
Scalability and Performance
Considerations for Traffic

Classification in
Software-Defined Networks

by

Matthew John Hayes

A thesis
submitted to the Victoria University of Wellington

in fulfilment of the
requirements for the degree of

Master of Science
in Network Engineering.

Victoria University of Wellington
2016

Abstract

Scalable network-wide traffic classification, combined with knowledge of
endpoint identities, will enable the next wave of innovation in network-
ing, by exposing a valuable layer of network metadata for applications to
consume. We leverage the promising new paradigm of Software-Defined
Networking (SDN) to create architecture for scalable traffic classification
(TC). In this paper, we demonstrate scalability issues inherent with run-
ning full TC services over a traditional SDN architecture through test re-
sults. We then propose an architectural modification for scalable TC built
atop of widely-available OpenFlow SDN switches, implementing higher-
complexity classification functions on commodity hardware. We validate
this approach through a prototype implementation, with experimental re-
sults that demonstrate the scalability of our approach.

ii

Acknowledgments

Thank you to my supervisors, Professor Winston Seah and Dr Bryan Ng,
for their encouragement, pertinent questions and advice. Thank you to
InternetNZ for providing funding.

iii

iv

Contents

1 Introduction 1
1.1 The Problem . 4

1.2 Objectives . 5

1.3 Tasks . 5

1.4 Contributions . 6

1.5 Thesis Structure . 6

2 Related Work 7
2.1 Scalability of Software-Defined Networking 7

2.1.1 Improving Controller Performance 7

2.1.2 Reducing Controller Functions 8

2.1.3 Partitioning Controllers 9

2.2 Traffic Profile Considerations 9

2.3 Traffic Classification . 10

2.4 Summary . 12

3 Scalability of SDN TC 13
3.1 Baseline Application - nmeta 13

3.2 Baseline Evaluation Methodology 14

3.2.1 Test Environment . 15

3.2.2 Test Topology . 15

3.3 Test Automation & Orchestration 17

3.3.1 Orchestration . 18

v

vi CONTENTS

3.3.2 Test Tooling . 20
3.3.3 Load Test Methodology 22
3.3.4 NFPS Test Types . 22
3.3.5 Functional Performance Evaluation 23
3.3.6 New Flow Rate Testing 24
3.3.7 System Performance Measurement 24

3.4 Baseline Validation Results . 25
3.4.1 Initial Results . 25
3.4.2 Controller CPU Analysis 27

3.5 Summary . 27

4 Solution Architecture 29
4.1 ONF SDN Architecture . 29
4.2 Architecture Revision . 30
4.3 Summary . 32

5 Design of Scalable TC with OpenFlow SDN 33
5.1 Inter-Component Communications Design 33

5.1.1 Switch to DPAE D-DPI 34
5.1.2 DPAE to Controller D-CPI 36
5.1.3 Switch to Controller D-CPI 37

5.2 Packet Forwarding Design . 37
5.2.1 Passive and Active Modes 37
5.2.2 Flow Suppression . 37
5.2.3 OpenFlow Table Design 39

5.3 TC Design . 45
5.3.1 State Retention . 45
5.3.2 TC Policy Design . 46
5.3.3 Devolving Static Classification 46
5.3.4 Devolving Identity Classification 46
5.3.5 Devolving Statistical Classification 47
5.3.6 Devolving Payload Classification 47

CONTENTS vii

5.4 Performance Tuning . 47
5.4.1 DPAE Concurrency Design 47
5.4.2 Packet Library . 48
5.4.3 5-Tuple Bi-Directional Hash and Database Indexing . 48
5.4.4 Broadcast Optimisation 48

5.5 Summary . 49

6 Validation 51
6.1 Test Method . 51
6.2 Performance . 52
6.3 Scalability . 53

6.3.1 New Flow Forwarding Performance Under Load . . 54
6.3.2 Existing Flow Forwarding Performance Under Load 55
6.3.3 Control Plane Timeliness Under Load 57

6.4 Scaling to Multiple Switches 59
6.5 Capability . 63

6.5.1 Nmeta2 Classification Mode 63
6.6 Summary . 65

7 Conclusion 67
7.1 Future Work . 69

Appendices 71

A Result Data 73

B New Flow Load Generator - filt 77

viii CONTENTS

Chapter 1

Introduction

We live in an Information Age, where digital innovation is transform-
ing all areas of our lives. We shop globally, from anywhere, through Inter-
net commerce sites that never shut. Internet voice and video calls allow
us to see and talk to people around the world as if they are in the next
room, as well as sharing and collaborating in ways previously unimagin-
able. Virtual communities form, irrespective of the tyrannies of distance,
exchanging ideas and building new knowledge.

Machines talk to machines too, exchanging information independently
of humans, perhaps the electricity meter supplying a reading to the utility
company, or a seismometer reporting seismic activity to a monitoring site.
Aeroplanes talk to each other to avoid collisions, and cars will do so too in
the near future.

Data networking is the foundation technology on which the Informa-
tion Age is built. All of this progress relies on transmission of information
over distance. Yet, until recently, data networking has not been open to
innovation at the same pace as other areas of the Internet, due to the pro-
prietary bundling of network hardware and software into vertically inte-
grated products. This closed paradigm impedes innovation by preventing
the unbundling of layers of the network stack, but is being rescinded by
the emergence of Software-Defined Networking (SDN).

1

2 CHAPTER 1. INTRODUCTION

SDN is a recent network concept that decouples control plane decisions,
on how to make and maintain connections, from high-speed forwarding of
packets in the data plane. Through decoupling, each plane can evolve sep-
arately, encouraging innovation by breaking down traditional proprietary
vertical integration and replacing it with standardised open programmatic
interfaces. Innovators and academics can test new control plane applica-
tions and protocols, without having to also engineer a data plane, as they
can leverage programmatic interfaces into existing SDN data planes.

The SDN approach has another key benefit; it allows for logical cen-
tralisation of the control plane. Whereas vertically integrated routers and
switches each have their own limited view of network state, a logically
centralised control plane can benefit from a network-wide view. Network
applications can consume this information, once the preserve of isolated
middleboxes such as firewalls, load balancers and proxy servers, delivering
new services across the network.

Much of the recent innovation in SDN is built on OpenFlow [1], pop-
ular open SDN standard that defines a communications channel between
the control and data planes. In OpenFlow, a controller is a software-based
control plane system that manages one or more data plane switch(es) via
an OpenFlow channel.

In previous work, we investigated [2] and demonstrated the functional
benefits [3] [4] of OpenFlow SDN for Traffic Classification (TC) in enterprise
networks, through a prototype system called nmeta [5]. TC is the glue that
enables network applications to work at the flow level, rather than per
packet.

The primitives for the use of any network can be summarised into
classes of participant and conversation. The primary role of a network is
to transport conversations, comprising of any number of flows, between

3

participants (labelled as P1 and P2), as per Figure 1.1.

Key

Application Plane

Control Plane

Data Plane

P2P1

input /

output

NE

Px

Network Element

Participant

Conversation

Network Link

System boundary

Data-Controller

plane Interface

input /

output

NE

NENE

NE

NE

NE

NE

Figure 1.1: A Systems-Based Network View – flows and participants inter-
act over different paths traversing multiple network elements.

With nmeta, we enhanced the network-wide view, with TC metadata
about participants and types of conversation. This metadata has many po-
tential benefits for network operators. It can be used to make traffic classi-
fication determinations based on metadata parameters not usually acces-
sible, such as endpoint identity and flow statistical profile, and can do so
in an online timescale such that actions can be taken before flows have had
a chance to ramp up. This allows operators to write more abstract Quality
of Service (QoS) and Traffic Engineering (TE) policies, referencing aspects
of endpoint identity and flow behaviour, instead of network address and
port numbers. Nmeta generates flow and identity metadata that can be
used for online and offline use cases, as per Figure 1.2 1.

The nmeta system leverages OpenFlow Packet-In message capability to
send unmatched full length packets from the switch, via the controller, to
the nmeta application. The packet headers and payload are thus available
for inspection by traffic classification algorithms and other functions, such
as forwarding engines. The ability to see specific full-length packets, along

1source: https://mattjhayes.github.io/nmeta/

4 CHAPTER 1. INTRODUCTION

Participants Conversations

User Identity
i.e.bob@example.com

System Identity
i.e. desktop10.example.com

System Features
i.e. SysDescr: Ubuntu precise,

PortDescr: eth1

System Services
i.e. web server

Flow Enrichment
i.e. Application=Intranet,

Security=normal

QoS_treatment=silver

What enterprise networks

generally know today

Addressing
i.e.MAC address,

IP address

Connectivity
i.e.Switch Ports,

Wireless

Associations,

VLAN

Flow
i.e start time, end

time, bytes

transferred,

protocol, ports

Metadata that can be

added by nmeta

Figure 1.2: Nmeta Enhancements to Network Flow and Identity Metadata

with a network-wide view, provides nmeta with a powerful foundation
for running policy-defined traffic classification.

Where the previous work demonstrated the functional benefits of SDN
for traffic classification, it did not however investigate the non-functional
requirements, such as security, availability, performance and scalability.
This thesis extends the aforementioned previous work by investigating
the non-functional engineering concerns, in particular, those of performance
and scalability.

1.1 The Problem

The logical centralisation of SDN presents challenges to scalability when
used for TC. Nmeta follows the SDN logically centralised architecture,
however the nmeta fine-grained multi-classifier TC requires one to many
packets per flow to be made visible to the application via the control plane.
This in turn requires data plane packets to traverse the control plane, im-

1.2. OBJECTIVES 5

pacting performance at many layers, most notably on the switch and the
controller.

OpenFlow was designed as a means for controlling simple data plane
switches, allowing the control plane to react to network events in a reliable
manner and enforce a forwarding policy. It was however, not designed to
transport large volumes of data plane packets to a TC network application.

In this thesis we investigate architectural changes to the traditional Open-
Flow SDN model that maintain a network-wide TC view, but do not over-
load the OpenFlow channel or controller with data plane traffic.

1.2 Objectives

The objectives of this thesis are to:

• Investigate and document the performance and scalability limits of
the nmeta system.

• Design a system that makes full-featured TC scalable using Open-
Flow SDN.

• Validate that the revised architecture has acceptable performance un-
der load, and is scalable.

1.3 Tasks

The tasks of this thesis are to:

• Survey related work in the area of TC scalability.

• Measure and analyse the limits of nmeta scalability in terms of new
flow rate.

6 CHAPTER 1. INTRODUCTION

• Implement an SDN-based traffic classification system that can scale
to handle peak new flow rates of an enterprise-scale deployment.

1.4 Contributions

The contributions made by this thesis are the design and experimental
validation of an enhanced nmeta platform that can scale to meet the per-
formance requirements of an enterprise-grade network platform in terms
of peak new flow rate.

Note that a subset of this thesis is being considered for publication by
the IEEE Systems Journal.

1.5 Thesis Structure

This thesis is organised as follows. Chapter 2 discusses related work in the
context of our thesis. Next, in Chapter 3 we demonstrate that traffic clas-
sification in the control plane has a flow rate scalability problem, and we
propose a revised solution architecture to solve this problem in Chapter
4. In Chapter 5, we detail the design of a prototype system that imple-
ments a subset of the revised architecture, discussing the design decisions
and trade-offs. Next, in Chapter 6 we demonstrate improvements to per-
formance and scalability through experimental results from our prototype
implementation. Lastly we draw conclusions and propose future work in
Chapter 7. Appendices provide supplementary detail on test methodol-
ogy.

Chapter 2

Related Work

This thesis combines the topics of Traffic Classification and Scalability in
Software-Defined Networking, both sizeable fields, thus there is a large
volume of related work to consider. In this chapter we present an overview
of some important related work.

2.1 Scalability of Software-Defined Networking

A recent survey paper by van Asten et al. [6] reviewed SDN scalability
papers such as Hyperflow [7], ONIX [8], DevoFlow [9], Kandoo [10] and
FlowVisor [11]. They concluded that scalability solutions fall into the gen-
eral categories of improving controller performance, reducing controller func-
tions or partitioning controllers into separate domains. We review related work
against these categories below.

2.1.1 Improving Controller Performance

Controller design can be a critical factor that impacts the performance and
scalability of an SDN system. Tootoonchian et al. [12] investigated con-
troller optimisation and improved the performance of the NOX OpenFlow
controller, by a factor greater than 30 times, by making it multi-threaded.

7

8 CHAPTER 2. RELATED WORK

Similarly, Maestro [13] improves controller performance through paral-
lelism, spreading controller workload across multiple cores for near linear
scalability. Their system relies on there being no complicated dependen-
cies between flow requests (i.e. Packet-In events are close to atomic). Note
that this assumption may not hold for traffic classification, especially for
situations where multiple packets in a flow must be inspected to make a
classification determination.

Shalimov et al. [14] review the performance of OpenFlow controllers
and conclude that current controllers (as of October 2013) are ’not ready
to be used in production’ due to poor scaling over cores, and security defi-
ciencies. They specifically mention that Ryu (the controller used by nmeta)
does not have multi-threading, and thus cannot scale to use multiple cores,
and say that it is ’more suitable for fast prototyping than for enterprise deploy-
ment’.

