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Abstract
The client-centric multi-cloud has become a popular cloud ecosystem be-
cause it allows enterprise users to share the workload across multiple
cloud providers to achieve high-quality services with lower operation costs
and higher application resilience. From the perspective of application
providers, the location of cloud resources for application deployment sig-
nificantly impacts the deployment cost and performance of applications,
e.g., request response time. This gives rise to the problem of location-
aware application deployment in multi-cloud to select suitable cloud re-
sources from widely distributed multi-cloud data centers to balance the
cost and performance. Existing research works did not pay full attention
to the key impact of the location for application deployment. Therefore, it
is urgent to study the problem both theoretically and in practice. In this
thesis, innovative optimization methods and machine learning techniques
are proposed for three common scenarios, namely composite application
deployment, application replication and deployment, and elastic applica-
tion deployment.

First, this thesis studies the composite application deployment prob-
lem with the goal to minimize the average response time of composite
applications subject to a budget constraint. We propose a Hybrid Genetic
Algorithm (GA)-based approach, i.e., H-GA, for solving the problem with
an extremely large search space. H-GA features a newly designed and
domain-tailored service clustering algorithm, repair algorithm, solution
representation, population initialization, and genetic operators. Experi-
ments show that H-GA can outperform significantly several state-of-the-
art approaches, achieving up to about 8% performance improvement in
terms of response time, and 100% budget satisfaction in the meantime.



Second, this thesis studies the application replication and deployment
problem with the goal to minimize the total deployment cost of all applica-
tion replicas subject to a stringent requirement on average response time.
We propose two approaches under different optimization frameworks to
solve the problem. With user requests dispatched to the closest applica-
tion replicas, we develop an approach under a GA framework for Appli-
cation Replication and Deployment (ARD), i.e., GA-ARD. GA-ARD fea-
tures problem-specific solution representation, fitness measurement, and
population initialization, which are effective to optimize the deployment
of application replicas in multi-cloud. The experiments show that GA-
ARD outperforms common application replication and placement strate-
gies in the industry. With user requests flexibly dispatched among differ-
ent application replicas, we develop another approach under a two-stage
optimization framework, i.e., MCApp. MCApp can optimize both replica
deployment and request dispatching by combining mixed-integer linear
programming with domain-tailored large neighborhood search. Our ex-
periments show that MCApp can achieve up to 25% reduction in total de-
ployment cost compared with several recently developed approaches.

Third, this thesis studies the elastic application deployment problem to
minimize the deployment cost over a time span such as a billing day while
satisfying the constraint on average response time. The goal of adapting
resources for application deployment in response to dynamic and dis-
tributed workloads motivates us to adopt deep reinforcement learning
(DRL) techniques. The proposed approach, namely DeepScale, applies a
deep Q-network (DQN) to capture the optimal scaling policy that can per-
form online resource scaling. DeepScale also includes a long short term
memory-based prediction model to allow the DQN to consider predicted
future requests while making cost-effective scaling decisions. Besides,
we design a penalty-based reward function and a safety-aware action ex-
ecutor to ensure that any scaling decisions made by DRL can satisfy the
response time constraint. The experiments show that DeepScale can sig-



nificantly reduce the deployment cost of applications compared with the
state-of-the-art baselines, including Amazon auto-scaling service and re-
cently proposed RL-based algorithms. In the meanwhile, DeepScale can
effectively satisfy the constraint on the average response time.

In summary, this thesis studies three new problems for location-aware
application deployment in multi-cloud. We propose four novel approaches
under different optimization and machine learning frameworks, i.e., H-
GA, GA-ARD, MCApp, and DeepScale, for solving these problems. New
constraint handling techniques are developed to satisfy the practical de-
ployment requirements of enterprise applications.
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Chapter 1

Introduction

1.1 Problem Statement

Gartner1 forecasts that worldwide end-user spending on public cloud ser-
vices will approach 400 billion U.S. dollars in 2022 and maintain rapid
growth. According to Forbes [37], currently, 83% of enterprise workloads
have been moved to the cloud, and half of them will be hosted on public
cloud platforms.

The thriving public cloud market drastically affects its participants. On
the one hand, the competitive cloud providers are progressively increasing
investment and launching various services with customized properties,
pricing models, and Service Level Agreements (SLAs) in different geo-
graphic locations2. On the other hand, cloud users tend to apply cloud
services from multiple cloud providers to achieve two major benefits as
follows.

• Cost saving: By utilizing multiple clouds, cloud users can dynami-
cally distribute workload among cloud providers freely to avoid the
changes in policy and pricing [59]. In the context of the competitive

1https://www.gartner.com/
2https://azure.microsoft.com/en-us/global-infrastructure/regions/

1



2 CHAPTER 1. INTRODUCTION

cloud marketplace, cloud users can achieve substantial cost savings.

• Application resilience: Due to the potential unavailability of services
from one single cloud provider, the Berkeley view of cloud comput-
ing advises the use of multiple clouds in order to achieve high re-
silience [46], [210].

There are other potential benefits for the usage of multiple clouds, such
as access to widely distributed and legislation-compliant services [22] and
avoidance of vendor lock-in [53], [59].

In cloud computing, cloud users can be either the end-users who use
the cloud resources directly or the application providers who have their
own users [45]. Recently, application providers are interested in embrac-
ing multi-cloud, because the client-centric paradigm does not require cloud
providers to adopt and implement standard interfaces, protocols, formats,
and architectural components [178]. That is, multi-cloud allows applica-
tion providers to manage resources across multiple clouds [131]. Usually,
an adapter layer with different Application Programming Interfaces (APIs)
is required to access resources from multiple clouds as shown in Figure
1.1.

In this thesis, we focus on the perspective of application providers and
clarify the following terms for reference.

• Application providers: entities that offer domain-specific software or
applications to end users by using multi-cloud resources made avail-
able by cloud providers.

• Application services (or applications for short): specific functionalities
of software or applications, e.g., the meteorological service of New
Zealand, MetService3, which we refer to as cloud-based services.

The network latency between end-users and cloud-based services in
different locations significantly affects the performance of applications [68],

3https://www.metservice.com/
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Figure 1.1: A simplified application deployment system in multi-cloud
based on [178].

especially for interactive applications [59]. Besides, the prices of cloud re-
sources in different regions can vary substantially. For example, the prices
of m6g.large (Linux) from Amazon EC24 are $0.077 and $0.1224 per hour
in Northern Virginia (USA) and Sao Paulo (Brazil) respectively. That is,
the location of cloud resources for application deployment significantly im-
pacts both the deployment cost and performance of applications [69], [154],
[155], [156], [157], [158], [159]. This gives rise to the problem of location-

4https://aws.amazon.com/ec2/pricing/on-demand/
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aware application deployment in multi-cloud. This problem aims to select suit-
able cloud resources from widely distributed multi-cloud data centers to
balance the cost and performance. Existing research works did not pay
full attention to the key impact of the location for application deployment
[135]. Therefore, it is urgent to study the problem both theoretically and
in practice. Particularly, three important scenarios for the location-aware
application deployment in multi-cloud need to be investigated.

• Composite Application Deployment (CAD). There is an ongoing trend
for application providers to offer several business applications si-
multaneously, and the relevant business processes are usually ab-
stracted as workflows [218]. Based on Service-Oriented Architecture
(SOA) [28], these composite applications consist of a set of specific
functionalities, i.e., constituent services. Because different compos-
ite applications have different user distributions, constituent services
can be deployed in different locations to reduce network latency. Be-
sides, application providers are often interested in budgetary con-
trol to ensure that their actual costs adhere closely to their financial
plan [25]. The budgetary control emphasizes the optimization of ap-
plication performance within a given budget, which is of immense
practical significance for application providers [142]. However, the
existing works on CAD usually deploy constituent services in the
same location and do not consider the budget impact.

• Application Replication and Deployment (ARD). For some applications,
a low average response time must be satisfied to guarantee the qual-
ity of experience (QoE) [104], [201]. ARD applies the scenario where
application providers must replicate applications in multiple loca-
tions to ensure the stringent requirement on average response time.
In multi-cloud, ARD needs to resolve two key issues: (1) How should
the types and locations of resources be selected to deploy application
replicas so that the total deployment cost is minimized? (2) How
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should user requests be distributed among application replicas such
that the average response time can meet the requirement?

• Elastic Application Deployment (EAD). Enterprise applications often
process dynamic workloads from the worldwide user community
[6]. These applications should dynamically acquire and release re-
sources to handle the varying workloads. The elasticity can improve
the cost-effectiveness of application deployment while satisfying the
constraint on average response time [201]. In the literature, EAD
was usually realized by scaling resources within a single data center
[141], [213]. In this thesis, EAD aims to efficiently adapt the multi-
cloud resources in different locations for application deployment in
response to highly dynamic and widely distributed workloads.

1.2 Motivations

Upon considering a large number of available cloud resources provided
by multiple cloud providers at different locations with different prices,
solving CAD becomes a very challenging task. Genetic Algorithm (GA)
is a classic optimization technique to generate high-quality solutions for
various combinatorial optimization problems with practical importance
[39], [197]. In particular, driven by a population-based solution improve-
ment framework, GA has been widely used to select proper multi-cloud
resources for scalable cloud application deployment [69], [85], [211]. How-
ever, new technical innovations are required to effectively apply GA to ad-
dress CAD in multi-cloud due to three reasons. (1) We should consider the
geographical location of cloud resources. In the global cloud marketplace,
a large number of different resources are provided at different data centers.
The large and complex search space can impair the scalability and appli-
cability of the existing GA-based approaches [61]. (2) Many of GA-based
algorithms [99], [208] solve constrained optimization problems by intro-
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ducing penalty functions. However, numerous research works in the liter-
ature have shown that repair algorithms have the potential to outperform
penalty-based algorithms in GA by adopting problem-specific heuristics
[36], [146]. We need to propose a specific repair algorithm to solve our
problem effectively because there are no standard guidelines for the de-
sign of repair algorithms [111]. (3) To control the computation time of the
repair process, we should also consider the efficiency of our proposed re-
pair algorithm [146].

Considering application replicas, ARD in multi-cloud is similar to the
cloud-hosted data placement and replication problems [87], [114]. Integer
Linear Programming (ILP) has been considered as the dominant method
to model these problems [66], [201]. However, ARD considers the response
time of user requests, including both the network latency and the request
processing time. For the applications under high workloads, the request
processing time is nonlinearly related to the capacity of deployed cloud
resources and users’ demands [47]. The nonlinear nature renders the ILP-
based approaches in [66], [201] inapplicable. Many meta-heuristic algo-
rithms have also been used for the data placement and replication problem
in clouds [88], [102]. However, these approaches focused on the location
selection for data replicas, while ARD must select both the locations and
the types of cloud resources.

EAD is a dynamic scenario to scale multi-cloud resources for applica-
tion deployment. Finding a cost-effective and performance-satisfactory
deployment solution in multi-cloud involves a complex search space. The
existing algorithms for EAD in multi-cloud (e.g., using meta-heuristics
in [6]) can incur high computational costs to obtain adaptive solutions.
Moreover, these algorithms usually do not consider the impact of current
deployment decisions on the future deployment cost and response time.
The goal of adapting resources for application deployment in response
to dynamic and distributed workloads motivates us to adopt Deep Rein-
forcement Learning (DRL) techniques [173]. DRL applies a deep neural
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network, e.g., Deep Q-Network (DQN), to model the optimal policy for
scaling cloud resources. The adaptive nature of DRL makes it very ap-
pealing to devise effective scaling policies for applications with dynamic
and widely distributed workloads. However, the existing RL-based al-
gorithms, e.g., [141], [213], cannot be directly applied to solve the EAD
problem because they lack the safety mechanisms to satisfy the response
time constraint.

1.3 Research Goals

The overall goal of this research is to achieve location-aware application de-
ployment in multi-cloud effectively and efficiently. More specifically, this
research deals with the three application deployment scenarios, i.e., CAD,
ARD, and EAD.

1. CAD deals with the deployment of a set of composite applications
in multi-cloud to minimize the average response time subject to a
budget constraint. This is the scenario where application providers
have the demand for budget management during composite appli-
cation deployment. Considering the deployment location of con-
stituent services and budget constraints, we will formulate the new
CAD problem and propose a hybrid GA-based approach to solve the
problem.

(1) Formulate a more widely applicable problem for CAD in multi-cloud.

To achieve a high level of control and flexible management goals
[81], we consider the Infrastructure-as-a-Service (IaaS) paradigm,
i.e., deploying composite applications on a set of Virtual Ma-
chines (VMs). In this formulation, we will formally define (a)
the composite applications consisting of constituent services,
(b) the multi-cloud application deployment system including
the capacity-feasible VMs (i.e., the VM types whose capacities are
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greater than their workloads), (c) the budget constraint and the
objective. Because the deployed applications need to process
tens of thousands or even millions of requests daily [205], we
model the processing of ongoing application requests through
a queuing model to precisely capture the performance of applica-
tions.

(2) Propose a hybrid GA-based approach for the CAD problem.

First, the research aims to investigate a service clustering mech-
anism based on the dependency among services to reduce the
complexity/size of the search space, thereby ensuring the effi-
ciency and effectiveness of the GA-based approach.

Second, the research aims to design a problem-specific repair al-
gorithm to solve the constrained optimization problem. The re-
pair algorithm will progressively downgrade the service host-
ing VM types to meet the budget requirements at the expense
of low-performance deterioration.

Finally, the research aims to achieve a desirable trade-off be-
tween performance and computation time during the repair pro-
cess. We will design an adaptive bound to choose and trans-
form only a portion of over-budget deployment solutions into
constraint-compliant solutions.

2. ARD aims to minimize the total deployment cost of applications sub-
ject to the stringent performance requirements in terms of average
response time. Considering the deployment location of application
replicas, the deployment cost and average response time of applica-
tions depend on both the replica deployment plan (i.e., how to de-
ploy all application replicas on specific resources in specific multi-
cloud data centers) and the request dispatch plan (i.e., how to dis-
patch user requests among all application replicas). We will formu-
late the new ARD problem with the two matching plans and pro-
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pose two approaches under different optimization frameworks for
the problem.

(1) Formulate a more widely applicable problem for ARD in multi-cloud.

ARD focuses on the IaaS paradigm, i.e., deploying application
replicas on a large group of VMs. In this formulation, we will
formally define (a) two location-related plans, i.e., the replica
deployment plan and request dispatch plan, (b) the data consis-
tency model for application replicas, (c) the performance constraint
in terms of the average response time and the cost objective. De-
pending on user requests dispatched to the closest application
replicas (a common practice) or flexibly dispatched among dif-
ferent application replicas (more cost-effective), ARD is further
defined as ARD with close dispatching problem and ARD with
flexible dispatching problem, correspondingly.

(2) Propose a two-level optimization approach under the GA framework
for the ARD with close dispatching problem.

Dispatching user requests to the closest application replicas or
services is a common practice in the literature [74], [171] and
industry [113]. With close request dispatching, the location se-
lection of application replicas has a major impact on the perfor-
mance and deployment cost of applications.

First, the research aims to optimize location selection for appli-
cation replicas in multi-cloud by GA (first level optimization).

Second, the research aims to design a problem-specific heuristic
to perform VM types selection based on the locations of applica-
tion replicas (second level optimization). Particularly, after de-
ploying all application replicas to the cheapest capacity-feasible
VMs, we will progressively upgrade the VM types to reduce the
response time as long as the performance requirement is satis-
fied.
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Finally, seeding strategies have been proven to be an effective way
to improve the GA-based algorithms by injecting knowledge
about the problem [27]. Therefore, the research aims to investi-
gate a seeding strategy for the GA-based approach to improving
solution quality and convergence speed.

(3) Propose a two-stage optimization approach for the ARD with flexible
dispatching problem.

The flexible request dispatching enables further reduction of the
deployment cost by simultaneously optimizing the replica de-
ployment and request dispatching [201]. With the extra opti-
mization decision, i.e., the request dispatch plan, we propose
a two-stage optimization approach combining Mixed-Integer
Linear Programming (MILP) with domain-tailored Large Neigh-
borhood Search (LNS).

First, the research aims to linearize the ARD with flexible dispatch-
ing problem so that it can be solved by MILP methods. Because
adapting upper bounds on VMs’ utilization rate and average
response time helps to reduce the total deployment cost, the re-
search aims to propose a MILP-based algorithm to obtain ef-
ficiently a high-quality base solution. The performance of the
base solution will be improved by adaptively updating the up-
per bounds on both VMs’ utilization rate and average response
time.

Second, the research aims to develop an LNS-based algorithm to
improve the base solution. To build an effective LNS process, a
new destroy heuristic and a new repair heuristic will be designed
to adjust the replica deployment plan. Based on the new replica
deployment plan, we will propose a delay-oriented heuristic to
efficiently dispatch user requests for the purpose of low average
response time.
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3. EAD aims to automatically adapt multi-cloud resources in response
to the varying and distributed application workloads. For this sce-
nario, the total cost for the application deployment over a time span
such as a billing day needs to be minimized while satisfying the con-
straint on average response time. We will formulate the new EAD
problem and propose a novel approach to solve the problem.

(1) Formulate a more widely applicable problem for EAD in multi-cloud.

Currently, elastic deployment of applications increasingly re-
lies on containers, an industry-leading lightweight virtualization
technology [18], [140]. By bundling together an application with
all its dependencies (e.g., libraries and code), containers lay the
technical foundation for fast and easily adapting the applica-
tion deployment through horizontal and vertical scaling. The hor-
izontal scaling in multi-cloud can be realized by increasing and
decreasing the number of application replicas, i.e., containers,
at different locations. The vertical scaling aims to increase and
decrease the number of resources assigned to any application
replica. In this formulation, we will formally define (a) the dy-
namic scenario in terms of application workloads, (b) two types
of container-based scaling in multi-cloud, (c) the objective re-
garding the total deployment cost over a time span and the con-
straint on average response time.

(2) Propose a novel DRL-based approach with a Long Short Term Memory
(LSTM)-based prediction model for the EAD problem.

First, because the start-up and shut-down time of containers is
short, container scaling requires higher timeliness and accuracy
[213]. The research aims to train an LSTM-based workload pre-
dictor based on request arrival history and a DRL-based scaling
policy considering the predicted future workloads. Based on
the predicted workload, the trained scaling policy will perform
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more effective container scaling in multi-cloud with a lower to-
tal deployment cost.

Second, the research aims to propose a penalty-based reward func-
tion to train scaling policies toward the constraint-compliant
scaling and design a safety-aware action executor to ensure that
any scaling decisions made by the scaling policy will satisfy the
performance constraint.

1.4 Major Contributions

This thesis proposes five major contributions to the area of cloud-based
application deployment:

1. Due to the key impact of the deployment location, this thesis defines
three new problem formulations for location-aware application de-
ployment in multi-cloud. To the best of our knowledge, this is the
first study in the literature on cloud-based application deployment
considering the location impact on both the cost and performance of
applications on the global scale. That is, the existing problem formu-
lations on the three scenarios did not consider the locations of cloud
resources as optimization decisions for application deployment or
only considered the cloud resources within one or two data centers.
For the three different scenarios, i.e., CAD, ARD, and EAD, different
deployment paradigms, deployment objects, constraints, and objec-
tives are included in the new problem formulations.

2. This thesis proposes a hybrid GA-based approach, namely H-GA, to
the CAD problem. H-GA has a newly designed and domain-tailored
service clustering method to reduce the size of the search space due
to considering the locations of multi-cloud resources and a repair
algorithm to guarantee the total deployment cost within the given
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budget. To evaluate the proposed approach, we collect the informa-
tion about VM capacity and pricing offered by the global top three
cloud providers, i.e., Amazon, Microsoft, and Alibaba. Based on the
collected information, extensive empirical study has been conducted
to deploy a large group of composite applications with different ser-
vice diversities and budget factors. The experimental results indi-
cate that H-GA significantly outperforms several state-of-the-art al-
gorithms. Part of this contribution has been published in:

Tao Shi, Hui Ma, Gang Chen, and Sven Hartmann, ”Location-Aware
and Budget-Constrained Service Deployment for Composite Appli-
cations in Multi-Cloud Environment,” IEEE Transactions on Parallel
and Distributed Systems, vol. 31, no. 8, pp. 1954-1969, 2020.

3. This thesis proposes a novel GA-based approach to the ARD with
close dispatching problem, namely GA-ARD. GA-ARD has a newly de-
signed solution representation, fitness measurement, and population
initialization. Experimental results show GA-ARD can significantly
reduce deployment cost compared with the industry-leading appli-
cation replication and placement strategies. Part of this contribution
has been published in:

Tao Shi, Hui Ma, Gang Chen, and Sven Hartmann, ”Location-Aware
and Budget-Constrained Application Replication and Deployment
in Multi-Cloud Environment,” 2020 IEEE International Conference on
Web Services (ICWS), IEEE, 2020, 110-117.

4. This thesis proposes a novel approach, named MCApp, to solve the
ARD with flexible dispatching problem. MCApp creates a hybrid op-
timization process that combines an iterative MILP-based algorithm
and a domain-tailored LNS-based algorithm to simultaneously op-
timize the replica deployment plan and the request dispatch plan.
MCApp is compared to several state-of-the-art approaches and has
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achieved superior performance on many problem instances with var-
ied applications. Part of this contribution has been published in:

Tao Shi, Hui Ma, Gang Chen, and Sven Hartmann, ”Cost-Effective
Web Application Replication and Deployment in Multi-Cloud Envi-
ronment,” IEEE Transactions on Parallel and Distributed Systems, vol.
33, no. 8, pp. 1982–1995, 2022.

5. This thesis proposes a novel DRL-based approach, i.e., DeepScale,
for the EAD problem. DeepScale features an LSTM-based prediction
model, a newly designed safety-aware action executor, and penalty-
based reward function. We develop a fully functioning prototype
of DeepScale using PyTorch [130] that can be directly applied to real-
world multi-cloud. Extensive empirical study of DeepScale has been
performed. The experimental results show that DeepScale outper-
forms Amazon auto-scaling service5 and the recently proposed base-
lines.

1.5 Organization of Thesis

• Chapter 1: Introduction

This chapter includes the problem statement, motivations, research
goals, contributions, and thesis organization.

• Chapter 2: Background and Literature Review

This chapter presents a background of multi-cloud, distributed ap-
plication in cloud, optimization, and machine learning techniques
we intend to use. In addition, it presents a literature review of CAD,
ARD, and EAD with highlighted limitations and challenges.

• Chapter 3: Composite Application Deployment

5https://aws.amazon.com/cn/autoscaling/
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Figure 1.2: The connection between major contributions chapters in the
thesis (see Subsection 2.1.1 for details about IaaS and CaaS).

This chapter formulates a novel CAD problem. A hybrid GA-based
approach, i.e., H-GA, is proposed to solve the problem. The per-
formance of H-GA is compared with the baseline algorithms using
real-world datasets.

• Chapter 4: Application Replication and Deployment

This chapter formulates a novel ARD problem. Then, two novel ap-
proaches, i.e., GA-ARD and MCApp, are respectively proposed to
handle the ARD with close dispatching problem and the ARD with flex-
ible dispatching problem. The performance of the two approaches is
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compared with the baseline algorithms using real-world datasets.

• Chapter 5: Elastic Application Deployment

This chapter formulates a novel EAD problem. It proposes a novel
DRL-based approach with an LSTM-based prediction model, i.e.,
DeepScale, to solve this problem. The performance is evaluated and
compared with baseline algorithms using real-world datasets.

• Chapter 6: Conclusions and future works

In this chapter, the conclusions and findings in each chapter are pre-
sented and summarized. The chapter also describes the main future
research directions arising from the contributions of this work.

The connection between the major contribution chapters in this the-
sis is shown in Figure 1.2. The CAD problem in Chapter 3 provides the
foundation for formulating the multi-cloud application deployment. This
formulation is extended to support the ARD problem and EAD problem
in Chapters 4 and 5. Meanwhile, H-GA is proposed for the CAD problem.
Considering application replication, Chapter 4 develops two approaches,
i.e., GA-ARD and MCApp, for the ARD problem. Chapter 5 proposes Deep-
Scale to solve the EAD problem considering dynamic scaling.



Chapter 2

Background and Literature
Review

This chapter introduces the fundamental concepts of application deploy-
ment in multi-cloud, optimization and machine learning techniques, and
related work. Section 2.1 introduces the concepts of cloud computing, in-
terconnected cloud paradigms, and distributed application in cloud. Sec-
tion 2.2 explains the optimization and machine learning techniques that
we intend to use for the problem of location-aware application deploy-
ment in multi-cloud. Section 2.3 reviews the related work about Com-
posite Application Deployment (CAD), Application Replication and De-
ployment (ARD), and Elastic Application Deployment (EAD). Section 2.4
concludes the findings in the literature and positions our research in the
field.

2.1 Application Deployment in Multi-cloud

In this section, we first discuss the stakeholders in cloud computing from
a resource management perspective and the types of services offered in
cloud. Then, Subsection 2.1.2 discusses the different paradigms to real-
ize interoperability among multiple clouds. Subsection 2.1.3 introduces

17
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Figure 2.1: Key stakeholders in cloud computing adapted from [83].

some commonly deployed distributed applications in cloud. Subsection
2.1.4 categorizes the problem of location-aware application deployment in
multi-cloud into three scenarios, i.e., CAD, ARD, and EAD because each of
them must be solved by effective and efficient methods.

2.1.1 An Overview of Cloud Computing

Cloud computing is the delivery of different computing services through
the Internet with pay-as-you-go pricing [112]. According to NIST’s defi-
nition [125], ”cloud computing is a model for enabling ubiquitous, convenient,
on-demand network access to a shared pool of configurable computing resources
(e.g., networks, servers, storage, applications, and services) that can be rapidly
provisioned and released with minimal management effort or service provider in-
teraction.” Cloud computing has become increasingly popular for a num-
ber of reasons including cost savings, increased productivity, speed and
efficiency, performance, and security [112].
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From a resource management perspective, cloud computing involves
three key stakeholders, i.e., cloud providers, cloud users, and end-users
(see Figure 2.1). Cloud providers build data centers and maintain the cloud
servers at the data centers. Cloud users, e.g., application providers, de-
ploy their applications or software to these cloud servers from anywhere
in the world. End users can use the applications without installing them on
their local computers once the applications are deployed. Cloud providers
charge fees from cloud users for using the infrastructure, i.e., application
deployment cost.

Cloud computing is primarily comprised of three types of services:
Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS), and Infrastructure-
as-a-Service (IaaS).

• SaaS delivers software applications over the Internet, on-demand,
and typically on a subscription basis. With SaaS, cloud providers
host and manage the software applications and underlying infras-
tructure, and handle any maintenance, like software upgrades and
security patching [112]. The cloud providers are also the application
providers (i.e., cloud users in Figure 2.1) [83]. This type of service
can be found in Microsoft Office 365 [186].

