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Abstract

Uncertain Capacitated Arc Routing Problem (UCARP) is a combinatorial
optimisation problem with many important real-world applications. Ge-
netic programming (GP) is a powerful machine learning technique that
has been successfully used to automatically evolve routing policies for
UCARP. Reusability is an open issue in the field of UCARP and in this
direction, an open challenge is the case of scenario changes, e.g. change
in the number of vehicles and probability distributions of random de-
mands, which typically requires new training procedures to be initiated.
Considering the expensive training cost of evolving routing policies for
UCARP, a promising strategy is to learn and reuse knowledge from a pre-
vious problem-solving process to improve the effectiveness and efficiency
of solving a new related problem, i.e. transfer learning.

The overall goal of this thesis is to develop novel knowledge trans-
fer algorithms for GP for solving UCARP to handle environment changes
more effectively and efficiently. To fulfil this goal, a plethora of machine
learning techniques, i.e. surrogate models, feature selection, searching and
specialised genetic operators, are utilised in this thesis.

First, this thesis explores the effectiveness of the existing transfer opti-
misation methods for solving UCARP. Accordingly, one of the main direc-
tions of this thesis is towards identifying the nature of transferable knowl-
edge, which can impact the quality of knowledge transfer for GP to solve
UCARP. For this purpose, a collection of the state-of-the-art transfer opti-
misation GP algorithms are evaluated for UCARP. After identifying some
potential gaps in the literature, a number of preliminary transfer optimisa-
tion algorithms are proposed that supplement the literature. To evaluate



the algorithms, a large set of knowledge transfer scenarios with various
source and target problems were designed based on real-world datasets.
According to the results, none of the methods showed significant improve-
ment in the effectiveness of the trained UCARP routing policies. These
results revealed the need for more effective transfer optimisation meth-
ods specifically designed for UCARP. Furthermore, our investigations re-
vealed that the presence of duplicates in knowledge sources is one of the
main challenges for effective transfer optimisation in solving UCARP.

Second, we propose approaches to handling the presence of duplicates
in the transferred knowledge. The first approach increases population di-
versity after knowledge transfer to counteract the loss of diversity that is
introduced by the presence of duplicates in the transferred knowledge.
In the second approach, the duplicates are removed from the transferred
knowledge. Then, the transferred knowledge is utilised to create a diverse
initial GP population of high-quality individuals. Both approaches are
investigated through detailed experimental studies. The results indicate
that, while the first approach did not perform better than GP with knowl-
edge transfer, the second can improve the effectiveness of training routing
policies with GP significantly.

Third, this thesis proposes a novel algorithm that transfers the pheno-
typic characteristics of the routing policies for solving the source problem.
In the new algorithm, the most fit and unique source routing policies are
utilised for initialising GP for solving the target problem. Then, a tabu list
is placed on the source routing policies and the GP process is prohibited
from recreating any of the source routing policies. The motivation for this
approach is that, due to the existence of similarity between the source and
target problems, source routing policies are unlikely to have a good per-
formance for the target problem. Our experimental studies confirmed that
by prohibiting GP from recreating source policies, and the computational
resources will be spent on searching and evaluating new regions of the
search space, which can lead to discovering better solutions.



Fourth, this thesis proposes a novel knowledge transfer algorithm based
on the idea of maintaining the transferred knowledge as an auxiliary pop-
ulation. In this approach, first, the best individuals of the duplicate-free
knowledge source are used to initialise GP. Additionally, these transferred
individuals are also maintained as an auxiliary population and are evolved
alongside the main population. To save the computational cost, the aux-
iliary population is evolved with a surrogate method. Additionally, an
elaborate knowledge exchange mechanism between the two populations
is devised that emphasises transferring high-quality and unique individ-
uals, the transfer of which can improve the diversity of the receiving pop-
ulation. This allows GP to overcome the problem of losing its population
diversity during the evolutionary process. Our detailed experimental re-
sults confirmed the superior performance of the proposed algorithm and
confirmed that the proposed method improved the phenotypic diversity
of GP population.
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Chapter 1

Introduction

The Capacitated Arc Routing Problem (CARP) is a well-known optimisa-
tion problem that is modelled on a connected undirected graph G(V,E).
Given a number of homogeneous vehicles each with a capacity, a CARP
aims to determine a set of routes to serve tasks with minimal total costs
and satisfy some predefined constraints [238]. Many real-world applica-
tions can be modelled as CARP, such as street watering, snow removal
[38], waste collection [8], and scheduling meter reading [239]. Many vari-
ants of CARP have been proposed by scholars [238], [174]. However, most
existing studies focused only on static CARP. It is difficult to apply the
approaches to the static CARP to real-world and practical cases, in which
problem parameters are often stochastic and unknown before edges are
served or traversed. To overcome this limitation, Mei et al. proposed an
uncertain model of CARP (denoted as UCARP) with four stochastic pa-
rameters, i.e., presence of tasks, demands of tasks, presence of paths and
traversal costs of paths [162, 144].

One of the characteristics of UCARP is that many existing methods for
solving the static CARP, e.g. mathematical programming [106, 147, 23],
heuristic [90, 207, 91, 191] and meta-heuristic algorithms [66, 26, 93, 133,
29, 104], are not applicable for solving it. This is mostly attributed to the
uncertain nature of this problem that when the environment changes so-
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lutions for the problem also change and consequently, there are several
methods that are specific to solving UCARP. One of the most flexible meth-
ods is the use of routing policy. A routing policy is a priority function that
vehicles use to determine the priority of the available tasks to select and
serve next. It has been shown that routing policy is a powerful tool for
solving UCARP that can handle the dynamic and uncertain nature of this
problem very effectively and is considered the state-of-the-art method for
solving UCARP. Designing routing policies for UCARP manually requires
extensive domain expertise and is time consuming. On the other hand,
Genetic Programming (GP) can be utilised to automatically design effec-
tive routing policies through a machine learning paradigm. After a routing
policy has been trained by GP from the training data, vehicles can use it
to guide their serving tasks for solving the unseen UCARP test instances.
The advantage of routing policy is that it can be applied to a set of problem
instances rather than being restricted within a single problem instance.

A challenge of the GP-based routing policy learning approach, despite
being more flexible than the traditional methods, is that when the charac-
teristics of the problem, such as number of vehicles or nodes, probability
distribution of stochastic variables or capacity of vehicles, change, the per-
formance of the originally trained policy can deteriorate greatly. On the
other hand, retraining a routing policy for the new problem from scratch
can be time consuming. However, since the new problem has similari-
ties to a previously solved problem, it is reasonable to believe that the
knowledge in solving the old problem can be exploited for training effec-
tive policies for the new problem. This goal falls into the realm of trans-
fer optimisation. By salvaging the knowledge in a solved problem, trans-
fer optimisation techniques promise an easier path to better solutions for
related but unsolved solution. Consequently, transfer optimisation is an
ideal candidate for tackling the mentioned reusability problem.

Despite the fact that there are a plethora of knowledge transfer tech-
niques available in the machine learning literature [186, 151] and transfer
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optimisation [96], none of them has been considered as a hyper-heuristic
approach in evolving routing policies of UCARP. Although some works
have been done for similar problems [73], [157], to the best of our knowl-
edge, the amount of effort in addressing the reusability issue of UCARP
with transfer optimisation is very limited. Ergo, this thesis aims to pro-
pose new GP transfer optimisation methods and improve the efficiency
and effectiveness of retraining routing policies for UCARP. The majority
of current GP transfer methods mainly transfer subtrees and to the best of
our knowledge, no GP transfer optimisation method has been proposed
or verified in the context of GP hyper-heuristic. Therefore, an additional
contribution of this thesis is to use UCARP as a benchmark problem and
explore the potentials and shortcomings of various GP transfer optimisa-
tion methods for solving UCARP.

1.1 Motivation

As was mentioned in the introduction, one challenge in the applicability
of the GPHH approach to solving UCARP is that when a change in char-
acteristics of the problem happens for any reason, the routing policies can-
not perform well for the new problem and therefore, they are not reusable
[163]. Additionally, to the best of our knowledge, general routing policies,
which are applicable to all problems with good performance, do not exist
yet.

There is a practical aspect to this definition of reusability for UCARP
as it has strong real-world implications. In many real-world applications
of UCARP, such as transportation systems or delivery systems, it is very
likely that problem properties change over time. For example, in trans-
portation systems, it is very common to increase (or decrease) the number
of vehicles in response to increase (or decrease) in number of passengers.
On the other hands, it is also very routine for vehicles to be removed from
the fleet due to break-downs or maintenance reasons. Similar situations
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may occur for edges too. For example, it is not unusual to add new sta-
tions or stops to existing ones in response to increase in demand or to add
more links between stations that are different from the existing ones. All
the same, probability distribution of deadheading cost and demand also
may depend on season, time of day, etc.

For many problems, training a solution from scratch, in response to
changes in problem, may be a viable option but it is not the case for UCARP.
There are two prominent reasons for this issue. The first reason is that
UCARP is an NP-hard problem [197] and therefore, finding a solution for
it is inherently a non-trivial task and is usually a time consuming process.
This difficulty is corroborated with the fact that GP, as a method of evolv-
ing routing policies for UCARP, is also a time consuming approach too
[?, 98]. This fact becomes more important when the second reason is con-
sidered; that is, the real-world applications of UCARP are considered in
which usually hundreds of vehicles are involved and changes in aspects
of the problem are frequent. Therefore, immediate and effective responses
to the changes are desired. Furthermore, in such cases, the changes in the
problem are not drastic and often, the new problem is similar and related
to the problem it originated from. Additionally, even if the computational
cost of solving a new problem is not an issue, the fact that the problems are
related motivates utilising the similarity of the problems for finding better
solutions for new problems.

Consequently, efficient and powerful methods are required to manage
and handle the non-reusability property of UCARP. In this thesis, we aim
to handle this issue and search for methods that can help overcome the
computational cost of handling changes in problem aspects, and even, find
more effective solutions, to the point that can be more suitable for real-
world applications of UCARP.

The concept of reusing old solutions as transferable knowledge is an
important field of research in the area of machine learning and artificial
intelligence [186, 235, 151]. However, there are key differences that pre-
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vent the applicability of the majority of these methods for UCARP. Among
them, the most important factor is that transfer learning methods are gen-
erally tailored to the learning techniques that are utilised for solving a par-
ticular problem [186, 213, 142, 110, 215]. Because of this, and considering
that GPHH is currently the state-of-the-art method for solving UCARP,
only knowledge transfer methods that are developed for GP and Evolu-
tionary Computation (EC) algorithms are viable candidates for handling
the changes in problem aspects of UCARP.

To the best of our knowledge, the majority of transfer optimisation
for EC algorithms is based on the transfer of whole or parts of solutions.
However, we believe this approach has several limitations that we will en-
deavour to address. Firstly, they are mostly focused on creation of initial
population of EC algorithms for solving the target problem and by do-
ing so, the majority of them do not utilise the extracted knowledge any
more [96, 11, 10], especially in the context of UCARP. Secondly, the im-
provement obtained from creating better-than-random initial population
is usually lost after a few generations for the case of UCARP and there-
fore, it does not result into a better final performance [11]. Thirdly, cur-
rent transfer optimisation methods based on transfer of (sub-)trees do not
take any precautions against code bloats and redundancies and their per-
formance will be affected negatively if the source problem contains these
issues [96, 220].

To overcome the issues mentioned above, different GP-based transfer
optimisation approaches will be proposed and investigated in this thesis.

1.2 Research Goals

The overall goal of this thesis is to develop novel GP-based transfer op-
timisation methods that can benefit from the knowledge that exists in
a solved instance of UCARP to improve effectiveness and efficiency of
evolving new routing policies for UCARP when a change in problem prop-
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erties is occurred. In this direction, the effort will be put to take advantage
of GP features and characteristics but, considering the fact that the ulti-
mate goal is to handle scenario changes of UCARP, a special attention will
be paid to the characteristic features of UCARP and the ways that the do-
main knowledge from UCARP can be exploited to facilitate knowledge
transfer. Specifically, this thesis is focused on identifying and confirming
the challenges that can deteriorate the performance of existing transfer op-
timisation algorithms for UCARP and propose novel methods for extract-
ing reusable knowledge from a solved UCARP problem. This work will
utilise the extracted knowledge effectively for initialising GP and during
the search for solving the target problem. Finally, this thesis will devise a
novel method for using the transferred knowledge for preventing the GP
process for solving the target problem from suffering from the same issues
that afflicted the search for solving the source problem. The details of each
objective are as follows.

The first objective of this thesis is to investigate the applicability of the
existing transfer optimisation algorithms for solving UCARP. For this pur-
pose, first a set of state-of-the-art existing transfer optimisation algorithms
are considered for handling the problem changes of UCARP in Chapter
3. Upon investigating these algorithms, a set of shortcomings are also
identified in the literature of transfer optimisation and a set of novel al-
gorithms are also proposed in the same chapter. In this regard, first this
thesis proposes two algorithms for evaluating the importance of sub-trees
for transfer. Second, this thesis proposes a novel algorithm for learning
and transferring probability distributions of the routing policies. Third,
by proposing these methods, one important goal in this thesis is to eval-
uate the performance of these methods, and compare them with a set of
existing GP transfer methods for solving UCARP problems. Last but not
least, we aim to identify the important challenges that may exist in the way
of performing transfer optimisation successfully for UCARP. According to
this goal, in this thesis we have identified the lack of diversity and the pres-
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ence of duplicates in the knowledge source as one of the main challenges
against the effectiveness of the transfer optimisation for solving UCARP.

The second objective of this thesis is to propose novel transfer opti-
misation methods for creating high-quality initial population for GP for
solving the target problem. In this thesis, we will propose two approaches
to handling the lack of diversity in the knowledge source. In the first
approach, it is tried to handle the issue after the GP initialisation with
the transferred knowledge. In the second approach, the duplicates in the
knowledge source are removed before initialising GP for solving the tar-
get problem. Since the removal of the duplicates may remove a signifi-
cant amount of high-quality individuals, two algorithms are proposed for
compensating the loss in the high-quality source individuals through util-
ising surrogate models that are learned from the transferred knowledge.
Surrogate models are a category of machine learning techniques that al-
low approximating the fitness of routing policies with a very low compu-
tational overhead. It should be pointed out that, after the initialisation,
the surrogate models can also be utilized to improve algorithm efficiency.
However, this is not investigated in this thesis mainly because the focus of
this work is on devising knowledge transfer methods that are suitable for
solving UCARP and also, because the effectiveness of surrogate methods
for GP has been investigated previously [105]. The set of individuals that
have been evaluated for solving the source problem provide a rich train-
ing set for constructing surrogate models and the low computational cost
of the model allows estimating the quality of a large number of individ-
uals. It is important to remember that the suitability of using a surrogate
derived from the source problem on the target problem may depend criti-
cally on the similarity between the source and target problems. As a result,
when there is good similarity between the problems, by using the surro-
gate model, it is possible to augment the set of available transferred knowl-
edge by adding more diverse and high-quality solutions, whose quality
has been evaluated with the surrogate model. We conduct experiments
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to investigate the efficiency of the proposed methods. In this regard, this
work will also investigate how the proposed methods will address the
challenges that were identified when fulfilling the first objective.

The third objective of this thesis is to propose a new transfer optimi-
sation method that utilises the transferred knowledge after initialisation
in a novel way and during the GP search for solving the target problem.
Consequently, this thesis will first propose that the phenotypic informa-
tion about the source problem has the potential for being reused during
the evolutionary process for solving the target problem. In this regard, the
phenotypic information pertain to the information about the behaviour
of the routing policies which are the priorities that they calculate for tasks
and the decisions that they make. This is in contrast with the genotypic in-
formation which is the information about the GP functions, terminals and
subtrees that constitute the routing policies. Second, the thesis will pro-
pose novel crossover and mutation operators that will use the transferred
knowledge in a sophisticated way. Finally, through extensive experimen-
tal studies, we will demonstrate how the phenotypic approach to transfer
optimisation can outperform the genotypic methods.

The fourth objective of this thesis is to propose a novel method for
evolving the transferred knowledge during the evolutionary search and
using it for helping GP overcome the loss of diversity issue during the
search process. In this new approach, GP is equipped with two popu-
lations. The main population is an standard GP population that is ini-
tialised with the transferred knowledge and is evolved with the main fit-
ness evaluation. The second population is also initialised with the trans-
ferred knowledge but unlike the main population, a surrogate model is
utilised to evaluate it. Second, this thesis will devise an elaborate method
for knowledge exchange between the main and the auxiliary populations.
In this regard, the knowledge exchange mechanism is designed to pre-
vent sending redundant knowledge from one population to another. The
mechanism also uses the exchange of knowledge as an opportunity to re-
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move redundant individuals from the populations and by doing so, in-
crease the population diversity and final performance. Finally, this thesis
will demonstrate how the auxiliary population and the exchange mecha-
nism can increase effectiveness of GP for solving UCARP.

1.3 Major Contributions

This thesis makes the following contributions:

• This thesis has investigated the potential of transfer optimisation for
UCARP and identified potential pitfalls that one may face when ap-
plying EC-based knowledge transfer. This is achieved through in-
vestigating the transfer of GP subtrees and probability distributions
of good solutions for solving UCARP. In this regard, we developed
two measures for assessing the importance of subtrees and transfer.
Additionally, we developed a method for learning the probability
distributions of high-quality source solutions. The learned probabil-
ity distributions are then utilised for generating high-quality solu-
tions. The developed methods and a set of state-of-the-art transfer
optimisation algorithms were then investigated through solving a
large number of transfer optimisation scenarios. Our investigations
revealed that the presence of duplicates in the knowledge source and
corresponding lack of diversity plays a significant negative role in
the effectiveness of the knowledge transfer for UCARP.

Parts of this contribution have been published in:

Mazhar Ansari Ardeh, Yi Mei, Mengjie Zhang, “Transfer Learning in
Genetic Programming Hyper-heuristic for Solving Uncertain Capac-
itated Arc Routing Problem”, IEEE Congress on Evolutionary Com-
putation (IEEE CEC 2019), 49–56

Mazhar Ansari Ardeh, Yi Mei, Mengjie Zhang, “A Novel Genetic
Programming Algorithm with Knowledge Transfer for Uncertain Ca-
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pacitated Arc Routing Problem”, The 16th Pacific Rim International
Conference on Artificial Intelligence (PRICAI 2019), 196–200

Mazhar Ansari Ardeh, Yi Mei, Mengjie Zhang, “Genetic Program-
ming Hyper-Heuristics with Probabilistic Prototype Tree Knowledge
Transfer for Uncertain Capacitated Arc Routing Problems”, IEEE Congress
on Evolutionary Computation (IEEE CEC 2020), 1–8

• This thesis has proposed three effective transfer optimisation meth-
ods for initialising GP population for solving the target task. This
is achieved through addressing the problem that is caused by the
presence of duplicates in the knowledge source. The focus of the pro-
posed knowledge transfer methods was placed on transferring high-
quality source materials without introducing redundancy and du-
plicates into the target population. To achieve this, we proposed in-
creasing the mutation rate of GP temporarily after performing knowl-
edge transfer. This could let GP mutate its population more freely
and increase its diversity. Additionally, we proposed two novel algo-
rithms that, instead of increasing the diversity after transfer, focused
on creating an initial population that already has a high degree of di-
versity and does not contain redundancies. To achieve this, we pro-
posed employing the set of individuals that were found for solving
the source problem for training surrogate models. The low computa-
tional cost of surrogate models allows searching for high-quality, yet
unique solutions that could create a good initial population for GP.
Our experimental studies confirmed that the surrogate-based meth-
ods can outperform the existing algorithms and verify that the lack
of diversity in the knowledge source can reduce the effectiveness of
knowledge transfer significantly.

Parts of this contribution have been published in:

Mazhar Ansari Ardeh, Yi Mei, Mengjie Zhang, “Diversity-driven
Knowledge Transfer for GPHH to Solve Uncertain Capacitated Arc
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Routing Problem” MA Ardeh, Y Mei, M Zhang 2020 IEEE Sympo-
sium Series on Computational Intelligence (SSCI), 2407–2414

Mazhar Ansari Ardeh, Yi Mei, Mengjie Zhang, “A GPHH with Surrogate-
assisted Knowledge Transfer for Uncertain Capacitated Arc Routing
Problem” 2020 IEEE Symposium Series on Computational Intelli-
gence (SSCI), 2786–2793

Mazhar Ansari Ardeh, Yi Mei, Mengjie Zhang, “Surrogate-Assisted
Genetic Programming with Diverse Transfer for the Uncertain Ca-
pacitated Arc Routing Problem” 2021 IEEE Congress on Evolution-
ary Computation (IEEE CEC 2021), 628–635

• This thesis has proposed an effective and novel method for captur-
ing the phenotypic behaviour of routing policies as the transferable
knowledge and utilising it effectively during the search process for
solving a target UCARP instance. To reuse the transferred pheno-
typic knowledge, modified crossover and mutation operators are
proposed. Whenever these operators create an offspring, they check
the phenotypic behaviour of the offspring against the set of trans-
ferred phenotypic knowledge and if the offspring has the same be-
haviour as any item in the transferred set, it is discarded and the
operators try to create another offspring whose behaviour is not ob-
served when solving the source problem. The motivation behind this
seemingly counter-intuitive knowledge transfer approach is based
on the speculation that if the phenotypic behaviour of an individual
has been seen during the search for solving the source problem, then
it is unlikely for the individual to have a good performance for the
target problem. This is because if the individual had a good perfor-
mance, then it is used for initialising GP and there is no need to ex-
amine it again during the evolutionary process. On the other hand, if
the performance of that individual was bad for the source problem,
then its performance is likely to be bad for solving the target prob-
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lem due to the existence of similarity between the source and target
problems. Our experimental studies confirmed that the proposed
approach is indeed very effective and the computational cost that is
prevented from being wasted on such individuals can be allocated
for searching new solutions.

Parts of this contribution have been published in:

Mazhar Ansari Ardeh, Yi Mei, Mengjie Zhang “Genetic Program-
ming with Knowledge Transfer and Guided Search for Uncertain
Capacitated Arc Routing Problem”, 2021, IEEE Transactions on Evo-
lutionary Computation (DOI: 10.1109/TEVC.2021.3129278)

• This thesis has proposed an effective method for adapting the trans-
ferred knowledge to the target problem and using it for preventing
GP from losing its population diversity. As will be demonstrated
in Chapter 3, the UCARP process for solving the source problem is
prone to losing its population diversity, which in turn, will affect the
quality of search for solving the source problem. However, the issue
is that the GP process for solving the target problem may have the
same problem and may lose its population diversity. To overcome
this issue, this thesis proposes an algorithm that maintains the trans-
ferred knowledge in a separate auxiliary population that is evolved
along side the main population. The main goal of the auxiliary pop-
ulation is to increase the exploration capability of GP. For this, an
elaborate knowledge exchange mechanism between the main and
the auxiliary population is proposed that strives to increase both the
quality and diversity of the populations through replacing the phe-
notypic duplicates with high-quality individuals that are not in the
population. Through our experimental studies, we verified that the
proposed approach is capable of helping GP maintain its population
diversity, which in turn, leads to its overall increased performance.

Parts of this contribution have been published in:
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Mazhar Ansari Ardeh, Yi Mei, Mengjie Zhang, Xin Yao “Genetic
Programming with Auxiliary Population Transfer Optimisation for
Solving Uncertain Capacitated Arc Routing Problem” 2022 IEEE Trans-
actions on Evolutionary Computation (DOI: 10.1109/TEVC.2022.3169289)

1.4 Organisation of the Thesis

This thesis is organised as follows. Chapter 2 presents a literature review
of uncertain capacitated arc routing problem and the methodologies for
solving them. The chapter also gives a detailed overview of genetic pro-
gramming and the way it can be used for solving UCARP. A comprehen-
sive overview of transfer optimisation, especially EC-based transfer opti-
misation is also given in Chapter 2. Then, our achievements on the four
research objectives are presented in four chapters from Chapter 3 to Chap-
ter 7. Chapter 8 concludes this thesis. An overview of each chapter is
shown as follows.

Chapter 2 presents the literature review, including vehicle routing, evo-
lutionary computation, GP, and hyper-heuristics. The detailed descrip-
tions of the CARP problem with a focus on UCARP are given in Section
2.1 and it also reviews how to use routing policies for solving UCARP.
This chapter also provides details on how to use GPHH to evolve rout-
ing policies for UCARP in Section 2.5 automatically. In addition, existing
studies related to transfer optimisation and other topics that are related to
the research objectives of this thesis are discussed in details in Chapter 2.

Chapter 3 is focused on investigating the applicability of transfer op-
timisation for solving UCARP. Accordingly, it first describes some of the
shortcomings of the existing methods and proposes a set of transfer opti-
misation algorithms with measuring the importance of subtrees and learn-
ing probability distributions of the good source solutions to address the
identified shortcomings. Details of the proposed algorithms are given in
this chapter. The efficiency and effectiveness of the proposed algorithms,
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as well as some of the state-of-the-art existing algorithms, are verified
along with further analyses. In this chapter, the lack of diversity in the
knowledge source is identified as one of the main pitfalls to the effective-
ness of knowledge transfer.

Chapter 4 presents the three proposed novel diversity-driven transfer
optimisation methods for solving the target problem with GP. Based on
the proposed algorithms, this chapter further describes two new GPHH
initialisation algorithms that utilise surrogate models. Also, this chapter
describes several mutation adaptation strategies to increase the popula-
tion diversity after knowledge transfer. The performance of the proposed
algorithms are investigated in this chapter and the effect of the proposed
algorithms on the diversity of GP population is evaluated. The surrogate
models, mutation adaptation strategies and phenotypic characterisation
are the main techniques in this chapter.

Chapter 5 introduces the newly proposed transfer optimisation algo-
rithm based on the transfer of phenotypic behaviours for generating off-
spring that have not been created for solving the source problem. This
chapter describes the proposed modifications to the initialisation, crossover
and mutation operators based on the transferred phenotypic behaviour.
This chapter also investigates the effect and contribution of each of the
proposed operators to the overall performance of GP. In addition, the act
of preventing the recreation of source individual will be investigated to
measure how it can save the computational cost of solving the target prob-
lem.

Chapter 6 introduces the proposed transfer optimisation algorithm with
auxiliary population for solving UCARP. This chapter describes how the
main and the auxiliary populations are initialised, how the auxiliary pop-
ulation is evolved alongside the main population, how a surrogate model
is utilised for evolving the auxiliary population and how the surrogate
model of the auxiliary population is updated during the evolutionary pro-
cess. Furthermore, the knowledge exchange mechanism between the main
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and the auxiliary populations, which is an essential component of the al-
gorithm, is also explained with details. The chapter concludes with a thor-
ough investigation of performance of the proposed algorithm in which
the contribution of each novel component of the algorithm to its final per-
formance will be discussed. Last, the sizes and semantic insight of the
evolved scheduling heuristics are further studied.

Chapter 7 summaries the achieved objectives and the main conclusions
of this thesis. Some discussions and future research directions are also
presented in this chapter.
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Chapter 2

Literature Survey

2.1 UCARP

UCARP [162] is an extension of the Capacitated Arc Routing Problem
(CARP), first proposed by Golden and Wong [91]. It is an optimisation
problem that is modelled on a connected undirected graph G(V,E) in
which nodes represent locations and edges represent routes between loca-
tions with non-negative costs and demands on edges [91]. Given a number
of homogeneous vehicles, each with a limited capacity, CARP aims to de-
termine a set of routes to serve the required edges with minimal total costs
and satisfying some predefined constraints [238, 145].

Current research trend mostly focuses on static CARP [161, 45]. In case
of static CARP, demands and deadheading costs along edges are static and
deterministic. Despite its appeals, it is difficult to apply the static CARP
to real-world and practical cases in which problem parameters are often
stochastic and unknown before edges are served or traversed [162]. For
example, in waste collection problem, the amount of garbage on streets
may change weekly and only can be known exactly when serving them
[223]. Stochastic CARP (SCARP), first devised by Fleury et al. [78], is
one of the attempts to overcome the aforementioned shortcoming of static
CARP. In SCARP, the demand is stochastic and this provides a more prac-
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tical and realistic view of the CARP. Fleury et al. [78] analysed robustness
of this model and utilized a Memetic Algorithm to solve it. Despite its ef-
fectiveness, SCARP assumes that all parameters of CARP are deterministic
except demand of task and this property limits its real-world applicabil-
ity. To overcome this limitation, Mei et al. [162] proposed an uncertain
model of CARP in (denoted as UCARP) with four stochastic parameters,
i.e., presence of tasks, demands of tasks, presence of paths and traversal
costs of paths and later, Wang et. al [223, 224] and Liu et. al [145] devised
a few novel evolutionary methods for solving UCARP.

A UCARP problem is a graph G(V,E) in which V is the set of nodes
of the graph and E is the set of edges. The set of edges is comprised of
two subsets E = ET ∪ EU . ET is the set of required tasks that must be
served while on the other hand, members of EU are not needed to be
served. In UCARP, each vehicle has a capacity Q and at the beginning,
all vehicles are located at the depot v0 ∈ V . Each edge e ∈ E has two cost
values associated: (1) a positive stochastic deadheading cost dc(e) and, (2)
a non-negative deterministic serving cost sc(e). Each edge also has a non-
negative stochastic demand d(e). For non-required edges e ∈ EU demand
value is zero, d(e) = 0. An edge with d(e) > 0 is called a task and should
be served. To solve a UCARP means to find routes for vehicles to serve all
tasks so that the sum of all serving and deadheading costs in each routes is
minimised. In solving a UCARP, following constraints must be respected:

• All vehicles need to start their routes from the depot and end it at
depot. Vehicles are allowed to visit the depot multiple times to re-
plenish their capacity.

• Total amount of demand that each vehicle serves cannot be more
than its capacity between two visits of the depot.

A sampled UCARP instance is a CARP instance in which stochastic
variables are sampled from their distributions. To be specific, consider-
ing a UCARP instance I , a sampled instance Iξ for I is obtained by sam-
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pling each random demand dξ(e), ∀e ∈ ET and each deadheading cost
dcξ(e), ∀e ∈ E under the environment (e.g random seed) represented by
ξ. As a result, a sampled UCARP is different from a CARP instance in the
following aspects:

• For demand of tasks of sampled UCARP, the actual value is revealed
after the vehicle finishes serving it while for the case of CARP, it is
available when starting the task.

• For deadheading costs, the sampled value is revealed after the vehi-
cle has finished traversing it while for the case of CARP, it is available
in advance.

Because of the aforementioned features, two failures may happen in a
solution to a sampled UCARP instance:

• Edge failure: This case happens when the edge to be served is inac-
cessible. This can be denoted as dc(e) =∞.

• Route failure: This case happens when the demand of the task is larger
than the remaining capacity of the vehicle trying to serve it.

In case of an edge failure, the vehicle needs to find a detour by finding
the shortest path (e.g. Dijkstra’s algorithm). In case of an route failure,
the vehicle needs to return to the depot in the middle of the service to
replenish its capacity.

A solution to a sampled UCARP can be represented with S = (X, Y )

in which S.X = {S.X(1), ..., S.X(m)} is a set of vertex sequences S.X(k) =

(S.x
(k)
1 , ..., S.x

(k)
Lk
) that represents the kth route and S.Y is a set of continu-

ous vectors {S.Y (1), ..., S.Y (k)} with (S.y
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L
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(S.y
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denotes the fraction of demand that is served along the route S.X(k). With
this representation, UCARP can be formulated as [162, 145]:

minEξ∈Ξ[C(Sξ)] (2.1)
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0 otherwise
(2.8)

For UCARP, the problem objective is to find a solution with the best ex-
pected cost under all possible uncertain environments which expresses
solution robustness. Equation 2.1 defines the objective function with this
consideration in which the expected total cost C(Sξ) of the solution Sξ is
minimised for all possible environments ξ ∈ Ξ. Equation 2.2 expresses the
constraint that all routes need to start and end with the depot. Equations
2.2 and 2.3 formulate the constraint that each task must be served exactly
once and each non-required edge is not served. The capacity constraint
is formulated with Equation 2.5. It should be noted that in general, the
solution Sξ may be different for each environment ξ.

UCARP has two types of challenges, one from the NP-hardness of
CARP [197], and the other from the uncertain environment, which re-
quires adjusting/making decisions in real time when the environment is
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detected to be different from expected. Existing studies have taken into ac-
count different real-world conditions into the problem model. However,
most of them focused on static CARP, where the environment is known in
advance. As a result, their solutions cannot be directly applied to UCARP
due to the route failures. That is, the actual demand of an edge can be
greater than expected, and the vehicle capacity is expired in the middle of
the service.

2.2 Basic Concepts

This section presents a basic overview of machine learning and evolution-
ary computation.

2.2.1 Machine Learning

Machine learning is the computational approach of using experience (rep-
resented in the form of data) to perform tasks more efficiently and recog-
nize patterns [169]. As a sub-field of artificial intelligence [204], machine
learning is focused on enabling computers to learn from experience auto-
matically and without being explicitly programmed.

From a general point of view, machine learning is comprised of three
main tasks: (1) supervised learning, (2) unsupervised learning, and (3) re-
inforcement learning. In supervised learning problems (e.g. regression
and classification), the desired outcome or outputs of the problem are
known in the available data (i.e. the data is labelled). Conversely, the de-
sired outputs are not known (i.e. the data is not labelled) in unsupervised
problems (e.g. clustering). In reinforcement learning, the learning agent
interacts with an environment and based on the feedback it receives from
the environment, learns to optimise its performance in the environment.

In this thesis, makes use of two important machine learning techniques
which are transfer learning and surrogate models. Additionally, the con-
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cepts in this thesis have a close relationship with multi-task learning. Trans-
fer learning is the approach of gaining knowledge from some solved source
problem(s) and reusing the knowledge to solve related new target prob-
lems more effectively and efficiently [235]. Multi-task learning is closely
related to transfer learning in the sense that it is also focused on gaining
knowledge from solving a problem to improve the process of finding so-
lutions for related problems [39]. However, in multi-task learning, all the
tasks are solved simultaneously and the gained knowledge is shared as
each problem is being solved. A detailed overview of transfer learning is
given in Section 2.6.

Surrogate models are a set of techniques that allow constructing cheap
models for estimating the outcome of some functions of interest that are
computationally expensive [120]. In the context of evolutionary algorithms,
surrogate models have proven to be of great importance for optimising
computationally expensive problems [120]. Surrogate models are described
with more details in Section 2.7.5.

2.2.2 Evolutionary Computation

Within the area of artificial intelligence, Evolutionary Computation (EC)
[18] is a computational intelligence technique that is inspired from natural
population-based evolution. The fundamental idea in evolutionary com-
putation is that individuals in a population are improved generation by
generation. EC algorithms can be divided into two categories of (1) evo-
lutionary algorithms and (2) swarm intelligence. Genetic Algorithm (GA)
[135], GP, evolutionary strategy [137] and evolutionary programming [80]
are some of the important evolutionary algorithms. Particle swarm op-
timisation [67], ant colony optimisation [40] and artificial bee colony [2]
are some of the widely-used swarm intelligence algorithms. Evolutionary
algorithms, and GP in particular, are the focus of this thesis.

Typically, an evolutionary algorithms starts with creating a population
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of individuals. The individuals represent potential solutions to the prob-
lem that is intended to be solved and initially, they are usually generated
randomly. The individuals are then evaluated with a fitness function that
measures how good, or fit, they are for solving the problem. Then, a new
population is generated from the current population with genetic opera-
tors, such as crossover, mutation and reproduction. For this, the individ-
uals with better fitness values are given higher chances to be selected for
producing offspring. The process of creating a new population from the
current one is then continued until some stopping criteria is met. Finally,
the individual with the best fitness value is selected as the output of the
algorithm.

GP is a famous evolutionary algorithm which also the focus of this
thesis and a detailed overview of this method is given is Section 2.3.

2.3 Genetic Programming

GP is derived from Genetic Algorithm in which the members of the al-
gorithm’s population are computer programs. Popularised by Koza, it
utilises evolutionary operations to evolve computer programs [130, 59]
and has been used extensively for solving a vast variety of problems [249],
[3], [16]. As is depicted in Algorithm 2.1, GP for evolving routing policies
has four general steps:

1. Create an initial population of programs.

2. Evaluate the fitness of each individual in the population.

3. Select individuals based on fitness value.

4. Use the genetic operators such as crossover, mutation and reproduc-
tion to create new individual(s) from the selected individual(s).

5. Repeat the steps (2) through (4) until the stopping criteria are met.
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In the rest of this section, GP and its features are described in more
detail.

Algorithm 2.1: Pseudo-code of standard GP
Input : Training instances
Output: The best evolved function ind∗

1: while Nind < Popsize do
2: Initialisation: Randomly initialise each individual
3: end
4: set ind∗← null and fitness(ind∗)← +∞
5: gen← 0

6: while gen < maxGen do
7: Evaluation: Evaluate the individuals
8: for i = 1 to |Individual| do
9: if fitnessi < fitnessind∗ then

10: ind∗ ← indi

11: end

12: end
13: Apply selection
14: Apply crossover
15: Apply mutation
16: gen← gen+ 1

17: end
18: return ind∗

2.3.1 Representation

A widely used method for representing individuals in a GP population is
to use trees to represent computer programs. An example of a tree-based
representation of a program is given in Figure 2.1. The leaf nodes, also
called terminals, in this program are the variables x and y and constant 5.
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Fig. 2.1 An example of tree-based GP program of (5− x)/(y + z).

In this tree, the operators {+,−, /} are the functions that operate on termi-
nals and preside in non-leaf nodes. The set of all possible terminals and
functions that can be defined for a program are called a terminal set and
a function set and GP individuals are created by selecting a combination
of elements from these sets. A GP individual is not required to have ex-
actly one tree and if needed, it can contain two or more trees to facilitate
representing and solving different problems. In this case, each tree can be
utilised to represent and solve different aspects of a problem which will be
combined in a problem-specific manner to give the final solution. Trees are
not the only representation methods for GP individuals. In Linear Genetic
Programming (LGP) [28], an imperative programming language like C or
Java is represented in specific linear representation. In Cartesian Genetic
Programming (CGP) [167, 156], similar to the tree-based representation, a
graph of terminals and functions is used to represent a solution to a prob-
lem to be solved but in this case, nodes are allowed to be connected with
more than one edge. In Grammar-based GP (GGP) [158] uses grammars to
pose restrictions on the way that population individuals are represented.

The terminal and function sets are used to represent solutions for a
problem that GP tries to solve and therefore, the correct selection of ele-
ments of these sets is crucial for success of GP. A correct selection of the
sets conforms to the sufficiency and closure requirements. To be more spe-
cific, the collection of GP functions and terminals need to be comprehen-
sive enough to be sufficient for solving the problem. Also, these the func-
tion set needs to be closed over the set of terminals and the output of the
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functions so that nodes can be mixed and joined freely and arbitrarily.

2.3.2 Initialisation

The first step of a GP process, as a population-based method, is to gen-
erate an initial population of potential solutions to be evolved. Two of
the most popular methods for initialising a GP population are the full and
grow approaches that were proposed by Koza in the early days of GP re-
search [130]. In both methods, the depth of GP trees are limited within a
preset threshold to restrict program size and reduce the chance of creating
bloated large trees that contain redundant sub-trees. In the full method,
the depth of a tree is exactly the same as the maximum allowed depth
and only functions are permitted to appear at the depth that are smaller
than the maximum depth. Both terminals and functions are selected ran-
domly. In the grow method, the restriction of choosing the terminals only
at the maximum depth is lifted and terminals are allowed to be selected
at smaller depths too. The two methods can be combined to improve di-
versity in the initial population. In the combined method, called ramped
half-and-half, half of the initial population is generated with the full method
while the rest is created with the grow technique.

2.3.3 Evaluation

In an evolutionary algorithm, it is important to measure how fit or capa-
ble each individual is for solving the problem since the individuals’ fitness
plays an important role in giving the algorithm directions for finding good
programs. The definition of the fitness value for an individual is depen-
dent on the problem to be solved but in any case, it should be a good
indicator of the performance and efficiency of the program for solving the
problem. For a particular problem, different fitness measures can be de-
fined. For instance, when a classification problem is solved with GP, each
individual is a classifier and the fitness can be defined as the rate of suc-
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cessful predictions over the instances of a training dataset. However, this
is not necessarily the only possible option and fitness can be defined dif-
ferently, e.g. as the aggregate error between target class and the decision of
the classifier over all instances of the training dataset. The fitness function
of GP individuals play an important role in their chance of being selected
for evolution, as is described in Subsection 2.3.4.

2.3.4 Selection

In an evolutionary system, fitness of population members plays as a decid-
ing factor in its chance to be selected to generate new individuals. Conse-
quently, the better the fitness of an individual, the more likely that the in-
dividual will be selected as a parent to produce new individuals. Roulette
wheel [187], tournament selection and fitness ranking [187] are three of
the most popular selection methods for GP. In the roulette wheel method,
a probability distribution is constructed based on fitness value of popula-
tion member so that individuals with better fitness have a higher chance
of being selected and individuals are selected based on that distribution.
The tournament selection method has two steps: (1) a number of individu-
als (determined with a tournament size parameter) are sampled randomly
with uniform distribution and then (2) the individual with best fitness is
selected. An advantage of this method is that bad individuals also have
a chance of being selected. In fitness ranking method, the population is
sorted based on fitness value and then, the individuals are selected ran-
domly based on their rank in the sorted population.

2.3.5 Evolution

As the name suggests, evolution is the main component of an evolution-
ary algorithm like GP. The overall aim of this process is to improve the
pool of potential solutions by inheriting and mixing genetic materials of
a population and creating a new and better population. This process con-
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Fig. 2.2 The crossover operator.

sists of the operators crossover, mutation and reproduction. These operators
are applied to GP population with a user-defined probability.

The crossover operator mimics the sexual interaction of biological enti-
ties in which two individuals are selected with a selection method to con-
tribute genetic material for creating new individuals. Subtree crossover is
one of the earliest and most frequently used crossover methods meth-
ods for GP [130]. In this method, first, one node in each parent is se-
lected randomly and then, the subtrees located at the selected nodes are
swapped between parents to generate two new offsprings. An example
of the crossover operator, that is applied to two GP trees, is depicted in
Figure 2.2. Since the majority of nodes in a GP tree are terminals, it is rec-
ommended by Koza to discriminate between the terminals and functions
in selecting crossover points by selecting functions and terminals with a
probability of 90% and 10% respectively [130].

Mutation is another evolutionary operator. The prevalent mutation
method for GP is subtree mutation. In this method, an individual is se-
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Fig. 2.3 The mutation operator.

lected and one of its nodes is selected randomly and the subtree rooted
at the selected node is replaced with a randomly generated new tree. An
example of the mutation operator, that is applied to a GP tree, is depicted
in Figure 2.3.

The reproduction first selects an individual by the selection method
and copies it into the next population as it is and without modifying it.
It should be noted that elitism is a special case of reproduction that picks
the best individuals in the population and inserts copies them into the
next population. This mechanism allows GP to maintain good candidate
solutions found so far and preserve them in the population.

