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Abstract

Superconductivity is a field where much research has been conducted into explaining

all aspects of this phenomenon in many materials. BCS theory provided the principal

understanding of superconductivity in conventional materials yet fails to entirely describe

those which exhibit greater coupling-strengths as well as the more unconventional

superconductors. Formulations have been proposed which extend BCS theory in various

ways such as scaling the predicted energy gap by values representative of greater coupling

strengths.

In order to further extend such formulations we applied our own theory which recalculates

the energy gap based solely on thermodynamic parameters, in the hope of improving

their accuracy. Comparisons of this energy gap calculated from existing critical-

field measurements as well as computational predictions for a range of weak- to

strong-coupling type I s-wave superconductors were made with experimental tunnelling

measurements. Our thermodynamic theory provided an accurate temperature-dependence

of the energy gap for all these superconductors except for the strongest coupler which

produced erroneous predictions.

An extra-strong-coupling superconductor Pb0.7Bi0.3 was synthesised and it’s critical-

field measured in order to rigorously test our theory in the strong-coupling regime. It

exhibited type II superconductivity contrary to our belief and as such measurements were

insufficient for an accurate comparison. However, computational calculations predicted

an accurate temperature-dependence for the energy gap of Pb0.7Bi0.3 when compared

with experimental tunnelling measurements. Thus our theory appears to apply for this

extra-strong-coupling type II superconductor and not for the strong-coupling type I

superconductor, which prompts further investigation. These comparisons depend upon

the accuracy with which the temperature-dependence of the energy gap can be measured

- not an easy task.

Extension was also made to d-wave superconductivity where our theory provided

little improvement over a scaled BCS interpretation for several overdoped samples of
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the unconventional Bi-2212 superconductor. However, and this is a most important

conclusion, this is due to the weak nature of the coupling in this material which we were

able to establish.

Thus our theory appears to provide several promising first-order results and warrants

further investigation and application to a range of superconductors.
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Chapter 1

Introduction

Superconductors in general are a class of materials which exhibit the phenomenon of

absolutely zero electrical resistance once they are cooled below their critical temperature,

Tc. This superconducting state is characterised by the pairing of electrons into Cooper

pairs which breaks gauge symmetry and causes a energy gap, ∆, to open in the

density of states. Historically this superconducting state was initially well described

by Bardeen, Cooper and Schrieffer in a complex theory from which the central results

successfully applied to most conventional low temperature superconductors.13 BCS

theory, as it has been termed, whilst quite successful has its shortcomings. In conventional

superconductors the Cooper pairs consist of electrons with equal and opposite momentum

yielding s-wave symmetry for the energy gap. This electron pairing is mediated via

the exchange of a boson which is identified in conventional superconductors as a

phonon within the crystal lattice.13 BCS theory describes superconductors well when

this interaction is weak, the so-called weak-coupling limit, yet discrepancies begin to

arise once the strength of this coupling increases. The theory also did not account for

the advent of a new generation of unconventional high temperature superconductors

which exceeded its theoretical limits. In these unconventional superconductors the

momenta of the coupled electrons are still equal and opposite yet have an overall non-

zero angular momentum and thus yield an anisotropic energy gap with d-wave symmetry

with the pairing mechanism remaining unidentified even today.14 Much research has

been conducted over the last couple of decades in an attempt to accurately describe

superconductivity in all its forms with much progress being made but several central

issues still remain unresolved.

Padamsee, Neighbor and Schiffman presented a formulation based on BCS theory

which accurately describes the behaviour of several properties for conventional s-wave

superconductors regardless of their coupling strength.2 It assumes the superconductor is

a system of independent fermion quasiparticles from which the electronic entropy can
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be calculated. The energy spectrum is taken to be the same as in BCS theory with

the gap to Tc ratio value, α, representative of the coupling strength being an adjustable

parameter. This model provides a good match to experimental data for a range of coupling

strengths yet its validity remains to be seen when compared with extra-strong coupling

superconductors.

In this thesis we test the application of a theory put forward by our group similar to

Padamsee but extending it beyond its reliance on the BCS energy spectrum. Our theory

relies solely on the use of thermodynamic functions in order to calculate the temperature

dependence of the superconducting energy gap, ∆(T ), for a range of superconductors.

Ferrell’s work15 has primarily been drawn upon in the formulation of this theory. Ferrell

working from the BCS Hamiltonian transformed the equations to obtain an expression

for the free energy in terms of an integral of the temperature dependence of the

superconducting energy gap squared. Ferrell’s intention was to input a model ∆(T ),

such as BCS, and to calculate the temperature dependent free energy. Yet we can easily

determine the free energy from thermodynamic critical-field data, so our theory inverts

Ferrell’s process and calculates an accurate ∆(T ) for any superconductor based on the

thermodynamic functions ∆F and ∆S. In terms of simulating the results numerically

we too make use of the electronic entropy such as Padamsee and derive from this the

Helmholtz free energy in order to deduce ∆(T ) using our theory. Utilising the BCS

energy gap as a starting point the zeroth iteration of the program should produce the same

thermodynamic results as Padamsee for a range of coupling strengths. Our theory allows

us to then deduce a new energy gap temperature dependence from these thermodynamic

functions and feed this back into the program as the starting gap and recalculate. The

first additional iteration tested appears to produce a ∆(T ) which more accurately reflects

the departure seen from BCS theory exhibited by stronger coupling superconductors.

It is hoped that multiple iterations will settle on a stable solution for ∆(T ) which will

accurately match tunnelling and critical-field data for a range of superconductors.

It is our intention to compare numerical results from our program and apply this theory

to existing data for a range of weak- to strong-coupling s-wave superconductors. In

order to provide a rigorous test for our theory we also synthesised an extra-strong

2



coupling superconductor, Pb0.7Bi0.3, and measured critical-field data for a range of

pressures utilising a standard clamp cell with which to compare to numerical calculations.

Finally we hope to extend our theory to represent the more unconventional d-wave

superconductors as well.
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Chapter 2

Background

2.1 BCS Theory Overview

The phenomenon of superconductivity where certain conductors suddenly exhibit abso-

lutely zero electrical resistance when cooled below a critical temperature, Tc, remained a

great mystery for many decades after its initial discovery by Kamerlingh Onnes in 1911.1

It was not until 1957 when Bardeen, Cooper and Schrieffer published their iconic work13

that a reasonable theory for superconductivity which predicted experimental findings

was accepted. In the formulation of BCS theory several clues were central. Firstly,

the observed transition from the normal to superconducting state was so sharp that it

could only be described if the electrons condensed into a coherent, ordered state which

extended for long distances across atoms. Thermodynamically, it is a second-order phase

transition.16 Secondly, the isotope effect observed experimentally in 1950 gave a linkage

between superconductivity and the atomic lattice of a superconductor. The isotope effect

was discovered when experimenting with the dependence of Tc on the isotopic mass M of

the atoms in a superconductor and found that17

Tc ∝
1√
M

(2.1)

Thus the isotope effect shows the mass of atomic nuclei affects Tc and that the vibrating

atoms in the lattice must somehow be involved with superconductivity.

Cooper was the one to propose that superconductivity is associated with a bound pair of

electrons in a metal with equal and opposite spin and momentum.13 The question was

how do these electrons pair when they normally would repel one another via the coulomb

interaction? The isotope effect indicated that the development of the superconducting

state was related to the vibrations of the lattice and thus phonons became the most likely

candidate for this interaction mechanism. Exchange of momentum between two electrons

4



via a virtual phonon allows them to experience a mutual attraction at a distance and form

what has become known as a Cooper pair. The distance over which phonon-electron

coupling occurs is known as the coherence length, ξ, a concept proposed in Ginzburg-

Landau theory16 which can also be derived from BCS theory. Experimental analysis

determined that in conventional superconductors the coherence length is around 10−4 cm

and thus the influence of any one Cooper pair extends over this macroscopic distance.1

There exist very many Cooper pairs within the coherence length and as such the waves

associated with all of these pairs overlap with one another. Cooper pairs no longer exist

in isolation but are continually swapping partners with one another due to this extensive

overlap forming a single coherent condensed state of the superconductor.1 Fluctuations

out of the paired state (or into the paired state from the normal state) become significant

when the condensation energy is comparable to kBTc. Using Ginzburg-Landau theory this

criterion can be reexpressed in terms of the number of Cooper pairs within a coherence

volume. Should this be comparable to unity then strong superconducting fluctuations

will be present up to ∼ 2Tc. In conventional superconductors there is a large number of

overlapping pairs so critical fluctuations are suppressed. One could think of this as being,

in a sense, close to the "thermodynamic limit" for Cooper pairs. Where fluctuations

are weak the transition is very sharp.18 However, in high-Tc superconductors the very

short coherence length means there are just a few pairs that overlap and fluctuations

become very significant. Thus coherence leads to the superconductor acting like a single

macroscopic quantum state. Cooper pairs can all occupy this single state as they consist

of two fermions with opposite spin making them bosons and hence do not obey the Pauli

exclusion principle.

The energy within this coherent state is lower than that of normal conduction electrons in

a metal due to the higher degree of order from the formation and interaction of the Cooper

pairs. As a result an energy gap of 2∆ opens in the excitation spectrum at the Fermi level

separating the superconducting condensate from the normal electron state. In order to

excite an electron from the superconducting-state to the normal-state requires breaking

apart a Cooper pair from within the condensate, so naturally a finite amount of energy

is required to free a single electron from both its pair and the coherent state. One of the

famous results of BCS theory is that it links this energy gap at absolute zero, ∆(0), to the
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experimentally observed Tc, irrespective of the Tc value.16

2∆(0) = 3.528kBTc (2.2)

The relation holds for a range of conventional superconductors which exhibit s-wave

symmetry for their Fermi surfaces. BCS was originally formulated to describe such

conventional superconductors but failed to adequately account for the processes later

discovered in unconventional superconductors. In particular these unconventional su-

perconductors exhibit d-wave symmetry and the Cooper pairs have an overall non-zero

angular momentum.14,19 However it is still possible to extend BCS theory in order to

obtain an estimate of the amplitude of the energy gap at absolute zero.

2∆(0) = 2.14kBTc (2.3)

Where the gap is now k-dependent around the Fermi surface and ∆(T, k) = ∆(T )cos2θ

where θ is the angle around the Fermi surface. BCS theory also provides an accurate

estimate of the temperature dependence of this energy gap ∆(T ) in the conventional

superconductors. At any finite temperature there will be some electrons with enough

energy to be thermally excited across the energy gap reducing the number of Cooper pairs

and raising the pairing energy of the coherent superconducting-state. As the temperature

is increased and the energy gap grows smaller more electrons are thermally excited out of

the superconducting-state until eventually at Tc no pairs remain and the superconducting-

state vanishes as illustrated in Figure 2.1.1 The derivation of the energy gaps from the

energy spectrum or density of states for both s- and d-wave symmetry is described in

more detail in Section 2.2. BCS theory was formulated such that it applies in the so-called

weak-coupling limit. In this limit it is assumed the electron-phonon coupling constant

obeys Equation 2.4.16

λ = N(EF )V < 1 (2.4)

Where N(EF ) is the number of states at the Fermi level and V is the electron-phonon

interaction strength which is assumed to be constant up to some high cut-off energy.

BCS theory does indeed reasonably hold for a range of conventional superconductors
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yet discrepancies begin to arise when the strength of the coupling interaction increases

and Equation 2.4 no longer holds. Thus new theories which modify the central results

of BCS theory are needed in order to adequately describe superconductors which exhibit

stronger coupling. BCS theory also does not adequately describe the new generation

of unconventional high-temperature superconductors that have been discovered since its

formulation. These unconventional superconductors exhibit Tc’s much higher than the

theoretical limits predicted by BCS theory and the pairing mechanism of their Cooper

pairs has as of yet not been conclusively identified. Using the Eliashberg extension of

BCS theory to strong coupling McMillan predicted an upper limit of Tc of 28 K for the

Nb alloys and 40 K for V3Si.20 Thus much research has been conducted in the field of

superconductivity over the last couple of decades in an attempt to formulate a theory to

adequately describe superconductivity in all of its forms.1

Figure 2.1 The temperature dependence of the superconducting energy gap ∆(T ) scaled
by the gap at absolute zero ∆(0) as predicted by BCS theory. Overlaid with experimental
measurements of the energy gap for an indium-bismuth alloy to show good agreement
with theory.1
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2.2 Density of States

2.2.1 s-wave

In 3D Fermi-liquid-like metals the Density of States (DOS) is proportional to
√
E − EF

provided the dispersion is free-electron like. But for energies close to EF we approximate

the DOS as a constant. In an s-wave superconductor electrons with equal and opposite

momentum pair up into Cooper pairs breaking gauge symmetry and causing an energy

gap, ∆, to open up in the DOS. We can deduce a formula for the superconducting-state

DOS, N(E), by counting all states over momentum k-space with particular energies, E.

We start with a relation from the BCS Hamiltonian13 linking the superconducting-state

energy, Ek, the normal-state or free particle energy, εk, and ∆ which is isotropic for s-

wave superconductors.

Ek =
√
ε2
k + ∆2 (2.5)

N(E) =
∑
k

δ(Ek − E) (2.6)

= N(0)

∫
δ(
√
ε2
k + ∆2 − E)dεk (2.7)

The DOS can now be calculated as an integral over εk whereN(0) is the magnitude of the

normal state DOS at the Fermi level. It is more convenient however to change variables

and integrate over the superconducting state energy, Ek.

dεk =
EkdEk√
E2
k −∆2

(2.8)

N(E) = N(0)

∫
Ek√

E2
k −∆2

δ(Ek − E)dEk (2.9)

= N(0)
|E|√

E2 −∆2
(2.10)

Thus we now have a useful form for the s-wave superconducting DOS. The number of

states must of course be the same in both the normal- and superconducting-state in order

for entropy to be conserved within the system. In order to account for the reduced DOS at

low energies due to the gap opening the DOS becomes large immediately above the gap
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Figure 2.2 s-wave superconductor DOS in superconducting- (line) and normal-states (red
dashed). Hatched areas represent the equivalent number of states in the normal- and
superconducting-states.

forming a singularity at E = ∆, which we can see qualitatively illustrated in Figure 2.2.

2.2.2 d-wave

In unconventional superconductors the electrons forming Cooper pairs still have equal

and opposite momentum but overall non-zero angular momentum and so the energy gap

which opens is no longer isotropic and exhibits lower symmetry in k-space, typically

though not exclusively p-wave or d-wave. Generally unconventional superconductors

exhibit a layered structure which gives rise to quasi-2D electronic behaviour. As such the

kz dispersion varies only slightly and is usually neglected. A d-wave gap opens above and

below the Fermi surface in k-space, a constant energy contour projected onto the (kx, ky)

plane, and can be described by the relation16

∆k =
∆

2
(coskx − cosky) (2.11)

Where it exhibits nodes at the diagonals of the zone, kx = ky, as illustrated in Figure 2.3.

