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Abstract
High temperature coated conductors are useful for their large T c, J c and Bc2

values. They are manufactured in long lengths and are available from numerous
commercial distributors around the world. As a result, they have found use in
many applications that can utilise the large magnetic fields that these materials
can produce.

In any complex circuit that incorporates superconducting components, it can be
desirable to include superconducting analogues of semiconducting power electronics,
such as switches, and transistors. The ideal switch in a superconducting circuit has
zero resistance when the switch is closed and infinite resistance when open. Only
superconductors can provide the zero resistance closed state. Thus it is the onset of
resistive phenomenon, the conditions under which a non zero resistance is induced
in a superconducting tape, stack, or loop, that are the subject of this thesis. The
two phenomena that are examined are: geometric current saturation, and dynamic
resistance. Both are investigated using existing finite element models employing the
H -formulation and a power-law resistivity in the software COMSOL, accompanied
by experimental verification.

Flux flow resistance arises when the transport current in a high temperature
superconductor is larger than the critical current I c. This current produces a
sufficiently large Lorentz force such that there is continuous vortex motion through
the superconductor. This results in an effective DC resistance. Today, the critical
current is universally identified using an arbitrary voltage measurement criterion.
In this thesis, it is demonstrated that current filling and eventual saturation across
the width of a HTS tape can be observed using magnetic field imaging near to the
tape surface and correlated with changes in the measured I-V characteristics. A
simple model is presented to explain this behaviour which requires only that the
material have a non-linear resistivity. The current filling behaviour is modelled
using numerical methods and validated against experimental data obtained from
commercial wires. Finally, it is shown that the saturation determined using either
magnetic field imaging or voltage measurements is sensitive to the rate of change of
current.

Dynamic resistance is a resistive phenomenon that occurs when an AC magnetic field
interacts with a high temperature superconductor that is simultaneously carrying a
DC transport current lower than the critical current. Dynamic resistance occurs
when the AC field amplitude is larger than some sample dependent threshold.
Comparison between numerical models and measured data demonstrate that field
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dependent J c values are required to reproduce the experimentally observed transient
voltage waveforms. The finite element models were then used to analyse the
transient current distributions inside of vertical stacks of parallel connected tapes
and predict values for the threshold magnetic field. The threshold fields exhibit a
transition from ’tape-like’ to ’slab-like’ behaviour as the stack aspect ratio varies.
Finally, the effective resistance of a current carrying hollow superconducting strip
exposed to an alternating perpendicular magnetic field is presented and analysed
via finite element modelling.
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1
Introduction

High temperature superconductors (HTS) have attracted attention since their

discovery in 1986 by Bednorz and Muller [1]. They have superconducting transition

temperatures above 77 K and can remain superconducting in significantly higher

magnetic fields compared to low temperature superconductors. They can also

support current densities orders of magnitude larger than in typical metals, with

zero electrical resistance. These properties coupled with the availability of km+

lengths of commercially manufactured wire is facilitating the development of new

technology. Notable examples include fusion magnets [2–6], NMR / MRI magnets

[7], electric aircraft motors [8–12], dynamos [13–18], and transformer rectifiers [19,

20]. Many of these applications are useful in the pursuit of sustainable energy. This

provides motivation to investigate the electromagnetic performance of HTS materials,

particularly at a time when humanity must reduce its reliance on burning fossil fuels.

Two types of commercially manufactured wire are investigated in this thesis;

coated-conductors and powder-in-tube conductors. The superconducting wires are

manufactured by one of following companies, SuNAM, SuperPower, and InnoST.

Each of these wires has a thin film geometry with each manufacturer having a

separate method to include the superconducting layer within the wire. Throughout

the text, the terms "wire" and "tape" will be used interchangeably to reference them.

The wire from SuperPower and SuNAM are examples of coated-conductors.

SuperPower (see figure 1.1 (a)) uses ion beam assisted deposition to add buffer

layers onto a substrate. This is followed by a ReBCO layer, added using metal

organic chemical vapour deposition [21]. A silver capping layer is sputtered on top

before the wire is encased in a copper stabiliser layer. The SuNAM wire has a

1
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Figure 1.1: a) SuperPower coated conductor architecture [24], b) BSCCO powder-in-tube
wire architecture.

similar structure, but the ReBCO layer is added using the reactive co-evaporation

by deposition and reaction process [22].

BSCCO wire (see figure 1.1 (b)) is manufactured using the powder in tube

method [23]. Silver tubes containing a precursor powder are drawn and placed

inside of an additional silver-alloy tube. This is then repeatedly extruded, rolled, and

sintered to produce a homogeneous wire. Transport measurements are performed

on all three types of wire in chapter four and dynamic resistance measurements are

made on SuNAM and SuperPower wires in chapter five.

All HTS tapes are type-II superconductors. Dissipation in type-II superconduc-
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tors is linked to the motion of Abrikosov vortices. These are filaments of quantised

magnetic flux within the material that move in response to a combination of

electromagnetic and pinning forces. This thesis focuses on finite element modelling

of two particular dissipative mechanisms involving the motion of vortices; geometric

current saturation and the onset of flux flow resistance, and dynamic resistance. In

both cases, emphasis is given to highlighting changes in the model results when

the superconducting response to changes in the local magnetic flux density are

considered.

Unlike conventional metals, the current distributions in superconducting wires

are highly non-linear. Flux flow resistance and dissipation in HTS tapes occurs when

the transport current is increased above a threshold value, known as the critical

current, I c. As the transport current is increased from zero, both the transport

current and self-magnetic field penetrate the tape from the tape edges and migrate

towards the centre. At I c in self-field conditions, the Lorentz force is strong enough

to cause constant vortex motion with vortex-anti vortex annihilation occurring in

the tape centre (in a DC background field, a single polarity vortex traverses the

entire width of the conductor). In either case, vortex motion drives current through

the normal vortex cores, resulting in dissipation. I c is typically identified using

voltage measurements with an arbitrary electric field criterion (commonly 1 µV

cm−1). This approach inherently overestimates the critical current as the conductor

must already be in the dissipative regime. This thesis will investigate how the

current distribution in HTS tapes varies as the voltage definition of I c is approached.

An alternative definition for I c is presented, based on current saturation over the

tape width and observed using near surface magnetic field measurements.

Dynamic resistance occurs in HTS tapes that carry a DC transport current

while exposed to an AC magnetic field with an amplitude greater than some sample

dependent threshold. Under these conditions, an effective resistance is observed

attributed to a net passage of flux across the conductor width. This phenomenon can
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be understood using the Bean critical state model which assume a field independent

critical current density. In this thesis, an investigation of the DC and transient

behaviour of coated conductors exhibiting dynamic resistance is presented when the

electrical properties of the conductor change with the local magnetic flux density.

The models are first validated against simple geometries and then extended to more

complex configurations which are not easily realised experimentally.

1.1 Thesis outline

In chapter two, a brief description of the relevant physics of superconductivity is

presented. The concepts surrounding flux quanta are discussed followed by the

Bean critical state model. The power law is introduced which describes the gradual

transition between superconducting and non-superconducting states. Analytical

equations for the DC electric field in the resistive phenomenon known as dynamic

resistance are presented for superconducting slabs, strips, and hollow slab geometries.

This is followed by a brief description of the finite element method, which is used

to produce supporting numerical analysis throughout this thesis.

In chapter three, the finite element models and experimental methods used

throughout this thesis are described. This includes the constituent partial differential

equations and boundary conditions used for the various problems considered here.

The method by which experimental data is incorporated within the model to capture

the superconducting properties as a function of magnetic field is also presented.

This is followed by a brief description of the experimental procedures used in this

work, including: I-V measurement procedures, power supplies, hall sensor arrays,

and the magnet used to apply an AC magnetic field to samples during dynamic

resistance measurements.

Chapter four presents experimental measurements and finite element modelling

of the magnetic field profile near the surface of a HTS coated conductor as a function

of total transport current, IT. Data is presented in the range of 0 < I c � I t. A
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method to identify the current saturated state in HTS tapes is presented which

relies solely on changes to the measured magnetic field signal. The technique is

then demonstrated on a number of different tapes.

In chapter five, dynamic resistance in a single tape under a perpendicular field

is presented. Numerical analysis indicates that in order to fully reproduce the

observed transient voltage response the FE model must employ a field-dependent

resistivity. The complex current and electromagnetic field distributions that lead to

this result are presented graphically using contour plots.

In chapter six, the FE model is modified to investigate the dynamic resistance

in vertical stacks of parallel connected HTS tapes. The redistribution of transport

current throughout the cycle of the applied field is presented. The FE model is

used to investigate how the cable threshold fields transition between strip and slab

like behaviour.

In chapter seven, the effective dynamic resistance exhibited by a hollow super-

conducting strip is presented. It is demonstrated that the physics is essentially

identical to that of a hollow slab geometry, albeit with a different expression for the

threshold field. Three different output regimes are identified, which are not entirely

captured by the analytical model. Again, the current and electromagnetic field

distributions that give rise to these regimes are presented visually using contour plots.

Finally, in chapter eight, conclusions regarding the body of work presented here

are given and possible directions for future research are suggested.



2
Theoretical Background

This chapter gives a brief introduction to superconductivity with an emphasis on

type-II superconductivity (all high-temperature-superconductors are this type) as

well as established models which describe the observed behaviour.

2.1 Type-II Superconductivity

Superconductivity is a state of matter exhibited by certain elements and alloys,

typically when cooled below a material dependent transition temperature. The

transition is often identified through resistivity measurements which become vanish-

ingly small upon entering the superconducting state. This was first observed by

Kamerlingh Onnes [25] in Hg in 1911. In 1933, Meissner and Ochsenfeld discovered

that these materials not only exhibit zero resistivity, but also expel magnetic fields

from their interior [26]. These two criteria define superconductivity of the first type.

Today, superconductors are referred to as type-I or type-II. Type-I superconduc-

tors are described by the above two criteria, whilst type-II differs in that it permits

partial magnetic field penetration of the superconducting material in the form of

Abrikosov vortices [27].

Figure 2.1 shows the phase diagrams for type-I and type-II superconductors. In

type-I materials, the material will transition between states if the temperature is

increased above the transition temperature, T c, or if a sufficiently large magnetic

field, Bc, is applied. In type-II materials, there is is an intermediate phase between

the Meissner and normal states, termed the mixed state which permits partial flux

penetration. In this thesis, only type-II superconductors are considered.

6
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Figure 2.1: The phase diagrams of type-I (left) and type-II (right) superconductivity.

2.2 Flux Vortices, Pinning, Creep, and Flow

When a superconductor is in the mixed state, the material is partially penetrated

in the form of Abrikosov vortices. These are regions of normal conducting material

in which the local magnetic field exceeds the upper critical field H c2. Each vortex

is generated by a circulating supercurrent and is penetrated by the flux quantum,

Φ0 = h/2e where e is the fundamental charge and h Planck’s constant. Vortices

have an attractive (repulsive) interaction with other vortices if the supercurrents

circulate in the opposite (same) direction. Vortices can also interact with variations

in the crystalline structure. The Langevin equation which describes vortex motion

can be written as [28]

ηvv = FL + FP + FT (2.1)

where v is the velocity of a vortex, ηv is the vortex flow viscosity, FL is the Lorentz

force J × B, FP is the pinning force, and FT is the thermal fluctuation force.

The Lorentz force, FL, is a result of the overall distribution of current and

vortices within the conductor. The pinning force FP is a result of interactions

between vortices and the crystal lattice, typically in the form of impurities which are

not superconducting and as a result have a tendency to capture and hold vortices.
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The final force in equation 2.1 is the thermal actuation force which is a result of

random temperature fluctuations within the material.

Flux vortices are regions of normal matter and their motion through supercon-

ducting regions results in dissipation. As discussed by Bardeen [29], the dissipation

can be accounted for assuming supercurrents pass through the normal vortex

cores as a result of the vortex motion. This has led to extensive research into

enhancement of the pinning forces as a means to improve the critical current

density (current at which vortices start to move) [30–33]. There are typically two

regimes of loss in a superconductor. When the Lorentz Force and pinning force

are approximately equal and opposite, the thermal fluctuation force can de-pin

vortices. When thermal forces are the dominant depinning forces, the resultant

loss is known as flux creep. When either the applied magnetic field or transport

current is increased such that the Lorentz force overcomes both the pinning and

thermal forces, there is a continuous flow of vortices which is appropriately known

as flux flow. It is important to note that vortex motion causes dissipation and as

such, non-zero electric fields may always be present which is quite different from

what one might expect of a type-I superconductor.

2.3 Bean Critical State Model

It is often desirable to enhance the pinning forces. Type-II superconductors with

particularly strong pinning centres are referred to as ’hard superconductors’. The

presence of pinning centres allows for flux to be trapped after cycling of an external

magnetic field or transport current. The trapping of flux within the conductor

leads to hysteresis in measured magnetisation loops. While the collection of forces

which act upon vortices can be quite complex, there is a simple model which is

particularly useful for predicting the behaviour in materials with strong pinning -

the Bean critical state model [34, 35]. The Bean model makes two key assumptions;

1) there is a maximum current density that the superconductor can support, termed

the ’critical current density’, J c. 2) Any electromotive force present within the
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Figure 2.2: Two important geometries to which the Bean critical state model has been
applied. A superconducting strip (left) in an external field applied perpendicular to the
broad face of the conductor. A slab (right) in an external field applied parallel to the
broad face of the conductor.

superconductor induces the full J c. The critical current of a conductor with cross-

section A is therefore given by I c = J cA. There are two particularly important

geometries to which the Bean critical state model has been applied. A slab in

parallel field and a thin film (strip) carrying a transport current. The geometries

for these two cases are shown in figure 2.2.

2.3.1 Infinitely Thick Slab in a Parallel Field

Take first the case of a superconducting slab of width 2a, infinite thickness d

and length l, aligned with the x,y,z axes respectively. An external field, H app, is

applied along the y-axis, parallel to the thickness. In this scenario, the currents

and fields only vary along the x-axis.

∂xHy = ±Jc (2.2)

Induced screening currents flow in the z-direction to oppose the externally applied

field. The Bean critical state model applied to this configuration is shown in 2.3.

Shown are the field profiles over the width as the applied field is increased from

zero to 2H pen in plot (a) and reduced back to zero in plot (B). The corresponding
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Figure 2.3: Magnetic field and current distributions within a thick superconducting slab
with the field applied parallel to the broad faces of the conductor. Plots (a) and (c) show
the magnetic field and current distributions for a virgin conductor across the conductor
width as the applied field is ramped to twice the penetration field. Plots (b) and (d) show
the magnetic field and current distributions as the applied field is then decreased back to
zero

current profiles are given in plots (c) and (d). Once the external field is returned to

zero, there are remnant screening currents which leave the slab with a net magnetic

moment. Here, H pen is the external field such that flux penetrates across the entire

sample, H pen = J ca.

It is worth noting that there have been modifications to the Bean critical state

model such as those by Anderson [36] and Kim [37] in which an arbitrary function

is employed to describe the variations of the critical current density with magnetic

field. However, a large number of fundamental properties can be explained with

a constant J c critical state model.
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Figure 2.4: Magnetic field and current distributions within a thin superconducting film
carrying a transport current. Plots (a) and (b) show the current density and magnetic
field distributions across the width of a virgin conductor as the transport current is
ramped from zero to 95% of I c. Plots (c) and (d) show the current density and magnetic
field as the current varies from 95% of I c to -95% of I c.

2.3.2 Infinitesimally Thin Film carrying a Transport Cur-
rent

In practice, commercial HTS coated conductors are thin films which are often

exposed to perpendicular magnetic fields. The current distribution within an

infinitesimally thin film with constant J c was first presented by Norris [38] where

the strip problem was conformally mapped to that of a superconducting cylinder and

then solved using the method of images. This work was later expanded in [39–41]

to describe the current and field profiles in thin films carrying transport currents,
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exposed to external magnetic fields, and combinations of the two. The results are

quite different to those from the slab model. For a superconducting thin film of width

2a along the x-axis, thickness d « a along the y-axis, infinitely long in the z-direction

and carrying a transport current parallel to the length, the following solutions for the

current and perpendicular magnetic field distributions across the width are given by:

Jz(x) = 2Jc

π
arctan

(
a2 − b2

b2 − x2

)1/2

for |x| < b (2.3)

Jz(x) = Jc for b < |x| < a (2.4)

Hy(x) = 0, for |x| < b (2.5)

Hy(x) = Hcx

|x|
arctanh

(
x2 − b2

a2 − b2

)1/2

for b < |x| < a (2.6)

(2.7)

Under self-field conditions, there is a region of width b in the conductor,

b = a

√√√√1− I2
t

I2
c

(2.8)

inside of which no magnetic field penetrates and the current density is below J c.

Outside of this, the current density is J c. The above expression is valid for a

virgin conductor where the transport current is increased from zero to I0. When an

alternating current is applied, and the current is now at an intermediate current I,

the current and field distributions can be found from a superposition of the virgin

state and another conductor with twice the critical current and current (I t-I0).

J↓(x, It, Jc) = J(x, I0, Jc)− J(x, It − I0, 2Jc) (2.9)

H↓(x, It, Jc) = H(x, I0, Jc)−H(x, It − I0, 2Jc) (2.10)

for intermediate applied currents -I 0 < I t < I 0, there is a new penetration depth,

b′ = a

√√√√1− (I0 − It)2

4I2
c

(2.11)

inside of which flux is frozen in. By I = -I 0, the virgin state has been reestab-

lished with the transport current flowing in the opposite direction. Examples of

current and field distributions during virgin ramping and upon current reversal

are shown in figure 2.4.
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2.4 E-J Power Law

The Bean critical state model assumes a step relationship between the current

density and the electric field. The maximum lossless current density is the critical

current density J c. This model is applicable to many type-I superconductors and

some HTS materials, however there are many where the onset of dissipation is

continuous and a critical current is not so well defined. Instead, it is a universal

practice to use a power-law

E = Ec

Jc

∣∣∣∣ JJc

∣∣∣∣n−1
J (2.12)

to describe the I-V characteristics of superconducting materials where the critical

current density J c and the flux creep exponent n are the two fitting parameters.

As discussed by Rhyner [42], the power law provides an interpolation between the

two limiting cases of an Ohmic material (n = 1) and the critical state model (n

= ∞). The power-law is used to describe many high temperature superconductor

materials with the variation in behaviour as a function of n shown in figure 2.5.

This is based on a wide range of transport measurements which have empirically

demonstrated that the power law can fit a substantial range of HTS materials

including BSCCO, GdBCO and YBCO [43].

2.4.1 Constant vs Field Dependent J c

The critical current density J c is one of the most important parameters when it comes

to designing superconducting devices. There are a number of phenomena exhibited

by superconducting materials that can be explained assuming a field independent

function for J c. In practice however, J c is typically dependent on temperature,

the local magnetic field and its orientation relative to the wire [43]. In the case of

commercially manufactured ReBa2Cu3O7 wire, J c can be highly anisotropic with

respect to the applied field angle which can result in large variations in the local I c

along the length of a given wire. In many cases, it becomes desirable to account for

this variation within the material. There exist a number of analytical models which

assume J c depends on the applied field (such as Kim’s modification of the bean
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Figure 2.5: The E-J power law with varying flux creep exponent n. Ohm’s corresponds
to n = 1 while the critical state model is given by n = ∞

model [44]).

The data presented in figure 2.6 shows the variation in performance of commercial

wire (manufactured by SuperPower) as the applied magnetic field is orientation

relative to the wire is varied.

Measurements of J c can also be obtained from superconducting films or bulks

through parameter fits to measured magnetisation curves [44–46]. However, mag-

netisation current distributions differ substantially from the transport condition,

leading to different internal field distributions, which then affect the local value

of J c(B). Furthermore, the absolute accuracy of current values obtained via this

approach is highly dependent on the homogeneity of the sample, as well as prior

calibration of the magnetometer instrument and geometric demagnetisation factors.

Reel-to-reel magnetisation measurements are also routinely made on HTS tapes [47,

48], but are subject to similar accuracy limitations, and this is also the case for

magneto-optical techniques [49–51].



