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Abstract

This thesis addresses the problem of representing, matching, and generalising descriptions
of complex structured physical objects, in the absence of functional and domain-specific
knowledge. A system called GRAM is described, which includes a représentation scheme, an
instance-constructor, a matcher, and a generaliser. These components incorporate and extend
ideas from a number of other structured-object learning systems, as well as introducing several
new ideas.

A central contribution of this thesis is to show that descriptions of complex physical objects
can be matched and generalised effectively and efficiently by exploiting their structure. GRAM
does this by a number of means, such as by representing objects at multiple levels of detail;
using ‘neighbour relationships’ to allow a more flexible traversal of object graphs during
matching; explicitly distinguishing between substructure and context to allow partial matching
and a simple form of disjunction; and using an explicit representation of groups to describe
several similar objects as a single descriptive entity.

A second contribution is to show that complex objects can be matched without having to
enforce consistency between object correspondences. This is possible partly because of the
richness of physical objects, and partly because GRAM represents concepts as simple entities
defined by relationships with other concepts, rather than as a complete set of subcomponents
defined locally within the concept description itself. This scheme leads to greater simplicity,
efficiency, and robustness.
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Chapter 1

Introduction

This thesis addresses the problem of building a system that can represent, construct, match,
and generalise descriptions of complex structured physical objects, without using functional
or domain-specific knowledge. The thesis describes an implemented system, called GRAM,
which operates in a domain of static two-dimensional structured objects, such as those shown
in Figure 1.1.

The original inspiration for building GRAM was based on a long-term vision of building an
“instructable autonomous robot” that could learn to perform tasks in the physical world. Tasks
such as vacuuming a room, finding and retrieving objects, or drying and putting away dishes,
require the robot to have effective and efficient classification mechanisms for recognising the
objects encountered in the world. The robot must also be able to learn descriptions of object
categories (or ‘concepts’) so that it can adapt to new or changing environments. The robot
should be able to learn either on its own in response to encountering a new instance of a known
category, in response to explicit instruction from a teacher, or in response to demands from
other components of the robot system.

A basic strategy for classifying an object consists of several steps. First, a description of the
object is constructed from image data. Indexing mechanisms are then used to access a selection

of concepts in a potentially vast memory. A matcher then compares the object (or instance)
with each concept.

The central component of a learning system is a generaliser, which generalises an existing
concept to cover an observed instance. The learning system must also be able to create and
add new concepts to concept memory, and to reorganise concept memory if necessary.

GRAM provides four components to support the classification and learning tasks: a repre-
sentation scheme, an instance constructor, a matcher, and a generaliser. This thesis discusses
the issues in designing each of these components, and presents the new ideas and mechanisms
that have been developed. Mechanisms for indexing and memory organisation, and the way
in which all of the mechanisms are to be integrated into a complete classification and learning
system, are the subject of future research.

There has not been a great deal of other research that encompasses all four of the above
components (representation, instance construction, matching, and generalisation) in the domain
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Figure 1.1: Some objects in GRAM’s domain.




of complex structured objects. Most of the work in visual object representation and recognition
does not address the problems of concept learning, and most of the systems developed for
concept learning do not deal with or exploit the characteristics of complex structured physical
objects. Therefore, although the work in this thesis draws on the research done in each of these
areas, it presents some new ideas and techniques which directly support the development of an
integrated classification and learning system.

One claim of this thesis is that complex structured objects can be effectively matched and gen-
eralised without functional or domain-specific knowledge. Lebowitz [Lebowitz, 1986] made a
similar claim some years ago, although with less emphasis on structural objects, and certainly
not addressing the complexity that GRAM deals with. GRAM achieves this by using a represen-
tation scheme that is richly expressive and allows redundancy, so that functionally important
information is more likely to be implicitly embodied in the explicit structural descriptions, and
less likely to be lost during the generalisation process. Representing objects at multiple levels
of approximation and abstraction is an important aspect of this. Another aspect is the explicit
distinction between structure and context. This enables GRAM to notice that two objects have
similar isolated structure (or ‘form’) but different contexts (or ‘role’), or vice versa, and also
allows a simple form of disjunction to be represented.

In a structured domain in which scenes and objects may be composed of hundreds or
thousands of components, an exhaustive or simple general-purpose matching strategy cannot
provide sufficient efficiency (or even effectiveness) in a real-time system. Therefore, a second
claim of the thesis is that complex objects can be matched more effectively and efficiently by
exploiting the structural relationships between components of the objects to guide and constrain
the search. This is a somewhat obvious claim, and other systems have also used it, primarily
by representing objects in multiple levels of detail to allow top-down traversal of the objects
[Wasserman, 1985], [Connell, 1985], [Marr, 1982]. However, GRAM’s contribution is to show
that context information can be exploited as well as substructure information by distinguishing
between three types of inter-part relationships — parent, neighbour, and subpart relationships
— each of which is itself a rich descriptive entity. Relationships can be used by the matcher
to guide the search, not only down the decomposition hierarchies, but also via parent and
neighbour relationships, thus providing multiple paths to the correct correspondences. This
resolves the ‘level hopping’ problem in which corresponding components are on different
levels of the decomposition hierarchies and would not be found by a strict top-down search.
A further consequence is that GRAM is more robust since it does not require canonical object
descriptions.

Another aspect of exploiting the structure of objects is the formation of groups of similar
and similarly related components, where each group description summarises its members in
terms of a ‘typical member’. If the individual members are then removed, the overall object
description is reduced in complexity, hence reducing the search required by the matcher when
comparing such descriptions.

A third claim of the thesis is that descriptions of physical objects can be matched effec-
tively and efficiently without enforcing global consistency between correspondences during
the search. This approach is significantly different from the usual graph matching approach,
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and has surprising advantages in terms of simplicity, efficiency, and robustness: It avoids the
need for a backtracking mechanism by keeping multiple competing hypotheses active simulta-
neously; it permits a much greater degree of parallel implementation; and it enables components
of an object to play multiple roles when matched with another object.

As an example of what the implemented GRAM system ! is able to do, the matcher was
presented with descriptions of the two bicycles shown in figure 1.2, each consisting of 80
and 100 composite and primitive parts respectively, organised as a part hierarchy. GRAM
correctly found 65 of the 69 desired correspondences, and then successfully generalised 57 of
them. Two identical descriptions of BIKEI were also matched, and GRAM identified all 80
of the correct correspondences. Furthermore, a description of BIKE] was matched against a
different description of the same bike, with significant differences between the decomposition
hierarchies, thus testing GRAM’s level-hopping ability. The matcher correctly found 73 of the 74
of the desired correspondences. The one incorrect correspondence was only marginally higher
scoring than the correct correspondence, which GRAM also found. These results are described
in more detail in chapter 7 which also presents the important result that GRAM’s efficiency
seems to be linear relative to the number of components in the objects being matched.

A methodology that is used throughout this thesis to address each problem, is to first identify
the kinds of requirements, situations, characteristics, etc, of the problem, and only then consider
the mechanisms that could be used to solve it. This helps to ensure that the solutions are fitted
to the problem, rather than fitting the problem to some arbitrary solution.

QOutline of this section and the thesis.

This introductory chapter begins the thesis by giving an overview of the main issues and ideas
considered in the thesis. Section 1.1 describes the characteristics of the domain and task which
the GRAM system supports, and which form the basis for justifying the various design decisions
made throughout the development of GRAM. It presents several examples of the kinds of tasks
that GRAM can perform.

Sections 1.2 to 1.6 give an overview-summary of the main issues and ideas presented in the
five main chapters of the thesis.

Section 1.2 places this thesis in the context of other related research, and summarises the
limitations of that research. This is explored in more detail in chapter 2.

Section 1.3 outlines the issues of how to represent complex structured physical objects, in
generalised and ungeneralised form, and gives a brief overview of the key contributions of the
GRAM representation scheme. This section is a summary-overview of chapter 3.

Section 1.4 briefly presents the issues of constructing a description of an observed object,
based on information that is assumed to be available from a low-level vision system. Various
components of this instance-construction process that have been developed for GRAM are briefly
described. This includes a discussion of the various criteria used to justify the formation of

!The system is written in Common Lisp, and works directly from postscript data produced by a graphics package
called IDRAW and a text file that specifies the part decomposition hierarchy.




Figure 1.2: Two bicycles matched and generalised by GRAM.

composite objects within an instance description, and the criteria for forming explicit rela-
tionships between objects. Criteria and mechanisms for finding groups of similar components
within a scene or object, are also discussed. This section is a summary-overview of chapter 6.

Section 1.5 introduces the main issues of how to match complex structured physical objects
(both instances and concepts), and briefly describes how the GRAM matcher addresses these
issues. The two main issues addressed are, firstly, how to measure the similarity between
a concept and an instance, and secondly, how to search for correspondences between their
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components. This section is a summary-overview of chapter 4.

Section 1.6 outlines the main issues of how to generalise a concept description so that
it accounts for a new instance. The main characteristics of the GRAM generaliser are also
presented. This section is a summary-overview of chapter 5.

The implemented GRAM system is partially evaluated in chapter 7, and the main ideas and

conclusions of the thesis are summarised in chapter 8.

An understanding of the main contributions of this thesis can be obtained by reading the
introduction and conclusion chapters. The section headings throughout the thesis (and in the
table of contents) can also be read as a rough summary.

1.1 The Domain and Task

Although the long term goal of GRAM is to be a component of an “instructable autonomous
robot”, which might be used as a household helper or a workshop assistant, this thesis is just one
small contribution towards it, since such a project will also require many other mechanisms for
planning, procedure learning, reasoning, language understanding, and so on, to be developed,
covering almost all areas of Artificial Intelligence research.

GRAM is focussed specifically towards supporting the tasks of classifying physical objects and
learning descriptions of categories of physical objects. In particular, it addresses the problem
of representing, constructing, matching, and generalising object descriptions.

This section gives a brief overview of the kinds of classification and learning tasks that
GRAM supports, and the characteristics of these tasks which have implications for the design
of the system. It then briefly outlines the main features of GRAM’s simplified two-dimensional
domain and explains why this is sufficient for demonstrating the potential of GRAM to operate
in a real-world three-dimensional domain.

1.1.1 Kinds of classification tasks.

There are several different kinds of classification tasks that need to be supported by GRAM. The
simplest kind of classification task is of the form “Is that an egg-beater?”. Since the concept
is given, there is no need to search concept memory. The instance is simply compared with the
concept, and a measure of similarity is produced.

If the system knows about other concepts that are similar to the specified concept, then it
may also need to match the instance with those. For example, if it knows that the concept
handdrill is similar to the egg-beater concept, then it may need to compare the object with
that, since the measure of similarity between an observed handdrill and the egg-beater concept
might otherwise seem acceptable.

The task “What is wrong with that X?” is an extension to the “Is that an X?” task, because
it involves identifying and reporting the key differences between the concept and the instance.
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The most common classification task is of the form “What is that?”, and involves observing
an object (such as a room or a hammer or a chair-leg), and classifying it by finding the best-
matching previously-learned concept in memory. This task might also be extended to an entire
scene, or to all of the components of an object, in the form “Classify the components of that
scene or object.”

To perform the task “Find an X", the system does not need to search concept-memory, but it
must search the observed scene or environment for an object that matches the specified concept.

An autonomous robot might have to perform a task such as “Assemble those bicycle parts”,
and this may involve all of the above, since it needs to classify the parts, find particular parts
(and tools) that it needs, and determine when the assembly is completed and correct. Similarly,
the task “Go to the bedroom and tidy it” has similar requirements.

1.1.2 Kinds of learning tasks.

Learning tasks come in two forms, supervised and unsupervised. The basic form of supervised
learning task occurs in response to the instruction “That is an X", and involves generalising
the concept features to take into account the features of the new instance. If the concept is not
already known, then the instance is recorded as new concept.

Unsupervised learning occurs in response to the system’s own classification of an observed
object. Such learning is therefore susceptible to errors, since the classification may be incorrect.
Therefore, the system could also seek confirmation from a teacher after classification, especially
if the instance is unusual in some way. If an observed object is unrecognisable, then a new
concept can be automatically created.

Unsupervised concept learning is made more complicated by the fact that each learned
concept may have a number of subconcepts, forming a concept hierarchy, such as for different
varieties of chair and different varieties of office-chair. Thus the system must be able to create,
reorganise, use, and maintain such hierarchies.

In systems such as GRAM, where every component of an object is an instance of a concept,
supervised learning is almost always accompanied by unsupervised learning. More specifically,
if an object is given a classification by a teacher, which enables a particular concept to be
generalised, the system is still responsible itself for determining the classifications of the
subcomponents of the object, and for determining whether and how to incorporate the new
subcomponents into concept memory. Thus a learning system in a structured domain always
involves some unsupervised learning, unless its concepts are represented as complete part
hierarchies rather than in terms of other concepts, or if the teacher specifies classifications for
every subcomponent.

1.1.3 Characteristics of classification and learning tasks in a physical domain.

The descriptions of the classification and learning tasks above do not indicate the complexity
of what is involved, and so this section discusses some of the characteristics of a real-world
physical environment which must be taken into account.
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Objects are composed of subcomponent objects, and concepts are therefore defined in
terms of subcomponent concepts.