We can however represent these co-ordinates within k-space in terms of an angle, θ, made

to the ky axis.

θ = arctan

(
π − kx
π − ky

)
(2.12)
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Figure 2.3 The Fermi surface (red) and energy gap (blue) which opens up along it at the
zone diagonals of a d-wave superconductor. The same size gap opens up below the Fermi
surface but is not shown here for clarity.

The d-wave gap is often simplified by the approximation that coskx − cosky ≈ cos2θ

yielding the d-wave gap equation

∆ = ∆cos2θ (2.13)

It is now a simple matter to deduce the DOS for a d-wave superconductor as at any

particular θ we have a fixed gap size akin to that of an s-wave superconductor. Thus

utilising the same method as for the s-wave superconductor previously and summing over

the full range of θ we can deduce the following DOS.

Figure 2.4 d-wave superconductor DOS in superconducting- (line) and normal-states (red
dashed).
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N(E) =
∑
θ

∑
k

δ(
√
ε2
k + (∆cos2θ)2 − E) (2.14)

=
N(0)

π/4

∫ π/4

0

E√
E2
k + (∆cos2θ)2

dθ (2.15)

The angle dependence of the energy gap and the existence of the node at the Fermi surface

create a different response for the d-wave DOS which can be seen in Figure 2.4.

2.3 BCS Energy Gap Equation

Utilising the Hamiltonian described by BCS theory it is possible to formulate the self-

consistent Equation 2.16 for the energy gap’s temperature dependence as an integral over

energy. This can be achieved by thermally averaging the Hamiltonian operators with

quantum mechanic statistical analysis.17

∆ = N(0)V

∫ ~ωc

0

∆√
E2 −∆2

tanh

√
E2 −∆2

2kBT
dE (2.16)

Where V is the electron-phonon interaction strength which under BCS theory in the

weak-coupling limit is constant up to some cut-off energy as mentioned in Section 2.1.

That cut-off energy is ~ωc which is orders of magnitude greater than the energy of the

superconducting Cooper pair condensate.17 In conventional superconductors this is taken

to be at the Debye frequency, ωD, as this is the theoretical maximum frequency of the

phonons within the lattice. However this equation is self-consistent where ∆ appears on

both sides of the equality and as such the only reasonable way to solve it is numerically.

An initial guess for ∆ is used on the right hand side of the equation to calculate the

∆ on the left hand side, this new value is then fed back into the right hand side of

the equation to recalculate ∆ once more. Many iterations carried out by a computer

will eventually produce a consistent, accurate value for ∆ that matches both sides of the

equation for every temperature. However this method is laborious and computationally

intensive making it very inefficient for regular recalculation given modern commercial

computers. ∆(T ) has already been tabulated by Muhlschlegel21 to which we have made
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the following fit for arbitrary T

∆ = 1.764kBTc

(
1−

(
T

Tc

)3.49504
)0.54312

(2.17)

In the first instance we shall use this approximate equation for the BCS gap and avoid

the computationally intensive self-consistent calculation of Equation 2.16 unless such

accuracy is necessary. Equation 2.16, as it is derived from BCS theory, holds for

conventional superconductors which exhibit s-wave symmetry yet we may also extend

this to d-wave symmetry to obtain a similar equation for unconventional superconductors.

Utilising Equation 2.13 and integrating over all angles, θ, we are able to carry out a similar

derivation to that above and deduce the following temperature dependence of the d-wave

energy gap.

∆ =
N(0)V

π/4

∫ ~ωc

0

∫ π/4

0

∆(cos2θ)2√
E2 − (∆cos2θ)2

tanh

√
E2 − (∆cos2θ)2

2kBT
dθdE (2.18)

Equation 2.18 must be solved self-consistently and thus numerical calculation is required.

2.4 Tunnelling Measurements of Energy Gap

Experimental confirmation of the energy gap as predicted by BCS theory was one of

the most robust verifications of its validity. This can be done in a number of ways

including microwave and infrared spectroscopy or measurement of thermal properties

such as specific-heat and thermal conductivity. However one of the most direct and

convenient measurements of the energy gap is through tunnelling experiments. Tunnelling

experiments use the effect of quantum-mechanical tunnelling where an electron wave

has a finite probability of tunnelling through a classically forbidden zone, such as a thin

insulating barrier. A tunnelling junction can be manufactured as a parallel plate capacitor

where two metallic layers approximately 10 nm apart are separated by a thin insulating

layer. In order to measure the energy gap in a superconductor imagine one of these plate

layers is the superconductor of interest and the other is a regular metal. A variable voltage

can then be applied to this capacitor and the current measured. Figure 2.51 illustrates how
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Figure 2.5 Energy levels in a tunnelling junction where a superconducting plate is
separated from a normal metal plate by a thin insulating layer. (a) When no voltage is
applied the condensed state of Cooper pairs is aligned to the Fermi level and hence no
current flows because the states are gapped there. (b) Once the applied voltage is large
enough to shift the energy levels so that the excited normal states of the superconductor
are at the normal metal’s Fermi level then a substantial current can tunnel between the
layers.1

the energy levels in the materials at each plate are affected by the applied voltage.

In a superconductor the Cooper pairs occupy a single condensed state 2∆ in energy below

the excited normal-state for single electrons. When no voltage is applied this condensed

state is equal in energy to the Fermi level of the regular metal on the other side of the

tunnelling junction as shown in Figure 2.5 (a). Electrons are only able to tunnel through

the insulating barrier when there are available states to flow into (or from) and so no

current flows. As the voltage applied is increased the energy of the condensate is lowered

until a certain critical voltage, Vcritical, aligns the Fermi level in the normal metal with the

excited normal-state of the superconductor. No current will flow through the junction until

Vcritical has been reached at which point there are available excited states for the electrons

of the normal metal to tunnel into and so a current flows as illustrated in Figure 2.5 (b).

This Vcritical provides a direct measure of the energy gap and is equal to ∆/e. In order

to measure the energy gap at any given temperature a positive voltage is applied to the

superconducting plate and increased whilst the current is measured giving a characteristic

I-V curve such as Figure 2.61, from this Vcritical can be used to determine ∆.

13



Figure 2.6 The current-voltage characteristic curve measured for tunnelling across a
superconductor/normal metal capacitor. Once Vcritical = ∆/e has been reached the
superconducting excited state level has been depressed sufficiently to allow electrons from
the normal metal to tunnel across and allow a current to flow.1

Tunnelling junctions can also be comprised of two identical superconducting plates and

thus Vcritical = 2∆/e. Tunnelling measurements often provide the most accurate and

comprehensive measure of the temperature dependence of the superconducting energy

gap for a material. As such comparisons to calculated values for the energy gap in this

thesis are made to tunnelling measurements for a range of superconductors, primarily in

Chapter 5.

2.5 The α Model

There have been several attempts at providing a relatively simple extension to the elegant

BCS theory in order to account for the discrepancies that arise due to stronger electron-

phonon coupling in s-wave superconductors. Padamsee, Neighbor and Shiffman’s

attempt at this culminated in their α-model.2 They draw upon a similar method utilised

by Finnemore & Mapother10 and Swihart22 which use the gap ratio

α ≡ ∆(0)

kBTc
(2.19)

as an adjustable parameter in BCS relations. α has been taken as a measure of the

coupling strength in a range of superconductors. BCS theory, which assumes weak-
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coupling, has a value of αBCS = 1.764 as could be deduced from Equation 2.2 and

for other superconductors where the electron-phonon coupling is greater experimentally

derived values for α exceed this. The works of Finnemore & Mapother and Swihart

utilise this α in the BCS expression for the free energy yet this introduces thermodynamic

inconsistencies and does not match the data exceptionally well.2 Padamsee avoids these

inconsistencies by also employing α as an adjustable parameter to represent coupling

strength but instead begins with the standard expression for the combinatorial entropy in

a system where excited states are well-defined Fermions. Thus the electronic entropy in

the superconducting-state can be calculated by

Ses = −2kB
∑
k

fk ln fk + (1− fk) ln(1− fk) (2.20)

fk =
1

exp Ek

kBT
+ 1

(2.21)

Where fk is the Fermi function and the quasiparticle energies Ek are given by Equation

2.5.2 The energy gap ∆ is taken to be the same as in BCS theory as tabulated by

Muhlschlegel21 except scaled by the adjustable parameter α to represent the increased

coupling strength giving Equation 2.22.2

∆(T ) =
α

αBCS
∆BCS(T ) (2.22)

The normal-state electronic entropy can be similarly calculated where the energy gap

is zero and as such Ek = εk yielding a linear dependence on temperature. Thus we

are now able to determine the difference in electronic entropy between the normal-

and superconducting-states from which we can deduce the free energy difference by

integration with respect to temperature. The free energy in turn allows us to determine

the critical-fields, Hc, at any given temperature by Equation 2.23.13

∆F =
Hc

2

8π
(2.23)

Comparison of critical-field results of various superconductors are generally presented in

terms of their deviation from a perfect parabolic temperature dependence which can be
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calculated via the deviation function of Equation 2.24 where t = T/Tc.2

D(t) ≡ Hc(t)

Hc(0)
− (1− t2) (2.24)

In general the deviation function is quite sensitive to small differences and as such allows

a better way to observe the minute differences in Hc data between superconductors.

Padamsee calculated and plotted this deviation function from the α-model for a range

of α’s to illustrate the differences in Hc for altered coupling strengths, shown in Figure

2.7.2

Figure 2.7 Deviations as calculated from Hc predictions of Padamsee’s α-model for a
range of coupling strengths, indicated by the displayed α-values for each curve.2

Thus Padamsee’s α-model provides a formalism to calculate all of the above thermody-

namic variables and avoid the inconsistencies of some other models. It appears to provide

a reasonable fit to critical-field data and matches α-values deduced from tunnelling

measurements for a fair range of different coupling superconductors. However whether it

adequately describes some of the strongest coupling superconductors remains to be seen.
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2.6 Proposed Thermodynamic Theory

We propose a theory similar to Padamsee in its formulation but which extends it beyond its

reliance on the BCS energy spectrum and allows this to migrate iteratively. It relies solely

on the use of thermodynamic functions in order to calculate a general superconducting

energy gap, ∆(T ), for a range of superconductors. It should be applicable to a range of s-

wave superconductors with varying coupling strengths as well as unconventional d-wave

superconductors.

2.6.1 Theory Formulation

Ferrell’s work15 has been drawn upon primarily to provide a starting point in the

formulation of this theory which we extend to include d-wave superconductivity. Ferrell,

working from the BCS Hamiltonian, transformed the equations to obtain an expression

for the free energy in terms of an integral of the BCS superconducting energy gap squared

as shown in Equations 2.25 & 2.26.15

∆F (T ) = ζN(0)∆(0)2t2
∫ 1

t

Q(t′)

t′3
dt′ (2.25)

Q(t) ≡
(

∆(T )

∆(0)

)2

(2.26)

Where ζ is an additional parameter included to distinguish between the s-wave, ζ = 1,

and d-wave, ζ = 1/2, cases. ∆F (T ) being the free energy difference between the normal

and superconducting states is intrinsically linked to the energy gap ∆(T ) separating

them. Ferrell’s intention was to adopt a model reduced-temperature dependence Q(t),

such as BCS, and to calculate ∆F (T ) via Equation 2.25. However, it is relatively easy

to determine ∆F (T ) from critical-field data by Equation 2.23 so we propose inverting

Ferrell’s calculations and instead obtaining an accurate ∆(T ) from ∆F (T ). Thus by

differentiating both sides of Equation 2.25 with respect to T and rearranging we can
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obtain our theoretical equation which relies solely on thermodynamic functions.

ζN(0)∆(T )2 = 2∆F (T ) + T∆S(T ) (2.27)

∆S(T ) can be calculated by differentiating ∆F (T ) experimentally derived from critical-

field measurements and thus allows us to calculate an accurate ∆(T ). Ferrell’s calculation

of the free energy is based on BCS weak-coupling yet we can attempt to extend it to

strong-coupling utilising Padamsee’s α-model to represent this through scaling of the

BCS gap. In order to achieve this the ∆(T ) in Equation 2.26 would be replaced by that

calculated from Equation 2.22 which incorporates the coupling strength in the form of

the α ratio. We can use Equation 2.27 to calculate ∆(T ) as α will be imbedded within

our entropy calculation. In order to provide an initial test of the theory our group has

previously calculated ∆F and ∆S from critical-field measurements for Pb, a strong-

coupling superconductor, and calculated ∆(T) using Equation 2.27. This calculation

produced a ∆(T ) which flattens out relative to the model BCS temperature dependence

and as a result more accurately matches experimental tunnelling measurements of the gap

for Pb.

In order to provide a rigorous test of the theory ∆(T ) would need to be calculated from the

theoretical expressions for these thermodynamic functions and iterated numerous times

using each newly derived ∆(T ) in order to settle on a stable solution. Such a stable

solution from multiple iterations could then be compared to experimental data and provide

proof of the theory’s applicability.

2.6.2 Theory Computation

Padamsee’s α-model begins by calculating the electronic entropy for s-wave supercon-

ductors which requires a summation over all states in k-space in order to provide a

thermodynamically-consistent model. We too shall begin by calculating the entropy for

our system, yet a summation over k-space is cumbersome numerically and so we instead

convert this to an integral over all energies, E, by inclusion of the DOS, N(E), as shown
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in the Equation 2.28.

S = −4kB

∫ E′

0

N(E)fw(E, T )dE (2.28)

fw(E, T ) = f(E, T ) ln f(E, T ) + (1− f(E, T )) ln(1− f(E, T )) (2.29)

Where fw(E, T ) is denoted the Fermi Window function which is the same term as in

Padamsee’s Equation 2.20 but now the Fermi function, f , is calculated with energy

and temperature inputs only rather than being deduced from k values. fw(E, T ) is a

representation of the distribution of energies for thermally activated excited states within

the system and so we simply need to integrate up to a sufficiently high energy E ′ where

fw is essentially zero. At this E ′ Equation 2.28 will provide an adequate numerical

calculation for the entropy of the system. Inclusion of N(E) in Equation 2.28 has also

generalised the entropy calculation to be used for both s- & d-wave superconductors by

using the derived formula in Section 2.2. The superconducting-state entropy, SS , can be

initially calculated using N(E) with the BCS ∆(T ) scaled by α as given by Equation

2.22. The normal-state entropy, SN , is simply calculated by setting ∆ = 0. Thus we now

have ∆S(T ) = SN −SS and by numerically integrating we can obtain ∆F (T ) producing

similar thermodynamic results as Padamsee’s α-model for any particular α.