2. Theoretical Background 15

Figure 2.6: Example of the J c field dependence of a SuperPower coated conductor
measured in the SuperCurrent system at Robinson Research institute

2.5 Dynamic Resistance

2.5.1 Slabs and Strips

Figure 2.7: Example of a superconducting strip in an environment that leads to dynamic
resistance. A transport current flows parallel to the length of the tape and an external
AC field is applied at some angle relative to the tape.
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When superconducting devices are exposed to time-varying fields while carrying

DC transport currents, dissipative interactions occur between moving flux vortices

and the transport current, generating a time-averaged net DC electric field [52].

This electric field results in an effective resistance, termed the dynamic resistance

[53, 54]. This DC resistance is conventionally discussed in terms of the net volume

of flux which traverses the DC current carrying region of the superconductor during

each cycle [52, 55, 56], which requires that work is done. There exist a number of

studies on this subject including theoretical analysis [53, 54, 56–64], experimental

measurements [61, 62, 65–78] and finite element modelling [62, 63, 74–84]. Much

of this recent work has been motivated by a need to understand loss in coated

conductors that may occur in HTS AC machines such as motors, generators, and

dynamos.

2.5.1.1 Analytical Derivation

As described by [53, 58, 60], when a superconducting thin film is exposed to an

alternating magnetic field, magnetisation currents flow in the outer regions of the

conductor. If the amplitude of the applied field is less than some sample-dependent

threshold value Bth, the applied field fails to fully penetrate the conductor and there

is an interior region of frozen flux. Any transport current flowing in this region does

not experience a change in magnetic field and is able to flow with zero electrical

resistance. However, once Bth is exceeded this interior region experiences a change

in flux and a non-zero dynamic resistance is observed. This resistance is due to the

work done by the power supply in applying a Lorentz force to the net flux traversing

the film. Note here that this view is adopted in order to obtain an analytical

expression for the DC resistance. However, as will be demonstrated in chapter four,

the transport current does not occupy a constant fraction of the conductor, nor is it

confined to the centre of the tape. Both [58, 61] state that for a superconducting strip

of width 2a and thickness d filling the space |x| ≤ a, |y ≤ d/2 and |z <∞ , centred
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at (x, y) = (0, 0) and experiencing a homogeneous magnetic field Bapp(t) = Ba0

sin(ωt) applied along the y axis, the total dynamic resistance per cycle is given by

Rdyn

fL
= 4a
Ic

(Ba0 −Bth) (2.13)

Several differing expressions have been derived for the threshold field of a single

strip are compared to experimental and numerical results in this thesis. They are

listed here along with an expression for the threshold field of a slab in a parallel field,

and with brief description of how each expression is derived. All expressions are

given in terms of the reduced current i = I t / I c where I t is the applied transport

current. The threshold field for a slab is given by

Bth,slab = µ0Jca(1− i) (2.14)

This expression is given in [58]. The prefactor is the penetration field for a slab

given from the Bean critical state model and multiplied by a fill factor representing

space lost to the transport current. There are a number of differing expressions

for the threshold field in strip geometries. These are listed below.

Bth,strip = µ0Jcd

2π

[
1
i
ln
(1 + i

1− i

)
+ ln

(
1− i2

4i2

)]
(2.15)

is first given in [58]. This is derived using the conformal mapping methods outlined

in [38–40]. As discussed in [85], the literature surrounding these derivations typically

provide a very condensed description of the conformal mapping technique, hampering

adoption in the wider community. However, [85] demonstrates that these expressions

can be arrived at numerically for various HTS geometries.

Bth,Jiang = 4.9284µ0Jcd

2π (1− i) (2.16)

Here, [61] describes Bth as the field at which it is no longer energetically favourable

for flux to be screened from the central region of the conductor. In the limit of

the transport current tending to zero, Bth occurs at the peak of the normalised

AC magnetisation loss [39]. This is computed numerically and then multiplied by
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a filling factor to account for space in the conductor lost to the transport current [56].

An expression has been proposed for the threshold field in a parallel connected

and vertically stacked HTS tapes. This was derived concurrently with the finite

element analysis of stacks presented in this thesis. In that paper, Bth for a

stack is given by [86]

Bth,stack(N) = µ0a
0.8Ic(1− i)

2D2ln
[
cosh

(
πa
D

)]
(N0.8 − 1) + π2a2

(2.17)

Equation 2.17 uses the same linear superposition of screening and transport

currents (in conjunction with the external susceptibility computed by Fabbricatore

[87]) for infinite vertical stacks. This expression accounts for both shielding and

demagnetising effects from the neighbouring tapes.

2.5.2 Hollow Slab

In the previous section, the DC output of a single continuous piece of superconductor

was discussed. However, during the writing of this thesis, it was demonstrated that

a general expression for the dynamic resistance of a hollow slab (superconducting

loop) can also be obtained [88]. The derivation is presented below

Consider a hollow superconducting slab which has four branches as shown in

figure 2.8 (a). The left and right branches have width b and the hollow gap has

width 2l, all in the x-direction. The slab has length L along z and thickness w in

y. A homogeneous magnetic field, Bapp = Ba0sin(ωt)ŷ, is applied normal to the

loop and the transport current is flowing in the z-direction. In this geometry, it

is assumed that L � 2(b+l) and w � 2(b+l). Thus there is no variation in the

magnetic field in the y-direction.

Application of Faraday’s law to the loop gives∮
c=Λ1324

E · dl =
∫
S

dB
dt
· dS (2.18)



2. Theoretical Background 19

Figure 2.8: The geometry of the superconducting hollow slab and the magnetic field
distribution within the loop during one ac-field cycle. (a) 3D schematic of the geometry
showing the superconducting hollowed slab, formed by 4 branches, the left and right
branches both having width, b, the distance between these two branches is 2l, the thickness
of the slab is w, and the length of the slab is L. (b) Cross-section of the slab under time-
varying magnetic field. The transport current flows in the inner part of each branch
(shown in blue), whilst shielding currents flow in the outer parts (shown in white). Here,
i = It/Ic = 0.5. (c) Magnetic field profile inside the loop. Left figure: Profile whilst the
applied field increases, the electric-centre line is located at -l-bi. Right figure: Profile
whilst the applied magnetic field decreases, the electric-centre line is shifted to l+bi.
Reproduced with permission from [88].
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where S is the area formed by the contours Λ1,Λ2,Λ3, and Λ4. The slab is assumed to

be sufficiently thick along Λ3, and Λ4 so that no flux penetrates the loop through the

front and back sides. Therefore, the electric field along Λ3, and Λ4 is zero such that

∫
Λ2

E · dl−
∫

Λ1
E · dl =

∫
S

dB
dt
· dS (2.19)

The problem is 1D where the electric field and current density are parallel, each

having a component only in the z-direction and the magnetic field has a component

only in the y-direction. It is further assumed that these slabs behave according to

the Bean critical state model with a constant J c. The threshold field is the same

for a single slab and is given by equation 2.14.

When Bapp is applied to the loop, the transport current will occuppy the central

regions of the inner edge of each branch, as shown in figure 2.8 (b). If the amplitude

of the applied field is less than the threshold field, ie, Ba < Bth,Slab, then neither

branch is fully penetrated by the external field and the current density on the inner

edge of each branch is less than J c. As a result, the transport current carrying

regions experience no electric field. If the applied field amplitude is larger than

Bth,Slab, then each branch is fully penetrated such that the screening and transport

currents interact. In the following, only the case where Bapp > Bth,Slab is considered.

During the part of the cycle when the magnetic field is increasing, (↑), the zero

crossing of the electric field is positioned at the left hand edge of the transport

current [53, 57], x = -l-bi. Choosing this location for contour Λ1 and any position

of the transport current, x ∈ (-l-bi,-l)∪ (l,l+bi) as Λ2, equation 2.19 becomes

E↑(x, t) = (x+ l + bi)dB
dt

(2.20)

During the descending (↓) part of the cycle, the electric zero crossing is now

located at (l+bi). Now choosing this location for Λ2 and x ∈ (-l-bi,-l)∪ (l,l+bi)

as Λ1, equation 2.19 becomes
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E↓(x, t) = −(l + bi− x)dB
dt

(2.21)

The EC electric field, EDC is given by the mean value over one period of the

applied field, T, of the spatially averaged electric field in the transport current

carrying region.

EDC = 1
T

∫
T

1
2bi

∫
X
E(x, t)dxdt (2.22)

where X = x ∈ (-l-bi,-l)∪ (l,l+bi). Substitution of equations 2.20 and 2.21

into 2.22 yields

EDC = 4
T

(l + bi)(Ba −Bth,Slab) (2.23)

where dB/dt = ±2(Ba-Bth,Slab). It is important to note that equation 2.23 relies on

having a well defined electric centre line [53]. As we shall see in chapter 7, at low

transport currents the electric centre line does not lie in either branch, meaning that

equation 2.23 is not applicable. However, it is clear that as l → 0, the expression

for the dynamic resistance of a single piece of conductor, equation 2.13 is recovered.

2.6 Numerical Finite Element Methods

Figure 2.9: Diagram showing 1st and 2nd order finite elements. The elements are
comprised of edges and nodes.
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As discussed in section 2.5, analytical models for superconducting devices exist

for simple geometries. For more complicated shapes and conditions, a number of

numerical methods have been developed in which Maxwell’s equations are solved in

conjunction with an E-J power-law that describes the superconductor resistivity.

The numerical methods are typically named after the variables in which the governing

partial differential equations are given. These include the A-V (vector and scalar

potentials) [89–91], T-A (current and vector potentials), [92, 93], H (magnetic

field) [94, 95], and minimum electromagnetic entropy (MEMEP) [96, 97].

In this thesis, all of the chapters include finite element numerical analysis (chap-

ters 6 and 7 present data solely from numerical methods) which has been performed

using the H -formulation, implemented in the commercial software COMSOL. This

software solves Maxwell’s equations in a given geometry for a collection of boundary

conditions and constitutive relations for the magnetic and electric fields. The

H -formulation has been chosen as it is capable of solving numerical problems with

high aspect ratios and non-linear resitivities as demonstrated in its extensive use in

the existing literature [81, 94, 95]. It is also particularly easy to implement with

the commercial software COMSOL when compared with other methods which are

developed and implemented ’in-house’ such as MEMEP. The numerical method

used is the finite element method, which works by discretizing the continuous space

where the problem is defined into a finite number of points or nodes where the

differential equations will be solved. The nodes are connected into sub-domains

which are known as elements. The solution is arrived at by solving a collection of

equations across all of the nodes and then interpolated for the space between. The

solution obtained in each element provides an approximation to the true solution of

whatever partial differential equation is being considered.

Figure 2.9 gives an example of 2D triangular elements that are 1st and 2nd order.

Each element consists of three edges with either corner nodes (1st order) or corner

and side nodes (2nd order). The interpolation between nodes is described by a
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polynomial and the element order refers to the order of the polynomial. Using

higher order elements is more computationally expensive as they have more unknown

coefficients which must be solved for while simultaneously offering curvature of

the solution between elements. In the following finite element models, first order

elements are used in both the superconducting and air domains [98].



3
Methods

This chapter provides an outline of the various experimental procedures and specifics

concerning numerical methods. This includes a description of finite element models,

differential equations, and boundary conditions which these models solve as well as

the experimental equipment and measurement routines used in later results chapters.

3.1 The Finite Element Method

In this thesis, a number of superconducting configurations are modelled. All

are 2D with the HTS cross-section in the xy-plane, and having infinite length

along z (see figure 2.7).

3.1.1 H -Formulation

As mentioned above, the H -formulation solves Maxwell’s equations in terms of the

magnetic field H. The space is divided into two sub-domains the superconducting

domain such as a tape, stack or loop, and the surrounding air. It is assumed the

magnetic flux density and the magnetic field are related by

B = µ0H (3.1)

in all domains (ie the magnetic field is generated by conduction charge carriers

rather than by bound currents [99]). Faraday’s and Amperes laws expressed

in terms of H are given by

∇×H = J (3.2)

and

∇× E = −µ0
dH
dt

(3.3)

24
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without the displacement current. Because the B lies in the plane of the conductor

cross-section, the vector potential satisfying

∇×A = B (3.4)

A only has a component in the z-direction. Noting that we have already assumed

translational symmetry along the z-direction, ∇·A is therefore zero and the Coulomb

gauge condition is satisfied. Amperes law in terms of the vector potential then

simplifies to a Poisson equation

∇2A = −µ0J (3.5)

Equipped with both E and A, the electric potential can be found from the relation-

ship

E = −∇V − ∂tA (3.6)

for comparison with values measured experimentally. A magnetic field boundary

condition is imposed on the perimeter of the surrounding air domain using the

magnetic field node in Comsol. This node enforces

n×H = n×H0 (3.7)

on the chosen boundary where the external magnetic field, H0, is prescribed by

the user. Throughout this thesis, H0 is either zero (to model self-field conditions)

or a sinusoidal function (Bapp = Ba0sin(ωt) to simulate the given configuration

inside a uniform, alternating magnetic field. It is assumed that the electric field and

current are parallel and have a component in the z direction while the magnetic

field has components in the plane (see figure 2.7). The electric field and current

density are related by

E = ρJ (3.8)

The resistivity in air, ρn = 1 Ωm. In the superconducting domain, the resistivity

is given by a power law

ρsc = E0

Jc

∣∣∣∣JzJc
∣∣∣∣n−1

(3.9)
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Field dependent J c and n values are incorporated within the model via lookup

tables (the wire characterisation process which generates these lookup tables is

discussed in section 3.2.1).

3.1.2 Meshing and Error Tolerances

An important aspect of finite element modelling is the setting of error tolerances

and the meshing of the finite domain. The impact of changing the tolerance settings

and using different shapes for the finite elements are discussed here for a model of

a single HTS tape with a constant J c

There are two important error tolerances which are set by the user, the absolute

tolerance and the relative tolerance. Both of these parameters are used internally

in COMSOL’s time dependent solver to determine whether or not the solution is

convergent. The relative tolerance gives the largest acceptable solver error relative

to the size of each state as time steps are taken. The absolute tolerance provides

the largest acceptable solver error relative to the size of each state when the state

values are near zero [98]. If the determined relative or absolute error, exceeds either

of these parameters, the solver reduces the time step and tries again.

When meshing the model, the mesh density must be greatest where it is expected

that there will be large spatial variations in the computed variables. In the models

used through this thesis, the greatest spatial variation is expected within the

superconducting domain and the immediately surrounding air. Figure 3.1 shows

examples of the meshing in a model comprised of a single tape. Figure 3.1 (a) shows

the entire circular air domain and (b) a closer view towards the HTS tape.

Three different examples of meshing for the HTS cross-section are considered;

triangular, square and rectangular which are shown in (c), (d), and (e). An E-I

test for a single HTS tape is simulated where J c and n are assumed to be constant

(100 A and 30 respectively). The model is run using the three different element
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Figure 3.1: Meshing of finite element domains for a single HTS tape. Plot (a) shows
the entire model with a view of the surrounding air domain and meshed with triangular
elements. (b) shows a magnified image of the meshing nearer to the tape. (c-e) shows
examples of the meshing inside the HTS tape using triangular, square, and rectangular
meshing elements.
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Figure 3.2: Calculated I-V response of a superconducting tape with a linearly increasing
transport current for triangular, square, and rectangular mesh elements and varying
relative tolerance settings. The absolute tolerance was set to 1e-7.

shapes (both first and second order) for the HTS domain and for two different

values of the relative tolerance, 1e-3 and 1e-5. The results are given in table 3.1

and the resultant E-I curves are shown in figure 3.2. The computed E-I curves

show little variation in the electric field above 1e-7 V/m regardless of the choice

in element shape, order, and relative tolerance. In all models used throughout

this thesis, first order elements are used in the HTS domain and the absolute and

relative tolerances are set to 1e-3 and 1e-5 respectively [98].

Shape Order DoF Time (s)
triangle 1st 6739 24 / 43
triangle 2nd 22394 60 / 87
square 1st 7212 31 / 43
square 2nd 24104 192 / 163

rectangle 1st 7729 27 / 45
rectangle 2nd 26094 151 / 228

Table 3.1: Table detailing meshing shape, degrees of freedom to be solved and solver
time for relative tolerance settings of 1e-3 (left) and 1e-5 (right).
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3.1.3 Visualising Data through Contour Plots

The 2D finite element models used in this thesis calculate currents and fields within

the HTS wires which vary in both space and time. To graphically visualise these

calculated values, it is convenient to consider the equivalent ‘sheet value’ that

would be present in a planar superconductor of infinitesimal thickness. These

sheet values are obtained by integrating (or averaging depending on the variable

of interest) over the thickness of the superconductor layer, d, as shown in the

following equations. The geometry is the same as that shown in figure 2.7. These

equations define the equivalent sheet current density K z, the equivalent sheet

critical current K c, the equivalent sheet perpendicular magnetic field B′y and the

equivalent sheet electric field E ′z.

B′y(x, t) = 1
d

∫ d
2

− d
2

By(x, y, t)dy (3.10)

E ′z(x, t) = 1
d

∫ d
2

− d
2

Ez(x, y, t)dy (3.11)

Kz(x, t) =
∫ d

2

− d
2

Jz(x, y, t)dy (3.12)

K ′c(x, t) =
∫ d

2

− d
2

Jc(x, y, t)dy (3.13)

3.2 Experimental Methods

The following section outlines the various experimental procedures employed to

collect the experimental data presented in chapters 4 and 5. These include transport

(in self-field and AC field conditions) and magnetic field measurements. While

experiments typically involved combinations of these procedures run in parallel,

they can be broken down into the following techniques.
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3.2.1 HTS Wire Characterisation

As discussed in section 3.1, field dependent J c values are included in the FE model

using lookup tables. The data within the lookup tables were meausured using the

Super-Current system [32, 100] from Robinson Research institute. Super-Current

I c measurements are performed by mounting a coated conductor on a G10 holder

positioned between a superconducting magnet. This sample holder is able to freely

rotate within the bore of the copper magnet and can obtain data over a full 360◦. The

Super-Current system is capable of applying magnetic fields up to 10 T, however, no

characterisation data was obtained at fields greater than 500 mT within this thesis.
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Figure 3.3: Experimentally measured I c(B, θ) and n(B, θ) data at 77 K as a function of
applied magnetic field amplitude and orientation relative to the sample (θ = 0°corresponds
to the field applied perpendicular to the conductor). Plots (a), (b) show the SuNAM
data, plots (c), (d) show the Super Power data, plots (e), (f) show the InnoST data
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In this work, all results were performed in LN2 environments and all SuperCurrent

data was obtained at 77 K. An example of the measured I c(B,θ) and n(B,θ) data

for three commercially manufactured tapes is presented in figure 3.3.

3.2.2 Stepped I-V Measurements

In chapter four of this thesis, a number measurements are made as the transport

current is increased. Both stepped and linearly ramped transport measurements

are performed.

In stepped transport measurements, the voltage is measured along the length

of an HTS coated conductor submerged in a LN2 bathtub. Transport currents

were applied using an Agilent 6680A power supply with a 2 second period between

steps and voltage measurements. The voltage was measured using twisted pairs

of enamelled copper wire connected to an Agilent 34420 nano-voltmenter. The

transport currents were increased in 2 A increments from zero to 80% of the target

current. The steps were then reduced to 0.5A to obtain finer resolution around the

target current.

Note that as discussed earlier, current cycling results in a remnant magnetisation

in the conductor. Where relevant, virgin measurements refer to a conductor which

has been reheated above T c (90 K) and had any remnant super-currents purged

prior to that measurement being made.

3.2.3 Ramped I-V Measurements

I -V measurements were also taken during linear ramping of an injected transport

current. The Agilent 6680A was driven using an analogue signal produced from

an NI DAQ USB-9263 analogue output module. The current was measured using

a HAL-600 open loop current sensor. The measured voltage signal was amplified

using an A10 DC nano-volt amplifier connected to a NI DAQ USB-6211 module.
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Figure 3.4: Example of I-V measurement on SuperPower wire with dI t/dt=300As−1.
(a) the measured current using the open loop sensor (b) shows the measured electric field
on ascending and descending legs of the virgin cycle. (c) shows the measured electric field
on ascending and descending legs of the 2nd cycle with the inductive pickup visible in
both cycles.
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As the current is ramped, there is a constant inductive component which must

be subtracted to obtain the signal due solely to the transport current flowing within

the conductor. Figure 3.4 shows an example of a dataset from a ramped transport

measurement. Figure 3.4 (a) shows the current measured using the open loop sensor.