• PaaS supplies an on-demand platform for developing, testing, deliv-
ering, and managing software applications. PaaS is designed to set
up or manage the underlying infrastructure of servers, storage, net-
work, and databases needed for application development. Google
AppEngine is an example of PaaS [186].

• IaaS delivers cloud computing infrastructure, i.e., servers and Virtual
Machines (VMs), storage, networks, operating systems, on a pay-
as-you-go basis. After that, cloud users manage the VM instances
as remote servers, while cloud providers do very little management
inside the VM instances. Amazon Elastic Compute Cloud (EC2) is
one example of IaaS [186].
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In recent years, Containers-as-a-service (CaaS) has become a popular cloud
service type [78]. CaaS can manage and deploy applications using container-
based abstraction. Containers are lightweight packages of application code
together with dependencies such as specific versions of programming lan-
guages and libraries required to run application services. CaaS is often
termed as a subset of IaaS with different functionalities [78]. Google Ku-
bernetes and Docker Swarm are two examples of CaaS.

In practice, application providers often prefer IaaS in order to achieve
a high level of control and flexible management goals [42], [174]. There-
fore, we consider the IaaS for the CAD and ARD scenarios in this thesis.
Due to the lightweight and flexible characteristics, elastic development
and run-time management of applications increasingly rely on containers
[18], [140]. Therefore, we consider the CaaS for the EAD scenario.

2.1.2 Interconnected Cloud Paradigms

According to the survey from Gartner [57], 81% of public cloud users are
using multiple clouds. Interoperability across multiple clouds is impor-
tant for the realization of computing as a utility like other utilities such
as electricity and telephony. In practice, cloud interoperability can be
obtained through either a provider-centric approach or a client-centric ap-
proach [178].

The provider-centric approach requires cloud providers to adopt and
implement standard interfaces, protocols, formats, and architectural com-
ponents [131]. The scenarios based on the provider-centric approach in-
clude hybrid cloud and federated cloud paradigms [178].

• A hybrid cloud allows a private cloud to form a partnership with a
public cloud. By the hybrid cloud, an application run in a private
data center can burst into a public cloud when the demand for com-
puting capacity spikes.



2.1. APPLICATION DEPLOYMENT IN MULTI-CLOUD 21

• A federated cloud assumes a prior business agreement among cloud
providers and they collaborate to exchange resources voluntarily [59].
In this paradigm, cloud providers aim to overcome resource limita-
tions in their local infrastructure by outsourcing workloads to other
members of the federation. Besides, the federated cloud allows cloud
providers with low resource utilization to lease part of their resources
to other federation members to avoid wasting the nonstorable com-
pute resources.

In practice, one comprehensive set of standards for the provider-centric
approach is difficult to develop and adopt by all providers. However, even
if the provider-centric approach is not supported by cloud providers, cloud
users are still able to benefit from the client-centric interoperability facil-
itated by third-party brokers or user-side libraries corresponding to the
following two paradigms [178].

• Aggregated service by broker offers an integrated service to cloud users
by coordinating access and utilization of multiple cloud resources
[137].

• In the multi-cloud paradigm, application providers are responsible to
manage resources across multiple clouds. The application providers
may require an adapter layer with different APIs to run services on
different clouds [178]. In multi-cloud, application providers per-
form application deployment, negotiate with each cloud provider,
and monitor each cloud provider during the service operation.

In this thesis, we consider the multi-cloud paradigm because it gives
application providers the freedom to use the best possible cloud for each
workload [77], [172]. For example, to achieve cost-saving, application
providers can dynamically distribute application workload among differ-
ent cloud providers to deal with the changes of policies and pricing [178].
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2.1.3 Distributed Application in Cloud

Distributed applications deployable in cloud can be divided into batch
processing applications and interactive applications [59].

Batch processing applications allow end users to submit and execute jobs
without further input. Therefore, they are also known as job-based ap-
plications [59]. Particularly, batch processing applications can be further
classified as singular-job applications or periodical-job applications.

• Singular-job applications execute each job only once if no failure oc-
curs. Most of these applications fall into the High Performance Com-
puting (HPC), High Throughput Computing (HTC) or Many-Task
Computing (MTC) categories [136]. Scientific workflows [16] also
can be considered as singular-job applications composed of multiple
inter-dependent sub-jobs [59].

• Periodical-job applications repeatedly execute jobs over a period of time.
Periodic Extract Transform Load (ETL) jobs in data warehouses, big
data analytical jobs, and corn jobs [92] are the examples of periodi-
cal-jobs [59].

Interactive applications are also known as online applications, which
constantly interact with end-users. Most interactive applications are data-
centric or compute-intensive [59]. Because interactive applications must
be constantly available, they will benefit the most from the cost-saving
and high resilience of multi-cloud [59]. Besides, many interactive applica-
tions serve end-users from around the world. Therefore, they can benefit
from the geographical diversity of multi-cloud data centers [59]. Because
the interactive application deployment in multi-cloud has seldom been
well studied in the literature, we study the problem in this thesis. In the
following content, we use applications to refer to interactive applications.
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2.2 Optimization and Machine Learning

Techniques

This section reviews the optimization and machine learning techniques
that are applied to our work. Because the CAD, ARD, and EAD problems
are all constrained optimization problems, different constraint handling
techniques are also reviewed in this section.

2.2.1 Evolutionary Computation

As a sub-domain of artificial intelligence, Evolutionary Computation (EC)
covers the majority of algorithms inspired by biological evolution [14].
EC is a promising approach for effective resource management in cloud
computing, such as scheduling [38], [48], [73], mapping [150], [151], load
balancing and capacity planning [61]. Genetic Algorithm (GA) is one of
the most popular EC techniques. It can solve the problems with vast
search space and avoid being trapped into local optima by adopting a
population-based solution improvement framework [115]. More impor-
tantly, GA can be used to solve problems that cannot be tackled by using
traditional gradient-based techniques [197].

Genetic Algorithms (GAs)

GA is a meta-heuristic originally developed by Holland [71]. A typical
GA requires a genetic representation of the solution with the help of some
encoding methods. Each chromosome is associated with a fitness value
based on a fitness function, and the fitness value of each individual is an
indication of its chances of survival and reproduction in the next genera-
tion.

A general GA procedure begins with an initialization of a population
of chromosomes. The initialization process generates a population of so-
lutions that widely spread across the solution space. The purpose of ini-
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Algorithm 1 Typical GA approach [39]
1: Initialize a population of chromosome randomly
2: Evaluate population with fitness function
3: while stopping criterion not met do
4: Apply Selection
5: Apply Crossover
6: Apply Mutation
7: for all offspring chromosome do
8: Evaluate population with fitness function
9: end for

10: end while
11: Return the best solution in the final generation;

tialization is to start the search in a good position by obtaining knowledge
through sampling. During the process of evolution, three basic GA oper-
ations, i.e., selection, crossover, and mutation, will be performed repeatedly
until any given stopping condition is met (see Algorithm 1).

In multi-cloud, there are a large number of different VM types available
at different data centers. Therefore, the CAD problem and the ARD with
close dispatching problem involve an extremely large search space. Com-
pared with heuristic-based algorithms, e.g., BHEFT [216], GA-based algo-
rithms are more competent for solving the two problems. Although the
GA-based algorithms do not guarantee the global optimal solution, they
usually can find near-optimal solutions within a feasible amount of time
[43], [197].

Constraint Handling Techniques

GAs are unconstrained search techniques [34]. There are many studies
regarding the mechanisms that allow GAs to deal with equality and in-
equality constraints.

The most common way of incorporating constraints into a GA is to
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introduce penalty functions [146]. The idea of penalty functions is to trans-
form a constrained optimization problem into an unconstrained one by
adding (or subtracting) a certain value to/from the objective function based
on the amount of constraint violation in a certain solution. The types of
penalty functions used with GAs include death penalty, static penalty, dy-
namic penalty, adaptive penalty [52], [206].

Numerous research works in the literature have shown that repair al-
gorithms have the potential to outperform penalty functions for GAs to
handle constraints [36], [146]. The repair algorithms consist in devising a
procedure (or mechanism) that allows transforming an infeasible solution
into a feasible one, i.e., to repair the infeasible individual. Such repaired
solutions can be only used for the fitness evaluation. The repaired solu-
tions can also replace the original solutions in the population (with some
probability). This approach is problem-dependent since a specific repair
algorithm has to be designed for each particular problem [34], [52].

Other constraint-handling techniques used with GAs include special
representations and separation of constraints and objectives [34]. Par-
ticularly, special representations apply to the scenario where traditional
generic representation schemes might not be appropriate to tackle the tar-
get problems. Separation of constraints and objectives handles constraints
and objectives separately by coevolution [129], assigning a higher fitness
to feasible solutions [133], behavioural memory [147], and using multi-
objective optimization concepts [35], [169], etc. Compared with these two
techniques, repair algorithms have the advantage of directly harnessing
domain knowledge, e.g., identifying non-critical constituent services for
downgrading cloud resources, for handling the budgetary constraint of
the CAD problem.
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2.2.2 Local Search

Local search is a heuristic method for solving combinatorial optimization
problems [84]. At each iteration, local search finds an improved solu-
tion by searching the neighborhood of the current solution until a solution
deemed optimal is found or a time-bound is elapsed [4]. Local search can
be trapped in local optima in the search space that are better than all their
neighbors, but not necessarily representing the best possible solution, i.e.,
the global optimum. To improve the effectiveness of local search, various
algorithms have been introduced. For example, Simulated Annealing (SA)
[185], Tabu Search (TS) [56], Variable Neighborhood Search (VNS) [65],
Large Neighborhood Search (LNS) [149], and Guided Local Search (GLS)
[191] all attempt to help local search escape local optimum. These local
search algorithms are widely applied to challenging combinatorial opti-
mization problems, including the traveling salesman problem [190] and
nurse scheduling problem [1].

Large Neighbourhood Search (LNS)

The LNS-based algorithms in [68] have successfully solved the problem
of service brokering in multi-cloud. As a combination of local search and
constraint programming, LNS is proposed by Shaw [149] to take the ad-
vantages of both exploration and propagation. LNS makes moves as local
search but uses a tree-based search with constraint propagation to eval-
uate the cost and legality of the move. The moves can bring substantial
changes by changing a large portion of the solution. The potential for
changing large parts of the solution gives LNS its name. Typically the
neighbourhood’s size varies exponentially with the number of basic ele-
ments of the solution changeable by the move [101].

In [68], LNS is designed to make large changes to the current solution
by continually using a destroy heuristic and a repair heuristic. After one
iteration of destruction and repair, the new solution is evaluated to de-
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Algorithm 2 LNS approach [68]
Input: The maximum iterations itermax

1: Initialize a solution S

2: Sbest ← S, i← 0

3: while i < itermax do
4: S ′ ← destroy(S)

5: S ′ ← repair(S ′)

6: if S ′ is better than Sbest then
7: S ← S ′

8: Sbest ← S

9: i← 0

10: else
11: i← i+ 1

12: end if
13: end while
Output: Sbest

termine whether to reject or accept as the current solution (see Algorithm
2). Due to its flexibility in designing problem-specific destroy and repair
heuristics, LNS is promising to address the ARD with flexible dispatching
problem that involves complex optimization decisions.

2.2.3 Reinforcement Learning

Inspired by behavioural psychology, Reinforcement Learning (RL) [170] is
the area of machine learning that deals with sequential decision-making.
Recently, many RL approaches have been proposed for resource manage-
ment problems in the literature [29], [31], [100], [105], [122], [175], [215].

RL problem usually can be formalized as an agent that needs to make
decisions in its environment to optimize cumulative rewards shown in
Figure 2.2. At each time step t, the agent observes the state st and choose
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Figure 2.2: RL with policy represented via DNN.

an action at. Following the action, the state transitions to st+1 and the agent
obtains reward rt. The system is assumed to have Markov property, i.e.,
the probabilities of state transition and the rewards only depend on the
state st and the corresponding action at.

It is worth noting that the agent has no prior knowledge about which
state will be transitioned or how much reward will be received. Only dur-
ing the training process, the agent can observe previous transitions by in-
teracting with the environment. The goal of the agent is to learn an opti-
mal, or nearly-optimal, action selection policy to maximize the expected
cumulative reward.

There are two main approaches for RL, i.e., value-function-based meth-
ods and policy-search-based methods [11]. Specifically, the value-function-
based methods estimate the value (i.e., expected return) in a given state
and choose the best action in the state. The policy-search-based methods
aim to directly search for an optimal policy π∗. Also, there are hybrid
actor-critic methods combining both the value function and policy search
[117].
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Deep Reinforcement Learning (DRL)

DRL is the combination of RL and deep learning [12]. DRL has been able
to solve a wide range of complex decision-making problems with high
dimensional state-space by learning different levels of abstractions from
data, e.g., video games [118], Computer Go [162], etc. DRL applies Deep
Neural Networks (DNNs) [62] as function approximators shown in Figure
2.2.

DQN is one of the well-known value-function-based DRL algorithms
and is the first RL algorithm that was demonstrated to work directly from
raw visual inputs in many learning environments [118]. Concretely, the
input to the DQN is the state. The state is processed by several convolu-
tional and fully connected layers with ReLU rectifiers between each layer.
At the final layer, the network outputs Q-value. A discrete action is further
selected based on the Q-value. Then the game returns a new score given
the current state and chosen action. The difference between the new score
and the previous one, that is, the Temporal-Difference (TD) error is used
to learn from the decision.

DQN applies Q-learning [194], a model-free RL algorithm, to learn the
value of an action in any state. Concretely, Q-learning updates the Q-
function by:

Qnew(st, at)← (1− α) ·Q(st, at) + α · (rt + γ ·max
a

Q(st, a)) (2.1)

where α is the learning rate (0 < α ≤ 1) and γ is the discount factor (0 <

γ ≤ 1).

The strength of DQN is its ability to compactly process both the high-
dimensional visual inputs (as the state) using DNN [11]. Besides, expe-
rience replay [96] and target networks [118], are employed by DQN to
address the fundamental instability problem from using function approx-
imation in RL [183].
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Safe RL

For some problems, it is important to ensure reasonable system perfor-
mance (e.g., performance constraints of the EAD problem) and/or safety
of the agent (e.g., expensive robotic platforms) during the learning [50].
Safe RL tries to learn a policy that maximizes the expected return, while
also ensuring (or encouraging) the satisfaction of the safety constraints
[30]. In the literature, there are two main approaches for safe RL: (1) trans-
forming the optimization criterion (e.g., to constrained criterion) [50], and
(2) modifying the exploration process (e.g., by safe exploration) [49]. Next,
we briefly introduce the two main approaches.

The constrained criterion is applied to constrained Markov processes
in which we need to maximize the expected return while keeping other
types of expected utilities lower or higher than given bounds. This ap-
proach transforms constrained problems into unconstrained problems by
various methods, e.g., the penalty methods [166].

There are two ways of modifying the exploration process to avoid risky
situations: (1) through the incorporation of external knowledge, and (2)
through the use of a risk-directed exploration [50]. In the former case,
prior knowledge can be incorporated into the exploration process by (1)
providing initial knowledge [41], (2) deriving a policy from a finite set
of demonstrations [2], and (3) providing teacher advice [49]. In the lat-
ter case, a risk measure is used to determine the probability of selecting
different actions during the exploration process while remaining the opti-
mization criterion [51].

2.2.4 Long Short-Term Memory

Recently, machine learning techniques have introduced new methods to
time series analysis. In particular, deep learning methods are capable of
identifying the structure and pattern of data such as non-linearity and
complexity in time series analysis [161].
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Figure 2.3: A LSTM unit.

Long Short-Term Memory (LSTM) is a special case of the Recurrent
Neural Network (RNN) method that was initially introduced by Hochre-
iter and Schmidhuber [70]. A LSTM unit is composed of a cell state and
three types of gates: forget gate, input gate, and output gate shown in Fig-
ure 2.3. The cell state stores data coming from gates and the gates reg-
ulate the flow of information into and out of the cell state. Concretely,
forget gate conditionally decides what information to throw away from
the unit, the input gate conditionally decides which values from the input
to update the cell state, and the output gate conditionally decides what to
output based on input and the cell state. These gates have weights that
are learned during the training procedure. By overcoming the vanishing
gradient problem, LSTM is capable to predict application workloads over
time with excellent performance [79], [91].

RL and LSTM have been respectively applied to automatically scale
containers with promising results in [79], [141], [213]. In this thesis, we will
develop a DRL-based approach with an LSTM-based workload prediction
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model and safe mechanisms to address the EAD problem.

2.3 Related Work

Related work discusses the problem formulation and existing approaches
for application deployment in cloud. The problems of CAD, ARD, and
EAD are reviewed in Subsection 2.3.1, Subsection 2.3.2, and Subsection
2.3.3, respectively.

2.3.1 Composite Application Deployment

This subsection introduces the related work about the CAD problem. The
main challenges that need to be addressed are also highlighted in this sub-
section.

Service Deployment for Composite Applications

In recent years, cloud computing is becoming a booming hosting paradigm
for delivering enterprise applications. How to deploy application services
with optimal QoS becomes a critical issue [107], [195]. Several research
works have studied the service deployment problem [107], [153], [195].
For example, Wen et al. studied application deployment on federated
clouds to minimize the monetary cost while simultaneously meeting the
security and reliability requirements in [195]. The work in [107] proposed
a game-theoretic method to optimize both the overall cost and execution
time of cloud services. From the perspective of application providers,
however, application deployment is often subject to stringent budgetary
control to ensure financial viability.

Based on Service-Oriented Architecture (SOA) [28], there is an ongo-
ing trend to deploy composite applications in the form of workflows with
shared services [75], especially for enterprise application providers. In
[75], Huang et al. described the inter-dependence and independence among
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services as a Service Relationship Graph (SRG). The problem was then
solved by transforming it into a minimum k-cut problem and deploying a
set of services onto the given VMs. In this thesis, we focus on deploying
composite applications in multi-cloud where there are various VM types
available at different data centers.

Because enterprise applications potentially involve a large number of
user requests and different applications must cater to varied user distri-
butions, the processing of ongoing application requests can be modeled
through a queuing model. Although the queuing theory has been well
studied to analyze the performance of cloud-based systems [89], [203], ex-
isting research works on cloud-based application deployment did not pay
full attention to its role in performance evaluation based on the average
response time [47], including the request processing time and the network
latency between users and the deployed application.

Focusing on cloud service selection alone, the application deployment
problem in multi-cloud is similar to the multi-cloud service brokering prob-
lem, which has also received some research attention [68], [152], [181]. In
[68], [152], the service brokering problem was explored to cope with not
only the deployment cost but also the network latency between users and
cloud data centers around the world, in view of the significant impact of
network latency on the performance of cloud services. However, differ-
ent from the CAD problem with inter-dependent services in this thesis,
the service brokering problem in [68], [152] assumes all services as being
independent, which may not be always true, especially when services are
used to fulfil specific functionalities in workflows.

The review of the above-mentioned works reveals a need for the study
on the CAD problem considering the budgetary constraint and average
response time of composite applications with inter-dependent services.
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Budget-Constrained Workflow Scheduling

Selecting proper cloud resources for processing a workflow of tasks is an-
other commonly studied problem, which is also known as the workflow
scheduling problem [165], [199], [219]. Most of the existing works focus
on scheduling scientific workflows with data-intensive or computation-
intensive tasks [99]. Compared with the time-consuming execution of
these tasks and data transfer between tasks, the network latency between
users and cloud resources is negligible. Some research on workflow schedul-
ing explicitly recognized the budget control as the key constraint [145],
[208], [209], [216]. Motivated by strong commercial concerns, budgetary
control is much more important for deploying enterprise applications [25].

As an extension of the well-known Heterogeneous Earliest Finish Time
(HEFT) algorithm [180], Budget-constrained Heterogeneous Earliest Fin-
ish Time (BHEFT) was proposed in [216] for budget-constrained workflow
scheduling. BHEFT first calculates the priorities of all tasks in a workflow
according to their average execution time and data transfer time among
different resources then allocates the total budget for each task with regard
to spare application budget, current task budget, and adjustment factor in
order of the priority. If no adequate solution that satisfies the budget con-
straint can be discovered, the scheduling is considered as a failure.

Another category of approaches for budget-constrained workflow sche-
duling is based on the back-tracking heuristic, e.g., [145], [209]. These
algorithms firstly generate an initial schedule to minimize the execution
time. Then the chosen tasks are gradually migrated to downgraded re-
sources in an attempt to meet the budgetary requirement. However, these
search-based strategies can easily get trapped in local optima and exhibit
inferior performance [9].

Meta-heuristic methods also have been used for budget-constrained
workflow scheduling, e.g., the GA-based approach in [208]. To deal with
the budget constraint, Yu et al. [208] applied a penalized fitness func-
tion to evolve the budget-compliant schedule. Similarly, a co-evolutionary



2.3. RELATED WORK 35

GA with adaptive penalty function CGA2 was proposed in [99] to handle
deadline-constrained workflow scheduling, which minimizes total cost
while meeting the deadline. The crossover and mutation rates were co-
evolved in CGA2 to help convergence.

In addition to penalty functions, many other constraint-handling tech-
niques have been proposed for GAs, such as repair algorithms [36], [110].
Particularly, the repair algorithms aim to transform an infeasible solu-
tion into a feasible one during the evolutionary process. The problem-
dependent repair algorithms have been widely demonstrated with a strong
ability to handle constraints both effectively and efficiently on a diverse
range of constrained optimization problems [36]. However, the computa-
tion time required for repairing the solution is usually higher than other
techniques [146]. Therefore, an efficient repair algorithm is needed to con-
trol the repair time. For example, the repair upper bound according to
the proportion of feasible individuals in the current population can be dy-
namically adapted to improve the efficiency of repair algorithms.

2.3.2 Application Replication and Deployment

This subsection introduces the related work about the ARD problem. We
also highlight the main challenges in this subsection.

Service-oriented Replication in Cloud

Replication techniques are commonly exploited to ensure high availability
and satisfactory QoS [164]. There are two major ways to achieve replica-
tion in cloud, i.e., replicating the data and replicating the service. They are
termed as Data-oriented Replication (DoR) and Service-oriented Replica-
tion (SoR) [26]. Compared with DoR, SoR consumes not only the storage
resource but also other resources such as CPU, memory, network, band-
width, etc [164].

Recently, SoR has attracted much attention from researchers [119], [164].
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For example, some works replicate services in several locations to ensure
the availability of the provisioned services [21], [127], [200]. Some works
focus on reducing energy consumption for cloud providers by adjusting
the number of replicas according to the workload, e.g., [19]. From the per-
spective of application providers, there are some works minimizing the
deployment cost of replicas [20], [54], [182]. However, these works do not
consider the average response time, which seriously affects the Quality of
Experience (QoE) of applications among geographically distributed users
[104], [201].

Because the ARD problem deploys application replicas in multi-cloud,
how to dispatch user requests among all application replicas has an impor-
tant impact on the average response time of applications. In the literature
and industry, dispatching user requests to the closest application replicas
is a common practice [113], [171], [201]. Therefore, we need to study the
ARD with close dispatching problem subject to the constraints on the aver-
age response time.

Note that the close dispatching approach may result in deployed VMs
under-utilized. To further reduce the deployment cost, the user requests
from the same region can be dispatched to different application replicas.
Therefore, we should study the ARD with flexible dispatching problem. The
ARD with flexible dispatching problem introduces extra optimization deci-
sions, i.e., how to dispatch user requests among all application replicas,
which makes ARD more complicated.

Data Placement and Replication in Cloud

The cloud-hosted data placement and replication problems have received
much attention in the recent literature. Integer Linear Programming (ILP)
has been considered as the dominant method to model these problems
[66], [201]. For example, Pyramid was proposed to maximize both the
utility- and locality-awareness of replicas for P2P cloud storage systems in
[66]. ILP was implemented to find the placement of replicas. To serve the
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demands on videos, the problem of finding the optimal content deploy-
ment and request dispatch strategy was formulated as Mixed-Integer Lin-
ear Programming (MILP) in [201]. The efficient solutions were achieved
by using dual decomposition [204] and linear programming techniques.
These ILP problems consistently minimize network latency as the opti-
mization objective. In this thesis, we consider the response time of user
requests, including both the network latency and the request processing
time. For the cloud-based applications under high workloads, the request
processing time is nonlinearly related to the capacity of deployed VMs
and users’ demands [47]. The nonlinear nature renders these ILP-based
approaches inapplicable for the ARD problem.

Many meta-heuristic algorithms have been used for the data place-
ment and replication problem in cloud [88], [102]. In [102], two GA-based
approaches were proposed to replicate data objects over multiple sites to
avert undesired long delays experienced by end-users. To optimize social
media data placement and replication in cloud data centers, a GA-based
approach was presented to minimize monetary cost while satisfying la-
tency requirements for all users in [88]. However, these approaches focus
on the location selection for data replicas, while the ARD problem must
decide both the locations and the types of cloud resources. Besides, these
approaches do not explicitly dispatch widely distributed user requests
among all application replicas, which is a critical component of the ARD
with flexible dispatching problem.

To sum up, the ARD with close dispatching problem is challenging due
to its nonlinear nature and large search space. For the ARD with flexible
dispatching problem, we also need to design effective methods to optimize
the dispatching of application requests based on the corresponding replica
deployment so that the total deployment cost is minimized while satisfy-
ing the constraint on average response time.
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2.3.3 Elastic Application Deployment

This subsection introduces the related work about the EAD problem. The
main challenges that need to be addressed are highlighted.

Container Deployment in Multi-cloud

Currently, elastic development and run-time management of applications
increasingly rely on containers, an industry-leading lightweight virtual-
ization technology [18], [140]. Significant efforts have been made for con-
tainer deployment in multi-cloud. The commercial container management
platforms, e.g., Rancher [138] and OpenShift [67], facilitate container de-
ployment in multi-cloud. In addition to multi-cloud management and
visibility, they empower applications with providers the ability to eas-
ily adapt the deployment of containers across multi-cloud data centers
through a unified user interface or API. However, these platforms do not
support fully automated deployment and adaptation for applications to
respond to the workload fluctuations, which is essential for application
providers to achieve low deployment cost and satisfactory application per-
formance [6].

The problem of container scaling in cloud has been studied at different
resource levels: container deployment [5], [141], [177], cluster deployment
[40], [217], and both [167]. These works use horizontal scaling [40], [177],
[217], vertical scaling [5], or both [141] depending on different elasticity
dimensions. However, they focus on auto-scaling techniques within a sin-
gle data center to handle workload variations of applications in a cost-
effective manner. That is, these solutions lack the ability to decide con-
tainer locations in their adaptation processes, which is essential to reduce
network latency of applications through the lightweight and portable na-
ture of containers. Considering the locations of containers, the existing
algorithms for the deployment of containerized applications (e.g., using
meta-heuristics in [6]) suffer a high computational cost. Moreover, these
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algorithms usually do not consider the impact of current deployment de-
cisions on the future deployment cost and average response time.