Utilising Equation 2.27 we can use our theory to determine ∆(T ) from these thermo-

dynamic functions. Yet in order to produce a self-consistent solution for ∆(T) we

need to replace the BCS ∆(T ) in N(E) with our newly calculated ∆(T ) and repeat

this calculation similarly multiple times. Over a number of iterations a stable solution

for ∆(T ) should eventually emerge. Whilst Padamsee’s α-model provides a good

approximation for the gap it is not suitable for such an iterative process. It only accounts

for the effect strong-coupling has on the gap size and fails to address how it also alters the

electronic specific heat coefficient, γ = ∂S/∂T . Our hypothesis is to extend the theory

through the use of Eliashberg theory to fully account for all effects of strong-coupling

and hopefully recover a realistic temperature dependence for the gap through this iterative

calculation. Eliashberg theory alters the normal-state electronic specific-heat coefficient

from it’s Sommerfeld value to

γN =
2

3
π2kB

2N(0)(1 + λ) (2.30)
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where λ is the electron-phonon enhancement parameter.23 This enhancement parameter

alters the equations for both γN & γS such that they match the higher values measured

for superconductors with stronger coupling. λ � 1 for the BCS case. The specific-

heat coefficient can be used to find the entropy of a system by integrating with respect

to temperature. As such this scalar enhancement factor would necessarily need to carry

through to the entropy in order to accurately portray this effect of stronger coupling.

Thus for our model we must include this enhancement factor in order to maintain full

consistency with the effects of strong-coupling thereby changing Equation 2.28 into

S = −4kB(1 + λ)

∫ E′

0

N(E)fw(E, T )dE (2.31)

In order to utilise this enhancement factor with the α-model it is necessary to ensure

the two are self-consistent. Determination of appropriate λ’s would involve performing

the iterative calculation to produce stable ∆(0)’s and then calculating the corresponding

α-values for each degree of coupling with Equation 2.19.

Thus our theory should allow us to simulate the full temperature dependence for the

thermodynamic functions ∆S(T ), ∆F (T ) and ∆(T ) over a range of coupling strengths

which we can compare with both critical-field and tunnelling measurement data.
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Chapter 3

Computational Calculations

Computational calculations were carried out using software programs written by the

author in the freely available programming language PythonTM . Each calculation

involved creation of a particular program to carry it out and those which relied on

the results from a previous calculation often imbedded that particular program into

its structure. In other words, more complex programs incorporated previously written

programs within them as functions for it to access and process as necessary. The

following chapter will cover the architecture of programs created in order to undertake

the calculations necessary to test our proposed theory for firstly s-wave and then d-wave

superconductors.

3.1 Programs for s-wave Symmetry

3.1.1 Density of States

The first required quantity is the Density of States (DOS) which will be utilised by the

later program Entropy. Initially the program computed this by summing states over a k-

space grid of values (kx = 0→ π, ky = 0→ π) as described by Equation 2.6. Yet as has

been mentioned in Subsection 2.2.1 this is computationally intensive and inefficient hence

it proved more convenient to convert this to an integral over energy given by Equation 2.7

and calculate the DOS directly from Equation 2.10. The normal-state DOS, N(0), in this

equation is a constant and is set to a value of 1.0 state/eV formula unit for the purposes

of our calculations. The DOS is now calculated as a function of energy at energies

Ei = i ∗ dE for integers of i = 0 to NE. dE is determined as the range of energy

divided by the number of energy values, NE, we wish to calculate. Larger values of NE

will naturally produce a more accurate, detailed DOS but will be more computationally

expensive. Calculation of the DOS also requires a ∆ value which we calculate using our
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fit to the Muhlschlegel data given by Equation 2.17. Since ∆ is a function of temperature,

t = T/Tc, the DOS must be recalculated at different temperatures. One such DOS

calculated from the program can be seen in Figure 3.1 which matches the expected shape

we predicted in Figure 2.2. It must be noted that due to the singularity in the DOS at

E = ∆ a test condition is built into the program to avoid a computational error if this ever

occurs.

Figure 3.1 Calculated Density of States versus energy of an s-wave superconductor with
∆ = 0.004 eV.

3.1.2 Entropy

Now that we have a program to calculate the DOS we are able to compute the entropy as

a function of temperature utilising Equation 2.31. In order to perform this integration

numerically with respect to energy we will first employ the simplest method of the

trapezium rule which approximates a function as a series of trapeziums each of width dE

as shown in Figure 3.2. The trapezium rule calculates the area of all of these trapeziums

and thus provides an approximation for the integral given by Equation 3.1.

∫ E′

0

f(E)dE ≈ dE

2

NE−1∑
i=0

(f(Ei) + f(Ei+1)) (3.1)
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Figure 3.2 The area under some function of energy f(E) (blue line) approximated by a
series of trapeziums each of width dE.

Naturally this can underestimate or overestimate the integral in certain places but if dE

is small enough it provides sufficient accuracy and is a simple and effective method

for performing numerical integration. So our program cycles through a number of

temperatures, NT , from 0 K to above Tc calculating the the electronic entropy. At

each temperature it runs the DOS function to obtain values to use in the entropy integral

calculation, which is computed by the trapezium rule. The entropy calculated for the

normal- and superconducting-states, as well as the difference ∆S between these, is plotted

Figure 3.3 Calculated entropy in the normal-state (blue dotted), superconducting-state
(red line) and ∆S (green dots) versus temperature of an s-wave superconductor with Tc =
25 K, NE = 10,000 and NT = 100.
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versus temperature in Figure 3.3. The noise which is evident in the superconducting-

state entropy is due to the singularity in the DOS at E = ∆. This singularity can

occur anywhere between two energy points Ei and Ei+1, and shifts as the temperature

changes. As such the difference between the true area under the DOS and the trapezium-

approximated area can fluctuate significantly, leading to spikes in the calculated entropy.

In order to minimise such noise we can simply increase NE and gain more accurate

representations of the DOS. However a sufficient NE to adequately minimise noise

is around 100,000 points and vastly increases the computation time. A more efficient

solution is presented in the next section.

3.1.3 Entropy Smoothed

In order to produce smooth noise-free results for the entropy we need to remove the DOS

singularity from the calculation. This can be done quite simply through two changes

of variables to produce a smooth continuous function to integrate over. Consider the

following entropy integral

S ∝
∫ E′

∆

E√
E2 −∆2

fw(E, T )dE (3.2)

where the Fermi window function, fw(E, T), is already a smooth continuous function.

Making a change of variables to x = E2 −∆2, Equation 3.2 becomes

S ∝ 1

2

∫ E′2−∆2

0

fw(
√
x+ ∆2, T )√
x

dx (3.3)

And a further change of variables to x = t2 gives

S ∝
∫ E′2−∆2

0

fw(
√
t2 + ∆2, T )dt (3.4)

an integral of a continuous function across the entire energy range with no singularities.

Now we simply replace the dummy variable t by E and upper limit with E ′. E ′ merely

represents a large energy which is an order of magnitude or more greater than ∆ such

that its effect in the upper limit is negligible. Equation 3.4 produces noise-free numerical
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results efficiently as can be seen in Figure 3.4 for NE values of only 1000, two orders of

magnitude lower than that required by the previous calculation.

Figure 3.4 Noise-free entropy in the normal-state (blue dotted), superconducting-state
(red line) and ∆S (green dots) versus temperature for an s-wave superconductor with
Tc = 25 K, NE = 1000 and NT = 100 calculated using Equation 3.4. The change in
free energy ∆F (black dashed) is also shown.

3.1.4 Free Energy

The next thermodynamic variable to be calculated is the change in free energy ∆F (T )

which we can derive directly from ∆S(T ) through integration. However in order to

achieve the correct physical result from a numerical calculation we need to perform this

integral from Tc down to 0 K. Above Tc, ∆S is zero as there is no difference between the

normal- and superconducting-states in this regime and as such the ∆F calculated would

be an arbitrary constant which we can set to zero. If we instead were to integrate from 0 K

up to Tc then ∆F would begin at this zero and grow which is an unphysical result. Thus

the program uses the above Entropy Smoothed function to produce ∆S(T ) from which to

calculate

∆F (T ) =

∫ T

Tc

∆S(T ′)dT ′ (3.5)
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This integration is performed numerically once again via the trapezium rule through a

cumulative process in order to account for the integral from Tc down to each particular

temperature, the results of which can be seen in Figure 3.4.

3.1.5 Energy Gap

Now that we have programs which calculate all of the thermodynamic functions we

are able to compute the full temperature dependence of the energy gap using our

thermodynamic theory as expressed in Equation 2.27. Figure 3.6 illustrates how

this calculation is performed. In the first iteration the program cycles through NT

temperatures from 0 K to above Tc and at each temperature it calculates the BCS ∆(T )

from our fit in Equation 2.17. The BCS ∆(T ) is used to calculate ∆S(T ) which is then

in turn used to calculate the full ∆F (T ). These thermodynamic functions are finally

combined via Equation 2.27 to produce the first recalculated ∆′(T ). ∆′(T ) is then used

to replace the BCS ∆(T ) and the calculation repeated. We expect that after a sufficient

number of iterations ∆′(T ) should converge to the exact BCS temperature dependence

of ∆(T ) where α = 1.764. As expected after the first iteration the newly calculated

Figure 3.5 Energy gap calculated from Equation 2.27 as a function of temperature. Our
initial BCS fit (black dashed), first iteration result (red line) and 40th iteration stable
solution (green line) in the BCS case where α = 1.764.
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Figure 3.6 Flowchart indicating the process followed by our program.
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∆′(T ) has shifted outwards slightly in relation to our rough starting fit for the BCS ∆(T )

to more accurately reflect the true temperature dependence of the energy gap, see Figure

3.5. Approximately 40 iterations produce a stable ∆′(T ) to within 0.01% of the previous

iterations solution. However it is also clearly obvious that the absolute size of ∆(T ) has

increased by the final iteration, particularly at 0 K. Investigation into this error found

that by doubling NT this overestimate is halved, thus we are able to deduce that it

arises from the trapezium rule overestimating ∆F (T ). One remedy to this issue is to

increase NT substantially to provide a more accurate estimate of the integral, yet this is

computationally inefficient.

A more accurate method of numerical integration is required and thus we employ

Simpson’s rule. Simpson’s rule is a method of numerical integration which effectively

fits a quadratic polynomial across three consecutive points as shown in Figure 3.7 and

performs the integral with this. Thus to provide a truly accurate representation of our

Figure 3.7 Simpson’s rule effectively fits a polynomial, P(x), to a function across three
known points (a, b and their mid point m) in order to calculate it’s integral instead.

integrand we make use of the composite Simpson’s rule which breaks up an interval range,

[a, b], into n subintervals where n must be an even number in order to perform Simpson’s

rule on each of these subintervals. The general formula for this composite Simpson’s rule

is ∫ b

a

f(x)dx ≈ h

3

f(x0) + 2

n/2−1∑
j=1

f(x2j) + 4

n/2∑
j=1

f(x2j−1) + f(xn)

 (3.6)

where xj = a+ jh for j = 0, 1, ..., n− 1, n with h = (b− a)/n and xn = b. However the

limitation of Simpson’s rule is that it requires an even number of subintervals and as such

it can only apply to even indexed temperature points, T2i (where i is any integer). Yet we
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also wish to calculate values at the odd indexed temperatures too. We remedy this issue by

creating a hybrid numerical integration technique using both the Simpson and trapezium

rules. Even indexed temperatures are calculated using Simpson’s rule only but for a given

odd indexed temperature, Tn, we apply Simpson’s rule up to T2i < Tn and the trapezium

rule to the remaining (T2i+1 − T2i)
th subinterval as shown in Figure 3.8. Utilising this

method we are able to all but eliminate the overestimation from the trapezium rule and

provide a near perfect approximation to the integral for a reasonable NT .

So far we have run our program for the BCS case where α = 1.764. In order to calculate

∆(T ) for each α-value we need to determine the matching electron-phonon enhancement

parameter, λ, in Equation 2.31 of the Entropy program. As discussed in Subsection

2.6.2 the α-model does not account for the effect of stronger coupling on the electronic

specific heat coefficient and hence the entropy. Thus we proposed including this result

of Eliashberg theory in our calculations in order to ensure our thermodynamic theory

correctly accounts for stronger coupling during the iterative process. If λwas not included

the iterative process would merely cycle back towards the BCS ∆(T ). Thus we run our

Energy Gap program for a range of λ values and determine the corresponding α from the

resulting ∆(0) with Equation 2.19.

Figure 3.8 Simpson’s rule applied to calculate integral up to an evenly indexed
temperature T2i (blue hatched) and for an odd indexed temperature T2i+1 the trapezium
rule is applied for the last remaining subinterval (red shaded). Subintervals of width dT
have been exaggerated for clarity.
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3.1.6 Deviation

We are now able to calculate ∆(T ) for any particular value of α and hence a variety of

coupling strengths. However the change in ∆(T ) is small and difficult to observe for

these various α’s and so following Padamsee we employ the deviation function which is

sensitive to such minute differences.2 Equation 2.24 relies on the use of Hc values yet we

know that these are related to the free energy by Equation 2.23. Thus we can compute the

deviation function for any particular α using our simulated free energy with Equation 3.7.

D(t) ≡

√
∆F (t)

∆F (0)
− (1− t2) (3.7)

The deviations for a range of α’s were computed for a single iteration and are plotted

in Figure 3.9. However comparison of this to the results of Padamsee shown in Figure

2.7 revealed a discrepancy. Our program was producing deviations for large α’s with a

Figure 3.9 Calculated s-wave Deviation Function, D(t), versus t2 for the BCS case as
well as a range of α-values (displayed above each curve). Note the curvature of the
highest α curves undercutting zero near Tc.
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strange curvature that undercuts the zero line near Tc where they should rather exhibit a

steady linear decrease as exhibited by Padamsee’s calculations in Figure 2.7.

It was determined that this error was due to the fact that our starting value for the BCS

∆(T ), Equation 2.17, is only an approximate fit and does not accurately reflect the√
1− T/Tc temperature-dependence near Tc. This only became evident due to the very

sensitive nature of the deviation function. The iterative method of computing new ∆(T )’s

should account for this yet is slow to converge on the true dependence near Tc and as

such would require approximately 1000 iterations. Needless to say this would be highly

inefficient computationally to perform for each value of α. Thus instead of starting with

an approximate fit for BCS ∆(T ) we can precisely calculate it directly from the BCS gap

equation to use as the starting point for our program.

3.1.7 BCS Energy Gap

As has been discussed previously in Section 2.3 the BCS energy gap can be calculated self

consistently from Equation 2.16. Yet such a calculation involves many iterations before

a suitable solution arises and as such is computationally inefficient were it to always be

calculated for our program. However whilst this calculation is time intensive we in fact

would only need to calculate it once for a given NT and save that data to a file.

Thus our Energy Gap program would merely open this data file, read the ∆BCS(T ) and

use this in Equation 2.22 to provide a starting energy gap for our calculation retaining

the same processing time as previously. Thus the s-wave BCS energy gap was calculated

with this self-consistent program for several likely values of NT and stored in separate

data files to be called depending on which value of NT is requested in the Energy Gap

program. The Deviation program was run using this now accurate BCS energy gap and the

deviations for various α-values are shown in Figure 3.10. The deviations produced from

a single iteration now accurately exhibit the expected theoretical behaviour and resemble

those calculated by Padamsee as well.