Also shown are the voltage measurements obtained on ascending and descending

legs of the measurement for a virgin conductor (plot (b)) and during the second

cycle (plot (c)). The inductive voltage to be subtracted is shown in both cases.

3.2.4 Surface-Field Measurements

Throughout this thesis, magnetic field data has been obtained using one of two

separate Hall Sensor Arrays. The two arrays were employed to measure orthogonal

components of the magnetic field at the surface of a HTS coated conductor.

The perpendicular magnetic field was measured at the surface of five different

HTS tapes from three different manufacturers. These comprised ReBCO tapes of

different widths from SuperPower: 12 mm wide (SCS12050-AP M4-382-5); 4 mm

wide (SCS4050-AP M3-774); and 2 mm wide (SCS2030-AP M4-479-3 0910). A 12

mm wide ReBCO tape from Sunam (HCN12500-190726) was also studied, as well

as a 4 mm wide Bi-2223 tape manufactured by InnoST.

A linear array of cryogenic Hall sensors (Arepoc THV-MOD 7U) was mounted

within a G10 board, flush to its surface. The sensors were aligned so that they capture

the perpendicular magnetic field component at the tape surface. The array consists

of seven individual sensors with each having an active area of 0.1 mm2, Each sensor

was calibrated before use, with signals measured using a custom made low-noise

instrumentation amplifier. The Hall sensors have a horizontal spacing of 1.5 mm.
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Figure 3.5: (a) shows the Arepoc Hall Sensor array, (b) shows the same array housed
inside a G10 sample board. The black lines indicate where the coated conductor sits with
the array positioned approximately 1mm from the conductor surface
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Figure 3.6: (a) shows the P15A Hall Sensor array
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Figure 3.7: Schematic showing the typical position of the Hall sensor arrays relative to
a coated conductor.

Another linear array comprised of P15A through-slot sensors from Advanced

Hall Sensors [101] were employed. the sensors were aligned to capture the magnetic

field component that is parallel to the width of the coated conductor. The array

is comprised of 16 sensors mounted on a custom PCB (see figure 3.6 (a) and

(b)). Similar to the Arepoc array, the P15A array was calibrated before use,

using a Helmholtz coil, with the signal measured using custom made, low noise,

instrumentation amplifiers. The sensors have a horizontal spacing of 1 mm and a

vertical separation from the HTS conductor of approximately 1 mm.

Figure 3.7 shows the positioning of the two Hall sensor arrays relative to a

coated-conductor wire in a typical experiment.

3.2.5 Dynamic Resistance Measurements

Dynamic resistance measurements were performed using 30 cm lengths of individual

coated conductor tape mounted on a G10 sample board. This was positioned

between a pair of copper-wound racetrack coils capable of producing sinusoidal AC

magnetic fields with a peak amplitude up to 100 mT and frequencies of the order

of 100 Hz. Two separate voltage measurements were obtained using two pairs of

voltage taps 20 cm apart. One pair was helically wound around a cylindrical sheath

encapsulating the sample board, whilst the other was a twisted pair running up the



3. Methods 38

centre of the sample. The racetrack coil, HTS tape positioning on the sample board

and voltage tap diagrams are shown in figure 3.8. The measurement procedure

was as follows. Firstly, the magnet was energised, and a zero-transport current

voltage measurement was taken over two seconds. The transport current through

the sample was then increased to the reduced current values i = 0.3, 0.5, and 0.7,

and voltage measurements were taken for each current. The current was then reset

to zero and the magnet re-energised to produce a larger AC field. This process was

repeated until the desired parameter space had been covered. The voltage

waveform measured at zero transport current for each AC field amplitude is due

solely to inductive pick-up from the loop formed by the connecting leads between

the sample and instruments. This provided a calibration baseline which was then

subtracted from subsequent measurements performed at each non-zero current, in

order to yield a signal solely due to the interaction of the AC field with the transport

current flowing through the coated conductor tape. The measured voltage signal

passed through an NF Electronics 5325 Isolation Amplifier before being measured

by an NI DAQ USB-6210 module, recording at a sampling rate of 50 kHz. The

collected waveforms were also digitally processed to produce an averaged single cycle

waveform for comparison to the model results. The DC resistance was obtained

through time-averaging the voltage waveform over this full cycle.
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Figure 3.8: a) Photograph of the experimental apparatus used to perform dynamic
resistance measurements. b) Photograph of the experimental sample holder in which a
REBCO tape is mounted (within the cylindrical sheath). c) Schematic diagram showing
the geometry of the sample voltage taps used in the experimental sample holder. Both
consist of a twisted pair of copper wires. The centre voltage taps run along all the
broad face of the conductor while the spiral pair are wound around a cylindrical sheath
surrounding the sample.
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Critical Currents in Coated Conductors

In the following chapter, we demonstrate that the current saturated state in both

virgin and previously magnetized HTS coated conductor wires can be identified by

near surface magnetic field measurements. A simple analytical model is presented

which requires only that the material has a non-linear E-J relationship. The

analytical model is validated against FE model results which employ a power-law

E-J relationship as well as experimental data obtained on a variety of different

commercial tapes using both perpendicular and parallel field measurements. Finally,

it is demonstrated that the rate at which current is increased has a significant effect

on the measured saturation current.

Sections 4.1 to 4.4 have been published in Superconductor Science and Tech-

nology in 2021 https://doi.org/10.1088/1361-6668/ac068b. Sections 4.5(concerning

perpendicular / parallel field measurements on virgin and previously magnetized

samples) and 4.6 (the effect of ramp rate on the saturation current) are additional

unpublished material.

The self-field critical current, I c, of a superconducting wire is determined by the

material, geometry, and local flux pinning landscape of the wire [102, 103]. It is

a technologically important parameter as it sets a maximum limit on the injected

transport current, beyond which damage is likely to occur due to the onset of

localised resistive heating. It is also a key input parameter for several widely used

analytical equations which are derived from the critical state model (CSM) [35,

40], such as those used to calculate hysteretic AC loss [38, 39, 41, 58, 63]. In the

CSM, I c=AJ c, where A is the cross-sectional area of the conductor, and J c is a

constant critical current density which results in a Lorentz force equal to the flux

40
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pinning force [102]. As described in section 2.3, when a transport current is injected

into a superconducting tape starting from the virgin state, the critical state is first

established at either edge of the conductor and then fills towards the middle [35,

38–40]. The critical current is reached once the local current density at all points

within the conductor is equal to J c. At this moment supercurrents have ‘saturated’

the entire conductor volume indicating that it has reached its maximum capacity

for current transport. Herein the geometrically saturated critical transport current

is referred to as I c,S.

The CSM assumes that supercurrents above I c cannot flow (i.e. the conductor

immediately transitions to the normal state). However, practical high-T c super-

conductors differ markedly from this ideal behaviour, as they exhibit a gradual

onset of flux-flow dissipation over a wide current range prior to the onset of normal

conduction [104]. As discussed in section 2.4, transport resistance measurements

of HTS tapes do not produce a well-defined threshold value for the transition

from the zero-resistance state. Instead, the conventional approach is to define the

transport critical current of an HTS tape as the current at which the resistive

voltage drop across the conductor is equal to 1 µV cm−1 [32, 103, 105]. Here

this value is referred to as I c,µV. The I c,µV criterion presents a signal threshold

which is readily detectable by experimental voltage measurements, but the arbitrary

choice of magnitude is inherently unsatisfying. Furthermore, measurement of any

resistive voltage drop necessitates that the superconductor must already be in the

dissipative flux-flow regime. This is distinctly different to the ‘current-saturated

but fully-pinned’ definition of I c that is invoked in the critical state model.

It has been reported that a transition in the evolution of the near-surface perpendic-

ular magnetic field above a coated conductor tape can be observed when ramping

the transport current, which appears to correlate with the transition to flux-flow

dissipation within the tape [106–108]. The authors of that work have attributed

this effect to a novel London-Meissner-type effect occurring at the surface layers

of the tape. In this Chapter, it will be shown that it is not necessary to invoke

any new physics in order to explain the observed near-surface-field behaviour. In
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fact, it simply arises from the established model of electrical conductivity in a

type II superconductor due to flux pinning/creep/flow [42]. This now provides a

much clearer understanding of the origin of the effect, and offers the opportunity

to apply this technique to define and measure the I c,S of practical HTS tapes in

the non-dissipative regime. However, this task is complicated by the fact that the

onset of this surface-field transition occurs gradually with increasing current. This

problem is addressed by presenting a robust criterion which unambiguously defines

the self-field ‘saturated critical current’, I c,S, for any high-aspect ratio tape, via a

Hall sensor measurement of the near-surface magnetic field.

4.1 Finite Element Model

The finite element geometry used in this chapter is a 2D model of the rectangular

cross-section of an HTS wire in the xy-plane. The governing H -formulation equations

are given in Section 3.1.1.

Two different function are used for J c,µV and n:

1. A quasi critical state model (QCSM) with constant J c,µV and artificially high

n value. In this model,J c,µV = J c0 (the experimentally measured value) with

n=100.

2. An interpolated J c,µV(B,θ) model which uses experimentally measured values

for J c,µV and n as outlined in section 3.2.1. Several tapes are considered here,

the measured J c,µV(B,θ) properties for each tape are shown in figure 3.3

Meshing of the FE model consists of 200 elements along the conductor width

and 3 elements across the conductor thickness. The elements have a growth ratio

of 3 which results in finer meshing at the conductor surface. This is illustrated in

Figure 4.1(c). This results in a higher degree of smoothness when compared with

uniform meshing, particularly at lower currents. The surrounding air sub-domain is

automatically meshed using COMSOL’s in built free triangular meshing tool with
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Figure 4.1: (a) Complete view of the FE model geometry with triangular mesh in the
air subdomain, (b) Magnified region showing the HTS tape cross-section, (c) Highly
magnified region showing the left hand HTS tape edge, illustrating the high mesh density
at the tape edges



4. Critical Currents in Coated Conductors 44

the boundary sufficiently far away (0.5m) such that the magnetic field produced

due to currents in the HTS coated conductor is zero.

Transport current is applied using an integral constraint of the form:

It =
∫
S
J · dS = Iapp(t) (4.1)

where dI t/dt is 10As−1. Only ramping from the virgin state is considered until

Section 4.5 where the I app(t) has the form of a tent function ie I app(t): 0A → 600A

→ 0A → 600A.

Because the hall array spacing from the tape is several orders of magnitude further

away from the conductor than the conductor thickness, the measured magnetic

field profile is indistinguishable to that produced by a 1D distribution of currents.

Thus it is reasonable to transform our our 2D model data into 1D data using the

equations given in Section 3.1.3

The average electric field over the conductor cross-section is equivalent to the exper-

imentally measured voltage drop in steady electromagnetic fields, and is given by

Ez,ave = L

2ad

∫ a

−a

∫ d/2

−d/2
ρJz(x, y)dydx (4.2)

where L is the separation between the voltage taps along the length of the

conductor for a given measurement.

Finally, the perpendicular and parallel components of the magnetic field are

examined at a 1mm separation from the broad face of the conductor which

approximates to the sensor array position during measurements.

4.2 Identifying the Saturation Current

Before considering the FE and experimental results, it is useful to consider a simple

analytical description of the impact of current filling in an HTS tape on the magnetic

field signature. Consider a tape comprising a superconducting film of infinitesimal

height and width 2a, and which has a field-independent constant critical sheet
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current density, K c . This geometry is shown in Figure 4.2(a).

Figure 4.2: (a) Experimental arrangement and orientation of the coated conductor
tape and Hall sensors which is also utilised in the FE models. Each individual sensor is
numbered 1 to 7 from left to right. (b) Schematic plots depicting the current distributions
(during ramping) in a superconducting tape for the two cases: I t > I c,S and I t < I c,S.

The local sheet current density is K z (x) at each point within the film, such

that the total transport current along the tape, is obtained as I t=
∫ a
−aK z(x)dx.
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The perpendicular component of the magnetic field measured within the plane

of the conductor is then given by [39, 40, 109]:

B⊥,xi
(It) = µ0

2π

∫ a

−a

Kz(xi, It)yi
(xi − x) dx (4.3)

Considering the two cases illustrated in Figure 4.1(b).

Case 1. When I t>I c,S , the magnetic field can be considered a superposition

of the contribution from the saturated current distribution at I c,S plus an additional

contribution from the excess current ∆i = I t–I c,S , which is uniformly distributed

over the entire cross-section of the conductor. This can be expressed as:

B⊥,xi
(It) = µ0

2π (
∫ a

−a

Kc,S(x)
xi − x

dx+
∫ a

−a

∆i
2a(xi − x)dx) (4.4)

Differentiating with respect to I t and integrating with respect to x, yields:

dB⊥,xi
(It)

dIt
= µ0

4πa ln
(
|xi − a|
|xi + a|

)
(4.5)

Hence, it can be seen that in this regime, B⊥ is expected to increase linearly

with I t at all points across the tape (i.e. for xi < a).

Case 2. When 0.8I c,S < I t < I c,S , the current density at the edges of the tape

(x=±a) is K c,S but the current density at centre (x=0) is < K c,S (See Figure

4.3(b)). This distribution can be considered as the superposition of the saturated

current distribution, plus an additional region of negative current ∆i occupying

a central region of total width 2δ. For x i � δ , integration of Ampere’s law for

current filaments flowing within the tape yields:

B⊥,xi
(It) = µ0

2π

∫ a

−a

Kc,S(x)
xi − x

dx+ µ0∆i
2πxi

(4.6)

This can be differentiated to obtain:

dB⊥,xi
(It)

dIt
= µ0

2πxi
(4.7)
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Note that B⊥,xi
in this regime is also expected to increase linearly with I t at all points

across the tape (subject to appropriate constraints on position). However, in general

dB⊥,xi
(It)

dIt

∣∣∣∣∣
It<Ic,S

6= dB⊥,xi
(It)

dIt

∣∣∣∣∣
It>Ic,S

(4.8)

(except for two locations, one near to each edge of the coated conductor). The

transition between these two expressions occurs when δ=0, and corresponds to

the point when I t=I c,S. As the transition between two linear regimes must occur

through a point of maximum curvature,one can thus define the saturated critical

current I c,S as:

Ic,S = argmax(−sgn (B⊥,xi
(It))

d2B⊥,xi
(It)

dI2
t

, for 0 < |xi| � a (4.9)

Conceptual understanding of this criterion can be gained by considering that

d2B⊥,xi
/dI 2

t represents the ‘acceleration’ of B⊥,xi
with increasing It. The transition

between 2 regions of constant ‘speed’, (dB⊥,xi
(It)/dIt), (see equations 4.5 and 4.7)

can then be defined as occurring at the intervening point of maximum acceleration.

A similar ‘maximum curvature’ criterion is widely used to determine the Curie

temperature of ferromagnetic materials from magnetisation measurements [110,

111] (where in the case derivatives of magnetisation with temperature are instead

used). The following sections present results from FE modelling and experiment

which validate this choice of criterion for Ic,S, and demonstrate its utility with a

variety of commercially supplied HTS tape aspect ratios and pinning landscapes.

4.3 Finite Element Results

In the following section, FE model results for the computed perpendicular magnetic

field are examined, and correlated with the current filling behaviour in a virgin

HTS conductor.
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Figure 4.3: Calculated profiles for the sheet current density, K z(x), across the tape for
transport currents ranging from zero to within a few percent of the saturated current,
I c,S. Data is shown normalised to K c,S (for the J c,µV (B,θ) model K c,S is the average
sheet current density at I c,S) which denotes the average value of K z across the whole
tape at I t=I c,S. Plots (a,b) shows the profile obtained from the QCSM model. Plots (c,d)
show the profile obtained from the J c,µV (B,θ) model for the 12mm Superpower tape

4.3.1 Current Filling Near I c,S

Plots of the current distribution across an HTS tape are shown for the low and high

current regimes, calculated from both the QCSM (Figure 4.3 a and b) and J c,µV

(B,θ) model (Figure 4.3 c and d).The results from the QCSM model are clearly

consistent with the regimes described in Figure 4.2 and in section 4.2. For all

values of I t shown, current flows across the entire tape width, with K z(x) having

saturated to a constant value (K c,S) at both edges of the tape. For currents less

than I c,S, there is a small region at the centre of the tape in which K z(x) < K c,S.

This region decreases in size as I t increases until it disappears at I c,S, at which

point the current distribution across the entire tape saturates to a constant value

(pink dashed line). Any additional current is then distributed uniformly over the

tape cross-section, so that the current distribution remains uniform across the width.
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The J c,µV (B,θ) model exhibits suppression of K c at the tape edges due to the

penetrated perpendicular field component. This manifests as a domed shape in

K z when I t ≥ I c,S. This dome is not symmetrically aligned with the centre of the

tape, which is a result of the non-symmetric J c,µV (B,θ) properties measured for the

superpower wire [76]. Nonetheless, below I c,S the current density is at its minimum

at the centre of the tape, which is consistent with the concept of a superposition of

a central region of negative current with the current distribution obtained at I t =

I c,S.

Figure 4.4 shows the evolution with increasing transport current of the local values

for K z, B⊥, d2B⊥/dI 2
t and Ez,ave for both J c models. Figures 4.4(a) and (b) show

the same data set as presented in Figure 4.3, but now plotted versus current (for

each position). It is clear that K z shows similar behaviour for both the QCSM

and J c,µV (B,θ) models. K z first saturates at the edges, where it then remains

approximately constant until current fills to the centre of the tape (i.e. K z (x = 0)

= K c,S). Beyond this point K z(x) increases linearly for all x. A minor difference

observed between the QCSM and J c,µV (B,θ) models is that the former saturates

to the same K c,S value for all x, but the J c,µV (B,θ) model exhibits an x-dependent

K c,S due to the variation in internal field across the tape width. Plots (c) and

(d) show the values for B⊥ at discrete points across the tape (calculated at a

displacement of y = 1 mm above the tape). Both above and below I c,S, all of

the sensors located within |x|≥ 0.9a show regions of constant dB⊥/dI t, with the

gradient below I c,S being steeper. This is consistent with the expectations from

equations 4.5, 4.7, and 4.8. Plots (e) and (f) show that positive peaks in d2B⊥/dI 2
t

are observed for all sensor positions. Whilst the magnitude of each peak varies, the

peak position is independent of sensor location. It can also be seen for both the

QCSM and the J c,µV (B,θ) models, that the positive peak in d2B⊥/dI 2
t is strongly

aligned with transitions to the upper linear region in both K z and B⊥.Once again,

this is consistent with the superposition of a negative central current region on the

saturated current density obtained at I c,S (as discussed in Section 4.2).
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4.4 Experimental Results - B⊥ from the Virgin
State

This section describes experimental data obtained using the B⊥ Hall Array (section

3.2.4), as well as I-V characteristics obtained using the DC measurement routine

outlined in 3.2.2. It is important to note that the current was monotonically stepped

and allowed to settle for 20 milliseconds before the voltage measurement is made.

