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Abstract

Wireless devices exist almost everywhere in our daily life. Wireless com-

munications, which is an integral part of wireless devices, suffers from

radio irregularity – a phenomenon referring to radio waves being selec-

tively absorbed, reflected or scattered by objects in their paths, e.g., hu-

man bodies that comprises liquid, bone and flesh. Radio irregularity is of-

ten treated as a major challenge for wireless communication. However, we

aim to take advantage of the phenomenon of radio irregularity to provide

a cost-effective approach for automated people counting. People counting

is extensively used for intelligence-gathering to be used in forecasting, re-

source allocation and safety-related applications 2like crowd control. Ex-

isting people counting techniques use light, infrared, or thermal energy

for human movement detection. However there have major limitations,

for example the visible light camera and infrared sensors do not penetrate

smoke or obstacles such as wall and furniture. Also, a large deployment

of these devices is costly owing to the use of specialized sensors.

We propose an automated people counting system using the radio ir-

regularity phenomenon of existing wireless infrastructure with minimal

additional hardware and installation costs. This thesis presents an exper-

imental study to demonstrate how radio signal fluctuations arising from

radio irregularity can be used to provide a simple low-cost alternative to

dedicated sensing systems for indoor automated people counting. Firstly,

we study the effect on received signal strength with human motion inter-

ference on radio signals. Then we propose and evaluate the performance

of three approaches, namely, overcomplete dictionary based pattern recog-

nition (OCPR) approach, probability density approach and standard devi-

ation approach. With high accuracy of motion detection, we then focus



on the design of automated people counting system using the proposed

detection approach. To differentiate the number of people, we apply dis-

criminant analysis which is a statistical method to perform classification

based on independent variables. We validated the proposed people count-

ing system by conducting experiments under both controlled and uncon-

trolled environments and show that we are able to achieve high accuracy

in counting up to five people in groups with no specific formation.
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Chapter 1

Introduction

Wireless communication and devices have grown to become an integral

part of our daily life, like the Internet, which has grown into a large cyber-

physical system that connects not just computer systems but a plethora

of systems, devices, sensors and objects. The technologies extend beyond

computation and communication, to identification and tracking, sensing

and actuation, and even intelligence and cognition. Ensuring connectivity

is increasingly reliant on wireless communications as connected devices

become more ubiquitous and embedded into our daily living space. Un-

fortunately, wireless communication suffers from radio irregularity – a phe-

nomenon referring to radio waves being selectively absorbed, reflected or

scattered by objects in their paths, e.g., human body that comprises liq-

uid, bone and flesh. Radio irregularity is often treated as a major challenge

for wireless communication. However, we aim to take advantage of radio

irregularity, and by exploiting the existing wireless communication infras-

tructure, provide a cost-effective approach for automated people counting.

People counting is extensively used in different industries, including

retail (stores, malls and shopping centres), colleges and universities, gov-

ernment facilities, government non-profit organizations, visitor centres, li-

braries, museums and art galleries. In the retail industry, it is a form of

intelligence-gathering that helps a retailer determine the percentage of vis-

1



2 CHAPTER 1. INTRODUCTION

itors who actually make purchases. This is a key performance indicator of

a store’s performance as compared to just looking at the sales data. It also

helps the management to optimize the usage of staff resources, e.g. de-

ploy more staff during peak periods and cutting down during lull periods

in order to save wages. Pedestrian traffic data can also help to evaluate

advertising and promotional campaigns. Retail management can assess

the effectiveness of advertising campaigns by examining how the traffic

has responded to it. Queue management can also be optimized by uti-

lizing the pedestrian traffic data. Operational efficiency and profitability

can be enhanced by people counting systems. For building automation

and management purposes, people counting is used to optimize the use

of resources as well as ensure that a safe level of occupancy is maintained.

Automated people counting cannot tolerate false positives that result in

overcounting, giving inaccurate data that are used for forecasting and re-

source allocation.

1.1 Problems in Tracking and Automated People

Counting

Currently, most of the applications for inferring human movement are

achieved by using light, infrared, or thermal energy. However, these in-

ferring technologies have some major limitations. Visible light cameras

largely depend on the intensity of light and the colour of the background

in order to differentiate human from the video. In addition, light and

infrard do not penetrate smoke and obstacles such as wall or furniture.

These drawbacks limit the usability and suitability of light and infrard in

emergency environment such as a smoke-filled building. Thermal imag-

ing based detection requires specialized sensors which are expensive. The

accuracy of detection can be degraded by the lack of colour and texture

information from thermal image. Large deployment of these devices is
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impractical due to their high cost and obtrusive characteristics.

Unlike the detection technologies discussed above, radio-frequency (RF)

electromagnetic waves can penetrate wall and smoke. Radio signals, how-

ever, may be reflected, diffracted and/or scattered in the channel [2]. Two

components of signal propagation considered to be key causes of radio

irregularity are path loss and transmission power [3]. The impact of ra-

dio irregularity depends on the obstacles and the wireless signals trans-

mitted. The human body selectively reflects, diffracts, and scatters radio

signals such that the radio irregularity varies over time. Consequently,

the received signal strength at the receiver fluctuates. Radio irregularity

which has often been viewed as a problem can instead be exploited for

automated people counting with minimal additional hardware and instal-

lation costs. However, the degree of radio irregularity is largely dependent

on the environment.

1.2 Objectives

In this thesis, we focus on automated people counting design through

studying the characteristic of RF signals. The ultimate objective of this

thesis is to realize an automated people counting system which uses RF

signals as an indicator. There are three goals in this thesis:

1. Study and analyse the characteristics of RF signal fluctuations due to

the occurrence of human movement in the wireless environment.

2. Design movement inferring algorithms based on the signal fluctua-

tion cause by human movement.

3. Realize the automated people counting system by extending the move-

ment detection algorithm and applying discriminant analysis to dif-

ferentiate the signal fluctuation patterns caused by different num-

bers of people.
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1.3 Contributions

The overall contribution of this thesis is realizing the automated people

counting system using the fluctuation of RF signals causing by human

movement. The following lists the major contributions of this work:

• Experimental analysis of the characteristics of RF signal fluctuations

caused by human interference.

• Three movement detection algorithms have been proposed and im-

plemented, namely, overcomplete dictionary based pattern recogni-

tion technique [4], probability density approach [5] and standard de-

viation approach [6]. The proposed detection algorithms have been

validated and evaluated through experimental studies under a con-

trolled environment.

• An automated people counting system has been realized by apply-

ing a statistical classification method, namely, discriminant analysis.

A series of experiments, under controlled and uncontrolled envi-

ronments, have been conducted and the scheme has been shown to

achieve high accuracy in counting up to five people in groups with

no specific formation [6].

1.4 Thesis Structure

The structure of the thesis is as follows:

• Chapter 2 provides background and related works on detection ap-

proaches and people counting methods.

• Chapter 3 Discusses and explains the design of the proposed detec-

tion algorithms, starting with explaining the use of RSSI fluctuations.
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• Chapter 4 presents detection results based on single-transmitter and

single-receiver configuration and discusses the performance of each

detection approach in terms of detection accuracy, latency of detec-

tion, and the occurrence of false-positives.

• Chapter 5 discusses the hardware specification of wireless sensor

nodes used in the experiment and the effect on detection accuracy

of various factors.

• Chapter 6 introduces our conceptual model of sensor placement fol-

lowed by the single-transmitter multiple-receivers configuration and

the discriminant analysis technique to differentiate the number of peo-

ple under controlled and uncontrolled environments.

• Chapter 7 contains conclusion and sugguestion for future work.

• Appendix A describes and discusses the steps that are required to

process the RSSI readings and apply discriminant analysis using the

SPSS software [7].
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Chapter 2

Related Work

The ability to locate people is extremely valuable. Widespread usage of

people counting has fed the growth of commercially available automated

people counting technology, among which infrared (IR) beam counters,

thermal counters and video/CCTV cameras are most often used. In addi-

tion, Global Positioning System (GPS), real-time location systems (RTLS),

radio frequency identification (RFID) are also widely used for locating tar-

get objects. These target objects will need to attach or carry a device to be

locatable. In contrast, device-free localization (DFL) is the practice of locat-

ing object without using tag or device on the target objects. In this chapter,

we provide an overview of the human detection and people counting tech-

niques, that have been developed, published and/or commercially avail-

able.

2.1 Reason for Use

The knowledge of location of target objects can be used by many applica-

tions such as automated people counting system. There are various rea-

sons to implement people counting systems and several ways to utilize

the information.

7



8 CHAPTER 2. RELATED WORK

Retail

The automated people counting system is a key for retail analytics. It is

crucial information for the management of retail stores to utilize during

business decision making. Conversion Ratio is the key metric that can be

derived using the automated people counting system. Conversion ratio

is calculated as the ratio of number of purchasers to the total number of

people entering the shop. This indicator helps the management in the

decision making and strategy planning process. Store managements rely

on the visitor statistics to measure the effectiveness of their marketing.