One of the main characteristics of dealing with a structural domain, such as a real physical
environment, is that every observed instance of a concept is composed of smaller subcomponent
objects which are themselves instances of other concepts. Therefore, the task “Is that an X?”
not only involves comparing the object with the concept X (such as chair), but also involves
classifying and matching its subcomponents with other concepts by which X is defined (such
as chair-leg or cushion). Similarly, in order to recognise a room as being a bedroom, the system
must recognise its main components, such as bed, desk, erc. Each of these concepts may
exist within a hierarchy of concepts, and so the system must be able to deal with a potentially
complex inter-dependence between concepts in memory.

The world can be viewed at multiple levels of detail.

Objects in a real-world domain are often recognisable from a rough level of detail, as has been
discussed by [Biederman, 1985]. In many cases, classification is possible from just a few of
an object’s largest subcomponents perceived as rough shapes (such as cylinder, rod, cube, etc),
and rough spatial relationships between them. For example, humans can recognise an object
as being a bicycle without having to observe its exact shape and all of its details, which could
vary considerably amongst different specialised varieties of bicycle. This suggests that concept
descriptions should include abstract and approximate features to enable such classification, and
also suggests that the matcher should exploit this property to enable rapid recognition.

However, finer details are also necessary for tasks such as fault-finding, which may require
that the matcher takes into account every subcomponent. Finer details are also necessary for
performing more specialised classifications, such as for discriminating between different kinds
of cars. This implies that objects and concepts need to be represented in multiple levels of
abstraction and approximation, and the classification system should exploit this.

A physical domain is characterised in terms of objects, relationships, properties, surfaces,
and edges.

There are a variety of basic descriptive entities and features that characterise the physical world
(for humans). The object is perhaps the most obvious descriptive entity, but equally important
is the structural relationship between two objects. There are many kinds of information that
humans seem to use to characterise a structural relationship, such as relative position, size,
orientation, and alignment. Various forms of connectivity are also distinguished, such as fixed
joins, articulated joints, contact, or ‘same-piece’ connections, such as between the bowl, stem,
and base of a wineglass.

Objects also have a variety of different kinds of properties, such as shape, colour, texture,
material, solidity, and so forth. Other kinds of components, such as surfaces, edges, corners,
and axes, also characterise physical objects. All of these types of descriptive feature need to
be taken into account by the classification and learning system.
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Concepts may be highly variant.

An important characteristic of the kinds of domains in which a general-purpose autonomous
robot would operate, such as a household or workshop, is that concepts can be highly variant.
For example, there are many variations of the concept hammer, in terms of its shape, colour,
structure, etc. This situation contrasts with that of specialised classification systems that operate
in highly constrained environments, such as bin-picking robots or assembly-line quality-control
robots that can assume that each object category is highly or completely invariant.

One aspect of variance is that the attributes that characterise the concept can have ranges of
values, such as for length and colour. Another aspect is that components might be optional,
with some measure of frequency of occurrence. For example, a television may or may not
have an aerial on top of it, a chair may or may not have arms, and a door may or may not have
a keyhole. Since an important aspect of a classification and learning system is the ability to
make predictions, the variability of concepts suggests that concept descriptions should include
probabilistic measures for the presence or absence of its sub-components and neighbouring
objects.

In addition to having optional components, a concept may also be defined in terms of
alternative, or disjunctive, sets of components. For example, the definition of a door might
have to indicate that the door-handle can have any one of a variety of alternative door-handle
structures. The door-handle might be described non-disjunctively at a coarse level of detail,
with the disjuncts providing more detailed information to enable tasks such as fault-finding,
or discriminating between types of doors, to be performed. The disjuncts could be specified
simply by referring to a door-handle concept that has several subconcepts.

A concept may be defined in terms of its contents, independent of their arrangement.

Most object categories are defined in terms of a fairly rigid well-defined substructure, as in the
case of a hammer, desk, or vacuum-cleaner. However, there are also some object categories
of which the arrangement of their subparts (or ‘contents’) is highly variable, and therefore less
important. For example, a bedroom typically contains a bed, desk, lampshade, wardrobe and
so on, but the arrangement of these within the room is highly variable. Similarly, concepts
such as shopping-center, childrens-playing-area, or computer-lab are also defined primarily in
terms of their contents. Some of the relationships between the components may be important,
but there is a great deal of variability.

Conversely, some concepts are defined primarily by their arrangement only. For example,
the characteristics of the subcomponents of a tower or an arch are not particularly important,
since it is the structural organisation of those subcomponents which is crucial.

Objects may be only partially visible.

An object may be partially occluded, either by other objects or just by the fact that it can only
be viewed from one direction. There may also be insufficient time for more than a brief glance
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at the object, or the object may be observed from too far away to see more than a fuzzy blob.
Therefore, the system should be able to cope with partial information, and be able to predict
missing information on the basis of previously learned concept descriptions.

Object boundaries may not be available prior to classification.

Another difficulty for classification is that the distinction between component objects may not
be available prior to classification. In other words, the ‘objectness’ of a region of a scene
may not be identifiable by the low-level vision system. For example, when finding a hammer
in a jumbled toolbox, the boundaries between objects can only be identified on the basis of
classification, rather than prior to classification. Thus the process of processing an image
cannot necessarily progress in a simple manner from low-level visual perception of pieces and
blocks and objects and so forth, up to abstract recognition. Rather, a two-way up-and-down
process may be necessary.

Concepts may be defined in terms of substructure (or ‘form’) and context (or ‘role’).

Although an object is often recognisable from its substructure, some concepts are defined just
as much, or even more, by their surrounding context. For example, a chair-leg is defined in
terms of its relationships with the chair concept, and other chair components. Similarly, a chair
needs to be partially defined, or at least described, in terms of its typical context (such as being
upright on a floor, and usually in a room). Context information can not only lead to the correct
classification of an object, but can also be used in the reverse direction to predict classifications
of its surroundings. For example, if a chair has been recognised from its substructure alone,
then the context information in the chair concept can suggest that the object on top of it is a
person, and the object next to it is a desk.

Scenes and objects often contain groups of similar components.

Scenes and objects often contain groups of similar and similarly related items, such as buttons
on a shirt, windows on a building, fruit in a fruit bowl, or spokes on a bicycle wheel. The system
should be able to exploit this to enable more compact ‘summary’ description, since a group can
be characterised by a generalised description of its typical member, generalised descriptions
of the typical relationships between members, and properties of the group as a whole. The
formation of a group description, therefore, enables transfer of information between instances,
since each member is effectively being generalised by replacing it by the description of the
typical-member.

Groups also enable more efficient and effective matching, since two groups can be compared
as whole entities, rather than attempting to find correspondences between every member of
two groups, which might not be possible if the groups have different cardinalities. In fact, if
the groups have different cardinalities, it is necessary for the groups to be explicitly noticeable
and representable so that the generaliser can produce a generalised variable-sized group.
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Another reason why the system should explicitly notice groups, is that this is a form of
concept discovery. Normally a concept is learned by observing several instances over time, but
a concept should also be formed if several similar objects are observed within a single scene.
Thus, the creation of a typical-member description to characterise a group, is the creation of a
concept. It is an unusual concept because is partially defined by relationships with itself, which
denote the typical relationships between members of the group.

A concept may be a pre-condition for a robot action.

Another kind of concept that a robot system needs to learn are action pre-conditions. In fact,
this was one of the original motivations for the GRAM project, since it was intended to fit into
a procedure learning system developed by [Andreae, 1985] which required a subsystem that
could learn visual pre-conditions for actions in a generalised procedure. These conditions are
often partial scenes, rather than objects. For example, the concept “full shelf” could trigger
a dishwashing robot to start stacking plates on the shelf above, or the concept “untidy room”
would trigger a household robot to commence a tidying activity.

Objects are often characterised by the way they move, the way they interact with other
objects, and their function.

There are aspects of objects other than their structural properties that are also important to the
definition of a concept. For example, an important characteristic of a bicycle is that the wheels,
pedals, and front fork (and many other parts) move in certain ways. Therefore, to fully capture
the definition of a bicycle, this kind of information should be representable.

Similarly, the kinds of activity that a bicycle is typically involved in, such as rolling along a
road from one location to another, is also important. In fact, this kind of information would
comprise the definition of the function of a bicycle. Most man-made objects serve some
function, and therefore functional knowledge is clearly important in a concept description. It
should be noted that the function of an object is often partially defined by its structural context,
such as the way in which a bicycle is structurally related to the parts of a human body.

Rapid classification must be possible because scenes may consist of many components.

In a real-world domain it is necessary to perform classification very rapidly because a scene
or object may contain a huge number of component objects. If a robot is navigating through
a room or building, such as when doing the vacuuming or searching for an object, its eyes are
presented with vast quantities of information which must be chunked into large numbers of
recognisable objects. This suggests that the mechanism for indexing from instances to concepts
must be very efficient, as must be the process of comparing instances and concepts.
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There are a vast number of concepts that characterise a physical environment.

In addition to the problem of coping with scenes that contain huge numbers of objects, big
and small, there is also the problem of dealing with a vast number of different concepts. If
I look around the office I am in, every single object can be considered to be an instance of
a concept, such as relephone, lockable-door-handle, space-bar, dust-speck, scratch-on-desk,
desk-keyhole, and row-of-books. Some concepts, such as telephone, have labels associated
with them, while others such as desk-keyhole may not, since they are often referred to in speech
in the form “the keyhole of the desk™ or “a row of books”.

A concept might also be defined solely in terms of one particular instance, such as the
‘concept’ my-set-of-keys. Therefore, concept memory may be vast, and this suggests that
efficient memory access and organisation mechanisms must be available.

1.1.4 The domain and tasks of the GRAM system.

The development of a classification and learning system which takes into account all of the
domain and task characteristics discussed above, is clearly not a trivial matter, let alone the
problem of building a complete autonomous robot. GRAM goes some way towards extending the
research in this area by focusing on three core components of such a system: a representation
scheme, a matcher and a generaliser. Some aspects of instance-construction are also addressed,
in particular the group-finding process. The discussion below explains in more detail what
GRAM actually does, and the domain in which it operates.

GRAM deals with a two-dimensional domain, where objects are comprised of simple
‘blocks’.

I have chosen to work with a two-dimensional domain because it simplifies the development
of the system while still capturing most of the important features of a real-world domain
discussed in the previous section. Most of the objects dealt with in the thesis are, in fact,
very close to projections of three-dimensional objects. Recent work discussed in chapter 26 of
[Winston, 1992] shows that recognition of three-dimensional objects is actually possible from
just a few two-dimensional projections, without even requiring any volumetric description.

The only significant limitation of a strictly two-dimensional domain is that objects are always
completely visible, and the system does not have to deal with the problem of partial views. The
current system allows two-dimensional objects to overlap, but there is no notion of occlusion.
However, the issue of occlusion could be addressed without having to deal with a full three-
dimensional domain, by adding depth information. The problem of coping with the hidden
two-(and-a-half)-dimensional objects can be considered equivalent to the problem of coping
with the hidden portion of a three-dimensional object.

The input to the GRAM system is a description of an object or scene consisting of simple
primitive ‘blocks’ which can be rectangles, ellipses, or simple polygons, such as those in
Figure 1.1 above. Each block is considered to have a bounding rectangular box which defines
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its dimensions and orientation relative to other blocks, as illustrated in Figure 1.3. Additionally,
the input also includes a set of ‘fuzzy blocks’ such as those indicated by the dotted boxes for
the humanoid in Figure 1.4. These are visual approximations of a set of smaller blocks, at a
coarser level of detail.

Figure 1.3: Primitive block shapes.

GRAM assumes that a low-level vision system (such as described in [Connell, 1985]) is
available to produce descriptions of blocks at multiple levels of approximation, although at
present the input comes directly from a graphics/drawing program. However, an issue that
is not significantly addressed in this thesis is how the high-level recognition system should
interact with the low-level vision system, since it is not always the case that a vision system
can construct block descriptions bottom-up, without guidance based on the expectations of the
high-level recognition system. However, GRAM can cope with partial information, so that if the
vision system is not able to produce a full block description from an image, the matcher can
still make use of what it is given. ACRONYM [Brooks, 1981] takes a different approach, in
which the recognition system works more in the opposite direction, generating expected two-
dimensional image features from its three-dimensional generic models, rather than producing
a three-dimensional model from the image.

Figure 1.4: Composite parts of a humanoid.

Each block in GRAM’s domain can have various properties, such as aspect-ratio, shape, number
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of edges, erc. Currently it does not include colour, texture, material, stiffness, etc, although
these could easily be added. A simple extension to allow blocks to be generalised cylinders *
would also enrich the domain considerably, and would only require the representation language
to include a few additional properties specifying the spine and taper functions.

The system is able to obtain information about how pairs of blocks are spatially related to
each other, including relative size, proximity, direction, orientation, and alignment. Currently
there is no distinction between different kinds of connection relationship between blocks. For
example, there is no distinction between blocks that are fixed together, merely touching, or have
an articulated joint. Nevertheless, the description of relationships in GRAM are still sufficiently
rich to give good performance, and the addition of more connection types would only improve
its performance.