2.1.2 Reducing Controller Functions

Various papers propose performance and scalability improvement schemes
that localise and/or better distribute load by devolving functions from the
controller to the switch.

Curtis et al. [9] present Devoflow, a concept that augments OpenFlow
with an additional layer in the data plane to improve scalability. They
see flows as differing types. ’Security sensitive’ and ’significant’ flows re-
quire further inspection, but ’normal’ flows do not, and should be kept
in the data plane. Switches are highlighted as performance and scalabil-
ity bottlenecks due to slow control-data path and restricted FTE capacity.
They introduce the concept of ’elephant flows’, flows that are long lasting
and transfer significant volumes of data. A trade-off is identified between
full flow visibility with impaired performance against just visibility of ele-
phant flows and improved performance and scalability. They present re-
sults from simulations rather than testing, as their scheme had not been

2.2. TRAFFIC PROFILE CONSIDERATIONS 9

implemented in hardware, and conclude that it greatly reduces the num-
ber of FTEs and control messages.

Lin et al. [16] describe an architecture where they reduce traffic classifi-
cation traffic to the control plane by extending the OpenFlow protocol and
leveraging this to communicate with additional data plane components to
affect classifications.

2.1.3 Partitioning Controllers

Various papers propose Network Operating System (NOS) that abstract
the network state across multiple controllers. HyperFlow [7] is a system
that allows horizontal scaling of controllers, with no change to OpenFlow.
HyperFlow uses the WheelFS distributed filesystem to provide a partition-
resilient publish/subscribe mechanism between controllers to keep network-
wide state synchronised. Similarly, ONIX [8] is a closed-source NOS pro-
vides a distributed controller network-wide state via an API. ONOS [15]
is an open distributed controller platform targeted at meeting the require-
ments of large service providers. ONOS provides an API into a distributed
global network view of switch/link topology and network events, plus
ability to install flows via intentions abstraction.

A different approach to scaling is taken in Kandoo[10]. A topology of
local controllers bereft of network-wide state each serve only a small num-
ber of switches. A root controller provides a platform for applications that
need network-wide state. Applications that do not need network-wide
state are distributed across the local controllers to provide better response
and scalability.

2.2 Traffic Profile Considerations

Traffic profiles are an important consideration when designing a scalable
SDN solution. When Casado et al. [17] presented Ethane, a precursor to

10 CHAPTER 2. RELATED WORK

OpenFlow, they identify broadcast traffic as a significant challenge since it
resulted in 90% of the flows in their deployment.

The distribution of flow durations also requires consideration. Flow
setup delay due to SDN processing can become more significant for shorter
flows as a ratio. Benson et al. [18] observed that many data centre flows
were less than 100ms in duration. For short flows such as these, increases
in controller processing time may become a significant impediment to the
flow.

Benson et al. [18] also observed an enterprise data centre where 80%
of flows had inter-arrival times less than 1ms. This is significant for SDN
scalability, as it causes high instantaneous rate of new flow load on the
controller. The good news was the concurrency of flows was relatively
low, meaning switches need not have overly large flow tables.

2.3 Traffic Classification

In our previous work [3], we divided TC techniques into the following
categories:

• Static. Utilise packet header information and/or network context
such as ingress port or Virtual LAN (VLAN).

• Identity. Classify based on the identity of one or more of the partic-
ipants in the conversation.

• Statistical. Use flow features to make a determination. Can extend to
Machine Learning (ML) techniques, although these have challenges
with regards to training and ground truth.

• Payload. Look into the payload of one or more packets. Also known
as Deep Packet Inspection (DPI). Can be computationally expensive
and cannot cope with encrypted payload.

2.3. TRAFFIC CLASSIFICATION 11

We define full TC services as the ability to carry out all four TC types
listed above, and to be able to combine them in a hierarchical policy.

We use revisit these categories later in this thesis, analysing where they
are best-suited to be run in the SDN architecture.

Qazi et al. [19] present a framework called Atlas that uses machine
learning in conjunction with SDN to classify applications. They source
flow to application ground truth for ML training from the network socket
readings on end devices. They modify OpenFlow to store packet size
statistics, and note that packets could be mirrored if this modification was
not possible due to scalability issues, such as TCAM constraints. Their so-
lution scales through distribution of the ML workload to the edge network
device (in this case, access points). It is unclear how this solution can work
with existing SDN infrastructure, or how timely the classification would
be.

Li et al. [20] propose extensions to the OpenFlow standard, called Open-
Flow Feature eXtraction (OFX), that implement programmable flow fea-
ture extraction. They use a Network Flow Processor (NFP) to accelerate
the extraction of statistical flow features at the switch and run machine
learning algorithms on the controller to classify the traffic. The centralised
TC processing in this approach may not be suitable for online use cases
that require actions in real time based on TC determinations due to con-
trol plane latency and it is unclear how the control plane could be scaled.

Recent work by Donato et al. [21] provides a retrospective on TIE (Traffic
Identification Engine), an open source, non-SDN TC platform for use by
research community to evaluate TC performance.

12 CHAPTER 2. RELATED WORK

2.4 Summary

In this chapter, we reviewed SDN scalability work in the context of the
general categories of improving controller performance, reducing controller func-
tions and partitioning controllers into separate domains. Multiple approaches
to solving SDN scalability exist in each of these categories, however most
do not deal with the specific challenges of scaling TC on SDN, the excep-
tion of [16]. Our work is however, to the best of our knowledge, unique as
it deals with the challenges of scaling full TC services in SDN.

Chapter 3

Scalability of SDN TC

In this chapter, we present experimental results demonstrating scalabil-
ity and performance issues inherent in running full TC-services on stan-
dard SDN architecture. We describe our test methodology, experimental
results, and analyse the root causes of the limitations.

3.1 Baseline Application - nmeta

We use nmeta as the baseline application to test performance and scalabil-
ity of full TC services in a traditional SDN model. The nmeta application
runs on the Ryu OpenFlow controller, as shown in Figure 3.1. Nmeta has
a Northbound API providing access to identity and flow metadata, and
performance metrics. Data structures in the nmeta application hold pol-
icy, identity metadata, flow metadata and traffic classification (TC) state.

Nmeta has a fine-grained flow-based view of network traffic, as opposed
to coarse-grained address-based approaches. This point of difference is
significant as it a) requires a means to identify packets to flows, b) requires
visibility of packet features not available via existing OpenFlow standards,
and c) has implications for data storage and scaling.

Currently, nmeta only supports a single controller (Ryu[24]), with a
single nmeta application instance tightly coupled to it. The only scalability

13

14 CHAPTER 3. SCALABILITY OF SDN TC

nmeta Northbound API

Identity
Metadata

(participants)

Flow
Metadata
(conversations)

Policy

nmeta

codebase

TC State
(flow classifications

in progress)

Controller (Ryu)

Application (nmeta)

nmeta Data Structures

OpenFlow

Switch 1

e
n

d
p

o
in

t
1

e
n

d
p

o
in

t
n

OpenFlow

Switch 2

OpenFlow

Switch 3

OpenFlow

Switch n

e
n

d
p

o
in

t
1

e
n

d
p

o
in

t
n

e
n

d
p

o
in

t
1

e
n

d
p

o
in

t
n

e
n

d
p

o
in

t
1

e
n

d
p

o
in

t
n

Figure 3.1: Nmeta Application on Ryu OpenFlow Controller Architecture

built into nmeta is the ability to scale the number of switches, as per Figure
3.2.

Connected Devices

OpenFlow

OpenFlow

 SDN

Controller

OpenFlow OpenFlow

 SDN

Application

OpenFlow OpenFlow

Scale switches

horizontally

Figure 3.2: Nmeta Scales to Multiple Switches

3.2 Baseline Evaluation Methodology

The performance and scalability of the nmeta system was baselined with
the methods outlined in this section.

3.2. BASELINE EVALUATION METHODOLOGY 15

We designed a simple experimental network topology to evaluate scal-
ability constraints, as well as verifying traffic classification functionality.

3.2.1 Test Environment

A test environment was designed and built to run controlled repeatable
tests. It runs on an Oracle VM VirtualBox[25] hypervisor, as per Figure
3.3.

The host machine for the hypervisor is an Arch Linux workstation with
dual Intel E5 processors with a total of 8 cores and 64 GB of RAM. Multiple
Ubuntu Linux guests (version 14.04.02 LTS 64 bit desktop) are instantiated
within the hypervisor. Oracle VM VirtualBox was selected for the role of
hypervisor due to familiarity with the product from previous work, and
also its ability to host multiple isolated network segments. The latter point
is important as it allows a guest to be run as a switch that connects multiple
layer-1 segments.

3.2.2 Test Topology

We designed the test network topology for measuring the effects of load
on network performance, as well as identifying constraints that contribute
to deteriorating performance under load.

There are seven Linux virtual machine guests in the baseline test topol-
ogy, as per Table 3.1. One instance acts as an SDN switch, and forms
the centre of a four-legged star topology. Traffic between the four star-
connected instances must pass through the switch. A separate Test Con-
trol instance has discrete connectivity to all instances, and the switch to
controller connection is also via the out-of-band network. This design was
chosen to minimise test control traffic impact on test results.

Separate cross-switch paths are used for load testing;

16 CHAPTER 3. SCALABILITY OF SDN TC

B
ri

d
g

e
d

 S
u

b
n

e
t

N
e

tw
o

rk
 1

0
.1

.0
.0

/2
2

VM5 – Switch 1

VM: ME-V1-Switch1

name: sw1.example.com

Open vSwitch

eth2

pt2

bridge br0

IP 10.1.0.5
OpenFlow

net name Switch1-Server1

VM2 – Server 1

name: sv1.example.com

VM: ME-V1-Server1

Ubuntu 14.04.2 LTS

eth1 IP 10.1.0.2

Hypervisor - Oracle VirtualBox

Host – Arch Linux Workstation

VM1 – Client 1

name: pc1.example.com

VM: ME-V1-Client1

Ubuntu 14.04.2 LTS

eth1 IP 10.1.0.1

net name Switch1-Client1

eth1

pt1

VM3 – Controller 1

name: ct1.example.com

VM: ME-V1-Controller1

Ubuntu 14.04.2 LTS

n
e

t
n

a
m

e
 T

e
s
tC

o
n

tr
o

l

IP
 S

u
b

n
e

t
1

7
2

.1
6

.0
.0

/2
2

VM4 – Test Control

name: tc1.example.com

VM: ME-V1-TestControl1

Ubuntu 14.04.2 LTS eth4

IP 172.16.0.5

eth2

IP 172.16.0.1

eth1

IP 172.16.0.4

eth2

IP 172.16.0.2

eth2

IP 172.16.0.3

VM6 – Load Generator 1

name: lg1.example.com

VM: ME-V1-LoadGen1

Ubuntu 14.04.2 LTS

eth1 IP 10.1.0.6

eth2

IP 172.16.0.6

net name Switch1-LoadGen1

eth5

pt4

VM7 – Load Reflector

name: lr1.example.com

VM: ME-V1-Controller1

Ubuntu 14.04.2 LTS

net name Switch1-LoadReflector1

eth1 IP 10.1.0.7

eth2

IP 172.16.0.7

eth6

pt5

Figure 3.3: Virtual Test Environment

3.3. TEST AUTOMATION & ORCHESTRATION 17

Name Role Description
pc1 Client Runs performance measurement tests across the

network
sv1 Server Destination for performance measurement tests
lg1 Load Generator Generates load across the network
lr1 Load Reflector Acts as a sink for unidirectional load
sw1 Switch OpenFlow SDN switch (Open vSwitch) connect-

ing pc1, sv1, lg1 and lr1
ct1 Controller OpenFlow Controller (Ryu)
tc1 Test Control Automation and Orchestration of tests via sepa-

rate out-of-band connection to other guests

Table 3.1: Baseline Test Guests

• Load Generator to Load Reflector. This path is used to add new flow
load to the system.

• Client to Server. This path is used to measure performance.

3.3 Test Automation & Orchestration

During the planning phase, we recognised that time spent automating and
orchestrating testing would be a worthwhile investment, due to the vol-
ume and complexity of test data generated, along with the need for sig-
nificant numbers of test repetitions. Automation also has the benefit of re-
ducing the risk of human error influencing test results. For these reasons,
significant effort was put into automating and orchestrating the control
and analysis of tests for this thesis.

Our guiding principles for the design of our testing system were:

• Nonmonolithic. Create (or download) simple reusable programs to

18 CHAPTER 3. SCALABILITY OF SDN TC

automate specific functions, and tie them together with orchestration
software in such a way that we avoid building a monolithic appli-
cation and retain flexibility to quickly and easily adapt to new test
requirements.

• Reuse. Design programs to be reusable for multiple similar require-
ments, with a simple interface.

• Telemetry. Capture telemetry data in addition to the required re-
sult data so that test performance can be validated and unexpected
results diagnosed.

• Data Quality. Result data should be easy to ingest (ideally CSV for-
mat), clearly identifiable as to the source, and have accurate times-
tamps

• Test Atomicity. All tests were designed to be self-contained, so that
conditions from one test cannot influence the results of another test.