2.4 Hyper-heuristics

In general, the term heuristic refers to any technique or approach that can
be used for solving a problem. In this regard, such a technique may em-
ploy practical methods that may not be able to guarantee a perfect or op-
timal solution [113, 190]. Instead, the heuristic can achieve solutions that
are sufficiently good in context of the problem at hand. Heuristics for solv-
ing a particular problem are often devised from previous experiences in
overcoming similar problems [113], [190]. The concept of heuristics has its
origin from the outside of Computer Science as the earliest contemporary
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studies of the concept was based on the study of human decision-making
in 1970s and 1980s by psychologists Armos Tversky and Daniel Kahne-
man [122].

Despite their power and applicability, heuristics have their shortcom-
ings too. One of the major problems with heuristics is that generally,
heuristics developed for a particular problem are not applicable to other
problem domains. Additionally, heuristics are usually expensive to de-
velop because they require substantial expertise and knowledge in prob-
lem domain [52].

To overcome these challenges, the concept of hyper-heuristics was de-
vised. Denzinger et al. [60] are considered the first to use the term hyper-
heuristics [63] to denote a system that chooses and combines from a col-
lection of artificial intelligence methods. The term hyper-heuristic was
coined first in this paper but the idea of operating on the search space of
heuristics can be traced back to as early as 1960s to Fisher and Thompson
[77] who demonstrated that better results can be achieved by combining
scheduling rules rather than using single rules.

Cowling et. al [52] introduced Hyper-heuristics into the field of combi-
natorial optimisation [63] who believe that hyper-heuristics operate at a
higher level of abstraction than heuristics. In their term, a hyper-heuristic
“operates at a higher lever of abstraction than current metaheuristic ap-
proaches. The hyperheuristic manages the choice of which lower-level
heuristic method should be applied at any given time, depending upon
the characteristics of the region of the solution space currently under ex-
ploration ”.

After defining the concept, Cowling considered a scheduling prob-
lem and defined several hyper-heuristics for solving it. By analysing the
performance hyper-heuristics that they defined, the authors showed that
their novelty is indeed effective and suggested hyper-heuristics may have
wider applicability to other problems.

A more recent definition was provided by Burke et al. [121], [31] to
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include hyper-heuristics which generate new heuristics from components
of existing heuristics:

A hyper-heuristic is a search method or learning mecha-
nism for selecting or generating heuristics to solve computa-
tional search problems.

Burke et al. [121] outline two main categories of hyper heuristics: heuris-
tic selection methodologies and heuristic generation methodologies. Heuris-
tic selection methodologies select a low-level heuristic to apply at a given
point in the search space. Heuristic generation methodologies automati-
cally generate new heuristics from a set of low-level components or build-
ing blocks. In either case, the set of low-level heuristics being selected or
generated can either be further split to distinguish between those which
construct solutions from scratch (constructive) and those which modify an
existing solution (perturbative) [185]. As well as the nature of the search
space, hyper-heuristics can learn from feedback concerning heuristic per-
formance throughout the search process. Hyper-heuristics which utilise
online learning continuously adapt throughout the search process based
on the feedback they receive. Hyper-heuristics using offline learning train
a heuristic on a subset of instances before being applied to a larger set of
unseen instances.

2.5 GPHH for UCARP

GP can be utilised as a hyper-heuristic approach to solving UCARP in-
stances. The GPHH approach consists of a key element, a meta-algorithm,
that is required for evaluating the heuristic functions that are GP indi-
viduals [176]. A meta-algorithm for UCARP takes a routing policy and a
UCARP instance as input and returns a feasible solution for the instance.
Considering the input, output and functionality of the meta-algorithm, it
can be designed in various fashions. For the case of single-vehicle UCARPs,
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one meta-algorithm is described in [145]. This meta-algorithm employs a
constructive heuristic-like approach. The algorithm starts with an empty
route and step by step, it adds tasks to the end of the route in a sequential
approach. As a result, this meta-algorithm will not open any new route as
long as the current route is open. The algorithm may return to depot to
refill its capacity when it is fully-loaded.

The meta-algorithm initialises the vehicle’s route to start from the de-
pot. Naturally, in the beginning, all tasks are unserved and the capacity
of the vehicle is intact. Then the meta-algorithm uses the routing policy to
find the next task that needs to be served (or go back to the depot to re-
plenish its capacity) until all tasks are served. To decide the next task that
the vehicle should serve, first all available tasks are considered and then
a subset of them is selected with a filtering method. If the filtered subset
is empty, the vehicle needs to go back to depot to refill, close the current
route and open a new one. If the subset is not empty, the routing policy is
applied to the tasks to calculate a heuristic value of each task, and the task
with the least heuristic value is selected to be served.

Because of the dynamic nature of the problem, it is likely that selected
routes lead to failure. As it was mentioned earlier, demand of tasks have
a stochastic nature and therefore, when a vehicle arrives at a task, it may
find the actual demand greater than available capacity of the vehicle. This
situation leads to a route failure. In case of a route failure, the vehicle re-
turns to the depot to refill. Also, again, because of the random nature of
the problem, it is likely that a vehicle arrives at an edge e to find it inac-
cessible (i.e. dc(e) = ∞) which leads to an edge failure during a vehicle’s
course of action. It is because of this nature of UCARP that traditional
and exact optimisation methods that try to find robust solutions will fail
to provide a solution that can address these failures effectively. Edge fail-
ures are handled by taking a detour around the failed edge. Otherwise,
if no failure is occurred, the task is served and removed from the list of
unserved tasks. This process continues on until all tasks are served. When
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the meta-algorithm is finished, a collection of routes are created that serve
all the tasks in the UCARP instance.

The described meta-algorithm is designed for the case of UCARP with
one vehicle but for the case of multiple vehicles, a new meta-algorithm
is described in [163]. This new algorithm is essentially a discrete event
simulation system that is comprised of a priority queue of events and a
system state. The system state contains the information about unserved
tasks, the remaining demand fraction of tasks, the current partial routes
and the served tasks. In the begining, the system is initialised with all the
unserved tasks and the remaining demand fraction of each task is set to
1. Additionally, the partial routes are initialised so that all vehicles are at
the depot, and the served demand of all routes are set to zero. The event
queue of the meta-algorithm is a priority queue that is originally initialised
with refill events for each route. A refill event is triggerred when a vehicle
is at a node on its way back to the depot to refill. Additionally, the queue
can have serve and Refill-and-serve events. A serve event is triggerred when
a vehicle arrives at a node to serve the next task. The Refill-and-serve event
is triggerred after a route failure, which occurs when a vehicle arrives at
a node on its way back to the depot to refill, and then go back to serve
the failed task. At each step of the simulation, an event is pulled out of
the queue and executed, after which the state is updated. The simulation
is considered finished when all the tasks are served and the vehicles are
stationed back back at the depot.

By having a meta-algorithm and a training set, a typical GPHH ap-
proach to solving a UCARP instance can be described briefly as:

Step 1: Initialisation: Create an initial GP population of routing policies
randomly.

Step 2: Evaluation: For each individual in the population, find its fit-
ness value by applying the meta-algorithm to instances in the training
dataset and averaging over the total cost of the obtained solutions for the
training instances.
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Fig. 2.4 The tree representation of the 105 * CFH - DEM / SC routing
policy

Step 3: If the stopping criteria are met, return the routing policy that
has the best fitness value. Otherwise, go to Step 4.

Step 4: Create a new population using the genetic operators of crossover
and mutation. Then, go to Step 2.

Routing policies can be represented with the typical tree-based repre-
sentation. With this representation, a traditional tree-based crossover and
mutation can be utilised. Figure 2.4 presents the tree representation of a
well-known path-scanning heuristic [125] as 105 * CFH - DEM / SC. In this
policy, CFH indicates the cost from the vehicle’s current location to the
candidate task, DEM is the demand of the task, and SC is its serving cost
(the coefficient 105 of CFH is a sufficiently large number which ensures
that tasks with smaller CFH are always preferred)

Compared with the manual design of routing policies, which can be
time expensive and requires high level of domain knowledge, GPHH is
a very viable alternative that does not require extensive domain knowl-
edge or any preplanned solutions, and studies have shown it to be the
state-of-the-art for tackling this problem [153], [145], [163]. However, a
shortcoming of this method is that, because of the nature of GP, it requires
model training. The training phase, though done automatically, can be
non-trivial and time consuming. On the other hand, the problem scenario
can change over time in reality. In this case, the performance of the previ-
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ously trained routing policies deteriorates greatly [163] and it is needed to
retrain new routing policies. Intuitively, we can train new routing policies
from scratch. However, due to the high computational cost of the training
process, it is desirable to have methods that alleviate the training cost by
reusing the knowledge gained from previous problem solving to retrain
the routing policies for the new problem more efficiently. In the literature
of machine learning, this scenario is a prime candidate for transfer learn-
ing [151], [186].

2.6 Transfer Learning and Optimisation

Machine Learning algorithms are some of the most widely used and suc-
cessful artificial intelligence algorithms that have found applications in a
wide variety of both academic and industrial problems such as regression,
image processing and text mining [186, 151]. Learning is an inherent ca-
pability of human beings and is a source of inspiration and motivation for
empowering machines with learning capabilities. An interesting feature of
the learning ability in humans is the capability of transferring the knowl-
edge learned in one domain to another related or similar new domains
which can boost the learning efficiency in the new domains. This feature,
as useful as it is, is not present in traditional machine learning techniques
and consequently, they need to learn new problems from scratch even if,
similar and related problems are already solved. As a result, they do not
benefit from any potential boost in performance or reduction in training
and computational efforts from learned knowledge in previous experi-
ences [100, 129].

Transfer learning tries to address this shortcoming. In machine learn-
ing, transfer learning can be described as “the ability of a system to recog-
nise and apply knowledge and skills learned in previous tasks to novel
tasks” [182]. As mentioned earlier, the application of knowledge from pre-
vious tasks, among other benefits, has the potential of increasing perfor-



36 CHAPTER 2. LITERATURE SURVEY

mance and/or reducing training costs in new problems. Additionally, it
can be of great use in cases that there are no or little labelled data in tar-
get domain [182, 100]. Transfer learning algorithms have been devised for
many learning methods like neural networks [173, 148], Markov logic net-
works [165, 164] and many learning problems such as text categorisation
[97], image classification [202, 255] and web page classification [143].

The same line of reasoning that motivates devising and applying trans-
fer learning methods, i.e. reuse of the common knowledge can improve
performance and effectiveness, is also valid for other areas of artificial in-
telligence. Particularly, recent efforts have demonstrated that extraction
and salvaging of common knowledge has a great potential for boosting
the performance of evolutionary optimisation algorithms [96]. In the con-
text of EC algorithms, the act of reusing the experience that is learned from
solving a source problem to improve the effectiveness of solving a target
problem is referred to as transfer optimisation [96]. In general, transfer op-
timisation for EC algorithms can lead to better initial populations, faster
the convergence, and fitter final solutions [100, 218].

Due to the existence similarities between the transfer learning and trans-
fer optimisation concepts, in this section, a definition and a brief overview
of transfer learning is given first in Section 2.6.1. However, since the focus
of this thesis is on transfer optimisation, this literature review will concen-
trate on transfer optimisation. Hence, a definition of transfer optimisation
is given in Section 2.6.2 and a detailed review of the recent advancements
in this research area are given in Section 2.7.3.

2.6.1 Definition of Transfer Learning

To give a formal definition of transfer learning, we need to define domain
and tasks.

Definition 1. [Domain] A domain D = {χ, P (X)} is comprised of a feature
space χ and a marginal probability distribution P (X) so that X = {x1, ..., xn} ∈
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χ.

Definition 2. [Task] A task T = {Y, f(.)} is comprised of a label space Y =

{y1, ..., ym} and function f(.), called an objective predictive function, which can
be learned from training data {xi, yi}

The objective function can be utilised to predict the label of an instance
xi as f(xi).

Definition 3. [Transfer Learning] Let Ds and Ts be a source domain and a learn-
ing task on source domain respectively. Let Dt and Tt be a target domain and
learning task on target domain respectively. Transfer learning is the effort to use
the knowledge in Ds and Ts to improve or facilitate the learning of the target task,
i.e. the target predictive function ft(.) given that Ds ̸= Dt or Ts ̸= Tt.

Based on this definition, the condition Ds ̸= Dt means that either χs ̸=
χt or Ps(X) ̸= Pt(X). A similar meaning can be implied from the condition
Ts ̸= Tt. [151]

Types of Transfer Learning

In transfer learning, there are many types of methods for transferring knowl-
edge from source domains to target domains [186, 235]. Categorising trans-
fer learning techniques mainly focuses on the difference between the source
domain and the target domain. In a transfer learning task, when the input
features in the source and target domains are different, the task is con-
sidered as heterogeneous transfer learning; otherwise it is homogeneous
transfer learning [82].

There are three important research issues in transfer learning: 1) what
to transfer, 2) how to transfer, and 3) when to transfer [62, 100].

“What to transfer” asks which part of knowledge can be transferred
from the source to the target problem. Some knowledge is specific for the
source task and should not be re-used. Other knowledge may be common
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between different domains and potentially help improve performance for
the target domain [62].

After transferred knowledge has been discovered, a learning algorithm
needs to be devised to extract [117] and then transfer the knowledge to the
target problem, which corresponds to the issue “How to transfer”[62]. It
is also in this step that should be decided how the knowledge should be
used [117].

“When to transfer” asks in which situations, transferring skills will be
beneficial and when knowledge should not be reused. In some situations,
when the source problem and target problem are entirely different, brute-
force transfer may not be successful. In the worst case, it may even dete-
riorate the performance of learning in the target domain. This situation is
referred to as negative transfer [62].

After giving a brief history of transfer learning, Pan et al. [186] gave
a rigorous mathematical definition of transfer learning. They then move
on to categorise transfer learning into inductive transfer learning, trans-
ductive transfer learning and unsupervised transfer learning categories
and provide a mathematical definition for each of the mentioned cate-
gories. The paper, based on “what to transfer”, identifies four approaches
to transfer learning: Instance transfer, feature-representation transfer, trans-
fer of parameters and relational-knowledge transfer. By identifying the
aforementioned approaches, the paper gives an overview of applications
of each approach in each category of transfer learning [186].

Although the concept of transferring learning is an important field of
research in the area of machine learning and artificial intelligence [186, 235,
151], there are key differences that prevent the applicability of the majority
of these methods for UCARP. Among them, the most important factor is
that transfer learning methods are generally tailored to the learning tech-
niques that are utilised for solving a particular problem [186, 213, 142, 110,
215]. Because of this, and considering that GPHH is currently the state-of-
the-art method for solving UCARP, only knowledge transfer methods that
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are developed for GP and Evolutionary Computation (EC) algorithms are
viable candidates for handling the changes in problem aspects of UCARP.
This falls into the category of transfer optimisation algorithms.

2.6.2 Transfer Optimisation

Let’s considerK optimisation problems T1, T2, ..., TK . Each problem Tk, k =

1, ..., K consists of a search space Xk and an objective function fk and a set
of inequality and equality constraints gk and hk. Accordingly, the optimi-
sation problem Tk can be stated as

min
x
fk(xk) (2.9)

subject to gki(x) ≤ 0, for i = 1, ..., |hk| (2.10)

and, hki(x) = 0, for i = 1, ..., |hk| (2.11)

For the sake of this thesis, we consider fk to be scalar as the UCARP
optimisation problem in this work is a single-objective problem. In these
equations, |gk| |hk| are the number of inequality and equality constraints.

In the context of evolutionary optimisation algorithms, the output of
the algorithm is the solution that the algorithm finds for the problem. Let’s
consider the scalar value Q quantifies the quality of the solutions. Accord-
ingly, we denote the effectiveness of a search algorithm on problem Tk as
Qk(Tk), which quantifies the quality of the solutions achieved with regard
to fk in t time steps. Particularly, if X t

k is the set of candidate solutions that
are evaluated over t time steps, then we denote the quality of an algorithm
for solving a problem Tk as

Qt(Tk) = fk(x
∗) : x∗ ∈ X t

k ∧ (∄x∗ ∈ X t
k : fk(x) < fk(x

∗)) (2.12)
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LetM denote the knowledge base of the information that was learned
or extracted from different problem solving exercises. That is, if the knowl-
edge building block mk is extracted from solving Tk, the knowledge base
can be considered asM = ∪∀kmk.

Definition 4. Given a knowledge baseM that is extracted from solving K pre-
vious problems T1, ..., TK and a newly presented optimisation task T , transfer
optimisation is the act of incorporatingM into the dynamics of the optimisation
algorithm so that Qt(T |M) − Qt(T ) ≥ 0, where Qt(T |M) is the algorithmic
quality conditioned on the knowledge embedded inM. In this context, T1, ..., TK
are referred to as source problems and T is called the target problem.

This definition basically states that transfer optimisation is the act of in-
creasing the quality of an optimisation through incorporation of the knowl-
edge M that is learned from solving previous problems. It should be
noted that this definition does not specify any structure for the knowledge
baseM and also, it does not mention how theM should be extracted and
reused. Additionally, the availability and incorporation of the knowledge
base does not necessarily increase the quality and performance of opti-
misation algorithms. Conversely, if M extracted from the problems that
are not related to T , incorporatingM into the search process of solving T
may even decrease the performance of the algorithm. Similar to the case of
transfer learning, this phenomenon is also referred to as negative transfer.

2.7 Related Work

2.7.1 Existing CARP and UCARP Methods

CARP

CARP originally originated from real-world scenarios and as a result, it
has many applications in real-world situations. For example, Campbell et
al. and Amponsah et al. respectively modelled street watering and snow
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removal [38] and waste collection [8] as CARP and Wunderlich et al. used
a modified version of CARP to model routing meter readers for the South-
ern California Gas Company from Los Angles, USA [239]. Accordingly,
researches on CARP are helpful for improving the work efficiency in re-
lated service industries. CARP is a NP-hard problem. Hence, although
there are some exact algorithms [20, 23] that can solve small-size instances
of CARP, finding the optimal solution for all cases of CARP is not always
possible [221]. Because of this fact, alongside exact methods, many in-
exact methods, ranging from heuristics [90, 196, 236] and meta-heuristics
[45, 196, 208], have been devised to tackle CARP. Most of these methods
show promising performance in both solution quality and running time
[161], even for large-scale CARP instances [159].

UCARP

In CARP, it is assumed that all the problem parameters are static. How-
ever, this assumption does not always match with the specifications of the
real-world problems [162]. For this reason, several extensions of CARP
have been proposed. Stochastic CARP (SCARP), or CARP with stochastic
demand (CARPSD) as is referred in some papers [46, 134], was first pro-
posed by Fleury et al. [78, 79] and assumed that the task demands are
stochastic. In a different approach, Eydi et al. [70] and Babaee et al. [216]
used fuzzy numbers for modelling the uncertainty in task demands. Chen
et al. [42, 41] took a different approach to handling uncertainty in which
service time and travel time are considered stochastic. However, the most
comprehensive approach to handling uncertainty in CARP was proposed
in the uncertain CARP (UCARP) model that was proposed by Mei et al.
[162] in which the demand, the travelling cost, the existence of tasks and
the existence of routes were considered to be stochastic.
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Solving UCARP

Generally speaking, there are two approaches to solving UCARP: proac-
tive methods that take a robust solution and optimise it, and reactive meth-
ods that utilise Genetic Programming Hyper-Heuristic (GPHH) to search
for routing policies that generate UCARP solution for the problem. The
work of Wang et al. in [224] and [223] and the work of Mei et al. in [162]
are interesting techniques in the category of proactive methods. In [224],
Wang et al. developed a memetic algorithm based on the genetic algo-
rithm and later, they developed new a new Estimation of Distribution Al-
gorithm with stochastic Local Search in [223].

Although proactive approaches have been proposed for solving UCARP,
they are not flexible enough for real-time and real-world scenarios [145] ,
mainly because the changes in the problem, such as machine breakdown,
are very difficult to predict. To overcome this shortcoming, Weise et al.
[234] founded the reactive approach to solving UCARP by proposing the
idea of of evolving routing policies for UCARP with GP and in a simu-
lated environment. Simulation [58] is an important approach to the study
of complex problems, such as vehicle routing [170] and crane scheduling
[179]. In the reactive approach, the experiments are based on the simu-
lated model for UCARP to evaluate the effectiveness. In this approach, in
order to evaluate the fitness of a potential solution, it is needed to run a
simulation to assess the performance of the solution in the simulated envi-
ronment. As a result, the GP training process can be computationally more
expensive for solving UCARP since it requires a substantial number of pri-
ority calculations with the population members for making decisions dur-
ing UCARP simulation runs. On the other hand, this approach provides
greater flexibility for handling the uncertainties of the environment.

Building on the idea by Weise et al. [234], Liu et al. proposed an im-
proved Genetic Programming-based Hyper Heuristic method for solving
UCARP [145] and evaluated the performance of the proposed method on
benchmark instances described in [162]. In this work, a routing policy
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is utilised to model a decision making process for helping vehicles select
their next tasks after serving the current one. The optimal routing poli-
cies are evolved with GP. Mei et al. extended the approach in [145] to a
general scenario that can process multiple vehicles for serving tasks [163].
MacLachlan et al. took advantage of GPHH for solving a modified and
improved UCARP by adding a new feature into the feature set of UCARP
[153]. MacLachlan et al. [154] also showed that the performance of vehi-
cles will increase if they are allowed to collaborate. Liu et al. also showed
that [146] proposed a novel proactive-reactive approach, which represents
a solution as a baseline task sequence and a recourse policy. The two
components are optimised under a cooperative coevolution framework,
in which the baseline task sequence is evolved by an estimation of distri-
bution algorithm, and the recourse policy is evolved by genetic program-
ming.

The routing policies evolved by GPHH are usually difficult to interpret.
Hence, Wang et al. [226, 225] proposed ensemble approaches to evolving
smaller but more interpretable routing policies. Wang et al. also proposed
a set of multi-objective approaches [228, 227, 229] to training routing poli-
cies that are both fit and have small sizes. In a later work, Wang et al. [230]
partitioned the GP population into distinct niches based on the fitness
value, selected the smallest individual of each niche into an archive and
modified the breeding operators to utilise the archive for creating smaller
and more interpretable policies. A detailed survey of the various variants
of CARP can be found in [144].

2.7.2 GPHH for Solving Combinatorial Optimisation Prob-

lems

Since its inception, hyper-heuristics, and particularly the automated de-
sign of heuristics, have seen considerable interest from scholars for de-
signing heuristics for hard computational problems [176]. GP is a popular
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method for automatic heuristic design that is described shortly. Burke
et al. [35] outlined the suitability of genetic programming as a hyper-
heuristic to generate new heuristics and survey previous work attempting
to create heuristics using genetic programming. One of the advantages
that Burke et al. [35] highlighted is that genetic programming relies on ex-
pert knowledge to define its terminal and function sets. As human expert
knowledge is necessary, domain specific information can be incorporated
into the fundamental components of the system. A second advantage is
that other methods (such as genetic algorithms) may restrict the length of
an encoded solution in order to facilitate simple genetic operators, genetic
programming trees have variable length representation. This can be use-
ful if the best length encoding for heuristic representation is not known.
Finally, genetic programming can be used to evolve trees as executable
programs allowing low-level heuristics to be generated directly.

Applications of GPHH for Solving Combinatorial Optimisation Prob-
lems

Genetic programming has successfully been used to evolve new construc-
tive heuristics comparable to human designed heuristics for a number of
problem domains. Burke et al. [34], [36] showed that stand-alone heuris-
tics generated using genetic programming could outperform the human
designed “bestfit” heuristic from the literature on unseen instances of the
same class of one dimensional bin packing problems. This work was ex-
tended to three dimensional bin packing by Allen at al. [5] and generalised
by Burke et al. [37] to include one, two and three dimensional bin packing
problems, again obtaining human competitive results. A similar method
was presented by Burke et al. [33] for two dimensional strip packing prob-
lems. Bader-El-Den and Poli [19] used genetic programming to quickly
generate “disposable” heuristics to solve the satisfiability problem. Again,
this work generated heuristics comparable to those which were human
designed. However, only a limited search space of heuristics was cov-



2.7. RELATED WORK 45

ered. Kumar et al. [131] used genetic programming as a hyper-heuristic to
evolve heuristics for the bi-objective 0-1 knapsack problem. This system
successfully created ‘reusable’ heuristics able to produce a set of Pareto-
optimal solutions. The Pareto fronts generated using this approach are
indistinguishable from those obtained using the human-designed profit-
to-weight ratio heuristic. Hauptman et al. [101] employed genetic pro-
gramming to generate solvers for two common puzzles including the NP-
Complete Freecell. Genetic programming has also been used as a hyper-
heuristic by Keller and Poli [123] for the travelling salesman problem, by
Fukunaga [83] for generating local search heuristics for satisfiability and
by Geiger et al. [85] for creating dispatching rules for the job shop prob-
lem. At a higher level of abstraction, Hyde et al. [111] evolved the accep-
tance criteria component of a selection hyper-heuristic. The evolved ac-
ceptance criteria performed well when compared to standard acceptance
criteria from the literature on instances of both bin packing and MAX-SAT.
Tan et al. [212] developed a novel cooperative GPHH approach for on-line
resource allocation.

Dynamic Job Shop Scheduling, DJSS, [205, 64, 168] and its variant Dy-
namic Flexible Job Shop Scheduling, DFJSS, [240, 244, 250, 245] are also
two other difficult combinatorial problems that that GPHH excels at solv-
ing. To mention some of the most recent publications in this regard, Zhang
et al. [247] proposed a new approach to improve the effectiveness of the
crossover operator. In [243, 160], the authors proposed a feature selection
methods for improving the performance of evolving scheduling rules for
solving DFJSS. Nguyen et al. [177, 178] proposed a method for using a
dimensionality reduction technique and growing neural gas to find an op-
timal representation of phenotypic characteristics of programs evolved by
genetic programming for solving DFJSS.
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2.7.3 Transfer Optimisation Methods

The literature of transfer learning in the broad context of machine learning
is vast and it is not possible to effectively cover it in this text [186]. Since
the focus of this thesis is solely on an evolutionary computing work, a
review of EC algorithms with knowledge transfer capabilities is presented
in this subsection.

Most of the early transfer optimisation efforts were focused on injection
of genetic materials from a solved source problem into the population of the
algorithm that solves a target problem. One of the earliest efforts in this di-
rection can be attributed to Cunningham et al. [54] who proposed starting
an optimisation process for a new problem with solutions that were ei-
ther transferred as whole or were constructed from components of several
solutions. Louis et al. [150] proposed to inject periodically into the popu-
lation the transferred solutions that are most similar to the best solutions
of the current population. Taylor et al. [214] performed knowledge trans-
fer through initialising Genetic Algorithm (GA) with the final population
of the source problem.

Another one of the initial works in applying concepts of knowledge
transfer to an evolutionary algorithm was given by Koçer et al. [129]. The
paper implements transfer learning as transferring individuals from pop-
ulation of the algorithm solving the source problem to the initial popula-
tion of the algorithm solving the target problem. In their implementation,
the authors selected two sample individuals I1 and I2 at each iteration of
the source problem, one of which is the best individual in the population
and the other is the median individual in terms of fitness, and saved into
an “ndividual pool”. For initialising the population of the target problem,
30% of the initial population of the target problem were chosen randomly
from this pool [129].

Dinh et al. [62] present three new algorithms for knowledge transfer
in GP. In FullTree method, k% best of individuals in the final generation
source problem are used as initial individuals. In their second algorithm,
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named SubTree, they investigate the idea that there is a good subtree struc-
ture that is shared between related problems. In their implementation of
this idea, the authors focused on last generation of source problem. To
transfer, a random subtree of each individual of final population is selected
and added to a pool and then moved to the target problem as initial indi-
viduals. The third method, BestGen, it is assumed that good knowledge
to transfer may appear, not only in the final generation but also during
the evolutionary process of source problem. Consequently, in each gen-
eration of GP on source problem, k best individuals are sampled into a
pool that are finally used as initial population on target. . Al-helali et al.
[4] proposed a multi-tree genetic programming method with new genetic
operators based on transferred knowledge and utilised it for solving sym-
bolic regression problems with incomplete data. Muñoz et al. [171] have
given a comprehensive review of transfer optimisation methods for GP in
the context of constructive induction.

Haslam et al. proposed an update to Dinh’s work in [62] by adjust-
ing the parameter k adaptively. For this purpose, they defined two meth-
ods that they collectively called adaptive-k. In their first method, called
k-throttle, first trees transferred from source domain are stored in a sepa-
rate population and their performance on target domain is measured. The
same number of trees are generated randomly and their performance is
also measured on target problem and k is calculated with

k =
Pr

Ps + Pr

(2.13)

wherein Pr is average fitness of 50% of individuals in the store that have
a performance on target domain better than other individuals which were
generated randomly and Ps has the same meaning but for the transferred
population. After computing this parameter, k% of the worst-performing
randomly generated initial population will be substituted with k% of best-
performing transferred individuals and form initial population of GP on
new problem. In their second approach, called Tournament Transfer, Haslam
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et al. make the same assumption as before but combine the random and
transferred initial population and k% of individuals are selected with tour-
nament selection [100].

Subtrees of GP individuals contain (partial) domain knowledge about
a problem and if a subtree is repeated among individuals, it has the po-
tential of containing useful and transferable knowledge. This idea was
explored by O’Neil et. al. In their method, named common subtrees from
related problems (CSRP), they first discovered common subtrees among
individuals and then, considered them as functions. These functions re-
place leaf terminals in the extracted common subtree with variables and
are used to augment the function set of GP on new target problem [182].

Iqbal et al. modified the initialisation and mutation phase of GP to
utilise transfer learning. The authors considered children of the root node
of each individual in the population as a transferable segment of knowl-
edge and called them ”code fragment”. On source domain, average fit-
ness of the population in the final generation is calculated and then code
fragments are extracted from individuals that are better than the average.
These code fragments are then stored to be reused on target problem. On
the target problem, for initialisation, children of a root node are either se-
lected from the stored code fragments with a probability of 0.5 or from
terminal or function set of GP. For mutation, a subtree of individual to be
mutated will be selected and and replaced with a tree that is created the
same way described for initialisation [119].

Considering n source domains, the Fu et al. first train GP populations
to learn knowledge from the source domains. To use the learned knowl-
edge on a target domain, for each source domain i, p individuals are se-
lected randomly from the final population of the trained GP. For each in-
stance in the target domain, each of the selected individuals are used on
the instance to find its class. Output of the individuals are then summed
and if the sum is greater than 0.5 ∗ p ∗ n it is classified as class 1 else it is
classified as class 0 [82].
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Iqbal and et al introduced the concept of code blocks in [114]. A code
block is a tree of depth two or less. At first, a random population of code
fragments is created. This population is kept static during the learning
process and are chosen from during the covering phase of classifiers. The
authors defined a fitness measure for code fragments and CFs with better
fitness on smaller problems are utilised as terminals to seed the population
of code fragments in a more difficult problem. In this work, a terminal
is either a condition bit or a code fragment from a previous level code
fragment with a probability of 0.5 [114].

Inspired by the concept of code fragments, the Iqbal et al. used a novel
design of Learning Classifier Systems for solving large scale Boolean prob-
lems in which the population of code fragments is not static. By solving
simple Boolean problems, they extracted code fragments of depth two
from the conditions of final population from individuals whose fitness
value is greater than the average fitness and reused them in solving higher
level and more complex problems. The extracted code fragments are used
as terminals in rule conditions for solving higher-level problem. A termi-
nal in a higher-level problem is a code fragment with a probability of 0.5.
The authors have limited the depth of code fragments to two [115].

Iqbal and co-authors introduced the concept of ADFs, instead of ternary
conditions, into XCS [118]. In their work, ADFs are manually designed
and are not extracted automatically from any problem domain and, all
condition bits are filled with ADFs. Alvarez et al advanced this novelty.
Built furthermore on a later work of Iqbal et al [115], Alvarez et al used the
idea of code fragments in the condition section of rule-sets. However, in
addition to this feature, the paper considers rule sets from source problem
and allows them to act as functions in target domain that can appear at
non-leaf nodes of conditions [6].

Use of code fragments can increase the scalability of system to some de-
gree by reducing problem search space. However, CFs impose a strain on
computing resources because as the learned knowledge increases, the long
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chain of CFs increase which eventually prohibits them from scaling up to
larger and more complex problems. The authors observe that CFs are sus-
ceptible to redundancy as different CF trees can have the same value and
hypothesized that this downside to efficiency can be alleviated by using
compacting techniques on the final code fragment rules to remove redun-
dancy. Consequently, the authors built on their work in [6] and devised a
compaction scheme to reduce redundancy in CFs and improve their scal-
ability [7].

In a more recent paper, Iqbal considered the direct children of the root
node of individuals in the final generation of a GP run and named them
as ’code fragments’. When solving a new problem, these code fragments
are used as the transferable knowledge and utilised in the initialisation
and mutation phase of GP. In initialisation phase, each child of the root
node is either generated randomly or selected from code fragments with
a probability of 0.5. In the mutation phase, a subtree of an individual
is selected and replaced with either a randomly generated tree or a code
fragment selected with the same probability [117]. In a later work, Igbal
used the same technique but with probabilities µI and µM for initialisation
and mutation respectively for image classification [116].

Based on the messy coding representation of classifier conditions in
LCSs proposed by Lanzi [43], the authors use the hash table data struc-
ture to implement Lanzo’s sensory tags and extended Iqbal’s [115], [114]
framework with this innovation.

Transfer optimisation can also be achieved through learning a model of
the good solutions of the source problem. In these model-based approaches,
the model is then used for biasing the search process when solving the
target problem [55]. Feng et al. first established that there is a common
knowledge between CVRP and CARP and hence, it would be more effi-
cient to transfer knowledge learned from one domain to the other. After
this, the paper proposes a common representation for CVRP and CARP.
For a given instance of CARP, Ia, first the shortest distance matrix, SD,
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among all the arcs of Ia is calculated with Dijkstra’s algorithm. Then,
MDS is applied on SD and finally, a common problem representation is
reached by applying manifold alignment between CVRP and the MDS ap-
proximated CARP (Algorithm 1 in the paper). In the paper a knowledge
meme in evolutionary optimisation serves as an instruction to guide the
search toward the near-optimal solution. The paper proceeds with which
it extracts meme knowledge from a solved instance of a problem. For a
given problem instance p and its solution s∗ on the constructed common
feature space, a knowledge meme M is formulated as maximisation of
statistical dependency between p and s∗ with distance as constraints. For
each solved instance of a CARP or CVRP one knowledge meme can be
found and the paper uses a weighted sum of multiple memes from similar
problems as a method of selecting memes. The knowledge meme selection
process is formulated as to identify the weight of each knowledge meme.
Subsequently, the knowledge meme Mt generalised from past experiences
is then assimilated for enhancing evolutionary search on another problem
domain via the generation of meme-biased solutions [73].

Expanding on his previous work [73], Feng et al. proposed a new ap-
proach for transferring knowledge that consisted of four operators: Learn-
ing, Selection, Variation and Imitation. Defining meme as a distance ma-
trix that maximally aligns a problem instance to its solution, the Learn-
ing operator is modelled as finding this mathematical mapping between
a solved problem and its solution by maximising their statistical depen-
dence. The Selection operator, which aims to find a high-quality meme,
is modelled as finding a weight coefficient for each meme in a pool of
memes. The variation operator, that is meant to introduce new knowledge
into the pool, is implemented as weighted sum of memes. The imitation
operator projects the variated meme into the search space of new prob-
lem and is implemented as product of new problem instance to L which
is derived by singular value decomposition of the variated meme. The re-
sult of these operators will be used to initialise an evolutionary algorithm
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that finds the final solution for the new problem. In this approach, if the
knowledge pool is empty or the selection operator does not find a meme
that is similar to a new problem, an ordinary initialisation procedure of
evolutionary algorithm will be used to initialise population [74]. Feng et
al. [71] also learned customer representation as transferable knowledge
for solving VRPs.

Feng et al. performed knowledge transfer through a single layer de-
noising autoencoder. A similar idea proved to be useful for knowledge
sharing in multi-task scenarios [76]. Zhou et al. [256] captured the struc-
tured knowledge from optimised vehicle routing problem (VRP) and reused
it for biasing the search when the problem changes.

Probabilistic models are also popular for modelling the knowledge and
transferring it between problems. For example, it is shown that previously
learned/evolved probabilistic models can be used as transferable knowl-
edge. In order to achieve this, a similarity metric can be designed on prob-
lem variables to indicate the strength of dependencies between them. The
metric can then be used for collecting statistics on the transferred models
and biasing the search process when similar problems are solved in future
[193, 192, 103, 102].

2.7.4 Multi-Task Learning for Evolutionary Algorithms

Transfer of useful knowledge is not specific to transfer optimisation but
is also an important concept in the context of Evolutionary Multi-Task
(EMT) learning [94, 183, 95, 22]. The main idea in multi-task learning is to
detect and extract the common knowledge available in related tasks and
through sharing them between the evolutionary processes, improve the
performance of the search for solving each task [183]. Accordingly, one of
the main differences between mutli-task learning and transfer optimisa-
tion is that in transfer optimisation, the source problem is solved first and
the act of knowledge extraction and searching for the solution of the tar-
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get problem starts after finishing solving the source problem. On the other
hand, in multi-task learning algorithms, no task is solved before hand and
all tasks are solved simultaneously and the act of knowledge sharing takes
place during the search for the solving the problems [96].

Although the idea of learning several tasks together has long history
in machine learning [39, 252, 53], the notion has gained attraction from re-
searchers recently [96]. In the context of EMT, existing algorithms can be
broadly categorised into two classes of implicit and explicit EMT methods
[72]. The algorithms in the implicit EMT class solve multiple tasks via util-
ising a single population with a unified representation of solutions of all
tasks. The act of knowledge transfer in this category of EMT methods is
achieved implicitly and through the crossover operator between two indi-
viduals that have two different skill factors, that is, they are more suited
to solve two different tasks.

The multi-factorial evolutionary algorithm, MFEA, by Gupta et al. [95]
and its multi-objective version by Feng et al. [72] are two prime examples
of implicit EMT algorithms. Ding et al. [61] indicate that MFEA is not
very effective when the global optima of tasks are separate. Additionally,
the efficiency decreases further when decision variables of the tasks have
different dimensions. To address the first issue, the paper proposes a deci-
sion variable transformation strategy that transforms the decision variable
into a unified space in which all tasks have the same global optimum. Bali
et al. [21] noted that if the tasks are uncorrelated, MFEA is vulnerable to
negative transfer of knowledge and they proposed a linearised domain
adaptation to handle this issue. In a later work, Bali et al. [22] proved a
set of mathematical theorems that provided the conditions on which an
EMT algorithm can converge to a solution. Liaw et al. [138] improved the
performance of MFEA for solving many tasks, i.e. more than two or three
tasks. Zhou et al. [257] performed knowledge transfer that is self-adaptive
based on the information obtained during the search process. Feng et al.
[75] also proposed a novel EMT algorithm to solve a generalised VRP with
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occasional drivers. Zhong et al. [254] proposed a way that it encoded GP
individuals so that a unified space is defined so that individuals from mul-
tiple problem domains can be evolved in a single population. Zheng et al.
[253] proposed an extension to the MFEA method in which a way of mea-
suring the similarity of tasks is provided that allows knowledge transfer
based on the degree of similarity. Wei et al. [233] proposed an EMT-based
classification method using Gene Expression Programming with several
knowledge transfer strategies between tasks. Zhang et al. [242, 241] pro-
posed a set of novel approaches for implicit knowledge sharing for solving
DFJSS.

In contrast to the implicit approach, the explicit category of EMT meth-
ods dedicate one population for each optimisation task to be solved. In
this paradigm, the act of knowledge sharing between populations is per-
formed explicitly by specific operators that are designed for this purpose.
The explicit approach to EMT optimisation has the advantage over the im-
plicit methods that it allowing incorporating multiple search mechanisms
for solving different optimisation tasks, which could improve the perfor-
mance of EMT algorithms because different search mechanisms can have
different problem-specific operators and biases [72].

Feng et al. [76] proposed an EMT algorithm for solving continuous
problems that utilised different search mechanisms. Since each search
paradigm of their proposed algorithm could potentially utilise different
representations, the authors employed denoising autoencoders for con-
verting the candidate individuals from the representation of their source
population to the representation of the receiving population. Realising
that autoencoders are designed for continuous problems, Feng et al. [72]
proposed a novel method for mapping the representation of the discrete
problems such as CARP into a continuous representation that allowed
proposing an explicit EMT that utilised autoencoders during knowledge
transfer for solving CARP. Gong et al. [92] argued that in many multi-task
learning scenarios, some of the tasks are easier and require less computa-
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tional resources. As a result, better results can be achieved if less resources
are allocated to easier tasks and more to harder ones and therefore, the au-
thors proposed a method for allocating computational resources dynami-
cally based on the difficulty of tasks. Lin et al. [140] proposed an explicit
EMT method for multi-objective optimisation in which if a transferred so-
lution from one population to another is non-dominated in the receiving
population, then the neighbours of this solution are selected as the trans-
ferred solution in the next generation. Noting that finding useful knowl-
edge for transfer between populations is of crucial importance, Lin et al.
[141] proposed utilising a Naı̈ve Bayes binary classifier to predict if a can-
didate solution is likely to be helpful for the receiving population. In a
work by Zhang et al. [248], a surrogate model is trained to estimate the
fitness of transfer candidates in their receiving populations and based the
selection of candidates on the estimated value.

2.7.5 Surrogate Models for Evolutionary Algorithms

For most EC systems, the most expensive operation during the evolution
is fitness evaluation of individuals. Despite the fact that fitness value is
the guiding principle of EC systems, because of the evaluation expense,
it is not possible to use fitness evaluation liberally. In order to overcome
this, surrogate models [120, 180, 219, 30, 107, 149, 203] are proposed that
can reduce the cost of fitness evaluation at the cost of fitness accuracy and
since they are cheaper, they make it possible to take advantage of fitness
guidance more frequently. Different surrogate models can be considered,
e.g. binary model that either accepts or rejects an individual as a good or
bad one, the models that give a ranking of the population members based
on their quality without producing their exact fitness value or, fitness es-
timation models that give an estimate of individual fitness. Some of the
common algorithms for surrogate models include kriging models [48] and
radial basis function networks [189].
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Although there exist a plethora of surrogate techniques for EC meth-
ods [217, 120], the majority of these methods are not applicable for solving
UCARP because, the training instances of UCARP are inherently different
from conventional machine learning tasks such as regression [126] and nu-
merical optimisation [139, 184]. In UCARP, the fitness evaluation is based
on simulations that are run on datasets that are generated dynamically
while in traditional machine learning tasks, the training dataset are avail-
able in advance. Theoretically, it is feasible to collect some data during
simulation processes and adopt machine learning tools to learn the rela-
tionship between the collected information and the fitness value. How-
ever, it is not trivial to select what information to collect.