The simplified two-dimensional domain has made development of GRAM easier, because it
is has not been necessary to develop mechanisms for processing a mass of low-level details.
However, it also means that blocks are not as easily distinguishable on the basis of properties
alone, as can be seen in the examples in figure 1.1. Blocks are primarily distinguished by their
substructure and/or contextual relationships.

If the domain was extended to include more property and relationship distinctions, this would
certainly help GRAM to classify objects more effectively, since such information would help
discriminate between classes, as humans may find when looking at black and white photos.
However, the argument of this thesis is that if GRAM can work reasonably effectively without
such information, then it will certainly work even better in a domain in which more information
is available, and so I do not consider the simplified domain to indicate a limitation of GRAM.
The thesis is primarily focusing on dealing with rich structure, in terms of substructure and
context relationships, rather than many kinds of property such as colour, texture, etc

This thesis claims that extending GRAM to deal with three-dimensions is straightforward:
Firstly, object properties would be modified to account for the three axes of the object. For
example, the aspect-ratio property could be split into two or three properties, specifying the
ratio of the longest axis with the middle-length axis, and with the shortest axis. Secondly,
relationships would need to be defined with respect to the three-dimensional coordinate frames
of the objects, rather than their two-dimensional coordinate frames. Thirdly, the matcher would
have to consider more alternative axis correspondences when comparing two objects. Other
than these relatively minor extensions, the representation, matcher, and generaliser can remain
unchanged.

Only structural (rather than functional or behavioural) knowledge is to be used.

One of the goals of this thesis was to find out whether effective concept learning can be
performed by a system which deals only with syntactic structural descriptions, without consid-

2Generalised cylinders are defined by a cross-sectional area swept along a spine with some taper function.
Systems such as Brooks® ACRONYM [Brooks, 1981] and Connell-and-Brady [Connell and Brady, 1985] use this
representation. In two-dimensions a generalised cylinder is perhaps better called a generalised rectangle, since the
cross-section is just a line-segment.




1.1. THE DOMAIN AND TASK 15

ering functional or behavioural knowledge. GRAM therefore deals with only one static scene
or object at a time, without any notion of time between different observations, and without any
knowledge of, or ability of reason about, how the object is used, or intended to be used.

One justification for this approach is that in many cases there is no functional or behavioural
knowledge available for an observed object, and matching and generalisation must be able to
manage with only static structural information. For example, if a teacher asks a robot-helper
to find “one of these”, while showing the robot an unfamiliar object, but does not say what it
is used for, then only structural information can be used. Similarly, a robot workshop assistant
should be able to learn to recognise a class of tool prior to learning what it is used for.

Another justification is that the ‘function’ of an object is often definable largely in terms
of structure anyway. For example, the function of a chair is that it allows a person to be
attached to it in a particular structural pose. Likewise, the function of a table-leg can be
defined (in part) in terms of the way in which it is vertically beneath the table-top. Obviously
knowledge about gravity, support, uses of tables, etc, may help to recognise an unusual table,
but for more standard tables, recognition from structure alone is simpler and more efficient than
having to perform functional reasoning about whether an observed object satisfies the required
function. Structural descriptions could be said to ‘operationalise’ functional descriptions.
Other arguments for the utility of structural descriptions, with no functional knowledge, have
been discussed by Lebowitz in [Lebowitz, 1986].

The task is to construct, match, and generalise object descriptions.

GRAM performs three tasks. The first task is to construct a structured instance description
from the set of blocks provided by a low-level vision system. This involves creating an object
description for each block, by producing properties and relationships that characterise the
structure and context of the object. Also, various other composite objects may be created by
combining sets of smaller objects that collectively form some interesting abstract whole, such
as a group of similar items, or a topologically distinct structure. This can be considered a
form of constructive induction [Dietterich and R., 1986]. In a future GRAM system, the process
of producing an instance description could also include classifying the component objects.
This would enable the system to predict missing or occluded information, and to suggest the
formation of additional composite objects. Thus, this first task would somewhat overlap with
the second task.

The second task is to match an object description with a specified concept description. The
object may be any component within an observed scene or some other enclosing object. To do
this, the matcher needs to match the descriptions of the object’s subcomponents and structurally
related objects with the descriptions of the substructure and context of the concept. The result
of the matcher is a comparison description that specifies the similarity (and dissimilarity) of
the two descriptions, and the best correspondences between the components of their structure
and context descriptions, each of which also has its own comparison description.

The third task is to produce a generalisation of a concept to cover an observed object, making
use of the results of their comparison produced by the matcher. In doing this, the generaliser
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may need to generalise other concepts that define the substructure and context of the concept,
to cover the object’s subcomponents and context. For example, Figure 1.5 shows a number of
chairs which could be shown to the GRAM system. It would create a new chair concept from
the first chair, and then for each successive chair observed it would generalise the chair concept
to account for the features of the new instance.

Therefore the three components of GRAM are the instance-constructor, the matcher, and
the generaliser. The issue of classifying an instance by indexing into, or searching, concept
memory, and the issue of how to reorganise concept memory in response to a new instance, are
discussed briefly later in this chapter, but are not significantly addressed by the thesis.

1.2 Related Work

There has been relatively little research done in the area of structured object learning, and even
less in the domain of physical objects. Chapter 2 describes some of the systems that address
this problem and are most relevant to this thesis. A brief outline of the main contributions and
limitations of these systems is given in this section.

Winston’s learning system [Winston, 1975] (described in section 2.1) learned generalised
structured descriptions from examples, represented as semantic networks in which the nodes
were parts or properties. The system provided much of the motivational basis for this thesis,
and some of the ideas have been adopted and extended, especially the methods for finding
groups of similar objects and representing them as a single descriptive entity characterised by
a description of the ‘typical-member’.

An important contribution of Winston’s system was the idea of using “near-miss” negative
examples. GRAM, in contrast, uses only positive examples, using frequencies of observation to
indicate the importance of a each feature. In fact, this thesis argues that near-miss examples
(such as a chair with a missing leg) should still be classified as a chair. The missing leg is a
‘fault’, rather than a feature that, if missing in an instance, indicates that the instance is not a
chair. This issue is discussed futher in section 8.3.5.

Winston’s system operated in a “toy” blocks-world domain and did not deal with complex
objects. It did not make explicit use of multiple levels of detail, such as for improving the
efficiency of the match algorithm, which was not described in the paper. The system was not
able to represent optional parts, or specify probabilities of the presence of a part. The system
introduced several important generalisation operations for structured objects, although it did
not deal with ambiguity or disjunction formation.

Brooks’s ACRONYM, discussed in section 2.2, has the most expressive representation
scheme of the systems discussed in this thesis. Objects are represented as a part hierarchy,
and properties and relations can be described in terms of conjunctions of complex arithmetic
expressions that can include variables and parameters of the parts (such as height, orientation,
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Figure 1.5: Some chairs.



18 CHAPTER 1. INTRODUCTION

etc). However, ACRONYM does not address the problem of learning, which is why the repre-
sentation can be so rich, since it is not clear how the arbitrary arithmetic expressions could be
generalised.

An important contribution of ACRONYM is that it addresses the problem that it is not
usually possible to obtain a complete volumetric description of an observed object using a
bottom-up data-driven approach. Instead, ACRONYM uses geometrical reasoning about three-
dimensional model descriptions to make predictions of expected two-dimensional features.

CLUSTER/S [Stepp and Michalski, 1986a] (discussed in section 2.3) is a non-incremental
unsupervised learning system that finds conceptual clusters of structured objects. The key idea
of relevance here is that it converts a structured description into an attribute-vector description
that can then be processed by the attribute-based CLUSTER/2 system [Stepp, 1987a]. This idea
has, in some sense been adopted by Labyrinth (discussed below) and also GRAM, by representing
concepts as simple entities defined in terms of a few relationships to other concepts, rather than
as a complex part hierarchy defined locally to the concept.

Wasserman’s MERGE (described in section 2.5) performs incremental concept acquisition
and organisation for objects that have a hierarchical structure, such as physical objects or
corporate management structures. MERGE distinguishes between G-trees and F-trees, where
each G-tree is a subconcept hierarchy or taxonomy for a particular class of objects, and each
F-tree is a part hierarchy for a particular instance object or generalised object. A G-tree is a
hierarchy of F-trees, and an F-tree is defined by a set of subparts, which are in fact nodes in
a G-tree. Thus every component of an object is an instance of a concept, rather than merely
being an instance of a component of a concept. This approach has also been adopted by
Labyrinth (below) and GRAM. The system allows inheritance, and deals to some extent with
the “level hopping” problem in which corresponding components in two objects cannot be
matched because they are on different levels of the part hierarchies.

The key limitation of MERGE is that an observed object and its parts are already pre-
classified, by their names, as belonging to a particular G-tree. Thus the classification and
matching problems are made relatively trivial.

NODDY [Andreae, 1985] (described in section 2.6) is a procedure-learning system of which
GRAM was originally intended to be a component. Since the actions of a general-purpose
robot system should be able to be conditional on visual input, GRAM was to be a subsystem
that could build generalised descriptions of visual observations, which could then be used in
the conditional statements of a generalised procedure. The process of matching and learning
procedures is similar to the task of GRAM in that it involves matching and generalising structured
descriptions, and forming groups of repeated components. However, procedures have a simpler
sequential structure, without multiple levels of detail, and so the techniques used in Noddy are
not particularly extendible to the domain of physical objects.

Connell and Brady’s system [Connell and Brady, 1985] (described in section 2.7) was built
with similar goals to GRAM. It learns descriptions of two dimensional objects, and was intended
to form part of a “mechanic’s mate” project which would assist a mechanic in various ways,
such as finding a desired category of tool. It represents concepts and instances as a semantic
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network, with coarse details at the center of the network, and finer details nearer the fringe.
The matcher works by spreading outwards through the network, and this approach is similar
to that used in GRAM, except that Connell and Brady’s matcher only searches from coarse
details to fine details, rather than in any direction through the network. It also does not address
the level-hopping problem. The representation does not support optional parts, groups, or
disjunctive substructure, and the generaliser does not deal with ambiguities. An important idea
of the system is the use of Gray Coding, which enables a unified matching and generalisation
scheme to be employed.

Labyrinth [Thompson and Langley, 1991] (described in section 2.8) is an incremental unsu-
pervised concept learning system for the domain of structured objects. It deals specifically with
the issue of acquiring and organising multiple concepts in memory. An instance is represented
as a part hierarchy, and each concept is defined by a set of subparts and the concepts of which
these subparts must be instances. Relationships between the parts are also represented, and
probabilities can be associated with features. To classify an instance, its subparts are classi-
fied, and then a modification of the COBWEB algorithm [Fisher, 1987a] is used to traverse a
concept hierarchy to find the most similar concept. An important limitation of Labyrinth is
that it does not include context in its concept descriptions. A more significant limitation is
that its classification scheme relies on concepts not being defined in terms of context, since it
could not otherwise classify leaf nodes of an instance part-hierarchy prior to classifying parts
higher in the hierarchy, or even siblings. It also requires that every instance part is classified
separately, using the modified COBWEB algorithm, rather than directly accessing a candidate
concept via the expectations of other classifications.

The PARVO system [Bergevin and Levine, 1993] (described in section 2.9) performs object
recognition from two-dimensional line-drawings. It does not address the problem of learning.
The relevant contribution of PARVO to this thesis is that it demonstrates that physical objects
can often be classified on the basis of their coarse details alone, without requiring the finer
details to be matched (unless more specialised classifications are required, or for the task of
fault-finding). This characteristic of the domain of physical objects also means that if the
matcher is able to operate from coarse levels of detail to fine levels of detail, then the coarser
levels of the description are likely to be correctly matched, and therefore will be able to guide
the matching of finer details.

1.3 Representation

The representation scheme is central to GRAM, since it underlies all of its other components.
The way in which concepts and instances are represented largely governs the design and the
performance of the rest of the system. This section gives a very brief outline of some of the
main principles and contributions of GRAM'’s representation language.
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1.3.1 Aninstance is represented as an object graph, with parent, neighbour, and
subpart relationships.

To describe a complex physical structure, it is necessary to represent it in multiple levels of
detail. GRAM does this in the form of an object decomposition hierarchy, in which each object
(except primitive objects at the bottom of the hierarchy) is an abstraction or approximation of
the subpart objects beneath it. Each object can be described by its set of subparts.

However, objects also need to be represented in terms of their context, not only their sub-
structure. The context of an object includes not only its enclosing objects (that are higher in
the decomposition hierarchy), but also the objects connected to it, close to it, or otherwise
interestingly related to it.

Therefore, GRAM’s representation provides three types of relationship, namely parent, neigh-
bour, and subpart relationships, where each relationship is a rich descriptive entity charac-
terising how one object is structurally related to another object in terms of position, size,
connectivity, alignment, orientation, erc. This allows objects to be represented not just as a
decomposition hierarchy, but as a graph. A description of an object also includes a set of
structure properties (such as aspect-ratio, shape, etc) and a set of contextual properties (such
as a connectivity profile).

Figure 1.6 shows an example of an object-graph, where each node denotes an object that has
explicit relationships with other objects. The solid lines denote parent or subpart relationships,
and the dotted lines denote neighbour relationships.

