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Abstract 

The strategic long-term planning and design optimisation of renewable and sustainable 

energy systems, and particularly microgrids (MGs), is essential for the most effective use of 

limited resources, especially as the deployment of localised, distributed energy generation 

systems increases. The main objective of such integrated resource planning exercises is to 

minimise total discounted system costs, whilst adhering to a set of interlinked technical 

constraints, including reliability. This results in a non-deterministic polynomial time-hard 

(NP-hard) problem, for which no polynomial time solution exists. This has therefore brought 

to light the importance of utilising meta-heuristic optimisation algorithms. 

Meta-heuristics are higher-level general strategies inspired by natural phenomena, which can 

be adapted to yield a near-globally-optimum solution to NP-hard problems by iteratively 

improving the position of candidate solutions under a pre-defined measure of quality or time. 

Given the approximate nature of meta-heuristics, they have been found to have different 

efficiencies in different applications due to the fundamental differences in the form of the 

underlying objective functions – and the nonlinearities and non-convexities involved. 

Accordingly, testing the efficiency of new meta-heuristics in different areas is an active 

research area. 

In this context, a review of the MG sizing literature has identified that the performance of a 

number of state-of-the-art, herd-behaviour-oriented meta-heuristics has not yet been 

addressed, namely the wild horse optimiser (WHO), the artificial hummingbird algorithm 

(AHA), the artificial gorilla troops optimiser (AGTO), the marine predator algorithm (MPA), 

the equilibrium optimiser (EO), and the moth-flame optimisation algorithm (MFOA). In 

response, this study carried out a systematic performance comparison of the above-mentioned 

algorithms by benchmarking them against the well-established meta-heuristic in the 

literature, namely the particle swarm optimisation (PSO). To this end, two stand-alone 

battery-supported MGs were modelled, which provide an efficient solution for the 

electrification of personal passenger and utility fleets, in addition to serving residential and 

commercial loads. The first MG integrates solar photovoltaic (PV) and wind resources, while 

the second MG is solely driven by solar PV panels – both backed by battery storage. 

Moreover, to effectively coordinate the charge scheduling of integrated electric vehicles 

(EVs) – for improved cost solutions – specific rule-based dispatch strategies were developed. 

The conceptual MGs were then populated for three communities residing on Aotea–Great 

Barrier Island, in Aotearoa–New Zealand, who currently suffer from the unreliability of 

privately purchased, smaller-scale renewable energy systems. 

The comparative summary-statistics-based results obtained from the application of the 

proposed method, parametrised for the two MG configurations of interest, to the three 

community cases, reveal the important role of newly advanced meta-heuristics in optimising 

a statistically robust, minimum cost solution to the associated MG asset allocation problem. 

Comprehensive capital budgeting, cash flow, and energy flow analyses, as well as various 

univariate sensitivity analyses, have, furthermore, verified the validity and effectiveness of 

the proposed optimised systems in providing an integrated, reliable, affordable, clean, secure 

platform for serving residential, commercial, and EV-charging loads in remote and island 

communities. 
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Chapter 1: Introduction 

This chapter provides the background information to the study and establishes the research 

rationale. The research objectives are then defined along with the research design and 

strategy.  

1.1. Background 

Providing electricity to the estimated 1 billion people remaining without access globally has 

been found to be particularly challenging given the costs associated with the expansions of 

conventional power networks to remote areas with geographically challenging terrain (Shieh 

et al., 2019). This brings to light the importance of distributed energy generation technologies 

that are sited close to the point of consumption, such as wind turbines (WTs), solar 

photovoltaic (PV) panels, micro-hydropower plants (MHPPs), and so forth. Distributed 

energy generation provides an effective platform for the electrification of remote areas, as 

well as decarbonising power supply (Papageorgiou et al., 2020). The flexible architecture of 

microgrids allows for the optimal integration of distributed renewable energy sources (RESs) 

into the system – towards increasing the penetration of renewables in both urban regions and 

remote, rural localities. 

In recent years, the microgrid concept has emerged to integrate several clean energy micro-

sources into a dispatchable (controllable) system with a prescribed reliability level (Shieh et 

al., 2019). The U.S. Department of Energy defines a microgrid as ―a group of interconnected 

loads and distributed energy resources within clearly defined electrical boundaries that acts 

as a single controllable entity with respect to the grid‖ (Ton and Smith, 2012). 

Microgrids are typically associated with high capital, replacement, as well as operation and 

maintenance costs (Manfren et al., 2011). Also, non-dispatchable RESs, such as solar PV and 

wind are plagued by power output variability – as they depend on weather conditions. 

Despite high costs and variability in power output of RESs, there are several technical, 

economic and environmental benefits to implementing microgrids (AlSkaif et al., 2017).  