Figure 4.5 shows experimentally measured data for the 12 mm SuperPower

tape. This closely resembles the FE model data shown in Figure 4.4(c)-(f) (noting

that the ± asymmetry observed in 4.5(a) arises because the centre of the sensor

array is not perfectly aligned with the centre of the tape). A family of curves is

obtained for d2B⊥/dI 2
t with a consistent peak location which is independent of

sensor location. For the data presented in figure 4.5, the mean value across the 6

peaks yields I c,S = 419 A with a maximum variation (given by sensor 3) of 6 A

(=1.4% of I c,S). It can also be seen that the largest amplitude signal in d2B⊥/dI 2
t

is given not by the sensor closest to the electrical centre (sensor 3), but by those

located midway between the centre and edge of the tape (sensors 2 and 5). This

is also consistent with the FE model data in Figure 4.4. Most importantly the

I c,S value obtained from equation 4.9 is substantially lower (by ~15%) than the

conventionally-defined transport critical current I c,µV, and occurs at
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Figure 4.4: Data calculated from the FE model. The interpolated J c,µV (B,θ) model
uses J c data measured from a short sample of the same SuperPower 12 mm tape used in
the experiment shown in section 4.4. Plots (a) and (b) show K z as a function of I for
several x locations in the tape. Plots (c) and (d) show simulated B⊥ at the indicated
x locations and at height y = 1 mm approximating the sensor location. Plots (e) and
(f) show the calculated values of d2 B⊥/dI 2

t . Plots (g) and (h) show the calculated E-I
curves.
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Figure 4.5: Experimental data obtained from the SuperPower 12 mm tape. (a) shows
the measured B⊥ at each sensor position across the tape width. (b) shows d2 B⊥/dI 2

t
(which is the numerical differential of the data presented in (a) and has been smoothed
using Savitzky-Golay filtering with a 15-point window). (c) shows the measured E-I curve
for taps placed along the length of the tape.
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Figure 4.6: Plots showing the perpendicular magnetic field (for y= 1mm) at various
x-positions across the Superpower 12mm coated conductor tape. Both experimental and
FEM data is shown, showing close agreement. I t = 0.2 I c,S or 82A in a), 0.4 I c,S or 164A
in b), 0.6 I c,S or 246A in c), 0.8 I c,S or 328A in d), I c,S or 410A in e), and 1.2 I c,S or
492A in f).
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Figure 4.7: Examples of the measured d2B⊥/dI 2
t obtained from a single Hall sensor

placed upon each sample. Data has been smoothed using Savitzky-Golay filtering (15-
point window), and is plotted alongside the corresponding E-I curve obtained from a
simultaneous voltage measurement. Plots (a)-(d) show measurements of REBCO coated
conductor tapes for various tape widths and suppliers. Plot (e) shows measurement of a
4mm Bi-2223 tape.
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Figure 4.8: A summary of the experimental and FEM data obtained for I c,S and I c,µV.
for the various tapes studied here. Experimental data is plotted as points, FE model data
plotted as lines. FE data includes both the constant J c and QCSM model, as well as
J c,µV (B,θ) models for the REBCO tapes (SuperPower 4 mm, 12 mm), and Bi-223 tape
(InnoST).

a measured electric field that is several orders of magnitude smaller than 1 µV

cm−1.

Further validation of the FE model results can be obtained by comparing the

measured field profile across the tape width at specific transport currents. These

results are shown in Figure 4.6. It is clear that the calculated FE data closely

follows the experimental results at all values, both above and below I c,S. The slight

discrepancy observed on the right hand side of the tape at the highest current levels

is most likely due to material inhomogeneity over the sample width. This could be

consistent with edge damage caused as a result of the slitting process. Overall the

comparison with experiment provides a high level of confidence that the FE model

contains all of the physics necessary to describe the evolution of the near surface field

across this entire current range. Notably, this differs from the view given in [106,
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107], which proposed entirely new physics based on a London-Meissner effect for

thin-film type-II superconductors. This London-Meissner effect is not described by

the FE model presented, which is instead based solely on a power-law conductivity

model which describes conventional type-II behaviour due to flux creep/flow within

the superconductor.

Figure 4.7 shows examples of the d2B⊥/dI 2
t signal measured from a variety of

different sample tapes, using just a single Hall sensor placed approximately midway

between the centre and edge of the tape. In all cases, a clearly discernible peak

d2B⊥/dI 2
t is apparent, and this is plotted alongside the corresponding measured E-I

curve obtained using voltage taps. As expected, for all samples I c,S is consistently

lower than I c,µV. The Bi-2223 sample shows the smallest ratio of I c,S / I c,µV, due

to its lower n-value (n= 18) which corresponds to a slower onset of dissipative

flux-flow above I c,S.

Figure 4.8 summarises the ratio I c,S/I c,µV obtained for the various tapes studied in

this work. It can be noted immediately that the ratio of I c,S to I c,µV is generally

insensitive to the tape’s underlying microstructure and J c,µV(B,θ) properties, as all

of the interpolated the FE models show similar behaviour - namely that the ratio is

divergent at low n-values, and tends towards unity as n tends to infinity. This is

because a power-law resistivity with a larger n-value more closely approximates the

critical-state model (as this corresponds to a sharper flux-flow transition between

‘zero-resistance’ and the resistive state). As a result, at large n the onset of a

measurable dissipative voltage more closely approximates to the current saturation

threshold. However, for real tapes, n-values in the range 15 < n < 40 are typical

[43], and in this range, the saturated critical current I c,S is consistently found

to be 15-30% lower than I c,µV.
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4.5 Perpendicular vs Parallel Field Measurements

The previous section has shown that I c,S can be clearly identified from analysis of

the perpendicular field component during ramping from the virgin state. In the

following section, a comparison between the efficacy of measurements of B⊥ or B//

to identify I c,S is given. This section presents a combination of FE data from the

SuNAM interpolated J c,µV (B,θ) model as well as experimental data collected from

the SuNAM tape using both the B⊥ and B// Hall sensor arrays. The experimental

procedure for current stepping and voltage measurements is given in Section 3.2.2

4.5.1 B⊥ Measurements over Repeated Cycles

Figure 4.9 shows the evolution of the B⊥ for both virgin and hysteretic cycles

of the SuNAM wire. The left-hand column shows calculated values from the

interpolated J c,µV(B,θ) FE model. Experimental data is shown in the right-hand

column. The hall array is positioned with sensor 4 very near to the conductor

centre, as indicated by the particularly low measured field at this position and

the FE data is calculated at approximate x-locations corresponding to the B⊥ Array.
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Figure 4.9: Plots show results from the interpolated J c,µV(B,θ) model (left column) and,
experimentally measured (right column) data. Plots a) and b) show B⊥ during current
ramping from the virgin state (solid) and during the 2nd cycle (dot). Plots c) and d)
show d2B⊥/dI 2

t during the virgin ramp, e) and f) show d2B⊥/dI 2
t during the 2nd cycle

and g) and h) show the calculated / measured electric fields during the virgin and second
cycles. The experimental data is smoothed using a Savitsky-Golay filter with a 15-point
window. The legend indicates the sensor number across the Hall Array.
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The virgin field data behaves as expected from section 4.3 and 4.4. The second

order differential signal produces a family of peaks with a well defined I c,S value. In

the second cycle each Hall sensor acquires a DC offset due to remnant magnetization

currents from the previous ramp cycle[35, 44]. These field offsets reduce the change

in magnitude of B⊥ over the second ramp, thus resulting in a smaller peak in the

differential signal. The electric field at low current is also significantly lower during

the second ramp as the rearrangement of existing remnant currents results in a

lower net change in flux across the conductor width. The virgin and hysteretic field

profiles come together at I c,S. It is also immediately clear from both the FE and

experimental data that equation 4.9 is no longer valid for identifying I c,S. In the FE

data, there are precursory peaks which are larger in amplitude than the final peaks,

which correspond to the erasure of screening currents from the previous cycle. More

puzzling perhaps in the experimental data, is the reversal of the polarity from of

the differential signal obtained from all but the outermost sensors. However, this

presents no limitation as it is the final peak in d2B⊥/dI 2
t before tending to zero

which captures the current saturation across the conductor width. Most importantly,

the collection of experimentally measured peaks in both the virgin and subsequent

cycle present at the same value of I t.

4.5.2 B// Measurements over Repeated Cycles

Figure 4.10 shows the evolution of B// in the same manner as the previous figure.

The B// Hall array used in this work has finer resolution across the width compared

to the B⊥ array and as such, data is presented from every second sensor to avoid

clutter. For B//, the largest field amplitude is generated above the centre of the

tape, corresponding to sensor 8. The finite element locations plotted are chosen

to approximate the experimental arrangement assuming that sensor 8 lies directly

above the tape centre. Many of the same general features observed here are common

to the perpendicular field component. During the virgin ramp, all sensors increase
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from zero and undergo a transition from non-linear to linear at a single value of

I t. In the following cycle, each sensor measures a position-dependent DC offset

due to the presence of remnant magnetization currents which again suppress the

non-linearity at low I t, and hence the d2B///dI 2
t signal is significantly diminished

when compared with the virgin case. In both the FE and experimental data, the

parallel magnetic field lies on top of the virgin field data after reaching saturation.

For B// measurements, the field polarity varies depending on which face of the

conductor the Hall array is located and equation 4.9 is therefore no longer valid.

However, as was noted in the case of B⊥, one can identify I c,S from the final

collection of peaks before tending to zero. Importantly, measurements of B// in

both the virgin and hysteretic conditions yield the same value for I c,S as determined

from B⊥ measurements.

4.6 Effect of Ramp Rate on I c,S

In the following section, the dependence of I c,S on the rate of change of current,

dI t/dt is considered. Data is presented from both the J c,µV(B,θ) FE model, as

well as experimental data obtained from the corresponding coated conductor. The

details for the experimental procedure are given in section 3.2.3.

4.6.1 FE modelling of I c,S at Different Ramp Rates

It has been previously reported that the measured I-V characteristics of HTS tapes

are sensitive to the rate at which current is injected into the material [112–115] in

both thin film and cylindrical wire geometries. In that work an analytic model has

been presented in which the electric field in the edge regions can be several orders

of magnitude larger than at the tape centre. Similarly, fast pulse I-V measurements

made in pulsed magnetic fields > 1T [105] have exhibited non power-law behaviour

at measured electric fields � 1µV cm−1.

Figure 4.11 shows the evolution of FE computed values for B⊥, d2B⊥/dI 2
t , and

E z,ave as a function of transport current for several different values of dI t/dt. In (a)
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as dI t/dt increases, the non linear region for B⊥ persists to higher transport currents

before collapsing onto the linear regime. As a result the I c,S values determined

using equation 4.9 vary with ramp rate from 230A at 3 As−1 to 303A at 3 kAs−1.

This is shown in plot (b). Plot (c) shows the calculated E z,ave alongside a power-law

fit using equation 2.12 to the slowest ramp rate. Not only do the E z,ave values vary

by several orders of magnitude with varying dI t/dt, but there is clear deviation

from the pure power law behaviour at low currents for all ramp rates. Interestingly,

I c,S denotes the current at which pure-power law behaviour is recovered which

occurs only once the conductor is fully saturated. It is also noteworthy that if the

current is ramped sufficiently fast, then the 1 µV cm−1 criterion can be driven into

this alternate regime, highlighting the ambiguity of this electric field criterion for

determining I c.
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Figure 4.10: Plots showing results from the interpolated J c,µV(B,θ) model (left column)
and, experimentally measured (right column) data. Plots a) and b) show B// during
current ramping from the virgin state (solid) and during the 2nd cycle (short dot). Plots
c) and d) show d2B⊥/dI 2

t during the virgin ramp, e) and f) show d2B⊥/dI 2
t during the

2nd cycle and g) and h) show the calculated / measured electric fields during the virgin
and second cycles. The experimental data is smoothed using a Savitsky-Golay filter with
a 15-point window. The legend indicates the sensor number across the Hall Array.
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Figure 4.11: Plots showing the interpolated J c,µV(B,θ) model calculated values for (a)
B⊥ at the indicated x locations 1mm above the HTS tape, (b) d2B⊥/dI 2

t from (a), (c)
electric field and ideal power law behaviour. The curves are coloured according to their
dI t/dt value.
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Figure 4.12: Plots showing the interpolated J c,µV(B,θ) model calculated values for (a)
B⊥, (b) Ez, and (c) K z when the total transport current is 230A ie I c,S when dI t/dt = 3
As−1 This corresponds to the green dashed line in Figure 4.11.
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The variations of both I c,S and I c,µV with ramp rate can be understood by

examining the localB⊥, E z, and K z during the ramp. These are presented in Figure

4.12. Data is shown at I t = 230A which corresponds to the green dashed line in

Figure 4.11. Figure 4.12 (a) shows the local perpendicular magnetic field. For the

slowest ramped case, 230A corresponds to I c,S and flux has fully penetrated to the

centre of the sample. Similarly, the local electric field and sheet current are uniform

across the conductor width. As the ramp rate increases, a larger proportion of the

conductor centre remains flux-free. Increasing rates of dI t/dt increase the rate of

change of flux entry at the tape edges, which in turn generates a larger electric

field at the tape edges as can be seen in plot (b). By examining the fastest ramped

case of 3000 As−1, it is clear that although E z,ave is now well above 1µV cm−1, this

is generated almost entirely in the edge regions of the conductor. This dominant

contribution to E z,ave does not obey the same power-law behaviour as is observed

in the current saturated state. Plot (c) shows the local K z, which is necessarily

larger at the tape edges to produce these larger electric fields.

4.6.2 Experimental Measurements at Different Current Ramp
Rates

Finally, experimental data is shown for comparison to the Interpolated J c,µV(B,θ)

model in Figure 4.13. In plot (a), measured B⊥ data obtained from a single sensor

is shown alongside the corresponding d2B⊥/dI 2
t and measured E z,ave data. The

experimental data shows excellent agreement with the FE data in terms of both the

predicted I c,S and E z,ave values. As dI t/dt increases, so too do the values for I c,S. In

all cases, for I t < I c,S, there is a non power-law electric field regime which increases

in magnitude with ramp rate. As indicated by FE analysis, this occurs due to

over-currents at the tape which are generated by the rapid flux penetration. For the

fastest ramped measurement, the 1 µVcm−1 criterion occurs well below the onset

of power law behaviour. However, in all cases, the d2B⊥/dI 2
t signal consistently

identifies the saturation current I c,S which corresponds to the current at which

power-law behaviour of the electric field begins to dominate.
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Figure 4.13: Experimental data obtained from the SuperPower Coated conductor with
ramp rates varying from 0.3As−1 to 3kAs−1. (a) shows the measured B⊥, (b) shows the
d2B⊥/dI 2

t values obtained from (a), smoothed using Savitsky-Golay filter with a 15 point
window and, (c) the measured Ez,ave with a power law fitted to the slowest ramp.
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4.7 Summary Discussion

In this chapter, a robust definition which enables the ‘saturated critical current’ of

a superconducting tape to be unambiguously measured via surface perpendicular

or parallel field measurements from one or more Hall sensors has been presented.

In practice, a single Hall sensor can be used, as long as it is positioned near to

the conductor for an appreciable field signal and in a location appropriate for the

field component being measured. Geometric saturation of the transport current

within a superconducting tape under DC conditions occurs prior to the onset of a

measurable dissipative voltage (under DC conditions), and can be observed from

the evolution of the perpendicular field profile across the tape width. Geometric

saturation over the width is observable under fast-ramping conditions in the same

manner as indicated by finite element modelling, although in the low-current regime,

a non power-law dissipative voltage is expected due to the presence of over-currents

at the conductor periphery.

The utility of this approach using B⊥ to measure I c,S for samples of various

commercial HTS tapes of different aspect ratios, down to widths of 2 mm and

up to thicknesses of several hundred microns has been demonstrated. As the

evolution of d2B/dI 2
t is determined only by the onset of current saturation across

the conductor width, it is entirely independent of the superconducting material and

J c,µV(B,θ) properties under consideration. This is demonstrated by the success of

this approach for both ReBCO and Bi-2223 tapes. Indeed, the only criteria required

to obtain a clearly discernible peak in d2B/dI 2
t are that the tape should have a

cross-section aspect ratio » 1, and a non-linear E-J relationship which leads to

current-filling from the edge to the centre of this tape. Whilst a power-law resistivity

has been adopted in the presented FE modelling, the approach is not restricted

to that case and will yield a robust value of I c,S for superconducting materials

with any E-J dependence that delivers a current-filling evolution similar to the

critical state model. Although I c,S and I c,µV are defined to be identical within the

critical state model, measurements of real tapes show that I c,S is typically 15-30%

lower than I c,µV. It is clear that no constant electric field criterion is appropriate
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for a complete range of operating conditions. This is a direct consequence of the

fact that I c,S always describes the threshold current at which geometric current

saturation occurs, but practical superconductors exhibit some dissipative flux-flow

resistance for currents well below the 1 µV cm−1 criterion. The difference between

I c,S and I c,µV is largest for superconductors exhibiting a relatively slow onset of

flux-flow resistance (i.e. a low n-value).



5
Dynamic Resistance in a Coated

Conductor

As discussed in Chapter 2, dynamic resistance is a resistive phenomenon in type-II

superconductors that carry a DC transport current while simultaneously being

exposed to an alternating magnetic field. This resistance is attributed to interactions

between vortices and the transport current, as the aforementioned flux traverses the

transport current carrying regions of the conductor [52, 56, 58]. Understanding the

origin and behaviour of this dynamic loss is relevant to optimising the management

of heat dissipation for various HTS applications. In addition, dynamic resistance has

been identified as playing a key role in the operating mechanism of HTS flux pumps

[18, 20, 116, 117] and is an attractive candidate for persistent current switching in

HTS circuits [83, 118–121].

In this chapter, experimental measurements are presented for the dynamic

resistance of different REBCO tapes carrying a DC current and exposed to an

oscillating perpendicular field. The exact details of the experimental methodology

is outlined in section 3.2.3. Measurements of both the transient voltage waveforms

and the time-averaged DC resistances are compared with numerical finite element

simulations obtained using the H -formulation. There are clear variations between

the voltage response from different tapes, which can be understood in terms of

their differing J c(B,θ) dependence. This emphasises the importance of employing

experimentally measured J c(B,θ) data when simulating transient effects in HTS

tapes and wires.

This Chapter has been published in Superconductor Science and Technology

in 2019 https://doi.org/10.1088/1361-6668/ab6bfe.

69
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5.1 Finite Element Model

The finite element model geometry considered here is identical to that presented in

figure 4.1, consisting of a 2D cross-section of a HTS coated conductor in the xy-plane

and assumed to have infinite length along the z-axis. The governing H -formulation

equations are given in 3.1.1.

Simulations have been performed using two different functions for J c(B,θ) and

n(B, θ).

1. Constant J c model (J c = J c0): In this model, the critical current and n-value

are both assumed to be constant at all times, and are set equal to the values

measured in zero applied field, i.e. J c(B,θ) = J c0, n = 20. In sections 5.2

and 5.3, a modified version of the constant J c model has also been considered,

which uses an artificially high n-value of n = 200, as a close approximation to

the critical state model.

2. Interpolated J c(B,θ) model: This model uses the two sets of experimentally-

measured values shown in figure 3.3 corresponding to the two ReBCO tapes

(SuperPower and SuNAM) on which dynamic resistance measurements were

performed. Self-field effects are removed from the experimental measurements

by the method described in [122], to provide a set of self-field corrected

J c(B,θ) values. These describe the local critical current density at each point

within the tape, as a function of the total local magnetic field. Both the J c

and n-values are then input into the numerical model using a two variable

interpolation function, as described in [123, 124].

Meshing of the FE model consists of 200 elements along the width of the supercon-

ducting domain (in the x-direction), and 3 elements across its thickness (in the y-

direction). This ensures that the computational time required for the models remains

practical, while retaining enough resolution at the surface of the superconductor

when simulating the current distribution. In the surrounding sub-domain, a free
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triangular mesh is used. The sub-domain boundary is sufficiently far away such

that the normal component of the magnetic field due to the superconductor is

zero. In the non-superconducting sub-domain, a linear Ohm’s law is solved with

the resistivity set to 1 Ωm. The computational model assumes that all losses occur

entirely in the HTS layer, a reasonable assumption for low AC frequencies (e.g. < 1

kHz) where the eddy-current losses in the metallic layers are negligible [125, 126].

The HTS layer is also assumed to remain at a constant temperature. Thus, only

contributions from the superconducting layer are included when calculating the

dynamic resistance, and no temperature dependence is included.

The current and field distributions within the tape are computed using a two stage

process. First, a DC transport current is applied to the superconductor, ramped

from zero to the required value. Following this, a sinusoidal perpendicular magnetic

field is then applied to the sample for two and a half AC field oscillations. Subsequent

data analysis neglects the initial half cycle during which the superconducting strip

is magnetised from its virgin state. This ensures that the computed values are

periodic with the applied magnetic field. A DC transport current, I t is applied via

an integral constraint applied to the superconducting cross-section S of the form

It =
∫
S
J · dS = Iapp(t) (5.1)

In the first stage of the computation, I app(t) is a linear ramp function with a

gradient of 10 A/s. This ramp function is run until the DC transport current is

equal to the self-field critical current I c0. Once completed, solutions are available at

all stored time intervals and reduced currents. The second stage of the computation

is then initiated using the solution which corresponds to the specified reduced

current under study (i.e. i = I t/Ic = 0.3, 0.5 and 0.7). A sinusoidal perpendicular

AC magnetic field of the form Bapp(t) = Ba0sin(ωt) is applied using COMSOL’s

magnetic field boundary condition.
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The dynamic resistance, Rdyn, results in the development of a voltage drop,

∆V, along the z-direction of the coated conductor. This is calculated from the

2D FE model using

∆V = L · ∂V (t)
∂z

(5.2)

where L is the length of the conductor in the z-direction.