One new idea here is that the representation does not deal with arbitrary relations between
nodes, such as left-of, bigger-than, etc, but instead combines the information about the re-
lationships between objects into parent, subpart, and neighbour relationships, each of which
is defined by an attribute vector consisting of both qualitative and quantitative information.
Therefore, when comparing the relationships between two pairs objects, it is not necessary to
deal with a multitude of separate relations. Instead, a single attribute-vector comparison is
performed, giving a single overall similarity score.

Each relationship is not only a descriptive entity that partially characterises the structure or
context of an object, but also acts as a direct link between objects, in any of three directions
through the object graph. These links are exploited by the matcher to constrain and guide
the search for correspondences between objects and learned concepts. The use of neighbour
relationships for this purpose is especially significant, since it enables the matcher to cross
levels of the hierarchy, rather than being restricted to a top-down search. This is discussed
further in section 1.5.

1.3.2 Structure and context are explicitly distinguished.

Another contribution of the GRAM system is the explicit distinction between context (defined by
parent and neighbour relationships, and various contextual properties) and structure (defined by

3Each line should actually be depicted as two distinct directed lines, since each object has its own set of
relationships, and they are not shared by other objects. This simplifies the generaliser.
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parent/subpart relationship
— — — neighbour relationship

Figure 1.6: An object graph.

subpart relationships and various structural properties). This supports partial matching, since
it enables the matcher to notice that two objects have similar structure (or ‘form’) but different
contexts (or ‘role’), or vice versa. The distinction also allows structure and context disjuncts
to be represented.

1.3.3 Groups are represented by a multi-relationship to a typical-member con-
cept.

A characteristic of everyday physical domains that was identified earlier is that scenes and
objects often contain groups of similar items, such as rows of books, or cookies in a bowl, as
illustrated in Figure 1.7. Groups should be explicitly representable for a number of reasons:
to enable several objects to be represented compactly in summary form as a single entity; to
enable properties of the group as a whole to be made explicit; to enable efficient matching
by comparing groups as single entities, rather than comparing individual members; to enable
generalisation of groups that have different cardinalities; and to provide transfer of information
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amongst group members.

Winston introduced the idea of representing a group in terms of a typical member. GRAM
extends this idea by allowing the typical member to be a complex structured generalised
concept. The group object has a multi-relationship to this typical-member concept, which is
a generalised subpart relationship with a howmany count indicating how many instances of
the concept are present in the group. In a generalised group, the howmany count may also be
generalised.

A typical-member concept can also have neighbour relationships to itself, which represent the
typical inter-member relationships, thus capturing the topology of the grouping. Various kinds
of grouping topologies are possible, such as a linear chain, a grid-like array, an unstructured
cluster, or a loop.

GRAM takes this notion of a multi-relationship further by allowing any instance or concept
description to include multi-relationships to any concept, and this is interpreted to mean “there
are n instances of that concept related to this in such and such a way.” Thus groupings
can be described without even having an explicit group-object. For example, a bedroom or
bookshelf might have a multi-relationship to the concept pot-plant, without having to represent
the collection of potplants as an explicit entity.

1.3.4 A concept is a generalised object, defined in terms of other concepts.

A crucial component of GRAM’s representation scheme which is largely responsible for enabling
complex structures to be dealt with in a manageable way is its representation of concepts.
During the earlier stages of working on this thesis, the representation included three types of
descriptive entity: the concept, the instance, and the part [Andreae, 1993]. Each concept and
each instance was represented as a complete graph of parts, so that the definition of a concept
consisted of an explicit set of all parts and their relationships. To compare a concept with an
instance, the matcher needed to find non-conflicting one-to-one correspondences between the
parts of the two graphs.

For large complex objects, such as a bicycle or bedroom, this scheme proved very problematic.
One problem was that descriptions of concepts such as bicycles and bedrooms must allow
disjunctions, to represent alternative and optional substructure and context. This led to very
complex concept graphs which were unwieldy to match and generalise. For example, if all of
the chairs in Figure 1.5 are generalised to form a single part graph that characterises all of the
common and variant features, then the part graph will be very complex.

Another problem was that concepts must often be defined in terms of components that should
be concepts in their own right, such as wheels, handlebars, beds, pillows, etc, and which
should be recognisable directly without having to necessarily deal with an enclosing bedroom
or bicycle description. This suggests that subgraphs need to be extracted out when appropriate,
and the original graph somehow refer to them, perhaps via inheritance.

The complexities of this representation scheme were overcome by the development of a rep-
resentation scheme in which each concept description is a small compact chunk of information
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Figure 1.7: Some examples of groups in a bookshelf.
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that consists of a set of properties, and a set of parent, neighbour, and subpart relationships to
other concepts. If a concept X has a relationship to a concept Y, then this is interpreted to mean
that for each instance of concept X, there exists an instance of concept Y which is related to
the X instance in the specified way. This means that there is no explicit set of parts stored in
a concept description, but only references to other concepts. A concept’s part decomposition
hierarchy and its context are now less explicit, although concepts can still capture the richness
and complexity of the domain.

The simplicity and uniformity of this representation has significant implications for the
matcher and generaliser. There is no need to deal with two kinds of entity — concepts and
concept-parts. Instead, memory consists only of concepts, each of which is a small manageable
description. Also, the matcher does not have to find a one-to-one correspondence between two
nodes of two graphs. Instead, a simpler, more flexible, and more robust method is possible, as
will be outlined later. Disjunction is now representable simply by defining a concept by a set
of subconcepts, and any other concept that is defined in terms of such a concept is therefore
implicitly disjunctive.

Labyrinth [Thompson and Langley, 1991] also used this idea to some degree, but the con-
tribution of GRAM is, firstly, that it includes context in a concept description, thus making
each concept a more richly described and more constrained entity. This reduces the kinds of
problems that Labyrinth had due to the under-constrained nature of their concepts which were
defined only in terms of subparts. Secondly, the GRAM matcher exploits parent and neighbour
relationships to guide the search, allowing a multi-directional search, rather than a merely top-
down tree traversal which suffers from the “level-hopping” problem when two similar objects
have been decomposed into hierarchies that do not correspond level-to-level. Thirdly, GRAM
includes multi-relationships and groups (by referring to a typical-member concept) giving the
representation greater expressiveness, and thus improving the performance of the matcher and
generaliser.

1.3.5 Structure and context can each be described disjunctively.

GRAM explicitly distinguishes between structure (or form), defined by a set of properties and a
set of subpart relationships, and context (or role), defined by a set of properties and a set of parent
and neighbour relationships. This distinction also means that the structure (and/or context) of
a generalised concept can be described disjunctively. This is done simply by indicating that the
structure (and/or context) is disjunctive, which causes the matcher and generaliser to use the
structure (and/or context) of the subconcepts of the concept as the disjuncts. Each subconcept
is a disjunct, or variant, of its parent concept.

For example, the concept door-handle could be defined by multiple forms that fulfill the same
role. More specifically, it could be defined by a single non-disjunctive context description
(consisting of a relationship to the concept ‘door’) and a disjunctive structure description
defined by the set of structures of the subconcepts of the door-handle concept.

Conversely, the concept swivel chair could be defined by a single form but multiple roles.
More specifically, it may have a single non-disjunctive structure description, and a disjunctive
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context description defined by the contexts of the subconcepts of the concept, each character-
ising a different role of a swivel chair, such as with and without a person on it.

Sometimes a concept has disjuncts of both structure and context. For example, instances
of the more general concept chair can appear in a variety of contexts and can have a variety
of substructures. In this situation, the structure and context disjuncts are not distinguished,
but are both defined by the complete set of subconcepts. Some of the subconcepts may have
a highly generalised context and a specific structure (such as the subconcept for a standard
four-legged chair); others may have a highly generalised structure and a specific context (such
as a chair with a person sitting on it); and others may have a specific structure and a specific
context (such as a dentists chair). The current GRAM representation scheme is not able to
explicitly distinguish between ‘structure subconcepts’ and ‘context subconcepts’, as this would
complicate the concept hierarchy considerably.

1.3.6 Concept descriptions are probabilistic.

Section 1.1 stated that concepts in GRAM’s domain can have highly variable properties and
relationships. A generalised concept description in GRAM expresses the permissible variability
of its instances in two ways, both of which have been used in other earlier systems, most
notably COBWEB |[Fisher, 1987a]. Firstly, each numerical attribute value (such as for size,
orientation, etc) is represented as a distribution with a mean and variance, and each nominal
attribute value is represented as a frequency distribution. Secondly, each parent, neighbour, and
subpart relationship of the concept description has an instance-count which indicates how many
observed instances of the concept included that relationship. The concept as a whole also has
an instance-count, which is the total number of instances that contributed to the generalisation.
Thus the ratio of the instance-count of a relationship over the instance-count of the concept as
a whole can be interpreted as a probability or expectation of a new instance having that feature.
For example, the concept ‘door’ may have a subpart relationship to the concept ‘door-lock’
with an instance-count ratio of 0.3, meaning that 30% of doors have door-locks.

1.3.7 Concepts can have a variety of interpretations.

GRAM allows concepts to be interpreted in several ways, depending on how the concept was
formed. If a concept is formed from the parent, neighbour, and subpart relationships that are
common to all or most of its instances, ignoring any atypical relationships, then the concept
has a partial interpretation, meaning that the matcher should permit a new instance of the
concept to have any additional parents, neighbours, and subparts, so long as it satisfies the
concept’s structure and context properties. On the other hand, if a concept is formed by taking
the union of the instance’s parent, neighbour, and subpart relationships, then it has a complete
interpretation. If a new instance has additional relationships that are not present in the concept
description, then these indicate a mismatch.

This distinction was made by [Stepp, 1987b]*, who pointed out that a number of learning

“Stepp used the terms ‘contains’ semantics and ‘is’ semantics.
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systems did not explicitly take the distinction into account, and therefore suffered from semantic
ambiguity. GRAM explicitly allows both interpretations, and therefore allows the generaliser
to perform either intersection or union when creating a concept. GRAM also distinguishes a
number of more specialised variants of these two interpretations, which are used to define how
group concepts and disjunctive concepts are to be interpreted by the matcher and generaliser.

1.3.8 The richness of the representation scheme can be exploited by the matcher
and generaliser.

This section has shown that GRAM’s representation scheme is sufficiently rich to enable the
important features of complex generalised physical objects to be explicitly represented. The
scheme allows explicit context and substructure, groups, optional and alternative features,
instance-counts associated with features, relationships and multi-relationships with other con-
cepts, and several alternative interpretations. This richness enables the matcher and generaliser
to exploit the structure of physical objects to achieve more efficient and effective performance.

1.4 The Instance Constructor

The instance constructor takes information obtained from a low-level vision system (which is
currently simulated manually by input from a drawing program) and produces a description
in GRAM’s representation language. The information from the vision system specifies a set of
blocks described in some visual coordinate frame. Some of these may be ‘fuzzy’ blocks which
are approximations of several smaller blocks.

More specifically, the instance constructor must construct an object graph, at multiple levels
of detail. One issue is to determine what objects should be created, where each object should
be a useful abstraction or approximation of other smaller objects. Most of these can be formed
directly from the blocks provided by the vision system, but some objects may be formed on the
basis of other object-formation criteria, such as groupness, connectivity, symmetry, ezc. One
contribution of this thesis is to identify the kinds of criteria that justify object-formation with
respect to the requirements of the matcher and generaliser. Another contribution is a set of
criteria for selecting which parent, neighbour, and subpart relationships should be explicitly
included in the object graph.

A more significant contribution of the instance constructor is the set of ‘groupness’ criteria
for justifying group formation in an instance. A mechanism for searching for groups has also
been developed, called seed-expansion, which first identifies seed groups consisting of two
objects that could potentially expand into a group, and then incrementally adds new objects
to the group until a clear group-boundary is reached, or until the group is abandoned. This
method contrasts with another method described called propose-and-prune, which begins with
a generous grouping, and then prunes off members until a stable group with a clear member-
nonmember boundary is reached.
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The work on group-finding is based on Winston’s early group-finding system [Winston, 1975].
Winston seemed to use a seed-expansion approach to find sequences of similar and similarly
related objects, although the algorithm was not described, and seemed to deal only with simple
chains. His system also used a propose-and-prune algorithm to find groups of objects that
were similarly related to some other object. The seed-expansion algorithm presented in this
thesis extends Winston’s work in several ways: It integrates the capabilities of Winston’s two
group-finding techniques; it provides a more elaborate scheme for proposing an initial seed
groupings; it measures group strength and member typicality in a more general manner; and it
is applicable to GRAM’s richer representation.

1.5 The Matcher

The purpose of the matcher is to compare two descriptions, usually a concept description
with an instance description. This involves finding and evaluating correspondences between
the parent, neighbour, and subpart relationships of the two descriptions, producing various
measures of similarity that indicate overall similarity, structure similarity, context similarity,
and the similarity of each pair of corresponding relationships and related concepts or objects.