The optimal sizing of the components of microgrids is necessary to ensure a cost-minimal 

power supply whilst adhering to a set of operational and planning constraints. Accordingly, 

many studies in the literature have focused on developing MG capacity planning optimisation 

methods. For example, Yang et al. (2007) and (Diaf et al., 2008) have presented exact 

mathematical optimisation-based approaches to designing a microgrid considering the loss of 

power supply probability (LPSP) reliability indicator. The major issues associated with 

analytical approaches to microgrid sizing are the strong assumptions and simplifications 

involved, which lead to significant simulation-to-reality gaps, especially in terms of the 

optimal cost of the system (Hlal et al., 2019). 

Alternatively, meta-heuristic algorithm techniques are increasingly utilised to approximate 

solutions to energy planning optimisation problems due to their applicability to the original 

(unreduced) problems. For instance, Bilal et al. (2013) have calculated the optimal size of 

WTs, PV panels, and battery packs to ensure the reliability of the system based on cost 

minimisation using a genetic algorithm-based solution approach. Radosavljević et al. (2016) 

have proposed optimising the energy and operational management of grid-connected 

microgrids. The optimisation of the system is achieved by utilising the particle swarm 
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optimisation (PSO) technique. Diab et al. (2019) have proposed a model that minimises the 

cost of electricity subject to meeting certain reliability levels for systems integrating solar PV 

panels, WTs, diesel generators, and battery storage systems (BSSs). The underlying hybrid 

microgrid is optimised using the moth-flame optimisation, whale optimisation, water cycle, 

and hybrid particle swarm-gravitation search algorithms with the performances compared. 

However, less attention has been devoted to optimising the size of microgrids using newly 

developed herd-behaviour-oriented meta-heuristic algorithms such as the artificial 

hummingbird algorithm (AHA), marine predator algorithm (MPA), and artificial gorilla 

troops optimiser (AGTO). Accordingly, the extent to which these algorithms might 

outperform the well-established algorithms is not yet known. 

It is also noteworthy that New Zealand aims to achieve net-zero carbon emissions by 2050. 

Currently, around 40% of primary energy supply and more than 75% of electricity demand is 

met by RESs in New Zealand. Also, New Zealand holds the third place in the Organisation 

for Economic Cooperation and Development (OECD) in terms of the share of renewable 

electricity generation (MBIE, 2020a). This makes case studies in New Zealand prime 

candidates for evaluating the effectiveness of new methods. 

1.2. Research rationale 

It has been identified in the literature that meta-heuristic algorithms are able to increase the 

accuracy of optimal sizing of microgrid components compared to exact mathematical 

optimisers. For energy storage-supported microgrids integrating variable renewable 

technologies, particularly solar and wind resources, it is especially important to obtain the 

cost-minimal size of the components due to their high capital costs.  

As the above review of the mainstream literature indicates, several scholars have presented 

meta-heuristic-based microgrid sizing approaches considering the cost objective. However, 

less attention has been given to the planning, and design optimisation, of microgrids with 

100% renewable energy sources and with high reliability constraints using state-of-the-art 

herd-behaviour-oriented meta-heuristics. 

Accordingly, research is needed on the optimisation of the whole-life cost of MGs using 

state-of-the-art herd-behaviour-oriented meta-heuristics. To this end, the optimisation 

problem needs to be derived based on minimising the total net present cost of the system 

subject to the standard operational and planning constraints. 

1.3. Research objectives 

This research aims primarily to assist the decision-making processes considering the whole 

life-cycle cost associated with microgrids‘ planning and optimal sizing. Specifically, the 

research objectives of the study are:  

O1: Identify the main factors that influence the economics and configurations of 

microgrid systems. 

 

O2: Establish a general meta-heuristic-based modelling framework to yield the 

optimisation of microgrids. 

 

O3: Conduct a case-study analysis within a New Zealand context to verify and 

validate the proposed meta-heuristic-based microgrid designing model. 
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O4: Examine and compare the efficiency of well-established and state-of-the-art 

meta-heuristic algorithms, when applied to the problem at hand. 