Thus we have produced a series of programs which can accurately calculate the
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temperature dependence of the energy gap, ∆(T ), for s-wave superconductors of various

coupling strengths, as represented by α, utilising our iterative thermodynamic theory.

Figure 3.10 Calculated s-wave Deviation Function, D(t), versus t2 with accurate starting
∆BCS(T ) for the BCS case as well as a range of α-values (displayed above each curve).

3.2 Programs for d-wave Symmetry

We of course would now like to generalise our calculations to apply to d-wave super-

conductors as well. It is relatively easy to do this as we merely need to include the

angular dependence associated with d-wave superconductors into several of the previous

programs calculations.

3.2.1 BCS Energy gap

The BCS energy gap for d-wave simulations could have been approximated using our

fit in Equation 2.17 with the d-wave αBCS of 2.14 from Equation 2.3, except that we

32



have discovered this is not sufficiently accurate. Thus we instead calculate this directly

using the self-consistent BCS gap equation for d-wave symmetry in a similar fashion to

that used in Subsection 3.1.7. As has been discussed in Chapter 2 the energy gap for d-

wave superconductors is not constant in k-space but varies with angle θ. Yet each single

θ value yields a different s-wave gap and thus under numerical integration, where we

sum over θ, this series of s-wave gaps gives us our d-wave gap. Such a treatment allows

the calculation of the BCS gap Equation 2.18 which integrates over both θ and energy

to determine ∆BCS(T ) via self-consistent iterations in our program. This program is

run for several likely values of NT and the temperature dependence of the energy gap

calculated is stored in several data files. Our Energy Gap program will open one of these

depending on the NT requested and input that particular ∆BCS(T ) in Equation 2.22,

where αBCS = 2.14 for d-wave, to use as the starting energy gap for any particular α in

our program.

3.2.2 Density of States

We return to calculation of the DOS for the first stage of the program as the form of

this differs from the s-wave calculations above and may require us to perform different

transformations of certain equations. Beginning with the DOS will also provide us

with a useful indication of what to expect from our later simulated results. As has

been mentioned previously, for a d-wave superconductor the energy gap has an angular

component. Subsection 2.2.2 shows how we can deduce Equation 2.15 for the d-wave

DOS in terms of an integral over the full range of θ. The integral is performed numerically

by utilising the trapezium rule which provides sufficient accuracy at this level of the

calculation. Our program cycles through Nθ values from 0 to π/4 performing this

numerical integration to calculate the d-wave DOS which can be seen in Figure 3.11

and matches the expected behaviour we predicted in Figure 2.4.

The noise in our calculated DOS is due to the singularity issue. For an s-wave

superconductor this singularity occurs in the DOS at E = ∆ which we can also see for

the d-wave case as the most prominent spike. However due to our method of treating the
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Figure 3.11 Calculated Density of States versus energy of a d-wave superconductor for
Nθ = 200 and ∆ = 0.004 eV.

d-wave DOS as a sum of many s-wave DOS functions we have numerous singularities

at different points as determined by the particular θ used. We can reduce this noise by

increasing our Nθ’s to a sufficiently large value, yet this will become computationally

inefficient at some point. A solution to this issue is discussed in the next section.

3.2.3 Entropy

The electronic entropy can be calculated using the DOS at each temperature with Equation

2.31 allowing us to determine SS(T ), SN(T ) and ∆S(T ) for our d-wave superconductor.

However we once again encounter the issue of noise in SS which only reduces for very

large values of NE and is due to the presence of the primary singularity at E = ∆ . It

however is still possible to remove this singularity from our calculations by a change of

variables as we did for the s-wave case in Subsection 3.1.3. Such a procedure removes

the DOS from the calculation and therefore the noise. The change of variables for the

d-wave case leads to Equation 3.8 for the electronic entropy.

S =
−4kB(1 + λ)

π/4

∫ E′

0

∫ π/4

0

fw(
√
E2 + (∆cos2θ)2, T )dθdE (3.8)
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We now have a double integration over θ and energy in our entropy calculation for which

use of the trapezium rule provides sufficient accuracy. It was found that values of NE =

1000 and Nθ = 200 produce good results of our entropy calculation with no noise.

3.2.4 Energy Gap & Deviations

Now that the θ dependence has been fully incorporated within the Entropy function

the rest of the program is relatively simple and very similar to the s-wave case. The

Entropy program calculates ∆S(T ) which is then numerically integrated via Simpson’s

rule, as previously, in order to determine an accurate ∆F (T ). These two are combined

in our thermodynamic theory by Equation 2.27 to produce a new ∆′(T ) which is fed

back into the calculation as the new starting temperature-dependent energy gap. Multiple

iterations should yield a stable ∆′(T ) which does not deviate from the starting ∆(T ) it

was calculated from within some low tolerance (generally 0.01% is sufficiently stringent).

Figure 3.12 Calculated d-wave Deviation Function, D(t), versus t2 using a precise
starting ∆BCS(T ) for the BCS case as well as a range of α-values (displayed above
curves).
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We can also produce a series of deviation curves for the d-wave case. We merely

employ Equation 3.7 which utilises the free energy calculated by our program. The free

energy values from the zeroth iteration of our d-wave program are utilised to produce an

equivalent plot for the deviations as carried out by Padamsee and our s-wave calculation.

Figure 3.12 illustrates the deviation functions as calculated for the BCS case and several

other α-values to display the effect of increasing coupling strength.

Thus we have now created a set of programs which can be used to calculate the

temperature-dependent electronic entropy, free energy, energy gap and deviation func-

tions for either s- or d-wave superconductors regardless of their coupling strength. These

programs will also be used to test the validity of our thermodynamic theory through a

series of iterative calculations to produce stable solutions which we will compare with

experimental results for a range of superconductors.
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Chapter 4

Experimental Techniques

Pb-Bi eutectic alloys have been studied in great detail in the past as they exhibit

superconductivity in a range of phases.24 The Pb0.7Bi0.3 alloy in particular, which is

ε-phase where the atoms form a hexagonal-close-packed structure, has been identified

as an extremely strong-coupling superconductor.25 In order to provide a rigorous test

of our thermodynamic theory it is good to compare it with experimental data from

weak- to extra-strong-coupling superconductors. Experimental data for weak- to strong-

coupling superconductors were already available in literature. For the extra-strong-

coupling superconductor, we carried out critical-field measurements with Pb0.7Bi0.3. This

chapter covers the experimental techniques in the synthesis, characterisation and critical-

field measurements at high-pressure for our Pb0.7Bi0.3 sample.

4.1 Synthesis of Pb0.7Bi0.3

In order to synthesise a crystalline sample of Pb0.7Bi0.3 it is necessary to ensure that the

correct ε-phase is achieved by consulting its phase diagram shown in Figure 4.1.3 The ε-

phase occurs in a narrow segment of the phase diagram and as such one has to ensure the

sintering process allows the formation of the alloy within this zone. Pb and Bi powders

are prone to oxidation which prevents the formation of this ε-phase. Instead we obtained

Pb and Bi metal shot which are likely to have only minor oxidation on their surfaces and

so will not impede the alloying process as greatly. Synthesis of this alloy was carried out

under the following procedure

1. The required stoichiometric quantities of Pb and Bi shot to achieve the desired

alloy were weighed out. The Pb shot was flattened using a mortar and pestle and

laid along the base of an alumina crucible. Bi shot was similarly treated and placed

on top of the Pb layer. Bi, which has the lower melting point of 270°C, melts first
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Figure 4.1 Phase diagram for the Pb-Bi alloy system.3 Red dashed line indicates the
required Pb0.7Bi0.3 alloy from our synthesis process.

thus assisting the melting of the Pb (melting point 328°C) beneath it and allowing

them to mix.

2. The alumina crucible was placed within a furnace at 350°C in an argon atmosphere

flowing at approximately 70 mL/minute. This temperature is high enough to ensure

melting of both Pb and Bi metals and the argon atmosphere helps to prevent

oxidation. The mixture was sintered at 350°C for approximately 30 minutes,

then cooled to 225°C in 20°C steps every 20 minutes. The alumina crucible

was physically agitated approximately every 15 minutes throughout this process

to promote the mixing of the molten metals.

3. To help formation of the Pb0.7Bi0.3 alloy the molten mixture was further sintered

at 225°C for 60 minutes, which is just above the melting point of this alloy

composition.

4. In order to ensure formation of the ε-phase, the sample must be cooled rapidly to

prevent other phases forming first. Thus the crucible was quenched in air to expose

the sample to the range of conditions that border the ε segment of the phase diagram.
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5. At this point however, it was found that partial melting has occurred with the shot

pieces still remaining largely disparate and unmixed. This partial melt of metal shot

was ground in a mortar and pestle for approximately 30 minutes to ensure a high

degree of granular mixing. It was then pressed into a pellet using a 12 mm die at

9000 psi.

6. This metal pellet was sintered at 350°C for 3 hours in an argon atmosphere flowing

at approximately 70 mL/minute, cooled to 225°C over 3 hours and quenched in

air. Sintering times were increased from the previous sinter to help ensure adequate

mixing of the molten metals.

7. The pellet emerged melted, particularly so at its base. The surface had dulled to

a grey colour from its original metallic shine, likely due to formation of a thin

oxide layer on the surface. The sample was stored under an argon atmosphere in a

desiccator to avoid any further oxidation.

4.2 Characterisation

To ensure that our sample pellet was indeed the correct alloy and phase, the following

characterisation measurements were carried out.

4.2.1 SEM

In a scanning electron microscope (SEM) a material can be imaged and characterised

by scanning a high energy electron beam over them. This allows the imaging of,

and partially into, a sample surface on the nanometre scale as well as determination

of its elemental composition through the detected signals from secondary electrons,

back-scattered electrons and x-rays. Secondary electron images provide information

about sample topography, whereas back-scattered electron images provide a means of

atomic contrast. A sample’s elemental composition can be determined using Energy

Dispersive x-ray Spectroscopy (EDS) as every element has a unique atomic structure -
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as such they produce characteristic x-rays. These characteristic x-rays are produced as

an incident electron beam can displace an inner-shell electron, creating a vacancy in a

low-energy electron band. To fill this vacancy a high-energy band electron drops into

this state. During this decay process a characteristic x-ray is produced, which has an

energy equivalent to the difference in atomic energy levels. In this way we can distinguish

different elements by their unique x-ray spectrum.

Figure 4.2 SEM image of the melted underside of our sample illustrating that nearly the
entire surface is covered by microstructure features. Inset: 100x magnification for clearer
identification of both dendritic and globular-like crystal growth.

For the synthesised sample we concentrated on the melted base as this was the most likely

region for alloy formation. SEM images, see Figure 4.2, revealed a dendritic and globular-

like microstructure on the sample base. Energy Dispersive x-ray Spectroscopy (EDS)

was also used to determine whether this microstructure was the Pb0.7Bi0.3 alloy we are

interested in. We acquired EDS spectra along the sample base at several different points.

Due to the heavy M-line peak overlap, the L-lines of Pb and Bi were used to characterise

the spectra. Using standardless quantitative analysis the Pb:Bi ratio was determined to be

roughly 2:1, indicating our desired alloy has likely formed. EDS spectra also indicated
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a minimal oxygen presence and thus a low concentration of oxides. Pb and Bi EDS

mapping allows us to select a particular peak and scan a segment of our sample for all

occurrences of that emission - producing an elemental distribution map. The base of our

sample was mapped for both Pb and Bi L-line peaks and these have been overlaid in

Figure 4.3 indicating that our sample is indeed a homogeneous mix of both elements.

Figure 4.3 An EDS map at 25x magnification of the Pb (blue) and Bi (red) L-line
emissions. This indicates that there is a consistent homogeneous mix of the two elements
across the base of our sample, with possibly more Pb as expected for our targeted ratio.

4.2.2 XRD

X-Ray Diffraction (XRD) provides a more precise means of determining the structural

phase of a material. X-rays incident on a sample are scattered by its atomic structure

producing a measurable diffraction pattern. This diffraction pattern is characteristic of

a particular compound and is often used to identify materials by matching them against

reference patterns from extensive databases. An XRD scan was run on the base surface

of the sample and the diffraction pattern can be seen in Figure 4.4 (a). The diffraction

spectrum indicates that the precise alloy phase of Pb0.7Bi0.3 is indeed the predominant

compound in our sample. It also indicates that there are trace amounts of Pb and Bi based

oxides, which was expected due to the grey discolouration of the surface after the sintering
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Figure 4.4 X-ray diffraction patterns for our sample on (a) its exterior showing clear
presence of Pb0.7Bi0.3 phase (red reference pattern) but with some additional peaks
indicating Pb & Bi based oxides and (b) its interior indicating no oxide phases and only
the Pb0.7Bi0.3 phase with some preferential alignment.
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process. However this is believed to be merely surface oxidation and thus we removed a

thin slice from the base of our sample with a scalpel revealing the shiny, metallic interior.

An XRD of this interior surface revealed only the presence of the Pb0.7Bi0.3 phase and

no oxides as we hypothesised, as shown in Figure 4.4 (b). Only some of the Pb0.7Bi0.3

reference pattern peaks are visible in this diffraction pattern, yet this is likely due to the

preferential growth of the crystal along certain axis which will cause us to only be able

to observe certain diffraction peaks. From the diffraction pattern we determined the unit

cell parameters a = b = 0.35058 nm, c = 0.57959 nm and the ratio c/a = 1.653, which

are typical of the hexagonal-close-packed structure for the ε-phase and match previously

measured ratios closely.26

Further EDS measurements on this interior slice confirmed that there were no oxides and

only Pb and Bi in the appropriate ratios for our alloy.

4.3 High-pressure Critical Field Measurements

4.3.1 High Pressure Cell

It is useful to perform critical-field measurements for our sample at a range of different

pressures in order to investigate the pressure-dependent superconductivity of Pb0.7Bi0.3

whilst also testing our theory. As such we utilised a standard clamp cell made of

a non-magnetic beryllium-copper alloy (BeCu).27 The high tensile strength and very

low magnetic background make this ideal for such sensitive high-pressure critical-field

measurements. The cell has been designed with an 8.8 mm outer diameter such that it is

capable of fitting within the sample bore of a Quantum Design SQUID Magnetic Property

Measurement System (MPMS). The pistons within the pressure cell were made out of

tungsten-carbide (WC) and the maximum pressure which can be attained by this cell is

1.2 GPa. A 2.65 mm diameter x 8 mm long teflon capsule is used as a sample holder.

Figure 4.5 displays a photo of this pressure cell and its components in detail. Flourinert

77 & 70 in a ratio 1:1 were used as a pressure transmitting medium to ensure hydrostatic

pressure within the sample capsule. A rectangular block (approximately 4 mm x 1 mm
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x 1 mm) was cut from the interior of our sample where there is no oxidation and the

phase of our material has been confirmed by XRD and EDS. A small piece of 99.9% pure

tin was also cut to provide a means of determining the precise pressure that we applied

to the sample within the pressure cell. The pressure dependence of the superconducting

transition temperature for tin has been well documented and thus measurement of this

concurrently with our sample allows determination of the pressure from Equation 4.1.28

P (H) =
Tc(0)− Tc(H)

0.4823
(4.1)

where P is the pressure in GPa and H is the magnetic field.