In an earlier version of GRAM when concepts were represented as a complete part-graph, the
matcher had to find the best set of one-to-one correspondences between the parts of the concept
part-graph and the parts of the instance part-graph. One approach to this is to exhaustively
evaluate all possible correspondences between the components of the two descriptions. Suchan
approach did not use the description structure to guide or constrain the search, and was therefore
computationally expensive, and even infeasible for large objects such as the bicycles in Figures
1.8 and 1.9. The part-graph for bike-1, shown in Figure 1.10, has about 120 composite and
primitive parts, so there are roughly 120! sets of correspondences between the parts of the two
bicycles. In fact this is an underestimate since it does not include correspondence sets in which
some parts are left unmatched. Also, it does not consider axis-correspondences: A pair of parts
may correspond in a number of ways depending on which axes are put into correspondence.
Two rectangular parts can be corresponded in 4 ways (or 8 if reflection is considered). So,
clearly, an exhaustive search is computationally infeasible.

Similarly, a purely top-down search that traverses subpart relationships of the two descriptions
(as in the systems by Brooks [Brooks, 1981] and Wasserman [Wasserman, 1985]) is also
inadequate because we cannot assume canonical part decomposition hierarchies, and because
we may also want to compare the context of the two items. A more flexible method is necessary
which is able to search upwards and outwards via parent and neighbour relationships as well
as downwards via subpart relationships.

Therefore, another method for part-graph matching was developed. In this method [Andreae, 1993]
the matcher first chose a seed correspondence between two parts. The best corresponding par-
ent, neighbour, and subpart relationships were then used to propose new correspondences to
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Figure 1.8: A Bicycle

be added to a pool of candidate correspondences. Then the best candidate correspondence
was selected, in the manner of a “greedy” search, where ‘best’ meant not only having sim-
ilar properties, but also most consistent with the previously selected correspondence. Then
more candidate correspondences were proposed on the basis of the best corresponding parent,
neighbour, and subpart relationships. This “spreading activation” process continued until the
(hopefully) best globally consistent set of one-to-one correspondence bindings between all
parts of the two graphs was found.

Although the basic algorithm worked efficiently and effectively for straightforward cases,
extending the algorithm to cope with more complex situations proved difficult.

One aspect of the problem was that it was often necessary to compare significant portions
of the substructures of two parts before they could confidently be put into correspondence,
or before ambiguity between two competing correspondences could be resolved. This re-
quired that the matcher be invoked recursively to compare the two substructures, with their
contextual correspondences kept ‘hidden’, or at least made unchangeable, during the scope
of the recursive match. This meant that a new subgraph comparison description had to be
created, and then later integrated into the original graph comparison description if appropriate.
The recursive match sometimes needed to make use of previously-selected correspondences
between surrounding objects, and cope with any previously-selected correspondences of the
subparts of the subgraphs. Since there could be many levels of recursive matching, and hence
nested graph comparison descriptions, the maintenance of consistency, and the integration of
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Figure 1.10: The object-graph for a bicycle

the nested comparisons, was complex.
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Another problem was that a correspondence might be selected and then later found to be a
bad choice, and this required some form of backtracking. The system had to determine which
correspondences to unselect, and when. One difficulty was that for backtracking to be effective
it was necessary to undo a set of correspondences, rather than just one at a time, since otherwise
the matcher would tend to get stuck on local maxima of the hill-climbing search space. The
system also needed to avoid cycles. '

Another problem was that the representation scheme included a special kind of relationship
that referred to another concept, rather than to another part within the same hierarchy. Therefore,
the matcher had to deal with both kinds of relationship, and be able to recursively apply the
matcher to that other concept and a subgraph of the instance, while also maintaining a globally
consistent set of bindings, thus adding another level of complexity. Also, structure and context
disjunctions of a concept were represented as sets of alternative substructure descriptions, and
each of these had to be matched with the structure and context of the instance, in the manner
of a recursive match. The problem of inheritance of complex structures, from superconcept
descriptions, also needed to be addressed.

Although consistent one-to-one bindings were required, it was required that the matcher notice
and record ambiguities so that groups could be created during the generalisation process. This
meant that the matcher needed to maintain multiple alternative subgraph comparisons. If a
group was already present in a concept description, but not in the instance description (or vice
versa), then it was necessary to maintain multiple alternative subgraph comparisons between
the typical member of the group, and individual parts of the instance (or vice versa).

Although a matcher for dealing with these issues could no doubt be developed, and many of
the individual issues have been dealt with in other systems, the complexity and cumbersomeness
of the process indicated that perhaps a different concept representation scheme was necessary.
Also, the earlier scheme did not take into account the fact that most of the components of most
physical objects are themselves instances of concepts, such as the buttons on a telephone, the
zip of a pencil case, and the cushion on a chair. The matcher did not exploit or even account
for this fact, since it was designed primarily for concepts that were represented as a complete
part hierarchy.

The new representation scheme takes the complete opposite approach, representing every
concept only in terms of other concepts, with no local part hierarchy. This means that a much
simpler matcher is possible.

1.5.1 The GRAM matcher does not maintain or enforce a set of consistent corre-
spondence bindings.

The key idea in the new GRAM matcher is that there is no requirement that a consistent set of
correspondence bindings be created and maintained. This is a somewhat radical approach, but
has proved surprisingly successful. Consistency seems to be implicitly maintained by the rich
constraints inherent in physical objects themselves.

To determine how well a concept matches an instance, the correspondences between the
concept’s parent, neighbour, and subpart relationships, and the instance’s parent, neighbour,
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and subpart relationships, are evaluated. A set of reasonable candidate correspondences are
chosen, and these are then evaluated more thoroughly by recursively applying the matcher
to compare the concept and instance to which each pair of relationships refers. The best
correspondences are then chosen, and similarity scores for these, and similarity scores for the
properties of the concept and instance, are used to compute overall measures of similarity.
Similarity scores are computed using weighted averages of numerical measures of similarity
of the attributes that characterise the properties and relationships.

Thus, the matcher employs a kind of backward-chaining manner, similar to the instantiation of
a Prolog Horn clause, since to evaluate a concept-instance comparison, other concept-instance
comparisons must be evaluated. Therefore, the matcher spreads up, out, and down through the
parent, neighbour, and subpart relationships, matching instances with concepts as it goes.

The main difference between this matcher and the old matcher is that each concept-instance
comparison is performed without taking into account the selection of best relationship corre-
spondences for any other concept-instance comparisons. Only the similarity scores of other
correspondences are used. There is no notion of “fixing” a correspondence, since all corre-
spondence selections are made only locally.

This approach works surprisingly well, and has made the matcher more simple, flexible, ro-
bust, and efficient, and it can be made significantly more efficient because it is more amenable
to a parallel implementation. Inconsistency amongst correspondences is not a problem, be-
cause a good classification only requires that the parent, neighbour, and subpart relationships
and relatees of an instance match sufficiently well with the parent, neighbour, and subpart
relationships and relatees of the concept. Consistency is implicitly enforced by the richness of
the domain, since inconsistencies will tend only to occur when there really are ambiguities, in
which case we want the matcher to produce multiple correspondences, since these can be used
by the generaliser to suggest the formation of groups or multiple ‘roles’ in the new concept.

1.5.2 A breadth-first beam search with iterative-deepening is used.

To ensure search efficiency, the matcher applies successively increasing levels of effort to
the comparison, thus preventing the matcher from spreading outwards except via the most
promising correspondences. This is done by a kind of breadth-first search using iterative-
deepening, pruning off poor branches as it goes. If rough and rapid matching is required, then
only a low-effort comparison is necessary. If a thorough detailed comparison is required, then
a high-effort comparison is performed. Also, if the match is clearly a bad match, then the
comparison may be abandoned early, before it has invested much effort.

1.5.3 Neighbour relationships largely resolve the “level-hopping”’ problem.

An important contribution of GRAM is the use of neighbour relationships to explicitly char-
acterise the structural relationship between connected, close, or interestingly related objects.
One of the reasons why this is significant is that it enables the matcher to “cross levels” of the
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object decomposition hierarchy. Other systems such as Brooks [Brooks, 1981] and Wasser-
man [Wasserman, 1985] have suffered from the “level hopping” problem, since their matchers
worked by a top-down traversal of the part-hierarchy. Parts in two descriptions that are not
on corresponding levels, could not be matched except by using some kind of additional level-
hopping techniques. In GRAM, however, the matcher can traverse in any direction through the
object graph, not only up and down parent and subpart links but also along neighbour links.
Thus, even if two objects are on different levels of their decomposition hierarchies, neighbour
relationships from other objects will often allow their correspondence to be found.

1.5.4 Classification of a scene can begin at any seed correspondence

The multi-directional spread also means that the matcher can begin from any ‘seed’ correspon-
dence, not just from the top node of an instance hierarchy. For example, suppose an observed
object is partially occluded, but the system is able to index from one observed component to
the concept ‘bicycle-seat’. When that component is matched with the concept ‘bicycle-seat’,
the matcher spreads outwards via parent, neighbour, and subpart relationships, and hence is
able to make the prediction that the object is a bicycle. In the process, many of the surrounding
components (such as the frame, wheels, gears, etc) are also classified.

The above characteristic also helps resolve the problem of not being able to identify the
boundaries between objects. For example, if the task is to find a hammer in a jumbled toolbox,
but the vision system cannot identify the hammer as a distinct object but is able to identify the
hammer head as a distinct part, then the matcher could spread outwards to establish a complete
match with the hammer concept.

The ability of the matcher to traverse neighbour relationships also means that the context of a
concept and instance can be matched, and this is important for classification of concepts which
are defined (at least partially) in terms of context, such as a door handle or bicycle wheel.

1.5.5 Two types of similarity scores are distinguished: Fit-scores and Proximity-
scores

The results of the matcher are used in different ways by different components of the system.
A consequence of this is that two different kinds of similarity scores have been distinguished:
proximity-scores and fit-scores. Proximity-scores measure the absolute similarity of two objects
within object-space, and fit-scores measure the typicality of an instance with respect to a
concept, where typicality is measured on the basis of the ratio of feature-differences to the
variance of the concept features.

Proximity-scores are used within the matcher itself for evaluating object correspondences,
and within the generaliser to determine whether two objects are similar enough to justify
generalisation. Fit-scores are used by the generaliser to determine whether an instance fits a
concept well enough to justify modifying that concept to cover the instance, rather than creating
a new concept. Fit-scores are also required for fault-finding to identify the faulty or unusual
features.
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1.6 The Generaliser

The generaliser is responsible for generalising an existing concept description to include an
observed instance. It can either produce a new concept, or modify the existing one. .

In its most basic form, the generaliser is quite straightforward, since most of the important
work is performed by the matcher. The basic method for generalising two descriptions is to
(a) generalise their properties, (b) generalise their best-corresponding relationships, and (c)
generalise their best-corresponding relatees, by recursively applying the generaliser to each
pair of relatees. Thus the generaliser spreads outwards like the matcher, but only via the
best-correspondences of parents, neighbours, and subparts that were found by the matcher.

The complexities of the generaliser lie in the areas of spread-control, disjunct generalisation,
ambiguity resolution, special cases that arise due to the different kinds of structure and context
interpretation, and deciding when to create a new concept, or modify or copy an existing
concept.

One problem of generalisation in a structured domain is that a classification may have been
obtained on the basis of a low-effort comparison that only takes into account the coarser
details of the concept and instance. This may be sufficient for recognition, but insufficient for
determining what generalisation action should be performed. Therefore, the generaliser needs
to be able to request the matcher to apply further effort to the comparison.

Another problem is determining whether generalisation should be performed before or after
matching has completed. If a robot is navigating through a room it will be continually
classifying what it observes, and each classification will lead to other classifications via parent,
neighbour, and subpart relationships. So in effect there is no notion of ‘completing a match’.
Concept generalisation would have to occur concurrently with matching, which means that
the system’s control strategy must be very flexible and robust. In the current GRAM system I
have made the simplifying assumption that a single scene or object is observed, then a seed
classification is provided for one instance object, and then the remaining instance objects are
matched via the spreading comparison process. Generalisation is performed only after this
process has completed. However, the nature of GRAM’s matcher is such that it allows a great
deal of flexibility in the way it can be integrated with other components of the system. This
is because each concept is just a simple description, rather than an entire complex part graph,
and, more importantly, because it does not enforce global consistency during the search.

1.7 GRAM in a larger system.

The current version of GRAM only provides mechanisms for matching and generalising. This
section outlines the issues that need to be addressed for extending GRAM to perform full
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classification and multiple-concept learning.

1.7.1 Classification

The kind of task that the classifier is responsible for is shown in Figure 1.11. On the right is
an object graph for an observation, with solid lines indicating parent relationships and subpart
relationships, and dotted lines indicating neighbour relationships. On the left is an illustration of
concept memory, in which the thick lines are AKO links, the thin lines are subpart relationships
and parent relationships, and the thin dotted lines are neighbour relationships. Similarity-links
may also be included, which provide direct access between concepts that are similar. The
task is to find correspondences (i.e. classifications) between one, some, or all of the observed
objects, and the concepts in memory.

concept memory

object graph for an
observed scene or object

consists of concepts connected by

subconcept links parent/subpart relationship
____ Pparentrelations — — - neighbour relationship
~ neighbour relationships
— subpart relationships
... and others.

Figure 1.11: The classification task.

There are three stages in classifying an observed object. Firstly, one or more concepts in
memory must be accessed. Secondly, each concept must be matched with the observation
to determine the similarity. Thirdly, a search may be required to find a more appropriate
classification, either via AKO-links to find a more abstract concept, or subconcept links to find
a more specialised concept, or similarity-links to find an improved match.