1.4. Research design 

This research follows a deductive reasoning approach by collecting evidence based on a case-

study analysis to address the research problem. The deductive approach starts and ends with 

the ‗theory‘, as illustrated in Figure 1, and follows the exploratory and descriptive phases 

(Van Wyk and Taole, 2015). In this context, a set of questions were formulated to explore the 

different scenarios for microgrid design optimisation, such as: 

 ―What are the most influential contributing factors to the design optimisation of 

microgrids?‖  

 ―To what extent is a herd-behaviour-oriented meta-heuristic-based design of 

microgrids able to improve the costing of such systems?‖  

 ―What are the implications of total cost minimisation during the planning phases of 

micro-grids?‖ 

 

Patterns: 

Optimisation 

and Analysis

Observations:

Modelling

Proposition: 

Factors 

Affecting 

MGs

Theory: 

Related to 

Case Studies

Theory: 

Related to 

Case Studies

Deductive approach

Exploratory
Descriptive – using historical data, forecasts, 

and evaluations

Case Study
Optimise the results with meta-heuristic 

algorithms

O1 O2 O3 O4

Research 

type: 

Research

 method:

Research 

objectives (O):
 

 

Figure 1.Illustration of the deductive approach of the research 

                                                                                                                                                      

Van Wyk and Taole (2015) classify research design types according to primary data and 

existing data. Primary data links to case studies, surveys, programme evaluations, and so 

forth, whereas existing data deals with historical studies, numeric data, and statistical data. 

This study uses a combination of primary and existing data. 

1.5. Research strategy 

The following steps were undertaken for the study: 
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Step 1: Review the literature on design optimisation of micro-grids using well-established 

and state-of-the-art meta-heuristics. 

  

Step 2: Explore the possible applications of design optimisation of microgrids within a New 

Zealand context. 

  

Step 3: Develop a modelling framework that optimises the cost objective, particularly life-

cycle cost minimisation. More specifically, the objective function consists of the associated 

costs and continuous decision variables representing the size of components in the candidate 

pool. 

 

Step 4: Test the performance of various meta-heuristics when embedded within the proposed 

model and applied to the underlying design optimisation problem.  

  

Step 5: Verify the proposed model through comprehensive scenario-testing and in-depth 

sensitivity analyses. 

  
Step 6: Systematically measure the impact of the proposed model in improving the cost-

effectiveness of micro-grid systems. 
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Chapter 2: Literature review 

2.1. Introduction 

This chapter reviews the mainstream literature on the optimal capacity planning of micro-

grids (MGs). To this end, first, the literature review methodology explains the steps taken to 

identify and select the eligible studies for review. The review of the relevant literature then 

lays the foundation for the identification of the main factors that influence the economics and 

configurations of MGs. This, in turn, provides a platform for illustrating the pathways and the 

associated barriers to the energy transition towards renewable energy resources from 

conventional energy generation. A thematic characterisation of the literature, furthermore, 

highlights the notable actions taken by developed and developing countries to surmount the 

identified barriers, including the use of advanced computational planning models and novel 

MG configurations. This paves the way for positioning the novelty of this study, summarised 

in the previous chapter, within the identified gaps in knowledge. 

2.2. Literature review methodology 

Inspired by Cronin et al. (2008), a hybrid literature review methodology was adopted, which 

includes the ‗classic‘ and ‗systematic‘ literature review components. Fig. 2 summarises the 

literature review process (Cronin et al., 2008). 

 

 

 

 

 

Figure 2. The literature review process adapted from (Cronin et al., 2008). 

The selected topic for the literature review was the optimal sizing and capacity planning of 

MGs, and the wider transition to renewable energy economy by means of MGs. To search for 

relevant studies in the literature, a systematic review was carried out to identify the papers 

published from 2002 to 2021 using selected keywords in the Google Scholar database and the 

advanced database provided by the library of Te Herenga Waka—Victoria University of 

Wellington. The publication types were limited to journal and conference articles, as well as 

book chapters. The selected keywords to search the literature are summarised in Table 1, 

which are categorised into more specific components of the MG sizing problem, as well as 

the relevant dimensions. The identified studies were also checked for eligibility by reviewing 

their titles, keywords, and tables of contents. The selected studies for review were then 

analysed and synthesised by carrying out a critical review of the main body of the 

publications. Finally, in the fourth step, the reviewed publications were structured and meta-

analysed in terms of their findings to identify the knowledge gaps. The meta-analysis also 

entailed linking the wider thematic findings of the literature review to the research questions 

of this thesis.   

 

    

Select a 

topic for 

review 

Search and 

gather data 

Analyse and 

synthesise 

data 

Structure 

and meta-

analyse the 
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Table 1. Keywords used to search the MG sizing literature. 

Component Keywords 

Role in energy transition Energy transition, decarbonisation 

Topology Micro-grid system, AC micro-grids, DC micro-grids 

Economics Micro-grid economics, capital cost 

Renewable energy potentials Solar energy, wind energy, renewable energy potentials 

Case study  100% renewable energy 

Long-term planning 
Planning of micro-grid, design of micro-grid, sizing of micro-grid, 

optimal capacity of micro-grid 

Configuration Grid-connected, isolated, islanded, off-grid, stand-alone  

 

Table 2 provides a summary of the identified studies from the systematic literature review. A 

thematic characterisation of the included studies for review, in accordance with the wider 

scope of the thesis, is presented in the following sections. 
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Table 2. Summary of the previous work on the planning and designing of MGs. 