To the best of our knowledge, there exist no research about surrogate-
assisted GP for solving UCARP. However, the similarity between the na-
ture of UCARP routing policies and DFJSS routing and sequencing rules
allows utilising some of the surrogate techniques that have been proposed
for DFJSS. In this regard, the way that decision situations are collected is
the minimal needed change to the original algorithm. Particularly, Hilde-
brandt et al. [105] proposed a KNN-based approach [200, 27] to estimating
the fitness of an individual. In their approach, the authors saved two most
recent GP populations as pool of data. Then, to estimate the fitness of an
individual ρ, its similarity to the individual in the pool are measured. Fi-
nally, the average fitness of k individuals in the pool is considered to be the
approximate fitness of ρ. Accordingly, in this approach, the important con-
sideration is about how to measure the similarity of two individuals. In
this context, the genotypic similarity is a straightforward approach to mea-
suring the similarity of two individuals ρ1 and ρ2, which is the approach of
measuring how much genetic materials ρ1 and ρ2 share. However, Hilde-
brandt et al. [105] demonstrated that in case of a using GPHH for solv-
ing an uncertain problem like DFJSS, the genotypic similarity measure is
not effective at capturing the actual similarity of the ρ1 and ρ2. Instead,
the author devised a phenotypic approach for measuring how similar ρ1
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and ρ2 are. The phenotypic approach measures how similar the individ-
ual behave in a given decision situation. For example, In the context of
DFJSS, a sequencing situation is a situation in which a machine is idle and
a sequencing rule such as ρ1 needs to calculate the priority value of each
operation in the work queue of the machine to select the operation with
the highest priority to complete next. In this sense, two routing rules are
identical in a given situation if they both make the same decision for that
situation. Hildebrandt et al. [105] showed that the phenotypic similarity
based on comparing how similar the rules behave in set of decision situa-
tions is very good at measuring how similar the rules actually are. Based
on this description, it can be seen that there exist a great degree of resem-
blance between the sequencing rules of DFJSS and the routing policies of
UCARP as they both calculate priority of unserved operations/tasks for
machines/vehicles. This indicates that the same approach can be utilised
for measuring the phenotypic similarity of UCARP routing policies.

The work by Hildebrandt et al. [105] is based on the KNN technique
that requires a similarity measure. Nguyen et al. [180] proposed a surro-
gate model based on using a simplified model of the DFJSS problem that
does not require a similarity measure. Similar approaches were proposed
in [250, 127]. Zhang et al. [246] also proposed a multi-fidelity approach
based on the idea of incorporating multiple surrogate models based on
simplified DFJSS simulations with different degree of accuracy.

2.8 Summary

In this chapter, the basic concepts of arc routing, evolutionary algorithms,
genetic programming, heuristics and hyper-heuristics are introduced, which
form the underlying foundations of this thesis. This chapter investigated
the details of subject problem, i.e. UCARP and explained how routing
heuristics are employed for constructing problem solutions. In doing so,
the proactive and reactive categories methods are explained as the main
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class of approaches for solving UCARP, and the most recent efforts in each
category are reviews. Furthermore, the reactive approach of using GP as a
Hyper Heuristic, GPHH, for evolving vehicle routing policies is described.
Accordingly, the GPHH approach and some of its applications are also ex-
plained.

After studying the literature of UCARP, it becomes clear that the GPHH
approach is the state of the art for solving UCARP. Nevertheless, this ap-
proach suffer from an important shortcoming which is the reusability is-
sue. More specifically, the routing policies that are evolved with GPHH
are optimal for the solved UCARP instance that they were trained for as
long as the problem does not change. However, many real-world applica-
tions of UCARP are subject to change frequently, e.g. number of vehicles,
graph topology or probability distribution of stochastic variables. When
such changes happen, the routing policies lose their optimal performance
and hence, new routing policies are needed to be retrained. Considering
the fact that training of routing policies is time-consuming and expensive,
there is a need for effective and efficient retraining of these policies. Con-
sidering the fact that in many real-world scenarios, the change in prob-
lem instance creates new problems that are related to the old one, transfer
learning is the ideal technique for handling this issue.

Therefore, we reviewed the concept of transfer learning in machine
learning and its counterpart in evolutionary algorithms which is called
transfer optimisation. Through our review, we realised that the body of ex-
isting transfer optimisation methods for GP is not dense and also, none of
the existing methods are designed for the case of evolving hyper-heuristics.
Since the act of knowledge extraction in transfer optimisation methods
shares similarities with the same operations in multi-task learning, a broad
review of these algorithms are provided in this chapter too.

The content of this chapter gives an overview of the basic concepts
needed for reading this thesis. The following four contribution chapters
will provide the details of the challenges in performing transfer optimi-
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sation for solving UCARP and the proposed approaches to overcoming
them. More specifically,

• We will investigate the applicability of transfer optimisation for solv-
ing UCARP to identify (and proposing solutions for) some of the
shortcomings of the existing methods. Through extensive experi-
mental studies we will discover the lack of diversity in the knowl-
edge source as one of the main challenges that may arise when ap-
plying transfer applying transfer optimisation to solving UCARP.

• We will propose a set of algorithms for initialising GP through trans-
fer optimisation so that the issue of lack of diversity in the knowl-
edge source will not affect the quality of transfer.

• We will capture the phenotypic behaviour of routing policies as trans-
ferable knowledge and utilise it during the search process for solving
target problems.

• We will propose an effective method for adapting the transferred
knowledge to the target problem and use it for preventing GP from
losing its population diversity.
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Chapter 3

Transfer Optimisation for Solving
UCARP

As was mentioned in Chapter 1, the problem changes of UCARP lead to
new but similar problems. Due to the existence of similarities between
the old and new problems, transfer optimisation is a viable approach for
solving the new problem more efficiently with the common knowledge
that is extracted from the old problem. In this chapter, we will investigate
the applicability of the existing transfer optimisation methods for solving
UCARP, and identify some of the shortcomings in the existing literature
and the challenges that may exist in the way of applying transfer optimi-
sation methods successfully for solving UCARP.

3.1 Introduction

As was mentioned in Chapter 1, the problem changes of UCARP, which is
a common phenomenon in the real-world, lead to new, but related prob-
lems. An interesting feature of the routing policy approach is that a trained
routing policy is not tied to the characteristics of the problem that it is
trained for. That is, even if some change happens to the characteristics of
the problem, it is still possible to use the policy for the new problem. How-
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ever, although the new problem has similarities with the old problem it is
originated from, Mei et al. [163] showed that the old solution will not per-
form optimally for the new problem, even if all aspects of the old and new
problems are the same except that the number of vehicles is changed by
one and, even for small problem changes, it is needed to train a new rout-
ing policy. Consequently, it is needed to find a new solution for the new
problem. Since the old and new problems are related, it is possible to ex-
tract the knowledge common to both problems from the solved problem
to improve the search performance for solving the new problem, which
motivates the application of transfer optimisation algorithms.

As the investigation of the literature in Chapter 2 pointed out, to the
best of our knowledge, there is no previous work on utilising and/or
devising transfer optimisation algorithms for solving UCARP. Although
there exist a number of algorithms that perform transfer optimisation specif-
ically for GP, to the best of our knowledge, no GP transfer optimisation
method has been proposed or verified in the context of utilising GP as a
hyper-heuristic for solving UCARP. Additionally, although there exist a
plethora of algorithms for GP and GA, it is not clear how these algorithms
will perform for solving UCARP because most, if not all, of the existing
algorithms were devised for static problems. As a result, the focus of this
chapter will be placed on investigating the applicability of the existing
transfer optimisation methods for solving UCARP. By doing so, we aim to
identify the challenges that may exist on the way of the successful extrac-
tion and reuse of knowledge for solving UCARP. Accordingly, the main
research questions and goals to be answered through this investigation
are presented in Section 3.2.

As the literature review in Chapter 2 indicated, a commonly consid-
ered approach for performing transfer optimisation for GP is the approach
of selecting/extracting the (sub-)trees of individuals that were found for
solving a source problem and reuse them for solving a target problem.
Upon investigating the examined algorithms, we discovered a few poten-
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tial shortcomings in these methods. Therefore, we also propose our solu-
tions to these shortcoming in this chapter and investigate their potential
for solving UCARP too.

To be more specific, in the context of (sub-)tree-based transfer optimi-
sation, the majority of works rely on the fitness of individuals as the only
criterion for selecting extracting sub-trees from individuals and do not
consider any other indicators for the goodness of the sub-trees to be se-
lected. Additionally, any potential approaches for transferring knowledge
for GP, other than the (sub-)tree-based approach have also been neglected.
Therefore, we will also propose the probability distribution of high-quality
source solutions as the transferable knowledge which allows creating arbi-
trary number of good individuals that can be reused for solving the target
problem.

3.2 Chapter Goals

The goal of this chapter is to investigate the potential of the existing trans-
fer optimisation algorithms for solving UCARP. In this direction, we also aim to
discover some of the shortcomings of the existing algorithms, propose our solu-
tions to them and evaluate their performance for solving UCARP too. For this
purpose, we evaluate the performance of the proposed algorithms in com-
parison against the existing methods and also the vanilla GPHH without
any knowledge transfer. More specifically, in this chapter we have the fol-
lowing research objectives:

• Investigate the applicability and potential of the existing transfer op-
timisation algorithms to handling problem changes in UCARP.

• Develop multiple criteria for assessing the transferability sub-trees
from source solutions.

• Develop a probabilistic approach to transfer optimisation in which
the probability distribution of high-quality source individuals is learned.
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• Analyse the efficacy of the proposed algorithms on different transfer
scenarios.

3.3 Chapter Organisation

The rest of this chapter is organised as follows. Detailed descriptions of
the proposed algorithm are given in Section 3.4. The experiment design is
shown in Section 3.5, followed by results and discussions in Sections 3.5.3
– 3.5.7. Finally, Section 3.6 concludes this chapter.

3.4 Proposed Algorithms

In this section, three transfer optimisation algorithms are described in de-
tails. Two of the proposed algorithms are based on the detection and trans-
fer of useful (sub-)trees and are presented in Sections 3.4.1 and 3.4.2. In
Section 3.4.3, a probabilistic approach to knowledge transfer is proposed
in which the distribution of the good source GP individuals is learned as
the transferable knowledge.

3.4.1 Frequent Sub-Trees as Transferable Knowledge

As was reviewed in Chapter 2, a large body of work has been dedicated
to implementing transfer optimisation for GP as the transfer of subtrees.
However, in the majority of these works, the selection of sub-trees is based
of the fitness of their individuals but they do not measure how impor-
tant or useful a sub-tree could be for solving the source problem. Conse-
quently, in this section, we also propose a set of guidelines for selecting
the sub-trees that play an important role for solving the source problem.

It is reasonable to speculate that if an individual has a good fitness
for source problem, it tends to be a good candidate for extracting good
subtrees to be transferred. Additionally, if a subtree is repeated frequently



3.4. PROPOSED ALGORITHMS 65

in good solutions that were found for the source problem, it must contain
important genetic materials that GP has reused it frequently. Therefore, it
is logical to speculate that such sub-trees could also be more likely to be
important for solving the target problem. For this reason, we consider the
final GP population during the training process of the source problem, and
extract subtrees from the top individuals in terms of their test performance
using the following three criteria for measuring how frequently they were
reused in the top individuals:

1. All: All the possible subtrees of an individual (dubbed as FreqSub-
all).

2. Root Subtree: Immediate children of the root of the considered indi-
viduals (dubbed as FreqSub-sub).

3. Entire: The entire tree is transferred (dubbed as FreqSub-root).

After all subtrees are extracted from the best individuals of the final
source population, they are sorted based on the frequency that they were
repeated in the top individuals and then, all the most frequent subtrees
were transferred as individuals until 100% of the initial population of GP
on target problem is filled.

Furthermore, our preliminary studies show that the size of transferred
subtrees is an important factor, that is, large subtrees usually had a better
fitness for both source and target problems but also they tended to afflict
GP with code bloats and also, reduce population diversity. On the other
hand, small subtrees were also not beneficial as they usually had lower fit-
ness values and disappeared in early generations. Therefore, we consider
a limit on minimum and maximum size of subtrees and only transfer the
ones that are within the size limit.

It should be noted that our FreqSub algorithm has some similarities
with the work by O’Neill et al. [182]. In that work, sub-trees are extracted
from the middle of their tree and do not include the terminals and then,
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they are converted to functions that augment the GP function set for solv-
ing the target problem. Although the authors confirmed the effectiveness
of their approach on some non-dynamic problems, in our experiments, we
noticed that this approach, in the context of UCARP, will lead to hidden
code bloat and unacceptable computational cost, because such a function
node in a GP tree is indeed a subtree of its own, disguised as single func-
tional node that when is needed to be evaluated, the whole subtree needs
to be evaluated. It is can be rather trivial to optimize this procedure for
static problems but doing so for a dynamic problem like UCARP can be
more challenging. Consequently, we decided to include the terminals of
the frequent subtrees.

3.4.2 Contributive Sub-Trees as Transferable knowledge

In Section 3.4.1, we considered the frequency by which sub-trees appear
in the good solutions of the source problem to measure how important
the sub-trees are for transfer. One downfall to that approach is that if the
source individuals contain introns [47, 152, 166, 237], that is they may con-
tain sub-trees that do not make any contribution to the fitness of their tree
and hence, are redundant.

To handle this issue, we propose a new method for filtering good trans-
ferable sub-trees by evaluating subtrees to distinguish their potential for
transfer. In our approach, we focus on the final source GP population
as the knowledge source because the final population contains the most
evolved set of individuals. Furthermore, it is natural to assume that indi-
viduals with good fitness value are better sources for knowledge extrac-
tion. Therefore, we consider the subtrees of the top 50% individuals in the
final source population in terms of their test performance.

To extract the sub-trees and form the pool of the candidate transferrable
sub-trees, we adopt the following two strategies:

1. All: All the possible sub-trees of the considered source individuals
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are extracted and included in the pool.

2. Root Subtrees: The immediate root sub-trees of the considered indi-
viduals are included in the pool.

Needless to say, the first pool is more comprehensive and contains the
second one. However, the second pool can contain potentially larger sub-
trees that may contain more genetic materials.

Not all the sub-trees in the extracted pool are important and they may
have different reusability values. As was discussed in Section 3.4.1, fre-
quency is an intuitive measure because a sub-tree that has appeared more
frequently in the GP population may contain important building blocks
that GP had reused it multiple times. Thereore, it is very likely that those
building blocks are also important for solving a related target problem.

However, there is one obvious pitfall to the frequency measure that can
make the measure misleading which is the potential presence of introns
in the final GP trees; that is, the trees may contain redundant branches
and these redundant branches increase the frequency rate of the sub-trees
unnecessarily. The contribution measure that is proposed in this section
can address this issue.

In the literature of genetic programming, it has been discussed that fea-
ture selection can improve performance of GP because, in a GP system, it
is very likely that some features are redundant and do not contribute to the
performance of the system. There are also cases that features have nega-
tive contribution to the fitness. It is for this reason that feature selection
and feature weighting methods are shown to improve the performance of
genetic programming systems [160, 44]. With the same line of thought,
we can similarly suspect that considering all possible subtrees in a tree
to be candidates for transfer may contain redundant and even harmful
structures that their transfer may degrade the performance of knowledge
transfer. Therefore, to detect the useful sub-trees that are potentially ben-
eficial for transfer, we propose a second reusability measure: contribution
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of the sub-tree to the fitness of its individual [160].
Given a GP tree x, we define the contribution ξ(x, τ) of its sub-tree τ as

the change that happens to the fitness of the tree if the sub-tree is replaced
with a constant 1:

ξ(x, τ) = fit(x|τ = 1)− fit(x). (3.1)

After measuring the contributions of a sub-tree to each individual that
contains it, a weighted cumulative contribution value can be calculated for
each sub-tree with the following equation:

w(τ) =
∑
x∈Ω

ξ(x, τ)pow(x). (3.2)

In this equation, Ω represents the set of all the individuals that include
subtree τ , and pow(x) is the power of individual x, which is the normalised
fitness of individual x. The design of Equation 3.2 allows good subtrees
of good individuals to have better weights. The power of an individual is
defined as:

pow(x) =
g(x)− gmin

gmax − gmin

(3.3)

in which g(x) is calculated as below:

g(x) =
1

1 + fit(x)
(3.4)

wherein fit(x) is the fitness of individual x and Ψ is the set of all individ-
uals that were evaluated for the source problem (note that Ω ⊂ Ψ) and

gmin = min{g(x)|x ∈ Ψ} (3.5)

gmax = max{g(x)|x ∈ Ψ} (3.6)

For solving the target problem, the subtrees in the pool (“All” or “Root-
SubTree”) are first sorted by the cumulative contribution value, and the
top subtrees are selected and imported to the initial population to form
50% of the population. The corresponding algorithms are respectively
named (1) ContribSub-all and (2) ContribSub-subtree.
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3.4.3 Probabilistic Prototype Trees as Transferable Knowl-

edge

In Sections 3.4.1 and 3.4.2, we proposed two new methods for the trans-
fer of reusable trees and sub-trees. It can be argued that the subtrees that
are extracted from the individuals of the knowledge source may not have
the comprehensive information about the search space of the source prob-
lem and they just capture partial manifestation of that information. Al-
though full trees have more genetic materials than subtrees, it can still be
argued that good full trees are just good points in the search space of the
source problem and therefore, direct transfer of them might not transfer
enough helpful knowledge for solving the target problem. In this section,
we investigate this argument. For this purpose, we consider the underly-
ing probability distribution of good source individuals as the transferrable
knowledge. By possessing a the probability distribution, it is possible to
sample new individuals from the distribution and reuse the resultant indi-
viduals for solving the target problem. One benefit of this approach is that
it may lead to the creation of individuals that were not present in the orig-
inal knowledge source nevertheless, and by doing so, they can perform
well for the target problem.

To capture the probability distribution of the good source individuals,
we define that the probability distribution of the good source individuals
should specify the probability that a GP terminal or function may occur
at a given node of GP programs. Therefore, by specifying an arbitrary
indexing I over nodes of GP trees, we let the random variable Xi be the
GP terminal or function in node i ∈ I . Therefore, Xi ∈ T ∪ F in which T

and F are the GP terminal and function sets respectively. We denote the
probability that Xi has the value r ∈ T ∪ F as P (Xi = r) = pi,r. The given
definition ofXi has the categorical distribution since it can have ρ = |T∪F |
exclusive outcomes and the probability of each outcome does not change
over time in a standard GP [172]. Accordingly, if we let Yi,r be the random
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Fig. 3.1 An example of a PPT

variable of the number of times that r ∈ T ∪ F appeared in node i ∈ I in a
GP population, we note that Yi,r has a multinomial distribution [81].

With the given definition of theXi and Yi,r random variables, we define
a Probabilistic Prototype Tree, PPT, as a complete binary (or q-ary with q

being the maximum arity of GP functions) tree in which each node i ∈ I
holds the probability vector Pi = (pi,r)r∈T∪F . Each component of the vector
Pi presents the probability of selecting an item r from either the terminal
or the function set and represents the underlying categorical distribution
of the item r appearing at i. As an example, a simple PPT of depth 2 is
shown in Figure 3.1 for T = {x, y} and F = {+,−}.

By defining the transferrable knowledge as PPT, the next step in per-
forming transfer optimisation is to learn a PPT from a population of source
GP individuals. Since the random variable Yi,r, that specifies the number
of times that item r appeared in location i, follows the multinomial dis-
tribution, we can approaximate the value of pi,r based on the relationship
that exists between Xi and Yi and with the application of maximum like-
lihood estimation over the existing population [68]. Consequently, it is
straightforward to show that pi,r ≈ pi,r where pi,r is the average number of
times that the item r has appeared in location i in the population.

It should be noted that the PPT structure has some similarities with
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the PIPE tree that is presented in [206] by Saustowicz et al.. However, our
work does not consider the constants Rd,w in the PPT that Saustowicz et
al. use. Additionally, we defines a more rigorous modelling of the un-
derlying probability distribution of the GP individuals that is absent in
that work. Furthermore, that work takes a completely different learning
approach from the one that we propose. Finally, that work is not in the
context of GP transfer learning.

3.5 Experimental Studies

To evaluate the effectiveness of the proposed algorithms, a wide range of
experimental source and target problems settings are designed. Table 3.1
presents the source and target UCARP instances that are used in the ex-
periments. These UCARP instances are the extensions of the static CARP
instances in which the deterministic CARP variables are converted into
random ones with normal distribution. These datasets are based on real-
world road network from Lancashire, UK [154]. This fact clearly highlights
the real importance of transfer optimization, and hence the proposed al-
gorithms, in the real-world. For the sake of consistency, all the experi-
ments in the rest of this thesis will be performed on the scenarios in Table
3.1. These instances have been previously experimented on in previous
studies [145, 163]. In Table 3.1, the datasets whose name ends with the
dm1 (dm2) suffix, e.g. Uval5Adm1, highlights that the mean of the ran-
dom demands were increased by 1 (2) from the original dataset. In the
table, each row is called a transfer scenario which is comprised of a source
instance, that is assumed to be already solved, and a target instance that is
needed to be solved with the knowledge transferred from the source in-
stance. The column “Sim.” (value between −1 and 1) indicates the degree
of similarity of the source and target instances. To measure the similar-
ity, 1024 unique routing policies were generated randomly, and evaluated
on the source and target instances. Accordingly, we define the similarity
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between the source and target instances as the Kendall’s rank correlation
coefficient [124] between the fitness of the 1024 random routing policies
on the source and target instances. Naturally, the closer similarity value
is to 1, the more similar and related are the source and target instances.
It should be pointed out that all UCARP instances have the same objec-
tive, i.e. minimise the total cost of serving all tasks and hence common
desirable routing decisions such as selecting the closest task have better
prefences in the decision making process of the vehicles. Therefore, in
practice, most UCARP instances are likely to be related to each other. As a
result, having negative or very close to zero similarity values are unlikely
and hence, the scenarios in Table 3.1 show decent similarity values of at
least 0.46.

As given in Table 3.1, the experiments include source and target in-
stances with varying degree of similarities (from 0.46 to 0.99). Note that
we have included a large set of source and target instances in which most
of scenarios show decent similarities with each other. A similarity of 0.46
is already a weak relatedness between different UCARP instances. In this
section, first the parameter settings for the experiments are given in Sec-
tion 3.5.1. Throughout this thesis, these settings will also be used for all the
other experiments in the later chapters to maintain consistency between
results. In Section 3.5.2 some of the state-of-the-art transfer optimisation
methods for GP and GA are selected. These algorithms are utilised for
solving UCARP and their performance is compared against GPHH with-
out any knowledge transfer. The main purpose of Section 3.5.2 is to gain an
insight on the potential of existing methods for solving UCARP and iden-
tify the best available algorithms against which our proposed algorithms
will be compared. After selecting the best existing methods, their perfor-
mance will be compared against the performance of FreqSub, PPTGP and
ContribSub in Sections 3.5.4, 3.5.5 and 3.5.6 respectively.
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Table 3.1: The transfer scenarios used in the experiments

Scn. Source Instance Target Instance Sim.

1 Uval4A with 2 vehicles Ugdb17 with 3 vehicles 0.46
2 Ugdb17 with 5 vehicles Ugdb12 with 5 vehicles 0.46
3 Ugdb17 with 5 vehicles Ugdb12 with 7 vehicles 0.48
4 Ugdb17 with 5 vehicles Ugdb12 with 8 vehicles 0.49
5 Uval6B with 5 vehicles Ugdb15 with 3 vehicles 0.56
6 Ugdb17 with 5 vehicles Ugdb11 with 3 vehicles 0.57
7 Ugdb17 with 5 vehicles Ugdb11 with 4 vehicles 0.59
8 Ugdb17 with 5 vehicles Ugdb11 with 5 vehicles 0.61
9 Uegl-e1-C with 8 vehicles Ugdb13 with 5 vehicles 0.65
10 Uval4A with 2 vehicles Ugdb6 with 5 vehicles 0.65
11 Uval4A with 2 vehicles Ugdb6 with 4 vehicles 0.66
12 Ugdb23 with 10 vehicles Ugdb12 with 5 vehicles 0.67
13 Ugdb23 with 10 vehicles Ugdb12 with 7 vehicles 0.69
14 Ugdb23 with 10 vehicles Ugdb12 with 8 vehicles 0.7
15 Uval6B with 5 vehicles Ugdb6 with 5 vehicles 0.7
16 Ugdb21 with 5 vehicles Ugdb5 with 4 vehicles 0.76
17 Ugdb4 with 4 vehicles Ugdb4 with 2 vehicles 0.89
18 Ugdb7 with 5 vehicles Ugdb1 with 6 vehicles 0.9
19 Ugdb4 with 4 vehicles Ugdb4 with 6 vehicles 0.9
20 Ugdb3 with 5 vehicles Ugdb3 with 7 vehicles 0.91
21 Ugdb4 with 4 vehicles Ugdb4 with 3 vehicles 0.91
22 Ugdb1 with 5 vehicles Ugdb1 with 3 vehicles 0.92
23 Ugdb6 with 5 vehicles Ugdb7 with 6 vehicles 0.92
24 Ugdb3 with 5 vehicles Ugdb3 with 3 vehicles 0.92
25 Ugdb7 with 5 vehicles Ugdb7 with 7 vehicles 0.92
26 Ugdb7 with 5 vehicles Ugdb7 with 3 vehicles 0.93
27 Ugdb6 with 5 vehicles Ugdb6 with 3 vehicles 0.93
28 Ugdb1 with 5 vehicles Ugdb1 with 7 vehicles 0.93
29 Ugdb1 with 5 vehicles Ugdb2 with 7 vehicles 0.93
30 Ugdb2 with 6 vehicles Ugdb6 with 6 vehicles 0.94
31 Ugdb3 with 5 vehicles Ugdb3 with 6 vehicles 0.94
32 Ugdb5 with 6 vehicles Ugdb5 with 4 vehicles 0.94
33 Ugdb5 with 6 vehicles Ugdb5 with 8 vehicles 0.94
34 Ugdb2 with 6 vehicles Ugdb2 with 4 vehicles 0.94
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Continuation of Table 3.1

Scn. Source Instance Target Instance Sim.

35 Ugdb6 with 5 vehicles Ugdb6 with 7 vehicles 0.94
36 Ugdb4 with 4 vehicles Ugdb4 with 5 vehicles 0.94
37 Ugdb21 with 6 vehicles Ugdb21 with 4 vehicles 0.95
38 Ugdb7 with 5 vehicles Ugdb7 with 4 vehicles 0.95
39 Ugdb2 with 6 vehicles Ugdb2 with 8 vehicles 0.95
40 Ugdb6 with 5 vehicles Ugdb6 with 4 vehicles 0.95
41 Ugdb6 with 5 vehicles Ugdb6 with 6 vehicles 0.96
42 Ugdb21 with 6 vehicles Ugdb21 with 5 vehicles 0.97
43 Ugdb11dm2 with 5 vehicles Ugdb11dm1 with 5 vehicles 0.98
44 Uval8A with 3 vehicles Uval8Adm1 with 3 vehicles 0.99
45 Uval5Adm1 with 3 vehicles Uval5Adm2 with 3 vehicles 0.99

3.5.1 Parameter Settings

The set of GP terminals are given in Table 3.2 and Table 3.3 presents the
GP parameters for solving UCARP. The settings in Table 3.3 are commonly
used in the UCARP literature [145, 163], which makes this study consistent
and comparable with them. In our function set, the division operator is
protected and returns 1 if its denominator is zero.

In our experiments, we assume that for each transfer scenario in Table
3.1, first the source instance is solved with the vanilla GPHH without using
any form of knowledge transfer. Based on the GP settings in Table 3.3, this
will result in 50 sets of GP individuals, each of which contains 1024 indi-
viduals of the population in each generation. These populations are con-
sidered the knowledge source that each examined transfer optimisation
algorithm will utilise this knowledge source based on its configurations
to train routing policies for the corresponding target instance. For fitness
evaluation during the training, 5 samples are taken are rotated at each
generation to reduce the change of overfitting [145]. To test the trained
policies, 500 samples are used. Each algorithm is run 30 times indepen-
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Table 3.2: The GP terminal set for solving UCARP.

Terminal Description

CFH Cost From Here
CFR1 Cost From the closest alternative Route
CR Cost to Refill
CTD Cost To Depot
CTT1 Cost To the closest Task
DEM DEMand
DEM1 DEMand of the closest unserved task
FRT Fraction of Remaining Tasks
FUT Fraction of Unassigned Tasks
FULL FULLness (vehicle load over capacity)
RQ Remaining Capacity

RQ1
Remaining Capacity of closest
alternative route

SC Serving Cost
ERC Ephemeral Random Constant number
DC Deadheading Cost

Table 3.3: The GP parameter settings.

Parameter Value Function Description

Population 1024 + Addition
Crossover rate 80% − Subtraction
Mutation rate 15% ∗ Multiplication
Reproduction rate 5% / Protected Division
Number of generations 50 min Minimum of two arguments
Number of Elitists 10 max Maximum of two arguments
Max depth 8

dently. To compare the algorithms, the Friedman’s test with a significance
level of α = 0.05 is utilised in all experiments.
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3.5.2 Compared Algorithms

To assess the performance of the proposed algorithms better, we select a
set of existing transfer optimisation methods from the literature and com-
pare the performance of the proposed algorithms against them. When
selecting the existing algorithms for comparing against the proposed al-
gorithms, our options were constrained by the fact that the literature of
transfer optimisation algorithms for GP is still an emerging field of re-
search. Although transfer optimisation for evolutionary algorithms is a
broad and rich area of research, the number of available methods for GP
is unfortunately very limited. On the other hand, although there exist a
plethora of existing transfer optimisation methods for algorithms other
than GP, the majority of these algorithms are developed for specific prob-
lems or particular type of evolutionary algorithm such as GA. Adapting
these existing algorithms to the context of GP for UCARP is not usually
straightforward. Accordingly, the selected algorithms are BestGen [62],
FullTree [62], GATL [129], SubTree [62] and TLGP [116]. Table 3.4 presents
the (sub-)tree selection mechanism of these algorithms.

3.5.3 Effectiveness of Existing Algorithms

The mean and standard deviation of 30 independent runs of the compared
existing algorithms from Table 3.4 are given Table 3.5. In this table, the
best average performance is marked in boldface. A cursory look at the
table indicate that, although some algorithms were able to perform gener-
ally better than GPHH in some scenarios, none of the them were able to
improve the performance of GPHH in the majority of scenarios. To inves-
tigate deeper, we consider the Friedman test.
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Table 3.4: The compared GP with knowledge transfer.

Algorithm Knowledge transfer mechanism

GATL [129] Select the best and median trees of each generation into a pool.
Choose randomly from the pool to initialise the target GP popula-
tion.

BestGen-k [62] Select k of the best individuals of each generation into a pool.
Choose randomly from the pool to initialise the target GP popula-
tion.

FullTree [62] Select the individuals of the final population into a pool. Choose
randomly from the pool to initialise the target GP population.

SubTree [62] Select a random subtree of each individual of final population into
a pool. Choose randomly from the pool to initialise the target GP
population.

TLGPC [116] Select random subtrees of the better-than-average final individuals
into a pool. During initialisation and mutation, create a root or sub-
tree randomly or select randomly from the pool.

Table 3.5: Test performance of 30 independent runs of the compared algo-
rithms (mean ± std)

Scn. GPHH GATL BestGen-1 BestGen-2 FullTree SubTree TLGPC
[129] [62] [62] [62] [62] [116]

1 91.2±0.1 91.2±0.1 91.2±0.1 91.2±0.1 91.2±0.1 91.2±0.1 91.2±0.1
2 551.0±10.3 550.8±8.1 551.1±10.4 553.7±8.8 553.8±10.3 555.5±9.1 552.7±9.0
3 598.6±8.8 599.6±9.5 600.5±11.6 603.6±12.6 602.9±8.5 604.1±13.9 603.5±10.3
4 639.5±11.3 636.0±10.7 640.6±12.1 640.6±13.7 647.4±12.6 646.7±16.4 638.5±13.1
5 58.2±0.1 58.2±0.1 58.3±0.1 58.2±0.1 58.3±0.1 58.2±0.1 58.3±0.1
6 424.8±8.5 424.9±8.8 423.9±8.6 424.4±8.1 423.8±8.1 421.8±7.0 426.8±9.1
7 432.1±7.1 430.0±6.3 431.2±6.3 431.3±6.5 431.0±6.7 430.8±6.8 432.9±7.2
8 432.6±5.5 430.6±6.7 432.7±4.8 432.2±6.1 432.3±5.1 431.6±6.5 432.9±4.4
9 576.2±3.9 575.8±4.2 576.8±3.7 576.9±3.8 576.6±6.5 577.0±3.8 575.9±4.1

10 340.5±4.7 338.1±4.2 337.5±3.1 338.5±2.1 338.2±3.6 340.0±4.7 338.7±3.1
11 347.2±6.1 347.1±6.0 345.9±4.8 345.9±5.3 348.0±4.9 347.4±6.0 349.3±6.4



78 CHAPTER 3. TRANSFER OPTIMISATION FOR SOLVING UCARP

Continuation of Table 3.5

Scn. GPHH GATL BestGen-1 BestGen-2 FullTree SubTree TLGPC
[129] [62] [62] [62] [62] [116]

12 551.0±10.3 553.7±10.5 551.8±10.1 554.5±10.3 559.1±11.7 554.1±10.2 554.4±11.4
13 598.6±8.8 598.5±7.5 597.6±8.2 597.2±7.6 604.0±11.5 603.8±13.3 608.7±11.2
14 639.5±11.3 640.1±12.2 639.0±11.9 639.0±9.5 645.7±17.4 640.1±12.6 640.0±11.5
15 340.5±4.7 339.8±3.5 339.9±5.0 339.4±3.9 338.2±3.6 340.4±3.9 340.4±5.1
16 444.4±4.7 445.0±7.6 443.9±6.5 445.5±5.2 449.2±9.3 446.0±6.7 445.6±6.4
17 324.3±6.2 323.3±5.2 321.5±5.4 324.0±4.3 325.1±5.6 325.0±7.8 325.0±5.2
18 360.3±3.1 359.7±3.7 359.4±3.9 359.2±4.6 359.2±4.2 361.1±3.7 360.9±3.0
19 358.3±2.6 358.3±3.1 358.8±2.7 360.1±6.9 361.0±6.4 358.6±3.8 358.5±3.7
20 359.0±1.8 358.5±1.8 358.6±1.9 358.7±1.8 359.1±1.9 359.4±1.8 359.2±1.6
21 340.8±4.4 340.8±2.2 339.4±4.7 339.7±3.8 340.0±4.3 342.0±3.2 341.0±3.2
22 351.9±3.5 351.6±2.5 352.5±3.5 352.2±4.4 351.9±3.4 353.2±3.7 352.1±3.8
23 356.6±1.6 356.4±1.5 356.1±1.3 356.6±1.6 356.6±1.6 356.7±1.7 356.7±1.7
24 310.9±0.5 311.0±0.3 310.7±0.8 310.9±0.6 310.4±1.0 311.0±0.6 310.7±2.3
25 389.2±0.2 389.1±0.2 389.2±0.2 389.2±0.2 389.2±0.1 389.1±0.2 389.1±0.2
26 363.1±2.8 363.1±3.2 363.4±2.6 363.6±2.7 363.3±3.1 363.7±2.5 363.3±4.0
27 342.1±6.2 342.5±7.8 340.9±8.0 341.5±5.8 342.4±7.1 342.4±5.9 343.9±6.8
28 382.0±5.5 381.0±4.6 381.3±8.0 384.4±5.6 386.8±6.4 383.3±6.9 381.2±7.5
29 382.8±3.3 383.9±2.6 382.7±4.8 384.1±5.2 387.7±6.4 385.1±4.9 383.7±6.4
30 351.5±2.5 351.1±2.2 351.7±1.2 351.4±2.1 351.4±1.4 352.1±2.0 351.5±1.3
31 326.0±4.7 325.2±4.0 325.2±5.0 323.6±6.2 325.6±4.7 326.8±4.3 326.2±4.8
32 444.4±4.7 443.7±5.6 442.0±7.3 442.6±7.6 444.3±8.3 445.7±8.6 446.2±7.6
33 448.2±0.5 449.0±2.3 448.2±0.9 448.4±1.0 450.7±6.9 449.0±2.2 448.8±1.5
34 384.6±4.4 387.1±6.0 386.9±5.0 386.7±5.1 387.0±4.4 388.2±5.4 386.2±5.2
35 369.3±1.8 369.3±2.2 369.8±3.8 369.8±2.3 370.2±4.0 369.3±2.3 369.5±2.7
36 321.4±5.2 322.7±4.2 323.8±5.1 323.0±3.8 323.5±4.8 324.4±5.2 325.2±5.7
37 166.2±2.0 166.1±1.7 165.2±1.5 165.5±1.6 165.7±2.1 165.8±1.8 165.8±2.2
38 376.1±7.6 381.2±7.0 377.8±7.5 378.8±7.9 380.8±6.7 382.3±8.8 378.7±5.6
39 415.7±9.2 415.5±7.2 414.3±8.9 415.0±5.2 417.8±6.5 418.8±8.5 417.2±6.3
40 347.2±6.1 347.5±5.2 345.8±4.4 347.6±4.9 349.7±10.1 349.2±7.0 350.3±11.5
41 351.5±2.5 351.4±2.7 352.0±2.3 351.8±1.7 352.0±1.8 352.6±2.5 351.9±3.9
42 165.9±1.8 165.6±1.7 165.7±1.6 165.7±1.5 165.2±1.4 165.4±1.4 165.7±1.7
43 462.6±6.0 455.6±8.9 460.2±5.4 458.9±6.7 460.5±4.8 460.2±7.1 461.3±6.9
44 426.6±3.3 427.3±1.6 427.0±2.6 426.8±2.6 427.8±1.6 427.2±2.0 428.3±0.4
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Continuation of Table 3.5

Scn. GPHH GATL BestGen-1 BestGen-2 FullTree SubTree TLGPC
[129] [62] [62] [62] [62] [116]

45 499.0±3.9 496.3±-1.0 497.6±4.4 497.1±5.3 498.7±4.9 499.9±5.5 496.1±-1.0

Rank 3.57 2.92 3.06 3.49 4.81 5.34 4.81

Friedman’s p-value 1.1e-16

The last two rows of the table show the p-value of the test and the rank
that the test gives to each algorithm. The p-value indicate that there is
a significant difference between the results. To pinpoint the difference,
the Conover post-hoc test [49] is conducted on the results and the ob-
tained p-values are presented in Table 3.6 after being adjusted with the
Benjamini-Hochberg method [25]. Investigating Table 3.6, we notice that
none of BestGen-1, BestGen-2 and GATL are significantly different from
GPHH. On the othe hand, the difference between GPHH and FullTree,
SubTree and TLGPC is significant. Considering the rank of the algorithms
in Table 3.5, we note that the act of knowledge transfer has decreased the
performance of GPHH significantly, which indicates a negative transfer of
knowledge. This effect can also be seen in the convergence curve of the
algorithms.

Table 3.6: Adjusted p-value of the pairwise comparison of existing algo-
rithms

GATL BestGen-1 BestGen-2 FullTree SubTree TLGPC

GPHH 0.24 0.30 0.92 0.01 0 0.01
GATL – 0.89 0.28 0 0 0
BestGen-1 – – 0.33 0 0 0
BestGen-2 – – – 0.01 0 0.01
FullTree – – – – 0.33 0.92
SubTree – – – – – 0.30
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(a) From Ugdb17 with 5 vehicles to
Ugdb12 with 7 vehicles (Scn. 3)

(b) From Ugdb23 with 10 vehicles to
Ugdb12 with 5 vehicles (Scn. 12)

(c) From Ugdb3 with 5 vehicles to Ugdb3
with 6 vehicles (Scn. 31)

(d) From Ugdb2 with 6 vehicles to Ugdb2
with 4 vehicles (Scn. 34)

Fig. 3.2 Convergence curve of GPHH and some existing knowledge
transfer methods.

Fig. 3.2 shows the convergence curves of the average test performance
of the evolved routing policies on the test scenarios across the 30 indepen-
dent runs. The figure clearly shows the negative effect of the transferred
knowledge. From the figures, we can see that in some scenarios, some of
the algorithms were able to give GP a better initial state (e.g. FullTree in
Fig. 3.2d). However, this superiority did not last for very long and after a
few generations, their performance was similar to GPHH or even worse.

Figure 3.3 presents the distribution of the solutions obtained with each
of the existing algorithms, in the form of violin plots. These plots also
confirm the earlier observations. As is evident, the distributions of all al-
gorithms are very similar to each other and GPHH and in some cases,
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(a) From Ugdb17 with 5 vehicles to
Ugdb12 with 8 vehicles (Scn. 4)

(b) From Ugdb23 with 10 vehicles to
Ugdb12 with 5 vehicles (Scn. 12)

(c) From Ugdb3 with 5 vehicles to Ugdb3
with 6 vehicles (Scn. 30)

(d) From Ugdb2 with 6 vehicles to Ugdb2
with 4 vehicles (Scn. 35)

Fig. 3.3 The distribution of solutions found with GPHH and some exist-
ing knowledge transfer methods.

e.g. FullTree in Fig. 3.3b, the performance is even worse than the case of
GP without knowledge transfer. The violin plots of other scenarios also
showed similar patterns.

Overall, the results in Tables 3.5–3.6 and figures 3.2–3.3 indicate that ex-
isting transfer optimisation algorithms are not very effective for handling
scenario changes of UCARP. In Sections 3.5.4–3.5.6 we will investigate if it
is possible to improve the quality of the knowledge transfer through intro-
ducing more informed methods for selecting the transferable (sub-)trees
that were introduced in Subsections 3.4.1–3.4.3.
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3.5.4 Effectiveness of Frequent Sub-Tree Transfer

As was discussed in Section 3.4.1, the sub-trees that are frequently recre-
ated by GP during solving the source problem may contain important
genetic materials that GP reused them often. In this section, we investi-
gate the performance the proposed three FreqSub methods in Section 3.4.1.
Although all existing algorithms showed similar performances to GPHH
without knowledge transfer, GATL and BestGen-1 showed slightly better
performances in terms of Friedman rank and hence, they are selected from
the body of existing algorithms and its performance is compared against
FreqSub.

Table 3.7 presents the performance of the compared algorithms in terms
of the average total cost of 30 independent runs.