There are three ways of accessing a concept to match with an observed object:

From task specifications. If the larger task requires an observed object to be matched with a
specified concept, then concept access is not an issue. Such a task may be given by a
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teacher or by some other component of the robot system.

By direct indexing. A particular feature or combination of features of an observed object may
be used to directly access one or more concepts in memory. The concepts found are then
passed to the matcher for comparison with the instance. If too many concepts are found,
then multiple indexing can be used, and only the concepts that are accessed by all or
most of the indexes are considered. For example, if we index an object on the basis of
its colour alone we may obtain many concepts, but if we take the intersection of those
concepts and the concepts obtained by indexing on size or shape, then we might obtain
a smaller set of hypothesised classifications.

Via the classification of a related object, during matching. When GRAM’s matcher compares
two descriptions, it usually spreads upwards, outwards, and downwards, comparing their
parents, neighbours, and subparts. In other words, correspondences (i.e. classifications)
may be obtained on the basis of some other comparison. For example, the compari-
son of an observed object with the concept chair may lead (via neighbour-relationship
correspondence) to the classification of an object on top of the chair as being a ‘person’.

Currently GRAM does not include a direct-indexing mechanism, and therefore relies on the
first or the third of the access-mechanisms above. Although direct indexing would obviously
be essential for a full system, the concept access that results from the ‘spreading comparison’
process is often sufficient for classifying many objects in a scene. Forexample, when you walk
into an office, knowing that it is an office, many of the contents are often recognisable based
on expectation, such as the desk, windows, telephone, chair, filing cabinet, etc. In other words,
if there is a relationship from one concept to another, then an instance of the latter will often
be classifiable on the basis of recognising an instance of the former.

Future work on the GRAM system will address the issues of indexing, and also of searching
for better classifications via AKO links and similarity-links between concepts.

1.7.2 Multiple Concept Learning.

Concept learning is the overall process of building up an organised memory of concepts on
the basis of observed scenes and objects. Although this thesis focuses only on the generaliser
component of this, this section outlines some of the tasks and issues of the concept learning
system to show how the generaliser fits in to it, and also to indicate the kinds of future work
to be undertaken. Other systems such as Labyrinth have addressed concept learning (referred
to as concept formation in the Labyrinth work), but without the richness of representation
language, in particular the use of context relationships, groups, and disjuncts.

Figure 1.12 illustrates the kind of situation that faces the concept-learner. It is the same
diagram that was shown earlier in Figure 1.11, except that some results of classification are
shown by the dotted lines from each instance part to concepts in memory. The number
on each line is a similarity score, and thus only the high-scoring correspondences are good
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concept memory

- ) T~ some correspondences
= produced by the matcher
(some good, some bad)

object—graph for an
—0:93_ observed scene or object

parent/subpart relationship

subconcept links — —— neighbour relationship
~— parent relations

consists of concepts connected by

neighbour relationships
subpart relationships
... and others.

Figure 1.12: The learning task.

classifications. Each classification could either have been obtained via direct indexing, or via
the spreading activation matching process, or from direct teacher or task specifications.

The concept learner must decide which of the classifications justify generalisation. If an
instance fits an existing concept sufficiently well (according to the fit-score), then that concept
could be generalised to cover that instance. On the other hand, if the instance is similar to the
concept, but does not have a good fit-score (such as swivel chair with respect to the concept four-
legged-chair) then a new parent concept could be created which has the original concept and
the new instance as its two subconcepts. Various other reorganisations of the AKO hierarchy
are also possible, such as merging existing concepts, adding new subconcepts, removing a no-
longer-useful concept, or removing a concept and promoting its subconcepts. The COBWEB
system [Fisher, 1987a] performed this kind of process in domains of unstructured objects.

In a structured domain, the creation and maintenance of an AKO hierarchy is somewhat
more complex than in an unstructured domain. This is because concepts are defined in terms
of other concepts, and so each change in one concept may affect many other concepts. For
example, a concept may need to be removed from concept-memory if it becomes overly general,
overly specialised, or otherwise not useful, but it cannot simply be deleted, because the parent,
neighbour, and subpart relationships of other concepts may refer to it. Similarly, if a concept
is overgeneralised, this has the effect of overgeneralising all other concepts that are defined in
terms of it. Therefore, a conservative approach to generalisation is especially important in such
adomain. A basic heuristic is that when in doubt, create a new concept rather than generalising
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an existing one. However, this can have the consequence of a complex cluttered memory. Also,
under-generalisation can mean that less is learned, since the information obtained from each
instance will tend not to be combined with information from other instances.

Although concept-memory must primarily be organised as an AKO hierarchy, it is useful
to maintain similarity-links (or difference-links) between some pairs of concepts. This can
enable the classification and concept learning systems to traverse these links to find better
correspondences, on the basis of correspondences found via indexing or the matcher’s spreading
activation. Since each comparison is represented as a match description, these descriptions can
be used as the similarity links, thus not only providing direct access between similar concepts,
but also specifying the way in which they are similar.

Designing a concept learning system for a domain of structured objects is non-trivial. The
“Background” chapter looks at a few systems that have addressed this problem to some degree.
The Labyrinth system was the first system to address this problem using a representation where
concepts were defined in terms of other concepts, and it proved not very successful in a number
of ways. The enriched representation scheme of GRAM addresses some of the main limitations
of Labyrinth, in particular the lack of context information, and also the inflexible matching
algorithm. However, it remains for future work to develop a complete concept learning system
on the basis of the work done for this thesis.
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Chapter 2

Related Work

This chapter provides a background to the work in this thesis by discussing some of the most
relevant systems that have already been developed for representing, matching, or generalising
concepts in the domain of structured physical objects. Each section briefly describes the
relevant features of the system, and then outlines the main limitations with respect to the
requirements of the GRAM system discussed in chapter 1.

2.1 Winston’s “Arch Learner”

Winston made the first significant attempt to represent and learn structured descriptions of
physical objects. His learning system [Winston, 1975], which operates in a simple “blocks
world” domain, introduced many important ideas about representing, matching, and general-
ising structured objects, and has been a motivational basis for much of the work on the GRAM
system in this thesis (as well as for much of the other work in machine learning).

The system incrementally learns a concept by being shown individual instances by a teacher.
The system does not address the problem of discovering and organising multiple concepts, but
instead focuses on supervised learning of a single concept, from examples specifically chosen
by a teacher.

Instances are represented using a semantic network in which a node can denote either a part of
the object, or a qualitative predicate (such as rectangular, small, or standing). Nodes can have
relations between then, such as has-property, supported-by, or one-part-is. A simple example
of this is given in Figure 2.1.

A concept is initially formed from a single instance provided by a teacher, and is generalised
by merging it with a new instance. To do this, the concept and the instance are matched
to find corresponding nodes and relations, and then a comparison description is created for
each correspondence. A variety of generalisation operations are available, and an appropriate
one is selected for each correspondence, based on the nature of the similarity. These include

39




40 CHAPTER 2. RELATED WORK

has—pm%f 1y

Figure 2.1: Object representation in Winston’s system.

operations such as “climb the AKO hierarchy” to find a common generalised concept, “drop
the feature” to remove the node or relation from the concept if it is not present in the instance,
or “ignore the feature” to ignore an instance feature that is not present in the concept. An
example of the use of the drop-feature operation is when a concept television includes an aerial
component which is not present in a new instance. The aerial may be dropped from the concept
description.

An important contribution of the system is the idea of using near-miss negative examples. If
a near-miss negative example has a feature that is not present in the concept, then this feature
is added to the concept, with the annotation “MUST-NOT-HAVE”. Conversely, if a concept
has a feature that is absent in the near-miss negative example, then that feature is given a
“MUST-HAVE” annotation.

In the kind of domain that GRAM is to operate in, such as a house or a workshop, it seems
unlikely that near-miss examples would be available. Instances of other similar concepts may
serve as negative examples, or even near-miss examples, such as a stool being a near-miss
for the concept chair. But it does not seem feasible to rely on a teacher to provide near-miss
examples, perhaps by removing one leg of a chair, or misaligning the drawers of a desk. In fact,
in these two examples the ‘fault’ does not cause the instance to be a non-member of the class,
but simply indicates that a particular feature is important for the functionality of the object. A
chair with a missing leg is still a chair, but it is a faulty or broken chair.

One problem with Winston’s system is that the use of the drop-feature (or ignore-feature)
operation implies that generalised descriptions must have a “contains” semantics, rather than an
“is” semantics, as discussed by [Stepp, 1987b]. A “contains” semantics means that a concept
description implicitly allows additional features that are not present in the concept description,
to be present in an instance. An “is” semantics means that an instance must not have additional
features that are not present in the concept. Therefore, Winston’s system seems to necessarily
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have a “contains” semantics, since otherwise it would not allow an instance to have features
that had been observed in previous positive instances and then ignored or dropped because
they were not shared by all observations. However, this has the unsatisfactory consequence of
allowing an instance to have any features in addition to those in the concept. For example, a
chair and a person on it could, as a composite whole, be classified as a ‘chair’ simply because
it contains all the necessary components of the chair concept.

Winston does not directly address this issue, although the use of MUST-NOT-HAVE anno-
tations does help to constrain a concept to a small degree. However, this is not a practical
way of enforcing an “is” semantics, since it requires that every non-allowable feature has to
be explicitly included in the description. Also, each MUST-NOT-HAVE feature has to be

specified by a teacher via near-miss negative examples.

The problem could be alleviated by not using the drop-feature or ignore-feature rule, and
instead allowing each feature to have a frequency measure associated with it, to indicate how
many observed instances had that feature present, and therefore to indicate the importance of
that feature and the probability of it being present in a future valid instance. Even just the ability
to annotate a feature as being optional would avoid the need for the drop-feature operation,
therefore allowing a concept to have an “is” semantics, which in turn would make the need for
negative examples less necessary, except perhaps for giving a especially strong emphasis to the
required presence or absence of a particularly functionally significant feature.

Winston’s system is not able to represent structural disjuncts (such as the back of a generalised
chair having several alternative substructures) except perhaps by referring to another concept
(such as chair-back) which has several subclasses. His paper does not address how such a
concept hierarchy is formed, hence the only disjuncts supported are those involving predefined
concept hierarchies (such as the brick class and its two subclasses wedge and cube).

A contribution of Winston’s system which has particular significance to the GRAM system
is that his representation allows groups of similar components (such as a tower of bricks) to
be represented as a single entity. A group is characterised by a typical-member, which is a
generalisation of the individual members, formed by extracting the features common to most
or all of them. His representation of groups has been extended in several ways in the GRAM
system, as have the algorithms for finding groups within an object. This is discussed in the
“Representation” and “Instance Construction” chapters later in the thesis.

The issues involved in matching two descriptions, and the algorithm for doing it, are not
discussed in his paper. The focus of the work was on identifying different kinds of similarity
and the kinds of generalisation operation required for each of them. There is no mention of
using the structure of descriptions to guide the matching process. In particular, although the
representation includes a one-part-is relation, the system does not provide a way of representing
large complex objects in multiple levels of detail, and of enabling the matcher to exploit the
decompositional nature of physical objects.

Overall, Winston’s system presents a number of important ideas, but only implemented in
a simple way. The GRAM system described in this thesis shows how some of these ideas
can be extended to cope with more complex objects, in particular those pertaining to group
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representation and group finding.




2.2. ACRONYM 43

2.2 ACRONYM

Brooks’s ACRONYM [Brooks, 1981] is not a concept learning system, but is a system for
representing class-hierarchies of three-dimensional viewer-independent models of complex
physical objects, and using these models to interpret and predict two-dimensional image data.
A central contribution of the system is its geometric reasoning and constraint manipulation,
which is not directly relevant to this thesis, although it might be applicable in future work in
an extended GRAM.

One relevant aspect of ACRONYM for this discussion is its representation scheme, which,
in many ways, is more elaborate than the GRAM representation, since ACRONYM is not
constrained by the requirement that model descriptions should be learnable.

As in the case of many of the systems discussed in this chapter, ACRONYM represents
multiple concepts in a hierarchy defined by the “subclass-of” relation, and represents individual
concepts as a part hierarchy based on the “part-of” relation. Each part is represented as a
generalised cone, which is the volume formed when a two dimensional planar cross-section is
swept along a spine curve while being held at a constant angle to the spine and transformed
according to a ‘sweeping rule’ (such as a change in dimensions). Each generalised cone is
describable using just a few attribute values, and is therefore a simple but powerful way of
representing complex objects with a wide variety of shapes. Future work on the GRAM system
is likely to adopt this representation scheme, since it enriches the descriptions of objects
considerably, without affecting the rest of the system at all. It only requires the addition
of a few more attributes. However, it does also require a vision system which can produce
generalised cone descriptions.

A feature of ACRONYM that is not present in the other systems in this chapter is that the
properties and relations characterising parts can be described using conjunctions of complex
algebraic expressions involving parameters of the parts (such as height, orientation, quantity,
and so on). This means that models can be extremely complex, capturing almost any spatial
constraint between its components. GRAM adopts a simpler, though not quite as general,
approach.

Groups are representable in ACRONYM by specifying a value greater than 1 in the ‘quantity’
slot of an ‘affixment’ relation to a component. In fact, the value can be a free variable that is
constrained by algebraic expressions involving other parameters of other components. As a
simple example, a model could specify that there are n flanges and m motors, with the algebraic
constraint that n = (2 x m) + 3.