We derived a test architecture from these principles, that features an
’orchestration sandwich’, as per Figure 3.4. The top layer is automation
that iteratively calls an orchestration layer with multiple interleaved test
types. The orchestration layer coordinates automated activities on a num-
ber of entities, retrieves results and requests automated post-processing of
result data (if required).

3.3.1 Orchestration

Test orchestration (coordinating the timing and order of execution of tasks
on multiple entities) is performed by the Test Control guest. It carries out
the following high-level orchestration tasks per test:

1. Ensures that all guests are in the correct state to commence a test

2. Starts the various processes on guests to monitor test parameters

3.3. TEST AUTOMATION & ORCHESTRATION 19

Automated Test

Orchestration

Coordinate execution of tasks across multiple entities

Automated Test Scheduling

n iterations of x test types (interleaved)

User initiation of test suite

Configuration Result Retrieval Post Process

Figure 3.4: Test Architecture ’Orchestration Sandwich’

3. Starts the load test and waits for it to complete

4. Stops test processes

5. Retrieves result data and stores it in a directory structure

We chose Ansible R© [26] software for our test orchestration function.
Ansible is agentless free open source configuration management software,
and uses SSH to communicate with managed nodes. Ansible abstracts the
individual managed nodes through a construct called an inventory, and
comes with a variety of built-in modules to handle a variety of common
automation tasks. Tasks are described in a playbook, a YAML file that is
used to control a set of automation tasks.

We use simple Python programs to run automated tests. They itera-
tively call an Ansible playbook with test-specific variables, interleaving
test types to minimise the effect of external factors during the tests.

Ansible, while useful, is not perfectly suited to automating test suites.
Its forte is automation of server builds, which generally requires schedul-
ing and checking of many sequential tasks. The test suites that we run
require many sequential tasks (example: checking that a process is run-
ning), but also many tasks that must run indefinitely in parallel. Examples

20 CHAPTER 3. SCALABILITY OF SDN TC

of such tasks are processes that regularly poll to gather performance met-
rics while a test is in progress. To work around the limitations of Ansible
in this area, these tasks are executed in Ansible asynchronous mode, with
polling disabled, and a maximum runtime that is greater than the length
of the test. The Linux pkill command is used for ending these tasks at the
completion of the test. While not elegant, this solution was found to work
reliably.

The Ansible fetch module is used to retrieve result files and store them
in a timestamped directory structure, along with information relating to
the test context, such as program versions and the playbook contents. R
[27] is used to analyse the result data and create output charts. The test
configuration is summarised in Figure 3.5.

Result data files are read in by programs written in the R programming
language, and data frames (data tables of equal length columns of variable
measurements) are generated for the each heterogeneous source of result
data.

It is necessary to index each test run by a field other than Time, so that
results from all test runs can be combined on the same chart. Elapsed time
within each test run is not a suitable index as there could be variations
in when the load starts. Changes to test tools were considered such that
each tool would poll filt to get the current actual load. This idea was dis-
counted, as it would have been complicated to code, prone to error and
could have influenced test results. Instead, a method was developed to
post-process result data in R.

3.3.2 Test Tooling

Custom-developed Python command line tools were chosen as the pre-
ferred approach for test tooling, for the following reasons:

3.3. TEST AUTOMATION & ORCHESTRATION 21

Test Control Server

run n times

Python script
Iteratively call generic Ansible playbook a set number of

times, each time running each test type with via specifying

parameters to playbook

test data repositories

(per test, each with unique timestamped folder name)
Contains *.txt files that describe the test context and *.csv

files that store test result data

file writes

Load Generator(s)

Client(s) Server(s)Switch(es) Controller(s)

Out-of-band Network

SSH SSH SSH

SSH

SSH

read files

Data Analysis (R)

Specific R programs developed to analyse the data and

create charts

hort

cxn-close

hort

cxn-keepalive

websvr.py

port 80

nmeta or

simple_switch (if req)

Ryu (if req)

OpenFlow

(if req)

mosp

Open vSwitch

New Flow Load

hort eventrates

hort packet_timemosp

filt

Load Reflector(s)
SSH

Generic Ansible playbook
· Set up test repository (timestamped)

· Collect data about software versions etc and store in

repository

· Ensure any old processes from previous experiments

stopped

· Start required processes (depends on test type, includes

active monitoring processes)

· Check processes are running

· Run load test

· Wait for a set period for normality to return

· Stop processes

· Retrieve test results and store in repository

Figure 3.5: Test Configuration

22 CHAPTER 3. SCALABILITY OF SDN TC

• Custom development gives control over testing and measurement
methodology

• Results can be generated in a common format that simplifies post-
test analysis

• Development effort is minimised by leveraging existing Python li-
braries

• Direct control of configuration parameters from command line facil-
itates centralised test automation

3.3.3 Load Test Methodology

We hypothesised that nmeta performance would deteriorate under high
rates of new flows due to stress on the controller and application due to the
requirement to send initial n packets in each new flow to the controller for
classification (where n is dependent on the classifier). New flows per sec-
ond (NFPS) is thus the primary factor against which nmeta performance
and scalability is assessed.

3.3.4 NFPS Test Types

Three types of test were devised to differentiate result caused by environ-
mental, SDN and nmeta factors. They are as follows:

• No SDN Test (referred to as nosdn). In this control test, the switch
runs in non-SDN (fail-open) mode, to give a baseline result without
OpenFlow and nmeta traffic classification.

• Simple SDN Switch Test (referred to as simpleswitch). This test runs
the switch in OpenFlow mode, controlled by a simple switch applica-
tion on the Ryu controller that installs FEs for learnt MAC addresses,
but does not run nmeta.

3.3. TEST AUTOMATION & ORCHESTRATION 23

• nmeta SDN Test (referred to as nmeta). This test runs the switch in
OpenFlow SDN mode and the nmeta application on the Ryu con-
troller. Nmeta is run with a simple single rule static classification
policy.

During shakedown testing it was discovered that nmeta was not in-
stalling flows for the NFPS load traffic, as the destination MAC was not
known to it. This caused nmeta to flood the NFPS load packets, and thus
not install a flow entry in the switch. This unintended behaviour was re-
solved by instantiating a separate guest to use as a load target (Load Re-
flector).

IPTables was configured on the Load Reflector guest to silently drop
connections to the NFPS target TCP port. This was done to supress re-
turn TCP Reset packets that would otherwise effectively double the NFPS
load, as each TCP Reset caused a packet-in punt to the controller, and a
subsequent flow install and packet-out.

A step was added to the Ansible playbook to command the Load Gen-
erator to regularly PING the Load Reflector. The PING reply packet from
the Load Reflector allows Nmeta to learn and maintain the Load Reflector
MAC to switch port mapping and avoid flooding.

3.3.5 Functional Performance Evaluation

We evaluated functional network performance by carrying out regular
measurement of HTTP object retrieval times. To do this, we developed
a Python command line tool, called hort (HTTP Object Retrieval Test) [28].
Hort writes timestamped results to CSV file, and leverages the Python Re-
quests [29] library for HTTP operations.

24 CHAPTER 3. SCALABILITY OF SDN TC

3.3.6 New Flow Rate Testing

Reactive SDN systems are known to have limitations in terms of maxi-
mum rate of new flows [30]. Nmeta was placed under increasing new
flow rate load to ascertain the point at which functional performance met-
rics are materially impacted. A Python command line tool that puts the
system under repeatable incremental new flow load, called filt (Flow In-
cremental Load Test) [31], was developed for this thesis. Filt writes times-
tamps and load rates to CSV file for comparison with other measurements,
and has a stepped incremental traffic profile, as per Figure 3.6. Filt lever-
ages the scapy [32] Python library for packet operations.

F
lo

w
 r

a
te

 (
fl
o

w
s
 p

e
r

s
e

c
o

n
d

)

Time

Initial rate

interval

rate increase

Maximum

rate

Test

completedTest starts

Figure 3.6: Example Filt Traffic Profile

More details of how we developed filt, and the challenges with perfor-
mance and accuracy, are detailed in Appendix B

3.3.7 System Performance Measurement

To measure and record operating system performance parameters, we de-
veloped a simple Python script that leverages the psutil [33] library. We
call this script mosp (Measure Operating System Performance) [34]. Mosp

3.4. BASELINE VALIDATION RESULTS 25

records CPU load, memory swap and network volumes to CSV at defined
regular intervals.

3.4 Baseline Validation Results

We carried out tests to ascertain the maximum NFPS load rate at which
performance remains acceptable, which we arbitrarily define as latency
no more than 50% above the no load rate.

3.4.1 Initial Results

Test results showed that nmeta in our virtual test environment scales to
approximately 70 - 90 new flows per second, above which new flows are
adversely impacted, as per Figure 3.7.

The nosdn control tests and simpleswitch tests were not impacted by the
NFPS load. Flows in progress were not affected by the new flow load for
any of the test types, indicating that the data plane forwarding perfor-
mance was not impacted by the NFPS load.

Controller CPU in the nmeta tests plateaued at 100% utilisation from
around 80 new flows per second, indicating a severe CPU constraint in
the control plane for this test type.

Analysis of a packet capture on the controller showed the following:

• The point at which nmeta becomes ineffective (which we term break
point) correlates with the point at which the controller reaches 100%
CPU.

• The Controller Packet-Out rate, which was previously symmetric
with the Packet-In rate, drops rapidly past the break point.

• OpenFlow Errors from the switch relating to invalid buffers do not
occur until 15 seconds after break point, indicating that this test is

26 CHAPTER 3. SCALABILITY OF SDN TC

nmeta nosdn simpleswitch

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

50 100 150 200
NFPS Load

C
on

ne
ct

io
n

C
lo

se
 H

T
T

P
 O

bj
ec

t R
et

rie
va

l T
im

e
(s

)

HTTP Responsiveness

25

50

75

100

125

150

175

200

50 100 150 200
NFPS Load

C
on

tr
ol

le
r

P
ac

ke
ts

 R
ec

ei
ve

d
pe

r
In

te
rv

al
 (

pk
ts

)

Controller Packets

0

25

50

75

100

50 100 150 200
NFPS Load

C
on

tr
ol

le
r

C
P

U
 (

%
)

Controller CPU

Figure 3.7: NFPS Load Impact on nmeta HTTP Responsiveness and Cor-
relations (source: Table A.1)

3.5. SUMMARY 27

not constrained by buffer exhaustion on the switch, since performance
degradation occurred prior to errors occurring.

3.4.2 Controller CPU Analysis

We analysed Controller CPU usage by running the Linux top command on
the Controller in batch mode with results written to file every 3 seconds.
The results showed that a single Python process is the main consumer of
CPU, and the consumption of CPU goes up sharply after 30 NFPS of load.
This supports our hypothesis that the controller is CPU bound.

3.5 Summary

In this chapter, we described our experimental methodology and proved
our hypothesis that nmeta performance would deteriorate under high rates
of new flows through experimental results. These results showed that
nmeta has a flow rate scalability problem resulting in a significant dete-
rioration in performance when the rate of new flows per second exceeds
an environment-specific threshold. The constraint that causes the problem
is controller CPU. Solving this issue requires more than adding controller
CPU resource, due to the severity of the constraint. In the next chapter, we
propose solutions to this problem that involve moving the TC workload
to other areas of the system, so that it can be more easily scaled to cope
with peak new flow loads.

28 CHAPTER 3. SCALABILITY OF SDN TC

Chapter 4

Solution Architecture

In this chapter, we describe a minor revision to SDN architecture that
solves the performance and scalability problem we demonstrated in the
previous chapter.

4.1 ONF SDN Architecture

The Open Networking Foundation (ONF) are a not-for-profit industry-
driven organisation that promotes the uptake of SDN through open standards[35].
They are responsible for maintaining and evolving the OpenFlow SDN
standards, and also perform other roles including defining an architecture
for SDN[36][37].

We use the ONF SDN architecture as our baseline, against which we
propose changes. In the ONF SDN architecture, an SDN Controller compo-
nent interfaces southbound with resource groups that may contain network
elements (NE) in the data plane via data-controller plane interfaces (D-CPI),
and northbound to SDN applications via application-controller plane interfaces
(A-CPI).

29

30 CHAPTER 4. SOLUTION ARCHITECTURE

4.2 Architecture Revision

We make a minor revision to the ONF SDN architecture through the addi-
tion of a new type of NE component to processes data plane workload for
cases where it goes beyond the native capabilities of the switch. This com-
ponent, which we call a Data Plane Auxiliary Engine (DPAE, pronounced
Dee-Pie), is integrated with the network data and control planes, but able
to scale separately.

The DPAE exists primarily in the data plane, with connectivity to the
control plane for signalling. The DPAE is a Network Element (NE), as
shown in a revision of an ONF diagram in Figure 4.1.

Application plane

Controller plane

Data plane
Network element

SDN controller

SDN application
Management

Management

functions

(OSS)

SwitchDPAE

Figure 4.1: ONF SDN Architecture Diagram[38], Revised to Show DPAE
and Switch

The DPAE reduces load on the controller and application by carrying
out data plane workload locally, and sending only relevant updates to the
control plane, as per Figure 4.2.

A new type of interface, data-data plane interface (D-DPI) is defined to
connect DPAE to switches. The DPAE can be scaled separately to the
switch, improving the scalability of the solution as a whole. The DPAE
is also extensible to other roles that require packet processing capabilities
beyond what the switch can offer.