Resource Allocation with Reinforcement Learning

RL has been proposed to support VM scaling in [10], [17], [29], [82] because
it can ensure stable resource utilization of applications when the workload
changes dynamically [213]. Due to the large difference between contain-
ers and VMs in terms of start-up, shut-down, and migration times, these
RL-based algorithms that perform well in VM scaling cannot be applied
to container scaling effectively [213]. Recently, some RL-based algorithms
have been proposed for scaling containerized applications. For example,
Horovitz et al. [72] proposed an RL-based approach to dynamically adapt
the thresholds used to horizontally scale the containers. Rossi et al. [141]
proposed a model-based RL method to control the horizontal and vertical
elasticity of containers. Because the future trend of workload is not consid-
ered, these approaches may fail to deal with highly dynamic application
workload, which causes resource waste or unsatisfactory QoS [213].

As a prediction technique, time series analysis has been applied to han-
dle the dynamic application workloads [23]. The strategy has been used
for RL methods by combing workload prediction models to ensure the
timeliness and accuracy of scaling actions, such as A-SARSA [213]. Again,
A-SARSA focuses on auto-scaling containers within a single data center.
When considering both various configurations and locations of contain-
ers in multi-cloud, the Q-table used in A-SARSA cannot handle the high-
dimension state-space effectively.

In recent years, DQN was applied in cloud-based resource allocation
problems with high-dimension state space [29], [100], [207]. In [29], a
DQN-based resource provisioning and task scheduling system was pro-
posed to minimize the energy cost for cloud service providers. Further
considering the thermal effect of job allocation, Yi et al. [207] applied
DQN to allocate compute-intensive jobs within the boundary of a single
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data center. Another work in [100] proposed a two-level VM allocation
and power management framework. On the one hand, DQN was used
at the global tier for allocating VMs to hosts. On the other hand, RL and
workload analysis were used in the local tier to manage the power con-
sumption.

The works in deep RL assume that agents are free to explore any be-
haviour during learning [93], [95], [117], [118], [148], [162]. For the EAD
problem, it is unacceptable to give an agent complete freedom. For ex-
ample, some scaling actions could cause containerized applications to be
heavily utilized. In that case, the application performance will drastically
deteriorate so that the constraint on average response time cannot be sat-
isfied. Therefore, safe exploration for RL agents is important [8], [120]. To
guarantee constraint satisfaction, Constrained Policy Optimization (CPO)
is proposed to train neural network policies for high-dimensional control
[3]. However, CPO is inapplicable for the EAD problem because it requires
the learning process to start from a feasible policy, which may not be easy
to find.

The review of the above-mentioned works motivates the DQN-based
algorithm to address the EAD problem. Moreover, to satisfy the constraint
of the EAD problem on average response time, safe RL techniques, e.g,
penalty-based reward function and problem-tailored safe exploration, can
be applied.

2.3.4 Datasets

This subsection introduces the important datasets that have been normally
used in the related work.

• Composite applications: In [75], ten composite applications of eight
workflow structures are considered to simulate different enterprise
services such as online shopping and travel planning. The process-
ing time of constituent services for a single request is measured on
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the VMs from Amazon EC2.

• Application requests distribution: In [198], the distribution of appli-
cation requests is based on Facebook subscribers. The latest statistics
can be found in World Population Review1.

• Multi-cloud resources: In [68], real datasets of multi-cloud resources
are collected from global leading cloud providers, such as AWS and
Microsoft. Different VM types in several regions of respective cloud
providers are considered with real pricing schemes.

• Network latency: Sprint IP backbone network databases2 provide
a real-time snapshot of IP network performance among eighty-two
global locations.

In conclusion, the above datasets are from different sources. Because
there are no benchmark datasets for multi-cloud application deployment
on the global scale, we will synthetically utilize these datasets in this the-
sis.

2.4 Summary and Thesis Scope

This chapter introduced the main concepts of application deployment in
multi-cloud, optimization and machine learning methods and also reviews
the related work. We discussed the limitations of existing works on the
three application deployment scenarios, i.e., CAD, ARD, and EAD, in multi-
cloud. The limitations and challenges for location-aware application de-
ployment in multi-cloud were summarized in the following four aspects.

• The current problem formulations of cloud-based application de-
ployment lack consideration of the location of cloud resources, which

1https://worldpopulationreview.com/country-rankings/facebook-users-by-country
2https://www.sprint.net/tools/ip-network-performance
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is important for multi-cloud application deployment from the per-
spective of application providers with geographically distributed users.
Therefore, new problem formulations that include the aspect of loca-
tion need to be defined.

• GA is a promising technique for the CAD problem with an extremely
large search space. The difficulties of developing GA methods for
the CAD problem are the location-related search space and efficient
constraint handling. The dependency-based service clustering and
self-adaptive repair algorithm are potentially suitable for the CAD
problem. Their effectiveness needs to be studied in-depth.

• The ARD problem considers service-oriented replication in multi-
cloud, which introduces extra optimization objectives, e.g., the num-
ber of replicas. We should design a new optimization approach un-
der the GA framework to address ARD with a common request dis-
patching approach in practice, i.e., the ARD with close dispatching
problem. We also study the ARD with flexible dispatching problem,
which needs to optimize the deployment of application replicas and
the dispatching of user requests simultaneously. A new two-stage
optimization framework combining MILP and LNS should be de-
veloped to ensure the effectiveness and efficiency of the proposed
approach.

• CaaS is widely used in practice for the EAD scenario. In multi-
cloud, the horizontal scaling involves containers from different cloud
providers with different prices at different locations. In the litera-
ture, RL is a promising technique for auto-scaling cloud resources
for applications with dynamic workloads. To minimize the deploy-
ment cost while satisfying the constraint on average response time,
the prediction technique based on time series analysis and safe RL
should be investigated for DRL to solve the EAD problem.
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Table 2.1: The thesis scope

Characteristic Thesis scope
Perspective Application providers

Application type Interactive application
Service Model IaaS and CaaS

Interconnected environment Multi-cloud

Objective
Average response time (CAD)
Deployment cost (ARD and EAD)

Constraint
Budget (CAD)
Average response time (ARD and EAD)

Major methods GA, LNS, LSTM, and DRL

The thesis scope is shown in Table 2.1. We investigate various ap-
proaches to help application providers deploy interactive applications in multi-
cloud. The thesis considers IaaS and CaaS for different scenarios, i.e., CAD,
ARD, and EAD. We further consider average response time (CAD) and de-
ployment cost (ARD and EAD) as objectives and budget (CAD) and average
response time (ARD and EAD) as constraints. Our literature review suc-
cessfully identified several important optimization and machine learning
techniques, including GA, LNS, LSTM, and DRL, that will be utilized to
solve these constrained optimization problems in this thesis.
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Chapter 3

Composite Application
Deployment

3.1 Introduction

This chapter studies Composite Application Deployment (CAD) in multi-
cloud. In practice, it is typical for an application provider to offer several
business applications simultaneously, and the relevant business processes
are usually abstracted as workflows [218]. These composite applications
consist of a set of specific functionalities, i.e., constituent services. Differ-
ent applications often share some common constituent services [75]. For
example, a tax-setting service can be shared by ordering, selling, and pay-
roll applications.

Under the public cloud paradigm, many deployment patterns, such as
IaaS, PaaS, and FaaS, are available for application services. Application
providers often prefer IaaS in practice in order to achieve a high level of
control and flexible management goals [81]. For CAD in multi-cloud, we
consider the major scenario of deploying application services on a set of
VMs to support composite applications capable of processing tens of thou-
sands or even millions of requests on a daily basis [205].

The deployment of constituent services is crucial since it affects the

45



46 CHAPTER 3. COMPOSITE APPLICATION DEPLOYMENT

Quality of Service (QoS) of composite applications significantly [75], [192].
The problem has received some research attention in recent years. For ex-
ample, the service deployment problem is solved by minimizing the exe-
cution time of composite applications without attention to the locations of
users and data centers in [75]. In multi-cloud, however, the network latency
between users/data and services in different locations may significantly
affect the application performance [68], [152]. Therefore, to evaluate ac-
curately the performance of composite applications, we must consider the
average response time, measured from the moment users make application
requests to the moment when they receive the corresponding responses.
Driven by the goal to minimize the average response time, we investigate
the CAD problem by selecting proper VMs in multi-cloud to jointly sup-
port multiple composite applications subject to diverse user distributions
and quality requirements.

It is widely known that leading cloud providers usually provide cloud
resources, e.g., VM instances, with varied pricing subject to regions1. In
consideration of both performance and deployment cost, there are some
research works searching for a set of deployment solutions, in which each
solution represents a unique trade-off deployment plan [171], [219], or
minimizing the product of deployment cost and response time of applica-
tions [153]. However, enterprises are often more interested in budgetary
control to ensure that their actual costs adhere closely to their financial
plan [25]. In view of this demand, the budget management module is of-
fered by many cloud providers, e.g., Amazon Web Service (AWS)2. The
budgetary control emphasizes performance optimization within a given
budget, which is of immense practical significance for application providers
[142]. In this thesis, we formulate the CAD problem as a budget-constrained
optimization problem so as to truly meet the business management needs
of many enterprises.

1https://aws.amazon.com/ec2/pricing/on-demand/
2https://aws.amazon.com/aws-cost-management/aws-budgets/
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GA is a classic optimization technique to generate high-quality solu-
tions for various combinatorial optimization problems with practical im-
portance [39], [197]. In particular, driven by a population-based solu-
tion improvement framework, GA has been widely applied to multi-cloud
resource allocation for scalable cloud application deployment [69], [85],
[211]. However, new algorithmic techniques under the GA framework are
required to address the CAD problem. First, a large number of different
resources are provided at multi-cloud data centers. The large and com-
plex search space can impair the scalability and applicability of the exist-
ing GA-based approaches [61]. Second, numerous research works in the
literature have shown that repair algorithms are powerful in handling con-
strained optimization problems by problem-specific heuristics [36], [146].
We need to propose a specific repair algorithm to solve our problem ef-
fectively because there are no standard guidelines for the design of repair
algorithms [111]. Third, to control the computation time of the repair pro-
cess, we should also consider the efficiency of our proposed repair algo-
rithm [146].

To address each of the challenges above, we have developed new algo-
rithmic techniques under the GA framework for effective CAD. First, we
propose a service clustering mechanism based on the dependency among
services to reduce the complexity/size of the search space, thereby ensur-
ing the efficiency and effectiveness of our GA-based algorithm. Second,
we propose a problem-specific repair algorithm to progressively down-
grade the service hosting VM types so as to meet the budget requirements
with low-performance deterioration. Third, the repair algorithm is de-
signed to achieve a desirable trade-off between performance and compu-
tation cost by transforming the over-budget solutions chosen according to
an adaptive bound into constraint-compliant solutions. The main contri-
butions of this chapter are summarized as follows.

Firstly, we formally define the CAD problem in multi-cloud as a con-
strained optimization problem with the goal to minimize the response
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time of composite applications subject to a budget constraint. To the best
of our knowledge, this is the first study in the literature on the application
deployment problem with considerations of both the application perfor-
mance and the budget impact in multi-cloud at the global scale.

Secondly, we propose a hybrid GA-based approach, namely H-GA, to
the CAD problem, featuring a newly designed and domain-tailored ser-
vice clustering method, repair algorithm, solution representation, popula-
tion initialization, and genetic operators.

Finally, to evaluate the proposed approach, we collect the informa-
tion about VM capacity and pricing offered by the global top three cloud
providers, i.e., Amazon, Microsoft, and Alibaba. Based on the collected in-
formation, extensive experiments have been conducted to deploy a large
group of composite applications with different service diversities and bud-
get factors. Our approach is compared to several state-of-the-art algo-
rithms, i.e., BHEFT [216] and penalty-based GAs [99], [208] for constrained
application deployment problems. The experimental results indicate that
our approach significantly outperforms the existing methods, achieving
more than 8% performance improvement in terms of response time, and
100% budget satisfaction in the meantime.

3.2 Chapter Organization

The remainder of this chapter is organized as follows. Section 3.3 presents
the CAD problem formulation. Section 3.4 introduces the hybrid GA-
based approach. The service clustering mechanism, chromosome repre-
sentation, fitness evaluation, population initialization, repair algorithm,
and genetic operators are respectively described in this section. To evalu-
ate the proposed approach, we conduct a series of experiments in Section
3.5. Section 3.6 summarizes this chapter.
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3.3 CAD Problem Formulation

The deployment of composite applications is achieved by selecting a col-
lection of hosting VMs in multi-cloud to minimize the application response
time within a given budget. In this section, we first define composite appli-
cations and introduce multi-cloud application deployment systems, then
formulate the CAD problem in multi-cloud. The key notations to be used
for problem definition are listed in Table 3.1.

3.3.1 Composite Application

An application provider provides a set of composite applications A =

{A0, ..., Aa, ..., A|A|−1} that jointly use a collection of constituent services
S = {s0, ..., ss, ..., s|S|−1}. We represent each application Aa as a Directed
Acyclic Graph (DAG), denoted by G(Sa, Ea). Sa ⊆ S is a set of nodes
representing services. Every service ss might be shared by multiple com-
posite applications. Ea is a set of directed edges where emn ∈ Ea connects
sm with sn. Based on emn, sm is called the parent service of sn and sn is
the child service of sm. In application Aa, service ss ∈ Sa may have more
than one parent services and child services, we denote the set of the parent
services of ss as Pre(ss), and the set of the child services of ss as Succ(ss).
If a service ss requires access to any dataset during processing, we denote
this service as ṡs. Each application Aa has exactly one dummy starting
service that has no parent services, and one dummy ending service that
has no child services, which are denoted as starta and enda respectively.
Three representative composite application examples from [75] are shown
in Figure 3.1. In the example, service s1 is shared by applications A0 and
A1, while ṡ5 involves all three applications and is also a data-access service
(represented in blue circles).

We refer to [171] and consider a set of user centers U = {U0, ..., Uu, ...,

U|U|−1}, which represent the centers of the global user groups. The request
rates change periodically, e.g., on an hourly basis. Within each hour, the
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Table 3.1: Mathematical notations for the CAD problem

Notation Definition
Aa The ath composite application
ss The sth constituent service in composite applications
Sa The set of services in the ath composite application
Ea The set of directed edges in the ath composite application
emn The directed edge from the mth service to the nth service

starta The starting service of application Aa

enda The ending service of application Aa

Uu The uth user center
Vv The vth type of VM
Cc The cth data center

vc
The VM instance that belongs to the vth type of VM in the cth data
center

rcvc The rental cost of vc
γau The request rate of Aa from the uth user center
θa The workload of application Aa

βs The workload of constituent service ss

αs Processing capacity of the sth service
pts The average processing time of the sth service
dts Data access delay of the sth service

Itau
Network latency from the uth user center to starting service of the
ath application

Otau
Network latency from ending service of the ath application to the
uth user center

uta
Average network latency between user centers and the ath

application
stmn Network latency from sm to sn

b The specified budget by the application provider
k The budget factor

isa
The time required for inter-service communication within
application Aa
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(a) Composite application A0

(b) Composite application A1

(c) Composite application A2

Figure 3.1: Three example composite applications for deployment.
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Figure 3.2: A CAD system in multi-cloud based on [178].

request rate γau denotes the number of requests from a user center Uu to
the starting service of the application Aa per time unit. In this regard, the
total workload of Aa can be determined as:

θa =

|U|−1∑
u=0

γau. (3.1)

3.3.2 Multi-cloud Application Deployment System

Application providers create their composite applications by composing a
set of constituent services with specific functionalities. These services can
be deployed onto a set of VMs in multi-cloud (shown in Figure 3.2).

We consider a set of VM types V = {V0, ..., Vv, ..., V|V|−1} and a set of
multi-cloud data centers C = {C0, ..., Cc, ..., C|C|−1}. If VM type Vv is avail-
able in data center Cc, we use vc to denote the instance of VM type Vv and
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rccv to denote its rental cost per time unit.

We assume each constituent service is deployed to one VM instance.
This is a common assumption in the literature [75], [195] and widely ex-
ercised in the industry [163]. We further assume that one VM instance is
only allocated to one constituent service in order to minimize interferences
between any two services. Each service instance maintains an indepen-
dent queue on a First Come First Served (FCFS) basis for pending requests
arriving from all user centers or its parent services in all deployed applica-
tions. Following [75], the average resource consumption per request over
a long sequence of requests for the same service is considered highly sta-
ble, while different services can incur different resource requirements. We
follow [187] and model the operation of each individual service instance
as an M/M/1 queue [7], [124]. Because a constituent service can be shared
by multiple applications, the aggregated workload of service ss can be cal-
culated by:

βs =

|A|−1∑
a=0

θa s.t. ss ∈ Sa. (3.2)

For data-access service ṡs, we use dts to denote the data access time
between service ṡs and the closest dataset deployed either by the applica-
tion provider or a third party. We assume that request processing starts
from data access, i.e., once the requested data becomes available, the ser-
vice deployed to a VM instance will process the data. Considering the
data access, the adjusted capacity of a VM instance with capacity αs can
be computed by:

α̃s =
1

1
αs

+ dts
. (3.3)

According to Little’s Law [98], the average request processing time of
service ss is:
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pts =

{
1

α̃s−βs
if ṡs

1
αs−βs

otherwise.
(3.4)

We do not take the data access cost into account in the overall budget
constraint, because the cost is usually negligible compared with the service
deployment cost3. We also have an operation constraint, i.e., αs(α̃s) > βs,
that guarantees that the workload of the VM instance will not exceed its
capacity, i.e., each constituent service is deployed to a capacity-feasible
VM.

We define the average Response Time of an application RTa as the total
time on average required for Aa to process all user requests. Since a user
center Uu ∈ U and a data center Cc ∈ C can span large geographic areas,
we must take network latency into account when computing RTa. The
average network latency uta between user centers and the application Aa

can be determined by:

uta =

∑|U|−1
u=0 γau(Itau +Otau)

θa
, (3.5)

where Itau is the network latency between a user center Uu and the starting
service of Aa, while Otau is the network latency between the ending ser-
vice of Aa and user centers Uu. Besides, we denote the network latency be-
tween service sm and its child service sn as stmn. The aforementioned three
types of network latency, i.e., dts, uta, and stmn, can be treated as constants
in the communication network, which are usually determined by several
non-changeable factors such as the physical distance among datasets, user
centers, and services. Accordingly, the RTa can be calculated as follows:

RTa = uta +MS(Aa), (3.6)

where function MS calculates the response time of Aa (also called makespan).
We define two functions EST (Earliest Start Time) and FT (Finish Time)

3https://azure.microsoft.com/en-us/pricing/details/bandwidth/
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to calculate the response time. The computing process begins with the
starting service, and MS is the finish time of the ending service:

EST (starta) = 0,

FT (ss) = EST (ss) + pts,

EST (ss) = max
sm∈Pre(ss)

{FT (sm) + stms},

MS(Aa) = FT (enda).

(3.7)

For example, based on the above formulas, we can compute RT of A2

in Figure 3.1 as follow:

RT2 =ut2 +MS(A2)

=ut2 + FT (end2)

=ut2 + EST (s8) + pt8

=ut2 + FT (s7) + st78 + pt8

=ut2 + EST (s7) + pt7 + st78 + pt8

=ut2 +max{(FT (s4) + st47), (FT (s5) + st57)}+ pt7 + st78 + pt8

...

=ut2 + pt2 + st23 + pt3 + st30 + pt0

+max{(st04 + pt4 + st47), (st05 + pt5 + st57)}+ pt7 + st78 + pt8.

3.3.3 CAD Problem

We define a service deployment vector X = [xv,c,s]
|S|−1
s=0 to represent the

application deployment solution, where xv,c,s indicates that a service ss is
deployed to one instance of VM type Vv in the data center Cc. That is, the
deployment cost of ss, i.e., DCs, is rccv. The total Deployment Cost (TDC)
and Average Response Time (ART ) of all composite applications can be
calculated as follows:
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TDC =

|S|−1∑
s=0

DCs (3.8)

ART =

∑|A|−1
a=0 θa ·RTa∑|A|−1

a=0 θa
. (3.9)

Therefore, the CAD problem aims to minimize ART of all the compos-
ite applications, as defined in Formula (3.9), subject to the budgetary con-
straint:

min
X

ART

subject to TDC ≤ b,
(3.10)

where b is the budget specified by the application provider. We use budget
feasible or feasible solutions to refer to solutions satisfying budgetary con-
straints in the remaining of this chapter. We refer to [145] and define b in
eq. (3.11):

b = Ccheapest + k · (TChighest − TCcheapest), (3.11)

where TChighest and TCcheapest are the total costs of deployments by using
either the most expensive VM instance or the cheapest capacity feasible
VM instances for all the services respectively. k ∈ [0, 1] is the budget factor
to determine the tightness of budgetary control. The larger k is, the more
budget the application provider has.

In summary, different from the existing problem formulations for CAD,
we consider the locations of cloud resources as optimization decisions,
adopt the queuing model to precisely capture the dynamics involved in
the processing of ongoing application requests, and formulate the CAD
problem as a budget-constrained optimization problem for enterprise ap-
plication deployment.
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3.4 A hybrid GA-based Approach: H-GA

In multi-cloud, there are a large number of different VM types available
at different data centers, resulting in extremely large search spaces (theo-
retical size is (|V| · |C|)|S|). We first propose a clustering method to group
relevant services and deploy the services in the same cluster to the same
data center. This clustering technique can substantially reduce the size of
the search space. In recent years, repair algorithms have become relatively
promising solutions to handle constraints in GAs [36]. These techniques
demonstrate promising performance for various combinatorial optimiza-
tion problems, thanks to problem-specific heuristics [146]. However, when
using repair algorithms to solve constrained optimization problems, com-
putation time is one of the critical issues. Consequently, we propose a re-
pair algorithm to downgrade the non-critical services for the over-budget
solutions within an adaptive bound to improve efficiency without hurting
performance.

Figure 3.3 shows the overall process of the proposed Hybrid GA-based
approach (H-GA for convenience). After service clustering and encoding,
an initial population is generated. In each generation, our algorithm first
repairs the population within an adaptive upper bound, then evaluates
the fitness of the repaired solutions. Finally, the problem-specific selection,
crossover, and mutation operations are performed to generate a new pop-
ulation. The population is evolved iteratively until the predefined maxi-
mum number of generations is reached. Finally, the best chromosome is
decoded to derive the final application deployment solution.

In the following subsections, we will introduce in detail the service
clustering, encoding/decoding scheme, fitness evaluation, problem-specific
population initialization, repair algorithm, and genetic operators.
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Figure 3.3: The framework of H-GA with highlighted algorithmic tech-
niques.

3.4.1 Service Clustering

Regarding the VM location selection problem, if the constituent services
are considered separately, the size of the search space is |C||S| (maximum
value is 1540 in our experiments). It is essential to reduce the search space
to guarantee algorithm scalability. Inspired by [143] that recommends the
execution of pipeline tasks on the same data center to save data transfer
time, we decide to cluster dependent services and deploy the services in
the same cluster to the same data center to reduce network latency. A
straightforward method to determine the dependency of a service on any
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Algorithm 3 Service clustering algorithm
Input: A, S
Output: clustered services SC

1: for all ss ∈ S do
2: Find the application(s) with the highest request rate among applica-

tions that include ss, i.e., As

3: if |As| = 1 then
4: Assign ss to the cluster ca, where Aa ∈ As

5: else
6: Find the application Aa ∈ As with the most services and assign ss

to the cluster ca
7: end if
8: end for

application is to compare the request rates experienced by the same service
from different applications.

In practice, we regard each application as the centroid of a separate
service cluster. Concretely, if a service is shared by multiple applications,
we assign it to the cluster ca where application Aa has the highest request
rate. Hence, we can guarantee that the services in the same cluster will
communicate more frequently than services from different clusters. For
the service that has an equal request rate with respect to more than one
applications, we simply assign it to the cluster with the highest number
of services. By doing so, the communication among a larger number of
services can be easily localized to the same data center, reducing the net-
working overhead.

After service clustering, the size of the search space is reduced to |C||A|.
In other words, the size of search space after service clustering is |C||S|−|A|

times less than that of the original problem without clustering. More de-
tails about the clustering algorithm can be found in Algorithm 3.

Assume that the request rates of the three applications in Figure 3.1 are



60 CHAPTER 3. COMPOSITE APPLICATION DEPLOYMENT

                              𝒄𝟎                                  𝒄𝟏 

 

Service clustering: 𝑠0 𝑠1 𝑠2 𝑠3 𝑠4 𝑠5 𝑠6 𝑠7 𝑠8 𝑠9 

VM location: 1 0 
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Figure 3.4: An example chromosome for encoding deployment solutions.

20, 15, and 10 per second, the clustering algorithm will group 10 services
into two clusters, i.e., c0 and c1 as demonstrated in Figure 3.4.

It is important to note that service clustering can effectively reduce net-
work latency across all applications. Refer to the example shown in Figure
3.1. For application A0, all its services in c0 will be deployed to the same
data center, e.g., AWS London shown in Figure 3.5(a). Let isa denote the
time required for inter-service communication within Aa. In this case, we
assume that the inter-service communication time of A0, i.e., is0, is negligi-
ble. According to the application request distribution in Figure 3.5(a), the
average network latency between users and A0 can be calculated accord-
ing to eq. (3.5):

ut0 =

∑|U|−1
u=0 γ0u(It0u +Ot0u)

θ0

=
10 · (2 + 2) + 5 · (7 + 7) + 5 · (17 + 17)

20

= 14(ms).

On the other hand, for other applications such as A1 with its services
grouped into more than one cluster, we can still effectively control the
inter-service network latency. In particular, if all the users of A1 are in
America as shown in Figure 3.5(b), and we still allocate cluster c0 to AWS
London but cluster c1 to AWS US East, then the average network latency
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(a) Composite application A0

(b) Composite application A1

Figure 3.5: A VM location deployment example with request distribution.

between users and W1 can be calculated by:

ut1 =

∑|U|−1
u=0 γ1u(It1u +Ot1u)

θ1

=
5 · (12 + 92) + 5 · (12 + 92) + 5 · (8 + 88)

15
.
= 101.33(ms)

The inter-service network latency is1 is about 80ms (from US East to
London). This is clearly better than the alternative situation if we allocate
all services of A1 to AWS US East. In that case, we can ignore the inter-
service network latency of A0 and A1, i.e., ∆is0 = is′0 − is0 = 0ms and
∆is1 = is′1− is1 = −80ms, however, the average network latency between
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users and the two applications will change to:

ut′0 =
10 · (82 + 82) + 5 · (87 + 87) + 5 · (97 + 97)

20

= 174(ms)

ut′1 =
5 · (12 + 12) + 5 · (12 + 12) + 5 · (8 + 8)

15
.
= 21.33(ms).