Dynamic resistance is a low-frequency quasi-static phenomenon, such that the

voltage drop is simply the difference in electrostatic potential across the conductor.

In the Coulomb gauge (defined by ∇ ·A = 0, such that ∇2A = µ0J), the electro-

static potential is equivalent to the electric scalar potential, such that [127, 128]

∇V (t) = E(t) + ∂A(t)
∂z

(5.3)

Note that taking the divergence of both sides of equation 5.3 yields the familiar

definition of the electrostatic potential, ∇2V = ∇ ·E = ρ/ε. The magnetic vector

potential, A, is calculated from the inverse curl of B, and by specifying a Dirichlet

boundary condition that Az is equal to Byx along the boundary of the surrounding

air sub-domain. The 2D FE geometry constrains currents from flowing in the plane

of the model, such that J x = J y = Ex = Ey = Ax = Ay = 0. As a result, equation

5.3 simplifies solely to the z components, with ∂V/∂z constant throughout the

model plane for each moment in time. However, it should be noted that both Ez(x,

y, t) and Az(x, y, t) are functions of x and y, and hence do vary across the plane

(see, for example, figure 5.3(c)). To minimise numerical error, the spatially-averaged

value of ∆V (t) across the HTS cross-section is used, calculated using equation 5.4:

∇V (t) = L
∂V (t)
∂z

= −1
S

∫
S
(Ez + ∂tAz) · dS (5.4)

The time-averaged DC dynamic resistance, in units of µΩ/m/cycle, is then

calculated by integrating ∆V over a single cycle of the applied field and dividing

by the transport current
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Rdyn = 1
It

∫ 1/f
∇V dt (5.5)

It is noteworthy that all dissipation within the superconductor is fully described

by the E–J power-law and, as a result, the A-vector contribution can in fact be

omitted from equations 5.4 and 5.5 without loss of accuracy [81].

5.2 Coated Conductor Samples

Two different samples of REBCO tape were investigated in this study: SuperPower

SCS4050-AP and SuNAM HCN04200 with specifications given in [21, 22]. Mea-

surements of the J c(B,θ) and n(B,θ) parameters for each tape were made using the

method outlined in chapter 3 [32, 43]. Experimental measurements were made at 77

K on short length samples (∼5–7 cm), in applied magnetic fields up to 500 mT and

obtained for a full 360◦ range of field orientations at 5◦ increments. The measured

values for these two particular samples are shown in figure 3.3, which illustrates

the different dependencies of critical current upon applied magnetic field for each

tape. Both tapes were 4 mm wide with the superconducting layer being either

1.3 µm or 1 µm thick, for the SuNAM and SuperPower tapes respectively. The

SuNAM tape had a self-field I c0 of 205.5 A and its J c(B, θ) behaviour is symmetric

about ]θ = 180◦, and periodic such that I c(B, θ) ≈ I c(B, θ + 180◦). In contrast, the

SuperPower tape had an I c0 value of 105.6 A and the measured critical current did

not exhibit a symmetry plane with respect to the angle of the applied field.

5.3 DC Dynamic Resistance

Figure 5.1 shows the experimentally measured DC dynamic resistance, Rdyn, per

cycle obtained at a frequency of 118.66 Hz for three different values of i for both

tapes, and using the two different sets of experimental voltage taps (‘spiral’ and

‘centre’). The Rdyn values are plotted as a function of the applied field amplitude

Ba0. Also plotted are the analytical solutions obtained from equation (2.13) using

either equations (2.15) or (2.16) to define the threshold field. Consistent with results
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reported in [61, 70, 129], there is very close agreement between these equations and

experimental results. For comparison, figure 5.1 also shows the calculated values of

Rdyn obtained from the numerical model.

The interpolated J c(B,θ) model is observed to deliver good agreement with

experiment, although it does appear to slightly underestimate Bth in every case.

However, the constant J c, n = 20 model diverges substantially from experiment,

and significantly understates the magnitude of dRdyn / dBa0 at fields above Bth.

This highlights the importance of including the full J c(B,θ) dependence within the

FE model. It also raises the question as to why the analytical equations (2.13),(2.15)

and (2.16) are so successful, despite employing a constant critical current value. On

this point, it is instructive to note that the analytical approaches assume n → ∞,

whilst the constant J c FE model uses the realistic finite value of n = 20. By contrast,

if the FE model is instead run using a much higher n-value of n = 200, results are

obtained which closely agree with equations (2.15) and (2.16). This suggests that

the artificially high n-value within the critical state model can compensate for the

error introduced by assuming a constant J c. This appears to be a ‘happy accident’

that holds for the samples and experimental conditions considered here, but it is

not clear how applicable these equations would be in other differing situations such

as dynamic resistance measurements performed in DC background fields or more

complicated geometries (ie cables comprising multiple tapes where shielding effects

can be expected to play a significant role) [67, 68, 71, 72].
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5.4 Voltage Response to an AC Perpendicular
Field

In addition to DC experimental measurements, transient time-resolved measure-

ments were also performed to obtain the resistive voltage waveform across each

sample tape. Figure 5.2 shows these experimentally-measured voltage waveforms,

and compares these with the corresponding waveforms obtained from the numerical

simulations using each of the J c(B,θ) models. Each plot shows the response over

two cycles of the applied field at 118.66 Hz for i = 0.5.

As expected [32, 56, 73], the numerical models all predict a voltage waveform

that is periodic over one half cycle of the applied magnetic field (i.e., its fundamental

frequency is twice that of the applied field). This is because applied flux interacts

with the transport current whenever the magnitude of the applied field exceeds the

shielding capacity of the tape. This occurs during each half cycle, irrespective of the

polarity of the applied field. There is a noticeable difference in both the amplitude

and shape of the waveforms calculated using the constant J c model with n = 200

(approximating the critical state model), versus n = 20 (which is close to the actual

measured value of n in self-field). In particular, the lower n-value exhibits both a

smaller peak amplitude and a smaller peak width. This is the reason that it delivers

a lower time-averaged DC resistance (shown in figure 5.1).

As with the constant J c models, the experimental waveform data shows a

doubling of the fundamental frequency of the voltage waveform compared to the

applied field. However, striking differences are also apparent. Most notably, as the

magnetic field amplitude increases well above Bth, a peak-splitting effect is observed

whereby a non-zero minimum appears within each waveform at Bapp(t) ∼ 0. The

only numerical model which reproduces this feature is the interpolated J c(B,θ)

model [32]. Understanding the origin of this ‘peak-splitting’ effect requires detailed

scrutiny of the current and field distributions, and is explored in the following section.
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Figure 5.2: Experimental measurements of the instantaneous voltage, ∆V (t), across
each REBCO tape sample, compared with numerically-modelled values obtained from
the constant J c and interpolated J c(B, θ) models. The SuperPower and SuNAM data
are shown in the left and right columns respectively. All plots are for i = 0.5 and f =
118.66 Hz. Plots (a) and (b) show the applied field; (c) and (d) show the experimental
waveforms; (e) and (f) show the constant J c (n = 20) models; (g) and (h) show the
constant J c (n = 200) models; and (i) and (j) show the interpolated J c(B,θ) waveforms.
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In addition, the interpolated J c(B,θ) model for the SuperPower tape also shows

a small asymmetry in the amplitude of the voltage peaks observed during the

positive and negative half-cycles of applied field. This is due to the asymmetric

angular dependence of J c(B,θ) for these tapes.

5.5 Cyclic Evolution of Sheet Currents and Elec-
tromagnetic Fields

In the following, the transient response of each FE model is investigated using

contour plots, which show the temporal evolution of the local sheet current density

Kz, critical current density Kc(B), electric field E ′z, and magnetic field B′y as

explained in section 3.1.3.

5.5.1 Constant Jc0 Model

Using figure 5.3, it is possible to examine the evolution of K z, B′y, and E ′z in the

constant J c model for the SuperPower tape at i = 0.5 and Ba0 = 100 mT. Note that

figure 5.4 shows these quantities using more conventional line plots at the moments

in time indicated by the dashed horizontal lines in figure 5.3. Plot 5.3(a) shows

that magnetisation screening currents occur at the edges of the film, but are only

distinguishable on the side where the screening currents run anti-parallel to the DC

transport current. These screening currents penetrate to an approximately constant

depth in each half-cycle. This conforms with the conventional critical state model

for dynamic resistance [56, 58], where the transport current is considered to occupy

a constant width region at the centre of the tape. Once dBapp/dt changes sign (at

ωt = (2m+1)π/2 where m = integer), the existing screening current distribution

begins to be erased by opposite polarity screening currents which enter from each

side. The complete erasure of the previous anti-parallel component of the screening

current on one side of the film occurs shortly after ωt ≈ 2π/3, and coincides with

an increase from zero of ∆V in plot (d).
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Figure 5.5: Illustrative plot showing E′z as a function of position across the conductor
width for the constant J c (n = 200) model when i = 0.5, Ba0 = 100 mT and ωt =
2π. The blue-shaded regions represent equal and opposite contributions to the spatially
averaged electric field which sum to zero. The red-shaded area shows the net averaged
electric field at this moment in the cycle. Note that the same linear behaviour is observed
in the n = 20 model. The dashed lines show x = ± iw



5. Dynamic Resistance in a Coated Conductor 82

Plot 5.3(b) shows that the behaviour of the magnetic field inside the supercon-

ductor broadly follows the periodic behaviour of the applied field, and reaches its

maximum and minimum values at approximately the same time as the applied field.

These peak internal fields occur at either edge of the superconductor in the region in

which screening currents are being erased. At the edge where screening currents run

parallel to the transport current, the local magnetic field within the superconductor

is much larger than Ba0. Once the applied field magnitude passes its peak value (at

ωt = (2m+1)π/2), a new screening current distribution is established in the tape.

The new screening current distribution then enables a very low magnetic field to

persist throughout the superconductor whilst the applied field reverses polarity (ωt

= mπ). At this point flux begins to enter the superconductor again from both edges,

whilst a region of zero flux remains spatially-frozen close to the current-reversal

zone [61]. This frozen flux gives rise to the characteristic contour spikes (i.e, ‘spurs’

and ‘gullies’) which are observed in the B-field plot.

Plot 5.3(c) shows the electric fields developed inside the conductor (in the

z-direction). The electric field appears first at the edges, as soon as the screening

currents have completed their reversal in each half cycle (e.g., shortly after ωt

≈ 2π/3). E-fields of opposite polarity occur at each edge, and decrease linearly

towards the centre of the conductor (Figure 5.4 (c),(f) and (i)). The zone containing

E-fields of the same polarity as I t is always spatially larger than the zone of opposite

polarity on the other side of the tape. Both zones achieve their maximum area

when the magnitude of dBapp/dt is at a maximum, before then decaying again to

zero as Bapp reaches its positive or negative peak

The linear profile of E ′z across the tape is to be expected for a fully penetrated

sample, as ∂Ez/∂x= ∂By/∂t. However, this E-field profile challenges the conven-

tional viewpoint that the current source applies work only to the central region of

the tape, where the DC transport current is assumed to flow [22, 56, 58, 61]. Figure
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5.5 shows why this is the case.

Figure 5.5 illustrates the linear E ′z profile across the tape which occurs at all

times in the cycle when flux penetrates throughout the tape. It is clear that the

E-field at one edge of the tape is significantly larger than at the other edge, and

hence the net sum of the E-field from both edge regions does not sum to zero. As a

result, the net integrated E-field across the tape (as shown by red shaidng) extends

all the way to the right-hand edge of the tape. This implies that a DC current

source must do work on currents flowing throughout the red shaded region, and

not just in the central region from x = -iw to +iw (as described in [18, 56, 58,

130]). This also confirms that it is not possible to spatially distinguish between the

transport current and screening currents of the same polarity. In fact, the largest

contribution to the dynamic resistance occurs at the right-hand edge of the tape in

figure 5.5, contradicting the conventional assumption that solely screening currents

flow in this edge region.

This observation raises in turn the interesting question: why the analytical

equations discussed in Chapter 2 yield good estimates of Rdyn, despite being based

on the flawed assumption of a centrally-localised transport current. The reason for

this is that the derivation of equation (2.13) ultimately requires only that a quantity

of net flux traverses a net total transport current, IDC [61]. The differences in

equations 2.15 and 2.16 relate to different approaches used to estimate the threshold

field, but the precise location within the tape at which these interactions occur

does not affect the derivation or resulting analytical expression.

5.5.2 SuperPower J c(B,θ) Model

The internal fields and currents calculated by the interpolated J c(B,θ) model can

also be visualised in the same fashion as for the constant J c model above. This is

shown in figure 5.6, which also shows the evolution of the sheet critical current K cB

in time and space. The instantaneous sheet values are shown in figure 5.7 at the
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times indicated by the dashed horizontal lines in figure 5.6. Unlike the constant

J c model, K c now varies as a function of the local field. Modelled data is shown

for the same values of reduced current and applied field amplitude as were used in

figure 5.3 (i = 0.5 and Ba0 = 100 mT).

Several different features are apparent in the behaviour of the currents and

fields from the interpolated J c(B,θ) model, compared to the constant J c model for

the SuperPower tape. Plot 5.6(a) shows the evolution of K z and we see that in

this case, screening currents running anti-parallel to the transport current do not

occupy a constant width throughout the cycle. Instead, the maximum penetration

width of screening currents into the tape occurs when Bapp = 0 (ωt = mπ), and

retreats as Bapp increases in magnitude. This is because the local K cB decreases as

|Bapp| increases, meaning the transport current must occupy a wider fraction of the

tape, which reduces the remaining space available for opposing screening currents

to flow. As before, the complete erasure of the screening current distribution from

the previous half-cycle coincides with ∆V increasing rapidly from zero (e.g, dashed

line at ωt = 2π/3). We can also see some subtle asymmetries between the current

distributions for the positive and negative half-cycles of the applied field, which can

be understood in terms of the asymmetric J c(B,θ) behaviour of the SuperPower

tape shown in figure 3.3.

Plot 5.6(b) shows the evolution of B′y within the conductor and its features are

very similar to the constant J c model. At the points in the cycle when the screening

currents penetrate furthest into the tape (ωt = mπ), the perpendicular magnetic

field is close to zero over the entire width of the conductor. This also corresponds

to a peak in the local K cB across the entire cross-section of the conductor – as

shown in plot 5.6(c). The low-field contour spikes in B′y are also present for the

interpolated J c(B,θ) model, but exist for a shorter duration and move outwards

to follow the retreating current reversal zone (between ωt = mπ and ωt = mπ+π/2).
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Plot 5.6(d) shows the E ′z-fields within the conductor, calculated using the

interpolated J c(B,θ) model. These exhibit qualitatively similar behaviour to the

constant J c model, but there is a clearly noticeable difference to the shape of the

resistive lobes (shown as red in this plot). These now show the ‘peak splitting’

phenomenon which was previously observed in the ∆V waveforms (see figure 5.2(c)

and (d)). Comparing plots 5.6(c),(d) and (e), we see that the local minima in ∆V

at ωt = mπ coincides with the double-humped shape of the resistive E ′z-field lobe.

We can now deduce that the short-lived reduction in ∆V is caused by the increase

in K c (and equivalently J c) across the tape at this point in the cycle, which in turn

arises because |Bapp| has become sufficiently small. Equation (5.3) requires that the

increase in local J c must deliver a decrease in the electric field required for currents

to flow at this point in the cycle, and hence the local minima in ∆V.

5.5.3 SuNAM J c(B,θ) Model

Figure 5.8 shows contour plots of the calculated sheet fields and currents for the

SuNAM tape using the interpolated J c(B,θ) model. Again, the instantaneous sheet

values are shown in figure 5.9 for the three times indicated by the dashed horizontal

lines in figure 5.8. The same conditions are used as for the SuperPower tape shown

in figure 5.6 (i.e., i = 0.5, f = 118.66 Hz and Ba0 = 100 mT).

We see many of the same gross features are apparent as are observed for the

SuperPower tape, but there are also some significant differences which arise from

the differing J c(B,θ) properties of these two tapes. In particular, the screening

currents shown in plot 5.8(a) do not show a maximum penetration width at ωt =

mπ. There is also no obvious asymmetry in the distribution of currents between

positive and negative halves of the oscillating magnetic field.

In figure 5.8(b) it can be seen that the low field regions near the current reversal

zone persist longer than is the case for the SuperPower tape, due to the increased
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shielding from the larger critical current of the SuNAM tape. This results in a

broadening of the periodic increase in K c, visible in plot 5.8(c), that occurs when

Bapp is close to zero (ωt = mπ). This broadening ‘smears out’ the effect of the

increased K c, which results in a less pronounced peak splitting of E ′z and ∆V.

It should be noted that this smearing effect occurs even though the SuNAM tape

exhibits a substantially stronger J c(B,θ) dependence than the SuperPower tape.

This emphasises the complex nature of these effects, which are only captured by

the detailed finite element model.

5.6 Scaled Constant J c0 Model

A final comparison between the constant J c and interpolated J c(B,θ) models is

shown in figure 5.10. This figure compares the voltage waveform, ∆V (t), obtained

from the interpolated J c(B,θ) model with the waveforms calculated from two

different constant J c models (n = 20). The first model used is the J c = J c0 model

already presented, whilst the second model sets J c equal to the minimum value

during the cycle, such that J c = J c(Ba0). Figure 5.10 shows values obtained from

these three models for both SuperPower and SuNAM tapes for the same ratio of

Bapp / Bth ≈ 6 in each case, such that Ba0 = 60 mT and 150 mT for the SuperPower

and SuNAM cases, respectively (it should be noted that the 150 mT field simulated

here for the SuNAM tape lies beyond the experimentally accessed conditions shown

in figure 5.2).

In both cases, it is clear that the interpolated J c(B,θ) waveform is essentially

bounded by waveforms obtained from the two constant J c models. The interpolated

J c(B,θ) model predicts the emergence of a non-zero voltage response at the same

time as the constant J c = J c(Ba0) model and has similar peak values. However, in

the sections shaded grey, the interpolated J c(B,θ) model deviates away from this

waveform and instead converges to the constant J c = J c0 model. The shaded grey

regions denote those times in the cycle during which Bapp(t) = 0 ± Bth, such that

the internal magnetic field is small. As such, the approximation J c = J c0 represents
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Figure 5.10: Comparison of the voltage waveform ∆V for a) SuperPower and b) SuNAM
tapes from three different models. Two constant J c models are considered, both of which
employ n = 20; Constant J c = J c0 in blue and J c(Ba0) in red. The interpolated J c(B,θ)
model is shown in black. Ba0 = 60 mT in the SuperPower case and 150 mT for the
SuNAM data. In both cases, i = 0.5.

a better description of the situation within the tape at these times.

Taken in conjunction with the previous analysis from figures 5.6 and 5.8, it can

be concluded that the experimentally-observed peak splitting in ∆V (t) is due to

the periodic increase of J c(B,θ) across the entire conductor width at those times

in the cycle when Bapp(t) approaches zero.

5.7 Summary Discussion

In this chapter a 2D numerical finite element model based on the H -formulation

has been used to calculate the transient and DC dynamic resistance generated in

two different coated conductor tapes. These modelling results have been analysed

and compared with experiment.

In terms of the DC values for the dynamic resistance, the FE model employing

a constant J c with a realistic value of n = 20 significantly underestimates the
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experimentally measured values for both the SuperPower and SuNAM tapes. By

contrast, the FE models which include the full J c(B,θ) and n(B, θ) dependence of

the tapes show excellent agreement.

The limitations of the constant J c FE model are further highlighted when

the transient time dependent voltage waveforms are compared with experiment.

Contour plot visualisations of the time-evolution of the sheet currents and fields

within the conductor show a rich variety of features which vary subtly depending

on the applied fields and currents, and the specific J c(B,θ) dependence. Only the

interpolated J c(B,θ) model is able to reproduce the peak-splitting effect observed in

the experimental transient voltage waveforms. This effect arises due to a short-lived

increase in the local critical current at the centre of the tape, caused by the varying

local magnetic field. As the applied field passes through zero, the critical current at

the centre of the tape reaches a maximum thus reducing the local E-fields throughout

the tape.