A component that is optional can be represented by specifying its ‘quantity’ slot to be “0 or
1”. Structural disjuncts are not supported, although it is possible to state that an object has
either a flange or a base but not both, using an expression such as:

((flange-quantity = 0) and (base—quantity = 1))
or (flange-quantity = 1) and (base-quantity = 0))

or perhaps as: flange-quantity = I(1-base-quantity)l
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However, the prediction and interpretation systems are not able to deal with such constraints.
Such disjuncts could only be represented by referring to a special-purpose class which has two
subclasses, a flange, and a base.

In addition to the representation scheme, another relevant aspect of ACRONYM is that it
deals with the issue of comparing volumetric models with two-dimensional image data. Other
systems in this chapter that deal with physical objects, assume that instance descriptions are
in the same form as concept descriptions. That is, instance and concept descriptions are both
described in part-based viewer-independent volumetric models, and can therefore be directly
compared. Such systems assume that it is possible to form volumetric instance descriptions
from an observed image prior to classification, using a vision system that can recognise
primitive volumetric solids. Brooks argues that this may be impossible or very difficult, due
to ambiguities or lack of information in the image description. ACRONYM is significant
because it does not make the assumption that a volumetric model can be obtained from image
data produced by low-level visual mechanisms, and instead provides a means to perform
classification using two-dimensional image features. It does this by making predictions of
invariant two-dimensional observable image features, computed from the three-dimensional
viewer-independent concept description. These can be used to form rough hypotheses of model
to image feature correspondences. These predictions can also act as instructions on how to use
measurements of image features to deduce three dimensional information about the object to
which it has been hypothetically matched.

ACRONYM'’s matching task is more complex and computationally expensive than for sys-
tems that assume volumetric instance descriptions. Therefore, it seems undesirable, and in fact
unnecessary, to completely abandon the assumption that the volumetric instance descriptions
can be obtained. Instead, a combination of a low-level volume-perception mechanism (such as
PARVOS in section 2.9, a volumetric matcher, and an ACRONYM-like image prediction and
interpretation mechanism, might be a more optimal approach. The volume-perception mech-
anism could produce volumetric descriptions to the extent possible by bottom-up techniques,
and an ACRONYM-like system could produce classified volumetric descriptions of some of
the other components using its more top-down expectation-driven mechanism. The results
of these two systems could be used to classify other as-yet unclassified components, and the
object as a whole, by direct volumetric matching. The volumetric matcher could be applied as
soon as there are sufficient volumetric descriptions of subcomponents, produced by the other
systems.

The main limitation of ACRONYM relative to the domain and task requirements of this
thesis, is that it does not address the problem of learning object models, and the representation
was not specifically designed to support learning. Models are instead input to the system
manually via a graphical modelling system. Many features of an object are made implicit (via
quantitative algebraic expressions) rather than as explicit qualitative descriptors. Also, it is not
clear how these complex arbitrary algebraic expressions, and the free variables in them, could
be learned from example objects.
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2.3 CLUSTER/S

CLUSTERY/S [Stepp and Michalski, 1986a] is a non-incremental unsupervised learning system
that finds conceptual clusters of structured objects. It is the least relevant to the work in this
thesis, but it is mentioned here because it is significant in the development of systems that deal
with structured objects. The key idea presented is to convert a structured object description into
an attribute-vector description so that attribute-based clustering mechanisms can be applied.
CLUSTER/S uses this technique to enable the previously developed CLUSTER/2 system
[Stepp, 1987a] to be applied in a structured domain.

CLUSTER/S represents objects using an annotated form of predicate calculus that was
developed for the earlier INDUCE systems [Michalski, 1983], but with the addition of n-ary
predicates. For example, the ‘chair’ object in Figure 2.2 could be represented in the following
way:

chair(x) ==> 3 pl,p2,p3
[part-of p1 X] [part-of p2 X]
[part-of p3 X] [part-of p4 X]
[color(p1)=brown] [shape(pl)=rectangle]
[color(p2)=brown] [shape(p2)=rectangle]
[color(p3)=black] [shape(p3)=rectangle]
[color(p4)=black] [shape(p4)=rectangle]
[orientation(p1)=vertical] [orientation(p2)=horizontal]
[orientation(p3)=vertical] [orientation(p4)=vertical]
[on(p1,p2)]
[on(p2,p3)]
[on(p2,p4)]
[left-of(p3,p4)]

pl

p2

p3 p4

Figure 2.2:

CLUSTER/S converts the descriptions of a set of structured objects into attribute-based
descriptions, which can then be clustered using CLUSTER/2. It does this by finding a ‘core’
description that is the common substructure of the set of objects. This common substructure
enables the individual object descriptions to be converted to attribute-based descriptions, since
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the corresponding parts can be treated as ‘named parts’. When clustering, there is no need to
deal with structured object matching, since correspondences have already been found during
this preliminary stage.

Since the clustering aspect of CLUSTER/S is not directly relevant to the focus of this thesis,
the primary relevance of CLUSTER/S is its representation scheme, and the way in which
objects are matched to produce the ‘core’ description.

One limitation of the representation is that it allows arbitrary predicates and attributes, which
are not organised or partitioned in a way that enables the matcher to exploit the structure of the
description. There is no explicit notion of representing objects in multiple levels of detail, and
the matcher does not allow objects to be processed at a coarse level of detail before considering
the finer details. In fact, the work on CLUSTER/S has not directly addressed the problem of
dealing with large complex structured objects, but is instead based on a more general form of
graph-matching, with some degree of pruning the search to prevent combinatorial explosion.
However, it seems that it would be unreasonably computationally expensive for dealing with
objects as complex as, for example, the bicycle in Figure 1.1 on page 2. The fact that it is non-
incremental also makes it inappropriate in a domain where learning must occur incrementally
in response to newly observed instances.

The representation scheme also does not support probabilistic information about the expected
presence of the features of a concept and instead seems to employ the “drop-feature” generali-
sation operation. This means that generalisations have a “contains” semantics, which has the
same consequences that were discussed earlier for Winston’s system in section 2.1.

It seems that the central ‘mistake’ in the development of CLUSTER/S is that the problem of
concept acquisition in the domain of structured objects was addressed without first considering
the issue of what kind of representation would best support this task and domain. Instead,
CLUSTER/S uses a representation scheme and clustering mechanisms that were originally
developed for attribute-based domains, and it is not clear that these mechanisms are applicable
to structured domains, since they do not explicitly exploit the structure of descriptions.
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24 MARVIN

MARVIN [Sammut and Banerji, 1986] is a semi-supervised concept-learning system in which
concepts are described in terms of other concepts, and which can deal with structured objects.

Concepts are represented as Horn Clauses, such as the example below for the chair in Figure
2.2 given earlier:

CHAIR(X) :- 3P1,P2,P3,P4,Y:
(PARTOF P1 X) & (PARTOF P2 X)
& (PARTOF P3 X) & (PARTOF P4 X)
& (VERTICAL P1) & (HORIZONTAL P2)
& (VERTICAL P3) & (VERTICAL P4)
& (ONP1 P2) & (ONP2P3) & (ON P2 P4)
& (CHAIRBACK P1) & (CHAIRSEAT P2)
& (ROD P3) & (ROD P4)
& (ONXY) & (FLOOR Y)

The main idea proposed is that of iteratively learning a concept by automatically constructing
instances to test the validity of, and to refine, the concept. A concept is initially created from
a single instance, which is then generalised by performing a ‘replacement’ operation. This
involves replacing one or more of the predicates on the right hand side of the concept (or clause)
being learned, with the left hand side of some other previously acquired clause.

For example, BRICK(A) might be replaced by ANY-SHAPE(A) by using the clause:
ANYSHAPE(A):-BRICK(A).
Similarly, the set of predicates
BRICK(X) & BRICK(Y) & BRICK(Z) &
ON(Z,X) & ON(Z,Y) & SEPARATE(X,Y)
might be replaced by a single previously-acquired predicate ARCH(X,Y,Z).

An instance is then constructed which satisfies the new concept but does not satisfy the
previous concept prior to the replacement. A teacher is asked whether the instance is valid,
and if so, then the generalisation is presumed to be acceptable. If not, then the concept must
be specialised by performing a further replacement which involves some of the predicates
previously removed. The new concept is then generalised again, and the above steps are
repeated. This process continues for all possible replacement operations.

This is similar to Winston’s “near-miss” training in the sense that it involves making use of
instances that are ‘almost correct’, and refining the concept accordingly. However, Winston
relied on near-miss examples to be provided by the teacher, while MARVIN constructs these
itself. A teacher is only required to verify these instance.

Although the papers describing MARVIN deal with examples in the domain of physical
objects, such as ‘arches’, MARVIN was not developed particularly for structured objects, and
therefore (as for CLUSTER/S) the system does not exploit the structured nature of the concepts
it learns. All predicates are treated equivalently, and the structure of objects is not explicitly
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reflected in the structure of their descriptions. For example, there is no distinction made
between contextual and substructural components.

MARVIN uses an unusual method of representing groups of similar components, by recur-
sion. For example, the concept ‘column’ would be defined by the following clauses:

COLUMN(X) :- BRICK(X) & STANDING(X) & ON(X,Y) & COLUMN(Y).
COLUMN(X) :- BRICK(X) & STANDING(X) & ON(X,Y) & GROUND(Y).

This definition means that an individual brick is an instance of the concept ‘column’. This
does not seem to be a ‘natural’ way of representing groupings, and does not make the grouping
explicit, nor allow predicates on the group as a whole to be made explicit.

MARVIN learns from a single observed instance, which is then generalised via domain
knowledge and teacher feedback. It does not provide any method of incorporating newly
observed instances into the concept description, and this would prevent it from being applicable
to an autonomous robot that must learn and refine concepts on the basis of unsupervised
observation of new instances. It is not possible for such a robot to generate trial instances
for validation, except perhaps by pulling the legs of chairs or bending television aerials. It
could perhaps ask verbal questions, such as “can the seat of a chair be elliptical?”, or perhaps
draw pictures of a test instances, but primarily it must learn from positive examples, or from
discriminating between examples of similar concepts. In the domain of complex physical
objects there are so many possible generalisations that could be made, and so many possible
trial instances that could be proposed, that such an approach would be infeasible, unless there
was sufficient reasoning ability or domain knowledge to identify the important questions or
test instances.

It is not clear how well MARVIN would perform on more complex examples in a real physical
domain. The system does not make use of the decompositional structure of objects to constrain
and guide the classification and generalisation processes, but seems to take a more exhaustive
approach, in the manner of a PROLOG interpreter. It also does not address the issue of partial
structural matching, or of dealing with alternative partitioning of instances.

Despite the limitation of MARVIN for the domain of structured objects, a central idea which
has also been adopted in GRAM, is that concepts are defined in terms of other concepts, rather
than in terms of a complete set of components that are organised as a part graph (as is the case
in Winston’s learning system, Brooks’s ACRONYM, and Connell&Brady’s system (described
later)). This means that concept memory is essentially a learned description language consisting
of clauses that can be used within other clauses. A concept description does not consist of a
global set of all of its components (structural and contextual), but only a local set of its directly
related components. The matcher only has to establish classifications of its components,
locally, rather than finding a consistent set of one-to-one correspondences between two graphs.




2.5. MERGE 49

2.5 MERGE

Wasserman’s MERGE performs incremental concept acquisition and organisation for objects
that have a hierarchical structure, such as physical objects or corporate management structures.

MERGE represents an instance as a hierarchy of components, where the hierarchy is defined
by some fundamental relation such as “part-of” or “has-boss”. Such a hierarchy is called an
F-tree. For the rest of this discussion we will assume an F-tree is a part hierarchy organised
according to a part-of relation.

F-trees are stored in memory in generalisation hierarchies called G-trees. Each node of a
G-tree is an F-tree, and the nodes below it are its subclasses, or variants. Since each variant
F-tree is similar to its parent F-tree, MERGE avoids the need to store identical information
redundantly, by supporting inheritance in several forms: a variant can be defined by specifying
parts that are to be added, deleted, or substituted. All other parts are implicitly inherited from
the parent F-tree, and so do not need to be explicitly included in the description of the variant,
unless they are necessary for indicating the branch on which a lower-level part is to be added,
deleted, or substituted.

Every kind of part has its own G-tree, which is essentially a hierarchical clusterings of
instances of that kind of part. To illustrate this, figure 2.3 shows two chairs which have been
represented in memory as a number of G-trees. The notation is different from that used in
Wasserman'’s thesis, and has been chosen to enable a better comparison with the GRAM system.
Each node of a G-tree is an F-tree, although it is defined in the diagram by just specifying its
subparts, which are F-trees in other G-tree. The diagram only shows information relevant to
this discussion.

For example, the chair G-tree consists of a generalisation of both chairs, at the top, and
two variants beneath it. The subparts of the generalised chair are chairback, chairseat, and
chairsupport-#, each of which is an F-tree in another G-tree. For example, chairsupport-# is
the top node of the chairsupport G-tree, and has two variants, one of which is the two-legged
support, and the other is the central-leg support.