That is, ∆ut0 = 160ms and ∆ut1 = −80ms, and ∆ART0 = ∆ut0 +

∆is0 = 160ms and ∆ART1 = ∆ut1 + ∆is1 = −160ms. Note that applica-
tion A0 is much more frequently requested by end users than application
A1. This results in longer ART than the original deployment solution ac-
cording to eq. (3.9).

3.4.2 Chromosome Representation

We use chromosomes to encode service deployment solutions. We split a
chromosome into two strings, i.e., VM location and VM type, to represent
the mappings from services to data centers and VM types respectively.
Based on the clustering result, the services in the same cluster are treated
as a single deployment unit in any VM location string.

Figure 3.4 gives the encoding of a CAD solution shown in Figure 3.1.
This encoded solution (aka. individual in the GA population) gives a com-
plete deployment solution, according to which service s0 is deployed to a
VM instance of type V0 at data center C1, s1 is deployed to the VM instance
of type V2 at the same data center C1, and so on.

3.4.3 Fitness Evaluation

For each chromosome, we evaluate its fitness by calculating ART based
on eq. (3.9). We also calculate TDC to determine the necessity of apply-
ing the repair process to enforce budgetary control. Our proposed repair
algorithm is described in Subsection 3.4.5.



3.4. A HYBRID GA-BASED APPROACH: H-GA 63

3.4.4 Initial Population

Generally, GAs generate the initial population randomly to ensure its di-
versity. To improve the solution quality and convergence speed, a portion
of the initial population will be determined based on a straightforward
greedy heuristic (VM locations selection) and the BHEFT [216] (VM types
selection).

For the VM location string, we apply a greedy method to find the data
center location with minimal network latency between the users and ser-
vice clusters. The greedy heuristic is presented in Algorithm 4. For each
candidate data center location, we calculate the network latency between
it and all user centers (step 7). If there are data access services in this clus-
ter, the data access delay is also added (step 12). Finally, the location of
each service cluster with the minimal network latency is chosen to form
the initial VM location string for subsequent evolution. In Figure 3.4, for
example, two clusters are deployed in data centers C1 and C0 respectively.

Next, we initialize the VM types based on BHEFT [216], which is an ex-
tension of the well-known DAG scheduling heuristic HEFT [180] by con-
sidering the budget constraint. BHEFT first distributes the total budget to
tasks (constituent service in our problem) in the order of their priorities,
then selects appropriate VMs for tasks with regards to their distributive
budgets.

For each composite application, we follow BHEFT to recursively calcu-
late the rank of every service in this application, as defined by:

ranks = pts + max
sm∈Succ(ss)

(stsm + rankm) (3.12)

where pts is the average processing time for ss on all capacity feasible VM
types in the selected data center and stsm is the network latency from ss

to sm based on the selected data centers. The calculation begins with the
ending service whose rank equals 0 (dummy service).

Because the services are shared by multiple composite applications, for
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Algorithm 4 Greedy heuristic for VM locations selection
Input: C, A, U , γau, Itau, Otau, service cluster set SC
Output: service cluster deployment location

1: for all service cluster ∈ SC do
2: for all data center location Cc do
3: latencyc ← 0

4: for all ss in cluster c do
5: if ss connects to starting service or ending service of Aa directly

then
6: for all Uu ∈ U do
7: latencyc ← latencyc + Itau(Otau) · γau
8: end for
9: end if

10: if ss requires data access during processing then
11: for all Aa include ss do
12: latencyc ← latencyc + dts · θa
13: end for
14: end if
15: end for
16: end for
17: Return the data center location with the minimal latency
18: end for

each service we sum up all its rank values from corresponding applica-
tions as its comprehensive priority. Then we deploy the services in the
order of priority. The best possible VM type is selected for each service
based on Spare Application Budget (SAB) and Current Service Budget
(CSB) as follows:

SABs = b−
s−1∑
i=0

DCi −
|S|−1∑
j=l

DCj

CSBs = DCs + SABs · AFs,

(3.13)
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where DCi is the cost of the deployed service si, and DCj is the average
cost for the undeployed service sj on all its capacity feasible VM types. The
Adjustment Factor (AF ) acts as a weight to tune the impact of SABs on
CSBs. Based on [216], AF is defined as the ratio between the average cost
of the current service to the sum of the average costs of the undeployed
services as follows:

AFs =


DCs∑|S|−1

j=s DCj

if SABs ≥ 0

0 otherwise.
(3.14)

The rest of the population will be initialized randomly. Meanwhile, we
ensure that services in the same cluster are located in the same data center.
In each data center, services are deployed to available and capacity feasible
VM types randomly.

3.4.5 Repair Algorithm

The solutions randomly generated initially and evolved subsequently may
violate the given budget constraint. Therefore, to make the infeasible so-
lutions constraint-compliant we use a repair algorithm. In particular, our
repair operator aims to reduce the Total Deployment Cost (TDC) step by
step to be within the given budget.

To reduce the TDC of the given set of applications, for some of their
services we can either select the same type of VM but at a different data
center with a cheaper price or select a cheaper VM at the same data center.
For example, we can change the location of service from London to US
East, which offers cheaper services than in London, or downgrade the VM
type to a cheaper one, e.g., from AWS m5.large to m5.samll. Based on the
coding scheme introduced in Subsection 3.4.2, however, the change of VM
locations will affect all the services in the same cluster and may cause a
huge fluctuation of ART . Consequently, we design our repair algorithm
to downgrade VM types for some selected services while simultaneously
evolving VM location selection through GA.
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Our repair algorithm is based on the concept of critical-path [180], which
determines the overall response time of an application. Inspired by the
work in [180], which proposes critical-path-based heuristics to optimize
the makespan of workflows, we propose to downgrade VM types for ser-
vices that are not on any critical path of composite applications to reduce
TDC.

We use non-critical service to denote a service that is not on any critical
path of the given composite application. To reduce the overall cost with-
out increasing ART , our repair algorithm first identifies non-critical ser-
vices and then downgrades VM types with a lower but feasible capacity to
save operational cost. For example, for a non-critical service deployed to
AWS m5.xlarge, our repair algorithm can change the VM type to m5.large,
without or with little impact on ART . By identifying and downgrading
non-critical services iteratively, the repair algorithm improves over-budget
solutions until the TDC falls within the budget.

Note that repairing infeasible application deployment solutions can be
computationally expensive due to a number of possible ways to repair,
and therefore impacts the overall efficiency of H-GA. Replacing infeasi-
ble solutions with existing feasible solutions is an efficient strategy. How-
ever, this approach can decrease the diversity of the GA population and
therefore affect the algorithm’s effectiveness. Therefore, we should repair
a sufficient number of infeasible solutions to maintain the diversity of the
populations of GA. To achieve a desirable trade-off between computation
time and algorithm effectiveness, we set an adaptive upper bound T̂C

on TDC. With T̂C changing dynamically during the evolution process,
only the newly evolved solutions with its TDC falling in between a given
budget b and T̂C will be repaired. The repair algorithm is described in
Algorithm 5.

Refer to [176], the adaptive T̂C is calculated as follows:
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Algorithm 5 Repair algorithm
Input: current population P , b, V , S
Output: repaired population P ′

1: Calculate T̂C based on eq. (3.15) and determine the best feasible solu-
tion best which has the minimal ART

2: for all ind ∈ P do
3: if TDCind > T̂C then
4: Replace ind with best

5: else
6: while TDCind > b do
7: for all ss ∈ S do
8: Identify the non-critical service and downgrade its VM type

with a lower but feasible capacity
9: end for

10: end while
11: Return the repaired P ′

12: end if
13: end for

T̂C = b+ (TCmax − b) · (1− rf )

rf =
Nf

N
,

(3.15)

where TCmax is the maximum cost with respect to any solution in the cur-
rent population, Nf is the number of feasible solutions in the current pop-
ulation, and N is the population size. In this way, T̂C decreases whenever
the proportion of feasible solutions rf is increased. In that case, fewer in-
feasible solutions will be repaired so as to save the repair time.

If we use the probability density fTDC to illustrate the distribution of
the TDC among all solutions in the population, rf can be presented by
the cumulative distribution function FTDC(x) as F (b). Similarly, the pro-



68 CHAPTER 3. COMPOSITE APPLICATION DEPLOYMENT

portion of feasible solutions after repair can be denoted as F (T̂C). We
assume that fX is monotonically decreasing within the interval [b, TCmax],
therefore F (b) is convex between b and TCmax. Then we can easily get:

F (T̂C)− F (b)

T̂C − b
≥ F (TCmax)− F (b)

TCmax − b
,

where F (Cmax) = 1. According to eq. (3.15), we can conclude as follows:

F (T̂C)− F (b) ≥ 1− F (b)

TCmax − b
· (TCmax − b) · (1− F (b))

F (T̂C)− F (b) ≥ (1− F (b))2

F (T̂C) ≥ (F (b)− 0.5)2 + 0.75,

where F (T̂C) ∈ [0.75, 1]. That is, the repair algorithm with adaptive bound
will guarantee at least 75% feasible solutions in the GA population. The
proportion can usually ensure good performance in GAs [63]. For the so-
lutions with a cost higher than Cu in each generation, we simply replace
them with the best feasible solution in terms of ART in the current popu-
lation.

3.4.6 Genetic Operators

We apply the roulette-wheel selection to choose individuals for breeding.
This selection method is the most commonly used selection method for
GAs [97]. In this section, we present our problem-specific crossover oper-
ator and mutation operator as follows.

Crossover

The crossover operator is designed differently for VM location and VM
type. For VM location, each cluster in new VM location strings is chosen
from parents with equal probability. For VM type, each digit in new VM
type strings is chosen from parents with equal probability. This uniform
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Parent 1 

 Child 2  Child 1 

Parent 2 

 

1 0   2 3 

0 2 1 1 2 0 2 1 1 3   1 1 1 0 0 0 2 2 2 2 

     
 

1 0   2 3 

                      

2 0   1 3 

                      

0 2 1 1 2 0 2 1 1 3   1 1 1 0 0 0 2 2 2 2 

                      

1 2 1 0 2 0 2 2 1 3   0 1 1 1 0 0 2 1 2 2 

                   2   

2 0   1 3 

1 2 1 0 2 0 2 2 1 3   0 1 1 1 0 0 2 2 2 2 

Figure 3.6: An example of the crossover operator.

crossover can be seen as a generalization of the more traditional one- and
two-point crossover operators [33]. An example of this operation is given
in Figure 3.6, in which the new VM location strings and VM type strings
from two crossover operations are combined into new chromosomes. Note
that the combination may generate an unavailable solution with unavailable
VM types in the new data center. In this case, we modify the solutions to
be available by replacing the unavailable VM type with the most similar
available VM type. For example, the available V2 in C3 (in red) is chosen if
V1 is unavailable in C3 in Figure 3.6.
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                 2    

 

 

1 0 

0 2 1 1 2 0 2 1 1 3 

          

2 0 

0 2 1 1 2 0 1 1 1 3 

1 

Figure 3.7: An example of the mutation operator.

Mutation

The mutation operator can introduce a local improvement to previously
evolved solutions. Similar to the crossover operator, our mutation opera-
tor mutates the strings of VM location and VM type separately. Firstly, the
mutation operator randomly selects a service cluster in the VM location
string and randomly replaces it with a different data center. Secondly, a
digit in the VM type string is selected randomly and updated with a dif-
ferent and capacity feasible VM type. Finally, the availability of all VM
types in the new location is checked and modified in a similar fashion as
described in the crossover operator. Figure 3.6 demonstrates an example
where the first cluster and service s6 are randomly chosen and replaced.

3.5 Evaluation

In the absence of a publicly available global multi-cloud testbed, we con-
duct a series of experimental studies to examine the performance of H-GA
by comparing it with three state-of-the-art algorithms for constrained ap-
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plication deployment, i.e., BHEFT [216], the Penalty-based GA (P-GA for
convenience) [208], and CGA2 [99].

P-GA applies a penalized fitness function to evolve the budget-compli-
ant solutions. Concretely, the fitness function is formulated as ART

maxTime
if

the cost of an application deployment solution is within the given budget,
where maxTime is the biggest ART of the current population. Otherwise,
P-GA defines its fitness function as 1 + TDC/b. That is, when the cost of
an application deployment solution exceeds the given budget, the fitness
of the solution is penalized in terms of a cost-fitness TDC/b.

CGA2 is proposed to handle deadline-constrained workflow schedul-
ing, which minimizes total cost while meeting the deadline. The crossover
and mutation rates were co-evolved in CGA2 to help convergence. To
adapt CGA2 to our problem, we change its cost-related fitness value to
ART and time-related constraint violation to TDC. For a fair comparison,
both P-GA and CGA2 apply our proposed problem-specific chromosome
representation and genetic operators.

3.5.1 Datasets

Based on the latest report regarding the worldwide IaaS public cloud ser-
vices market share [168], we collect the real VM type descriptions and
pricing schemes in February 2021 from three leading cloud providers, i.e.,
AWS4, Microsoft Azure5, and Alibaba Elastic Compute Service (ECS)6. 24
different VM types (8 from AWS, 8 from Azure, and 8 from Alibaba) have
been included in the experiments. We also consider a total of 15 locations
for major AWS, Azure, and Alibaba data centers, i.e., Northern Virginia,
Northern California, Dublin, London, Paris, Frankfurt, Stockholm, Hong
Kong, Singapore, Seoul, Tokyo, Sydney, Sao Paulo, Mumbai, and Mon-
treal. 8 locations for hosting application-dependent datasets are Northern

4https://aws.amazon.com/ec2/instance-types/
5https://azure.microsoft.com/en-us/services/virtual-machines/
6https://www.alibabacloud.com/product/ecs
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California, Hong Kong, Sao Paulo, Mumbai, London, Tokyo, Frankfurt,
and Sydney, which are their main data regions. Furthermore, we adopt 82
user centers from 35 countries on 6 continents in the Sprint IP Network7

to simulate the global user community.

To determine the network latency between users/data and deployed
services, and the network latency from parent services to their respective
child services, we follow real-world observations of network latency from
Sprint IP backbone network databases8.

3.5.2 Experiment Settings

In our experiments, we consider eight business workflow structures corre-
sponding to diverse activities such as online shopping and travel planning
services based on [75] (see Figure 3.8). The range of service processing
time for a single request is also obtained from [75], that is, 5-35 ms run-
ning on AWS t2.micro. Three scales of services, i.e., 20 (low), 30 (medium),
and 40 (high) different services, are implemented to simulate the different
business diversities. For different service diversities, we generate 8 com-
posite applications based on randomly selected workflow structures and
services.

Referring to [198], we apply Facebook subscribers statistics9 to simu-
late the distribution of application requests among all user centers. By Jan-
uary 2020, there are approximately 1.3 billion Facebook subscribers from
all of the 35 countries considered in our simulation. We consider the total
number of users for our simulated Web applications as 1/1000th of Face-
book subscribers to simulate the application providers with millions of
users10. That is, the number of users in different regions ranges from 2100
to 71800. For each composite application, we select 30 out of all 82 user

7https://www.sprint.net
8https://www.sprint.net/tools/ip-network-performance
9https://worldpopulationreview.com/country-rankings/facebook-users-by-country

10https://github.com/qingdaost/LBARDM
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Figure 3.8: The business application structures used in the experiments.

centers randomly, and each user from the selected user centers makes 25
requests on average daily. Accordingly, the application request rate spans
from 52 to 304 requests per second (that is, approximately 4.5-26.3 mil-
lion requests daily). We assume that new application requests from user
centers are generated according to a Poisson distribution, following the
common practice in many previous works [15], [60]. Refer to [9], we im-
plement 6 budget factors, i.e., 0.1, 0.2, 0.3, 0.4, 0.7, and 0.9 for each set of
composite applications.
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3.5.3 Algorithm Parameter Settings

Because the BHEFT algorithm [216] does not support VM location selec-
tion, we choose VM instances from the most economical data center to
save cost. For P-GA approach, our parameter settings include: population
size N = 1024, maximum generation G = 1000, which are sufficient to per-
form well. That is, we cannot gain significant improvements on the quality
of the final solution by using more generations and larger populations. For
CGA2, we implement the same parameters with [99]: M1 = 200, G1 = 100

for searching deployment solutions, and M2 = 50, G2 = 20 for searching
suitable crossover and mutation rates. For H-GA approach, our parameter
settings include: population size N = 100, maximum generation G = 1000.
Following [99], the proportion of greedy and BHEFT based solutions in the
initial population is 20%. The crossover rate rc and mutation rate rm of P-
GA and H-GA are 0.9 and 0.1 respectively following common practice in
the literature [32]. To compare the results, we consider the mean and stan-
dard deviation of ART and TDC after running each experiment 30 times.
All the experiments are performed on the same computer with Intel Core
i7-8700 CPU (3.2 GHz and 16 GB of RAM).

3.5.4 TDC Evaluation

As shown in Figure 3.9, we estimate the average TDC for composite appli-
cations with different service diversities under different budgets (red lines
are the budget constraints).

We first analyze the algorithms in terms of their capabilities of meet-
ing the pre-specified budget requirements. For the tightest budget, i.e.,
k = 0.1, BHEFT cannot generate adequate solutions for all service diver-
sities. While as k increases, BHEFT is capable of deploying applications
within budget, even for the composite applications with 40 different ser-
vices (high diversity in Figure 3.9(c)). The three GA-based algorithms can
meet all the budget levels for composite applications with all service di-
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versities.

Regardless of ART , we can see that the BHEFT approach has the lowest
TDC under the majority of budget constraints (k = 0.3, 0.4, 0.7, 0.9 for all
service diversities). P-GA or CGA2 has the highest TDC under nearly all
budget factors and service diversities. As to our proposed H-GA, it shows
better cost savings than P-GA, especially for the high budget factors, such
as k =0.7 and 0.9. This is in line with the fact that H-GA deploys a portion
of the services to the data centers with cheaper VMs described in Subsec-
tion 3.5.6.

From the above results, we can conclude that BHEFT can obtain the
lowest TDC if the budget is high, while H-GA is able to meet all budget
requirements with relatively low TDC.

3.5.5 ART Evaluation

The ART generated by BHEFT, P-GA, CGA2, and H-GA for composite ap-
plications with different service diversities, i.e., 20 (low), 30 (medium),
and 40 (high) different services, are shown in Figure 3.10. Their mean and
standard deviation of ART and TDC with different service diversities and
budget factors are presented in Table 3.2.

For composite applications with low and medium service diversities,
the ART achieved by the three GA-based algorithms is significantly shorter
than BHEFT at all the budget levels. In these experiments, H-GA outper-
forms both P-GA and CGA2 for all cases, which shows that our proposed
algorithm is more effective than the existing penalty-based methods. We
also found that CGA2 has similar performance as P-GA in the majority of
the cases. These results suggest that the adaptive penalty function in CGA2

is not effective for the CAD problem.

Compared with deploying composite applications with low and medi-
um service diversities, for the high service diversity scenario, the perfor-
mance improvement of P-GA and CGA2 than BHEFT is very limited, es-
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Table 3.2: Algorithms performance comparison for deploying applications
with different service diversities and budget factors (ART in ms., TDC in
USD, and the best is highlighted).

Algorithm BHEFT P-GA CGA2 H-GA
Diversity k ART TDC ART TDC ART TDC ART TDC NoL

0.1 286.01 37.38 271.58±0.14 29.15±0.12 274.73±5.02 29.26±0.17 263.99±0.23 29.25±0.26
0.2 285.75 42.24 269.01±0.81 42.18±0.24 269.14±0.27 42±0.47 261.76±0.2 42.27±0.28

Low 0.3 285.01 55.04 267.72±0.21 55.28±0.41 267.69±0.18 55.41±0.26 260.37±0.12 55.25±0.4 2
0.4 284.64 67.33 266.85±0.07 68.37±0.22 266.88±0.13 68.37±0.28 259.89±0.04 68.36±0.28
0.7 284.12 92.16 265.96±0.03 107.38±0.31 265.97±0.02 107.31±0.41 259.16±0.02 106.07±0.79
0.9 284.12 92.16 265.83±0 126.53±0.59 265.83±0 126.42±0.8 259.14±0 111.36±0
0.1 287.52 41.73 273±3.87 36.95±0.37 285.9±5.27 37.01±0.23 267.26±0.43 36.99±0.19
0.2 286.57 57.47 2160.4±3.15 57.2±0.31 270.28±0.47 57.02±0.62 264.53±0.29 57.23±0.28

Medium 0.3 284.98 77.31 2144.82±1.43 77.49±0.33 268.18±0.24 77.58±0.32 262.66±0.17 77.48±0.46 3
0.4 284.51 97.15 2136.48±0.95 97.85±0.42 267.08±0.14 97.77±0.36 261.73±0.07 97.84±0.39
0.7 283.96 138.24 2127.1±0.29 158.7±0.66 265.89±0.03 158.85±0.44 260.76±0.02 158.17±0.93
0.9 283.96 138.24 2125.53±0.18 186.33±3.6 265.71±0.02 186.01±3.3 260.65±0 174.72±0
0.1 279.92 44.16 280.1±0.13 42.77±0.17 280.39±0.49 42.75±0.2 258.81±0.55 42.72±0.3
0.2 278.35 67.58 278.03±0.13 67.33±0.33 277.98±0.3 67.36±0.26 255.35±0.24 67.33±0.25

High 0.3 276.54 90.88 276.32±0.35 91.87±0.23 276.41±0.25 91.77±0.3 253.56±0.16 91.7±0.38 4
0.4 275.91 114.69 274.37±0.12 116.36±0.46 274.69±0.51 116.14±0.65 252.49±0.11 116.37±0.52
0.7 275.34 163.07 273.03±0.3 189.71±0.92 272.9±0.25 188.83±2.33 251.51±0.05 177.3±0.55
0.9 275.32 165.89 272.55±0.04 221.68±5.75 272.59±0.05 215.79±7.44 251.36±0 198.86±0

pecially when k is low. We attempt to increase the number of generations
and fine-tune some parameters, without obtaining noticeably better per-
formance. Correspondingly, H-GA can consistently outperform BHEFT by
optimizing the locations of service clusters.

From Table 3.2, we can calculate the average improvement of H-GA in
terms of ART , 8.5% lower than BHEFT, 2.7% lower than P-GA, and 2.7%
lower than CGA2 for low service diversity, 7.8% lower than BHEFT, 2.0%
lower than P-GA, and 2.8% lower than CGA2 for medium service diversity,
and 8.3% lower than BHEFT, 7.9% lower than P-GA, and 8.0% lower than
CGA2 for high service diversity. The observed performance differences
between H-GA and three comparing approaches are verified through the
statistical test (Wilcoxon Rank-Sum test) with a significance level of 0.05
for all cases. We also find that H-GA has a smaller standard deviation
than the other two GA-based algorithms, confirming that H-GA can con-
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sistently find good deployment solutions.

From the above discussion, the following conclusions can be made
from the experiments: BHEFT can deploy composite applications in multi-
cloud quickly but not effectively, also at the risk of over-budget. Com-
pared with BHEFT, GA-based algorithms are capable of generating ade-
quate solutions and outperform BHEFT in terms of ART . Our proposed
algorithm H-GA also significantly outperforms P-GA and CGA2. Espe-
cially when the budget is flexible (or sufficiently large), H-GA can gener-
ate solutions with less TDC and shorter ART than the other two GA-based
algorithms.

3.5.6 Further Analysis

We observe that all the services are deployed to the same data center in
the final deployment solutions of P-GA and CGA2. This is because they
fail to group services by investigating interdependencies between services
and application users and deploy the services in the different clusters to
the different data centers. On the contrary, H-GA tends to deploy the ser-
vices to different data centers (see the number of deployment locations,
i.e., NoL in Table 3.2). This demonstrates that the service clustering mech-
anism plays an important role during the evolutionary search for good
application deployment solutions.

Take applications with high diversity as an example, a total of 40 ser-
vices are deployed to four locations, i.e., Singapore, Los Angeles, Hong
Kong, and London, in the final deployment solution of H-GA. Specifically,
some services are deployed to the cheaper VMs in Los Angeles, which can
reduce TDC. On the other hand, selecting the four locations can bring ser-
vice clusters close to the users, and therefore reduce the network latency
of corresponding applications.

In our experiments, the performance of H-GA is better than P-GA with
the service clustering mechanism, while H-GA significantly outperforms
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CGA2 with the service clustering mechanism. Besides, without the repair
algorithm for constraint handling, H-GA cannot guarantee the total de-
ployment cost within the given budget.

3.5.7 Computation Time

For the computational time, BHEFT can generate solutions quickly (within
0.1 seconds for all the test scenarios). The average computation time of H-
GA with respect to all service diversities ranges from 75 to 200 seconds,
which is slightly less than P-GA. Because CGA2 involves the co-evolution
of crossover and mutation rates, its average computation time is about
10 times longer than H-GA and P-GA (the overall evolution complexity is
O(M1G1M2G2)).

To verify the effectiveness of the dynamic upper bound mechanism,
we implement the algorithm that repairs all over-budget solutions. The
algorithm cannot achieve better performance in terms of ART , but spends
on average 29.66% more average computation time (ACT shown in Table
3.3). The results illustrate that the mechanism of dynamic repair upper
bound can trade off performance with computation time well.

Besides, for the highest diversity with the tightest budget, H-GA can
generate the solution within 13 minutes. That is, if the request rate dis-
tribution does not change significantly within an hour (as confirmed by
many existing studies [23], [135]), periodical use of H-GA is highly feasi-
ble in practice, even considering the extra time required for application
migration (previous research shows that service migrations in the cloud
can usually be performed within 15 minutes [106]). Note that a shorter
service migration time can further improve the effectiveness of H-GA.
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Table 3.3: Algorithms performance comparison with different repair
mechanisms (ART in ms. and ACT in s.).