Figure 4.5 The clamp pressure cell divided into its individual components (left) and in its
loaded state attached to a teflon holder (right).

The Pb0.7Bi0.3 sample along with the piece of tin were placed into the fluid filled teflon

capsule which was then sealed. The capsule was lowered into the pressure cell to sit atop

the lower piston and two copper rings, each at the top and bottom of the capsule, were

also placed within the cell to provide a good seal under pressure. The copper rings deform

around the ends of the teflon capsule when pressure is initially applied thereby sealing it
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and preventing the fluid medium from leaking out. In this way they also help to ensure that

pressure is evenly distributed across the capsule preventing it from cracking. An upper

piston is placed on top of the teflon capsule and the upper locking nut is lightly screwed

into the pressure cell; it is important not to tighten this as we do not wish to prematurely

apply pressure.

Pressure to the sample is applied using a 10 tonne laboratory hydraulic press. A WC

push rod is used to apply load to the top piston through a hole in the upper locking nut.

The load applied is increased by the press and thus so too is the pressure exerted on the

sample. After reaching the desired load, the locking nut is tightened and the pressure cell

is removed from the press, after releasing the load.

4.3.2 Critical Field Measurements

When a normal superconductor is subjected to fields greater than the critical-field, Hc,

its superconductivity is destroyed. Hc is often used to refer to the maximum critical-

field value which occurs at T = 0 K yet this falls as the temperature is increased up

to the critical temperature, Tc, at ambient pressure. The critical-field measured with

increasing temperature up to the zero field Tc traces a curve which marks the first-order

phase boundary between the normal- and superconducting-states as shown in Figure

4.6. The critical-field is generally considered to have a roughly parabolic dependence

on temperature13, yet as we have discussed in Section 2.5 many superconductors differ

Figure 4.6 Critical-field at various temperatures marking the boundary between the
superconducting- and normal-states.
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from this ideal case and hence the deviation function is used to distinguish them. Critical-

field values can be determined through the measurement of the temperature-dependent

magnetic moment of the sample. When a material transitions into the superconducting-

state it expels all applied magnetic fields (as long as these are less than the critical-

field) and becomes diamagnetic in what is known as the Meissner effect.16 Thus we

can determine the transition temperature, Tc, at any particular applied magnetic field by

measuring the magnetic moment and observing the point where diamagnetism sets in.

The most common method for determining Tc in this way is to draw a tangent at the

steepest slope of the curve and extrapolate this back to the temperature axis where its

intercept is taken to be Tc. Applied magnetic fields force the superconducting-state to be

established at lower temperatures, thus we observe the transition temperature decreasing

with increasing field as shown in Figure 4.7. The measured Tc at a given field thus allows

us to map out the boundary line between the superconducting- and normal-states as we

saw in Figure 4.6. Our sample’s magnetic moment was measured in a Quantum Design

Figure 4.7 Illustration of susceptibility versus temperature curves for a superconductor
at various applied magnetic fields (the arrow indicates shift in curves as field increased).
The red dashed line illustrates determination of Tc by extrapolation of curves steepest
gradient.

MPMS. To further confirm the alloy composition was in the correct ε-phase, the transition

temperature Tc for the sample was measured in a standard straw holder at various fields.

The measured zero field Tc = 8.43 K is fairly close to the known Tc from available data.12

Based on the measured Tc, in conjunction with XRD and SEM results, another piece of

the sample interior was loaded in the pressure-cell and the Tc was measured from ambient

to 1.2 GPa pressures with fields from 0 - 2 T and temperatures from 2 - 10 K.
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Chapter 5

Analysis of Weak-Strong Coupling Superconductors

In order to rigorously test our thermodynamic theory we must compare its predictions

with actual measurements of the temperature-dependent superconducting energy gap for

a range of weak- to extra-strong-coupling superconductors. In this work the extra-strong-

coupling superconductor Pb0.7Bi0.3 has been synthesised and the critical-field measured

as a function of temperature and pressure as discussed in Chapter 4. Comparisons for this

extra-strong coupler will be made in Chapter 6. In the present chapter we analyse critical-

field data from literature for a weak coupler Al9, intermediate couplers Sn & In10 and a

strong coupler Pb11. Utilising this data we make comparisons of our theory’s calculated

energy gap with tunnelling data from literature for Al4,5, Sn4,6,7, In6 and Pb8 as well as

the results produced from computational calculations.

5.1 Calculation of ∆

Critical-field data can be utilised in order to calculate the reduced temperature dependence

of the superconducting energy gap, ∆(t), with our thermodynamic theory. However,

our theory requires use of thermodynamic quantities which can only be deduced from

critical-field data by differentiation with respect to temperature. In order to perform

this adequately we need a smooth function of temperature for the critical-field and so

fit a Taylor power series to data for Al9, Sn, In10 and Pb11. The Taylor power series

expansion needs to be thermodynamically consistent and as such both the first- and third-

order terms must be zero. If the first-order term is non-zero this yields a non-zero entropy

at T = 0, and likewise a non-zero third-order term would result in a negative specific-heat

coefficient, γ. Both of these results are unphysical and so our expansion must account for

this. The Taylor expansion is truncated after the fourth-order term as this is sufficient;

extension to the sixth-order showed negligible improvement in fits. In ensuring that the

boundary conditions for a critical-field function are maintained, the coefficients in our
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Taylor expansion are deduced to be dependent upon each other yielding the general form

shown in Equation 5.1.27

Hc(t) = Hc0[1− βt2 − (1− β)t4] (5.1)

Which ensures that Hc(t)→ 0 as t→ 1 and Hc(t)→ Hc0 as t→ 0. Here t = T/Tc and

Hc0 is the zero-temperature critical-field.

In order to determine the appropriate Taylor fit in a robust way it is most convenient

to plot data as Hc(t)/(1 − t2) versus t2. This should vary as (1 + (1 − β)t2) and

allows straightforward deduction of both Hc0 and β. It should be noted however that for

temperatures close to Tc the denominator (1−t2) approaches zero and so uncertainties are

magnified in this region. Thus it is sometimes necessary to exclude data points close to Tc

in order to produce an accurate quadratic fit. For the sake of simplicity these plots have

not been included due to the number of materials and data sets analysed. Once values

have been determined for Equation 5.1 we are able to calculate a smooth function for

∆F (t) from Equation 2.23. Differentiation of this with respect to T produces a function

for ∆S(t). These thermodynamic functions are necessary in order for us to determine

∆(t) with our theory as expressed by Equation 2.27. However, we also need to calculate

an appropriate N(0) for each superconductor in question and so we deduce these based

on the relation to the normal-state electronic specific-heat coefficient, γn.2

N(0) =
3

2

γn

π2kB
2Vm

(5.2)

Where Vm is the molar volume. Utilising published values for Al29, Sn, In10 and Pb30 we

are thus able to calculateN(0) for each. We are now able to determine ∆(t) with Equation

2.27 and compare this with measured tunnelling data of the energy gap for Al4,5, Sn4,6,7,

In6 and Pb8, which are shown in Figure 5.1.

As can be seen in Figure 5.1 the ∆(t) calculated with our thermodynamic theory using the

Taylor fit to critical-field data does reflect the general temperature dependence exhibited

by tunnelling data for most of our superconductors. The available tunnelling data for

the weak-coupler Al spans quite a range of values since its energy gap, and even Tc, are
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Figure 5.1 Comparison of the superconducting gap of Al4,5, Sn4,6,7, In6 & Pb8 from
tunnelling with ∆(t) from Equation 2.27 using ∆F & ∆S deduced from critical-field data
(black line). A better match is obtained by re-scaling the curve to the zero-temperature
tunnelling gap (red line). The blue dashed line shows ∆(t) from Equation 2.27 with ∆F
& ∆S calculated from our program assuming a rescaled BCS gap.

49



∆(0) (meV)

Thermodynamic Theory Tunnelling Measurements

Al 0.178 0.186 ± 0.027
Sn 0.579 0.595 ± 0.018
In 0.545 0.560 ± 0.010
Pb 1.213 1.393 ± 0.020

Table 5.1 Comparison of ∆(0) calculated from thermodynamic theory with tunnelling
measurement estimates from literature for Al4,5, Sn4,6,7, In6 and Pb8.

dependent on the thickness of layers in tunnelling junctions.4 Yet our calculated ∆(t)

falls within this spread of the measured gap size for Al as well as matching fairly closely

to similar data for the intermediate couplers Sn and In. However, it appears that our

calculation is underestimating the ∆(t) for much of the temperature range when compared

with tunnelling data. The underestimation is most evident for the strong-coupler Pb

where our fit matches well near Tc but diverges from the data at lower temperatures quite

markedly. The underestimation can be seen in Table 5.1 which compares the ∆(0) from

our calculation against estimations from literature based on tunnelling data. Only Al

and Sn match within experimental error whereas the stronger couplers In and Pb do not.

However, the absolute magnitude of our calculated ∆(t) depends almost entirely on the

values of γn from literature that we utilise to calculate N(0), some of which have errors

that range as high as 5%.30 Even a small amount of error in these could markedly affect

the calculated values of ∆(0) and propagate this error across the entire temperature range.

Thus in order to test if our calculation is predicting an accurate temperature dependence in

absence of any potential errors in ∆(0) we scale it by the estimated value from tunnelling

measurements shown in Table 5.1. The adjusted fits are shown by the red line in Figure

5.1. The temperature dependence of our adjusted calculated ∆(t) does appear to match the

available tunnelling data quite well for Al, Sn and fairly closely for In. The adjusted ∆(t)

for Pb however, whilst greater in magnitude, does not match the temperature dependence

very well at all. It appears to only match to tunnelling measurements right near Tc and

for low temperatures but overestimates quite clearly over much of the intermediate range.

Pb is the strongest coupler of these superconductors which is possibly why it diverges

more markedly than the others. Our thermodynamic theory may not be suitable for
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representation of stronger coupling superconductors yet comparisons to similar strength

couplers would be necessary in order to test this. Our analysis of the nominally extra-

strong-coupling Pb0.7Bi0.3 superconductor in Chapter 6 should provide an adequate test

of the validity of the theory in the strong-coupling regime.

Comparisons with computational calculations, which utilise the iterative process to

determine a stable solution for ∆(t), should provide a further test and will be discussed

in the following sections.

5.2 Deviation Function

As we have discussed previously in Section 2.5 comparisons of Hc data from various

superconductors are generally represented through the deviation function, Equation 2.24,

which illustrates their divergence from a perfect parabolic temperature dependence.

The deviation function is sensitive to the minute differences in Hc data between

superconductors and its form illustrates the strength of their coupling. Thus we shall

employ the deviation function to represent the relative strengths of the superconductors

and compare this with computational predictions.

Chapter 3 discusses the computational program we have constructed to calculate the

thermodynamic parameters ∆S(t) and ∆F (t) as well as ∆(t) using our thermodynamic

theory for s-wave superconductors. The program utilises an iterative process with our

theory in order to produce a self-consistent solution for ∆(t) yet in the first instance

we shall consider results calculated from the zeroth iteration. The deviation function

can be determined from the initially calculated ∆F (t) with Equation 3.7 for a range

of coupling strengths, α, in a similar manner to that carried out by Padamsee.2 These

calculated deviations were matched against the deviation plots of critical-field data for

our range of superconductors and the best fits chosen as shown in Figure 5.2. The

α-values of these best fits thus correspond to the coupling strength of each particular

superconductor. As can be seen these fits do represent the general behaviour for each

particular superconductor yet are not perfect matches. There are discrepancies in the
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Figure 5.2 Deviation function calculated from critical-field data using Equation 2.24 for
Al9, Sn, In10 and Pb11. Computationally calculated deviation function with best fit to data
overlaid.

predicted value in certain temperature regimes yet they provide the best overall fit of all

the calculated deviations. The α-value for a superconductor can also be deduced from

it’s ∆(0) and Tc via Equation 2.19 and thus we can determine this from the tunnelling

data for each superconductor. Comparisons of α from these fits by our program and

those determined from tunnelling measurements are shown in Table 5.2. There is good

agreement between these for Al, Sn and In but our program overestimates α for Pb in the

strong-coupling regime. However, what must be taken into account is that on the zeroth

α

Computational Fit Calculated from Tunnelling

Al 1.764 1.61 ± 0.23
Sn 1.87 1.81 ± 0.05
In 1.93 1.93 ± 0.03
Pb 2.43 2.24 ± 0.04

Table 5.2 Comparison of α’s from best computational deviation fit with those calculated
from Equation 2.19 using tunnelling measurement estimates of ∆(0) from literature for
Al4,5, Sn4,6,7, In6 and Pb8.
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iteration our program has utilised a model BCS ∆(t) scaled by a particular α-value.

As such it may not accurately reflect all the aspects of the increased coupling strength

hence why we proposed our approach of recalculating ∆(t) by successive approximations

through multiple iterations. It is our hope that such a self-consistent process may produce

better fits for the calculated deviation function to data as well as similar α-values to those

observed experimentally. Padamsee’s approach of using a scaled model BCS ∆(t), whilst

indicative, does prove to exhibit discrepancies in the strong-coupling regime in relation to

actual measurements and as such is inadequate. Padamsee has shown that altering their

original model to include a temperature dependence for γ, rather than assuming a constant

value, provides improved fits and more realistic α-values.2 Potentially a similar alteration

could also improve our programs calculated results.

5.3 Computational Calculation of ∆

In the first instance we shall use the α-values corresponding to our best fits to each

superconductor for the zeroth iteration. Following Padamsee we assume a gap rescaled

by these α-values with Equation 2.22 from which we calculate ∆S and ∆F . Utilising

Equation 2.27 we are thus able to deduce the first new ∆(t). These can be seen in

the previous Figure 5.1. As with the computed deviation function we see discrepancies

between ∆(t) and experimental data. Potentially the calculated ∆(t) for Al provides

a good fit in terms of temperature dependence yet this is to be expected of a weak

coupler as the starting BCS ∆(t) already provided an adequate fit. The ∆(t)’s for

the other superconductors on the other hand exhibit systematic deviations from this

initial temperature dependence. The computational results for Sn and In overestimate

the values for much of the range but potentially are displaying an adequate scaled

temperature dependence. However the computational ∆(t) for Pb appears to have an

erroneous temperature dependence in comparison to tunnelling measurements. Yet as we

have outlined previously an iterative process utilising our thermodynamic theory should

hopefully provide more accurate self-consistent ∆(t) solutions for a range of coupling

strengths.
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Multiple iterations for our program, as discussed in Subsection 3.1.5, require the inclusion

of the electron-phonon enhancement parameter, λ, which accounts for the effect of

stronger coupling on the entropy. If we did not include λ then our iterative process

would cause our calculated ∆(t) to settle back to the unscaled BCS ∆(t) case. Each

λ corresponds to a particular α which is calculated from the stable ∆(0) value that

arises from multiple iterations with Equation 2.19. Approximately 40 iterations produced

stable self-consistent ∆(t) values for a range of α-values. Thus the multiple iteration

program was run utilising our thermodynamic theory for a range of α-values to provide

self-consistent solutions for ∆(t).