Micro-grid 

configuration 
Type of loads 

Battery 

storage 

Optimisation 

approach 

Optimisation 

algorithm(s) 
Objective function(s) Case study site Reference(s) 

PV, WT, CHP 
Industrial and 

residential 
No 

Reduce 

gradient 

method 

- 
Investment and maintenance 

costs 

East coast of 

USA 

(Augustine et al., 

2012a) 

PV, WT, FC, 

CHP 
Commercial No 

Meta-

heuristic 
PSO Operating cost Unspecified 

(Nikmehr and Najafi 

Ravadanegh, 2015) 

PV, WT, FC, 

DG 
Unspecified No 

Meta-

heuristic 
NSGA-II Operating cost Unspecified 

(Karuppasamypandiyan 

et al., 2019) 

DG Unspecified No 
Meta-

heuristic 

NSGA-II, 

Fuzzy logic 
Power loss, stability 

Algeria 

distribution 

network 

(Mosbah et al., 2017) 

PV, WT, DG Residential Yes 
Meta-

heuristic 
NSGA-II Operational cost and power loss Unspecified (Vergara et al., 2015) 

PV, WT, MTs, 

main grid 

Residential and 

agriculture 
No 

Meta-

heuristic 
PSO Operating cost Unspecified (Kerboua et al., 2020) 

PV, biomass 
Residential and 

agriculture 
Yes 

Meta-

heuristic 
PSO, IWO TNPC, LPSP Unspecified 

(Samy and Barakat, 

2019) 

PV, WT, DG Unspecified Yes 
Meta-

heuristic 
CSOA, BFOA Capital, O&M Unspecified (Alsmadi et al., 2019) 

FC, DG, main 

grid 
Unspecified Yes 

Traditional 

method 
Static dispatch Operating cost Unspecified (Liu et al., 2010) 

PV, WT, FC, 

MT, main grid 
Unspecified Yes 

Meta-

heuristic 
PSO TNPC Unspecified 

(Razmi and Doagou-

Mojarrad, 2019) 

PV, WT, FC Unspecified Yes 
Meta-

heuristic 
BSA, MFOA Operating cost Unspecified 

(Suresh and Ganesh, 

2019) 

WT Unspecified Yes 
Meta-

heuristic 
SHO Operating cost Tamil Nadu (Rajesh et al., 2021) 

PV, WT, MT, 

main grid 
Residential No 

Incentive-

based 
- Operational cost and power loss Unspecified (Monfared et al., 2019) 
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strategy 

PV, MT, main 

grid 
EV, PHEV No Exact method MILP Operating cost Unspecified (Rasouli et al., 2019) 

WT, Boiler, 

CHP 
EV, industrial Yes Exact method MILP Operating cost Unspecified (Lekvan et al., 2021) 

PV EV, residential Yes Simulink Phaser mode Operating cost Unspecified (Cetinbas et al., 2019) 

PV, WT, main 

grid 
EV, residential Yes 

Traditional 

method 
SA Operating cost Unspecified (Liu et al., 2020) 

CHP, boiler, 

PV, LDG 
EV, residential No Exact method MILP Operating cost Unspecified 

(Hosseinnia and Tousi, 

2019) 

PV, WT, CHP, 

boiler 
EV, residential Yes 

Meta-

heuristic 
WOA Operating cost 

Newcastle, 

England 
(Afrooz et al., 2019) 

PV, WT, FC, 

DG, MT 
EV, load (unspecified) No 

Meta-

heuristic 
WOA Power loss Unspecified (Sahu et al., 2020) 

PV, hydrogen, 

FC 
EV, residential No 

Meta-

heuristic 
NSGA-II Operational cost and power loss Yuxi, China (Huang et al., 2019) 

PV, WT Unspecified Yes Simulink - TNPC, LPSP Corsica Island (Diaf et al., 2008) 

PV, WT Unspecified Yes 
Meta-

heuristic 
NSGA-II TNPC Unspecified 

(Sarkar and 

Bhattacharyya, 2012) 

PV, WT Unspecified Yes 
Meta-

heuristic 
HGA Operating cost 

Shandong, 

China 
(Lu et al., 2017) 

PV, WT Unspecified Yes 
Meta-

heuristic 
NSGA-II Operating cost 

Portuguese 

distribution 

network 

(Haddadian and 

Noroozian, 2017) 

PV, WT Unspecified Yes 
Meta-

heuristic 

NSGA-II, 

MOPSO 
TNPC, LPSP Malaysia (Hlal et al., 2019) 