4.2. ARCHITECTURE REVISION 31

Data plane

packets in

Data plane

packets out

SDN

Application

NE

(Switch)

SDN

Controller

Data plane

packets in

Data plane

packets out

SDN

Application

NE

(Switch)

SDN

Controller

NE

(DPAE)

Key

Low Event Rate

High Event Rate

A-CPI A-CPI

D-CPI D-CPI

D-CPI

D
-D

P
I

(a) Standard solution (b) Our solution

Figure 4.2: Architectural Comparison: Increasing Scalability by Confining
High Event Rates to the Data Plane.

By decoupling the switch from auxiliary data plane services, we re-
duce the breadth of the switch specification, and avoid creating a mono-
lith. Where SDN decoupled monolithic vertically-integrated networking
devices, by separating the data and control planes with a network, we de-
couple the packet forwarding functions of a switch from more advanced
services, again with a network.

The DPAE can be scaled horizontally across a network. A single switch
can balance its load across multiple DPAE, and a single DPAE can support
one or more switches, as per Figure 4.3.

The ONF SDN architecture recommends that models and components
are reused, to reduce standardisation and testing effort, and also that SDN
must be deployable. We align with these principles by limiting the new
components to only what is necessary, and building on commodity plat-
forms that are simple to deploy.

32 CHAPTER 4. SOLUTION ARCHITECTURE

Key

Network link

OpenFlow Channel

API

Switch

Data Plane

Auxiliary Engine

(DPAE)

Switch Switch

Controller / App

Data Plane

Auxiliary Engine

(DPAE)

A DPAE can support

multiple switches

Multiple DPAE are

supported

Figure 4.3: DPAE Scalability Options

4.3 Summary

In this chapter, we presented a revised architecture that solves the perfor-
mance and scalability problems inherent in our previous architecture by
relocating the majority of per-packet TC workload from the application to
the switch and a new component, the DPAE.

In the next chapter, we present the design and build of a prototype
implementation of our revised architecture.

Chapter 5

Design of Scalable TC with
OpenFlow SDN

In this chapter, we present the design of our prototype implementation of
the revised architecture. The prototype implements a subset of our archi-
tecture, sufficient to allow testing of performance and scalability. It is a
complete rewrite of nmeta into a controller application called nmeta2[39],
and a DPAE called nmeta2dpae[40]. Both are written in Python and avail-
able on GitHub. Figure 5.1 shows a high-level representation of the com-
ponents of the prototype implementation.

5.1 Inter-Component Communications Design

In this section we discuss the design of communications between the DPAE,
switch and controller/application.

There are two new communication interfaces introduced in our design
for DPAE connectivity; the Switch to DPAE D-DPI and the DPAE to Con-
troller D-CPI.

These communication interfaces must be efficient, to handle the load
generated by full TC services. This applies in particular to the Switch to

33

34 CHAPTER 5. DESIGN OF SCALABLE TC WITH OPENFLOW SDN

OpenFlow

Switch(es)

Data plane

packets in

Data plane

packets out

nmeta2dpae
Data Plane

Auxiliary Engine(s)

(DPAE)

nmeta2

TC App

Controller (Ryu)

Cloned (passive mode) or

forwarded (active mode) packets

REST

API

API

Administration

Data Plane

Control Plane

Key

Network link

OpenFlow Channel

API

OpenFlow

Active mode return

packets

Figure 5.1: Overview of Prototype Implementation

DPAE D-DPI, as it may have a high rate of invocation and carry full pack-
ets.

5.1.1 Switch to DPAE D-DPI

Our design for switch to DPAE communications is deliberately light-weight,
with minimal overheads. Packets are sent natively over Ethernet between
the switch and the DPAE. There are benefits and drawbacks to our light-
weight approach.

Other approaches[16][3][4] leverage the OpenFlow channel to carry
data plane packets that require TC, via OpenFlow Packet-In messages. We
term this the OpenFlow-encapsulation approach, as opposed to our light-
weight native-packet approach.

The OpenFlow-encapsulation approach requires the switch to encapsu-
late the packet in an OpenFlow Packet-In message, within TCP, within an
IP packet. In addition to the extra computational load, this approach also

5.1. INTER-COMPONENT COMMUNICATIONS DESIGN 35

adds network overhead, both where the packet size results in an encapsu-
lated packet larger than the link’s maximum transmission unit (MTU) thus
incurring fragmentation, and when the packets are small resulting in the
network overhead becoming proportionally large.

We found the OpenFlow-encapsulation approach adds 108 bytes of over-
head per packet (66 bytes of Ethernet/IPv4/TCP, and 42 bytes of Open-
Flow header, assuming an IPv4 backhaul). This is a high overhead ratio,
especially for smaller sized packets. A 74 byte packet on the wire to the
switch became a 182 byte packet in OpenFlow. This is a 146% increase in
size. For large packets, this fixed per-packet overhead can put them over
the MTU of the backhaul link, causing fragmentation.

The native-packet approach is a relatively efficient operation on the switch,
when compared OpenFlow-encapsulation. The native-packet approach
has no per-packet overhead for the transmission to the DPAE. It is also
a relatively efficient operation on the switch, when compared OpenFlow-
encapsulation, as it has lower CPU requirements as packets do not require
OpenFlow and TCP encapsulation / decapsulation and the switch is only
required to copy the packet buffer to a transmit queue.

The choice between the native-packet and OpenFlow-encapsulation ap-
proaches comes down to a trade-off between the speed and efficiency
of the native-packet approach versus the reliability and capability of the
OpenFlow-encapsulation approach.

The native-packet approach minimises processing overhead on the switch,
does not suffer from undesirable TCP behaviours such as slow-start and
does not have a per packet overhead, meaning fragmentation is not nec-
essary (assuming same MTU). It also does not delay control plane traffic
with head-of-line blocking. It is however vulnerable to packet loss due
to queue tail drops, and without TCP there is no network-layer recovery.

36 CHAPTER 5. DESIGN OF SCALABLE TC WITH OPENFLOW SDN

There is also no flow control. The DPAE has no method to signal that it
would like the rate to be reduced.

The OpenFlow-encapsulation approach has advantages, through meta-
data signalling packet context (reason, table id, match (including ingress
port)), whereas the native-packet handoff of packets from the switch to
the DPAE is blind. The DPAE does not know which port the packet origi-
nated from, only which DPAE interface the packet was received on and the
switch name that this correlates to (via a discovery protocol). The DPAE
also does not know the reason for the packet being sent to it. We work
around the former limitation by deducing the original switch ingress port
at the controller, based on the learned source MAC address to switch port
mapping.

We address the latter by avoiding the need for the DPAE to understand
why the packet was sent to it, by keeping DPAE packet processing generic.

5.1.2 DPAE to Controller D-CPI

Our prototype DPAE to Controller D-CPI is a new protocol built on repre-
sentational state transfer (REST) over HTTP. Our choice of REST over Open-
Flow for this D-CPI was based on expediency. Developing features in
REST is simpler than extending the OpenFlow protocol, however this choice
should be revisited in future work. It may be desirable to have a common
D-CPI for both switches and DPAE.

Our prototype protocol automates the initial configuration of DPAE,
including switch/port auto-discovery and negotiating capabilities. The
same protocol is subsequently used to download optimised TC policy and
communicate identity and traffic classification outcomes to the controller.

While our prototype design has the DPAE talking to our application
via an API, we envision that this will later become a standardised native
feature of the controller, and hence will be to the controller.

5.2. PACKET FORWARDING DESIGN 37

In Figure 5.2, we show a high-level representation of the phases that
occur during a DPAE join to a Controller.

It is worth noting that the creation of this new protocol was made pos-
sible by the network programming capabilities provided by OpenFlow
SDN.

5.1.3 Switch to Controller D-CPI

Switch to controller communcations is unchanged, continuing to use Open-
Flow version 1.3 for this D-CPI.

5.2 Packet Forwarding Design

In this section, we present the packet forwarding design of our prototype
implementation, along with discussion on trade-offs and other design con-
siderations.

5.2.1 Passive and Active Modes

Our prototype implementation gives the network operator a choice be-
tween two modes of operation; packets are either forwarded (active mode)
or cloned (passive mode) by the switch to the DPAE, where they are pro-
cessed. In active mode, the DPAE returns the packet to the switch, to con-
tinue processing through the pipeline, whereas in passive mode the packet
continued through the pipeline in parallel.

5.2.2 Flow Suppression

We reduce packet rate load on the DPAE by instructing the switches to
send the traffic direct, once a TC determination has been made, by in-
stalling specific FEs that match the flow with instructions to bypass the
DPAE.

38 CHAPTER 5. DESIGN OF SCALABLE TC WITH OPENFLOW SDN

Phase 1 - Connect to Controller

Phase 2 - Switch Port Discovery

Phase 3 - Sniff Confirmation

Phase 4 - Services Negotiation

Switch

Data Plane

Auxiliary Engine

(DPAE)

Controller TC

App

Controller

Switch

Data Plane

Auxiliary Engine

(DPAE)

Controller TC

App

Controller

1) DPAE connects to Controller with REST

API and receives information back including a

registration MAC address to use in the next

phase

Switch

Data Plane

Auxiliary Engine

(DPAE)

Controller TC

App

Controller

2a

2a) DPAE sends a discovery packet to registration

MAC address, including details sent by the Controller

such as the UUID

2b) The switch has been programmed to punt packets

destined for the registration MAC to the Controller as an

OpenFlow Packet-In message

2c) The DPAE queries the Controller, and if it has seen

the packet it confirms the switch DPID and port

2b

2c

3a

3b

3c

3a) The DPAE asks the Controller to send a

confirmation packet out via sniff interface so that it

can confirm sniffing capability

3b) The Controller sends an OpenFlow Packet-Out

message to the Switch

3c) The Switch sends a packet out the port

connected to the DPAE and the DPAE receives it

1

Switch

Data Plane

Auxiliary Engine

(DPAE)

Controller TC

App

Controller
4 4) The DPAE proposes services that it can run to

the Controller (i.e. Traffic Classification) and the

Controller agrees.

Figure 5.2: Overview of DPAE-Controller Join Protocol

5.2. PACKET FORWARDING DESIGN 39

Flow type is an important consideration when designing the suppres-
sion mechanism, since per flow suppression comes at a cost, adding load
to the controller and switch. For this reason we want to suppress elephant
flows, and ignore mice flows.

Elephant flows have a large number of packets, and generally com-
prise a small percentage of the total number of flows on a network, but a
large percentage of data transferred. Mice flows, on the other hand, are
generally short lived with few packets transferred, but are common [41].

Suppressing mice flows may not be worth the trade-off of load on the
switch and controller to add FEs, especially if the flow finishes around the
same time as this work is completed. An algorithm could dynamically
adjust the packet count threshold to optimise for the relative load levels.

We leave the development of this algorithm to future work, and instead
use a simple static value to define the per-flow packet count threshold, be-
yond which suppression should be initiated. We also define a resuppress
threshold with a large value to catch any failure on the initial suppression.

5.2.3 OpenFlow Table Design

In OpenFlow, flow tables are collections of static classifiers, called flow en-
tries. Flow tables evaluate packets against flow entries, sorted by priority
order, and exit if a match is made. A match against an FE causes any asso-
ciated instructions to be executed. There is no option to continue parsing
in the same table after a match is made.

Multiple Flow Tables (MFT) are a feature of OpenFlow version 1.1 and
later. MFT allows flow tables to be combined into a processing pipeline,
enhancing the capabilities of OpenFlow by allowing multi-level logic and
transformation to be applied to packets. We leverage OpenFlow MFT en-
hancements in our design.

There are good scalability reasons for wanting to leverage MFTs. Learn-
ing MAC address to port mappings is an O(N2) problem, but this reduces

40 CHAPTER 5. DESIGN OF SCALABLE TC WITH OPENFLOW SDN

to O(N) with MFT [42] [43]. In a similar manner, we avoid Cartesian prod-
uct scaling issues by using a flow table per function to reduce number of
FEs, as per Figure 5.3.

For passive mode, we utilise a pairing of OpenFlow FE instructions,
Goto-Table in conjunction with the optional instruction Apply-Actions, to
clone a packet to the DPAE without affecting its normal passage through
the pipeline. For active mode, we instead pass the packet to a filter table
to ensure the destination MAC is known, and if so the packet is sent out
the port to the DPAE.

Our design decouples the multiple functions of a TC switch into sepa-
rate tables, and in doing so simplifies the packet forwarding pipeline and
makes it scalable.

MAC Learning Considerations

Reinjection of packets from an active-mode DPAE into the switch has im-
plications for MAC learning, as the OpenFlow pipeline OXM OF IN PORT
field for the packet becomes the DPAE switch port, not the original ingress
port. Where the destination MAC is not known and flooding is required,
this results in the packet being forwarded back out the original ingress
port, as the OpenFlow FLOOD directive sends a packet out all ports ex-
cept for the ingress port (as recorded in the OXM OF IN PORT field) and
blocked ports. The split-horizon principle for packet flooding is thus vio-
lated, the flooded packet egresses the ingress port, and the incorrect port
to MAC mapping is learnt for the source MAC on switches in the path
back to the MAC source.

