANCEPTREPRESEMEIfiOI\]:

Pardal+xlpicah [I'orerwFed $metu€s,l fui instanee.iinstmAfshfire partial list of sub-paC

rellrtionshipq aod all of ite eubpm rcIation*hips mum march the nrutd-re;ldswhip to dle
typical-memben

kffakmeortsd: Anins'?areemu,gteontainthecpecified$ffqg'nre:(oreont€xt)relationghiilrs,
and must also tdsrch the :tftuctrup (or eintoN0 of ore of ,tbe ilrp$lott-ftolrncone€ptc.

104

3.5 Groups

CHAPTER3. REPRESEMIIAT/ON

A requirement of the representation is to be able to explicitly represent groups of similar and

similarly related components of an object. This section explains how this is achieved in the

GRAM system.

A group object in CRAM is an ordinary concept or instance, with the usual structure and concept

properties and relationships, but with the addition of a multirelationship to a typical-member

concept, and a few special properties that characterise the group as a whole. The typical-
member concept is also an ordinary concept, except that it can have neighbour relationships to

itself, and these capture the typical inter-member relationships between neighbouring members

of the group, such as between neighbours in a row of bicycles. Other concepts (or instances, if
the group has been formed within an instance-graph) may also have multi-relationships to the

typical-member concept.

This scheme is very similar to the scheme initially proposed by [Winston, 1975], except that

his system defined typical inter-member relations by relations from the typical-member node

to an "another-member" node. Also, his system did not include multi-relationships, and dealt

only with simple qualitatively-defined, non-disjunctive objects.

Before considering group representation in more detail, the following section describes the

different types of group that commonly occur in the kinds of domain that GRAM is intended

for, and should therefore be representable.

3.5.1 Therc ane several types of group, distinguished by their inter-member
relationships.

There are several different types of group, each distinguished primarily by the nature of their

inter-member relationships. These are illustrated in Figure 3.27, and are explained below.

Other examples of these group types can be found in the bookshelf in Figure 3.28. Figure

3.29 illustrates the typical-inter-member relationships for each type of group, depicted as

self-refening relationships of the typical-member concept.

A, chain is a linear sequence of similar parts.

The most common and important type of group is the chain, consisting of a linearly ordered

series of similar parts for which the relationships between consecutive parts are also similar.

For example, each row of books on the bookshelf in Figure 3.28 can be represented as a chain.

Many examples of chains can be observed in the world, such as stacks of plates, rows of chairs,

queues ofpeople (not necessarily in a straight line), and chests ofdrawers.

In cRAM's representation, the typical-member concept of a chain group has two neighbour

relationships to itself, one for each direction along the chain, as shown in Figure 3.29 (a).

3.5. GROLTPS

(a) Chain

O) Loop

(c) Chain-cycle

(d) Loop-cycle

(e) Anay

(0 Cluster

@E
@@@w
@EEE
m@dEEE&Ew@E

G

Noticeboard

BHg'u8

cg. potprants in aroom _:1.,fil:T:*fl'ilL,*
similar membcrs, but no similarity in inter-member

105

, r+*Hrfp-lJ K h #'#:#rberre,a,i.ns

- as for chain, but no end members.

- similar repeat series of members.

- similar inter-member relations.

- similar members

- similar vertical & horizontal rclations

- close proximity, forming a distinct region.

- similar members

- no ordering.

- close proximity, within a common region,

- varying degrees of regularity of
relations to neighbours.

Figure 3.27: T\pes of Group.

106 CHAPTER3. REPRESE]VNAflON

Figure 3.28: Examples of Groups.

A loop is a chain that is joined at the ends.

Loops are very similar to chains except that there are no end-most parts. For example, the

petals on a flower and the hour-marks on a watch are loop groups. A loop is represented in

exactly the same way as a chain, except that the grouped object has the value 'loop' for its
group-type property. Also, a// of the members contributing to the typical-member concept

have inter-member neighbour relationships in both directions, while in the case of a chain all

but the two end-members have, and so the instance-counts on the self-refening relationships

will be one less than the instance-count of the typical-member concept itself.

An anay is a vertically and horizontally aligned group of similar parts.

Another type of group is the array, whose members are organised in regular vertical and

horizontal rows and columns, as in the case of the buttons on a telephone, or windows on a

building. An anay can be viewed as a chain of chains, in either of two alternative dimensions.

However, GRAM can also represent an array explicitly by its typical member.

(a) chain:
^M&

b*tuo'd'- 1lnards(4;;;
ffi G@c

- chein-cvcle:

",
"o'"6&# @sffi 5 Ti"oJ"[3:;'31il'""'**"

loop-cycle:
/Try

\l

n
EEEE \ /

(c) array: HFFF ru{ga-.1 Thetypicalrelationsbetweenconsecutive

H-EEE
-mR_/

members ineach direction.

U

@

w ,a\
w-\
WASI 6it rclationships, one tor euh hexagoral direction)

\./

The typical relation between
consecutive members.

(d) cluster:

(e) collection:

WC The typical relations between each membcr
and its closest neighbour.

No typical inter-member relations.

(ie. an ordinary concept)

3.5. GROr-/Pi

Fi gure 3 .29 : Ty pical inter-member relation sh ips.

The typical-member of an anay has at least four self-refening neighbour relationships, each

for one vertical or horizontal direction, as illustrated in Figure 1.29 (c). Relationships on

the diagonal are excluded by cneu's group-constructor because they are significantly weaker

neighbour relationships than the vertical and horizontal relationships.

A clusteris an unorganised group of similar parts clumped together in the same region.

A cluster is a collection of similar objects that are located in close proximity to each other

within a region, but are otherwise unordered and unorganised structurally, The cookies on the

bookshelf are an example of this. A pile of shirt buttons, a stack of bricks, a crowd of people,

and the notices on a notice-board, are some other examples. Various degrees of regularity

of inter-member relationships are possible, such as the highly regular honeycomb pattern in

Figure t.27 (d), orthe irregularplate of cookies on the bookshelf, in which the only regularity is

the distance between each cookie and its closest neighbour. These different forms of regularity

are implicitly represented by the self-refening neighbour relationships of the typical-member

concept, but are otherwise not made explicit as distinct group types, with the exception of the

107

108 CHAPTER 3. REPRESE/VNATTON

array type which can be considered to be a cluster that is explicitly distinguished.

The typical inter-member relationship for a cluster has a high variance, at least with respect

to direction and position. For example, the neighbour relationships of the cookies on the

bookshelf would be generalised into a single neighbour relationship for the typical-member
that characterises the cluster of cookies, as shown in Figure 3.30 below. Each cookie has a

significantly different set of neighbour relationships to its neighbouring cookies, some having
two neighbours, others having four or five, in a variety of arrangements. Therefore, when

the group-constructor merges the cookie descriptions into a single generalised typical cookie

concept, the neighbour relationships are also merged into a single multi-relationship that has

a generalised howmany count in the range 2 to 5 (with mean of 3), meaning that there are

typically between 2 and 5 cookies that are explicit neighbours of a cookie in the bowl.

ffi
_]

-"""']:fi:3 @4H[,:1 *<lff#

cookies

t
fuc-z's

Figure 3.30: lnter-member relationships for a cluster.

A collection is an unorganised and dispersed group of similar parts.

A collection is a group of similar items that are not structurally related at all, other than being

contained within the same object. This is an unusual sort of group because it cannot really be

considered to be an 'object' in the sense that other groups can. It does not have any structural

identity. Rathet the presence of a collection in the description of an object, means that "there

exist several parts like this". For example, a description of room may include a collection-group

of potplants, meaning that there are several potplants in the room.

Although 'collection' has been included as a distinct group type, cRAtvt does not actually

constructgroup-objectsforcollections. lnstead,itjustcreatesatypical-memberconcept(which
is really just an ordinary concept formed from instances within the same scene) and other objects

can have multi-relationships to it. So a room could have a subpart multi-relationship to the

pot-plant concept, with a howmany count of 6, while one shelf of the room may have a

multirelationship to the same pot-plant concept with a howmany count of 2. All the required

information is available without requiring a group object. The only reason for having a group

3.5. GROUPS

object is when the group as a whole has collective properties that are worth making explicit,

such as the topology, overall shape, or inter-relatedness of the members.

Chain-cycles and loop-cycles have two or more alternating typical members.

A less common form of group is the cycle, which has a linear structure like a chain or loop but

is characterised by severaltypical members that alternate in a cyclical manner along the chain

or loop, as shown in Figure 3.27 (c) and (d). Cycles observed in everyday objects are most

commonly characterised by just two, rather than more than two, alternating typical members.

One of the typical members is often a connector between instances of the other, as in the case of
a line of horses joined by ropes. The leaves on a (two-dimensional) stem can also be described

as a chain-cycle consisting of a 'left' leaf and a 'right' leaf, as in the bookshelf in Figure 3.28.

An example of a loop-cycle is a bead necklace with a cyclical pattern of different shaped or

coloured beads.

It may seem that a cycle could just as easily be represented as an ordinary chain or loop.

For example, the bead necklace in Figure 3.27 (d) could be described as a loop in which each

typical member consists of a fixed sequence of distinct beads. Similarly, the bookshelf in

Figure 3.28 could be represented as a chain with a typical member consisting of a shelf and

a pair of brick-stacks. However, this is not possible in the case of a line of horses joined by

ropes since there may be one fewer ropes than horses. [t is more meaningful and correct to

represent such a group as a cycle of several distinct typical members, where each has neighbour

relationships to the other, as shown in Figure 3.29 (b).

The current version of cnRu does not support cycles because it would require group rep-

resentation to be non-homogeneous, since the group must specify two typical-members, and

the matcher must determine which corresponds with which when matching two cycles. Since

cycles do not occur as commonly as the other types of group, this aspect has been left for future

work.

3.5.2 Gmup properties.

This section and the following sections explain in more detail how a group is represented.

A group is not actually an additional descriptive entity in the cnnu representation scheme,

but is an ordinary instance or concept whose structure description includes some additional

information - in particular, a multi-relationship to a typical-member concept, and several

properties that characterise the group as a whole

The first $oup-property is the group-tyry, which can be any one of the types that were

discussed earlier, such as chain, Ioop, cluster, etc.

The second group property is the cardinality of the group, which may be a generalised

numerical value if the group is generalised. However, it is not actually necessary to include

cardinality as an additional structure property, since it is already captured by the number-of-

subparts property of an ordinary structure description.

109

ll0 CHAPTER 3. REPRESEIVXATION

The third property, or rather set of properties, are several measures of the regularity of the

group, which is the inverse of variance. These indicate how regular the members are, in terms

of(a)theirstructure,(b)theircontext,and(c)theirinter-memberrelationships. Thesemeasures

are used to indicate the strength or 'groupness' of the group, and to indicate which aspects

of the group are most crucial during matching. In the case of a collection group, structure-

regularity is usually high and context-regularity is much lower. In the case of a chain, context
and inter-member relationship regularity is high, and structure regularity is also normally high

but may be lower than in a cluster or collection, as in the case of a row of different shaped cups

and glasses along a shelf.

3.5.3 The typical-member concept.

The typical-member concept of a group characterises not only the typical substructure of the

members, but also the context of the members. The generalised typical context includes self-

referring neighbour relationships that characterise the inter-member relatedness of the group,

as illustrated for the various kinds of group topology in the previous section.

The typical-member concept usually also contains generalised typical relationships to non-

member objects or concepts. For example, a book typical-member concept may have a

generalised relationship to a particular bookshelf. In addition, a typical-member concept also

includes a generalised relationship to the group-object as a whole. In the case of the book,

this relationship indicates that each book is at roughly the same vertical position within, and

roughly the same height as, the group of books as a whole.

A more complex example of a group is given in Figure 3.31, which shows the typical-member

concept (tml) for a sequence of chairs. The concept fml has a parent relationship to the chairsl

concept, neighbour relationships to the non-member walll and floorl concepts, and neighbour

relationships to itself indicating the 'next' and 'previous' chair in the chain. The number on

each relationship is its instance-count.

The group constructor only forms typical inter-member relationships for the root part of
the typical member concept, not for its subparts, and these are explicitly distinguished in

the representation, as indicated by the heavy lines in the figure. Therefore, the neighbour

relationships forthe generalised seatand rleg\n figure 3.31 do not include generalised self-

referring relationships to represent the relationships with subcomponents of the neighbouring

chairs. Originally cRAM was designed to allow this, but it lead to rather confused typical-

member descriptions for which the matcher could not successfully disambiguate between

inter-member and intra-member relationships.

3.5.4 A non-member object may have a multi-relationship to a typical-member
concept.

Objects that are not members of a group, can also have multi-relationships to a typical-member

concept. For example, the wall and floor in Figure 3.31 are both close to or connected to at

3.5. GROUPS

Figure 3.31 : A typical-member concept of a chain

least one of the chairs, and so their context descriptions should include neighbour relationships

to fml, as well as neighbour relationships to the chairs object as a whole.

More specifically, floorl has a neighbour multi-relationship to tml with a howmany count

of 5, indicating that it is related to five chairs in the manner specified in the generalised

relationship. It also has a relationship with the cftairs group as a whole. Walll is described in a

slightly different way, since it is only directly related to the leftmost chair, and therefore has an

ordinary (not multi) relationship to anl. Notice that although this relationship represents only
the relationship to the leftmost chair, the relatee of this relationship is the generalised chur,
and thus the wall description has also been implicitly generalised.

lll

(note: the concept labek are not actually plesent in the description
They have been included herefor clarity.)

tml

a<i,*,,
tml

Y-wattl- -- rfloorl A+,'g
lleg rIEg

rooml
Id-<*\ walll

chairs

tml

rooml

tt2 CHAPTER3. REPRESEIVIIATAON

3.5.5 Individual subparts of a grouped object may or may not be included in the
description.

One of the advantages of representing a set of objects as a group is that the descriptions of
the individual objects can be dropped from the description altogether. This not only reduces

memory use, but it also makes it unnecessary for the matcher to find correspondences between

members of two groups, which requires significantly more computational time than for just

comparing two typical-member concepts, especially for very large groups. If the two groups

have different cardinalities, then one-to-one correspondences cannot be found anyway, and a

generalisation of the two groups must necessarily exclude individual members.

The chairs concept in Figure 3.31 above is an example of a concept which has no subpart

relationships to any individual chairs, and is thus a more compact description. The description

is also more generalised than if individual members were retained, since there is a transfer or

sharing of information amongst the now-implicit members.

However, it may be important to retain individual member descriptions if they are sufficiently

distinct from other members that to remove them would be an over-generalisation. This situation

can take two forms:

Firstly, the group might be quite a weak group, with all of the members being quite distinct

from many or most of the other members, such as a pencil case containing a variety of different

pens and pencils. A grouping may be justified, but the removal of the descriptions of each of
the members may not be. GRAM's group-constructor removes all individual members only if
a group has more than a certain number of members and if all the members are sufficiently

similar. Currently cRAM has fixed cutoff levels for this, but in a complete robot system the

decision would depend on the task being performed: If space and speed are most important,

individual members can be dropped even if the generalised typical member loses quite a lot

of the details of the.individual members. If accuracy and detail are important, individual

members are only removed if the typical-member concept is a very strong (i.e. low-variance)

generalisation. The chair in Figure 3.32 is an example where the individual members are not

removed, since there are only a few of them, and their contexts differ sufficiently that member

removal would lose too much information.

Figure 3.32: Individual members may be retained.

The second situation for which members could be retained is when there are afew atypical

3.5. GROI./PS

members, where atypicality is measured simply by the similarity of the memberand the typical-

member concept. The most common occurrence of an atypical member is the end-most member

of a chain. For example, tlre end-most chairs of the row of chairs in Figure 3.31 are atypical

because they do not have chairs on both sides of them. They could therefore be retained in the

chairsdescription as explicit subparts (although for the purposes of the earlier discussion they

were not included).

As another example, the leftmost and rightmost balls in Figure 3.33 are distinct because

they have a side ofthe box nextto them and only have one neighbouring ball. Therefore they

have been retained as subparts of the balls concept, and the structure is given a partial+typical

interpretation.

This achieves the same effect as Michalski's [Michalski, 1980] group representation which

allowed a 'LST' and a 'MST' member, meaning the first (LeaST) and the last (MoST) members

of the group respectively. However, GRAM's method is more general because atypical members

are not restricted to being at the ends. For example, the distributor cap in Figure 3.34 shows a

group that has a single atypical member in the middle, rather than at the ends. Other examples

of groups with atypical members include a desk whose top-drawer has a keyhole, a bad apple

in a box of apples, and the space-bar on a keyboard.

mffiM,,*fu
lf'*rE;ll<i*h" #u*"

Figure 3.33: Atypical end-most members.

Figure 3.34: Atypical members.

In the above examples, the generalised typical-member was shown with only the typical

ll3

poni)

midccinnector connector

VICT0FIA UNIVEnSITY OF \r. Ir-lNGTOi

tt4 CHAPTER 3. REPRESEMIHrION

relationships. For example, the ball concept in Figure 3.33 has a neighbour relationship with
thebasebutnotwiththeleftorrightsidesofthebox. ThisisbecausecttAM'sgroup-construction

mechanism removes atypical relationships from the generalisation so that the typical-member

concept is not cluttered with low-frequency relationships.

One situation that forces the removal of individual members is when matching and general-

ising two grouped concepts that both contain complete sets of subparts which have different

cardinalities. In such a situation it is not possible to establish unambiguous one-to-one cor-

respondences between the subparts, and so the generalised grouped concept cannot include a

complete set of individual generalised subparts, unless some are marked as optional. A partial

set of members could be included, however. Each of these would be a generalisation of the

distinct, unambiguously matched members of the two contributing groups. This is illustrated

in Figure 3.35, where groupA has 4 subparts, groupB has 6 subparts, and the generalisation of
them is described only in terms of a single multi-relationship to the generalised typical-member

concept, and the two relationships to the generalisation of the pairs of end-members.

Figure 3.35: Members may be removed during generalisation.

3.5.6 The structure of a typical-member concept may be imported from another
concept.

In many situations the members of a group are instances of some existing concept, as for chairs

in a room, shoes in a cupboard, or books on a bookcase. Therefore it may be unnecessary

to specify the entire substructure of the typical-member concept, but rather to import from

an existing concept, as illustrated in Figure 3.36. The context description must be specified

locally, so that the organisation of the group is explicit. Therefore, a typical-member concept

normally only has its structure imported, not its context, since otherwise the organisation of
the group as a whole, specified by its typical inter-member relationships, would be lost. This

is also why the group-object cannot be described simply by a multi-relationship directly to the

chairconcept itself.

@@(W @@@
lsroup4

^ffi^Y*,typmemA

TE. ?!:H,
Jri,ioturh,.-s

afier generalisation:

rypmemA+B

3.5. GROUPS 115

previously leamed 'chair' concept

Figure 3,36: Tlpical-member structure may be imported.

3.5,7 The structurc of a typical-member concept may be disjunctive.

Section 3.4.2 showed how the stnrcture (orcontext) of aconceptmay be descnbeddisjunctively.

Since a typical-member concept is just like any other concept, it can also be described disjunc-

tively. For example, in Figure 3.37 the grouped concept things refers to the typical-member

concept thing whose structure is described disjunctively by referring to its subconcepts blidget

and plidget.

WP
things

t
l,hi"gE3
disiunctivc
smrcwre

subconcept (*5) 1/1 subcoacept (*4)

,{ '};--
/\

biiAs-et I ldidsetl

Figure 3.37: A disjunctive typical-member concept

l16 CHAPTER 3. REPRESENIIATION

A typical-member may also be defined disjunctively by a disjunctive import-from specifica-

tion, as shown in Figure 3.38 where the structure of the typical-member of the items on the

shelf is imported from either the wineglass concept or the mug concept.

_iF YYIJIF ,ry
'T"
@l-*i'"tt

My-coucn

tffiAassl
,//V R

base items

items
+

u*"-4fi5
structure import-lrom:

(wincglass(+2), mue(ai))

Figure 3.38: Disjunctive importing.

Instance-counts associated with disjuncts (i.e. subconcepts) or concepts rn an import-from

specification, indicate how many members are of each type. For example, a typical-member

concept representing the pens and pencils in a pencil-case may have a count of 8 for the pen

disjunct, and 2 for the pencil disjunct, indicating that 80 percent of the group members are

expected to be pens.

Unfortunately, when two pencil cases are generalised, the instance-counts of the pen and

pencil disjuncts might no longer capture the expected frequency in an instance. For example,

if the second pencil case had 8 pencils and 2 pens (f.e. the inverse of the first pencil case)

then the generalised typical-member concept would have an instance-count of l0 for the pen

disjunct and 10 for the pencil disjunct, indicating that a pencil case is expected to have 50

percent of each. For an ordinary concept this is not a problem, since we do want the concePt

to state that fifty percent of the instances of the concept have been pens, and fifty percent have

been pencils. But groups are a little different. The current GRAM representation has no way

of explicitly representing the proportion of each disjunct for the typical-member of a group,

although extending the representation to include this would not be difficult.

3.5.8 Groups of groups

The typical-member of a group may itself be grouped, as illustrated in Figure 3.39 which

shows a row of stacks of blocks. The typical-member concept, stack, is a generalisation of the

concepts stackl, stack2, stack3, and stack4. Thus the typical-member of stack, called ifem, is a

generalisation of the typical-member concepts iteml, itemZ, item3, and item4, and is therefore

a generalisation of all 19 rectangular blocks.

3,5. GROUPS tt7

stackl
sutc

Ao
stacks

A

lshckf F>stack2
-Jryp-i"arf nuber

iteml

stackl

&a
stack2

&e
stack3 stack4ffiAs

Figure 3.39: Groups of gnoups.

118 CHAPTER 3. REPRESEIVNATION

Another more complex example of groups containing groups is given in Figure 3.40. This
also shows how the representation allows parts to be grouped in a number of different and

overlapping ways, although the current group-constructor is not (quite) able to build such a

description.

The shelves concept is a grouping in which the typical shelf contains a sftelfbase and a
grouped-concept called shelfcontents. The typical member of shelfcontents is a generalisation

of all 18 glasses and mugs. Each shelf-item is described using import-from specification

consisting of a disjunction of the wineglass and mug concepts.

shelfcontents

t

foA**ase &a',:'l;
,nara# ,)r"on,.no

any contcil

fmus I,7\structure=
import-from: (wineglass

or mug)

lside
rside

rypmem

shelfbase

import-from: (wineglass
or mug)

L
Figure 3.40: Groups of groups, and relationships between groups.

The shelfsystem concept also contains another grouped concept, called allcontents, which

represents all of the glasses and mugs as a grouping (independent of the shelves). This

grouping, could also refer to the shelf-item concept, but in fact refers to a separate concept

called item. This is because shelf-item is created by the generaliser when it generalises the

four shelves, while item is created from the grouping of all 18 mugs and glasses earlier in the

3.5. GROr./.P'

instance-construction process.

Another grouping called sfielfbases consists only of the bases of the four shelves.

Thus the three grouped concepts, sftelves, allcontents, and shelfbases are alternative ways of
grouping the components of the shelf-system.

Tlpical-member concepts may have neighbour relationships with other typical-
member concepts.

Figure 3.31 on page 1 I I showed a neighbourrelationship from the walll concept to the typical-

member concept ml, and also showed a multi-relationship from the floorl concept to fml. It
is also possible for a typical-member concept to have a relationship to another typical-member

concept. For example, the typical-member of the shelfbases group (i.e. she/fbase) has a

neighbour multi-relationship with the typical-member of the shelf-items concept (i.e. shelf-

item), with a generalised howmany count of 4..5. This indicates that a typical shelfbase has 4

or 5 sftelf-irems on it.

3.5.9 Generalisedgroups.

Most of the examples given so far have been of ungeneralised groups, as found in instance

graphs. We now consider groups that are generalisations of two or more groups from within

instance graphs.

Firstly, the properties characterising a generalised group as a whole have generalised values.

For example, the cardinality (or rather, the number-of-subparts property) specifies a mean,

standard deviation, and range, to indicate the permissible sizes of instances of the group.

Likewise, the measures of regularity are generalised numerical values, and the group-type

property is a generalised nominal value which could specify multiple group types.

Secondly, the generalised group refers to a generalisation of the typical members of the

instance groups. Thus the formation of a generalised group from two instance groups is one

situation where the matcher and generaliser have to deal with two concepts, rather than a

concept and an instance, or two instances, since both typical-members are concepts. The

generalised group is always as 'weak' or weaker than the strongest original group because the

self-referring relationships of the two typical-members are combined, and may lose some of the

strucnlre of the original groups. For example, if an array group is generalised to cover a cluster

group, the result will be a cluster, since the four self-referring relationships characterising the

array will be merged into the self-refening relationship(s) characterising the cluster. This is

discussed in chapter 5.

A generalised group should retain the significant constraints and regularities common to the

contributing instance groups. To explore this issue, consider the two grouped concepts Al
and Bl on the left of Figure 3.41 whose typical-members have aspect-ratios 3 of l:4 and l:2
respectively.

119

3 the width-to-length ratio

120 CHAPTER 3. REPRESEJVIIATION

The generalisation of Al and Bl results in a grouped concept ABI with a typical-member
concept AB I t, as shown on the right of the figure. The aspect-ratio of this generalisation is
variable, in the range ll4..ll2. It may seem that the generalised description no longer captures

the constraint that all of the blocks must be of the same height. In other words, the matcher

mightconsider object C (in the Figure below) to be a valid member of the concept.

However, the inter-member relationships for both Alt and B I t specify that consecutive blocks
must be of the same height, and this constraint is nor lost through the generalisation process,

and hence object C would be considered a mismatch. This is an example of the principle that
redundancy helps prevent loss of important constraints through generalisation.

A

t
EFA2

\an^'^I
Alt

AI
+

@nz
aqtect-ratio= l/4

BBI

#Mffi-ffifflw-ffis-tffi

B
+J-

lryl+82
\Dp*^
t
Blt

after generalisation:

AB

l_
lABrl+enz
\,1,p^".ps..atI

ABIt

ABI
I

trBiilqAB2
aspect- rat io= I /4.. I /2

Does AB match C?

BI
I
d€-

aspect-ralio=ln

Figure 3.41: Maintaining regularity constraints in generalised groups.

Now consider the set of shelves, D, in Figure 3.42. When the instance-constructor is creating

the typical shelf description, it has to generalise each of the four shelves. In doing so it will
have to generalise the four groups of shelf-items, and this will result in a typical item whose

structure is defined disjunctively in terms of wineglass and mug. Thus it may seem that the

generalised shelf no longer captures the constraint that all of the items on each shelf should be

of the same type. Thus the set of shelves, E, would perhaps be considered a near-perfect match

with D, since the mismatch in terms of irregular shelf contents could not be noticed.

However, as in the previous example, other information in the description prevents this

constraint from being lost, this time in the form of the tneasures of regularity of the group

itself. In other words, each of the generalisations of the shelf-contents has a high measure of
structure-regulnrity since all items are identical. When the four shelves are generalised, this

3.5. GROUPS r2l

Figure 3.42: Maintaining regularity constraints in generalised groups.

constraint is common to all of them, and is therefore not lost. When matching against the set of
shelves E, which does not have a high structure-regularity for the shelf-contents, the mismatch

can be noticed.

In addition, if cnau was to include a similarity attribute in the description of a neighbour

rclationship, then this information would also be present in the generalised typical inter-

member relationships, and would reduce the information loss due to the generalisation. This

again illustrates the impodance of including redundant information that specifies the same

characteristics of an object in different ways, each of which makes some aspects more explicit

than in the other ways.

122 CHAPTER3. REPRESEMD{TTON

3.6 Reference summary of the representation scheme.

This section gives a reference summary of the components of the representation scheme

described in this chapter.

Object: (instance or concept)

Super-concepts.

Sub-concepts.

Instance-count. (I if ungeneralised)

Instance-count. (I if ungeneralked)

Context:
Properties. (connectivity-profiIe, etc). (See page 82)

Parent-relation ships.

Neighbour-relationships.

Interpretation. (Complete, Partial, Disjunctive, Any, knported,

Partial+disj unctive, Panial+imported)

Import-from specification. (a disjunctive list of concepts)

Variance.

Structure:
Subpart-relationships.

Interpretation . (Complete, Partial, Disjunctive, Any,

Partial+disjunctive, Partial+ty pic al, Partial+imported)

Properties. (shape, asgnct-ratio, etc.) (See page 8I)
Tlpical-member concept. (if grouped)

Group properties. (type, regularity measures)

Import-from specification . (a disjunctive list of concepts)

Variance.

Relationship: (parent, neighboutl or subpan)

Instance-count. (I if ungeneralised)

Attributes. (rcIative ofientation, direction, etc). (See pages 83 and 65)

Relatee. (an object)

Howmany-count. (/ if not a rnulti- re lations hip.)
Variance.

Chapter 4

The Matcher

The matcher is the central component of the cRAM system. This is because the generaliser,

classifier, fault-finder, and groupfinder all rely on its results to determine their behaviour. This

chapter considers the issues of matching complex shuctured objects and describes GRAM's

matching algorithm.

Section 4.1 identifies the requirements of the matcher, based on the characteristics of the

domain and task discussed in chapter l. Section 4.2 then gives an overview of the issues of the

matching problem, and outlines the main confibutions of the cRAM matcher.

Section 4.3 explores what it means for two stnrctured objects to be 'similar', and defines the

scoring scheme used in cRAM.

Section 4.4 considers the issues of how to search for the best correspondences berween

the parents, neighbours, and subparts of two objects being compared, and describes cRAM's

"incremental-spread" matching algorithm.

123

124

4.1. Requirements.

CHAPTER4. THEMATCHER

4.1,1 Input and output requirements.

The input to the matcher is two generalised or ungeneralised object descriptionsl , and the output
is a description of their similarity. This description must specify (a) the overall similarity score,

(b) structure and context similarity scores, and (c) the similarity scores for the best (and "almost

best") conespondences between their parent, neighbour, and subpart relationships and relatees.

The distinction between structure and context similarity is necessary because generalisation

may be justifiable on the basis of a high score of just one or the other. The distinction is

also necessary to enable the generaliser to determine when to create a disjunctive structure or
context description. The fault-finder also needs both scores to be able to make reports such as

"that X is in an unusual location".

Similarity scores for relationship and relatee correspondences are required by the generaliser

to determine whether individual relationships should be generalised, or whether a relationship

should be considered unmatched. Likewise, the fault-finder can use these scores to identify
the specific differences between a concept and an inslance, since each low score indicates a

particular fault or unusual feature. If there is ambiguity in selecting the best correspondences

between parents, neighbours, and subparts of the objects, the "almost best" correspondences

should also be included in the output so that the generaliser can create multi-relationships or

groups if necessary.

An additional kind of similarity score that has not yet been implementedis contents-similarity

which measures the similarity of the subparts of two objects, independent of their arrangement.

This could be used by the generaliser to justify generalisation. For example, two bedrooms

may have a high contents-similarity score, and this could justify creating of a new concept

defined by a set of subpart concepts with a highly variable arrangement.

4.1.2 An tany-time' matcher with effort-contrcl and scope-restriction parame-
ters is required.

Since the cRAM matcher is to be eventually used in a real-time robot system interacting

in a complex physical environment, it must provide means for controlling how much effort

is applied to a match, so that rapid and approximate comparisons can be performed when

efficient classification is crucial (such as when walking through a building), and slower detailed

comparisons can be performed when accuracy is crucial (such as when performing quality

control on a product). Thus the matcher must have some kind of efrort-conrrol parameters.

Also, the matching process should not have to be continued until 'completion' before a

similarity score is available. Rather, the matcher should employ a robust 'any-time' algorithm

that can be unexpectedly intemrpted and still provide a usable estimate of similarity.

Sometimes it is necessary to focus the attention of the matcher towards a particular portion of
an observed scene or object. For example, when comparing an observed item with a concept in

rThroughout this chapter, the term 'object' is used to refer to either a concept or an instance.

4.1. REQUTREMENTS.

memory, the task might only require the stucture of the item to be considered, not its context.

Thus the matcher should provide a means for specifying what portion of the instance graph is

to be matched. This can be called scope-restriction.

4.1.3 The matcher should not assume canonical descriptions.

The cnRu matcher should not assume canonical object descriptions. In particular, it should

not assume a canonical subpart decomposition hierarchy, and it should not assume that the

same relationships are made explicit in both descriptions. The instance-constructor justifies

creating a relationship or a composite object on the basis of afeature-utildry score defined in

terms of various criteria. If, for a potential feature of an object-graph, this score is just below

the required threshold, but the score for a corresponding feature in the other object-graph is

just above the threshold, then the two resulting descriptions will differ, even if the objects are

very similar.

The matcher should also not assume that a description is complete, since an object may be

partially obscured or only partially observed. Therefore it should be able to cope with partial

information, perhaps requesting the instance-constructor for more information when required,

if it is available.

4.1.4 The objects being matched may be generalised or ungeneralised.

The matcher is primarily used to compare an observed instance with an existing concept in

memory, where the concept may either be generalised or (if only one instance of it has been

observed) ungeneralised. However, the matcher must also be able to compare two instances

or two generalised concepts. Instance-instance comparison is required when matching two

objects within the same scene, such as when forming groups. Concept-concept comparison

is necessary when comparing the generalised relatees of two multi-relationships, or when the

larger concept-leaming system needs to compare two concepts in memory to reorganise the

AKO hierarchy.

Many of the examples in this chapter deal with comparing an instance (or ungeneralised

concept) with another instance, since it is difficult to depict generalised object descriptions,

and it is only necessary to address the concept-instance situation for particular issues, such as

disjunction matching.

4.1.5 Ttvo Wpes of scoring are required: fit-scoring anil proximiry-scoring.

The marcher should be able to produce two types of similarity scores: fit-scores and proximity-

scores. A proximity-score should measure how close an instance is to a concept, based on

an absolute measure of what 'close' means. A fit-score, on the other hand, should measure

how close an instance is to a concep! based on the variance of the concept. For example, the

proximity-score for an observed swivel-chair with respect to the concept standard-chairshould

t25

t26 CHAPTER 4. TIIEMXrcIIER

be high, but its fit-score should be low (assuming that all instances of s4dard-chairs have had

four legs), since it is very atypical.

This distinction is necessary for the generaliser to determine how to incorporate a new
instance into concept memory. If an instance has a high fit-soorc with respect to an existing
concept, then that concept can be modified to cover the instance. Otherwise, if the fit-score
is low but the pmximity-score is sufficiently high, then a new concept can be created that is a
generalisation of the original concept and the instance, without affecting the original concept.

Fit-scores are also necessary for fault-finding, since they indicate when a feature is atypical.
Proximity-scores are requircd by the matcher for finding correspondences between objects.

4,2, ISSUES AIVD CON:TRBU?TONS.

4.2 Issues and Contributions.

This section discusses various issues in the design of a matcher that satisfies the requirements

given in secfion 4.1 , and outlines the main contributions of the cRAM matcher.

4.2.1 The two primary issues are similarity and search.

Thedesignofthematchercanbecharacterisedbytwoissues: firstly,themeaningof 'similarity'

must be defined, and secondly, an algorithm for evaluating similarity must be developed. The

first issue is declarative, since it involves defining a formula for measuring the similarity of
two objects, on the assumption that the best correspondences between parents, neighbours, and

subparts are known. The second issue is procedural, since it deals with how to search for the

best correspondences between parents, neighbours, and subparts, and how to actually compute

similariry scores.

These two issues (addressed in section 4.3 and section 4.4 of this chapter) are inter-dependent,

since the problem of finding the best correspondences is based on measures of similarity, and

measures of similarity are based on a chosen set of correspondences.

4.2.2 Object similarity evaluation is complex and recursive.

Since an object is defined in terms of other objects, within a potentially vast object graph,

similarity evaluation is recursive and complex. In order to determine the best correspondences

of parents, neighbours, and subparts of two objects, many other pairs of objects may have to

be compared. The process of matching two objects could involve an expensive and complex

search through the object graphs, spreading up, out and down through parent, neighbour, and

subpart rclationships. Therefore, to ensure efficiency, the matcher's search strategy must avoid

unnecessary comparisons whenever possible.

The cn*u matcherdoes this by employing abreadth-firstbeam search using iterative deepen-

ing: The matcher initially compares two objects using minimal information (ust their properties

and relationships, ignoring their relatees), and then applies more effort to the comparison by

comparing the properties and relationships of corresponding relatees, and then comparing the

relalees of those relatees, and so on, incrementally extending the 'horizon' of the march, aban-

doning poor correspondences whenever possible. Thus, the object-graphs guide and consrrain

the search using an "incremental spread" approach. [Connell and Brady, 1985] employed a

similar scheme, although it only operated top-down from coarse details to fine details, while

cRAM operates in any direction through the object graphs, and uses a more elaborate similarity
scoring scheme.

Since object graphs usually contain circularities, the matcher must avoid re-evaluating com-
parisons that have already been performed, or are currently being performed. cnau does this

by keeping track of the level of spread effort that has already been applied to a comparison,

and only re-invokes the ma cher if a greater level of spread effort is required.

t27

t28 CIIAPTER 4. TI{E MATCHER

An additional complication is that since the similarity of two objects is defined in terms

of the similarity of other relatee objects, which are defined in terms of the first two objects,

a similarity score is recursively defined in terms of itself. Since there is no base-case for
this recursive definition, GRAM must rely on computing estimates. Its "incremental-spread"

algorithm enables recursively-defined similarity scorcs to converge on a reasonable estimate.

The incremental-spread approach also satisfies the requirement that the matcher be an any-
time algonthm, since it can be intemrpted at any point and still provide a reasonable estimate

of similarity. In fact, [Bergevin and Levine, 1993] have demonstrated that many objects are

recognisable on the basis of coarse features alone, and thus even if the GRAM matcher spreads

by just one step via parent, neighbour, and subpart relationships, this will often be sufficient for
obtaining a good estimate of similarity. Further spreading willjust refine the score, since the

distance through the relationship network is inversely proportional to the importance of those

features to the measure of similaritv.

4.2.3 Requiring a globally consistent set of cornespondence is expensive and
unnecessary.

In a usual graph match, a comparison is performed by finding a globally consistent set of
one-to-one correspondence bindings, meaning that the evaluation of each correspondence is

dependent on a particular selection of other correspondences. This is an expensive process: If
the two graphs each contain n objects, then n! sets of correspondences need to be evaluated. If
the requirement for finding the best set of consistent correspondences is relaxed, then a "greedy

algorithm" could be used, which would reduce the expense considerably. A compromise

solution would be to employ some kind of backtracking to give bener but still non-optimal

performance, as in the system developed by [Connell and Brady, 1985].

However, this thesis claims that good matching performance can be achieved by relaxing

altogether the requirement for a globally consistent set of one-to-one correspondences. The

matching algorithm can therefore be simpler because consistency-checking and backtracking

need not be performed. More importantly, it is potentially more efficient because parallel

computation can be exploited more fully, since a comparison between two objects can be

performed independently from other comparisons (except for making use of their similarity

scores). The justification for this approach is that the richness of the property and relationship

descriptions and the nature of physical objects tends to enforce consistency.

4.2.4 The "Level Hopping" problem.

Since the matcher cannot assume canonical descriptions, and in particular cannot assume

a canonical part decomposition hierarchy, it must cope with the "level-hopping" problem

[Wasserman, 1985]. For example, objects A0 and B0 in Figure 4.1 should be considered

similar, even though object B0 includes an additional level in the decomposition hierarchy

because parts 83 and 84 are combined into a single composite object. If the matcher takes

a top-down approach, traversing down from the root objects, A0 and B0, and only considers

4.2. rSSr.E,S AND COMTRIBUrIONS.

correspondences between subparts of objects that match at each level, then it cannot find the

correspondences between A2 andB3, or between ,43 and 84. Therefore, although it is desirable

for the matcher to be guided by the decomposition hierarchy, it should not be overly constrained

by it" since it should be able to find correspondences between components at different levels.

Wasserman's MERGE coped with the level-hopping problem by inserting 'null nodes' into

the part hierarchy to account for all possible alternative decomposition hierarchies, and then

matching each alternative. However, this strategy only deals with hops of one level, and it is not

clear whether the mechanism could be easily extended to efficiently cope with hops of multiple

levels. In GRAM, correspondences between components at different levels can be automatically

found via the traversal of neighbour relationships. For example, in Figure 4. I , when comparing

objects AI and BI, their neighbour relationships lead to the discovery of the correspondence

between 42 and 83, and between A3 and 84, even though these correspondences cross levels

in the hierarchy.

Figure 4.1: The "level-hopping" problem.

4.2.5 A description may need to be augmented.

Since the matcher cannot assume that descriptions are canonical and complete, it may need to

invoke the instance constructor to augment a description with more information so that it can

obtain a more accurate rneasure of similarity. This requires making a new relationship explicit,

or creating a new composite object.

ln the example in Figure 4.1 , a relationship between B0and 83 could be created, thus enabling

A0 to be compared more accurately with 84 and likewise for 82 md 83. This relationship

would be created on the basis of finding the 42:83 conespondence via neighbour relationships

from the A1:Bl correspondence" Alternatively, or additionally, a new composite object could

be created, consisting of objects A2 and 43, so that this new object could be matched with B.2.

r29

-
"o'i

I

130 CHAPTER 4. TI.N MHTCHER

New neighbour relationships could also be created to resolve the "sideways level hopping"
problem: 1t A2 did not have an explicit neighbour relationship with 43, then one would need

to be created in order to compare it with the B3-B4relationship.

4.2.6 Estimates of similarity should be obtainable from superconcept or subcon-
cePt similsritY scores.

An object is usually an instance of several concepts, ranging in degree of specificity (eg.

phillips-screw-driver and hand-tooI), and the classification system may require more than just

one classification. Therefore, when comparing an observed object with a concept in memory,

the matcher should be able to produce an estimated similarity score on the basis of previous

comparisons between the object and the superconcepts or subconcepts ofthe concept, ifthey
are available, since the estimate may be sufficient for the task without having to perform a
complete comparison.

Sections 4.3.1O and 4.4.8 discuss how this can be done by treating a superconcept similarity
score as an upperbound, and a subconcept score as a lowerbound, adjusted according to the

typicality of the concept within the superconcept, or of the subconcept within the concept.

4.2.7 Instance-counts and feature variances affect similarity.

The matcher needs to take ilto account the instance-counts and variances of features when

evaluating similarity. This is because an instance-count indicates the degree of optionality of
feature, and variance indicates the range of acceptable values. Therefore, these measures are

incorporated into cRau's similarity evaluation scheme.

4.2.8 Object similarity depends on axis cornespondences, and may rcquirc at-
tribute coercion.

The matching task is made more expensive by the fact that the measure of similarity of two

objects depends on how their axes are put into correspondence. For example, suppose we are

matching objects A2 and 82 in Figure 4.2, whose primary axes are shown by the arrows. If
the two primary axes are assumed to be in correspondence, then the overall similarity score is

not high, since their contexts are significantly different. If, on the other hand, the primary axis

of A2is put in correspondence with the negative-secondary axis of 82, then the structures and

contexts are both reasonably similar.

Whenever two objects are compared in such a way that their primary axes are not in cone-

spondence, as in the example above, then it is necessary to coerce the aftribute values of one

of the descriptions so that similarity can be evaluated correctly. For example, the direction

attribute of the relationship from 82 to Bl is 90 degrees relative to B2's primary axis. To

compare the direction attributes of the A2-AI relationship and the B2-Bl relationship, where

A2's primary axis corresponds to B2's negative-secondary axis, the B2-Bl direction must be

4.2. ISSUES AND COMTRIBUTIONS.

coerced to be relative to B2's negative-secondary axis, giving a direction of 180 degrees, which

can now be meaningfully compared with the A2-AI direction.

cRAM assumes that two two-dimensional objects can be corresponded in four ways, one for

each 90 degree rotation. Cunently correspondence by reflection is not accounted for. In a

three-dimensional domain there arc a minimum of Z possible axis correspondences. This is

one (eason why the matcher should be amenable to a parallel architecture, since it should be

able to evaluate many alternatives simultaneously. On the other hand, the evaluation of the

alternatives is usually computationally inexpensive, since a comparison using a low spread

effort is sufficient to reject most of the alternatives.

l3l

WW
Figure 4.2: Axis Corrcspondences.

132

4.3 Similarity.

CHAPTER 4. THE M,{TCHER

This section considers cRAM's definition of 'similarity'. It begins by explaining the basic

definition of similarity of two objects, and then explores various aspects of the definition in
more detail. This section is not concerned with how the evaluation is actually performed.

4.3.1 The basic definition of similarity.

An object is defined by its structure and context, which are in turn defined by its properties,

relationships, and relatees. Therefore, the similarity of two objects is defined in terms of the

similarities of these features.

The definition of similarity is given more precisely by the formula in Figure 4.3. The overall-
similarity score is defined to be a weighted average of the structure similarity and context

similarity, where the weights are based on the variances of the strucrure and context, such that

high variance means a low contribution to the overall score.

Ttrc context-similarity score is defined as a weighted average of the similarity of the context

properties and the similarities of the parentand neighbourrelationships and relatee objects. The

weights are based on various factors such as variance, relationship 'importance', and instance-

counts, as will be discussed in section 4.3.6. The choice of which relationship similarities

contribute to the score (since all possible combinations of pairings could potentially contribute)

is explained in section 4.3.3.

Structure-similarityisdefined in much the same way as context-similarity: it is a weighted av-

erage of the similarity of the structure properties and the similarities of the subpart relationships

and relatees.

The definition of similarity must also account for groups, disjunctions, multi-relationships,

impot-fromrelationships, and the various interpretations of sfucture and context descriptions.

These issues are discussed in later sections.

I

(context-sinrilarity =

I

HJf!;t"t1

(tructure-similarity
=

,/
I similarity of context-properties

X"r; fll:ru,,A si milari ties of parent relationshi ps

I and relatees

\similarities
of neiBhbour rel?:,?ljlJot

overall-similaritv =

Figure 4.3: The basic definition of similarity.

4.3. SIMILARITT 133

4.3,2 Attribute similarity

Since the properties and relationships of an object are represented as attribute-vectors, their

similarity is defined by a weighted average of the similarities of the individual attribute values,

where the weights are based on various factors discussed in section 4.3.6. T\e definition of

attribute value similarity is different for each type of attribute, whether numerical, nominal,

directional, boolean, erc. This section explains the definitions of similarity for each of these

attribute types.

There are many possible scoring schemes that could be used for comparing attributes, and

the detailed formulas are not particularly important. Therefore, the purpose of this section is to

convey the kinds of scoring that can be done, and the basic requirements of the scoring scheme.

Attribute similarity scores must be normalised so that a measure of similarity of two attribute

values of one kind has the same meaning as a measure of similarity of two aftribute values

of another kind. If, for example, the similarity score for two nominal-valued shape attribute

values is 0.8, and the similarity score for two numerical-valued aspect-ratio attribute values is

also 0.8, then these two scores should have the same meaning, and should therefore be able to

be combined sensibly when computing the overall 'structure-similarity' score. In GnRM, this

is achieved by normalising all scores into the range 0 and l, with the following interpretations:

0 means "very different"

0.5 means "bordering between similar and dissimilar"

1.0 means "identical"

There are four factors that need to be considered when comparing two values: Firstly,

the absolute difference between the values; secondly, a measure of what a "very different"

difference is, so that the result can be normalised to the interpretation given above; thirdly, the

variance of the values if they are generalised, as this can be used as a normalisation factor;

and fourthly, whether fit-scoring or proximity-scoring is required, since this determines how

tolerant of differences the matcher is to be.

Given these factors, we can now consider how particular kinds of attribute values are com-

pared.

Figure 4.4 illustrates the definition of similarity of numericd values. Diagram (a) shows

the situation for two ungeneralised values, where the horizontal axis of the graph represents

the magnitude of the difference between the two values, and the vertical axis is the similarity

score. The score slopes down quite gradually for some distance, where this distance is a

"default tolerance" for that attribute, such that any value difference in this range is given a

high similarity score. Beyond this point the score drops down more sharply, where the slope is

based on a globally pre-defined measure of a "very different" difference for that attribute, so

that a zero score indicates that the difference between two values (minus the tolerance) is least

that amount.

134 CHAPTER 4. THEMATCHER

Diagram (b) defines the similarity of a generalised (concept) value and an ungeneralised
(instance) value, using proximity-scoring. This is the same (a) except that the tolerance factor
is based on the variance of the generalised value, which may be smaller or larger than the

default tolerance.