Figure 5.3 ∆(t) calculated computationally over 40 iterations utilising our thermody-
namic theory with α = 1.93 corresponding to In (red line). Starting BCS ∆(t) scaled by
α shown for comparison (blue dashed).

Figure 5.3 displays the starting scaled BCS ∆(t) along with our multiple-iteration result

for the α-value corresponding to In chosen from deviation fits in Section 5.2. The

temperature dependence has flattened out at low temperatures and migrated outwards in

the intermediate regime in comparison with the BCS prediction. Our new ∆(t) thus

more accurately reflects the generally-observed dependence for a non-weak coupling

superconductor, such as In, than the result of BCS theory. However the magnitude of

∆(t) is larger than what is observed from tunnelling measurements of In superconductors.
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This is likely due to the fact we have chosen an α based on a deviation fit from only the

zeroth iteration rather than multiple iterations. Table 5.2 indicated these α-values were, on

average, often larger than those determined from experimental tunnelling measurements.

Deviation fits from a multiple iteration result would thus likely provide a more accurate

α-value and predict an appropriate magnitude for ∆(t).

However, in the course of our computational calculations a curious artifact of the multiple

iterations method arose as the coupling strength was increased. A multiple iteration result

for a stronger coupling value of α corresponding to Pb is shown in Figure 5.4. Whilst

we are indeed settling on a stable ∆(t) which does not deviate from the immediately

previous calculated ∆(t) it appears to cut off prematurely at the set value of Tc. This is an

indication that the final iteration ∆(t) has a higher Tc than is set by our program. Yet our

computational calculation is designed to be universally applicable to all superconductors

by using the reduced temperature, t.

Figure 5.4 ∆(t) calculated computationally over 40 iterations utilising our thermody-
namic theory with α = 2.43 corresponding to Pb (red line). Starting BCS ∆(t) scaled by
α shown for comparison (blue dashed).

It is necessary to examine the application of our thermodynamic theory within an

iterative calculation to determine the origin of this cut off. The primary difference in
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the iterative calculation is the inclusion of the electron-phonon enhancement parameter,

λ. λ represents the effect of stronger coupling by enhancing the electronic specific-heat

coefficient and hence the entropy as described by Equation 2.31. Essentially

∆S ′ = (1 + λ)∆S (5.3)

which carries through to the free energy via integration to give

∆F ′ = (1 + λ)∆F (5.4)

Combining these two enhanced thermodynamic parameters through our theory to deter-

mine the energy gap we see that

∆2 ∝ 2∆F ′ + T∆S ′ (5.5)

∝ (1 + λ)(2∆F + T∆S) (5.6)

If we compare the result of Equation 5.6 to that of the BCS gap Equation 2.16 we find

that

(1 + λ)(2∆F + T∆S) ∝ V

∫ ~ωc

0

∆√
E2 −∆2

tanh

√
E2 −∆2

2kBT
dE (5.7)

which tells us that our enhancement factor 1+λ is essentially equivalent to V , the electron-

phonon interaction strength. But increasing λ to represent stronger coupling merely

increases V and scales the BCS energy gap, effectively shifting the transition temperature

higher. While our theory appears to be describing stronger coupling behaviour it is in

fact just a scaled version of the weak-coupling BCS energy gap, that is being cut-off

prematurely at our chosen Tc.

The essential problem is that our theory was derived from work by Ferrel where he

deduced his relations from BCS theory, which is founded on the assumption of weak-

coupling.15 As such our theory is inevitably constrained by this and will always yield a

weak-coupling result. In Figure 5.3 we did not see this similar cut off yet this is likely

due to the fact that as it is for an intermediate-coupling strength the shift in Tc is not as

strong. The cut-off is still there yet it is not as easily noticeable as for stronger coupling
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cases. Our theory appeared to be promising for single iterations and with low strength

coupling as it exhibited alterations to the temperature dependence of the gap which BCS

theory did not; flattening for low temperatures and migration in the intermediate regime.

However this is due to computationally calculated values of ∆(t) converging on stable

values more quickly at low temperatures than those which are closer to Tc, which in effect

gave an impression of these improvements. It is now unnecessary to determine more

appropriate α-values from deviation fits calculated through multiple iterations as these

will be invariably skewed and inaccurate due to the cut-off exhibited in our calculated

values. All this points to the necessity of an energy-dependent coupling parameter,

λ = λ(E), which disallows simple scaling of the thermodynamic functions. Nonetheless,

this work points to the universal flattening of ∆(t) in the intermediate temperature range

due to strong-coupling.

Under the scrutiny of multiple iterations, the proposed extension of our theory to strong-

coupling has proven to be incapable of producing a self-consistent strong-coupling gap

due to its origin from weak-coupling equations. Yet in similar fashion to the model

of Padamsee our theory can potentially provide a good first-order approximation in the

single iteration case, with some discrepancies, for superconductors of varying coupling

strengths. These failings are minimal if the system is close to weak-coupling, as indeed is

the case for the high-temperature d-wave superconductors, as we shall see in Chapter 7.
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Chapter 6

Experimental Analysis of Pb0.7Bi0.3

In Chapter 5 we compared predictions of our theory, using critical-field data as well as

calculated values, with the experimentally observed energy gap for a range of weak-

to strong-coupling superconductors. In order to fully test the limits of our theory we

synthesised an extra-strong-coupling Pb0.7Bi0.3 alloy on which to perform pressure-

and temperature-dependent critical-field measurements as described in Chapter 4. In

the present chapter we shall analyse these critical-field measurements in the scope of

our theory and make comparisons with tunnelling data from literature12 as well as

computational results.

6.1 Critical Field Measurements

6.1.1 Ambient Pressure

Critical-field measurements were performed on a sample of our synthesised Pb0.7Bi0.3

alloy mounted in a standard straw holder, and hence at atmospheric pressure, for a

range of magnetic fields. The temperature-dependent magnetic susceptibility for these

various applied fields is displayed in Figure 6.1. As expected, greater fields force

the superconducting-state to be established at lower temperatures and so we see the

superconducting transition temperature, Tc, falling as the applied field is increased.

It is possible to deduce Tc at each field from such susceptibility curves as described

in Subsection 4.3.2. The measured zero-field superconducting transition temperature

Tc = 8.43 K agrees fairly closely with previous values from literature12,25 thus further

confirming our sample is indeed the phase desired. The Tc at each particular field

can be utilised to mark the first-order phase boundary between the superconducting-

and normal-states, essentially representing the temperature-dependent critical-field for

ambient pressure. However, we can also note from Figure 6.1 that the magnitude of the
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Figure 6.1 Temperature-dependent magnetic susceptibility of a Pb0.7Bi0.3 sample at
atmospheric pressure for a range of fields. Arrow indicates increasing applied field
strength from 0.2 - 1.5 T.

diamagnetic susceptibility is falling as the field is increased indicating that our sample is

actually a type II superconductor rather than the simpler type I superconductors we have

analysed in Chapter 5. Supporting evidence for the Pb0.7Bi0.3 alloy exhibiting type II

superconductivity can also be found in literature.31

Type II superconductors differ from type I in that they exhibit both lower and upper

critical-field values, Hc1 & Hc2, as displayed in Figure 6.2. At fields below Hc1 type II

materials expel all magnetic flux in precisely the same manner as type I superconductors

through the Meissner effect. However, aboveHc1 and belowHc2 there exists a mixed state

which exhibits properties of both the superconducting- and normal-states. In this mixed

state magnetic flux penetrates the superconductor in quantised vortices inside which the

material is in the normal-state and superconducting everywhere else. Fields greater than

Hc2 cause these vortices to overlap thus destroying the superconductivity entirely and

forcing the material into the normal-state.16 Hc2 is generally much higher than Hc1 in

most type II superconductors. Thus type II superconductors are usually described in

regards to their thermodynamic critical-field which is a geometric average of the lower
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and upper critical-field values given by

Hc ∝
√
Hc1Hc2 (6.1)

Figure 6.2 Temperature dependent critical-fields for a type II superconductor. At fields
belowHc1 the material is superconducting (red shaded), betweenHc1 &Hc2 a mixed state
(blue shaded) and for fields greater than Hc2 is in the normal-state.

It is this thermodynamic critical-field which we must utilise in our calculations in order to

provide an accurate representation of the material. Unfortunately we only discovered

the Pb0.7Bi0.3 alloy was a type II superconductor after we had performed all of our

measurements. As such we have only measured higher fields and hence only determined

Hc2 for various temperatures. Ordinarily we would also measure Hc1 as well but

due to time constraints and availability of equipment we are unable to perform these

numerous additional measurements. However it is potentially possible to transform our

Hc2 measurements into corresponding thermodynamic critical-field values, Hc, through

the use of the Ginzburg-Landau equation16

Hc2 =
√

2κHc (6.2)

where κ = λ
ξ
, the ratio of the penetration depth, λ, to the coherence length, ξ, is the

Ginzburg-Landau parameter which to a good approximation is taken to be temperature

independent. Certainly in Ginzburg-Landau theory κ is temperature independent. The

penetration depth is a measure of the distance a magnetic field penetrates the surface of a

superconductor before being damped.16
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Thus in order to transform our Hc2 data we must determine an appropriate κ value

for our superconducting Pb0.7Bi0.3 alloy. We can calculate κ with Equation 6.2 by

determining values for Hc2 & Hc at a particular temperature. If κ is indeed relatively

temperature-independent then determination of it will allow us to transform our Hc2 data

with ease. So we merely need to deduce κ for several temperatures to provide a test of this

assumed temperature-independence. Hc2 is relatively easy to determine yet to estimate

the thermodynamic critical-field, Hc, we make use of the condensation energy relation.

U0 =
H2
c

2µ0

(6.3)

The condensation energy at a particular temperature can be determined from the area

under a field-dependent magnetisation curve. We are also able to easily determine the

precise Hc1 & Hc2 based on such a measurement. Magnetisation measurements were

carried out at 3 K and 5 K on our ambient pressure sample in the straw holder, one such

curve is shown in Figure 6.3.

Figure 6.3 Field-dependent magnetisation measurements at 5 K for our Pb0.7Bi0.3 alloy at
ambient pressure. Area under curve is equal to the condensation energy, U0 (grey shaded).
Determination of Hc1 & Hc2 values for 5 K also shown.

The various critical-fields determined from such magnetisation measurements and κ
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Hc Hc1 Hc2 κ

3 K 0.1115 0.030 1.5886 10.075
5 K 0.0765 0.038 1.0919 10.093

Table 6.1 Critical-field values (thermodynamic, lower and upper) in Tesla determined
from field-dependent magnetisation measurements of ambient pressure Pb0.7Bi0.3 sample
at 3 K and 5 K.

calculated with Equation 6.2 for 3 K and 5 K are shown in Table 6.1. κ is practically

unchanged for these two temperatures and agrees closely with the previously recorded

value of 10 for the general PbBi alloy system.16 Thus we appear to be justified in our

assumption that κ is relatively temperature-independent. As such we may convert all of

our measuredHc2 values into thermodynamic critical-field values,Hc, using an average of

these two κ values with Equation 6.2. Figure 6.4 thus shows Hc converted from measured

temperature-dependent Hc2 values for our Pb0.7Bi0.3 sample at ambient pressure.

Figure 6.4 Temperature-dependent thermodynamic critical-field, Hc(t), determined from
measurements of Hc2 for a Pb0.7Bi0.3 sample at ambient pressure (+) with Taylor fit (red
line).

In order to utilise critical-field data to calculate the superconducting energy gap with

our theory we require a smooth function of temperature to perform derivatives on. So

once again we fit a Taylor power series expansion to the critical-field in the same manner
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as in Section 5.1. The Taylor fit, shown in Figure 6.4, accurately represents our data

and exhibits the expected general curvature for Hc(t). The predicted zero-temperature

thermodynamic field Hc(0) = 0.323 T is determined from the upper critical-field value

of Hc2(0) = 1.886 T. This value of Hc2(0) is approximately 50% larger than values

reported in literature.31 Yet there have been very few magnetic measurements on this

particular phase and as such we need not be overly concerned by our larger predicted

value for Hc2(0). We shall utilise this smooth function in Section 6.3 in order to calculate

the temperature-dependent energy gap, ∆(t), for our Pb0.7Bi0.3 sample. We can also

investigate the pressure-dependence of ∆(t) by analysing critical-field data at a range of

pressures as discussed in the following section.

6.1.2 Pressure Dependent Measurements

Critical-field measurements were also performed on a separate sample of Pb0.7Bi0.3

loaded into our standard clamp pressure cell. This cell allows us to apply a particular

pressure hydrostatically to our sample and maintain this whilst we perform temperature-

dependent measurements of its magnetic response. In this way we can use the

susceptibility curves for various applied fields, similar to Figure 6.1, to determine the

temperature-dependent critical-field of our sample at any given pressure. Increasing the

pressure applied to our sample and repeating the measurements should also allow us

to determine the pressure-dependence of the critical-field for Pb0.7Bi0.3. As has been

discussed in the previous section we unfortunately only measured the upper critical-

field Hc2 for our sample but are still capable of recovering the thermodynamic critical-

field, Hc, with κ. We shall assume that κ is also pressure-independent for now and so

the value determined previously allows us to transform our Hc2 measurements at each

pressure. Figure 6.5 displays the thermodynamic critical-field determined from the Hc2

measurements of our sample for a range of applied pressures as a function of absolute

temperature T , along with the smooth Taylor fits made to each.

We can clearly see a shift of the critical-field curves indicating that as pressure is increased

superconductivity in Pb0.7Bi0.3 is pushed to lower temperatures. Our fits also indicate
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Figure 6.5 Temperature-dependent thermodynamic critical-field, Hc(t), determined from
measurements of Hc2 at a range of pressures for a Pb0.7Bi0.3 sample in our pressure cell.
Taylor fits to each set of critical-field data overlaid (lines).

the zero-temperature critical-field falls with increasing pressure. Application of pressure

generally stiffens the lattice of a superconductor and shifts phonon frequencies higher

effectively reducing the electron-phonon coupling strength. Thus lower temperatures are

required in order to establish a coherent superconducting state.32 As the superconducting

energy gap is directly related to Tc this falls with pressure too, along with ∆F

and ultimately the critical-field given Equation 2.23. Ideally more low temperature

measurements would have been desirable in order to allow more precise fits in this

temperature regime as well as better predictions for Hc(0), but unfortunately we were

limited by the available equipment. The Quantum Design SQUID MPMS utilised for

magnetic measurements with our pressure cell experienced a number of maintenance

issues preventing its use at temperatures below 3 K for the majority of our measurements.