PV, WT, DG Residential Yes 
Meta-

heuristic 
MOSaDE COE, LPSP 

Yanbu, Saudi 

Arabia 

(Ramli, Bouchekara and 

Alghamdi, 2018) 

PV, main grid Residential, industrial No 
Meta-

heuristic 
EA Power loss Unspecified 

(Chaspierre et al., 

2017a) 
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PV unspecified No 
Meta-

heuristic 
WHO Compare efficiency of PVs Unspecified (Ramadan et al., 2021) 

Unspecified EV No 
Meta-

heuristic 
AHA Cost, efficiency Unspecified 

(Yin, Zhang and Jiang, 

2021) 

PV, WT, DG Unspecified Yes 
Meta-

heuristic 
AGTO Power loss Unspecified (Ali et al., 2021) 

Main grid Unspecified No 
Meta-

heuristic 
MPA Fuel cost, power losses Unspecified (Alharthi et al., 2021) 

Main grid Unspecified No 
Meta-

heuristic 
MPA Power loss Unspecified (Wadood et al., 2021) 

WT, DG, PV Unspecified Yes 
Meta-

heuristic 
MPA RES sensitivity analyses Unspecified (Yakout et al., 2021) 

PV Unspecified No 
Meta-

heuristic 
MPA PV statistical analysis Unspecified (Bayoumi et al., 2021) 

PV, WT, DG Unspecified Yes 
Meta-

heuristic 

WOA, WCA, 

MFOA, 

PSOGSA 

COE, LPSP Unspecified (Zaki Diab et al., 2020) 

PV, WT, main 

grid 
Unspecified No 

Meta-

heuristic 

EO, WOA, 

SCA 
Operating cost Unspecified (Ahmed et al., 2021) 

PV, WT 

Residential, 

commercial, EV-

charging loads 

Yes 
Meta-

heuristic 

MFOA, PSO, 

WHO, AHA, 

AGTO, MPA, 

EO 

TNPC 

Great Barrier 

Island, New 

Zealand 

This study 

Key: AHA = Artificial Hummingbird Algorithm, AGTO = Artificial Gorilla Troops Optimiser, BFOA = Bacterial Foraging Optimisation Algorithm, BSA = Bat Search 

Algorithm, CSOA = Cuckoo Search Optimisation Algorithm, COE = Cost of Electricity, CHP = Combine Heat and Power, DG = Diesel Generator, EV = Electric Vehicle, 

EA = Evolutionary Algorithm, FC = Fuel Cell, HGA = Hierarchical Genetic Algorithm, IWO = Invasive Weed Optimisation, LDG = Local Dispatchable Generators, LPSP = 

Loss of Power Supply Probability, MTs = Micro-turbines, MOPSO = Multi-Objective Particle Swarm Optimisation, MOSaDE = Multi-Objective Self-Adaptive Differential 

Evolution algorithm, MFOA = Moth Flame Optimisation Algorithm, MPA = Marine Predator Algorithm, MILP = Mix Integer Linear Programming, NSGA-II = Non-

dominating Sorting Genetic Algorithm, O&M = Operation and Maintenance Cost, PV = Photovoltaic, PHEV = Plug-in Hybrid Electric Vehicle, PSO = Particle Swarm 

Optimisation, PSOGSA = Particle Swarm-gravitational Search Algorithm, SA = Simulated Annealing Algorithm, SCA = Sine Cosine Algorithm, SHO = Selfish Herd 

Optimiser Algorithm, TNPC = Total Net Present Cost, WT = Wind Turbine, WOA = Whale Optimisation Algorithm, WHO = Wild Horse Optimiser, WCA = Water Cycle 

Algorithm. 
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2.3. Topology, configuration, and structure of MGs 

The deployment of smart MGs has been found to be a key enabler of the energy transition 

away from fossil fuels as part of the wider decarbonisation efforts (Shah Danish et al., 2019). 

More specifically, smart MGs provide an effective platform for the optimal system 

integration of renewable energy sources (RESs) – towards increasing their penetration in 

conventional power systems and driving the reliable, affordable, clean electrification 

interventions tailored to remote communities. A review of the relevant literature reveals that 

site-specific plans are essential to cost minimisation, in view of the different potentials of 

renewables in different locations, as well as differences inherent in load profiles. Also, 

variable renewables, such as solar photovoltaic (PV) panels and wind resources require 

backup storage systems to ensure reliable and cost-effective energy supply, and are best 

managed using smart MGs (Sims, Rogner and Gregory, 2003). 