Diagram (c) is the same as (b) in that the tolerance is based on the variance. However,

fit-scoring is required, and this means that the slope of the sharp drop is also based on the

variance, rather than being the default "very different" difference, and thus it may potentially
be a very steep drop if the variance of the generalised value is very small, thus giving very bad

scores for all instance values that are even a small difference from the mean. (The more general

distinction between fit-scoring and proximity-scoring will be discussed in section 4.3.8.)

If the generalised value has been obtained from only a few instances, then the tolerance factor
in (b) and (c), and the "very different" difference in (c), are based partly on the variance and

partly on the default values. The fewer the instances, the less the variance contributes. In the

case ofa 'generalised' concept value formed fromjust one instance, the variance is not defined

and situations (b) and (c) reduce to the situation in (a).

Directional (r.e. angular) values are compared in the same way as ordinary numerical values,

except that modulo arithmetic is used to compute differences.

The similarity of nominal values is defined in various ways, depending on whether the values

are single symbo/s, sets of symbols (symbolsets), or generalised symbols (gsymbols) for which

each symbol has an instance-count. The top of Figure 4.5 gives the definitions of each of
these more precisely, as from section 3.3 in chapter 3. The term 'frequency' is used in this

discussion to mean the ratio of the instance-count of a particular symbol in a gsymbol, to the

total instance-count of the gsymbol. The frequency of a symbol in a gsymbol indicates the

probability of that symbol occurring in a future instance.

The similarity of two ungeneralised symbol values is defined in Figure 4.5 (a). It is simply 1

('identical') if the two symbols are the same, and 0 ('very different') otherwise.

Figure 4.5 (b) gives the definition of similarity of two symbolsets. It is defined by the

cardinality of the intersection of the sets divided by the cardinality of theirunion,thus measuring

the proportion of symbols that are common to both symbolsets. This is the same as the formula

used by [Winston, 1975] to measure membership in a group. Currently cRAM uses the same

formula for fit-scoring and proximity-scoring, although a future implementation should be less

tolerant of differences in the case of fit-scoring.

The definition of similarity of a gsymbol and a symbol is in shown in Figure 4.5 (c). It is
defined to be 0 if the symbol is not present in the gsymbol. Otherwise the score is 0.5 (meaning

'poor-but-acceptable') plus half the ratio of the frequency of the symbol in the gsymbolto

the largest frequency of any symbol in the gsymbol. Thus if the gsymbol consists of a large

number of low-frequency symbols (such as car colours), and if the instance symbol is one of
these, then the similarity score is high. Il on the other hand, the gsymbol includes a symbol

that was observed in most instances (such as the 'rectangular' sfiape attribute value of the

concept table\, and several other low-frequency symbols (such as for a few round or triangular

tabfes), and if the instance symbol is one of the low-frequency symbols, then the score will be

4.3. SIMILARITY

Figure 4.4: Similarity of numerical attribute values.

not much higher than 0.5. ln other words, the maximum symbol-frequency for a gsymbol is

used as a tolerance factor. As for symbolset similarity, the current version of cneu does not

distinguish between fit-scoring and proximity-scoring. The above formula was not based on

other research, and needs to be more thoroughly evaluated.

The similarity of a gsymbol and a symbolset is defined by averaging the similarities of the

gsymbol and each of the individual symbols in the symbolsef, using the definition in (c). The

formula for this is shown in (d).

The definition of similarity of two gsymbols is more complex, and is not shown in the figure.

It is similarto the definition of similarity of trvo symbolsetsexceptthat the differences between

the frequencies of each symbol is taken into account.

Boolean values are a special case of nominal values where only two symbols are allowed,

t3s

(a) Similarity of numerical values:
ungeneralised + ungeneralised

(both values are in range 0..1)

defauk tolerance

defauk "very different" difference

I
difference between
the two values

(b) Similarity of numerical values:
generalised + ungeneralised

Using "proximity-scoring"

default "very different" dffirence

I
difference between ungeneralised value

and mean of generalised value

(c) Similarity of numerical valucs:
generalised + ungeneralised

Using "frt-scoring"
of generalised value)

" v ery dffi re nt" diffe re nce,
(based on variance)

-il

differcnce betwein ungeneralised value
and mean of generalised value

136

proximity-score

= fit-score

o)

slmbol2) =

proximity-score (symbolsetl, symbolset2) -
= fit-score

(c)

proximity-score (gsymboll, symbol2) =
= fit-score

proximity-score (gsymboll, symbolset2) =
= fit-score

CHAPTER 4. THE MATCIIER

"s;mbol" : a single nominal value. eg. touching

"qrmbolset" : asetofnominalvalues. eg. (rectangle,square)

"gs5mbol" : a generalied symbol or symbolset, defined by
- a set of symbols
- a 'symbol-count' for each symbol.

(ie. the frequency of observation)
- an instmce-count

(ie. the total number of observed instances)

eg. count=6 (touching:S, separate:l)
eg. count=7 (rectangle:6, square:4, circle:l)

[-O 1"""ty different") if different

[("identical") if same

I
inrcrsection(symbolsetl, symbolset2) |

I
union(symbolsetl, symbolsetZ)l

(
| 0 ('bad") if symbol2 is not present in Gsymbol I

| - - frequency of symbol2
| , .-1'- in psvmboll..
lotherwise: 0.5 + -€@I-(2 * max(symbolcount)

\r rcxi.na. frequenq of' a symbol in gsymboll.

{ similarity(gsymboll, symbol)

lsymbolset2l

Figure 4.5: Similarity of nominal attribute values.

namely "true" and "false". The definition of an ungeneralisedboolean value, and the definition

of a generalised gboolean, are given at the top of Figure 4.6.

If both values are single ungeneralised boolean values, then similarity is I if they are the

same, and 0 otherwise, as shown in Figure a.6 @\ If one value is a gboolean, then the score is

the frequency of the single boolean value within the gboolean, as shown in (b). If both values

are gbooleans, then the score is based on the difference in the true-counf frequencies, as shown

in (c).

The similarity of two profile values (r'.e. vectors of values of the same type) is the average

of the similarities of the individual values. This assumes that the two profiles are of the same

type: they must have the same length, and each position of one profile vector has the same

meaning as the corresponding position of the other profile vector.

4.3. SIMILARTTT

proximity-score

= fit-score

proximity-score

= fit-score

proximity-score (gbolean I,
= fit-score

l-

t37

"boolean" : either true or false

"gboolean" : ageneraliedboolean, definedby
- true-count. (the count of true inscances.

- instanc€-count
(ie. the total number of observed instances)

eg. ((true-count=5)
(instance-count =7))

(b)

(c)

(booleanl, troolean2) = fO t]UuO') if diferent
I I ("perfect") if same

boolean2) = ['1r
uoot.an2 is true: truecount / instancecount

l_ifboolean2 is false: I - (truecount/ instancecount)

gboolean2) =

l{truecountt
/ instancecountl) - (truecount2 / instancecount2)

|

Figure 4.6: Similarity of boolean attribute values.

4.3.3 Relationship and rrclatee similarities.

The definition of similarity given in section 4.3. I referred to measures of similarity for pairs of
relationships and relatees, but did not state which pairs contribute. This section explains this

in detail. Throughout this section, and the rest of the chapter, the term rel.ationship/relatee wlll
be used to refer to a relationship and its associated relatee object.

First we must considerthe similarity score for two relationship/relatees. This is defined to be

a weighted average of the similarity of the two relationships (defined in terms of their attribute

similarities) and the similarity of the two relatees (defined by the overall-similarify formula

given earlier in Figure 4.3). The weights are predefined parameters.

The similarity of two structures or two contexts is defined in terms of prcperty similarity

scores and the scores of the set af winning correspondences between their parent, neighbour,

and subpart relationship/relatees. A winning correspondence is a pairing of two relation-

ship/relatees for which the similarity score is higherthan the score of any othercorrespondence

involving one or both of the relationship/relatees.

The best way to understand this is by referring to the example in Figure 4.7, which shows two

objects A0 and 80. Suppose we are concerned with the similarity of objects A1 and BI (the

large central blocks). Below the pictures are lists of the relationship/relatees for Al and Bl, and

between these are dotted lines that indicate the winning correspondences, each labelled with a

similarity score. Lines that have arrows at both ends indicate that the correspondence is higher

scoring than any other correspondence involving either of the relationship/relatees. Lines that

have arrows atjust one end indicate that the correspondence is higher scoring than any other

correspondence involving the relationship/relatee at the source of the line. For example, A1-

138 CHAPTER4. THEMHrcHER

A5 is most similar to 81-84, but not vice versa since BI-84 is much more similar to 41-A6.
Each of the scores shown in the diagram contribute to the context-similarity score for AI and

B I . (In this particular case there are no subparts, and so the structure-similarity score is defined

only in terms of properties similarity.) The scores for all the possible correspondences that do
not contribute are not shown.

Thus, the set of winning correspondences includes the best conespondence for each relation-

ship/relatee for each of the two objects, even if these conflict with each other. This scheme has

various beneficial consequences that are discussed in section 4.3.4. Before this, however, we

will considerhow multi-rebrtonships are incorporated into the above scheme.

A1
p ar e nt re lat ions hip/r e late e s :

B1
p ar e nt re latio ns hip/re lat e e s :

A1-AO

neighbour relationship/relateey:- neighbour relationship/relatees:
A1-A2

Ar-A3 -wl;-'---+-> ll-139!)----
A1-A4 - - - :-_A - - t=r> z Br-84

Ar-As -+g{--
A1-A6 -2.--'

Figure 4. 7 : Winning relationship/relatee correspondences.

Multi-Relationships.

A multi-relationship is treated in exactly the same way as an ordinary relationship, except that

its winning correspondence may contribute more to the overall similarity score. The weighting

scheme is discussed in section 4.3.6.

Figure 4.8 shows the simplest situation, where two objects Al and Bl both have a multi-

relationship to a generalisation of several neighbouring circles. (It is assumed that individual

relationships to the circles have been dropped from the description, either during instance con-

struction or during generalisation.) The correspondences are straightforward and unambiguous,

as shown at the bottom of the figure. The difference between the howmany counts contributes

minimally to the similarity score of the two multi-relationships, since it is desirable to be quite

4.3. SIMILAKTTY.

tolerant of such differences. Distinct individual relationship/relatees should contribute more to

the similarity score than similar relationships that can be clustered into a multi-relationship.

In Figure 4.9, object Al only has ordinary neighbour relationships with its neighbouring

circles, rather than a multi-relationship. The winning correspondence for each of these is with

Bl's multi-relationship. However, the winning correspondence for BI's multi-relationship is

with the A1-A2 relationship because only A2 has a circle on both sides of it, as have 83 and

84. The fact that A and B have a different number of circles is not explicitly accounted for
by the similarity scheme, except by properties such as number-of-subpan. Dissimilarities are

reflected by the fact that the AI-A2and, A1-A4 relationship/relatees do not match the Bl
multi-relationship perfectly, since the generalised multi-relationship relatee expects 757o of
instances to have a circle on the left, and 757o of instances to have a circle on the right, and A2
and A4 only satisfy one of these conditions.

Figure 4.10 shows a situation in which the difference in the number of circles is much

more significant. Again, the scoring scheme does not explicitly take this into account, but

the difference is adequately captured in the similarity score because A2 does not match the

generalised relatee of BI's multi-relationship particularly well, since it does not have circles

on either side.

Figure 4.11 shows a comparison for which object BI includes not only a multi-relationship

to the generalised circle, but also has two ordinary relationships to the circles, 82 and 86,

which are atypical (since neither of them have circles on both sides, and I|6 has a rectangular

block immediately to its right). Similarity is evaluated in the same way as above, with each

relationship contributing its winning correspondence. In this case, the AI-A2 relationship

matches Bl-82, the A1-A3 relationship matches Bl's multi-relationship, and the AI-44
relationship matches B1-8'6. The conespondence involving the multi-relationship contributes

the most, which ensures that a mismatch for this relationship will have a greater negative effect

on the overall score than a mismatch on the ordinary (atypical) relationships.

T\vo objects may be related to the same relatee.

A minor aspect of comparing relationship/relatees is that sometimes two objects being matched

might both have a relationship to the same relatee object. This occurs most frequently when

comparing instances within the same scene, as when the group-finder is looking for groups of
similar objects. For example, the similarity of .42 and .43 in Figure 4. I 2 both have a neighbour

relation to the same object, AI, and both have a parcnt relationship to the same object, A0.

The two relationships differ, but the relatee similarity must obviously have a perfect similarity

score, and does not require any evaluation.

This situation may also occur when comparing two concepts in concept-memory, both of
which have a relationship to the same relatee concept. For example, two existing generalised

concepts, swivel-chair and four-legged-offiee-chair, may both have a parent relationship to

139

140

Figure 4.8: Multi-relationship similarity.

CHAPTER 4. TIIE M.XTCIfrR

p are nt re latio ns hip/relat e e s :

nei ghbour re lations hip/relatees :

AO
A
|

-1/

H\-\ \--
-

A1

t
K[82+B3+B;l+B5]

A2

A2
A3

A5

p arent re lations hip/re late e s :
BI

AI-AO
ne ig hbour relations hip/relatees :

Ar-A2 --Y=====?Bt-[82+B3+B4+8fl (*4)

AI-A3
Al-A4 ----1n.{r-

----AI-AS 1-

Figure 4.9: Multi-relationship similarity.

the same concept office and a neighbour relationship to the same concept desk. Therefore,

although the relationships with the office and desk concepts may differ, the scores of the relatee

similarities must be perfect, without requiring evaluation.

m* m' p*ffiffi

A<,r**'
BO

t
trKtB2+83+Bz1+B5l

B1
parents relationship/relatees: porents relationship/relatees:

A1-A0 <;--
neighbour relationship/relatees: neighbour relationship/relatees:

A1-[A2+A3+A4] (*3)

A1-A5 <----

4.3, SIMILARITY t4l

AO
A

I*.2>
-\
AI

BO

A2

!\2
A3

A5

t
ffi[B2+B3+B4+85]

B1
p are nt re latio ns hip/re late e s : p are nt relat ions hip/re late e s :

A1-A0 -€-
ne i ghbo ur re lations hip/ re lat e e s : nei ghbour re lations hip/relatee s :

A1-A2

A1.A5

Figure 4. 1 0: Multi-relationship similarity.

M
A2
A3

A5

B1

snt relationsh@relstees: parent relationship/relatees:

A1-AO

ne i g hbour relationship/re latees : neighbour re lations hip/relatee s :

A1-A2
A1-A3

A1-A4
AI-45

Figure 4.1 I : Multirelationship similarity.

142 CHAPTER 4. TIIE MKTCHER

sanv rekilee

AOz- --s

Figure 4.12: Two objects with the same relatees.

4.3.4 Local consistency between correspondences is not enforced.

A distinctive characteristic of the similarity definition is that it does not enforce local consistency

between the winning relationship/relatee correspondences that contribute to the object similarity
score. This contrasts with a scheme that requires a consistent set of one-to-one bindings.

This section discusses some of the beneficial consequences of this approach. (The similarity
definition also does not require global consistency, and this will be discussed later.)

Local ambiguities are accounted for by 'implicit grouping'.

A consequence of allowing locally conflicting correspondences, and a reason why it is ap-

propriate, is that it implicitly accounts for ambiguities (local to the comparison) that could be

resolved by the creation of explicit multi-relationships or groups. To illustrate this, consider

the example in Figure 4.7 given earlier. Object AI has an additional circular neighbour, 43,
that Bl does not have. However, this does not lower the similarity score significantly, since the

A1-A3 relationship still matcheslhe B1-82 relationship quite well, and its similarity score

contributes to the overall similarity score, rather than contributing a zero score because it con-

flicts with the higher-scoring (A1-A2):(81-B.2) correspondence. Thus, the scoring scheme

implicitly assumes that A2 and A3 could be generalised to form a concept (or a typical-member

concept of a group) and referred to via a single multi-relationship, which could then be matched

unambiguously with the BI-82 relationship.

On the otherhand, the AI-A5relationship has no high-scoringcorrespondences with the rela-

tionships of B l, and so it does contibute a poor score, since the highest-scoring correspondence

is with 81-84.

Therefore, a missing parent, neighbour, and subpart only contributes a poor similarity score

if it doesn't match any of the parents, neighbours, and subparts of the other object.

Another more obvious example of the usefulness of this scheme is given in Figure 4.13, in

which it is assumed (for the sake of this example) that C2..C5 and D2..D7 have not already

4.3. SIMILARNT

been explicitly grouped. The overall similarity score of CI and Dl is high, as it should be,

even though there are two extra D circles.

The winning correspondences of the two extra circles (considered to be D4 and D.f) are

higher-scoring than the A1-A3 correspondence in the previous example, since in that situation

the extra part, A3, differed more significantly from 82 because it had a circle on one side, while

both of the extra D circles match very well with one or more of the C circles. Thus the similarity

scheme has the desirable consequence that it is implicitly more tolerant of extra 'unmatched'

relatees that are within a large group of similar relalees (whether explicitly grouped or not).

Figure 4. 1 3 : Locally ambiguous correspondences.

Local ambiguities are accounted for by implicitty allowing'multiple roles'.

Sometimes the locally conflicting winning correspondences may not be due to several relatees

of one or both objects being similar to each other, but due to several differing relatees in one

object ambiguously matching one or several relatees of the other objects in different ways. The

similarity scores may be roughly the same, but as a consequence of different forms of similarity.

For example, Figure 4.14 shows two objects A0and 80, and the winning conespondences that

contribute to the similarity score of the AI:BI correspondence. From the point of view of the

AI:Bl comparison, the highest similarity score for both the A1-A3 and AI-A4 relationships

is with the 81-F.3 relationship. The former has a high context similarity and a low structure

similarity, while the latter has a high structure and a low context similarity. The highest score

for the BI-83 relationship is with the A1-A3 relationship, although this is only marginally

better, on the basis of the relationship similarity and the context similarity of .A3 and 83, since

83 is structurally more similar to 44.

t43

DOffid
D1

parent relationship/relatees: parent relationship/relatees:
ct-co -<-- ---9'91- -> Dt-Do

144 CHAPTER 4. TIIE M-XTCHER

Thus, although object BI could be considered to be missing a neighbour, the overall similar-
ity score for AI and BI is not significantly lowered by the fact that BI has fewer neighboun
(although the difference will be reflected to a smaller extent in other ways, such as the dis-
similarity of the context profiles of AI and BI, and the dissimilarity of the aspect-ratios and

density-profiles of A0 and 80.) Thus cnnu's similarity definition implicitly accounts for the
fact that object 83 partially matches both ,43 and A4 (in different ways), and could therefore

be generalised in two alternative ways by the generaliser (as is discussed in chapter 5).

Figure 4.14: Local ambiguities.

Similarity can be more efficiently evaluated.

The absence of a requirement for local consistency has beneficial consequences not only for the

effectiveness of the matcher, but also for its efficiency. This is because the search for the winning

correspondences only involves finding the best correspondence for each relationship/relatee

independently, rather than having to find the best consistent set of correspondences. Thus the

comparisons of relationships for a particular correspondence can be evaluated in O(nz) rather

than O(n!) time, where n is the number of relationships.

kA2

A.3

A4

82

B3

AI
parent re lationship/relate es : p are nt re latio ns hip/re late e s :

A1-AO
neig hbo ur relationship/relatees : neighbour relations hip/relatees :

AI-A2
A1-A3< -0'6-
A1-A4 -f.,tr-- -----7

B1-83

4.3. SIMILARITY

4.3.5 Global consistency between corneslmndences is not enforced.

Another characteristic of the scoring scheme is that the set of winning correspondences that

define the similarity of two objects do not have to be consistent with the set of winning cor-

respondences of any other object comparisons. In other words, in addition to not explicitly

enforcing local consistency, the matcher also does not enforce global consistency. This sim-

plifies the definition of similarity, and makes evaluation simpler and more efftcient, since each

comparison can be performed independently (except far using similarity scores produced by

other comparisons) without having to search for or maintain a globally consistent set of cor-

respondences between objects. It keeps multiple competing hypotheses active simultaneously,

thus avoiding the need for a backtracking mechanism, and potentially permits a much greater

degree of parallel computation. [t also enables components of an object to play multiple roles

when matched with another object.

For example, in Figure 4.7, the winning relationship/relatee conespondences that contribute to

the similarity score of A4 and 83 do not have to be consistent with winning relationship/relatee

correspondences that contribute to the similarity score of Al and B.l, or vice versa. However,

in this particular example they are consistent, with both "points of view" having the same

winning correspondences.

An example of an inconsistency is illustrated in Figure 4,15. The similarity of Al and

Bl is defined in terms of two winning neighbour correspondences, (AI-A2):(BI-82) and

(AI-A3):(BI-83), as shown in (a) of the figure. During the process of finding these winning

correspondences, the matcher may try to evaluate the A2:83 conespondence, shown in (b),

whose similarity is defined in terms of the winning correspondence (A2-AI):(83-BI). This

is inconsistent because it is based on the similarity score for Al and BI, which in turn is based

on the assumption that A2 is matched with B.2, not 83. This inconsistency is ignored. The

similarity of A2 and 83 simply requires that the neighbours Al and Bl arc similar, and is not

concerned with the selection of winning correspondences on which the A1:BI score is based.

The inconsistency in this particular example does not indicate a problem with the similarity

scheme, since the A2:83 correspondence is not a globally-best correspondence anyway. A2

matches B2bener, and I|3 matches .A3 better. In general, the local winning relationship/relatee

conespondences of a globally-best object correspondence will be consistent with those of other

globally-best object correspondences, unless there are ambiguities. ln the case of ambiguities

we want the matcher to produce multiple altemative correspondences, so that the generaliser

can deal with them appropriately.

Global ambiguities may be accountcd for by 'implicit groupings'.

In the case of local ambiguities discussed earlier, the matcher assumes that the competing

relationship/relatee correspondences could be combined into a single multi-relationship, and

this justifies allowing inconsislencies between the correspondences. In much the same way, the

matcher assumes that the competing objectcorrespondences could be combined into a single

group, and this justifies allowing inconsistencies between the conespondences.

145

146 CHAPTER 4. TIIE MAICHER

AO

rKfr

/Ri \

winning conespondcnce

--- -\\

K:x
./\--

--//winning conespondence

winning cotespondence

t? Br

El1_sz
/\---

--/w inning c o rresp ondence (poor)

Figure 4. l5: Global inconsistencies.

Global ambiguities may be accounted for by 'implicit multiple generalisations'.

Inconsistencies are also permitted because objects sometimes play multiple roles (structural or

contextual), depending on the "point of view" from which they are considered. Section 4.3.4

discussed how objects can play multiple roles locally within a single comparison. This section

considers it at the global level.

For example, Figure 4.16 shows two objects A0 and BO and the winning correspondences

for the comparisons of A3 and 83, and of 44 and F.3. The similarity of A3 and 83 is defined

in terms of a winning correspondence(A3-A2):(83-82), while the similarity of A4 and 83 is
defined in terms of a winning correspondence(A4-A5):(83-82). Locally there is no ambiguity

orinconsistency, but globally there is an inconsistency becauseB2is matched with both A2and

A5. However, it is desirable that such inconsistency is accepted within the similarity scheme

since otherwise it would not be possible for A3 and 44 to both be considered similar to 83 on

the basis of having a tall rectangular block immediately to the right. From the point of view of
the A4:83 comparison, object A5satisfies this role, while from the point of view of the 43:83
comparison, object '42 satisfies it.

4.3. SIMILARIru

Figure 4.16: Global ambiguities.

4.3.6 Weightings.

Section 4.3.1 stated that overall similarity, structure similarity, and context similarity, are all

defined by weighted averages of feature similarities, where the weights determine how much

that feature contributes to the score. This section explains the different kinds of weights that

are used. For clarity it is assumed that a (generalised) concept is being compared with an

(ungeneralised) instance.

Attributes are weighted by importance and variance.

The similarity of attribute vectors is defined by a weighted average of the individual athibute

similarities, and each weight is based on two factors. The first factor is a globally defined

domain-specific measurc of importance of an attribute within a particular kind of attribute

vector. For example, in the structure-properties attribute vector, colour might be given a lower

weight than shape, especially in adomain where objects in the same categories frequently have

a variety of different colours.

The second factor is the variance of the concept's attribute, which can be considered to be

a learned measurc of attribute importance. For example, if the colour attribute of the concept

bookhas a high variance as a result of seeing many books of different colours, then that attribute

should not contribute much when trying to classifu an observed object as a book. This has been

discussed by lFisher, 1987a], who refened to a high-variance feature as having low predictive

t47

L___
.2-

winning conespondence

-7sr
El1+sz

/w4\\
- -tt{"o,:p'ry^:-./

-e- -finffnioifi"a1^A - -) stAI
A5 @]1>nz
\\ -r/- - _Wgslrnrpoyy _ /

148

utility.

CHAPTER 4. TIIE MATCHER

Relationship/relatees are weighted by importance, variance, and instance.

In the definition of structure and context similarity, the contribution of the similarity score for
each winning relationship/relatee correspondence is weighted on the basis of several factors.

One factor is relationship-importance which is computed by the instance construction mech-

anism. In the case of neighbour relationships this is the neighbourliness of the two objects

involved, which (as explained in section 6.3.I of chapter 6) is based on factors such as distance,

relative size, connectivity, etc. Likewise, subpart and parent relationships are weighted primar-

ily on the basis of relative size. A subpan relationship/relatee involving a very small subpart

is assumed (in the absence of other knowledge) to be less important than a relationship/relatee

involving a large subpart.

The weighting of the similarity for a winning relationship/relatee correspondence is also

based on instance-counts. lf the relationship ofthe concept has a low instance-count (relative

to the instance-count of the concept), and if the similarity score is low, then that score is given

a low contribution weight. [f, on the other hand, the similarity score is high, then the score

contributes fully, even though the instance-count is low

For example, if a concept television-set has a low-occurrence neighbour relationship with the

concept aerial, then if we observe a television without an aerial, the similarity score should not

be reduced by this 'mismatch'. But if we see a television that does have an aerial that matches

the aerialconcept, then its similarity score should contribute fully to the overall similariry score,

thus providing predictive evidence that the object is a television. To take this into account, the

relationship/relatee can be weighted by the maximum of the relationship frequency and the

similarity score.

The contribution weighting for a relationship/relatee is defined as the minimum of the two

factors discussed above, as shown in the following formula. If both relationships are gen-

eralised, then a slightly more complex formula must be used, which takes into account the

variances and instance-counts of both descriptions.

weighting I relationship I /relatee], relationshipUrehtee2 I =

minimum (maximum (relationshipl -importance, relationship2-importance),

maximum
I

)

, similari4,-rr"*\ins tanc e - co unt I re lations hip I I
instanc e - count I c oncept I]

A multi-relationship weighting is based on its howmanycount.

The contribution weight of a multirelationship is based on its ftowmanycount, as shown by the

graph in Figure 4.17, where the horizontal axis is the range of howmany values from 1 upwards,

and the vertical axis is the weight. The weights on ordinary relationships, as considered in

the previous section, are all assumed to be in the value 0 to l, but since a multi-relationship

4.3. SIMILARITY 149

is a summary of several ordinary relationships, it can contribute more. The weights shown

in the graph may, however, be lowered by relationship unimportance, high variance, and low

instance-count.

Figure 4. I 7: Multi-relationship weightings.

4.3.7 restriction is used to measure structur€-only or context-only simi-

Sometimes it is necessary to measure the similarity of only the structure of two objects, ignoring

context; at other times it is necessary to measure the similarity of only the context, ignoring

structure. For example, if an operator who is holding onto an object instructs a robot to "find one

of these in that pile of objects", the robot should not search for another object which also has a

hand wrapped around it. The robot should focus its attention only on the structure of candidate

objects, not their context. Conversely, if the operator instructs the robot to "collect whatever

is in the letterbox", it should identify "whatever" on the basis of it having a letter-box context,

and should ignore its structure. Thus, measures of similarity may require scope-restriction.

The simplest way to measure structure-only similarity is defined by the structure-similarity

formula given earlier in Figure 4.3. Likewise, context-only similarity can be defined by the

c o nt ext - s im i/an ry formu la.

Unfortunately this is not sufficient to give an accurate illeasure, because the structure-

similarity score actually measures some context similarity as well, and the context-similarity

score measures some structure similarity. This is because the subpart objects of an object A may

have neighbour relationships to other objects that are nor within the substructurc of A. Like-
wise, the neighbours of A might have neighbour relationships (or even subpart relationships)

to objects that are within the substructure of A.

Scope

larity.

qrye99qqg q

150 CHAPTER 4. THE MATCHER

For example, in Figure 4.18, the structure-similarity formula applied to potplantl and pot-
plant2 would ignore the neighbour relationships from potplantl to deskl, and from potplant2
to shelf2, but would not ignore the neighbour relationships from potl to deskl , and from po2
to shelf2. Likewise, the context-similarity formula would ignore the subpart relationships, but
would not ignore the neighbour relationships from deskl to pofl and from sfie/fZ to pot2.

Figure 4. I 8: Structure-only similarity.

The structure and context similarity formulas as given earlier are adequate for giving a rough

structure-only or context-only similarity score for basic matching and generalising, since the

relationships that are mistakenly included (such as thepor,l-deskI relationship) are neverdirect

relationships of the two root objects being matched, and hence they do not contribute as much

to the score as the direct relationships. However, if accurate scope restriction is required, the

entire substructure, or entire context, must be excluded from contributing to the measure of
similarity.

For example, a measure of structure-only similarity for chairl and chair2 in Figure 4. I 9 would

need to ignore all of the relationships from the subcomponent objects that refer to other objects

in the room that are not part of the chair substructure. Likewise, a context-only similarity

must be based on the parent and neighbour relationships of the two chairs, but ignoring any

relationships from contextual objects to subcomponents of the chairs. It could be argued that, to

be even more accurate, the similarities of the neighbour relationshipsfrom the subcomponents

of the chairs to non-subcomponents should be included in the context-only score, but this would

require a more elaborate evaluation mechanism.

Scope restriction need not be used just for obtaining object context-only or structure-only

scores, since any selection of objects could be treated as in-scope for a particular similarity

measure. For example, when matching the potplants in Figure 4.18 it might be desirable to

match the relationships to the external context, such as to the desk and shelf, but without

actually matching the relatees themselves. Thus the matcher would find that the pots of both

potplants
^re

on top of something horizontal and much larger than the pot, but would not be

concerned with the difference between those two somethings.

Contents-similarity ignores the arrangement of subparts.

A special kind of scope-restriction would be needed to obtain a contents-similarity score. This

score is defined to be high if the two objects have similar contents (i.e. subpart relatees), even

if the arrangement of the subparts differs considerably. This is the case when comparing the

4.3. SIMILAruTT

personbac

wall

Figure 4. l9: Structure-only

two bedrooms in Figure 4.20. T\e contents-similarity score could be used by the generaliser

to justify the creation of a new generalised concept from two instances, even if the ordinary

structure-similarity score is poor.

An estimated measure of contents-similarity can be defined in terms of the similarity scores

of the subpart relatees, ignoring the similarity scores of the subpartrelationships. This is simple

to evaluate, but il suffers from the same limitations as for the simple method of computing

structure-only and context-only similarity described earlier: The subpart similarities are defined

in terms of neighbour relationships to other subpafis, and thus their arrangement is not actually

being ignored. Therefore, an accurate measure must be defined in terms of the structure-only

similarities of the subparts.

4.3.E Proximity-scoringversus Fit-scoring.

Section 4.1 stated that two kinds of scoring are required by the matcher: proximity-scoring and

fit-scoring. This section explains this distinction in more detail.

Both forms of scoring are defined by dividing the measure of absolute difference between an

instance and a concept by some factor, where this factor indicates what difference is considered

to mean "very different". The result is then normalised to give a score between 0 and l, so that

a pair of "very different" objects will score 0, and identical objects will score l.

t5l

rooml
person I

'4-walll

room2

r52 CHAPTER4. THEMATCHER

l_

Figure 4.24: Two objects with high contents-similarity.

The absolute difference measure is defined by the 'distance' in object-space between the

instance and the boundary of the concept, and this is inversely proportional to the measure of
similarity. The 'boundary' of a concept is defined in terms of the variance of the concept, such

that the larger the variance, the wider the boundary. This is illustrated abstractly in Figure

4.21 which shows two regions within object-space, each indicating the boundary of a concept.

(Atypical instances may be outside the boundary.) The dot on the diagram denotes a particular

observed object.

The factor defining "very different" depends on which kind of scoring is required. In
proximity-scoring, it is a globally-defined value that defines what "very different" means

within object-space as a whole. In fit-scoring, it is based on the variance of the concept itself.
(This was discussed in section 4.3.6 for the specific case of numerical attribute values.) Thus,

for the example in Figure 4.21 , the instance has the same proximity-score with respect to both

concepts, but has a much lower fit-score with respect to concept2 than conceptl, since the

variance of concept2 is much smaller.

A proximity-score indicates how close an instance is to a concept, regardless of its variance

(except to define the concept boundary), and is used by the generaliser to determine whether an

instance is close enough to a concept to justify generalisation. A fit-score, on the other hand,

indicates how typical an instance is of a concept, and indicates to the generaliser whether the

existing concept could be generalised to cover the observed instance, without causing too large

a drop in specificity, or whether a new concept should be created.

Proximity-scoring, rather than fit-scoring, is used within the matching process itself to find

winning correspondences between relationship/relatees. This is necessary to prevent it from
producing a very low score for an obviously correct relationship/relatee correspondencejust

I

clock2

I

4.3. SIMILARTTY

because the generalised relationship or relatee has a very low variance. For example, consider

Figure 4.22 which shows two chairs, one of which has a number of 'faults', or at least unusual

features. Suppose the system has already observed 100 chairs identical to chairl,andhas created

a concept chairfrom these. If the matcher is given a description of chair2,then the fit-score (and

the fit-scores for the correspondences between its subcomponents and the subcomponents of
clrair) will be very low, due to the very low variances of cftairfeatures. However, chair2 clearly

matches chairwell (within the space of all possible objects, which includes elephants and paper-

clips) and the correspondences between its components are strong. The proximity-scores will
be high, and are therefore more appropriate for evaluating and selecting relatee/relationship

correspondences.

Figure 4.2 I : Proximity-scoring ve rs us Firscoring

4.3.9 Structure and context interpretations affect similarity.

Section 3.4.3 of chapter 3 explained the various types of interpretation that each structure de-

scription and context description can have, including complete, partial, disjunctive, impofted,

any, partial+disjunctive, panial+impotted, and partial+typical. Each of these affects the defini-

tion of similarify. To simplify the discussion, most of the examples will refer only to structure

similarity, but the same points apply to context similarity. Also, the examples deal with the

situation of matching a concept with an instance, except where indicated otherwise.

The previous examples of structure similarity in this chapter have involved structures with
complete interpretation, in which case the best conespondences of a// relationship/relatees of
both structures contribute to the similarity score. If, at the other extreme, the concept structure

has an any interpretation, then it matches perfectly with everything. However, the weighting

of such a structure will normally be zero so that the "perfect score" does not contribute to the

overall object comparison score anyway.

153

t54 CHAPTER 4. TIIE M{rcHER

Figure 4.22: Proximity-scoring ve rsus Fit-scoring

If the concept structure is partial and the instance structure is complete, then only the

winning correspondences for the concept's relationship/relatees contribute to the score. This is

illustrated in Figure 4.23 where the subparts of the complefe stmcture of Bl that 'miss out' do

not affect the similarity score, and therefore AI and Bl have quite a high measure of similarity.

However, since a structure description that has partial interpretation must also have a high

variance, this prevents the structure similarity from contributing significantly in the overall

similarity score, unless the context similarity score also has a low weighting.

Figure 4.23: partialcompared with complete

If both objects being matched are generalised concepts, and if both structure descriptions

arc partial, then there are two ways of measuring similarity, depending on whether we require

firscoring or proximity-scoring: In the case of fit-scoring, the first concept is assumed to be

more generalised than the second, and therefore the subparts of the first concept should be a

subset of the second concept's subparts, since the former can be assumed to be more partial, as

a consequence of the generalisation process. Therefore, only the winning correspondences for
the first concept's relationship/relatees contribute to the similarity score, and any of the second

E
panial

/\,r\
MA3
\\

4.3. SIMILARITY.

concept's subparts that miss outdo not affect the score, just as forthepartial:complete situation

above. An example of this is given in Figure 4.24, where only the best correspondences

involving A2, A3, and A4 contribute to the similarity score, using equation (a), thus allowing

any additional Bl subparts to be present without affecting the score.

ln the case of proximity-scoring it is less clearhow to measure similarity. cnnu simplifies the

problem by assuming that both concepts are equally general, and should have the same partial

set of relationship/relatees to be considered similar. Therefore, the similarity score is measured

in the same way as for complete:complete similarity, where all winning correspondences of
both concepts contribute to the score. This is shown by equation (b) in Figure 4.24.

155

Epa4lal Wilal

/\\
winning correspondences

;" -;-to*Y^.1
83 B4 85

(a) fit-score = (0.72+0.4 +0.85)/3 =0.66

(b) proximity-score = (0.72+ 0.4 +0.85 + 0.3 + 0.56) I 5 =0.57

Figure 4.24: partial compared with partial

The similarity of disjunctive concepts is the similarity of the best disjunct pairing.

When the structure (or context) of the concept being matched has a disjuncrive interpretation,

then similarity is defined by the highest disjunct (i.e. subconcept) similarity, using structure-

only scope restriction. For example, Figure 4.25 shows a chair concept whose structure

is defined disjunctively by the subconcepts kneelerchair, armchair, and swivelchair. The

structure-similarity of chair and chairl is defined as the highest score of the structure-only

similarity of chairl and the disjunct subconcepts.

If the chairconcept also includes some partial struc$re, then this partial structure is matched

with the chairl structurc in the manner defined earlier for patial:complete comparisons, and

the similarity score is combined with the best disjunct similarity to give the overall structure

similarity.

If the two objects being matched are both generalised concepts (such as when matching the

relatees of two multi-relationships, or when reorganising concept memory), and both have

disjunctive structures, then the comparison is more complex. For example, consider the three

shelves in Figure 4.26, for which each shelf and each shelf-base are described in terms of a

multi-relationship to a disjunctively-defined concept, such as shelfl-item. The disjuncts for

156 CHAPTER4. THEMHTCHER

an:l-context

l-cT-d;l
structure: dkjunctive

Figure 4.25 : Disjunctive structure comparison

each shelf-item concept are indicated with frequency ratios indicating how many instances of
each disjunct contributed to the generalisation.

If we are matching the disjunctive concept shelfl-item with the disjunctive concept shelf2-

item, then the best correspondences between the disjuncts are identified in the same manner as

for finding winning correspondences for parent, neighbour, and subpart relationship/relatees, as

illustrated in Figure 4.27 . In other words, the best conespondence for each disjunct contributes

to the score, even if it conflicts with other winning correspondences. A single similarity score

is defined as an average of these winning scores, as shown by the equations (a) and (c) in the

figure. Although not shown on the figure (for simplicity) these scores are weighted by the

instance-frequencies (i.e. the ratio of the instance-counts to the concept's instance-count).

In addition to the disjunct similarities, the similarities between the instance frequencies are

also averaged, and both of these scores are combined to form the overall disjunction similarity
score. For example, when matching shelfl-item with shel8-item, the differences in instance-

frequencies for the pots, jugs, and frypans lower the similarity score, as shown in equation (d)

of Figure 4.27, where instance-frequency similarity is only 0.74 rather than 0.89 (from equation

(b)).

In the current version of cRAM, disjunction similarity for two generalised concepts is defined

in the same way for both fit-scoring and proximity-scoring. It has not yet been determined

how to meaningfully define and distinguish the two types of scoring when dealing with two

generalised disjunctive descriptions.

If the structure or context of one concept is defined by an 'impon-from' specification that

refers to a disjunction of other concepts, then similarity is defined in the same way as for
ordinary disjunction, since both specify a list of concepts, with associated instance-counts.

le
tg
IE
Y.

ut y-conrcxt

larmcha-iFlK

,s>

'."f'
/

any-contex

ltn-Aturcffil4-

4.3. SIMILARITY.

Figure 4.26: Similarity of two disjunctive concepts.

4.3.10 Superrconcept and subconcept similarity can be used to estimate the score.

Section 4.2.6 stated that the matcher may sometimes be asked to match two objects, one of
which one has already been matched with a superconcept or a subconcept of the other. ln
this situation, an estimate of similarity should be definable in terms of the subconcept or

superconcept similarity. This section explains how this can be done, although it has not yet

been implemented in the GRAM system. It is only applicable to proximity-scores.

Figure 4.30 (a) shows an example where a measure of similarity for object23 and cftair is

required, given that the similarity score between object23 and swivelchair has already been

computed. This score can be used as a lower-bound on the required score, as illustrated

abstractly in (b) of the figure: This shows the boundaries of a concept and a subconcept, and

an object (the dot) to be compared with the concept. The length of the line from the object to

157

dkjuncts(
pot 4t7
jus 2n
frypan Il7)

disjuncts(
pot 4ft
jug 2n
spoon I/7)

lshdn-lA
disjunus(

pot 5/8
jus 4E)

158 CHAPTER 4. TI{E MNTCTfrR

shelf-item1 disjuncts shelf-item2 dis.iuncts

pot (*4)

-7jug (*2)
UT

frypan (*l) --{-' -01- - - spoon (+l)

(a) average of best disjunct similarities =(l+l+ 0.7+0.5)14 = 0.8
(b) average of instance-frequency similarities=

| -(l4n -4fi1 + l2l7 -znl + llt7 -4171 + ll7 - llTl)i4 = 0.89

shelf-iteml disjuncts shelf-item3 disjuncts

pot(*4) ---0.!__ -_--jug(*5)
jug (*2) z.- .-1g- ----*--= -

=-
frypan (*3)

frypan(*l) -+)*----7

average of best disjunct similarities =(0.7+l+l)/3 = 0.9
average of instance-frequency similarities =

| - (l4n - 3/81 + l2l7 - 5l8l + lllT -3181) I 3 = 0.74

Figure 4.27: Similarity two disjunctive concepts.

the boundary of the subconcept is inversely proportional to the similarity score, and it can be

seen that this is a lower-bound on the proximity-score for the object and the concept

However, this assumes that the subconcept is sufficiently typical of the concept that it lies

within the concept boundaries relative to which proximity-cores are measured. Figure (c) shows

why the object:subconcept score is not a true lower-bound if this is not the case. Thercfore,

the estimated similarity score must be based not only on the available object:subconcept score,

but also on the typicality of the subconcept with the concept, assuming that this is recorded in

each subconcept description.

A lower-bound score obtained in this way is useful because it may enable the matcher to

immediately abandon further evaluation of other object comparisons if their upper-bound scores

are lower than this lower-bound.

Proximity-scores can be estimated in a similar manner when an object has already been

matched with a superconcept. This situation is shown in Figure 4.29 (a), where a measure of
similarity between objec23 and swivelcftajr is to be defined in terms of the already-available

similarity score between object23 and the superconceptchair.

In this situation, the superconcept similarity score is an upper-bound on the required score.

(c)

(d)

4.3, SIMILARITY.

Figure 4.28: Similarity using subconcept and superconcept similarities.

The reason for this can be seen in (b), where the distance from the object to the superconcept

(which is inversely proportional to the measure of similarity) is less than the distance to the

concept. However, as before, this assumes typicality of the concept within the superconcept,

and so the upper-bound must be modified according to the measure of typicality specified in

the concept description.

An upper-bound score obtained in this way is useful because it may enable the marcher to

immediately abandon further evaluation of the comparison if that upper-bound is lower than

the minimum score required by the larger system that invoked the matcher, such as when the

classification system has already found one classification for objec23, and is trying to find a
better classification.

Sometimes the matcher might be asked to match two objects which have both been previously

classified as belonging to different subconcepts of the same superconcept. Figure 4.31 (a) gives

an example of this situation. Suppose that objectl in officel has already been marched well

159

(a)
to be matchedl-ffirt -:--

(b)
subconceDt
similarin scorZ--:. The (object : subconcept) score

is a lower-bound.

object

/./
required score

(c) Ifsubconcept is atypical, then the (object: subconcept) is
not a true lower-bound.

subconcept
similarityscare---1

object

required score

subconcept

160 CHAP]IER 4. THE MATCHER

(a) Fffif --- "t'"4Y4!'!"!""'t::

\
lffiieiifraFl

-rfr'r6fir{

required score(b)'\

object

subconcept /
similariry score

(object : superconcept) score
is an upper-bound.

Ifconcept is atypical, then the (object: superconcept) score is
not a true upper-bound.

subconcept
similarity,score- - - 1

obiect '

./
required score

Figure 4.29: Similarity using subconcept and superconcept similarities.

with the concept swivel-chair,perhaps during instance-construction, but has not been explicitly

matched with the more general concept chair. Suppose also that object2in office2has already

been matched well with the concept standard-chair. lf the system is now required to compare

officel and office2, then in doing so it will need to compare objectl and object2. Given their

previous classifications, an estimated measure of similarity can be defined in terms of the

similarity of swivel-chairand standafi-chair,andthis can be estimated in terms of the variance

of theircommon superconcept,chair. More specifically, an upper-boundon the objectl-object2

similarity can be defined in terms of the variance of the chair concept.

This is illustrated abstractly in (b) of the figure, where the large circle denotes the boundary

of chair, and the smaller enclosed circles denote swivel-chair and standard-chair, with objectl

and object2lying within these. The maximum width of the cfial'rboundary must be larger than

the distance between objectl and objecA, assuming that the two subconcepts are sufficiently

typical. If they are atypical, then the upper-bound must be modified accordingly.

(c)

4.3. SIMILARIry,

The upper-bound score dsfirred in this manner is most useful if the cornmon supersoncopl is

not much more general than the subconcepts. In other words, the lower its variance, the closer

the upper-bound score will be to the actual score.

161

(a) to be marched

feffil

\
---f;e6r-6'6"fr;"

aheady natchedearlier

tffiffil
tt-"t'

--'-to-Pt6"@

Figure 4.30: Similarity using subconcept and superconcept similarities.

t62 CHAPTER 4. TTIE M.ATrcHER

alreadv tmtchcd I
withtttcconcep I'*tivcl-cluir'

t
\
\
\

!arcadynntcnea
I wlrttheconcept

| "stdard-ctnir'
/

The AKO hierarchv

- chair /--r* Y
-\

i
swtvel-chair standard-chsir

(b)
The width of the 'chair' boundary
is the upperbound for the similarity
of objeetl and object2.

Figure 4.3 I : Similarity using superconcept similarities.

4.4. TIIE MATCHING ALGORITHM

4.4 The Matching Algorithm

The previous section focussed on defining the meaning of 'similarity' in cRAM's matcher.

This section considers the problem of how to evaluate a similarity score and describes cRAM's

matching algorithm.

Section 4.1 considered the requirements of the matcher, and these included the requirement

that descriptions of similarity (or dissimilarity) are produced as output, so that they can be used

by other components of the system). These descriptions must specify scores for overall object

similarity, structure similarity, context similarity, and relationshipirelatee correspondences.

The matcher must therefore have some way to represent this information, and this is discussed

in section 4.4.1.

Central to the definition of similarity is the notion of 'winning conespondences' between the

relationship/relatees of the two objects. Central to the design of the matcher is, therefore, the

problem of how to search for these correspondences. The main difficulty is that a similarity

score for a pair of objects is defined directly and indirectly in terms of similarity scores for a

potentially vast number of other pairs of objects, including itself. Thus the matcher must employ

techniques for pruning and controlling the search, and for enabling converging estimates of

recursively-defined scores to be obtained. This is achieved by cnnu's "incremental-spread"

algorithm which is discussed in section 4.4.2.

Various aspects of the process, such as level-hopping, disjunct comparison, and scope-

restriction, are considered in sections 4.4.4 through 4.4.6. Section 4.4.7 discusses the problem

of improving the accuracy of a similarity score by augmenting an instance graph with additional

relationships and composite objects. Section 4.4.8 considers a situation where it is useful to be

able to make use of subconcept and superconcept similarity scores.