We could solve this problem with FEs that update the OpenFlow pipeline
field OXM OF IN PORT with a set-field action, however this is prohibited
by the standard[1], so we must use another means to prevent this occur-
ring. We solve this problem instead by enforcing that packets are only sent
to the DPAE if the destination MAC location is known. This has the mi-
nor drawback that TC cannot occur on a flow where the destination MAC

5.2. PACKET FORWARDING DESIGN 41

Data plane packets in

Data plane packets out

Table 0 (Identity Indicators MAC)

Table 1

(Identity Indicators General)

Table 5 (Traffic Treatment)

Table 6 (Forwarding)

p2 Match

p0 Table Miss

Send packet to

Controller so that

MAC to port can be

learned and match

added to forwarding

table then sent via

packet-out

p0 Table Miss

p1 Match

p1 Match Write Action(s)

Write Action(s)

Table 3 (Traffic Classification)

p0 Table Miss

p0 Table Miss

p1 Match Dest MAC

p1 Match Dest MAC Output Port X

Output Port Y

Flood

Send packet to DPAE

for processing identity

indicators and flow

classification

Apply Output

Controller

Apply output

port DPAE

p1 Match In Port & Source MAC

p3 Match DPAE in port

p1 Match Eth Dst Bcst

p0 Table Miss

Apply Output

Controller

Send packet to

Controller so that

DPAE switch/port can

be learnt· DPAE-specific

treatments

· 0 to n match

statements that don't

clone packet-in to

controller for MAC

learning

· 0 to n match

statements that clone

identity indicator

packets (i.e. DNS) to

a DPAE

· Broadcast flooding

0 to n match statements

that clone packets of

interest to a DPAE

0 to n match statements

that write traffic treatment

actions onto packets

0 to n match statements

that send packet out a port

that was learned via MAC

learning

Table 2 (Traffic Classification Filter)

p1 Match In Port

p1 Match In Port

p0 Table Miss

0 to n fine-grained

match statements that

suppress sending to

DPAE. 0 to n match

statements that send

packets for traffic

classification. Table

miss skips next table

p2 Match ip src/dst & tcp src/dst

p2 Match ip src/dst & tcp src/dst

Fine-grained suppress

rules priority 2 skip TC

table

Coarse-grained priority

1 match by in-port to do

TC

p4 Match DPAE Join MAC & EthType

p1 Match In Port & Source MAC

Flood

a
c
ti
v
e

 m
o

d
e

 D
P

A
E

 o
u

tp
u

t

p2 Match

b
ro

a
d

c
a

s
t
fl
o

o
d

in
g

skip table

Note: either active or

passive mode, not

both. See key.

Key

Table 4 (DPAE Learned MAC Filter)
0 to n match statements

that match learned dst

MACs and send to DPAE

p0 Table Miss

p1 Match Dest MAC

p1 Match Dest MAC

Apply output

port DPAE

Apply output

port DPAE
p1 Match

p1 Match

p4

p3

p2

p1

p0

Priority 4

Priority 3

Priority 2

Priority 1

Priority 0

Identity to DPAE

Active Mode

Passive Mode

PI to controller

skip table

Figure 5.3: Solution Pipeline

42 CHAPTER 5. DESIGN OF SCALABLE TC WITH OPENFLOW SDN

location has not been learnt. In reality this is an unlikely scenario as ARP
requests will be sent by end stations and thus learning will occur prior to
the main traffic stream.

Our principles for the design of flow tables for the packet pipeline are:

• DPAE discovery packets must be sent to the controller, and not con-
tinue through the pipeline.

• Packets returned from the DPAE must bypass all tables except for
treatment and forwarding to prevent incorrect learning and to im-
prove pipeline efficiency.

• MAC learning is achieved via an exception process that sends pack-
ets that do not match higher priority source MAC and ingress port
rules to the controller via a Packet In message. Learned packets
do not continue through the pipeline, the controller sends them via
Packet Out function out the learned destination port or via the FLOOD
directive (ensuring the in port is correctly set to the ingress port).

• DPAE harvesting of identity indicators where the destination is the
broadcast MAC (FF:FF:FF:FF:FF:FF) or multicast MAC (where the
least-significant bit of the first octet is set to 1) must be a clone oper-
ation as the DPAE must not forward packets destined for broadcast
or multicast MACs. This operation must occur prior to the broadcast
bypass rule.

• A broadcast bypass rule should output packets destined for the broad-
cast MAC early in the pipeline for efficiency, via the FLOOD direc-
tive.

MFT Packet Pipeline

The MFT packet pipeline design is as follows:

5.2. PACKET FORWARDING DESIGN 43

Table 0 - Identity Indicators General

Table 0 serves multiple purposes. Primarily, it is used to clone identity in-
dicator packets to the DPAE. It also matches DPAE join packets and sends
them to the Controller, as well as flooding Ethernet broadcast packets out
ports, to reduce load on subsequent tables. Additionally, it matches ac-
tive mode DPAE return packets and sends them to the traffic treatment
table. Unmatched packets are sent to the next table to continue pipeline
processing.

Table 1 - MAC

Table 1 is used for suppressing duplicate MAC learning messages to the
controller. When the Controller learns a MAC addresses, it instantiates a
flow entry in this table that matches the learnt MAC address as a source,
with an instruction to goto the next table, and an idle timeout that deletes
the FE when stale. The table miss rule clones the packet to the controller
for MAC learning, as well as continuing pipeline processing with a goto
next table instruction. This table thus serves as an efficient method for
controller learning of source MAC address to port mappings, required for
switching.

Table 2 - Traffic Classification Filter

Table 2 is used as an opt-in method of selecting which ports run full TC.
Packets from matched ingress ports are sent to the next flow table for TC,
whereas table miss skips the next table with the instruction to goto the
Traffic Treatment table.

Table 3 - Traffic Classification

Table 3 is used send packets of interest to a DPAE for TC, or other DPAE
processing. In active mode, the matched packets are forwarded directly to

44 CHAPTER 5. DESIGN OF SCALABLE TC WITH OPENFLOW SDN

the DPAE. In passive mode, matched packets are forwarded to the DPAE
as well as being sent to the subsequent table to continue pipeline process-
ing. All unmatched packets are sent to the next table.

Table 4 - DPAE Learned MAC Filter

Table 4 is used in active mode to filter packets such that only ones with
learned destination MACs are sent to the DPAE.

Table 5 - Traffic Treatment

Table 5 applies treatment actions to packets, such as setting egress queues,
by writing an action against the packet for later execution. All packets
(including unmatched) are sent to the next table to continue pipeline pro-
cessing.

Table 6 - Forwarding

Table 6 forwards based on learnt MAC addresses. Entries in this table
are set with no idle timeout, as their freshness may differ from the learn-
ing MAC table FE. They can be shadowed by MAC learning entries when
traffic is unidirectional inbound, causing them to age out, but never be
relearnt. For this reason they are instead maintained by leveraging MAC
table FE idle timeout eviction events to trigger the controller app to request
the deletion of the relevant forwarding FE.

MFT Scalability Considerations

Our MFT design has O(N) scalability in terms of total FE usage, as each
use of an FE is either discrete, or as is the case with MAC address learning,
requires use of three FEs per MAC address, as each learned MAC is used
in three separate flow tables.

5.3. TC DESIGN 45

5.3 TC Design

In this section, we present design considerations from our prototype im-
plementation that are specific to traffic classification.

5.3.1 State Retention

DPAE instances should minimise state retention to reduce complexity and
improve scalability.

Flow state on a DPAE is only significant per flow, meaning it does not
require synchronisation between DPAE, if all packets in the flow go to
the same DPAE and resilience against DPAE failure is not required. We
proceed with these assumptions.

Identity state needs to be synchronised across all DPAE and controllers,
as an individual DPAE will not have visibility of all identity indicators,
yet may need to classify based on this remote information. The DPAE
that receives an identity indicator is responsible for translating this into
a common format, communicating it via the distributed data store, and
finally, aging it out when it goes stale.

We did not have time in the scope of this thesis to implement state shar-
ing for identity data between DPAE. It is left to future work to investigate
this element of the architecture, and should be achievable by leveraging
an existing distributed system program.

Our architecture supports horizontal scaling of DPAE, where a single
DPAE can service multiple switches. A limitation of our prototype solu-
tion is there cannot be more than one DPAE per switch, however this lim-
itation could be resolved by implementing a mechanism to synchronise
FCIP state between DPAE, and using the group table type select to balance
packets over multiple DPAE.

46 CHAPTER 5. DESIGN OF SCALABLE TC WITH OPENFLOW SDN

5.3.2 TC Policy Design

We reused the syntax and structure of the nmeta main policy with some
modifications. The QoS policy has been combined into the main policy to
reduce complexity and and extra top level directive, tc policies, is added
to provide a higher level of abstraction. Port sets are used to define where
TC should be run and the mode is selectable between active and passive.

5.3.3 Devolving Static Classification

Static classification matches against values present in packet headers, or
environmental parameters such as ingress port or VLAN. OpenFlow switches
already have extensive capabilities in this area (refer to ’Flow Match Fields’
in the relevant version of the OpenFlow Switch Specification standard).
We follow our earlier principle, preferring switches over DPAEs, and in-
stantiate simple non-nested static classifiers as flow entries on the switch.

5.3.4 Devolving Identity Classification

Identity classification requires tracking the state of various identity indica-
tors, some of which are only visible to the switch directly connected to the
device being identified (examples: LLDP, 802.1x). Others, such as MAC
addresses, require knowledge of network topology, in order to understand
if the device is directly connected, or via another switch. Our prototype
does not have topology awareness, so we leave this feature to future work.

We clone identity indicator packets to the DPAE so that it can carry
out the heavy-lifting required to parse them and maintain state regarding
their freshness. The DPAE communicates updates to identity indicator
states via REST API calls to the controller/application.

5.4. PERFORMANCE TUNING 47

5.3.5 Devolving Statistical Classification

Statistical classification requires the ability to run an arbitrary program
and feed it flow features, such as packet size, arrival time etc, and this
requires compute and stateful flow capabilities, neither of which is not
present in OpenFlow version 1.3. We thus send all packets that require
statistical classification to the DPAE for processing. Accurate timestamp-
ing of packet arrival times presents a challenge as the classifier runs on the
DPAE, not the switch, and variable delay may be introduced under load.
A future version of OpenFlow may include native collection of flow fea-
tures, as demonstrated in OFX [20], however the capability is not present
in the version we employ. Our prototype solution uses the timestamp of
the packet arrival time at the DPAE, however this can be subject to vari-
ability due to ingress queueing on the DPAE. Future work is required to
assess the materiality of this to the accuracy of statistical classification.

5.3.6 Devolving Payload Classification

Payload classification requires inspecting packet payload in the first n

packets, and may require complex stateful operations. We devolve pay-
load classification to the DPAE as it is not suitable to run on the switch.

5.4 Performance Tuning

While developing the nmeta2 and nmeta2-dpae code, we carried out tun-
ing to maximise performance, especially on per-packet operations. Here
are some of the main optimisations that we made;

5.4.1 DPAE Concurrency Design

The DPAE needed a means to handle operations concurrently. We chose to
use the Python multiprocess module for this purpose, it forks the process,

48 CHAPTER 5. DESIGN OF SCALABLE TC WITH OPENFLOW SDN

thereby allowing concurrency and avoiding global interpreter lock (GIL)
issues inherent in a thread-based concurrency approach.

We split the DPAE into separate processes for data plane and control
plane functions to minimise delays to packet processing. This is especially
important in active mode, as packet processing directly impacts latency.

In our initial design for nmeta2dpae, we had packets passing through
a Python multiprocess queue between the sniff and tc modules. We sub-
sequently optimised the design by implementing a clearer demarcation
between the data and control plane functions, and keeping packet flow
within a single process. This optimisation resulted in a four times reduc-
tion in active mode latency, due to more efficient packet processing.

5.4.2 Packet Library

We initially used the scapy packet library, but changed to dpkt when we
compared their performance and found dpkt to be faster.

5.4.3 5-Tuple Bi-Directional Hash and Database Indexing

We needed an efficient method to search and retrieve flow records, as this
is a per-packet operation, adding latency in active mode. Our solution was
a DPAE function that translates a TCP flow 5-tuple into a unique hash,
matching packets in either direction on the flow. We used this hash as a
key into a collection in a MongoDB database.

We configured an index of the hash field in the database collection, and
the indexing resulted in a significant performance gain due, to reduced
database query times.

5.4.4 Broadcast Optimisation

Broadcast traffic can comprise a significant portion of total network traffic
[17]. We make an assumption that TC is not required for broadcast traffic,

5.5. SUMMARY 49

and thus seek to optimise its path to reduce load on TC components. We
do this by matching broadcasts in the first table and flooding them directly
out ports.

5.5 Summary

In this chapter, we described the design and build of a prototype system
that implements a subset of our revised architecture, along with lessons
that we learned during the development lifecycle, including performance
optimisations.

In the next chapter, we present experimental results from our prototype
solution, and discuss how trade-offs can be managed to create a solution
that meets reasonable requirements.

50 CHAPTER 5. DESIGN OF SCALABLE TC WITH OPENFLOW SDN

Chapter 6

Validation

In this chapter, we demonstrate improvements to performance and scala-
bility of SDN TC through experimental results from our prototype imple-
mentation.