Table 3.7: Test performance of 30 independent runs of the FreqSub algo-
rithm (mean ± std)

Scn. GPHH GATL BestGen-1 FreqSub-All FreqSub-Root FreqSub-Subtree
[129] [62]

1 91.2±0.1 91.2±0.1 91.2±0.1 91.2±0.1 91.2±0.1 91.2±0.1
2 551.0±10.3 550.8±8.1 551.1±10.4 554.5±9.6 552.0±10.9 552.1±10.4
3 598.6±8.8 599.6±9.5 600.5±11.6 604.6±10.5 602.5±8.1 604.8±11.3
4 639.5±11.3 636.0±10.7 640.6±12.1 647.3±15.1 651.2±15.6 647.9±12.9
5 58.2±0.1 58.2±0.1 58.3±0.1 58.3±0.1 58.2±0.2 58.2±0.1
6 424.8±8.5 424.9±8.8 423.9±8.6 422.5±8.8 425.3±8.2 425.6±9.4
7 432.1±7.1 430.0±6.3 431.2±6.3 433.6±6.6 432.9±6.9 431.4±7.6
8 432.6±5.5 430.6±6.7 432.7±4.8 433.1±5.4 432.4±4.5 433.2±5.7
9 576.2±3.9 575.8±4.2 576.8±3.7 577.5±5.0 576.4±4.0 576.4±4.1

10 340.5±4.7 338.1±4.2 337.5±3.1 339.8±4.3 338.3±3.4 339.1±4.6
11 347.2±6.1 347.1±6.0 345.9±4.8 348.3±6.1 349.2±7.6 348.6±6.1
12 551.0±10.3 553.7±10.5 551.8±10.1 556.3±11.2 554.3±12.0 553.2±10.0
13 598.6±8.8 598.5±7.5 597.6±8.2 603.2±14.8 606.7±15.4 604.6±11.4
14 639.5±11.3 640.1±12.2 639.0±11.9 642.3±11.1 640.1±12.6 642.3±13.4
15 340.5±4.7 339.8±3.5 339.9±5.0 338.9±4.9 339.8±4.8 340.4±4.0
16 444.4±4.7 445.0±7.6 443.9±6.5 448.2±6.8 448.3±7.8 447.5±7.4



3.5. EXPERIMENTAL STUDIES 83

Continuation of Table 3.7

Scn. GPHH GATL BestGen-1 FreqSub-All FreqSub-Root FreqSub-Subtree
[129] [62]

17 324.3±6.2 323.3±5.2 321.5±5.4 324.1±5.0 324.6±5.7 325.9±5.6
18 360.3±3.1 359.7±3.7 359.4±3.9 360.4±4.6 359.9±3.6 359.4±4.3
19 358.3±2.6 358.3±3.1 358.8±2.7 361.2±5.6 363.2±7.6 360.1±4.3
20 359.0±1.8 358.5±1.8 358.6±1.9 359.2±1.6 359.3±2.0 359.3±1.7
21 340.8±4.4 340.8±2.2 339.4±4.7 339.8±4.6 340.0±3.8 342.0±3.2
22 351.9±3.5 351.6±2.5 352.5±3.5 352.7±3.8 352.9±4.2 353.4±4.4
23 356.6±1.6 356.4±1.5 356.1±1.3 356.5±1.6 356.5±1.6 356.7±1.7
24 310.9±0.5 311.0±0.3 310.7±0.8 310.8±0.8 310.0±2.7 310.7±0.9
25 389.2±0.2 389.1±0.2 389.2±0.2 389.2±0.2 389.2±0.2 389.1±0.2
26 363.1±2.8 363.1±3.2 363.4±2.6 362.3±3.6 363.2±2.7 363.9±1.7
27 342.1±6.2 342.5±7.8 340.9±8.0 343.0±6.4 343.3±9.0 342.6±6.3
28 382.0±5.5 381.0±4.6 381.3±8.0 385.0±5.7 385.1±6.4 386.1±7.0
29 382.8±3.3 383.9±2.6 382.7±4.8 383.1±4.4 384.8±6.2 385.1±5.4
30 351.5±2.5 351.1±2.2 351.7±1.2 351.5±1.1 350.5±2.8 352.0±1.6
31 326.0±4.7 325.2±4.0 325.2±5.0 326.6±5.1 325.6±4.1 327.4±3.5
32 444.4±4.7 443.7±5.6 442.0±7.3 445.0±9.3 446.9±8.2 442.8±7.4
33 448.2±0.5 449.0±2.3 448.2±0.9 449.8±3.4 450.3±3.4 449.7±2.8
34 384.6±4.4 387.1±6.0 386.9±5.0 387.4±6.2 388.6±5.0 387.1±5.6
35 369.3±1.8 369.3±2.2 369.8±3.8 369.5±2.2 370.7±3.6 370.2±4.1
36 321.4±5.2 322.7±4.2 323.8±5.1 324.0±4.6 325.3±6.1 325.3±6.4
37 166.2±2.0 166.1±1.7 165.2±1.5 166.1±1.9 166.2±2.1 165.7±1.5
38 376.1±7.6 381.2±7.0 377.8±7.5 380.8±6.7 380.1±7.2 380.6±7.8
39 415.7±9.2 415.5±7.2 414.3±8.9 417.2±7.5 417.0±6.9 415.9±10.7
40 347.2±6.1 347.5±5.2 345.8±4.4 352.1±7.3 348.0±5.8 349.7±7.6
41 351.5±2.5 351.4±2.7 352.0±2.3 351.7±1.4 352.3±3.2 352.4±3.7
42 165.9±1.8 165.6±1.7 165.7±1.6 165.6±1.2 165.9±1.3 166.0±1.6
43 462.6±6.0 457.4±7.0 460.2±5.4 461.5±5.2 458.3±7.3 462.7±4.9
44 426.6±3.3 427.3±2.0 427.0±2.6 427.4±2.1 427.7±2.5 427.1±1.4
45 499.0±3.9 498.5±4.4 497.6±4.4 498.2±4.6 499.2±4.8 499.5±4.8

Rank 2.92 2.43 2.34 4.23 4.46 4.41

Friedman’s p-value 4.14e-33
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As is given in Table 3.7, the Friedman test does not rank any of the
FreqSub algorithms better than GPHH, BestGen-1 or GATL. The p-value
of the Friedman test indicate that there exist significant differences in the
results. Table 3.8 present the p-value of the paired-wise comparison of the
algorithms, adjusted by the Benjamini-Hochberg method [25].

One evident observation from Table 3.8 is that the difference between
the performances of FreqSub methods and GPHH is significant. Since the
test ranked FreqSub worse than GPHH in Table 3.7, it can be concluded
that FreqSub performed significantly worse than GPHH. Another obser-
vation in Table 3.8 is the performance of GATL and BestGen-1 is signif-
icantly better than FreqSub. This is surprising in the sense that FreqSub
selects the sub-trees from high-quality individuals. On the other hand,
these methods collect individuals from every source generation and as a
result, most of the individuals they collect will not have a high quality. But
nevertheless, these algorithms perform better than FreqSub. This observa-
tion will be investigated further in Section 3.5.7. Another interesting point
to note is that there is no significant difference between all three variants
of FreqSub.

The convergence curves of the algorithms in Figure 3.4 also depict
these observations clearly. The violin plots of the solutions found with
algorithm are given in Fig. 3.5, which also confirm the ineffectiveness of
the algorithms. The convergence plots of the algorithms in most of the

Table 3.8: Adjusted p-value of the pairwise comparison of FreqSub algo-
rithm

GATL BestGen-1 FreqSub-All FreqSub-Root FreqSub-Subtree

GPHH 0.78 0.61 0.01 0 0
GATL – 0.78 0 0 0
BestGen-1 – – 0 0 0
FreqSub-All – – – 0.78 0.78
FreqSub-Root – – – – 0.78
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(a) From Ugdb1 with 5 vehicles to Ugdb1
with 7 vehicles (Scn. 28)

(b) From Ugdb4 with 4 vehicles to Ugdb4
with 6 vehicles (Scn. 19)

(c) From Ugdb1 with 5 vehicles to Ugdb2
with 7 vehicles (Scn. 29)

(d) From Ugdb4 with 4 vehicles to Ugdb4
with 5 vehicles (Scn. 36)

Fig. 3.4 Convergence curve of FreqSub and some existing knowledge
transfer methods.

plots in Figure 3.4, particularly Figures 3.4c and 3.4d, reveal more interest-
ing features. As is evident from the figures, the use of transfer optimisa-
tion has helped to create better initial population compared to the case in
which there is no knowledge transfer. The extent to which the improve-
ment has happened is different but in almost all cases it is present. The
overall improvements in the quality of the initial population indicate the
potential of transfer optimisation for improving the performance of GPHH
for solving UCARP. However, after a few generations, the performance of
these algorithms deteriorate quickly and at the end of their evolutions, the
performance is clearly worse than GPHH. This is an indicator that other
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(a) From Ugdb17 with 5 vehicles to
Ugdb12 with 8 vehicles (Scn. 4)

(b) From Ugdb1 with 5 vehicles to Ugdb2
with 7 vehicles (Scn. 15)

(c) From G21 with 6 vehicles to Ugdb5
with 4 vehicles (Scn. 16)

(d) From Ugdb2 with 6 vehicles to Ugdb2
with 4 vehicles (Scn. 35)

Fig. 3.5 The distribution of solutions found with FreqSub and some ex-
isting knowledge transfer methods.

confounding factors exist which reduce or compromise the effectiveness
of knowledge transfer.

The possible reasons of the above observations can be as follows. The
sub-trees of the roots are so large, and are almost unlikely to appear more
than once in the final population. Thus, using frequency to choose the root
sub-trees is very similar to randomly choosing them (e.g. most of them
have frequency of 1). If considering all the sub-trees, then the small sub-
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trees are more likely to have higher frequency, and tend to be selected.
However, the frequency can be misleading, as the occurrences can be in
the redundant branches. In this case, the contribution-based measure can
effectively handle the misleading selections, and identify the truly impor-
tant sub-trees regardless of their frequency. Therefore, the contribution-
based transfer methods can work well on both the pools of all the sub-
trees and the root sub-trees. Finally, another potential reason for the sub
par performance of FreqSub could be that the extracted sub-trees from
a knowledge source may not have enough information about the search
space of the source problem. This possibility will be investigated in Sec-
tion 3.5.6.

3.5.5 Effectiveness of ContribSub

As it was explained in Section 3.4.2, the existence of introns in GP trees
can mislead the frequency-based approach proposed in Section 3.4.1. The
contribution-based approach, ContribSubGP, in Section 3.4.2 can handle
this issue and effectively discard introns. This hypothesis is investigated
in this Section through experimental studies. For the sake of comparison
with the body of existing literature, we also select the GATL and BestGen-1
methods and compare them with ContribSubGP.

Table 3.9: Test performance of 30 independent runs of the ContribSubGP
algorithm (mean ± std)

Scn. GPHH GATL BestGen-1 ContribSubGP-All ContribSubGP-Root
[129] [62]

1 91.2±0.1 91.2±0.1 91.2±0.1 91.2±0.1 91.2±0.1
2 551.0±10.3 550.8±8.1 551.1±10.4 552.7±8.7 550.8±10.5
3 598.6±8.8 599.6±9.5 600.5±11.6 597.8±9.6 602.4±9.1
4 639.5±11.3 636.0±10.7 640.6±12.1 640.4±13.5 640.2±12.1
5 58.2±0.1 58.2±0.1 58.3±0.1 58.3±0.1 58.2±0.1
6 424.8±8.5 424.9±8.8 423.9±8.6 425.1±8.3 421.2±5.5
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Continuation of Table 3.9

Scn. GPHH GATL BestGen-1 ContribSubGP-All ContribSubGP-Root
[129] [62]

7 432.1±7.1 430.0±6.3 431.2±6.3 431.4±7.4 431.7±5.6
8 432.6±5.5 430.6±6.7 432.7±4.8 432.3±6.3 434.0±4.6
9 576.2±3.9 575.8±4.2 576.8±3.7 575.7±4.1 576.4±4.1
10 340.5±4.7 338.1±4.2 337.5±3.1 337.8±3.9 339.5±4.7
11 347.2±6.1 347.1±6.0 345.9±4.8 349.0±5.6 346.6±6.2
12 551.0±10.3 553.7±10.5 551.8±10.1 555.1±11.0 549.5±9.2
13 598.6±8.8 598.5±7.5 597.6±8.2 610.9±14.1 603.8±12.5
14 639.5±11.3 640.1±12.2 639.0±11.9 650.0±14.6 640.1±12.1
15 340.5±4.7 339.8±3.5 339.9±5.0 338.8±4.6 338.6±5.0
16 444.4±4.7 445.0±7.6 443.9±6.5 449.1±9.4 445.3±7.1
17 324.3±6.2 323.3±5.2 321.5±5.4 323.5±5.9 322.3±5.6
18 360.3±3.1 359.7±3.7 359.4±3.9 358.7±5.3 357.6±4.6
19 358.3±2.6 358.3±3.1 358.8±2.7 363.1±7.6 358.8±3.4
20 359.0±1.8 358.5±1.8 358.6±1.9 359.0±1.3 358.8±1.4
21 340.8±4.4 340.8±2.2 339.4±4.7 340.3±3.8 343.4±4.4
22 351.9±3.5 351.6±2.5 352.5±3.5 353.0±4.2 352.5±3.5
23 356.6±1.6 356.4±1.5 356.1±1.3 356.2±1.4 356.6±1.7
24 310.9±0.5 311.0±0.3 310.7±0.8 310.6±1.0 310.7±0.9
25 389.2±0.2 389.1±0.2 389.2±0.2 389.1±0.2 389.1±0.2
26 363.1±2.8 363.1±3.2 363.4±2.6 363.5±3.2 363.0±2.6
27 342.1±6.2 342.5±7.8 340.9±8.0 341.4±5.1 341.2±5.0
28 382.0±5.5 381.0±4.6 381.3±8.0 386.1±6.2 384.2±6.5
29 382.8±3.3 383.9±2.6 382.7±4.8 384.6±5.0 383.4±6.6
30 351.5±2.5 351.1±2.2 351.7±1.2 351.2±1.6 351.9±1.7
31 326.0±4.7 325.2±4.0 325.2±5.0 324.8±4.9 326.7±4.7
32 444.4±4.7 443.7±5.6 442.0±7.3 445.2±6.4 446.8±7.5
33 448.2±0.5 449.0±2.3 448.2±0.9 449.1±1.9 448.5±0.8
34 384.6±4.4 387.1±6.0 386.9±5.0 387.3±5.7 386.6±4.4
35 369.3±1.8 369.3±2.2 369.8±3.8 369.7±2.8 368.5±2.1
36 321.4±5.2 322.7±4.2 323.8±5.1 324.9±5.2 324.1±5.0
37 166.2±2.0 166.1±1.7 165.2±1.5 165.9±2.0 165.6±1.7
38 376.1±7.6 381.2±7.0 377.8±7.5 381.6±6.7 377.1±8.2
39 415.7±9.2 415.5±7.2 414.3±8.9 416.3±6.8 415.8±6.6
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Table 3.10: Adjusted p-value of the pairwise comparison of the ContribGP
algorithm

GATL BestGen-1 ContribSubGP-All ContribSubGP-Root

GPHH 0.21 0.13 0.12 0.86
GATL – 0.770727 0.003 0.25
BestGen-1 – – 0.001 0.15
ContribSubGP-All – – – 0.11

Continuation of Table 3.9

Scn. GPHH GATL BestGen-1 ContribSubGP-All ContribSubGP-Root
[129] [62]

40 347.2±6.1 347.5±5.2 345.8±4.4 347.3±5.6 347.4±6.4
41 351.5±2.5 351.4±2.7 352.0±2.3 351.5±2.4 351.9±1.7
42 165.9±1.8 165.6±1.7 165.7±1.6 165.9±1.7 165.8±1.7
43 462.6±6.0 457.4±7.0 460.2±5.4 461.2±5.4 460.7±5.6
44 426.6±3.3 427.3±2.0 427.0±2.6 428.1±2.2 427.0±1.5
45 499.0±3.9 498.5±4.4 497.6±4.4 500.4±7.2 498.6±4.4

Rank 3.1 2.63 2.52 3.72 3.02

Friedman’s p-value 0.003

The average performance of 30 independent runs of the compared al-
gorithms are given in Table 3.9. Table 3.10 also presents the adjusted p-
values of the pairwise comparisons of the algorithms. Similar to the Freq-
Sub algorithm, ContribGP ranked worse than GPHH but in this case, the
algorithm is not significantly worse than GPHH. This indicates that the
contribution measure is at least more effective than the frequency measure
for evaluating the importance of sub-trees. Another observation from Ta-
ble 3.9 is that ContribSubGP-Root is ranked better than ContribSubGP-All
and it is even ranked slightly better than GPHH. This can be attributed
to the fact root sub-trees have more genetic materials and therefore, they
contain more reusable information.
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(a) From Ugdb1 with 5 vehicles to Ugdb1
with 7 vehicles (Scn. 28)

(b) From Ugdb2 with 6 vehicles to Ugdb6
with 6 vehicles (Scn. 30)

(c) From Ugdb21 with 6 vehicles to
Ugdb21 with 5 vehicles (Scn. 42)

(d) From val8A with 3 vehicles to
val8Adm1 with 3 vehicles (Scn. 44)

Fig. 3.6 Convergence curve of ContribSubGP and some existing knowl-
edge transfer methods.

Figure 3.6 presents the convergence curve of the algorithms for a few
scenarios. This figure also confirms the observation in Table 3.9 about the
sub-par performance of ContribSub algorithm. An important observation
from Figure 3.6 is that, similar to FreqSub, PPTGP and some of the existing
algorithms, has also been able to create good initial populations for GP, as
is clearly evident in Figures 3.6b–3.6d. For the case of Scenario 44, whose
convergence curve is shown in Figure 3.6d, the initial state is significantly
better than the state of GP without any knowledge transfer. However, as
the evolution proceeds, not only the performance of the algorithms does
not improve, for the ContribSub-all algorithm, it degrades significantly.
This is again an indication that the transfer of sub-trees has potential for
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improving the performance but then, during the course of evolution, other
confounding factors may exist that degrades the performance. This issue
will be investigated further in Section 3.5.7.

Comparing the performance of ContribSubGP-Root in Table 3.9 with
the performance of FreqSub-Root in Table 3.7 is also informative. Both
these algorithms consider the immediate sub-trees of the root nodes as the
transferable knowledge. However, ContribSubGP-Root measures the im-
portance of sub-trees with the contribution that they make to the fitness of
their individuals. Consequently, ContribSubGP is more effective at find-
ing the useful sub-trees. As a result, it can be noted that while the perfor-
mance of FreqSub-Root is significantly worse than GPHH, ContribSubGP
has performed slightly, although not significantly, better than GPHH. The
effectiveness of the contribution measure can be examined with the help
of Figure 3.7a.

The Figure 3.7a shows an individual in the best individuals of the fi-
nal population in the source domain of Ugdb8 (i.e. with 10 vehicles). It
contains a sub-tree shown in Figure 3.7b. The sub-tree appeared 11 times
in the individuals and the FreqSub-All method considered it as useful and
transferred it into the target domain. However, a deeper investigation re-
veals that many of the occurrences of this sub-tree are in fact in the redun-
dant branches, and the contribution (calculated by the measure introduced
in [160]) of the sub-tree to its individuals is zero. This indicates that the
sub-tree is actually not useful for transfer. Figure 3.7c shows another more
complex sub-tree that received different opinions from the frequency and
contribution measures. This sub-tree appeared 47 times in the individuals
of the source individuals, and thus was transferred by the Frequent-All
method. However, its contribution to the tree shown in Fig. 3.7a is -47.57.
Thus, the ContribSubGP-All method considered it as a useless sub-tree,
and did not transfer it to the target domain.

Note that the above two sub-trees have complex structures, and are
not easily simplified. Thus, the commonly considered algebraic simplifi-
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(a)

(b) (c)

Fig. 3.7 (a) A GP individual and two of its (b) redundant and (c) detri-
mental subtrees

cation [251, 210] (e.g. a/a = 1) plus frequency measure still cannot effec-
tively detect the important sub-trees for transfer. This demonstrates the
effectiveness of using the contribution-based measure in identifying use-
ful sub-trees.
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3.5.6 Effectiveness of PPT Transfer

In Section 3.4.3, it was pointed out that transferring knowledge through
the transfer of sub-trees may not convey comprehensive information about
the search space of the source problem. Additionally, even the full trees
have the limitation that they are just samples from the distribution of
source solutions. Accordingly, the PPTGP algorithm was proposed in Sec-
tion 3.4.3 for learning the probability distribution of high-quality source
solutions. In this section, we investigate this hypothesis. As in Section
3.5.4, we also consider the GATL and BestGen-1 algorithm from the body
of existing methods too.

Table 3.11 presents the average performance of 30 independent runs
PPTGP and a set of existing algorithms and the adjusted p-values of the
post-hoc pairwise comparisons of the algorithms are given in Table 3.12.

Table 3.11: Test performance of 30 independent runs of the PPTGP algo-
rithm (mean ± std)

Scn. GPHH GATL
[129]

BestGen-1 [62] PPTGP

1 91.2±0.1 91.2±0.1 91.2±0.1 91.2±0.1
2 551.1±10.4 550.8±8.1 551.0±10.3 555.5±7.7
3 600.5±11.6 599.6±9.5 598.6±8.8 601.2±10.8
4 640.6±12.1 636.0±10.7 639.5±11.3 642.9±11.4
5 58.3±0.1 58.2±0.1 58.2±0.1 58.3±0.1
6 423.9±8.6 424.9±8.8 424.8±8.5 427.0±7.7
7 431.2±6.3 430.0±6.3 432.1±7.1 432.6±6.7
8 432.7±4.8 430.6±6.7 432.6±5.5 432.6±4.8
9 576.8±3.7 575.8±4.2 576.2±3.9 577.5±3.5
10 337.5±3.1 338.1±4.2 340.5±4.7 338.1±4.3
11 345.9±4.8 347.1±6.0 347.2±6.1 347.4±5.9
12 551.8±10.1 553.7±10.5 551.0±10.3 555.6±8.2
13 597.6±8.2 598.5±7.5 598.6±8.8 602.7±9.8
14 639.0±11.9 640.1±12.2 639.5±11.3 641.2±13.9
15 339.9±5.0 339.8±3.5 340.5±4.7 340.7±4.0
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Continuation of Table 3.11

Scn. GPHH GATL
[129]

BestGen-1 [62] PPTGP

16 443.9±6.5 445.0±7.6 444.4±4.7 444.4±7.2
17 321.5±5.4 323.3±5.2 324.3±6.2 322.7±6.0
18 359.4±3.9 359.7±3.7 360.3±3.1 359.7±4.1
19 358.8±2.7 358.3±3.1 358.3±2.6 358.6±6.4
20 358.6±1.9 358.5±1.8 359.0±1.8 359.3±1.2
21 339.4±4.7 340.8±2.2 340.8±4.4 340.5±4.1
22 352.5±3.5 351.6±2.5 351.9±3.5 352.0±3.4
23 356.1±1.3 356.4±1.5 356.6±1.6 356.9±1.8
24 310.7±0.8 311.0±0.3 310.9±0.5 311.0±0.5
25 389.2±0.2 389.1±0.2 389.2±0.2 389.2±0.6
26 363.4±2.6 363.1±3.2 363.1±2.8 362.5±3.5
27 340.9±8.0 342.5±7.8 342.1±6.2 341.9±4.8
28 381.3±8.0 381.0±4.6 382.0±5.5 384.4±7.1
29 382.7±4.8 383.9±2.6 382.8±3.3 384.7±5.7
30 351.7±1.2 351.1±2.2 351.5±2.5 351.4±1.9
31 325.2±5.0 325.2±4.0 326.0±4.7 326.2±5.4
32 442.0±7.3 443.7±5.6 444.4±4.7 441.8±7.1
33 448.2±0.9 449.0±2.3 448.2±0.5 448.7±1.0
34 386.9±5.0 387.1±6.0 384.6±4.4 385.5±4.9
35 369.8±3.8 369.3±2.2 369.3±1.8 369.2±2.1
36 323.8±5.1 322.7±4.2 321.4±5.2 325.5±5.6
37 165.2±1.5 166.1±1.7 166.2±2.0 165.5±2.0
38 377.8±7.5 381.2±7.0 376.1±7.6 380.9±8.4
39 414.3±8.9 415.5±7.2 415.7±9.2 414.3±7.8
40 345.8±4.4 347.5±5.2 347.2±6.1 349.0±6.7
41 352.0±2.3 351.4±2.7 351.5±2.5 351.4±1.5
42 165.7±1.6 165.6±1.7 165.9±1.8 165.4±1.6
43 460.2±5.4 457.4±7.0 462.6±6.0 461.0±4.7
44 427.0±2.6 427.3±2.0 426.6±3.3 426.9±2.4
45 497.6±4.4 498.5±4.4 499.0±3.9 499.2±4.8

Rank 2.53 2.14 2.28 3.04

Friedman’s p-value 0.005
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As is evident from Tables 3.11 and 3.12, the performance of PPTGP is
significantly worse than GPHH and all the existing algorithms. This effect
can be seen in the convergence curves of the algorithms in Figure 3.8 and
the violin plots in Figure 3.9.

Looking at the convergence curve of the algorithms in Figure 3.8, it is
noticeable that the initial state of PPTGP is better than other algorithms.
Particularly, the difference is very noticeable in Figures 3.8b and 3.8c. Sim-
ilar to the observation in Sections 3.5.3 and 3.5.4, Figure 3.8 also confirms
the potentials of transfer optimisation for improving GP performance. How-
ever, the fact that the performance of PPTGP deteriorates significantly in-
dicate that there are other factors that inflict the performance. Another
important observation from the tables is that both GATL and BestGen-
1 perform significantly better than PPTGP. What makes this observation
important is the fact that PPTGP is designed to learn the probability distri-
bution of good source GP individuals. Looking at the convergence curves
of PPTGP in Figure 3.8, it can be seen that the algorithm is successful
in this regard, as the initial GP state that it creates is better than GPHH
without knowledge transfer and also other existing methods. GATL and
BestGen-1, on the other hand, do not focus on the quality but instead, they
collect individuals from every GP generation for solving the source prob-
lem. Consequently, although their initial performance was not better than
PPTGP, over time they improved and became better than PPTGP. The rea-
sons for this behaviour will be investigated in Section 3.5.7.

Table 3.12: Adjusted p-value of the pairwise comparison of PPTGP algo-
rithm

GATL BestGen-1 PPTGP

GPHH 0.38 0.18 0.1
GATL – 0.57 0.01
BestGen-1 – – 0
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(a) From Ugdb23 with 10 vehicles to
Ugdb12 with 5 vehicles (Scn. 12)

(b) From Ugdb1 with 5 vehicles to Ugdb1
with 7 vehicles (Scn. 28)

(c) From Ugdb2 with 6 vehicles to Ugdb6
with 6 vehicles (Scn. 30)

(d) From Ugdb4 with 4 vehicles to Ugdb4
with 5 vehicles (Scn. 36)

Fig. 3.8 Convergence curve of PPTGP and some existing knowledge
transfer methods.

The main idea in PPT-based transfer learning is to learn the probabil-
ity distribution of high-quality routing policies from a knowledge source
and reuse it for solving the target problem. Figures 3.10–3.11 presents a
PPT that is extracted from the gdb1, 5 vehicles source. The figure also con-
tains the magnified view of top 2 level of nodes of the PPT. The numbers
inside nodes indicate the probability of selecting corresponding GP func-
tion/terminal at that location and the labels beside each node show the
indexing order defined over this PPT. The probability of missing items is
zero In this work we define the underlying knowledge in the source as
being the probability distribution of good GP individuals, granulated at
the node level. As is seen, in high-quality source solutions, the node at



3.5. EXPERIMENTAL STUDIES 97

(a) From Uval4A with 2 vehicles to
Ugdb17 with 3 vehicles (Scn. 1)

(b) From Ugdb1 with 5 vehicles to Ugdb2
with 7 vehicles (Scn. 15)

(c) From G21 with 6 vehicles to Ugdb5
with 4 vehicles (Scn. 16)

(d) From val5Adm1 with 3 vehicles to
val5Adm2 with 3 vehicles (Scn. 45)

Fig. 3.9 The distribution of solutions found with PPTGP and some ex-
isting knowledge transfer methods.

i = 3 has a categorical distribution with parameters p3,max = 0.06, p3,∗ =

0.54, p3,− = 0.36, p3,min = 0.04.

It is interesting to note that PPTs can capture the relation between GP
items with respect to their position in trees. For example, based on Figures
3.10–3.11, we can see that {max, ∗} are important at node 2 and {max, ∗,−min}
are important at node 4 and therefore, any combination of these sets can be
considered important, specifically between {max}, from node 2 and {∗,−}
from node 4. This type of relation is difficult to capture with methods like
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FullTree and allows for the creation of trees that may not be seen before.
For example, the tree

(((((0.87maxCFH)max(SC − CTD))max(FUT ∗ 0.13))

min(((SC − CTD)min(FUT ∗ (FUT ∗ SC)))− CTD))max

((((0.66maxCFH)max(SC − CTD))max(((RQ− CTD)maxCR)

min(SC ∗ SC))) ∗ (((SC − CTD)min(FUT ∗ (FUT ∗ SC)))

maxCFH)))max((CFDmax(((SC + CFH)− (SC − CTD))

max((SCmin(FRT ∗DC))max(CTT1 ∗ CTD)))) ∗ (RQ−DC))

(3.7)

The tree in Equation 3.7 is one of the trees that is sampled from this PPT
(written in infix notation). With a fitness value of 372.74, this was the best
individual in the first population in target domain. This tree, or similar
trees, was not present in the source domain and therefore, methods like
FullTree could not transfer it. Interestingly, the best individual that FullTree
transferred in this experiment had a fitness value of 380.94.

Looking at the PPT in Figures 3.10–3.11, it is easy to see that the prob-
ability of some GP functions/terminals is zero. Consequently, these items
will not be selected for those nodes when the PPT is sampled. However, it
is possible that the neglected items may have some degree of importance
in a new target domain but our current approach cannot handle this and
we aim to address this issue in future work.
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3.5.7 Further Analysis

The experimental results in Sections 3.5.3 – 3.5.6, revealed a few important
points. In almost all experiments, it was noticed that the act of knowl-
edge transfer has the potential for improving the performance of GP, as is
indicated by the initial state of algorithms. However, in all experiments,
the initial performance gain from the transferred knowledge does not last
for long. This is an indicator that other confounding factors may exist
that negate the good improvement that was gained with the transferred
knowledge. In this section, further investigations are conducted to deter-
mine other factors that can contribute to the quality of knowledge transfer
for solving UCARP with GP. For this, we first investigate the quality of
the knowledge source to determine if any issues could exist in the source.
Next, it will be investigated what issue(s) during the process of solving the
target problem could exist that may contribute to reducing the quality of
knowledge transfer.

Effect of Knowledge Source Quality on Knowledge Transfer

Based on our experimental results, in most cases, the algorithms that trans-
ferred whole GP trees performed better than the sub-tree-based methods.
This is practically evident in the performance of GATL and BestGen-1
methods. These methods performed better than all the proposed algo-
rithms. The common property of these methods is that both of them trans-
fer full trees, rather than sub-trees, and both of them consider all the source
populations and not just the final source population. This motivates the
investigation of the knowledge source to find out what the reason(s) for
this observation could be. In order to do so, we first investigate the distri-
bution of GP individuals that were found for solving the source problem.
The distribution is shown in Figure 3.12 in the form of a violin plot.

Figure 3.12 reveals an important property about the knowledge source.
Based on the this figure, the majority of the individuals in the knowledge
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Fig. 3.12 The distribution of the fitness values of all individuals that
were found for solving each source problem.

source have a very high fitness value. Considering the rather large num-
ber of source individuals, i.e. 50× 1024 according to our experimental set-
tings, it was expected that the fitness values were distributed more evenly.
However, the plot indicate that most of the individuals have very similar,
or even exact, fitness values. This observation indicate the presence of du-
plicates due to the fact that many individuals have the same fitness values.
To confirm this, we investigated the presence of duplicates in the source.
For this purpose, we focused on phenotypic similarity of routing policies.
As was discussed in Section 2.7.5, phenotypic characterisation of routing
policies is better capable of identifying the similarities between routing
policies. Therefore, we utilise the phenotypic characterisation method pro-
posed by Hildebrandt et al. [105] and described in Section 2.7.5 (page 55)
to identify duplicates in the set of all individuals that were found for solv-
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Fig. 3.13 Number of available unique individuals in the knowledge
source

ing the source problems.

To investigate this, we recorded the number of unique individuals that
were found in each source problem as defined in Table 3.1, averaged them
over all runs and summarised the results into the box plots in Figure 3.13.
Considering that there are 1024 × 50 = 51200 transferred individuals ac-
cording to our experiment settings, it is obvious from the plots that in
almost all scenarios, the source contained a large number of duplicates to
the point that at best, 24% of the individuals were unique (Ugdb5). For
some cases like Ugdb3, this rate fell even below 10%. To investigate fur-
ther, we plotted the distribution of the unique and duplicate individuals
in each source problem against their fitness value in Figure 3.14. As is
evident, the majority of high-quality individuals were duplicates, trans-
fer of which will amount to transfer of redundant knowledge that cannot
be helpful for solving the target problem. As a result, the performance of
any method, such as the proposed algorithms in this chapter, that does not
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Fig. 3.14 Distribution of unique and duplicate individuals in source
problem.

consider this redundancy, will suffer.

The observations in Figures 3.13 and 3.14 also explain why the meth-
ods such as GATL and BestGen-1 demonstrated relatively better perfor-
mances. Since the majority of duplicates have high qualities, they must
appear in later GP generations. Therefore, methods such as FullTree, Fre-
qSub and PPTGP, that focus only on the last source population, will have
a large number of redundant duplicates that do not convey any important
information. Needless to say, when this issue is not handled properly, the
issue of lack of diversity could be transferred to the target problem and
impact the performance of GP negatively, as was observed by the experi-
mental results. On the other hand, GATL and BestGen-1 select their indi-
viduals from all the source populations and as a consequent, they are less
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prone to the negative impact of the diversity loss in the final generation of
GP for solving the source problem.

Issues When Solving Target Problems

As the experimental results revealed in Sections 3.5.2 – 3.4.2, knowledge
transfer has the potential for improving the performance of GP for solving
UCARP. However, any initial improvement in the quality of GP popula-
tion for solving a target problem is quickly lost after a few generations.
This indicate that some issues may exist during the evolutionary process
for solving the target problem that neutralise any initial improvements.
As was discussed earlier, the knowledge source may contain a substan-
tial amount of duplicates. This indicates that the GP process for solving
the source problem suffers from losing its diversity. As a result, it is rea-
sonable to suspect that the same issue may exist when solving the target
problem. To investigate this, we investigate the population diversity dur-
ing the evolutionary search for solving the target problem.

To investigate the presence of redundancies, we employ the entropy
measure [32] for calculating the population diversity. To compute the en-
tropy of the population Pop, we grouped the similar individuals into a
set of clusters C using the DBScan clustering algorithm [69], where each
individual is characterised by the phenotypic vector [105] and the cluster
radius was set to zero. Then, the entropy of the population is calculated as
entropy(Pop) = −

∑
c∈C

|c|
|Pop| log

|c|
|Pop| .

Figures 3.15–3.17 present the average entropy of GP population over
the course of evolution for solving target problems for a few scenarios
and for the different sets of examined algorithms. These figures confirm
the hypothesis that GP population loses its diversity very quickly. This
phenomenon is observed in all experiments and for all algorithms. In all
experiments, we note that although the algorithm may have a relatively
high entropy at first, their entropy decreases quickly and in most cases,
their entropy is not very different from GPHH.
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(a) From Ugdb17 with 5 vehicles to
Ugdb12 with 8 vehicles (Scn. 4)

(b) From Ugdb23 with 10 vehicles to
Ugdb12 with 5 vehicles (Scn. 12)

(c) From Uval6B with 5 vehicles to Ugdb6
with 5 vehicles (Scn. 15)

(d) From Ugdb1 with 5 vehicles to Ugdb1
with 3 vehicles (Scn. 22)

Fig. 3.15 Population entropy of FreqSub and some existing knowledge
transfer methods.

Another point to note is that the algorithms that transfer sub-trees and
full trees from the final source population usually tend to have lower ini-
tial entropy. This behaviour is expected considering the fact that final
source population contains many redundancies. On the other hand, the
BestGen-1 and GATL methods that consider all the source GP popula-
tions usually have relatively higher initial population entropies. However,
PPTGP is an exception to these observations because this algorithm learns
only from the final source population but nevertheless, its initial popula-
tion entropy is higher than other knowledge transfer methods. This obser-
vation can be explained with the fact that this algorithm does not trans-
fer actual trees but it transfers the probability distribution of high-quality
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source trees in the form of PPTs. Then, when initialising the GP popu-
lation, the algorithm creates new individuals from the transferred PPT.
Therefore, even if the source contains many duplicates, the PPT will still
contain many possibilities for creating individuals. However, looking at
the convergence curve of this algorithm in Fig. 3.8, we can note that the ini-
tial performance of this algorithm is not much better than GPHH without
any knowledge transefer. This indicates that the algorithm was not very
good at capturing the knowledge. In addition to this, although the initial
population has a high level of diversity, the effect also does not last for
very long and after a few generations, the population is overrun with du-
plicates. Ultimately, these two factors contributed to the poor performance

(a) From Uval4A with 2 vehicles to
Ugdb17 with 3 vehicles (Scn. 1)

(b) From Ugdb23 with 10 vehicles to
Ugdb12 with 5 vehicles (Scn. 12)

(c) From Uval6B with 5 vehicles to Ugdb6
with 5 vehicles (Scn. 15)

(d) From Ugdb1 with 5 vehicles to Ugdb1
with 3 vehicles (Scn. 22)

Fig. 3.16 Population entropy of PPTGP and some existing knowledge
transfer methods.
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(a) From Ugdb23 with 10 vehicles to
Ugdb12 with 5 vehicles (Scn. 12)

(b) From Ugdb1 with 5 vehicles to Ugdb1
with 3 vehicles (Scn. 22)

(c) From Ugdb1 with 5 vehicles to Ugdb1
with 7 vehicles (Scn. 28)

(d) From Ugdb2 with 6 vehicles to Ugdb6
with 6 vehicles (Scn. 30)

Fig. 3.17 Population entropy of ContribSubGP and some existing
knowledge transfer methods.

of the algorithm. Similar behaviour was observed in all experiments and
for all algorithms, as can be seen in Figure 3.18. This figure presents the
distribution of the entropy of the final GP population for solving target
problems for all scenarios. As is evident, for all algorithms, final popula-
tions do not have high levels of diversity and are not very different from
GPHH without any knowledge transfer. Accordingly, it is evident that the
GP process for solving the target problem is prone to losing its population
diversity and this effect can reduce the effectiveness of knowledge transfer
for solving UCARP with GP.
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Fig. 3.18 Entropy of the final GP population that is obtained with the
examined algorithms

3.6 Chapter Summary

In this chapter, we investigated the potential and the effectiveness of trans-
fer optimisation for solving UCARP with GP. For this purpose, we de-
signed a set of knowledge transfer scenarios in which transfer optimisa-
tion is performed to extract knowledge from a solved source problem and
is transferred and reused for solving a related target problem. For our in-
vestigations, we considered a set of existing algorithms and additionally,
we also proposed three new transfer optimisation algorithms aiming to
address some of the shortcomings in the existing methods.

Our results revealed the potential of transfer optimisation for improv-
ing the performance of GP for solving UCARP. In particular, one key in-
sight which was gained in this from the experiments in this chapter is
that we discovered that reuse of genetic materials as transferable knowl-
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edge can be especially helpful for initialising the GP population. However,
reusing the genetic materials during the GP run, as demonstrated with the
TLGPC algorithm, did not show any promise in our experiments. Further-
more, we observed that reusing the knowledge in all source generations
is more helpful and the algorithms that focused only on the final source
population did not perform as well as the algorithms that considered all
source populations. Another important finding is that the GP process for
solving the source problem can create many phenotypic duplicates, which
reduces the amount of reusable knowledge and can reduce the effective-
ness of knowledge transfer. Furthermore, the search process for solving
the target problem can also lose its population diversity, which can also
negate any initial performance boost that can be achieved with the trans-
ferred knowledge. These observations will form the baseline for the rest
of this thesis and will be considered for proposing new algorithms in later
chapters. Accordinly, although it is possible to investigate some of the
new approaches in this chapter further, e.g. PPTs can potentially be uti-
lized to implement surrogate-assisted sub-tree and fulltree mutation, we
opt to leave such investigations for future work and instead, focus on the
important insights that the experiments gave us.

More specifically, in the next chapter, we will introduce a set of al-
gorithms to handle the presence of duplicates in the knowledge source.
These algorithms will be subject to extensive experimental studies and
their effectiveness will be investigated in the next chapter.



Chapter 4

Diversity-Driven Knowledge
Transfer

As was discussed in Chapter 3, the presence of duplicates in the knowl-
edge source can pose a significant negative impact on the effectiveness of
knowledge transfer for UCARP. Accordingly, in this chapter we investi-
gate the approaches that can be taken for handling this issue.

4.1 Introduction

As we demonstrated in Chapter 3, applying transfer optimisation for UCARP
is not a straightforward task. We evaluated a set of existing methods for
handling the problem changes of UCARP and showed that their perfor-
mance were not significantly different from GPHH without any knowl-
edge transfer. In addition, we discovered that the UCARP knowledge
source can contain many duplicates, possibly due to convergence to lo-
cal optima. This can reduce the amount of transferable knowledge and
decrease the quality of knowledge transfer. Accordingly, in this chapter
we aim to handle this problem.

In this chapter, we propose two approaches to handling the presence
of duplicates in the transferred knowledge source. In the first approach,

111
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we will propose one algorithm that strives to increase the diversity after
the transfer of individuals from a solved source problem that contains du-
plicates. If the GP search process for solving the source problem had suf-
fered from the loss of diversity, this algorithm could prevent the knowl-
edge transfer from transferring the duplicates to the GP search process
for solving the target problem. The proposed method is referred to as
Diversity-Driven GPHH (DDGP), which relies on different mutation adap-
tation strategies for increasing the diversity in GP population. DDGP is
described in Section 4.4.1.

In the second approach, two algorithms are proposed that are focused
on removing the duplicates from the knowledge source before transferring
and reusing the source for solving the target problem. Since the removal
of the duplicates may reduce the number of high-quality individuals from
the knowledge source, these algorithms rely on the surrogate models for
increasing the number of high-quality solutions in the knowledge source.

The first algorithm in the second approach is called a Surrogate-Assisted
Knowledge transfer for GPPHH (SAKGPHH) in which, we first create a
surrogate model from the set of all individuals that were discovered for
solving the source problem. This surrogate model allows us to get a com-
putationally cheap approximation of GP individuals and can be used to
evaluate individuals for solving the target problem. In this direction, we
utilise the learned surrogate model to create a diverse and high-quality
initial state for GP. For this purpose, we create a large pool of random in-
dividuals, remove the phenotypic duplicates from it, and evaluate the pool
with the surrogate to estimate the quality of each individual in it. Finally,
the best unique individuals in the pool, in terms of the surrogate fitness,
are selected to initialise GP. This algorithm is explained in details in Sec-
tion 4.4.2 and later in this chapter, we will demonstrate that this approach
can create a good and diverse initial population for GP that can lead to the
improved effectiveness of GPHH for solving UCARP.