Occupancy

For building safety, public locations are often designed to hold a specific

number of people. An accurate people counting system is essential to track

the number of people within an area and provide precise measures to en-

sure the safety of the building.

2.2 Sensor Technologies

The usage of different types of sensor technology is dependent on the

needs of applications. We discuss the common usages in DFL system and

their advantages and disadvantages in the following subsections.

Infrared

The simplest and possibly cheapest approach is a single-beam IR counter

placed across an entrance. However, such a counter suffers from numer-

ous drawbacks and is only suitable detecting someone passing, e.g. en-

tering/leaving a shop. These commonly used counters have very high

percentage of errors when multiple persons cross their monitoring area at

a time. When multiple (IR) beams or other forms of boundary sensors are
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deployed with careful placements strategies and coupled with artificial

intelligence and/or analytical techniques for processing, a more accurate

and versatile people counting system can be realized [8, 9].

Thermal Imaging

People counters that use thermal imaging are typically mounted overhead

and have the ability to simultaneously maintain separate counts for mul-

tiple people moving in two directions (in and/or out). Thermal imaging

is a widely used technology for many applications, especially by law en-

forcement agencies and the military. The IR images captured by the heat

detectors are then processed to determine the number of people [10]. A

major advantage of the thermal imaging detection and people counting

system is that the heat detector does not require visible light to achieve

visibility on targeted objects. In addition, there is no privacy concern since

individuals are not identifiable. However, there are also disadvantages

such as limited view angles and high financial costs. There are a few com-

mercial products using infrared thermal imaging technology, e.g., Traf-Sys

thermal sensor [11] and IRISYS [12].

Optical Cameras

Video-based people counters work on video streams obtained through

video/CCTV cameras which are then run through intelligent video pro-

cessing techniques to identify and count the people in the video. The key

limitation of optical cameras is that they cannot penetrate obstructions.

The ability of detecting objects can be severely affected when obstructions

block the line-of-sight (LOS) between the camera and the target object.

The accuracy of such approaches can vary according to the level of am-

bient lighting and background colour contrasts [13]. Hybrid approaches

combining IR and video cameras, together with neural networks, have

been proposed to improve the accuracy of visual-based automated people
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counting [14]. Also, in comparison to thermal imaging technology, privacy

is a major concern when using optical cameras as the identities of individ-

uals are recorded by cameras. The CountWise people counting system [15]

utilises this technology to achieve people counting.

2.3 Radio Frequency DFL Technologies

Radio frequency device-free localisation is achieved by measuring and

monitoring properties of the radio channel between pairs of wireless sen-

sor nodes. The changes of wireless properties provide indications and

information about the position of objects in the wireless environments.

In the rest of the section, we will discuss various radio channel measure-

ments for DFL with their strength and weakness.

2.3.1 Ultra-Wide Band (UWB)

UWB receivers have the ability to measure the amplitudes, time delays

and phases of the multipath signals in the radio channel. The ability to

measure the time delay of multipath signals gives UWB receivers cru-

cial information about the positions of objects. The Channel impulse re-

sponse(CIR) can be measured upon receiving a UWB pulse by a UWB

transceiver. The CIR at time t can be represented as

h(t, τ) =

N(t)
∑

i=1

αi(t)δ(τ − τi(t)) (2.1)

N(t) = Multipath components

αi(t) = Amplitude gain of ith component

τi(t) = Time delay of ith component

The spatial information of objects can be known by comparing the time

delay τi(t) with LOS time delay. However, a calibration phase is needed
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for different environments to measure primary properties of existing RF

channel such as LOS time delay. Furthermore, a limitation of using UWB

transceivers is that they are certainly more expensive than narrowband

transceivers.

2.3.2 Narrowband

Unlike UWB transceivers, narrowband transceivers cannot provide infor-

mation regarding signal multipath components, but only have the ability

to signal magnitude and phase at one frequency. The benefits of narrow-

band transceivers is that they are small in size and inexpensive. The bene-

fits of low cost become a essential part for large deployment of RF sensor

networks.

Received Signal Strength (RSS)

It was first reported in [16] that the shadowing effect caused by an ob-

ject moving between two communicating wireless devices can be used for

detection purposes. In particular, a human body comprises liquid, bone

and flesh, that selectively absorb, reflect or scatter RF signals, leading to

the phenomenon known as radio irregularity ; radio irregularity leads to

Received Signal Strength (RSS) fluctuation. Received Signal Strength In-

dication (RSSI) is a measurement received signal power in decibel terms.

RSSI is calculated as follow:

RdB = 20 log10 |Ṽ | = PT + 20 log10

∣

∣

∣

∣

∣

N
∑

i=1

αi(t)

∣

∣

∣

∣

∣

(2.2)

where PT is the transmitted power in dB

This phenomenon has been extensively used for device-free localiza-

tion in wireless networks [17]. Radio Tomographic Imaging [18] measures

the attenuation of signals across wireless links between many pairs of

nodes in a wireless network to create images of objects moving within the
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network area. The variance of the measured RSS on the links in a network

has also been used to infer the locations of people or objects moving in the

network deployment area [19]. This approach utilizes a statistical model

for the RSS variance as a function of a person’s position with respect to

the transmitter and receiver locations. The approach adopted by [16] has

also been extended in [20] for outdoor people counting by measuring the

RSS level measured at the receiver. The reliance on (absolute) RSS values,

however, has a drawback during deployment, which is the need to take

into consideration the channel model and other related factors like the

impact of path loss and fading. These approaches also require complex

signal processing techniques and a calibration phase for each deployment

environment, and this can significantly affect the ease of deployment.

It has been observed in [1] that human movement through the path

of the radio signal causes the histogram of the absolute RSS values to be-

come more spread; this is manifested quantitatively as higher standard

deviation. However, the standard deviation varies significantly across en-

vironments, making it difficult to define a universal threshold to detect

movement in terms of these first order statistics. While also exploiting

the RSS spread caused by human movement, the approach adopted in [1]

focused on the fluctuation in signal strength instead, in order to reduce

the impact of channel models and other environmental factors. However,

there are false positives reported in their results which are deemed to be

acceptable in the intrusion detection application considered in that work.

2.4 Summary and justification

In this thesis, we propose a network-oriented approach that utilizes RSS

information of received packets to detect and count people when they

cross the signal transmission paths. This information can be easily ob-

tained from device drivers of wireless network interfaces when the pack-

ets are received and the goal of our approach is to be able to easily utilize



2.4. SUMMARY AND JUSTIFICATION 13

the existing wireless transmitters and receivers already deployed in the

environment.

Table 2.1 below highlights the core advantages of our proposed sys-

tem over other people counting systems. We aim to maximize the level of

detection accuracy using the existing wireless infrastructure without ad-

ditional hardware and costs. In the next chapter, we present our human

motion detection scheme using different ways of interpreting the radio ir-

regularity phenomenon.

Detection

Approach

Privacy

Concern

Environment

Dependant

Multiple

People

Detection

Costs

Infrared No Yes No Low

Thermal

Imaging

No No Yes High

Optical

Camera

Yes Yes Yes High

RF-based No Yes, Absolute

RSSI

Yes High

Proposed No No, RSSI

Fluctuation

Yes Low

Table 2.1: Comparison between proposed system and others
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Chapter 3

Motion Detection Algorithm

In this chapter, we discuss the design of motion detection approaches us-

ing different approaches of interpreting the RSS fluctuations arising from

radio irregularity. The three approaches used are: overcomplete dictio-

nary based pattern recognition (OCPR) approach [4], probability density

approach [5] and standard deviation approach [6].

3.1 RSSI Fluctuations

Most, if not all of the approaches that rely on the changes in RSS lev-

els caused by human motion across the signal transmission paths require

complex signal processing techniques and a calibration phase for each de-

ployment environment. This significantly affects the ease of deployment.

In our scheme, we adopt a network-oriented approach that relies on

RSS information of received packets which can be easily obtained from de-

vice drivers of wireless network interfaces when the packets are received.

A key goal of our approach is to be able to utilize the existing wireless

transmitters and receivers deployed in the environment without the need

for accurate channel models nor complex signal processing techniques.

We extend the method of using Received Signal Strength Indicator (RSSI)

fluctuations proposed in [1] which has shown that two consistent patterns

15
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of RSSI fluctuations can be observed for two key scenarios of interest to us,

namely, without human movement and with human movement across the

signal transmission path, as shown in Fig. 3.1. For a given packet pi, the

RSSI fluctuation were calculated as F (pi) = S(pi) − S(pi−1). For example,

the sequence of RSSI values 1, 2, 4, 5, 8, 7, 6 produces the RSSI fluctuation

values 0, +1, +2, +1, +3, -1, -1.