The zero-field transition temperature at ambient pressure measured in the cell of Tc =

8.615 K is curiously higher than that measured for our sample in the standard straw

holder. Whilst the difference between these is small this value of Tc is in fact closer

to the previously measured values from literature.12,25 Furthermore, the Tc values for the
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first several pressure steps still exceed the ambient pressure value determined from the

straw holder. It is possible that as these are two separate samples cut from the same

synthesised pellet they may have slight differences in composition which could cause

these small differences in the measured Tc value. Of course they are still very similar

in their observed superconducting properties. There is however one other consideration

to be taken into account when analysing measurement results taken using our pressure

cell; that of thermal lag. Our sample rests within the pressure clamp cell which itself

is a large thermal mass within the sample chamber of the MPMS. As such, when the

sample chamber stabilises at a particular temperature there will be a finite period of time

before this propagates through the large thermal mass of the cell to the sample. In other

words, there potentially could be a slight disparity between the measured temperature of

the chamber and the true temperature experienced by the sample when we perform our

measurement due to this thermal lag. Naturally, when performing measurements it would

be best to allow a suitable period of time for our pressure cell to acclimatise fully to the

stabilised temperature. Unfortunately this was unfeasible as the amount of data points

required would cause our measurements to take an inordinately long time and restrict the

range of data we were able to collect. It is possible that such a thermal lag also contributed

to the differences observed in our Tc values between the straw and cell holders, although

it should likely not impinge too significantly on the analysis and application of our theory.

6.2 Deviations

In a similar fashion to that of Section 5.2 we can calculate the deviation function utilising

the thermodynamic critical-field values for our Pb0.7Bi0.3 sample. The deviation function

is generally used as an indication of the coupling strength to allow comparisons between

superconductors. Utilising the Hc(0) predictions from our Taylor fits we are thus able to

compare and investigate the temperature-dependence of the calculated deviation functions

at each pressure for our Pb0.7Bi0.3 sample using Equation 2.24. Comparison of these

deviations to those calculated by our program should also allow us to assign a particular

α-value to represent the coupling strength within our theory.

65



Figure 6.6 Deviation function calculated from critical-field data using Equation 2.24 for
Pb0.7Bi0.3 at ambient pressure in straw holder (×) and under various applied pressures
within cell. Computationally calculated deviation functions for s-wave BCS weak-
coupling, α = 1.764 (red dashed), and strong-coupling, α = 2.45 (blue dashed), overlaid.
The d-wave BCS weak-coupling deviation curve, α = 2.14, calculated by our program
also overlaid for comparison (black dashed).

The calculated deviation functions for each pressure along with those calculated by our

program for several α-values are shown in Figure 6.6. It is immediately obvious that

our calculated deviations are atypical. Every single calculated deviation utilising our

measured critical-field data falls well outside the usually observed range and implies that

our sample is weaker than the predicted BCS weak-coupling result, both for either s- or

d-wave cases. Even though Pb0.7Bi0.3 is meant to be an extra-strong-coupling s-wave

superconductor as determined by tunnelling measurements of its zero-temperature energy

gap.12 Utilising values from literature12,25 of ∆(0) and Tc we should expect a strong-

coupling value of approximately α = 2.45, yet our calculated deviation function implies

that our sample is precisely the opposite of this and is below the weak-coupling result.

Naturally this is a rather curious result, implying that perhaps something is amiss with

our measurements. However, our sample has been confirmed by XRD and SEM as the

precise ε-phase Pb0.7Bi0.3 alloy we are interested in along with the measured Tc matching

that listed in literature, indicating it is not contaminated.
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Essentially the problem lies in our assumption of a temperature-independent κ that we

used to transform ourHc2 measurements into thermodynamic critical-field valuesHc with

Equation 6.2. Whilst we were able to transform the magnitude of our measurements

with this assumption it did not alter their temperature-dependence which the deviation

function illustrates. We can only determine that the complete mismatch of the deviations

in Figure 6.6 with either s- or d-wave predictions and the expected strong-coupling nature

is because κ is in fact temperature-dependent. In Ginzburg-Landau theory κ is strictly

constant but the theory only applies close to Tc and we clearly see here the breakdown

of this assumption. We stress again that the deviation function is very sensitive to such

temperature-dependent anomalies. Thus Hc has a different temperature-dependence from

our Hc2 measurements which we can only determine if we have an accurate temperature-

dependent κ from more measurements, or if we measure Hc1 fully. Thus the deviation

function is not suitable for the determination of an α-value. Instead we shall use α as

deduced from tunnelling measurements in literature for the purposes of our theory.

Whilst the deviation is predicting a result contrary to our expectation we can still

investigate the general pressure-dependence of critical-fields in this material. In Figure

6.6 it can be seen that most of the deviations calculated at different pressures trace out

approximately the same curve indicating that they are fairly independent of pressure.

Such a pressure-independence is in agreement with observations for the deviation function

in other superconductors such as Al.29 We have taken κ to be pressure-independent for

our calculations yet in order to validate this fully additional measurements would need

to be carried out. However, the deviations for the first several applied pressures do

not agree with this approximate curve that many of the higher pressure measurements

do. It is believed that this is due to two primary reasons. The first is that of thermal

lag which we have mentioned previously. The critical-field measurements taken on our

sample for the initial low pressures were at widely spaced temperatures and as such

did not allow for much acclimatisation of the pressure cell’s internal temperature. The

later high-pressure measurements were taken at temperatures more closely spaced to one

another thus allowing more time for the pressure cell to acclimatise. As such the low-

pressure measurements likely have a greater error due to this thermal lag. This is further

corroborated by the deviation calculated for our ambient pressure sample in the straw
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holder. It would have no thermal lag and its deviation falls precisely along the same

general curve many of the high-pressure measurements follow. Following on from this,

the second consideration takes into account the fewer field measurements taken for the

low pressures. Taylor fits for these pressures with less data points are thus likely not

as accurate as for the higher pressures for which more fields were measured. In fact

the critical-field fit for the initial pressures predicts much higher values than those for

the high-pressure curves as can be seen in Figure 6.5. Both of these considerations

would contribute to errors in the calculated deviations for low-pressure measurements

and explain their disagreement with the general curve followed by the high-pressure and

ambient pressure straw holder measurements.

6.3 Calculation and Comparison of ∆

We can still attempt to utilise the temperature-dependent fits to critical-field measurements

to calculate ∆(t) with our thermodynamic theory, in the same fashion as Section 5.1.

Comparisons of its predictions as well as our computed calculations should help provide

an indication of its validity in the strong coupling regime.

Again we must determine an appropriate N(0) for Pb0.7Bi0.3 to use in Equation 2.27 in

order to calculate ∆(t). To calculate N(0) from Equation 5.2 we require the normal-

state electronic specific-heat coefficient, γn, which, for this precise alloy phase, there

have been no measurements as far as we can determine. However, γn has been calculated

for the general PbBi system by Clune et al making use of the rigid-band model.33 γn is

proportional to the electronic density of states at the Fermi surface and therefore should,

reflect changes in the density of states upon alloying. However, we take these results

to indicate that the density of states, and hence the band structure of Pb, is virtually

unchanged by alloying with Bi to these concentrations, so that the rigid band model

should be applicable. Thus we can make use of the quoted γn with Equation 5.2 in

order to calculate N(0) for Pb0.7Bi0.3. It should be noted that as the rigid band model

ignores the effect of electron interactions the calculated γn, and hence N(0), will be

smaller by a factor of 1+λ than those found experimentally. However in the absence
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Figure 6.7 Comparison of the superconducting gap for Pb0.7Bi0.3 from tunnelling
data12 (×) with ∆(t) from Equation 2.27 using ∆F & ∆S deduced from critical-field
measurements (black line). The blue dashed line shows ∆(t) from Equation 2.27 with
∆F & ∆S calculated from our program assuming a rescaled BCS gap. A better match for
this computational calculation is obtained by re-scaling the curve to the zero-temperature
tunnelling gap (red dashed).

of any experimental measurements we must assume that such an underestimate will not

adversely affect our results; if anything it will likely only slightly underestimate the value

of ∆(t).

Thus we use our temperature-dependentHc fits, as determined fromHc2 data transformed

by κ, to determine ∆S(t) and ∆F (t). Our thermodynamic theory then allows us to

calculate ∆(t) with Equation 2.27 and compare these along with our computational

calculations to tunnelling data for Pb0.7Bi0.3.12 As can be seen in Figure 6.7 ∆(t)

determined from our fits to critical-field measurements is too large and clearly its

temperature-dependence does not match that of the tunnelling data. This is due to the

fact that we do not have the correct values for the thermodynamic critical-field but rather

our transformed Hc2 measurements. We already determined from the deviation function

in the previous section that we cannot use a temperature-independent κ to convert ourHc2

measurements to Hc. It is necessary to either determine the temperature-dependence of κ

or measureHc1 as well in order to truly determine an accurate magnitude and temperature-
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dependence for the thermodynamic critical-field. As such the temperature-dependence

and magnitude of our ∆(t) calculated with Equation 2.27 will also be erroneous.

We can however still investigate the predicted ∆(t) of our program which can also be

seen in Figure 6.7. This calculation for a single iteration produces a ∆(t) which is lower

in magnitude but appears to exhibit a realistic temperature-dependence in comparison

with tunnelling data and in particular the flatter temperature-dependence in the mid

temperature range which is characteristic of strong-coupling. Scaling this computational

gap by the tunnelling ∆(0) = 1.81 meV we find that its predicted temperature-

dependence provides an excellent match to the tunnelling data. Thus our program appears

to be producing accurate behaviour for this extra-strong-coupling superconductor. The

lower predicted magnitude of ∆(t) is likely due to our choice of α. We determined α

from the tunnelling ∆(0) as we were unable to match an appropriate deviation function

as we did in Section 5.2 for a range of coupling superconductors. Table 5.2 indicated that

in general the α-values predicted from deviation fits of our program were often higher

than those predicted from tunnelling ∆(0) values. Thus if we were able to match a

computational deviation function for Pb0.7Bi0.3 measurements we would likely get a larger

α-value which could produce a fit for ∆(t) of more appropriate magnitude. Interestingly,

while in Section 5.1 we saw the computational fit being the least accurate for the type

I strong coupler Pb it matches quite well for this type II extra-strong coupler. Such

comparisons depend upon the accuracy with which the temperature-dependence of the

energy gap can be measured from tunnelling which can prove difficult. Of course these

predictions are only for single iterations as the multiple iteration method results in a

premature cut-off and settles back to the BCS weak-coupling case as we discussed in

Section 5.3. Inclusion of an energy-dependent coupling parameter, λ = λ(E), could

potentially solve this as mentioned previously.

In order to provide a truly valid test of our thermodynamic theory however we should

determine accurate thermodynamic critical-fieldHc data and compare the calculated ∆(t)

from this. Comparisons with other strong-coupling type I and II superconductors should

also help determine the full validity of our theory in the strong-coupling regime as the

results for Pb and Pb0.7Bi0.3 have not proved consistent as of yet.
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6.4 Pressure Dependent Quantities

We are also interested in investigating the pressure-dependence of several of the super-

conducting parameters we were able to determine. Measuring the critical-field at a range

of pressures using our clamp cell thus allows us to illustrate the general dependence of

such quantities as can be seen in Figure 6.8. It is convenient to determine a smooth fit

for the pressure-dependence of such parameters in order to allow easier use of them in

certain thermodynamic derivations. Figure 6.8 (a) illustrates the pressure-dependence

of the superconducting transition temperature Tc, which appears to decrease in a linear

fashion as described by the best fit to data

Tc(P ) = 8.6782− 0.38475P (6.4)

Thus we see that superconductivity is suppressed as the pressure is increased, resulting

in the superconducting-state only being established at lower temperatures. Interestingly

many high-temperature type II superconductors exhibit the opposite, where Tc increases

along with the pressure. Pb0.7Bi0.3 is also a type II superconductor as we have mentioned

previously yet it exhibits this negative relation with pressure for its transition temperature.

The Taylor fits made to our critical-field measurements at various pressures in Subsection

6.1.2 should also allow us to determine the pressure-dependences of these useful ther-

modynamic quantities. Of course these have been transformed from Hc2 measurements

into the thermodynamic critical-field with κ yet their general pressure-dependence should

hold provided κ is pressure-independent. Figure 6.8 (b) shows the pressure-dependence

of the zero-temperature critical-field Hc(t = 0) for various pressures. A close matching

smooth function to its pressure-dependence is

Hc(t = 0, P ) = 0.1113 + 0.0368 exp(−2.1844P ) (6.5)

Thus we can see that Hc(t = 0, P ) falls as the pressure is increased. We can immediately

deduce from this that the superconducting energy gap ∆(t) will also fall with pressure.

Our thermodynamic theory depends on both ∆S(t) and ∆F (t) in order to calculate
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Figure 6.8 Determined values of (a) Tc, (b) Hc(t = 0) and (c) β from our Taylor fits to
critical-field measurements taken our Pb0.7Bi0.3 sample at various pressures. Best fits for
data also displayed (red lines).
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∆(t) with Equation 2.27. We have already shown that all that is necessary to perform

this calculation is temperature-dependent critical-field data, Hc(t). If Hc(t = 0, P )

falls with increasing pressure then so will Hc(t) and as this is related to ∆(t) through

our thermodynamic theory then it will also fall with increasing pressure. Thus the

superconducting energy gap grows smaller as the pressure is increased.

The Taylor fits we have made to our critical-field data expressed by Equation 5.1 have

only a temperature-dependence, yet we may be able to incorporate a pressure-dependence

into this as well. In order to do this we must deduce a smooth function for the pressure-

dependence of β. Figure 6.8 (c) shows the β values determined from the Taylor fit made

to critical-field measurements at each pressure. The most appropriate function describing

its pressure-dependence is

β(P ) = 1.3307 + 0.1859 exp(−1.9767P ) (6.6)

Thus by combining Equations 6.5 & 6.6 we are able to determine a general form of the

Taylor expansion as a function of both temperature and pressure.

Hc(t, P ) = Hc(t = 0, P )[1− β(P )t2 − (1− β(P ))t4] (6.7)

Equation 6.7 provides us with a consistent means of determining the critical-field at any

particular temperature and pressure as well as for any other parameters we derive from

it. As a smooth function of both temperature and pressure we are also able to deduce

any thermodynamic variables which may require either differentiation or integration with

respect to either of these variables. Of course as we have shown in earlier sections

that our transformation of Hc2 measurements to the thermodynamic critical-field is not

entirely accurate it is best to deduce these relations again once further measurements have

corrected this issue in order to ensure they are accurate.

Nevertheless, we can also investigate the effect of pressure on the coupling strength in

Pb0.7Bi0.3. Equation 2.27 allows us to determine the pressure-dependent zero-temperature

energy gap ∆(t = 0, P ) simply from ∆F (t = 0, P ) as ∆S(t = 0, P ) = 0. Of course

∆F (t = 0, P ) can be found using the pressure-dependent critical-field at t = 0 as given
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Figure 6.9 Pressure-dependence of α as determined from Equation 6.9 for Pb0.7Bi0.3.

by Equation 6.5.