However, one shortcoming of this algorithm is that the it does not



4.1. INTRODUCTION 113

utilise the source individuals directly but instead, employs them to eval-
uate a pool of randomly created individuals and, it is the individuals in
the random pool that are used for initialising GP. As a result, instead of
using the actual source individuals whose actual fitness value is known,
the random individuals are used for which only the approximate fitness
is known. As the approximation may naturally be inaccurate, it can affect
the quality of knowledge transfer negatively. On the other hand, if the
set of high-quality source individuals contain a substantial number of du-
plicates then it is likely that not enough high-quality unique individuals
would remain to be transferred after removing the duplicates from the set
of source individuals.

Therefore, we develop a new Surrogate-assisted Unique Full Tree trans-
fer algorithm, SUFullTree, that also learns a surrogate model from the
transferred source individuals. For solving the target problem, SUFull-
Tree also forms a large initial pool of unique individuals but unlike SAKG-
PHH, it selects into the pool the source individuals that are better than
a threshold fitness and fills the rest of the pool with individuals that are
mutated from the already selected better-than-threshold individuals. The
motivation for mutating the good source individuals is that if the source
and target problems are related, it is very likely that the optima of the
target problem is similar to the optima of the source problem, that is, the
target optima reside in the vicinity of the optima of the source problem.
Therefore, mutating the high-quality source solutions increases the chance
of finding the target optima. Additionally, if the search process is stuck in
the local optima of the source problem, mutation will increase the chance
of escaping the local optima trap. After creating the large pool, the learned
surrogate model can be utilised to estimate the fitness of the individuals in
the pool and select those with the best estimated fitness values to initialise
GPHH for solving the target problem. The details of this algorithm are
explained in 4.4.3.

It should be noted that surrogate models have been used for the pur-
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pose of diversity promotion [105, 178], approximating individual fitness
in multi-task optimisation scenarios [141, 248]. Also, transfer learning has
been used for augmenting the quality of the surrogate models [231]. How-
ever, to the best of our knowledge, this is the first effort that utilises surro-
gate models for improving the quality of the transferred knowlege. As a
result, in the work in this chapter, surrogate models are not used after the
initialisation for in way.

4.2 Chapter Goal

In this chapter we aim to propose two novel approaches to knowledge transfer
for GPHH to handling duplicates in the set of transferred source individuals. The
first approach tries to overcome any issues that may arise after the transfer of du-
plicates. The second approach removes the duplicates from the knowledge source
and then utilise these individuals to create a diverse and high quality initial pop-
ulation for GPHH. For this, we examine the performance of the proposed
algorithms on a large set of experiments and compare their performance
against GPHH without any knowledge transfer, as well as, a collection of
existing algorithms. More specifically, we will achieve the following re-
search objectives in this chapter:

• Propose two approaches to handling the presence of duplicates in
the transferred knowledge source.

• Propose the a new approach to overcoming any issues that may oc-
cur after the transfer of duplicates.

• Propose the novel approach of using transferred knowledge for train-
ing a surrogate model and utilise the learned surrogate model for
creating a diverse set of high-quality unique individuals for initialis-
ing GPHH for solving the target problem.
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• Validate the effectiveness of the proposed algorithms on a large set
of experimental transfer scenarios.

4.3 Chapter Organisation

This chapter is organised as follows. Detailed descriptions of the proposed
algorithms are given in Section 4.4. The experiment design is shown in
Section 4.5, followed by results and discussions in Section 4.5.2. Finally,
Section 4.7 concludes this chapter.

4.4 Proposed Algorithms

In this section, first we introduce the Diversity-Driven GPPHH. The Surrogate-
Assisted Knowledge transfer algorithm for GPPHH, SAKGPHH, is intro-
duced in Section 4.4.2 and then in Section 4.4.3, the Surrogate-assisted
Unique Full Tree transfer algorithm, SUFullTree, will be introduced.

4.4.1 Diversity-Driven Transfer of Individuals

As was reviewed in Chapter 2, there exist different approaches for extract-
ing knowledge from a source problem to be used for solving a target prob-
lem. In this regard, the general approach is to select the individuals in the
GP population (usually the final population) as the knowledge source.

Evolutionary algorithms typically endeavour to explore the search space
of a problem, discover the regions that potentially contain the good solu-
tions and, exploit the information they find in these regions to discover
the global optima. In the case of GP, the crossover operator is generally
considered the main tool for the exploitation phase since it creates new so-
lutions from the genetic information of two existing individuals. The mu-
tation operator, on the other hand, inserts random genetic materials into
individuals and hence, is considered to play a major role in exploration.
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However, the initialisation operator also has an important yet subtle role.
When the GP population is initialised randomly, it can be considered as
an act of exploration. However, when transferred individuals are a re-
lated solved problem, the operator can be considered to be participating
in the exploitation phase. The main reason for this is that by transferring
some information about the good regions of the search space that are po-
tentially good for the target problem, the initialisation biases the search to
exploit the transferred regions. Therefore, knowledge transfer biases the
search towards exploitation.

However, this can lead to a potential issue. Due to the convergence of
the GP search to good solutions of the source problem, the population may
contain a low level of diversity because it may contain many individuals
that are identical or very similar from either genotypic or phenotypic per-
spective. Additionally, if the search process was stuck in local optima of
the source problem, transferring the final individuals could also possibly
put GP in a local optima of the target problem.

Consequently, to increase the exploration capability of GP after the
transfer of individuals from a source population, we propose to let GP
explore the search space more freely. This also helps GP recover from
any potential local optima that have been transferred with the transfer of
source individuals. A straightforward way to increase the exploration is
to increase the mutation rate (and decrease the crossover rate) after knowl-
edge transfer. In this regard, it should be realised that, setting the mutation
rate to a fixed high rate can be harmful for the search process because it
interferes with its exploitation of the promising regions that it discovers
through exploration.

Therefore, in this section, we propose an adaptive mutation rate for the
GP for solving the target problem, after the population is initialised with
the source individuals. For this purpose, we set the mutation rate to an
initial high value pm(0) and update the rate at each generation t based on
one of the following strategies:
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• Exponential: The mutation rate is updated with an adaptation rate
of 0 < γ < 1 with pm(t + 1) = pm(t)γ

t. This strategy allows GP to
have a high degree of exploration in early generation but the rate is
dropped quickly to prevent excessive exploration that could hurt the
search process.

• Power: The mutation rate is calculated with pm(t + 1) = Pm(0)/(1 +

t)0.5. This strategy is similar to the exponential strategy but it de-
creases the mutation rate more slowly.

• Cosine: The mutation rate is updated as pm(t+1) = pm(0) cos
2(πt/tmax)

wherein tmax is the maximum number of generations that GP is con-
figured to run. Similar to the previous strategies, this strategy also
starts with a high mutation rate, which is reduced to a low level at
generation tmax/2. After this, the mutation rate is increased again.
This allows GP to explore more in early generations, then focus more
on exploitation in later generations, do more exploration to escape
from any potential local optima that it may have fallen into.

Furthermore, we consider a minimum threshold mutation rate δm so
that if the mutation strategy calculates a value below this rate, then the
threshold is used instead. This threshold value ensures that at any stage,
a minimum level of exploration is guaranteed. After the mutation rate is
calculated, the crossover rate pc(t) is adjusted as pc(t) = 1 − pm(t) − pr.
In this equation, pr is the reproduction rate which always has a constant
value in our approach. Figure 4.1 depicts the mutation probability that GP
will have at each generation based on each of the defined strategies for
p0 = 0.95 and γ = 0.95.

We refer to our proposed approach as Diversity-Driven GPHH, DDGPH
in general and based on the utilised mutation strategy, DDGP-Exp, DDGP-
Pow and DDGP-Cos refer to DDGP with the exponential, power and co-
sine strategies respectively.
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Fig. 4.1 Mutation probabilities at each generation for different strategies

4.4.2 Surrogate-Assisted Knowledge transfer for GPHH

During the course of training routing policies for UCARP, a significant
amount of computational cost is incurred by the evaluation of the fitness
of routing policies due to the fact that it requires running a complete sim-
ulation of vehicles serving the tasks in the problem environment. UCARP
is not the only problem that faces this issue and it can be encountered in
many other problem domains [217]. Surrogate models are computational
models that can approximate the real fitness function with a substantially
lower computational cost. However, as these models are intended to be
approximations of the real fitness function, they are not as accurate. Nev-
ertheless, these models can help judge how good a potential solution can
be [120]. To approximate the actual fitness function, many surrogate mod-
els utilise machine learning techniques to learn the characteristics of the
fitness function [217]. Amongst the available machine learning method,
K-Nearest Neighbourhood, KNN, has proven to be a successful method in
the context of evolutionary computation methods for solving combinato-
rial optimisation problems [105, 30, 248].

Algorithm 4.1 presents the proposed Surrogate-Assisted Knowledge
Transfer for GP, SAKTGP. The algorithm utilises the transferred surrogate
model to create a high-quality and diverse initial population for GP to
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Algorithm 4.1: Pseudocode for SAKTGP
Input : k, the magnitude of the interim population,

S , A pool of transferred individuals from a source problem.

PopSize, Population size

Output: The best solution ind∗

1: k ← 0, ind∗ ← null

// Load a surrogate from source domain, Algorithm

4.5.

2: ℑ ← LoadSurrogate (S)

// Create k × PopSize individuals

3: i← 1, P ← {}
4: for i ≤ k do
5: P ′ ← Create a random population

6: Evaluate P ′ with ℑ
7: P ← P ∪ P ′

8: P ← RemoveDuplicates(P)

9: if i = k and |P | < k × PopSize then
10: i← i− 1

11: end

12: end
13: P ← SortFitness (P )

14: Pop← Select top PopSize of P

15: while not stop do
16: Evaluate each individual in Pop

17: ind∗ ← Best individual in Pop

18: Apply crossover, mutation and reproduction to Pop

19: end
20: return ind∗

solve the target problem. For this purpose, the algorithm first creates a
surrogate model with the transferred individuals (line 2). Initialising an
empty set of unique random individuals P (line 3), a population of ran-
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dom individuals is created (line 5) which is evaluated with the surrogate
(line 6). The population is then added to the pool of unique individuals
P and then, any duplicates are removed from it (lines 7–8). This process
is repeated for k times or until enough individuals exist in P . Finally, the
individuals in the pool P are sorted based on their estimated fitness (line
13) and the individuals with the best estimated fitness are selected as the
initial GP population (line 14). After initialising the population, a standard
GP is utilised with standard breeding operators of crossover, mutation and
reproduction to evolve the population until some stopping criteria is met
(lines 16–19).

Phenotypic Characterisation of Routing Policies

To measure the distance between individuals, KNN needs a similarity
measure. Although the similarity can be measured based on genotypic
characteristics of the GP individuals, Hildebrandt et al. [105] showed that
relying on phenotypic properties of individuals can capture the similar-
ities better than the genotypic properties. In contrast to the genotypic
similarity that measures how similar the genetic materials of two routing
policies are, the phenotypic similarity measures how similar two policies
behave in the same situation. In the context of UCARP, this means how
similar the decisions of vehicles are when they are idle and face the same
set of tasks to select one from.

To be more specific, we define a decision-making situation (DMS) Ω as
the situation in which a vehicle is idle and faces a set of unserved tasks
from which it needs to select one to serve next. In a DMS, the vehicle em-
ploys its routing policy ρ to calculate the priority of each unserved task
and rank them based on their priority. Consequently, if a fixed indexing is
defined for the tasks in Ω, we define ζΩ(ρ), the phenotypic characterisation
of ρ in situation Ω, as the index of the selected task. Given a fixed set of
decision-making situations Ω, we define ζ(ρ), the phenotypic characteri-
sation of ρ, as the integer vector that contains the phenotypic characterisa-
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Algorithm 4.2: Characterise (ρ, Ω)
Input: A routing policy ρ; a set of decision situations Ω
Output: A numeric characteristic vector ζ

1 foreach Ωi ∈ Ω do
2 r← Rank (ρ, Ωi)

// Get the index of the task with the highest priority

3 j ← Index (r)
4 ζi← j

5 end
6 return ζ

tion of all the decision situations Ω ∈ ζΩ(ρ). Having two routing policies ρ
and ρ′, we define the distance between them as

∆(ρ, ρ′) =
∑
Ω∈Ω

δ(ζΩ(ρ), ζΩ(ρ
′)) (4.1)

where

δ(x, y) =

1 if x = y

0 otherwise
(4.2)

Based on the findings in the work by Hildebrandt et. al. [105], the de-
cision situations can be selected randomly from the set of situations that
vehicles encounter during a GP run. Although these situations can be up-
dated in each generation, Hildebrandt et. al. found that doing so does not
provide significant performance improvement to selecting the situtations
in the first generation and keeping them fixed. Therefore, we also adopted
this approach.

Algorithm 4.2 describes the phenotypic characterisation process of a
routing policy ρ based on a set of decision situations Ω. For each Ωi ∈ Ω,
it first calculates the priority of each candidate task and ranks them based
on their priorities (line 2) . Then, it obtains the index of the top-rank task
in the candidate task list (line 3) in the set of unserved tasks in Ωi.
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As an example, Figure 4.2 demonstrates the phenotypic characterisa-
tion process.The figure depicts the tree representation of the well-known
path-scanning heuristic [125] as 105 * CFH - DEM / SC, where CFH in-
dicates the cost from the vehicle’s current location to the candidate task,
DEM is the demand of the task, and SC is its serving cost (the coefficient
105 of CFH is a sufficiently large number so that smaller CFH is always
preferred). This example contains 3 decision situations. The first decision
situation has two candidate tasks (Ω11 and Ω12), the second has two (Ω21

and Ω22) and the third contains three (Ω31, Ω32 and Ω33). Based on the at-
tribute values of the tasks, we can see that the indices of the tasks selected
by the routing policy in the three decision situations are 2, 1, and 3, respec-
tively. This forms the phenotypic behaviour vector [2, 1, 3].

In this direction, two policies ρ and q are considered the same if they
select the same tasks for all decision situations (and hence ∆(ρ, ρ′) = 0). It
should be noted that since we defined Eq. (4.1) based on task indexes,
when ∆(ρ, ρ′) ̸= 0 the calculated distance is not accurate (its accuracy
may vary depending on the number of same tasks that the policies se-
lect). However, in this work this is not problematic because we are only

Fig. 4.2 The tree representation of the 105 ∗ CFH − DEM/SC path-
scanning heuristic and its phenotypic characterisation.
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interested in cases where ∆(ρ, ρ′) = 0.

Removal of Phenotypically Duplicate Routing Policies

Having the definition of phenotipic characterisation and the phenotypic
distance between routing policies in Eq. 4.1, it is possible to check if
two routing policies are identical phenotypically or not. Algorithm 4.3
presents our approach to clearing duplicates from a set of routing policies
P . Receiving P as input, the output of the algorithm is the subset of unique
individuals in P . The algorithm utilises the idea of hashing the phenotypic
vectors into a unique integer. The hash value, in turn, allows storing the
individuals into a hash table data structure [50]. The important and help-
ful feature of the hash table data structure is that it allows querying its
content in the constant time complexity of O(1). This feature removes the
need for iterating over P twice for checking if each of its individuals is
duplicate or not.

When using the hash table data structure, it is important to possess a
hashing technique that provides a reasonable guarantee against collision
(i.e. having the same hash value for different vectors). In our work, the
simple left-shifting method in Algorithm 4.4 proved to be effective as its
hash values of the characterisation vectors did not colide. The Algorithm
presents our proposed method for hashing a routing policy ρ. Given ρ

as input, the algorithm first calculates ζ , the phenotypic vector of ρ, (line
2) and then the hash value is computed iteratively based on the compo-
nents of ζ with the left-shifting formula in line 5 in which the << operator
presents the left bit-shift operator. The Hash function has a time complex-
ity of O(|ζ|), which depends on the number of decision situations used to
characterise the phenotypic behaviour.

After defining the hashing procedure for routing policies in Algorithm
4.4, it is possible to utilise it for removing duplicates, as is presented in
Algorithm 4.3. More specifically, this algorithm starts by initialising an
empty hash table Ψ (line 2) and then, it sorts the individuals in P based on
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Algorithm 4.3: RemoveDuplicates(P )
Input: A set of individuals P
Output: A set of unique individuals P ′ ⊂ P

1 begin
2 Ψ← ∅
3 P ← SortFitness (P )
4 foreach ρ ∈ P do
5 hρ ← Hash (ρ) // See Algorithm 4.4

6 if hρ /∈ Ψ then
7 Ψ[hρ]← ρ

8 end

9 end
10 return Stored individuals in Ψ

11 end

their fitness in ascending order so the best individual with lowest fitness
is first (line 3). Then, for each individual in ρ ∈ P the algorithm calculates
hρ, the hash value of ρ based on its phenotypic characterisation using the
hashing method defined in Algorithm 4.4 (line 5). Then, Ψ is checked to
see if it contains hρ or not (line 6). If the hash table does not contain hρ, ρ
is recorded in Ψ (line 7) so that any individual with the same phenotypic
characterisation and hash value will be detected as duplicate. Finally, after
iterating over all items in P , the set of individuals in Ψ are returned the
set of unique routing policies in P .

KNN-based Surrogate Models for UCARP

A KNN-based surrogate model estimates the fitness value of a given indi-
vidual ind based on a pool of individuals whose fitness is already known.
It first measures the distance of ind from each of individuals in the KNN
pool. Then k nearest individuals in the KNN pool are considered and their
average fitness is returned as the approximate fitness of ind. Algorithm 4.5
presents the pseudo code of a basic KNN-based surrogate model.
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Algorithm 4.4: Hash(ρ)
Input: A routing policy ρ
Output: A unique hash value for ρ

1 begin
2 ζ ← ζ(ρ)

3 h← 1

4 for i = 1→ |ζ| do
5 h← h << 5− h+ ζi

6 end

7 end
8 return h

Algorithm 4.5: Pseudocode for a KNN-based surrogate
Input : A pool Ψ of individuals with known fitness values

Neighborhood size k

Individual i to estimate the fitness of

Output: Estimated fitness for i

1: Ψ ← removeDuplicates (Ψ )

2: foreach ψ ∈ Ψ do
3: Calculate the distance between i and ψ

4: end
5: Ψ ′ ← k individuals in Ψ nearest to i

6: φ(i)← average fitness of items in Ψ ′

7: return φ(i)

The set of individuals that GP created during the search process for
solving the source problem can be utilised as the KNN pool for building
a KNN-based surrogate model to estimate the fitness of individuals with
significantly less computational cost for the target problem. This surro-
gate model is constructed from the source individuals and hence, is bet-
ter suited for the source problem. However, the basic and fundamental
axiom in transfer optimisation is that the source and target problems are
related, therefore, good (bad) solutions of the source problem are expected
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to have good (bad) performance for the target problem. Since the surro-
gate model is constructed for the source problem, it is expected to detect
good (bad) source individuals which then can be expected to be relatively
good (bad) for the target problem. For the act of knowledge transfer for
initialising GP, this level of assurance in the performance of the surrogate
model, which are innately expected to be inaccurate, is acceptable because
creating individuals that are moderately better than random can help GP
start its search from a potentially good state.

The learned/transferred surrogate model empowers GP to evaluate a
large number of individuals with a low computational overhead to create
a good initial state. This indicates an advantage over the methods that
simply transfer source genetic materials without taking any measures to
reassure the quality of transferred individuals [129, 62, 100]. In Chapter 3,
we discussed how the presence of duplicates and redundancies in the set
of transferred individuals can have a drastic negative impact on the effec-
tiveness of knowledge transfer for UCARP. There, apart from the potential
quality of the individuals, the phenotypic diversity of the initial popula-
tion is our next second criterion for the design of our algorithm. For this,
enforce the initial GP population for solving the target problem to have no
duplicates.

4.4.3 Surrogate-assisted Unique Full Tree transfer algorithm

The SAKGPHH algorithm that we described in Section 4.4.2 initialises a
diverse initial population of random individuals with the help of a sur-
rogate model that is learned from the knowledge that is tranferred from a
solved source problem. However, this algorithm discards the actual source
individuals whose fitness value is known in favour of randomly created
individuals whose fitness is only approximated with the surrogate model.
This means that valueble information could be lost due to the inaccurate
nature of surrogate models. In this section, we propose an approach to
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overcome this problem.

Similar to SAKGPHH, our proposed algorithm Surrogate-Assisted Ge-
netic Programming with Diverse Transfer for the Uncertain Capacitated
Arc Routing Problem, SUFullTree, also creates an initial population of di-
verse individuals of a high-quality. For this, the algorithm also utilises a
surrogate model to estimate the fitness of the initial individuals. How-
ever, unlike SAKGPHH, the individuals are not created randomly but are
mutated from the high-quality individuals that are transferred from the
source problem. By putting an emphasis on creating diverse and unique
individuals, creating individuals with mutation allows SUFullTree to cre-
ate a set of high-quality individuals that are in the vicinity of the good
source individuals, which are likely to be better than random solutions
for the target problem. This increases the likelihood of finding more high-
quality solutions.

SUFullTree is presented in Algorithm 4.6. Given a set of transferred
source individuals S and a threshold fitness value τ ∈ [0, 1], the algo-
rithm uses the individuals in S whose normalised fitness is better than τ

to initialises a duplicate-free initial state for GPHH to solve a related target
problem. SUFullTree first uses the transferred individuals to load a KNN-
based surrogate model (line 1), utilises the duplicate removal method in
Algorithm 4.3 (line 2)then, sorts the remaining unique individuals based
on their fitness (line 2). To have a unified fitness range, SUFullTree nor-
malises the fitness values of the individuals into the range [0, 1] so that the
best individual has a fitness value of 0 (line 3). Having the fitness values
of the transferred individuals normalised, SUFullTree then selects the in-
dividuals whose fitness are below the threshold τ as the best of the source
individuals that will be considered as the reusable transferred individuals
and other individuals will be discarded (line 3).

After selecting the best of the source individuals, they are used for cre-
ating a large diverse set of high-quality individuals from which the best
will be used to initialise GPHH for solving the target problem. SUFull-
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Algorithm 4.6: SUFullTree, Surrogate-Assisted Unique Full Tree
Transfer Learning for initialising GP of the target domain

Input : A pool S of transferred individuals from a source problem

Fitness threshold τ

Output: Initial population for GP of the target domain

// Load a surrogate from source domain, Alg. 4.5.

1: ℑ ← LoadSurrogate (S)

2: P ← RemoveDuplicates (S) , P ← SortFitness (S)

3: P ′ ← NormaliseFitness (S) , P ′ ← SelectBest (P ′, τ )

4: Ψ← ∅
5: for i = 1, ..., |P ′| do
6: h← Hash (P ′[i]) // See Alg. 4.4

7: Ψ[h]← P ′[i]

8: end
9: while |Ψ| < 10× PopSize do

10: foreach ρ ∈ P ′ do
11: ρ′ ← Mutate (ρ) // Standard GP mutation operator

12: h← Hash (ρ′) // See Alg. 4.4

13: if h /∈ Ψ then
// Surrogate evaluation. See Alg. 4.5

14: Fit (ρ′)←ℑ(S, ρ′)

15: Ψ[h]← ρ′

16: end

17: end

18: end
19: Pop← Select top PopSize of Ψ

20: while not stop do
21: Evaluate each individual in Pop

22: ind∗ ← Best individual in Pop

23: Apply crossover, mutation and reproduction to Pop

24: end
25: return ind∗
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Tree utilises a hash table data structure to store the large pool of individ-
uals that it creates to benefit from its O(1) query time complexity. To do
so, SUFullTree first initialises an empty table (line 4), employs the hash-
ing mechanism in Algorithm 4.4 to compute the hash value of each good
transferred individual (line 6) and store then in the table.

When the knowledge source contains many duplicates, it is likely that
after removing the duplicates, the number of high-quality individuals that
remain are less than what is needed to initialise GPHH. To overcome this,
SUFullTree mutates the selected transferred individuals and evaluates the
mutation offspring with the learned surrogate model to estimate their fit-
ness. Instead of creating just enough individuals to fill the initial popula-
tion, SUFullTree creates a large pool of individual to increase the chance
of finding good solutions. In this work, the size of the pool of mutated
individuals is set to be 10 times the population size. Accordingly, for each
good transferred individual ρ′, SUFullTree utilises the standard mutation
operator to create a new individual ρ′ (line 11), uses the hash algorithm
in 4.4 to calculate its hash (line 12), and checks if the hash value is inside
the hash table (line 13). If the individual is not in the hash table, then the
transferred surrogate model is utilised to estimate the fitness of ρ′ (line 14)
before adding it to the hash table (line 15). Finally, after the pool is created,
the best individuals in it are selected to initialise GP. After initialisation,
the standard GP search mechanism is utilised to evolve the individuals
and obtain the best routing for the target problem (lines 21–24).

4.5 Experimental Studies

The effectiveness of the proposed algorithms are evaluated in this chapter
with a set of simulated experiments on the scenarios in Table 3.1 (page
73). For the sake of consistency, we also use the same GP settings in our
previous experiments, as is given in Table 3.2.
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4.5.1 Experiment Settings

Similar to experiments in Chapter 3, first we solve the source problem with
the vanilla GP that evolves 1024 individuals for 50 generations. Then, the
individuals, i.e., GP trees, the are considered as the transferable knowl-
edge. Of the three proposed algorithms in this chapter, DDGP only focuses
on the final source population while the rest of the algorithms consider all
the source populations as the knowledge source.

The proposed SAKTGP and SUFullTree algorithms rely on phenotypic
characterisation of routing policies based on a set of decision situations
Ω. To have a set of decision situations, the path-scanning policy in Fig-
ure 4.2 was utilised to serve a set of tasks for each scenario and 20 of the
encountered situations were selected as Ω. Using a small number of sit-
uations can reduce the accuracy of the characterisation. However, a large
Φ also increases the computational cost. In our experiments, the size of 20
demonstrated a good balance between accuracy and computational cost.

Both SATKGP and SUFullTree create an initial interim pool of unique
GP individuals that are evaluated with the transferred surrogate. In our
experiments, we tried different sizes for the interim pool and noticed that
while smaller population sizes tend to have lower performances, we did
not observe any increase in performance beyond the size 10× 1024.

In Section 3.5, a set of existing transfer optimisation algorithms were
evaluated for solving UCARP, from which BestGen-1 and GATL demon-
strated the performances. Accordingly, in this section, these algorithms are
selected from the existing literature of transfer optimisation methods and
the performance of the proposed algorithms are compared against them.

The significance of the results in this section is examined with the Fried-
man test with a confidence level of α = 0.05. Furthermore, whenever the
Friedman test indicates the existence of significant difference in the results,
the Conover post-hoc analysis [49] is performed on the results to pinpoint
which algorithms have shown different performances and the p-values
of the pairwise comparisons are adjusted with the Benjamini-Hochberg
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method [25].

4.5.2 Performance of DDGP

Table 4.1 presents the test performance of 30 independent DDGP with dif-
ferent mutation strategies, as well as a set of existing methods. The table
also includes the rank of each algorithm and also the p-value of the Fried-
man test.

Table 4.1: Test performance of 30 independent runs of the DDGP algo-
rithms (mean ± std)

Scn. GPHH GATL
[129]

BestGen-1 [62] DDGP-Cos DDGP-Exp DDGP-Pow

1 91.2±0.1 91.2±0.1 91.2±0.1 91.2±0.1 91.2±0.1 91.2±0.1
2 551.0±10.3 550.8±8.1 551.1±10.4 555.4±10.8 552.1±8.3 555.5±9.0
3 598.6±8.8 599.6±9.5 600.5±11.6 603.9±9.7 602.3±12.5 601.4±8.4
4 639.5±11.3 636.0±10.7 640.6±12.1 643.3±10.4 640.4±10.4 644.6±13.1
5 58.2±0.1 58.2±0.1 58.3±0.1 58.2±0.1 58.2±0.1 58.3±0.1
6 424.8±8.5 424.9±8.8 423.9±8.6 423.8±7.5 425.3±6.1 422.2±7.4
7 432.1±7.1 430.0±6.3 431.2±6.3 430.6±8.6 430.6±7.6 431.2±5.4
8 432.6±5.5 430.6±6.7 432.7±4.8 431.0±5.3 431.4±5.5 432.3±5.0
9 576.2±3.9 575.8±4.2 576.8±3.7 576.2±4.7 576.0±3.9 576.2±3.6
10 340.5±4.7 338.1±4.2 337.5±3.1 337.9±3.5 338.0±2.6 338.1±2.5
11 347.2±6.1 347.1±6.0 345.9±4.8 346.9±5.6 346.7±5.7 348.3±6.2
12 551.0±10.3 553.7±10.5 551.8±10.1 555.8±9.0 553.2±11.4 555.1±9.2
13 598.6±8.8 598.5±7.5 597.6±8.2 603.9±15.1 604.6±11.2 604.1±13.0
14 639.5±11.3 640.1±12.2 639.0±11.9 642.8±17.0 640.5±15.4 643.9±20.9
15 340.5±4.7 339.8±3.5 339.9±5.0 337.2±4.4 338.5±3.6 338.8±3.3
16 444.4±4.7 445.0±7.6 443.9±6.5 447.7±7.0 445.4±6.4 445.6±7.7
17 324.3±6.2 323.3±5.2 321.5±5.4 323.5±5.7 323.8±5.7 324.8±5.3
18 360.3±3.1 359.7±3.7 359.4±3.9 359.2±3.8 358.4±4.4 359.0±4.0
19 358.3±2.6 358.3±3.1 358.8±2.7 361.5±6.7 362.0±7.1 361.8±6.4
20 359.0±1.8 358.5±1.8 358.6±1.9 359.0±1.6 358.9±1.7 359.5±1.8
21 340.8±4.4 340.8±2.2 339.4±4.7 339.9±3.5 340.8±3.3 340.6±2.8
22 351.9±3.5 351.6±2.5 352.5±3.5 352.6±3.7 351.7±3.0 353.2±4.0
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Continuation of Table 4.1

Scn. GPHH GATL
[129]

BestGen-1 [62] DDGP-Cos DDGP-Exp DDGP-Pow

23 356.6±1.6 356.4±1.5 356.1±1.3 356.9±1.8 356.0±1.1 356.4±1.5
24 310.9±0.5 311.0±0.3 310.7±0.8 310.0±1.6 310.0±1.5 310.2±1.2
25 389.2±0.2 389.1±0.2 389.2±0.2 389.1±0.2 389.2±0.2 389.2±0.2
26 363.1±2.8 363.1±3.2 363.4±2.6 363.3±3.0 361.2±4.6 362.9±3.8
27 342.1±6.2 342.5±7.8 340.9±8.0 341.8±7.0 343.3±5.9 341.0±5.4
28 382.0±5.5 381.0±4.6 381.3±8.0 385.1±7.0 384.0±9.3 384.7±7.8
29 382.8±3.3 383.9±2.6 382.7±4.8 383.2±4.3 383.0±5.2 384.5±4.9
30 351.5±2.5 351.1±2.2 351.7±1.2 351.0±1.5 351.2±2.0 351.2±1.2
31 326.0±4.7 325.2±4.0 325.2±5.0 325.6±4.3 324.5±5.4 324.3±4.8
32 444.4±4.7 443.7±5.6 442.0±7.3 444.1±7.6 443.5±7.6 444.7±8.2
33 448.2±0.5 449.0±2.3 448.2±0.9 449.6±3.5 449.4±2.6 449.8±2.9
34 384.6±4.4 387.1±6.0 386.9±5.0 387.8±5.9 389.2±5.5 387.4±5.2
35 369.3±1.8 369.3±2.2 369.8±3.8 370.3±4.5 371.3±4.1 370.1±3.1
36 321.4±5.2 322.7±4.2 323.8±5.1 323.2±5.0 322.9±5.5 324.3±5.6
37 166.2±2.0 166.1±1.7 165.2±1.5 165.5±1.7 165.9±1.6 165.6±1.8
38 376.1±7.6 381.2±7.0 377.8±7.5 378.4±8.0 378.8±7.5 379.8±8.0
39 415.7±9.2 415.5±7.2 414.3±8.9 416.0±7.9 414.8±8.0 416.3±6.7
40 347.2±6.1 347.5±5.2 345.8±4.4 347.7±6.3 348.8±8.2 346.8±6.2
41 351.5±2.5 351.4±2.7 352.0±2.3 351.8±2.7 352.6±4.9 352.6±5.3
42 165.9±1.8 165.6±1.7 165.7±1.6 165.5±1.7 165.3±1.9 165.5±1.8
43 462.6±6.0 457.4±7.0 460.2±5.4 460.1±6.5 459.6±5.7 457.1±7.0
44 426.6±3.3 427.3±2.0 427.0±2.6 427.7±2.1 427.7±2.2 426.9±3.1
45 499.0±3.9 498.5±4.4 497.6±4.4 499.8±3.6 500.0±5.4 500.2±4.9

Rank 3.49 2.91 2.84 3.89 3.54 4.32

Friedman’s p-value 0.001

As is evident from the table, none of the three variants of DDGP could
rank better than GPHH or existing methods. Since the p-value of the test
indicate the presence of significant difference between the results, post-hoc
analysis of the results are conducted to determine if any of DDGP variants
performed significantly worse than GPHH or the existing methods. The
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Table 4.2: Adjusted p-value of the pairwise comparison of DDGP algo-
rithms

GATL BestGen-1 DDGP-Cos DDGP-Exp DDGP-Pow

GPHH 0.20 0.15 0.34 0.85 0.077
GATL – 0.85 0.04 0.15 0.002
BestGen-1 – – 0.03 0.12 0.001
DDGP-Cos – – – 0.42 0.34
DDGP-Exp – – – – 0.10

post-hoc analysis is presented in Table 4.2. As is evident from the table,
there is no significant difference between the performance of GPHH and
any of the DDGP variants. Therefore, although DDGP ranked worse than
GPHH in Table 4.1, it is not significantly worse.

Another point to notice from Table 4.2 is that there is no significant
difference between any variants of DDGP. Amongst the three variants,
DDGP-Exp has shown a rather better performance. On the other hand,
considering Tables 4.1 and 4.2, we can note that the performance of GATL
and BestGen-1 are significantly better than the performance of DDGP-
Cos and DDGP-Pow. However, DDGP-Exp does not perform significantly
worse that the existing methods. According to Figure 4.1, the mutation
adaptation strategy of DDGP-Exp has the steepest decrease over the course
of generation so that for the majority of the evolution, the mutation rate
equals the configured threshold value, which is the same as the mutation
rate of GPHH without knowledge. On the other hand, DDGP-Cos has the
highest overall mutation rates over the course of evolution and our results
indicate that this feature has a disruptive effect on the performance of the
algorithm.

The convergence curve of the algorithms in Figure 4.3 also confirm this
observations. Again, it is evident in the Figure that DDGP starts with
rather better initial states, e.g. Figure 4.3c, but in later generations, this
advantage is lost. The convergence curves also confirm that there is not
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(a) From Ugdb17 with 5 vehicles to
Ugdb12 with 8 vehicles (Scn. 4)

(b) From Ugdb21 with 5 vehicles to Ugdb5
with 4 vehicles (Scn. 16)

(c) From Ugdb4 with 4 vehicles to Ugdb4
with 6 vehicles (Scn. 19)

(d) From Ugdb2 with 6 vehicles to Ugdb2
with 4 vehicles (Scn. 35)

Fig. 4.3 The convergence curve of DDGP and some existing knowledge
transfer methods.

any important difference between the three variants of DDGP. However,
looking at the plots, it is discernible that in some cases, e.g. Figures 4.3a,
4.3b and 4.3c, DDGP-Cos performs noticeably worse than other methods.
This is in line with our previous observation about this algorithm.

Additionally, focusing on the convergence curve of DDGP-Cos, it is ev-
ident that performance of the algorithm stops improving midway through
the course of evolution. This effect is particularly obvious in Figures 4.3c
and 4.3d. The reason for this behaviour can be attributed to the fact that,
according to the mutation adaptation strategy of DDGP-Cos, the GP mu-
tation rate starts increasing after generation 25 (the mutation rate is below
the threshold value for a few generations after this point). This observa-
tion also confirms the negative impact of high mutation rates.
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(a) From Ugdb17 with 5 vehicles to
Ugdb12 with 8 vehicles (Scn. 4)

(b) From Ugdb1 with 5 vehicles to Ugdb2
with 7 vehicles (Scn. 15)

(c) From G21 with 6 vehicles to Ugdb5
with 4 vehicles (Scn. 16)

(d) From Ugdb2 with 6 vehicles to Ugdb2
with 4 vehicles (Scn. 35)

Fig. 4.4 The distribution of solutions found with DDGP and some exist-
ing knowledge transfer methods.

The distribution of the solutions found with each of the compared al-
gorithms is given in Figure 4.4. This figure also confirms that in general,
the solutions obtained with DDPG are not any better than other compared
algorithms. Interestingly, the distribution of DDGP-Cos is not very differ-
ent from other algorithms. DDGP-Cos has the highest overall mutation
rate and the violin plots indicate that the increased mutation rate did not
have any positive or negative impact.



136 CHAPTER 4. DIVERSITY-DRIVEN KNOWLEDGE TRANSFER

Fig. 4.5 Average population entropy of DDGP and the compared algo-
rithms.

Further Analysis

As the experimental results of DDGP indicated, in contrast to our expec-
tation, increasing the mutation rate after knowledge transfer did not im-
prove the quality of transfer optimisation. Our goal in increasing the mu-
tation rate was to improve the population diversity and overcome the loss
of diversity that is inflicted by the transferred individuals. To investigate
this, the average population entropy of the algorithms are calculated and
depicted in Figure 4.5. As is clearly evident in the plot, the distribution
of population entropy of the compared algorithms is very similar. In par-
ticular, none of the variants of DDGP could improve the average popula-
tion entropy significantly. It can be noted that DDGP-GP, which had the
highest overall mutation rate, has a slightly better distribution and median
entropy but in general, the difference is not very high.

Looking at the change of population entropy over time in Figure 4.6
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(a) From Ugdb17 with 5 vehicles to
Ugdb12 with 8 vehicles (Scn. 4)

(b) From Ugdb7 with 5 vehicles to Ugdb1
with 6 vehicles (Scn. 18)

(c) From Ugdb4 with 4 vehicles to Ugdb4
with 6 vehicles (Scn. 19)

(d) From Ugdb2 with 6 vehicles to Ugdb2
with 4 vehicles (Scn. 35)

Fig. 4.6 The population entropy of DDGP and some existing knowledge
transfer methods.

also reveal more information. As can be seen, all variants of DDGP have
a low initial entropy compared to BestGen-1, GATL and GPHH. Over the
course of evolution, which is in line with our previous finding in Section
3.5.7 that the transfer of individuals from the final population of a solved
source problem can lead to the loss of population diversity. BestGen-1 and
GATL, on the other hand, do not have this problem as they select their
individuals from all populations.

Over the course of evolution, the population entropy drops for all algo-
rithms. However, having a close look at the plots shows that in some cases,
DDGP has a slightly better situation as the population entropy tends to re-
main slightly better than other methods. This is particularly noticeable in
Figure 4.6c for all variants of DDGP. However, amongst the three versions
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of DDGP, DDGP-Cos seems to have slightly higher population entropy in
later generations. This is due to the fact the DDGP-Cos increases the mu-
tation rate to very high rates in later generations and it is expected to see
this behaviour.

As plots in Figure 4.6 confirm, the transfer of final source population
can lead to the loss of diversity. To counteract this effect, we proposed
increasing the mutation rate to a high value. However, as we observe
in Figure 4.6, in our experiments, the increase in mutation rate does not
necessarily lead to any substantial increase in population diversity. One
reason for this phenomenon can be the fact that the GP process for solving
UCARP tends to create many duplicates. This is particularly clear from the
entropy curves of GPHH in Figure 4.6. This behaviour is not unexpected
as the crossover and mutation operators operate on the genotypic level
and it is possible that genotypically different individuals may have the
same phenotypic behaviours. Accordingly, it is possible that even the in-
creased mutation rates of DDGP cannot increase the phenotypic diversity.
Another reason for the failure to increase population diversity through in-
creasing mutation could be that the loss of diversity in the population is
so high that even the high mutation rates cannot overcome it.

In conclusion, our results confirm again that the lack of diversity in
the knowledge source can have a very negative impact on the quality of
knowledge transfer. Additionally, we note that the results are also indicate
that increasing the diversity after the transfer of individuals is not helpful
and in some cases, it can also be harmful. In the next section, it will be
investigated how handling the presence of duplicates in the knowledge
source before transferring individuals can affect the quality of knowledge
transfer.
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4.6 Performance of Surrogate-based Knowledge

Transfer Methods

In this chapter, two transfer optimisation algorithms were introduced for
handling the presence of duplicates in the knowledge source. Both of
these methods focus on creating an initial population of unique and high-
quality individuals for solving the target problems and incorporate surro-
gates and share important similarities and as a result, these methods are
examined together in this section. Since DDGP did not perform any better
than existing methods, it is excluded in our comparisons. From the set of
existing methods, GATL and BestGen-1 are selected as their performances
were better than other existing methods.

Table 4.3 presents the performance of SAKTGP and SUFullTree for solv-
ing the designed UCARP scenarios. The last two rows of the table present
the rank of each algorithm and the p-value of the Friedman test. As the ta-
ble indicate, SUFullTree has the best performance and the p-value indicate
the existence of significant difference between the results.