6.1 Test Method

We use the same test method as described previously, with the addition
of a guest running the nmeta2dpae DPAE function to the test environ-
ment. We deliberately employ a worst-case scenario to test our solution
to prove the viability of the most extreme case. We use an unqualified
statistical classifier when testing our prototype implementation that sends
initial packets from all new flows to the DPAE for TC.

We also do not optimise either nmeta or nmeta2/nmeta2dpae by turn-
ing off logging. Results therefore, should be worst case, and could be fur-
ther optimised.

51

52 CHAPTER 6. VALIDATION

6.2 Performance

We tested the packet forwarding performance of existing solutions, and
our new solution, under no load. Forwarding performance was assessed
through two methods. Firstly, we used hping3 to repeatedly measure a
single TCP RTT, as per Figure 6.1. Secondly, we used hort [28] to retrieve an
HTML object once a second, recording the total time taken, as per Figure
6.2.

We configured a statistical classifier that matches all packets for both
types of nmeta2 test to test the worst case where the first n packets in a
flow require TC inspection.

0.000

0.005

0.010

0.015

0.020

nmeta nmeta2−active nmeta2−passive nosdn simpleswitch

Test Type

T
C

P
 R

T
T

 (
s)

Figure 6.1: TCP RTT Performance No Load (Standard Error) (source: Table
A.3)

The results show that nmeta has significantly worse forwarding perfor-
mance for new TCP flows than the other solutions, with over 15ms TCP
RTT and HTTP object retrieval time. The best performer in both tests was
nosdn, which is to be expected, as everything is localised to the switch.

6.3. SCALABILITY 53

0.000

0.005

0.010

0.015

0.020

nmeta nmeta2−active nmeta2−passive nosdn simpleswitch

Test Type

H
T

T
P

 O
bj

ec
t R

et
rie

va
l T

im
e

(s
)

Figure 6.2: HTTP Object Retrieval Performance No Load (Standard Error)
(source: Table A.3)

Neither nosdn or simpleswitch provide any TC services, so their good
performance results are also expected. Their results are only included as a
reference to the maximum performance of the environment without TC.

6.3 Scalability

In this section we validate the scalability of our solution to new flow rate
by showing the reduction in load on the control plane in conjunction with
ability to scale TC load separately to the control plane.

NFPS load is the primary dimension in which we measure the scalabil-
ity of our solution. Ideally, scalability will be confirmed by performance
that sustains reasonable levels under reasonable load.

54 CHAPTER 6. VALIDATION

6.3.1 New Flow Forwarding Performance Under Load

Our results, as per Figure 6.3 show that nmeta2 in passive mode provides
comparable latency under NFPS load to the base switch (nosdn). When
run in active mode, nmeta2 has a higher base latency, but this does not
degrade significantly with increasing NFPS load. This performance im-
provement over nmeta is in addition to the added horizontal scalability of
our solution.

0.001

0.010

0.100

1.000

10.000

0 100 200 300 400 500 600 700 800 900 1000

Load Rate (NFPS)

C
on

ne
ct

io
n

C
lo

se
 H

T
T

P
 O

bj
ec

t R
et

rie
va

l T
im

e
(s

, l
og

10
 s

ca
le

)

nmeta
nmeta2−active
nmeta2−passive
nosdn
simpleswitch

Figure 6.3: HTTP object retrieval times (new TCP connections) under
NFPS load (source: Table A.1)

6.3. SCALABILITY 55

6.3.2 Existing Flow Forwarding Performance Under Load

The results for HTTP object retrieval times over existing TCP connections,
as per Figure 6.4, show that NFPS load has no significant impact below
500 NFPS on any test type. This shows that forwarding performance for
FEs in the switch is largely impervious to NFPS load.

0.001

0.010

0.100

1.000

0 100 200 300 400 500 600 700 800 900 1000

Load Rate (NFPS)

C
on

ne
ct

io
n

K
ee

pa
liv

e
H

T
T

P
 O

bj
ec

t R
et

rie
va

l T
im

e
(s

, l
og

10
 s

ca
le

)

nmeta
nmeta2−active
nmeta2−passive
nosdn
simpleswitch

Figure 6.4: HTTP object retrieval times (existing TCP connections) under
NFPS load (source: Table A.1)

In Figure 6.5 we see an order of magnitude lower packets to the con-
troller in both modes of the nmeta2 solution when compared to nmeta.
This correlates with a reduction in control plane CPU utilisation.

56 CHAPTER 6. VALIDATION

1

3

10

33

100

333

1,000

0 250 500 750 1000
NFPS Load

C
on

tr
ol

le
r

P
ac

ke
ts

 R
ec

ei
ve

d
pe

r
In

te
rv

al
 (

pk
ts

, l
og

10
 s

ca
le

)

nmeta
nmeta2−active
nmeta2−passive
nosdn
simpleswitch

Figure 6.5: Controller Ethernet Packets In vs New Flows Load by Test Type
(source: Table A.1)

6.3. SCALABILITY 57

Our prototype implementation moves the full TC services CPU work-
load from the controller to the DPAE, as per Figure 6.6. This chart clearly
shows the improved efficiency of running the workload on the DPAE, as
the DPAE CPU increase is linear and increases at a lower rate than the
controller CPU for nmeta.

Controller CPU DPAE CPU Switch CPU

0

25

50

75

100

0 100 200 300 400 500

NFPS Load

C
P

U
 (

%
)

Nmeta Workload

0

25

50

75

100

0 100 200 300 400 500

NFPS Load

C
P

U
 (

%
)

Nmeta2−Active Workload

Figure 6.6: CPU Workload Comparison between nmeta and nmeta2-active
(source: Table A.1)

6.3.3 Control Plane Timeliness Under Load

We evaluated the timeliness of control plane functions by assessing MAC
learning performance for each test type at differing levels of NFPS load.

Our test methodology was as follows. We set the environment up for
the particular test type, added the desired rate of NFPS, then sent 200 TCP

58 CHAPTER 6. VALIDATION

SYN packets (via a custom script) in rapid succession from the client to
a special NIC on the server. This NIC had MAC address M , not previ-
ously seen in the environment, so not known to the switch or controller.
We used a macvlan interface for this role, inside a separate network names-
pace, configured with an IP address belonging to the same subnet as the
general server NIC. It was also necessary to change network adapter type
in our virtual environment, as the default adapter did not support multi-
ple MACs on a single guest.

We removed ARP from the test, as we observed that its performance
was variable under NFPS load for some test types. We did this by using a
static ARP on the server, and our script does not require ARP at the client
end. There is thus no opportunity for the switch to pre-learn where M is in
the topology, as there is nothing generating unsolicited packets from our
special interface. MAC learning only occurs via TCP RST packets sent in
response to the crafted SYNs of the test.

We measured the performance of the control plane response to the dis-
covery of M in two dimensions. The first is MAC learning delay, which
we measured as the time difference between initiating the sending of the
first packet to M , and the time that the last packet to M is received by
a participant (lg1) that should not be privy to the flow (i.e. last flooded
packet receive time).

The second dimension is the number of packets to M that are flooded.
The ideal result is that only a single packet is flooded, which is sufficient
to learn the location of the target MAC via a response packet. Our test
is unusual however, as it sends the packets unacknowledged with a very
small interpacket delay (1ms).

Our results, as per Figure 6.7, show that control plane timeliness in
nmeta is adversely affected by NFPS load. The MAC learning delay in

6.4. SCALING TO MULTIPLE SWITCHES 59

nmeta climbs almost two orders of magnitude by the time load reaches
150 NFPS, and correspondingly the number of packets flooded also in-
creases significantly. Both of these results demonstrate that sending data
plane packets over the control plane from the switch to the controller is
detrimental to control plane timeliness.

In contrast, the performance of nmeta2 in active and passive modes
remains stable under increasing NFPS for both MAC flooding delay and
packets flooded. This shows the benefits of our design that removes TC
load from the control plane. Note that the relatively high number of pack-
ets flooded for nmeta2 active and passive modes is an artefact of the proto-
type implementation, not the design, and will be reduced in a subsequent
release of the code.

6.4 Scaling to Multiple Switches

We tested the scalability of our architecture to multiple switches by de-
ploying our prototype into an enlarged test environment. We made an
assumption that there would never be more than two DPAE in path be-
tween endpoints in a conversation as TC is a network edge function. We
created an enlarged test environment for multiple-switch tests, as shown
in Figure 6.8, employing the following design criteria:

• Tests can be varied between having 1 to n switches in path between
clients and servers

• Out of band control network

• Number of switches can be changed without need to go outside hy-
pervisor (i.e. Test Control server tc1 can enact the required topology
by setting interface state on switch guests)

• Loop free. This is not a naturally loop free topology, so care needs to
be taken setting the correct interface states on switch ports through

60 CHAPTER 6. VALIDATION

nmeta nmeta2−active nmeta2−passive simpleswitch

0.1

1.0

10.0

0 50 100 150 200 250

NFPS Load

M
A

C
 L

ea
rn

in
g

N
o

F
lo

od
in

g
D

el
ay

 (
s

−
 lo

g1
0

sc
al

e)

MAC Learning Delay

1

3

10

33

100

333

0 50 100 150 200 250

NFPS Load

N
um

be
r

of
 P

ac
ke

ts
 F

lo
od

ed
 (

pa
ck

et
s

−
 lo

g1
0

sc
al

e)

Packets Flooded

Figure 6.7: Control Plane Timeliness for MAC Learning Under NFPS Load
(source: Table A.5)

6.4. SCALING TO MULTIPLE SWITCHES 61

automation.

Ansible playbooks enact the required network topologies by configur-
ing the administrative state of switch Ethernet ports, such that the correct
number of switches are in path, and the topology is loop-free.

re
m

o
te

swn-dpn

sw4-sw5

sw1-dp1

sw1-lg1

sw1-pc1

PC 1

name: pc1

10.1.0.1

Load Generator

name: lg1

10.1.0.6

filt

DPAE 1

name: dp1

.8

nmeta2dpae

Switch n

name: swn

Open vSwitch

.19

Server 1

name: sv1

10.1.0.2

Load Reflector

name: lr1

10.1.0.7

DPAE n

name: dpn

nmeta2dpae

.20

sw1-sw2

Switch 1

name: sw1

Open vSwitch

.5

sw2-sw3

Switch 2

name: sw2

Open vSwitch

.9

sw3-sw4 Switch 4

name: sw4

Open vSwitch

.11

Switch 3

name: sw3

Open vSwitch

.10

Switch 5

name: sw5

Open vSwitch

.12

swx-swn

Test Control

name: tc1

ansible

.4

Controller

name: ct1

Ryu / nmeta2

.3

TestControl

e1

e5

e7

e2

e6

e3

e1

e2

e3

e3

e3

e3

e3
e1

e1

e1

e1

e2

e2

e2

Key

network interface (i.e. e1=eth1)

topology control network interface

(interface state controlled by tc1)

eX

eX

Figure 6.8: Multiple-Switch Test Environment

Performance tests of NFPS load with varying numbers of switches in
path and active mode statistical classifier, as per Figure 6.9, showed ac-
ceptable performance that does not significantly degrade until past 750
NFPS.

62 CHAPTER 6. VALIDATION

0.1

0 250 500 750 1000

Load Rate (NFPS)

C
on

ne
ct

io
n

C
lo

se
 H

T
T

P
 O

bj
ec

t R
et

rie
va

l T
im

e
(s

, l
og

10
 s

ca
le

)

1
2
3
4
5

Figure 6.9: NFPS Load Impact on nmeta2 Active Mode New Connections
by Number of Switches In-Path (source: Table A.2)

6.5. CAPABILITY 63

6.5 Capability

In this section we validate the traffic classification capabilities of our so-
lution. We do this by validating the capabilities of our solution to han-
dle the most challenging scenario, an online use case where all packets
require inspection by an arbitrary program, and this program generates
actions that must be applied to flows in close to real time. Specifically, our
test is a statistical classifier that sets bandwidth restrictions on unusual
bandwidth-hog flows based on their initial n packets. We evaluate the
capability of our solution in two modes of operation, active and passive
modes, comparing their capabilities in the dimensions of flow compliance
to bandwidth constraint and packets to DPAE before flow suppression oc-
curs.

6.5.1 Nmeta2 Classification Mode

Our testing showed that active mode is more effective for statistical QoS
use cases. It provides a more timely classification in terms of elapsed pack-
ets until treatment is applied, resulting in more effective treatment for ag-
gressive flows. This result demonstrated in Figure 6.10 1, where we see ac-
tive mode achieving a result close to the target bandwidth of 100,000 bps
with packets to DPAE in the 4 - 10 range, whereas passive mode results in
a higher average bandwidth and an order of magnitude more packets to
the DPAE before treatment FEs are enacted.

Active mode achieves better classification timeliness due to the syn-
cronicity between classification and control plane actions to set treatment.