It is interesting to note that a FE model approximating to the critical state

(where n is taken to have a highly elevated value of 200) also shows good agreement

with reality. This is despite the fact that neither the n-value nor J c used in this FE

model actually correspond to physical reality. Similarly, analytical equations 2.13,

2.15, and 2.16 (which are derived from critical state assumptions [18, 56, 58]) also

show excellent agreement with our DC experimental data. A key assumption in the

derivation of the analytical equations is that electrical work is performed upon a

DC transport current which flows solely in the central region of the tape. However,

our FE models show that resistive electric fields extend to the edge of the tape,

implying that electrical work is being done throughout the region carrying positive

current (i.e, in the same direction as the DC transport current). A corollary of

this observation is that it is not possible to spatially distinguish between regions

carrying the DC transport current and the screening current flowing in the same
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direction.

In light of these observations, it is perhaps surprising that the analytical equations

based on the critical state do produce such close agreement with the experimental

DC values. However, this can be understood by observing that equation (2.13)

simply describes the electrical work required in each cycle to move a net packet of

flux across a total DC transport current. The precise location at which this work is

done is not relevant to the total work. A similar argument holds for the constant

J c (n = 200) FE model, which closely approximates to the critical state.

The different results obtained using the constant J c (n = 20) model are perhaps

more puzzling. Following the logic above, this implies that the constant J c FE

model predicts that less flux traverses the tape per cycle as the n-value decreases.

This suggests that, for the range of experimental conditions examined here, the

use of an artificially inflated n-value (e.g., n = 200) approximately compensates

for the errors incurred by assuming a constant J c = J c0. However, it is not clear

that this compensating effect will hold across a broader range of experimental

parameters, and indeed there have been a small number of reported experimental

results which are not well described by the analytical equations, such as those

in [67, 68, 72]. As such, it is expected that the interpolated J c(B,θ) FE model

presented here should generally deliver more reliable results for a coated conductor

in an arbitrary field, current, and geometry.



6
Dynamic Resistance in Parallel

Connected Vertical Stacks

In the previous chapter, the dynamic resistance of a single tape was investigated in

detail. For high-current, high-field applications superconducting cables are often

employed and thus exploration of switching phenomenon for these configurations is

necessary. There are several different HTS cable designs[131–135], but a particularly

simple variant is the vertical stack of parallel connected HTS tapes which is the

subject of this chapter. Due to the low resistivity of HTS tapes, minor variations in

solder resistance (at each tapes termination) can cause significant changes to the

current sharing behaviour within the cable. This makes experimental measurements

of short cable lengths very challenging, and for that reason only FE analysis is

presented in the following chapter. First in Section 6.2, a small cable comprised of

four tapes is studied. A comparison between the I-V characteristics of the cable and

an isolated tape is given as well as analysis for the cable similar to that of chapter

5, i.e. the time averaged dynamic resistance and threshold fields are computed for

a variety of transport currents and applied fields. The spatial distribution of the

DC current within the cable throughout the cycle of the applied magnetic field is

also presented. Subsequently in section 6.3, analysis is presented for stacks with an

increasing number of tapes. The threshold fields are again computed as the number

within the tapes is increased and the transition from strip to slab like behaviour is

discussed.

This chapter contains the work of two publications. Both are published in IEEE

Transactions on Applied Superconductivity. Section 6.2 10.1109/TASC.2020.2974860

and Section 6.3 10.1109/TASC.2021.3059593.

94
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Figure 6.1: FE model geometry detailing the orientation of coordinate axes, and direction
of transport current, J, (out of the page) and applied magnetic field, Bapp, relative to
both the single wire and parallel-connected stacks.

6.1 Finite Element Geometry

Figure 6.1 shows the finite element geometry and relevant quantities used throughout

this chapter. N represents the number of tapes within the cable, D, the centre to

centre spacing between tapes, d, the individual tape thickness, k, the total cable

height and a, the half width of a single tape. The problem dimensions are the same

as those presented in chapter 5, consisting of a 2D cross-section of the HTS tape

or cable in the xy-plane, with infinite length along the z-axis. The governing H -

formulation equations are given in 3.1.1. In this chapter, an interpolated J c,µV(B,θ)

model is used, which employs experimentally measured values for J c,µV and n as

outlined in section 3.2.1. Two tapes are considered here, the SuperPower and

SuNAM data from Figure 3.3 are used in Section 6.2 and Section 6.3 respectively.

As in chapter 5, the current and field distributions within the cable are calculated

in two stages. The first is a linear ramp to the desired transport current I t (with a

fixed dI t/dt of 100 As−1 in section 6.2, and 10 As−1 in section 6.3) and secondly,

the application of an oscillating magnetic field of the form Bapp(t)=Ba0sin(ωt).

This field is applied for 2.5 complete cycles and the dynamic resistance computed

from the final cycle. This is done so that initialisation effects in the first cycle
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can be ignored. It is important to note here that throughout this chapter, I c

refers to the critical current determined using a 1 µV/cm criterion, although minor

references are made to the saturation current I c,S. In this chapter, the thickness

of the superconducting layer has been expanded by a factor 100. This is done to

reduce the computational time required while not significantly impacting the FE

results as demonstrated in [94, 98, 136].

To compute the time averaged values for the dynamic resistance, first the instan-

taneous spatially averaged electric field, ETN ,

ETN(t) = 1
ATN

∫∫
ATN

Ez(x, y, t)dxdy (6.1)

and the net instantaneous DC current within the tape, ITN ,

ITN =
∫∫

ATN

Jz(x, y, t)dxdy (6.2)

are computed, where TN denotes the N th tape and ATN the associated cross-section

within the FE model. As all of the tapes are simulated to be parallel connected, ETN

has the same value for all tapes (note that this is only true in the fully penetrated

regime where the ∂A/∂t contribution to the scalar potential is negligible). However,

the instantaneous current within each tape is variable. Thus the time averaged

dynamic resistance for each tape is given by

Rdyn,TN

fL
=
∫ 2

f

1
f

ETN(t)
ITN(t) dt (6.3)

The time-averaged value for the cable is determined using the equation for resistive

components connected in parallel

fL

Rdyn,cable
=

N∑
n=1

fL

Rdyn,Tn
(6.4)
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6.2 Four Tape Stack

In the following section the simple case of a four tape stack is considered. The

relevant analytic equations for the threshold field in an infinitesimally thin su-

perconducting strip is given in Section 2.5. In this section, the SuperPower wire

has a half-width a = 2mm, thickness d = 100µm (after artificial expansion), and

centre to centre spacing D = 300µm.

6.2.1 I-V Curves and Current Filling in Zero Applied Field

Figure 6.2 shows the numerically calculated I-V curves obtained when ramping the

DC current in both a single tape and the stacked cable in zero applied field (i.e.

self-field). Experimental data obtained from a self-field transport measurement on

a short sample of the SuperPower SCS4050-AP YBCO tape [21] is also shown. The

measured critical current of a single tape is denoted by I c0 and for the SuperPower

tape studied in this work, was 102.6 A. The flux-creep exponent, n, determined

from a power-law fit to the measured E-J curve is 27. J c0 is determined by dividing

I c0 by the area of the HTS film cross-section. Experimentally, a small non-zero

voltage is measured for the single tape at currents below I c0, which is attributed to

incomplete current transfer between the current and voltage taps due to the short

sample length [137].

As discussed previously, it is not generally possible to make experimental

measurements on a short sample (e.g, less than several meters) of a parallel stack

of tapes, as small variations in the soldered contact resistance become increasingly

important [138, 139]. Instead one must rely on numerical modelling to determine

the behaviour in this arrangement. The experimentally measured I c0 and FE

model results for the single tape I c are in close agreement at 100.5 A and 102.6

A, respectively. The stacked cable FE model gives a cable critical current, I c,cable,

value of 334.6 A, which is ∼80% of the critical current of four isolated coated

conductor tapes. This reduction in I c,cable is due to the increased self-field from

neighbouring tapes in close proximity within the stack. This has also been observed
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Figure 6.2: (a) Self-field I-V curves for a single tape, as measured experimentally in
self-field and simulated using the FE model. This is shown alongside the simulated I-V
curve for the cable in self-field. The horizontal dashed line shows I c as defined by the 1
µV/cm criterion. (b) DC current within each tape of the cable during the DC ramp. The
vertical dashed line indicates the DC current within each tape at the 1 µV/cm criterion.
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Figure 6.3: Model cross-sections displaying the current density as a function of position
at different times during the DC ramp. Plots (a), (b) and (c) show J z / J c0 at 140 A,
270 A and 334 A. The tape aspect ratio has been adjusted to assist the viewer.

in a series-connected stack of tapes reported in [71]. As DC current is injected into

the cable, it must distribute itself amongst the four tapes. This is shown in Figure

6.2 (b). First, current is injected primarily into the outer tapes in the stack (T 1

and T 4). As the total current in the cable increases, the share of the total current

carried by the inner tapes (T 2 and T 3) increases. Once I t reaches approximately

90% of I c,cable, a crossover occurs with the transport current primarily occupying

the centre tapes. The saturation current for this particular ramp rate occurs just

before I c (determined using the 1 µV cm−1 criterion) as can be seen by the equal

linear gradients for each tape beyond this point[140]. Further understanding of the

evolving current distribution in the stack during the initial current injection can be
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obtained by examining the current density across the full cross section of the stacked

cable. Figure 6.3 (a), (b), and (c) show the current density as a fraction of J c0 at

three moments during the current ramp; when I t is 140 A, 270 A, and 334.6 A. The

parallel connected stack can be considered to behave similar to a superconducting

bulk, in the sense that when I t is well below I c,cable, the current density is largest

near the surface. This manifests as current flowing across the entire width of the

outermost tapes, T 1 and T 4, as well as at both edges of the interior tapes, T 2 and

T 3. As the total transport current is increased, the outer tapes become saturated

with DC transport current across their entire cross-section, leaving a small shielded

region which exists only in the central regions of tapes T 2 and T 3. At I c,cable this

shielded region disappears, and the critical current of each tape is determined by its

J c(B,θ) properties and the local magnetic environment. The inner tapes experience

a smaller field contribution from their neighbouring tapes than the outer tapes,

which is why the inner tapes carry a slightly larger proportion of the total current.

The reason for this is that the inner tapes have neighbouring tapes both above and

below. This symmetry leads to the perpendicular magnetic field contribution from

each neighbouring tape being partially cancelled out. The outer tapes experience

the full contribution from their neighbouring tapes, and hence experience a larger

perpendicular field and consequently, a lower J c,µV(B, θ)

6.2.2 Resistance per AC Field Cycle

Figure 6.4 (a)–(d) show the values calculated from the FE model using equations

6.3 and 6.4 for the dynamic resistance per cycle, for each tape and the total cable.

Analytical values for the cable obtained from equations 2.13, 2.15, and 2.16 are also

shown. The dynamic resistance is calculated for four different values of the reduced

current i = 0.3, 0.5, 0.7, 0.9, and for a single frequency f = 65 Hz. The Rdyn

values are plotted as a function of the applied field amplitude Ba0. For all reduced

currents, there is a single threshold field value below which the DC values for the

dynamic resistance in each tape is negligible. Only once the applied field amplitude

exceeds this threshold value does the time-averaged resistance for each tape begin
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Figure 6.4: Time averaged values for the dynamic resistance and the threshold fields.
Plots (a), (b), (c), and (d) show the time averaged resistance for four different values of i
= 0.3, 0.5, 0.7, and 0.9 in AC field amplitudes up to 100 mT.
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to linearly increase. This is because the parallel connection of tapes in the stack

ensures that transport current is dynamically redistributed, such that the potential

drop along each tape is identical. This situation differs from a series-connected

stack of tapes [71], where the transport current in each tape is constrained to be

equal and hence shielding effects mean that dynamic resistance emerges in the

outer tapes well before it is observed in the inner tapes. For all values of i, the

outermost tapes in the stack have a larger DC dynamic resistance compared to

the interior tapes. This is because they carry a greater proportion of shielding

currents, and consequently a smaller proportion of the total transport current than

the inner tapes. When i = 0.9, the difference between the dynamic resistance of

each tape decreases significantly. This reflects the fact that the cable can support

less screening currents at highly elevated values of i.

6.2.3 Transient Electric Field and Current Sharing in a
Sinusoidal Perpendicular Field

The DC values for Rdyn presented in Section 6.2.2 are calculated from the transport

current and the time-averaged electric field in each tape in the cable. These transient

quantities vary over the alternating field cycle. In particular, screening currents

redistribute during the cycle which causes the net DC transport current component

to also move between the exterior and interior tapes. Figure 6.5 shows the current

distribution at eight moments over a single cycle of the applied field with Ba0 =

20 mT < Bth and i = 0.5. As expected, a significant fraction of the cable interior

has current densities well below J c. In this regime, there is no flux transfer across

the cable and no net DC electric field. Figure 6.6 shows the current density at

the same eight different times during a single cycle of the applied magnetic field

when i = 0.5 and Ba0 = 100 mT. Plot (a) shows the moment Bapp = 0 mT and is

increasing. Screening currents of opposite polarity to the DC current flow on the

left-hand side of the cable and penetrate slightly further into the exterior tapes.

The right-hand side of the cable accommodates the sum of screening currents and

the DC transport current. At this instant in the cycle, dissipation is occurring
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across the entire conductor and E cable is increasing. Figure 6.6(b) shows the current

distribution by Bapp = 100 mT after 1.25 cycles. At this moment E cable has fallen

from its peak value and almost decayed to zero. The total induced screening currents

flowing in the stack have decreased since Figure 6.6(a). This is evident from the

reduced area of the return path on the left-hand side of the cable, along with the

global reduction in the magnitude of the current density. Figure 6.6(c) shows the

moment shortly after the applied field has reached its maximum, where Bapp =

86 mT and is now decreasing (This occurs after 1.333 complete cycles in Figure

6.7). Now, E cable is at its minimum value (see figure 6.7 (c)). Interestingly, this

is occurring sometime after dBapp/dt = 0. Figure 6.6(c) shows new return paths

for negative polarity screening currents appearing now on the opposite edge of the

tape. At the same time, negative currents which were previously flowing on the

left side are now being gradually erased by positive
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Figure 6.7: (a) Phase of the applied magnetic field with Ba0 = 100 mT. (b) and (c)
Show the time dependence of I outer/I inner and Ecable for i = 0.5. These plots span 1.5
cycles of the applied field. The solid black circles in (a) indicate the eight instances in
time referenced in Figure 6.6. The dashed lines indicate when the applied magnetic field
Bapp = Ba0 and Ba0 – 2Bth (Bth calculated using eqn. 2.15).

currents encroaching from the left edge. These residual screening currents vanish

first in the exterior tapes leading to a short-lived peak in the DC current contained

in the exterior tapes (see Figure 6.7(a)). Shortly afterwards, the residual ‘island’

of screening currents is also erased from the interior tapes, which are then able to

accommodate a greater proportion of the transport current.

By Figure 6.6(d), the applied field has dropped to Bapp = 53 mT, and 1.41

AC field cycles have passed. At this moment, the negative screening currents on

the left-hand side have vanished entirely. This coincides with the rapid increase

from zero of E cable. It should be noted that the applied field at this moment is

approximately equal to Ba0 - 2Bth. After this moment current distributions - which



6. Dynamic Resistance in Parallel Connected Vertical Stacks 107

are the mirror image of those in Figure 6.6(a–d) - are observed in Figure 6.6(e–h)

as the AC field goes through the negative half of the AC field cycle.

This narrative is presented again in figure 6.7. Here, the same eight separate

moments during the applied field cycle are shown, which correspond to the labelled

points in figure 6.6. Figure 6.7(b) shows the time-dependence of the ratio of

transport current carried by the outer and inner tapes respectively when i = 0.5

and Ba0 = 100 mT. This is expressed as I outer/I inner = (I T1 + I T4)/(I T2 + I T3).

Figure 6.7(c) shows how the transient variations in this ratio also correspond to

the transient electric field across the stack, E cable. (Again note that the idealised

parallel connection between every tape in the stack means that E cable = ETN
for all

tapes).

In Figures 6.7(b) and (c), we see the evolution of I outer/I inner and E cable over

1.5 cycles of the applied AC field. The dashed lines show the window in which the

applied magnetic field decreases from its peak value of Ba0 to approximately Ba0 -

2Bth (calculated using equation 2.15). This is the point in the cycle at which the

Bean model predicts that screening current reversal is no longer capable of shielding

the interior from the changing external field [71], and hence holding the interior

electric field at its minimum value. Immediately following this window, there is

a sharp rise in E cable and simultaneously a greater proportion of the DC current

moves into the interior tapes. This occurs as the screening currents are driven in the

outer tapes to oppose the rapidly changing applied field and hence the DC current

component is driven into the inner tapes. The ratio of DC current, I outer/I inner,

then steadily increases until the applied field reaches the opposite polarity peak

and the process then repeats in the next half-cycle.

The time-varying distribution of transport current between tapes is observed at

all applied field amplitudes. Figure 6.8 shows the time dependence of I outer/I inner
and E cable for a range of Ba0 values (with Ba0 > Bth). At increasing values of Ba0,

the maximum value of I outer/I inner increases, indicating that a greater proportion
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Figure 6.8: Time dependence of (a) I outer/I inner and (b) Ecable for a range of Ba0 values
over 1.5 cycles of the applied magnetic field for i = 0.5.

of the interior tapes are taken up by reversing currents during the period between

Ba0 and Ba0 - 2Bth (equivalent to Figure 6.6(c)). We also observe that the peaks in

the E cable waveform broaden and increase in amplitude with increasing Bao. This

directly causes the DC value of Rdyn to increase as shown in Figure 6.4.

6.3 Vertically Stacked Cables with a variable Num-
ber of Tapes

In the following section, the evolution of Bth in cables comprised of N tapes

connected in parallel is investigated. As mentioned earlier, this section uses the

measured SuNAM J c,µV(B,θ) and n data. The values for Bth calculated from the

FE model are compared to values obtained from the corresponding slab, strip, and

stack equations presented in Section 2.5. In this section, the tape thickness d =

130 µm, the centre-to-centre spacing D = 200 µm, and the tape half width a = 2

mm. The overall cable thickness is k = (N -1)D+d. Unlike the previous section, the
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Figure 6.9: Simulated E-I curves for vertically stacked cables comprised of 1-32 tapes.

frequency of the applied magnetic field is 100Hz, noting here that the dynamic loss

is independent of frequency for frequencies on the order of hundreds of Hz [61, 70].

6.3.1 Calculated I c Values

First, simulated I c tests are performed for each cable configuration so that a value

of J c can be determined for use with equations 2.15, 2.14, and 2.17. The same

electric field criterion of 1µVcm−1 is applied when determining I c for each N. The

calculated E-I curves are shown in Figure 6.9. In Figure 6.10, these values are

shown compared with the I c of a single tape multiplied by the number of tapes

within the cable. The calculated I c,cable values begin to diverge significantly when

N > 8. This reflects the suppression of J c due to the increasing magnetic field

generated by neighbouring tapes. The value of J c used in the analytic equations is

determined by dividing the calculated I c,cable by the total cable cross-section, i.e.

J c = I c / 2ak. This is consistent with previous reports showing that HTS cables

can be modelled as a single bulk with a reduced J c [141].
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Figure 6.10: Calculated I c values using the 1 µV cm−1 criterion from Figure 6.9 as a
function of tape number N. The dashed line shows the value obtained by multiplying the
I c of a single tape in isolation by N.

6.3.2 Threshold Fields

The threshold fields for each cable is calculated in the same manner described in

section 6.2.3, taking the Ba0 intercept from linear fits to the non-zero regime in plots

of Rdyn,cable as a function of Ba0. These are presented alongside values calculated

using equations 2.14, 2.15, and 2.17 for various values of i in Figure 6.11.