∆(t = 0, P ) =

√
1

N(0)µ0

Hc(t = 0, P ) (6.8)

We are able to utilise this along with Tc(P ) to determine the pressure-dependent α-value,

and hence coupling strength, via Equation 2.19 yielding the following relation.

α(P ) =
∆(t = 0, P )

kBTc(P )
(6.9)

Figure 6.9 illustrates the pressure-dependence of α as determined from Equation 6.9. We

can clearly see that as the pressure increases the strength of the coupling in Pb0.7Bi0.3 falls.

Thus Pb0.7Bi0.3 tends towards weaker-coupling with the application of higher pressures.

The ambient pressure α-value predicted from this is higher than that given by tunnelling

measurements of approximately 2.45. No doubt this is once again due to our inaccurate

representation of the thermodynamic critical-field which could be corrected with further

measurements. However, the pressure-dependence should still be fairly representative of

the coupling-strength response for Pb0.7Bi0.3.
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Chapter 7

Extension to d-wave

Naturally we also wish to extend the use of our thermodynamic theory and calculations

to other more unconventional superconductors in order to test their full range of

validity. In Chapter 3 we discussed extension of our computations to represent d-

wave symmetry which is often exhibited in such superconductors. We are thus able to

compare our extension of Padamsee’s α-model to the experimental electronic specific-

heat measurements for a series of doping concentrations of the Bi2Sr2CaCu2O8+δ

superconductor (Bi-2212). Utilising iterative calculations we are also able to test the

validity of our thermodynamic theory in comparison with this experimental data.

7.1 Experimental Data

Bi-2212 is a member of the high-temperature superconducting cuprate family which

exhibits d-wave symmetry and falls into the type II classification. The onset of

superconductivity can often be altered by doping the parent phase of superconductors with

various elements and thus introducing additional electrons or holes. Such doping alters

the superconducting behaviour and Tc(p) is observed to trace a dome shaped curve as a

function of doping, p. There is an optimum doping level, popt, which yields the maximum

Tc on this dome. We shall examine data for the hole overdoped region above popt as

this is free of any obscuring effects from the pseudogap phase which is predominant in

the underdoped region. Moreover, it has been shown that in this overdoped region the

BCS weak-coupling ratios ∆/kBT
mf
c and condensation energy U0/γnT

mf
c

2 are rather

well satisfied.34,35 Tmfc is the mean-field transition temperature that would exist in the

absence of superconducting fluctuations. As such, comparisons to overdoped data will

provide the most straightforward case for application of our calculations and will provide

a test of just how BCS-like this material is.
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Up until this point we have used experimental critical-field data for our comparisons

yet we are still capable of performing these with other thermodynamic measurements.

Thus for a selection of overdoped Bi-2212 superconductors we utilise available de-

tailed electronic specific-heat measurements carried out by Loram et al.36 Specific-heat

measurements allow us to determine the entropy of the superconducting-state, SS , via

integration with respect to temperature. It is also possible to determine the normal-

state entropy, SN , from such data using an ARPES-derived dispersion and a suitable

pseudogap model which has already been undertaken by Storey et al.37 The difference

between these gives ∆S(T ) from which we can calculate ∆F (T ) by integrating with

respect to temperature. As Bi-2212 is a type II superconductor we are interested in its

thermodynamic critical-field for use in our calculations which is related to the free energy

by Equation 2.23.

Thus we are able to use this experimental specific-heat data to determine the temperature

dependent free energy which can be utilised to calculate the deviation function with

Equation 3.7 for our comparisons.

7.2 Deviations

Each doping concentration of the Bi-2212 superconductor results in slightly different

superconducting behaviour and as such could produce a different deviation function.

We determine these deviation functions from the experimental data using Equation 3.7

and compare them with our computations. The deviation function calculated from this

data for Bi-2212 produces very large values near and above Tc rather than approaching

zero as we have generally seen previously. This is due to superconducting fluctuations

in Bi-2212. The coherence length, ξ, we discussed in Section 2.1 is several orders

of magnitude smaller in a high-temperature superconductor, such as Bi-2212, than in

conventional superconductors. As a material nears its Tc small disparate regions become

superconducting yet due to the small ξ do not overlap fully until lower temperatures

are reached and so a single coherent superconducting-state is unable to form until Tc

which lies well below its mean-field value Tmfc .34 This not only depresses Tc but results
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in a fluctuation contribution to the specific-heat which rounds off the sharp critical

phenomenon generally seen for the onset of superconductivity and blurs the precise

determination of Tc.34 The deviation function is very sensitive especially near Tc and

in the presence of superconducting fluctuations will grow rapidly there. Away from Tc its

form is relatively stable and so we can hopefully match our calculated deviations to data

for much of the low-temperature range, where fluctuations are negligible.

7.2.1 α Model Extension

As discussed in Section 3.2 we have extended the α-model proposed by Padamsee to

superconductors with d-wave symmetry by including an angular k-dependence in our

calculations. In this way we are able to calculate the theoretical temperature-dependence

of both the entropy and free energy assuming a BCS energy gap ∆(T ) scaled by an α-

value to represent the coupling strength. Thus we calculate deviations for a range of

α-values with our program and fit these Padamsee-like curves with the experimental

measurements for Bi-2212, shown in Figure 7.1.

Here we are demanding much of data that has already had the phonon term removed,

which is two orders of magnitude larger. However, overall the data is consistent with

close-to-weak-coupling behaviour when compared with the BCS value of ∆/kBTc =

2.14. As the doping concentration is increased we see a trend towards weaker coupling.

The most curious deviation determined from data is that of p = 0.188, the closest to the

critical doping of pcrit = 0.19 where the pseudogap vanishes.36 This exhibits curvature

quite dissimilar from the general behaviour of the others. As can be seen, our calculated

deviation function for particular α-values provide fits which closely match the magnitude

of the experimental data. These fits even match the temperature-dependence for some

of the doping concentrations quite well, yet this is not the case for all of them. These

Padamsee-like calculations over- and under-estimate the deviation function in particular

temperature regimes to some degree for most of the overdoped measurements. Most

notably whilst the fits are fairly good in the intermediate range they do not always

accurately represent the low temperature values as well. Whilst these discrepancies are
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Figure 7.1 Deviation function calculated from electronic specific-heat data using
Equation 3.7 for several overdoped samples of Bi-2212 (only every 7th data point shown
for clarity). Calculated deviation functions utilising a scaled BCS ∆(T ) for several α-
values overlaid.

not particularly large they are still fairly consistent and thus do not allow as accurate a

representation of the temperature dependence as would be wished. The validity of these

fits to the data should of course only be considered up to approximately t2 = 0.6, which

corresponds to roughly 80% of Tc, due to the superconducting fluctuations blurring the

transition zone and thus skewing the deviation functions. Calculated deviations up to this

t2 value thus provide generally adequate fits with some doping concentrations exhibiting

more discrepancies than others, particularly that closest to the critical doping. Again, we

are asking a lot of the data and the deviation function is a very sensitive measure of any

irregularities, whether systematic or experimental.

7.2.2 Thermodynamic Theory

Our program allows the use of our thermodynamic theory to recalculate the temperature-

dependent energy gap, ∆(T ), via Equation 2.27. This makes use of the enhanced entropy

from Equation 2.31 which includes the electron-phonon enhancement factor, λ, from
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Eliashberg theory to represent the coupling strength. The weak-coupling BCS d-wave

gap is used as an input and for various λ’s we calculated the resulting ∆(T ) from one

iteration. Each λ-value has a corresponding α-value which can be calculated from the

∆(0) of this new gap by Equation 2.19. The new gap is then utilised to re-calculate the

entropy and free energy to hopefully represent their observed behaviour more closely.

For this first iteration of the program we can compare the deviation function for the newly

recalculated free energy to see if this more accurately matches experimental data than the

Padamsee-like fits of the previous section. Figure 7.2 shows just such a comparison.

Figure 7.2 Deviation function calculated from electronic specific-heat data using
Equation 3.7 for several overdoped samples of Bi-2212 (only every 7th data point shown
for clarity). Calculated deviation functions overlaid which use a scaled BCS ∆(T ) for
several α-values (blue dashed) and a newly recalculated ∆(T ) from a single iteration of
our program where each λ corresponds to a particular α (red solid).

Interestingly we see that the deviation functions calculated from our new energy gap are

in fact quite similar to those of the Padamsee-like curves from the previous section. These

best fits in fact even have the same α-values as determined from ∆(0). The curvature has

shifted slightly yet for the most part they exhibit a very similar temperature-dependence.

In all likelihood this is due to the fact that these overdoped samples all still exhibit fairly

weak- to intermediate-coupling. The strongest coupling sample, p = 0.182, is matched
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fairly well to α = 2.42 which is an indication of still fairly weak-coupling when compared

with αBCS = 2.14. Thus our calculation has not produced an overly different result as

the coupling strength is not particularly strong. Unfortunately as a result it has not been

able to better represent the low temperature curvature than our Padamsee-like fits of the

previous section. Multiple iterations to recalculate the energy gap may have helped to

better approximate this curvature yet as we saw in Section 5.3 such iterations in fact only

result in a cut-off scaled BCS case which will provide unphysical results.

Thus we have seen that extension of the α-model to a d-wave superconductor such as Bi-

2212 does help provide a somewhat adequate representation of it with some discrepancies.

Our thermodynamic theory does not provide much improvement on this representation

for a single iteration most likely due to the weak nature of the coupling. Comparisons of

the extended α-model as well as our thermodynamic theory to d-wave superconductors

with stronger coupling would likely yield a more rigorous test of their validity and

potential improvement over one another. However, the important conclusion is that in the

low-temperature region, where superconducting fluctuations are negligible, the deviation

function is consistent with nearly weak-coupling mean-field behaviour with α-values

ranging from 2.42 to 2.28 for the five overdoped samples investigated. This is to be

compared with αBCS = 2.14 for d-wave symmetry. Further, the data also supports the

idea that the coupling tends toward weaker values with increasing doping.
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Chapter 8

Conclusions and Future Work

In this thesis we have attempted to extend the formulation put forth by Padamsee

in tandem with our own proposed thermodynamic theory. Padamsee utilised a BCS

∆(t) scaled by an adjustable α-value to represent the coupling strength in various

superconductors in order to calculate their thermodynamic parameters. Such an approach

appeared to be fairly successful for most coupling strengths but potentially not quite so

in the strong-coupling regime. Our theory extends this formulation by recalculating the

∆(t) based on the thermodynamic functions ∆S and ∆F to hopefully produce a more

accurate temperature-dependence for the energy gap for all coupling strengths.

Application of our theory in determining the temperature-dependent energy gap was

tested for a range of weak- to strong-coupling type I superconductors exhibiting s-

wave symmetry in two ways. Firstly by direct calculation from critical-field data

and secondly by numerical calculations of thermodynamic parameters from which

to deduce ∆(t) with our theory. Comparisons of these calculated predictions with

experimental tunnelling measurements of the energy gap revealed that our theory does

produce a fairly accurate match of ∆(t) for weak- to intermediate-couplers, with only

some minor magnitude discrepancies. The predicted temperature-dependence flattens

in the intermediate temperature range thus providing a better match to that observed

experimentally. However, for the strong-coupler Pb it did not produce an accurate

prediction of ∆(t) in comparison to tunnelling measurements. Investigation into whether

recalculation of ∆(t) with successive multiple iterations would settle on a stable solution

which more accurately predicted ∆(t) in this strong-coupling regime proved fruitless

and illustrated a limitation of our theory. Inclusion of the electron-phonon enhancement

parameter, λ, in our multiple numerical calculations is merely equivalent to rescaling

the BCS weak-coupling energy gap. Essentially as our thermodynamic theory is based on

BCS weak-coupling it will always tend towards this through multiple iterations. However,

potentially inclusion of an energy-dependent λ(E) should disallow such a simple scaling

81



and could correct our theory’s erroneous prediction in the strong-coupling regime. Thus

λ(E) should be determined and incorporated into our calculations in future to hopefully

remedy this issue.

To provide a rigorous test of our thermodynamic theory we also synthesised an extra-

strong-coupling Pb0.7Bi0.3 superconductor and measured its critical-field as a function

of both temperature and pressure. Unfortunately after completing all our measurements

we discovered that Pb0.7Bi0.3 is in fact a type II superconductor rather than type I

like the previously investigated materials. Thus our measurements only determined its

upper critical-field, yet we attempted to recover the thermodynamic critical-field via

a Ginzburg-Landau relation in order to utilise this with our theory. This required us

to assume a temperature- and pressure-independent κ value, which we deduced from

additional measurements. Regrettably the assumption of temperature-independence for

κ does not appear to hold and so our deduced ∆(t) from our transformed critical-field

measurements at ambient pressure produces a highly erroneous temperature-dependence.

Determination of a temperature-dependent κ should be carried out in future in order to

allow an appropriate conversion of our measurements to an accurate thermodynamic

critical-field with which to use in our theory. However, our computational calculation

of the energy gap matched the experimentally observed temperature-dependence from

tunnelling measurements very well. Interestingly, this implies that our thermodynamic

theory is accurately predicting ∆(t) for this extra-strong-coupling type II superconductor

whereas it failed to do so for the strong-coupling type I Pb superconductor. In order to

fully explore the applicability of our theory in the strong-coupling regime it would be

necessary to compare with further type I and II superconductors exhibiting similar such

coupling strengths.

The critical-field measurements at various pressures allowed us to deduce smooth

pressure-dependent functions for both the critical-field and superconducting transition

temperature, Tc. A pressure-dependent energy gap can also be determined through the

use of our theory. All of these functions fall as pressure is increased indicating that

superconductivity is damped in Pb0.7Bi0.3 for higher pressures. Determination of the

pressure-dependent α-value also illustrates that as the pressure is increased the coupling
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strength in Pb0.7Bi0.3 grows weaker. Whilst we have already determined that κ is not

temperature-independent it is likely that it is indeed pressure-independent, yet it would be

prudent to perform additional measurements to confirm this assumption.

We were able to successfully extend the formulation of Padamsee, which uses the

BCS ∆(t) scaled by an α-value to represent coupling strength, for application to

superconductors exhibiting d-wave symmetry. Thermodynamic parameters calculated

in this way provided an adequate representation, with minor discrepancies, for much

of the temperature range when compared with experimental measurements for several

overdoped samples of the high-temperature superconductor Bi-2212. Computational

calculations with our theory provided little improvement to these as Bi-2212 already

exhibited fairly weak-coupling. In fact as the doping concentration increases the coupling

strength generally grows weaker. Comparisons of predictions from our theory to

experimental data for d-wave superconductors with stronger coupling will likely give

a clearer picture of any potential improvement it provides over the extended Padamsee

formulation.
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