We found that active mode achieved a three-fold improvement in com-
pliance to the target bandwidth over passive mode, and sent an order

1lab: virtual, test: tc-timely-noload-statistical.py, results: /re-
sults/timeliness/statistical/20160507120638/

64 CHAPTER 6. VALIDATION

100,000

1,000,000

10,000,000

100,000,000

10 100 1,000 10,000

Packets to DPAE Interface (log10 scale)

B
an

dw
id

th
 (

bp
s

−
 l

og
10

 s
ca

le
)

nmeta2−statistical−active
nmeta2−statistical−passive

Figure 6.10: Nmeta2 Statistical Classifier - Iperf Average Bandwidth vs TC
Packets to DPAE by Mode (source: Table A.4)

6.6. SUMMARY 65

of magnitude fewer packets to the DPAE. This however, as per previous
charts, is at the cost of NFPS load initial forwarding performance.

Active mode in our prototype is not fully synchronous; packets are re-
turned to the switch in parallel to any advice to the control plane regard-
ing classification and subsequent treatment. A fully synchronous design
that waited to forward the packet until after confirmation from the con-
trol plane would improve treatment compliance, but at the cost of perfor-
mance.

We thus have a trade-off for online use cases between the effectiveness
of treatment and the forwarding performance. The effects of this trade-off
can be mitigated by a) using TC policy to reduce the scope of packets sent
to the DPAE for classification, b) minimising network latency between the
DPAE, controller and switch and c) ensuring sufficient processing speed
on the DPAE, controller and switch to handle peak load. Note that the
performance impact on elephant flows is not significant, as forwarding
occurs at the natural rate of the switch once suppression FEs are applied.

6.6 Summary

In this chapter, we have demonstrated that full TC services on SDN can
be designed to scale, however there are trade-offs that must be consid-
ered. Our prototype solution showed performance improvements, as well
as ability to scale separately to the controller and switch components. The
prototype ran in a virtualised environment, with all flows to the DPAE,
and employed an interpreted language (all worst case scenarios), so has
considerable scope for further optimisation. Furthermore, our prototype
solution proves the viability of building scalable TC atop unmodified Open-
Flow 1.3, with only the addition of compute nodes running commoditised
Linux.

66 CHAPTER 6. VALIDATION

Chapter 7

Conclusion

In this chapter, we draw conclusions and discuss areas for future work.

We have shown that full TC services over standard SDN architecture,
where packets requiring application services must pass via the control
plane, does not scale. Sending of packets that require TC inspection be-
yond the capabilities of the switch to a TC application via the control plane
causes resource exhaustion on the control plane CPU, and this in-turn
causes severe degradation of network performance. Our tests showed
a new flow per second load rate in excess of a relatively low threshold,
causes severe performance degradation for new flows. This is caused by
per-packet TC workload on the controller and application, resulting in
controller CPU exhaustion. Additionally, we showed that this constraint is
detrimental to the timeliness of other control plane functions, in particular
that of MAC learning.

We proposed a minor change to the standard SDN architecture to solve
this problem by retaining the majority of TC workload in the data plane.
We extend the SDN architecture, introducing a new component to the data
plane, for offload of per-packet processing. This new component, the Data
Plane Auxiliary Engine (DPAE), can be scaled separately to other compo-

67

68 CHAPTER 7. CONCLUSION

nents. It also brings other advantages, freeing the switch from supporting
a prohibitively large feature set, and providing extensibility to functions
outside of TC.

Our solution showed performance improvements, as well as ability to
scale, and ran in a virtualised environment with all flows to the DPAE and
employed an interpreted language (all worst case scenarios), so should
have considerable scope for optimisation. Furthermore, our prototype so-
lution proves the viability of building scalable TC atop unmodified Open-
Flow 1.3, with only the addition of compute nodes running commoditised
Linux. Our solution also encourages innovation by making selected full
packets available, in software, for other purposes through an extensible
design.

Our prototype solution is simple to deploy as it does not require mod-
ifications to the OpenFlow protocol, nor does it require specialised hard-
ware. Our solution leverages Linux on commodity x86 hardware, with
the necessary logic in software. We reuse existing software components
where possible. The compatibility of our solution with existing standards
is a boon for manufacturers of OpenFlow hardware switches, as they are
not required to add complexity to their hardware to support modifications
to the OpenFlow standard. This in turn is a boon for operators of SDN sys-
tems as they have more choice of compatible hardware switches, and can
scale other components on commodity compute hardware, or on compute
virtualisation platforms.

We have demonstrated that full TC in SDN can be designed to scale,
however there are trade-offs that must be considered.

The primary trade-off that we identified is between the effectiveness of
treatment and initial forwarding performance. Online use cases that have
a requirement for deterministic treatment must forego initial forwarding

7.1. FUTURE WORK 69

performance while a TC determination is made and actions taken.
The effects of this trade-off can be mitigated by a) using TC policy to

reduce the scope of packets sent to the DPAE for classification, b) min-
imising network latency between the DPAE, controller and switch and c)
ensuring sufficient processing speed on the DPAE, controller and switch
to handle peak load. Note that the performance impact on elephant flows
is not significant, as forwarding occurs at the natural rate of the switch
once suppression FEs are applied.

7.1 Future Work

We conclude this thesis by discussing potential areas of future work to
extend our research.

In future work, we will investigate the sharing and synchronization of
flow information across multiple DPAE. The current method of using a
simple threshold to identify elephant flows can be enhanced with SDN-
based heavy hitter detection techniques [44] to enable dynamic suppres-
sion algorithms that optimise resource usage based on current conditions.
We intend to introduce security and availability features to our design, as
well as improving the TC features and usability of the solution.

70 CHAPTER 7. CONCLUSION

Appendices

71

Appendix A

Result Data

In this appendix, we provide information on the sources of result data
used in the thesis.

Attribute Value
Test Script nmeta2-nfps-combined1000.py
Test Environment Bordeaux
Repetitions 12 x 5 interleaved test types
Results File nmeta2-combined-bordeaux-20160720225417.tar.gz
nmeta2 Version 0.3.4

Table A.1: NFPS 1000 Result Data Parameters

73

74 APPENDIX A. RESULT DATA

Attribute Value
Test Script multi-switch-nmeta2active-nfps-combined1000.py
Test Environment Bordeaux
Repetitions 3 x 5 variations of numbers of switches in path
Results File multi-switch-nmeta2active-nfps-combined1000-

bordeaux-20160722131204.tar.gz
nmeta2 Version 0.3.4

Table A.2: Multi-Switch NFPS 1000 nmeta2 Active Mode Result Data Pa-
rameters

Attribute Value
Test Script performance-no-load-tests.py
Test Environment Bordeaux
Repetitions 3 x 5 test types
Results File performance-no-load-bordeaux-

20160723154025.tar.gz
nmeta2 Version 0.3.4

Table A.3: Performance No Load Tests

Attribute Value
Test Script tc-timely-noload-statistical.py
Test Environment Bordeaux
Repetitions 30 x 2 test types
Results File tc-timely-noload-statistical-bordeaux-

20160716115444.tar.gz
nmeta2 Version 0.3.3

Table A.4: TC Timeliness No Load Statistical Classifier

75

Attribute Value
Test Script cp-timely-load-statistical.py
Test Environment Bordeaux
Repetitions 3 x 13 load levels x 4 test types
Results File control-plane-timeliness-bordeaux-

20160725203638.tar.gz
nmeta2 Version 0.3.4

Table A.5: Control Plane Timeliness No Load Statistical Classifier

76 APPENDIX A. RESULT DATA

Appendix B

New Flow Load Generator - filt

In this appendix, we provide details on how we developed filt, a new
flow load generator, and the performance and accuracy challenges that
we faced.

In filt, an outer loop increments the target rate by a set amount at pre-
defined intervals, while an inner loop sends a single new flow packet per
iteration. The algorithm must calculate how long to sleep for before con-
tinuing with the inner loop. Initially, it was assumed that a basic algorithm
would suffice for generating flow load at the correct rate, as per the equa-
tion below:

d =
1

x

Where:

• d is the sleep time in seconds

• x is the target rate

Tests in the virtual environment showed the simple flow rate algorithm
underperformed on rate with increasing rate variability as target rate in-
creased, and appeared to reach a ceiling beyond which more rate was not

77

78 APPENDIX B. NEW FLOW LOAD GENERATOR - FILT

achievable. This was initially assumed to be a limitation of the virtual en-
vironment. Physical environment tests however generated a very similar
result set, indicating the bottleneck to be the algorithm, not the environ-
ment. The algorithm was updated to account for overhead time in the
inner loop, which becomes more significant as target rate increases. The
overhead is variable due to operating system resource demands made by
other processes, so an algorithm is required that adjusts d to compensate,
as per Figure B.1.

Key

POpOi Os d POpOi Os d

inner loop cycle

inter-packet time

inner loop cycle

POpOi Os

inter-packet time

inner loop cycle

POpOi Os

ideal inter-packet

time for flow target

rate

Inter-packet time too long for
flow target rate resulting in
reduced actual rate, due to Oi and
Op delays in 3rd inner loop cycle

Oi

Op

P

Reduced d to
compensate
for longer Os

Overhead (initial)

Overhead (packet

send)

Packet sent

No d as
overheads
have reduced
it to below 0

inter-packet time

Longer inner loop cycle
due to overhead delays

d Delay (sleep) time

Os Overhead (subsequent)

Figure B.1: Consistent Packet Rate Challenges

A new algorithm, called the make-good algorithm, was developed:

d = max
(
0,

t− 1
x

xi− q

)

Where:

• d is the sleep time in seconds

• x is the target rate

• i is the interval in seconds between flow rate increases

79

• q is the number of flows started in the interval

• t is the time remaining in the interval in seconds

• h is the average overhead time in seconds

A single inter-packet interval (1
x
) is subtracted from the remaining time

in the interval t, to compensate for packets being sent at the start of a cycle,
to avoid finishing the outer loop with a packet send. The adjusted time is
divided by the outstanding packets to be sent in the interval ((xi) − q) to
give an ideal inter-packet time for the remaining interval. This time has
overhead h subtracted so that the sleep time allows for the overhead.

Testing showed the make-good algorithm significantly outperformed
the simple flow rate algorithm. A potential weakness however, of the
make-good algorithm, is that it will attempt to lift the average rate of the
interval if required by sending at a higher rate. This behaviour may not
be desirable when testing requires an upper limit on the maximum rate to
avoid overdriving the system earlier than the reported actual rate.

An alternative algorithm, christened flat-top as it is less likely to over-
drive the output rate, is shown below:

d = max
(
0,

1

x
− j

)

Where:

• d is the sleep time in seconds

• x is the target rate

• j is the minimum overhead time in seconds

80 APPENDIX B. NEW FLOW LOAD GENERATOR - FILT

This equation is simpler than make-good, as it does not take into ac-
count the remaining time or packets to send in the interval, and instead
focuses on calculating the correct sleep delay based solely on the target
rate and measured overhead. The relative performance of all three algo-
rithms in the virtual environment is shown in Figure B.2 1.

Figure B.2: filt target vs actual rates by algorithm

An ideal performance is a bottom-left to top-right line with no variabil-
ity. We see the basic algorithm fall further below the target rate as the rate
increases. The basic algorithm reaches a plateau around 400 NFPS.

The flat-top algorithm starts well, but drifts below target rate once past
200 NFPS and deteriorates markedly from 400 NFPS.

The make-good algorithm exhibits good behaviour up to 800 NFPS,
after which point the variability increases.

1Tests in virtual environment, 30 tests of each algorithm type, data set
20150912122339-filt-unit-tests-30x3-types.tar

81

We decided to investigate sleep time accuracy in the virtual environ-
ment as a contributor to variability and rate drop-off and found that sleep
calls always ran longer than the requested time period, and there was con-
siderable variability to the oversleep amount, as per Figure B.3.

Figure B.3: Absolute Sleep Error by Target Sleep Time

The impact of oversleep on the interpacket delay accuracy becomes
more significant as the sleep time decreases, as per Figure B.4, where per-
centage error is represented on the y-axis

When viewed as a percentage, we see sleep accuracy rapidly degrade
below 5 milliseconds in the virtual environment, explaining the variability
in the filt results at higher packet rates.

We decided to use the make-good algorithm for our tests due to its su-
perior performance over the other two algorithms. It does have a risk of
overdriving the rate, however we manage this risk by maintaining small
increment intervals.

82 APPENDIX B. NEW FLOW LOAD GENERATOR - FILT

Figure B.4: Percentage Sleep Error by Target Sleep Time

Note that it should be possible to create a better performing algorithm,
based on our knowledge of sleep time accuracy, however we chose the
make-good algorithm for generating our NFPS test load as it has sufficient
accuracy for our purposes at loads below 800 NFPS. Also, packet rate al-
gorithms are not the core contribution of this thesis. We leave this subject
open for future work. A researcher in this field may also choose to inves-
tigate use of a real-time operating system in place of Ubuntu, or a field-
programmable gate array (FPGA), to provide better scheduling (sleep) ac-
curacy.

We have since found prior work [45] that examined packet generator
accuracy. The mechanism that we use to cater for oversleep in the make-
good algorithm, is referred to as an Inter Departure Time (IDT) recovery
mechanism in their paper. They observe, as we did, that an IDT recov-
ery mechanism allows average throughput to more closely meet the target
rate, but at a cost of reduced accuracy in packet distribution.