The variants of the generalised chair inherit the details of their parent, although the generalised
chairsupport-#is substituted with chairsupport-1 or chairsupport-2. The hierarchy could extend
to any number of levels if more instances were observed.

The representation also allows various properties to be associated with each F-tree node, and
also allows non-fundamental relations between components, such as “left-of” or “bigger-than”.

Although this representation scheme seems reasonable, there is a significant assumption made
by the system which makes the task addressed by MERGE significantly different from that of
GRAM. This assumption is that when a new instance is observed, and is to be incorporated
into memory, each part of the instance (and the instance itself) has already been classified as
belonging to a particular G-tree, by virtue of its name. For example, if a third chair is observed
which is identical to the second chair, the names of its parts, such as chairback-3, chairseat-3,
or chairsupport-3, immediately enable the system to determine which G-tree each part should
be incorporated into. The only task required by the system is to determine which node of the
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G-tree should be generalised, or where the new instance should be added as a variant. This is
done basically by searching the G-tree, matching each F-tree with the instance F-tree to find
the best correspondence.

Two F-trees are matched by applying the MATCH procedure to the root nodes of the F-trees.
MATCH then recursively matches all pairings of the subparts of the nodes, to find the best set
of bindings. The similarity of leaf nodes is based on two measures, firstly a measure indicating
the hierarchical distance from the two nodes to their lowest common ancestor in their G-tree,
and secondly, a measure of the similarity of their properties and relations. The match process
is strongly constrained because such parts are only compared if they belong in the same G-tree,
and this is immediately known by their name.

MERGE addresses the “level-hopping” problem, in which similar objects are represented
with corresponding components on different levels of their F-trees, and thus cannot be matched
using a strict top-down traversal of the hierarchy. MERGE deals with this by inserting “null
nodes” into the hierarchy to test all possible adjustments of the hierarchies (by one level) in
the hope that a better match may be found. This scheme does not cope with level hops of more
than one level difference, and the strategy seems computationally expensive.

The assumption of named parts means that MERGE is not really able to classify objects
on the basis of their structure, other than identifying which node of a given G-tree an object
best corresponds to. The whole search is constrained dramatically by the pre-classification of
parts by their names. This assumption was presumably made because MERGE was based on
Lebowitz’s work on reading patent abstracts for complex physical objects, where the parts of
the objects are identifiable by their names.

Therefore, MERGE does not support the task which GRAM is addressing, which is to be able
to match complex objects by comparing their unlabelled substructure and context.

It is not clear how much of the MERGE system could be extended to cope with unlabelled
objects. It would require searching through all G-trees in memory, and G-trees are not organised
or indexed in any manner which allows this. Also, the exhaustive recursive matcher would be
unacceptable for complex objects, especially if the pre-classification assumption does not hold.

One feature of MERGE that has also been used in GRAM is the idea of representing all
components of objects as concepts. The advantage of this is that it enables each concept to be
defined directly in terms of other concepts, rather than part hierarchies, and this results in a
simpler and more homogeneous representation scheme, without having to distinguish between
concepts and parts of concepts, or having to decide when to extract out portions of substructure
as concepts in their own right.
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2.6 Noddy

NODDY [Andreae, 1985] is the system of which GRAM was originally intended to be a com-
ponent. NODDY incrementally learns robot procedures from examples, by matching the steps
of example traces of a procedure, and generalising the existing procedure description by form-
ing loops, conditional branches, and simple expressions of variables. Since the actions of a
general-purpose robot system should be able to be conditional on visual input, GRAM was to be
a subsystem that could build generalised descriptions of visual observations, which could then
be used in the conditional statements of a generalised procedure.

In many ways, the procedure learning task is a similar to the physical object learning task, in
the sense that both involve representing, matching, and generalising structured descriptions.

For example, loop formation is similar to group-finding, since a loop is formed to summarise
a repetition of actions, and a group is formed to summarise a repetition of objects. However,
NODDY only forms loops during the matching process to resolve ambiguity, while GRAM
is also able to form groups prior to matching, thus avoiding ambiguity and improving the
efficiency of the matcher.

Another similarity between the two domains is that procedures and physical objects can both
be described in multiple levels of abstraction and detail (although NODDY deals only with
‘flat” procedures), and procedures can have relationships with other procedures (i.e. procedure
calls). NODDY deals with components described by numerical properties, but has a much
simpler set of properties than GRAM.

One important difference between the two domains is that there is less complexity in the
structure of procedures, since procedures are sequential, with the relationships between compo-
nents basically limited to ‘follows” and ‘precedes’. The sequential ordering guides the matcher
in a way that is not possible for physical objects.

NODDY’s matcher begins by finding a few ‘seed’ correspondences between distinct steps of
the current generalised procedure and steps of the example procedure trace (such as the first
and last), and then propagates linearly from these.




2.7. CONNELL AND BRADY 53

2.7 Connell and Brady

Connell and Brady’s system [Connell and Brady, 1985] was built with similar goals to GRAM. It
learns descriptions of two dimensional objects, and was intended to form part of a “mechanic’s
mate” project which would assist a mechanic in various ways, such as finding a desired category
of tool.

Instance descriptions are obtained from a low-level vision mechanism called the Smoothed
Local Symmetries program [Brady, 1983] which breaks a two-dimensional image into seg-
ments. Such a system could also be used to provide input to the GRAM system, which assumes
that a vision system is available.

Connell and Brady’s system represents the results of the segmentation by a semantic net,
in which nodes denote object components (such as parts, part-ends, and part-sides) and edges
denote relations or properties (such as ‘has’, ‘join’, ‘very long’, efc). The network spreads
outwards from a ‘root’ node via several kinds of relations, with larger and coarser details close
to the root node, and smaller and finer details further away.

An important aspect of the representation is the use of Gray Coding, in which each property is
described by a set of predicates, rather than a single predicate. Each predicate adds a distinction
to the property, such as the predicate ‘very’ which can be combined with the predicate ‘long’.
This means that similarity can be measured simply by counting how many predicates are shared,
rather than requiring hidden domain-specific similarity metrics. This helps to support Connell
& Brady’s requirement that semantic similarity is directly reflected in ‘syntactic’ similarity.

Gray Coding enables a single generalisation mechanism to be used, which simply ‘drops’
predicates that are not common to both descriptions. However, this does require that predicates
be chosen carefully to ensure that the methods of matching and generalisation do in fact give
appropriate results.

The representation does not support optional components, or disjunctive sets of alternative
substructures. The only form of disjunction provided is at the level of the whole concept, which
can be described in terms of a disjunctive set of models and non-models. Another limitation of
the representation is that it cannot explicitly represent groupings of similar components.

The matcher works by spreading outwards from the root node of the network, extending
the “match horizon” outwards via relations if the current similarity is sufficiently good. The
system keeps track of the best bindings between nodes of the two descriptions being compared,
and performs backtracking if necessary. Differences that are more distant from the root node
are treated as being less important than differences that are close to the root node. This is
based on the assumption that larger and coarser details are semantically (or functionally) more
important than smaller and finer details. If this assumption is valid, then the ‘syntax’ of the
semantic network reflects its semantics, as required.

This matcher is more similar to the GRAM matcher than any of the other systems discussed
in this chapter. One difference is that it deals with concepts and instances that are complete
graphs, and therefore must maintain a globally consistent set of bindings between nodes. This
means that backtracking is necessary, since it is not possible to always correctly determine the
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best correspondences of nodes at the horizon of the match without considering details that only
become available later as the matcher spreads outwards. The details of the algorithm were
not specified in the paper, and so it is not clear how effective the backtracking mechanism is,
since in theory it would require a complex ATMS-like system to correctly determine which
correspondences (or sets of correspondences) should be unselected. [Provan, 1987] has shown
that an ATMS approach is infeasible for large objects, and therefore a backtracking scheme
that relies only on partial information would seem to be necessary. Also, it is not clear how
well Connell&Brady’s backtracking scheme would perform in situations where ambiguities
are only resolvable by descriptive features that are several levels beyond the current horizon of
the match.

A second difference is that the matcher does not address the level-hopping problem, and
instead assumes that two objects can only be considered identical or very similar if they have
been partitioned in the same way, with corresponding components being at the same level in
the hierarchy.

The generaliser involves the single technique of ‘ablation’ in which common features are
retained in the generalised description, while unshared features are dropped. If two descriptions
differ significantly, then a new model can be added to the concept. Models may later be replaced
by a single model if more intermediate instances are observed. A concept may also include
non-models which are like Winston’s censors [Winston, 1984], and achieve an effect similar
to Winston’s ‘MUST-NOT’ conditions. If an instance matches a model but also matches a
non-model, then it is considered to fail the match. A non-model may also be overridden by
more models, which themselves may be overridden by more non-models.

One problem with this scheme is, as has been the case for several of the systems in this
chapter, that concept descriptions necessarily have a “contains” semantics, since the drop-
feature generalisation operation is employed. To a small degree this is alleviated by the use of
non-models, as for Winston’s MUST-NOT conditions, but these non-models also suffer from
the same problem. Also, the use of non-models is an expensive way to constrain a description,
since they are themselves complete descriptions of a negative example, and must be matched
and generalised independently.
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2.8 Labyrinth and COBWEB

The Labyrinth system [Thompson and Langley, 1991] is an incremental unsupervised concept
learning system for the domain of structured objects. It deals specifically with the issue of
acquiring and organising multiple concepts in memory.

Labyrinth is built upon the COBWEB mechanism [Fisher, 1987a] for incorporating instances
into a concept hierarchy in a way that maximises the measures of ‘utility’ for the concepts.
The key contribution of Labyrinth is that it extends the COBWEB mechanism to deal with
structured objects, rather than merely attribute vectors.

Instances are represented as a part decomposition hierarchy, in which each part in the hierarchy
is linked to its subparts via the ‘part-of” relation. The topmost node of the hierarchy represents
the observed object as a whole, and the leaf nodes represent primitive parts that have no further
decomposition. Each part is also characterised by an attribute-vector specifying information
such as shape and colour. The subparts of each part can have arbitrary relations between them,
such as left-of, or connected-to.

Labyrinth does not make the assumption of MERGE that the parts of an instance are already
partially pre-classified by being implicitly associated with a concept hierarchy for a particular
kind of object. Rather, Labyrinth stores all concepts in memory in a single concept hierarchy,
and the system itself must classify the instance parts with no prior information. The concept
hierarchy acts as a kind of indexing structure, since it allows the classifier to traverse the
hierarchy top-down, following the branches on which the concepts best match the instance,
thus obtaining a successively more specialised classification.

Concepts are represented in a manner similar to instances, except that a concept’s part-
hierarchy is only one level deep. The subcomponents of the concept are not decomposed
further within the concept description itself. Instead, each subcomponent is defined as being
an instance of some other concept. For example, a bedroom might be represented in terms of
three subcomponents, x, y, and z, which are defined to be instances of the concepts ‘chair’,
‘bed’, and ‘desk’, respectively. This avoids the problem of dealing with concepts that are large
complex part hierarchies or part graphs, since the substructure of each concept is ‘hidden’ in
the descriptions of other concepts. This particular aspect of Labyrinth is basically the same as
for MARVIN and MERGE, and is also the scheme used by GRAM.

The representation scheme supports a more precise form of feature prediction than the other
systems described in this chapter, in the sense that attributes, relations, and subcomponents of a
concept have probabilities associated with them, indicating how frequently they have occurred
in the observed instances of the concept.

Figure 2.4! illustrates the kind of concept memory that might exist after observing two chairs.
Each node is a concept, some of which are defined in terms of subparts, with occurrence
probabilities indicated. The properties and relations between subparts have not been shown.

IThis example was not generated by Labyrinth, but was created by hand for this chapter, and is only intended
to convey the general idea of the Labyrinth system, rather than giving precise details of exactly how the two chairs
would be represented in concept memory.
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The names on each concept have been given only for readability, since instance parts are not
given concept names (in contrast with MERGE).

An instance is classified by first classifying its subpart objects. These in turn are classified by
classifying their subparts. This recursive process bottoms-out at the leaf nodes, which have no
substructure, and so can be classified by the attribute-based COBWEB system. This involves
searching the concept hierarchy, top-down, to find the best-matching concept.

After the leaf subparts have been classified, their parent parts at the next level up the hierarchy
can be classified, since their subparts are now labelled. This is done by using a modified
COBWESB algorithm that can deal with sets of subparts, each described by an attribute vector
specifying its properties, and by relationships with other subparts. (The previous COBWEB
only dealt with instances and concepts represented as a single attribute-vector). Each label is
represented as a property of a subpart. The modified COBWEB traverses the concept hierarchy
top-down, comparing concepts with the instance by comparing their overall properties, the
properties of their subparts (including the label property), and relations between the subparts.

The technique of labelling subparts, to simplify the classification task, is similar in principal to
the technique used by CLUSTER/S (described in section 2.3) to convert a structured description
into a non-structured description, or, in the case of Labyrinth, to a minimally structured
description.

The classifying process continues back up the instance part hierarchy until the root part
(i.e. the object as a whole) has been classified. Hence classification of an instance involves a
depth-first divide-and-conquer technique, breaking up the overall classification problem into
a series of simpler classifications, one for each subtree of the instance part hierarchy. During
the classification process, concept memory is also updated by generalising existing concepts,
creating new c