Adaptive bound Fully repair ∆

Diversity k ART ACT ART ACT ART ACT

0.1 263.99 247.98 263.96 351.57 0.01% -29.46%
0.2 261.76 106.11 261.76 197.09 0.00% -46.16%

Low 0.3 260.37 44.43 260.42 98.84 -0.02% -55.05%
0.4 259.89 24.60 259.88 49.75 0.00% -50.55%
0.7 259.16 21.73 259.16 22.85 0.00% -4.90%
0.9 259.14 21.76 259.14 22.87 0.00% -4.85%
0.1 267.26 596.21 267.48 713.6 -0.08% -16.45%
0.2 264.53 250.41 264.44 394.78 0.04% -36.57%

Medium 0.3 262.66 77.69 262.80 175.32 -0.05% -55.69%
0.4 261.73 28.98 261.69 65.67 0.01% -55.87%
0.7 260.76 24.80 260.78 26.04 -0.01% -4.76%
0.9 260.65 24.82 260.65 25.99 0.00% -4.50%
0.1 258.81 765.05 258.72 884.65 0.03% -13.52%
0.2 255.35 281.10 255.44 454.53 -0.03% -38.16%

High 0.3 253.56 66.72 253.51 172.72 0.02% -61.37%
0.4 252.49 26.37 252.51 49.04 -0.01% -46.23%
0.7 251.51 25.71 251.51 27.33 0.00% -5.93%
0.9 251.36 25.69 251.36 26.72 0.00% -3.85%

3.6 Chapter Summary

In this chapter, we study the CAD problem in multi-cloud that minimizes
the average response time subject to a budget constraint. To address the
problem, we propose a novel GA-based algorithm that can select VMs
in multi-cloud for constituent services of composite applications within a
given cost budget so that the average response time of all composite appli-
cations is minimized. Due to the immense search space resulting from the
diversity of VM locations and types, we design the service clustering al-
gorithm to reduce the search space by effectively utilizing the information
hidden in application structures. To improve solution quality and con-
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trol the computation time of the algorithm, we develop a problem-specific
repair algorithm to transform a self-adaptive subset of over-budget so-
lutions into budget feasible solutions. Furthermore, our proposed algo-
rithm H-GA applies the two-string decoding and domain-tailored popu-
lation initialization, which are effective for breeding excellent offspring.
The experiments based on the datasets collected from real-world cloud
providers, network environments, and business applications show that
our algorithm can meet the budget and achieve up to about 8% perfor-
mance improvement in terms of ART compared with existing algorithms.

We find that the performance improvement through increasing bud-
gets is limited (shown in Table 3.2). Taking the applications with the high
diversity as an example, H-GA only can reduce ART from about 259 ms
to 251 ms when the budget is increased from about 43 USD to 199 USD.
Next chapter will study ARD in multi-cloud. Different from CAD, ARD
applies service-oriented replication to further reduce ART below a strin-
gent threshold, e.g., 150ms. This target ART will guarantee the satisfactory
Quality of Experience (QoE) of cloud applications [201].



Chapter 4

Application Replication and
Deployment

4.1 Introduction

This chapter tackles Application Replication and Deployment (ARD) in
multi-cloud. For some applications, a low average response time must be
satisfied to guarantee the quality of experience (QoE). Therefore, appli-
cation providers must replicate applications in multiple locations to en-
sure the stringent requirement on average response time. While ensuring
the acceptable performance of applications, application providers usually
care about cost minimization [104], [201]. Therefore, we consider the ARD
problem as a constrained optimization problem to minimize the total de-
ployment cost subject to the constraints on the average response time.

Different from CAD, the deployment objects of ARD are application
replicas rather than constituent services. Particularly, the ARD problem
has several different concerns. On the one hand, we need to determine
the number of replicas for each application before selecting proper VMs in
multi-cloud for application deployment. On the other hand, we need to
determine how to dispatch widely distributed user requests among differ-
ent application replicas.

83
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In this chapter, we consider two different approaches for request dis-
patching. One of the two approaches is to dispatch user requests to the
closest application replicas, which is a common practice in the literature
[74], [171] and industry [113]. To further reduce the deployment cost, we
apply another request dispatching approach that allows requests from the
same user region to be served by different application replicas [201]. We
represent the two request dispatching approaches as close dispatching and
flexible dispatching respectively.

According to close dispatching, the location of application replicas, i.e.,
replica placement, determines the dispatching of user requests and further
the average response time of applications. Besides, the replica placement
significantly impacts the deployment cost of applications due to the differ-
entiated price of VMs in different data centers. We design a new two-level
optimization approach under the GA framework to solve the ARD with
close dispatching problem. The main algorithm novelties are summarized
as follows.

• Considering various data center locations and applications results in
extremely large search spaces. Therefore, the first level optimization,
i.e., replica placement in multi-cloud, is realized by GA.

• To reduce the complexity/size of the search space, the second level
optimization, i.e., VM types selection for application deployment, is
performed through a domain-tailored heuristic. Particularly, after
deploying all application replicas to the cheapest VMs that satisfy
the capacity requirement, we progressively upgrade the VM types
with the hope to reduce the response time as long as the performance
requirement is satisfied.

• We initialize the population of the GA-based approach by adding
a heuristic-based solution to improve solution quality and conver-
gence speed.
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According to flexible dispatching, we need to simultaneously optimize
the replica deployment and request dispatching. We design a two-stage
optimization process to solve the ARD with flexible dispatching problem.
The new algorithm design process is summarized as follows.

• We first transfer the problem to a series of MILP problems so that it
can be solved by off-the-shelf MILP methods.

• Next, we propose a MILP-based algorithm to efficiently obtain a
high-quality base solution. Following a novel double iterative mech-
anism, the algorithm adaptively updates the upper bounds on both
the VMs’ utilization rate and average response time to improve the
performance of the base solution. The worst-case performance of the
base solution will also be theoretically analysed.

• To further reduce the total deployment cost, we develop an LNS-
based algorithm to improve the base solution. To build an effective
LNS process, a new destroy heuristic is proposed to remove a por-
tion of application replicas. Then a problem-specific repair heuristic
is designed to effectively deploy new application replicas. Besides,
we propose a delay-oriented heuristic to dispatch user requests to
achieve high performance based on currently deployed replicas.

The main contributions of this chapter are summarized as follows:
Firstly, we formally define the ARD problem in multi-cloud as a con-

strained optimization problem with the goal to minimize the total deploy-
ment cost subject to constraints on average response time. To the best of
our knowledge, this is the first study in the literature on the application
deployment problem with the consideration of location-aware replication
for deploying interactive applications in multi-cloud.

Secondly, we propose a GA-based approach, namely GA-ARD, to solve
the ARD with close dispatching problem. GA-ARD features a newly de-
signed and domain-tailored solution representation, fitness measurement,
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and population initialization. Extensive experiments based on the real
world datasets show GA-ARD can shorten the average response time of
H-GA and significantly reduce deployment cost compared with the com-
mon application replication and placement strategies in [88].

Finally, we propose an optimization approach, i.e., MCApp, to solve
the ARD with flexible dispatching problem. With the extra optimization de-
cision, i.e., the request dispatching, the problem is firstly linearized by
bounding the utilization rates of the deployed VMs. Then, MCApp creates
a hybrid optimization process that combines an iterative MILP-based algo-
rithm and a domain-tailored LNS-based algorithm to simultaneously opti-
mize replica deployment and request dispatching. MCApp is compared to
several state-of-the-art approaches, including LNS-MC [68] and HMOHM
[109]. The experimental results indicate that MCApp significantly outper-
forms the existing approaches, achieving up to 25% savings in terms of the
total deployment cost.

4.2 Chapter Organization

The remainder of this chapter is organized as follows. Section 4.3 presents
the ARD problem formulation. Section 4.4 introduces the GA-ARD ap-
proach for the ARD with close dispatching problem. The chromosome repre-
sentation, fitness measurement, population initialization, and genetic op-
erators are all described in this section. To evaluate GA-ARD, we conduct
a series of experiments in Section 4.5. Section 4.6 introduces the MCApp
approach for the ARD with flexible dispatching problem. The problem lin-
earization, MILP-based algorithm, and LNS-based algorithm are detailed
in this section. In Section 4.7, we conduct extensive experiments to evalu-
ate MCApp. Section 4.8 summarizes this chapter.
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4.3 ARD Problem Formulation

The aim of the ARD problem is to select VMs from multi-cloud for ap-
plication replication and deployment to minimize the Total Deployment
Cost (TDC) subject to a stringent performance requirement on Average
Response Time (ART ). The key notations to be used for problem defini-
tion are listed in Table 4.1.

An application provider delivers a suite of applications A for its users
distributed in global user regions U . During an epoch, e.g., an hour [23],
the request rate γau denotes the request frequency for application Aa (Aa ∈
A) from user region Uu (Uu ∈ U).

We consider a set of VM types V and a set of multi-cloud data center C.
If VM type Vv (Vv ∈ V) is available in data center Cc (Cc ∈ C), we use rcvc

to denote its rental cost per time unit and δav to measure the maximum
amount of requests for application Aa processable by Vv per time unit.

Referring to [139], [212], we assume that all requests for application
Aa dispatched to data center Cc will be served by a single replica of Aa in
Cc. In the remaining of this chapter, we use Rac to refer to the application
replica.

Let xauc ∈ [0, 1] denote the percentage of requests from user region Uu

for Aa that will be dispatched to data center Cc. The workload of Rac can be
measured by combining relevant request rates from all user regions:

λac =

|U|−1∑
u=0

γauxauc. (4.1)

Referring to [109], we assume that each application replica is deployed
to one instance of one VM type Vv in multi-cloud. For the application
replica with multiple constituent services, we deploy them as microser-
vices [193] in the same VM instance to make the inter-services network
latency negligible. We further assume that application replicas apply the
eventual consistency model when they access the database since the con-
sistency model is commonly used by widespread cloud applications with
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Table 4.1: Mathematical notations for the ARD problem

Notation Definition
Aa The ath application
Uu The uth user center
Vv The vth type of VM
Cc The cth data center
Rac Replica of application Aa in data center Cc

γau The request rate of Aa from the uth user center

δav
Amount of requests for application Aa processable by VM type Vv

per time unit
rcvc The rental cost of VM type Vv in data center Cc

dtuc Round-trip delay between user region Uu and data center Cc

l Overall request rate across all applications
m Maximum average response time per request

xauc

Independent variables: percentage of application Aa request rate
from user region u to be served in data center Cc

yacv
Independent variables: to rent an instance of VM type Vv for
application replica Rac (1) or not (0)

λac Dependent variables: workload of application replica Rac

µac Dependent variables: capacity of application replica Rac

ptac
Dependent variables: average request processing time of
application replica Rac

zac
Independent variables: to deploy a replica of application Aa in
data center (1) or not (0)

n Dependent variable: total replica number for all applications

uac

Dependent variables: utilization rate of the VM when deploying
application replica Rac
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large numbers of user requests [121], [189]. Let binary variable yacv in-
dicate whether an instance of Vv is selected to deploy application replica
Rac, the capacity of Rac depends on the processing speed of the selected
VM type by:

µac =

|V|−1∑
v=0

δavyacv, (4.2)

where
∑|V|−1

v=0 yacv ⩽ 1 (Aa ∈ A, Cc ∈ C). There are two situations for eq.
(4.2). If there is a replica of Aa deployed in data center Cc, µac = δav where
yacv = 1. Otherwise, µac = 0.

We follow [187] and model the operation of each individual application
replica as an M/M/1 queue. According to Little’s Law [98], the average
request processing time of replica Rac depends on both µac and λac:

ptac =
1

µac − λac

. (4.3)

Let dtuc represent Round-Trip Delay (RTD) between user region Uu and
data center Cc, we can calculate the average response time of application
set A by:

ART =

∑|A|−1
a=0

∑|C|−1
c=0

∑|U|−1
u=0 γauxauc(dtuc + ptac)

l
, (4.4)

where l =
∑|A|−1

a=0

∑|U|−1
u=0 γau is the total request rate across the application

set A.

With the goal to minimize TDC ofA in multi-cloud, we have two deci-
sion variable vectors, i.e. request dispatch plan X and replica deployment plan
Y . Here, X determines how users’ application requests are dispatched
among all data centers, i.e., xauc, and Y determines the types of VMs and
the corresponding data centers to deploy all application replicas, i.e., yacv.
Concretely, the ARD problem is formulated as follows:

Problem 1.
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min TDC =

|A|−1∑
a=0

|C|−1∑
c=0

|V|−1∑
v=0

yacvrcvc (4.5)

subject to:

(a) yacv ∈ {0, 1} Aa ∈ A, Cc ∈ C, Vv ∈ V

(b)
|V|−1∑
v=0

yacv ⩽ 1 Aa ∈ A, Cc ∈ C

(c) ART ⩽ m

(d) ptac > 0 Aa ∈ A, Cc ∈ C

(e) 0 ⩽ xauc ⩽ 1 Aa ∈ A, Uu ∈ U , Cc ∈ C

(f)
|C|−1∑
c=0

xauc = 1 Aa ∈ A, Uu ∈ U

Constraint (a) indicates whether an instance of VM type Vv in data
center Cc is rented for hosting application Aa. Constraint (b) guarantees
that each application replica is deployed to one VM instance. Constraint
(c) guarantees that ART of the application set A is below the acceptable
threshold m set by the application provider. Constraint (d) guarantees
that µac > λac, i.e., the capacity of any application replica must be suffi-
cient to process its workload. Constraints (e) and (f) guarantee that every
request for application Aa from user region Uu will be processed. Note that
Problem 1 is nonlinear due to constraint (c).



4.4. GA-ARD 91

Figure 4.1: The overall process of GA-ARD.

4.4 GA-ARD for the ARD with Close Dispatching

Problem

According to close dispatching, the request dispatching depends solely on
the locations of application replicas, i.e., the replica placement. Let binary
variable zac indicate whether application Aa is deployed in data center Cc,
we have:

xauc =

1 if dtuc = argmin
i:zai=1

{dtui}

0 otherwise.
(4.6)

In this section, we propose our approach under the GA framework,
named GA-ARD, to solve the ARD with close dispatching problem. The
overall process of GA-ARD is shown in Figure 4.1. In GA-ARD, the op-
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timization of replica placement plans, i.e., Z = [zac], is realized by GA. After
encoding replica placement plans, a heuristic-based plan is included in
the randomly generated initial population (described in Subsection 4.4.3).
For each encoded plan, GA-ARD optimizes VM type selection of all ap-
plication replicas and calculates ART of the deployment solution as the
fitness value (described in Subsection 4.4.2). After the roulette-wheel se-
lection, the crossover and mutation operations are performed to generate
new plans. The population is evolved iteratively until the predefined max-
imum number of generations is reached. Finally, the best chromosome
is decoded to return the final replication and deployment decision. In
the following subsections, we provide a detailed description of GA-ARD,
including representation, fitness measurement, population initialization,
and genetic operators.

4.4.1 Chromosome Representation

We use chromosomes to encode replica placement plans evolved by GAs.
Here, we transform the replica placement plan, i.e., the matrix Z into a
bit string as shown in Figure 4.2. The length of the string is |A| · |C|. For
the example chromosome in Figure 4.2, there are two applications and ten
data centers. The three replicas of application A0 are deployed at C0, C2,
and C8, and the two replicas of application A1 are deployed at C1 and C5.

4.4.2 Fitness Measurement

For the randomly generated and newly evolved chromosomes that repre-
sent replica placement plans, GA-ARD applies a heuristic to optimize VM
type selection with the minimal TDC while ensuring that ART is below m.
For each chromosome, we regard the TDC as its fitness. The fitness value
of a chromosome indicates its chance of survival and reproduction in the
next generation.

The heuristic to optimize VM type selection is inspired by the GAIN
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𝐶0 𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 𝐶6 𝐶7 𝐶8 𝐶9 

1 0 1 0 0 0 0 0 1 0 

0 1 0 0 0 1 0 0 0 0 

𝐶0 𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 𝐶6 𝐶7 𝐶8 𝐶9 𝐶0 𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 𝐶6 𝐶7 𝐶8 𝐶9 

1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 

Figure 4.2: An example chromosome

approach in [145], which is a heuristic-based scheduling approach con-
sidering constraints. The proposed heuristic aims to efficiently generate
a constraint-compliant VM type selection with low TDC by the following
steps:

• Select the cheapest capacity feasible VM types for all application
replicas;

• Calculate the benefit for each application replica by upgrading its cur-
rent VM type to one with higher capacity, e.g., from AWS m5.large
to m5.xlarge. The benefit is calculated as follows:

benefit =
ARTold − ARTnew

TDCnew − TDCold

, (4.7)

where ARTnew and TDCnew are the response time and deployment
cost after upgrade;

• Upgrade the application replica with the largest benefit iteratively
until the ART is within the given m. If ART cannot be brought within
m even if all replicas are deployed to the VM type with the highest
capacity, we assign the fitness of the chromosome as∞ (the smaller
the better).
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4.4.3 Population Initialization

To improve the solution quality and convergence speed, we propose a
heuristic-based method, named GreedyAdd, to generate a solution to be
included in the initial population as discussed below. The remaining pop-
ulation will be initialized randomly. That is, we randomly select some data
centers as the locations of application replicas.

Refer to the incremental replication method in [94], GreedyAdd aims to
progressively identify an appropriate number of application replicas as
follows:

• For each application Aa, we deploy its first replica to the data center
with the minimal average RTD:

ARTDa =

∑|C|−1
c=0

∑|U|−1
u=0 γauxaucdtuc∑|U|−1
u=0 γau

. (4.8)

• While ART of the current solution is within m, one additional replica
is progressively allocated to one of the remaining data centers, where
ART can achieve the highest reduction.

• To further improve the solution in terms of TDC, we attempt to
progressively allocate more replicas to the remaining data centers,
where TDC can be reduced while ensuring ART is under m. The
process is repeated until we cannot find better solutions.

Note that the VM type selection for evaluating ART applies the Gain-
based heuristic as described in Subsection 4.4.2.

4.4.4 Crossover Operator

We apply the crossover operator to evolve replica placement plans. Dur-
ing crossover operation, the parent chromosomes are divided into two
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parts by one random cut-off point. Their offsprings are generated by ex-
changing tail parts of the two parents as the example in Figure 4.3. Note
that to avoid generating an invalid plan, i.e., the replica number of any ap-
plication after the crossover operation is 0, the crossover is only performed
on bit locations with 1s in the parent chromosomes. Accordingly, those bit
locations with 0s can be easily filled up after crossover.

    

1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 

                    

0 0 1 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 

                    

1 0 1 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 

                    

0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 

Parent 1 

 

 

 

Parent 2 

Child 1 

 

 

 

Child 2 

Figure 4.3: An example of crossover operation

4.4.5 Mutation Operator

The mutation operator can introduce a local improvement to previously
evolved plans by making a small change on an offspring in a random way.
In particular, a bit is selected randomly and inverted, i.e., if the bit is 1,
it is changed to 0 and vice versa. Similarly, the operation may generate
an invalid plan without replicas for any Aa. In this case, we invert a new
random bit until a valid plan is generated.
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4.5 Evaluation of GA-ARD

We conduct a series of experiments to evaluate the performance of GA-
ARD by comparing it with the common placement and replication strate-
gies [88], e.g., deploying the replicas based on the distance between data
centers and users. Also, we adapt our proposed H-GA in Section 3.4 to
the ARD problem to evaluate the effectiveness of application replication.
The datasets used in the section are the same as the datasets introduced in
Subsection 3.5.1.

4.5.1 Experiment Settings

In our experiments, 10 application sets are generated by randomly select-
ing enterprise applications based on [75]. The range of application pro-
cessing time for a single request is 10-20 ms running on AWS m5.large VM.
The number of applications in an experimented set ranges from 1 to 10
to simulate a wide variety of user requirements. These application num-
bers are sufficient for enterprise applications, such as Mercedes-Benz.io1

and MetService2. Particularly, MetService, the meteorological service of
New Zealand, provides 8 applications for different user groups, i.e., Na-
tional Forecast, Towns and Cities Forecast, Rural Forecast, Marine Fore-
cast, Mountains and Parks Forecast, Maps and Radar Information, Warn-
ings Information, and Public Information. Referring to [201], the accept-
able threshold of ART , i.e., m, is set to 150 ms.

4.5.2 Competing Approaches and Parameter Settings

The distance-based replica placement and replication strategy in [88] in-
clude three settings. For each application, (1) one replica in the closest
data center from users (Distance 1), (2) two replicas in the first and second

1https://www.mercedes-benz.io/
2https://www.metservice.com/
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closest data centers (Distance 2), and (3) three replicas in the three closest
data centers (Distance 3). This strategy shows the trade-off between the
total deployment cost and the average response time in terms of the num-
ber of replicas. That is, more replicas can reduce the average response time
but increase the total deployment cost. After checking the three settings,
we use Distance 3 as the baseline since this setting performs best in terms
of ART satisfaction and TDC minimization. The Full placement and repli-
cation strategy in [88], i.e., deploying replicas at all data centers, is also
included to benchmark the performance of GA-ARD.

To apply H-GA to the ARD problem, we change its time-based fitness
function to TDC and budget-related constraint to ART . For both GA-ARD
and H-GA, our parameter settings include: population size is 100, maxi-
mum generation is 100, which are sufficient for the search process to con-
verge. The crossover rate and mutation rate are 0.9 and 0.1 respectively
following common practice in the literature [103].

To compare the results, we consider the mean and standard deviation
of TDC after running each experiment 30 times on the same computer
with Intel Core i7-8700 CPU (3.2 GHz and 16 GB of RAM).

4.5.3 Performance Comparison

Because Distance 3, Full, and GA-ARD can all satisfy the constraints on
ART , we show the average TDC achieved for ten problem instances in
Figure 4.4. The mean and standard deviation of TDC are presented in
Table 4.2.

From the experimental results, we observe that Distance 3 outperforms
Full when the number of applications |A| > 1. These results suggest that
except for single application deployment, it is not effective to replicate ap-
plications in all data centers. In such a situation, many application replicas
only serve a small number of users, which causes the leased VMs under-
utilized.
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Figure 4.4: Comparison of average TDC by competing approaches.

GA-ARD can generate the best solutions among competing approaches
with respect to all problem instances. From Table 4.2, we can calculate that
the average improvement of GA-ARD in terms of TDC is 17.5%, in com-
parison to Distance 3, e.g., 30.62% when |A| = 2 (highest) and 9.76% when
|A| = 7 (lowest), and 34.64% lower than Full, e.g., 37.23% when |A| = 5

(highest) and 27.58% when |A| = 1 (lowest). The observed performance
differences between GA-ARD and two competing approaches are verified
by the statistical test (Wilcoxon Rank-Sum test) with the significance level
of 0.05 for all problem instances. We also find that GA-ARD has very small
standard deviations, confirming its stability and reliability for the ARD
with close dispatching problem.

4.5.4 Effectiveness of Application Replication

In this subsection, we evaluate the effectiveness of application replication
for satisfying constraints on ART . We show the ART achieved by GA-ARD
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Table 4.2: Performance comparison of the approaches for the ARD with
close dispatching problem with different application diversities (TDC per
month in USD, the best is highlighted).

No. of Distance 3 [88] Full [88] GA-ARD
Apps TDC n∗ TDC n∗ TDC n∗

1 2376±0 3 2294.64±0 15 1661.76±0 4 ↓
2 3732.48±0 6 4024.8±0 30 2589.6±21.62 7 ↓
3 6549.12±0 9 7295.76±0 45 5049.12±121.38 17 ↑
4 5597.28±0 12 7768.8±0 60 4881.6±24.94 13 ↑
5 7416±0 15 9781.92±0 75 6140.16±0 17
6 8557.92±0 18 11370.24±0 90 7227.36±0 21
7 11007.36±0 21 14735.52±0 105 9933.12±0 24
8 11067.84±0 24 15036.48±0 120 9644.4±19.05 29 ↑
9 12718.08±0 27 18084.24±0 135 11472.48±0 29

10 13957.92±0 30 19037.52±0 150 12034.08±6.6 34 ↑

and H-GA in Figure 4.5. For all the experiments with different numbers
of applications, H-GA cannot generate solutions having ART within 150
ms, i.e., the red dotted line in Figure 4.5. For example, the minimal ART

achieved by H-GA is 238.18 ms for the problem instance with |A| = 5 and
the maximal ART achieved by H-GA is 244.93 ms for the problem instance
with |A| = 9. GA-ARD is capable of replicating and deploying applications
with ART strictly below 150 ms.

If most users of an application are geographically localized, H-GA may
generate adequate solutions without replication. When serving the re-
quests from widely distributed users, H-GA cannot bring ART under 150
ms even selecting the most expensive VMs for all applications. In that
case, deploying application replicas at different data centers is imperative
to reduce response time [135]. Therefore, we study the ARD problem in
this thesis.
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Figure 4.5: Comparison of ART for evaluating the effectiveness of applica-
tion replication.

4.5.5 Replica Amount

Next, we investigate the impact of replica numbers on the solution per-
formance. The replica number n∗ of the best GA-ARD solution among 30
runs is presented in Table 4.2.

In most experiments, GA-ARD deploys slightly more application repli-
cas than Distance 3. For example, when |A| = 1, Distance 3 identifies North-
ern Virginia, Singapore, and Sao Paulo as the three closest data centers to
users. Accordingly, GA-ARD selects Northern Virginia, Seoul, Tokyo, and
Mumbai to deploy application replicas. The different replica numbers and
the locations are significant to reduce TDC.

We further compare n∗ with the replica numbers obtained by GreedyAdd,
i.e., the heuristic-based method introduced in Subsection 4.4.3. There are
6 cases where n∗ is different. Concretely, GA-ARD selects more replicas
in 4 cases shown as ↑ in Table 4.2, and fewer replicas in 2 cases shown as
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(a) 1 application to be deployed (b) 10 applications to be deployed

Figure 4.6: Changes of TDC with GA-ARD

↓. By observing the replica placement plan generated by GreedyAdd when
|A| = 1, the five application replicas are progressively placed in Singa-
pore, Northern Virginia, Tokyo, Mumbai, and Seoul. However, GA-ARD
can escape from this local optimal point achieved by the heuristic-based
method. Particularly, GA-ARD removes the application replica in Singa-
pore. The change saves more cost of application deployment.

4.5.6 Further Analysis

The average computation time of GA-ARD with respect to different bud-
get levels is within 1500 seconds. Therefore, GA-ARD is applicable to the
scenarios where applications have stable or predictable demand [135], e.g.,
the workload of applications does not change significantly within an hour
or can be predicted one hour ahead.

We plot the evolution of TDC corresponding to the cases where 1 and
10 applications will be deployed (Figure 4.6) by GA-ARD. The same con-
vergence behavior has been witnessed in other cases. As evidenced in the
two figures, GA-ARD can converge within 100 generations.
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4.6 MCApp for the ARD with Flexible Dispatch-

ing Problem

The ARD with close dispatching problem can be considered as a special case
of the ARD with flexible dispatching problem. To support flexible dispatch-
ing, we must jointly optimize both the request dispatch plan X and the
replica deployment plan Y . In eq. (4.3), the average request process time
ptac is determined by the workload µac and capacity λac for application
replica Rac. Note that µac and λac together determine the utilization rate of
the deployed VM instance for Rac. We can linearize Problem 1 by bound-
ing utilization rates of the VMs to obtain a high-quality base solution to
Problem 1. Inevitably, such the upper bound reduces the solution space
for Problem 1. Hence, the base solution is not necessarily the optimal so-
lution to Problem 1. Taking advantage of both exploration and propaga-
tion, LNS has recently shown outstanding performance in solving various
scheduling problems due to its flexibility in designing problem-specific
destroy and repair heuristics [132]. In view of this, we further design a
problem-specific LNS algorithm to improve the base solution.