A detailed description of the algorithm is given in section 4.4.10'

4.4.1 Match results ane nepnesented in cnotes.

The first issue to be addressed is how to represent the information produced by the matcher,

both for its own use during the search, and for use by other systems such as the generaliser

and fault-finder. The information in these descriptions must specify scores for overall object

similarity, structure similarity, context similarity, and relationship/relatee correspondences.

GRAM represents match information ln cnotes, which is short for 'comparison-note', and

was borrowed from [Winston, 1975]. Each cnote specifies comparison information about two

descriptive entities, such as objects, structures, contexts, or relationship/relatees. The output

of the matcher is a single object-cnote. which consists of a strucfure-cnote, a context-cnote, arl

overall similarity score, and an effort value which indicates how much effort was applied to

produce the similarity score. If the two objects have been generalised, then a pointer to the

concept is also included.

t63

t64 CHAPTER 4. TTIE MATCHER

A context-cnofe specifies the comparison between two contexts. It includes a context-
similarity score, a cnote that specifies the similarity of the context properties, and the winning
(and losing) correspondences between the parent and neighbour relationship/relatees of the

two contexts. Each of these correspondences is represented in a correspondence-cnofe which

describes the comparison between the two relationships and the comparison between the two
relatee objects. If either or both of the concepts have disjunctive contexts, then object-cnotes

describing the comparisons of each disjunct (i.e. subconcept) pairing are also included.

A stucture-cnofe specifies the similarity between two structures in much the same way as for
a context-cnofe, except that it consists of subpart conespondence-cnotestather than parent and

neighbour conespondence-cnotes. Also, a strucntre-cnofie may include a contents-similarity

score.

cRAM stores each object-cnote so that it is directly accessible from both of the objects

it involves. This is important because it allows the matcher to immediately find all of the

comparisons produced for any object during the search for winning relationship/relatee cone-

spondences, since each object may have been matched with many other objects.

Although the matcher only produces one object-cnote as direct output, it may also generate

many other object-cnotes, since during the search for winning relationship/relatee correspon-

dences, each object may be matched with many other objects. These object-cnotes can be

considered to form a cnote-graplr, as illustrated in Figure 4.32, where the similarity score for
each cnote is defined in terms of the similarity scores of its related cnotes.

object-cnotes could be retained in concept memory, long term, to provide information about

the similarity or difference between concepts. Such cnotes could be considered to be 'difference

links' [Bareiss and Porteq 1987] which provide another means for accessing items in memory.

For reference, the following gives a surnmary definition of each of the main kinds of cnote.

object-cnote =

o Score (of overall-similarity).

o A sfructure-cnote.

o Acontext-cnote-

(including a lower and upper bound)

Effort-applied.

A concept. (tfthe objects have been generalised)

context-cnote =

o Score (of context-similarity).

t A context-properties-cnote

o Conespondence-cnotes (for the relationship/relatees of the two objects.)

r Disjunct object-cnotes (if necessary)

structure-cnote =

a

o

4.4. TIIE MATCHING ALGORITHM

Figure 4.32: An object-cnote graph.

o Score (of structure-similarity)

o A structure-properties-cnote.

o Correspondence-cnotes (forthe relationship/relatees of the two objects.)

o Disjunct object-cnotes (if necessary)

o Contents-similarity score (optional)

correspondence-cnote =

o Score. (including a lower and upper bound)

o A relationship-cnote (for the two relationships)

o An object-cnote (for the two relatees)

4.4.2 The "Incnemental-Spreadt' search strategy.

This section considers how to search for the winning correspondences of relationship/relatees of
two objects being marched, and thereby obtain a similarity score. We begin by considering the

simplest most obvious algorithm, and then considervarious refinements to improve efficiency

and to account for circularities, recursive similarity, disjunction, effort control, scope restriction,

and augmentation.

165

t66 CHAPTER 4. TTIE MArcHER

Figure 4.34 shows two television sets, of which the component objects tvmainl and tvmain2
(i.e. the television set excluding the aerials and legs) are to be compared. (This particular

comparison is considered, rather than the comparison of the whole televisions, so that parents

and neighbours need to be matched.) The simplest algorithm is a depth first search which
recursively invokes the matcher for every pairing of parent relationship/relatees, every pairing

of neighbour relationship/relatees, and every pairing of subpart relationship/relatees. These

pairings are indicated by the dotted lines between the relationship/relatees at the bottom of
Figure 4.34. The similarity scores produced for these correspondences are then used to

determine the winning correspondences to contribute to the similarity score. This algorithm is

shown below:

MAICH-OBJECTS (objectl, object2)

For each parent of objectl:
For each parent of object2:

Match the relationships.

MATCH-OBJECTS (parentl, parent2).

Compute the correspondence score.

Repeat for neighbours and subparts.

Select winning correspondences.

Compute similarity score.

Figure 4.33: A simple (and ineffective) algorithm.

There are two major problems with this algorithm. Firstly, it is highly inefficient because

it performs a complete depth first search for every relatee correspondence. For each object

comparison, the number of invocations of the matcher is O(n2), and each of these invocations

leads to a further O(nz) invocations, extending on through the object graph. The second

problem with the algorithm is that it does not work: it rapidly gets stuck in infinite cycles,

reevaluating comparisons that are currently already being evaluated. This is because objects

are defined in terms of other objects, and vice versa, and therefore the measures of object

similarity are recursively defined in terms of themselves.

The first problem requires the matcher to prune the search by abandoning a comparison as

soon as it is clearly not a winning relationship/relatee correspondence. This means that a depth

first search is inappropriate, since a depth-first search completely evaluates a conespondence

before evaluating another, even though a partial evaluation might be sufficient to reject it if
partial evaluations of other correspondences are available.

The second problem requires that the matcher should not recursively invoke itself to perform

a comparison that is already being processed. Rather it must be able to make use of estimates

4.4. TI{E MATCHING ALGORTTHM

of similarity scores for comparisons that are culrently active.

aeriall

aerialbasel

Ilegl

rlegl

167

aerialZ

aerialbase2

lle92

rle92
boxl screenl bu$onsl buttons2

tvmain2:

p qrent re lat ions hip/ re late es : parent re lations hip/re latee s :
tvmainl-tvl -- tvmain2-tv?

neighbour re lationship/relate es : nei g hbo ur relations hip/re late es :

tvmainl - aeriall
tvmainl -,""r'*"ffi-$$ ffi lffi - llllii*"

ffiHl-:::l :{-ffiHil; -::fr
subpart relationship/relatees: subpart relationship/relatees:

tvmainl - aeridl

ffir_,,,*'ffi#Hl:f-'
tvmainl - rlegl

Figure 4.34: The search problem.

cRAMts'rincremental spreadtt algorithm is a breadth-first beam search using iterative
deepening.

cttAM's matching algorithm deals with the above problems by using a breadth-first beam search

with iterative deepening, as explained below:

screen2

168 CHAPTER 4. T'HE MATCHER

The matcher begins by performing a "l-spread" comparison of the two objects. This means

that the structure and context properties are compared, and all pairings of relationship/relatee

correspondences are evaluated comparing only the relationship descriptions, ignoring the re-

latees. The winning conespondences are then selected from these, and a similarity score

computed. An approximate lower-bound and an upper-bound on the score is also computed,

based on a predefined measure of inaccuracy of a l-spread comparison. Thus, a I -spread com-
parison gives a rough and inexpensive estimate of object similarity, and also provides estimates

of the relationship/relatee correspondences scores. In fact, cRAM actually first performs a 0-
spread comparison, which only considers properties, and the only continues with the I-spread
comparison if the score is sufficiently high.

The matcher then performs a "2-spread" comparison. This involves recursively invoking

the matcher to perform a l-spread comparison on each pair of relatees. Thus the matcher

is extending or deepening its 'horizon' or 'fringe' incrementally. However, it only invokes

the matcher on a relationship/relatee correspondence that could potentially become a winning
correspondence for either or both of the two relationship/relatees. This is determined on the

basis of lower and upper bounds that are computed and stored with each conespondence-cnote:

If the upper-bound for a relationshiplrelatee correspondence is higher than the lower-bound of
a cunently winning relationshiplrelatee correspondence involving either of the two relatees,

then the relatees are matched using a l-spread comparison. Otherwise that conespondence

is ignored. Later it might become a potential winner again, if the score of the winner drops

sufficiently as a result of more accurate comparison.

After reevaluating the potentially winning (and already winning) correspondences, a new

set of winning correspondences is identified, and a more accurate similarity score is thereby

computed.

The matcher next performs a 3-spread comparison in exactly the same way as for a 2-

spread comparison, except that the potentially-winning relationship/relatee correspondences

are reevaluated by recursively invoking the matcher using a 2-spread comparison on the pairs

of relatees. Each of these comparisons will cause (some) pairs of relatees of those relatees to

be compared using a l-spread match.

A 4-spread comparison is then applied, and so on, up to an n-spread, where n is the required

effort for the comparison. Thus, the matcher is incrementally spreading outwards (using a kind

of breadth-first beam search) through the object graphs via good correspondences between

parent, neighbour, and subpart relationships. Figure 4.35 shows a rough hand-generated

illustration of the object comparisons that are considered in a O-spread, l-spread, 2-spread,

and 3-spread comparison, with AI and Bl being the root objects of comparison. At each

increased effort, the fringe of the comparison extends outwards. The different shadings on the

object-boxes indicate the spread-level at which an object is considered by the matcher.

Effort is controlled by a required-spreadparaneten

Earlier we discussed the requirement that the matcher must have an effort-control parameter,

and this in fact defines how much spread is applied to a comparison. In the rest of this chapter

4.4. TIIE MATCHING ALGORITHM 169

(a) l}-spread comparlson

r - --rl{",-,}r' -- r
(b) l-cpread cromparimn

k r*w*{ Each dotted line infgures (b) to (d) indicares
a l-spread comparison of propenies and relationships.
Relatee similarity scores are used if already available.

(d) 3-spread comparlson

Figure 4.35: Gspread, l-spread, 2-spread, and 3-spread comparisons.

170 CHAPTER 4. TTIE MlITCHER

it is called the required-spreadparameter.

Each time the matcher recursively invokes itself to comprue pairs of relatees, it passes some

value of required-spread. Likewise, the larger system that originally invokes the matcher must

also specify required-sp read.

A standard top-down comparison could achieve this kind of effort-control by restricting the

depth of traversal down the subpart hierarchy, but in GRAM the effort control is also applied to
context matching via parent and neighbour relationships.

Effort is afso controlled by the acceptability-cutoffand rejection-curo.;fparameters.

The effort applied by the matcher is also controlled by two optional parameters which can force

the matcher to prematurely abandon the comparison.

T"he rejection-cutoff parameter prevents unpromising matches from being explored further.

For example, when performing rapid classification of large numbers of objects in a scene, we

do not want the matcher to spend much time matching an object with a concept when it is
already clear from a rough comparison that the similarity is worse than the object's similarity
to some other concept previously considered. Thus the rejection-cutoffparameter indicates the

minimum similarity score required. As soon as the upper-bound of the object-cnofe score is

worse than the rejection-cutoff, then it is not worth evaluating the comparison more thoroughly,

and the match is abandoned.

TIre acceptability-cutoffparameter prevents good comparisons from being evaluated further.

Sometimes when performing rapid classification it is desirable to accept a classification as soon

as it is clearly better than any other classification. Thus it is only concerned with finding a

comparison with a sufficiently good score, rather than obtaining an exact measure of similarity.

If this is the requirement, then whenever the lower-bound of the object-cnofe score is higher

than the acceptability-cutoffscore. then no further evaluation of the comparison is necessary.

Cycles are avoided by recording how much spread has been applied.

We have not yet addressed the problem of gening stuck in infinite cycles. This is easily solved

by the "incremental-spread" algorithm: Firstly, each object-cnote must record the effort (or

more precisely, the spread) that has already been applied to a comparison. Secondly, if the

matcher is invoked on a pair of objects, A and B, which have already been matched, and whose

current spread is already at least as high as the required-spread, then nothing needs to be done.

The algorithm in its most basic form.

Having discussed the main features of the algorithm in its most basic form, it is now possible

to presents it more formally, as given in Figure 4.36. The first step of MATCH is to create a

cnote if the two objects have not already been matched. It then matches relationship/relatees

with an incrementally increasing spread, until the required-spreadhas been completed.

4,4. TIIE MXrcHING ,4LGORITHM

Refinements to the algorithm are considered in the remainder of the chapter, and a more

complete description of the algorithm is given section 4.4.10.

MATCH (objectl, {the concept (or perhaps an instance)}

objee2, {the instance (or perhaps a concept)}

required-spread {the spread-effort to be applied}
I

IF objectl and objec0 have already been matched TI{EN
cnote +- the recorded cnote.

ELSE

cnote F create a cnote using a O-spread comparison.
(i.e. compare properties)

IF the score is sufficiently high,

Evaluate the cnote using a l-spread comparison.
(i.e. compare pairs of relationships)

WHILE (cnote-spread < required-spread)

AND (cnote-score is sufficiently high)

Increment cnote-spread.

FOR each potentially-winning relationship/relatee correspondence:

MAICH (relatee l, relatee2, (cnote-spread - I))
Reselect winning correspondences.

Recompute structure, context, and overall similarity scores.

RETLTRN the cnote.

Figure 4.36: The "incremental spread" algorithm (in its most basic form)

A l-sprcad comparison can make use of available relatee similarity scores.

Although a l-sprcad comparison does not recursively invoke the matcher to compare relatees,

it can make use of similarity scores for any pairs of relatees that have been already compared.

Thus a l-spread comparison may actually be more accurate than its spread-effort suggests. In

fact this is true at any spread level, since every relationship/rclatee rcevaluation can make use

of existing relatee similarity scores even if they are more accurate than the reevaluation actually

requires.

Scores converge iteratively.

This algorithm also accounts for the fact that similarity scores are defined recursively. For

example, suppose two objects Al and Bl are compared, and one of their winning neighbour

r7l

172 CHAPTER 4, THE MATCIIER

relationship/relatee correspondences is between A2 and B.2, the similarity of which is defined

intermsof the A1:81correspondence. The A1:81correspondenceisfirstevaluatedusinga
l-spread search and then a 2-spread search, neither of which require the A2:82 comparison to
referbackto the Al:BI score. When a 3-spread comparison for AI and Bt is performed, it will
require the A2:82 comparison to obtain a l-spread score for the A1:Bl comparison. In fact, a
2-spread estimate of this is already available, and so it can be used immediately in the 42:82
comparison. The resulting A2:82 score is used to compute the 3-spread score of A1:Bl, which
will then have been computed in terms of itself (or rather, a previous estimate of itself;. The

same process continues as the spread increases, and the recursively-defined similarity score is

iteratively improved in accuracy.

An informal proof of convergence is based on the fact that each best relationship/relatee
correspondence for an object comparison only contributes roughly I lnth of the score, where

n is the number of relationships of the object. Therefore, in the example above, I /nth of the

A1:Bl score comes from the A2:82 score, which in turn comes from l/nth of the Al:Bl score.

Thus, when the A l:Bl score changes, the effect of that change on itself has a contribution of
at most llfuz). This change will therefore be small, and so the change resulting fromthat
change will be an order of magnitude smaller again.

The winning relationship/relatee correspondences for a cnote, as defined by cnau's similarity
measures, is guaranteed to be found if, firstly, sufficient effort has been applied so that an

unambiguous clear winner has been identified for each relationship/relatee, and secondly, if
the computed lower and upper bounds on the scores are correct. Since these bounds are only

estimated by cnAu, occasional errors may occur.

Fewer relationship/relatee correspondences are evaluated for high-spread comparisons.

It may seem that a high-spread comparison of two objects will be very expensive to evaluate,

since all potentially-winning relationship/relatee correspondences must be evaluated using

a spread comparison of only I less than the required spread of the objects. However, the

higher the spread that has already been applied to a comparison, the fewer potentially-winning

relationship/relatee correspondences there will be. This is because the lower and upper bounds

of the correspondence scores will define a much smaller error range, and so there will be fewer

potential winners that need to be evaluated. Conversely, the score for a low-spread comparison

is less reliable, and so there will be more relationship/relatee conespondences that need to be

evaluated, but these can be evaluated at significantly less cost.

The algorithm is'any-time'.

The incremental-spread algorithm satisfies the requirement for an 'any time' matcher, since if
a comparison is intemrpted at any point, the best estimate based on the comparisons performed

so far is available. It also enables the amount of effort applied to a comparison to be explicitly

controlled, thus allowing rough and rapid matching if necessary. It is also guided completely

by the structure of the objects themselves, via relationships.

4,4. THE MAnCHING ALGORITHM

Since each increase in spread-effort has less effect on the score than the previous increase

(because distant object correspondences contribute less to the similarity score than nearby

object correspondences), an adequate measure of similarity for basic classification is often

obtained from just a2 or 3 spread comparison. This characteristic of the algorithm is based on

the assumption that objects are defined primarily by their 'closest' details in the object graph.

Global consistency is not enforced.

Section 4.3 discussed how the definition of object similarity in cRAM does not require global (or

even local) consistency between object correspondences. Consequently, the incremental-spread

algorithm does not enforce consistency. Each comparison is performed independently from

other comparisons, apart from making use of their results (in the manner of a backward-chaining

rule-evaluation system). This makes the algorithm amenable to a parallel implementation to

give significantly greater efficiency. Future versions of cneu might explore this.

4.4.3 An example.

This section presents a simple example of the matching process for the comparison of the

objects wmainl and nmain? in Figure 4.37. Object graphs for the two televisions are also

shown. This comparison as chosen, ratherthan the tvl:w2 comparison, because it involves

context matching. Although the graphs are of two instances, they can also be interpreted as

graphs of concepts in concept-memory. It is assumed for simplicity that the buttons objects are

defined only in terms of a single multi-relationship to abutton object, without atypical subparts

being included.

The trace of the search below does not show the actual similarity scores, since these are not

important here. To avoid clutter, the trace only includes invocations of the matcher that require

additional work to be performed. In other words, if a comparison requires a similarity score

for a pair of relatees that have already been compared to the required spread effort, then that

invocation of the matcher is not shown in the trace. The indentation indicates which invocations

were called from within which comparison.

It begins by doing a l-spread comparison of nmainl and wmain2, and then a 2-spread

comparison, which invokes a number of 1-spread comparisons between its parents, neighbours,

and subparts. Some of these I -spread comparisons can make useof the l-spread similarity score

for nrnainl and wrnain2, and can also make use of the l-spread scores for the comparisons

above them in the hace, hence the scores will actually be more accurate than a l-spread

suggests.

A 3-spread comparison of nmainl and nmain2 then applies a 2-spread comparison to the

parent, neighbour, and subpart relationship/relatee correspondences that are potential winners.

Most of these do not require much effort, since l-spread scores for their relationship/relatee

173

r74 CHAPTER 4. TIIE M}ffCIIER

colrespondences are already available. The only new correspondences identified are between

the aerial subcomponents.

In the 4-spread comparison of nmainl and nmain2, even fewer correspondences need to
be considered, since the others can be confidently considered non-potential winners. Most of
those that do need to be considered do not have to spread far, since scores are already available

at the required spread level.

Applying 5-spread, 6-spread, erc would not change the score significantly, since no new

conespondences are identified, and most of the comparisons performed already have a higher

accuracy that their spread-level indicates, since they have been able to make use of existing

relatee similarity scores. This would not be the case if there was more context surrounding the

televisions, unless scope-restriction was being employed.

l-spread (tvmain l, tvmain2)
2-spread (tvmain I, Nmain2)

I -spread (tv l, tv2) (uses the I -spread nmainl -nmain2 score)

l-spread (boxl,box2) (uses the I-spreadtvl-tv2score)
l-spread (screen I, screen?)

I -spread (box 1, screen2)

l -spread (screen I, box2)

1 -spread (buttons l, bunons2)

I -spread (screen I, buttons2)

I -spread (buffons l, screen2)

I -spread (aeiall, aeial2)
I -spread (aerialbasel, aerialbase2)

1 -spread (llegl, lleg2)

I -spread (rleg l, rleg2)

I -spread (lleg 1, rleg2)

l-spread (rlegl, Ileg2)
(nnny ofthese cannow be rejected as potentialwinning correspondences)

3-spread (tvmain I, tvmain2)
2-spread (tvl, tv?) (uses the 2-spread wmainl -wmain2 score)

2-spread (boxl,box2) (uses the2-spreadtvl-tv2score)
2-spread (screen l, screen2)

2-spread (boxl, screen2)

2-spread (screen 1, box2)

2-spread (buttonsl, bunons)
2-spread (aerial 1, aerial2)

1 -spread (aerialleftl, aerialleffi)
I -spread (aeri alleftl, aeri alri ghA)
I -spread (aerialigh2, aerialleftl)
t-spread (aeialrighA, aerialrigh2)

2-spread (aerialbase 1, aerialbase2)

2-spread (llegl, Ileg2)

2-spread (rlegl, rleg2)

2-spread (lleg|, rleg2)

4.4. TIIE MATCHING ALGORITHM

2-spread (rlegl, Ileg2)

4-spread (tv m ain 1, tv mai n2)

3-spread (tv1, tv2)

3-spread (boxl,box2)
3-spread (screen I, screen2)

3-spread (buffons I, bunons2)

3-spread (aerial 1, aerial2)

2-spread (aerialleft 1, aerialleft2)

2-spread (aerialleftl, aerialrigh0)
3-spread (aerialbase 1, aeri albase2)

3-spread (lleg 1, lleg2)

3-spread (rlegl, rleg2)

4.4.4 Level-hopping is implicitly performed.

Section 4.2.4 discussed the level-hopping problem that occurs when two similar objects have

been represented as different decomposition hierarchies such that corresponding components

are not on the same level. Forexample, the two televisions in Figure 4.38 have been decomposed

differently, so that in tvl the main object is a subpart of the mainplus object which includes the

main part of the w and the left and right legs. ln tv2, the legs are considered to be subparts of
the root object tv2, and there is no mainplus object. If a top-down search was employed, by

finding correspondences at each level ofthe hierarchy, the correspondences between the legs

and the main objects could not be found. However, GRAM's matching algorithm allows these

correspondences to be found via the traversal ofneighbour relationships, since it spreads in all

directions through the object graphs.

This is shown by the abbreviated trace below. When spreading from the tvl and tv2 compar-

ison, the correspondence between mainl and main2 is not found. However, when performing

the comparison between aeriall and aerial2, the correspondence between mainl and main2 is

found via neighbour relationships. This comparison then also leads to the legs being compared.

However, the tvl arl'd tv2 comparison will still have a poor similarity score, since the

mainl:main2 comparison does not contribute to it directly (only indirectly, via the aerial

similarity score. This is resolved by augmentarion techniques described in detail later. In brief,

when reevaluating the tvl:N2 comparison to obtain its 3-spread score, the matcher notices that

the subpart main2has been matched well with mainl. This causes it to try and create a subpart

relationship between tvl and mainl, which consequently can be used to improve the score.

I -spread (tv I , tv2)
2-spread (tvl, tv2)

I -spread (mainplus l, main2)

I -spread (aerial l, aeial2)
l-spread (aerial l, llegs2)

I -spread (aerial l, rlegs2)

3-sprcad (tvl, tv2)

t75

176 CIIAPTER 4. THE MXTCIfiR

Figure 4.37: Object graphs for two televisions.

I

I[E

4.4. THE MXICHING ALGOHITHM

2-spread (mainplus 1, main2)

2-spread (aerial l, aerial2)

l:n*"u
(mainl, main2)

4.4.5 Disjunctive structurcs and contexts are also evaluated using incremental-
spread.

This section describes the method by which the matcher compares disjunctively defined con-

cepts, based on the definition of disjunction similarity given in section 4.3.9.

lf the matcher is comparing a concept and an instance for which the structure of the concept

is described disjunctively, then each disjunct (r.e. subconcept) is matched against the structure

of the instance, using sffucture-only scope restriction. The score of the best pairing is used

as the structure similarity score (perhaps combined with the winning correspondence scores

for any partial set of subpart relationships also included in the structure description). If both

objects are disjunctively defined concepts, then all pairings of disjuncts iue compared, and the

winners chosen.

The disjunct pairings are evaluated using whatever required-spreadis currently being applied

to the object comparison, and thus the winning pairing may change as the spread increases.

The method as explained above suggests that all disjunct pairings are reevaluated for every

increased spread-effort. However, efficiency is improved by employing the same pruning

strategy as for evaluating relationship/relatee correspondences: Since each disjunct comparison

is an ordinary object comparison, with lower and upper bounds on its similarity score stored in

its objecr-cnote, these bounds can be used to determine whether a disjunct pairing is potentially

a winning pairing, and if not, it need not be reevaluated. If, later, the score of the winning

pairing drops sufficiently, then it may be reevaluated.

The above method (which is based on the definition of disjunction similarity given in section

4.3.9) is also applied to concepts that have disjunctive contexts.

4.4.6 ScopeRestriction.

A requirement of the matcher is that it should be possible to restrict the scope of the match

by indicating which objects in the object graphs are to be compared or ignored. This is most

t77

CHAPTER 4. THE MATCIIER178

TVI

V,n\
\'/

M

MMMd*ruffiwWWilWWWwsswMffi
EWErysws

TV2

En EE F@ffi I|Hg HE @W !l t.EE HH EWfm :l rtEE AH @W rlf ITXrela6.r/\ /\ R,4\IHEBffiBSEBffiMM1:)

Figure 4.38: The level-hopping problem when matching two televisions.

4.4. THE MATCHING ALGORITHM

cornmonly required for performinga structure-only ot context-only compaison, although other

possibilities (such as a partial-context or partial-structure comparison) must also be supported.

Section 4.3.7 discussed how similarity can be measured using such scope-restriction. To

measure structure-only similarity (or context-only similarity) the simplest method is to just

ignore the context (or structure) description of the two objects being compared. However, this

is inaccurate because the subparts (or neighbours) may have relationships to objects that are

not within the substructure (or context) of the two objects. Therefore, as discussed in section

4.3.7,it is necessary to identify all of the objects that are "in scope", so that the matcher can

ignore all relationships to objects that are out of scope. We now consider how this is done, and

some of the problems with this method.

In the case of a structure-only comparison, the matcher traverses all subpart relationships of
the two objects being matched, marking each object reached as being in-scope. For a context-

only comparison, it does the same, except that it marks the objects as being out-of-scope, and

the search process ignores relationships to objects that are marked as such. In other words,

there are two alternative ways of marking and of ignoring objects.

One limitation of this scheme is that it does not accountforthe structure and contextproperties

of the objects being matched. In particular, context properties include profiIe aftribute vectors

that describe the context of an object in summary form, and therefore, when performing

a structure-only comparison of two objects, some of the values within the profiles of their

subpart objects should be ignored (or the profiles recomputed). Cunently this is not done by

GRAM.

Another problem with the method occurs in the case of a structure-only comparison of a con-

cept that has direct or indirect subpart concepts that also define the context of the concept. For

example, the concept lecture-room-chair and its subcomponent concepts might have neighbour

relationships to themselves, defining the typical relationships between lecture-room-chairs.

This is shown by the concept graph at the top of Figure 4.39, which is formed from the row of
chairs. Suppose it is to be matched with the chairl object using stmcture-only similarity. The

relationships from lecture-room-chairto itself can easily be ignored by ignoring the entire con-

text description of the root objects of the match, but this is not possible for the subcomponent

concepts (such as seat and seatl). cRAM does not explicitly distinguish between relationships

that are 'typical-inter-member' relationships and ordinary relationships. Therefore, using the

scoping method described above, the typical-inter-member relationships will not be ignored

by the matcher, since they refer to objects that are in-scope, and so the measure of stnrcture

similarity for the chair descriptions will be slightly inaccurate.

One solution to the problem is to only mark instance objects as in-scope, and perform

the structure-only comparison by assuming that concept objects have a panial interpretation.

This means that the similarity score will not be negatively affected by additional out-of-scope

concept relationships (such as typical inter-member relationships) that do not correspond with

the in-scope instance relationships. However, this leads to further inaccuracies, since it will
not detect missing instance relationships.

A better solution would be to extend the representation slightly so that it does distinguish

t79

180 CHAPTER 4. TTIE MATCIIER

between the two kinds of relationships. Each typical-inter-memberrelationship would have to
speci$ whichroot concept it is associated with. Forexample, the neighbourrelationship from
rleg to lleg (of the typical 'next' chair in the row) would specify that it is a relationship to a
Lleg of a different lecturc-room-chair. (ffinston, 19751 seemed to represent typical-member
descriptions of a group in a manner similar to this.) Thus, scope-restriction in this case could
ignore such relationships since all context of chair is to be ignored. This extension to the

representation could also help to resolve ambiguities when matching such relationships, and to
prevent relationships of different kinds being generalised. Future work on GRAM may address

this.

Figure 4.39: A scope-restriction problem.

4.4.7 Augmentation: Dealing with missing nelationships and relatees.

Section 4.1.3 stated that the matcher should not assume that two objects being compared are

described canonically. In particular, if the objects are similar, but have been partitioned into

different decomposition hierarchies, or have descriptions with different relationships made

explicit, then the matcher should still be able to determine that the objects are in fact similar.

Section 4.4.4has addressed this problem in part by showing how correspondences can be

4.4, THE MATCHING ALGORITHM

found between objects that are on different levels of the decomposition hierarchy. We now

consider when and how mismatches due to non-canonicality can be resolved by creating new

relationships and relatees to improve the accuracy of a similarity score. Such augmentation

could be called expectation-driven perception, since it causes GRAM to 'see' new relationships

or composite objects that it expects on the basis of an existing concept or another object.

Figure4.40 illustrates a numbersuch situations requiring augmentation. Forexample, A0has

a subpart relationship with A9, which is a composite object consisting of .A2 and A3. Object B0

does not include such a composite object, even though 82 and .B3 clearly correspond with 42
and 43. This situation can be viewed in two ways. On the one hand, A0 is missing the direct

subpart relationships to .A2 and 43. On the other hand, B0 is missing a composite subpart.

Thus, improved similarity evaluation requires either a new composite part to be created, or two

new subpart relationships to be created, or preferably both.

A similar situation occurs for neighbourrelationships. For example, AI and A5have a direct

neighbour relationship, but Bl and 85do not, since 85 is so small that it is not considered

sufifrciently 'neighbourly' for an explicit relationship to be included. Thus the matcher needs

to create a new neighbour relationship so that the similarity score can be more accurate.

Figure 4.40: Matching may require augmentation.

The main problem to be addressed in this section is how the matcher should decide when

and in what way to augment a description with a new relationship or composite objects. More
specifically, when matching two objects Xl and YI, lf a relationship of Xl to a relats,e X2
does not have a good conespondence with any relationship in object Yl, how does it know
which relatee of Yl to create a relationship with in order to establish a corespondence, and

when this should be done? Likewise, how does it know which obiects could be combined into
a composite object?

l8l

r82 CHAPTER4, THEMATCHER

New relationships can be created on the basis of existing relatee comparisons, or an

explicit search.

One solution to relationship augmentation is that if X/'s relatee X2 (in the above example)

has been previously matched with some object Y2, and with a reasonably high score, then a

relationship between YI and Y2canbe created and compared with the Xl-X2relationship. An

example of this strategy was briefly discussed in section 4.4.4 with regard to the level-hopping

problem when matching tvl and n2. Other examples will be given later.

Another strategy is to actively search for an object that is implicitly related to Yl in the same

way that X2 is explicitly related to XI, and which is similar to Y2. However this should only

be done if XI and Yl are already known to be quite similar, otherwise every weak comparison

could lead to many new relationships being formed. Examples of this strategy will be given

shortly.

The creation of new composite objects is a more complex problem for which a solution has

not been fully implemented.2 The decision to create a new object involves noticing that a set

of objects in one description matches a set of several objects in the other description, and that

only one set has been combined into a single composite object. This signals the matcher to

request the creation of a new object in order to establish a bener match.

Spurious augmentation should be avoided.

The matcher should not arbitrarily create new relationships or composite parts in the object

graphs, in the hope that augmentation might improve similarity, since spurious augmenta-

tion can clutter or distort the original description, as well as requiring additional computa-

tion. If many additional relationships were added to an object description, then the matcher's

incremental-spread algorithm would have to perform considerable more work since it would

have to find relationship/relatee correspondences for all of the new relationships, even if they

are obscure or 'weak' relationships (unless it employed a strategy of explicitly ignoring 'weak'

relationships.)

However, new relationships can be created for purposes of similarity evaluation without

acfually modifying the object graph. In fact, the current version of cnRu does not change the

object graphs at all. Rather, new relationships are stored with the object-cnotes as required, and

2A basic mechanism for creating new objects has been implemented, but I have not yet implemented the

mechanism for incorporating a new object into the current match process, since this requires modifying existing

object-cnotes. This is not a difficult problem, and will be implemented in future versions.

4.4. TIIE MATCHING ALGOKITHM

it is up to the generaliser to decide what to do with them. Thus the incremental-spread search

only traverses relationships that were present in the original descriptions, and only uses new

relationships to obtain more accurate similarity scores. Augmentations are therefore 'invisible'

to the search process, although they are used to evaluate similarities.

Only instance descriptions are augmented.

In addition to the above constraint, GRAM only produces new relationships between instances,

not concepts. This is because all instances of an instance graph are defined within a single

visual coordinate system, such that relationship details can be computed easily from absolute

coordinates, orientations, and dimensions, or can be requested directly from the vision system.

This is not the case for concepts, for which creating new relationships is computationally

more complex. Concept relationships can only be computed on the basis of other (perhaps

generalised) relationships. Future versions of cRRu may include this capability. For example,

suppose the system observes chairl next to filing-cabinefl, and then compares the chair with

the known concept cftair. Chairl has a neighbour relationship to frling-cabinet which has

no coresponding relationship in the chair concept, as shown in Figure 4.41. However, if
the chair concept has a relationship with the concept desk, which has a relationship with the

concept frIing-cabinef, then a generalised relationship between chairand fiIing-cabinetcould be

computed on the basis of those relationships, and then compared with the chairl-filing-cabinet2

relationship.

183

calqgp!1qgqgly I
m$ance-graPn

I natched

---'-l -----=-
ffilTiGs-ca6in=l I

"-a'I@\\
| --'

\--
----l!4: ad---l----

A relationshipfrum concept chair tofrling-cabinet
I

could bc cotnpwedfrom relationships rl and 12, I

calqgp11qgqgly I instance-graPh

matched

--.-'-l ---

and the propenies of chair andJiling-cabinet.

Figure 4.41: Adding a relationship between concepts.

Augmenting to match a parent relationship.

Although the general strategy for relationship augmentation is the same for parent, neighbour,

and subpart relationships, the specifics of the process differ for each type. This section considers

parent relationship augmentation in more detail.

Figure 4.42 shows two chairs that have different subpart hierarchies and, as a consequence,

different relationships. Chnirl has an additional composite object, back+Iegl, and chair2 has

an additional composite object, wholeseat2.

184 CHAPTER 4. THEMATCIIER

Suppose the matcher is comparing seatl and seatZ, the former of which has a direct parent

relationship to chairl, and the latter only has a parent relationship to wfioleseaf2. Based on

the existing relationships, the similarity score is weaker than it could be if an additional parent

relationship is added which corresponds with the seatl--chairl relationship. This requires

finding an indirect parent of seat2 which matches chairl.

The first strategy for finding a matching indirect parent is to make use of existing comparisons

with clrairl, by looking at the object-cnotesthat are associated with it. Each object that chairl
has already been found to be similar to is checked to see whether it is an indirect parent of
seat2. lf so, then a parent relationship can be created between seat2 and that object. It is
straightforward to determine whether an object is an indirect parent of another object, simply

by climbing the path of parent-relationships of the laner object. This method of augmentation

is therefore very inexpensive, but does rely on already having matched the direct parent(chairl)
with the indirect parent (chai2).

The second strategy for finding the required indirect parent is to simply compare chairl with
all rndirect parents of sea2. Since objects usually have only one or perhaps two parents, this

strategy is not overly expensive, especially if heuristics are used to constrain the search, perhaps

by terminating the climb up the hierarchy if the size of the indirect parent is obviously too large

for a good correspondence to be possible.

This second method is only applied if the current similarity score (of searl and seat2) is

good enough to justify a more thorough comparison using augmentation. More specifically,

the score should be better or almost as good as any other competing correspondence (such as

the seatl :wholeseat2 conespondence).

Both of the above situations are illustrated in Figure 4.43, where chair2 is found either on

the basis of existing object-cnotes or by an explicit search via parent relationships. The new

relationship created is shown as a heavy line.

A different kind of mismatch situation is where there is no colresponding indirect parent.

For example, when matching l/egl with 1leg2, the llegl's parent relationship to back+legl is

not matchable with any of the parent relationships of 1leg2, and there is no indirect parent of
IIeg2 which matches back+Iegl. This mismatch is only resolvable by creating a new composite

object consisting of IIeg2 and back2.

As stated earlier, cRAM does not yet have the capability to do this fully. It requires noticing

that all of the subparts of back+Iegl (i.e. Ilegl andbackl) have been matched well with objects

of the other chair (i.e. lleg2 and back2 (assuming that the leg match is sufficiently strong

even without the parent relationship correspondence)), and creating a new composite object

consisting of those conesponding objects (IIeg2 and back2), This also requires the addition of
new relationships in the object graph. Furthermore, it requires that the new composite object

be incorporated into the object-cnotes of all of its related objects, and this will result in the

IegI-Ieg7 comparison having an improved score.

One more kind of parent mismatch needs to be considered, and that is when a parent relation-

ship of an instance object does not have any acceptable correspondence with relationships of
a concept. If we again assume for the sake of this example that chairl , backl , erc are concepts

whdleseat2

4.4. TIIE MXTCHING ALGORTTHM

Figure 4.42: Tvto chairs with unmatched relationships.

Figure 4.43: Crcating a new parent relationship.

rather than instances, then this mismalch situation occurs when comparing seatl and seaA,

for which the sea8-wholeseat? relationship does not match any of the relationships of seatl.

Resolving this would involve creating a new concept in concept-memory consisting of the

concepts seat2andcushion2as subparts, and this is not permitted. It would only be meaningful

if these two concepts had neighbour relationships between them, and if so, the properties and

relationships of the composite concept would have to be computed on the basis the properties

and relationships of the seat2 and cusftion2. T\e current version of cnau does not support

this.

185

T
@L

- - - - f"i ii in; ;;-- ; :*-o,,
-

new parent relationshipalready matched earlier,
OR by explicit search up thc

parent branch

- - -cl TremftErn|ffitTrii

r86 CHAPTER 4, TITE MATCHER

However, it is worth noting that when creating a generalisation of seafl and seat2 (or
generalising seatl to cover seat2), new objects might be added as optional features, so that

wholeseat2would become an optional parent of the new concept, and this would allow a future
observation of a chair containing a 'wholeseat' composite object to be matched reasonably

successfully, without having to perform augmentation.

Augmenting to match a subpart relationship.

Most of the above discussion is also applicable when there are unmatched s ubpartrelatronships.

This is illustrated in Figure 4.44 wherc the subpart relationship between chairl and seafl

requires augmenting the chair2 description with a direct relationship to seat2.

The main difference between subpart augmentation and parent augmentation is that cRAM

does not perform any explicit search for a corresponding indirect subpart because such a search

would require traversing down the entire subpart hierarchy, at least to some level, rather than

merely up a single non-splitting (or minimally-splitting) parent branch. For example, when

comparing chairl and chair2, finding a correspondence with the unmatched subpart lleg2would
require matching it with all subparts of chairl

Therefore, augmentation is only done when the unmatched subpart has already been matched

well with an indirect subpart of the other object. It is inexpensive to test whether an object is

an indirect subpart of another object, since this only involves a tree traversal without any object

or relationship comparisons required.

The example in Figure 4.44 actually has an important difference from the parenrrelationship

example in Figure 4.43. The difference is that the subpart relationship from cfiairl to seafl

does have a well-matching correspondence with a subpart relationship of chair2, namely with

wholesea2. Therefore it would seem that augmentation would not be performed. However,

cRAM notices that seatl matches better or almost as well with seaA than with wholeseat2, and

therefore wilt still create a new relationship in order to try improving the similarity score. In

other words, it creates new relationships to any objects that have already been matched better

(or almost as well) with any of the subparts of cftairl.

One characteristic of cneu is that augmentation can either work from the boftom up, as when

creating new parent relationships, or top-down as when creating new subpart relationships.

It may also work 'sideways' via neighbour relationships, as discussed in the next section.

The behaviour of the incremental-spread process determines which augmentations are done,

and when. If two objects low in the part hierarchy are processed for augmentation before

the higher objects, but after the higher objects have at least been partially matched, then

parent relationships will be created first. Conversely, if the higher objects are processed for

augmentation first, but after the lower objects have been matched sufficiently to justify a

correspondence, then new subpart relationships are created first.

4.4. THE MATCHING ALGORITHM

-':Y'y!Y'YYYItf,IIFil- - -
\The new subpart relationship

lwholeseat2 | I
|

--)I l_/@L-- @
Best nwtch with seat I ,

al ready mat c hzd ea rlie r.

Figure 4.44: Creating a new subpart relationship.

Augmenting to match a neighbour relationship.

An object can be augmented with neighbour relationships in much the same manner as for
subpart relationships. For example, in Figure 4.42IIegI has an explicit neighbour relationship

with rlegl, but IIeg2 does not have a neighbour relationship with rleg2 (perhaps because they

are not parallel). When matching llegl and lleg2,lf we assume that rlegl has already been

matched (at least partially) with rleg2, then this justifies creating a relationshipbetween lleg2

and rleg7 to improve the accuracy of the similarity score, as shown in Figure 4.45. However,

this is only done after making sure that rleg2 is not a subpart (direct or indirect) of lleg2, or vice

versa, since this would indicate that a neighbour relationship between them is not meaningful.

Neighbour relationship augmentation is only done on the basis of already-matched indirect

neighbours, and not by doing an explicit search, since too many comparisons would be re-

quired (unless complex search-pruning heuristics were applied). Also, in most situations, the

incremental-spread process tends to find all reasonable correspondences anyway. ln fact, each

time more spread effort is applied to a comparison, more correspondences with unmatched

relatees will become available to justify augmentation where it is necessary.

187

Currently being matched
ne new nctgnour

---\s

@l-frtEil FEgtl:l-'r@l
/'f

Best rnatch with rlegl,
alreadyfound earlier.

Figure 4.45: Creating a new neighbour relationship.

188 CHAPTER4. THEMATCHER

4.4.8 Using the AKO hierarchy.

Section 4.3.10 discussed how an estimate (or rather, a lower or upper bound) of the similarity
of two objects can be defined in terms of previously computed similarity scores for their
superconcepts or subconcepts. This section looks at a particular situation for which this can be

applied.

Suppose the system has observed the four chairs at the top of Figure 4.46 (i.e. chairl,
chair4, chair4, and chair4), only the last of which has an arm. To form a generalised concept

(chair) from these, one of the techniques used by cuM's generaliser when dealing with a

new unmatched object (such as arm4) is to create a relationship from the generalised object

to the unmatched and ungeneralised instance object (such as from chair to arm4\, and vice

versa, as shown in the figure. This avoids the need to create a new copy of the unmatched

instance object (arm4) to be a relatee of the generalised concepts. (This process is discussed in

chapter 5). Although this strategy is convenient for the generaliser, and requires less memory

for representing the concept, it creates difficulties for the matcher:

Suppose the system has to compare the concept chair with a newly observed object chairS,

shown at the bottom of the figure. TWo possible situations are considered below, each of which

illustrates a different way in which the AKO hierarchy can be used.

Firstly, suppose the matcher compiues c/rair with chair5 using a I -spread and then a 2-spread.

This will involve matching arm4 with armS, back and backi, and other pairs of their subparts.

The problem is that to match arm4 with arm5, the matcher will spread throughout the graph

of chair4 subcomponents, comparing them with clrairS components, while simultaneously

spreading throughout the generalised chair subcomponent concepts. It is comparing chair1

with the entire chair4 instance as well as with the generalised chair, all for the purpose of
evaluating the arm4-arm5 similarity.

In some sense this is appropriate, since it could be the case that arms can only be on chairs that

are identical to chair4 (with its particular back and leg lengths), and thus the matcher should

only give a perfect score to the arm4-arm5 comparison if the context of arm5 perfectly matched

the context of arm4. This context similarity score would not contribute significantly to the

chair--chairi match, since the direct subpart conespondences contribute much more strongly,

and this is desirable because we want the chair concept to capture a transfer of information

amongst the instances, otherwise the chairconcept may as well be represented as a disjunction

of four instances. However, the problem of the search effort being doubled as a consequence

of the chair-arm4relationship still remains.

A solution to this is to make use of superconcept and subconcept comparisons to obtain

similarity estimates in the manner described in section 4.3.10. For example, the steps below

shows how chaircould be matched with chair1. The 2-spread comparison initially computes

scores for a variety of relationship/relatee correspondences, including arm4;armi . The 3-spread

then produces a more accurate score for the back:backS comparison. Later, the arm4:arm5

is evaluated more thoroughly, and this requires a l-spread comparison of back4 and back1.

However, since back4 is a subconcept of back (assuming this AKO link is created when the

chair concept is formed), the matcher should be able to produce a more accurate similarity

Bchair3 fli*EFmm

AKO hierarchy:

back//ffi
' beck4

chairl

h

H

ru

4,4, TI-IE MTnCHING /J-GORJTHM

Figure 4.46: Using subconcept or superconcept similarity scores.

score on the basis of the previous back:back5 comparison. This may enable the matcher to

immediately reject other otherwise potentially-winning correspondences, such as back4lleg1.
In other words, more accurate scores are obtained sooner than would be possible without
making use of the subconcept to superconcept similarity scores.

189

190

1--spread (chair, chairi\
2-spread (chair, chairil

1-spread (back4, back5l
1-spread (back4, Ileg5)

l-spread (arm4, arm5)

3-spread (chair, chairi)
2-spread (back, back5)

2-spread (arm4, arm5)

1--spread (back4, backil

. .1-"nr".U
(back4, ileeS)

CHAPTER 4. TTN MAICHER

(shauld make use of (back, backi) score.)

(should be immediately rej e ctable.)

The inverse process could also occur if the search was performed in a different order: The

back:backi comparison could make use of the score of the back4:back5 score, since back4 is

a subconcept of back.

The process discussed in this section is interesting from a cognitive science point of view

because it still allows an instance to be matched simultaneously with general and specific

descriptions in concept-memory. This seems (from personal introspection) to be the kind

of process that humans perform: when we observe some object, we not only recognise its

generic category, but we also simultaneously notice correspondences between more specialised

concepts or particular previously-observed instances.

This thesis has not significantly explored the implications of this aspect of the matching

strategy since it requires a more elaborate system for creating and maintaining AKO hierarchies.

Cunently CRAM only creates concept hierarchies in a very simplistic manner.

4.4.9 Fit-scores are obtained by traversing winning cornespondences in the cnote

graph.

During the match search, the only similarity scores that are computed are proximity-scores,

since these are required for finding correspondences. However, once the match has completed,

the generaliser needs fit-scores for determining whether existing concepts can be modified

to cover a new instance, or whether a new concept should be created. To obtain a fit-score

for a cnote, the matcher first computes a fit-score based on property similarity and winning

relationship lrelatee correspondences scores. This score is stored in the cnote to prevent cycles.

Then the fit-scores for pairs of relatees (for the winning relationship/relatee correspondences)

are obtained by recursively invoking the fit-scoring mechanism. These scores can then be

4.4. THE MKnCHING ALGOHITHM

used to compute a more accurate (and recursively defined) fit-score. If the objects are defined

disjunctively, then this must also be taken into account.

This is similar to the way the matcher obtains proximity-scores, except that it is simpler, and

most importantly it only evaluates scores for the already-found winning relationship/relatee

correspondences, and so the process is just an inexpensive traversal of the cnote graph.

4.4,10 Details of the algorithm.

The previous sections have discussed the basic match algorithm and various specific compo-

nents of it. This section now presents the algorithm as whole, incorporating all of the details

that have been described.

Figure 4.47 shows the main steps of the MATCH procedure. Its arguments include the two

objects to be matched (which are normally a concept and an instance, but could be two concepts

or two instances), and several conrrol parameters. The first control parameter, required-spread,

indicates the spread-effort to be applied. Tlre scope and scope-mark parameters specify what

kind of scope-restriction (if any) is required.