Bibliography

[1] Open Networking Foundation, “Openflow switch specification
version 1.3.5. [online].” https://www.opennetworking.

org/images/stories/downloads/sdn-resources/

onf-specifications/openflow/openflow-switch-v1.

3.5.pdf, April 2015.

[2] M. Hayes, “Quality of service classification mechanisms for IoT,”
tech. rep., Wellington, New Zealand, 2013.

[3] M. Hayes, “Traffic classification in enterprise networks within the
era of IoT. technical report ecstr 14-06,” tech. rep., Wellington, New
Zealand, November, 2014.

[4] B. Ng, M. Hayes, and W. K. Seah, “Developing a traffic clas-
sification platform for enterprise networks with SDN: Experi-
ences & lessons learned,” in Proceedings of IFIP Networking 2015,
(Toulouse, France), May 2015. http://dl.ifip.org/db/conf/

networking/networking2015/1570065779.pdf.

[5] M. Hayes, “nmeta github repository [online].” https://github.

com/mattjhayes/nmeta/, May 2015.

[6] B. J. van Asten, N. L. van Adrichem, and F. A. Kuipers, “Scalabil-
ity and resilience of software-defined networking: An overview. [on-
line].” http://arxiv.org/pdf/1408.6760.pdf, August 2014.

83

https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.3.5.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.3.5.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.3.5.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.3.5.pdf
http://dl.ifip.org/db/conf/networking/networking2015/1570065779.pdf
http://dl.ifip.org/db/conf/networking/networking2015/1570065779.pdf
https://github.com/mattjhayes/nmeta/
https://github.com/mattjhayes/nmeta/
http://arxiv.org/pdf/1408.6760.pdf

84 BIBLIOGRAPHY

[7] A. Tootoonchian and Y. Ganjali, “Hyperflow: A distributed control
plane for openflow,” in USENIX Workshop on Hot Topics in Manage-
ment of Internet, Cloud, and Enterprise Networks and Services (Hot-ICE),
(San Jose), 2010.

[8] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathany, Y. Iwataz, H. Inouez, T. Hamaz, and S. Shenker,
“Onix: A distributed control platform for large-scale production net-
works,” in OSDI Vol 10, (Vancouver, BC, Canada), pp. 1–6, 2010.

[9] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma,
and S. Banerjee, “Devoflow: Scaling flow management for high-
performance networks,” in Proceedings of the ACM SIGCOMM 2011
conference, (Toronto, Ontario, Canada), 2011.

[10] S. Hassas Yeganeh and Y. Ganjali, “Kandoo: a framework for efficient
and scalable offloading of control applications,” in Proceedings of the
first workshop on Hot topics in software defined networks, (Helsinki, Fin-
land), pp. 19–24, August, 2012.

[11] R. Sherwood, G. Gibb, K. K. Yap, G. Appenzeller, M. Casado, N. McK-
eown, and G. Parulkar, “Flowvisor: A network virtualization layer,”
tech. rep., 2009.

[12] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sher-
wood, “On controller performance in software-defined networks,” in
USENIX Workshop on Hot Topics in Management of Internet, Cloud, and
Enterprise Networks and Services (Hot-ICE), (San Jose, CA, USA), April,
2012.

[13] E. Ng, “Maestro: A system for scalable openflow control,” tech. rep.,
TSEN Maestro-Technical Report TR10-08, Rice University, 2010.

[14] A. Shalimov, D. Zuikov, D. Zimarina, V. Pashkov, and R. Smeliansky,
“Advanced study of sdn/openflow controllers,” in Proceedings of the

BIBLIOGRAPHY 85

9th Central & Eastern European Software Engineering Conference in Rus-
sia, (Moscow, Russian Federation), October, 2013.

[15] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantzy, B. OConnory, P. Radoslavovy, W. Snowy, and G. Parulkar,
“Onos: towards an open, distributed sdn os,” in Proceedings of the
third workshop on Hot topics in software defined networking, (Chicago, IL,
USA), pp. 1–6, August, 2014.

[16] Y.-D. Lin, P.-C. Lin, C.-H. Yeh, Y.-C. Wang, and Y.-C. Lai, “An ex-
tended sdn architecture for network function virtualization with a
case study on intrusion prevention,” Network, IEEE, vol. 29, no. 3,
pp. 48–53, 2015.

[17] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. Gude, N. McKeown,
and S. Shenker, “Rethinking enterprise network control,” IEEE/ACM
Transactions on Networking (TON), vol. 17, pp. 1270–1283, 2009.

[18] T. Benson, A. Akella, and D. Maltz, “Network traffic characteristics of
data centers in the wild,” in Proceedings of the 10th ACM SIGCOMM
conference on Internet measurement, (Melbourne, Australia), pp. 267–
280, ACM, 2010.

[19] Z. A. Qazi, J. Lee, T. Jin, G. Bellala, M. Arndt, and G. Noubir,
“Application-awareness in sdn,” in ACM SIGCOMM Computer Com-
munication Review, vol. 43, (Hong Kong, China), pp. 487–488, ACM,
2013.

[20] S. Li, E. Murray, and Y. Luo, Programmable Network Traffic Classification
with OpenFlow Extensions, pp. 269–299. Boca Raton, FL, USA: CRC
Press, 2014.

[21] W. de Donato, A. Pescape, and A. Dainotti, “Traffic identification
engine: an open platform for traffic classification,” Network, IEEE,
vol. 28, no. 2, pp. 56–64, 2014.

86 BIBLIOGRAPHY

[22] G. Bianchi, M. Bonola, A. Capone, and C. Cascone, “Openstate: pro-
gramming platform-independent stateful openflow applications in-
side the switch,” ACM SIGCOMM Computer Communication Review,
vol. 44(2), pp. 44–51, 2014.

[23] S. Pontarelli, G. Bianchi, M. Bonola, A. Capone, and C. Cascone,
“Stateful openflow: Hardware proof of concept,” in In High Perfor-
mance Switching and Routing (HPSR), 2015 IEEE 16th International Con-
ference on, (Budapest, Hungary), July, 2015.

[24] Ryu SDN Framework, “Ryu sdn framework. [online].” https://

osrg.github.io/ryu/, June 2016.

[25] Oracle Corporation, “Oracle VM VirtualBox. [online].” https://

www.virtualbox.org/, October 2015.

[26] Ansible Inc., “Ansible is Simple IT Automation. [online].” http://
www.ansible.com/, September 2015.

[27] R Core Team, “R: A Language and Environment for Statistical
Computing. [online].” https://www.R-project.org/, Septem-
ber 2015.

[28] Hayes, M, “HTTP Object Retrieval Test (hort) GitHub Repository. [on-
line].” https://github.com/mattjhayes/hort, October 2015.

[29] K. Reitz, “Requests: HTTP for Humans. [online].” http://docs.

python-requests.org/en/latest/, October 2015.

[30] M. Kobayashi, S. Seetharaman, G. Parulkar, G. Appenzeller, J. Lit-
tle, J. Van Reijendam, P. Weissmann, and N. McKeown, “Maturing of
openflow and software-defined networking through deployments,”
Computer Networks, vol. 61, pp. 151–175, March 2014.

[31] Hayes, M, “Flow Incremental Load Test (filt) GitHub Repository. [on-
line].” https://github.com/mattjhayes/filt, October 2015.

https://osrg.github.io/ryu/
https://osrg.github.io/ryu/
https://www.virtualbox.org/
https://www.virtualbox.org/
http://www.ansible.com/
http://www.ansible.com/
https://www.R-project.org/
https://github.com/mattjhayes/hort
http://docs.python-requests.org/en/latest/
http://docs.python-requests.org/en/latest/
https://github.com/mattjhayes/filt

BIBLIOGRAPHY 87

[32] P. Biondi, “Scapy [online].” http://www.secdev.org/

projects/scapy/, October 2015.

[33] G. Rodola, “psutil documentation. [online].” https://

pythonhosted.org/psutil/, October 2015.

[34] Hayes, M, “Measure Operating System Performance (mosp) GitHub
Repository. [online].” https://github.com/mattjhayes/mosp,
October 2015.

[35] Open Networking Foundation, “ONF overview. [online].”
https://www.opennetworking.org/about/onf-overview,
June 2016.

[36] Open Networking Foundation, “Sdn architecture 1.0 [online].”
https://www.opennetworking.org/images/stories/

downloads/sdn-resources/technical-reports/TR_SDN_

ARCH_1.0_06062014.pdf, June 2014.

[37] Open Networking Foundation, “Sdn architecture 1.1 [online].”
https://www.opennetworking.org/images/stories/

downloads/sdn-resources/technical-reports/TR-521_

SDN_Architecture_issue_1.1.pdf, February 2016.

[38] Open Networking Foundation, “Openflow table type patterns.”
https://www.opennetworking.org/images/stories/downloads/sdn-
resources/onf-specifications/openflow/OpenFlowAugust 2014.

[39] M. Hayes, “Github - mattjhayes/nmeta2.”
https://github.com/mattjhayes/nmeta2, May 2016.

[40] M. Hayes, “Github - mattjhayes/nmeta2dpae.”
https://github.com/mattjhayes/nmeta2dpae, May 2016.

http://www.secdev.org/projects/scapy/
http://www.secdev.org/projects/scapy/
https://pythonhosted.org/psutil/
https://pythonhosted.org/psutil/
https://github.com/mattjhayes/mosp
https://www.opennetworking.org/about/onf-overview
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/TR_SDN_ARCH_1.0_06062014.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/TR_SDN_ARCH_1.0_06062014.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/TR_SDN_ARCH_1.0_06062014.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/TR-521_SDN_Architecture_issue_1.1.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/TR-521_SDN_Architecture_issue_1.1.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/TR-521_SDN_Architecture_issue_1.1.pdf

88 BIBLIOGRAPHY

[41] T. Mori, M. Uchida, R. Kawahara, J. Pan, and S. Goto, “Identifying
elephant flows through periodically sampled packets,” in In Proceed-
ings of the 4th ACM SIGCOMM conference on Internet measurement,
(Taormina, Sicily, Italy), pp. 115–120, October. 2004.

[42] S. Russell, “Openflow 1.2 switch app with multiple tables. [on-
line].” http://pieknywidok.blogspot.co.nz/2013/07/

openflow-12-switch-app-with-multiple.html, July 2013.

[43] Open Networking Foundation, “The benefits of multiple flow
tables and ttps. [online].” https://www.opennetworking.

org/images/stories/downloads/sdn-resources/

technical-reports/TR_Multiple_Flow_Tables_and_

TTPs.pdf, February 2015.

[44] L. Yang, B. Ng, and W. K. G. Seah, “Heavy Hitter Detection and Iden-
tification in Software Defined Networking,” in Proceedings of the 25th
International Conference on Computer Communication and Networks (IC-
CCN), (Waikoloa, HI, USA.), 1-4 August 2016.

[45] A. Botta, A. Dainotti, and A. Pescapé, “Do you trust your software-
based traffic generator?,” Communications Magazine, IEEE, vol. 48,
no. 9, pp. 158–165, 2010.

http://pieknywidok.blogspot.co.nz/2013/07/openflow-12-switch-app-with-multiple.html
http://pieknywidok.blogspot.co.nz/2013/07/openflow-12-switch-app-with-multiple.html
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/TR_Multiple_Flow_Tables_and_TTPs.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/TR_Multiple_Flow_Tables_and_TTPs.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/TR_Multiple_Flow_Tables_and_TTPs.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/TR_Multiple_Flow_Tables_and_TTPs.pdf

	Introduction
	The Problem
	Objectives
	Tasks
	Contributions
	Thesis Structure

	Related Work
	Scalability of Software-Defined Networking
	Improving Controller Performance
	Reducing Controller Functions
	Partitioning Controllers

	Traffic Profile Considerations
	Traffic Classification
	Summary

	Scalability of SDN TC
	Baseline Application - nmeta
	Baseline Evaluation Methodology
	Test Environment
	Test Topology

	Test Automation & Orchestration
	Orchestration
	Test Tooling
	Load Test Methodology
	NFPS Test Types
	Functional Performance Evaluation
	New Flow Rate Testing
	System Performance Measurement

	Baseline Validation Results
	Initial Results
	Controller CPU Analysis

	Summary

	Solution Architecture
	ONF SDN Architecture
	Architecture Revision
	Summary

	Design of Scalable TC with OpenFlow SDN
	Inter-Component Communications Design
	Switch to DPAE D-DPI
	DPAE to Controller D-CPI
	Switch to Controller D-CPI

	Packet Forwarding Design
	Passive and Active Modes
	Flow Suppression
	OpenFlow Table Design

	TC Design
	State Retention
	TC Policy Design
	Devolving Static Classification
	Devolving Identity Classification
	Devolving Statistical Classification
	Devolving Payload Classification

	Performance Tuning
	DPAE Concurrency Design
	Packet Library
	5-Tuple Bi-Directional Hash and Database Indexing
	Broadcast Optimisation

	Summary

	Validation
	Test Method
	Performance
	Scalability
	New Flow Forwarding Performance Under Load
	Existing Flow Forwarding Performance Under Load
	Control Plane Timeliness Under Load

	Scaling to Multiple Switches
	Capability
	Nmeta2 Classification Mode

	Summary

	Conclusion
	Future Work

	Appendices
	Result Data
	New Flow Load Generator - filt