For N = 1, 2, and 4, the FE data shows clearly non-linear behaviour at low

transport currents, i < 0.3. There is exceptional agreement between the FE data

and the strip and stack equations for N = 1 and i > 0.3 but only the strip expression

retains this agreement for transport currents below 0.3I c. As the aspect ratio of the

cable decreases with increasing N, the non-linear behaviour occurs at progressively

lower currents, vanishing by N = 8. At higher values of N, the strip and slab

expressions swap in terms of agreement with the FE data while the stack expression

remains in close agreement throughout.
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Figure 6.11: Calculated values for Bth as a function of i obtained from the FE model
and using equations 2.15, 2.14, and 2.17. Shown are results from N=1, 2, 4, 8, 16, and 32
in plots a-f.

Figure 6.12 shows the threshold field behaviour at 1% I c for each cable. Again this

highlights the transition in agreement between the strip and slab expressions as N

increases. The stack expression is consistent over the entire range but begins to

overshoot slightly for N > 16. It is interesting that the FE model yields similar

results to the analytical expressions as the latter assumes a constant J c while the

FE model includes field dependent J c values.
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Figure 6.12: Calculated values for Bth and i=0.01 using the FE model and equations
2.14, 2.15, and 2.17 for all values of N.

6.4 Summary Discussion

In this chapter, the dynamic resistance has been modelled in parallel connected,

vertical stacks of HTS tapes with varying aspect ratios. The numerical models are

based on the H -formulation and make realistic assumptions about the electrical

properties of the superconductor, including field dependent critical current densities

and physical values for the flux creep exponent n. When the transport current

flowing through the cable is held constant and an alternating field applied, we

observe a single threshold field above which the time-averaged values for the

dynamic resistance increases linearly from zero for all tapes. The FEM values

for the time-averaged dynamic resistance and threshold fields have varying levels

of agreement with those from the different analytical models. The overall FE

agreement with the analytical expression for stacks is exceptional in the linear

regime for each cable. However dynamic resistance switching in the low i regime

is only successfully described analytically in high aspect ratio tapes. FE analysis
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of this regime in cables indicates that none of the analytic models presented here

can describe the cable over the entire range of transport currents. While cables

consisting of a small number of tapes retain a high aspect ratio, the threshold fields

cannot be described by a strip model with a constant critical current density.

When we examine the transient behaviour of the cable, it is evident that the

transport current moves between flowing primarily in the exterior or interior tapes,

in response to the varying applied magnetic field. The motion of current and flux

in the y-direction cannot be described using the 1D geometry assumed for a strip.

When the rate of change of the applied field changes polarity, screening currents

appear on the edges of the tape which act to erase the screening currents from

the previous half cycle. During this period, the electric field passes through its

minimum values and most of the transport current flows in the exterior tapes. After

the screening currents are completely erased, the electric field rapidly increases

due to a combination of the suppression of the critical current and the increasing

presence of screening currents. In these moments, the DC transport flows mostly in

the interior tapes.



7
Effective Resistance of a Current-Carrying

Hollow Strip in an AC Magnetic Field

As discussed in the previous chapters, a type-II superconductor carrying a DC

transport current and subject to an alternating magnetic field can experience a

dissipative DC electric field. This is dependent on whether or not the applied field

is capable of fully penetrating the superconductor such that the screening and

transport currents interact. This ’dynamic resistance’ is generated by the flow of

vortices across the conductor[53, 58]. As discussed in [88], a general expression for

the dynamic resistance can be obtained by considering a superconducting hollow

slab carrying a DC transport current while simultaneously exposed to an alternating

magnetic field (see figure 7.1). In this chapter, FE analysis of a superconducting

loop made from a hollow superconducting thin film is presented. Similar to the

dynamic resistance in hollow slabs, it is expected that the underlying physics will be

the same [58], however the form of the threshold fields in the hollow strip will differ

due to the highly non-linear current and field profiles through the superconductor.

In principle, the threshold fields for the hollow strip may be computed using the

conformal mapping technique described in [38–40]. However, it is significantly

easier to investigate the form of the threshold field in a hollow strip using finite

element analysis as will be shown in this chapter. The computed values for the

threshold field for the dynamic resistance are then compared with values predicted

using the analytical models of section 2.5.1.1 for a single monolithic strip. These

equations are repeated here.

Bth,strip = µ0Ic
2πa

[
1
i
ln
(1 + i

1− i

)
+ ln

(
1− i2

4i2

)]
(2.15)

and

114



7. Effective Resistance of a Current-Carrying Hollow Strip in an AC Magnetic
Field 115

Bth,Jiang = 4.9284µ0Ic

πa
(1− i) (2.16)

where a is the half width of the strip. These expressions come from [58] and [61]

respectively. These expressions show close agreement for transport currents > 10%

of I c. At present there is no analytical expression for the threshold field of a hollow

strip with an arbitrary transport current. Thus the threshold fields for a monolithic

strip are substituted to estimate the net DC electric field generated in the hollow

strip. The field and current profiles during the AC field cycle calculated using the

FE model are analysed using contour plots.

Figure 7.1: Superconducting loop made from a hollow superconducting thin film. The
loop carries a DC transport current and is exposed to an alternating, transverse magnetic
field.

7.1 Finite Model

The finite element model used in this chapter is a 2D model in the xy-plane with

translational symmetry along z. As shown in figures 7.1 and 7.2, the hollow strip

consists of two rectangular HTS cross sections connected in parallel with an air-gap

between the two. A transport current flows along the positive z-direction with

the alternating magnetic field applied in the y-direction. The finite element model

uses the H -formulation outlined in Section 3.1.1. with constant J c,µV and n values.
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Figure 7.2: Finite element geometry of the superconducting switch. Shown are the
relevant lengths as well as the applied transport current and AC field directions

Each superconducting branch has width b = 4 mm and a thickness of 100 µm. The

half width of the air-gap, l, is 2 mm. The flux creep exponent was set at n = 30,

the I c,branch of a single branch is 105 A, and thus the critical current of the entire

loop, I c, is 210 A. The AC frequency f = 100 Hz. All of these are consistent with

typical parameters for a commercially manufactured HTS tape and an experiment

in a laboratory setting [71, 72, 76].

In a similar manner to the previous dynamic resistance chapters, currents and

fields are computed in a two stage process. The details are essentially identical

to that employed in the previous Chapters 4,5, and 6 where first a DC transport

current, I t, is applied to the conductor using an integral constraint

It =
∫

Ω
J · dΩ = Iapp(t) (7.1)

where Ω is the union of the two HTS cross sections. In stage one, I app(t) is a linear

ramp with a gradient of 10 As−1. This ramp is run until the desired transport is

reached and then the transport current is held constant. Note that the critical

current density of the superconductor is set to 26 kAm−1. In stage two, a sinusoidal

field, Bapp(t)=Ba0sin(ωt) is applied for multiple cycles. The FE values for the

net DC electric field are then given by

EDC = f

2bd

∫ 2/f

1/f

∫
Ω
E · dΩdt (7.2)



7. Effective Resistance of a Current-Carrying Hollow Strip in an AC Magnetic
Field 117

The spatial component of equation 7.2 is the instantaneous value of the spatially

averaged electric field, denoted Eave. The DC values of the electric field are

computed from the second cycle where the transient values of Eave are periodic

with the applied field.

7.2 Results

7.2.1 Threshold Fields

Figure 7.3: The magnetic field profile at peak applied field for various different values
of Ba0 as calculated using the FE model, with I t = 0 in all cases.

For the given geometry, the penetration field at zero transport current, Bpen,

denotes the approximate limit of the threshold field. Bpen is the applied field at

which flux penetrates the full width of both branches of the superconducting loop in

the absence of any external current. Figure 7.3 shows the perpendicular magnetic

field in the plane of the conductor at peak field for various different values of Ba0

as calculated from the FE model. For lower field amplitudes, there is a region
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Figure 7.4: Calculated EDC values as a function of Ba0 obtained from the FE model.
An example of a linear fit is shown for i = 0.9 as well as the corresponding Bth value

nearer to the interior edge of each HTS branch where the field is zero. As Ba0 is

increased, this shielded region decreases in size until by Ba0 = 18 mT, the local

magnetic flux density is non-zero everywhere except for two singular locations near

to the interior edge of each tape. Thus, 18 mT approximates the upper bound for Bth.

For non-zero transport currents, Bth values are determined from the FE model

in the same manner as the previous resistance chapters. They are obtained from

linear extrapolations of the DC electric field as a function of field and transport

current[61, 70, 76, 86, 129]. This is presented in figure 7.4. The FE threshold fields

are then compared with values calculated using the analytical model for a single

strip (equations 2.15 and 2.16) in figure 7.5.

When calculating the threshold fields using the analytical equations 2.15 and
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Bth,StripA Bth,StripB Bth,JiangA Bth,JiangB
b (mm) 4 6 4 6

Table 7.1: Bth labels and input values for the parameter a used in equations 2.15 and
2.16

Figure 7.5: Threshold field values calculated using the FE model and the analytical
equation for a single strip. Two strip models are presented. A strip with the same J c and
i values as the hollow strip. As well as a larger strip with a reduced J c but the same i
values.

2.16, a choice must be made for the values to use for the strip half-width, a. Two

different possible choices for a correspond to (A) a strip with width equal to the

sum of the two branches (ie a = b = 4 mm, Bth,StripA and Bth,JiangA): or (B) a

strip with total width equal to the total width of the hollow strip (ie a = b+l

= 6 mm, Bth,StripB and Bth,JiangB).

This results in four different calculations of Bth (two from equation 2.15 and

two from equation 2.16), as summarised in table 7.1.
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Figure 7.5 shows that analytical values calculated using a = b (Bth,StripA and

Bth,JiangA) overestimate Bth,FEM for transport currents less than 90% of I c. However,

Bth,StripB and Bth,JiangB produce very good agreement with the FE values for Bth,

particularly Bth,JiangB which is comparable for transport currents 0.01 ≤ i ≤ 0.9.

This is a rather surprising result as the derivation of neither equation 2.15 or 2.16

properly considers the current induced due to flux in the air gap. The non-linearity

at low transport currents in the strip expression, equation 2.15, is not observed in

the FE data which is linear over the full current range. Equation 2.16 exhibits this

behaviour, with a threshold field value of 17 mT at the lowest transport current

considered here. This agrees with the estimate of Bpen from figure 7.3.

7.2.2 DC Time-Averaged Electric Field

The derivation of equation 2.23 does consider the effect of the air gap on the time

averaged electric field in a hollow slab. In the following section, values for EDC

calculated using the FE model and equation 2.23 are compared. This is shown in

figure 7.6. Bth,JiangB is used as the threshold field input in equation 2.23, based on

the close agreement observed in figure 7.5. Figure 7.6 reveals that three distinct

regimes can be identified in the net DC electric fields.

1. Regime A - a zero net DC electric field regime exists wherever Ba0 < Bth.

This shielded regime is essentially identical to that observed in a monolithic

strip, and includes all data points that lie along the i axis in figure 7.6. This

regime is indicated by the cyan box.

2. Regime B - a non-zero net DC electric field regime exists where EDC increases

non-linearly with transport current. In this regime, I t � I c and Ba0 > Bth.

This regime is defined by the deviation of the FE electric fields away from the

linear behaviour predicted by equations 2.16 and 2.23.

3. Regime C - a non-zero net DC electric field regime exists where EDC increases

less rapidly than in Regime B and is broadly consistent with equation 2.23.
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Figure 7.6: Calculated values for the net DC electric field from the FE model and using
equation 2.23 and Bth,JiangB used as the threshold field

In this regime, I t ≥ 1%I c and Ba0 > Bth. This regime represents all data

points that lie outside of the grey and cyan boxes in figure 7.6.

Regime A is equivalent to that observed in the dynamic resistance of monolithic

conductors. In this regime, the superconductor is not fully penetrated by the external

field and the transport current is typically viewed as occupying the central region

of the conductor. As the entire conductor is never saturated with critical currents,

there is no net DC electric field. Regime C is also observed in monolithic strips.

The combination of equations 2.16 and 2.23 for EDC leads to an i2 dependence,

such that the dynamic resistance (EDC/ i) is expected to increase linearly. In this

regime, during the AC field cycle the current density is driven above J c everywhere

such that flux traverses the strip and results in a net DC electric field. Regime

B however, is not observed in monolithic conductors and represents a transition

region that is only observed in hollow conductors.
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7.2.3 Cyclic Evolution of Sheet Currents and Electromag-
netic Fields

In order to analyse the three different regimes, the 2D data for J z, By, and E z from

the FE model is transformed into the equivalent sheet values for using the relevant

equations given in section 3.1.3. These are presented visually using contour plots

(see figure 7.7). These contour plots are shown alongside time-evolution plots of the

instantaneous values of Eave, the net current in the left and right branches, I L and,

IR, and Bapp.

Regime A

Figure 7.7 shows the typical transient behaviour of sheet current values across the

tape in regime A. Here i = 0.5, Ba0 = 5 mT < Bth, and the time axis spans four

cycles of the applied field. The current distributions are shown in plot (a). Return

paths for induced screening currents (blue) are observed at the four tape edges,

being largest at the outer two. Peak current penetration occurs concurrently with

peaks in the applied magnetic field. Currents which run parallel to the transport

current (red) penetrate further than those which run anti-parallel. Unlike the slab

model, currents also penetrate each branch from the interior edges, although these

are significantly smaller than those at the outer edges. In the centre of each HTS

branch is a region where the currents run parallel with the transport current and

are sub critical. This indicates that there is sufficient ’space’ within each branch for

the transport current to flow before ’overflowing’ into regions occupied by screening

currents. Plot (f) shows the local perpendicular magnetic flux density over the width

of the loop and it is clear that the interior regions of each HTS branch have flux

frozen in. The polarity is flipped between the two branches, and internal variations

due to the external field occur primarily at the tape edges. Plot (k) shows that

the largest magnitude electric fields are also generated
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at the outer edges of each branch and have opposite polarity. Because Ba0 <

Bth, the net electric field waveform is very small and the model does not produce a

periodic waveform, even after four full cycles. However, as seen in figure 7.6, the

DC time-averaged electric field is effectively zero for all cycles.

The behaviour in regime A can be understood in terms of the net transport

current flowing through each branch as shown in plots (c) and (d). The transport

current within each branch oscillates between zero and 95% of the branch I c.

Because neither branch exceeds I c,branch at anytime, no flux traverses either branch

and there is no net DC electric field.

Regime B

A set of typical contour plots for regime B are shown in figure 7.8 where Ba0 > Bth

and I t � I c. In this particular instance, i = 0.01, Ba0 = 30mT, and the time axis

spans two cycles of the applied field.

Plot (a) again shows the current distributions within each branch and they have

a particularly simple form. When Bapp is at its peak, each branch contains only

one polarity of current. As Bapp varies by 2Bth from its peak, the currents reverse

polarity in both branches. Following this, the Eave waveform increases from zero as

the screening and transport currents interact.

This process is then mirrored in the following half cycle. In plot (f) we see

the emergence of contour spikes at the internal edges of each branch, reminiscent

of those for the single strip in chapter 5. These contour spikes represent the

locations where the last bastion of frozen flux is eliminated once the applied field

has varied by 2Bth from the peak value.
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Figure 7.9: Ez profile across the conductor width at peak dissipation when i = 0.01,
Ba0 = 30 mT. The blue-shaded regions represent equal and opposite contributions to the
spatially averaged electric field which sum to zero. The red-shaded area represents the
net averaged electric field at this moment in the cycle.

From the contour plots, the field distributions appear to be symmetric about x

= 0, as one would expect for a loop carrying no transport current. However, plot (k)

demonstrates that the electric fields in the branch carrying current parallel to the

transport current are significantly larger (as the current density is > J c throughout

that branch). This asymmetry is what generates a net DC electric field. Plots (c)

and (d) show the net current within each branch and we see that both are driven

over I c,branch at the same moments during the AC field cycle. The branch with

screening currents running parallel to the transport current is driven further up the

E-J curve, resulting in a larger electric field.

Figure 7.9 shows the electric field profile across the width of the conductor at

peak dissipation as the applied field changes from negative to positive. The electric
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field varies linearly over the width when fully penetrated, similar to the strip models

presented in chapter 5. This is because once both branches are saturated to J c, the

local magnetic field changes linearly with further applied field, ie independent of

x-location. As a result, Faraday’s law simplifies to ∂xE z = constant. The presence

of the net transport current in just one branch drives the electric field zero crossing

away from the geometric centre of the loop. This is equivalent to stating that the

electric field in the branch where the screening and transport currents are parallel

has a larger electric field. The blue-shaded regions show contributions to the average

E z which are of equal and opposite polarity, and hence sum to zero. Cancelling the

contributions from these regions leaves the residual DC electric field shown by the

red-shaded region, which is distributed uniformly across the width of only one branch

during each half cycle. Notably, the zero crossing of the electric field lies in the air

gap between the two superconducting branches. This is the reason why equation

2.19 is not valid for regime B. The derivation of equation 2.19 requires a closed loop

current path around the full loop for which E = 0 at all points. Finite element

modelling shows that such a contour does not exist when operating in regime B.

Regime C

Contour plots for the typical transient evolution of sheet values in regime C are

shown in figure 7.10 ( Ba0 > Bth and i > 0.01). In this particular case, i = 0.5

and Ba0 = 30 mT and the time axis spans two cycles of the applied field. The

current distributions in plot (a) retain a relatively simple form. At the outer edge

of each HTS branch, return paths for screening currents are clearly visible and

these oscillate between the two branches with the applied field.
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Figure 7.11: Ez profile across the conductor width at peak dissipation when i = 0.5,
Ba0 = 30 mT. The blue-shaded regions represent equal and opposite contributions to the
spatially averaged electric field, which sum to zero. The red-shaded area represents the
net averaged electric field at this moment in the cycle.

Once Bapp varies by 2Bth from its peak value, the previous return paths for

screening currents are completely erased and screening currents now occupy the

alternate branch. After this point, Eave increases rapidly from zero and remains

positive until the following peak in Bapp. Unlike regime B, only a single contour

spike in By is apparent at any given moment. Plot (k) shows the local E z. At peak

resistance, a large electric field is generated in the branch with currents parallel

to the transport current. It is largest at the outer edge and decreases linearly

towards the inner edge. The other branch experiences significant electric fields of

both polarities which partially cancel, resulting in an almost net zero electric field.

Plots (c) and (d) show the net current within each branch. Unlike regime B, only

one branch at a time carries a net transport current that exceeds I c,branch and this
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alternates with the applied field. The alternate branch essentially contains a large

eddy current that acts to displace transport current from that particular branch.

Figure 7.11 shows the electric field profile across across the width of the hollow

strip at peak resistance as the applied field changes from negative to positive. In

the branch that is fully penetrated, again the electric field varies linearly with

position. However, in the ’shielded branch’ a non-linear trend in E z is observed.

Extrapolation of the linear electric field shows that the electric field zero crossing

now lies within the shielded branch. This is different to regime B. Again, the

blue-shaded regions represent equal and opposite contributions the net DC electric

field represented by the red-shaded region. The largest electric fields are generated

at the exterior edges of the loop. An exactly opposite distribution is observed at

peak resistance in the next half-cycle. This means that the transport current moves

between both branches over the course of a full cycle.

7.3 Summary Discussion

In this chapter, a finite element model has been used to predict the DC electric

fields generated in a superconducting hollow strip that carries a transport current

while exposed to an alternating, perpendicular magnetic field. From the model,

time averaged electric and threshold magnetic fields have been calculated.

The time averaged electric fields exhibit three separate output regimes dependent

on the applied transport current and AC field amplitude. Below the threshold

field, both branches of the superconducting loop have regions of frozen flux. In

this regime (A), the FE model does not produce an equilibrium solution after four

cycles of the applied field, however the magnitude of the time-averaged electric fields

are insignificant when compared with the other two regimes. The two non-zero

regimes are differentiated by the amount of transport current flowing through the

superconductor. Consider a superconducting hollow strip exposed to an alternating

magnetic field with no transport current. If the field is sufficient to fully penetrate
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each of the superconducting branches, equal and opposite electric fields are driven

in each branch. The electric field can be imagined to cross zero at the geometric

centre of the loop. As the transport current is increased from zero, the electric

centre line is now slightly displaced, oscillating about the geometric centre of the

loop. Provided the transport current is sufficiently small, the electric centre line

remains in the air gap and the device is in the second regime (B). This second

regime is not observed in the dynamic resistance of geometries consisting of a single

piece of superconductor and is exclusive to the ’hollow loop’ geometry. At peak

dissipation in this regime, each branch contains currents of the same polarity. The

branch carrying transport current is driven further up the E-J curve, generating a

larger electric field. As the transport current increases, the electric centre line is

further displaced and now oscillates between the two branches. Peak dissipation in

this regime (C) occurs in one branch at a time, and evolves similarly to the dynamic

resistance of a single bulk conductor with increasing transport current.