The histogram of RSSI fluctuations derived from the readings shows

narrower distribution when there is no human movement across the sig-

nal path, i.e., less fluctuation across RSSI readings (Fig. 3.1a) and, con-

versely, signals fluctuate more in the presence of human movement result-

ing in the spread out distribution shown in Fig. 3.1b. In a setup inside a

8m×6m room, with transmitter-receiver separation of 3 metres at a height

of 1.2 metres, the absolute RSSI readings for packets recorded at the re-

ceiver over time is shown in Fig. 3.2. From the absolute RSSI readings, the

fluctuation of RSSI readings is calculated, as shown in Fig. 3.3.
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a) RSSI fluctuation without movement
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b) RSSI fluctuation with movement

Figure 3.1: RSSI Fluctuation Patterns [1]
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Figure 3.3: RSSI Fluctuation

3.2 Overcomplete Dictionary Based Approach

In this section, we present a movement detection system using an over-

complete dictionary based pattern recognition (OCPR) algorithm. This de-

tection algorithm has been employed in ultra-wideband communications

systems [21].

A flowchart of the proposed system is shown in Fig. 3.4a. It begins with

the measured RSSI readings and calculates the frequency of RSSI fluctu-

ations over a window of N packets. The overcomplete dictionary based

pattern recognition algorithm takes this frequency data as input. The pat-

tern recognition algorithm is shown in Fig. 3.4b.

The overcomplete dictionary DN consists of two matrices

DN = [I H] , (3.1)
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(a) (b)

Figure 3.4: (a) Flowchart of the proposed movement detection system.

(b) The overcomplete dictionary based pattern recognition

where

I is the spike-like dictionary with size of 16 x 16, and

H is the Walsh noise dictionary with size of 16 x 16.

The reason behind using Walsh noise dictionary is due to its non spike-

like characteristic. The algorithm decomposes the RSSI frequency data

vector y with dictionary DN using l1 norm minimisation [22][23] to obtain
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the solution

x =

[

γI

γH

]

(3.2)

where

y = DNx = IγI +HγH, (3.3)

The RSSI fluctuations patterns shown in Fig. 3.1 were decomposed

with dictionary DN using l1 norm minimisation. The results with and

without movement are shown in the Fig. 3.5. Atom indices 1 to 16 cor-

respond to the spike-like dictionary and 17 to 32 to the Walsh dictionary.

Fig. 3.5 clearly shows that the maximum coefficient lies between atom 1 to

16 when there is no movement, and between 17 to 32 when movement oc-

curs. Thus the decision rule is that there is no movement when the largest

peak is located between atoms 1 to 16, and movement otherwise.
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Figure 3.5: The dictionary based decomposition results.
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We applied the overcomplete dictionary based approach to the dataset

in Fig 3.2. The inferring results is shown in Fig. 3.6.
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Figure 3.6: Inferred presence of human movement using OCPR approach

3.3 Probability Density Approach

Probability Density approach aims to utilize the probability of RSSI fluctu-

ation within [-1, 1] as a movement indicator. According to the RSSI fluctua-

tion patterns [1], the frequency of RSSI fluctuation between [-1, 1] is higher

in the presence of movement. In other words, we can infer the presence of

movement if the probability of RSSI fluctuation between [-1, 1] is high. We

applied the probability density approach to the dataset 3.2. We then define

a sliding window of N samples, where N is a parameter that can be tuned

to achieve the desired accuracy for the target environment. In our exam-

ple, a sliding window of size N = 10 is used to observe the behaviour of

the RSSI fluctuation. Therefore, a window of RSSI fluctuations at sample

200 is shown in Fig. 3.7.



3.3. PROBABILITY DENSITY APPROACH 21

At sample 200, using the window of 10 previous readings, the mean

and standard deviation are computed as 0.2727 and 4.6280 respectively.

We then map the RSSI fluctuations into the normal distribution with the

mean and standard deviation for that window, i.e. µ = 0.2727 and σ =

4.6280, as shown in Fig. 3.8a representing the case where the signal has

been subjected to interference by human movement across its path. Sim-

ilarly, the normal distribution of RSSI fluctuation at sample 600, where

there is no movement, is shown for comparison in Fig. 3.8b.
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Figure 3.7: RSSI fluctuations over a window size of 10

From the graphs, we compute the probability of the RSSI fluctuation

falling within the range [-1,1] (i.e. area under the curve from -1 to 1) to be

0.17078 for the case where there is movement across the signal path (i.e.

sample 200) and 0.84303 for the case where there is no movement (sample

600). For the dataset shown in Fig. 3.2, we compute the probability of

falling within the fluctuate range [-1,1] and plot the results as shown in

Fig. 3.9. As shown, the probability of fluctuations falling in the range of [-

1, 1] is below 0.3 in the presence of human movement. Hence, a probability

value that is higher than 0.3 implies no human movement. Based on this

threshold, we then infer from the results whether or not there has been

human movement across the signal path, and the results are shown in

Fig. 3.10.



22 CHAPTER 3. MOTION DETECTION ALGORITHM

−15 −10 −5 0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

Probability Between Limits = 0.17078

RSSI fluctuation

P
ro

ba
bi

lit
y

(a) Sample 200 (movement)

−2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

Probability Between Limits = 0.84303

RSSI fluctuation

P
ro

ba
bi

lit
y

(b) Sample 600 (no movement)

Figure 3.8: Normal distribution showing probability in fluctuation range

[-1,1]

3.4 Standard Deviation of RSSI Fluctuation Ap-

proach

Using the probability density function of RSSI fluctuations falling within

the range [-1,+1] as the threshold to signify no human movement has elim-

inated the occurrence of false positives [5], but it disregards information

from the distribution of RSSI fluctuations that lie outside the region be-
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Figure 3.9: Probability of fluctuation within [-1,1] in Fig.3.2
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Figure 3.10: Inferred presence of human movement using PDF approach

tween -1 and +1. This is undesirable as the distribution of RSSI fluctua-

tions has been shown to be a good indication of the size or crowd density

of moving objects [24]. In order to enhance the ability of people counting

using RSSI fluctuation, we observe the behaviour of the standard devia-

tion of RSSI fluctuation. In the standard deviation detection approach,

we compute the standard deviation of samples within a sliding window.

As shown in Fig. 3.13, we use a sliding window of size N = 10 to

observe the behaviour of RSSI fluctuation. Signal interference due to hu-

man motion causes rapid RSSI fluctuations which results in an increased

standard deviation. For the dataset shown in Fig. 3.2, we compute the

standard deviation of the RSSI fluctuation and the computed results are

shown in Fig. 3.11; at sample 200 (human presence), the standard devi-

ation (of the most recent 10 RSSI fluctuation readings) is 4.6280 and at

sample 600 (no human presence), the standard deviation is 0.6325. The

standard deviation of RSSI fluctuations being higher than 2 implies the
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Figure 3.11: Standard Deviation of fluctuation for RSSI readings in Fig.3.2

presence of human movement, which provides a clearer threshold than

the approach presented in [5]. We infer the existence of human movement

based on the standard deviation threshold and these results are presented

in Fig. 3.12.

Signal interference due to human motion causes rapid RSSI fluctua-

tions which results in an increased standard deviation. For example, at

sample 200, the standard deviation is 4.6280 and at sample 600, the stan-

dard deviation is 0.6325. For the dataset shown in Fig. 3.2, we compute

the standard deviation of RSSI fluctuation and the computed results are

shown in Fig. 3.11.

In addition, more information can be derived from the data, such as,

the peak of standard deviation. We infer the existence of human move-

ment based on the standard deviation threshold and present results in

Fig. 3.12.

3.5 Optimal Window Size

To study the effect of different window sizes on the detection error rate, we

define a sliding window of N samples, where N is a parameter that can

be tuned to achieve the desired accuracy for the target environment. The

desired value for N would be one that achieves the lowest error detection
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Figure 3.12: Inferred presence of human movement using standard devia-

tion approach

rate, which is calculated by dividing the number of incorrect detections

by the total number of samples. We aimed to find an optimal detection

window size that minimises the detection error. We studied the accuracy

of detection using different sliding window sizes, from N = 5 to N = 100,

across different environments, and also comparing between schemes,

• Overcomplete dictionary approach [4]

• Probability density function approach [5]

• Standard deviation approach [6]

to obtain the results shown in Fig. 3.13.

The detection response time can be shorted by reducing the sliding

window size. Let N be the sliding window size and t be the inter-packet

interval. The motion can be detected within N × t seconds, as N sam-

ples have to be collected for analysis. Because the inter-packet interval is
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Figure 3.13: Optimal Window Size

consistent throughout the detection, longer detection response time corre-

sponds to larger sliding window size.