Table 4.3: Test performance of 30 independent runs of the SAKTGP and
SUFullTree algorithms (mean ± std)

Scn. GPHH GATL
[129]

BestGen-1 [62] SAKTGP SUFullTree

1 91.2±0.1 91.2±0.1 91.2±0.1 91.2±0.1 91.2±0.1
2 551.0±10.3 550.8±8.1 551.1±10.4 552.0±8.5 551.5±9.4
3 598.6±8.8 599.6±9.5 600.5±11.6 599.1±8.1 601.9±11.0
4 639.5±11.3 636.0±10.7 640.6±12.1 643.4±14.1 644.1±15.8
5 58.2±0.1 58.2±0.1 58.3±0.1 58.2±0.1 58.2±0.1
6 424.8±8.5 424.9±8.8 423.9±8.6 419.9±7.8 423.2±8.6
7 432.1±7.1 430.0±6.3 431.2±6.3 430.0±5.2 431.8±8.3
8 432.6±5.5 430.6±6.7 432.7±4.8 431.2±5.6 430.0±6.1
9 576.2±3.9 575.8±4.2 576.8±3.7 576.8±3.1 576.4±3.3
10 340.5±4.7 338.1±4.2 337.5±3.1 337.0±4.6 337.2±2.1
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Continuation of Table 4.1

Scn. GPHH GATL
[129]

BestGen-1 [62] SAKTGP SUFullTree

11 347.2±6.1 347.1±6.0 345.9±4.8 344.4±3.9 344.4±5.1
12 551.0±10.3 553.7±10.5 551.8±10.1 550.6±7.7 552.7±8.9
13 598.6±8.8 598.5±7.5 597.6±8.2 598.4±9.2 600.2±10.3
14 639.5±11.3 640.1±12.2 639.0±11.9 637.3±11.4 640.8±14.8
15 340.5±4.7 339.8±3.5 339.9±5.0 338.9±3.2 337.0±3.3
16 444.4±4.7 445.0±7.6 443.9±6.5 442.4±5.6 444.1±4.9
17 324.3±6.2 323.3±5.2 321.5±5.4 321.0±6.3 319.8±4.6
18 360.3±3.1 359.7±3.7 359.4±3.9 360.1±3.4 356.2±4.2
19 358.3±2.6 358.3±3.1 358.8±2.7 356.2±2.8 357.6±5.3
20 359.0±1.8 358.5±1.8 358.6±1.9 358.0±1.6 358.3±1.1
21 340.8±4.4 340.8±2.2 339.4±4.7 341.0±2.9 337.6±4.6
22 351.9±3.5 351.6±2.5 352.5±3.5 351.0±2.6 350.2±3.3
23 356.6±1.6 356.4±1.5 356.1±1.3 356.0±1.2 356.3±1.4
24 310.9±0.5 311.0±0.3 310.7±0.8 310.9±0.6 308.8±2.8
25 389.2±0.2 389.1±0.2 389.2±0.2 389.0±0.5 389.1±0.2
26 363.1±2.8 363.1±3.2 363.4±2.6 360.9±4.8 362.2±3.1
27 342.1±6.2 342.5±7.8 340.9±8.0 341.6±6.2 338.6±4.7
28 382.0±5.5 381.0±4.6 381.3±8.0 381.1±3.7 384.7±6.0
29 382.8±3.3 383.9±2.6 382.7±4.8 382.9±3.8 382.1±3.2
30 351.5±2.5 351.1±2.2 351.7±1.2 351.5±1.2 351.0±1.6
31 326.0±4.7 325.2±4.0 325.2±5.0 326.3±3.2 322.8±4.9
32 444.4±4.7 443.7±5.6 442.0±7.3 445.0±3.7 441.2±5.8
33 448.2±0.5 449.0±2.3 448.2±0.9 448.0±0.5 448.9±1.8
34 384.6±4.4 387.1±6.0 386.9±5.0 384.4±4.8 384.3±5.1
35 369.3±1.8 369.3±2.2 369.8±3.8 368.4±1.6 368.4±2.6
36 321.4±5.2 322.7±4.2 323.8±5.1 322.0±4.3 321.1±2.5
37 166.2±2.0 166.1±1.7 165.2±1.5 165.7±1.6 165.1±2.0
38 376.1±7.6 381.2±7.0 377.8±7.5 373.2±8.2 372.0±9.2
39 415.7±9.2 415.5±7.2 414.3±8.9 416.6±5.7 412.3±7.4
40 347.2±6.1 347.5±5.2 345.8±4.4 346.3±5.8 344.5±5.0
41 351.5±2.5 351.4±2.7 352.0±2.3 351.0±1.7 351.2±1.9
42 165.9±1.8 165.6±1.7 165.7±1.6 165.9±1.8 165.2±1.2
43 462.6±6.0 457.4±7.0 460.2±5.4 458.6±6.2 456.7±6.5
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Continuation of Table 4.1

Scn. GPHH GATL
[129]

BestGen-1 [62] SAKTGP SUFullTree

44 426.6±3.3 427.3±2.0 427.0±2.6 426.6±2.9 425.8±3.8
45 499.0±3.9 498.5±4.4 497.6±4.4 498.4±5.4 497.5±3.3

Rank 3.74 3.43 3.26 2.52 2.04

Friedman’s p-value 0.0012

The pairwise comparisons of the compared algorithms is presented in
Table 4.4. The comparisons indicate that both SAKTGP and SUFullTree
are significantly different from GPHH, GATL and BestGen-1. Considering
that both SAKTGP and SUFullTree rank better than these existing algo-
rithms, the p-values indicate that these algorithms are significantly bet-
ter than GPHH, BestGen-1 and GATL. This indicates that the proposed
knowledge transfer mechanisms were successful. These results become
more prominent when we remember from Section 3.5 that none of the
existing algorithms could manage to be significantly better than GPHH
without any knowledge transfer.

The convergence curve of the algorithms for some transfer scenarios
are given in Figure 4.7. One clear observation in the figure is the superior
performance of SUFullTree. As can be seen, the algorithm always starts
in better initial states, compared to all other algorithms. When comparing

Table 4.4: Adjusted p-value of the pairwise comparison of SAKTGP and
SUFullTree algorithms

BestGen-1 GATL SAKTGP SUFullTree

GPHH 0.17 0.36 0 0
BestGen-1 – 0.55 0.04 0
GATL – – 0.01 0
SAKTGP – – – 0.18
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(a) From Ugdb7 with 5 vehicles to Ugdb1
with 6 vehicles (Scn. 18)

(b) From Ugdb3 with 5 vehicles to Ugdb3
with 6 vehicles (Scn. 31)

(c) From Ugdb2 with 6 vehicles to Ugdb2
with 8 vehicles (Scn. 39)

(d) From Ugdb6 with 5 vehicles to Ugdb6
with 4 vehicles (Scn. 40)

Fig. 4.7 Convergence curve of SAKTGP and SUFullTree and some exist-
ing knowledge transfer methods.

with SAKTGP, we note that the quality of initial states is much better than
the quality of SAKTGP. Both of these algorithms create an initial large pool
of individuals. However, SAKTGP creates these individuals randomly. On
the other hand, SUFullTree creates the initial pool from the high-quality
source individuals and these figures show how this difference affects the
initial performance.

Another point to notice in Figure 4.7 is that the initial state of SAK-
TGP. Although similar to GPHH, this algorithm also creates the individ-
uals randomly, the initial performance of SAKTGP is better than that of
GPHH. This is the indication of effectiveness the surrogate algorithm on
estimating the fitness of individuals.

Finally, it can be noted in Fig. 4.7 that the performance of SUFullTree
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(a) From Ugdb1 with 5 vehicles to Ugdb2
with 7 vehicles (Scn. 18)

(b) From Ugdb4 with 4 vehicles to Ugdb4
with 5 vehicles (Scn. 27)

(c) From Ugdb1 with 5 vehicles to Ugdb1
with 7 vehicles (Scn. 39)

(d) From Ugdb23 with 10 vehicles to
Ugdb12 with 5 vehicles (Scn. 40)

Fig. 4.8 The distribution of solutions found with SAKTGP and SUFull-
Tree and some existing knowledge transfer methods.

at around generation 10 is almost comparable to the final performance of
GPHH, that is achieved at generation 50. After generation 10, the perfor-
mance of SUFullTree surpasses the performance of GPHH for the rest of
the evolution. This is a clear indicator that the transfer of knowledge can
improve the efficiency of the search process as well as its effectiveness; that
is, transfer optimisation can reduce the cost (including the time) of finding
the results that can perform similarly to the final solutions that are found
with GPHH without knowledge transfer.
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Fig. 4.9 Average population entropy of SAKTGP, SUFullTree and the
compared algorithms.

The distribution of the solutions found with the compared algorithms
are presented in Figure 4.8. The plots in this figure also confirm the re-
sults in Tables 4.3–4.4 and Figure 4.7 as we note SAKTGP and SUFull-
Tree generally tend to create better solutions. In this figure, we note that
the difference between the results obtained with SAKTGP and SUFullTree.
Comparing the violin plots of these algorithms indicate the impact of cre-
ating the initial pool from the high-quality source individuals, rather than
randomly.

Figure 4.9 presents the distribution of population entropy of SAKTGP,
SUFullTree and the compared algorithms. As is evident in the plot, SU-
FullTree has a better population entropy compared to the existing meth-
ods. In this figure, it can be noted that the entropy distribution of SAK-
TGP is rather similar to other methods, albeit with slightly better median
value. On the other hand, SUFullTree tends to be better than SAKTGP.
Considering that both SAKTGP and SUFullTree focus on creating diverse
initial populations, Figure 4.9 indicates that creating the initial pool from
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the set of unique high-quality source individuals is more likely to lead to
a more diverse population. One reason for this observation could be that
after removing phenotypic duplicates from the source individuals, each
unique high-quality individual represent the areas of the search space that
are more likely to contain local optima of the source problem. Because of
the existence of similarity between the source and target problems, these
local optima are also likely to be the local optima of the target problem
or, to be near them. As a result, initialising GP with these local optima di-
vides the population around multiple local optima and reduces the chance
of getting the whole population stuck around a single local optimum. It is
likely that after a few generations, the diversity will be lost significantly.
However, it is likely that the duplicates are dispersed around more local
optima. SAKTGP, on the other hand, focuses just on the uniqueness of
the individuals without regarding their quality. As a result, many of the
unique individuals probably will not have high quality and will be likely
discarded in early generations of GP for solving the target problem. The
differences in the average fitness of the first generation of SAKTGP and
SUFullTree in Figure 4.7 also confirm this observation.

Figure 4.10 presents the population entropy of the algorithms, aver-
aged over 30 runs. One common feature of all the plots in this figure is
the entropy of the initial population of the SAKTGP and SUFullTree algo-
rithms. The plots indicate that the effort on creating diverse initial pop-
ulations has been successful. This figure also demonstrate that, even if
the initial population diversity of SAKTGP and SUFullTree is high, the
entropy drops quickly after a few generations. In some scenarios, as is
seen in Figures 4.10a, 4.10b and 4.10d, the proposed algorithms manage
to maintain higher entropies than the existing methods. Nevertheless, the
plots indicate that the GP breeding operators tend to reduce the popu-
lation diversity of routing policies for solving UCARP. This issue will be
investigated further in Chapter 6.
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(a) From Ugdb6 with 5 vehicles to Ugdb6
with 3 vehicles (Scn. 27)

(b) From Ugdb3 with 5 vehicles to Ugdb3
with 6 vehicles (Scn. 31)

(c) From Ugdb2 with 6 vehicles to Ugdb2
with 8 vehicles (Scn. 39)

(d) From Ugdb6 with 5 vehicles to Ugdb6
with 4 vehicles (Scn. 40)

Fig. 4.10 The average population entropy of SAKTGP and SUFullTree
and some existing knowledge transfer methods.

4.7 Chapter Summary

In Chapter 3, it was observed that the existence of duplicates and the lack
of diversity in the transferred knowledge can decrease the effectiveness of
transfer optimisation for solving UCARP. In this chapter, we proposed two
approaches for handling this issue and improve the quality of transfer:
1) increasing population diversity after transfer of source knowledge; 2)
removing duplicates from the knowledge source before transferring and
then, transfer the unique individuals.

In the first approach, we proposed using high mutation rates after the
transfer, with several mutation adaptation strategies to change the muta-
tion rate dynamically over time. This approach was tested through a large
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set of experimental studies. The studies indicated that although there were
cases in which high mutation rates could increase the diversity slightly,
it could not mitigate the negative impact of the transferred duplicates.
Consequently, the proposed approach did not improve the performance
of training routing policies for target problems. It can be argued that the
mutation rate can be adjusted during the GP run in accordance with the
population diversity. However, the results of DDGP-Exp indicate that mu-
tation operator is not the appropriate tool for increasing the population di-
versity of UCARP because DDGP-Cos sets the mutation rate to very high
values in early and late generations. However, our experiments indicate
that the population diversity was not very high in these generations.

In the second approach set, two algorithms were proposed that re-
moved phenotypic duplicates from the transferred knowledge. Since the
knowledge source is dominated by phenotypic duplicates, removing them
reduces the set of transferable individuals. To compensate for this, a large
pool of individuals are created, either randomly or through mutating the
unique high-quality source individuals. This pool is then evaluated with
a surrogate model that is learned from the source individuals. Finally, the
best individuals in the pool, in terms of the surrogate fitness, are used
for initialising GP for solving the target problem. Our experimental stud-
ies demonstrated the superior performance of this approach. Our anal-
ysis showed that both algorithms performed significantly better than a
selected set of existing methods as well as GPHH without knowledge. In
addition, creating the diverse pool from the best of the source individu-
als tend to give better results that creating them randomly. Furthermore,
we observed that the diversity of the initial population created by the pro-
posed methods is better than the compared existing methods. However,
this initial diversity is quickly lost after a few generations. This issue will
be investigated and handled in Chapter 6.

In the next chapter, we will propose a new algorithm for considering
the phenotypic behaviour of source routing policies and reusing them dur-
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ing the course of the evolutionary process for solving the target problem.
In this regard, extensive experiments will be conducted to verify the effec-
tiveness of the proposed algorithm.



Chapter 5

Knowledge-guided Search

Our discussion of using the sub-tree transfer approach to performing trans-
fer optimisation for UCARP in Chapters 3 and 4 were focused on using the
transferred individuals for initialising GP for solving the target problem.
In this chapter, we propose a novel approach to the use of the transferred
knowledge after the initialisation and during the GP process.

5.1 Introduction

In Chapter 3, the general approach to transferring individuals from the
final population of the source problem to initialise GP for solving the tar-
get problem was discussed and was shown that the final population may
have converged to local optima and contained redundancies and dupli-
cates. This becomes more serious when many GP individuals have dif-
ferent genotypes (i.e. tree structures) but the same phenotypic behaviour
(routing behaviour). The duplicated genetic materials in the transferred
individuals can mislead the search for solving the target problem into poor
local optima. In this case, the transferred knowledge may misguide the
search of the target problem and make it get stuck to local regions around
the best region found for the source problem.

In Chapter 4, a set of novel approaches were introduced to handle

149
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this problem. In that chapter, we showed how removing the duplicates
from the set of transferred individuals and creating a diverse initial pop-
ulation for solving the target problem can improve the performance of
GPHH. However, these approaches, as well as most of the existing meth-
ods, mainly focus on high-quality source solutions, ignoring the low-quality
ones. Although there are cases in which low-quality solutions are also
considered [150, 129, 62], this is usually done in a limited fashion with the
purpose of increasing the diversity in the pool and handling the situations
when the source and target problems are not as related as expected [150].
Based on the assumption that the source and target problems are related
and their fitness landscapes share similarities, the high (low) quality so-
lutions of the source problem tend to have high (low) fitness in the target
problem. This knowledge about the search space of the source problem is
important and can be beneficial in the target problem. It is even more im-
portant to consider a wider range of individuals from the source problem
when the pool of good individuals is limited due to the lack of diversity.

Furthermore, the proposed approaches, as well as the majority of exist-
ing approaches for GP, do not utilise the transferred knowledge after the
initialisation. The TLGPC algorithm [116], as described in Chapter 2, is
one of the few exceptions to this observation but as was shown in Chapter
3, this method does not show a satisfactory performance for UCARP. The
sub-par performance of TLGPC for UCARP could be attributed to the is-
sue of the lack of diversity in the knowledge source. On the other hand,
another reason for the observed performance of TLGPC could be the fact
that it extracts the genetic materials, i.e. sub-trees, of good source indi-
viduals and was designed to be used in non-hyper-heuristic GP in which
the genetic materials in the population also constitute the final solutions
of the problem. However, for the case of UCARP, the genotypic contents
of the population are not the final solutions of the problem but are the
priority functions that can generate the final solutions, which are the ve-
hicle routes. Accordingly, it is difficult to establish a relationship between
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the genotypic space of the source problem from which TLGPC extracts the
sub-trees, to the phenotypic space of the target problem that contains the
target solution. The extracted sub-trees may be good enough for creating
a better-than-random initial population for solving the target problem but
as the evolution proceeds, these materials may lose their relevance for the
target problem. This exemplifies the general issue which any method that
tries to reuse the source genetic materials during the GP run may face for
solving UCARP.

To address these shortcomings, in this chapter we propose a novel
method for reusing the transferred knowledge after the initialisation and
during the evolutionary process for solving the target problem. In our ap-
proach, after initialising the search with the high-quality source solutions,
the search process is guided by the transferred individuals to discover
phenotypically new individuals that have not been seen in the source. This
encourages GP to explore new regions of the search space and prevents it
from spending too many computational resources on evaluating individ-
uals that have been seen in the knowledge source, which are unlikely to
have high-qualities for the target problem.

5.2 Chapter Goal

To address the above issues, we propose a novel Genetic Programming
with Knowledge transfer and Guided Search (GPGS). Our algorithm has
two knowledge-guided components: 1) a new guided initialisation, and
2) newly proposed guided crossover and mutation operators. The guided
initialisation salvages the good and unique genetic materials transferred
from the source problem. Although it is possible to reuse previously pro-
posed initialiation methods (i.e. SAKGPHH or SUFullTree), these algo-
rithms utilise a surrogate model, and to avoid increasing the complexity
of the proposed algorithm in this chapter, a new and simpler algorithm
is proposed. The guided crossover and mutation operators employ the
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transferred knowledge that include both high-quality and low-quality in-
dividuals, and maintain a tabu list to guide the offspring generation so
that the search for the target problem will not revisit the regions already
explored when solving the source problem. Since the tabu list can be very
large, we devise an elaborate hashing mechanism for scanning the tabu
list efficiently. More specifically, we will achieve the following research
objectives in this chapter:

• Develop a new GP initialisation method which identifies the phe-
notypic duplicates from the source individuals and removes them
before transferring to the target initial population.

• Develop novel guided crossover and mutation operators that take
advantage of all the source individuals to prevent the search from
revisiting the regions that have been explored for the source prob-
lem.

• Adapt a fast hashing algorithm for routing policies to speed up the
comparisons to the large number of source individuals during the
revisit check, which can greatly improve the efficiency of the guided
crossover and mutation operators.

• Investigate the effectiveness of the proposed algorithm through ex-
tensive experimental studies and analyse its various components in
detail.

5.3 Chapter Organisation

This chapter is organised as follows. Detailed descriptions of the proposed
algorithm are given in Section 5.4. The experiment design is shown in
Section 5.5, followed by results and discussions in Section 5.5.2. Finally,
Section 5.6 concludes this chapter.
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Fig. 5.1 The GPKGS framework.

5.4 Proposed Algorithm

5.4.1 Overall Framework

The overall framework of our proposed GPKGS is depicted in Figure 5.1.
GPKGS has two inputs: 1) a target problem to solve, and 2) the knowledge
transferred from the source problem(s). Here, we consider all the individ-
uals evaluated by GP for solving the source problem, S, as the transferred
knowledge.

Compared with existing GP transfer optimisation methods, the pro-
posed GPKGS contains the following novel contributions. First, GPKGS
has a novel initialisation that removes the phenotypic duplicates from the
source individuals before transferring them. It should be noted that this al-
gorithm is different from the proposed initialisation method of SUFullTree,
Algortihm 4.6, in that the new algorithm in this chapter does not create a
large initial pool and hence, does not evaluate the pool with any surro-
gates. The newly proposed method also substantially increases the diver-
sity of the transferred knowledge. Second, GPKGS contains novel guided
crossover and mutation operators. In contrast to most existing methods
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that use the transferred knowledge to generate (better) individuals, the
guided crossover and mutation operators use the transferred knowledge
to avoid revisiting the source individuals and thus encourage exploring
new regions. The guided crossover and mutation operators are assisted by
a powerful hashing algorithm that greatly improves their computational
efficiency.

Algorithm 5.1 presents the pseudo code of GPKGS. It receives the trans-
ferred knowledge S from a previously solved source problem and a target
problem T as inputs, and returns the best solution for T . The algorithm
starts by creating a hash table Ψ (line 2), which contains a summary of S
for a fast query of its content. This hash table is inherently different from
the hash table data structure that was discussed in Chapter 4. The details
about Ψ will be given in Section 5.4.2. After creating the hash table, the
guided initialisation (as shown in Algorithm 5.2) is used to create the ini-
tial GP population. After this, the population is evolved forMaxGen num-
ber of generations. In each generation, the fitness of each individual in the
population is evaluated (line 6) and the best individual is updated (line
7). Then, a new population is bred by the proposed GuidedCrossover (Al-
gorithm 5.5), GuidedMutation (Algorithm 5.6), reproduction and elitism
[130] (lines 9-26).

5.4.2 Guided Initialisation

The newly developed guided initialisation is described in Algorithm 5.2.
First, the algorithm removes the duplicated trees from S (line 2) using the
duplicate removal method in Algorithm 4.3 of Section 4.4. This takes into
account the possible presence of redundancy in the transferred pool. Then,
the unique individuals are sorted based on their fitness for the source
problem (line 3), and κ% of GP population for the target problem is ini-
tialised with the best of them (line 4). The remaining of the population,
considering the situation in which the number of unique individuals is
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Algorithm 5.1: Pseudocode for GPKGS
Input : κ, the percentage of the initial population to transfer from the source

problem; S, all GPHH individuals discovered for solving source
problem; T , target problem to solve

Output: Ind∗, the best solution for target problem T
1: begin
2: Ψ← GenerateLSHTable (S) (Algorithm 5.3)
3: Pop← GuidedInitialisation (Ψ, κ) (Algorithm 5.2)
4: g ← 0, Ind∗ ← null

5: while g < MaxGen do
6: Evaluate (Pop)
7: Ind∗ ← SelectBest (Pop)

// Create a new population

8: Pop′ ← Elitism ()
9: while |Pop′| < |Pop| do

10: op← SelectOperator ()
11: switch op do
12: case ‘Crossover’ do
13: ρ1, ρ2 ← TournamentSelect (Pop, 2)

// See Alg. 5.5

14: ρ′1, ρ
′
2 ←GuidedCrossover (Ψ, ρ1, ρ2)

15: Pop′ ← Pop′ ∪ {ρ′1, ρ′2}
16: end
17: case ‘Mutation’ do
18: ρ← TournamentSelect (Pop, 1)

// See Algorithm 5.6

19: ρ′ ← GuidedMutation (Ψ, ρ)
20: Pop′ ← Pop′ ∪ {ρ′}
21: end
22: case ‘Reproduction’ do
23: ρ′ ← Reproduction (Pop)
24: Pop′ ← Pop′ ∪ {ρ′}
25: end

26: end
27: g ← g + 1, Pop← Pop′

28: end

29: end
30: return Ind∗

31: end
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Algorithm 5.2: GuidedInitialisation(S, Ψ, κ)
Input : S, all GPHH individuals discovered for solving source problem; Ψ,

the hashed summary of S; κ, the percentage of the initial population to
transfer from the source problem

Output: Pop, the initial GPHH population
1: Pop← ∅
2: S ′ ← RemoveDuplicate (S) (Algorithm 4.3)
3: S ′ ← SortFitness (S ′) // from best to worst

4: Pop← SelectBest (S ′, κ) // Select the best

5: while |Pop| < PopSize do
6: ind← RandIndividual ()
7: if IsSeen (Ψ, ind) = false then
8: Pop← Pop ∪ {ind}
9: end

10: end
11: return Pop

smaller than κ%, is filled with randomly-created individuals (lines 5-10)
that are not explored in the source problem. Specifically, for adding each
individual, we first create a new individual using the Ramped Half and
Half approach [130]. Then, we scan the hash table Ψ, and add the new
individual into the population if it is not seen in Ψ.

Hashing the Transferred Knowledge S

To search for an individual q in S , a straightforward approach is to simply
compare each s ∈ S with q based on the dissimilarity function ∆ (Eq.
4.1). This approach has a time complexity of O(n) where n = |S|, which
can be very slow when S is very large. To address this issue, we employ
an approximate search technique used for solving the nearest neighbour
search problems that can search much more efficiently in large datasets [1,
209]. Although there exist exact search methods for low dimensions (e.g.
dimensionality of 2 or 3) [57, 112], for high dimensions, these methods
do not perform better than the linear search [232]. Hence, approximate
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Algorithm 5.3: Eq. (5.2), GenerateLSHashTable(S)
Input: S, history of all GPHH individuals discovered for solving source

problem
Output: Ψ, a hash table of the policies in S that maps a hash value to the set of

routing policies with the same value
1 begin

// The table of hashed individuals in S
// to return.

2 Ψ← {}
3 for i = 1→ τ do
4 Ψ ← ∅
5 for s ∈ S do
6 h← LSHash (s) (Equation 5.2)
7 Ψ [h]← Ψ [h] ∪ {s}
8 end
9 Ψ← Ψ ∪ {Ψ}

10 end

11 end
12 return Ψ

methods with better time complexities have been proposed that are almost
as effective as the exact ones [15, 132, 99, 128].

In this chapter, we employ the Locality-Sensitive Hashing (LSH) tech-
nique [112] that has a sub-linear dependence on data size. Indyk et al.
[112] originally proposed the method for the d-dimensional binary Ham-
ming space H = {0, 1}d and Datar et al. [57] extended LSH for the Eu-
clidean space Rd.

The key idea of LSH is to hash the items of a set S using several hashing
functions, called LSH functions or LSH family, in a way that if two data
items are more similar to each other, the probability of collision (having
the same hash value) is higher. For Rd, the LSH function can be of the
form

ha,b(o) = ⌊
a · o+ b

w
⌋ (5.1)
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This LSH function projects the vector o ∈ Rd into buckets of width w by
first projecting it along a random line identified by a ∈ Rd with the in-
ner product operation and then, shifting the projection by a random shift
value b ∈ R. At last, the bucket that the projection a · o, and hence a,
is located by applying the floor function. To reduce the probability that
distant/dissimilar data items fall into the same bucket, a compound hash
function is created by constructing λ hash functions via choosing a set of
random lines A and shift values B and concatenating their results

h(o) =
⊕

a,b∈A,B

ha,b(o) (5.2)

where
⊕

represents the concatenation operator. To further decrease the
chance of incorrect collisions, τ compound hash functions can be consid-
ered. Having a hash function, any dataset can be effectively hashed into τ
hash tables [112, 57]. As a result, given a query point q, its hash value is
first calculated and the hash tables are then queried and all the items with
the same hash value are compared to q to find the match [112, 57, 84, 109].

The phenotypic characterisation in Algorithm 4.2 and the norm in Eq.
4.1 map routing policies to the Rd space. This allows us to utilise the LSH
technique for efficient hashing and searching of the transferred archive S
in a straightforward manner. Algorithms 5.3 and 5.4 present the process.
First it is needed to hash the routing policies in S and create the set of hash
tables Ψ with Algorithm 5.3. Then, Algorithm 5.4 is used to search for a
policy q in Ψ. Specifically, the hash value of q is calculated first (lines 2-3)
and looked up in each hash table (line 5). If the hash value is in the table,
the corresponding routing policies are acquired from the table. The re-
trieved set has a small size and by comparing the policies inside it against
q (lines 6-10), it can be realized if q is in S or not.

Algorithm 5.3 hashes each s ∈ S for τ times and stores them in τ hash
tables. As a result, the algorithm has O(τn) time and space complexities.
Algorithm 5.4 does not store any data and hence, has a space complexity
of O(1). Datar et al. [57] proved that the time complexity of Algorithm 5.4



5.4. PROPOSED ALGORITHM 159

Algorithm 5.4: IsSeen(Ψ, ρ)
Input: Ψ, history of all GPHH individuals discovered for solving source

problem, hashed with Algorithm 5.3; An individual ρ to search for in Ψ

Output: true if ρ is in Ψ and, false otherwise
1 begin
2 ζ ← Characterise (ρ) (Algorithm 4.2)
3 h← LSHash (ζ)
4 for Ψ ∈ Ψ do

// Get policies with the same hash value

5 S ′ ← Ψ [h]

6 for s ∈ S ′ do
7 if ∆(s, ρ) = 0 then
8 return true
9 end

10 end

11 end
12 return false

13 end

cannot be worst than O(τn1/2 log n) which is significantly better than the
O(n) time complexity of the linear search approach.

5.4.3 Guided Genetic Operators

To take better advantage of the transferred knowledge S, the guided ge-
netic operators consider the hash table Ψ, and retain only the generated
offspring that are not seen in Ψ. This way, the search for the solutions
of the target problem can focus more on the regions that are not explored
when solving the source problem. In this regard, the role of the crossover
operator becomes more prominent. However, since in our approach the
population is initialised with the transferred solutions, it is possible that
the neighbourhood of these solutions have been seen and evaluated before
in the source problem. This increases the risk of creating individuals that
have been seen before. To address this, we modify the crossover operator
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Algorithm 5.5: GuidedCrossover(Ψ, ρ1, ρ2)
Input: Ψ, a hashed history of all GPHH individuals discovered for solving

source problem; Two individuals ρ1 and ρ2 to perform crossover on
Output: Two offsprings ρ′1 and ρ′2

1 begin
// Number of trials

2 try ← 0

3 Γ ← {}
4 while try ≤ η and |Γ | < 2 do
5 try ← try + 1

6 ρ′1, ρ
′
2 ← Crossover (ρ1, ρ2)

7 if IsSeen (Ψ, ρ′1) = false then
8 Γ ← Γ ∪ {ρ′1}
9 end

10 if IsSeen (Ψ, ρ′2) = false then
11 Γ ← Γ ∪ {ρ′2}
12 end

13 end
// In case |Γ| < 2

14 Γ← {ρ′1, ρ′2}
15 return Γ [1], Γ [2]

16 end

as is presented in Algorithm 5.5.

Algorithm 5.5 presents GuidedCrossover, the crossover operator of GP-
KGS. The algorithm takes two parents ρ1 and ρ2, and the hash table Ψ.
After performing the standard point-wise crossover [130] and creating
two offspring, the algorithm uses the IsSeen function (Subsection 5.4.2)
to check if any of the offspring has been seen in ψ. An offspring is stored
in the Γ set if it is new. The crossover operation is repeated to create
new offspring until either two new offspring are found or a the maximum
number of trials, η, is reached (lines 4-10). The parameter η controls the
amount of effort that GPKGS exerts for finding new and unseen individ-
uals. It should be noted that for η = 1, GuidedCrossover reduces to the
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Algorithm 5.6: GuidedMutation(Ψ, ρ)
Input: S, history of all GPHH individuals discovered for solving source

problem; an individual ρ to mutate
Output: A mutated individual ρ′

1 begin
// Number of trials

2 try ← 1

3 ρ′ ← Mutate (ρ)
4 found← false
5 while try ≤ η do
6 ρ′ ← Mutate (ρ)
7 try ← try + 1

8 if IsSeen (Ψ, ρ′) = false then
9 found← true

10 break

11 end

12 end
13 if found = false then
14 r ← rand (0, 1)
15 if r ≤ 0.5 then
16 ρ′ ← randomly created individual
17 end

18 end
19 return ρ′

20 end

standard point-wise crossover. Finally, the Γ set is returned as the output
of GuidedCrossover. If Γ contains less than two individuals, the most-
recently created individuals are returned as needed (lines 14-15).

Algorithm 5.6 shows the GuidedMutation operator. Given the parent
individual ρ, it is first mutated with the standard mutation [130] (line 3
and 6) into ρ′. Then, ρ′ is checked against Ψ, to find out if it has been
seen previously or not (line 8). If ρ′ is seen then it is discarded and a new
mutation is performed on ρ with the hope of finding a previously unseen
individual. This process is repeated for pre-set number of η times (lines
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5-12).

After multiple tries, the mutation operator may not yield a new indi-
vidual. In this case, one option is to accept the mutation result, even if it
is seen before. On the other hand, since the intention of the mutation is
to introduce diversity and randomness into population, we can create a
totally random individual as the mutation result, with the hope that the
random individual has a better chance of discovering a less explored re-
gion of the search space. The decision of returning a previously-seen indi-
vidual or randomly-created one is made stochastically with a probability
of 0.5 (lines 13-18).

5.4.4 Summary

The main goal in the development of GPKGS is utilise the phenotypic in-
formation that the GP process gained for solving a source problem more
efficiently than the methods that were discussed and proposed in chapters
2–4. In this regard, GPKGS also reuses the unique and high-quality indi-
viduals of the transferred knowledge to initialise GP for solving the target
problem. However, after the initialisation operation, the proposed algo-
rithm remembers the phenotypic information of all the transferred indi-
viduals, including the low-quality ones. During the search, it tries to avoid
recreating individuals that have the same phenotypic characteristics of a
transferred individual. The reason for this attitude is that such individu-
als have already been evaluated for the source problem and if they have
a high quality for the source problem, they are reused for initialising the
target search. On the other hand, if they have a low quality for the source
problem, they are also likely to have a low quality for the target problem
too. In either case, allowing to create them during the search for the so-
lution of the target problem will waste the computational resources. To
prevent the search from recreating the source individuals, in this chapter
we modified the crossover and mutation operators to check their results
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against the set of transferred source individuals and if the result is in the
set, repeat their operation.

It should be noted that act of prohibiting the search from creating some
individuals shares some similarities with the tabu search algorithm [86,
87, 88]. However, tabu search is a meta-heuristic algorithm that performs
local search around a single potential solution, i.e. the population size
is 1 (although some of its recent variants do not have this restriction [89,
17, 136]). More importantly, in the tabu search algorithm, the tabu list is
not fixed and is updated in every iteration of the algorithm. The update
removes the old solution in the list in favour of the newest one. However,
in GPKGS the list is fixed and is not updated with the results of search
process for solving the target problem. Although it is possible to update
the list during the GPKGS search, it is not done in this work so that focus
is placed only on understanding the impact of the transferred knowledge.

5.5 Experimental Studies

In this section we test the effectiveness of the proposed GPKGS on a wide
range of UCARP transfer optimisation scenarios based on the Ugdb, Uval
and Uegl datasets described in [162]. The source and target problems of
each scenario are presented in Table 3.1 (page 73).

5.5.1 Parameter Settings

For each scenario, we first solve the source problem using GP with popula-
tion size of 1024 and 50 generations, and then transfer the 1024×50 = 51200

individuals to the target problem. Table 3.2 (page 75) presents the GP pa-
rameter settings in our experiments. As before, the division operator /
is protected and will return 1 if its denominator is 0 and the min (max)
function returns the smaller (larger) value of its two input arguments. For
training the routing policies, 5 sampled instances are considered for each
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generation. The routing policies were tested with 500 samples. These set-
tings are commonly used by previous studies, e.g. [145, 163].

GPKGS requires a set of decision situations Ω to characterise routing
policies (Algorithm 4.2). The accuracy of the dissimilarity measure in
Eq. 4.1 depends on the number of decision-making situations utilised for
computing it. The accuracy will increase by using more situations but
the computational cost will also increase. To construct Ω for each sce-
nario and before starting the experiment, a vehicle was equipped with the
path-scanning policy to serve a few tasks and the encountered situations
were recorded. For our experiments, we considered twenty situations for
characterisation of the routing policies which provided a good balance be-
tween accuracy and computational cost.

We set the LSH bucket size to w = 10 according to the analyses in [57].
The number of hash functions λ and hash tables τ control the accuracy
of the compound hashing mechanism. Small values of λ and τ can in-
crease the chance of false collisions and hence, increase the time required
for performing the exact comparisons. However, after a certain point, in-
creasing these values do not have a noticeable impact on the accuracy. In
our preliminary testing, we realised that λ = 10 and τ = 100 yielded good
precisions so we used these values for all our experiments.

In addition to the conventional GP parameters, GPKGS has two extra
parameters, the initialisation rate κ and the number of trials, η, for finding
new individuals in GuidedCrossover and GuidedMutation. In our experi-
ments, we evaluated the performance of the algorithm for a wide variety
of values for these parameters and we obtained the best results with the
κ = 100 and η = 10 values, which are used throughout the rest of this
chapter.
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5.5.2 Results and Discussions

To verify the effectiveness of GPKGS, we compare it with GP with knowl-
edge transfer methods, i.e. BestGen-1 [62], GATL [129] and DDGP [14], as
well as the GP without knowledge transfer. In Chapter 4, two new al-
gorithms, SAKTGP and SUFullTree, were introduced that demonstrated
superior performance compared to the existing knowledge transfer algo-
rithms, as well as the standard GPHH. However, these new algorithms are
equipped with surrogate models and allows them approximate the fitness
of a large number of individuals. However, since APTGP does not ben-
efit from this additional opportunity for fitness evaluation, we decided
exclude them from the experimental studies in this section.

Table 5.1 presents the fitness of solutions obtained with the compared
methods over 30 independent runs. In this table, the minimum mean fit-
ness value is marked in boldface. To investigate if there is a significant
difference, the results in Table 5.1 are compared with the Friedman’s test
with a significance level of α = 0.05. The ranks of the algorithms and the
p-value are given at the bottom of the table. The test’s p-value reveals that
the difference between the compared algorithms is significant. Addition-
ally, the rank of GPKGS is the best. To perform a pairwise comparison, the
Conover post-hoc analysis [49] is applied on the results.

Table 5.1: Test performance of 30 independent runs of the compared algo-
rithms (mean ± std)

Scn. GPHH GATL
[129]

BestGen-1 [62] DDGP [14] GPKGS

1 91.2±0.1 91.2±0.1 91.2±0.1 91.2±0.1 91.1±0.1
2 551.0±10.3 550.8±8.1 551.1±10.4 552.1±8.3 550.4±7.3
3 598.6±8.8 599.6±9.5 600.5±11.6 602.3±12.5 599.0±9.2
4 639.5±11.3 636.0±10.7 640.6±12.1 640.4±10.4 642.7±12.7
5 58.2±0.1 58.2±0.1 58.3±0.1 58.2±0.1 58.2±0.1
6 424.8±8.5 424.9±8.8 423.9±8.6 425.3±6.1 423.6±9.7
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Continuation of Table 5.1

Scn. GPHH GATL
[129]

BestGen-1 [62] DDGP [14] GPKGS

7 432.1±7.1 430.0±6.3 431.2±6.3 430.6±7.6 431.9±7.3
8 432.6±5.5 430.6±6.7 432.7±4.8 431.4±5.5 424.6±6.1
9 576.2±3.9 575.8±4.2 576.8±3.7 576.0±3.9 575.0±3.7
10 340.5±4.7 338.1±4.2 337.5±3.1 338.0±2.6 337.0±3.3
11 347.2±6.1 347.1±6.0 345.9±4.8 346.7±5.7 345.2±6.4
12 551.0±10.3 553.7±10.5 551.8±10.1 553.2±11.4 554.4±9.7
13 598.6±8.8 598.5±7.5 597.6±8.2 604.6±11.2 601.1±12.6
14 639.5±11.3 640.1±12.2 639.0±11.9 640.5±15.4 637.1±9.1
15 340.5±4.7 339.8±3.5 339.9±5.0 338.5±3.6 338.5±4.0
16 444.4±4.7 445.0±7.6 443.9±6.5 445.4±6.4 446.2±5.6
17 324.3±6.2 323.3±5.2 321.5±5.4 323.8±5.7 321.2±5.9
18 360.3±3.1 359.7±3.7 359.4±3.9 358.4±4.4 355.7±4.2
19 358.3±2.6 358.3±3.1 358.8±2.7 362.0±7.1 359.7±6.4
20 359.0±1.8 358.5±1.8 358.6±1.9 358.9±1.7 358.2±1.6
21 340.8±4.4 340.8±2.2 339.4±4.7 340.8±3.3 337.8±4.2
22 351.9±3.5 351.6±2.5 352.5±3.5 351.7±3.0 351.7±4.7
23 356.6±1.6 356.4±1.5 356.1±1.3 356.0±1.1 356.1±1.2
24 310.9±0.5 311.0±0.3 310.7±0.8 310.0±1.5 309.1±3.2
25 389.2±0.2 389.1±0.2 389.2±0.2 389.2±0.2 389.2±0.2
26 363.1±2.8 363.1±3.2 363.4±2.6 361.2±4.6 362.0±3.9
27 342.1±6.2 342.5±7.8 340.9±8.0 343.3±5.9 339.5±7.2
28 382.0±5.5 381.0±4.6 381.3±8.0 384.0±9.3 383.6±6.1
29 382.8±3.3 383.9±2.6 382.7±4.8 383.0±5.2 382.9±4.4
30 351.5±2.5 351.1±2.2 351.7±1.2 351.2±2.0 350.8±2.2
31 326.0±4.7 325.2±4.0 325.2±5.0 324.5±5.4 323.2±4.8
32 444.4±4.7 443.7±5.6 442.0±7.3 443.5±7.6 443.4±5.7
33 448.2±0.5 449.0±2.3 448.2±0.9 449.4±2.6 449.9±2.8
34 384.6±4.4 387.1±6.0 386.9±5.0 389.2±5.5 386.6±5.9
35 369.3±1.8 369.3±2.2 369.8±3.8 371.3±4.1 369.3±3.0
36 321.4±5.2 322.7±4.2 323.8±5.1 322.9±5.5 322.2±3.2
37 166.2±2.0 166.1±1.7 165.2±1.5 165.9±1.6 164.8±1.5
38 376.1±7.6 381.2±7.0 377.8±7.5 378.8±7.5 375.3±8.0
39 415.7±9.2 415.5±7.2 414.3±8.9 414.8±8.0 413.6±5.1
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Continuation of Table 5.1

Scn. GPHH GATL
[129]

BestGen-1 [62] DDGP [14] GPKGS

40 347.2±6.1 347.5±5.2 345.8±4.4 348.8±8.2 344.3±4.6
41 351.5±2.5 351.4±2.7 352.0±2.3 352.6±4.9 351.4±3.1
42 165.9±1.8 165.6±1.7 165.7±1.6 165.3±1.9 165.3±1.3
43 462.6±6.0 457.4±7.0 460.2±5.4 459.6±5.7 457.7±6.9
44 426.6±3.3 427.3±2.0 427.0±2.6 427.7±2.2 425.7±3.2
45 499.0±3.9 498.5±4.4 497.6±4.4 500.0±5.4 497.1±3.8

Rank 3.42 3.02 2.99 3.58 1.99

Friedman’s p-value 0

Table 5.2 presents the p-values for the post-hoc tests with a signifi-
cance level of α = 0.05 after being adjusted with the Benjamini-Hochberg
method [25]. In the table, the significant values are highlighted in bold-
face. As is evident from the table, the test rejects the null hypotheses for
all the comparisons between GPKGS and other algorithms and signifies its
superiority.