The rejection-cutoff parameter indicates that if the upperbound score of the comparison

drops below this level, then no further evaluation should be performed. The acceptability-

cutoffparameter indicates that if the lowerbound score of the comparison rises above this level,

then the correspondence can be considered acceptable, and no further evaluation needs to be

performed.

The algorithm begins with a couple of preliminary tests to decide whether a match is in fact

necessary:

First it tests whether objectl and objecA are the same object. If they are, then they obviously

match perfectly, and so a 'dummy' object-cnote with a score of I is returned. This may occur

if we are matching two components within the same scene, both of which have relationships

to same object.

Second, the matcher tests whether objec2 is a subconcept (directly or indirectly) of objectl,
and if so, it returns a score of l. This is because GRAM currently considers all subconcepts as

having a perfect match with their superconcepts. A more accurate score would be based on the

typicality of objec2 within objectl.

Third, the matcher tests whether objectl and objec2 have already been matched. If so, there

is no need to create a new object-cnote. However, the recorded object-cnote might not have

been evaluated to the level of requircd-sprcad, in which case further matching using greater

spread-effort must be performed.

If an object-cnofe does not already exist, then one is created by CRBATE-CNOTE, which is

shown in Figure 4.49. This compares the two objects using a I -spread effort, by comparing their
properties and in-scope relationships (for each possible axis correspondence). Relationships

l9l

192 CHAPTER 4. THE MATCHER

may need to be coerced to account for the axis correspondence before comparing the attributes.

The procedure does not compare relatees, although it makes use of scores for any pairs of
relatees that have already been compared. If the objects are defined disjunctively, then pairs of
disjunct subconcepts are matched using a structure-only or context-only l-spread comparison,

as discussed in section 4.4.5. Upper and lower bounds on similarity scores are also computed.

Two more tests are then applied. The first test considers whether object2 has already been

matchedwithadirectorindirectsuperconceptof objectl (assuming objectl isaconcept). [f so,

the recorded similarity score, combined with the typicality of objectl within the superconcept,

can be used as an upperbound for the objectl:object2 comparison, as discussed in section

4.3.10. However, it only changes the upperbound of the object-cnote if it is lower than the

current upperbound. The second test checks whether object2 has already been matched with a

direct or indirect subconcept of objectl, and if so, the recorded similarity score can be used as

a lowerbound for the objectl:objec2 compaison, if it is higher than the current lowerbound.

The main loop of the algorithm then begins, which incrementally applies more effort to

comparison, by applying SPREAD-CNOTE, and abandons the loop when the required spread

has been completed, or when the scores satisfy the rejection-cutoff or acceptability-cutoff

requirements.

The SPREAD-CNOTE procedure, shown in Figure 4.48, reevaluates parent, neighbouq

and subpart relationship/relatee correspondences, recomputes similarity scores, and augments

descriptions if necessary.

First it attempts to augment the instance with new relationships if necessary and if possible,

as follows: For each in-scope relationship of each object, it considers each of the existing

object-cnotes of the relatee. If that relatee is matched sufficiently well with an indirect relatee

of the other object, then a relationship between the other object and that relatee can be created

and matched, since it might be a potentially winning relationship/relatee correspondence. This

process was discussed in section 4.4.7. Relationships may also be created on the basis of an

explicit search for matching relatees, but this is only done for parent relationships.

The next step is to reevaluate each potentially winning relationship/relatee correspondence

using the required spread (in new-spread). This is done by recursively invoking the MATCH

procedure to compare the relatees. This may immediately return if the relatees have already

been matched to the required spread level.

If the structure (or context) of one of both objects is defined disjunctively, then the pairings of

disjunct correspondences (i.e. subconcept correspondences) are reevaluated using the required

spread and using structure-only or context-only scope.

When all potentially winning relationship/relatee correspondences and disjunct conespon-

dences for the structure and/or context of the two objects have been reevaluated, new structure

and/or context similarity scores are computed, based on the set of winning colrespondences.

An overall similarity score is computed from these. The interpretation of the structures or

contexts must be taken into account when evaluating these scores, as explained in section 4.3.9.

If the structure and/or context of one or both objects is disjunctive, then disjunct pairings are

also evaluated by applying CREATE-CNOTE to each pairing.

4.4. TIIE MATCHING ALGORITHM

MATCH (objectl,
objecA,
required-spread,

scope

scope-mark,

rejection-cutoff

{the concept (or perhaps an instance)}

{the instance (or perhaps a concept)}

{the spread-effort to be applied}

{ complete, structure-only, context-only, as -narkedl

{don't process objects with/without this mark}

{immediately abandon the match if the

upperbound score drops below this. Default=-99)
acceptability-cutoff {immediately quit the match if the

lowerbound score rises above this. Default=+99)

)

IF objectl and object2 are the same object TIIEN
RETURN a cnote with score of l.

IF objectl is a superconcept of objec0 (dhect or indirect) THEN

RETURN a cnote with score of l.

lF objectl and objecQ have already been matched THEN
cnote ts the recorded cnote.

ELSE

cnote {- CREATE-CNOTE (ob.1'ect|, objecA, scope-mark)

B objecA has already been matched with a superconcept of objectl THEN

upperbound <- fn (similarity score (of superconcept and objecA),

typicality (of objectl within superconcept))
cnote-upperbound +- min(cnote-upperbound, upperbound)

fr objecA has already been matched with a subconcept of objectl THEN
lowerbound +- fn (similarity score (of subconcept and objec2),

typicality (of subconcept within objectl))
cnote-lowerbound + max(cnoteJowerbound, lowerbound)

WHILE (cnote-upperbound > rejection-cutoff)
and (cnorc-lowerbound < acceptability-cutoff)

and (cnote-spread < required-spread)

SPREAD-CNOTE (cnote, (cnote-spread + l), scope, scope-mark

rejection-cutoff, acceptability-cutoff)

RETURN the cnolc.

t93

Figure 4.47: T\e MAf,CH Algorithm

194 CHAPTER4. THEMATCHER

SPREAD-CNOTE (cnote, new-spread, scope, scope-mark,
rejection-cutoff, acceptability-cutoff)

IF scope is not structure-only: { reevaluate context similarity }
FOR each in-scope parent relationship of objectl :

{ create new relationships if necessary, based on existing comparisons. }
IF objec2is an instance {i.e. is augmentable} TI{EN

FOR all cnotes involving parentl:
IF parenA (of the cnote) is an indirect parent of objec2:

IF potentially a winning correspondence
Create object2- parent2 relationship (but don't add to the description)
Compute correspondence-score.
IF potentially a winning correspondence TIIEN

Add to the list of potential winning correspondence-cnotes.

{ create new relationships if necessary, based on explicit search. }
IF the objectl- parentl relationship has no good correspondence THEN

Explicitly search up parent relationships of obiec2.
If a good parentl: parenQ match is found TIIEN

Create objecA- paren€ relationship.
Compute a correspondence-score.
IF potentially a winning correspondence THEN

Add to the list of potential winning correspondence-cnotes.

{ reevaluate relatee comparisons using increased spread. }
For each potentially-winning correspondence-cnotes for object 1- parentl :

MATCH (parentl, parent2, (new-spread - l), scope, scope-mark)

Recompute the correspondence-cnote score.

Repeat the above for in-scope parent relationships of objec2
Repeat the above for in-scope neighbour relationships of obiectl and objec0

(but without the explicit search)

IF contextl and/or contcxt2 is defined disjunctively TIIEN:
For each potentially-best disjunct pairing (obl,ob2):

Mark context using a new scope-mark.

MATCH (obl, ob2, new-spread, context-only, new-scope-mark,

lowerbound of best disjunct pairing (as reiection-cutun,
7 (as acceptability-cutoff))

Compute a new context-score.

IF scope is not context-only { reevaluate structure similarity }

Repeat the above for in-scope subpart relationships of obiectl and objec2.
IF structurel and/or structure2 is defined disjunctively THEN:

Reevaluate disjunct pairs, as for context disjunction.
Compute a new structure-score.

Compute a new overall score for the cnote.
cnote-spread<- required-spread

Figure 4.48: SPREAD-CNOTE

4,4. TIIE MATCHING ALGORITHM

CREATE-CNOTE (objectl, obj*A,scope, scope-mark)

Match the contexts

If scope is not structure-only

Compute similarity of context properties.

FOR each in-scope parent relationship of obj*tl:
FOR each in-scope parent relationship of obiec2:

FOR each possible axis-correspondence:

relationship-score ts similarity of the relationships
(coerce relationship2 if necessary)

Create a corespondence-cnote and compute similarity scorc.

(if relatees have been matched, use the similarity score)

Repeat the above for in-scope neighbour relationships.

IF one or both conlexts arc disjunctive:

lnvoke CREAIE-CNOIE for each subconcept pairing.

Compute the context-similarity score.

(using winning relationship/relatee correspondences)

Match the structures

If scope is not context-only

Compute similarity of s0ucture properties.

Repeat the above in-scope subpart relationships.

IF one or both structures are disjunctive:

Invoke CREAIE-CNOTE for each subconcept pairing.

Compute the struchrre-similarity score.

(using winning relationship/relatee correspondences)

Compute the overall object similarity score.

Store the results in a new object-crnte.

195

Figure 4.49: CREAf,E-CNOTE

t96 CHAPTER 4. THE MATCT{ER

Chapter 5

The Generaliser

This chapter addresses the problem of producing a generalisation from two concept or instance

descriptions, given a description of their comparison produced by the matcher. Various issues

are explored, and cRAM's generaliser is described.

As discussed in chapter 1, the generaliser is to be part of a larger concept learning sys-

tem which updates concept-memory in response to observed objects. The learning system is

responsible for deciding which existing concepts are to be modified, or new concepts to be cre-

ated, and for performing appropriate generalisations by invoking the generaliser. The learning

sys0em is also responsible for maintaining and reorganising concept-memory to ensure optimal

classification and leaming performance. This may involve removing concepts that are no longer

useful; merging two or more concepts; splitting concepts into several subconcepts; removing

spurious low-frequency features from concept descriptions; and various other maintenance and

optimisation operations.

In a domain of complex structured objects, concept leaming is by no means trivial, and

has not been significantly addressed in machine-learning research. Systems such as MERGE

and Labyrinth have addressed the problem to some degree, but the effectiveness of these

systems is limited by the limitations in their representation schemes, matching strategies, and

generalisation mechanisms, as discussed in chapter 2. Some of these limitations have been

addressed in the previous two chapters, and others (relating to generalisation) are discussed in

this chapter. The methods employed by cRnu's generaliser are expected to provide a good

foundation for future development of a full learning system.

Organisation of this chapter.

Section 5. 1 begins this chapter by defining the input and output requirements of the generaliser.

Section 5.2 then outlines the issues that have been addressed and the contributions of the

generaliser.

Section 5.3 presents an overview of the generalisation algorithm. The remaining sections

discuss particular components of the algorithm in morc detail.

t97

198 CHAPTER 5. TIIE GENERALISER

Section 5.4 explains how properties and relationships are generalised, or more specificallS
how attribute values are generalised, since all properties and relationships are represented by
attribute vectors.

Section 5.5 considers how the scope, or focus of attention, of the generaliser can be restricted,

if necessary. It also discusses how the generaliser decides whether to generalise a description
(of a concept or instance), and if so, whether the original description should be modified, or a

new concept description created.

Section 5.6 explains how unmatched relationship/relatees of a concept or instance are dealt

with by the generaliser.

Section 5.7 explores the problem of partial similarity and disjunct formation. More specif-

ically, it considers when and how context or structure disjuncts are formed if two objects are

similar in structure but not context, or vice versa.

Section 5.8 addresses the problem of ambiguities. It describes several different kinds of
ambiguity and the mechanisms that can be used to resolve them.

Finally, section 5.9 explains how the interpretation of a structure or context description

affects the way generalisation is performed.

5.I. II{PUT AND OUWUT.

5.1 Input and Output.

r99

The input to the generaliser is a single object-cnote produced by the matcher, and the output

is a generalisation of the two objects in the cnote. This generalisation might either be a new

concept or one of the original objects, modified.

The input cnote specifies various similarity scores and the winning (and any marginally

losing) parent, neighbour, and subpart relationship/relatee correspondences. Figure 5.1 shows

an example of a cnote for the comparison between tvmainl and tvmain2. The dotted lines

between the relationship/relatees indicate the winning correspondences. In this example there

are no marginally losing correspondences.

5.1.1 The input is explicifly a single cnote, but implicitly an entire cnote graph.

Since each relationship/relatee correspondence in a cnote refers to another cnote that describes

the comparison of the two relatees, the input is, in effect, an entire cnote graph, rather than

a single cnote. The cnote graph for the tvmain example is given in Figure 5.2 in which each

node is a cnote, and each edge denotes a parent, neighbour, or subpart relationship/relatee

correspondence.

5.1.2 A ttside effectt' of a generalisation is many other generalisations.

The inter-dependency between cnotes means that a generalisation of two objects requires

generalisations of other pairs of objects. For example, to produce a generalisation of tvmainl
and tvmain2, the generaliser would have to obtain a generalisation of tvl and tv2, of llegl
and IIeg2, and of the other pairs of corresponding parent, neighbour, and subpart relatees.

Therefore, although the output of the generaliser is a single cnote, it also produces other

generalisations as a "side effect". Thus cRAM's generaliser is required to deal with multiple
concept learning, although not to the extent that is required of a full concept leaming system,

since the generaliser focuses its attention on a particular correspondence, while the full learning

system must deal with concepts and instances at a more global level.

5.1.3 Scope restriction parameters are required.

In addition to the input cnote, the generaliser also requires scope-restriction parameters that

specify how much of the cnote graph surrounding the input cnote should be generalised. For
example, the matcher may have been applied with a large spread, perhaps for the task of
classifying a complete scene and all of its components, but the generaliser may be required

to focus its attention on, say, the subsftucture and a small amount of the context of the two
objects of the input cnote. Conversely, the matcher may have been applied with a low spread,

and the generaliser is required to generalise with a higher spread, in which case it will have to

re-invoke the matcher on some or all of the cnotes in the cnote graph.

200 CHAPTER 5. TITE GEI{ERAIISER

5.1.4 Parameters for determining generalisability and modifiability are needed.

An input parameter is also required that specifies the minimum similarity needed to justify
producing a generalisation of two objects. Likewise, another input parameter is needed to

specify the minimum similarity needed to justif modiffing one of the original objects to cover

the other object, as opposed to creating a new concept. These parameters must be able to

be passed to the generaliser, rather than being predefined global parameters, since different

leaming tasks will require different behaviour of the generaliser.

5.1.5 The input objects may be concepts or instances.

In most cases the generaliser will be required to generalise a concept to cover an instance,

or to create a new concept from two instances. However, it must also be able to produce a

generalisation from two generalised concepts. This is required when generalising two multi-

relationships (either of concepts or instances) since the relatee of a multi-relationship is always

a generalised concept. Concept--concept generalisation would also be required by the larger

learning system when reorganising concept-memory.

5.T. INPr/7|ANDOuT"rf,i. 201

aeriall
aerialleftl
aerialrgtl
llegl
rlegl

aenal?
aerialrgt2
aenalrgtZ

boxl screenl

llegp.

rleg2

The cnotefor concept AI and instance Bl
overall similarity = 0.96
context similaritY = 6'914

contact - properties similaritl = 0.93
structure similarity = 0.98

structure- prope rties similariU = 0.99

tvmainl: tvmaln2:
parent relationship/relatees: parent relationship/relqlees:

tvmainl-tvl - tvmain2-tv2
neighbour relationship/relatees: neighbour relationship/relatees:

tvmatnl -aeriall - tvmain2-aeriaUl
tvmatnl - aerialleftl tvmain2 - aerialleftlZ
tvmainl -eerialrgtl -- tvmoin2-aerielrgt2
tvmalnl - llegl tvmain2 -lleg2
tvmalnl-rlegl -- tvmein2'flegP

subpart relationship/relatees: subpart relationship/relatees:

tvmalnl-boxl -- tvmaln2-box2

tvnalnl-screenl -- tvmain2-screen2

Figure 5.1: A cnote graph.

202

f-l obiect cnote

+ winning parent, subpart, or neighbour relatedrelnlionship correspondence

Figure 5.2: A cnote graph.

CHAPTER 5. TITE GENERAI,ISER

5.2. ISSI/ES A]VD COI{TRIBTIIIONS.

5.2 fssues and Contributions.

This section discusses the various issues of generalisation that are addressed in this chapter,

and outlines the main contributions of cRAM's generaliser.

5.2.1 Over-generalisation and under-generalisation should be avoided.

The problem of over-generalisation is common to most machine learning systems. The problem

is accentuated in a structured domain such as GRAM because each concept is defined in terms

of other concepts, and therefore over-generalising one concept results in over-generalising

all concepts that are defined in terms of it. Even if the teacher is specifically requesting a

generalisation, the problem still remains, since the teacher cannot specify the generalisability

of every component that the two objects are defined in terms of.

Apparently over-generalisation was one of the problems encountered in the Labyrinth system

[personal communication]. One reason for this could be that it does not include context

information in its concepts, since instances that should be kept distinct on the basis of their

context (such as a chair-Ieg and a coffee-table-Ieg\ would be generalised. GRAM's use of
context helps to reduce this cause of over-generalisation. In a full learning system, functional

knowledge, reasoning abilities, and task requirements would reduce the problem even more

significantly.

Under-generalisation, by creating new concepts rather than generalising existing ones, is also

a problem, since it can lead to a large and cluttered concept-memory.

ln CRAM, these problems are addressed to som€ degree by the use of the two parameters

discussed in section 5.1.4 for determining generalisability and modifiability. This is discussed

in section 5.5.3, which explains how cneu bases generalisability on the proximity-score of a

comparison, and bases modifiability on thefr-score of,a comparison, since the former measures

absolute similarity, while the latter measures how well the instance fits a concept.

5.2.2 A relationship/relatee may be unmatched.

In the example of the two televisions in Figures 5.1, each relationship/relatee has a clear unam-

biguous high-scoring winning correspondence with a relationship/relatee of the object object.

However, if the aerial of rv2 had a base (aerialbase2. say), then the neighbour relationship from

tvmain2 to aerialbase2 would not have any high-scoring correspondence with a relationship

of wmainl. Aerialbasecan therefore be considered unmatched, hence the generaliser must be

able to deal with unmatched relationship/relatees appropriately.

Since there is only one example of an aerialbase, it is not clear how to generalise it. In

particular, it is not clear whether the generalised rv should refer to a new copy of aerialbase2

which is altered to relate to other new generalisations of the rvl and tv2 components, or whether

fv should refer to the original aerialbase2which is defined by relationships to other components

of tvmain2. This issue is discussed in section 5.6. Cunently cReM takes the former choice,

203

204 CHAPTER 5. THE GEAIERAL/SER

because it prevents the matcher from having to spread through the part-graphs of instances and

subconcepts from which a concept that was formed. is simpler and leads to fewer spurious

concepts being created, although it has other consequences for the matcher, since the new

concept becomes partially defined in terms of a specific instance.

5.2.3 Partial similarity may require disjunct formation.

Two objects may be considered generalisable by cneu on the basis of a particular kind of
partial similarity, where either the structures of the two objects are very similar, or the contexts

are very similar, but not both. For example, two telephones, one on the wall and one on a desk,

would be justifiably generalised on the basis of structure similarity alone. There are many

classes of objects whose instances have a relatively invariant structure and a variant context,

which may be initially formed from two instances that are partially similar in terms of structure

alone. Likewise, two chair-backs may have very similar context, but dissimilar substructure,

and this partial similarity should also be sufficient to justify generalisation.

This requirement leads to the problem of creating a concept whose structure or context is

defined disjunctively, rather than merging the relationship/relatees of the contributing objects

into a single non-disjunctive description. The issues and techniques used by GRAM to achieve

this are discussed in section 5.7.

cRAM is able to perform this limited but useful kind of disjunction formation as a consequence

of distinguishing structure and context in its representation scheme. Without this distinction, it
would have to deal with the very difficult problem of creating arbitrary disjunctions of properties

and relationships, which can lead to undesirable under-generalisation. This is presumably why

the other learning systems discussed in chapter 2 avoided disjunction altogether.

5.2.4 Several kinds of ambiguity must be resolved.

Sometimes one or more relationship/relatees of an object may match ambiguously with rela-

tionship/relatees of another object, in which case the cnote will include winning and marginally-

losing correspondences. For example, if one desk has one telephone on it, and the other desk

has two telephones on it (side by side), then the comparison of the desks will include two

ambiguous correspondences between the desk-telephone relationships. Dealing with such

ambiguity is one of the most difficult issues of generalisation. None of the other systems

discussed in this thesis (in chapter 2) dealt with this problem.

In developing ambiguity-resolution mechanisms for cRAM, as discussed in section 5.8, it

has been necessary to distinguish between two types of ambiguity. The first is called similar-

similnrity, meaning that each pair of corresponding relationshiplrelatees is similar in the same

way that the other competing pairs are, as is the case in the desk-telephone example above. The

second type of ambiguity is called different-similarity meaning that each pair of corresponding

relationship/relatees is similar in a dffirenr way from the other competing pairs. More specif-

ically, some of the correspondences may be based on structure similarity of the relatees, while

other correspondences may be based on context similarity.

5.2. ISSTIES AND CONTRIBUTIONS. 205

It has also been necessary to make a distinction between local ambiguity resoluti on and global

ambiguity resolution. The former deals only with the ambiguous conespondences of parent,

neighbour, and subpart relatees for one particular cnote, while the laner deals with ambiguous

correspondences amongst cnotes produced by the matcher. Currently GRAM only performs

local ambiguity resolution, and leaves global ambiguity resolution as the responsibility of the

larger learning system, for reasons discussed in section 5.8.

Various methods to resolve ambiguity have been developed in the cneu system, including the

formation of groups or multi-relationships to 'wrap up' the ambiguous items into a single entity;

muhiple generalisatian to account for all of the ambiguous correspondences; and best-only

generalisation which simply ignores all but one of the correspondences.

5,2.5 Strucfure and context interpretation must be considered.

Tlte interpretation of structures and contexts affects how they should be generalised. For

example, if a concept to be generalised to cover an instance has a partial interpretation,

then any unmatched relationship/relatees in the instance should be ignored. This and several

other aspects of the generaliser pertaining to interpretation are considered in section 5.9. If
the interpretation is disjunctive then the generaliser must deal with the winning (and any

marginally-losing) disjunct correspondences produced by the matcher, as discussed in section

5.7.

5,2.6 The cnote-graph may contain inconsistencies.

Section 4.3.5 of chapter 4 discussed how inconsistencies can be produced in the results of the

matcher. An example of a portion of a cnote-graph containing inconsistencies is shown in

Figure 5.3, where cnote Al;BI assumes AI0 is best matched with B|2,but A10:812 assumes

that Al is best matched with 82. Thus, the generalisation of AI and BI will be defined in
terms of a generalisation of Ai and 87, which will be defined in terms of the generalisation of
AI and 82. cnRu's generaliser does not check for this kind of situation, and so it may seem

that the concepts it produces could be nonsensical.

However, as discussed in section 4.3.5, the richness of object descriptions tends to prevent

such situations as in Figure 5.3 from occurring unless there are actual ambiguities, in which

case the cnote graph would not be as shown (since marginally-losing correspondences would
also be included), and the ambiguity resolution mechanisms would deal with it, as discussed

in section 5.8.

5.2.7 Objects can be generalised independently fiom other objects.

A characteristic of cRAM's generaliser is that it can perforrn a generalisation of two objects

independently from the generalisation of their related objects (except for making use of the

results of other generalisations). This is partly due to not requiring consistency, and partly
due to the representation scheme which an object is defined in terms of its relationships to

2M CHAPTER 5. TINCENERALISER

Figure 5.3; A cnote graph with inconsistencies

other objects, rather than in tenns of a set of parts defined locally within the object descripion.

This allorr.s an object to be considered a separate entity that does not even include its subparts.

Independenee is alss a rcsult of storing each relationship with only one object, rather than it
being comrnon to both of the objects involved, thus enabling relationships to be generalised

independently for each object correspondence.

5.3. THE GEI\TERAL IS ATION ALGONTHM.

5,3 The generalisation algorithm.

This section presents an outline of cRAM's generalisation algorithm, the details of which are

examined more thoroughly in the rest of the chapter.

The basic generalisation process is very simple. To generalise two objects in an cnote, cRAM

generalises the stmcture and contextproperties and generalises the conesponding relationships,

with the relatee of each generalised relationship refening to a generalised relatee obtained by

recursively invoking the generaliser on the original relatees. Thus the generaliser spreads

outwards through the cnote graph. For example, to generalise objects tvmainl and tvmain2 in

Figure 5.2, the generaliser must recursively invoke itself to obtain generalisations of tvl and

tv2, aeriall and aerial2, boxl and box2, screenl and screen2, IIegI and IIeg2, and rlegl and

rleg2. T\ese generalisations may also have to obtain generalisations of other pairs of objects.

Cunently cRAM performs depth-first traversal, although this could easily be converted to a
breadth-first traversal which would give the generaliser an interruptible 'any-time' behaviour.

ln terms of efficiency, the choice of traversal algorithm is not particularly important, since the

generaliser is not performing a search. Rather, it is just following through the graph of winning
correspondences that have already been identified by the matcher

Although the basic generalisation strategy is straightforwald, the full algorithm has a number

of complexities due to the problems of circularities, ambiguity, unmatched relationship/relatees,

and disjuncts. An outline of the algorithm is given in Figure 5.4, which we will now consider

step by step.

The main parameter to the generaliser is a cnote. This cnote describes the comparison

between two objects, objectl and objecA. Other parameters will be introduced later in the

chapter.

The process begins by testing whether the generalisation has already been performed earlier

(or is already currently being processed). This is necessary to prevent infinite loops. A cnote

that has already been (or is currently being) processed has the resulting (perhaps incomplete)

concept stored in it. Therefore, this concept can be immediately returned if it is available.

The next step tests whether the two objects are sufficiently similar to justify generalisation.

This may involve reinvoking the matcher to obtain a more accurate similarity score, since the

match may have been performed with a low spread. If the objects are not generalisable, then a

null result is returned.

The generaliser then determines whether the two objects are sufficiently similar to justify

modifying objectl to cover object2, or whether a new concept should be created, with objectl
and objecQ as subconcepts. This involves obtaining a fit-score for object2 with respect

n objectl. If modification is appropriate, then newconceptis set to be objectl, otherwise

newconceptis set to be a copy of objectl. This step and the previous step are discussed further
in section 5.5.

The newconceptis now stored in the cnote to prevent recursive cycles, and its instance-count

is set to be the sum of the instance-counts of objectl and objec2. The rest of the algorithm

207

208 CHAPTER 5. THE GEAIERALISER

generalises the features of newconcept (which is cunently objectl, or a copy of objecfl) to
coverthe features of concept2.

The next section of the algorithm is responsible for generalising the context of the objects.

The context properties are processed by generalising the individual attribute values that describe

the properties. Section 5.4 explains how this is done.

If the objects are described disjunctively, then the winning disjunct correspondences (pro-

duced by the matcher) are processed in the rmnner discussed in section 5.9.

The next step tests whether the non-disjunctive details of the contexts are similar enough that

the parent and neighbour relationships can be generalised. If not, then the context of objecQis

added as a new disjunct of objectl, or generalised to cover an existing disjunct. The problem

of determining when and how to form disjuncts is discussed in section 5.7.

If, on the other hand, the parent and neighbour relationships can be generalised, then it
performs three further steps. First, it processes each parent and neighbour relationship/relatee

of objectl as follows: If the relationship/relatee has a good unambiguous correspondence with

a relationship/relatee of objec2, then the attributes describing the relationships are generalised

(including the instance-counts), and the two relatees are generalised by recursively invoking the

GENERALISE procedure, The relationship of newconcepf is set to refer to the new generalised

relatee.

Second, all unmatched relationship/relatees of objec2are processed, as discussed in section

5.6. Thisneedstotakeintoaccounttheinterpretationofthecontexts,sinceif objecfl'scontext

is partialthen unmatched relationship/relatees of objecA may be able to be ignored. The issue

of how the generaliser deals with different stmcture and context interpretations is discussed in

section 5.9.

Third, any ambiguous relationship/relatee correspondences are processed, as explained in

section 5.8. This may involve forming multi-relationships or groups, or performing multiple

generalisations to account for objects that match two or more other objects in different ways,

thus satisfying 'multiple roles'.

The structures of the two objects are then generalised in the same manner as for contexts.

fi. THE GENERATISATION ALGOR/THM.

GENERALISE (cnote) (for objectl and objec0)

IF generalisation has already been done

RETURN the concept stored in the cnote.

IF objects are not generalisable THEN
RETLIRNnull.

(section 5,5)

IF objectl should be modified then

Use objecrl as newconcept

ELSE
newconcept F acopy of objectl,

with objecft and objecAas subconcepts.
(section 5.5)

Store newconcept in the cnote (to prevent recursive loops).

Set instance-count to be sum of the two original instance-counts.

Generalise context:

Generafise newconcepfs context properties to cover object2's properties.

(section 5.4)

Process winning context disjunct correspondences (if any).

(section 5,9)

IF context is not similar enough to generalise relationship/relatees THEN
Add objecAas a context disjunctof objedl,
or generalise an existing disjunct to cover objecA.

(section 5.7)

CIIIERWISE
FOR all parent and neighbour relationship/relatees of objectl :

IF it has a good unambiguous (or both-winning) correspondence with object2 THEN

Generalise newconcept s relationship to cover obiec2's relationship.
(section 5.4)

newrelatee e GENERALISE (relatees-cnote).

Set the generalised relationship to refer to newrelatee.

Process unmatched relationship/relatees of obj ect2.

(section 5.6)

Procqss ambiguous relationship/relatee correspondences.
(section 5.8)

Genemlise structure:

(as for context)

209

Figurc 5.4: The GENERALISE algorithm.

2ro

5.4 Attribute generalisation

CHAPTER 5. THE GET{ERATISER

Since properties and relationships are represented as attribute vectors, the most basic component

of the generaliser is the attribute-value generaliser. This section describes the different kinds
of generalisation performed for each of the different kinds of attribute (i.e. numeicaT, nominal,

boolean, etc, as defined in section 3.3.2).

Numerical attribute values are generalised simply by computing a new mean and standard de-

viation to account for the two contributing values, which may be generalised or ungeneralised.l

Directional attribute values are generalised in a similar manner to ordinary numerical at-

tributes, except that modulo arithmetic is used.

Nominal attribute values are generalised by combining the probability distributions of the

symbols in the contributing values. This is done by forming a union of their symbols and

summing the instance-counts for each pair of corresponding symbols.2 The instance-count

for the generalised attribute value as a whole is the sum of the instance-counts of the two

contributing values. Some examples of this are given below. An ungeneralised value is

specified as a single symbol or a set of symbols (a symbolsef) in which each symbol has an

implicit instance-count of l. A generalised value is specified with its overall instance-count at

the start, followed by a list of symbols and their individual instance-counts. (Notice that since

an instance may be a symbolset containing several symbols, the overall instance-count of a
generalised value is not necessarily the sum of the instance-counts of its individual symbols.)

(1 (red:l)) + (red)

(4 (red:1, blue:3)) + (green)

(4 (red:1, blue:3)) + (red green)

(4 (red:4, blue:3)) + (2 (red:1, green:1))

-) (2 (red:Z))

-f (5 (red:1, blue:3, green:1))

-) (5 (red:2, blue:3, green:l))

-+ (6 (red:5, blue:3, green:1))

Currently cRAM's generaliserdoes not perform any 'climb-hierarchy' operations to generalise

symbols (such as producing polygon from the symbols rectangle and hexagon). Instead it is

assumed that all possible generalisations are (if necessary) included in the instance descriptions

themselves. The combined instance-counts of two attribute values reflect what is common, as

shown by the following example, which results in a generalised value for which polygonhas

1007o 'probability', and rectangle and squarehave SOVo probabilities.

(l (rectangle: l, polygon:l)) + (l (polygon:1) (hexagon: l))

-+ (2 (polygon:2,rectangle:1, hexagon:l))

tThis is achieved by recording the sums, sums-of-squares, and instance-counts ofthe instance values.
2cRev does not need to perform a 'climb-hierarchy' operation because it assumes all values at all levels of

generality are present in the instance, such as hexagon and polygon. In this sense it is similar to Connell and Brady's

Gray coding scheme described in section 2.7. However, it differs from their scheme because the generalisation is

the union rather than the intersection ofthe values, and thus loses less information.

5.4. /. TRIBUTE GENERALISAflON

Boolean attributes are a special case of nominal attributes, where only two values, true and

false, are allowed, and so they are generalised by summing the instance-counts, tnte-counts,

and false-counts of the two values.

Position values are simply a pair of numerical values, and so are generalised by generalising

each of the two values independently. It may seem that this is an over-generalisation. For

example, generalising two positions (0.1, 0.1) and (0.2, 0.2, would produce a new position

which will match well with positions whose x coordinate is (roughly) in the range 0.1..0.2 and

y positions whose y coordinate is also (roughly) in the range 0.1..0.2. This generalisation has

lost the fact that the x and y coordinates are the same, or more importantly, that the positions

are both on a line in the direction of 45 degrees. However, since direction and distance are

included explicitly as attributes anyway, this is not a problem.

ProfiIe values are generalised in the same rnanner as positions, by independently generalising

each of the values in the profile vector.

2tl

212

3.J Determining what is to be generalised.

This section considers various methods for controlling and determining which objects are to be
generalised. The first method is by the use of scope-restriction parameters that can be passed to
the generaliser from an external source, such as a teacher, or the larger leaming system, or from
the generaliser itself via a recursive invocation. These can be considered ways of "focusing the

attention" of the generaliser. The second method is by the use of various criteria to determine

whether a pair of objects are sufficiently similar to justify generalisation. These criteria may

also be passed as parameters.

5.5.1 Scope rcstriction can be achieved by marking the generalisable objects.

In order to control which objects are to be generalised (or more precisely, which cnotes are to

be processed), cnau allows instance objects to be marked as in-scope or out-of-scope. This is
a similar method to that used by the matcher, except that the matcher also needs to mark the

concepts, so that both object-graphs are restricted, otherwise mismatches would occur. The

generaliser only needs to restrict the instance graph, since it does not have to perform any

search: correspondences are already established.

For example, if a teacher pointing to a handdrill wants a robot to generalise its existing

handdrillconcept to coverthe new instance, ignoring the context of the handdrill (i.e. the room,

the workbench, other tools, erc), then s/tre only needs to indicate the restricted scope of the

instance, rather than restricting the scope of concept-memory.

ln the case of concepts being matched with concepts, only the second concept and its in-scope

related concepts iue marked. Likewise, when generalising two instance graphs, only the second

is marked.

The most useful form of scope-restriction is to restrict generalisation to the substructure of
an observed instance, rather than its context, since many of the concepts that a robot system

would be required to learn are relatively concept-independent, such as hnddrill (as above),

chair, telephone, bicycle, etc.

An example of the effects of using scope restriction is given in Figure 5.5, where the

substructure portion of the instance graph is marked, as indicated by the shaded object nodes.

If we assume that the original concepts can be modified, rather than new ones created, then the

only concepts affected ue A1, A2, A3, A4, and A5 (if we also assume that these are the only

acceptable correspondences with the marked objects of the instance graph). This is illustrated

by figure (a) in which the dark-shaded concept nodes have been modified by generalising them

to cover the corresponding B objects. All of these generalisations occur by spreading from the

seed cnote, which in this case happens to be A1:81.

Although the out-of-scope An objects are not generalised, the relations&rps from AI, A3,

and A5 to the out-of-scope objects 46, A7, A8, A9, and A10 are generalised to cover the

relationships from B 1 , 83, and .B5 to the out-of-scope objects 86, 87, 88, B9, and B l4 if the

correspondences are sufficiently strong.

CHAPTER 5. THE GET\TERAUSER

5.5. DETERMINING WHfrT IS TO BE GEIVERALISED. 213

Notice also that A5 now has a neighbour relationship with BIl, since there was no corre-

sponding neighbour of the original A5. Thus the generalised and ungeneralised object graphs

have been linked together via a neighbour relationship. This issue of dealing with unmatched

objects is discussed in section 5.6.

If it is necessary to create new concepts for all generalisations, rather than modifying existing

concepts, then new concepts are only created for cnotes involving an in-scope instance, as

shown in (b) of the figure. If a relationship of an original concept has a relatee concept that

is not matched with an in-scope instance, (as in the case of the AI-A6 relationship), then the

generalisation of that concept includes a copy of the original relationship, which will still refer

to the original unchanged relatee concept, as shown by the relationship from AI+B I to 46.

An altemative scheme is to actually generalise the relationship to cover the instance relation-

ship (assuming there is an unambiguous winning correspondence) but without generalising the

relatee. In this scheme, the scope-restriction is being interpreted in a slightly weaker manner,

since relationships from in-scope objects to out-of-scope objects are processed.

lf a robot system is operating in a relatively unfocused manner (without a teacher or specific

task to be achieved, such as when 'wandering' or'pondering') then generalisation scope may

be left unspecified, so that the generaliserjust spreads throughout the cnote graph produced by

the matcher. In fact, in a full learning system, matching and generalisation could be performed

concurrently, with the generaliser requesting more results from the matcher as required, and

results of the matcher causing the generaliser to be invoked when a good classification is

obtained.

5.5.2 Scope restriction can be achieved by specifying the required spread.

Another convenient way of specifying the generalisation scope is by the use of a required-

spread parameter that specifies how far the generaliser should spread through the cnote graph.

One spread value can be given for substructure-spread and one for context-spread. This can

be interpreted to be a way of specifying the 'effort' to be applied, or the amount of detail

considered important for generalisation. Again, this is similar to the use of the required-spread

parameter by the matcher.

The generaliser uses the required-spread parameter to determine which instance-objects are

to be marked as in-scope or out-of-scope. For example, in the handdrill example above, a

context-spread of I and a structure-spread of 3 would cause the generaliser to mark subparts

that are 3 deep in the decomposition hierarchy, and to mark cont€xt objects that are directly
related to the seed object or to a marked subpart. This is illustrated in Figure 5.6, where the

dark-shaded object is the seed object, and the light-shaded objects are those that are in-scope.

If existing concepts in memory are to be generalised to cover the objects in this instance-graph,

the concepts person, hand (or perhaps clenched-hand), and workbench can only have their
properties generalised, with no further spread, although since hand is a subpart concept of the

person concept, person will implicitly be generalised more than just by property generalisation.

Using this low-context-spread restriction, the system will leam more about the context of

An instance graph:

(Generalisation scope is indicated
by lightly-shaded object nodes.)

(a) If concepts are MODIFIED:
only concepts AI,A2,A3,A4,and A5 are
generalised to cover lhe instances

(b) If NEW concepts are created:

the follawing concepts are added to concepl memory:

seed cnote

214 CHAPTER 5. THE GEIVERATISER

Figure 5.5: Scope restriction.

handdrills, such as what kinds of rooms they appear in, what kinds of people use them, what

kinds of hands hold handdrills (r.e. usually a clenched hand), erc, but without investing effort

into generalising details of the context that are not directly related to the handdrill.

5.5. DETER]I4INING WHAT IS TO BE GENERALISED.

Figure 5"6: Spread resfriction

2r5

216 CHAPTER 5. TIN GE]\IER,4IISER

5.5.3 Proximity-scones and fit-scores determine whether to generalise or modify.

Section 4.3.8 discussed the distinction between fit-scoring and proximity-scoring, and men-

tioned that proximity-scores are used to determine whether two objects are similar enough to
justify forming a generalisation, and fit-scores are used to determine whether the second object

'fits' the first object well enough to justify modifying the first object's description or whether a

new concept should be created with the original descriptions unchanged but linked to the new

concept as subconcepts.

The threshold cutoff values for generalisability and modifiability are therefore another means

for controlling what cnotes are processed by the generaliser. These values can be either passed

as parameters to the generaliser, or obtained from globally predefined defaults.

The generalisability and modifiability parameters must be able to be ovenidden, since some

concepts, such as fitmiture or hand-tools, are formed from instances that are significantly

diffierent, and must be formed on the basis of explicit instruction from a teacher, or from a

larger system that deals with functional knowledge.

The generaliser might leave the concept unchanged

If the fit-match score is very high, and if a large number of instances of the concept have already

been seen, then it might not even be necessary or desirable to generalise the concept at all.

Thus a system operating in a familiar environment day after day would not need to continually

modify its concepts on the basis of every object it observes. This is perhaps the most important

means for controlling the generalisation spread. [n the example of the handdrill given earlier,

the neighbouring concepts person, hand, workbench, etc would most likely be left unchanged,

even without the scope-restriction.

5.5.4 The matcher may need to be reinvoked.

As the generaliser spreads through the cnote network, it may reach a cnote that was evaluated

by the matcher with low-spread effort (perhaps due to being on the fringe of the match

scope) and hence the lowerbound of the score might be too low to justify generalisation,

even if the estimated similarity score is high. Two possibilities can occur here. Either the

generaliser can simply bottom-out, leaving the original concept unchanged, or it can request

the matcher to perform a more thorough comparison based on the required-spread parameter

of the generalisation process. The decision depends on task requirements, and is thus an

additional parameter to the generaliser.

5.6. DEN-ING WTITI TINMXTCHED PARENTS,]VEIGIIBOLTRS, AIVD SUBPARTS. 217

5.6 Dealing with unmatched parents, neighbours, and subparts.

This section explains how the generaliser processes a relationshiplrelatee that is unmatched, or

more precisely, that has a winning correspondence whose score is too low to justify generali-

sation.

The simplest situation to deal with is illustrated in Figure 5.7, in which X0is to be generalised

(by modification) to cover Y0. In this situation, the relationships XO-X3 and X1-X3 do not

have any acceptable conespondences with the relationships of Y0 and YI. Generalisation

is straightforward: The relationships and objects that do correspond well can be generalised

(with their instance-counts incremented from 1 to 2), and the extra unmatched relationships

to and from A0 and xl are left unchanged (with their instance-counts remaining as l). The

unmatched features are nordropped from the description (in contrast to Winston's system), but

instead become optional features. The resulting modified X objects are shown at the boffom of
the figure.

Figure 5.7: An unmatched instance-part

A more difficult situation is when new relationship/rclatees have to be added to an object

description. For example, in Figure 5.8, the BA-83 subpart relationship/relatee has no accept-

able correspondence with the subpart relationship/relatees of A0 and so the generalisations of
some of the A objects must have new relationship/relatees added. Tlvo alternative methods

could be applied here, as described in the following sections. At this stage it is not clear which

method is best, since more evaluation in the context of a full learning system needs to be

performed to determine this. Therefore, this thesis simply describes the alternative methods

that are supported by GRAM, and indicates their overall advantages and disadvantages.

I

rl

After generalisation ...

218 CHAPTER 5. TTIE GEIVERAIISER

Figure 5.8: An unmatched instance-part

5.6.1 Method-l: The generalisation refers to the original unmatched object.

The first method involves copying the unmatched relationships and adding them to the corre-

sponding generalised objects. The new generalised relationships refer to the oruginal unmatched

objects. This is illustrated at the top of Figure 5.9 in which new concepts A0+B'0, A2+82,
and A1+Bl are created as generalisations of the An and Bn objects. 40+80 has a copy of
the 80-83 relationship (with an instance-count of 1), which refers to the original 83 object.

Likewise, A1+BI has a copy of the BI-83 relationship. However, the 83 object does not have

relationships to AI+BI and A0+80, but instead remains unchanged, with relationships to B0

and .B3.

This method is very simple for the generaliser, but leads to problems for the matcher. This

is because the generalised objects (A0+80 etc) are now defined in terms of two object graphs:

the graph of the other generalised concepts, and the graph of the original Bn, objects. This

means that to match a new instance with the concept, the matcher has to compare the instance

with both graphs. For example, to match A0+80 with C0 shown in the lower half of Figure

5.9, the matcher must compare 83 with C3. This then requires the neighbours 82 and C2 tobe
compared, which leads throughout the Bn and Cn graphs. At the same time, the matcher must

compare CI,C2,andC3withtheobjectsintheAn,graph. If theobjectsA0,B0,andC0were
much more complex, then the relationship between A0+80 and 83 would lead the matcher

into a considerable of work which is mostly redundant, since the most of the Bn objects are

subconcepts of the Azz-Bn objects.

One way to reduce this redundant matching is to make use of the AKO hierarchy, as explained

in section 4.4.8 of chapter 4. For example, since 82 is a subconcept of A2+82, then if the

matcher has already compared the new object C2with A2+B2then this result could be used as

an estimate for the desired B2:C2 comparison. Conversely, if 82 and C2 were matched first,

then when the matcher tries to match 82 with A2+82, the B2:C2 result could be used as a

lower-bound on the score.

However, another problem with this method is that an explicit generalisation of the unmatched

5.6. DEALING WTNI UNMATCHED PAREI TS, NEIGHBOURS, AIVD SUBPARTS. 2I9

object is not produced. In the example above, the optional subpart 83 of the new concept 40+80
is not generalised by making its relationships refer to the new An+Bnconcepts, and thus there

is no explicit 'transfer of information'.

This method may seem to lead to a further problem: if the An+Bn concepts are later

generalised with more instances, then generalisation could lead to object 83 being generalised,

which would therefore alter B0and the other original instance objects that are defined in terrns

of 83. However, this is only a problem if 83 is modified (rather than by being generalised as a

new concept), and modification only occurs when it is acceptable.

Figure 5.9: Method-l: Add relationships referring to the unmatched objects.

5.6.2 Method-2: Unmatched objects ar€ copied.

The second method for dealing with an unmatched object is to create a copy of it, altering

the relationships of the copy so that their relatees are the new generalised concepts. This

is illustrated in Figure 5.10, where a concept newB3 is created by copying 83 and creating

rclationships to refer to and from the other An+Bn concepts. Thus newB3 is generalised

because it is now defined in terms of generalised objects.

This is a more complex process than the first method, and also leads to a larger and more

complex concept-memory especially if the unmatched object has unmatched substructure

and/or unmatched context (which in most cases it will) since this must also be copied. The

AKO hierarchy is made more elaborate since the new description must be specified as a

Now suppose we match A0+80 with D0:

Requires matching with all of the
objects shown above.

Matcher should tnake use of the AKO hierarchy to
reduc e redundant rnatc hing :

220 CHAPTER 5. TIIE GEI\IERALISER

superclass of the original description. However, these complications are necessary to resolve

the problems of the first method.

One difficulty in this method is determining what relationships to ueate for the new object.

It is straightforward in the situation above, since the relatees of 83 (t.e. B0 and BI), both
have unambiguous winning correspondences with A0 and AI respectively, and so the new

objecf newB3, can be given relationships to the generalisations of these, namely A0+80 and
A1+BI. However, if there were ambiguities, these would have to be resolved. For example,

Figure 5.1 I shows a situation in which the neighbour BI of the unmatched triangle 83 could be

corresponded with either of A2 or A5, and there is no way to choose between them. However,

this ambiguity means that it does not particularly matter which correspondence is chosen. In
fact, in this situation the objects 41, A4 and 84 are likely to be generaLised (by the ambiguity-

resolution mechanism) to form a single typical-member concept for a group, and so the copied

version of I|3 can refer to the components of this concept rather than just to either the A2+81
or A5+B I generalisation.

how are the relationships from newB3 obtained?

Figure 5.10: Method-l: Create
^copy

of the unmatched instance.

5.6. DEALINGWTT-H UNMATCIIED PAREMTS, NEIGT{BOURS, AND SI/,.PARTS. 221

Figure 5.11: Unmatched and ambiguous.

222

5.7 Partial similarities and disjunct formation.

In this section we explore when and how disjunctive concept descriptions are created and

generalised by cnlu. We first consider the two main kinds of partial similarity that necessi-

tate disjunct formation, and then consider the issues of creating disjunctive descriptions and

generalising them with future instances.

5.7.1 Generalisation (by disjunct formation) may be justified by structure-only
or context-only similarity.

Generalisation can sometimes be justified on the basis of a partial similarity between two
objects, even if the overall similarity score is not pafticularly high. 'Partial similarity' is used

here to mean that two objects are similar in some aspects but not others. The two kinds of
partial similarity that justify generalisation in cReu are context-only similarity (which leads

to structure disjunction) and structure-only similarity (which leads to context disjunction).