3.6 Summary

In this chapter, we first explained and discussed the phenomenon of radio

irregularity that is seen as signal strength fluctuation at the receiver end in

the presence of human activity. Utilising the received signal fluctuation,

we introduced the design of three detection approaches, namely, overcom-

plete dictionary based pattern recognition (OCPR) approach [4], probabil-

ity density approach [5] and standard deviation approach [6]. These detec-

tion approaches were validated by applying them to the dataset of a small

scale detection experiment conducted a 8m × 6m room. Then, we studied

and observed the effect on detection accuracy of the sliding window size

and concluded the optimal window size for each detection approach. In

the next chapter, we will compare the detection performance of our pro-

posed approaches and the detection approach used in [1].



Chapter 4

Validation of Detection Algorithm

In this chapter, we discuss the experimental validation of the three motion

detection algorithms.

In [1], a series of experiments was performed in different locations to

evaluate their proposed algorithm. The experiments were conducted in

three different meeting rooms of approximate area 6 m × 4 m. The sensor

nodes were placed at a height of 1.5 m and spaced 4 m apart. Over a 20

minute period, a person walked between the sensor nodes every two min-

utes. RSSI samples were obtained for every received packet. Therefore,

the sampling rate is the inter-packet interval of 0.25 sec, so that 100 sam-

ples implies a duration of 25 sec. The detection approach used in [1] has

resulted in false positives as shown in Fig. 4.1.

Figure 4.1: False positives by detection method in [1]

27



28 CHAPTER 4. VALIDATION OF DETECTION ALGORITHM

4.1 Detection Results

Here, we are not leveraging the RF signals to carry data, which would

require accurate synchronization to detect phase, amplitude and/or fre-

quency. However, for the purpose of detection in our work, firstly, we are

detecting the relative changes of the signal (i.e. RSSI fluctuations) and we

could use the historical signal data or the signal levels immediately be-

fore or after for reference; secondly, and more important, we are detecting

a pattern out of the reflected signals. As long as the received signals are

strong enough, the unstableness of the signals will not adversely affect the

performance of our algorithm. The robustness of using RSSI fluctuations

(instead of absolute RSSI values) has been experimentally validated by [1].

Therefore the multipath effect will not introduce any unexpected effect to

the proposed detection system since the RSSI fluctuation is used.

To explore the performance of different detection approaches, we eval-

uate and compare the detection accuracy using the dataset acquired in [1].

Two major performance metrics will be considered and discussed in this

section. By studying the performance across our proposed detection ap-

proaches enable us to exploit the strength and weakness of each approach.

Moreover, this study can provides good indication of the suitable usages

of each of these approaches.

The two performance metrics are

1. The accuracy of detected movement duration

2. The occurrence of false positive detection

4.1.1 Overcomplete Dictionary Based Approach

The data from [1] was used with the overcomplete dictionary based de-

tection algorithm. We set the window size to N = 100 (the same as the

window size was used in [1]). The results are shown in Fig. 4.2. The pro-

posed algorithm was able to detect every movement that occurred in the
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environment, but the accuracy of the movement duration was low.
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Figure 4.2: Detection results of dataset in [1] by OCPR approach (N=100).

The algorithm was repeated with the window size reduced to N = 50

samples. The results given in Fig. 4.3 show that reducing the window size

improves the accuracy of both the inferred movement durations and de-

tection latency. Considering that the RSSI fluctuation statistics were gath-

ered for a window of size 100 samples, the pattern of the resulting statistics

is not obvious due to this large window size. Non-movement and move-

ment patterns might be mixed over a large window size. For instance,

there is a missed detection at sample index of 1300 when N is set to 100

samples. However, the detection result is correct when the window size is

reduced to 50 samples. With N = 100 samples, the frequency of RSSI fluc-

tuation is calculated with samples from 1201 to 1300 where 1201 to 1229

has non-movement. Therefore, the RSSI fluctuations have a small spike

between -1 to 1 as shown in Fig. 4.4(a). This results in an incorrect detec-

tion outcome. A smaller window size can improve this performance in

both timing and detection duration.
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Figure 4.3: Detection results of dataset in [1] by OCPR approach (N=50).
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Figure 4.4: RSSI fluctuations (sample index = 1300).

Based on the results shown in Fig. 3.13, we use a sliding window of

size N = 40 for inferring movement by applying overcomplete dictionary

based approach. The optimal inferring result is shown in Fig. 4.5
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Figure 4.5: Detection results of dataset in [1] by OCPR approach (N=40).

4.1.2 Probability Density Approach

With the same dataset acquired in [1], the probability density approach

was applied with sliding window N = 15 to obtain optimal inferring re-

sults based on results shown in Fig. 3.13. The inferring results are shown
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in Fig. 4.6. The results shows no false-positive detection with high accu-

racy of the movement duration.
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Figure 4.6: Detection results of dataset in [1] by PDF approach(N=15).

4.1.3 Standard Deviation of RSSI Fluctuation Approach

Next we explore the detection performance using the standard deviation

approach [6]. The sliding window length is set to 10 and the results are

shown in Fig. 4.7. There was no false-positive detection occurred in the

results and the accuracy of movement duration was high which indicate

the standard deviation was well preformed.
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Figure 4.7: Detection results for room 1 by STDEV approach(N=10).

4.1.4 Performance Comparison

The summary of the performance of our proposed detection approaches

is presented in table 4.1. The inferring results of our proposed approaches
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show no occurrence of false-positive detection with high accuracy of de-

tected movement duration. However, by comparing the window size, it is

obvious that the probability density function approach and standard devi-

ation approach outperform the overcompelete dictionary based approach

since smaller window size was required to achieve optimal detection accu-

racy. Smaller window size implies the quicker detection response which is

essential for some detection systems. In addition, the standard deviation

approach provides statistical information from the data, such as, the peak

of standard deviation.

Detection Approach Sliding

Window

Size

Accuracy Duration of

detected movement

False-

Positive

Overcomplete Dictio-

nary Based Approach

40 High No

PDF Approach 15 High No

Standard Deviation

Approach

10 High No

Table 4.1: Comparison between proposed approaches

4.2 Summary

In this chapter, we first compared the detection performance of our pro-

posed detection approaches with the one used in [1]. Two performance

metrics were considered (the accuracy of detection duration and the oc-

currence of false-positives). With the data from [1], the occurrence of false-

positive detection is eliminated with high accuracy of detection duration

using the proposed detection approaches. While high detection accuracy

is achieved, we then studied the most suitable detection approach for au-
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tomated people counting systems. The standard deviation approach is

considered the most suitable detection approach for automated systems

due to it not only achieves high accuracy detection but also provides sta-

tistical information from the data. In next chapter, we will briefly discuss

the wireless sensor node that we used in our larger scale experiments and

then studied on the characteristic of RF signals.
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Chapter 5

Testbed Setup

Larger scale experiments are conducted to demonstrate how the detec-

tion algorithms can be used for people counting. Here, we first describe

the hardware specification of two key devices used in our experiments,

namely, the sensor nodes manufactured by Texas Instruments MSP430 [25]

and Lebelium Waspmote [26]. Then, we perform and discuss preliminary

studies on their RF characteristic in order to achieve optimal detection per-

formance.

5.1 Wireless sensor node specification

Various types of wireless sensor node are used in different type of WSN

applications to fit specific needs. There were two types of wireless sen-

sor node used in a series of experiments that are presented in this thesis.

We will briefly discuss the hardware specifications of the wireless sensor

nodes in this section.

5.1.1 Texas Instrument MSP430-CC2500

Texas Instruments (TI) provides a platform called the MSP430 wireless de-

velopment tool [25]. The core of this development board is the MSP430

35
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microcontrollers. This microcontroller is made by Texas Instruments and

there is a complete family of MSP430 microcontroller. The communicating

unit of this development board is a CC2500 2.4 GHz, ISM band multi-

channel RF transceiver which uses SimpliciTI as its network protocol [27].

SimpliciTI provides an API for packet transmission between an Access

Point and End Devices. The Access Point is USB-powered and connected

to computer. The End Device is powered by an AAA battery which en-

ables easy deployment. The RF transceiver provides a transmission range

for only 8 meters due to the use of a chip antenna. In addition, the trans-

mission range largely depends on the physical environment and the usage

of the RF channel. MSP430 wireless development board was used in the

preliminary studies on RF characteristics which will be discussed in Sec-

tion 5.2.

Figure 5.1: Texas Instrument MSP430-CC2500
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5.1.2 Lebelium Waspmote

Waspmote [26] was designed by Lebelium in 2009 and is used for both re-

search and commercial purposes. Waspmote is an open source electronic

prototyping platform based on the Arduino [28] extended with Wasp-

mote’s libraries. The Waspmote board was deployed in our larger-scale

experiments due to its advantage of long transmission range. The Wasp-

mote board comes with a ATmega1281 processor and various communi-

cation modules can be used such as ZigBee, Bluetooth, GSM/GPRS, and

IEEE 802.15.4. The IEEE 802.15.4 communication module with 2 dBi dipole

antenna was used in our experiment. The ideal transmission range is 500

m with 1 mW transmission power.