In this context, wind and solar PV technologies have been found to be the most widely 

employed resources. Also, given the daily and seasonal power generation complementarities 

that exist between solar PV and wind, they are commonly implemented together (Kaldellis, 

2002). Furthermore, on a global scale, renewable electrification using hydro resources has 

also been found to be the most technologically developed scheme, although heavily 

constrained by social and environmental barriers (Kaldellis, 2002). More specifically, social 

preferences towards hydro resources are difficult to predict and inherently uncertain, 

especially with regard to their development in remote areas. Moreover, the well-established 

biomass resources in the literature include forestry residues and landfill gas, which have a 

significant potential for development in rural areas, although suffering from sustainable 

management and logistics barriers. Other power generation and storage technologies 

considered in the identified studies include, but are not limited to, combined heat and power 

(CHP) units, electrolysers, fuel cells (FCs), hydrogen storage systems, and micro-turbines 

(MTs). In terms of connection to the wider utility grid, both grid-connected and -isolated 

systems are well-studied in the relevant reviewed literature. 

In terms of topological architecture, both alternating current (AC) and direct current (DC) 

MGs are well-explored in the relevant reviewed literature. A major difference in terms of 

application is that AC-linked MGs are mostly utilised in active distribution systems, whereas 

DC-linked MGs are more commonly developed in greenfield sites where a large share of 

loads are DC – mobile phones, computers, LED lights, and so forth. In grid-connected 

applications, AC and DC MGs form the backbone of smart grids where loads can be 

cooperatively/intelligently served using the smart grid-wide resources during normal and 

emergency conditions (Alam, Chakrabarti and Ghosh, 2019). 

Moreover, the literature review reveals that smart MGs driven by RESs are commonly 

backed by integrated energy storage systems (ESSs) to deliver a reliable power supply. 

Accordingly, in terms of energy balance, the total energy supplied by renewables and power 

imports (in the case of grid-connected systems) is not exactly equal to the total energy 

consumption due to the power and energy conversion losses involved. Additionally, AC MGs 

integrated into active distribution networks are associated with high resistance losses in 

distribution lines due to low operating voltages. Therefore, specifically developed voltage 

control schemes factored into the relevant reliability measures of the optimisation problems 

are prevalent in the relevant reviewed studies, which have shown to be effective in improving 

the economics of the designed systems. Additionally, it has been reported that the energy 
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conversion losses of DC-coupled MGs are lower than those of AC systems, mainly as a result 

of the increased efficiency of the underlying converters (Elsayed et al., 2015). 

The evidence from the review of the relevant literature also suggests that off-grid 

electrification initiatives using stand-alone MGs have facilitated the provisioning of reliable, 

cost-effective, sustainable energy to remote and less economically developed communities 

over the last two decades, particularly in cases that are plagued by difficult geographical 

terrain – where grid connection and electricity transmission become difficult. Yet, despite 

these achievements, the literature review reveals that additional methodological 

advancements for the optimal coordination of dispatchable devices, as opposed to the 

conventional cycle-charging dispatch strategies, are needed to better align variable generation 

with demand (Hlal et al., 2019).  

2.3.1. Main advantages of MGs 

Given their popularity in the relevant reviewed literature for the resilient integration of new 

loads and distributed energy resources (DERs), this section provides a summary of the 

advantages of MGs, namely: 

 The ability to operate during sudden disruptions in the grid or blackout (improved 

resilience and reliability); 

 Reduced losses and improved efficiency of the system operation; 

 Bolstered cyber-security; 

 Promoting clean energy; 

 Efficient utilisation in remote areas; and 

 Improving community well-being. 

It is also noteworthy that the MG behaves as a complex zone when integrated into a wider 

utility network due to the integrated DC components. Moreover, Fig. 3 depicts the general 

schematic diagram of the most common MG configuration in the reviewed literature, namely 

the battery-backed, renewables-driven architecture (Mumtaz and Bayram, 2017). 
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Figure 3. General model of a battery-backed, renewables-driven MG. 

2.4. Factors affecting the economics of MGs 

To objective of MG sizing is to determine the optimal combination of resources with 

minimum cost subject to a set of technical constraints. However, based on the evidence in the 

reviewed literature, the implementation of the optimal solution is associated with technical, 

economic, social, and regulatory barriers that make the realisation of MGs with a high 

penetration of RESs challenging. Some of these barriers could be linked to immature 

technology, while others arise due to the specific conditions of the country or region of 

interest (Diaf et al., 2008). While Table A1 in Appendix A summarises and sub-categorises 

the above barriers, the following sections provide a detailed discussion of such barriers, with 

a particular focus on technical barriers due to their particular relevance to the scope of this 

study.  

2.4.1. Technical barriers 

The major technical barriers to RE project developments are limited infrastructure maturity, 

energy storage complexities, lack of onsite operation and maintenance resources, and non-

ideal performance of equipment in real-world conditions (Seetharaman et al., 2019). 