In this section, we introduce our MCApp approach (see Figure 4.7). It
first transforms Problem 1 to a series of MILP problems in Subsection
4.6.1. These linearized problems are iteratively solved through a MILP-
based algorithm to obtain the base solution in Subsection 4.6.2. Finally, an
LNS-based algorithm to improve the base solution is introduced in Sub-
section 4.6.3.

4.6.1 Problem Transfer

MCApp linearizes Problem 1 making it solvable by off-the-shelf MILP
methods. We first determine the utilization rate of the VM instance for
application replica Rac by:
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Figure 4.7: Overview of MCApp with inputs and outputs.

uac =
λac

µac

, (4.9)

where 0 ⩽ uac < 1 based on constraint (a), (d), and (e) in Problem 1.
According to eq. (4.9), the average request processing time of Rac in eq.
(4.3) can be rewritten as:

ptac =
1

µac − λac

=
1

λac

uac
− λac

=
1

λac(
1

uac
− 1)

=
1

λac

· uac

1− uac

.
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Therefore, in eq. (4.4) we have:

|U|−1∑
u=0

γauxaucptac = λacptac =
uac

1− uac

.

In the above, f(uac) = uac

1−uac
, is monotonically increasing with respect

to uac ∈ [0, 1). Let the constant ûac denote the upper bound on uac and
û = max

Aa∈A,Cc∈C
{ûac}, we have:

|U|−1∑
u=0

γauxaucptac =
uac

1− uac

⩽
ûac

1− ûac

⩽
û

1− û
. (4.10)

Therefore, Problem 1 can be transferred as follows:

Problem 2.

min TDC =

|A|−1∑
a=0

|C|−1∑
c=0

|V|−1∑
v=0

yacvrcvc (4.11)

subject to:

(a’) Y ∈ C1

(b’) X ∈ C2

(c’)

∑|A|−1
a=0

∑|C|−1
c=0 (

∑|U|−1
u=0 γauxaucdtuc +

û
1−û

)

l
⩽ m

(d’) uac ⩽ û ∀a ∈ A, ∀c ∈ C

In constraint (a’), C1 stands for the set of feasible replica deployment
plans Y that satisfy constraints (a), (b) in Problem 1. In constraint (b’), C2

refers to the set of feasible request dispatch plans X that satisfy constraints
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(e), (f) in Problem 1. Constraint (c’) is derived from constraints (c) in Prob-
lem 1 based on eq. (4.10). Constraint (d’) guarantees that the utilization
rate of the VM instance for application replica Rac never exceeds û. With
different û, Problem 2 produces a series of MILP problems that can be
solved directly using popular MILP methods, e.g., cutting-plane [108] and
branch and cut [116], supported by many open source software tools, e.g.,
Google OR-Tools [58].

4.6.2 Mixed Integer Linear Programming

Clearly increasing û can improve the overall VM utilization rate, thus de-
creasing TDC in Problem 2. Note that if û is too large, we cannot find fea-
sible solutions to Problem 2 subject to constraint (c’). One feasible method
is to initialize û at its maximum, then repeatedly reduce û = û−∆u until a
feasible solution can be found. For this purpose, we theoretically analyse
the upper bound on û.

Let dt denote the average RTD across all requests for all application
replicas. We have:

dt :=

∑|A|−1
a=0

∑|C|−1
c=0

∑|U|−1
u=0 γauxaucdtuc
l

. (4.12)

Given request rate γau, dt is bounded from below by:

d =

∑|A|−1
a=0

∑|U|−1
u=0 γaumin

Cc∈C
{dtuc}

l
.

This lower bound is realized when all user requests are dispatched to the
respective data center with the minimal dtuc.

Theorem 1. The maximum of û is l(m−d)
l(m−d)+|A| subject to constraints (c’).

Proof. Let n be the total number of application replicas, we have n ⩾ |A|.
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According to constraint (c’):

dt+
n û

1−û

l
⩽m

n û
1−û

l
⩽m− d

û

1− û
⩽
l(m− d)

|A|

û ⩽
l(m− d)

l(m− d) + |A|
.

Therefore, we have proven the upper bound on û.

With û, ART of any feasible solution to Problem 2 is less than m in con-
straint (c’), because uac ⩽ û for all application replicas. Increasing m to
m′ when solving Problem 2 is helpful to find solutions with lower TDC.
However, if m′ is too large, the found solutions cannot be feasible due to
violation of constraint (c’), i.e., ART of the solutions exceed m. Another
iterative method can be used to gradually increase m′ ← m′ +∆m in con-
straint (c’) until we cannot find feasible solutions.

Algorithm 6 shows the procedure of the MILP-based algorithm with
adaptive û and m′. After initializing û (step 1), we iteratively determine
an appropriate û through steps 2-4. After a feasible solution to Problem
2 is found, we calculate ART and TDC in step 5. Next, we relax the per-
formance requirement to m′ in an attempt to decrease TDC. The process
is repeated until ART is greater than m or the termination rule (e.g., the
maximum optimization time) is met (step 6-14).

Finally, we theoretically analyse the performance of the base solution
obtained by Algorithm 6 in terms of the worst-case ratio.

For each VM type Vv in data center Cc, we can obtain the unit cost of
processing a single request for application Aa:

kacv =
rcvc
δav

. (4.13)
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Algorithm 6 The MILP-based algorithm in MCApp.
Input: A,U , C,V , γau, rcvc, δa,c,v, dtuc,m.
Output: Request dispatch plan X and replica deployment plan Y .

1: û← l(m−d)
l(m−d)+|A|

2: while MILP methods cannot find a feasible solution to Problem 2 with
û do

3: û← û−∆u

4: end while
5: For the feasible solution X and Y to Problem 2, calculate ART and

TDC

6: m′ ← m

7: while ART ⩽ m and termination rule is not met do
8: Gain X ′ and Y ′ to Problem 2 with m′ ← m′ +∆m by MILP methods

and calculate its ART ′ and TDC ′

9: if ART ′ ⩽ R and TDC ′ < TDC then
10: X, Y ← X ′, Y ′

11: TDC ← TDC ′

12: end if
13: ART ← ART ′

14: end while
15: return X and Y

We denote the minimal unit cost for application Aa across all VM types
and data centers as ka.min = min

Cc∈C,Vv∈V
{kacv} and the minimal unit cost

among all applications as k = min
Aa∈A
{ka.min}.

Next we generate a ARD solution subject to all the constraints in Prob-
lem 2. Therefore, TDC of this solution bounds from above the TDC of the
optimal solution to Problem 2.

Concretely, let this ARD solution have dt = d, i.e., all user requests are
served in the data centers with the minimal dtuc. Based on this request
dispatch plan, we can obtain the workload of application replica λ′

ac and



108 CHAPTER 4. APPLICATION REPLICATION AND DEPLOYMENT

the number of replicas h. In this case, we have û′ ⩽ l(m−d)
l(m−d)+h

following the
proof of Theorem 1.

Let û′ = l(m−d)
l(m−d)+h

, we always choose the cheapest VM type to deploy

replica Rac subject to δav′ ⩾
λ′
ac

û′ . Let rc′ac denote the rental cost of the cheap-
est VM for Rac, TDC of this ARD solution can be calculated by:

e =

|A|−1∑
a=0

|C|−1∑
c=0

rc′ac. (4.14)

Theorem 2. TDC of the optimal solution to Problem 2 is at most e(m−d)
kl(m−d)+k

times of the optimal TDC to Problem 1.

Proof. We can obtain the worst-case performance ratio by comparing the
upper bound on TDC of the optimal solution to Problem 2, i.e., TDC ′, and
the lower bound on TDC of the optimal solution to Problem 1, i.e., TDC∗,
respectively.

Let X∗ and Y ∗ be the optimal request dispatch plan and replica deploy-
ment plan to Problem 1, respectively. Based on X∗ and Y ∗, we can obtain
the optimal λac

∗ and µac
∗ according to eq. (4.1) and (4.2). The average

utilization rate of all application replicas can be calculated as follows:

u∗ =

∑|A|−1
a=0

∑|C|−1
c=0 λac

∗∑|A|−1
a=0

∑|C|−1
c=0 µac

∗
=

l∑|A|−1
a=0

∑|C|−1
c=0 µac

∗
. (4.15)

Let pt denote the average request processing time across all application
replicas. Following eq. (4.3), we have:

pt =
1∑|A|−1

a=0

∑|C|−1
c=0 µac

∗ − l
=

1

l
· u∗

1− u∗ .
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According to constraint (c) in Problem 1, we have:

dt+ pt ⩽m

pt ⩽m− d

1

M
· u∗

1− u∗ ⩽m− d

u∗ ⩽
l(m− d)

l(m− d) + 1
.

According to eq. (4.15), eq. (4.2), and eq. (4.13), we have:

l =u∗
|A|−1∑
a=0

|C|−1∑
c=0

µac
∗ = u∗

|A|−1∑
a=0

|C|−1∑
c=0

|V|−1∑
v=0

δavyacv
∗

=u∗
|A|−1∑
a=0

|C|−1∑
c=0

|V|−1∑
v=0

rcvc
kacv

yacv
∗

⩽
u∗

k

|A|−1∑
a=0

|C|−1∑
c=0

|V|−1∑
v=0

rcvcyacv
∗.

Therefore,

TDC∗ =

|A|−1∑
a=0

|C|−1∑
c=0

|V|−1∑
v=0

yacv
∗rcvc

⩾
kl

u∗

⩾
kl(m− d) + k

m− d
.

Finally, we can estimate the worst-case performance ratio as the fol-
lowing:

TDC ′

TDC∗ ⩽
e(m− d)

kl(m− d) + k
.

We have proven the worst-case performance of the base solution found by
Algorithm 6.
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4.6.3 Large Neighborhood Search

LNS has been widely used to solve various combinatorial optimization
problems with practical importance [132], including multi-cloud service
brokering in [68]. In this subsection, we explain the LNS-based algorithm
to improve the base solutions found by Algorithm 6. LNS explores solu-
tion space by applying destroy and repair heuristics to the most recently
discovered solution in each iteration [149]. Since the best achievable TDC

depends on the number, locations, and types of the deployed VMs, we de-
cide to design an LNS algorithm to improve the replica deployment plan
Y . Particularly, three problem-specific heuristics are designed for replica
replacement, VM selection, and request dispatching, respectively. To ex-
plore solution space, we first propose a destroy heuristic to remove a vary-
ing number of application replicas from Y based on a domain-tailored re-
latedness measurement. Next, we design a repair heuristic to effectively
transfer the destroyed Y violating constraint (c) to a feasible Y . Upon re-
pairing Y , we propose a delay-oriented heuristic for request dispatching and
ART evaluation.

Algorithm 7 shows the procedure of our LNS-based algorithm. The
input of Algorithm 7 X◦ and Y ◦ represent the base solution found by Al-
gorithm 6. The input parameter itermax denotes the maximum number
of iterations without improving Y before terminating the algorithm. Xbest

and Ybest together denote the best ARD solution obtained so far during
LNS. The function destroy(Ybest) in step 4 destroys a copy of Ybest by re-
moving a portion of application replicas. The function repair(Y ) in step
5 transforms the destroyed replica deployment plan into a new feasible Y

and determines the request dispatch plan X accordingly. In step 6, TDC

of the new ARD solution is evaluated. Based on that, the solution is either
rejected or accepted as the current solution for the next search iteration.
Specifically, we only accept the cheaper solution and update Xbest and Ybest

correspondingly (step 7). Finally, Algorithm 7 returns Xbest and Ybest.
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Algorithm 7 The LNS-Based algorithm in MCApp.
Input: Base solution found by Algorithm 6, i.e., X◦ and Y ◦, itermax.
Output: Xbest, Ybest

1: Xbest, Ybest ← X◦, Y ◦

2: i← 0

3: while i < itermax do
4: Y ← destroy(Ybest) /* Algorithm 8
5: X, Y ← repair(Y ) /* Algorithm 10
6: if TDC(X, Y ) < TDC(Xbest, Ybest) then
7: Xbest, Ybest ← X, Y

8: i← 0

9: else
10: i← i+ 1

11: end if
12: end while
13: return Xbest, Ybest

Destroy Heuristic

Our destroy heuristic is inspired by [68], which makes large changes to the
current multi-cloud service brokering solution by removing the related
request assignments, e.g., the assigned services are geographically close.
We propose to measure the relatedness among application replicas for de-
stroying Ybest. Thus, N(Rac, Ra′c′) in eq. (4.16) quantifies the relatedness
between replicas Rac and Ra′c′ :

N(Rac, Ra′c′) =

{
dt(Cc, Cc′) if Aa = A′

a

∞ otherwise,
(4.16)

where dt(Cc, Cc′) is the RTD between two data centers Cc and Cc′ . That is,
application replicas are more related if they belong to the same application
and the deployed data centers Cc and Cc′ are close to each other, while less
related if they belong to different applications.
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Algorithm 8 Destroy heuristic.
Input: Replica deployment plan Ybest, ρ, r.
Output: New replica deployment plan Y after replicas removal.

1: k ← random(1, ⌈ρ|Ybest|⌉)
2: Randomly select an application replica Rac from Ybest

3: Initialize a set of application replicasR ← {Rac}
4: while |R| < k do
5: Create a list L including all application replicas from Y not inR
6: Randomly select an application replica Rac from L
7: Sort L such that i < j ⇒ N(Rac,L[i]) < N(Rac,L[j])
8: Choose a random number ξ ∈ [0, 1)

9: R ← R∪ L[ξr|L|]
10: end while
11: Update Ybest as Y by removing replicas inR
12: return Y

Algorithm 8 shows the procedure of the proposed destroy heuristic.
The parameter ρ ∈ (0, 1) is the percentage of application replicas to be re-
moved and r (r ⩾ 1) controls the random selection of replicas for removal.
To discover possibly better ARD solutions, our destroy heuristic first ran-
domly generates an integer k ∈ [1, ⌈ρ|Ybest|⌉] as the number of replicas to be
removed in step 1. Compared with removing a fixed number of replicas,
our method has been verified to improve the performance of LNS in our
experiments (Subsection 4.7.5). Then the heuristic randomly selects one
replica Rac from Ybest (step 2) and adds it to setR (step 3), which is initially
empty. Next, we create a list L to include all application replicas not in
R (step 5) and randomly pick up a replica Rac from R (step 6). In step 7,
the application replicas in L are sorted in the ascending order according
to the relatedness with Rac in eq. (4.16). We select one replica from L with
a probability proposed in [68] and add the replica to R (step 8-9). The
procedure is repeated until k application replicas have been selected for
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removal. Finally, Ybest is updated by removing all replicas inR.

Repair Heuristic

It is highly likely that the replica deployment plan Y after replica removal
cannot satisfy constraint (c). Our repair heuristic aims to generate new
ARD solutions such that ART ⩽ m. Particularly, we must resolve four
issues during the repair process: (1) How many new replicas should be
deployed? (2) Where should these new replicas be placed? (3) How to
dispatch user requests based on the current replica deployment plan? (4)
Which types of VMs should be deployed?

For issue (1), we randomly generate the required number of application
replicas g ∈ [|Ybest| −∆g, |Ybest|+∆g] to ensure that the number of replicas
after repair is not too different from |Ybest|. Here, ∆g is a hyper-parameter
that controls the exploration of the repair heuristic. That is, a larger ∆g

creates more optional values for g. It is helpful to consider more different
and potentially good ARD solutions. The method has also been verified to
improve the performance of LNS in our experiments (Subsection 4.7.5).

For issue (2), i.e., identifying appropriate data centers to place new
replicas, we design a greedy-based method to add data centers until the
number of application replicas reaches g. In order to do this, we calculate
each application’s average utilization rate:

ua =

∑|U|−1
u=0 γau∑|C|−1
c=0 µac

. (4.17)

The application with the highest average utilization rate is selected
to receive new replicas. The rationale is as follows. On the one hand, if
ua ⩾ 1, for at least one application replica Rac, the utilization rate uac ⩾ 1,
which violates eq. (5). On the other hand, if ua < 1, adding replicas for an
application with a high average utilization rate helps to reduce the average
request processing time.

Next, we determine the data center to place a new replica for the se-
lected application. Here, we calculate the benefit of each data center Cc as
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follows:

benefitc =
dta+c − dta

kacv
, (4.18)

where dta+c and dta are the average RTD of application Aa after and before
adding a replica for application Aa using the cheapest VM type Vv in data
center Cc, respectively. The new application replica is placed in the data
center with the largest benefit defined in eq. (4.18) until the number of
application replicas reaches g.

Note that RTD depends on the request dispatch plan X . For issue (3),
we develop a delay-oriented heuristic to quickly revise X for the purpose of
minimizing the total RTD between users and application replicas. Here,
we assume that all replicas of the same application have the identical uti-
lization ua, which can be calculated by eq. (4.17). Although this assump-
tion based on the capacity-based round-robin scheduling [55] cannot guar-
antee the optimality of X for a given Y , it can efficiently prevent any appli-
cation replica from being heavily utilized, thereby reducing the risk of long
request processing time. After defining the workload, i.e., λac = uaµac, for
each application replica, X is generated according to Algorithm 9.

Algorithm 9 demonstrates the process of the delay-oriented heuristic.
For each application Aa, the heuristic first calculates the workload of all
replicas λac (step 2) and creates two lists, i.e., RTDList and DCList, to
record the minimal RTD among all replicas and the corresponding data
center for each user region (step 3). Then the heuristic iteratively finds the
user region with the minimum value in RTDList, and dispatches the re-
quests from this region to the corresponding replica according to DCList.
Concretely, if λac ⩾ γau, that is, the workload of Rac is in surplus, the re-
quests rate from Uu to Rac, i.e., rauc is determined by γau in step 7 and λac

is updated in step 8. Otherwise, rauc is determined by λac in step 10 and
the two lists DCList and RTDList are updated regardless of Rac in step
11. Finally, the heuristic returns X by setting each of its component xauc to
rauc
γau

.
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Algorithm 9 Delay-oriented heuristic for request dispatch.
Input: Replica deployment plan Y , γau, dtuc.
Output: Request dispatch plan X .

1: for all Application Aa do

2: λac ←
∑|U|−1

u=0 γau∑|C|−1
c=0 µac

µac

3: Create two lists RTDList and DCList

4: while Exist requests from Uu not dispatch do
5: Find the user region Uu with min(RTDList) and the correspond-

ing replica Rac by DCList

6: if λac ⩾ γau then
7: rauc ← γau

8: λac ← λac − γau

9: else
10: rauc ← λac

11: λac ← 0 and update DCList and RTDList without considering
Rac

12: end if
13: end while
14: end for
15: return Request dispatch plan X

We address issue (4), i.e., VM type selection, after new replicas are
placed. If the new replica deployment plan Y is not feasible, i.e., ART > m,
we will select new VM types with higher processing speed, e.g., change
the VM type from AWS m5.large to m5.xlarge, for existing application
replicas.

Note that the upgrade of VMs will change request dispatch plan X

and upgrading a single VM may increase the average RTD. For example,
if an application has more Asian users than European users, upgrading
the application replica in Europe alone will reduce the request process-
ing time for European users. However, the upgrade can increase RTD for
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Algorithm 10 Repair heuristic.
Input: Replica deployment plan Y after replicas removal.
Output: Repaired replica deployment plan Y and request dispatch plan

X .
1: g ← random(|Ybest| −∆g, |Ybest|+∆g)

2: while |Y | < g do
3: Determine the application Aa with the highest average utilization

rate according to eq. (4.17)
4: Determine the data center Cc with the largest benefit according to

eq. (4.18)
5: Add a new application replica for Aa at Cc with a random VM type
6: end while
7: Obtain request dispatch plan X by Algorithm 9 and calculate ART

8: while ART > m do
9: Randomly select application replicas from Y

10: Update the selected replicas by upgrading the current VM types
11: Obtain request dispatch plan X by Algorithm 9 and calculate ART

12: end while
13: return X and Y

some Asian users due to re-dispatching requests based on Algorithm 9. To
decrease ART , multiple replicas should be upgraded simultaneously. We
design a random-based method to identify an appropriate replica set for
upgrading. Progressively one application replica is randomly selected and
upgraded until the ART within m. The overall repair heuristic is shown in
Algorithm 10.

4.7 Evaluation of MCApp

In this section, we present the experimental evaluation of our proposed
MCApp approach for solving the ARD with flexible dispatching problem. We
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use the same datasets for the ARD with close dispatching problem detailed
in Subsection 4.5.1.

4.7.1 Competing Approaches and Parameter Settings

MCApp is compared with GA-ARD and two other competing algorithms,
as briefly described below.

The LNS-based approach proposed in [68] supports periodical VM se-
lection in multi-cloud. For convenience, we denote the competing al-
gorithm as LNS-MC. This approach applies a greedy-based constructive
heuristic, a Shaw-based destroy heuristic [149], and a greedy-based repair
heuristic. We apply the same parameter settings as [68]: itermax = 2000,
ρ = 0.3, r = 4. We attempt to fine-tune these parameters, without obtain-
ing noticeably better performance.

HMOHM [109] is proposed to deploy Web applications to public clouds.
The GA-based algorithm in HMOHM applies two evolutionary operators,
i.e., mutation and nascency, to balance global and local search. For pa-
rameters of GA, we adopt the same settings as recommended in [109]: the
population size is 100, the elite size is 10, both the mutation rate and the
nascency rate are 0.5, and the termination time is 5 minutes.

We use CBC solvers from Google OR-Tools package version 7.3.7 [58]
to implement our proposed MILP-based algorithm. Based on our prelim-
inary simulation studies, we decide to set the parameters: ∆u = 1% and
∆m = 5ms. We set 10 minutes as the termination rule to control the over-
all computational time of MCApp. For our proposed LNS-based algorithm,
we follow [68] to determine its parameter settings: itermax = 2000, ρ = 0.3,
r = 4. Besides, we set ∆g = 2, which is sufficient to explore search space
because we cannot gain significant improvements on the quality of the fi-
nal solutions by using larger ∆g, e.g., setting ∆g as 3 or 4. To compare the
results, we run each experiment 30 times on the same computer with Intel
Core i7-8700 CPU (3.2 GHz and 16 GB of RAM).
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Figure 4.8: Comparison of average TDC by competing approaches.

4.7.2 Performance Comparison

Through different constraint handling techniques, all competing approaches
have similar ART within 150 ms. Therefore, we show the average TDC

achieved with different numbers of applications in Figure 4.8. The mean
and standard deviation of TDC are presented in Table 4.3.

When the number of applications |A| is 1, MCApp outperformed LNS-
MC and HMOHM by over 2%. As |A| increases, MCApp can generate
solutions with much lower TDC than LNS-MC and HMOHM. Particu-
larly, when deploying more than 4 applications simultaneously, the per-
formance improvement of MCApp over HMOHM is substantial, i.e., the
cost reduction is more than 30%. We also find that except |A| = 8, the cost
reduction of MCApp than GA-ARD is over 20%, which confirms that dis-
patching the requests from the same user region to different application
replicas rather than the closest one results in better solutions.

From Table 4.3, the average TDC achieved by MCApp is 10.47% lower
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Table 4.3: Performance comparison of the approaches for ARD with dif-
ferent application diversities (TDC per month in USD, the best is high-
lighted).

No. of HMOHM [109] LNS-MC [68] GA-ARD MCApp
Apps TDC n∗ TDC n∗ TDC n∗ TDC n∗

1 1246.08±10.52 2 1244.16±0 2 1661.76±0 4 1219.68±0 3
2 2251.7±84.4 4 2240.64±0 3 2589.6±21.62 7 1978.56±0 4
3 4492.32±179.33 6 3935.81±7.77 6 5049.12±121.38 17 3694.25±41.49 7
4 5244.1±333.92 8 4190.5±0.53 6 4881.6±24.94 13 3816.96±30.11 8
5 6434.93±355.3 10 5558.4±0 6 6140.16±0 17 4481.28±0 9
6 8182.58±587.35 12 6373.44±0 7 7227.36±0 21 5687.16±40.48 13
7 11413.37±819.92 14 8323.2±0 8 9933.12±0 24 7580.52±43.15 13
8 11549.78±709.09 16 8876.16±0 9 9644.4±19.05 29 7794.19±197.69 15
9 13481.4±1091.05 18 10535.04±0 10 11472.48±0 29 9009.41±308.45 15

10 14968.92±1421.1 20 10644.48±0 11 12034.08±6.6 34 9558.6±237.74 19

than LNS-MC, 25.55% lower than HMOHM, and 23.21% lower than GA-
ARD among all problem instances. The observed performance differences
between MCApp and three competing approaches are verified by the sta-
tistical test (Wilcoxon Rank-Sum test) with a significance level of 0.05 for
all problem instances. We also find that MCApp has the small standard
deviations, confirming its stability and reliability for the ARD with flexible
dispatching problem.

4.7.3 Replica Amount

Next, we investigate the effectiveness of MCApp by comparing the num-
bers of application replicas in the final replica deployment plans. The
replica number n∗ of the best solution among 30 runs is presented in Ta-
ble 4.3.

n∗ obtained by GA-ARD is always greater than the other competing ap-
proaches due to the mechanism of close dispatching. In contrast, LNS-MC
tends to use smaller n∗ than MCApp. The smaller replica number decided
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by LNS-MC means more expensive VMs with higher processing speed
have to be rented to serve the user requests, which reduces the utilization
of VMs.

MCApp and HMOHM achieved different n* on 8 out of 10 problem
instances. From the above results, we can conclude that the number of
replicas also seriously impacts TDC for ARD with flexible dispatching, and
MCApp can effectively search for appropriate n for replica deployment
plans. For example, when |A| = 1, MCApp determines n as 3 and deploys
the three application replicas in Northern Virginia, Seoul, and Mumbai
data centers respectively.

4.7.4 Effectiveness of the MILP-based Algorithm in MCApp

As shown in Table 4.4, we also examine the performance of our proposed
MILP-based algorithm, i.e., Algorithm 6, using two baseline methods, the
greedy-based constructive heuristic in [68] (GreedyCon for convenience)
and the heuristic-based method proposed in Subsection 4.4.3, i.e., GreedyAdd,
in terms of TDC. The replica numbers of the base solutions n are also re-
ported in Table 4.4.

GreedyCon achieves compatible performance as Algorithm 6 for single
application deployment. However, when |A| is between 2 and 6, Algo-
rithm 6 outperforms GreedyCon significantly. Besides, Algorithm 6 can
generate better solutions than GreedyAdd with fewer n in all problem in-
stances, benefiting from the flexible request dispatch plans.