For example, in Figure 5. I 2 objects A2 and 82 clearly correspond, based on their high context

similarity (and also their overall shape), even though their structures differ significantly. The

structures of these two objects cannot be generalised by generalising their properties and

merging their relationships. Instead, the new concept must have a disjunctive structure, of
which the disjuncts are the structures of the subconcepts A2 and B.2, as shown at the bottom

of the figure. (A0, AI and A3 are sufficiently similar to BQ BI, and 83 respectively, that

they could perhaps be modified, but for the purposes of the discussion it is assumed that new

concepts are created.)

In Figure 5.13 objects 82 and C2 correspond only on the basis of high structure similarity,

since the context similarity is poor. The resulting generalisation has a generalised structure and

a disjunctive context, as shown at the bottom of the figure. The context disjuncts of B2+C2 arc

the contexts of the subconcepts 82 and C2. Notice also that B1+CI and 83+83 each have two

relationshipsto B2+C2, since these are considered insufficiently similar to generalise.

5.7.2 Some examples of disjunct generalisation and formation.

In the above examples, the original descriptions were non-disjunctive. The following se-

quence of examples show how disjunct generalisation and formation occurs when one of the

descriptions is already disjunctive. They also give more examples of the use of fit-scores and

proximity-scores to determine generalisability and modifi ability.

Figure 5.14 shows an object D0which is to be generalised to coverthe A0rBOconcept shown

in Figure 5.12. In this case there is a structure-only similarity between A2+82 and D2, since

D2's structure does not match either of the structure disjuncts of A2+82. This may seem to

suggest that a new concept A2+82+D2 should be created, as for the earlier situation in Figure

5.12. However, the variance of the structure of A2+82 is high, due to the disjunction, and this

causes GRAM to compute fit-scores primarily on the basis of context similarity. Therefore, the

fit-score of D2 with respect to A2+82 is actually quite high, and so A2+82 can be modified to

CHAPTER 5. 'THE GEIVERAIISER

5,7, PARTTAL SIMILARITIES AIVD DISJUNCT FORMATTON. 223

Figure 5. | 2: Context-only similarity.

cover D2. The results of the generalisation of A2+82 are shown at the bottom of the figure.
(If fit-scoring did not take into account disjunction in this manner, then every new object such

as D2 would force the creation of new '42+8.2+...' object.)

Figure 5.15 shows another object EO whose subcomponentE2 is similar to the disjunct D2

of 42+82. Therefore, there is no need to add a new disjunct to A2+82, since the structures

of D2 and E2 are generalisable. The only significant difference between them are the small

circles inE2. The fit-score is nothigh enough, however, to justify modifying D2,andtherefore

a new concept D2+E2 is created, to which D2 and B2 ae linked as subconcepts. D2+E2 is not
defined disjunctively though, since a full description of the substructure (including the optional

small circles) is specified non-disjunctively in D2+E2. D2 and E2 are just specialisations of
D2+82.

Suppose the next object observed is FQ as given in Figure 5.16. In this example, A2+82
and F2 have similar structures (since the disjunct D2 matches F2 very closely) but different

contexts. The fit-scorcs for all of the Fn objects with respect to the An+Bn objects is poor, due

to the differing contexts, and so new concepts must be formed. The new concept A2+82+F2
is interesting because it is now defined by a disjunctive sfiucture and a disjunctive context.
(Recall from chapter 3 tbat the subconcepts of such a concept define both the structure and the

context disjuncts). The new disjunct (subconcept\ D2+F2 has a disjunctive context defined in

terms of D2 andF"2.

\r
AKo

t\t
I

-@,/N.r\

224 CHAPTER 5. THE GEIVERATISER

Figure 5. 1 3: Structure-only similarity.

The next object to be considered is G0, in Figure 5.17. In this case, the structure of GO

does not match any of the disjuncts' structures, and its context also does not match any of the

disjuncts' contexts. Therefore, it does not have a sufficiently high score to justify generalisation.

5.7.3 Import-fromrelationships could be crcated.

When disjuncts are formed, it is often desirable to define them using import-from relationships

(as defined in section 3.4.1) since this can reduce redundancy and allow a greater transfer

of information amongst the disjuncts. For example, concept B2+E2 in Figure 5.16 could be

defined by importing its context from the other disjunct 42.

However, the current version of cnAu does not create import-from relationships, since it
involves issues pertaining to the problem of memory organisation in the larger learning system.

Therefore, although the representation and matcher support import-from relationships, the

generaliser does not.

5.7.4 Disjuncts could be converted to an 'any' interpretation.

If a disjunctively-defined concept acquires, through generalisation, a large number of structure

[or context] disjuncts, then it may be desirable to give the structure [or context] an 'any'

disjunctive
con cxt

5.7. PARTTAL SIMILARTIES AND DISJLNICTFORMA?ION. 225

Figure 5.14: Creating a new stnrcture disjunct.

interpretation. This means that future matching will ignore the stnrcture lor contextJ when

computing the overall similarity score, so that the concept will be matched solely on the basis of
its context (or stmcture]. However, the subconceptdisjuncts could still be retained as ordinary

subconcepts, or even as disjuncts if the context [or stnrcture] is defined disjunctively in terms

of some or all of those subconcepts.

As with the operation of creating import-from relationships in section 5.7.4, this operation

is not done by the GRAM generaliser, but is the responsibility of the memory-organisation

component of the larger learning system. This and other operations for 'cleaning up' or

optimising concept-memory could be performed during idle 'sleep' time, rather than during

the process of generalisation itself.

disjunctive ,structure I
,l
;{."

tt-@/A

ta'-.
,

')to ;;-trj- -\
t--@ --{Ebl/,b /tr-

226 CHAPTER 5. TIIE GENERALISER

$'(
t\+

-tr.- ,ffiF'

Figure 5.15: Generalising an existing structure disjunct.

5.7 . PARTIAL SIMILARITIES A]\D DISJLTNCT FORMATION. 227

"r*,fu 'pf*ifGF6 i\/*rz

\;'(

-@/il\.

}AKO'tt t
,ffis

Figure 5.16: The new concept is disjunctive in both str:ucture and context.

Figure 5.17: A new object is too different to justify generalisation.

228

5.8 Ambiguity.

CHAPTER 5. TTIE GEJVERALISER

In most of the examples we have looked at in this chapter so far, there have been clear-

winning unambiguous one-to-one correspondences between the parent, neighbour, and subpart

relationship/relatees of the objects being generalised. This section addresses the problem of
ambiguity, where it is not obvious which correspondences should be selected for generalisation.

The section identifies several different kinds of ambiguity that can occur in GRAM's domain,

and discusses the most desirable output of the generaliser for each kind of ambiguity situation.

It then considers the issues in achieving this, and explains the ambiguity-resolution mechanisms

used in the GRAM system.

5.E.1 S imilar- s imilarity ambiguity and diffe rent- s imilar ity ambiguity.

Ambiguity comes in two main forms, namely similar-similarity ambiguity and dffirent-
similarity ambiguity, each of which requires a different kind of generalisation. Similnr-

similarity occurs when several correspondences all score equally well in all respects. This

situation occurs when several similar concepts, or several similar instances, are similar to each

other, since any correspondences with them will necessarily compete with each other. An

example of this is given in Figure 5.18 where ,43 matches 83rna similar way to its match with

84 because 83 and 84 are similar to each other.

Figure 5.18: Ambiguity due to 'similar-similarities'

Dffirent-similarity, on the other hand, occurs when several correspondences score equally

well overall, but have different scores for the finer details. ln other words, the items are partially

similar in different ways. This is illustrated in Figure 5.19 where the overall similarity scores

for the A4:.83 and A3:83 correspondences are approximately the same, but the former has a

good structure similarity and poor context similarity, and the latter has the converse. ln this

situation, the set of concepts, and/or the set of instances , ate not similar to each other. In the

example, 43 and A4are quite different, but .B3 is partially similarto both of them, in different

ways.

Similar-similarity ambiguity is resolved by forming a multi'relationship.

The desired resolution of similar-similarity ambiguity is to merge ambiguously matching

relationships and relatees into a single multi-relationship with a generalised fiowmany count

-l
I

5.8. AIUIBIGUITY. 229

Figure 5.19: Ambiguity due to 'different-similarities'

and a single generalised relateen perhaps also forming a group of which this is the typical

member. For example, the result of generalising the objects in Figure 5.18 above is as shown

in Figure 5.20, which includes a generalisation of the circles A3,B3,and 84, and a multi-

relationship to it from A0+80 and also from Al+Bl, both with generalised howmafly counts

indicating the range 1..2. The 43+B3+84 concept also has two neighbour relationships to

itself, one which refers to the ball on the right (obtained from 83) and the other which refers

to the ball on the left (obtained from 84) both of which have instance-counts of only l, since

only one of the contributing instances had each of the relationships. A grouped object has not

been formed in this particular example.

Figure 5, 20: Similar-similarity ambiguity resolution.

Different-similarity ambiguity is resolved by multiple generalisations.

The desired resolution of competing-similarity ambiguity cannot involve multi-relationships or
grouping, since the objects involved are not similar. A distinct generalisation is produced for
each of the ambiguous correspondences, since each captures distinct and potentially important

information. For example, in the situation of Figure 5. I 9 the best generalisation would specify

that there is 'something' atthe top right of AI+BI, something atthe bottom left, a circle attached

somewhere, and a square-thing attached somewhere. The generalised objects in Figure 5.21

capture this information. Notice that the relationships between 45+85(the vertical rectangle)

and 43+83 (the generalisation of the two circles) has an instance-count of only l, since only

A3 has a direct relationship with A5.

230 CHAPTER 5. TTTE GEIVERATISER

Figure 5.2 I : Different-similarity ambiguity resolution.

Vertical ambiguity.

A special form of different-similarity ambiguity is illustrated in Figure 5.22 and is called

vertical ambiguity. A2 matches B.4well on context, but poorly on substructure, and it matches

82 (which is a subpart of B,4) well on sffucture but poorly on context. Thus .A2 ambiguously

matches two objects that are along the same branch of the object decomposition hierarchy.

The key characteristic of vertical ambiguity is that there is a composite object X which

consists of a large subpart XI and one or more small attachments, such that if, in another

observed object, the object conesponding to X is non-composite, then that object will also

match Xl.

t-At tE

n simlarcontext d ilZ
1 \

=
Ott"tl,t"g"g

14.!l l-s----=s,,fi*** - - - -ED
''

L
Figure 5 .22: Ambiguity due to'different-similarities'

Vertical ambiguity should also be resolved in the same way as for ordinary different-similarity

(by producing a separate generalisation for each correspondence) since each correspondence

is distinct and captures important information. For the example above, this would result in the

object A0+80 (the whole 'T') having two subpart relations, one to A2+82 (the generalisation

of both solid vertical rods), and the other to A2+84 (the generalisation of the solid A rod

5.8. AAIBIGWTY.

and the composite B rod), as shown in Figure 5.23. The result differs from the resolution of
ordinary different-similarity because one of the generalisations becomes a subpart of the other.

Figure 5.23: Ambiguity due to 'different-similarities'

Multi-relationship ambiguity is a special kind of similar-similarity.

A speciaf case of similar-similarity ambiguity is multi-relationship ambiguity, where two or

more relationship/relatees of one object match the generalised multi-relationship of the other

object, as illustrated in Figure 5.24. Object AI has a multi-relationship to A2, and Bl has

three ordinary relations to 82,83, and 84. When matched, .A2 ambiguously matches all of
82, 83, and B,4. The resolution of this form of ambiguity is straighrforward, since the relatee

of the multi-relationship can be generalised to cover all of the other relationshipirelatees, and

the howmany count updated accordingly, as shown at the bottom of the figure.

W}-@=a--- -jrcle\
- CltO!4__

ffi
Figure 5.24: Multi-relationship ambiguity.

'Both-winning' correspondences can be generalised lndividually.

Sometimes in a situation of similar-similarity ambiguiry there may be some relationship/relatee

correspondences that are winning correspondences for both of the two objects involved, even

though they are only marginal winners. In such a case it is reasonable to generalise each of

231

CHAPTER 5. THE GEATERATISER

these pairs of relationship/relatees individually and include the generalisations explicitly in the

resulting generalisation, in addition to the multi-relationship.

For example, the top hinges of the two doors in Figure 5.25 match each other beffer than any

of the other hinges, and so their generalisation can be included as relatees of the generalised

door, and likewise for the bottom two hinges.

One of the effects of allowing 'both-winning' correspondences to be generalised even when

they are only marginal winners, is that atypical relatees will be retained in the generalisation,

without requiring any special-purpose mechanism for dealing with atypical members explicitly.
The ends of 'chain' groups, such as the endmost books in a bookshelf, are examples of this.

There is no need for methods such as using the FST (first) and MST (most) generalisation

operation employed by Michalski [Michalski, 1983].

Figure 5.25: Multi-relationship ambiguity.

5.8.2 Local and global ambiguity.

Ambiguity can also be characterised as local andlor global ambiguity. Local ambiguity refers

to ambiguity amongst parent, neighbour, and subpart relationship/relatee correspondences for a

particularcnote. Global ambiguity refers to the ambiguity amongst all cnotes generated during

the match process.

hAl+hA2+hA3+hA4
+hBl+hB2+hB3

5.8. AMBIGUITY.

For example, suppose the matcher has matched roomA and roomB in Figure 5.26, and in

doing so it has matched all of the potplants in roomAwith all or most of the potplants in roomB.

If we considertfie correspondence between the two desks, there is local ambiguity (with respect

to the desks) between the potplant correspondences, since either of the two potplants on top of
deskA could be corresponded with the potplant on deskB. The potplants that are not directly

related to the desks are excluded from the consideration of local ambiguity. (fhe potplant

to the left of deskA can be considered unmatched, unless an explicit neighbour relationship

between deskB and ppAZ was formed.) Local ambiguity of the potplants with respect to the

desks is based not only on the similarity scores for the potplants, but also the relationships

from the desks to the potplants. Therefore, local ambiguity resolution would choose to merge

only the potplants that are on top of the desks. It would produce a concept which could be

interpreted as "the kind of potplant typically found on desks". The generalised desk would

have a multi-relationship to this concept with a howmany count of L.2.

Global ambiguity of the potplants, on the other hand, is not associated with any particular

correspondence between the room components, but instead refers to the ambiguity between all

potplant cnotes that were generated when comparing the rooms. Therefore, global ambiguity

resolution could deal with all pairings of potplants, including ppAl, ppA4, ppBl, and ppB2,

which might not even be noticed by local ambiguity (except perhaps with respect to the floor

correspondence). Although it could also notice the ambiguity between the potplants on the

desks, it would not place any extra significance on the relationships to the potplants from the

desks. This relationship would just be treated as one feature of the context description of
the potplants. Therefore, global ambiguity resolution is able to initiate the creation of larger

and (from a global perspective) more complete groups of objects than would local ambiguity

resolution. In the pot-plant example, it could invoke the group-constructor to produce a single

generalisation of all 7 potplants. The generalised desk could then have a multi-relationship to

this concept with a howmany count of 1..2, although it might also have a multi-relationship to

the more specialised concept created locally with respect to the desk correspondence.

Since global ambiguity is not associated with a particular cnote, its resolution is the responsi-

bility of the larger learning system, which must take into account the AKO hierarchy as a whole

when determining what new concepts, groups, and multi-relationships to create, and how to

reorganise the AKO hierarchy if necessary. Therefore, it has not been addressed fully in this

thesis. Currently cRAM only performs local ambiguity resolution. In a future version of GRAM,

local and global ambiguity resolution should be integrated, since it is not usually appropriate

to form groups and/or multi-relationships on the basis of local ambiguity alone. Rather, local

ambiguity should be the trigger for invoking the global mechanism.

5.8.3 Vertical and horizontal AKO ambiguity.

A special form of global ambiguity is where an observed instance matches more than one

concept down the same branch of the AKO hierarchy. For example, an observed chair may

matchtheconcept seat,chair,andarmchair,asshowninFigure5.2T(a). Thiskindofambiguity,
which can be called vertical AKO ambiguity, occurs for almost every classification, and clearly

234 CHAPTER 5. THE GEIVERAIISER

roomB

ppB3

PPBI

local umbiguity
(for the deskl :desQ correspondence)

deskA

illl-l;fiffi;**".--=-' ""'
PPA3---s6i

A locul resoluion:

global ambiguity

fi=ii-=K*

Figure 5.26: Local and global ambiguity.

5.8. AIv'[BIGI./]|[Y 235

should not be resolved by merging all of the concepts into a single concept (at least not usually).

Rather, each should be generalised separately to cover the new object.

All otherforms ofambiguity involvingconcepts in the AKOhierarchycan be calledlprizontal

AKO arnbiguity. For example, Figure 5.27 (b\ shows a situation where a new object matches

several subconcepts of the same superconcept equally well. This indicates that one of the

subconcepts could be generalised to cover all the others, and these others could then be removed

from memory, or made to be subconcepts of that subconcept. Alternatively, a new concept

could be created which is a generalisation of, and a superconcept of, all of the ambiguously

matched subconcepts.

Figure 5.27: Vertical and horizontal AKO ambiguity.

AKO hierarchy:

Horizontal AKO ambiguity

236 CHAPTER 5. THE GEATERATISER

5.9 Structure and context interpretation affects generalisation.

This section considers how the generaliser needs to behave differently for the different kinds
of structure and context interpretation, such as complete, paftial, any, etc. These were defined

in the representation chapter, and a summary can be found at the end of section 3.4.3 on page

102.

Most of the examples in this chapter are 'complet*complete' generalisations, where both of
the two descriptions being generalised specify all permissible and required relationships and

relatees. In these situations, any relationships that are only present in one of the descriptions

are included in the new concept. One exception to this is when the two descriptions differ
significantly in their structure or context so that a disjunction is created, in which case the

new description only retains relationships that are common to both descriptions, since the

non-shared relationships are specified in the disjuncts. The resulting generalisation therefore

has a paftial interpretation.

When generalising two descriptions of which one already has a partial interpretation, the

generaliser operates slightly differently. In particular, if the generaliser is generalising a

concept and an instance, and the concept has a partial interpretation and the instance has

a relationship that has no acceptable conespondence in the concept description, then the

relationship is ignored, and the resulting generalisation remains partial.

If, on the other hand, a relationship in the partial concept description does not have any

acceptable correspondence with an instance relationship, then it is nof dropped immediately, but

instead is only dropped if the instance-count-ratio drops below some parameterised threshold

value and if a sufficient number of instances have already been observed, For example, suppose

that XI in Figure 5.28 is to be generalised to cover YL T\e X1-X2 and X1-X3 relationships

match the Y1-Y2 and YI-Y3 relationships respectively, so the ins[ance-counts of the former

relationships are incremented. The relationship of XI to X4 is unmatched, but since it has a

reasonably high instance-count-ratio it is retained in the description. However, if we suppose

that dropping occurs if less than two-thirds of at least l8 instances have the relationship, then

the unmatched relationship to X5 must be dropped.

For the extreme value of the 'drop-relationship' parameter for which dropping occurs when

an instance-count-ratio is less than I and at least two instances have been observed, then

all concepts acquired by the system will either be complete descriptions with no optional

relationships, or partial descriptions. This leads to simpler concepts, but the matcher must

make greater use of the AKO hierarchy (by matching subconcepts) when classifying or finding

faults in observed objects, since optional details of concepts will only be specified in their

subconcept descriptions. This thesis does not state whether this is better or worse than having

a high-tolerance threshold for optional components, but rather just points out the difference, so

that the larger learning system can use either approach.

Complete descriptions can periodically be'pruned'by aclean-up module (which has not

been implemented) which checks for concepts that are defined in terms of a multinrde of
relationships mostly having low instance-count-ratios, and removes all but the high-instance-

count-ratio relationships, changing the interpretation to partial, as illustrated in Figure 5.29.

5. 9. STR UCTURE AIVD CO}[IXTIMTERPREZWON AFFECT S GENERALIS ATION.237

Figure 5.28: Dropping relationships from a partial description.

This not only saves memory but also reduces the effort required by the matcher to process

such descriptions. This may seem to lose special-case information that could be important

for making predictions, such as, for example, losing the fact that a door might occasionally

have a "Do not disturb" notice on it. However, such information will usually be retained in

subconcept descriptions. For example, the concept motel-room-door could have an explicit

optional relationship with the concept do-not-disturbnotice, while the superconcept doormight

not, due to the instance-count-ratio being too low.

Figure 5.29: Cleaning up by removing low-frequency relationships.

Although it is not possible for a partial description to be changed back to a complete

description (since details have alrready been lost) it may be changed to an any interpretation.

This occurs when all or most of the relationships have become no longer common to most

instances, and have thus been removed, either by the clean-up module described above, or
during generali sation.

x2- Y2

Y3x3-
)({unmatchcd

unmatchcd I
\J unmatched

':#*" /*rsI
\As

after pruning low-frequency relationships ...

+> partiat . -/Mcontext f
m - R>n3

CHAPTER 5. TTTE GEIVERALISER

In a full robot system, functional knowledge would, of course, be important to help justifo
retaining or dropping relationships, but the simple threshold-cutoff method is the best that is
possible for a syntactic system such as GRAM.

If a structure or context has a disjuncfive interpretation, then the generaliser uses the disjunct
correspondences produced by the matcher. If the winning conespondence are good enough,

then the generaliser is recursively invoked to generalise the corresponding disjunct subconcepts.

If a new concept is created, then this is added as a new disjunct (subconcept). Otherwise the

original disjunct is modified. (There is no danger of generalising a disjunct with an instance

twice, as could potentially occur if a concept has a structare and context disjunction, since

the cnote describing the disjunct correspondence indicates whether generalisation has already

been performed.) The same method is applied to structures and contexts with impon-from
specifications.

If the interpretation is partial+disjunctive, or panial+typical, or panial+imporfed then a

combination of the methods discussed above is applied.

Chapter 6

The Instance Constructor

This chapter discusses the Instance Constructor, whose role is to produce a description of an

observed scene or object. GRAM distinguishes between three stages ofthis 'perception' process.

The first and most primitive stage is block approximation which involves identifying a set of
simple blocks that characterise the scene at multiple levels of detail. The second stage is object-

graph fonnation whiclt involves creating a hierarchy of composite and primitive objects linked

by parent, neighbour, and subpart relationships. The formation of objects may be based not only

on the set ofblocks, but also on other factors such as grouping, connectedness, and topology.

The third and most abstract stage of perception is classification which involves classifying the

objects in the object graph as instances of previously learned concepts. Classification may also

enable the object-graph to be augmented further on the basis of the expected features of these

concepts, especially if the instance was initially observed only partially or at a coarse level of
detail.

The first stage, block approximation, is performed by a low-level vision system. This has not

been developed in the thesis since there has already been considerable research done on iden-

tifuing distinct two or three-dimensional blocks, pieces, or regions from images [Chin, 1988].

Therefore, cRAM merely assumes that a vision system is available which will produce a set

of rectangular, elliptical, or polygonal shapes described with respect to a coordinate system.

Various information is specified, such as the position of the centerof each block, the dimensions

and orientation of its rectangular bounding box, the shape type, and the number of edges.

The second stage, object-graph formation, is the main subject of this chapter. It describes

various criteria that could be used to justify the formation of a composite object from a set

of smaller objects and the selection of which parent, neighbour, and subpart relationships

should be made explicit. It also discusses the kinds of mechanisms needed to find and create

composite objects, in particular the group-finding me.chanism. The process of finding and

creating composite objects is called object-formation, and it is the subject of sections 6.1 and

6.2, the latter of which addresses the group-finding problem. The process of selecting parent,

neighbour, and subpart relationships for each object is called relationship-selection,and is the

subject of section 6.3. Only the group-finding and rclationship-selection mechanisms have

been implemented (to some degree) in the current cRAM system.

239

uo CHAPTER 6. THE D\IS?INCE CONSTRUC??R

The third stage, classification, is discussed in chapter 1, and involves indexing and matching
objects with concepts. Indexing is an area of future work since it requires mechanisms for
building and maintaining concept-memory.

These three stages of perception and the three systems or processes responsible for them,

as shown in Figure 6.1, are overlapping and interdependent. This is because perception must
proceed not only in a bottom-up fashion where the results of the block-approximation vision
syst€m govern the results of the higher levels, but simulaneously in a top-down manner,

where the higher levels drive the lower levels, such as when expectations based on previously

learned concepts drive object-graph construction and even block-perception. Furthermore, the

creation of grcups in the description involves both the matcher and the generaliser to produce

the typical-member concept, and hence the process of perception requires the inter-dependent

participation of all components of the cRAM system. However, it is useful for purposes of
discussion and system development to make a distinction between the three levels.

Block Approximation
(Vision System)

Object-Graph Formation

Group Finding

Relationship-Selecdon

concepl memory

Blocl,s at mulitple

\p
-W

-L

.----__ .z-----

\ .'r^t'it--''-;1t''- -='

----+------>
\t\-----

---A'.

Figure 6.1 : Stages of perception.

The most important aspect of the design of a perception system is the choice of criteriausedto

I
/l

/l/l-l

Classitication

tl"d-t"sl

t"""*sl

241

justrfy the selection and formation of various descriptive entities. The perception meclwnisrns

are obviously important but are secondary and are really just ways of operationalising the crite-

ria. Witlrout first identiSing the criteria (on the basis of overall domain and task requirements),

the mechanisms cannot be justified. Therefore, the main contributions of this chapter are the

sets of criteria for justifuing object formation (especially grouped objects) and relationship

selection. A secondary, although important contribution, is the group finding mechanism. The

chapter distinguishes between two basic groupfinding search strategies, o'Seed-Expansion"

and "Propose-and-Prune", of which the former is used by cuu's group-finder.

242

6.1 Object-Formation

CHAPTER 6. TITE nJSThNCE CONSTRUCTOR

Chapter 3 discussed the reasons for representing a scene or object in terms of a hierarchy of
parts at multiple levels of approximation and abstraction. Each part is either a composite or
primitive object. A brief review of these reasons is given below, since they provide a basis for
justifying the criteria and mechanisms of object-formation that are presented in this section.

The reasons are as follows:

e An object can be recognised efficiently at a coarse level ofdetail by just considering a

few abstract or approximate components and their relationships.

o Memory usage can be reduced by 'summarising' an object in terms of more abstract or

approximate components or'chunks'.

o Efficiency and effectiveness of the matcher is improved by allowing correspondences

between coarse details to guide and constrain the search for correspondences at finer

levels of detail.

o Two objects may be able to be generalised on the basis of corresponding abstract or

approximate features, even if they differ significantly in their finer details. If

r Multiple levels of approximation and abstraction enable the faulrfinder to report differ-

ences at both a coarse and fine level of detail, depending on task requirements.

o A composite object captures constraints and properties of a collection of several compo-

nents as a whole, and these feafures might not otherwise be representable.

o GRAM creates concepts by generalising instance objects, and therefore, if multiple levels

of abstraction were not supported, it would not be possible to create abstract concepts

from composite instance objects.

On the basis of these reasons, this section presents various specific criteria which could be

used to justify the formation of an object to characterise an observation. It also discusses the

kinds of mechanisms needed to find and create objects. The group-finding mechanism has

been partially implemented in the current cRAM system, and is discussed in detail in section

6.2.

In a full parallel system, each of the object formation mechanisms would independently

search for candidate sets of composite of primitive objects that could be combined into a single

composite object. [f a set is sufficiently strongly supported by one or several of the mechanisms,

then a composite object would be created. New objects might then be created on the basis of
these, and then again from those objects, repeating until no further composition can be done.

6.T. OBTECT-FOR]I/I/TNON 243

6.1.1 Object-Formation Criteria

There are many criteria that could be used to justify the formation of composite objects that

partition an object or scene into larger chunks. A factor that underlies all of them is that there

should be a clear boundary between the components of a composite object and non-components.

More specifically, there should be a clear distinction between the collective and/or individual

features of components and non-components. If this were not the case, then the boundary

would be arbitrary and descriptions would not be sufficiently consistent to support effective

matchin g and generalisation.

Figure 6.2 lists the criteria that are or could be used in the cRAM system, and also shows simple

illustrations of their meaning. These are discussed below. Each of these criteria provides a

way of identifying useful boundaries or partitions between sets of components within an

observed object or scene. Some of these criteria are similar to the Gestalt "Laws of Perceptual

Organisation" which were proposed fifty years ago [Ellis, I 939], but the criteria presented here

iue more specific, since we are concerned with actually building a real perception system.

The discussion also mention the various kinds of object-formation mechanisms that are or

could be based on each of them.

(a) Blockness

The simplest and most important form of composite-object-formation is based directly on the

blocks produced by the low-level vision system. Each block is an approximation of some

portion of the observed object at some level of detail. If a block has a clear and simple

boundary then this justifies the formation of a composite object. Primitive objects are created

from blocks that are not decomposable into any finer level of detail.

Forexample,Figure 6.2(a)showsthreeobjectswithportionsoftheirsubstructuremarkedby
doned boxes. In the left two objects, the marked regions indicate strong blocks which should

be perceived by the vision system, since their boundaries are clear and simple. In the rightmost

object, the marked region should not be perceived as a block by the vision system, since its

boundary does not form a simple shape that distinguishes it from the rest of the object. If you

make your eyes go out of focus, it does not stand out as a distinct component.

'Holes' are perceived by the vision system in much the same was as ordinary solid objects,

since cR.ltvt rcpresents a hole as an ordinary object with a density property of zero, and a

block-type property with the value 'hole'. Therefore, holes can be combined into composite

'hole' objects in the same way as solid objects. The middle object in Figure 6.2 (a) includes a

primitive hole.

A real vision system would require edge-detectors and so forth, and could perceive fuzzy

blocks directly by detecting edges at a coarse level of detail, without having to fint detect the

smaller blocks of which it is composed. However, fuzzy blocks could also be detected in a

bottom-up fashion by clustering groups of smaller blocks into larger blocks. For development

purposes, a simple system was implemented to do this which, in effect, observes a scene at a

number of different levels of detail, each defined by some tolerance factor. For each level of

744 CHAPTER 6. TITE INSZWCE CONSTRUCTOR

(a) Blockness

ffiffi-
ffi w.** ffiffi, 4

quite strong

ffiffi
weak

(d) Groopturg
(Repetition)

(e) Symmetry

(f) Recognition
and Expec'tation

W*
strong

ie
fuw

weak

'l

I

/*ng
(because arnbiguous

membership)

\
\
\\

ffro m r ecog nition w ithin
the same object)

-lffSk'-iffi
$a|ilwililJ_r${r,!5

MTEI -ffiwi
strong

(e,Ma'ich***-""ffi*

w_ff

--r/,

il

Figure 6.2: Partitioning Criteria.

6.1. OBTECFFORMATION 245

detail, it merges blocks if the empty space within their rectangular bounding box is smaller

than the tolerance factor defining that level. Thus a series of 'views' of the object is obtained,

each representing the object at a particular level of detail. An example of a series of views

produced for a chair is given in Figure 6.3. Howeveq composite objects should not necessarily

be created for all of the blocks. Rather, objects are only created for those blocks that persist

through several levels of detail, and thus can be considered 'stable'. Stable blocks are most

likely to be perceivable in other similar instances, and are therefore more important to represent

explicitly to support matching and generalisation. However, weaker blocks might also be used

if they satisfy the other object-formation criteria discussed below.

Unfortunately the above system is limited in that it deals only with rectangular blocks that

are all aligned with the axes of the coordinate system, as in Figure 6.3. Therefore, since a

real low-level vision system has not been available, most of the work on cRAM has used input

obtained directly from a simple graphics package I in the form of a set of primitive shapes,

such as rectangles, ellipses, and polygons, with blocks indicated explicitly by the teacher.

(b) Subpart Connectedness

One of the simplest criterion for objecrformation is connectivity. If a set of objects are not

connected, then they are less likely to be functionally or structurally dependent on each other,

since their relative position and orientation are not subject to direct structural constraints.

Therefore it is less appropriate to combine them into a single composite object than if they

were connected.

For example, Figure 6.2 (b) shows two proposed composite objects (indicated by the dotted

boxes), where the first satisfies the subpart-connectedness criterion, and the second is not. The

composite objects shown here might, of course, be still justifiable on the basis of other criteria.

Currently cRAM only considers parts to be either connected or not connected. An extension

to cRAM's representation could include more types of connection which would give varying

degrees of justification for object-formation, such as fixed joins, articulated joins, or mere

contact. In fact, several blocks perceived by the vision system might even be portions of
the same piece of material, such as the base, stem and the bowl of a wine glass. This

form of connection can be called a same-piece connection. Same-piece or fixed-joins are the

strongest justification for combining objects into the same composite object, since they imply

the strongest functional inter-dependence and structural constraint. On the other hand, the weak

contact connection between a person and a chair does not strongly justify the formation of an

object consisting of both the person and the chair, although other object-formation criteria,

such as blockness and isolation (discussed below) might.

Often it is not possible to know whether the connection between two objects is same-piece,

fixed-join, or contact, unless they are observed to move in relation to each other, or unless prior

domain knowledge is available. This thesis suggests that in the absence of such information,

the system should presume that the objects arc fixed-joins, since composite objects formed

'Idnw for X-windows on a Unix system, which is a demonstration application for the Interviews project.

CHAPTER 6. TIIE INSTT|NCE CONSTRUCTOR246

k
w

Mffiw
ffi
ffiffi
ww
W@

Figure 6.3: A series of 'block' views at different levels of detail.

6, 1. OBTECFFORIVfATION 247

incorrectly on the basis of this can always be removed later from concept memory, while it is

more difficult or impossible to later create composite objects from already-generalised objects

in order to resolve mismatches. In other words, it is better to err on the side of excess redundant

descriptive entities.

Currently cRAM does not use this criterion, since its input comes directly from the teacher.

However, this criterion would be easy to implement by computing the maximum distance

between pairs of subblocks of the blocks provided by the vision system.

(c) Isolation

Th isolation criterion is closely related to the previous criterion. [t causes the instance con-

structor to favour object-formation for candidate composite objects which are distant from, or

at least separated from or very weakly connected to, other neighbouring objects, where 'weakly

connected' means that only a small area of the surfaces or edges are involved in the connection,

such as a chair on a floor. For example, Figure 6.2 (b) shows three objects ranging from strong

to weak isolation.

As with the previous criterion, this is not currently used by cRnu, but could be easily

implemented by computing the minimum distance between the candidate object and other

objects, or, if the object is connected to other objects, by computing the degree of connectivity.

(d) Grouping (or repetition)

The grouping criterion justifies the formation of a composite object from a set of similar and

similarly related objects. A strong group is one in which there is a clear distinction between

members and non-members, and where the members have strong similarity of structure, context

and inter-member relatedness. Groups might be an unstructured cluster, or a linearly ordered

chain, or any of the other kinds of groupings such as array, Ioop, or collection. Groups have

already been discussed in some detail in the representation chapter, and section 6.2 describes

specific kinds of grouping criteria and mechanisms for finding groups.

(e) Symmetry

Symmetry of a set of objects or blocks is another justification for object-formation, since it
suggests a collective dependence between the objects involved. The most conrmon form of
symmetry is when a set of objects are co-linear, such as the base, stem and bowl of a wineglass,

or the components along a drive shaft. A chair is a more complex symmetrical object, and

this symmetry could help to distinguish a chair as a distinct object prior to recognition within
a crowded room. Figure 6.2 (d) shows two artificial composite objects, one with strong

symmetry and the other with weak symmetry. Brady's "Smoothed Local Symmetries" system

[Connell and Brady, 1987] also used this principal for identifying the important regions of an

image.

248 CHAPTER 6. THE INS?ANCE CONSTRUCTOR

One simple way to test for symmetry (introduced by [Winston, 1975]) is to match the set of
subpart objects of a proposed composite object against itself, after lirst performing a mirror-
image transformation of their parent, neighbour, and subpart rclationships. This is somewhat

expensive computationally, so to avoid doing this for all possible sets of objects, it could be

done only for composite objects that have already been proposed (at least weakly) on the basis

of other criteria, and whose overall shape and density profile is also symmetrical, which can

be determined by much simpler computation. The cneu matcher has not yet been applied to
this task.

(f) Recognition and Expectation

Ifa sub-component ofan object or scene is recognised as being an instance ofa known concept,

then that may cause the system to expect to see instances ofthe concept's parent, neighbour,

or subpart concepts, and this may give justification for creating new composite objects.

For example, in Figure 6.2 (f), the person and the chair might not initially be identified as

being distinct objecs on the basis of other object-formation criteria. However, the head is a

distinct block, and could be recognised. Since a head is expected to be attached to a torso,

and close to an arm, these could also be recognised. From these, other components could

be recognised. These classifications would provide sufficient justification to create a new

composite object in the instance graph, consisting of the classified person components.

This demonstrates how object-formation cannot always be completed before classification,

since the two processes are inter-dependent.

In the second example in the figure, the indicated composite object is not justified on the

basis of such recognition.

In the third example, the formation of the legs as distinct objects is clearly not justified on

the basis of any of the criteria discussed previously. However, the humanoid as a whole could

be recognised via recognition of the head and face structure, in the manner described above,

and on this basis the legs could be recognised by expectation, and this justifies formation of
distinct objects in the instance graph.

The fourth example is closely related to the repetition, or grouping, criterion, since the

formation of the composite part X indicated on the left side is justified because it matches the

composite part Y on the right side. If we assume that Y was created on the basis of other

criteria, and if we assume that every instance object can be immediately treated as a concept

in its own right, then part X on the left will be recognised as an 'instance' of it. This also

assumes that X has either been already proposed (weakly) as a distinct object on the basis of
blockness and/or symmetry, or is formed on the basis of expectation after recognising one of
its subcomponents, such as the ellipse in the middle, as matching one of Y's subcomponents.

Chapter 2 described the Labyrinth system which employs a bottom-up recognition process

to classify primitive parts so that it can classiff composite parts composed of them, and then

continue up the part hierarchy until the object as a whole can be classified based on the

classifications of its direct subparts. A limitation of this forward-chaining-style approach is

6.1. OBJECT-FORMATION 249

that it :rssumes that subpart object-formation has already been done prior to classification of
the parent part. With the recognition-expectation criterion, GRAM can not only do bottom-

up recognition, but can also use a classification of a parent part to guide the formation of
its subparts, using a more backward-chaining expectation-driven approach. For example, a

bicycle might be recognised on the basis of its overall shape and properties, and this could

guide the formation (i.e. perception) of its subparts.

(g) Match Leftoverness

In Figure 6.2 (g we see a person without a hat and a person with a hat. If the system does not

know the concept person, then there is no justification for treating the hat as being distinct from

the head. However, when matching the hatless person with the haned person there are two

unmatched objects, and this can be used to suggest a composite object comprised of them, since

their 507o absence and 5O7o presence indicates a co-dependency and a structural distinctness

from the head. Other criteria such as connectivity need to be combined with this criterion, and

since the two hat pafis are connected, and are also aligned along their central axes, they can be

combined into a single object in the generalised person, as shown in the figure.

This criterion does not really belong in the instance constructor, since it is a task of the

matcher (as is also the case for the recognition-expectation criterion). However, since it
pertains to object formation, it is included in this discussion. Match-leftoverness has not yet

been implemented, since the current matcher is not able to cope with new composite objects

being formed during the matching process itself.

(h) Function, behaviour, and knowledge about construction.

A full robot system would also partition a scene into composite objects on the basis of knowledge

and reasoning about function and behaviour, and also of knowledge and reasoning about

construction, whether by human beings or by other parts of nature. For example:

o [f a chair has a rubbish bin sitting on it, then the system might treat the chair and rubbish

bin as a single object, possibly creating a new variety of chair concept. However, if
knowledge about the function of a chair is available, then the system will know that the

rubbish bin is a separat€ object.

o If the system observes a bicycle and sees that the pedals are moving in relation to other

parts of the bicycle, while their intemal structure remains unchanged, this indicates that

the pedals are distinct objects. Likewise, if the concept chair was not previously known

by the system, and it then saw a chair leaning against a desk, it might think that the chair

and desk were one object. However, as soon as the chair is moved relative to the desk

(or even just when it is observed separately from the desk) the distinction is clear.

o If a system observes a bicycle for the first time, but knows something about physics and

how objects are constructed, it might be able to guess that the frame is one piece of
material, or perhaps several very strongly connected pieces, and therefore can be treated

as a single composite object.

CHAPTER 6. THE NSTANCE CONSTRUCTOR

Function, behaviour, and construction knowledge is far beyond the scope of this thesis, and

is only mentioned here for completeness.

6,2. GROUPFII\DING

6.2 Group Finding

Group finding involves finding collections of component objects within a scene or object that

are sufficiently similar that they can be represented in summary form as a single object with a

multi-relation ship to a ty p i c a I - me mb e r concept.

This section considers two aspects of the group-finding process. Firstly, and most importantly,

it looks at various kinds of criteria that can be used to justify group formation. Secondly, it
describes two mechanisms, "Seed-Expansion" and "Propose-and-Prune".

The reasons why grouping is important were discussed in chapter 3, but it is worth reviewing

these briefly in order to provide motivation and justification for GRAM's group-finding criteria.

These reasons, listed below, are refinements of the general reasons discussed in section 6.1 for

representing objects at multiple levels of detail.

Tb improve match eficiency: Two groups can be matched as single entities, thus avoiding the

need to match each of their individual members.

To enable generalisation.' Grouping enables two collections of similar parts to be put into cor-

respondence and generalised (as single entities), even if they have different cardinalities.

This results in a generalisation that is defined in terms of a variable number of instances

of the generalised typical-member concept.

Tb reduce memory usage: Since a collection of similar parts can be summarised in terms of
a generalised description of the typical member, often the descriptions of individual

member subparts can be removed, thus reducing memory requirements.

For constraint discovery and representation: A group is really alrtn-ary similarity relationship

between several items, and therefore group finding can be considered to be a way of
explicitly noticing and representing important regularities and constraints between a

collection of objects. The kinds of regularities that the group-finder notices should

be those that are likely to have functional or structural significance, indicating that

the grouping has a common or collective function, or an underlying unifying cause or

constraint.

As aformof concept acquisition: Since the process of grouping involves noticing repetition

of similar items and forming a generalisation of them, group formation is a process

of concept acquisition within a single scene (as opposed to concept acquisition from a

series of scenes observed at different times). Concept acquisition enables predictions to

be made about similar objects observed in the futrnre, or elsewhere in the scene. This

also means that individual members (if retained in the description) are being implicitly
generalised, since they are being classified as instances of the typical-member concept,

and thus future matching with individual members will be more tolerant of differences

that are acceptable to the implicitly inherited typical-member features.

It should be noted that cRAM's group-finder is not intended to model the way humans find

groups, but only to support the above requirements. However, since the system is intended to

251

252 CHAPTER 6. TIIE INSIhNCE CONSTRUCTOR

operate in a human world, the kinds of descriptions it produces should contain at least roughly
the same kinds of information that humans seem to consider important. We know so little
about this matter that the requirement must be treated somewhat loosely.

A typical-member concept may be formed without a grouped object.

Sometimes it may be inappropriate for a proposed grouping to be represented as a single
new object, even though the grouping is sufficiently strong to justify generalising the objects
into a new concept. If this is the case, then other objects can be related to the concept via
multi-relationships, but cannot be explicitly related to the a group as a whole since it is not
represented. This situation arises when the grouping is an unstructured crusfer or collection,
and for which the grouping as a whole does not satisfy the other object-formation criteria,
particularly'blockness'.

6.2.1 Grouping Criteria

Section 3.5 described a variety of types of groups, such as chains, clusters, anays, etc, each of
which was distinguished by the kinds of features that were common to the members. We now

consider in more detail the kinds of criteria used to actually discover and justify such groups.

All of these criteria are based on the overall reasons for grouping given above, such that if
a proposed group of objects satisfies enough of these criteria strongly, then the group can be

considered a strong group, and therefore one worth representing explicitly.

Before describing Gf{AM's grouping criteria, the kinds of criteria and group-finding mecha-

nisms proposed by Winston [Winston, 1975] are outlined, since his early system has been a

motivating factor in the work on group-finding in this thesis.

A key idea proposed by Winston is that all members of a group should have "equal right to

membership". Onthisbasis,heusedthespecificrequirementthateachmemberofastablegroup

should have at least 807o of the features that are common to more than half of the members.

His 'common-features' group-finding algorithm worked by proposing a generous grouping,

and then pruning out atypical members - those that do not satisfy the above requirement.

However, Winston also suggested that there cannot be just one universal group-finding

mechanism, but many, each based on different demands, such as for finding collections of
items that fit together like jig-saw pieces, or groups based on a single common property (such

as all red objects in the room), or groups based on overall properties which do not characterise

individual members but the group as a whole (such as its overall shape).

Winston also discussed sequences (equivalent to cRAM's chains) as the most simple form

of group. The criteria for a sequence as outlined briefly in his paper were that a sequence

must have at least three members which are linked, in sequence, by the same relation, such as

SUPPORTED-BY or IN-FRONI-OF. A sequence also must not have junction points, and the

consecutive members must not dramatically change in size or relative position.

6.2. GROWEIIVDING

One of the (perhaps intentional) problems with Winston's group-finding system was that the

sequence-finder and 'common-featulres' mechanism were distinct processes, each using very

different membership criteria. The sequence-finder did not incorporate the '80Vo' rule, and

conversely the 'common-features' mechanism did not take into account relationships between

the members. Therefore, these two grouping criteria could not both contibute to the formation

of a group.

In GRAM, these mechanisms have been integrated more closely as a result of first elaborating

and refining the criteria proposed by Winston, and only then considering what grouping mech-

anisms are needed. This approach follows the overall methodology of this thesis of identifying

criteria before mechanisms. Whether a single general-purpose grouping mechanism can be

developed to account for all of the grouping criteria, or whether multiple distinct and perhaps

cooperative mechanisms are preferable, is a secondary issue.

We will now consider the various specific grouping criteria in more detail. The discussion

often refers to the bookshelf in Figure 6.4, as this illustrates many different kinds of groupings.

The grouping criteria are summarised in the list below

Strong similarity of structure, context, and inter-member relationships.

Clear membership boundary.

'Tightness' of inter-member relationships.

Parent non-groupedness.

Cardinality.

Stmcture complexity of members.

Members should be similar to each other with nespect to structure, context" or inter-

member relationships.

The most important and obvious criteria for grouping is that the members are similar to each

other. The more similar they are, the stronger the group. Three kinds of similarity can be

distinguished as follows:

Structure similarity is the similarity of the members' structure in isolation, independent of
their context. External context similarity takes into account the relationships between members

and non-members, such as the relationship between each of the books on a shelf, and the shelf.

Inter-member relations&lp similarity takes into account the relationships between members

themselves.

For example, each of the two stacks of bricks supporting the shelves satisfies stnrcture

similarity and inter-member similarity, since the bricks are structurally identical and they are

organised as a linear (and almost connected) sequence. The context of the bricks varies,

however.

As a anotherexample, the bottles on the bookshelf all have very similar structure, moderately

similar context in that they all sit on a shelf, but their inter-member relationships are not regular.

253

a

a

a

a

a

a

254 CHAPTER 6. THE INSTN,ICE CONS?RUCTOR

Figure 6.4: Abookshelf containing groups.

6.2. GROWFINDING 255

On the basis of this, the bottles are clearly generalisable to form a new concept, and multi-

relationships could be created from the shelves to the boftle concept, but it is less justifiable

to represent the bottles as a single group object, since such a group does not have any overall

structural regularity or blockness.

If inter-memberrelationships form an ordered sequence, such as forthe row of books or stack

of bricks, then this justifies a chain grouping, which is considered an especially strong form

of grouping since orderedness is often a functionally significant feature. On the other hand,

the cookies in the bowl on the bookshelfdo not form an ordered sequence, but each cookie is

related to at least one other cookie by contact. ln an anay grouping, such as the windows of
a building, or squarcs on a chequer board, or the blocks in the Rubic's cube on the bookshelf,

the relationships between members are more regular although they do not form a single linear

sequence. Rather, there are two different kinds of inter-member relationships, one vertical, one

horizontal pairs.

This introduces the problem of deciding which inter-member relationships should be con-

sidered when evaluating and creating a group. The simplest method is to consider only the

most tightly related (i.e, the closest, most aligned, etc) neighbours of each member object. In

a chain, the tightest relationships for each member will normally be the relationships with the

next and the previous members in the chain. In a cluster, there may be several equally tightly

related neighbours. ln an anay there will be four equally tight relationships to the members to

the left, to the right, above, and below.

ln Winston's system, structure and context were not distinguished, and member similarity

was measured in terms of the number of common relationships such as (ON-TOP-OF x) or
(HAS-PROPERTY green). The representation was much simpler than cRAM's, and group

members were single blocks rather than potentially very complex structures, and so it was

simpler to match the proposed group members with each other. His system formed a "common

features list" for the proposed group, and the size of this list indicated the strength of the group.