2.4.1.1. Non-dispatchable renewable resources 

One of the significant challenges of the integration of RESs is the associated inherent 

variability in power generation (Edris, 2012). For example, the power outputs of solar PV and 

wind turbine (WT) technologies depend on specific day-to-day and seasonal meteorological 

conditions, which have direct implications for the size of the integrated storage systems, 

which are vital for improved dispatchability reasons. The uncertainties in forecasts of non-

dispatchable power outputs might also result in oversized generation components, which in 
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turn, increase the total discounted cost of MGs. For oversized solar PV plants, this 

additionally results in increased voltage control complexities (Mahmoud et al., 2014). The 

degree of complexity increases as the dimension of the system components increases due to 

the correlations that exist between the associated uncertain factors, notably given the 

complementarities of different RESs (Badal et al., 2019). 

The review of the relevant literature also identifies that solar PV and wind resources are the 

most favoured generation technologies for the provision and proliferation of clean energy 

using MGs – see Fig. 4 for an indication of wind generation capacity as a proportion of total 

electricity generation in selected countries‘ energy mix (MBIE, 2020b). In view of the above-

discussed uncertainty in power outputs of solar PV and WT technologies, more advanced 

control systems are needed to cost-effectively and reliably meet the loads.  

 

Figure 4. Penetration of wind turbines in selected countries‘ energy mix (MBIE, 2020b). 

The relevant reviewed literature has also discussed the technical challenges associated with 

dispatchable RESs (notably, biopower generation plants), albeit significantly less than non-

dispatchable resources. Specifically, the review identifies the following notable challenges 

associated with biopower generation: greenhouse gas production, provisioning of sufficient 

feedstock supply, and higher generation costs compared to fossil fuel-based power plants and 

non-dispatchable renewables (Sims, Rogner and Gregory, 2003). Also, for large-scale 

biopower schemes, the levelised cost of energy increases as the capacity and consequently the 

distance of the generation facility from load consumption points increases for air quality 

reasons. Furthermore, excess moisture in pellets could reduce the electricity generation 

efficiency in large-scale biopower plants as a result of thermal efficiency reduction due to 

excess heat absorption. On the other hand, if biomass resources lose extra moisture, it could 

also lead to additional production costs as a result of reduced efficiencies (Iqbal et al., 2014). 

Therefore, biomass resources require adequate moisture for efficient power generation, which 

is a challenging task. This, consequently, induces uncertainty in power outputs of biopower 

plants, which is difficult to quantify probabilistically. Such unquantified uncertainty factors 

can also lead to unforeseen voltage variations, especially on a MG scale (Kumar et al., 

2016).   
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2.4.1.2. Energy storage complexities 

The review has also identified salient inadequacies with regard to the standards and 

guidelines of energy storage integration that are critical for the reliable operation of highly 

renewable MGs. Such inadequacies have also hindered the large-scale commercialisation of 

fundamentally new storage technologies, which has direct negative implications for the large-

scale integration of variable renewables (Radosavljevic et al., 2016). This is especially so 

with respect to the important role of energy storage systems on the efficient management of 

energy flow from generation to consumption (in a balanced manner) necessary to maintain 

the power quality (Hussain et al., 2017). The review has also confirmed that battery storage is 

the most favoured storage technology, not only in remote, off-grid applications to support 

variable renewables, but also in grid-connected systems that participate in deregulated 

electricity markets and run advanced energy arbitrage mechanisms (Zhao et al., 2018). It is 

also worth emphasising that battery storage technologies replace diesel generators in the 

previous generation of MGs, commonly known as hybrid renewable energy systems (Zaki 

Diab et al., 2019).  

The literature review also finds that battery storage is widely characterised by energy and 

power capacities, which are held fixed per unit of storage considered, as is the MG topology 

(Hlal et al., 2019). Other salient characteristics of battery storage considered during the 

capacity planning and design phases include efficiency, operating temperature, depth of 

charge and discharge, lifespan, and energy density (Zaki Diab et al., 2019). Furthermore, 

deep cycle batteries are commonly promoted in the literature, the efficiency of which varies 

from 70% to 90% (Divya and Østergaard, 2009). Some of the commonly used batteries in the 

literature are discussed in more detail in the following sections. 

2.4.1.2.1. Lithium-ion (Li-ion) 

The advantages of Li-ion battery in MG development applications include high energy 

density, efficient trade-offs between specific energy and specific power ratings, safe 

operating temperatures, and relatively long expected life (Agua et al., 2020), (Zhang et al., 

2018). However, the main limitation of Li-ion batteries is the significant impact of depth-of-

discharge on their lifespan, which warrants advanced, more expensive operational strategies 

(Zhao et al., 2018). 