8
Conclusions

In this thesis, a combination of finite element simulations and experiments have been

used to investigate two resistive phenomena in high temperature superconductor wire;

geometric current saturation, and dynamic resistance. Both phenomena have been

modelled using the H -formulation, employing a magnetic field dependent power-law

function to capture the electrical properties of the superconductor and validated

against experimental data. The models allow one to interrogate the electromagnetic

fields and current distributions within the conductor. This allows for interpretation

of these phenomena in the language of conventional ’flux physics’. This analysis

has provided a number of novel results and insights which are summarised in the

following.

Geometric Current Saturation

• Current saturation across the conductor width in high aspect-ratio HTS

tapes (crystalline and multi-filamentary) during transport measurements can

be observed using near surface magnetic field imaging. Prior to saturation,

current initially occupies the edge regions, filling towards the centre with

increasing transport current. After saturation, additional transport current is

distributed uniformly over the entire conductor cross-section.

• This non-uniform filling behaviour causes a change in the near-surface magnetic

field signature from non-linear to linear. This signature change can be used

to reliably identify the saturation current of a HTS thin film, independent of

sensor location and at a singular value for the transport current.

132



8. Conclusions 133

• The experimentally observed voltage response in HTS conductors and near

surface magnetic field behaviour during transport measurements can be fully

reproduced using finite element models using solely Maxwell’s laws with a

power-law resistivity. This means that it is not necessary to invoke more

complex quantum physics to describe this behaviour, as has been proposed in

[106–108]

• Finite element modelling results indicate that current saturation coincides

with the penetrating flux front reaching the tape centre and the onset of

steady flux flow across the entire conductor width.

• The saturation current is shown to vary as a function of the current ramp

rate. This results in variations in the apparent J c.

• The critical current of a HTS tape is typically considered to be a fixed quantity

for a given magnetic field, determined using an arbitrary electric field criterion

of 1 µV cm−1. This definition is inherently unsatisfying as the 1 µV cm−1

criterion can occur in both the flux-creep and flux-flow regimes, depending on

the experimental conditions.

• The saturation current is proposed as an alternative definition for the critical

current. Unlike the voltage criterion, the saturation current is a phenomeno-

logical definition that is equivalent to the theoretical definition of the critical

current given in the Bean model in terms or current and flux penetration.

Dynamic Resistance in Tapes and Stacks

• Finite element models employing a power-law resistivity with field dependent

J c, reproduce the experimental transient voltage response in HTS tapes

exhibiting dynamic resistance. Constant J c models do not capture all of the

physics exhibited in experimental results.
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• Available analytical models describe dynamic resistance in terms of a net

transfer of a single polarity flux across the conductor width when an AC field

is applied on top of a DC background field. Finite element models confirm

that in the absence of a DC background field, flux of both polarities enters

at both tape edges. This results in vortex anti-vortex annihilation occurring

across the entire conductor width. This has an equivalent effect of generating

a DC electric field, each cycle of the applied field.

• There are experimentally observed features which cannot be described using

the Bean critical state model with a constant J c but which are fully reproduced

using a finite element model with a field dependent J c. In the absence of a

field dependent critical current, the maximum voltage response is expected

to occur at the zero-crossing of the applied magnetic field (where its time

rate of change is largest). Inclusion of field dependent J c results in a short

lived increase in the current carrying capacity of the wire which results in

peak-splitting of the measured voltage waveform.

• The contour plots presented in this thesis are a powerful tool for investigating

the transient evolution of sheet variables in HTS coated conductors. This

visualisation technique can be applied to any superconductor where transient

behaviour is of note and the conductor cross-section can be treated as 1-

dimensional.

• The electric field distributions calculated using a finite element model indicate

that the transport currents flows across the entire width of the conductor over

a cycle of the applied field. This is in contrast with analytical models which

assume the transport currents flow in the tape centre.

• The threshold fields for vertical stacks of HTS tapes with varying aspect ratios

have been calculated using a finite element model. In the high(low) aspect

ratio limits, the strip(slab) equations agree with the calculated values. At

intermediate aspect ratios, the calculated threshold fields transition between

these two limiting cases.
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Dynamic Resistance in a Hollow Strip

• The effective resistance generated in a hollow superconducting strip has been

calculated and is significantly larger when compared with monolithic conduc-

tors carrying similar transport currents and in similar external fields. This

makes hollow-conductor geometries promising for superconducting switching

elements.

• The effective resistance in a current carrying, hollow superconducting strip

in an alternating perpendicular magnetic field has been computed using the

a finite element model with a power-law resistivity. Three different output

regimes have been identified. Two regimes are analogous to the dynamic

resistance behaviour observed in monolithic conductors, but the other regime

is unique to hollow-conductor geometries.

• As with the case for dynamic resistance in monolithic conductors, the effective

resistance is generated by flux motion across the conductor. The exact flux

dynamics vary depending on which regime the hollow conductor is in.

Future Work

This analyses presented in this thesis leads to a number of interesting results which

can provoke consideration of potential future research. These are outlined in the

following.

Geometric current saturation

• The work concerning the saturation current has been presented only for

single tapes. This work can be extended to examine current saturation in all

manner of superconductor cables and coils with saturation correlated with

features in the measured I-V characteristics. This will be possible provided

the configuration exhibits an aspect ratio � 1.
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• The finite element models considered in this thesis all employ a power-law

resistivity. This means that provided dI t/dt is sufficiently slow, then I c,S can

be driven arbitrarily close to zero. Reality might differ markedly from this

where materials have non-zero pinning forces and thus current saturation over

the width at low currents should be impossible. Further experimental tests

may assist in determining whether this is the case for commercial HTS tapes.

Dynamic resistance

• Finite element analysis of dynamic resistance in HTS tapes and cables in a

combination of DC and AC magnetic fields can be performed. This could

then be compared with experimental data such as that published in [67, 68].

• Additional modelling of dynamic resistance in parallel connected, vertical

stacks could be performed with J c(B, θ) data obtained in higher fields should

be performed. The J c(B, θ) data would allow for a complete mapping of the

transition between strip and slab behaviour.

• The finite element analysis of dynamic resistance in hollow-strip geometries

must be validated against experimental data obtained on hollow-strip con-

ductors. Commercial HTS tapes can be etched and tested in a dynamic

resistance setup such as that described in this thesis. An analytical expression

for the threshold field in hollow-conductor geometries can be derived making

the usual Bean critical state assumptions and using the conformal mapping

technique outlined in [38–40]



References

[1] J. G. Bednorz and K. A. Müller. “Possible high T c superconductivity in the Ba-
La- Cu- O system”. In: Zeitschrift für Physik B Condensed Matter 64.2 (1986),
pp. 189–193.

[2] L. Bromberg, M. Tekula, L. El-Guebaly, R Miller, A. Team, et al. “Options for
the use of high temperature superconductor in tokamak fusion reactor designs”.
In: Fusion Engineering and Design 54.2 (2001), pp. 167–180.

[3] P. Bruzzone, W. H. Fietz, J. V. Minervini, M. Novikov, N. Yanagi, Y. Zhai, and
J. Zheng. “High temperature superconductors for fusion magnets”. In: Nuclear
Fusion 58.10 (2018), p. 103001.

[4] C. Barth. High temperature superconductor cable concepts for fusion magnets.
Vol. 7. KIT Scientific Publishing, 2013.

[5] D. Whyte, J Minervini, B LaBombard, E Marmar, L Bromberg, and
M Greenwald. “Smaller & sooner: Exploiting high magnetic fields from new
superconductors for a more attractive fusion energy development path”. In:
Journal of Fusion Energy 35.1 (2016), pp. 41–53.

[6] R Heller, W. Fietz, A Kienzler, and R Lietzow. “High temperature
superconductor current leads for fusion machines”. In: Fusion engineering and
design 86.6-8 (2011), pp. 1422–1426.

[7] Y. Iwasa. “HTS and NMR/MRI magnets: Unique features, opportunities, and
challenges”. In: Physica C: Superconductivity and its applications 445 (2006),
pp. 1088–1094.

[8] C. A. Luongo, P. J. Masson, T. Nam, D. Mavris, H. D. Kim, G. V. Brown,
M. Waters, and D. Hall. “Next generation more-electric aircraft: A potential
application for HTS superconductors”. In: IEEE Transactions on Applied
Superconductivity 19.3 (2009).

[9] P. J. Masson and C. A. Luongo. “High power density superconducting motor for
all-electric aircraft propulsion”. In: IEEE Transactions on Applied
Superconductivity 15.2 (2005).

[10] A. Patel, V. Climente-Alarcon, A. Baskys, B. A. Glowacki, and T. Reis. “Design
considerations for fully superconducting synchronous motors aimed at future
electric aircraft”. In: 2018 IEEE International Conference on Electrical Systems
for Aircraft, Railway, Ship Propulsion and Road Vehicles & International
Transportation Electrification Conference (ESARS-ITEC). IEEE. 2018.

[11] J. H. Durrell, M. D. Ainslie, D. Zhou, P. Vanderbemden, T. Bradshaw, S. Speller,
M. Filipenko, and D. A. Cardwell. “Bulk superconductors: a roadmap to
applications”. In: Superconductor Science and Technology 31.10 (2018), p. 103501.

[12] K. S. Haran, S. Kalsi, T. Arndt, H. Karmaker, R. Badcock, B. Buckley,
T. Haugan, M. Izumi, D. Loder, J. W. Bray, et al. “High power density
superconducting rotating machines—development status and technology
roadmap”. In: Superconductor Science and Technology 30.12 (2017), p. 123002.

[13] L. Van de Klundert and H. H. ten Kate. “Fully superconducting rectifiers and
fluxpumps Part 1: Realized methods for pumping flux”. In: Cryogenics 21.4
(1981), pp. 195–206.

137



References 138

[14] M. Ainslie, F. Grilli, L. Quéval, E. Pardo, F. Perez-Mendez, R. Mataira,
A. Morandi, A. Ghabeli, C. Bumby, and R. Brambilla. “A new benchmark
problem for electromagnetic modelling of superconductors: the high-Tc
superconducting dynamo”. In: Superconductor Science and Technology 33.10
(2020), p. 105009.

[15] R. Mataira, M. Ainslie, A. Pantoja, R. Badcock, and C. Bumby. “Mechanism of
the high-T c superconducting dynamo: Models and experiment”. In: Physical
Review Applied 14.2 (2020), p. 024012.

[16] R. Mataira, M. Ainslie, R. Badcock, and C. Bumby. “Origin of the DC output
voltage from a high-Tc superconducting dynamo”. In: Applied Physics Letters
114.16 (2019), p. 162601.

[17] K. Hamilton, A. E. Pantoja, J. G. Storey, Z. Jiang, R. A. Badcock, and
C. W. Bumby. “Design and performance of a “squirrel-cage” dynamo-type HTS
flux pump”. In: IEEE Transactions on Applied Superconductivity 28.4 (2018).

[18] C. Bumby, Z. Jiang, J. Storey, A. Pantoja, and R. Badcock. “Anomalous
open-circuit voltage from a high-T c superconducting dynamo”. In: Applied
Physics Letters 108.12 (2016), p. 122601.

[19] T. A. Coombs, J. Geng, L Fu, and K Matsuda. “An overview of flux pumps for
HTS coils”. In: IEEE Transactions on Applied Superconductivity 27.4 (2016).

[20] J. Geng and T. Coombs. “Mechanism of a high-Tc superconducting flux pump:
Using alternating magnetic field to trigger flux flow”. In: Applied Physics Letters
107.14 (2015), p. 142601.

[21] A Sundaram, Y Zhang, A. Knoll, D Abraimov, P Brownsey, M Kasahara,
G. Carota, R Nakasaki, J. Cameron, G Schwab, et al. “2G HTS wires made on 30
µm thick Hastelloy substrate”. In: Superconductor Science and Technology 29.10
(2016), p. 104007.

[22] J.-H. Lee, H. Lee, J.-W. Lee, S.-M. Choi, S.-I. Yoo, and S.-H. Moon. “RCE-DR, a
novel process for coated conductor fabrication with high performance”. In:
Superconductor Science and Technology 27.4 (2014), p. 044018.

[23] H. Yi, Z Han, J. Zhang, T Liu, L Liu, M. Li, J Fang, Q Liu, and Y. Zheng.
“Research status of the manufacturing technology and application properties of
Bi-2223/Ag tapes at Innost”. In: Physica C: Superconductivity 412 (2004),
pp. 1073–1078.

[24] 2G HTS Wire Specification SuperPower.
https://www.superpower-inc.com/specification.aspx. (undefined
29/9/2021 15:6).

[25] H. Kamerlingh Onnes. “The superconductivity of mercury”. In: Comm. Phys. Lab.
Univ. Leiden 122 (1911), pp. 122–124.

[26] W. Meissner and R. Ochsenfeld. “Ein neuer effekt bei eintritt der
supraleitfähigkeit”. In: Naturwissenschaften 21.44 (1933), pp. 787–788.

[27] A. A. Abrikosov. “The magnetic properties of superconducting alloys”. In:
Journal of Physics and Chemistry of Solids 2.3 (1957), pp. 199–208.

https://www.superpower-inc.com/specification.aspx


References 139

[28] V. A. Shklovskij and O. V. Dobrovolskiy. “AC-driven vortices and the Hall effect
in a superconductor with a tilted washboard pinning potential”. In: Physical
Review B 78.10 (2008), p. 104526.

[29] J. Bardeen and M. Stephen. “Theory of the motion of vortices in
superconductors”. In: Physical Review 140.4A (1965), A1197.

[30] N. Strickland, N. Long, E. Talantsev, P Hoefakker, J Xia, M. Rupich,
T Kodenkandath, W Zhang, X Li, and Y Huang. “Enhanced flux pinning by
BaZrO3 nanoparticles in metal-organic deposited YBCO second-generation HTS
wire”. In: Physica C: Superconductivity 468.3 (2008), pp. 183–189.

[31] N. Strickland, N. Long, E. Talantsev, P Hoefakker, J. Xia, M. Rupich, W Zhang,
X Li, T Kodenkandath, and Y Huang. “Nanoparticle additions for enhanced flux
pinning in YBCO HTS films”. In: Current Applied Physics 8.3-4 (2008),
pp. 372–375.

[32] N. Strickland, S. Wimbush, J. Kennedy, M. Ridgway, E. Talantsev, and N. Long.
“Effective low-temperature flux pinning by Au ion irradiation in HTS coated
conductors”. In: IEEE Transactions on Applied Superconductivity 25.3 (2014).

[33] F Lera, R Navarro, C Rillo, L. Angurel, A Badia, and J Bartolomé. “Critical state
models for inter and intragranular flux pinning in HTS ceramics: universal scaling
laws”. In: Journal of Magnetism and Magnetic Materials 104 (1992), pp. 615–616.

[34] C. P. Bean. “Magnetization of hard superconductors”. In: Physical review letters
8.6 (1962), p. 250.

[35] C. P. Bean. “Magnetization of high-field superconductors”. In: Reviews of modern
physics 36.1 (1964), p. 31.

[36] P. W. Anderson. “Theory of flux creep in hard superconductors”. In: Physical
Review Letters 9.7 (1962), p. 309.

[37] Y. Kim, C. Hempstead, and A. Strnad. “Critical persistent currents in hard
superconductors”. In: Physical Review Letters 9.7 (1962), p. 306.

[38] W. Norris. “Calculation of hysteresis losses in hard superconductors carrying AC:
isolated conductors and edges of thin sheets”. In: Journal of Physics D: Applied
Physics 3.4 (1970), p. 489.

[39] E. Brandt, M. Indenbom, and A Forkl. “Type-II superconducting strip in
perpendicular magnetic field”. In: EPL (Europhysics Letters) 22.9 (1993), p. 735.

[40] E Zeldov, J. R. Clem, M McElfresh, and M Darwin. “Magnetization and
transport currents in thin superconducting films”. In: Physical Review B 49.14
(1994), p. 9802.

[41] E. H. Brandt. “Superconductors of finite thickness in a perpendicular magnetic
field: Strips and slabs”. In: Physical review B 54.6 (1996), p. 4246.

[42] J. Rhyner. “Magnetic properties and AC-losses of superconductors with power law
current—voltage characteristics”. In: Physica C: Superconductivity 212.3-4 (1993),
pp. 292–300.

[43] S. C. Wimbush and N. M. Strickland. “A public database of
high-temperature-superconductor critical current data”. In: IEEE Transactions on
Applied Superconductivity 27.4 (2016).



References 140

[44] Y. Kim, C. Hempstead, and A. Strnad. “Magnetization and critical
supercurrents”. In: Physical Review 129.2 (1963), p. 528.

[45] T. Johansen and H Bratsberg. “Critical-state magnetization of type-II
superconductors in rectangular slab and cylinder geometries”. In: Journal of
Applied Physics 77.8 (1995), pp. 3945–3952.

[46] M. R. Koblischka, A. Van Dalen, T Higuchi, S. Yoo, and M. Murakami. “Analysis
of pinning in NdBa2Cu3O7−δ superconductors”. In: Physical Review B 58.5
(1998), p. 2863.

[47] S Furtner, R Nemetschek, R Semerad, G Sigl, and W Prusseit. “Reel-to-reel
critical current measurement of coated conductors”. In: Superconductor Science
and Technology 17.5 (2004), S281.

[48] K. Higashikawa, K. Katahira, M. Inoue, T. Kiss, Y. Shingai, M. Konishi,
K. Ohmatsu, T. Machi, M. Yoshizumi, T. Izumi, et al. “Nondestructive
diagnostics of narrow coated conductors for electric power applications”. In: IEEE
Transactions on Applied Superconductivity 24.3 (2013).

[49] T. Machi, N. Chikumoto, K. Nakao, Y. Aoki, Y. Kitoh, H. Fuji, T. Izumi, A. Ibi,
and Y. Yamada. “Development of a magneto-optical imaging equipment for long
length 2G-HTS tapes”. In: Physica C: Superconductivity and its applications 445
(2006), pp. 673–676.

[50] H. Song, M. W. Davidson, and J. Schwartz. “Dynamic magneto-optical imaging of
transport current redistribution and normal zone propagation in YBa2Cu3O7−δ
coated conductor”. In: Superconductor Science and Technology 22.6 (2009),
p. 062001.

[51] T. Johansen, M Baziljevich, H Bratsberg, Y Galperin, P. Lindelof, Y Shen, and
P Vase. “Direct observation of the current distribution in thin superconducting
strips using magneto-optic imaging”. In: Physical Review B 54.22 (1996), p. 16264.

[52] V. Andrianov, V. Zenkevich, V. Kurguzov, V. Sytchev, and F. Ternovskii.
“Effective resistance of an imperfect type-II superconductor in an oscillating
magnetic field”. In: Zh. Eksp. Teor. Fiz.;(USSR) 58 (1970).

[53] T Ogasawara, K Yasuköchi, S Nose, and H Sekizawa. “Effective resistance of
current-carrying superconducting wire in oscillating magnetic fields 1: Single core
composite conductor”. In: Cryogenics 16.1 (1976), pp. 33–38.

[54] T Ogasawara, Y Takahashi, K Kanbara, Y Kubota, K Yasohama, and
K Yasukochi. “Alternating field losses in superconducting wires carrying dc
transport currents: Part 1 single core conductors”. In: Cryogenics 19.12 (1979),
pp. 736–740.

[55] M. Aikele, R. Huebener, D Weischer, and C. Tsuei. “Effect of high-frequency
magnetic fields on the dissipative vortex motion in the superconducting mixed
state”. In: Physica C: Superconductivity 290.1-2 (1997), pp. 109–112.

[56] M. Oomen, J Rieger, M Leghissa, B. ten Haken, and H. H. ten Kate. “Dynamic
resistance in a slab-like superconductor with Jc(B) dependence”. In:
Superconductor Science and Technology 12.6 (1999), p. 382.



References 141
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