Figure 5.2 presents the convergence curve of algorithms for a few sce-
narios. According to these curves, we see that GPKGS starts with a better
initial state compared to other existing methods, as well as GPHH with no
knowledge transfer. Both DDGP and GPKGS initialise GP with the best in-
dividuals from the source problem. However, GPKGS removes phenotyp-

Table 5.2: Post-hoc comparison of the compared existing algorithms with
adjusted p-values

GATL BestGen-1 DDGP GPKGS

GPHH 0.27 0.23 0.67 0
GATL – 0.87 0.13 0
BestGen-1 – – 0.11 0
DDGP – – – 0
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(a) Ugdb17 with 5 vehicles to Ugdb17 with
5 vehicles (Scn. 8)

(b) Ugdb17 with 5 vehicles to Ugdb17 with
5 vehicles (Scn. 8)

(c) Ugdb17 with 5 vehicles to Ugdb17 with
5 vehicles (Scn. 8)

(d) Ugdb17 with 5 vehicles to Ugdb17 with
5 vehicles (Scn. 8)

Fig. 5.2 Convergence curve of GPKGS and some existing transfer meth-
ods.

ically similar trees and Figure 5.2 indicates that the removal of duplicates
leads to a better initial solution. This is due to the fact that the duplicates
occupy the population without contributing any extra phenotypic infor-
mation. Hence, when they are removed, other individuals, that may be
less fit for the source problem but can perform better for the target prob-
lem, will have a chance to be included. Additionally, we see that GPKGS
manages to retain its initial good performance throughout the evolution-
ary process. This is in contrast to other methods that may perform better
than GPHH initially but then, they gradually lose their superiority and
become very similar to GPHH. Although the convergence curve of other
scenarios are not given due to space limit, we observed similar patterns in
almost all other scenarios too.
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(a) Ugdb3, from 5 to 3 vehicles (Scn. 11) (b) Ugdb7, from 5 to 4 vehicles (Scn. 27)

Fig. 5.3 Performance violin plots of GPKGS and the compared transfer
algorithms.

Figure 5.3 presents the distributions of the performances obtained from
30 independent runs for a few of the experimented scenarios. The plots in
this figure also confirm the difference between the GPKGS and the com-
pared algorithms. Similar patterns were observed in almost all other sce-
narios.

5.5.3 Training Time

In the guided initialisation and guided genetic operators, GPKGS needs to
search the archive of transferred individuals, S , during crossover and mu-
tation. In our experiments, GP is run for 50 generations for the source
problem to evolve populations of 1024 individuals. As a result, |S| =
50×1024 = 51200 individuals are transferred for the target problem. Need-
less to say, linear search of this large set of individuals every time a new
individual is created can be daunting. In GPKGS, we alleviated this chal-
lenge with the LSH technique to hash S into a hash table Ψ and search the
Ψ instead. To confirm the challenge and to verify the need for using the
hashing method, we disabled the LSH-based search mechanism of Algo-
rithm 5.4 in GPKGS and replaced it with a simple linear search of S. This
increased the runtime of GPKGS significantly and made the it practically
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impossible to use. To investigate further, we also considered a version of
GPKGS that removes any duplicates from S and performs the linear search
on it, instead of the LSH-based search. We refer to this algorithm as GPKGS
Duplicate-free Linear Search or DL-GPKGS. This modification improved the
execution time significantly but the execution time was still worse than
GPKGS. This effect is clearly visible in Figure 5.4 which presents the mean
training time of each investigated algorithm, averaged over all scenarios.

5.5.4 Further Analysis

Negative Transfer During Initialisation

It is clear from the convergence curve of the algorithm in Figure 5.2 that the
guided initialisation helps jump-start the search. However, it is interesting
to see an example of negative transfer during initialisation in Figure 5.2a,
and note how the guided genetic operators could then serve to improve
the search behaviour. In this direction, we can speculate two possible rea-
sons as follows.

1. The source and target problems are not related or have limited simi-
larities. In this case, it is natural that knowledge transfer is harmful

Fig. 5.4 Training time of the compared algorithms
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for the target problem. With respect to our algorithm, this effect can
manifest itself as a very bad initial state, i.e. worse than the ran-
dom initialisation. Additionally, since our method uses the trans-
ferred knowledge during the search, we can expect the guided ge-
netic operators hurt the effectiveness of the GP search because they
prohibit visiting the areas of the search space that were not good for
the source problem, which could potentially contain good solutions
for the target problem. Looking at Figure 5.2a, this is not likely to be
the reason.

2. There are some degree of similarity between the source and target
problem but the change in the problem characteristics placed the lo-
cal/global optima of the source problem in a very bad position of the
search space of the target problem. In this case, it can be expected
that the initialisation with the transferred knowledge will make the
initial state of GP for the target problem very bad but over time, the
guided search operators will improve the quality of the population.
Figure 5.2a seems to represent such a scenario. We measured the
similarity of the problems as r = 0.61. As can be seen in the Figure,
the initial state of GPKGS is very bad compared to other algorithms,
including GPHH. However, GPKGS is not the only algorithm whose
initial state is worse than GPHH, for example, DDGP has the same
situation. We can attribute the difference between the state of GP-
KGS and DDGP to the removal of duplicates from the transferred
knowledge. The removal of duplicates removes the good duplicate
individuals and allows non- duplicate individuals with worse fitness
to be transferred. Naturally, these unique individuals have worse fit-
ness for the target problem. As is evident, although the initial state
of GPKGS is worse than all other methods, during the course of evo-
lution, GPKGS improves its state and quickly, it becomes better than
other methods despite the fact that its initial state was much worse.
Considering the fact that GPKGS is the only algorithm that makes
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an extensive use of the transferred knowledge after the initialisation
stage, its better performance can only be attributed to the effective-
ness of the proposed guided operators.

Effectiveness of Guided Search

As described in Section 5.4, GPKGS is comprised of three new compo-
nents: initialisation, crossover and mutation. In this section, we consider
the effect of each components on the performance of GPKGS. Specifically,
we disable the GuidedCrossover by considering the ordinary crossover
operator and name it GPKGS-OX. Similarly, GPKGS-OM is the GPKGS al-
gorithm with its GuidedMutation replaced with the ordinary mutation op-
erator. Additionally, if both the guided crossover and mutation operators
are replaced with ordinary operators in GPKGS, the knowledge transfer is
conducted only by the initialisation (Algorithm 5.2). This method, referred
to as GPKGS-OXM, can be considered a modified version of the FullTree
[62] method that does not transfer duplicate individuals and also does not
transfer any knowledge about the search space of the source problem. Fur-
thermore, we replaced the guided initialisation of GPKGS with the FullTree
method but kept GuidedCrossover and GuidedMutation. This algorithm
is referred to as GPKGS-FT. Finally, GPKGS-0 stands for the GPKGS with
κ = 0, i.e. no initial individual is transferred.

Table 5.3: Average fitness of 30 independent runs of GPKGS and its vari-
ants

Scn. GPKGS-0 GPKGS-
FT

GPKGS-OM GPKGS-OX GPKGS-OXM GPKGS

1 60.0±0.1 59.9±0.2 59.9±0.2 59.9±0.2 59.8±0.2 59.8±0.2
2 91.1±0.1 91.1±0.1 91.2±0.1 91.2±0.1 91.2±0.1 91.1±0.1
3 58.2±0.1 58.2±0.1 58.2±0.1 58.2±0.1 58.2±0.2 58.1±0.1
4 424.5±5.2 427.7±6.0 425.9±6.4 427.5±4.9 428.8±6.9 426.9±5.0
5 576.0±4.0 574.9±6.2 575.1±3.8 576.3±4.6 575.4±5.2 574.1±4.6
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Continuation of Table 5.3

Scn. GPKGS-0 GPKGS-
FT

GPKGS-OM GPKGS-OX GPKGS-OXM GPKGS

6 125.5±1.0 125.3±0.7 125.2±0.6 125.7±0.9 125.4±0.9 125.4±0.7
7 249.4±1.7 250.0±1.7 249.5±1.8 249.1±1.6 249.4±1.9 248.9±1.2
8 443.5±4.7 446.8±7.8 446.8±7.8 444.4±8.1 447.4±9.2 442.0±7.3
9 322.5±6.5 321.6±5.5 319.9±5.5 319.3±5.3 320.8±5.9 318.0±4.2
10 355.9±2.7 358.0±5.6 356.4±4.5 356.9±3.4 358.4±5.4 358.0±5.0
11 340.8±6.5 338.2±5.1 337.4±6.2 337.2±6.1 338.7±3.8 336.1±5.5
12 350.7±3.0 351.7±4.0 351.0±2.5 350.2±3.0 350.4±1.6 350.3±3.9
13 356.2±1.2 356.6±1.7 356.5±1.6 356.1±1.3 356.4±1.6 356.3±1.4
14 310.6±2.5 309.9±1.8 308.6±1.8 308.9±2.4 308.9±1.8 308.2±2.1
15 340.1±5.9 340.5±4.9 337.7±4.5 338.6±7.1 338.8±6.5 338.7±4.9
16 356.7±3.8 357.0±4.8 355.0±5.2 355.6±4.0 357.0±4.4 355.2±5.3
17 358.5±1.9 358.4±1.8 357.5±2.1 357.7±1.6 358.1±1.3 357.3±1.5
18 361.5±4.5 362.2±3.3 361.8±1.8 361.0±3.7 361.5±2.1 360.9±3.0
19 384.4±8.0 386.2±6.7 384.4±6.3 384.6±6.0 383.4±6.1 383.8±6.5
20 441.8±5.0 442.4±7.4 441.7±5.4 441.3±6.4 441.2±7.0 440.8±5.9
21 382.4±4.9 383.8±4.1 381.9±3.9 381.2±3.4 381.8±3.9 381.6±2.9
22 449.0±1.9 449.7±2.6 449.0±1.6 448.4±1.3 448.4±0.7 448.6±1.4
23 165.2±1.5 165.4±1.8 165.1±1.8 164.7±2.0 165.0±1.5 164.8±1.4
24 321.3±4.1 323.9±5.1 322.2±2.9 321.7±3.5 321.0±2.9 320.9±2.5
25 368.8±2.2 370.9±4.1 368.5±2.4 368.9±2.3 368.2±2.2 368.0±2.1
26 389.1±0.1 389.2±0.2 389.1±0.2 389.1±0.1 389.1±0.2 389.1±0.2
27 370.0±7.2 377.7±7.7 373.1±7.1 373.1±7.8 376.2±7.6 369.9±7.3
28 383.4±6.1 387.7±5.7 387.1±5.0 383.6±4.5 384.6±5.0 383.1±4.8
29 351.7±1.0 350.7±2.2 351.2±1.1 350.7±2.7 351.1±1.9 351.1±1.9
30 345.6±6.4 345.2±6.2 346.6±4.6 345.4±6.0 347.0±5.9 345.6±6.4
31 324.6±4.5 325.1±3.5 324.2±4.5 322.1±4.8 322.7±4.8 322.6±5.2
32 165.2±1.5 165.2±1.2 165.1±1.6 165.3±1.0 164.9±1.4 164.7±1.7
33 411.0±10.4 410.7±8.2 412.6±7.3 411.7±6.5 411.9±6.6 410.7±9.7
34 354.9±4.5 356.3±5.4 354.1±3.9 354.4±3.9 353.8±4.0 353.6±3.8
35 381.8±2.7 383.1±2.7 381.9±2.4 381.6±2.3 382.0±2.0 381.9±2.8
36 351.6±1.2 352.0±3.2 351.1±1.2 351.3±2.1 351.1±2.2 351.1±1.2
37 194.9±2.9 195.3±2.4 195.3±2.4 195.2±2.3 194.9±2.2 194.0±1.9
38 381.9±4.0 381.1±3.4 381.0±3.2 380.4±3.2 380.1±4.3 380.0±4.2
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Continuation of Table 5.3

Scn. GPKGS-0 GPKGS-
FT

GPKGS-OM GPKGS-OX GPKGS-OXM GPKGS

39 249.2±1.4 249.4±1.3 248.5±1.2 248.5±1.1 248.3±1.4 248.4±1.4
40 247.6±2.2 247.0±2.1 246.6±1.5 246.7±1.1 246.8±1.4 246.3±1.4
41 457.9±8.0 459.5±5.8 457.4±7.2 458.2±7.2 458.6±6.3 454.8±7.6
42 426.0±4.6 426.7±4.0 425.8±4.3 425.2±3.9 426.5±3.1 425.8±3.6
43 500.5±4.6 498.1±4.8 498.4±4.6 496.8±3.3 496.6±3.8 497.2±4.5

Rank 4.15 5.33 3.71 3.13 3.8 1.87

Friedman’s p-value 1.1102e-16

Table 5.3 presents the average performance of the algorithms in which
the best fitness values are highlighted in boldface. To perform statisti-
cal analysis, we included the performance of GPHH from Table 5.1 (not
shown again in Table 5.3 to save space) and conducted the Friedman test.
GPHH was ranked 6.01 in this context. The ranks of other methods, as well
as the p-value, are given in Table 5.3. As can be seen from Table 5.3, GP-
KGS has the best rank amongst the algorithms. Since the p-value indicates
the existence of significant difference, the Nemenyi post-hoc comparison
is performed and the obtained p-values are given in Table 5.4.

By comparing GPKGS and GPKGS-0, we observe that when the trans-

Table 5.4: p-values for the post-hoc comparison of the GPKGS and its vari-
ants

GPHH GPKGS-0 GPKGS-FT GPKGS-OM GPKGS-OX GPKGS-OXM GPKGS

GPHH – 13e-5 1 2e-05 0 4e-05 0
GPKGS-0 – – 0.26 1 0.59 1 2e-05
GPKGS-FT – – – 0.01 5e-05 0.02 0
GPKGS-OM – – – – 1 1 16e-5
GPKGS-OX – – – – – 1 0.15
GPKGS-OXM – – – – – – 72e-5
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fer of genetic materials is disabled, the effectiveness of the resulting al-
gorithm, GPKGS-0, degrades significantly. This observation indicates the
importance of genetic materials. However, relying solely on knowledge-
guided initialisation, crossover and mutation, and without any transfer
of genetic materials, GPKGS-0 still manages to outperform GPHH, which
highlights the effectiveness of guided initialisation and search even if no
genetic materials are transferred.

Furthermore, GPKGS-FT performs statistically similar to GPHH but
significantly worse than GPKGS. GPKGS-FT is a version of GPKGS with
guided crossover and mutation but without duplicate removal during ini-
tialisation. The fact that it performs worse than GPKGS but similar to
GPHH indicates how detrimental the presence of duplicates can be to the
effectiveness of knowledge transfer. This is further confirmed when we
note that GPKGS-0, which does not transfer any genetic materials, outper-
forms GPHH. The presence of duplicates contributes to the lack of diver-
sity in initial population and gives GP a negative bias towards the smaller
regions of the search space that the duplicates represent. The negative ef-
fect of duplicates in the initial population can be understood even better
when we note that GPKGS-OXM, which transfers only the unique indi-
viduals without any guided search, has a significantly better performance
than GPKGS-FT.

By comparing GPKGS-OXM and GPHH we can further verify the ef-
fectiveness of duplicate removal. However, GPKGS-OXM performs signif-
icantly worse than GPKGS which indicates that, despite the effectiveness
of the duplicate removal, the search performance can be improved signifi-
cantly when it is guided with knowledge. In this regard and by comparing
the performance of GPKGS-OM, GPKGS-OX and GPKGS-OXM, we note
that the guided mutation is more effective than the guided crossover be-
cause GPKGS-OX, which utilises guided mutation but an ordinary crossover,
performs significantly better than GPKGS-OXM and similarly to GPKGS.
GPKGS-OM, on the other hand, cannot reach the performance of GPKGS,
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(a) Ugdb4, from 4 to 2 vehi-
cles (Scn. 14)

(b) From Ugdb11dm2 with
5 vehicles to Ugdb11dm1 5
vehicles (Scn. 29)

(c) Ugdb23, from 10 to 12 ve-
hicles (Scn. 37)

Fig. 5.5 Convergence curve of GPKGS and its variants.

although it outperforms GPKGS-OXM. This result can be explained when
the role of the mutation operator is considered as the main way that GP can
introduce diversity into its population to escape from local optima. This
role becomes more prominent when we know that GP may lose its popu-
lation diversity and can converge to local optima when it solves UCARP
[11, 10]. The convergence curve of the examined variants of GPKGS is
given in Figure 5.5.

Computational Advantage

The GuidedCrossover and GuidedMutation operators attempt η times at
finding unseen routing policies and discard the seen ones until either enough
unseen individuals are created or the threshold is reached and seen re-
sults are accepted. The goal here is to avoid wasting computational re-
sources on evaluating the individuals that are likely to have bad quality
and use the saved resources better on evaluating new routing policies that
are not seen previously. Table 5.5 presents the average number of times
that GuidedCrossover and GuidedMutation found seen and unseen indi-
viduals over all our experiments. As can be seen, during a GPKGS run,
GuidedCrossover encounters 44131.89 unseen and 15064.29 seen individ-
uals on average. As a result, fitness evaluation is avoided for 15064.29

previously seen policies. Additionally, there were 11.84 + 29.09 cases that
GuidedCrossover could not find unseen offspring and previously seen in-
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Table 5.5: Performance Statistics of GuidedCrossover and GuidedMutation

GuidedCrossover

0 Unseen
Offspring

1 Unseen
Offspring

2 Unseen
Offspring

Total Seen Total Unseen

Mean 18.00 36.06 22037.94 15937.69 44111.96
Std 24.90 28.18 64.19 6060.67 107.39

GuidedMutation

Total Random Total Seen Total Unseen

Mean 5.58 1510.63 3331.22
Std 14.85 975.11 1348.89

dividuals were accepted instead.

Similarly, GuidedMutation discards most of the 1649.22 previously seen
individuals that it runs into and manages to find 4138.96 new policies
on average. Additionally, there were 2.67 average number of times that
GuidedMutation could not find any new individual and had to create a
totally random policy. Hence, for the majority of cases, GuidedMutation
managed to find unseen individuals and there were no need for creating
random policies.

5.6 Chapter Summary

In this chapter, we aimed to propose a novel approach to transfer optimi-
sation for GP to evolve effective routing policies for UCARP. We achieved
this goal by devising an algorithm that performs knowledge transfer through
two components: 1) transfer of unique genetic materials of a diverse set
of good solutions; 2) transfer of an approximate overview of the areas of
the search space that has low potential to be explored for the target prob-
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lem, since its useful information has already been transferred in the ini-
tialisation. We developed an elaborate hashing method that enabled GP
to efficiently compare solutions and avoid creating new individuals that
are likely to be in a previously-explored area. We evaluated our method
with an extensive set of experiments and observed that the new method
improved the performance of GP significantly and also, outperform exist-
ing knowledge transfer methods. Our experimental studies showed that
the proposed algorithm improves the effectiveness of GP significantly on
almost all the test datasets and outperforms some of the existing trans-
fer optimisation methods for GP. Furthermore, through a wide range of
control experiments we verified the effectiveness of each proposed novel
component of the algorithm.

This work has the following two key findings. First, the detection of
duplicates in the source knowledge plays a crucial role in the effectiveness
of knowledge transfer and significant improvement can be achieved in the
quality of knowledge transfer if the duplicates are removed. Second, the
transferred knowledge could be used in different ways rather than only
initialising individuals. Given that the promising source individuals have
been transferred to generate the initial target individuals, the other source
individuals, regardless of their quality, can be used to encourage the search
to explore new regions and solve the target problem better.

In the next chapter, we utilise the transferred knowledge to take a step
further and, in addition to improving the final performance of GP, prevent
the GP population from getting populated with phenotypic duplicates.
Altough it is possible to reuse the guided reproduction algorithms that
were proposed in this chapter, they are not utilised in the next chapter and
the focus is put on investigating and detecting the contribution of each
compoent of the new algorithm instead. In this regard, the effectiveness
of the proposed algorithm will be investigated through extensive experi-
mental studies.



Chapter 6

Knowledge Transfer with
Auxiliary Population

In Chapter 3 we identified how lack of diversity in the knowledge source
can contribute negatively to the quality of knowledge transfer for UCARP.
In Chapters 4–5 we proposed a collection of approaches for handling this
issue. In this Chapter, we will discuss how the transferred knowledge can
be utilised so that the GP population will not be afflicted with the presence
of duplicates and will not lose its diversity for solving the target problem.

6.1 Introduction

As was discussed through chapters 3–5, the GP process can lose its pop-
ulation diversity. For example, the final GP population can contain many
phenotypic duplicates with the same (good) fitness and with or without
common building blocks (i.e., sub-trees). The existing knowledge transfer
methods that simply transfer knowledge from the top individuals tend to
transfer many duplicated building blocks, and make the GP search in the
target instance easily stuck into poor local optima. In addition, the existing
GP-based transfer learning and optimisation methods are mostly limited
to reusing the transferred building blocks (e.g., sub-trees or tree structure)

179
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to initialise the target population. In this regard, on one hand, the use of
the transferred building blocks can help the GP process start from a better-
than-random initial population. On the other hand, the initial population
may be too confined to the local regions of the individuals transferred from
the source instance, especially when they have many duplicated building
blocks due to the loss of diversity. As a result, it will be very difficult for
the GP search for solving the target problem to jump out of the initial local
region to find better regions for the target instance.

Apart from reducing the amount of high-quality transferable knowl-
edge, a consequence of this phenomenon is that if the issue is not ad-
dressed correctly, an uninformed knowledge transfer may also transfer the
problem of lack of diversity which may lead to convergence to local op-
tima. In addition to these issues, to the best of our knowledge, there does
not exist any transfer optimisation approach that can leverage the trans-
ferred knowledge to overcome the issue that afflicted the source problem,
e.g. loss of diversity, for solving the target problem.

To address this issue, in this chapter we propose a novel GP with Auxiliary-
Population for knowledge Transfer (APTGP). APTGP evaluates all the in-
dividuals for solving the source problem to form a pool of transferred
knowledge. The algorithm fights off the issue of diversity loss by remov-
ing phenotypic duplicates from the pool and utilises the cleared pool to
initialise the GP population for solving the target problem. Furthermore,
after the initialisation, the transferred knowledge is utilised to help GP
maintain its population diversity during the search for solving the target
problem. In this regard, the transferred pool is preserved as a second aux-
iliary population. This auxiliary population evolves alongside the main
population but instead of using the actual fitness function for evaluating
its individuals, it is equipped with a surrogate model that is learned from
and update by the main population. The main purpose of the auxiliary
population is to help GP maintain its population diversity. To achieve
this, we propose an elaborate immigrant exchange mechanism between
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the main and the auxiliary populations.

6.2 Chapter Goal

In this chapter, we propose a novel Knowledge Transfer Genetic Programming
with Auxiliary Population for Solving UCARP. In our approach, the trans-
ferred knowledge is retained after being used for initialising the GP pop-
ulation for solving the target problem. After initialisation, the auxiliary
population is evolved with a surrogate model that is initially learned from
the source individuals but is updated later on with the individuals that
were found for solving the target problem. The main purpose of the aux-
iliary population is to help the main population maintain its phenotypic
diversity. The benefit of this approach, which has drawn some inspiration
from the island-based algorithms, is that the evolutionary process can be
conducted separately and hence, each population has more potential for
discovering different solutions, the exchange of which can improve the
population diversity of both populations. Accordingly, in this chapter, the
following research goals are pursued:

• To handle the potential presence of duplicates in the transferred knowl-
edge, we develop a new initialisation mechanism that removes du-
plicates from the knowledge pool and transfers unique individuals.

• To enable GP to reuse the transferred knowledge after the initialisa-
tion phase, we propose a method for adapting the transferred knowl-
edge for the target problem and reusing it more efficiently.

• To prevent GP from losing its population diversity, we devise an
elaborate immigrant exchange mechanism between the main and the
auxiliary populations that reduces duplicates in the population.
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Fig. 6.1 The APTGP framework.

6.3 Chapter Organisation

This chapter is organised as follows. Detailed descriptions of the proposed
algorithm are given in Section 6.4. The experiment design is shown in
Section 6.5, followed by results and discussions in Sections 6.5.2 – 6.5.6.
Finally, Section 6.6 concludes this chapter.

6.4 Proposed Algorithm

6.4.1 Overall Framework

Figure 6.1 presents the overall framework of APTGP. The inputs of the al-
gorithm include the target UCARP instance to be solved, as well as the
knowledge gained from solving the source instance. In this study, we con-
sider that the knowledge simply includes all the examined routing policies
by GP when solving the source instance.

To solve the target instance, APTGP first initialises the main popula-
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tion and auxiliary population using the transferred knowledge, in order
to have a better-than-random initial population. Then, the main and aux-
iliary populations are evolved in parallel. In addition, since the auxiliary
population aims to assist the evolution of the main population, all the in-
dividuals in the auxiliary population are evaluated by surrogate. Here, we
use the KNN surrogate that was described in Section 4.4.2.

To solve the target problem, APTGP initialises a GP population with
the transferred knowledge in order to have a better-than-random initial
state. However, in contrast to the existing methods, APTGP maintains and
updates the transferred knowledge as a separate population and continues
to exploit it during the course of evolution. However, since the fitness
evaluation is computationally expensive, APTGP trains a surrogate model
and uses it for estimating the fitness of the auxiliary population. After
the evaluation of the main population, the surrogate is first updated. This
allows APTGP to evaluate the auxiliary population with the most up-to-
date surrogate. During the course of evolution, the populations exchange
useful knowledge between themselves, which are selected before breeding
and transferred after it. In our approach, the exchange phase is designed
to share the common and useful knowledge between the populations and,
to help GP overcome the problem of losing its population diversity. For
breeding, the standard point-wise crossover, mutation and reproduction
operators [130] are used.

The pseudocode of APTGP is presented in Algorithm 6.1. The be-
haviour of the algorithm is controlled with two parameters η and ϑ that
correspond to the number of immigrants and the number of novelty trials
respectively. The algorithm begins with removing phenotypic duplicates
from the set of individuals (line 1) using the RemoveDuplicates method in
Algorithm 4.3. Then, APTGP initialises two populations with the trans-
ferred knowledge (lines 1–2). Then, APTGP evolves these populations
separately for MaxGen number of generations. During the course of evo-
lution, the main population is first evaluated with the actual fitness func-
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Algorithm 6.1: The proposed APTGP
Input: KS : routing policies examined by GP for the source instance
Input: Ig : the target UCARP instance to solve
Input: Parameters η and ϑ
Output: rp∗: the best routing policy for the target instance
// Initialisation

1 Kuni = RemoveDuplicates(KS) ; pop1 = Kuni[1 : popsize] ; // main

population

2 pop2 = Kuni[1 : popsize] ; // auxiliary population

3 rp∗ = null, gen = 0;
// Search loop

4 while gen < MaxGen do
5 Evaluate the routing policies in pop1;
6 Update rp∗ with pop1 ;
7 Update the surrogate model Υ with pop1;
8 Evaluate the routing policies in pop2 using the surrogate Υ ;

// Select immigrants

9 Ψ1 = Immigrants(pop1, η);
10 Ψ2 = Immigrants(pop2, η);

/* Breeding with standard GP crossover, mutation and

reproduction */

11 pop1 = Breed(pop1) ;
12 pop2 = Breed(pop2) ;

// Exchange Knowledge

13 pop1 = ExchangeImmigrants(pop1,Ψ2, η, ϑ) ;
14 pop2 = ExchangeImmigrants(pop2,Ψ1, η, ϑ) ;
15 gen = gen+ 1;

16 end
17 return rp∗;

tion (line 5) and then used to update the surrogate model (line 7). Finally,
the model is utilised to evaluate the auxiliary population (line 8). After
evaluation, APTGP uses tournament selection to select η of the best indi-
viduals from each population as the transferable knowledge (lines 9-10).
Then, a new population is bred from each population with the crossover,
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mutation and reproduction operators (lines 11–12). Finally, the process of
knowledge exchange is performed (lines 13–14).

In APTGP, knowledge quality and novelty are the two main aspects
that govern the knowledge exchange process. Hence, in APTGP the ex-
change mechanism selects high-quality individuals to transfer if the they
are not present in the target population, which requires searching both
populations efficiently. To increase the search efficiency, first a hashed
summary of the populations are created using the approach proposed in
Section 4.4.2. Further details on the selection of the individuals and the
exchange mechanism are given in Sections 6.4.4 and 6.4.5 respectively.

6.4.2 Initialisation

The main population and the auxiliary population are initialised by the
top unique routing policies from the source knowledge S . For this pur-
pose, any duplicates in S are removed based on their phenotypic behaviours,
by the RemoveDuplicates function. The RemoveDuplicates function is de-
scribed in Algorithm 4.3 (page 124). Note that the algorithm can take any
set of routing policies as input, and will be used by the ExchangeImmigrants()
function as well. After duplicate removal, APTGP selects the best of the
unique individuals, in terms of their fitness value for the source problem,
to initialise two separate populations with the same individuals. As a re-
sult, two populations are initially the same.

6.4.3 Surrogate Model for Auxiliary Population

In APTGP, the auxiliary population does not utilise the main fitness func-
tion and instead, a surrogate model is utilised to give an estimation of
the fitness value with a lower computational cost. In our approach, we
utilised the KNN-based surrogate model described in Algorithm 4.5 of
Section 4.4.2. In KNN-based surrogate models, a pool of routing policies
are retained as the sample of the fitness values that the GP individuals can
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Algorithm 6.2: UpdateSurrogate(Υ , Pop)
Input: Υ The surrogate pool to update; Pop A set of routing policies
Output: Υ The updated surrogate pool

1 Pop′ ← RemoveDuplicates (Pop)
2 Υ ← Υ ∪ Pop′

3 if |Υ | > 2 ∗ |Pop| then
4 Υ ← RemoveOldest (Υ )
5 end
6 return Υ

have. Then, to estimate the fitness of an individual, the nearest policy in
the KNN pool is found and its fitness is returned as the fitness of the in-
dividual. In this chapter, we limit the size of the surrogate to be twice the
population size based on the recommendation by Hildebrandt et al. [105].
Because the surrogate model is needed to be updated with the most recent
individuals that have been evaluated for the target problem, we propose
the function in Algorithm 6.2 for updating the surrogate pool. The design
of this algorithm is motivated by the suspicion that the GP population
may contain duplicates. In this algorithm, the UpdateSurrogate method
first removes the duplicates from the given population before adding it to
the pool and, if the pool size is larger than twice the population size, the
pool is trimmed by discarding the oldest routing policies in it.

In Algorithm 6.2, Υ represents the KNN pool of routing policies. Ini-
tially, Υ is set to empty. In each generation, after evaluating pop1, all the
phenotypically unique individuals in pop1 will be added into Υ . The maxi-
mal size of Υ is 2∗popsize. If the number of elements exceeds the maximal
size, Υ is trimmed by removing the oldest elements (line 4).

6.4.4 Immigrant Selection

Before the breeding, for each population, we select η immigrants prepar-
ing to be transferred to the other population. Each immigrant is selected
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by the size-7 tournament selection. These immigrants are stored sepa-
rately and are transferred to the other population after the breeding op-
eration of GP. The pseudocode is shown in Algorithm 6.3.

Algorithm 6.3: Immigrants(pop, η)
Input: pop: a population of routing policies
Input: η: number of immigrants
Output: Ψ: the immigrants from pop

1 Ψ = ∅;
2 while |Ψ| < η do

// Common tournament size for GP is 7

3 Randomly select 7 individuals from pop;
4 Add the best selected individual into Ψ;

5 end
6 return Ψ;

6.4.5 Knowledge Exchange

After the breeding, the main population and the auxiliary population ex-
change knowledge by transferring the selected immigrants to each other.
When transferring the immigrants, the following two factors are consid-
ered: (1) to maintain diversity, the immigrants should not be a duplicate in
the goal population, and (2) the immigrants should replace the less useful
individuals in the goal population.

Algorithm 6.4 shows the pseudocode of the knowledge exchange. First,
it finds the unique individuals in the goal population pop (line 1) into
the unique (uni) and then finds the replaceable duplicated individuals
(replaced) by subtracting the set of unique individuals from pop (line 2).
The individuals to be replaced (replaced) is first set to all the duplicated
individuals, as they are expected to contribute little to the population. If
there are not enough duplicates (i.e. |replaced| < η), we fill in the re-
maining places by the size-7 reverse tournament selection policies from
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Algorithm 6.4: ExchangeImmigrants(pop,Ψ, η, ϑ)
Input: pop: the destination population
Input: Ψ: the immigrants from the source population
Input: η: number of immigrants
Input: ϑ: number of trials
Output: The new destination population pop
// Select individuals to be replaced in pop

1 uni = RemoveDuplicates(pop) ;
2 replaced = pop \ uni ;
3 while |replaced| < η do

// Common tournament size for GP is 7

4 Randomly select 7 individuals from uni;
5 Add the worst selected individual into replaced;

6 end
7 replaced = ReverseSortByFitness(replaced) ;
// Refine the immigrants

8 Ψ′ = ∅;
9 for i = 1→ η do

10 for tries = 1→ ϑ do
// See the Hash function in Algorithm 4.4

11 if ∃rp ∈ uni, Hash(Ψ[i]) = Hash(rp) then
// Standard mutation

12 Ψ[i] = Mutate(Ψ[i]) ;

13 else
14 Ψ′ = Ψ′ ∪ {Ψ[i]};
15 break;

16 end

17 end

18 end
// Transfer immigrants

19 replaced[1 : |Ψ′|] = Ψ′;
20 return pop;
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uni (lines 3–6). That is, each time we randomly sample 7 individuals from
uni, and select the one with the worst fitness into replaced. Then, we sort
replaced by fitness from worst to best (ReverseSortByFitness()) (line 7).
Note that ExchangeImmigrants() is called between the breeding and eval-
uation, and the newly generated individuals are not evaluated yet. In this
case, we simply use the fitness inherited from the parent for the sorting.

Next, the immigrants are refined to make sure they are not duplicates
of the goal population. For each immigrant, if it is a duplicate of the
goal population (line 11), then we mutate it to generate a different im-
migrant (line 12). We keep mutating the immigrant until it becomes a
non-duplicate or the maximal number of trials ϑ is reached, and Ψ is re-
fined to Ψ′. Finally, we select the worse individuals (either duplicates or
worst fitness) in pop and replace them with Ψ′.

6.4.6 Summary

The main idea of APTGP is to maintain two populations in the target in-
stance and interact with each other to improve the search effectiveness.
First, the main population is initialised by the unique individuals from
the source knowledge, which can make the search start from a better re-
gion. Second, the auxiliary population starts from the same region as the
main population, and evolves alongside the main population but towards
different directions (e.g., by using the surrogate fitness). Third, the main
population regularly receives non-duplicate immigrants from the auxil-
iary population, which can help it jump out of the initial local region and
handle the concept drift from the source to the target instance. Finally, the
main population migrates its best individuals to the auxiliary population
to influence its search towards the best solutions that have been found so
far.

It should be noted that our algorithm bears some similarities with the
cultural algorithms [199, 181] or the distributed evolutionary algorithm
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(the island model). However, the cultural and distributed evolutionary
algorithms focus on solving a single problem, while APTGP focuses on
transfer optimisation and takes advantage of the source individuals dur-
ing the search process in the target problem. None of the populations in
APTGP act as a belief space like in the cultural algorithms. Furthermore, in
contrast to the cultural and distributed evolutionary algorithms, the popu-
lations in APTGP are not initialised randomly, none of the populations act
as a belief space, all populations are evolved separately and the auxiliary
population is evolved with a surrogate model.

6.5 Experimental Studies

To evaluate the effectiveness of APTGP, we conduct experiments on a wide
range of source and target UCARP instances. To maintain consistency
with the experiments in our previous chapters, we perform our experi-
ments on the same set of transfer scenarios defined in Table 3.1. For the
same reason, we use the same GP settings in our previous experiments, as
is given in Table 3.2.

6.5.1 Parameter Settings

For each scenario, the source problem is solved first with vanilla GP that
evolved 1024 individuals for 50 generations and then, 1024 ∗ 50 = 51200

routing policies are considered as the transferable knowledge. In all exper-
iments, the training is performed with 5 sampled instances that are rotated
each generation to prevent overfitting [145]. The solutions are tested with
500 sampled instances. All experiments were conducted for 30 indepen-
dent runs. All statistical tests are performed with a α = 0.05 significance
level.

The phenotypic characterisation of the routing policies in APTGP re-
quires a set of decision situations Ω. For each scenario, the path scanning
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Table 6.1: Summary of compared existing algorithms

Algorithm Knowledge transfer mechanism

GATL [129] Select the best and median trees of each generation into a pool. Choose
randomly from the pool to initialise the target GP population.

BestGen-1 [62] Select k of the best individuals of each generation into a pool. Choose
randomly from the pool to initialise the target GP population.

SUFullTree
[13]

Select the best individuals of all the generations into a pool. Expand the
pool with policies created from the good individuals and evaluate them
with a surrogate. Choose the best from the pool to initialise the target
GP population.

policy in Figure 4.2 was utilised to serve a few tasks for the target prob-
lem and the encountered decision situations were observed and 20 of them
were recorded as Ω. In our experiments, the size of 20 situations provided
a reasonable balance between the computational cost of characterising the
policies and the accuracy of the characterisation. APTGP has two param-
eters η and ϑ that control its behaviour. We tested APTGP with different
values of these parameters and achieved the best results with η = 200 and
ϑ = 10, which will be used throughout this chapter.

6.5.2 Results and Discussions

To examine the performance of APTGP, we compared it with some of the
best available transfer optimisation methods for GP. The selected algo-
rithms include SUFullTree [13], BestGen-1 [62] and GATL[129]. A summary
of the compared algorithms is given in Table 6.1. In all experiments, we
utilised the Friedman’s statistical test with a confidence level of α = 0.05.

Table 6.2 presents the test performance of the compared algorithms,
where the best results are highlighted in boldface. As is evident, in almost
all cases, APTGP had a best test performance among the compared ones.
The Friedman test is also conducted to verify statistical significance. The
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calculated rank and p-value are given in the bottom rows of Table 6.2. We
can see that APTGP has the best rank and the p-value shows that the differ-
ence between the results is significant. APTGP obtained the best mean test
performance for all the scenarios in the experiments. To pinpoint the dif-
ference, the Conover post-hoc analysis [49] is performed and the p-value
of the pairwise comparisons are given in Table 6.3 after being adjusted
with the Benjamini-Hochberg method [25]. The very small p-values in the
last column of the table show that the difference between APTGP and all
other algorithm is significant and, considering its rank, this indicates its
superiority to the other methods.

Table 6.2: Test performance of 30 independent runs of the compared algo-
rithms (mean ± std)

Scn. GPHH GATL [129] BestGen-1 [62] SUFullTree [13] APTGP

1 91.2±0.1 91.2±0.1 91.2±0.1 91.2±0.1 91.1±0.0
2 551.0±10.3 550.8±8.1 551.1±10.4 551.5±9.4 542.9±10.7
3 598.6±8.8 599.6±9.5 600.5±11.6 601.9±11.0 595.0±9.7
4 639.5±11.3 636.0±10.7 640.6±12.1 644.1±15.8 632.6±7.3
5 58.2±0.1 58.3±0.1 58.3±0.1 58.2±0.1 58.1±0.1
6 424.8±8.5 424.5±8.1 423.9±8.6 423.2±8.6 417.6±7.2
7 432.1±7.1 431.0±6.7 431.2±6.3 431.8±8.3 427.6±5.8
8 432.6±5.5 432.2±5.2 432.7±4.8 430.0±6.1 423.3±5.5
9 576.2±3.9 576.5±3.8 576.8±3.7 576.4±3.3 572.0±4.6
10 340.5±4.7 338.1±4.2 337.5±3.1 337.2±2.1 335.1±4.0
11 347.2±6.1 347.1±6.0 345.9±4.8 344.4±5.1 340.6±4.1
12 551.0±10.3 553.7±10.5 551.8±10.1 552.7±8.9 544.8±8.0
13 598.6±8.8 598.5±7.5 597.6±8.2 600.2±10.3 595.4±6.2
14 639.5±11.3 640.1±12.2 639.0±11.9 640.8±14.8 630.9±5.7
15 340.5±4.7 339.8±3.5 339.9±5.0 337.0±3.3 334.4±3.2
16 444.4±4.7 444.5±5.6 443.9±6.5 444.1±4.9 441.4±5.6
17 324.3±6.2 322.4±5.7 321.5±5.4 319.8±4.6 317.1±3.8
18 360.3±3.1 359.4±4.5 359.4±3.9 356.2±4.2 352.2±2.4
19 358.3±2.6 358.2±3.4 358.8±2.7 357.6±5.3 354.8±2.6
20 359.0±1.8 359.0±1.3 358.6±1.9 358.3±1.1 356.6±1.2
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Continuation of Table 6.2

Scn. GPHH GATL [129] BestGen-1 [62] SUFullTree [13] APTGP

21 340.8±4.4 340.9±4.6 339.4±4.7 337.6±4.6 332.6±5.9
22 351.9±3.5 353.1±4.8 352.5±3.5 350.2±3.3 349.7±2.4
23 356.6±1.6 356.7±1.7 356.1±1.3 356.3±1.4 355.7±0.7
24 310.9±0.5 311.0±0.5 310.7±0.8 308.8±2.8 307.9±4.0
25 389.2±0.2 389.1±0.2 389.2±0.2 389.1±0.2 389.0±0.1
26 363.1±2.8 363.2±4.1 363.4±2.6 362.2±3.1 357.8±4.9
27 342.1±6.2 341.9±5.1 340.9±8.0 338.6±4.7 335.1±4.6
28 382.0±5.5 380.2±6.0 381.3±8.0 384.7±6.0 378.3±6.5
29 382.8±3.3 382.6±2.2 382.7±4.8 382.1±3.2 381.0±2.7
30 351.5±2.5 351.4±1.1 351.7±1.2 351.0±1.6 349.9±3.2
31 326.0±4.7 323.5±4.4 325.2±5.0 322.8±4.9 320.1±4.7
32 444.4±4.7 445.2±6.8 442.0±7.3 441.2±5.8 439.9±6.4
33 448.2±0.5 448.4±0.8 448.2±0.9 448.9±1.8 448.0±0.6
34 384.6±4.4 385.8±6.5 386.9±5.0 384.3±5.1 382.9±4.6
35 369.3±1.8 369.2±2.8 369.8±3.8 368.4±2.6 367.1±1.9
36 321.4±5.2 323.7±5.5 323.8±5.1 321.1±2.5 319.5±1.7
37 166.2±2.0 166.0±1.4 165.2±1.5 165.1±2.0 163.8±1.4
38 376.1±7.6 379.8±7.8 377.8±7.5 372.0±9.2 366.6±5.9
39 415.7±9.2 416.6±8.4 414.3±8.9 412.3±7.4 409.0±8.3
40 347.2±6.1 347.1±6.7 345.8±4.4 344.5±5.0 340.8±4.9
41 351.5±2.5 351.7±2.3 352.0±2.3 351.2±1.9 350.3±3.1
42 165.9±1.8 165.7±1.5 165.7±1.6 165.2±1.2 163.9±1.4
43 462.6±6.0 460.8±5.3 460.2±5.4 456.7±6.5 451.8±7.3
44 426.6±3.3 427.1±2.5 427.0±2.6 425.8±3.8 424.3±4.3
45 499.0±3.9 498.8±4.5 497.6±4.4 497.5±3.3 496.5±3.4

Rank 3.94 3.82 3.61 2.62 1.00

Friedman’s p-value 0

Figure 6.2 presents the convergence curve of the algorithms for a few
scenarios. As can be seen, in all cases, APTGP starts with a better initial
state in the target instance, and manages to maintain a better performance
throughout the entire evolutionary process. We observed similar patterns
in almost all other scenarios.
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In Figure 6.3, the distribution of the fitness value of the solutions ob-
tained with each algorithm is given in the form of violin plots for a few
representative scenarios. It can be seen that APTGP obtained the best (low-
est) distributions. Similar patterns were observed in other scenarios too.