For the problem instances where |A| > 6, Algorithm 6 cannot generate
better solutions than GreedyAdd before the termination rule is met. How-
ever, using the information obtained from the solutions generated by Al-
gorithm 6, e.g., the appropriate replica number for applications, MCApp
still can obtain high-quality final solutions by our proposed LNS-based
algorithm, i.e., Algorithm 7. Overall, Algorithm 7 improves the base solu-
tions from Algorithm 6 for all 10 problem instances, whereas GreedyCon so-
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Table 4.4: Base solutions’ comparison for deploying applications with dif-
ferent application diversities (TDC per month in USD, the best is high-
lighted).

No. of Algorithm 6 GreedyCon [68] GreedyAdd
Apps TDC n TDC n TDC n

1 1244.16 2 1244.16 2 1716.48 5
2 2052.00 5 2240.64 3 2602.08 8
3 3767.04 8 4193.28 6 5119.2 13
4 4033.44 9 4193.28 6 4910.4 12
5 5353.92 11 5558.40 6 6140.16 17
6 6134.40 12 6373.44 7 7227.36 21
7 9385.92 13 8323.20 8 9933.12 24
8 9650.88 17 8876.16 9 9666 28
9 11269.44 17 10535.04 10 11472.48 29

10 11721.60 19 10644.48 11 12078.72 32

lutions can only be improved for 2 out of 10 problem instances (|A| = 3, 4).
Therefore, the hybrid approach MCApp is effective in finding good ARD
solutions.

4.7.5 Effectiveness of the LNS-Based algorithm in MCApp

Since there are several newly developed heuristics in our LNS-Based al-
gorithm, i.e., Algorithm 7, we perform ablation studies to analyse its ef-
fectiveness. For the destroy heuristic, we compare Algorithm 8 with the
destroy heuristic in [68] with a fixed k = ⌈ρ|Ybest|⌉. For the repair heuris-
tic, we compare Algorithm 10 with the repair heuristic in [68] with a fixed
g = |Ybest|. For application replica placement, we compare our greedy
method with the random method. For VM type selection, we compare our
random method with the greedy method. The mean TDC of these ablation
heuristics are presented in Table 4.5.
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Table 4.5: Ablation of Algorithm 7 across each contribution in mean TDC

No. of Fixed Fixed Random Greedy
Apps k g placement selection

1 1219.68 1244.16 1232.54 1244.16
2 1979.14 1995.84 1978.66 1978.56
3 3724.75 3684.96 3757.44 3767.04
4 3877.56 3815.83 3918.50 4021.92
5 4484.78 4488.12 4483.34 4492.51
6 5732.11 5606.21 5720.74 5714.64
7 7798.32 7610.81 7642.32 7664.40
8 8779.99 7860.34 8164.97 8190.94
9 10043.30 8983.90 9498.12 9657.65

10 10733.28 9658.63 10218.10 10419.07

First, we can observe that Algorithm 8 achieves better performance
than [68] with the fixed k (shown as Fixed k in Table 4.5) except for the
single application deployment. This means that removing a random num-
ber of replicas in step 2 of Algorithm 8 helps to explore search space, espe-
cially for high application diversity (the improvements exceed 10% when
|A| = 8, 9, 10). Second, setting g randomly in step 1 of Algorithm 10 to
encourage exploration can lead to better performance than the fixed g in
[68] (shown as Fixed g in Table 4.5) for the majority of problem instances
(|A| = 1, 2, 5, 7, 8, 10). Third, the greedy-based method for placing new
replicas in steps 3 and 4 of Algorithm 10 performs significantly better than
the random method (shown as Random placement in Table 4.5). This sup-
ports our analysis in Subsection 4.3.2, e.g., replicating the application with
the highest average utilization rate. Lastly, the random-based method for
VM selection in steps 5 and 9 of Algorithm 10 clearly outperformed the
greedy method (shown as Greedy selecting in Table 4.5). The random
method works effectively in the scenario where the upgrade of a single
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(a) 7 applications to be deployed (b) 8 applications to be deployed

(c) 9 applications to be deployed (d) 10 applications to be deployed

Figure 4.9: Changes of TDC of Algorithm 7

VM has an indeterminate impact on ART as analysed in Subsection 4.3.2.
We depict the change of TDC obtained by Algorithm 7 in Figure 4.9.

While the experiment results are obtained on the problem instance with 7,
8, 9, and 10 applications to be deployed, the same convergence behavior
has also been witnessed on other problem instances. In Figure 4.9, the
convergence of TDC can be found after the computation time of Algorithm
7 exceeds about 100-130s.

4.7.6 Further Analysis

In this subsection, we analyse the overhead of our proposed approach,
i.e., MCApp. Since MCApp combines the iterative MILP and the domain-
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Table 4.6: Variable numbers, numbers of constraints, and overhead of
MCApp (CT and TCT in s.)

No. of Variable Variable No. of CT of CT of TCT of
Apps No. of X No. of Y constraints Alg. 1 Alg. 2 MCApp

1 450 120 61 1.45 14.26 15.71
2 900 240 121 183.9 21.75 205.65
3 1350 360 181 296.47 40.87 337.34
4 1800 480 241 468.87 52.73 521.6
5 2250 600 301 600.00 55.23 655.23
6 2700 720 361 600.00 133.98 733.98
7 3150 840 421 600.00 146.06 746.06
8 3600 960 481 600.00 169.57 769.57
9 4050 1080 541 600.00 183.3 783.3

10 4500 1200 601 600.00 196.51 796.51

tailored LNS, the total overhead of MCApp includes the Computation Time
(CT ) of Algorithm 6 and Algorithm 7. In Table 4.6, we present the ob-
served CT of the two algorithms with respect to different numbers of ap-
plications. The corresponding number of variables (i.e., xauc and yacv) and
number of constraints (i.e., (a’), (b’), and (d’) in Problem 2) are also in-
cluded in Table 4.6. We find that the Total Computation Time (TCT ) of
MCApp increases with the number of applications to be deployed because
every application will produce some variables and constraints to be han-
dled by MCApp. As shown in Table 4.6, Algorithm 7 spends most of TCT

when |A| = 1. For |A| > 1, CT of Algorithm 6 takes up a majority of TCT .
The increasing number of variables and constraints has a greater impact
on CT of Algorithm 6 than Algorithm 7. Overall, MCApp can generate a
ARD solution within 15 minutes. The competing approach LNS-MC can
generate solutions within 10 minutes. We attempt to extend the termi-
nation time of HMOHM, i.e., to 15 minutes, without obtaining noticeably
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better performance. The computation time required by GA-ARD varies
from 20 to 1500 seconds subject to the number of applications.

As confirmed by many existing studies [23], [135], the workload of
many applications does not change significantly within an hour. MCApp
can be periodically applied to re-optimize the replica deployment plan and
request dispatch plan, e.g., every hour, to reduce the total deployment cost
while satisfying the constraint on average response time.

4.8 Chapter Summary

In this chapter, we study the ARD problem in multi-cloud to satisfy the re-
quirements on low average response time. With two types of request dis-
patching, we propose two approaches to minimize the total deployment
cost.

To solve the ARD with close dispatching problem, we propose GA-ARD
to optimize the replica placement and VM selection in multi-cloud for ap-
plication replicas. Due to the complexity of the problem, we design new
problem-specific solution representation, fitness measurement, and pop-
ulation initialization, which are effective for breeding excellent offspring.
The experiments based on the datasets collected from real-world cloud
providers, network environments, and applications show that GA-ARD
outperforms H-GA and the common application replication and place-
ment strategies.

To solve the ARD with flexible dispatching problem, MCApp optimizes
both replica deployment and the request dispatching. MCApp first trans-
forms the nonlinear ARD problem into a series of MILP problems by bound-
ing the utilization rate of VMs for application replicas. Further, we pro-
pose a MILP-based algorithm to effectively generate a base solution with
good resource utilization. Furthermore, to further explore the solution
space, we design a problem-specific LNS-based algorithm to optimize the
base solution. Our experiments show that MCApp can achieve up to 25%
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reduction in TDC compared with GA-ARD and recently developed ap-
proaches.

Our experiments show that both GA-ARD and MCApp require fast
computing facilities to function effectively. For some applications with
highly dynamic workloads, machine learning-based approaches are re-
quired to realize elastic deployment in real-time [79]. Next chapter will
study elastic application deployment (EAD) in multi-cloud. Different from
CAD and ARD, EAD relies on containers to realize the run-time manage-
ment of applications [18], [140].



Chapter 5

Elastic Application Deployment

5.1 Introduction

This chapter addresses Elastic Application Deployment (EAD) in multi-
cloud. The elastic application deployment should dynamically acquire
and release resources to handle varying workloads of applications. The
elasticity of application deployment can improve cost-effectiveness for ap-
plication providers [201]. Currently, elastic development and run-time
management of applications increasingly rely on containers, an industry-
leading lightweight virtualization technology [193]. By bundling together
an application with all its dependencies (e.g., libraries and code), the con-
tainerized application can realize fast deployment and migration in clouds
[18], [140].

Containers lay the technical foundation for scalable application de-
ployment through vertical scaling and horizontal scaling. The vertical scaling
changes the container configuration (i.e., the amount of granted resources)
for application replicas with practically no downtime [123]. The horizon-
tal scaling changes the number of containers for application replicas, i.e.,
containerized applications1. When adding application replicas, the time

1In the remainder of this chapter, we use application replicas, containerized applica-
tions, and containers interchangeably.

127
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Table 5.1: Unit cost (vCPU per hour) of different cloud providers across
different regions

Cloud Providers Min Cost (Regions) Max Cost (Region)
$0.04048 $0.0696

Amazon (N.Virginia, Ohio, Oregon, (Sao Paulo)
and Ireland)
$0.0405 $0.08101

Microsoft (East/North Central US (Brazil South)
and North Europe)
$0.0445 $0.0707

Google (Lowa, Oregon, and (Sao Paulo)
South Carolina)

needed to launch the new containers must be considered. In multi-cloud,
the horizontal scaling is achieved by geographically distributed contain-
ers from different cloud providers. Therefore, it has the advantage to ad-
dress the workload changes in terms of geographical distribution. For the
regional workload variations, vertical scaling is favored due to its fast re-
sponse speed. Note that the prices of resources assigned to containers in
different regions can vary substantially. Table 5.1 shows the minimum
and maximum unit prices of vCPU across all data centers of three lead-
ing cloud providers. We observe that the most expensive region can in-
cur up to twice the cost compared to the cheapest one. For example, the
price of Microsoft in Brazil South is $0.08101, while the price of Amazon
in N.Virginia, Ohio, Oregon, and Ireland is $0.04048.

In practice, enterprise application providers usually apply threshold-
based rules to scale the number and/or capacity of containers [13]. This
strategy is efficient to make scaling decisions at run-time. However, man-
ually choosing appropriate thresholds is difficult and often results in con-
tainers either under-utilized that waste money or over-utilized that slow
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down the request processing speed [79]. Besides, most existing studies for
EAD focus on auto-scaling techniques within a single data center to handle
the dynamic workload of applications [40], [141], [177], [217]. To find the
most cost-effective deployment subject to the constraint on the average re-
sponse time for containerized applications, we should consider geograph-
ically distributed data centers in multi-cloud. However, considering both
the various configurations and locations of containers involves a complex
search space. The existing approaches for EAD in multi-cloud suffer the
high computational cost to obtain adaptive solutions. For example, the
GA-based approach proposed in [6] spends about 6 minutes to generate
deployment solutions. Because the start-up and shut-down time of con-
tainers are short, fast scaling decisions are expected [213]. Moreover, these
approaches usually do not consider the impact of current deployment de-
cisions on the future workload variations, which is important when we
minimize the total deployment cost over a time span such as a billing day
in practice.

In this chapter, we study the EAD problem by learning a policy, as an
efficient strategy to decide when and what scaling actions should be per-
formed so that the total deployment cost over a billing day is minimized
while satisfying the constraint on average response time.

Deep reinforcement learning (DRL) allows to express what an applica-
tion provider aims to obtain, instead of how it should be obtained [141].
The nature of DRL makes it very appealing to adaptively scale containers
for applications with dynamically changing and widely distributed work-
loads. For example, a deep Q-network (DQN) can be trained to approach
an optimal policy for container scaling to minimize the cumulative cost in
the long run [29], [100], [207]. However, it is challenging to achieve both
cost-effectiveness and constraint satisfaction by directly using DQN [213].
Therefore, new learning techniques must be developed to effectively solve
the EAD problem.

Predictive strategies such as time series analysis have been used to im-
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prove the timeliness of scaling decisions, which is important to achieve
cost-effective application deployment [213]. Recurrent neural networks
(RNNs) are one of the most popular machine learning models for time se-
ries prediction [134]. As an advanced technology for building RNNs, long
short-term memory (LSTM) is capable of identifying complicated tempo-
ral dependencies and patterns in complicated time series data [161]. In this
chapter, we seek to utilize an LSTM neural network to provide additional
workload information for making well-informed scaling decisions.

The performance constraint of the EAD problem motivates us to adopt
safe reinforcement learning (RL), which aims to learn a policy that max-
imizes the expected return, while also ensuring the satisfaction of some
safety constraints during the entire learning process [30]. In the litera-
ture, there are two main approaches for safe RL: (1) augmenting the op-
timization criterion using penalty methods [50], [158], and (2) adopting
safe exploration [49]. In this chapter, we apply a combination of the two
approaches to increase the chance of satisfying the constraint on the aver-
age response time. On the one hand, we propose a penalty-based reward
function to train policies toward the constraint-compliant scaling. On the
other hand, we design a safety-aware action executor to ensure that any
scaling decisions made by DRL will not prolong the average response time
beyond the acceptable level. The main contributions of this chapter are
summarized as follows.

Firstly, we identify and formulate the EAD problem with the objective
to minimize the total deployment cost subject to the constraint on the av-
erage response time across widely distributed user communities. To the
best of our knowledge, this is the first study in the literature on the elastic
containerized application deployment considering both the vertical scal-
ing and the location-aware horizontal scaling in multi-cloud.

Secondly, we propose a novel DRL-based approach, namely DeepScale,
with an LSTM-based prediction model for the EAD problem. DeepScale
features the newly designed safety-aware action executor and penalty-
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based reward function.

Finally, we develop a prototype of DeepScale using PyTorch [130], which
supports three leading cloud providers, i.e., Amazon, Microsoft, and Google.
We evaluate the effectiveness of DeepScale through extensive experiments
using realistic workloads for Web applications, i.e., WikiBench [184]. The
experiment results show that DeepScale achieves up to 23% savings in terms
of the deployment cost, compared to Amazon auto-scaling service [13] and
the recently proposed baselines such as A-SARSA [213]. Moreover, Deep-
Scale can achieve 100 percent constraint satisfaction for different applica-
tions.

5.2 Chapter Organization

The remainder of this chapter is organized as follows. Section 5.3 presents
the EAD problem formulation, including the vertical scaling and the location-
aware horizontal scaling in multi-cloud. In Section 5.4, we present our
approach DeepScale. In Section 5.5, we describe the prototype setting and
present the experimental results. We conclude this chapter in Section 5.6.

5.3 EAD Problem Formulation

The aim of the EAD problem is to scale containers for an application un-
der a dynamically changing and distributed workload to minimize the to-
tal deployment cost over a time span subject to the constraint on average
response time. The important notations are summarized in Table 5.2.

In practice, an application involves a potentially large and dynamically
changing number of requests from widely distributed users in global user
regions U . Suppose that the entire time span, e.g., a billing day, is divided
into fixed-size execution periods. We denote the t-th period as It. During
time period It, we represent the workload from user region Uu (Uu ∈ U) in
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Table 5.2: Mathematical notations

Notation Definition
It The tth time period
Uu The uth user center
γu(t) Application request rate from user region u during It

ω(t) The application workload during It

Cc The cth data center
Ac(t) The application replica deployed in Cc during It

rcc The unit cost of vCPUs for containers in Cc

xc(t) Number of vCPUs provisioned to Ac(t) during It

CPU(t) Container deployment plan during It

DC(t) Application deployment cost during It

ptc(t) Average request processing time of Ac(t) during It

µc(t) Workload of Ac(t) during It

λc(t) Capacity of Ac(t) during It

dtuc Round-trip delay between user region Uu and data center Cc

ART (t) Average response time of application requests during It

m Maximum average response time per application request
σu,c(t) Percentage of requests from user region u to ac during It

u(t) Average CPU utilization of containers during It

ANL(t)
Average network latency between user regions and
application replicas during It

terms of application request rate as γu(t). The application workload dur-
ing It, i.e., ω(t) =

∑|U|−1
u=0 γu(t). Multiple application replicas can be utilized

in parallel to process the incoming requests. Each replica works indepen-
dently and processes a subset of the incoming requests [140]. Similar to
[140], we adopt a hierarchical architecture to manage all containerized ap-
plications scalably, following the master-workers pattern [196].

We consider a set of multi-cloud data centers C. In data center Cc ∈ C,
a collection of resources can be allocated to the containerized application.
There are usually four main kinds of resources in public clouds: vCPU,
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memory, storage, and bandwidth. Since the computing resource is the
main factor, we can assume that there are sufficient memory, storage, and
network capacity for the containerized application [64], [173]. Let Ac(t)

denote the containerized application to be deployed in data center Cc dur-
ing time period It and xc(t) (xc(t) ∈ Z+) denote the number of vCPUs
provisioned to the application replica Ac(t). The application deployment
plan during It can be completely captured by the vCPU provision vector
CPU(t) = [xc(t)]Cc∈C , including the number of vCPUs provisioned in all
multi-cloud data centers.

Let σu,c(t) ∈ [0, 1] denote the percentage of requests from user region
Uu to application replica Ac(t) during time period It. The workload of Ac(t)

can be measured by:

λc(t) =

|U|−1∑
u=0

γu(t)σu,c(t). (5.1)

Note that we have
∑|C|−1

c=0 σu,c(t) = 1, that guarantees that any applica-
tion request from user regions will be processed.

Let µc(t) denote the capacity of Ac(t), i.e., the maximum amount of ap-
plication requests processable by Ac(t) per time unit. Following [187], we
model the operation of each individual containerized application as an
M/M/1 queue. According to Little’s Law [98], the average request pro-
cessing time of Ac(t) depends on both µc(t) and λc(t):

ptc(t) =
1

µc(t)− λc(t)
, (5.2)

where µc(t) > λc(t) guarantees that the workload of Ac(t) will not exceed
its capacity.

Let dtuc represent Round-Trip Delay (RTD) between user region Uu and
data center Cc, we can calculate the average response time for all the user
requests during time period It by:
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ART (t) =

∑|C|−1
c=0

∑|U|−1
u=0 γu(t)σu,c(t)(dtuc + ptc(t))

ω(t)
. (5.3)

Let rcc denote the unit cost of vCPUs for containers in data center Cc.
Based on the application deployment plan during It, i.e., CPU(t), the de-
ployment cost of all application replicas during It can be calculated by:

DC(t) =

|C|−1∑
c=0

xc(t)rcc. (5.4)

The total deployment cost is the cumulative deployment cost over the
time span with T period, i.e., t ∈ {1, ..., T}. Therefore, the EAD problem
can be formulated as follows:

min
T∑
t=1

DC(t), (5.5)

subject to:∑T
t=1ART (t)ω(t)∑T

t=1 ω(t)
⩽ m. (5.6)

Constraint (5.6) guarantees that the average response time over the en-
tire time span is below the acceptable threshold m set by the application
provider.

5.4 DeepScale for EAD

Our proposed approach DeepScale solves the EAD problem through scal-
ing containers both horizontally and vertically for application deployment
in multi-cloud. In this section, we present DeepScale. We start with a
high-level overview of DeepScale and then describe the details on how we
achieve the self-adaptive scaling.
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5.4.1 Overview of DeepScale

With sequential decision-making under uncertainty, EAD is naturally an
RL problem. DeepScale realizes auto-scaling by a DRL-based policy. The
scaling policy decides when and what scaling actions are performed to
minimize the total deployment cost subject to the constraint on average
response time. To improve the timeliness and accuracy of scaling actions,
DeepScale includes an LSTM-based workload predictor, which is effective
for predicting workloads of cloud applications [91]. Figure 5.1 illustrates
the overview of DeepScale.

In the training phase, DeepScale trains the LSTM-based workload pre-
dictor based on request arrival history. Then the DRL-based scaling policy
is trained considering the predicted future workload and the monitoring
of containers (i.e., resource utilization [140]) from the current deployment
environment. In the execution phase, the trained workload predictor and
scaling policy are commissioned to scale containers for incoming applica-
tion requests. Before each time period It, DeepScale first predicts the ap-
plication workload during It using the workload predictor. Based on the
predicted workload and the current monitoring of containers, DeepScale
performs scaling for time period It by the scaling policy.

Because different containers may have largely different capacities in
terms of vCPU numbers, DeepScale applies Capacity-based Weighted Round-
Robin (CWRR) [76] to dispatch requests among all application replicas.
That is, the percentage of requests from user region Uu to application replica
Ac(t), i.e., σu,c(t) ∝ xc(t). The rationale of CWRR request dispatching is
two-fold. On the one hand, CWRR is commonly used in practice due to
its simplicity and low computational cost [144]. On the other hand, with
CWRR, all user requests tend to be dispatched to containers with large
capacities. Thus it can prevent any application replica from being heavily
utilized, thereby reducing the risk of long queuing time. Next, we describe
the details on how DeepScale trains the LSTM-based workload predictor
and DRL-based scaling policy.
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Figure 5.1: Overview of DeepScale.

5.4.2 Training the LSTM-based Workload Predictor

Because the application workload in terms of request rate is the key infor-
mation for scaling containers, we use an LSTM neural network to obtain
the predicted workload w(t + 1) before It+1. The prediction neural net-
work has an input layer with 10 nodes to receive previous workloads in
the last 10 time periods, i.e., w(t), w(t− 1), ..., w(t− 9), a hidden layer with
30 LSTM units, and an output layer with 1 node to predict the workload
in the next time period, i.e., w(t+1). The network architecture can provide
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excellent performance in predicting future workloads on the request trace
in our experiments. We use Mean Square Error (MSE) as the loss function
and Adam [90] as the optimizer for training the LSTM neural network. In
our experiments, the LSTM neural network always converges within 100
episodes.

Note that LSTM is sensitive to the scale of the input data. Based on the
historical maximum and minimum workloads, we normalize the work-
load data to the range between 0 and 1 when training the LSTM neural
network. Afterward, the output data of the neural network, i.e., the pre-
dicted workload, is transformed back to the original scale.

5.4.3 Training the DRL-based Scaling Policy

We design a DRL-based scaling system for the EAD problem and define
the scaling system as follows.

• State: The observed state includes the current container deployment
plan (discrete), resource utilization (continuous), and the predicted
workload (continuous).

• Action: To perform scaling actions (discrete), i.e., to adjust the num-
ber of containers (horizontal scaling) and/or the number of vCPUs
provisioned to current containers (vertical scaling).

When performing vertical and horizontal scaling in multi-cloud, the
number of potential scaling actions is indeterminate. Fixed-size action
space is difficult to determine. An intuitive method is to let DQN make a
high-level scaling decisions, i.e., to increase (scale-up), decrease (scale-down),
or maintain the total number of vCPUs provisioned to containerized ap-
plications. To further decide concrete horizontal and/or vertical scaling
actions, we design an action executor to make low-level scaling decisions
based on problem-tailored heuristics. For example, after a scale-up high-
level scaling decision is made, the low-level scaling decision will add one
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Figure 5.2: Training DRL-based Scaling Policy.

unit of vCPU to one current container and/or launch a new container with
one vCPU unit.

Another DRL design challenge is to meet constraint (5.6). To this end,
we propose a penalty-based reward function to guide constraint-aware Q-
learning. The proposed action executor applies safe exploration to ensure
that any scaling decisions made by DRL will not deteriorate the appli-
cation performance. With the two mechanisms, DeepScale can effectively
satisfy the constraint on the average response time.

Figure 5.2 shows the DRL-based scaling policy, which is composed of
a State Constructor, a DQN, and a Safety-aware Action Executor. In the fol-
lowing, we provide a detailed description of each component.

State Constructor

Referring to the centralized architecture for geo-distributed and elastic de-
ployment of containers in Kubernetes, i.e., ge-kube [140], the monitoring
information about the CPU utilization of containers can be periodically
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collected through RESTful APIs, e.g., the Metrics API in Kubernetes2. Let
uc(t) denote the average CPU utilization of the container for Ac(t) during
It. At the end of time period It, the state constructor calculates the average
CPU utilization of all containers by: u(t) =

∑
c:xc(t)>0 uc(t)

n(t)
, where n(t) is the

number of containers. The container deployment plan, i.e., CPU(t), and
u(t) are considered as state features because they significantly affect the
deployment cost and average response time of containerized applications.

Next, the state constructor adopts the change between the predicted
future workload and the current workload, i.e., ∆w(t) = w(t + 1) − w(t),
as the state feature, because it is more straightforward for DQN to make
high-level scaling decisions, i.e., changing the total number of provisioned
vCPUs. Note that in both the training phase and the execution phase,
the future workload w(t + 1) should be predicted based on the historical
traces of application requests. To sum up, the output of state constructor
is s(t) = [CPU(t), u(t),∆w(t)].

DRL for Training DQN

The reward function is designed to guide DRL to minimize the total
deployment cost over time span subject to the constraint on average re-
sponse time:

r(s(t), a(t)) = −DC(t)−max(0, (ART (t)−m)). (5.7)

We apply Q-learning to maximize value function Q(s, a), which esti-
mates the accumulative value. The DRL-based scaling policy applies a
DQN in Figure 5.2 as the function approximator. Following many exist-
ing research works [86], [207], we use experience replay [118] to stabilize
Q-learning. The detailed procedures are shown in Algorithm 11.

2https://kubernetes.io/docs/tasks/debug-application-cluster/resourcemetrics-
pipeline/.
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Algorithm 11 Training DQN
Initialize: Experience replay memory D
Output: DQN parameters

1: for episode = 1 to Max Episode do
2: for t = 1 to T do
3: Obtain current state s(t) from the state constructor
4: With probability ϵ select a random action, otherwise select an ac-

tion with maximum Q-value
5: Perform container scaling using the chosen action a(t) through the

action executor
6: Observe state transition with new state s(t + 1), calculate

r(s(t), a(t)) based on eq. (5.7)
7: Store transition (s(t), a(t), r(s(t), a(t)), s(t+ 1)) in D;
8: Updating Q(s(t), a(t))

9: end for
10: Update DQN parameters using new Q-value estimates
11: end for

Safety-aware Action Executor

We design a safety-aware action executor for scaling containers in multi-
cloud. Based on high-level decisions from DQN, i.e., to scale-up, scale-
down, or maintain the total vCPU number, the action executor makes low-
level scaling decisions as follows.