(a) Lebelium Waspmote [26] (b) XBEE IEEE802.15.4 module

Figure 5.2: Hardware Specification of Waspmote and XBee module

5.2 Preliminary Studies of RF Characteristics

In order to achieve optimal detection performance, the preliminary stud-

ies on the various effects on radio irregularity are essential. These effects
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are such inter-packet interval, transmission power and frequency chan-

nel. Based on these studies, the optimal configuration can be deduced and

used in later experiments.

5.2.1 Inter-packet Interval

The Inter-packet interval is the transmission interval between successive

packets. The receive signal strength is recorded on reception of the packet.

Hence, the precision of inferring movement is higher with shorter of inter-

packet interval. However, the power consumption is the major drawback

of shorten the inter-packet interval for the battery powered devices such

as wireless sensor nodes. In addition, the limited computation power of

sensor nodes could be a bottleneck when a short inter-packet interval is

used.

The performance of detection could be largely depending on the inter-

packet interval. Ther effect was investigated and the results are shown

in 5.1

Detection Approach

Interval 1 2 3

0.1 s 2.33% 2.56% 1%

0.15 s 1.7% 7.3% 3%

0.20 s 27.3% 9.1% 6.3%

Table 5.1: Detection Error Rate against Inter-Packet Interval

For the results above, we observe the lowest detection error rate is ob-

tained when the inter-packet interval is shortest using probability density

function approach [5] and standard deviation approach [6]. As the inter-

1Overcomplete Dictionary Based Approach
2Probability Density Approach
3Standard Deviation of RSSI Fluctuation Approach
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Figure 5.3: Detection Error Rate against Inter-Packet Interval

packet interval increases, a higher detection error rate is observed. The de-

tection response time largely depends on the combination of sliding win-

dow size and the inter-packet interval which is discussed in the previous

chapter.

5.2.2 Transmission Power

In wireless communication, the transmission power plays a crucial role

in ensuring the transmitted packet can be received by receivers. Radio-

frequency signals can be degraded by interference by several components

such as other wireless equipment, materials, and moving objects blocking

the line-of-sight transmission path. With stronger transmission power, the

bit error rate of packet transmission is lower due to a higher signal noise

ratio(SNR) at the receiver.

Transmission power could be as another major determinant for detec-

tion accuracy in our detection system. Therefore, a series of experiments
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was conducted to observe the accuracy of detection using different trans-

mission power, from −4 to 1 dBm and also comparing between detection

schemes, namely, the overcomplete dictionary approach [4], probability

density function approach [5] and standard deviation of RSSI fluctuation

approach [6]. The results are shown in Table 5.2 and Fig. 5.4.

Detection Approach

Tx Power 1 2 3

−4 dBm 27.4194% 9.1129% 8.8710%

0 dBm 28.5484% 11.0484% 9.8387%

1 dBm 27.500% 14.7581% 12.3387%

Table 5.2: Detection Error Rate against Tx Power

The detection error rate ranges from 9.11% to 14.76% and 8.87% to

12.34% for the standard deviation approach [6] and theprobability density

function approach [5], respectively. However, the overcomplete dictionary

based approach [4] was not performing well with the overall error rate

ranging from 27.42% to 28.55%. The accuracy of detection varies by 5%

range across different transmission power for the same detection scheme.

The variance of detection error rate for the same detection approach is mi-

nor. Hence, the influence on detection accuracy of different transmission

power is minimal.

5.2.3 Wireless Channel Frequency

In our experiment, the IEEE 802.15.4 communication module was used

for wireless sensor nodes. The physical radio frequency transceiver oper-

ates in the industrial, scientific and medical (ISM) radio bands. The ISM

1Overcomplete Dictionary Based Approach
2Probability Density Approach
3Standard Deviation of RSSI Fluctuation Approach



5.2. PRELIMINARY STUDIES OF RF CHARACTERISTICS 41

 −4  0  1  
0

5

10

15

20

25

30

35

40

Transmission Power (dBm)

D
et

ec
tio

n 
E

rr
or

 R
at

e 
(%

)

 

 
OverComplete Dictionary Based Approach
Probability Density Function Approach
Standard Deviation Approach

Figure 5.4: Detection Error Rate against Tx Power

band is designed for the use of radio frequency energy for industrial, sci-

entific and medical purposes. The most commonly known ISM device is

the home microwave oven which operates at 2.45 GHz with high power.

In recent years, the ISM band has also been shared with communication

applications such as wireless sensor networks, wireless LANs and cord-

less phones. All these communication devices can be interfered with each

other up to a certain degree depends on the level of transmission power is

used. The radio spectrum of ISM band ranges from 2400-2483.5 MHz.

We conducted a series of experiments to observe and study the be-

haviour of detection accuracy with respect to different radio frequencies

by varying the frequency from 2433 MHz to 2481 MHz with fixed trans-

mission power and inter-packet interval. We applied different detection

schemes to compare the detection error rate. The results are shown in Ta-

ble 5.3 and Fig. 5.5.
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Detection Approach

Frequency 1 2 3

2433 MHz 28.3484% 9.696% 10.682%

2451 MHz 27.4194% 9.1129% 8.871%

2457 MHz 25.8723% 6.0426% 6.0426%

2463 MHz 26.0341% 7.1371% 6.6504%

2481 MHz 29.9592% 13.7959% 12.4898%

Table 5.3: Detection Error Rate against Wireless Channel

The detection error rate is relatively consistent using the same detec-

tion scheme across the various radio frequency. A lower detection error

rate is observed with radio frequency at 2457 MHz. This could be due to

the channel being relative cleaner than other frequency. By cleaner, we

mean the channel is less used by other communication devices.

As we recall the major components that can interfere with the RF sig-

nal, namely, the interference of other wireless devices and materials, are

consistent and stable throughout the experiment. On the other hand, the

line-of-sight blocking by the moving object has significant interference

compared to other interference components.

5.3 Summary

In this chapter, we started with discussing the hardware specification of

two types of sensor nodes that were used in our experiments. In prelimi-

nary studies on RF characteristics, we discussed the various effects of RF

signals that are affecting the detection performance. We observed the de-

tection error rate is lower and the detection response time quicker with

1Overcomplete Dictionary Based Approach
2Probability Density Approach
3Standard Deviation of RSSI Fluctuation Approach
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Figure 5.5: Detection Error Rate against Wireless Channel

short inter-packet interval. Next, we found that the effect of transmission

power on detection error rate is insignificant. Finally, the detection error

rate is consistent across the various radio frequency. We will discussed the

design of automated people counting system in the next chapter.
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Chapter 6

Automated People Counting

Accurate detection of human movement is just the initial step to achieving

the goal of automated people counting. The next step is the ability to infer

that more than one person has crossed the area of interest.

In this chapter, we first introduce the conceptual sensor configuration

and discuss the design of a people counting system using the configu-

ration of a single transmitter and multiple receivers to differentiate the

number of passers by. Then, we discuss the use of discriminant analy-

sis to achieve the classification of number of passerbys in controlled and

uncontrolled environments.

6.1 Single transmitter-single receiver

First, a series of experiments were conducted to observe the precision of

the detection algorithm in a realistic indoor environment, namely, a cor-

ridor in a university building, as shown in Fig. 6.1, where the two red

dots indicated by the arrows refer to the transmitter/receiver pair using

IEEE802.15.4 technology. The devices are spaced 1.5m apart (width of cor-

ridor) and placed at a height of 1.1m, on a ledge. Each data collection

duration was 300 seconds with inter-packet interval time of 0.15 seconds,

during which the number of people who have walked past the devices

45
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were recorded and tagged with the time. Fig. 6.2 shows the results for one

data collection period, during which nine persons walked through indi-

vidually and two pairs of people past while walking close to each other, at

the sample index of 484 and 925. In the detection results, shown in Fig. 6.2,

a total of 11 movements were detected. It is clear that detecting two people

walking side by side is a major challenge as the RSSI fluctuations arising

from one and two persons passing are quite indistinguishable.

Figure 6.1: Deployment along corridor of building in university

6.2 Single transmitter-multiple receiver

In a pervasive network environment, it is not inconceivable to have nu-

merous small wireless devices present. A conceptual deployment scenario
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Figure 6.2: Detection of pedestrian traffic along corridor

like that shown in Fig. 6.3 can be assumed, and we look at a subset config-

uration of one-transmitter and two-receivers as shown in Fig. 6.4.

Figure 6.3: Conceptual Configuration

Using the one-transmitter two-receiver configuration, the transmitter

broadcasts packets at a rate of one packet every 0.15 seconds. Receiver R1

is 1.5m from transmitter T (d1 = 1.5m)and R2 is 1.5m from R1(d2 = 1.5m).

As two persons walk along the path between T and the two receivers in

the direction shown in Fig. 6.4, they first cross the T-R2 signal transmis-

sion path, followed by the T-R1 signal path. A key point to note is the

different signal interference zones that result from the movement of the
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Figure 6.4: One-Transmitter Two-Receiver Configuration

two persons.