Individual candidate members could be compared with this list to determine their atypicality.

ln GRAM, the equivalent of the "common features list" is a structural generalisation of the

members (i.e. a concept), and the strength of the grouping is indicated by the variance of
the concept, since that indicates the regularity of the members. The lower the variance, the

stronger the group.

A group should have a clear boundary between members and non-members.

Similarity is not, however, a sufficient criteria on its own for justifying a group. For example,

four of the apples in a large bowl of thirteen apples may be very similar to each other but

should not be represented as a group. Another criteria is required, namely that there is a clear

boundary between members and non-members. This does not mean that the members should

appear in a distinct spatial region of the scene (although this may be one aspectof it) but rather

that there are no non-members that have as equal a right to membership as the members. This

is illusrated in Figure 6.5, showing two groupings of apples, one with a strong membership

boundary and one with a weak boundary.

256 CHAPTER 6. ?IIE INS?hNCE CONSTRUCTOR

Winston's 'common-features' group finding system did not make this criteria explicit because

the system worked by proposing an initial overly generous group and then pruned it, and so the
clear-boundary criteria was implicitly satisfied. His sequence-finderdidexplicitly embody this
criteria however, by preventing a sequence from containing members with a sudden change of
size or relative position. Such sudden changes indicate the boundary.

The requirement of a clear-boundary ensures that members are not being missed out. A
clear boundary also means that the group is more likely to be able to be matched with other
instances of the same concept. If there ts a fvzy boundary, then other instances might include
more or fewer items as members of the corresponding group, and this would not be matched as

successfully. Such a group is therefore less useful for supporting the marching and generalising

process.

Figure 6.5: Strong and weak group boundaries.

The strength of the boundary between members and non-members must be based on the

variance of the generalisation of the members, which is a measure of its regularity. More

specifically, the difference between a non-member and the typical-member concept is measured

as a ratio of the variance, or in other words as afit-scoring comparison. Thus, if a grouping

is highly regular, then even if a non-member is only a linle different from the members, the

group boundary would be considered strong if this difference were significantly larger than the

variance. For example, the two groups of petals (one group for each flower) have reasonably

clear boundaries, even though some of the petals overlap. This is because the petals in each

group have highly regular inter-member relationships for a large number of instances, and also

because they collectively form a circular block. So the overlapping petals from the other group

clearly do not belong.

The interestingness or 'tightness' of inter-member relationships increases the group

strength.

The discussion above has implied that if group members have very similar structure, non-

member relationships, and inter-member relationships, and if the group has a clear boundary,

then it is a strong group. Howeveq this is not quite true because it is also important that the rela-

tionships are 'interesting', meaning that they are more likely to have functional or behavioural

significance in the physical domain, or in other words, capture important consfraints. Since

strong boundary with respect
t o inter - mcmbe r relations hip

6.2, GROr./P.EINDING 257

functional knowledge is not available, the term tightness is more specifically what is required

in GRAM's stnrctural domain. The tightness of a relationship is measured in terms of proximity,

alignment, and 'visibility' (meaning that the two objects do not have other objects between

them). For example, in Figure 6.6 (a) the ellipses 4,5,6, andT clearly form an 'interesting'

group because not only do the members have similar stnrcturc and inter-member relationships,

but the inter-member relationships are tight. kr (b), on the other hand, the objects 4,5,6, and

7 also have similar structure and inter-member relationships, but these relationships are less

tight, and so thb group is considered less interesting.

Figure 6.6: Relationship'tightness'.

The group must have sufficient cardinality.

Since one of the purposes of group formation is to decrcase memory usage and increase match

efficiency, a grouping with lots of members should be considered stronger or more justified than

a grouping with only a few ncmbers. However, the effectiveness of the matcher and generaliser

is usually helped by explicitly representing even small groups, since they will enable one-to-one

conespondences between sets of objects with different cardinalities. Thereforc, the current

version of cneu does not use cardinality as a grouping criteria at all, except that a $oup must

have at least 2 members, or 3 members if it is to be explicitly represented as a chain,

258 CHAPTER 6. TI{E INS?}TNCE CONSTRUCTOR

Member structure should be sufficiently complex if the grouping is jusffied by structure
alone.

If we were to focus on memory usage and match efficiency, then not only the cardinality
of the group would be relevant, but also the complexiry of the individual members. The
complexity of an object can be simply measured in terms of the number of subcomponents it
has. Forming a grouping of complex structures is more beneficial in terms of memory usage

and match efficiency because the typical-member concept is a summary of a larger quantity

of information. This advantage is only achieved, of course, if the individual members are

removed from memory, or at least ignored by the matcher.

However, for the s€rme reasons of match effectiveness discussed above for cardinality, GRAM

normally ignores complexity, and treats a group of single blocks as being just as worthwhile
representing as a group of complex structures. An exception to this is when the proposed

group is a collection - that is a dispersed set of similar objects which are not organised into a

clusferor sequence. The reason is that GRAM's representation does not include a wide variety

of attributes such as texture, colour, edges-shape details, material, etc, and therefore highly
similar primitive objects (with no substructure) can often appear all over an object or scene.

For example, a piece of a bicycle frame might be grouped with a chair-leg if there was no

requirement for sufficient complexity to ensure that the similarity is 'interesting'.

A group need not be formed if the members parents are grouped.

If the members of a proposed group are all subcomponents of members of an equally strong

group with the same cardinality, then the grouping may be redundant. For example, it is not

necessary to form a grouping of the backs of several chairs if the chairs have already been

grouped. This criterion is called parcnt-non-grcupedness.

For example, in Figure 6.7, the group of objects U, V, W, and X is not worth representing

explicitly since their parent objects, A, B, C, and D form an equally strong group. Howeveq

objects I to 6 do form a worthwhile group, since only some of their parent objects are grouped.

C

li
t!

Figure 6.7: Parent-non-groupedness.

The term parent-non-grcupedness is slightly misleading, because it actually should refer to

grandparents,oranysuper-parents. Forexample,inthecaseofthechairbacks,eachchair-back
may be composed of several subparts which may not have a direct parent relationship with

6.2, GRO|-/PFIiVDING

their chair object, and we do not want groups of these pieces (one piece from each chair-back)

to be made into a group.

Task specific grouping may be justified on the basis of a single common feature.

A grouping may be formed from a collection of objects that all share a single (or perhaps just

a few) common features, such as category, colour, shape, a distinct subcomponent, and so on.

The members of such a group can otherwise be quite different, or may be similar but such that

there is no clear boundary with non-members except on the basis of their particular common

feature. For example, the group might consist of "all plastic objects on the bench", or "all
chairs in the room that have arms".

There are as many ways of forming such groups as there are combinations of object attributes.

For example, the desk I am working at could be grouped into plastic objects, objects that

are about 3cm along one dimension, objects which contain a circular component and a red

component, and so on. Therefore, the single-common-feature grouping criteria must be task

specific, rather than being included in the general automatic group-finder, and so will not be

considered further.

6.2.2 Group Finding Search Strategies.

This section explores the problem of how to find sets of objects that satisfy a sufficient number

of the above grouping criteria sufficiently strongly that a group-object, or at least a typical-

member concept, should be formed. We are not concerned with the details of assigning

numerical importance to the various criteriq but only with identifying the kinds of search

strategy that can be used and the factors that must be taken into account during the search.

Since the search algorithm must be based on the grouping criteria, this section considers

each of these criteria as a way of identifying what kinds of search heuristics and strategies it
suggests.

Following this, the section considers how these strategies can be integrated into a single

groupfinding mechanism by making the distinction between two overall search approaches,

Propo se- and-Prune and Seed-Expansion.

Search heuristics and strategies suggested by the grouping criteria.

(a) Structure similarity: Any pair of objects in a scene mny be structurally similan suggesting

that all pairs rnust be considered.

The criteria of structure similarity suggests that we need to consider objects that are similar,

independent of their context or relationships between each other. This does not provide much

260 CHAPTER 6. TI-IE INSTANCE CONSTRUC?I?R

constraint on the search, since the objects could appeardistributed all overthe scene, as in the

case ofthe bottles on the bookshelfon page 254. lt would obviously be expensive to perform a
complete comparison of all pairs of objects in a scene, remembering that an 'object' includes

composite and primitive components at all levels of detail. Therefore we need some way to
prune this search.

One way is to assume that we only need to consider grouping objects of roughly similar
absolute size, and to make use of the decomposition hierarchy to prune the search on this basis.

More specifically, if two objects have sizes that are too dissimilar to warrant being members

of the same group, then there is no point considering groupings consisting of the larger of the

two objects and any of the subpart descendents of the other smaller object. For example, in

an observed office in which the desk is significantly larger than the potplant, there is no need

to compare the desk and the poplant for structural similarity, or to comparc the desk with

any of the bits of the potplant, since they must obviously be smaller too. This very simple

heuristic reduces the search enormously, since every pair ofobjects considered and found to

be too dissimilar in size, means n other comparisons need not even be considered, where n is

the number of subpart descendents of the smaller object, and may be large.

A second way of reducing the search is to make use of an indexing system that enables

concepts in memory to be directly accessed on the basis of particular features. If the system

treats every observed object as a concept in its own right and adds information to the feature

indexes to make it directly accessible (as shown in Figure 6.8), then the group-findercan simply

scan the objects in the object graph and wheneverthe fearures ofan object are indexed to one

or more other objects in the object graph, then this suggests a possible grouping. The search

is therefore linear, since each object is only considered once. The success of this approach

depends on the effectiveness of the indexing (or associative memory) mechanisms. Efficiency

could also be improved by creating a separate 'short-term memory' index rather than using the

indexes of main concept memory.

I
feature

Figure 6.8: Group-finding by indexing from features.

The simplest way of identifying groups of objects with similar structure is when the objects

have already been classified as being instances of the same concept. For example, a group of

\---l)i

6.2. GROWEI]VDING

pots on a shop shelf can be identified not by having to compare each of the pots, but because

they have all been classified as being pots. Such groups can be found simply by recording

references in the concept description to all recently observed instances. Each object in the

scene can be checked to see whether it has been already classified, and if so, all of the other

instances in the scene are immediately available for group proposal.

The last two search strategies have not been implemented, since they require mechanisms

that are part of the larger classification system which has not been the focus of this thesis.

(b) Context simifarity: Consider grcuping objects that are related to some other object in the

same way.

The criteria of context similarity suggests a more constrained search since potential group

candidates must be similarly related to at least one common (or at least similar) neighbour or
parent. Therefore, a simple search strategy is to consider grouping the neighbours and subparts

of each object. This only needs to be done if the relationships are sufficiently similar. For

example, all of the keys on a keyboard (except the space-bar) have similar size and orientation

relative to the keyboard as a whole, and so these can be considered for grouping on the basis of
possible context similarity, and then a more thorough comparison can be performed. Similarly,

all of the bricks in each of the two shelf support stacks of the bookshelf are related in a
similar way to the stack as a whole (assuming that the brick stack already exists as an explicit

ungrouped object formed on the basis of 'blockness'). On the other hand, the arm and head

subparts of aperson object have significantly different relationships with the person as a whole,

and so they would not be considered for grouping.

This technique was used by Winston in his 'common-features' grouping mechanism: a

grouping was proposed on the basis of a common relation with some other object. However,

cRAM combines all of Winston's relations (such as ON-TOP-OF, BIGGER-THAN, etc) into

a single descriptive entity called a piuent, neighbour, or subpart relationship. Therefore, the

group-proposition strategy must involve comparing relationships and considering grouping the

relatees for which the similarity scores are sufficiently high.

(c) Inter-member relationship similarity and relationship 'tightness'z Traverse the neigh-

bour relationships.

The third form of similarity, inter-member relationship similarity, and the requirement that

the relationships be sufficiently tight,is the simplest to incorporale into a search strategy. This

is because the criteria for 'tightness' are a sronger version of neighbourliness citeria. If we can

assume that neighbour relationships have already been created, then groups based on similar
and sufficiently tight inter-member relationship similarity can be found by just considering

grcups of objects that are neighbours in the object graph, where the neighbour relationships

are similar.

One way of identifying potential groups of neighbours is to somehow traverse neighbour

relationships, accumulating objects that are related in a similar manner.

Another approach, more in the form of the object feature-indexing approach mentioned above,

261

262 CHAPTER 6. TFIE INS?WCE CONSTRUCTOR

is to directly index from relationships to pairs of objects, thus finding groups of pairs of objects

that share some relationship feature. However, cRAM's current representation would have to
be enriched, by adding features such as colour, texfire, material, edge-shape, erc, to ensure that

this method would not produce large numbers of spurious sets of similar relationships.

(d) Groupedness of members' parent objects: Use the decomposition hierarchy.

Another grouping criteria discussed earlier was that a grouping proposal is weakened if the

members of the group are all subparts of objects which are themselves already grouped just as

strongly, as in the case of the seats of a row of chairs. This suggests that the search algorithm

could make use of the decomposition hierarchy, by working top-down through the levels,

abandoning the group search for subparts of already grouped objects.

However, a simpler way which is not constrained and complicated by the top-down strategy

is to evaluateproposed groups of larger objects before evaluating proposed groups of smaller

objects. When evaluating a proposed grouping, the system must check whether the parents

are already grouped just as strongly, and adjust the group score accordingly. By processing

larger before smaller, unnecessary group formation is reduced, and the need to re-check parent-

groupedness later is removed.

The search heuristics.

A summary-list of the search heuristics considered above is given below:

Use the decomposition hierarchy, and object size comparison, to constrain the search.

Use the object-feature indexing mechanism to propose groupings.

Use object classifications to propose groups. If several objects have all been classified

to the same concept, then they may form a group.

Use the parent, neighbour, and subpart relationships of each object to propose groupings

of relatees.

Traverse neighbour relationships to propose groupings of similarly related objects.

Index from neighbour relationship features to propose groupings of pairs of objects

related in a similar way.

Create groups of large objects before evaluating groups of small objects.

Check for parent groupedness before forming a group.

Tlvo basic search strategies: Propose-and-Prune, and Seed-Expansion

Now that we have considered various specific group-finding heuristics and strategies, each

based on a particular grouping criteria, we can now look at how to integrate them into a single

algorithm.

ln developing a group-finder it has been necessary to distinguish two different overall search

strategies. The first - Propose-and-Prune- involves proposing a generous group (on the basis

a

a

a

a

a

a

a

6.2, GROUPFI]VDING 263

of some common feature) and then pruning it until a stable group is obtained which has a strong

membership boundary. This process is illustrated in Figure 6.9 (a). The feature-indexing, com-

mon classification, and object-relatees heuristics above clearly supporttheproposalcomponent

of such a scheme. Winston's 'common-features' algorithm mentioned earlier is precisely of
this form, although there was not an emphasis on having a strong boundary, and the group

evaluation did not take into account the variety of grouping criteria presented in section 6.2.1.

An outline of an algorithm for the Propose-and-Prune strategy is given in section 6.2.4.

The second strategy - Seed-Expansion - involves identifying two (or perhaps three) objects

that could potentially belong in a group, and then expanding this 'seed' group by adding new

members until a clear membership boundary is reached, or until it is decided that the grouping

is not good enough. This process is illustrated in Figure 6.9 (b). Winston's other method, for

finding sequences, appears to take this form, although that is not made explicit. He talks about

finding "sets of objects that are chained together" and "terminating chains at junction points

.. or size differences", but does not describe this in the context of a search algorithm or an

expansion process. Also, and more importantly, he only uses this strategy for finding sequences,

rather than for other non-ordered groups. cRAM's Seed-Expansion algorithm (presented in the

next section) is intended for any kind of group.

l-
L

Figure 6.9: Propose-and-Prune and Seed-Expansion.

6.2.3 The Seed-Expansion Algorithm

The seed expansion algorithm is outlined in Figure 6.13. The first step is seed-gmup-proposal

which involves finding pairs or triples of objects which could potentially expand into a group,

The second step is seed-expansion which focuses on a particular seed-group and incrementally

adds the best new member to the group until a good group is found, or until the grouping is

abandoned.

Seed-group-proposal is based on the various criteria and srategies already discussed above,

such as structure similarity (via feature indexing or common classification), neighbour relation-

ships, common parent or neighbouc and similar and tight neighbour relationships (via feature

indexing or graph traversal). Cunently cRAM only produces seed pairs, not triples.

These seed-groups (in the set SeedGroups) are then sorted according to a priority score which

is primarily based on how likely they are to be expanded into a good group, determined by

Propose-and-Prune (b) Se€d Expansion

{c D}

{AcD}
{ACDE}
{ACDEF}

I taecDEFG)

I tnacDEF)

{ tAcDEF}

-t

_l

2& CHAPTER 6. TIIE INST7INCE CONSTRUCTOR

the strength of the various grouping criteria for each seed object. The priority score is also

partially based on the size of the objects so that pairs of larger objects will be processed before

pairs of smaller objects, to help satisfu the 'parent-non-groupedness' criteria.

The seed-group with the highest prioriry is then chosen, and a candidate grouping consisting

of its two (or three) members is created by producing a typical-member generalisation of the

objects. Then a 'fringe' set of candidate new members is created by finding all other seed-

groups which overlap this seed-group (i.e. contain one of its members). For example, in Figure

6.10, if the seed chosen happened to be {B C}, then the fringe would be {A, F, H, and D}
obtained from the other seed-groups that contain B or C.

Each of these candidate members is evaluated by matching the candidate object (and its

relationships with cunent group members) with the typical-member generalisation of the

group. A fit-scoring comparison is done because we want to determine how well the object

belongs to the concept. Some candidate members can be immediately rejected from further

consideration on the basis of this.

all seeds:

{B c) {c D) tA Bl {D E}
IB F] IF G] {D Hl tH r}
tc Fl tc Hl {A F) {H E}
tG I] {F Hl

After choosing seed {B C)
its finge is {A, F, H, D} obtainedfrom
the overlapping seeds:

{A Bl {B Fl fc D] {c F} {c HJ

Figure 6.l0: A simple seed-expansion example.

The best new candidate member is selected from the fringe set, and if adding it to the group

would lower the strength of the group by a significant amount (relative to the cunent strength)

then this indicates a clear boundary. If the current grouping is sufficiently strong, then it is
added to FixedGroups so that it can be later added to the object graph as a grouped object.

The new member is then added to the group so that further expansion can continue. This

is done even if there is a clear boundary and a new group was added to FixedGroups, since a

larger and weaker - but still valid - group could be found. For example, in Figure 6.10, after

expanding {B C} to form the group {A B C D E}, expansion could continue as a weaker cluster

group resulting in {A B C D E F G H I}.

After each new member is added, the fringe-set of candidate members is updated by finding

any other seeds-groups that contain the new member and also contain another object that is not

already in the group or in the fringe-set.

Group expansion finishes when the group is no longer sufficiently regular, or when it is

weaker a group in FixedGroups of which it is a subgroup.

This latter condition helps prevent unnecessary expansion, and often prevents seed-groups

from being expanded at all. For example, in Figure 6.10, after forming the group of {A B C

l

6.2. GROr./Pfl^rDfiG 265

D E) from the seed-group {B C}, the seeds {A B}, {C D} and {D E} will not be expanded,

since they will be already contained in a FixedGroup, and are not stronger (in the sense of their

similarity and relationship tightness). On the other hand, in Figure 6.1 1, if the first seed chosen

happened to be {4,5}, it would be expanded first into the group of increasing-height objects

{1,2,3,4,5,6}, *d then further expanded into the weaker group {1,2,3,4,5,6,7,8,9,10,11}.
Although the seed-group {8,9} (for example) will now be contained within a FixedGroup, it
will still be expanded because it is stronger than the containing group, since the tightness of
the inter-member relationship of the containing group is lower. (Tightness of a generalised

relationship takes into account the variance of the relationship).

I

I

Figure 6.1l: Groups within a weaker $oup.

Seed pairs are also ignored ifthey do not satisfy the 'parent-non-groupedness'criteria: For

example, in Figure 6.12, after forming the group of {A,B,C,D}, the seed {l 2} is ignored

because the parents already belong in a group, and {l 2} could not expand into a stronger (i.e.

more regular) group. However, since seeds {a 5} and {5 6} do not satisfy this condition, they

are not ignored, and so could be expanded to find the group {1,2,3,4,5,6}.

After group expansion has completed, the next best seed-group is then selected, and the

expansion process begins again. This continues until there are no more seed-groups.

Figure 6.1 2: P arent-groupedness

An altemative algorithm is to expand groups in a competitive manner: at each iteration,

the strongest group is selected, and one new member added to it. Thus a group will only be

expanded when it is currently the best group. When its strength drops, some other group will
have its turn at being expanded. However, this algorithm leads to wasted effort because several

subgroupings of a group would be expanded simultaneously. For example, initial groups each

consisting of two apples from a bowl would be expanded simultaneously, competing with each

266 CHAPTER 6. TIIE AISTANCE CONSTRUCTOR

other until one group was completed and encompassed all the others. There would have to

be continual testing whether one group already included another group, It is more efficient to
simply expand one group at a time until completion, thus making expansion of contained seeds

unnecessary.

FIND-GROUPS (scene)

FixedGroups e{}.
SeedGroups <-all pairs (or triples) of objects that could expand into a group.

Sort SeedGroups.

WHILE SeedGroups is not empty:

seedgroup +pop strongest seedgroup from SeedGroups.

Create a set of candidate 'fringe' members for seedgroup.

EXPAND-GROLIP (seed group)

DPAND-GROIJP (group)

B group is sufficiently regular to continue expanding THEN

AND stronger than all containing groups n FixedGroups THEN

best-new-member +best next candidate member to add

E group has a sufficiently strong boundary

AND is sufficiently strong THEN
Add group to FixedGroups.

Add best-ne w-member to goup.
Add new candidate 'fringe' members to the group, based on besf-new-member.

DGAND-GROUP (group)

Figure 6. 13: Seed-Expansion Algorithm

Seed-expansion for chain groups.

The seed-expansion algorithm as given above does not distinguish between charn groups and

other kinds of groups, such as clusters. However, chain groups are a special case because they

are ordered, and this must be considered explicitly in the algorithm. New members must be only

added to the ends of the chain, and if a new member could potentially be added as a neighbour

of a middle member then this would indicate a fork in the chain, and should force abandonment

of the chain, although the group it may continue to be expanded as a clusferrather than a chain.

Figure 6.14 shows a situation where there is a fork in a chain. If the grouper is expanding the

6.2. GROr-iP.EIIVDING 267

group of objects {2,3,4,5,7}, then object 6 might be considered as the next candidate to add,

since the relationship between 4 and 6 is typical of the current group. However, because object

4 is not an end-member, this indicates a fork, and so the chain expansion should be abandoned.

On the other hand, the sequence of objects {l ,2,3,4} could be represented as a chain, although

the membership boundary is weak since the relationships between 4 and 6, and between 4 and

5, are both typical of the { 1,2,3,4} group.

Figure 6.14: A chain with a fork.

An example of seed-expansion.

The following example shows the seed-expansion process for the objects in Figure 6.12. The

proposed seed-groups shown are given below, ordered by priority score. (Note that the differing

contexts ofthe objects at the left and right ends reduce the scores ofthe seed-groups involving

them.)

{B c} {A B} {c D}

{2 3} {34} {4s} {r 2} t5 6}

{v w} {u v} {w x}
{b c} {c d} {d e} {e f} {f g} {a b} {g tr} (these are weak)

The first seed-group chosen is {B C}. Seed-Groups that have sufficient neighbour relationship

tightness are always assumed to be a potential chain at the beginning of expansion, and this

assumption is only abandoned when a fork is found. The candidate fringe members of {B C}
are A and D, obtained from the overlapping seed-groups {A B} {C D}. None of these imply a

fork, and so the group can remain as a chain.

Object A is added to the group to form {A B C}, ordered by the neighbour relationship. he

ordering is simple to determine because the overlapping seed-group {A B} indicates that A
should be added to the 'B' end of the chain.

The fringe of this new group is now just D, which still supports chain-ness, and the group is

still strong enough for expansion. Since D fits the group well, there is not a clear boundary to

justify fixing the group as it is, so D is addedto the otherend, resulting in the chain-group {A B
C D). Now there are no further candidate members, which is obviously a strong boundary and

so the group can be added to the instance graph as a new object, and expansion is abandoned.

The seed-groups {A B} and {C D} are then compared with this new group and found to be

no stronger, and so they are not expanded.

268 CHAPTER 6. TFIE AIS?WCE CONSTRUCTOR

In addition, the seed-groups {l 2}, {2 3}, {3 4}, {U V}, {V W} and {W X} will not be

expanded since both objects of each pair are subparts of consecutive members of the {A B C}
group, and are not significantly stronger. Therefore, the only seed-groups that will be expanded

at this point are as follows:

{4 s} {s 6} {b c} {c d} {d e} {e f} {fe} {a u} {e n}

Seed-group {a 5} is selected, and expanded in the same way as above until the group { I 2 3

4 5 6\ is obtained and added as a new group object. The seed-group {5 6} is ignored because

it is contained within this.

The remaining seed-groups are somewhat weak, and would not be created if lower ac-

ceptability threshold parameters were chosen for the group-finding system. However, they

have been included here to illustrate how they do not get removed on the basis of the 'no-
parent-groupedness' requirement, since the objects in each pair are not subparts ofconsecutive

members of the {A B C D} group. Therefore, the best seed-group {b c} is expanded into the

group {a b c d e fg h}.

The same process occurs for clusters and other types of groups, except that the chain-ness

assumption is dropped at some point during expansion, and so the group ordering becomes

unimportant and members are added at any place in a group.

Groups ofgroups.

The algorithm can be extended very slightly to also cope with groups of groups, such as the

group of four rows of books in the bookshelf on page 254. Whenever a new group-object is

formed" further seed-groups that contain that new group-object are created, so that groups can

be formed from these.

6.2.4 ThePropose-and-Prune Algorithm

The Propose-and-Prune algorithm has not been implemented in the cRnu system since the

Seed-Expansion algorithm has proved sufficient for all of the kinds of groups that have consid-

ered. However, an outline of a Propose-and-Prune algorithm is given here.

Propose-and-Prune operates in the reverse direction from Seed-Expansion, beginning by

obtaining a generously proposed grouping on the basis of the various criteria discussed earlier.

For example, proposed goups might include a group of all objects that are related in a similar

way to some particular object, or a group of objects which have all been indexed from the

same object features or relationship features, or a group of objects with the same classification.

Winston's system proposed groups on the basis of only the first of these criteria,

In CReu-based Propose-and-Prune algorithm, a generalised concept would be created from

the proposed members. This is more complex than Winston's system which creates a'common-

features'[ist.

6.2. GROI/PEIIVDING 269

Then, each member is matched with that concept. If one or several members are sufficiently

atypical relative to the other members, then they are removed from the group. This requires

the concept to be specialised to exclude these members. Then each remaining member is again

compared with the concept, and pruning occurs again if necessary. The process continues until

a stable group is reached, or until the group is too weak to be csnsidered further.

An assumption of this method is that the initially proposed grouping has a cloar boundary,

since there is no way to test for this in the algorithm unless a set of 'fringe' non-members is

identified, as in the Seed-Expansion algorithm. Therefore, the feature-indexing and common-

classification proposal mechanisms should err on the side of too many proposed members, so

that they can be pruned until a clear member-nonmemberboundary is found.

One minor difficulty of implementing this algorithm in the GRAM system would be the task of
specialising a typical-member concept to exclude atypical members. This can involve removing

disjunctions, ungeneralising attribute values, and removing objects and relationships, none of
which are support€d by the existing generalisation mechanism.

270

6.3 RelationshipSelection

CHAPTER 6. THE INSTTLNCE CONSTRUCTOR

The instance constructor is not only responsible for creating objects, but also for creating

parent, neighbour, and subpart relationships between them. This section discusses the kinds of
criteria that can be used to select which relationships should be made explicit in each object

description.

First, the section presents four general requirements which form the basis for relationship

selection. Following this, it considers a variety of specific relationship selection criteria. The

mechanisms for searching for the best selection are also briefly discussed.

The four general selection requirements, all of which are specialisations of the overall

requirements of the representation scheme discussed in chapter 3, are as follows.

1. Memory usage should be minimised by avoiding unnecessary relationships.

For a scene containing n objects, there are n2 possible relationships, and this would require

significant memory usage for a typical scene. A typical scene in a house or factory might be

represented in terms of hundreds or thousands of objects, which would mean tens of thousands

or millions of relationships. It is therefore desirable to minimise memory usage by only

including relationships that are useful.

Reducing the number of relationships also reduces the computation time for generating

instance descriptions.

2. Relationships should capture structurally or functionally important information.

Concept descriptions are intended to consist of information that usefully characterises the

concept, so that they can be used to identify the important faults or unusual features of an

instance, or to make predictions about the details of an instance without having to observe (or

even being able to observe) all of its details. For example, after recognising a bicycle from

a quick glance, it is not useful to be able to predict that the back tyre is not at the expected

distance and direction from the left handlebar, or to notice if it is not. On the other hand, we

might want to be able to predict that the chain is connected to the front and back sprockets, and

to notice if it is not.

Since man-made objects are primarily created serve some function, the information in a

concept description should therefore be related to that function. However, GRAM does not deal

with functional or behavioural knowledge, or even domain specific knowledge, and hence the

measure of what information might be functionally important must be based on, or embodied

in, general heuristics pertaining to structure.

3. Relationships should support'tncremental spread" matching.

Since the GRAM matcher makes use of parent, neighbour, and subpart relationships to constrain

and guide its incremental-spread comparison process, the choice of neighbour relationships is

important to ensure that comparisons lead to good classification and generalisation performance.

6.3. RELATIONSHIP SELECTION

If there are too few relationships made explicit, then some object correspondences might not

be found. On the other hand, if there are too many explicit relationships, the matcher will be

overloaded with candidate correspondences to evaluate and reject.

For example, in Figure 6.15 (a) the object Xis only linked to one other object, via a parent

relationship. Therefore, when matching this instance graph with a concepts in memory, a correct

correspondence for X is only possible if its parent has been matched classified successfully.

In example (b), on the other hand, object X has more relationships made explicit, and this

enables the incremental-spread process to propose classifications for X on the basis of any of
its neighbour and parent classifications.

27r

and so its correct match-correspondcnce
is less likely to be found.

and so its correct match-correspondence
is more likely to be found.

t___

Figure 6.15: Relationships support the matcher.

4. Selected relationships should help to convincingly support s match correspondence

and to resolve ambiguities when matching and generalising.

An object should include sufficientexplicit relationships that a correspondence proposed and

evaluated by the matcher can be convincing. The more relationships that are made explicit, the

more convincing a correspondence is if a high similarity score is obtained. If only one or two

relationships are included, then a high similarity score might not mean very much.

An object should also include relationships that help resolve ambiguity when generalising.

Chapter 4 showed that the matcher does not have to address ambiguity, since it does not attempt

to find one-to-one correspondences. However, the generaliserdoes have to deal with ambiguity.

Therefore, we do not want ambiguity to result simply from a description lacking relationships

that could resolve the ambiguiry. As a simple example, if the two chairs in Figure 6.16 are to

be matched, then the correspondences between the legs Al and A2, and Bl and 82, might be

ambiguous if the relationship between the legs of each chair is not made explicit.

MM
272 CHAPTER 6. TTTE INSTTWCE CONSTRUCTOR

Figure 6.16: Relationships may help reduce ambiguity.

6.3.1 Criteria for Selecting Neighbour Relationships.

On the basis of the general requirements given above, we can now identify a number of specific

criteria for relationship selection, beginning with those for neighbour relationships.

It should be remembered that neighbour relationships ue directional,in the sense that each

relationship is associated with and recorded in the description of only object, even though an

identical relationship may also be associated with and recorded in the description of the relatee.

Both neighbour relationships are described in terms of position, orientation, etc relative to both

objects involved. However, the issue being considered here is whether to explicitly include a

neighbour relationship in the description of a particular object, independent of whether it is
made explicit in the description of the relatee.

Each of the selection criteria discussed below are listed in Figure 5.17, along with simple

examples. A candidate relationship is given a score for each criterion, and these scores are

combined into a single score for a relationship. If the score is above a certain threshold, then

the relationship is made explicit.

Proximity.

The proximity of objects is the most obvious and most important criterion for selecting

neighbour relationships, since the closer two objects are together, the more likely they are to

be functionally dependent on each other. For example, the mouse of a computer is close to

the mouse pad, and so that relationship can be considered more important than the relationship

between the mouse and the keyboard, or the office door handle. In Figure 6.17 (a), the A-
B relationship is considered stronger than the A-C relationship according to the proximity

criterion.

In GRAM, the proximity criterion is measured in terms of the distance between the objects

as a ratio of the largest dimensions of the neighbour (remembering that each relationship is

associated with just one object). So in Figure 6.17 (a\, the C-A relationship is considered more

important (in the description of C) than the A-C relationship (in the description of A). From

the point of view of C A is a significant neighbour, just as the sun is a significant neighbour

of the earth because it defines its location in the universe. But from the point of view of A,

C is not as significant, just as the earth is not as significant to the sun. In other words, larger

(a) Pnodmity

i"'-'---'-"--"'-"'i

iffi_ @!

i---*"---"'-'-'-"i

iffi@iiwi
i.-.--.--.---..-.-.....--.-.-i

The A-B relationship is stronger than the A-C rehtionship

(b) Connectivity
The A-B relatiowhip is stronger than the A-C relationship

(c) Vldbility
i

i w-a

iffi
;EffiWiry-ims

The A-D relationship is stronger than
the A-C relationship

(d) Alignment

(e) Perrnt .k The C-E relationship is weakened

,/ \\- because their parents are related.
tsD4 /N-

non-Relatedness

(0 Slnllarity i

Hilffi
An A-B relationship nay help n resolve ambiguiry.

6.3. REL/rIONSHIP SELECflON 273

Figure 6. I 7: Neighbourliness Criteria.

neighbours are considered to be more significant, and hence the proximity criterion is also a

274

size criterion.

CHAPTER 6. THE INS?hNCE CONSTRUCTOR

Connectivity.

If two objects are connected, then this is an especially strong indication thatthey are dependent

on or constrained by other. Connections are particularly important for indicating how an object
is constructed. Figure 6. l7 In Figure 6. l7 (b), the A-B relationship is considered stronger than

the A{ relationship.

Visibility.

The visibility criterion measures how much of a neighbouring object B would be visible from
an object A if object B had an eye on it. For example, for the chair in Figure 6.18, the legs

1 and 2 are clearly visible from each other, but leg I and back 5 are not visible to each other

because the seat is in the way. The thesis suggests that the more invisible a neighbour is to

an object, the less useful that relationship is, because the dependence between the objects is

mediated by the objects between them.

For example, legs I, 2, 3, and 4 are constrained by their position, size, and orientation etc

relative to the seat 6, and so their relationship with back 5 is less important. In the case of leg

I, however, the alignmentcriterion described below might outweigh the invisibility criterion.

Figure 6.17 (c) shows some more examples. The A{relationship and the A-D relationships

score equally well for proximity, but A-C is much weaker on visibility.

Figure 6. l8: Neighbour visibility.

The visibility criterion is very useful for pruning large numbers of relationships between

objects that might otherwise be considered good neighbours on the basis of other factors such

as proximity.

The precise definition of 'visibility' is not given here. It could be based on visibility from the

center of the object (as in the current version of cnlu), or from a nmge of positions on it, or

numerous other possibilities. Each scheme will give slightly different results, and will vary in

its computational complexity. The emphasis in this chapter is on the kinds of citeria required,

rather than the specific details.

Alignment

6.3. RELATIONSHIP SELECTION

Objects whose edges and/or axes are aligned, in the sense of being co-linear or parallel, are

often functionally dependent on each other, even if they are not particularly close, as in the case

of shelves in a bookshelf, sides of a drawer, the legs of a chair, the components along a drive

shaft, or the centrally aligned parts of a handdrill. Figure 6.17 (d) shows several examples of

parallel and colinear objects.

Many co-linearities and parallelisms are not significant though, such as between a book

on a desk and a shoe on the floor. However, these probably would not even be easily no-

ticeable anyway. GRAM assumes that the low-level vision system is able to detect clear and

obvious alignments, and that all noticed alignments should contribute to justifying neighbour

relationships.

Parent non-Relatedness

On the basis of the criteria given so far, a desk might be described in terms of neighbour

relationships to the lead of a pencil that is on top of it, a chair leg, and a back book cover.

Such relationships:lre unnecessary because the relationship between the desk and the whole

pencil and whole chair and whole book are sufficient to characterise the desk and to support

recognition. The position, size, orientation, erc of the individual subcomponents of the pencil,

chair, and book are sufficiently constrained by their relationships within their parent objects.

Similarly, it is not desirable or necessary that a desk in a building be explicitly related to

the building next door, even though this relationship may have a strong score based on the

proximity criterion. The relationship between the two buildings is sufficient. This criterion is

important otherwise there would be a huge conglomeration of redundant relationships which

increase memory usage and decrease match efficiency.

Figure 6.17 (e) shows another example of this, where the relationship between Cand E scores

poorly on this criterion because the parents of C and E are related at least as strongly.

To account for this, an additional criteria is needed, called parent-non-relafedness. This

criterion helps to avoid making relationships explicit between objects for which the parent

(or super-parent) of one object is strongly related to the other object or one of its parents (or

super-parents). Of course, other criteria such as connectivity and alignment (discussed below)

might still lead to the inclusion of the relationship.

The relationship between the desk (or desk-top) and the pencil-lead, would score low on this

criterion. On the other hand, the desk and the pencil do not have any related parent objects,

and so would be included. They have the same parent object, that is, the room as a whole, or a

desk+contents object, but they do not have any related parents'

One consequence of this criterion is that each object will tend to be related to large rather than

small objects, since relationship selection is based on a kind of climb-the-hierarchy process.

However, this criterion does not prevent relationships to small objects: for example, if a desk

has a single pin on it, then a relationship between the desk and the pin would be made explicit,

even though the pin is very small. If the pin is in a pin cushion, then this would not be the case.

Another consequence of this criterion is that relationships between direct subparts of a parent

object are likely to be included. So, for example, the relationships between the parts of a chair

275

276 CHAP'|ER 6. THEINS?{NCE CONSTRUCTOR

would be made explicit, but the relationships between the parts of the chair and other objects, or
parts of other objects, are less likely to be included unless they are particularly strongly related.
This means that descriptions of concepts such as "chair-leg" are less likely to be cluttered
with inconsequential context information. Instead, information about the expected context of a
chair-leg (beyond the boundaries of the chair) will be captured in the context description of the
chair as a whole. This helps to improve the classification process since to recognise a chair in
an office, the matcher is more likely to be able to find high-scoring correspondences between
the legs of the chair and the legs of the chair concept even if the chair is in an unusual context.

Similarity

Earlier, in Figure 6.16, we saw that ambiguity can be resolved by explicit relationships
between objects, such as the two chair legs. In this situation the two objects were very similar,
and this caused the ambiguity. Likewise, in Figure 6.17 (f) we see two objects A and B which
are similar, and so should have an explicit neighbour relationship created between them in
order to help resolve ambiguity during future matching.

Therefore, another criteria that contributes to neighbour relationship selection is the similarity
of the two objects. This would seem to require matching every pair of objects in an observed

scene, but in fact it is not necessary to match a pair of objects whose relationship scores

sufficiently poorly on the other criterion that even a perfect similarity would not bring the overall
selection score above the required threshold. Also, matching can be done very efficiently by
first only performing a rough match, and then doing a more detailed match only if they are

sufficiently roughly similar. In fact, a rough comparison alone is sufficient for this criterion.

Mismatch during matching or generalisation.

The above criteria are all data-driven. There is also an expectation-driven criterion that

involves the matcher, since relationships can be created not only during instance construction,
but also during matching when resolving mismatches. When a concept description contains a

relationship that is not present in the description of an instance with which it is being compared,

the matcher can request the creation of a relationship, even if it scores poorly on all of the

criterion given above. This is considered further in section 4.4.7.

6.3.2 Criteria for Selecting Subpart Relationships.

The criteria for selecting subpart relationships are more straightforward than for neighbour
relationships, since there are already more constraints due to the decomposition structure that

has been created by the object-formation process. Firstly, relationships can only be created

between an object and its subcomponents, and secondly, a set of subpart relationships will
already have been specified by the object-formation mechanism, since it works by identifying
sets of objects to combine into a single composite object.

6.3, RELATIONSHIP SELECTION 277

Therefore, the subpart relationship selection task assumes that objects are already represented

as some kind of subpart hierarchy, and the issue is to determine whether the hierarchy can be

refined by adding or removing relationships. The discussion in this section refers to the

examples in Figure 6.19.

Avoid redundant subpart relationships.

The simplest criterion for optimising the hierarchy is to avoid all redundant subpart relation-

ships. If a subcomponent of object X is also a subcomponent of another of X's subcomponents,

then according to this criterion there is no need to include an explicit relationship to it. For

example, a subpart relationship between a desk and drawer-handle should be excluded because

there is already a subpart relationship with the drawer. Similarly, in Figure 6.19, the description

of "Bob" (as a whole) should not include the subpart relationship to his left forearm, since it is

already a subcomponent of the left arm. Details about the forearm arc not kept directly in the

description of Bob, but only in the description of the arm.

This minimises the complexity of the hierarchy, and thus reduces memory requirements and

increases match efficiency because there are fewer relationships to deal with.

The other criteria below serve to refine this minimal hierarchy by causing additional indirectly

related subparts to be included as direct subparts, or even to remove subparts.

Bypass Weak Subparts.

If an object is 'weak' in the sense that it was only barely considered worth creating by the

object-formation system, then additional subpart relationships should be added to bypass this

object. For example, in Figure 6.19 the 'Door-X' hierarchy consists of an object handle+catch

consisting of the handle and the catch, but this object is somewhat weak on the basis of
object formation criteria. If another door is observed, say door-Y, it is quite possible that a

corresponding object will not be included due to its objecrformation score falling just below

the threshold. This means that a mismatch would occur, and the correspondences between

the handles and the catches would have to be found via neighbour relationships. Therefore,

in this situation it is worth creating an explicit subpart relationship between door-X and the

handle. and between door-X and the catcfi. This enables door-X and door-Y to be matched

more successfully.

Anotherexample of this is the buttons on TVI in Figure 6.19: The anay of nine buttons and

the large button below it could be combined into a single part, but this is a somewhat weak

composite object. Therefore the Bypass Wea& Subparts heuristic would suggest that the anay

and the large button should also be direct subparts of tvmainl, as indicated by the two heavy

lines on the figure.

Bypass Doubtful Parent.

A slightly different situation arises when a subpart is strong, but one of that subpart's subparts

does not clearly and unambiguously belong in it. For example, it is clearly useful to have an

aerial object in the TV description, but it is not so clear as to whether the base (abase) should be

278 CHAPTER 6. 1TIE INS?|NCE CONSTRUCTOR

Figure 6.19: Subpart selection situations

included within this, or treated as part of tvmain, or perhaps both. In other words, the boundary

between abase and fvmain is not clear. This ambiguity indicates that two observed TVs might be

partitioneddifferently (depending on threshold parameters of partitioning criteria), as shown in

the two alternative part hierarchies in the figure. In such a situation the correct correspondence

of the aerial bases might be harder to find.

The Bypass Doubffitl Parent heuristic suggests the creation of a direct relationship from an

objectXto an object Zrf Zis a subpartof an object Y, Yis asubpartof X and Zisonly
ambiguously or weakly a subpart of Y. In the TVexample, subpart relationships between TVI
and abasel, and between TV2 and, abase2could be created, as indicated by the heavy line.

6.3. RELATTONSHIP SELECTION 279

Mismatch during matching and generalisation.

As in the case of neighbour relationship selection discussed earlier, subpart relationships

may also be created during the matching and generalising process in response to expectations

of the concept description being considered. This is discussed in the matcher and generaliser

chapters.

6.3.3 Criteria for Selecting Parcnt Relationships.

The selection of parent relationships uses the same selection criteria as for subpart relationships

above, but inverted, thus giving almost symmetric results.

6.3.4 Search strategies for selecting rclationships.

The above criteria for evaluating relationship selection do not specify how to search for can-

didate relationships. Subpart and parent relationships are not a problem, since the search is

strongly constrained by the subpart hierarchy that is already given. However, the search for

neighbour relationships is more difficult because the search space is much less constrained.

The current implementation simply does an exhaustive search of all possible neighbour pair-

ings, computing selection scores based on the above criteria. This is clearly impractical and

unnecessary for a large scene, but has been sufficient for the purposes of this thesis. Several

techniques could be used in future to improve this, as follows.

The first method is to make use of the decomposition hierarchy. If two parts higher up

in the hierarchy are found to have a low selection score, then pairs of their subparts must

also score even lower for most of the criteria. The alignment and similarity criteria might

still hold, but these pairs could be found by special visual alignment mechanisms and feature

indexing, respectively. For example, the front wheel and the seat of a bicycle score poorly

on the neighbour relationship selection criteria. Therefore it is unnecessary to consider the

pairings of their subparts, such as the front axle and the seat tightener, which must necessarily

have much poorer proximity, parent-non-relatedness, and visibility.

Another method depends on having a real robot eye which scans the observed scene. Scanning

could be done by moving outwards from the part being considered, and not extending outwards

further than is necessary. At a lower resolution it could extend further, in order to find large

neighbours, while at a finer level of detail it would scan to a more limited range. The level of
detail is still governing the search, as in the previous method, but not by using the decomposition

hierarchy.

These methods are not discussed further, since the intention here is only to indicate that the

search for relationships need not be an unreasonably expensive task.

280 CHAPTER 6. THE IIVS?HNCE CONSTRUCTOR

Chapter 7

Evaluation

This chapter gives initial steps towards substantiating the claims of the thesis by evaluating

the performance of the implemented cReu system. It also discusses the main limitations

of the system and identifies the areas of the described system that have not yet been fully
implemented, or which could be extended and improved in future work.

The three main claims of this thesis, which were given at the beginning of chapter l, are the

following:

l' Complex physical objects can be matched effectively by using structural descriptions

only, without requiring functional knowledge.

2. The effectiveness and efficiency of matching descriptions of complex physical objects

can be improved by exploiting the structural relationships between the components of
the objects.

3. Complex objects can be matched effectively without maintaining global consistency

while searching for correspondences between their parts.

The first three claims are addressed in sections 7.1 and 7.2which describe the results of
matching complex descriptions of two bicycles, and also of matching all pairs of 27 much

simpler object descriptions.

The fourth claim is considered in section 7.4 which shows an example of how grouping can

significantly reduce the size of a description of a complex household object.

The performance of the generaliser is discussed in section 7.3 which presents the results of
generalising the two bicycles.

281

287

7.1 Effectiveness of the Matcher

CHAPTERT. EUALUATION

7.1.1 Matching identical descriptions of the same object

Any good structural-object matcher should be able match two identical descriptions and find

all correct correspondences between the subcomponents. cRAM's matcher was therefore given

two identical descriptionsl of BII(EI in figure 7.1, with the decomposition hierarchy shown

in figure 7 .2. For every part, the highest scoring correspondence found by cneu was correct,

indicating that identical objects can be matched successfully by cneu without functional

knowledge, and without enforcing global consistency during the search.

It is doubtful whether a system such as Labyrinth (discussed in section 2.8) could achieve

this since Labyrinth does not represent contextual information in its object descriptions, and

therefore would not be able to disambiguate between components with similar substructure,

such as the pedals, tyres, sections of the mudguards, and so on. Wasserman's MERGE (section

2.5) could also not achieve this, since it requires parts to be partially pre-classified by name.

7.1.2 Matching differcnt descriptions of the same object

An important aspect of the effectiveness of a matcher is its robustness, especially the ability

to cope with non-canonical part decompositions of the objects being matched, since the cor-

responding components may be on different levels of the two hierarchies, or may be subparts

of different parent parts. Section4.2.4 states that GRAM can successfully deal with this situa-

tion by exploiting the contextual neighbour relationships between components. This claim is

supported by the results of matching the description of BII(EI, pictured in figure 7.2, with a

different description of the same bicycle, pictured in figure 7.3. Several of the corresponding

components of these two descriptions are at different levels of the hierarchies, such as the front

fork (FFORK), and/or have different parents, such as the top of the chain (CHAI ITOD.