Scale-up: When the major decision to scale-up vCPUs is made, the
action executor will increase the total number of provisioned vCPUs by at
least one unit. Particularly, the benefit of each multi-cloud data center Cc is
calculated by:

benefit+c =
ANL(t)− ANL+

c (t)

DC+
c (t)−DC(t)

, (5.8)

where ANL+
c (t) and DC+

c (t) are the new average network latency and de-
ployment cost after increasing one vCPU unit in Cc. Particularly, we cal-
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Algorithm 12 Action executor scale-up vCPUs
Input: General decisions to scale-up vCPUs.
Output: The specific scaling actions.

1: Termination← False

2: while Termination = False do
3: Calculate the benefit for each multi-cloud data center benefitc based

on eq. (5.8)
4: Add one vCPU unit to the container or launch a new container with

one vCPU unit in the data center having the largest benefit+c
5: Evaluate the new average CPU utilization u′(t) based on eq. (5.10)
6: if u′(t) < 1 then
7: Termination← True

8: end if
9: end while

culate the average network latency by:

ANL(t) =

∑|C|−1
c=0

∑|U|−1
u=0 γu(t)σu,c(t)dtuc

ω(t)
. (5.9)

Note that for the current application deployment plan, i.e., CPU(t) =

[xc(t)]Cc∈C , if xc(t) > 0, the one vCPU unit will be added to the current con-
tainer in Cc (vertical scaling). Otherwise, a new container with one vCPU
unit should be launched in Cc (horizontal scaling). Based on eq. (5.8), a
larger benefitc means increasing one vCPU unit in Cc can improve per-
formance with lower cost. Therefore, the action executor chooses the data
center with the largest benefit to perform the vertical scaling or horizontal
scaling. Next, we introduce a safe mechanism to ensure that a sufficient
number of vCPUs can be increased in one scaling action. Particularly, the
new average CPU utilization after increasing one vCPU unit is estimated
by:

u′(t) =
w(t+ 1)∑
c∈C µc(t)

, (5.10)
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Algorithm 13 Action executor to scale-down vCPUs
Input: General decisions to scale-down vCPUs.
Output: The specific scaling actions.

1: Termination← False

2: while Termination = False do
3: Evaluate the new average CPU utilization u′(t) if one vCPU unit is

reduced based on eq. (5.10)
4: if u′(t) < 1 then
5: Reduce one vCPU unit from the container with the largest

benefit−c defined in eq. (5.11)
6: else
7: Termination← True

8: end if
9: end while

where w(t + 1) is the predicted workload during the next time period. If
u′(t) ⩾ 1, one more vCPU unit is increased following the above process.
Otherwise, the action executor stops increasing vCPUs. The safety mech-
anism aims to handle the situation when there is a surge in workload. Al-
gorithm 12 demonstrates the overall steps of the proposed action executor
for increasing vCPUs.

Scale-down: When the high-level decision to scale down vCPUs is
made, we introduce another safety mechanism to avoid the potential dete-
rioration of application performance. Particularly, the action executor first
estimates the average CPU utilization u′(t) after reducing one vCPU unit
from current containers by eq. (5.10). If u′(t) < 1, the action executor re-
duces the vCPU unit from the container with the largest benefit calculated
by:

benefit−c =
DC(t)−DC−

c (t)

ANL−
c (t)− ANL(t)

, (5.11)

where ANL−
c (t) and DC−

c (t) are the new average network latency and de-
ployment cost after decreasing one vCPU unit in Cc. If u′(t) ⩾ 1, the ac-
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tion executor aborts decreasing vCPUs to prevent containers from being
heavily utilized and undesired response delay. Algorithm 13 presents the
overall process to decrease vCPUs.

Maintain: When the high-level decision of maintaining vCPUs is made,
the action executor will attempt to reduce deployment cost and improve
application performance simultaneously. Firstly, the new ART (t) and DC(t)

are estimated by increasing one vCPU unit to the container with the largest
benefit and reducing one vCPU unit from the container with the smallest
benefit sequentially. Only when both the estimated ART (t) and DC(t)

decrease, the action executor acts on the low-level scaling decision. The
safety mechanism will avoid reconfiguring current containers too frequently.

Note that in both the training phase and the execution phase, the safety-
aware action executor is commissioned to avoid the low-level scaling de-
cisions that deteriorate the application performance.

5.5 Performance Evaluation

In this section, we evaluate the effectiveness of DeepScale using the real-
world datasets. By implementing a prototype system in realistic multi-
cloud, we compare the performance of DeepScale with state-of-the-art base-
lines. The highlights are:

• For different applications, DeepScale achieves up to 23% savings in
terms of the cumulative deployment cost.

• In the meantime, DeepScale can achieve 100 percent satisfaction on
the constraint of average response time.
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5.5.1 Datasets

We collect the real container pricing schemes in April 2021 from three lead-
ing cloud providers, i.e., Amazon Elastic Container Service (ECS)3, Mi-
crosoft Azure Container Instances4, and Google Kubernetes Engine (GKE)5.
18 major Amazon, Azure, and Google data centers have been included in
the experiments. Furthermore, we adopt 82 user regions from 35 coun-
tries on 6 continents in the Sprint IP Network6 to simulate the global user
community.

To evaluate the network latency between users and deployed services,
we use the network latency information in the Sprint7 IP backbone net-
work databases.

We use real traces of user requests based on the public benchmark Wik-
iBench [184] to create workloads for our prototype system. WikiBench8 is
a Web hosting benchmark allowing the stress-test of systems designed to
host Web applications. Following [179], our workload contains 1% of all
user requests issued to Wikipedia (in all languages). Referring to [198],
we apply Facebook subscribers statistics9 to simulate the distribution of
application requests from different user regions.

5.5.2 Algorithm Implementation

We implement DeepScale using PyTorch [130] on a server with Intel Core
i7-8700 CPU (3.2 GHz and 16 GB of RAM). The built DQN has two fully-
connected hidden layers, each with 64 nodes. The input and hidden lay-
ers use Rectified Linear Units (ReLUs). We apply Adam [90] as the opti-
mizer. The Adam optimizer is an effective method for stochastic optimiza-

3https://aws.amazon.com/fargate/pricing/
4https://azure.microsoft.com/en-us/pricing/details/container-instances/
5https://cloud.google.com/kubernetes-engine/pricing
6https://www.sprint.net/network maps.php
7https://www.sprint.net/tools/ip-network-performance
8http://www.wikibench.eu/
9https://www.internetworldstats.com/facebook.htm
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Figure 5.3: Request rate from WikiBench.

tion. The initial and minimum ϵ, i.e., the probability that DRL randomly
chooses an action (in step 4 of Algorithm 11), are set as 0.2 and 0.01, re-
spectively [73]. Other algorithm settings of DQN include: learning rate α

is 0.001, discount factor γ is 1.0. The size of the experience replay buffer
is 500 and the mini-batch size is 32. The DQN is trained for 200 episodes
because it always converges within 200 episodes. Refer to [201], the ac-
ceptable threshold of ART , i.e., m in eq. (5.6), is set to 150 ms.

We randomly extract one day’s workload in September 2007 from Wik-
iBench10 for training and use the workload on the following day for test-
ing. The duration of each time period, i.e., the time interval between mak-
ing scaling decisions, is set to 3 minutes as in [140], [141]. Figure 5.3 depicts
the request rate (number of requests per second) during the two days (total
960 time periods). In our experiments, we apply 3 applications reported
in [75]. The application processing time for a single request is approxi-
mate 10ms (app-1), 15ms (app-2), and 20ms (app-3) respectively running on

10http://www.wikibench.eu/wiki/2007-09/
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the container with one vCPU unit. Each experiment is repeated indepen-
dently 30 times.

5.5.3 Baselines

To evaluate the performance of DeepScale, we further implement an in-
dustry scaling strategy and two recently proposed baselines in our exper-
iments.

Amazon auto-scaling service [13] provides many methods to control
the number of replicas to be created to meet the increasing or decreasing
workload of an application. We apply the rule-based auto-scaling method
by setting an upper threshold (0.8) and a lower threshold (0.6) on the CPU
utilization of containers [126]. For convenience, we denote the baseline
algorithm as AWS-Scale. Concretely, at the end of each time interval, i.e.,
3 minutes, if the average CPU utilization is above the upper threshold,
AWS-Scale will scale-up the system. In case the CPU utilization is below
the lower threshold, AWS-Scale will scale-down the system. For a fair com-
parison, the heuristics proposed in our action executor are used in AWS-
Scale to make the scale-up and scale-down decisions in multi-cloud.

A-SARSA [213] is a recently proposed container auto-scaling algorithm
based on reinforcement learning. A-SARSA first combines an ARIMA and
a feedforward neural network to predict the CPU utilization and response
time. Then the two predicted values are discretized into different levels
respectively. Finally, a Q table is trained by SARSA to make scaling de-
cisions. To avoid the response time beyond the predefined constraint, A-
SARSA also applies a penalty-based reward function. Because A-SARSA
only considers the horizontal scaling of containers in a single cloud data
center, we also include the heuristic proposed in our action executor in
A-SARSA for a fair comparison.

Deep Q-Learning Container Migration algorithm (DQLCM) [173] is pro-
posed for delay-sensitive applications in fog computing. To select an ap-
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Figure 5.4: Cumulative deployment cost for different applications.

propriate action, DQLCM applies problem-specific strategies for container
migration. Particularly, two thresholds of CPU utilization, i.e., thunder

and thover, are predefined to classify fog nodes into different groups, i.e.,
under-utilized nodes and over-utilized nodes. For the nodes in differ-
ent groups, different heuristics are proposed to determine the migrated
containers and their destination. The action set of DQLCM is defined
as optional container placement generated by these heuristics. To adapt
DQLCM to our problem, we regard container migration as container scal-
ing and fog nodes as application replicas. As recommended in [173], thunder

and thover are set as 0.5 and 0.9 respectively to minimize the deployment
cost subject to the constraint on the average response time.

5.5.4 Cost Comparison

Figure 5.4 demonstrates the cumulative deployment cost over the testing
day. DeepScale saves cost by 23% for app-1, 21% for app-2, and 23% for app-3
compared to AWS-Scale. We cannot gain significant improvements on the
effectiveness of AWS-Scale by tuning the two thresholds of CPU utiliza-
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Figure 5.5: Average response time for different applications.

tion. That is, the cumulative deployment cost cannot be further reduced
without violating the constraint on the average response time. This shows
that the threshold-based method in the industry may be not suitable for
scaling cloud applications with dynamically changing and widely dis-
tributed workloads. The bad performance on the deployment cost in our
experiments is consistent with previous observations reported in [126].

A-SARSA spends 21% more deployment cost than DeepScale on aver-
age for different applications. Compared with the discretization technique
adopted in A-SARSA, DeepScale exploits DQN to learn very complex func-
tions and can handle high-dimension state space more effectively.

DeepScale also achieves average 8% less cost than DQLCM, because the
scaling policies devised by DQLCM are less adaptive without a workload
prediction model. The observed performance differences between Deep-
Scale and all baselines are all verified through a statistical test (Wilcoxon
Rank-Sum test) with a significance level of 0.05.
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5.5.5 Constraint Compliance

Figure 5.5 shows the average response time over the testing day achieved
by DeepScale and the baselines. The red line in Figure 5.5 is the prede-
fined constraint, i.e., m. As shown in Figure 5.5, for app-3, the average
response time of AWS-Scale is slightly over m. We have tried to reduce the
upper threshold of AWS-Scale, e.g., from 0.8 to 0.75, to meet the constraint.
However, the new threshold significantly increases the deployment cost.
Among the three RL-based approaches, A-SARSA always has the lowest
average response time. For DQLCM, the average response time is longer
than DeepScale for app-1 and app-3, while slightly shorter than DeepScale
for app-2.

From the above results, we can conclude that our proposed DeepScale
can obtain the lowest cumulative deployment cost and also guarantee con-
straint satisfaction. Furthermore, from Figure 5.4 we observe that the cu-
mulative deployment cost has small standard deviations over 30 repeated
experiments, confirming its stability and reliability for containerized ap-
plication scaling in multi-cloud.

5.5.6 Analysis

First, we evaluate the accuracy of our LSTM-based workload predictor
in terms of Root-Mean-Square Error (RMSE). The values of RMSE for the
training workload and the testing workload are 1.8 and 1.63 requests/s
respectively. The high test accuracy demonstrates the effectiveness of our
LSTM-based workload predictor.

Next, we depict the change of the cumulative deployment cost and av-
erage response time obtained by DeepScale on the testing day across all
learning episodes in Figure 5.6 and Figure 5.7. For the ablation study, the
results of DeepScale without the LSTM-based prediction model are also in-
cluded in Figure 5.6 and Figure 5.7. We only present the results for app-3
because we can observe a similar trend for other applications. Figure 5.6
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Figure 5.6: Cumulative cost for app-3 in one episode.

shows that the cumulative deployment cost becomes flattened after about
50 episodes. With the LSTM model, DeepScale saves the deployment cost
by 7% without increasing the average response time. By considering the
future workloads, DeepScale is more effective when making scaling deci-
sions. In Figure 5.7, we can observe that the average response time falls
strictly under m (red line) after about 100 episodes (DeepScale) and 150
episodes (DeepScale without LSTM model), which shows that using LSTM
is also helpful to reduce the time required for DeepScale to learn constraint-
compliant policies.

After training, all the three RL-based approaches can scale container-
ized applications for incoming requests with trivial computational over-
head. The total time required to make a high-level scaling decision using
the DQN and a low-level scaling decision through a safety-aware action
executor is within 1 ms. The training time of DeepScale is within 30 min-
utes, which includes the training of the LSTM-based workload predictor
and the DRL-based scaling policy. Periodical use of DeepScale every day
is highly feasible in practice. The training time of A-SARSA is similar to
DeepScale. The training of DQLCM takes a much longer time due to a more
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Figure 5.7: Average response time for app-3 in one episode.

complex action space (about 5 hours).

5.6 Chapter Summary

In this chapter, we first formulate the EAD problem to minimize the cu-
mulative deployment cost over a time span under the constraint on the
average response time. Secondly, we propose a novel approach, namely
DeepScale, combing DRL with an LSTM prediction model, to solve the EAD
problem automatically. With newly designed safe mechanisms, DeepScale
can ensure that any scaling decisions made by DRL will not deteriorate the
application performance. Finally, we implement a fully functioning pro-
totype of DeepScale using PyTorch and conduct extensive experiments on
real-world datasets. The experiments with realistic Web application work-
loads show that DeepScale can significantly reduce the deployment cost of
applications compared with the state-of-the-art baselines, including Ama-
zon auto-scaling service and recently proposed RL-based approaches. In
the meanwhile, DeepScale can effectively satisfy the constraint on the aver-
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age response time for different applications.



Chapter 6

Conclusions and Future Works

The overall goal of this thesis is to solve location-aware application de-
ployment in multi-cloud. This research goal has been successfully ful-
filled by proposing innovative optimization methods and machine learn-
ing techniques for three major scenarios, namely Composite Application
Deployment (CAD), Application Replication and Deployment (ARD), and
Elastic Application Deployment (EAD). For each scenario, we first formu-
lated the problem to capture the key characteristics of the studied scenario.
Then, we developed new effective approaches based on the characteristics
of these scenarios. Specifically, we investigated and proposed different
optimization and machine learning frameworks for solving these prob-
lems. These proposed approaches were compared with state-of-the-art
approaches using real-world datasets. Finally, we provided insights re-
garding the practical value of the research work in the industry.

The remainder of this chapter is organized as follows. Section 6.1 out-
lines the objectives that have been achieved in this thesis. Section 6.2
presents the main conclusions reached in this work. Section 6.3 explores
possible future work directions.

153
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6.1 Achieved Objectives

This thesis contributes to the fields of multi-cloud application deployment
and relevant algorithm designs. The major contributions are listed as fol-
lows.

1. This research starts with the location-aware CAD problem that has
not been properly studied in the literature. Chapter 3 first defines
the objective, variables, and constraints of the service deployment
problem for composite applications in multi-cloud. Then, this chap-
ter proposes a hybrid GA-based approach, i.e., H-GA, for solving the
CAD problem. H-GA features a newly designed and domain-tailored
service clustering algorithm, repair algorithm, solution representa-
tion, population initialization, and genetic operators. Specifically,
the proposed service clustering algorithm clusters dependent con-
stituent services and deploys the services in the same cluster to the
same data center. The clustering algorithm can significantly reduce
the size of the search space of the CAD problem. By transforming a
self-adaptive subset of over-budget solutions into budget feasible so-
lutions, the proposed repair algorithm can improve solution quality
and reduce the computation time of H-GA. Experiments show that
H-GA significantly outperforms the existing approaches, achieving
up to about 8% performance improvement in terms of response time,
and 100% budget satisfaction in the meantime.

2. To satisfy the requirements of some cloud applications on low aver-
age response time, this thesis proposes two approaches under differ-
ent optimization frameworks to solve the location-aware ARD prob-
lem (Chapter 4). For the ARD with close dispatching problem, we de-
veloped an approach under the GA framework, i.e., GA-ARD. GA-
ARD features problem-specific solution representation, fitness mea-
surement, and population initialization, which can effectively opti-
mize the deployment of application replicas in multi-cloud. The ex-
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periments show that GA-ARD outperforms industry-leading appli-
cation replication and placement strategies. For the ARD with flexi-
ble dispatching problem, we develop another approach under a two-
stage optimization framework, i.e., MCApp. MCApp can optimize
both replica deployment and request dispatching by combining an
iterative MILP-based algorithm and a domain-tailored LNS-based
algorithm. Our experiments show that MCApp can achieve up to
25% reduction in total deployment cost compared with several re-
cently developed approaches.

3. This thesis proposes a machine learning approach for the EAD prob-
lem. To the best of our knowledge, this is the first study in the lit-
erature on automatically scaling containerized applications in multi-
cloud (Chapter 5). The proposed DRL-based algorithm, i.e., Deep-
Scale, applies a DQN to capture the optimal scaling policy that can
perform online adaptive scaling. Particularly, the scaling policy is
trained to minimize total deployment cost over a time span while
satisfying the constraint on average response time. The trained pol-
icy facilitates computationally efficient container scaling in multi-
cloud. DeepScale includes an LSTM-based workload predictor to al-
low the DQN to consider predicted future requests while making
cost-effective scaling decisions. Besides, we design a penalty-based
reward function and safety-aware action executor to ensure that any
scaling decisions made by DRL will satisfy the performance con-
straint. The experiments show that DeepScale can significantly re-
duce the deployment cost of applications compared with the state-
of-the-art baselines, including Amazon auto-scaling service and re-
cently proposed RL-based algorithms. In the meanwhile, the novel
safe mechanisms within DeepScale can effectively satisfy the constraint
on the average response time for different applications.
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6.2 Conclusions

This section outlines the main conclusions reached in the major contri-
bution chapters presented in this thesis (Chapter 3 to Chapter 5). These
conclusions are summarized in Table 6.1.

Firstly, three problem formulations were introduced from Chapter 3 to
Chapter 5. The formulated CAD, ARD, and EAD problems have different
optimization decisions to satisfy the practical requirements of multi-cloud
application deployment. The objectives and constraints of the three prob-
lems focus on the application deployment cost and average response time.
Secondly, two approaches under the GA framework, i.e., H-GA and GA-
ARD, were developed to address the CAD problem and the ARD with close
dispatching problem respectively. A problem-specific service clustering al-
gorithm, population initialization, and fitness evaluation were designed
for effective application deployment. Thirdly, a two-stage optimization
approach, namely MCApp, was proposed to optimize both the deploy-
ment of application replicas and dispatching of user requests for the ARD
with flexible dispatching problem. Lastly, a machine learning approach, i.e.,
DeepScale, was proposed for the EAD problem. Moreover, different con-
straint handling techniques were applied to satisfy the requirements of
budgetary control or application performance, e.g., repair algorithms for
H-GA and safe exploration for DeepScale.

6.2.1 Problem Formulation

This thesis introduced three novel problem formulations under two pub-
lic cloud paradigms, i.e., IaaS and CaaS, for multi-cloud application de-
ployment considering the key impact of the location on both the deploy-
ment cost and the application response time. For two request dispatching
mechanisms for ARD, i.e., ARD with close dispatching and ARD with flexi-
ble dispatching, four types of optimization decisions were identified. The
locations of VMs and containers were considered in all formulated prob-
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lems because they significantly affect the deployment cost and average
response time of applications. The cost and performance were considered
as the objectives and constraints of the three problems. Afterward, they
were used to evaluate the proposed approaches.

6.2.2 GA Optimization Framework

This thesis proposed two novel approaches under the GA optimization
framework, i.e., H-GA for the CAD problem and GA-ARD for the ARD
with close dispatching problem. For the chromosome representation, H-GA
applies two-string decoding for both the VM location and VM type. Par-
ticularly, by clustering dependent services, the services in the same cluster
are treated as a single deployment unit in any VM location string, which
significantly reduces the search space. The chromosome representation
of GA-ARD is only for the VM location because the placement of VMs
where application replicas are deployed directly affects the dispatching of
user requests for the ARD with close dispatching problem. Both H-GA and
GA-ARD apply the heuristic-based methods to generate the initial popula-
tion. The seeding strategy improves the solution quality and convergence
speed. Other algorithmic novelties of the two GA-based approaches in-
clude problem-specific genetic operators (H-GA) and fitness measurement
(GA-ARD).

6.2.3 Two-stage Optimization Framework

The ARD with flexible dispatching problem simultaneously optimizes the
deployment of application replicas and the dispatching of user requests.
The complexity of optimization decisions motivated us to adopt a two-
stage optimization framework to progressively improve the solution qual-
ity. Concretely, our proposed approach, namely MCApp, first transforms
the problem into a series of MILP problems through bounding the utiliza-
tion rate of VMs for application replicas. A MILP-based algorithm was
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proposed to effectively generate a base solution with good resource uti-
lization. To explore the search space, a problem-specific LNS-based al-
gorithm was developed to further optimize the base solution. The LNS-
based algorithm includes the new destroy heuristic and repair heuristic
to improve the deployment of application replicas and a delay-oriented
heuristic to dispatch user requests in order to achieve high performance
based on the current replica deployment.

6.2.4 Machine Learning Techniques

In this thesis, machine learning techniques were developed to solve the
EAD problem. On the one hand, we sought to utilize an LSTM neural net-
work to predict the workload of cloud applications. On the other hand,
we adopted DRL to devise effective scaling policies for applications with
dynamic and widely distributed workloads. Our proposed algorithm,
i.e., DeepScale, can consider the predicted future workload and perform
both vertical scaling and horizontal scaling for containers in multi-cloud
through the learned scaling policies.

6.2.5 Constraint Handling Methods

The CAD, ARD, and EAD problems are all constrained problems. Under
different optimization frameworks and machine learning techniques, we
proposed different methods for handling constraints in this thesis. For H-
GA, we developed a repair algorithm during the evolution process. The
repair algorithm can transform a self-adaptive subset of over-budget so-
lutions into budget feasible solutions by iteratively reducing the total de-
ployment cost to be within the given budget. The novel repair algorithm
can achieve a desirable trade-off between performance and computation.
The constraint handling method of GA-ARD is integrated into the fitness
measurement of GA. That is, a GAIN-based heuristic was designed to en-
sure the average response time is below the acceptable threshold. For
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MCApp, the solutions generated by the LNS-based algorithm are constraint-
compliant through the domain-tailored repair heuristic. Finally, DeepScale
innovatively applies two safety mechanisms, i.e., a penalty-based reward
function and a safety-aware action executor, to ensure that any scaling de-
cisions made by DRL will satisfy the performance constraint.

6.3 Future Work

Due to the scope of this research, there are still some areas for potential
extensions and future work. This section briefly gives some research di-
rections related to deployment scenarios and algorithmic techniques.

6.3.1 Deployment Scenarios

For location-aware application deployment, data sovereignty [80] and edge
computing [160] are two promising directions.

Data Sovereignty

Multi-cloud deployment imposes inherent security and privacy concerns
regarding data analysis and exchange for some applications that handle
sensitive information [44]. For example, citizen data of a smart city appli-
cation being stored in cloud may be relocated to a data center in a differ-
ent jurisdiction or accessible to users located in different jurisdictions. To
address the data sovereignty issues, location-aware data placement [128]
and location-based data encryption [44] can be applied. Note that both
the two solutions impact the deployment cost and performance of appli-
cations, which deserve to be studied in future work.
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Edge Computing

In practice, the multi-cloud solutions can integrate infrastructures and op-
erations across private clouds, public clouds, and edge [188]. For some
latency-sensitive applications, edge computing is an appropriate solution
[214]. In edge computing, a significant volume of light computation and
storage infrastructures, called edge servers, are deployed close to users
[202]. In this case, application requests can be offloaded to suitable edge
servers to shorten response time. Currently, leading cloud providers have
started to deliver the edge services to locations close to the large popula-
tion and industrial centers, e.g., AWS Outposts1 and Local Zones2. The
deployment cost of applications in edge is based on a different pricing
scheme3 from cloud. The deployment solutions combining cloud with
edge is still an open question to researchers. Future work can be explored
to consider the extra resource layer provided by edge computing.

6.3.2 Algorithmic Techniques

For algorithmic design, the following techniques are promising to satisfy
some practical requirements of multi-cloud application deployment.

Multi-objective Approaches

In most cases, application providers have exact requirements on the bud-
get and performance of application deployment. However, sometimes it is
difficult for application providers to specify budget information or accept-
able performance threshold. Besides, a high level of domain expertise is
required to exactly weigh any conflicting objectives, such as total deploy-
ment cost and average response time. Multi-Objective Evolutionary Al-
gorithms (MOEAs) can be utilized to search for the Pareto front, in which

1https://aws.amazon.com/outposts/
2https://aws.amazon.com/about-aws/global-infrastructure/localzones/
3https://aws.amazon.com/outposts/pricing/
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each solution represents a unique trade-off deployment solution in con-
sideration of all conflicting objectives. To efficiently find non-dominated
deployment solutions, new clustering methods can be designed to group
application users according to their locations. The cluster analysis infor-
mation will help to expedite the search for good solutions.

Multi-agent RL

In this thesis, we apply the centralized application deployment for the
EAD problem. The centralized approaches may suffer from the lack of
scalability, especially when considering a larger number of data centers
and user regions. It is necessary to investigate the decentralized applica-
tion deployment approaches to overcome the scalability problem. Novel
multi-agent RL-based approaches can be developed for the decentralized
EAD problem with multiple cooperative deployment centers in multi-cloud.
Efficient agent coordination mechanisms are needed to realize multi-agent
coordination.
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