First, we collected data for one person walking across the signal trans-

mission path (passing first R2 then R1) to be used as the reference case. The

detection results correctly show that one person passed at around the time

of sample 100 and another at around sample 200, as shown in Fig. 6.5. In-

tuitively, the detection result at sample 100 is more logical since the person

passed R2 first, then R1. However, as the two receivers are very close to

each other, having the two receivers showing signal fluctuations at almost

the same instant is also likely, especially when the person is walking fast.

Next, we collected data for the case of two persons walking side-by-

side in the direction of R2 to R1 as shown in Fig. 6.4. We expect that the

detection duration of T-R2 should be longer than T-R1. This is because

the T-R2 signal experienced a longer duration of interference than the T-R1

signal. The detection result of two people walking from R2 to R1 shown

in Fig. 6.6 confirms our hypothesis. However, we also observed a false

positive detection at sample 64. As the two receivers are placed closed

to each other, 1.5m apart, we can assume that it is unlikely for a moving
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object to be detected by one receiver but not the other. Therefore, we can

remove such false positive detections by comparing and matching the data

from both receivers and to achieve the desired results as shown in Fig. 6.7.
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Figure 6.5: One person walking in the direction of R2 to R1

6.3 Controlled Environment Setup

In order to exploit the effect of RSSI fluctuation caused by signal interfer-

ence by a few people, we conducted a series of experiments with a variable

group size (ranging from one to five people) under a controlled indoor

environment. Sensor motes using IEEE802.15.4 wireless technology were

deployed in a 6m×8m room in a one-transmitter two-receiver configura-

tion (Fig. 6.4.) The motes were placed at a height of 0.9m. Receiver R1

was placed 3.5m from transmitter T (d1 = 3.5m) and R2 at 2m from R1(d2 =

2m). The transmitter, T, broadcasts packets continuously in time intervals
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Figure 6.6: Two people walking in the direction of R2 to R1

of 0.15s. The absolute RSSI values were recorded upon packet reception

at the receivers. Then, groups comprising one to five people made five

consecutive round trips between the transmitter and two receivers. Five

experiments were conducted for each group. The formation of test sub-

jects is aligned in a single row and moving at the same speed passing be-

tween transmitter and receivers. Stronger interference of radio signals is

expected from larger mass as the number of people increases. In addition,

the difference of interference duration could also be significant.

In our experiments, we assume that the pedestrians are walking side by

side in both directions. Since only the level of interference and duration of

positive detection is considered, the direction of movement will not impact

on our proposed counting system. Due to the quick response detection

time, different groups of people can be distinguished and treated individ-

ually. For example, our proposed detection system is able to detect two

groups of two persons if they walk past transmitter-receiver pairs along

the corridor within the minimum response time, which is determined by
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Figure 6.7: Optimised Result of multiple receivers

the sliding window size and the inter-packet interval used. The detection

response time can be shortened by reducing the sliding window size. If

we let n denote the sliding window size and t denote the inter-packet in-

terval (measured in ms), then the motion can be detected within n × t ms

since n samples have to be collected before analysing and determining the

motion.

6.4 Data Analysis

We use discriminant analysis, a method to find the linear combination of

measurements which characterize two or more groups [29], to analyze the

collected data. The key concept of the discriminant analysis approach is to

classify the number of people based on the difference in the influence on

RSSI readings if the size of the interference zone.



52 CHAPTER 6. AUTOMATED PEOPLE COUNTING

6.4.1 Discriminant Analysis

This is a method widely used in statistics, pattern recognition and machine

learning because of its ability to characterize two or more classes. Discrim-

inant Analysis attempts to express one dependent variable, in our case the

number of pedestrian, as a linear combination of other independent vari-

ables such as measurements of RSSI readings.

We let a finite number g denote the distinct number of groups which

in our case is five (i.e. g=5, denoting groups of 1–5 persons). We refer

to the Gi as groups where i = 1, . . . , 5. There are two phases of discrim-

inant analysis which are training and classification. The system identifies

differences in RSSI fluctuations caused by different number of people as

signatures in the training phase. It is important to note that this training

is only required once to identify the fluctuations caused by differing num-

bers of people, and not for each deployment scenario. During the training

phase, a total of g − 1 orthogonal discriminant functions are constructed

such that the groups differ as much as possible on discriminant score D.

The form of the linear discriminant function is:

D = v1X1 + v2X2 + ...+ viXi + c (6.1)

where

D = discriminant score

v = the discriminant coefficient

X = the value of each independent variable

c = a constant

i = the number of independent variables

Once the discriminant functions are constructed, the discriminant anal-

ysis enters the second phase which is classification. Fisher’s linear dis-

criminant analysis [30] is used for data classification; the purpose of Fisher’s

technique is to find the line of projection that separates different groups [31].
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6.5 Training Phase of Discriminant Analysis

We use the standard deviation of RSSI fluctuations of detected movement

as the primary dataset. For instance, the standard deviation of RSSI fluc-

tuations of one of the experiments for one person is shown in Fig. 6.8.
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Figure 6.8: Experimental Data for one person in a single experiment

We utilize the information from each positive detection, particularly

mean, standard deviation (std), coefficient of variation (CV), detection du-

ration and area under the curve, to be the independent variables in order

to achieve high discrimination between groups. The more statistical in-

formation we can extract from these positive detections, the greater the

ability to discriminate between the different size groups.

The methods to extract the statistical information are described below.

• Mean is calculated as the sum of the standard deviations of RSSI

fluctuation greater than a detection threshold, and the total number

of positive detection.
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• Standard deviation of the positive detection is taking the standard

deviation of RSSI fluctuations that are above the detection threshold.

• Coefficient of variation is defined as the ratio of the standard devia-

tion to the mean which is the calculated standard deviation divided

by the mean.

• Duration is the number of samples that have the standard deviation

of RSSI fluctuations greater than the detection threshold.

• Area under the curve is calculated by the duration times the sum of

the standard deviation of RSSI fluctuation.

We use the SPSS [7] software to perform discriminant analysis. For a

total of 50 samples of each group, the mean of each independent variable

is plotted in Fig. 6.9. The duration and area under the curve are the two

most significant independent variables. The detection duration of R1 is

stable throughout all groups while the detection duration of R2 steadily

increases as the number of people increase. This trend is as expected since

more time is needed to pass the T-R2 transmission path than T-R1. The

area under the curve follows the same trends as longer detection duration

makes the area under the curve larger.

Next, these independent variables are taken to construct the discrimi-

nant functions that maximize the separation between each group. In Ta-

ble 6.1, it provides very high F values and lower Wilks’ Lambda as ev-

idence of significant difference in R2 detection duration than any other

independent variables. In addition, in statistical significance testing, the

null hypothesis is rejected when the p-value is smaller than the signifi-

cance level α which is 0.05. The results are considered to be statistically

significant when null hypothesis is rejected.

The information of each discriminant function is shown in Table 6.2.

There are five groups, namely ’one person’ to ’five people’ and as a re-

sult four discriminant functions are produced. With high Eigenvalue and

percentage of variance, function 1 covers most total statistical population.
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Figure 6.9: Mean of independent variables of each group

The relative importance of each independent variable in each discrimi-

nant function can be found by analyzing the structure matrix table. These

’Pearson’ coefficients are discriminant loadings which act like factor load-

ings in factor analysis [32]. Generally, an absolute value of 0.3 is taken to

be the threshold that separates a significant from an unsignificant variable.

For example, we have five independent variables in discriminant function

D1, namely, ’R1 CV’, ’R2 CV’, ’R1 duration’, ’R2 duration’, and ’R2 area’

that discriminates between groups.

The discriminant function coefficient shows the contribution of each

independent variable to the discriminant function. It operates like a re-

gression equation. For example, the discriminant function D1 and D2 are

shown below.