The author produced a list of 74 required winning correspondences, with 6 composite parts

of BIKEI considered unmatchable (including SEN, PEDErc, HBARFORK, FVMID, and

.EROMI., and this was compared with cRAM's results. 73 out of 74 of the winning colrespon-

dences produced by cRAM were correct, giving a performan ce of 98.7 Vo . GRAM also determined

that the six parts above were unmatchable, producing no continuable cnotes for them.

The one incorrect correspondence was between BPEDBAR of one bike and WEDBAR of
the other bike, with an axis correspondence of 180 degrees. Hence GRRM found the rotational

similarity of the two pedals, which is not unreasonable. The score was marginally higher

than the correct correspondence, which cRAM also found. The higher score was primarily

due to the fact that BPEDBAR and TPEDBAR were only evaluated with a spread effort

of l. In other words, only the properties and relationships were considered, and not their

relatees. If another iteration of the match algorithm were applied, thus giving more effort to

rcRAM works directly from the postscript data produced by a graphics package called IDRAW and a text file that

specifies the decomposition hierarchy. The selection of neighbour relationships is performed by GRAM.

7.1. EFffiCTIVENESS OF TIIE MlircHER 283

rqvH
E

Figure 7.1: BItrGl

284 CHAPTERT. EUALUN'ION

/ffiffi H
l;'a iryil{

*\eF

r(: ffiffi(gi€€E

I
I
I
I
I
I
I
I
I
L-"\

\ t..
\\
\
I
\
t
\
\
t

'i,)

l\Y.

\

tt)
o.F

o

d
\

l.ta F o -.3-

tcf ,kf-E
u=

\ffi-..9r*€ry \= >E\ F \€*g
E ea g'Eg

' k*.^ = .{=EEE
&
91

frl/._ - .sd

'.. 1{ * }-t'

F]
M
m

ffi.:e*lEi:r/HE./-5€/ ;E ,8\ t'i;ro i3,E,ffi
cB

.48r.,f

a

I
I

7.T. EFFECM/E]\IESS OF THE MATCHER 285

the BPEDBAR-TPEDBAR comparison, its score would have dropped below that of the correct

correspondence.

These results demonstrate the robustness of cRRM's matcher and its ability to exploit neigh-

bour relationships to deal with non-canonical descriptions, especially those that lead to the

level-hopping problem.

7.1.3 Matching two different bicycles

BIKEI in Figure 7.1 (with the decomposition hierarchy shown in Figure 7 .2) was also matched

with a different bicycle, BIKE2, shown in figure 7 -4. BIKE2's decomposition hierarchy was

as shown in figure 7.5, which is similar to that used for BIKEI. The author identified 69

winning correspondences that should be found by a matcher, and compared these with the

results produced by cReu. 2

When a spread effort of 6 was applied, 65 of the 69 required correspondences were correctly

proposed by cnnu as winning correspondences, giving a performance measure of 947o. T\e
4 incorrect correspondences were as follows: FHUB of bike2 was best-matched with FWMID
of bikel (composed of FHLIB and FWLEVER), when it should have been best-matched with

F-IIUB of bikel (and vice versa). This was because although the substructure of bikel's
NMID and bike2's FTHUB were considered quite different, their contexts were considered

more similar than bikel's FFIUB and bike2's FHUB. Bikel's FWMID and bike2's FHUB both

have very similar relationships with the wheel and front fork, but bikel's F'IIUB has wheel

lever parts attached to it, which bike2's FHW does not. Although not unreasonable, this does

seem to indicate a problem in the similarity metrics which will need to be explored in future

work.

The other three required correspondences that were not found were berween GLEVMAIN,
GLEV, and HBAR of each bike. After applying a spread effort of 6, GRAM had no cor-

respondences for these parts (for either bikel or bike2), either because the scores of the

correspondences found earlier were too low to justify keeping the cnote in memory, or because

the spread never even proposed any correspondences because there were no sufficiently strong

correspondences from which to propose them.

Two additional incorrect winning conespondences were created when more effort was applied

to the match, which indicated a further problem in the matcher. The first was for bike2's WED-
BAR which was best-matched with bikel 's BPEDBAR, although bike I's T?EDBAR was cor-

rectly best-matched with bike2's TPEDBAR, and the two BPEDBAR's were correctly reported

as a winning correspondence. The inconect BPEDBAR:WEDBAR correspondence scored

only very marginally higher than the correct TPEDBAR:WEDBARcorrespondence, with less

2l I parts of BIKEI werc considered by the author to be unmatchable, or rather, only matchable with parts of
BIKE2that are better matched with other components). These ue FWLEVER, FWLEVMAN, FWLEV, FWMID,
REFLECIDR, REFLrcT, REFLECTBOT, REFLECTHOLD, BWLEV MAIN, BWLBV, BWLEVER.

Ot BIKE2's 100 parts, 3l were also considered unmatchable: the mudguards and stand (and their components),

FFORKTBOT, FFORKMIDT FFORKMIDB, FFORKBOTMID, HBAR3, HBARa HBARI, FHUBOUT FHU.
BIN, FBRAI(E I , FBRAKE2, BBRAKEI, and BBRAI(E2.

286 CHAPTER 7. EUALUATION

,
I
I

€

-:i
-&6

I
I
I
I
I

ffii,,,
wis:--

\rr..r

\"

\\
&\E\
E i--.!..
E ,@.*
c)

F E gF

I N-P:^7
-- \\ j<,

-.9

I
I

ilatltitit
i\\- -\\

llt \. -\
i lr \ii\ \'tf\

l-i \
lri\
1\ta\
lrr-t

r-t
r-{
F]
N4l-{
m

.l'Rotr
=>\\t'ig

Figure 7.3: BIKEldd: Same bicycle as BIKEI, but different decomposition

7.1. EFFECITIIEIVESS OF TIIE MArcHER

()
t-io

a)
o

,o

I
liag
hfi

oq)
6do
FT
cdo

(\l
rq
M
E

Figure 7.4: BIffi2

CHAPTERT. EUALUHNON288

i
I
I
I
I
I
lott

k---Ei\irr\
\ t5l\ET,Ft-

t
\
I
\

c\
14
M
E

Figure 7.5: Decomposition hierarchy for BIKE2.

7. I. EFFECTTVEI\rESS OF THE MATCHER 289

than 0.01 difference. However, what is important here is that the BPEDBAR:WEDBARcoT-

respondence was only evaluated to spread-1, and thus could not significantly take into account

the contextual differences. The TPEDBAR:TPEDBAR correspondence, on the other hand,

had already 'survived' through an effort of 5, and was based on a significant evaluation of
contextual similarity.

Another incorrect correspondence that was added when more effort was applied was almost

identical to the above, but involved TPED and BPED.

T\e BPEDBAR:WEDBAR and TPED:BPED problems are essentially the same as the

BPEDBAR:TPEDBAR mentioned in section 7.1.2 in the case of matching the two differ-

ent descriptions of BIKEI, except that this time there was no rotation of 180 degrees involved.

This error seems to indicate that the spread effort applied to a correspondence should be taken

into account before making use of the results of the matcher. In fact, GRAM does this when

using the results of the matcher: the generaliser does not operate on cnotes that have been

evaluated to less than some minimum spread effort, and requires the matcher to be reinvoked

before it can produce a generalisation from the correspondence. In the situations above, the

generaliser would reinvoke the matcher, which would very quickly lower the scores of the

incorrect TPED:BPED and BPEDBAR:TPEDBAR cnotes, thus resolving the problem.

Section 4.1 on page 124 stated that the matcher should employ an 'any-time' algorithm

which allows useful results to be obtained even if only a small amount of effort was applied,

or if the match is intemrpted. The graph in Figure 7.6 shows the results of the matcher

as it is progressively applying more effort, and also shows the similarity score produced

at each step. The five correspondences found at spread-2 were BIKEI+BIKE2 (i.e. the

given seed conespondence), FRONT+FROM|, BACK+ BAC K, FRAMETOP+FRAMETOP,

andFRAMELEFT+FRAMELEFT.As more effort was applied, more correspondences between

parts further down the hierarchy were found, since the spread was able to access them. This

indicates, not surprisingly, that the matcher does tend to first find correspondences at a coarse

level of detail, providing useful results even from low spread effort. Also, and more importantly,

the similarity score in the BII(E example converges quite quickly.

It should also be noted that the matcher does not have to start from the root parts of the

part-graphs. For example, if the matcher was applied to the SEAT of a bike and a learned

bicycle seat concept, many of the bicycle parts could be recognised via spreading, even if
the bicycle was partially occluded. A strictly top-down matcher, starting from the root of the

bike part graph, might terminate quickly due to significant dissimilarities that prevent further

spreading.

7.1.4 Matching large numbers of objects against each other

The previous experiments tested the effectiveness of cRAM at finding the correct corespon-

dences between components of large objects. Another experiment involved matching each of
the 27 much simpler objects, shown in figure 7.7, against each of the others. The purpose

was to test whether pairings of objects that belong in the same category score higher than all

other pairings involving one of the objects and another object from a different category. This

CHAPTERT. EUALU{NON290

Effort versus Correctness
when matching

BrKF.1 and BIKE2.

69

60

50

^40o\
P

Ero
?

20

678

0.87 0.86 0.86

345
Effort

0.93 0.89 0.88

2

0.96

I

Similarity 0.9g
score:

Figure 7.6:

7.1. EFFE;CTTTEATESS OF TIIE MATCHER

experiment dealt only with ungeneralised instances, but does provide some measure of cRAM's

classifi cation ability.

The results are shown in the tables below, which show the scores of all pairs of objects from

the same category, and the highest scoring competing pairs of objects that are from different

categories. These results indicate how much distinction GRAM makes between the correct and

incorrect c lassifi cati ons.

Out of the 31 intra-category pairings, 24 were found by GRAM to be higher scoring than

all other competing inter-category pairings, giving a performance of 77Vo. The only mistakes

involved the TVSand CLOCKS, while the objects from all of the othercategories were correctly

best-matched with other members of the same category. Since there are 351 possible pairings

altogether, cRAM is clearly performing quite well, although this experiment would ideally be

done on a much larger number of objects, and compared with results from other systems.

However, only one of the systems described in section 1.2 produced a comparable experiment.

The PARVO system [Bergevin and Levine, 1993] performed a similar kind of experiment for
which l5 out of 23 (or 65Vo) objects scored higher when matched with the correct object model

than with other object models.

The problem with the TVI and TV3 match was that the substru*ure of the root node of
the part graphs is significantly different: TVI has two sets of legs, and no aerial, while TV3

has an aerial and no legs. Therefore, only one out ofthe three combined subparts have good

correspondence scores. According to the similarity scheme created for CRAM , the two objects

are significantly different. However, GRAM was also used to produce a generalised television

from four instances, one of which did not have legs (although all had aerials), and therefore

was able to learn the optionality of legs, and thus be more tolerant of missing legs. Thus, the

low TVI and TV3 score only seems to be a failure of cnRu because we (as humans) already

know about TVs.

The low score for TV2 and TV3 seems less justified, since both have the main body and

aerial. However, because both of the legs are unmatched, and because they each contribute

roughly 257o of the score for the root cnote, they pull down the contribution of the higher scores

for the main body and aerial correspondences. It is not clear how to resolve this. The current

implementation of cnnu does not use the relative lengths of the subparts to weight their score

contributions, and this would help to some degree. It would also be possible to give a higher

weight to subparts with more complex substructure, but this would not be justified in other

situations, such as giving more weight to the drawers of a desk than to the desktop. So, without

artificially tweaking the system to give a good result for this particular example, it would seem

that the low score is justified. However, as pointed out above, the generalisation process is the

primary means by which the relative importance of subcomponents is learned, so that in the

case of the TV concept, the presence and similarity of the main body would contribute most to

the scores of future instances.

The other problem with almost all of the results of this experiment is that although most of
the correct pairings scored higher than competing incorrect pairings, they did not score much

higher, even for objects that humans would consider to be completely different, such as a TV
and a handdrill. This seems to be partly a consequence of cnnu's scheme of not enforcing

291

292 CHAPTERT. EUALUATION

global consistency, since it allows any relatee of one part to play the conesponding role of
any relatee of the corresponding object, even if it plays a different role relative to some other

correspondence. For example, the aerial of T\2 might be matched (albeit weakly) with the

trunk of a cactus, since the relationship between the funk and the plant pot is similar to the

relationship between the aerial and the TV body. Simultaneously, the leg of TV2 might be also

matched with the trunk, but rotated by 180 degrees, since its relationship with the TV body is

similar to the relationship between the trunk and plant-pot upside down. The allowance for
inconsistencies means that scores tend to be higher than they would be if consistency were

maintained, although such scores are still low and are unlikely to justify generalisation.

The problem with the five low clock-pairing scores is similar, but more justified, since there

are more obvious differences between the clocks involved.

Headphones
pairing score

HEADPHONEI : HEADPHONE3
HI{EADPHONEI : HEADPHONE2
HEADPHONE2 : HEADPHONE3
best other pairing

0.84

0.77

0.74
0.63

Cacti
parnng score

CACTUS2: CACTUS3

CACTUS1: CACTUS2

CACTUSI: CACTUS3

best other pairing

0.92

0.75

0.75

0.s8

Lamps
piunng score

LAMPI: LAMP2
best other pairing

0.70

0.61

Clamps
parnng score

CLAMPI:CLAMP2
best other pairing

0.90
0.63

Handdrills
pairing score

HANDDRILLI : HANDDRILL2
best other pairing

0.64
0.63

Sewing Machines
palnng score

SEWMACHINE2 : SEWMACHINE3
SEWMACHINEI : SEWMACHINE3
SEWMACHINEI : SEWMACHINE2
best other pairing

0.80

0.69
0.66

0.61

7.1. EFFECTryEI\TESS OF THE MTrcHER 293

Distributor Caps
pairins score

DISTCAP1: DISTCAP4
DISTCAP3: DISTCAP4
DISTCAP2: DISTCAP4

DISTCAPI : DISTCAP3

DISTCAP2: DISTCAP3

DISTCAPI :DISTCAP2
best other pairing

0.75
0.71

0.67

0.66

0.66

0.&
0.6t

Although the results presented in this section indicate that there are some problems in the

matcher, the results support the claim that complex objects can be matched effectively without

having functional knowledge, and without maintaining global consistency during the search

and when evaluating similarity. Of course, functional knowledge and global consistency could

undoubtedly improve the matcher, but at a cost. The results above demonsfab that they are

not necessary to obtain a reasonably good performance when finding part correspondences.

The main criticism of the cRAM matcher based on the above results is that although it
tends to correctly find the best correspondences, the scores for incorrect correspondences seem

TYs
palnng score

TVI: TV2
** TVI : CLOCK4
** TVI : CLOCK2
** TVl : CLOCKI
TVI: TV3
** 19 pairs!

TV2: TV3

0.65

0.63

0.60

0.59

0.56
0.6..0.5

0.50

Clocks
parnng score

CLOCKI: CLOCK2
CLOCK2: CLOCK3
CLOCKI: CLOCK3
CLOCK3: CLOCK4
CLOCK4: CLOCKS
** various pairs

CLOCKI: CLOCK4
CLOCK2: CLOCK4
CLOCK3: CLOCKS

CLOCKI: CLOCK5
CLOCK2: CLOCKS

0.90

0.81

0.81

0.72

0.70

0.63..0.5
0.50

0.49

0.49
0.44

0.42

I.AIiIPI

CHAPTERT. EUALUN'ION294

|W

#WWI,ffir@r@f
,

I DrsTcAflt | _

lffi, l l#Wt']
t *----__-l f.*-" -l

rMrr,.ffi. 1

tEWffiffiitffiffiWlt
'tsreu!@Pg"t4E!4Eg3@',ret:wlrmEilffi' W'tffittg'ffi'wffirtw|.wl
I crocxr | | cr,ocra I

l@l @l
t",,*----l

ffilWl

@ru
tDrsrcAP, - ---_l

@l
t-^"*"*r

--l

lTl
lwl-
l-h I

--.ffi

WI
.------ __

l

I DrsrcAPr | |

lM,l
tHAxDDRlrl I

lffi Il&
tffil

W
EEwMAcnrNEr I

1ffi1

||NW

Figure 7.7: 27 objects in nine categories.

7.1. EFFECTIYEJVESS OF THE MATCIIER

unreasonably high due to the strategy of not enforcing bindings. It is clear that enforcing

bindings could help resolve this problem. For example, the strangely high score of 0.63 for
TVI matched with CLOCK2 would never occur, since no consistent set of correspondences

can be found for which the interrelationships match well.

However, enforcing consistency does cost more. Even if some kind of effective greedy

algorithm could be developed (of the kind developed earlier in this project [Andreae, 1993])

it would require a sophisticated backtracking mechanism to be able to find the kinds of
correspondences that the current system finds in such a robust manner. More importantly, it
requires a representation which enables global consistency to be meaningful. cRRu's approach

of representing concepts in terms of other concepts, rather than in terms of a hierarchy of locally

defined and distinguished parts, is not particularly amenable to enforcing global consistency,

since it does not make sense to require a concept to be matched with only one instance. If
global consistency were enforced (somehow), only one chair in an office could be classified

as a chair. Therefore, consistency could only be enforced in the reverse direction to prevent

each instance being matched with more than one concept, unless the concepts:ue on the same

branch of the cOncept hierarchy.

Future work on GRAM could involve exploring a compromise between the two approaches:

each object or concept could be described not only in terms of its relationships and relatees, but

also in terms of relationships between its relatees. Each concept would, therefore, be a richer

and more constrained description, such as depicted in figure 7.8, requiring local consistency

when matching it against another concept or instance. Labyrinth employed this idea in its basic

form, although only for substructure. This scheme would reduce the potential for parallelism,

and would require a more complex algorithm, but would also enable more accurate similarity
scores to be produced. Although each cnote would require more effort to evaluate, more cnotes

could be rejected quickly. The algorithm would require special purpose mechanisms to detect

and deal with parts that play multiple roles.

Figure 7.8: Description of an 'aerial' concept in an extended representation.

A more thorough analysis of the current system may reveal other ways to improve CRAM'S

performance, such as taking into account the relative 'winningness' of cnotes when evaluating

295

CHAPTERT. EUALUATION

their scorcs, thus enforcing a kind of 'soff consistency white still allowing objects to play

multiple roles.

The results of cneu couldperhaps be improvedby refiningthe mechanismsforathibute nor-

malisation and comparison. For the currcnt system ihere has boen minimal analysis of whethe.r

the s,imilarity scores produced f-or tliflcrent kinds of atfib,utes are meaningftlly comparab&.

They need to be more rigorously normalised so that a measure of, say, 0.7 for a size comparison

has the same meaning as a score of 0.7 for a position or shape comparison.

7.2. EFFICIENCY OF THE MATCHER

7.2 Efficiency of the Matcher

297

This section evaluates the efficiency of the matcher by measuring the time taken to perform

the match. Limitations in memory, time-sharing, and a very poor garbage collector in the Lisp

used, meant that elapsed times did not give a correct indication of the cost. Therefore, the

times presented are the actual CPU time used, excluding garbage-collection time.

The first graph in figure 7.9 shows the times taken to match various components of the

bicycles, ranging from the small BHUBSTUEFpaTI to the bike as a whole. The results shown

are for different amounts of spread effort, ranging from spread-3 for BHfI"I}.STI,]'EFIo spread-6

forthe bikes as a whole, as indicated on the graph. The amount of effort chosen is the effort level

above which the correctness did not increase significantly. The results for each comparison

all have a correctness of around 93Vo or above, and further effort did not raise the percentage

more than I or 2 percent. The number of parts, the correctness, and the average number of
relationships for each part ('avrl') are all shown on the graph for each of the four objects.

Figure 7.9: Object size versus Time

It should be noted that the efficiency of the implementation could be improved significantly

by many basic coding improvements, and by compiling the code with the option of maximum-

speed/minimum-safety, instead of the inverse. Coding the system in C rather than Lisp could

also help significantly. Therefore rhe actual times shown in the graph are not particularly

important in this discussion. The use of parallelism would also make a huge improvement, as

is discussed later in this section.

The significant aspect of this graph is that it indicates that the cReru matcher is linearinobject

size. This result is confirmed by the graph in Figure 7. l0 which shows the number of spread- I

cnotes that were created for each of the different matches. The creation of spread- I cnotes is the

elementary operation for cost analysis because, firstly, the most expensive aspect of matching is

comparing all pairs of relationships of two parts when performing an spread-l comparison, and

secondly, because the average number of relationships of a part within an object is relatively

constant for large objects, rather than being dependent on object complexity. The latter is due

Object-size Yersils Time cost
when matching

Compouents of BIKEI and BIKE2
BIKE
l0O parts
avrl=10.9
effort=6
93% corlecl

20

'=

Ero
F

EHUBSTUFF
9 parts
avrl=4.6
effon 3
lm% concct

I
I

+

BWHEEL
24 psns
awl=7-8
effon 4
94% conec,-

BACK
59 pans
avrl=9.E
effort=5
9l % conEct
(93% ifeffon 6)

,10 50

Numbcf of componentj

298 CHAPTERT. EUALUATION

BIKE
100 parts
avrl=10.9
cffort=6
93% conEst

Object-siz,e versus l-spread cnotes
when matching

BWHEEL
24 pans
avrl=7.E
cffon 4
94% comct

6)

BACK
59 pans
awl=9.8
efforF5
9l% conect
(93% ifeffon

I
Il-

BHUBSTUFF
9 psrts
avrl=4.6
effort 3
lfi)% conect

Figure 7.10: Object size versus l-spread cnotes

to CRAM's instance constructor which constrains how many relationships are created for each

part, and is confirmed by the graph in Figure 7.1 l. This graph shows the average number of
relationships for the parts of several components of BIKE2, treating each one as a seParate

object, ignoring contextual relationships to the rest of the bicycle. It can be seen that the

average number is converging to approximately 13, although this would have to be verified

for other objects. For any objects more complex than about 100 parts, each cnote requhes

about 200-300 relationship correspondences to be evaluated, since all combinations of parent,

neighbour and subpart relationships must be considered, for each offour axis correspondences.

The reason for the linearity of the size-versus-time graph is that the algorithm only spreads

from plausible correspondences, and each part of an object usually only has a few plausible

correspondences (when constrained by both substructure and context), even in a complex object

such as a bedroom. Since the major cost of evaluating each additional cnote is the spread-l

evaluation, which is basically independent of object size for objects larger than about 100 parts,

the algorithm is roughly linear.

7.2.1 Comparison with an exhaustive and'all-pairs' strategies

The efficiency of the GRAM matcher can be contrasted with the efficiency of two alternative

approaches. Firstly, an exhaustive comparison of two objects that requires global consistency

would require roughly n! sets of correspondences to be evaluated, where n is the number of
parts in each of the objects. Since each set requires the evaluation of n * 4 cnotes, where 4 is

the number of axis correspondences that need to be considered, the algorithm be of the order

of 4 * n * n!. Even an object with 7 parts would require 141,000 cnotes to be evaluated. In

Components of BIKEI and BII(E2

7.2. EFFICIENCY OF THE M{rcHER 299

Complexity of object descriptions
(Average number of rclationships per part)

8

h
37t
F6
ct(
o
q
b0e4o

,() 50

Number of pars

Figure 7.1l: Object Description Complexity

300 CHAPTERT. EUALUANON

contrast, the spread-6 comparison It BIKEI and BII{82 only requires 525 cnotes. [f we let n
be 90 (the average of the size of BII(81 and BII{E2,80 and 100 respectively), then the number

of cnotes is only 6 * n.

Secondly, a comparison could be done by matching all pairs of parts, without requiring global

consistency. If such an approach was as efficient as cRAM's approach then it would indicate

that the search algorithm does not provide much advantage. However, the all-pairs match

requires the creation of n * n * 4 cnotes, or approximately 36,000 cnotes, which is 64 times

as many as for the cRAM match, and grows quadratically with the size of the objects involved.

As an experiment, a simple program for performing an all-pairs comparison was implemented.

First a 0-spread match was applied to all pairs of parts, and this achieved 62Vo conect winning

correspondences. This required about twice as many 0-spread cnotes to be produced as the

GRAM algorithm did when applying a 6-spread effort, the latter of which found almost all

of the correct correspondences anyway. However, it should be noted from this result that a

O-spread match is still quite effective, with very low time cost since l -spread cnotes are much

more expensive. Thus if CneU's property attributes were enriched further, then it might be

worth doing an all-pairs 0-spread match (potentially in parallel) before applying the spreading

activation algorithm, since the GRAM algorithm could then make use of these results from the

beginning of the search to help prune relationship correspondences more quickly.

When a l-spread match was applied to all pairs of parts, requiring the creation of 36,000

cnotes, each with an average of 220 relationship comparison notes, the system ran out of
memory and aborted. This confirmed that it is an advantage to employ a search algorithm such

as used in GRAM, which results in a large reduction in 1-spread cnotes and, more importantly,

seems to have linear growth with the size of the objects.

These results confirm the claims of this thesis that efficiency of matching can be improved

by exploiting the structure of objects to guide the search, and by relaxing the requirement for

global consistency. This claim was not made and demonstrated for complex objects (or even

simple objects) by the other matching systems discussed in section L2.

7.2.2 Efficiency of matching identical objects

The final efficiency test to be discussed is the cost of matching two identical descriptions of the

same object, BII<EI. The time required to match the descriptions with effort 7 was 90 seconds,

and further effort would have added almost no more time, since 1007o correct correspondences

were already found. The more useful and impressive statistics are the numberof cnotes created,

as shown below:

Object size 80 parts

Time

O-spread cnotes

1-spread cnotes

1.5 minutes

l15
88

These costs are significantly less than the costs of matching BIKEL with BII{82 because the

search could directly find correct correspondences from each new cnote created, without having

to bypass unmatchable components or discover the correct correspondences via level-hopping.

7.2, EFFiCIENCY OF TTIE MATCHER

Since BItrIEI has 80 parts, these results suggests that the number of l-spread cnotes is O(n)

when matching identical objects, which is a very positive result. Further experiments with

other large everyday objects would be necessary to determine whether this is typical.

7.2.3 A summary of the bicycle matching results

To summarise the above results of bicycle matching, the following table specifies the effort

applied, the correctness, and the number of l-spread cnotes created for each of the three

experiments: (a) BIKEI matched against an identical description of itself, (b) BIIGI matched

against a significantly different description of itself, and (c) BIKEI matched against BIKE?

BIKEI matched

7.2.4 The matcher is conducive to a parallel implementation

A significant fearure of the matching algorithm is that it is conducive to parallelism. All
of the 250 or so relationship correspondences for a cnote could potentially be evaluated

simultaneously, at least to a l-spread, if not further, since they can be evaluated independently.

This is a major advantage of not enforcing global consistency. Also, the attributes within

each attribute vector characterising the properties and each relationship ofan object could be

evaluated in parallel.

301

BrKEl(ditr)
Object sizes

Effort
Correctness

l-spread cnotes

80:80

7

lNVo

Q4n4)
88

80:80

8

98.5Vo

Q3n4)
588

80:100

6

94Vo

(6st69)

525

302

7.3 Effectiveness of the Generaliser

CHAPTERT. EUALUHNON

The effectiveness of cRAM's generaliser is evaluated in this section by presenting the results

of generalising BII(EI and BIKE2 whose part hierarchies were shown in figures 7,2 and

7.5. Generalisation involves spreading through the cnote graph produced by the matcher,

producing new generalised parts (or modifying an existing part) on the basis of each cnote with
a sufficiently high score, as explained in section 5.3 on page207 . The results of the generaliser

can be partially evaluated by counting how many of the correct winning correspondences found

by the matcher led to generalisations, and by qualitatively judging whether the generalisations

seem reasonable from a human point of view.

Section 7.1 stated that 65 out of the 69 required correspondences were found by the matcher.

57 of these were successfully generalised by the generaliser, and the remaining ungeneralisable

parts of each bike were represented as optional parts in the new generalised description.3 A few

disjuncts were formed, such as a context disjunct for the two DERBAR2s, due to the differing

orientation, position, and direction relationships of the neighbours relative to DERBAR2's

primary axis, and perhaps also due to the additional relationship with the bike-stand in bike2.

An interesting feature of the cnau system is that even when a parent part is not generalisable,

some of its subparts may be. For example, although the two DERs (the derailleurs) were

considered not quite generalisable, all of their subparts were still generalised as a result of
the generalisation of neighbouring parts, most probably the BSPROCKET.In other words,

level-hopping and 'mismatch-bypassing' also occurs during the generalisation process due to

cRAM exploiting neighbour relationships. This fearure is not present in the other system's

reviewed in chapter 2.

However, there were a few problems in the resulting generalised description that need to be

pointed out. Firstly, the two FWHEEL parts were not generalised even though their context

similarity score was high (0.84), because the stnrcture similarity score was just below the

generalisability threshold of 0.7, and the context score of 0.84 was just below the 0.85 threshold

needed to produce a disjunctive description. This indicated that the generaliser should perhaps

use 'winningness' to justify generalisation: although the context similarity score for the front

wheels was just below the threshold, the front wheels scored much higher than any alternative

correspondence. Furthernore, a number of Ihe subparls of the front wheels were generalised,

indicating that the front wheels should not merely be added to the new description as distinct

optional parts. This issue needs to be explored further, after analysing the results of cRau on

a larger number of test cases.

A few other minor problems occurred due to bugs and minor oversights in the program, and

further evaluation of the generaliser on other large and small objects needs to be done before

its strengths and weaknesses can be more clearly identified.

3The part-graph of the generalisation has not been shown as it requires 6 pages.

7.3. EFFECT^EI\IESS OF THE GENERALISER

7.3.1 Matching and generalising the generalised bicycle.

To test the generalised bicycle description, it was matched and then further generalised with

another description of BII(EI, although only to spread-4 so it could only reach partially down

the part hierarchy. The matcher successfully found the correct correspondences and generalised

the larger parts which had been matched to at least effort 2.

Memory constraints meant that a full 7 or 8-spread match was not possible, and so this

evaluation is somewhat limited. Furthermore, the lack of a third bicycle description meant that

the generalised description was not tested by matching it against a different bike.

A small problem in the generalisation strategy was highlighted by this experiment. Relatee

correspondences that scored high, but with insufficient effort to justify generalisation, led to

both relatees being added to the new generalisation as optional parts. For example, although

the SEATs were generalised, the subparts could not be, and so the resulting SEAT had a

duplicate set of subparts, some from the original generalised seat, and the others from the new

instance. Instead, the generaliser shouldjust ignore these instance parts, perhaps generalising

the relationship, but not the relatee. The instance count of the part should however, be

incremented, otherwise the subparts might become optional when they shouldn't be, as in the

example of the SEATs subparts.

7.3.2 Disjunction

To demonstrate the formation of disjunctive descriptions, GRAM was given descriptions of
the doors in figure 7.12. An initial concept was produced from DOORI and DOOR2, and

then each of the remaining doors was matched and generalised, one by one, with the concept

description, resulting in the part-graph shown in Figure 7.13. Although the main doors were

straightforwardly generalised, and the handles were all matched, the intemal structures of the

handles were quite different. Consequently, the structure of the HANDLE part is represented

disjunctively by refening to four subconcepts, as indicated by the heavy dotted lines. One of
these subconcepts is a generalisation of two of the handles which were considered sufficiently

similar to generalise. The second name in some of the boxes is the name of the first instance

from which the generalisation was formed, and the number alongside each of these names is

the instance count. For example, the conceptCzS, which has a subpart/parcnt relationship with

the generalised handle, C25,is an optional subpart of C25, with an instance count of I, formed

fromthe LOCKof DOOR4.

303

304 CHAPTERT. EUALUATION

DOOR4

Figure 7.12: Five doors.

3057.3. EFFECIIVEIVESS OF THE GEI',rERAI,/SER

ry
+

ry

E

ruo

s

'isI r !4'xta'gr
ss
sb
5S
o%
9e:
Hq3v,

o

mw

306

7.4 Effectiveness of Grouping

CHAPTBRT. EUN,UATION

One of the ways that GRAM exploits the structure of objects is to pre-process an instance

description by forming groupings of similar objects. To partially demonstrate how this can

improve match efficiency, this section presents the results of forming groups for the bookshelf
in figure 7 .14. Alist of group members was given to the system, rather than being automatically

found, so the results described here only present the performance of the group construction

mechanism rather than the group finde/. ttre group constructor must match and generalise

the members of each group to form the typical-member description, and then, under certain

conditions, remove the individual members.

The bookshelf has been slightly simplified from the bookshelf given on page23. Firstly, the

potplant has been removed because it had a vast number of leaves which required manual input

of all the groupings. Secondly, only half of the petals on the flowers have been included. This

was because the current group constructor requires members of the group to all share the same

axis correspondences, and this is not the case for all of the petals of the full flower due to the

way cRAM selects the primary axis of a part. Completing the code to cope with this would be

a relatively minor matter.

The top graph in figure 7.15 shows the description of the bookshelf before grouping, and the

bottom graph shows the description after groups have been formed, and individual members

removed. A readable version of the bottom graph is given in figures 7. I 6 and 7. I 7. Clearly

there is a dramatic reduction in the size of the description, with the number of parts reduced

from 157 to 41, and the number of relationships reduced from 1600 to 399. When the grouped

bookshelf description was matched against an identical description the correct correspondences

were found by cnrura, but unfortunately memory problems prevented results for the ungrouped

bookshelf to be obtained, and so a comparison between the match performance is not available

at present. However, it is obvious that the reduction in description size must significantly

reduce the match time, as well as memory usage.

The details of the part-graph for the grouped bookshelf can be seen in figures 7.16 and

7.17 each of which shows one half of the part-graph. Notice that the instance-count for C21,

the generalised bottle label at the bottom of figure 7.16, is 4 rather than 5, giving a further

illustration of how cRAM acquires probabilistic descriptions.

athe implementation of the groupfinder is incomplete, and currently only finds some of the groupings in the

bookshelf.

7.4. EFFECTTVENESS OF GROUPTiVG 307

Figurc 7.14: Abookshelf

308 CHAPTERT, EUALUANON

bo

o"
v
bo
c)

€(l).o
(u

&
FA

:
bo
trl
a

EO
h
Q
ct

(l)

.v
ca

Figure 7.15: The effect of constructing groups

7.4, EFFECT/IIEAiESS OF GROT/PING 309

Figure 7.16: A grouped bookshelf

310 CHAPTERT. EUALUATION

Figure 7 .17: ... continued

7.5. LIMII/rIONS AIVDFUTURE WORK

7.5 Limitations and Future Work

Although the main ideas in this thesis have been implemented, there are a number of aspects

of the system described in the thesis that have not been completed or could be improved and

extended.

The representation scheme could be enriched to allow a two-dimensional equivalent of the

"generalised cylinder" representations. The main requirement for this extension is a low-level

vision system that produces generalised cylinderdescriptions. The representation scheme needs

to be changed only minimally, by adding a few attributes, perhaps also including additional

properties such as colour, texture, etc. The matching and generalisation mechanisms can be

left essentially unchanged. However, it does introduce problems for coercion when comparing

similar objects with different primary axes.

Extending cRAM to deal with thrce-dimensional object descriptions is another area to be

considered. This will involve modifying and adding additional attributes that take into account

the third dimensional axis. It also requires 24, rather than 4, alternative axis correspondences

to be considered for each cnote, suggesting the importance of parallel computation. Enriching

the set of object properties could enable these correspondences to be pruned more effectively

prior to evaluating relationship similarities. As with the generalised cylinder extension, the

main requirement for extending to three-dimensions is that cRev will need input from a three-

dimensional vision system or graphics package, rather than working with input from a simple

two-dimensional drawing package.

A more elaborate extension that could be made to cRAM is to include explicit descriptive

entities representing the edges of a object (and surfaces of a three-dimensional object). This

would mean that an instance graph would contain two or more kinds of nodes (rather than

just object nodes), and additional kinds of relationships, such as edge-of relationships. The

design of the cRAM system is such that this extension may not require significant changes

to the matcher and generaliser, since the "spreading" match process, guided and constrained

by relationships, could still be applied. However, 'edge' entities would probably be best

represented as local to each concept, rather than having additional 'edge concepts', so that an

edge cannot be matched or generalised independently from the concept it belongs to.

Another possible extension to the GRAM system is to allow a single relationship to be described

disjunctively. Cunently it is possible for a concept description to include multiple relationships

to the same concept, but it is not possible to explicitly describe a relationship disjunctively,

except within a complete structure or context disjunction.

The matchercould be improved by performing a more thorough analysis of attribute similarity
so that attributes values can be normalised and compared in a more consistent and effective

way. The heuristics for pruning the search could probably also be improved after analysing

the behaviour of the matcher more thoroughly. Estimates for upper and lower bounds could be

made more accurate. It may also be worth making discontinued cnotes able to be recovered

sThe Generalised Cylinder scheme represents objects in terms of a central spine and a cross-section that sweeps

along the spine acrcording !o some function.[Brooks, l98l]

3ll

312 CHAPTER 7. EUALU.A;NON

(by reevaluation) since the discontinuation and removal of a cnote is based on lower and upper

bounds which are only estimates. The various expressions used to compute scores and weights

also need to be investigated more thoroughly.

A limitation of the matcher is that it only coerces object descriptions based on rotations

of 90, 180, or 270 degrees. Tlvo triangles that require a 120 degree rotation to correspond

correctly, cannot be matched accurately by GRAM. The coercion mechanism would need to be

extended somehow to cope with such situations, perhaps taking into account the shape of the

objects. Currently cRAM treats all parts, whether circles or polygons, as each being bounded

by a rectangular box, and so is limited to 90 degree rotations.

Currently the fault-finder produces a rather detailed report only meaningful to the author.

Future work could be done to produce a more summary report which identifies mismatches

at whatever level of detail is required, in a more readable form with statements such as
*BWLEVERis missing from the BWHEELof BIKEZ'.

The mechanism for computing 'contents-similarity' scores has not be implemented. This

mechanism needs to match all pairs of relatees, ignoring relationship comparisons, and to do

this for every cnote would undermine the strategy of pruning correspondences on the basis

of relationship similarity scores prior to comparing relatees. Therefore, contents-similarity

scores would need to be only computed if there is justification, and this has not been explored

sufficiently in this thesis. One possible justification is high context similarity and a strong

winning margin relative to competing cnotes, but a poor structure match. Anotherjustification is

when a teacher, the environment, or reasoning mechanisms indicate that two objects correspond,

but where the structure similarity is low.

Anotherdifficulty with implementing contents-similarity is that it requires the subparts of the

objects to be matched in isolation, ignoring context, as discussed in section 4.3.7. Although

GRAM is able to perform nested scoping, by temporarily marking parts with a timestamp, an

additional mechanism needs to be developed to enable the scores to be nested, so that the nested

match will use the scores obtained from structure-only scoping, while the enclosing match will

use the full scores. This may somewhat complicate the spreading-activation algorithm.

However, although contents-similarity has not been implemented, one of the main reasons

for using it was to enable objects such as roonts to be matched and generalised. When GRAM

was applied to the bedrooms in Figure 7.18, it found all of the conect correspondences anyway,

and produced a correct generalisation, with an optional computer on the desk, a generalised

grouping of desk drawers, and a disjunctively-described clock context.

There are a few aspects of the generalisation process described in the thesis which have

not been fully implemented. One is that the generaliser does not invoke the grouper to

resolve 'similar-similarity' ambiguity, or at least create multi-relationships. This depends to

some degree on the group-finder, since it must evaluate the groupability of the ambiguous

relatees. Only the basic mechanism of the group-finder has been roughly implemented so far,

and so this form of ambiguity resolution has not been completed. The generaliser could be

further extended to create new composite objects as a way of resolving ambiguity or apparent

mismatches. Cunently it is only able to create new relationships.

7.5. LIMITHNONS ANDRIruRE WORK 313

Figurc 7.18: TWo bedrooms

314 CHAPTERT. EUALUATION

Also, the generalisercurrently only usesproximiry scores to determine generalisability, rather
thanfit scores. This is because only a simplified fit-scoring mechanism has been implemented
which only considers the fit-scores of the properties and relationships of two parts, rather

than spreading further outwards through the cnote graph. It also only computes fit-scores for
numerical aftributes and not for nominal attributes. This simplified mechanism has been tested

by generalising eight very simple four-subpart chairs, and then matching them with a number
of 'bad chairs' with faults such as a back tilted forwards. The simplified fit-scoring successfully

noticed the incorrect tilt, due to the low variance of the generalised tilt, while proximity scoring
considered the tilt acceptable.

The distinction between fit-scoring and proximity-scoring for the generaliser is only signifi-
cant for concepts that have been formed from at least four or so instances, since the variance of
numerical attributes formed from fewer instances is not considered reliable enough to be used

in fit-scoring to determine faults. So the use of fit-scoring by the generaliser would not affect

results such as those discussed for the bicycles.

Other minor extensions to the implementation are to enable it to merge disjuncts, corectly
match and generalise multi-relationships with several normal relationships, and generalise

grouped and ungrouped objects. The instance constructor cannot currently produce the 'cov-

erage' profile attribute described on page 82. The disjunct-formation system also needs to be

modified slightly so that the disjuncts of a concept have the same axis correspondence, or that

the axis correspondence of the disjunct is recorded explicitly relative to its super-concept so

that the matcher can coerce attributes appropriately.

Not all combinations of structure and context interpretations (section 3.4.3) are matchable or
generalisable. Specifically,'any' and'partial+typical' interpretations are not dealt with, and

it is not possible to match or generalise two generalised concepts that bothhave'disjunctive'
or'imported' interpretations. Although cnau can consruct and match a description with an

'impofied' interpretation, it is not currently able to decide itself when the structure or context

of an object should be replaced by an import reference.

GRAM's instance constructor needs to be extended to implement some of the composite-object

creation mechanisms that have been suggested in the thesis, such as those based on symmetry

and topology. The group-finding mechanism could also be extended to find sequences of
alternating objects (called cyc les).

The issue of two-way interaction between the matcher, the instance-constructor, and the low-

level vision system has only been minimally addressed in the thesis. In a three-dimensional

domain, where objects are always partially obscured, this issue is especially relevant. Ideas

developed by [Brooks, l98l] could be applicable here, and the recent ideas discussed by

[Winston, 1992] which show how recognition is possible from just a few two-dimensional

models, could also be relevant.

Since cRnv's representation scheme and its matching and generalisation algorithms are

amenable to a parallel architecture, future versions of cRRu could be implemented in this way.

The cReu scheme may also be conducive to some kind of connectionist implementation, since

one of the difficulties of implementing a structured object learning system in a connectionist

7,5. LIMNHnIONS ANDFUTURE WORK 31s

architecture is the problem of maintaining consistent bindings betrveen components, which is

not an issue in the cneu syst€m.

The most difficult and long-term extension of cneu is to enable it to learn multiple concepts

organised and indexed in a concept memory, perhaps drawing on and extending the ideas used

in the Labyrinth system described in section 2.8. Although the matcher and generaliser do

perform classification and generalisation of multiple conoepts by 'spreading' along parent,

neighbour, and subpart relationships, the thesis has not dealt with how to cr€ate, use, and

maintain AKO hierarchies.

Clearly there is a gleat deal of scope for future work on the cReu system.

316 CHAPTERT. EUALUATION

Chapter 8

Conclusion

This chapter summarises the main ideas and conclusions presented in this thesis. The cRAu

syst€m has extended and integrated various ideas from other systems, and has also presented

a number of new ideas for representing, matching, and generalising descriptions of complex

physical objects.

A central contribution of this thesis has been to demonstrate that complex physical objects

can be matched without functional or domain-specific knowledge. The thesis has also shown

that the sfiuctural relationships of objects can be exploited to improve the effectiveness and

efficiency of objects. Other systems (such as Labyrinth [Thompson and Langley, 1991] and

MERGE [Wasserman, 1985]) exploited the decompositional nature of physical objects to enable

top-down matching, but GRAM has extended this to make use of neighbour relationships, thus

allowing the matcher to search in any direction through the object graph, guided and constrained

by the object structure.

Another important contribution of the thesis is the idea that complex structured objects

can be effectively matched and generalised without having to enforce consistency between

correspondences. This allows the mechanisms and representation scheme to be simpler, more

efficient, more robust, and more conducive to a parallel implementation.

A methodology that has been used throughout the thesis is that the choice of representation

scheme, and matching and generalisation mechanisms, must be based on first identifying the

/cinds of situation that must be representable, matchable, and generalisable, rather than creating

a mechanism and then identifying what it can and cannot do.

The following sections of this chapter summarise the specific contributions of the thesis for
each component of the GRAM system: representation, matching, generalisation, and instance-

construction.

3r7

318

8.1 Representation

CHAPTERS. CONCLUSION

E.1.1 Multiple levels of approximation and abstraction are important for match-
ing and generalising.

The technique of 'chunking' an object into abstract or approximate components at multiple
levels of detail, represented as a decomposition hierarchy, enables the matcher to be guided by

the structure of the objects. This idea has also been applied in other systems such as Labyrinth,
MERGE, and ACRONYM [Brooks, I 98 I]. It also enables two descriptions, that perhaps would
be otherwise unmatchable and generalisable, to be matched and generalised at a coarse level

of detail, as has been discussed by [Marr, 1982]. Approximation and abstraction also allows

more information to be made explicit, since properties and relationships of the whole 'chunk'

can be specified.

Multiple levels of detail are especially important in the CRIM system, since to match and

generalise objects as complex as the bicycles shown in Figure 1.8 in chapter 1 without the

guidance of a decomposition hierarchy is computationally very expensive. Systems such as

CLUSTER/S [Stepp and Michalski, 1986a] and MARVIN [Sammut and Banerji, 1986] do not

use decomposition hierarchies to guide the matcher, and this means that they are not able to

efficiently deal with complex structured objects.

The PARVO system [Bergevin and Levine, 1993] demonstrates that classification of common

physical objects can often be performed from coarse descriptions alone, without requiring finer

details to be considered at all. The fact that humans can classify objects drawn as stick figures

or simple cartoon images is further evidence. This is an important domain characteristic since

it makes rapid classification possible.

Nevertheless, finer details are necessary for generalisation and fault-finding, and to enable

the matcher to distinguish between specialised varieties of a class of objects.

8.1.2 The distinction between parent, neighbour, and subpart relationships helps

guide and constrain the matcher.

Unlike representation schemes that allow arbitrary atomic relations between objects, (such as

[Sammut and Banerji, 1986], Mnston, I9751, and [Connell and Brady, 1985]), cRAM instead

distinguishes between just three types of relationship: (a) parent-relationships with enclos-

ing parent objects, (b) neighbour-relationships with other objects that are connected, close,

or otherwise interestingly related, and (c) subpart-relationships with subcomponent objects.

These are not atomic relations, but are richly expressive descriptive entities consisting of both

qualitative and quantitative information.

The main advantage of having just these three types of relationship is that each relationship

acts as a richly labelled link in the object graph, where the pattern of links captures the structure

of the physical object, and allows the matcher to exploit the structure of the object to guide the

search for correspondences.

8.I. REPRESENI]ATION

Other systems, (such as Labyrinth and MERGE) have made use of this principle to some

degree by the use of subpart relationships to guide a top-down search, but CRAM's use of parent

and neighbourrelationships extends this principle further. In particular, neighbourrelationships

provide more "access paths" to an object, and these can cross levels of the decomposition

hierarchy. This helps resolve the level-hopping problem in which correspondences between

the components of two similar objects cannot otherwise be found because the components are

on different hierarchical levels.

The richness of relationship descriptions enables the matcher to compute a rough similarity
score for two descriptions merely by computing similarity scores of properties and relationships,

without even comparing the descriptions of the parents, neighbours, and subparts. This means

that an instance can be matched with a concept very cheaply, while still giving a reasonably

good estimate of their similarity. A high similarity score would justify a more complete

comparison.

Furthermore, an advantage of combining all the information about the spatial relationship

between two objects into a single descriptive entity (represented as an attribute vector) is that the

matcher can compute a single similarity score for two relationships, and hence more efficiently
determine the best correspondences between the parent, neighbour, and subpart relationships

of two objects, without even comparing the relatee objects.

8.1.3 Generalisation is simplified by giving each concept and instance its own set

of relationships.