6.5.3 Program Size

Figure 6.4 presents the distribution of the program sizes (i.e., number of
nodes in the tree) in the final population obtained by the compared GP
algorithms. From the figure, it is clear to see that APTGP obtained larger
trees (65 nodes on average versus 58 nodes by GPHH). This suggests that
APTGP managed to capture more complex and sophisticated interactions
between the features for decision making in UCARP.

Figure 6.5 presents an example of the evolved routing policies. As is
evident, the policy does not have a trivial size which makes it difficult to
interpret but at the same time, it represents the complexity of the process-
ing it performs on the state of the environment. Nevertheless, it is pos-
sible to gain some high-level insights from this policy. In this policy, the
most frequent terminals is CR (Cost to Refill). This indicates that this pol-
icy considers this information about the environmental state to be more
important. This is consistent with our domain expertise that during the
course of serving tasks, a majority of the total cost pertains to the cost re-
turning to depot to refill.

Table 6.3: Post-hoc comparison of the compared existing algorithms with
adjusted p-values

GATL BestGen-1 SUFullTree APTGP

GPHH 0.67 0.33 0 0
GATL – 0.54 0 0
BestGen-1 – – 0 0
SUFullTree – – – 0
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(a) from Ugdb23, from 10 to Ugdb12 with
8 vehicles (Scn. 14)

(b) from Ugdb7 with 5 vehicles to Ugdb1,
6 vehicles (Scn. 18)

(c) Ugdb3, from 5 to 7 vehicles (Scn. 20) (d) Ugdb6, from 5 to 7 vehicles (Scn. 35)

(e) Ugdb21, from 6 to 4 vehicles (Scn. 37) (f) Ugdb7, from 5 to 4 vehicles (Scn. 38)

Fig. 6.2 Convergence curve of APTGP and some existing transfer meth-
ods.
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(a) from Uegl-1-C with 8 vehicles to Ugdb13,
5 vehicles (Scn. 9)

(b) Ugdb3, from 5 to 6 vehicles (Scn. 31)

(c) Ugdb21, from 6 to 5 vehicles (Scn. 42) (d) From Uval8A to val8Adm1 with 3 vehi-
cles(Scn. 42)

Fig. 6.3 Violin plots of the performance of APTGP and the compared
transfer algorithms.
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Fig. 6.4 Size of the programs evolved with the compared algorithms.
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Fig. 6.6 Training time of the compared algorithms.

6.5.4 Training Time

Figure 6.6 presents the summary of the training time for each of the exam-
ined algorithms. According to this figure, the training time of APTGP is
slightly longer than the existing methods. In APTGP, the initialisation op-
erator and the knowledge exchange mechanism incur an additional com-
putational cost and hence, the increased training time is expected. How-
ever, the increment in time does not hinder the applicability of the algo-
rithm and, considering its superior performance, the additional cost can
be considered acceptable.

6.5.5 Further Analysis

Component Analysis

APTGP consists of the following main novel components:

1. Initialisation with the transferred knowledge;

2. An auxiliary population that is evolved alongside the main popula-
tion;

3. A knowledge exchange mechanism that promotes diversity and qual-
ity of the populations;
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4. A surrogate model that allows the algorithm to evaluate more indi-
viduals; and

5. A duplicate removal mechanism that removes redundant individu-
als when exchanging immigrants between populations.

In order to investigate the contributions of each component to the ef-
fectiveness of APTGP, we conducted additional experiments with the fol-
lowing versions of APTGP in which one or more of the components were
disabled.

• APTGP-NT: the APTGP with No knowledge Transfer in initialisa-
tion. It randomly generates the initial GP population for the target
instance.

• APTGP-NA: the APTGP with No Auxiliary population. After the
initialisation with transfer, it runs the traditional GP for the target
instance.

• APTGP-SE: the APTGP with a Simple Exchange scheme, which re-
places all the low-quality individuals with the immigrants from the
other population;

• APTGP-ND: the APTGP with No Duplicate removal when initialis-
ing APTGP;

• APTGP-SA: the Surrogate Assisted APTGP, which has no explicit
auxiliary population, but generates an extra 1024 offspring from the
main population in each generation as the auxiliary population.

All the variants of APTGP except APTGP-NA generates 2048 offspring in
each generation, evaluates 1024 offspring by the actual evaluation, while
the other 1024 offspring by the KNN surrogate model. APTGP-NA uses
a traditional GPHH process in the target instance, which generates and
evaluates 1024 offspring in each generation.
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Table 6.4 presents the test performance of APTGP and different variants
in all the transfer scenarios. For each scenario (row), the entry with the best
mean value is highlighted in boldface. We also conducted the Friedman
test, and show the ranks of each compared algorithm and the p-value at the
bottom of the table. As can be seen, APTGP has the best test performance
(lowest rank of 1.68) and the p-value is close to zero, indicating that the
differences among the compared algorithms are statistically significant.
For post-hoc pairwise comparison, the adjusted p-values of the Conover
pairwise comparisons [49] are given in Table 6.5.

Table 6.4: Test performance of 30 independent runs of APTGP and its vari-
ants (mean ± std).

Scn. APTGP-NT APTGP-NA APTGP-SE APTGP-ND APTGP-SA APTGP

1 91.1±0.1 91.1±0.1 91.1±0.1 91.1±0.1 91.1±0.1 91.1±0.0
2 544.7±5.2 554.3±9.4 556.8±10.2 547.4±7.2 546.7±9.0 542.9±10.7
3 595.8±6.4 604.6±9.2 604.2±9.4 594.6±8.4 596.0±10.1 595.0±9.7
4 627.8±5.4 647.8±13.8 648.4±16.6 634.0±7.7 633.0±9.8 632.6±7.3
5 58.1±0.1 58.2±0.1 58.3±0.2 58.1±0.1 58.1±0.1 58.1±0.1
6 417.7±7.0 424.3±9.5 426.0±8.9 419.8±7.6 418.4±7.6 417.6±7.2
7 425.0±5.5 430.6±7.7 432.3±7.4 427.8±5.5 428.2±5.6 427.6±5.8
8 425.8±4.6 431.8±5.5 431.0±6.8 423.6±7.6 425.1±7.0 423.3±5.5
9 572.6±3.0 576.3±3.0 578.1±3.8 573.4±3.9 574.7±11.0 572.0±4.6
10 335.0±4.4 337.4±2.0 338.0±1.8 335.3±3.4 335.3±3.5 335.1±4.0
11 341.1±3.9 343.1±3.9 345.4±4.4 341.8±5.1 339.9±4.1 340.6±4.1
12 544.7±5.2 550.6±8.2 557.4±11.8 549.0±7.0 545.0±7.6 544.8±8.0
13 595.8±6.4 604.0±9.3 604.7±11.2 596.1±9.8 595.6±9.2 595.4±6.2
14 627.8±5.4 642.0±11.6 649.8±13.1 634.5±8.3 631.4±9.1 630.9±5.7
15 335.0±4.4 337.5±2.1 337.9±3.3 334.5±4.0 335.2±3.1 334.4±3.2
16 442.2±4.0 444.7±5.6 443.5±7.6 442.5±4.3 439.7±8.5 441.4±5.6
17 317.0±3.4 321.0±5.1 321.8±5.0 318.0±4.3 317.6±4.3 317.1±3.8
18 354.5±3.8 356.9±4.2 356.4±3.8 352.3±3.0 352.0±4.0 352.2±2.4
19 355.9±2.9 359.1±5.5 358.5±5.0 357.3±3.8 355.9±4.1 354.8±2.6
20 356.8±1.6 358.0±1.3 358.3±1.1 356.9±1.5 356.6±2.3 356.6±1.2
21 337.2±5.3 338.1±5.0 340.5±3.4 336.7±5.8 334.2±5.6 332.6±5.9
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Continuation of Table 6.2

Scn. APTGP-NT APTGP-NA APTGP-SE APTGP-ND APTGP-SA APTGP

22 349.8±1.8 350.6±3.2 350.9±2.3 350.8±2.9 349.0±2.9 349.7±2.4
23 355.6±0.1 356.4±1.5 356.7±1.7 355.6±0.1 355.8±1.0 355.7±0.7
24 310.9±0.8 308.8±2.9 309.7±1.3 309.1±2.6 307.8±3.1 307.9±4.0
25 389.0±0.1 389.1±0.1 389.1±0.2 389.0±0.1 389.1±0.1 389.0±0.1
26 359.0±3.1 362.0±2.6 362.8±2.6 361.1±3.1 359.5±3.9 357.8±4.9
27 335.7±3.9 339.9±6.8 340.3±6.1 337.2±8.5 335.5±4.6 335.1±4.6
28 379.8±5.2 382.9±6.6 385.1±5.3 379.9±8.8 379.7±6.2 378.3±6.5
29 382.1±2.0 381.3±4.0 383.8±3.5 381.4±3.9 378.9±5.2 381.0±2.7
30 350.7±2.3 351.1±1.1 351.0±1.6 350.8±1.6 350.8±2.2 349.9±3.2
31 323.5±4.9 324.0±4.6 323.9±4.5 320.6±5.6 321.2±5.2 320.1±4.7
32 442.2±4.0 439.6±6.3 442.6±4.4 439.3±6.3 438.9±6.7 439.9±6.4
33 448.0±0.5 448.5±1.3 448.6±1.4 448.2±1.4 447.8±0.5 448.0±0.6
34 382.7±3.4 384.6±5.2 385.6±4.9 384.6±5.5 381.1±4.1 382.9±4.6
35 367.8±0.9 369.2±2.9 369.1±2.5 367.8±2.2 367.7±2.0 367.1±1.9
36 318.5±1.2 322.5±3.8 322.9±4.2 320.3±2.2 320.2±1.9 319.5±1.7
37 163.8±1.3 165.1±1.4 165.6±1.7 164.5±1.3 163.7±1.4 163.8±1.4
38 366.6±5.7 374.7±7.6 375.5±7.3 369.5±6.0 369.8±6.4 366.6±5.9
39 407.7±7.1 412.4±7.1 415.7±7.1 411.6±5.6 409.6±6.8 409.0±8.3
40 341.1±3.9 346.8±5.9 346.7±5.1 341.9±4.9 341.4±4.8 340.8±4.9
41 350.7±2.3 351.6±2.6 351.7±2.5 350.5±4.2 351.1±1.7 350.3±3.1
42 164.6±1.0 164.7±1.6 165.4±1.6 164.5±1.5 164.0±1.4 163.9±1.4
43 457.4±7.4 456.9±7.8 458.9±6.2 453.8±7.4 453.8±6.8 451.8±7.3
44 424.2±4.3 426.0±2.9 426.1±3.3 425.9±2.3 424.7±3.9 424.3±4.3
45 496.2±3.4 497.7±3.4 497.3±3.9 496.5±3.7 496.8±2.7 496.5±3.4

Rank 2.62 5.1 5.72 3.37 2.6 1.68

Friedman’s p-value 1.11e-16

From the table, it can be seen that APTGP significantly outperformed
APTGP-NA, APTGP-SE and APTGP-ND. The advantage of APTGP over
APTGP-NA indicates that without using the auxiliary population in the
search process, the performance of APTGP degrades significantly. This is
an indicator of the important role that the auxiliary population plays in
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Table 6.5: Post-hoc comparison of the APTGP and its variants.

APTGP-NA APTGP-SE APTGP-ND APTGP-SA APTGP

APTGP-NT 1.7e-08 7.8e-13 0.07 0.95 0.02
APTGP-NA – 0.079 7.8e-05 1.5e-08 3.7e-14
APTGP-SE – – 2.2e-08 7.40e-13 4.1e-19
APTGP-ND – – – 0.067 5.6e-05
APTGP-SA – – – – 0.02

the algorithm.

On the other hand, using an auxiliary population with a simple knowl-
edge exchange mechanism is not enough for achieving significant improve-
ments, since APTGP-SE and APTGP-NA are statistically similar and APTGP-
SE was ranked even worse than APTGP-NA.

The advantage of APTGP over APTGP-ND indicates that the act of du-
plicate removal increases the amount of useful knowledge that is inherited
from the source which in turn, highlights the negative impact that the pres-
ence of duplicates in the source knowledge can have on the performance
on the target instance.

Compared with APTGP-NT, the p-value was 0.02, which is very close
to the significance level the Bonferroni correction (0.05/4 = 0.0125 for the
four comparisons between APTGP and other four algorithms). From Table
6.4, we can also see that the rank of APTGP-NT is 2.62, closer to the rank
of APTGP than APTGP-NA, APTGP-SE and APTGP-ND, and obtained the
best test performance on 10 scenarios. This shows that even without the
initial knowledge transfer, APTGP can still be quite effective due to the use
of auxiliary population for knowledge transfer during the search process.
Meanwhile, the considerable difference between APTGP and APTGP-NT
(rank 1.68 vs rank 2.62) shows the effectiveness of the knowledge transfer
in the initial population of the target instance.

APTGP-SA showed the closest test performance to APTGP. Its rank
was 2.6, and the p-value was 0.02, slightly larger than the corrected signif-
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icance level of 0.0125. It achieved the best test performance on 11 scenar-
ios. However, we can still see the advantage of APTGP over APTGP-SA,
as APTGP still has a much better rank (1.68 vs 2.6) and performed the best
on 21 scenarios. This verifies the effectiveness of using the auxiliary popu-
lation instead of directly generating extra offspring and evaluate using the
surrogate model.

It is also interesting to note that APTGP-NA and APTGP-SE had very
similar performances. Both algorithms transfer unique individuals, but
APTGP-SE additionally performs a simple knowledge exchange that does
not consider the possible presence of duplicates. As a result, not only the
algorithm does not benefit from the exchange of knowledge, its slightly
inferior performance indicates that the exchange was even harmful. This
could be attributed to possibility that the exchange mechanism may have
increased duplicates in the main population. The damage of this effect is
to the point that APTGP-NT, which does not utilise any transferred knowl-
edge, has a significantly better performance than APTGP-SE. On the other
hand, APTGP-NT performs rather similarly to APTGP-NA.

Phenotypic Diversity

The GPHH method for solving UCARP is known to suffer from the loss of
population diversity during the evolutionary process [11, 9]. This property
can negatively impact the quality of knowledge transfer since the transfer
of duplicates reduces the amount of useful knowledge that can be trans-
ferred and may run into the risk of trapping the search process in poor
local optima. This understanding was one of the key considerations for
designing APTGP. In this subsection, we investigate how effective APTGP
was in maintaining and increasing the diversity during the search process.
For this purpose, we employ the entropy measure [32] for calculating the
population diversity.

Figure 6.7 presents the distribution of the entropy of the populations
during the evolutionary process of the compared algorithms. For each
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Fig. 6.7 Population entropy of the compared algorithms.

algorithm, the entropy of the populations in all the generations of all the
30 runs are taken into account. From Figure 6.7, we can clearly see that
APTGP managed to reach a much higher entropy (better diversity) of the
populations than the other algorithms.

To understand how the population entropy changed over the course of
evolution, the average population entropy over the 30 runs is plotted in
Figure 6.8 against GP generation for a few scenarios (we observed similar
patterns for other scenarios as well). As can be easily seen from the figure,
all the compared algorithms started with a high degree of diversity. How-
ever, as the evolution proceeded, all the other algorithms except APTGP
lost their diversity in the population rather quickly. On the other hand,
although APTGP also lost some of its diversity, it managed to maintain a
high entropy (diversity) over time. Another interesting observation in Fig-
ure 6.8 is that the initial entropy of APTGP and SUFullTree is higher that
other methods. This can be explained by considering the fact that both
APTGP and SUFullTree algorithms place a high emphasis on creating a
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Fig. 6.8 The curve of the population entropy of the compared algorithms
for some representative scenarios.

very diverse initial population.

6.5.6 Duplicate Removal

In the knowledge exchange phase of APTGP (i.e. Algorithm 6.4), when
selecting individuals in a population to be replaced with the incoming
immigrants from the other population, the duplicates in the population
are first considered for replacement. If the population does not contain
enough duplicates, then low-quality unique individuals are selected to be
replaced. Figure 6.9 presents the number of duplicates selected and re-
placed in each population over the generations of APTGP, averaged over
all runs on all the scenarios. As can be seen, throughout the evolution-
ary process, there exist a large number of duplicates in the population.
The number of duplicates decrease slowly throughout the evolution as is
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Fig. 6.9 Average number of the removed duplicates

suggested by the downward trend of the plot and the increased standard
deviation. On average, 298.67 duplicates were replaced in each generation
of APTGP, with a standard deviation of 7.14. Overall, we can see that there
are a large amount of duplicates in the population of APTGP, despite the
pressure of the duplicate removal mechanism in APTGP.

According to Algorithm 6.1, the duplicate replacement is performed
at the end of each generation and after the breeding operation. Since the

(a) Average number of trials to find a unique immigrant

Fig. 6.10 Dynamics of the duplicate removal mechanism.
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population diversity is maintained at a high level at the end of each gen-
eration, as discussed in Subsection 6.5.5, the breeding operator is the main
reason for introducing duplicates into the population. This observation in-
dicates the need for designing more effective breeding operators for solv-
ing UCARP.

Figure 6.9 suggests that one may remove more duplicates and achieve
better performance by increasing the value of the η parameter. However,
when we investigated this possibility, we did not observe any significant
improvement in the results. On the contrary, there were cases in which
the performance became slightly worse. One possible reason for this phe-
nomenon is that as the value of η increases, more unique individuals are
likely to be discarded in favour of the transferred immigrants. In such
cases, APTGP does benefit from the possible improvement in diversity
that immigrants could provide and it can just benefit from the exchange
of the knowledge that immigrants contain. However, as the GP evolution
proceeds, the quality of the population also increases. As a result, when
unique individuals are replaced with the immigrants, it is more likely
that the population replaces good individuals with the immigrants which
are not guaranteed to be good (considering that the immigrants may go
through mutation before being transferred).

Figure 6.10a presents the average number of trials (mutations) for APTGP
to obtain a unique individual as an immigrant for knowledge exchange.
As we can see from the figure, in the early generations, the algorithm
is more likely to find out that the candidate immigrant is redundant in
the target. However, as the algorithm proceeds, this likelihood decreases
slightly because the diversity in both populations increases (as is seen in
the entropy plots in Figure 6.8).
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6.6 Chapter Summary

In this chapter, a novel transfer optimisation algorithm for GP, called APTGP,
was proposed to evolve routing policies for UCARP. In APTGP, all the
routing policies that GP has examined for solving a source problem are
considered as the transferable knowledge. First, we propose to remove
duplicates before using the source individuals to initialise the GP popu-
lation for the target problem. Then, during the search process, the trans-
ferred knowledge is retained and evolved in a separate auxiliary popula-
tion alongside the main population. The auxiliary population is evolved
with a surrogate model that is learned from the main population. The
main purpose of the auxiliary population is to help GP address the issue
of losing its population diversity and increase its exploration capabilities.
To achieve this, an elaborate knowledge exchange mechanism is devised
to share high-quality and unique individuals between the main and aux-
iliary populations.

The effectiveness of APTGP has been verified by comparing with the
state-of-the-art algorithms on a wide range of transfer scenarios. Our anal-
ysis demonstrated that APTGP managed to significantly outperform all
the state-of-the-art GP algorithms with knowledge transfer. Additionally,
we demonstrated that APTGP helped GP overcome the limitation of losing
population diversity. Furthermore, we conducted a detailed set of control
experiments to verify the effectiveness and the contribution of each novel
component of APTGP.
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Chapter 7

Conclusions

The focus of this thesis is on devising novel transfer optimisation algo-
rithms for GPHH to solve UCARP. The ultimate goal of this work to im-
prove the effectiveness of GPHH for evolving vehicle routing policies and
solving a problem using the knowledge that has been gained from a previously-
solved related problem. To achieve this goal, we examined the literature
of transfer optimisation methods for evolutionary algorithms and identi-
fied the lack of phenotypic diversity and the presence of duplicates as the
main challenges that one may face in order to perform knowledge trans-
fer successfully for UCARP. The identification of the challenges helped us
concentrate our efforts on devising transfer optimisation algorithms that
could handle the challenges successfully. We evaluated the effectiveness
of each proposed algorithm using the UCARP simulations with a vast set
of measurements and analyses.

In this chapter, the achieved objectives of this thesis are highlighted
and are followed by the main conclusions that we have drawn from our
studies. Following the conclusion, a set of discussions are presented to
provide deeper insights into the key issues in this research area. Finally,
this chapter outlines a collection of potential research directions for future
work that are based on the studies in this thesis.

211
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7.1 Achieved Objectives

In this thesis, the following research goals were pursued and achieved.

• Chapter 3 of this thesis investigated and identified the challenges in
performing effective knowledge transfer for GPHH to solve UCARP.
In order to achieve this goal, we considered the literature of the trans-
fer optimisation methods for evolutionary algorithms and upon ex-
amining the literature, it was noticed that the existing methods for
GP did not evaluate the importance of a sub-tree for transfer and did
not try to learn the probability distribution of the solutions. To ad-
dress these gaps, we proposed two new (sub-)tree-based algorithms
in which two measures were proposed for identifying the subtrees
that suitable for transfer. Additionally, we proposed an algorithm for
learning the probability distribution of the good source solutions. To
analyse the performance of the proposed algorithms, we also consid-
ered a set of state-of-the-art methods and evaluated them for solving
a large set of experiments. Our experimental results showed that the
UCARP knowledge source, i.e. the set of all individuals that were
discovered for solving a source problem, may contain a large num-
ber of duplicates, the majority of which belonged to the set of high-
quality solutions. These results highlighted a major challenge in the
way of performing successful knowledge transfer for UCARP. This
discovery guided the direction of the research in this thesis and was
addressed in later chapters.

• The goal in Chapter 4 was to propose a set of approaches to over-
come the identified issues in Chapter 3. More specifically, Chapter
4 proposed a set of novel transfer optimisation algorithms in which
the possible presence of duplicates in the knowledge source was con-
sidered and handled. First, it is speculated that if the knowledge
source contains duplicates, the naı̈ve transfer of source individuals
will transfer the duplicates to the target population and this will also
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afflict the search process for solving the target problem. Therefore, to
overcome this issue, a collection of methods are proposed in Chap-
ter 4 to overcome the lack of population diversity due to the transfer.
After this, the chapter focuses on handling the presence of dupli-
cates in the knowledge source more directly. In order to do so, the
chapter first proposes a novel approach to detecting and removing
phenotypic duplicates from the transferred knowledge source and
refine it into a set of unique individuals. Because the removal of du-
plicates reduced the number of high-quality individuals, the chapter
proposed learning a surrogate model from the transferred individu-
als and utilise it for creating additional high-quality unique individ-
uals that increases the set of reusable individuals. Our experimental
results showed that the removal of duplicates can improve the qual-
ity of the knowledge transfer.

• Chapter 5 proposed another novel approach to transfer optimisa-
tion for solving UCARP. The proposed algorithm also considers the
possible presence of duplicates in the knowledge source. Addition-
ally, the proposed algorithm in this chapter also utilises a method
for removing the duplicates and reusing the genetic materials of the
unique individuals for initialisation of GP for solving the target prob-
lem. However, the main goal in this chapter is to utilise the trans-
ferred knowledge after the initialisation phase. Although the cur-
rent literature of transfer optimisation entails a set of algorithms that
reuse the transferred genetic materials during the search for solv-
ing the target problem, the focus of these existing algorithms is on
the genotypic features of the knowledge source while the final so-
lutions for a UCARP instance, i.e. the vehicle routes, belong to the
phenotypic space. As a result, the existing knowledge transfer meth-
ods, which reuse the transferred knowledge after initialisation, are
unlikely to perform effectively for UCARP, as was depicted in Chap-
ter 3 for the TLPC algorithm [116]. Consequently, Chapter 5 of this
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thesis proposed a novel algorithm that transfers the phenotypic in-
formation of a UCARP knowledge source and equips GP search pro-
cess with this information. The transferred knowledge allows GP
crossover and mutation operators to avoid creating individuals that
are not likely to have a good performance for the target problem and
by doing so, it helps GP spend its computational budget on evalu-
ating more novel solutions for the target problem. The experimental
results showed that prohibiting the search process from recreating
the source solutions allows GP discover and evaluate new solutions
and consequently, increase the search performance significantly.

• In Chapter 6, another novel approach to knowledge transfer is pro-
posed for solving UCARP. In accordance with the findings in Chap-
ter 3, this chapter also takes into account the possibility that the
transferred set of individuals may contain phenotypic duplicates and
hence, handles the issue accordingly. However, the main consider-
ation in Chapter 6 is that the issue of duplicates can happen when
GP is used to solve the target problem. Accordingly, the main goal
in this chapter is to utilise the transferred knowledge in such a way
that helps GP avoid being afflicted with the issue of low popula-
tion diversity. For this purpose, this chapter proposed an algorithm
in which the transferred individuals are maintained in a separate
auxiliary population. The auxiliary population is evolved alongside
the main population and with the help of a surrogate model. The
main purpose of the auxiliary population is to help the main popu-
lation maintain its diversity and to achieve this, an elaborate mech-
anism was proposed for exchanging knowledge between the main
and the auxiliary populations. In the design of the proposed knowl-
edge exchange mechanism, the focus was placed on the novelty of
the knowledge that is being transferred from one population to an-
other; that is, the exchange mechanism tries to ensure that individu-
als are sent to the receiving population that are not already present
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in that population. Also, when the transfer mechanism allows the
transfer of an individual, the receiving population replaces one of its
duplicates in favour of the incoming individual.

7.2 Main Conclusions

This section describes the main conclusions of this thesis, which are drawn
from the four major contribution chapters, i.e., Chapter 3 to Chapter 6.

7.2.1 The Applicability of Transfer Optimisation for Solv-

ing UCARP

As it was reviewed in Chapters 1 and 2, in real-world scenarios UCARP
instances are subject to change over time frequently. This feature pro-
motes the need for effective transfer optimisation methods that can extract
reusable common knowledge from a previously solved problem to facil-
itate the search process for solving the related new problem. However,
to the best of our knowledge, there exist no study on the applicability of
transfer optimisation for solving UCARP. As a result, one of the main con-
tributions of this thesis is its investigation of the potentials that transfer
optimisation can have for solving UCARP and the identification of the
challenges that may exist in this direction.

In the context of transfer optimisation and transfer learning, two of the
fundamental questions are the questions of what the transferable knowl-
edge is and how the knowledge should be transferred [96, 151, 186, 82].
In this context, these question implies the need to know what the nature
of the transferable knowledge is, how the knowledge should be extracted
from the source and how it should be reused. Accordingly, to be successful
at knowledge transfer, it is of significant importance to know what features
of the knowledge source can impact the quality of knowledge transfer.
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To answer these questions, we selected a set of existing transfer opti-
misation algorithms and examined their effectiveness for solving UCARP.
Upon our examination, we realised that none of the existing methods
were able to demonstrate significant improvement over the performance
of GPHH without any knowledge transfer. Furthermore, in our exper-
iments, the algorithms that considered the whole GP tree as the trans-
ferable knowledge performed slightly better than the algorithms that just
transferred sub-trees, but the difference was not significant.

Additionally, we realised that a set of shortcomings in the existing al-
gorithms. Suspecting that the unsatisfactory performances of the existing
methods could be due to these shortcomings, we also proposed a set of
novel algorithms to address these shortcomings. However, our experi-
ments revealed that the proposed algorithms also could not perform bet-
ter than the existing methods. This result prompted us to investigate the
reasons for this bad performances of the transfer optimisation algorithms
deeper.

Accordingly, in this work, we identified that the GP search process for
solving a UCARP instance is susceptible to losing its phenotypic diver-
sity due to the presence of phenotypic duplicates. When the duplicates
occupy a significant portion of the population, the set of useful knowl-
edge becomes limited. Therefore, on one hand, the transfer of duplicates,
if allowed, will amount to the transfer of redundant genetic materials. On
the other hand, if the duplicates are removed, the knowledge set may not
contain adequate amount of reusable individuals. Therefore, we identified
the presence of duplicates in UCARP knowledge source as one of the main
challenges towards successful transfer of knowledge for solving UCARP.

7.2.2 Diversity-Driven Knowledge Transfer

It is possible that a GP knowledge source may not contain adequate amount
of reusable materials to be utilised for transfer. This could happen due to
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various reasons, including the abundant presence of duplicates. In this
case, the limited amount of transferable knowledge clearly reduces the
effectiveness of the transfer and the existing transfer optimisation algo-
rithms are not equipped with any solution for this problem.

One of the main contributions of this thesis is the development of the
methods that can handling the potential issue of the presence of dupli-
cates in the knowledge source. In this thesis, we proposed two category
of algorithms for handling this issue. In the first category, the knowledge
source is not modified but instead, it is used as it is. Accordingly, the po-
tential problem of transferring the duplicates is handled afterwards. In the
second category, the duplicates are removed from the knowledge source,
before reusing the knowledge source. The removal of the duplicates can
lead to a smaller knowledge set that may contain few high-quality individ-
uals. To handle this, in our proposed approaches, we utilised the knowl-
edge from a solved source to train a surrogate model that can estimate the
fitness of routing policies for solving the source problem. Although the
surrogate model can only provide an approximation of the fitness value,
its fast and computationally inexpensive nature allows evaluating a large
number of individuals, which could not be achieved if the actual fitness
evaluation of UCARP based on simulation was utilised. Consequently, the
learned surrogate model allows augmenting the set of transferred source
individuals with newly generated policies. Although these new individ-
uals are not evaluated within a complete simulation to assess their actual
fitness, the surrogate model can provide a good approximation for it. It
should be noted that in the context of transfer optimisation, the actual fit-
ness value loses its prominent importance. This is because, in majority of
the available algorithms, including the algorithms in this thesis, the ac-
tual fitness is used for detecting if the individual is a good candidate for
transfer or not and an approximate fitness value can also convey this in-
formation.

Another benefit of using a surrogate model is that the fast fitness ap-
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proximation offered by it allows assessing a large number of individuals.
This feature, in turn, allows us to discard phenotypic duplicates and assess
new individuals until enough number of unique yet high-quality individ-
uals are created for transfer.

Consequently, a major contribution of this thesis is the proposal of
two categories of algorithms for handling the presence of duplicates in
the knowledge source. Through our experimental studies, we confirmed
that trying to handle the negative impacts of duplicates in the knowledge
source after the transfer will not increase the performance of the knowl-
edge transfer. On the other hand, removing the duplicates before the trans-
fer can decrease the number of high-quality source individuals. To over-
come this issue, we proposed training a surrogate model with the source
individuals and use it for creating high-quality individuals that can aug-
ment the knowledge pool.

7.2.3 Knowledge-Guided Search

In the existing literature of transfer optimisation methods for GP, the trans-
ferred knowledge is either not utilised effectively after the initialisation
phase or it is used in a limited fasion. Additionally, in cases that the knowl-
edge is used after initialisation, the focus is mostly placed on reusing the
genetic information. This focus on the reuse of genetic materials becomes
problematic in case of problems, such as UCARP, in which the genotypic
space is different from the phenotypic space and the relationship between
the spaces is not trivial to comprehend.

Consequently, a major contribution of this thesis is the proposal of a
novel algorithm for the transfer of the phenotypic characteristics of GP in-
dividuals that can be used effectively during the search for solving a target
problem. The proposed approach for reusing the transferred phenotypic
information is significantly different from the existing transfer optimisa-
tion algorithms. In our approach, the transferred information is used for
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creating a tabu list and the search process for solving the target problem
is banned from creating individuals that have the same phenotypic be-
haviour as any item in the transferred tabu list. This prevents GP from re-
peating the creation of solutions that are unlikely to be optimal and helps
it focus on discovering new solutions. Because of the relatedness of the
source and target problems, this approach can be interpreted as an effort
to prevent GP from searching the regions of the search space that are less
likely to solutions, which in turn, results in guiding GP to explore and
discover new regions of the search space.

7.2.4 Knowledge Transfer with Auxiliary Population

As it was discussed in Chapter 3 of this thesis, the search process for solv-
ing a UCARP instance is to subject to lose the phenotypic diversity of its
population. One consequence of this phenomenon is the negative effect it
can have on the quality of knowledge transfer. However, a more immedi-
ate consequence of this issue is that the target problem can also be afflicted
the same way and it may lose its diversity. Even if GP is initialised with a
diverse set of individuals, the diversity can be lost after a few generations.

Accordingly and as a major contribution of this thesis, we proposed a
new algorithm that uses the transferred knowledge to help GP maintain its
population diversity and not be afflicted with the presence of duplicates.
For this purpose, after using the unique high-quality individuals of the
source to initialise GP for solving the target problem, the transferred indi-
viduals are maintained in a separate auxiliary population and are evolved
with a surrogate model. This evolution helps the auxiliary population
become more adapted towards solving the target problem. As a result,
when knowledge exchange is performed between the main and the aux-
iliary population, the immigrants from the auxiliary population are not
very unsuitable and unfit in the main population. The exchange of immi-
grants between the two population is designed so that immigrants replace
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the duplicates and in this way, help GP discard duplicates in favour of
unique new individuals.

7.3 Further Discussions

Section 7.2 presented a summary of the main findings of this thesis. In
this section, the general issues covered in this thesis and related topics are
discussed further.

7.3.1 Relatedness of Problems

In the context of transfer optimisation, the act of knowledge transfer is
justifiable if and only if there exist a good degree of similarity between the
source and target problems and there exists a clear relationship between
the problems that justifies the nature of knowledge [96]. Otherwise, the act
of knowledge transfer may lead to negative transfer and hurt the search
process for solving the target problem.

For the case of UCARP, to the best of our knowledge, there does not
exist any concrete method for measuring the degree of similarity between
any given two problems and, as a result, measuring the similarity of prob-
lems remains one of the main challenges to successful transfer of knowl-
edge for solving UCARP. Mei et al. [163] demonstrated that any change
in a characteristics of a problem, e.g. number of vehicles, can lead to a
problem that is significantly different from the original one. However, the
degree of difference (i.e. lack of similarity) is not clear. In the absence of
a concrete similarity measure, we devised an approximate measure based
on the correlation between the performance of 1000 random routing poli-
cies for solving the problems in Section 3.5. However, this approach is an
approximate measure that depends on random individuals. Additionally,
it is not clear if the fitness value is a good representative that could cover
all features of the problems. As a result of this, in this thesis, we utilised
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this approximate measure with caution and used just as a hint.

As a result, measuring the exact degree of similarity between UCARP
problems is an open subject that needs further research. In the context
of transfer optimisation, one immediate benefit of having an accurate de-
gree of similarity is that it illuminates if the source and target problems
are related and hence, prevents from negative transfer between unrelated
problems. Another advantage of this measure is that it could allow more
developing more elaborate algorithms that could regulate the amount of
knowledge transfer between problems based on the degree of similarity
between them, especially when there are more than one knowledge source
to transfer from, as is discussed in Section 7.3.2.

7.3.2 Multiple Sources of Knowledge

In this work, all the devised algorithms, and all the experiments to verify
them, considered only a single knowledge source, that is, a single solved
problem to transfer from. An interesting direction for future work could
be the case of having a large number of sources when only some of them
(possibly a very small fraction of sources) are related to the target while
others are not. A possible approach to this problem is to modify the pro-
posed algorithms so that the similarity of the source problem to the tar-
get problem is assessed before performing the act of knowledge transfer
and, discard the sources that have low similarity to the target problem.
One other possible approach can be to measure the similarity of different
source problems and base the amount of knowledge that is transferred
from each source on the similarity of that source to the target problem. As
was discussed in Section 7.3.1, this also highlights the need for having a
more accurate measure of similarity between UCARP problems.



222 CHAPTER 7. CONCLUSIONS

7.3.3 Surrogate Models

In Chapters 4 of this work, we made extensive use of surrogate models. In
our work, these models were trained on the transferred source knowledge
and then, utilised to estimate the fitness of new individuals. In this re-
gard, one shortcoming of this approach is that since the models are trained
based on the individuals that were found for solving the source problem,
they are trained based on the areas of the search space that were inves-
tigated for solving the source problem. Consequently, when a new indi-
vidual from the investigated regions is assessed with the model, the per-
formance of the model is satisfactory. However, when an individual from
an uninvestigated region is encountered, the performance of the surro-
gate model is very unpredictable. As a result, if the individual has a good
fitness, the surrogate model may not be able to detect it. This issue can
potentially damage the quality of knowledge transfer and it has the po-
tential to be investigated further. Furthermore, due to their simplicity, the
surrogate models in this work were based on the KNN method. However,
this is not the only surrogate type and it will be interesting to investigate
the effectiveness of other surrogate types for transfer optimisation.

7.4 Future Work

7.4.1 Multi-task Learning for UCARP

Multi-task Learning, MTL, is the approach of solving multiple related prob-
lems simultaneously and together [95, 22, 76]. In MTL approaches, the
goal in solving the problems together is that during the search process
for solving each problem, the processes can share the common knowledge
that they find between each other and in this way, increase the effective-
ness and efficiency of the search for each problem, compared to when each
search is performed independently. Accordingly, similar to transfer op-
timisation, the act of knowledge sharing is an important component of
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MTO. Although MTL algorithms have shown to be very effective in solv-
ing an extensive problems from different fields [72, 140, 61, 188], to the
best of our knowledge, the work by Ardeh et al. [12] is only work that has
performed MTL for UCARP. The experimental results obtained by Ardeh
et al. indicated that MTL is a promising area of research that deserves
further investigations.

7.4.2 Cultural Algorithms

In Chapter 6, we proposed a transfer optimisation algorithm in which
the transferred knowledge is evolved alongside the main population and
supports its evolution. As was also discussed in Section 6.4.6, this ap-
proach has similarities with the category of cultural algorithms [155, 51].
Although the properties of our proposed algorithm in Chapter 6 differ-
entiates the algorithm from the category of cultural algorithms, the good
performance of our algorithm and its existing similarities with cultural
methods indicate that cultural algorithms are viable research area that de-
serve further investigation. Accordingly, it would be interesting to study
the potential of developing novel cultural algorithms for solving UCARP,
especially, in the context of transfer optimisation and multi-task learning.
As an example, one particular case in this direction would to be consider
the common knowledge into the belief space of cultural algorithms and
use the facilities that the network provide to evolve the common knowl-
edge and expand the collection of reusable common knowledge.

7.4.3 Population Diversity

In Chapter 3 of this thesis, it was discovered that lack of diversity in the
knowledge source was one of the main challenges in performing effective
transfer optimisation for UCARP. The concept of diversity was one of the
main areas of focus throughout Chapters 4–6 and our experimental results
indicated its contribution to the performance of the search process. How-
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ever, to the best of our knowledge, the issue of population diversity has
not been investigated before for UCARP. Our experimental results, espe-
cially in Chapter 6, indicate that improving the population diversity has
a positive correlation with the performance of GPHH for solving UCARP.
However, this area has not been investigated rigorously. Particularly, in-
vestigating the effect of promoting the phenotypic and genotypic diversity
on the search performance, the correlation between phenotypic and geno-
typic diversity and the effect of utilising different phenotypic measures on
the quality of GPHH results would be very interesting and fruitful.

7.4.4 Knowledge Transfer for Non-GP Approaches to Solv-

ing UCARP

In this thesis, the main approach for solving UCARP was the approach of
using GP as a hyper heuristic. Accordingly, all the transfer optimisation
methods in this work were based the GPHH method. However, other
evolutionary algorithms, such as EDA [223] and memetic search [224],
have been also devised for solving UCARP. To the best of our knowledge,
transfer optimisation has not been researched in the context of these al-
gorithms. Accordingly, one potential direction worth investigation is de-
veloping transfer optimisation algorithms for such methods and compare
their performances to the GPHH-based algorithms. Additionally, trans-
ferring knowledge from a source problem that is solved with GPHH to
the non-GPHH methods and vice versa is another interesting subject of
research.

Furthermore, recently neural network-based reinforcement learning al-
gorithms have recently been successful at solving routing problems [194,
24, 175, 56]. However, to the best of our knowledge, no attempt has ever
been made at solving UCARP with any reinforcement learning algorithms.
One potential approach would be to consider a neural network to repre-
sent the task priority function, which is represented by GP trees in the
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GPHH approach, and devise appropriate training algorithms. Investigat-
ing the transfer learning potential of the neural-based approach and de-
vising algorithms for transferring knowledge from/to GPHH algorithms
are another interesting lines of research in this direction.

7.4.5 Knowledge Transfer for Other Combinatorial Prob-

lems

The knowledge transfer algorithms that were developed in this work were
designed for GPHH to solve UCARP. However, GPHH is the state-of-the-
art approach for other combinatorial optimisation problems (e.g. DFJSS)
[59]. Hence, one potential direction for future work is to adapt the pro-
posed methods for solving other combinatorial problems. In this regard,
it should be noted that the algorithms were designed for solving UCARP,
and therefore, they may entail steps that are specific to UCARP (e.g. the
phenotypic characterisation of routing policies with decision situations).
Consequently, the first step in applying the proposed algorithms to other
problems will be to identify the UACRP-specific components of the pro-
posed algorithms and replace them with relevant steps for solving other
combinatorial problems. Another important consideration is the fact that
the design of the proposed algorithms was heavily influenced by the ob-
servation that the GPHH process for solving UCARP suffers from the lack
of population diversity. As a result, another step in applying the proposed
algorithms to other problems is to identify how the lack of diversity in the
GP population, if present, impacts the performance of GP.

7.4.6 The Effect of Population Size

Population size is an important parameter of the genetic algorithm [108].
Previous studies have investigated the impact of this parameter on the
performance of evolutionary algorithms [198, 211, 195]. In general, it can
be concluded that the effect of the population on the performance of EC
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algorithms is complicated [65, 201, 222]. On the one hand, if the popula-
tion size is small, the search capability of GP will be restricted and hence,
the performance will be impacted negatively. On the other hand, and in
the case of UCARP, having a large population is not likely to improve the
performance significantly because the majority of the population will be
occupied with duplicates.

However, if some mechanisms are devised to control the presence of
duplicates, then two scenarios are possible, the first of which is that the
computational budget (i.e. number of fitness evaluations) is fixed; that is,
the overall number of fitness evaluations is the same as in our experiments.
In this case increasing the population size is likely to reduce the effective-
ness of the breeding operators and result in worse performance because
GP individuals will go through fewer generations of evolution. The sec-
ond possible scenario is to allow GP to have an increased computational
budget. In this case, since the presence of duplicates are controlled, the
computational budget will not be wasted on evaluating duplicates and
hence, the performance of the algorithm is likely to increase.

Nevertheless, as the previous studies indicated, the effect of population
size on the performance of GP is complicated. Consequently, it will be ben-
eficial to investigate the effect in the context of GP for solving UCARP and
understand how it will impact the performance of the knowledge transfer
mechanisms.
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real-time fluids. In ACM SIGGRAPH 2006 Papers on - SIGGRAPH ’06
(New York, New York, USA, 2006), vol. 25, ACM Press, p. 826.
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