D1 = (0.26× R1mean) + (−0.837×R2mean)+

(−1.033×R1std) + (0.999× R2std)+

(17.142× R1CV ) + (3.964× R2CV )+

(0.298× R1duration) + (0.306×R2duration)+

(0.011× R1area) + (0.002× R2area)− 10.805

(6.2)
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IV Wilks’ Lambda F p-value

R1 mean 0.773 17.986 0.001

R2 mean 0.992 5.207 0.000

R1 std 0.640 34.437 0.000

R2 std 0.692 27.311 0.000

R1 CV 0.485 65.034 0.000

R2 CV 0.436 79.137 0.000

R1 duration 0.633 35.572 0.000

R2 duration 0.256 178.008 0.000

R1 area 0.713 24.605 0.000

R2 area 0.603 40.256 0.000

Table 6.1: Test of Equaltiy of Group Means

Functions Eigenvalue % of variance Canonical Correlation

1 5.717 82.9 0.923

2 0.952 13.8 0.698

3 0.146 2.1 0.357

4 0.084 1.2 0.279

Table 6.2: Table of Eigenvalues

D2 =(0.863×R1mean) + (−1.044×R2mean)+

(−1.023× R1std) + (1.046×R2std)+

(17.026× R1CV ) + (−6.788× R2CV )+

(0.225×R1duration) + (−0.203× R2duration)+

(0.017×R1area) + (−0.003× R2area)− 2.414

(6.3)

Fig. 6.10 plots for all samples of discriminant functions 1 and 2 which

cover 96.7% of variance. The group centroids are plotted from left to right

as the number of people increase. This is a good indication that the groups
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Function

1 2 3 4

R1 mean 0.153 0.384 -0.047 0.477

R2 mean 0.094 -0.088 0.243 0.464

R1 std 0.275 0.361 -0.051 0.235

R2 std 0.269 -0.109 0.049 0.486

R1 CV 0.417 0.219 0.387 -0.162

R2 CV 0.468 -0.093 0.070 0.603

R1 duration 0.306 0.111 0.417 -0.296

R2 duration 0.692 -0.411 -0.206 -0.098

R1 area 0.191 0.438 0.020 0.372

R2 area 0.326 -0.212 0.094 0.288

Table 6.3: Structure Matrix

are well discriminated by functions D1 and D2.

Finally, the classification is performed based on the discriminant score.

The classification results are shown in Table 6.5. All perfect prediction

cases lie on the diagonal. The classification results show 81.6% overall ac-

curacy in detecting the number of people comprising a given group. Fur-

ther, an overall accuracy of 97.9% was achieved in predicting individual

head counts. For example, the actual head count of 250 samples is 750 and

the predicted head count was 734.

6.6 Uncontrolled Environment Setup

In order to evaluate the accuracy in counting the number of people with

no specific formation using the discriminant function that is calculated in

the previous section, we deployed the wireless sensor nodes in an uncon-

trolled environment. We deployed a configuration of one transmitter and
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Function

1 2 3 4

R1 mean 0.260 0.863 0.611 0.084

R2 mean -0.837 -1.044 0.843 0.460

R1 std -1.033 -1.023 -4.612 -0.471

R2 std 0.999 1.046 -1.165 -0.934

R1 CV 17.142 17.026 32.236 -12.682

R2 CV 3.964 -6.788 2.522 12.729

R1 duration 0.298 0.225 0.514 -0.358

R2 duration 0.306 -0.203 -0.140 -0.146

R1 area 0.011 0.017 -0.001 0.018

R2 area 0.002 -0.003 0.005 0.012

(Constant) -10.805 -2.414 -10.974 2.054

Table 6.4: Canonical Discriminant Function Coefficient

three receivers, as shown in Fig. 6.11a where the darker areas represent

corridors and walkways. Three receivers were placed on one side of a

wide corridor with one transmitter on the opposite side. The distance of

T-R2 is 3m which allows up to five people walking past the corridor side-

by-side. The distance of R1-R2 is 2.5m is the same as the distance of R2-R3.

This sensor placement configuration can be considered as two sets of one-

transmitter two-receiver configuration in symmetry. Each experiment was

conducted for 15 minutes. The total number of people walking past was

recorded on video to compare for verification of the detection result. A

video frame of an experiment in progress is shown in Fig.6.11b.

For convenience in data analysis and comparison, the data collection

was separated into 3-minute periods. Fig. 6.12 shows the results for one

data collection period, during which our proposed detection system has

been able to correctly infer every single occurrence of passerbys crossing

the sensing zone. The recorded video shows the sequence of people in
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Figure 6.10: Combined Group Plots of Discriminant Function 1 and 2

groups walking past the corridor as {2, 1, 1, 3, 1, 1, 1, 1, 3, 1}. The de-

tection duration difference between receivers increases for 1st, 4th and 9th

positive detections. As discussed previously, this is caused by the larger

interference zone when more than one person passes, as shown in Fig. 6.4.

Using the one-transmitter three-receiver configuration, two sets of sta-

tistical information relating to positive detections can be extracted since it

contains two sets of one-transmitter two-receiver configuration. When ap-

plying new cases, the discriminant score will be calculated using the dis-

criminant functions that are constructed during training phase. All new

samples’ discriminant scores of discriminant ‘Function 1’ and ‘Function 2’

for R1-R2 and R3-R2 are plotted in Fig. 6.13 and Fig. 6.14 respectively. A

sample can be classified when its discriminant score lies on the diagonal

to the group centroid which is shown as a filled marker.

We select a sample of the experiments for discussion, where a total of

90 people walked past the sensing zone in groups ranging from one to five
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NPeople Predicted Group Membership

1 2 3 4 5 Total

Count 1 47 3 0 0 0 50

2 3 46 1 0 0 50

3 0 3 44 2 1 50

4 0 3 7 31 9 50

5 0 0 0 14 36 50

% 1 94 6 0 0 0 100

2 6 92 2 0 0 100

3 0 6 88 4 2 100

4 0 12 14 62 18 100

5 0 0 0 28 72 100

Table 6.5: Cassification Results

persons.

We select a sample of the experiments for discussion, where a total of

39 people walked past the sensing zone in groups ranging from one to

three persons; as this was an uncontrolled environment, we had not been

able to detect groups of larger sizes although some of the instances could

have been classified as a larger group.

First, we present the classification results for R1-R2 which are summa-

rized in Table 6.6 . From the R1-R2 dataset, the accuracy of predicting the

number of people comprising a given group is 76%, which is slightly lower

than that for the controlled environment. This is expected as a few people

walking in close proximity can be grouped in different ways from different

angles and their relative positions with the group can change dynamically.

More importantly, we aim to estimate the number of people in total, and

that we have been able to achieve with an accuracy of around 94.4% for

this experiment, and with similar accuracies for other experiments. This is

very close to the accuracy achieved in the controlled environment.
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NPeople Detected Group Membership

1 2 3 4 5 Total

Count 1 26 2 2 0 0 30

2 1 6 2 0 0 9

3 1 1 3 0 0 5

4 0 0 0 2 1 3

5 0 0 0 0 3 3

% 1 86.7 6.67 6.67 0 0 100

2 11.1 66.7 22.2 0 0 100

3 20 20 60 0 0 100

4 0 0 0 66.7 33.3 100

5 0 0 0 0 100 100

Table 6.6: R1-R2 Prediction Results under Uncontrolled Environment

Next, we present the data from R3-R2, tabulated in Table 6.7. The ac-

curacy of group size estimation dropped to 57.8% for the same reasons as

the R1-R2 case. The accuracy for number of people detected is 84.4% with

a noticeable degree of over-counting. Upon careful analysis of the video,

we identified a possible cause of the over-counting that led to the higher

estimation error. From Fig. 6.11a, we note that R3 is located next to a stair-

well on the left. That is a highly utilized staircase and, as a result, many

people pass close to R3 but not necessarily continue right along the corri-

dor across the R3-R2 sensing zone. This has resulted in two instances of

over-estimating the group size by more than one, where a group of two

people has been detected as a group of four people. E.g., if a group four

people come down the stairs and split into two groups of two, with one

group continuing right along the corridor across the R3-R2 sensing zone

while the other, moving in the opposite direction or straight across to the

walkway on the lower left of Fig. 6.11a, then there is a higher probability

of the group size prediction being affected.
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NPeople Detected Group Membership

2 1 2 3 4 5 Total

Count 1 22 5 3 0 0 30

2 1 5 1 2 0 9

3 0 1 3 1 0 5

4 0 0 1 1 1 3

5 0 0 0 1 2 3

% 1 73.3 16.7 13.3 0 0 100

2 11.1 55.6 11.1 22.2 0 100

3 0 20 60 20 0 100

4 0 0 33.3 33.3 33.3 100

5 0 0 0 33.3 66.6 100

Table 6.7: R3-R2 Prediction Results under Uncontrolled Environment

Based on the assumption that we intend to utilize pre-deployed wire-

less communication devices, the R3-R2 case highlights the need for care-

ful selection of transmitter-receiver combinations in order to minimize de-

tection errors. For the R1-R2 case, although R1 is also near the building

entrance/exit on the right, its position is sufficiently far away such that

people moving in and out of the entrance/exit will not have a significant

effect, on its detection.
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(a) Layout of Sensing Zone

(b) Experiment in progress with passerbys crossing

Figure 6.11: Test Environment
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Figure 6.12: Inferring Results under Uncontrolled Environment
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Figure 6.13: Combined Group Plots of Discriminant Functions 1 & 2 for

R1-R2
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Figure 6.14: Combined Group Plots of Discriminant Functions 1 & 2 for

R3-R2
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

The use of radio irregularity resulting from the movement of human ob-

jects crossing the path of a radio signal to detect human presence has been

demonstrated previously and applied to intrusion detection [33, 34, 5].

However, the ability to detect more than one person remains a challenge if

we rely on the characteristics of one signal’s fluctuations. With pervasive

networking brought about by large cyber-physical systems, the presence

of numerous wireless communication devices allow us to study the fluc-

tuations of multiple signals in close proximity of one another as a result

of human interference and deduce the number of human objects that have

crossed the paths of these signals.