In GRAM, a relationship between two objects or concepts is duplicated, and one copy is stored

with each object description. This enables concepts to be generalised independently. For

example, if an observed instance matches a concept sufficiently well to justify generalisation,

then each of its matched relationships can be generalised, even if it refers to a concept that is not

itself matched well enough to be generalised. This characteristic of the representation supports

cRAM's overall approach of the avoiding the need to deal with consistent correspondence

bindings.

8.1.4 Physical objects ane representd in terms of context as well as structure.

Many classes of physical object are defined not only by their structure (or 'form'), but also
(or even primarily) by their context (or 'role'). For example , the chair-Ieg concept is defined

largely by relationships with the concept chair and other chair components. Even if a concept

is primarily defined by its stnrcturc, as for the concept mug, it is useful to include context
information in its description since that can help to make predictions. For example, to find a
mug in a kitchen it is useful to know that mugs are often on shelves in cupboards, or by the

sink. cnAu's use of neighbour and parent relationships, in addition to subpart relationships,

enables such knowledge to be rcpresented.

319

320 CHAPTER 8. CONCLUSION

8.1.5 Concepts can be conveniently defined by relationships to other concepts,

rather than by a local part graph.

An earlier version of cReu [Andreae, 1993] represented a concept as a complete part-graph,

whereallpartsofthegraphwerelocaltothatconceptdescription. Ifthegeneraliserdetermined

that it was necessary or desirable to represent a subgraph as a concept in its own right, then

it had to be extracted out, with references from the original graph to the new concept. This

process was somewhat complex, and many of the issues of deciding when and how to do

the extraction were not resolved. The matcher was also complex, because it had to find a

consistent set of one-to-one bindings between two potentially large part-graphs, which could

contain embedded disjunctions and references to other concepts.

In the current version of GRAM, each concept description is much smaller, simpler, and more

homogeneous, since it is defined only by a set of properties and a set of relationships to other

concepts, with no local part graph. There is no distinction between concepts and parts of
concepts. Consequently, the matcher does not have to deal with bindings, and the generaliser

does not have to determine whether a subgraph should be extracted out as a global concept.

8.1.6 The explicit distinction between structure and context supports partial
matching and a simple form of disjunction.

An important aspect of cRAM's representation is that it not only allows concepts and instances

to be defined in terms of both structure and context, but it also explicitly distinguishes between

these two types of information. One reason for this is to enable partial matching: The matcher

can produce separate similarity scores for structure and context, and therefore is able to notice

that two objects are similar in structure but not context, or vice versa. If the similarity

is sufficiently strong, and is higher than scores for other competing correspondences, then

this is considered sufficient justification for generalisation, even though the overall combined

similarity score is poor. Without this distinction, a poor overall similarity score could mean

that both structure and context similarities are poor, in which case generalisation would not be

justified.

Another reason why the distinction is useful is that it enables a simple form of disjunction to

be included in the representation scheme, without having to deal with arbitrary disjunctions of

properties and relationships. More specifically, GRAM allows the structure and/or context of a

concept to be defined disjunctively.

8.1.7 Explicit groups reduce memory usage, support efficient matching, and

enable different-sized collections of similar objects to be generalised.

It is essential to be able to explicitly represent groups of similar objects (within a larger object

or scene) as a single entity, characterised by its typical member, since groups are so pervasive

in the physical world. An explicit group description not only reduces memory usage by

summarising multiple descriptions into a single description, but also supports more efficient

8.T. REPRESEIVIIATTON

matching (since fewer items need to be compared) and enables a generalisation to be produced

even if the groups of two descriptions have different cardinalities.

Therefore, an important contribution of the cRAM representation is that it allows groups to be

explicitly represented, matched, and generalised. This was not supported by the other structure-

learning systems reviewed in this thesis, except for Winston 's ARCH learner [Winston, 1975]

and (in a limited way) Brooks's ACRONYM.

The idea of representing a group in terms of a generalised typical member was initially
proposed and implemented by Winston. CRAM extends his representation to cope with more

complex structures, a more unified representation scheme, and probabilistic generalisations.

Most significantly, the description of the typical-member of a group is a concept that can

have relationships to itself, which specify the typical inter-member relationships between the

members of the group. This idea seemed to be partially included in Winston's system, but only

by the typical member referring to a "another member" node, rather than by referring to itself,

which is more compact and homogeneous.

This thesis has identified a number of different types of groups (such as chain, loop, array, and

cluster) and cRAM's method of representing typical inter-member relationships allows these

different types to be reflected implicitly in the set of typical-intermember relationships, and

explicitly in the group-fype property.

Items in a group sometimes contain groups themselves, and so it is necessary to allow the

typical-member description to be a grouped concept. This is supported by GRAM, since a

typical-member concept is just an ordinary concept.

8.1.8 Multi-relationships allow relationships to be grouped.

In addition to representing similar and similarly related objects as a single group object, GRAM

also allows several similar relationships of a concept or instance to be represented as a single

generalised multi-relationship, with a howmany property specifying how many relationships

are being summarised.

This is important because for every group object, there are usually several other objects that

are structurally related (as neighbours) to some or all of the members of the group. Although

these relationships could be replaced with a single ordinary relationship to the group as a whole,

this would lose information about how the object is typically related to the members of the

group. Thus the multi-relationship is necessary. It is especially necessary if the related objects

have not been explicitly represented as a group.

Brooks's ACROI.IYN4 supported this in a more restricted manner by having a 'quantity'

parameter associaled with an 'affixment' relation to a component. None of the other systems

reviewed in this thesis supported multi-relationships.

As with groups, multi-relationships reduce memory usage, support more efficient matching,

and enable a generalisation to be produced even if the multi-relationships of two descriptions

summarise different numbers of relationships. One conclusion of this thesis is, therefore,

that a representation for a complex structured domain should allow repeated features to be

summarisable in a single descriptive entity.

321

322 CHAPTERS. CONCLUSION

8.1.9 Instance-counts are necessary to specify the degree of optionality of a
componenL

Many classes of physical object must be described in terms of optional parts, such as the aerial

of a television set, the arms of a chair, or the keyhole in a door. If the optionality of a part cannot

be represented, then either the part must be dropped from the object description altogether,

or two subconcepts must be specified, one of which includes the part, and the other which

does not. A more convenient method is to allow each part to be labelled as being optional or

non-optional.

However, it is useful to also know the degree of optionality. For example, if only a small
proportion of cars have a light on the top, then this should be explicitly specified to enable more

precise prediction and similarity evaluation. Therefore, cRAM, like COBWEB lFisher, 1987a]

and Labyrinth, allows each concept feature to have an instance-count that indicates how

many instances of the concept included that feature. Instance counts are associated with each

property, each parent, neighbour, and subpart relationship, each import-from specification, and

each concept as a whole.

8.1.10 The distinction between contents and arrangement is necessary in some

domains.

Some concepts, such as types of rooms or places, may be defined primarily by their contents,

with less importance placed on the arrangement of their contents than for objects such as

chairs and handdrills. Originally it was thought that the representation scheme should explicitly

distinguish between arrangement-dependent and arrangement-independent concepts. However,

it was realised that the distinction is a matter of degree, rather than one or the other, and it
has been found that the arrangement-independence of a concept is adequately specified by

the variance of properties of objects and relationships: a generalised subpart relationship that

has a high variance will usually match many of the relationships of an observed instance, and

therefore the structure of the subpart itself will be the primary means for identifying the correct

correspondence.

8.1.11 The import-fromrelationship prnvides a flexible way of reducing r€peated

information, and increasing information transfer.

Some structured concept learning systems allow a subconcept to inherit information from

its parent concept, rather than repeating it redundantly. MERGE is one example of such a

system. However, cRAM provides an impon-frorn relationship which allows structure and

context descriptions to be 'imported' from any other concept, not just from superconcepts.

This not only reduces memory usage, but also means that if the concept from which the

information is imported from is generalised, this is implicitly transferred to the concepts that

impoft from it. Of course, this has the danger of over-generalisation, and the overall learning

and memory organisation system must handle this, primarily by taking a cautious approach

8.I. REPRESETflhTTON

which only generalises an existing concept (rather than creating a new concept) if a new instance

is sufficiently similar to it.

8.1.12 It is useful to explicitly distinguish between several differrcnt'interpreta-
tions'of structure and context descriptions.

The thesis has discussed the distinction between pafiial and complete descriptions, which

correspond to Stepp's distinction between contains and is semantics [Stepp, 1987b]. Rather

than force all descriptions to have either one or the other interpretation, or leave it ambiguous,

cRAM requires the interpretation of each structure and context description to be explicitly

specified, and this means that the 'drop-feature' generalisation operation can be used without

requiring that all descriptions have a partial inteqpretation.

cRAM also distinguishes between several specific varieties of partial interpretation, to indicate

explicitly to the matcher that the description is disjunctive, grouped, or imports from another

concept.

8.1.13 Structure and context disjunction can be conveniently specified by sub-

concepts in the AKO hierarchy.

A fearure of cnlu that has not been employed by other systems, is the ability to represent

the structure and/or context of a concept disjunctively, by refening to the subconcepts of the

concept. Some subconcepts may implicitly characterise 'structure' disjuncts (such as types of
chair structure), others implicitly characterise 'context'disjuncts (such as types of surroundings

where chairs are located), while others may specify disjuncts that are specify a co-dependent

combination of both structure and context (such as a dentists chair and its relationships with a

dentists office).

In this scheme there is no need for additional descriptive entities for disjuncts, and the

mechanism for forming disjuncts can be combined with the mechanisms for building AKO

hierarchies.

8.1.14 Enriched nepnesentation of properties and relationships support partial
matching.

It has been found during the development of cnnu that if the representation of properties

characterising the structure and the context of an object is sufficiently rich, then an inexpensive

partial comparison between a concept and an instance provides a good indication of whether

further more expensive comparison should be performed.

One type of property that is especially useful in this respect is the profle property which gives

a summary description of the arrangement of neighbours or subparts of an object. For example

a density profile indicates the density within each of several grid regions within the bounding

box of an object, and this enables the substructure of two objects to be roughly compared,

without actually comparing the subparts.

323

324 CHAPTERS. CONCLUSION

Likewise, if the representation of relationships is rich, then a confident partial similarity
evaluation can be obtained without matching the relatees of the two objects.

8.1.15 Important information should be made explicit, to prevent loss of infor-
mation during generalisation.

One theme that has run throughout this thesis is that important information should be made

explicit, rather than implicit. This is because implicit constraints can be lost during generali-

sation. For example, a description of a chair may include ratios of the lengths of each leg to

the height of the chair as a whole, all of which are 0.47, but without any explicit specification

that the lengths are all the same. When generalising with another chair whose legs are 0.54 of
the chair height, then each leg length will be generalised, and the previously implicit constraint

of equal leg lengths is lost. This illustrates why important information should be explicit in
concept and instance descriptions. Many of the features of cRAM's representation scheme, such

as groups, disjunction, instance-counts, neighbour relationships, import-from specifications,

and the distinction between structure and context, help support this requirement.

8.2, MATCHING

8.2 Matching

8.2.1 A matcher can and should exploit the structural organisation of objects.

The most significant characteristic of the GRAM matcher is that it exploits the structural or-

ganisation of physical objects to a greater extent than the other structure-matching systems

reviewed in the thesis. cRAM achieves this primarily by its "spreading activation" algorithm

which traverses parent, neighbour, and subpart relationships to find and evaluate correspon-

dences between concepts and instances.

By distinguishing between just three kinds of relationships (i.e. parent, neighbour, and subpart

relationships) each of which is a richly expressive descriptive entity, each relationship acts as a

direct link to another concept or instance. When comparing a concept with an instance, the most

similar pairs of concept and instance relationships indicate correspondences between parent,

neighbour, and subpart concepts and instances. Thus, these three kinds of relationships allow

the matcher to efficiently search through the space of concept-to-instance correspondences.

This process is also made possible because descriptions can first be matched just using their

properties and relationships, ignoring relatees. The similarity score from this partial match

is a reasonable estimate, due to the richness of the property and relationship descriptions.

Therefore, the matcher only needs to traverse relationships to perform comparisons of relatees

if the partial match is sufficiently good. Thus, by enriching the representation of properties and

relationships, the search is reduced.

8.2.2 Relationships enable direct indexing for classifying an instance.

Even though indexing has not been explicitly addressed in this thesis, in cRAM's "spreading

activation" matcher, each relationship acts as a kind of indexing mechanism which leads

directly to a hypothesised classification of an instance. Each hypothesised classification that

has a reasonably good score on the basis of property and relationship similariry, can be used to

directly hypothesise classifications of the instance's parents, neighbours, and subparts. ln fact,

this form of indexing is just as important as a mechanism that indexes directly from features to

a concept. The latter kind of indexing may be necessary to initiate the process, but once one

component of an observed scene has been given a hypothesised classification, the evaluation

of this classification will often lead to classifications of other components of the scene, via the

parent, neighbour, and subpart relationships. ln future work on cRAM, both forms of indexing

may be combined.

A limitation of the Labyrinth system (see section 2.8) is that it does not make use of its subpart

relationships to support indexing, but instead classifies every observed instance independently.

Wasserman's MERGE (in section 2.5) does not require indexing at all, because instances were

already named. The PARVOS system [Bergevin and Levine, 19931 (see section 2.9) useddirect
indexing from features to concepts, but since it only matched concepts at a single coarse level

of detail, it did not perform further classification of related objects in the manner employed by
GRAM.

325

326 CHAPTER 8. CONCLUSION

8.2.3 Efficient and effective matching of structural descriptions is possible with-
out maintaining bindings between cornespondences.

An interesting and surprising result of this thesis is that complex structured objects can be

effectively matched without having to maintain a consistent set of conespondence bindings
between concepts and instances.

In an earlier version of cRAM, it was originally thought that a consistent set of bindings
was essential, and so each concept was represented as an entke local substructure part-graph.

However, the new system has shown that the richness of object descriptions and the distinctness

of classes of physical objects tend to enforce consistency.

Thus, the matcher does not prevent an instance from being classified as belonging to several

concepts, which may or may not be on the same branch of the AKO hierarchy. This allows

instances to play multiple roles. If there are several ambiguous classifications of an instance,

then all should be reported by the matcher, and other concept-instance comparisons can select

whichever classification of the parent, neighbouq and subpart instances suits it best.

A consequence ofthis approach is that each concept-instance comparison can be considered

to be an independent process. Each comparison simply requires that the properties are similar,

the parent, neighbour, and subpart relationships are similat and the relatees are similar (as

evaluated by a recursive application of the matcher, in a kind of backward-chaining manner).

If some other classification assumes that the same instance is classified differently, that is not

considered a problem. The matcher makes use of the similarity scores computed for other

previously computed concept-instance comparisons, but it does not enforce consistency.

The independence of each comparison, and the non-necessity for ensuring consistency and

correspondence bindings, means that the cRAM matcher is amenable to a parallel implemen-

tation. This is an important quality of a matcher that is to be employed in a real physical

environment, since classification often must be very rapid.

8.2.4 Robust matching is made possible by searching in any direction through
the obJect graph, starting fiom any hypothesised seed classification.

Several of the systems reviewed in this thesis have used a top-down search to compare two

structured descriptions. GRAM is not restricted to this form of search, but can instead search in

any direction via parent, neighbour, and subpart relationships. This means that the classification

does not need to begin from the root node of an object description. Rather, a seed classification

of a subcomponent (such as the classification of a bicycle seat) can lead to the classification of
the bicycle as a whole. This is important in a real physical environment where an object to be

classified may be partially obscured, preventing a direct indexing mechanism from accessing

the required concept.

Various methods to allow the user or the larger system to control the match spread are provided

by the matcher, such as by using a spread-distance pararneter, or by explicitly marking (or

scoping) the instance objects that are to be classified.

8.2. MATCHING 327

8.2.5 Efficient 'any-time' matching is possible by using a brcadth-first 'iterative
deepeningt searrch.

It has been found that the most effective search strategy is a breadth-first search with 'itera-

tive deepening'. A depth first search is not effective because the system should not spread

outwards from a correspondence, trying to evaluate correspondences of relatees, unless the

correspondence has already been found to be reasonably promising. Otherwise large numbers

of spurious correspondences could be evaluated unnecessarily. Therefore, GRAM only spreads

from correspondences for which the properties and relationships match sufficiently well. It
then performs successively more thorough comparisons on the best parent, neighbour, and

subpart correspondences.

This strategy ensures that the similarity score for each concept-instance comparison is

always based on a particular spread-distance,which is increased incrementally until either the

classification is considered acceptable or non-acceptable. Thus the algorithm is an 'any-time'

algorithm which can be intemrpted at any time, and still provide a usable similarity score that

has a known level of accuracy. This is important for an autonomous robot, which should be

able to classify to any required level of confidence, and be intemrpted at any time while still

having usable match results.

This approach is justified by the results of the PARVO system [Bergevin and Levine, 1993]

which showed that common physical objects can often be classified on the basis of a coarse

description alone.

E.2.6 The level-hopping problem is resolved by exploiting neighbour relation-
ships.

A limitation in systems that employ a strictly top-down search is that two objects can only

be matched if their corresponding components are on the same level of their decomposition

hierarchies. If one object has been described with an additional composite object in the

hierarchy, then the matcher may fail. This is called the level-hopping problem. Wasserman's

MERGE employed a special mechanism to cope with this, by inserting "null nodes" into the

part hierarchy, in all possible ways that could account for level misalignment of a certain

distance.

cRAM does not need to employ explicit level-hopping techniques, since the use of neighbour

relationships, which can cross levels of the hierarchy, enable correspondences to be found

directly.

8.2.7 Instance-counts arc impofiant for syntactic recognition.

In a system such as GRAM which does not make use of functional knowledge to learn the

relative importance of concept features, recognition of real-world objects can instead make

use of rnstance-counts associated with generalised features, in order to make better predictions

about the expected presence of a feature in a new instance.

328 CHAPTERS. CONCLUS/ON

GRAM uses instance-counts to weight the similarity scores of relationship comparisons, such

that a concept relationship with a low instance-count, that has no similar relationship in the

instance, does not reduce the overall similarity score, since it is optional. However, if there is

a similar relationship in the instance, then the similarity score contributes fully to the overall
score. This similarity-dependent and frequency-dependent weighting has not been employed

in the other systems reviewed in this thesis.

8.2.8 A concept is a 'lrobabilistic predictor" of parents, neighbours, and sub-
parts

Since each concept has instance-counts indicating the expectedness of each parent, neighbour,

and subpart relationship in an instance, a concept can be interpreted as a kind of 'probabilistic

predictor'. More specifically, if the system is told, or hypothesises, that an observed instance

is an instance ofa particular concept, then the parent, neighbour, and subpart relationships are

predictors of the presence of similar parent, neighbour, and subpart relationships and relatees

in the instance.

This interpretation is useful because it enables concepts to be used for fault-finding or

description completion. For example, if an object is only partially visible, but classifiable,

then its missing features can be 'completed' via prediction. Similarly, if a feature is absent

from a classified instance, then the significance of the absence can be measured on the basis

of the instance-count. In general, a high instance-count (with respect to the instance-count of
the concept) indicates a functionally significant feature that is expected to be present in most

instances. Thus cnau's instance-counts are a form of quantitative MUST:-HAVE conditions.

A similar approach was taken in Fisher's COBWEB system.

8.2.9 Mismatches can sometimes be confirmed or resolved by augmenting an

instance description.

Mismatches between two descriptions can sometimes be resolved or confirmed by augmenting

the instance description by generating missing relationship descriptions, or even by adding

new composite objects (although the latter is not supported by the current system). This idea

has not been included in other structure-matching systems. It is most similar to the techniques

used in the SPARC/E system [Dietterich and Michalski, 1985] which augmented descriptions

of a sequence of cards in order to support regularity finding.

Relationship augmentation can be done when two concepts are explicitly related, but where

two instances that have been found to match those concepts (at least partially) are not explicitly

related. A relationship between the instances can therefore be created, and compared with the

concept relationship. This may either strengthen or weaken the classifications, but in either

case it results in more accurate similarity scores. This shows how the process of matching can

influence the vision system in an expectation-driven manner.

8,2. MHnCHING

8.2.10 Fit-scores versusproximity-scones.

The distinction betweenf t-scores and proximity-scores has not been proposed by other systems.

It was found necessary to make the distinction in cneu because different components of the

system require similarity to be measured in different ways.

A proximity-score measures the absolute similarity of two objects, and is based on the

'proximity' of two objects in object-space. A fit-score measures the typicality of an instance

with respect to a concept, and is computed from the ratio of the absolute difference, to

the variance of the concept. A fit-score for two descriptions might be much lower than

the proximiry-score. For example, an observed swivel-chair would have a reasonably high

proximity-score with respect to the concept four-Iegged-char, but a very low fit-score.

The generaliser uses proximity-scores to determine whether two objects are similar enough

to justify producing a generalisation, and it uses fit-scores to determine whether an instance that

has been matched with a concept is typical enough to justify modifying the original concept,

rather than creating a new concept.

The matcher uses proximity-scores to determine the best correspondences between objects,

and a fault-finder would need to use fit-scores to identify the faulty or unusual features of an

object.

329

330

8.3 Generalisation

CHAPTERs. CONCLUSION

8.3.1 Generdisation is simplffied by representing concepts as small independent
descriptive entities.

Although concepts in cnRu are defined in terms of other concepts, they are independent in
the sense that the correspondences between their parent, neighbouq and subpart relationships,

and those of a matched instance, are selected independently from correspondences selected for
other concept-instance matches. They are also independent in the sense that their relationship

descriptions are not shared by the concepts that the relationships refer to. Every concept has

its own distinct set of relationship descriptions. This means that the task of the generaliser is

simplified, since each concept-instance pairing can be generalised independently from other

pairings, even though results of other generalisations may be referred to.

The simplicity of concept descriptions in cRaM (as opposed to the complexity of concept

descriptions that specifo a complete part-graph) also simplifies generalisation, since there is

no need to merge two potentially large graphs, which may require generalising or creating

embedded disjunctions within the resulting generalised graph, and perhaps extracting out

subgraphs as distinct concepts.

8.3.2 Various forms of ambiguity have been distinguished.

One of the difficulties in generalising two descriptions is when there is ambiguity in the corre-

spondences between their parent, neighbour, and subpart relationships and relatees. Following

the methodology of identifying the kinds of situation to be dealt with before designing mech-

anisms, the issue of ambiguity has been addressed by distinguishing between several kinds of
ambiguity, each of which requires a different method of resolution.

These include similar-similarity ambiguity and different-similnrity ambiguity (as discussed

below); vertical ambiguity, in which the objects involved are along the same vertical branch

of the decomposition hierarchy1' local ambiguity, which refers to ambiguity between the cor-

respondences of parent, neighbouq and subpart relationships and relatees for a particular

object comparison; and global ambiguity, which refers to the ambiguity amongst all object

correspondences produced by the matcher.

Similar-similarity ambiguity is resolved by forming a multi-relationship or a
group.

Similar-similarity ambiguity refers to the situation where all of the pairs of competing cor-

respondences are similar in the same way. This situation can be resolved by producing a

multi-relationship or a group.

Different-similarity ambiguity is resolved by performing multiple generalisations.

Dffirent-similnrity ambiguity, on the other hand, is where the competing pairs are similar in

8.3. GEIVERAUSATION

different ways.' For example, one pair may match well with respect to structure, while the

other pair matches well with respect to context, even though both overall similarity scores

are roughly the same. The concept or instance that is involved in both pairs is playing two

roles, one contextual and one structural. This situation can be resolved by performing multiple
generalisations, one for each pair.

8.3.3 The representation supports a simple form of disjunction creation.

When a concept is to be generalised to cover an instance whose structure (or context) differs

significantly from the structure (or context) of the concept, the generaliser must create a dis-
junction of structures (or contexts). In a representation scheme that represents a concept as

a complete part hierarchy, disjunction formation can be complex, since it requires embedded

disjunctive subgraphs. In cRAM's representation, disjunction formation simply involves cre-

ating subconcepts. There is no need to deal with multiple levels of a hierarchy, since each

concept is only one level deep, consisting solely of relationships with other concepts, which

are generalised independently.

ln an extended cRau system, disjunction formation would be integrated into a larger mech-

anism that constructs and maintains the AKO hierarchv.

8.3.4 Over-generalisation is reduced by requiring a minimum match effort, a

minimum fit-score, and a winning classification

The danger of over-generalisation is especially significant in a structured domain with a rep-

resentation scheme such as cRAM's, since each concept may be referred to by many other

concepts, and the generalisation of one concept will therefore implicitly generalise all of the

concepts that refer to it.

cRAM reduces the chance of incorrectly generalising a concept by requiring that the fit-score

is sufficiently high. This ensures that the concept is only generalised by small amounts, and

a new concept is created if an instance is atypical. Also, cnau requires that the matcher

has applied some minimum amount of effort to the comparison. A rough partial comparison

may be sufficient for classification in some tasks, but is not sufficient to justify generalisation.

Therefore, the generaliser may either request the matcher to continue performing a more

thorough comparison, or not perform generalisation.

The issue of over-generalisation has only been minimally addressed in this thesis, by the

methods above. A more thorough consideration will be performed when developing a full
learning system that deals with memory organisation.

8.3.5 Fault-finding is possible without using negative examples.

GRAM does not use negative examples to learn a concept. This is in contrast to Winston's

system [Winston, 1975] and the CLUSTEWS system [Stepp and Michalski, 1986a]. Negative

331

332 CHAPTERS. CONCLUSION

examples (especially near-miss examples) could certainly be useful for instructing cRAM in
three altemative ways: (a) that a particular feature is important for the function of an object,

although not essential for membership; (b) that a particular feature can be used to distinguish

between similar categories (such as the 'back' distinguishes between chairs and stools), or (c)

that a particular feature is essential for concept membership (such as the 'hole' in an 'arch')
regardless of how similar the rest of the object is.

Near-miss negative examples are not readily available in a real physical domain such as a

house or a workshop, unless specifically constructed by a teacher. It also necessary for the

interpretation of the example to be made clear, since (a) and (c) above are very different: a
near-miss example of a chair without a leg should not mean that future chairs without legs

are not classified as being chairs, but rather that the absence of the leg is a severe fault. On

the other hand, a near-miss example of an arch with a missing hole should perhaps be used to

prevent future objects without holes from being classified as arches.

Although GRAM cannot use negative examples, its use of instance-counts does enable it to
leam the same kind of information that can be acquired from type-(a) negative examples, since

a high instance-count on a feature within an object that has been observed many times indicates

that the feature is very important to that concept, while a low instance-count indicates lower

importance. If 100 chairs with 4 legs have been observed, then a chair with a missing leg will
be identified as faulty, although still conectly identified as a chair. Likewise, if 100 'arches'

have been observed, all of which have supports that are separated (and have a 'hole', if cnAvt

could represent such 'empty parts'), then an object with a lintel and two touching supports

would perhaps still be weakly classified as an arch, but the fault would be identified. This has

been confirmed by giving the implemented cRAM system a series of simple arches, followed by

a non-arch. It correctly noticed that the position and connectivity of the supports were outside

the expected range.

Thus, near-miss examples are not necessary for enabling a system to identifo faults, although

they would enable the importance of a feature to be learned from a single example, rather

than many examples, and they would also enable the stronger interpretation-(c) to be made if
instructed to do so.

Currently cRAM is not able to represent the necessity of the absence of a part. It is not clear

how useful this would be, apart from distinguishing between concepts such a chair and a stool

as for interpretation-(b) above. Perhaps it is useful to be able to state that if there is a pencil

case on a desk, it is not part of the desk, but the description of the desk concept could become

cluttered with all sorts of non-components.

The issue of how negative examples could be incorporated into GRAM has not been considered

in any depth in this thesis, and so is a possible subject for future research.

8.4. INSTANCE CONSTRUCTTON

8.4 InstanceConstruction

333

8.4.1 cRAM's instance constructor augments primitive descriptions to support
mone efficient and effective matching and generalisation.

This thesis makes an explicit distinction between instance construction and low-level vision, and

emphasises the importance of augmenting a description (produced by the vision system) in ways

that explicitly support matching and generalisation. This is a kind of constructive induction, as

discussed by [Michalski, 1983], although he did not address the issues of constructive induction

to support exploitation of structure in a structured domain.

Two main aspects of this process have been discussed in the thesis: Firstly, abstract composite

objects are created (from block descriptions produced by a vision system) to enable several

objects to be processed by the matcher and generaliser as a single collective entity, and to enable

properties that characterise the set of objects as a whole, to be representable. Secondly, explicit

parent, neighbour, and subpart relationships are created to support the matcher by providing

links between instances, and by enriching the description of each instance to ensure that a

more confident classification can be obtained, and to ensure that generalisations produced will
contain sufficient information to capture the important features of the concept.

The thesis has described sets of criteria for justifying the formation of composite objects and

relationships. In particular, it has presented a set of criteria and a mechanism for finding and

creating group objects.

8.4.2 Group construction during instance construction pre-empts group forma-
tion during generalisation.

Group creation is an interesting form of description augmentation since it involves matching

and generalising within an instance. Although it is also possible to form groups when an

instance is matched with a concept, as a way of resolving ambiguity, this can be preempted by

the formation of groups during the instance construction process.

8.4.3 Gnoups are found using the Seed Expansion algorithm.

The thesis has presented an algorithm called Seed Expansion that finds groups of similar and

similarly related objects. It proposes seed group by finding pairs of similar and interestingly

related objects, and then expands the best seed by incrementally adding new members until a
clear boundary between members and non-members is found, or until the group is found to be

unacceptable.

None of the structure-leaming systems reviewed in the thesis provide group-finding mecha-

nisms, except for Winston's ARCH leamer [Winston, 1975] from which may of the ideas of
group representation were based. His paper described an algorithm that takes a "propose and

prune" approach, which involves proposing a generous grouping, and then removing members

until a stable group is found, thus working in the opposite direction from cReu's expansion

ctl4{f TIIR 6, CPIdslt;ggi,DIV

'precesa ISs pqsgr ako suEgr*tod thd sorc kind of algg[iEw druilgr w @=E.qmsllqn llrao

md as tiad sequaioes afi6.-bJ.bo.tso &d ths datci[c.'ffire nor giveq. am it wru on![us€d, q fod a
rGBm@d khd of tte$1ppcer md no sftrr &i*[s of g'liu$r.

Bibliography

[Andreae, 1993] Andreae, D. B. (1993). Representing and matching physical objects. New

k aland J ournal of Computer Sc ienc e, 4(2):3-13.

[Andreae, 1985] Andreae, P. (1985). Justified Generalisation: Acquiring Procedures From

Examples. PhD thesis, M.I.T.

lBareiss and Porter, 1987] Bareiss, E. and Porter, B. (1987). Protos: An exemplar-based

learning apprentice. ln Proceedings of the Fourth International Worluhop on Machine

l,e a rni n g, pages | 2-23 .

[Bareiss et al., 1990] Bareiss, E., Porter, 8., and Wier, C. (1990). hotos: An exemplar-based

learning apprentice. In Kodratoff, Y. and Michalski, R., editors, Machine Learning: An

Anificial Intelligence Approach, volume 3, chapter4. Morgan Kaufmann.

[Bergevin and Levine, 1993] Bergevin, R. and Levine, M. (1993). Generic object recognition:

Building and matching coarse descriptions from line drawings. IEEE Transactions on

Patt e rn Ana ly s i s and M ac hi ne I nte ll i g e nc e, 3 (l):19 -36.

lBiederman, 1985] Biederman, L (1985). Human image understanding: Recent research and

a theory. Computer Vision, Graphics, and lttwge Processing,32:29-73.

[Brady, 1983] Brady, M. (1983). Criteria for representations of shape. In Rosenfeld, editor,

H uman and M achine Vs ion.

[Brady, 1987] Brady, M. (1987). Intelligent vision. In Grimson and Patil, editors, AI in the

1980's and Beyond,pages2Ol-242. M.I.T Press.

[Brady et al., 1984] Brady, M., Agre, P., Braunegg, D., and Connell, J. (1984). The mechanic's

mate. In O'Shea, editor, ECAI-84: Advances in Artificial Intelligence, pages 681-97.
Elsevier Science Publishers.

[Brooks, l98l] Brooks, R. (1981). Symbolic reasoning among 3-d models and 2-d images.

Artificial Inte lligence, 17 :285-349.

[Chin, 1988] Chin, R. (1988). Automated visual inspection: 1981 to 1987. Computer Vsion,

Graphics, and Image P rocessing,4l :346-8 1.

335

336 BIBLIOGRAPHY

lCohen, 1984] Cohen, B. Murphy, G. (1984). Models of concepts. Cognitive Science,S(l):27-
58.

[Connell, 1985] Connell, J. (1985). Learning shape descriptions: Generating and generalising

models of visual objects. Master's thesis, Department of Electrical Engineering, MIT.

[Connell and Brady, 1985] Connell, J. and Brady, M. (1985). Learning shape descriptions. In
IJCAI-85,pages922-5.

[Connell and Brady, 1987] Connell, J. and Brady, M. (1987). Generating and generalising

models of visual objects. Anificial Intelligence, 3l:159-83.

[Cook and Holdet 1994] Cook, D. J. and Holder, L. B. (1994). Substructure discovery using

minimum description length and background knowledge. Journnl of Artificial Inrelligence

Research, l:231-255.

[Dietterich, 1980] Dietterich, T. (1980). Applying general induction methods to the card game

eleusis. In Proceedings of AAAI-80, pages 218-20.

[Dietterich and Michalski, l98l] Dietterich, T. and Michalski, R. (1981). Inductive learning

of structural descriptions: Evaluation criteria and comparative review of selected methods.

An ific ial I nte lli genc e, | 6(3):257 -94.

[Dietterich and Michalski, 1983] Dienerich, T. and Michalski, R. (1983). A comparative re-

view of selected methods for leaming from examples. In Michalski, R., Carbonell, J., and

Mitchell, T., editors, Machine Learning: An AI Approacft, volume l. Tioga, Palo Alto, Calif.

[Dietterich and Michalski, 1985] Dietterich, T. and Michalski, R. (I 985). Discovering patterns

in sequences of events. A rt ific ial I nt e I Ii ge nc e, 25 : | 87 -233 .

fDietterich and R., 1986] Dietterich, T. and R., M. (1986). Learning to predict sequences. In

Michalski, R., Carbonell, J., and Mitchell, T., editors, Machine Learning: An Artificial
Intelligence Approach., volume 2. Morgan Kaufmann, Los Altos,Calif.

Bllis, 19391 Ellis, W, editor (1939). A Source Book of Gestalt Psychology. Kegan Paul,

Trench, Trubner & Co.

[Falkenhaineretal., 1989] Falkenhainer, 8., Forbus, K, D., and Gentner, D. (1989). The

structure-mapping engine: Algorithm and examples. Artificial Intelligence, 4l(l).

[Fisher, 1987a1 Fisher, D. (1987a). Improving inference through conceptual clustering. In

Proceedings of AAAI-87, pages 461-5.

[Fisher, 1987b] Fisher,D.(1987b).Modelinvocationforthreedimensionalsceneunderstand-
ing. In IJCAI-*7, pages 805-7.

[Fisher, 1988] Fisher, D. (1988). A computational account of basic level and typicality effects.

In AAAI-88, pages 233-8.

BIBLIOGRAPHY 337

lGennarietal., 1989] Gennari,J.H.,Langley,P.,andFisher,D.(1989).Modelsofincremental
concept formation. Artificial Intelligence, 40(l -3):1 1-61.

lHaussler, 1987] Haussler, D. (1987). Leaming conjunctive concepts in structural domains.

ln AAAI-87, pages 466-70.

[Hoffman and Richards, 1987] Hoffman, D. and Richards, W (1987). Parts of recognition. In

Fischler and Finschein, editors, Rea"dings in ComputerVision,pages22T-239.

[Iba, 1979] Iba, G. (1979\. Learning disjunctive concepts from examples. Technical report,

MJ.T.

[Kubovy and Pomerantz, l98l] Kubovy, M. and Pomerantz, J. R., editors (1981). Perceptual

O rganisation. Lawrence Erlbaum Associates.

[Lebowitz, 1985] Lebowitz, M. (1985). Researcher: An experimental intelligent information

system. In IJCAI-81, pages 858-862.

[Lebowitz, 1986] l,ebowitz, M. (1986). Not the path to perdition: The utility of similarity-

based learning. In Proceedings of AAAI-86, pages 533-7.

[MacGregor, 1988] MacGregor, R. (1988). A deductive pattem matcher. ln Proceedings of
AAAI-88, pages 403-8.

[Markman, 1979] Markman, E. (1979). Classes and collections: Conceptual organisation and

numerical abilities. Cognitive Psychology,l l:395-41 L

Markman et al., 19801 Markman, 8., Horton, M., and Mclanahan, A. (1980). Classes and

collections: Principles of organisation in the learning of hierachical relations. Journnl

unknown.

[Marr, 1982] Man, D. (1982). Vision. W.H. Freeman, San Francisco, CA.

[Michalski, 1980] Michalski, R. (1980). Knowledge acquisition through conceptual clustering:

A theoretical framework and an algorithm for partitioning data into conjunctive concepts.

Policy Analy s is and Info. Sy stems, 4(3):219-4.

[Michalski, 1983] Michalski, R. (1983). A theory and methodology of inductive learning. In

Michalski, R., Carbonell, J., and Mitchell, T., editors, Machine Lcaming: An AI Apprcach,

volume 1. Tioga, Palo Alto, Calif.

[Pomerantz, 1985] Pomerantz, J. (1985). Perceptual organisation in information processing.

In Aitkenhead, A. and Slack, J., editors, Issues in Cognitive Mod.eUing, chapter6. Lawrence

Erlbaum, London.

fProvan, 1987] Provan, G. (1987). Efficiency analysis of multiple-context truth-maintenance

systems in scene representation. In Proceedings of AAN-87, pages 173-7.

338 BIBLIOGRAPHY

[Provan, 1988J Provan, G. M. (1988). Model-based object recognition: A truth maintenance

approach. ln CAIA-&8, pages 23V5.

[Requiche, 1980] Requiche(1980). Representationof solidobjects. ACM ComputingSurveys,

12(4):437.

[Sammut, 1981] Sammut,C.(1981). Conceptlearningbyexperiment.InProc.oftheSeventh
IJCAI, pages 104-5.

[Sammut and Banedi, 1986] Sammut, C. and Banerji, R. (1986). Learning concepts by asking

questions. In Michalski, R., Carbonell, J., and Mitchell, T., editors, Machine ltarning: An

Artificial Intelligence Approach., volume 2. Morgan Kaufmann, Los Altos,Calif.

[Stepp, l987al Stepp, R. (1987a). Concepts in conceptual clustering. ln IJCAI-87, pages

2tt-3.

[Stepp, l987bl Stepp, R. (1987b). Machine learning of structured objects. ln Proceedings of
Fourth Int. Worl<shop on M.L., pages 353-63.

[Stepp and Michalski, 1986a] Stepp, R. and Michalski, R. (1986a). Conceptual clustering:

Inventing goal-oriented classifications of structured objects. In Michalski, R., Carbonell, J.,

and Mitchell, T., editors, Machine l-earning: An Artificial Intelligence Approach.,volume 2.

Morgan Kaufmann, Los Altos,Calif.

[Stepp and Michalski, 1986b] Stepp, R. and Michalski, R. (1986b). Conceptual clustering of
structured objects : A goal-oriented approach. A rt ifc ial I nt e I li g e nc e, 28(l) :43-69 .

[ThompsonandLangley, l99l] Thompson, K. and Langley, P. (1991). Concept formation

in structured domains. ln Fisher, D. H. and Pazzani, M,, editors, Concept Formation:

Knowledge and experience in unsupen,ised learning, chapter 5, pages 127-161. Morgan

Kaufmann, San Mateo, CA.

[-fversky, 1977] Tversky,A. (1977). Featuresofsimilarity. PsychologicalReview,S4(4):327-

52.

[Tversky and Hemenway, 1984] Tversky, B. and Hemenway, K. (1984). Objects, parts, and

categories. Journal of Experimental Psychology: General, 113(2):169-97 .

lUllman, 19891 Ullman, S. (1989). Aligning pictorial descriptions: An approach to object

recognition. Co gnition, 32:19 l-254.

[Wasserman, I 985] Wasserman, K. (I 985). Untfying Representation and Generalisation: Un-

derstanding Hierarchically Structured Objects. PhD thesis, Columbia University.

[Wasserman and Lebowitz, 1983] Wasserman, K. and Lebowitz, M. (1983). Representing

complex physical objects. Co gnition and B rain Theory, 6(3):333-52.

[WhitehallandReinke, 1987] Whitehall, B. and Reinke, R. (1987). Learning structural de-

scriptions incrementally: The disjointness problem. Technical report, University of lllinois.

B'ts'IJOGRAPIIY

Mnston, 1975,1 Ylinston, P (1975). Leurring,stnrctunl deseriptions from examples. In
'Win6ton,P,edito$ThePsyclwbWof Cenpnerlfr sion,chalfr er5,pagnn157-4fi9.MrcCrraw-

Hill, New Yorft.

ffinston" 1983f Wnston, P (1983). Iearning physical de,scriptions fnom fiuictional deftti-
fions, exarqples, and preeedents, In Prcceedings o,f AAAI-83, pages, ,133-39.

[Slioston, 1984] Ttnston, P. (1984). Anifuial Intelli6ence. Addison ttthsl,,e'& se,cond edition.

[Winston, 199.2] ltrfrnston, P. (1992). Anifieial brtciligsnce. Addison-WesleS thind editisn.

	10001.pdf
	10002.pdf
	10003.pdf
	10004.pdf
	10005.pdf
	10006.pdf
	10007.pdf
	10008.pdf
	10009.pdf
	10010.pdf
	10011.pdf
	10012.pdf
	10013.pdf
	10014.pdf
	10015.pdf
	10016.pdf
	10017.pdf
	10018.pdf
	10019.pdf
	10020.pdf
	10021.pdf
	10022.pdf
	10023.pdf
	10024.pdf
	10025.pdf
	10026.pdf
	10027.pdf
	10028.pdf
	10029.pdf
	10030.pdf
	10031.pdf
	10032.pdf
	10033.pdf
	10034.pdf
	10035.pdf
	10036.pdf
	10037.pdf
	10038.pdf
	10039.pdf
	10040.pdf
	10041.pdf
	10042.pdf
	10043.pdf
	10044.pdf
	10045.pdf
	10046.pdf
	10047.pdf
	10048.pdf
	10049.pdf
	10050.pdf
	10051.pdf
	10052.pdf
	10053.pdf
	10054.pdf
	10055.pdf
	10056.pdf
	10057.pdf
	10058.pdf
	10059.pdf
	10060.pdf
	10061.pdf
	10062.pdf
	10063.pdf
	10064.pdf
	10065.pdf
	10066.pdf
	10067.pdf
	10068.pdf
	10069.pdf
	10070.pdf
	10071.pdf
	10072.pdf
	10073.pdf
	10074.pdf
	10075.pdf
	10076.pdf
	10077.pdf
	10078.pdf
	10079.pdf
	10080.pdf
	10081.pdf
	10082.pdf
	10083.pdf
	10084.pdf
	10085.pdf
	10086.pdf
	10087.pdf
	10088.pdf
	10089.pdf
	10090.pdf
	10091.pdf
	10092.pdf
	10093.pdf
	10094.pdf
	10095.pdf
	10096.pdf
	10097.pdf
	10098.pdf
	10099.pdf
	10100.pdf
	10101.pdf
	10102.pdf
	10103.pdf
	10104.pdf
	10105.pdf
	10106.pdf
	10107.pdf
	10108.pdf
	10109.pdf
	10110.pdf
	10111.pdf
	10112.pdf
	10113.pdf
	10114.pdf
	10115.pdf
	10116.pdf
	10117.pdf
	10118.pdf
	10119.pdf
	10120.pdf
	10121.pdf
	10122.pdf
	10123.pdf
	10124.pdf
	10125.pdf
	10126.pdf
	10127.pdf
	10128.pdf
	10129.pdf
	10130.pdf
	10131.pdf
	10132.pdf
	10133.pdf
	10134.pdf
	10135.pdf
	10136.pdf
	10137.pdf
	10138.pdf
	10139.pdf
	10140.pdf
	10141.pdf
	10142.pdf
	10143.pdf
	10144.pdf
	10145.pdf
	10146.pdf
	10147.pdf
	10148.pdf
	10149.pdf
	10150.pdf
	10151.pdf
	10152.pdf
	10153.pdf
	10154.pdf
	10155.pdf
	10156.pdf
	10157.pdf
	10158.pdf
	10159.pdf
	10160.pdf
	10161.pdf
	10162.pdf
	10163.pdf
	10164.pdf
	10165.pdf
	10166.pdf
	10167.pdf
	10168.pdf
	10169.pdf
	10170.pdf
	10171.pdf
	10172.pdf
	10173.pdf
	10174.pdf
	10175.pdf
	10176.pdf
	10177.pdf
	10178.pdf
	10179.pdf
	10180.pdf
	10181.pdf
	10182.pdf
	10183.pdf
	10184.pdf
	10185.pdf
	10186.pdf
	10187.pdf
	10188.pdf
	10189.pdf
	10190.pdf
	10191.pdf
	10192.pdf
	10193.pdf
	10194.pdf
	10195.pdf
	10196.pdf
	10197.pdf
	10198.pdf
	10199.pdf
	10200.pdf
	10201.pdf
	10202.pdf
	10203.pdf
	10204.pdf
	10205.pdf
	10206.pdf
	10207.pdf
	10208.pdf
	10209.pdf
	10210.pdf
	10211.pdf
	10212.pdf
	10213.pdf
	10214.pdf
	10215.pdf
	10216.pdf
	10217.pdf
	10218.pdf
	10219.pdf
	10220.pdf
	10221.pdf
	10222.pdf
	10223.pdf
	10224.pdf
	10225.pdf
	10226.pdf
	10227.pdf
	10228.pdf
	10229.pdf
	10230.pdf
	10231.pdf
	10232.pdf
	10233.pdf
	10234.pdf
	10235.pdf
	10236.pdf
	10237.pdf
	10238.pdf
	10239.pdf
	10240.pdf
	10241.pdf
	10242.pdf
	10243.pdf
	10244.pdf
	10245.pdf
	10246.pdf
	10247.pdf
	10248.pdf
	10249.pdf
	10250.pdf
	10251.pdf
	10252.pdf
	10253.pdf
	10254.pdf
	10255.pdf
	10256.pdf
	10257.pdf
	10258.pdf
	10259.pdf
	10260.pdf
	10261.pdf
	10262.pdf
	10263.pdf
	10264.pdf
	10265.pdf
	10266.pdf
	10267.pdf
	10268.pdf
	10269.pdf
	10270.pdf
	10271.pdf
	10272.pdf
	10273.pdf
	10274.pdf
	10275.pdf
	10276.pdf
	10277.pdf
	10278.pdf
	10279.pdf
	10280.pdf
	10281.pdf
	10282.pdf
	10283.pdf
	10284.pdf
	10285.pdf
	10286.pdf
	10287.pdf
	10288.pdf
	10289.pdf
	10290.pdf
	10291.pdf
	10292.pdf
	10293.pdf
	10294.pdf
	10295.pdf
	10296.pdf
	10297.pdf
	10298.pdf
	10299.pdf
	10300.pdf
	10301.pdf
	10302.pdf
	10303.pdf
	10304.pdf
	10305.pdf
	10306.pdf
	10307.pdf
	10308.pdf
	10309.pdf
	10310.pdf
	10311.pdf
	10312.pdf
	10313.pdf
	10314.pdf
	10315.pdf
	10316.pdf
	10317.pdf
	10318.pdf
	10319.pdf
	10320.pdf
	10321.pdf
	10322.pdf
	10323.pdf
	10324.pdf
	10325.pdf
	10326.pdf
	10327.pdf
	10328.pdf
	10329.pdf
	10330.pdf
	10331.pdf
	10332.pdf
	10333.pdf
	10334.pdf
	10335.pdf
	10336.pdf
	10337.pdf
	10338.pdf
	10339.pdf
	10340.pdf
	10341.pdf
	10342.pdf
	10343.pdf
	10344.pdf
	10345.pdf
	10346.pdf
	10347.pdf
	10348.pdf
	10349.pdf
	10350.pdf
	10351.pdf
	10352.pdf
	10353.pdf
	10354.pdf