In this thesis, we have provided studies on the characteristics of radio

frequency, such as inter-packet interval, transmission power and wireless

frequency channel, that could potentially affect the performance of detec-

tion. Then, we have proposed network-oriented approaches [4, 5, 6] that

utilize received signal strength information (RSSI) of received packets to

detect and count people when they cross the signal transmission paths.

This information can be easily obtained from device drivers of wireless

network interfaces when the packets are received and the goal of our ap-
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proach is to be able to easily utilize the existing wireless transmitters and

receivers already deployed in the environment. Our approach which is

based on the RSSI fluctuations between consecutive packets does not re-

quire accurate channel models nor complex signal processing techniques.

It only needs to be trained to detect the RSSI fluctuation patterns associ-

ated with the objects of interest, e.g. groups of different numbers of peo-

ple; no additional tuning is required during deployment.

Using a simple configuration of two receivers deployed in close prox-

imity to each other, we have first demonstrated the ability to detect two

persons walking side-by-side along a typical 1.5m wide corridor using a

straightforward approach based on the difference in the periods of fluc-

tuations experienced by the two signals paths as the two human subjects

pass. We then extended our scheme to detect more human subjects us-

ing the same two-receiver configuration together with discriminant anal-

ysis to process the signal fluctuation data; we validated our scheme in

a controlled environment and showed that it is able to accurately detect

and count up to five persons with an accuracy of almost 98%. Next, we

deployed our scheme in a public area without the ability to control the

mobility patterns and group structure of passerbys, and achieved com-

parable accuracy in counting people. However, we also note that a poorly

located receiver can induce high estimation errors and significantly reduce

the accuracy of the system. Ideally, a robust placement strategy should be

chosen [35]. However, in our target scenario, achieving the best device

placements from among the already deployed wireless devices may not

always be possible. Additional wireless devices may need to be deployed

to complement the existing topology, if the critical voids in detection are

to be covered.

From this study, we conclude that a large cyber-physical system can

be exploited for applications like people counting without the need for

specialized hardware. However, our method is not aimed at completely

replacing specialized hardware for automated people counting but more
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as a complementary technology. While the scheme in its current form

requires further work to enhance its capabilities, it presents an exciting

opportunity to turn an existing wireless communications network into a

sensing system for automated people counting. The scenario that we have

initially considered is a corridor-like space where it would be less cost ef-

fective to use more sophisticated systems, like imaging and thermal tech-

nology, yet is able to provide more information that the simple low-cost

single-beam IR counter. Imaging would also be less effective as humans

are blocked by one another from a camera located at one end of the cor-

ridor. There are many possible scenarios to be considered. Some of the

questions that will be addressed as part of our ongoing and future work

include the deployment scenarios of the proposed system and how it can

complement other dedicated people counting technologies, without addi-

tional installation costs.

7.2 Future Work

7.2.1 Enhance Detection More People in A Group

In this thesis, we have demonstrated the ability to detect up to five peo-

ple in a group using discriminant analysis. We also aim to improve the

accuracy of detection of the maximum number of people in a group. This

provides the potential to be able to apply the proposed people counting

system to a wider area. We aim to look at different statistical methods that

could provides better classification ability. The possible statistical methods

are listed below.

• Logistic Regression [36] is used for predicting a limited number of cat-

egories based on predictor variables.

• Naive Bayes Classifier [37] is a popular classification method since it

only requires a small amount of training data.
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• Decision Tree Learning [38] is commonly used in machine learning

which aims to predict the output based on several inputs using a

tree model.

7.2.2 Automated People Counting in Outdoor Environment

We also aim to extend the scheme for automated people counting in out-

door environments, e.g., to count visitors in public parks [20], crowd size

estimation [39], etc. Such technologies are increasingly being deployed for

crowd size estimation to assist in crowd control and prevent any potential

problems arising from loss of control over crowd size. Often, agencies in-

volved in crowd safety and management require quick estimates to assist

personnel on the ground, but most of the available technologies rely on

image and video processing which are complex and expensive.

As our ongoing and future work, we are first extending the scheme for

automated people counting in outdoor environments, i.e. to count visi-

tors in public parks [40], and also adapting it for use in the monitoring of

wildlife in natural habitats.



Appendix A

Data Analysis Process

We briefly outline the steps involved in processing the RSSI readings into

statistical information and applying discriminant analysis to predict the

number of people in a group.

A.1 Extracting Statistical Information

First of all, the positive detection is identified using the standard devia-

tion detection approach. Statistical information is then extracted for each

positive detection. The Matlab code in Table A.1 shows how the statistical

information is extracted.

Mean and Standard Deviation The code in Table A.1 basically extracts

the standard deviation of each positive detection and apply Matlab’s built-

in functions to calculated the mean and standard deviation of RSSI fluctu-

ations. The coefficient of variation (CV) is then computed by dividing the

standard deviation by the mean. R1 mean and R2 mean are the means of

the positive detection for Receivers 1 and 2 respectively. R1 std and R2 std

are the standard deviations of the positive detection for Receivers 1 and 2

respectively. indexA 1 and indexA 2 are the starting and ending index of a
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Mean

R1 mean = mean(sig1(indexA 1:indexA 2));

R2 mean = mean(sig2(indexB 1:indexB 2));

Standard Deviation

R1 std = std(sig1(indexA 1:indexA 2));

R2 std = std(sig2(indexB 1:indexB 2));

Coefficient of Variation(CV)

R1 std = std(sig1(indexA 1:indexA 2));

R2 std = std(sig2(indexB 1:indexB 2));

Table A.1: Mean, Standard Deviation and CV Calculation

positive detection for Receiver 1 respectively while indexB 1 and indexB 2

are the index for Receiver 2.

Duration

R1 duration = indexA 2 - indexA 1;

R2 duration = indexB 2 - indexB 1;

Area under the curve

R1 area = sum(sig1(indexA 1:indexA 2));

R2 area = sum(sig1(indexB 1:indexB 2));

Table A.2: Duration and Area Calculation

Duration and Area Similarly, the Matlab codes for computing the du-

ration, which is the subtraction of the ending and starting index, and the

area under the curve, the sum of standard deviation during each positive

detection, are shown in Table A.2.
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A.2 Applying Discriminant Analysis

With the statistical information extracted from the RSSI readings, we then

use the SPSS statistical software [7] to perform discriminant analysis. There

are two phases involved, namely, training and classification.

A.2.1 Training Phase

In the training phase, the number of people in a group is specified for

each statistical information. Examples are shown in Table A.3 below. We

then apply discriminant analysis to the statistical information using the

SPSS statistical software with the commands shown in Table A.4. In the

SPSS command, the number of people in a group from 1 to 5 is specified

and discriminant analysis is applied to the independent variables to com-

pute the discriminant functions and classification results of the training set

which are shown in Tables 6.4 and 6.5.

A.2.2 Classification Phase

The classification of new cases can be done using SPSS based on the train-

ing cases (dataset(1)) as shown in Table A.5. The classification results of

new cases is shown in Tables 6.6 and 6.7.
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NPeople R1 mean R2 mean R1 std R2 std R1 CV R2 CV

1 2.1531 2.3685 0.1035 0.2203 0.0481 0.093

2 4.3969 4.9704 1.0649 0.8373 0.2422 0.1685

3 2.5052 2.9068 0.4375 0.5686 0.1746 0.1956

4 3.717 5.1933 1.0199 0.9306 0.2744 0.1792

5 3.6984 4.9782 1.3647 1.0823 0.369 0.2174

NPeople R1 duration R2 duration R1 area R2 area

1 10 9 47.7081 23.6847

2 12 10 102.6634 64.324

3 13 10 76.808 42.208

4 22 10 89.5948 101.5954

5 24 12 106.8216 99.7288

Table A.3: Examples of Statistical Information

DISCRIMINANT

/GROUPS=NPeople(1 5)

/VARIABLES=R1 mean R2 mean R1 std R2 std R1 CV R2 CV R1 duration

R2 duration R1 area R2 area

/ANALYSIS ALL

/PRIORS SIZE

/STATISTICS=MEAN STDDEV UNIVF BOXM COEFF RAW TABLE

/CLASSIFY=NONMISSING POOLED.

Table A.4: SPSS Discriminant Analysis Command
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DISCRIMINANT

/GROUPS=NPeople(1 5)

/VARIABLES=R1 mean R2 mean R1 std R2 std R1 CV R2 CV R1 duration

R2 duration R1 area R2 area

/SELECT=datset(1)

/ANALYSIS ALL

/PRIORS SIZE

/STATISTICS=MEAN STDDEV UNIVF BOXM COEFF RAW TABLE

/CLASSIFY=NONMISSING POOLED.

Table A.5: SPSS Discriminant Analysis Command for New Cases
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