2.4.1.2.2. Lead-acid (LA) 

The lead-acid battery is currently the most widely utilised battery technology in remote, off-

grid MGs (Zhang et al., 2018). As its main advantages, it offers deep cycle discharge 

capacity and low self-discharge rates at a comparatively low price due to its well-established, 

mature technology base, while its charge and discharge efficiencies could vary from 50% to 

95%. However, it has low specific energy, relatively low charge and discharge power 

capacities, poor performance in low temperatures, and limited cycle life – with repeated deep 

cycling significantly reducing the battery life (Zhao et al., 2018). 

2.4.1.2.3. Vanadium redox-flow 

The main advantages of vanadium redox-flow batteries include high energy efficiency, long 

cycle life, short response time, and independently adjustable power rating and energy 

capacity. However, they are currently associated with higher capital and operation and 
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maintenance costs, mainly as a result of using capital-intensive ion-exchange membranes, 

which typically contribute to around 40% of the total battery cost. They additionally suffer 

from low volumetric energy storage capacity as a result of the low solubility of the active 

species in the electrolyte. The literature review has identified the important role of vanadium 

redox-flow batteries in power quality improvement due to their high charge/discharge power 

capacities (Leung et al., 2012). 

2.4.1.2.4. Sodium-sulphur (NaS) 

The sodium-sulphur battery technology is a mature system with established experience and 

the middle cost per capacity compared to other battery technologies. It also has almost no 

self-discharge and extremely quick response time (high energy density, energy capacity, and 

power density), making it suitable for responding to changes in demand in a MG in steady 

state conditions. It also benefits from a high recycling rate due to the use of less toxic 

materials. However, its main disadvantage is that it requires a heat source to maintain the 

temperature of the liquid electrode; the operating temperature of NaS batteries is 574 K-624 

K. This makes it impractical for residential and small-scale commercial use cases. More 

importantly, the heat source needed for the continuing operation of the battery drains part of 

the battery‘s efficiency, which reduces its overall efficiency and incurs additional costs due to 

the necessity of adding heat exchange systems (Kawakami et al., 2010). 

2.4.1.2.5. Nickel-metal hydride (NiMH) 

The nickel-metal hydride (NiMH) battery has the advantages of low memory effect, good 

environmental performance, profitability of recycling, long service life, and relative 

inexpensiveness (Zhao et al., 2018). However, it is plagued by high self-discharge rates 

(25%-35% per month), limited cycle life (performance deteriorates after less than 300 cycles 

if repeatedly deep discharged), low charging/discharging power capacities, and high 

maintenance costs (Zhu et al., 2013). 

As the above review of some of the batteries used in MGs indicates, different battery storage 

technologies are associated with different specifications; notably, energy density, specific 

power, specific energy, charge/discharge power capacity, self-discharge, and maximum 

allowable depth-of-discharge. This necessitates a comprehensive, multi-case-study-oriented 

comparative study of various battery technologies to aid the associated decision-making on 

the optimal MG capacity planning and unit sizing during the long-term strategic planning 

phases. It is noteworthy that the differences in the specifications of different battery 

technologies affects the energy balance analyses in the typical year-long operational 

scheduling stage, with consequent changes in the optimal equipment size and associated total 

discounted life-cycle cost of MGs (Gamarra and Guerrero, 2015). Furthermore, such 

comprehensive battery selection studies can provide an effective platform for more profitable 

renewable energy project developments with associated lower energy curtailments and lost 

loads.  

2.4.1.3. Lack of operation and maintenance culture 

Given that renewable energy technology is comparatively new and less optimally developed, 

there exists a lack of knowledge and expertise in operation and maintenance (O&M). This 

results in lower than expected efficiencies with non-optimal operations and non-regular 

maintenance. That is, the maximum efficiency could be achieved only if the technologies are 
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optimally operated with a well-defined maintenance schedule. It is also necessary to check 

the availability of well-suited equipment, components, and spare parts in local markets during 

the prior techno-economic feasibility assessments, as the import of the equipment might incur 

a high initial cost, increasing the overall estimated cost of the project (Seetharaman et al., 

2019).  

2.4.2. Economic barriers 

The literature review also reveals that the main factors underpinning the economic and 

financial barriers are high upfront cost requirements, lack of relevant financial institutes, lack 

of investors, and less government subsidies in developing, oil-exporting countries (Steffen, 

2020). These factors have hindered the global proliferation of RE. The following sections 

more specifically discuss the identified economic barriers. 

2.4.2.1. Competition with fossil fuels 

According to the International Energy Outlook report of the U.S. Energy Information 

Administration (EIA, 2016), fossil fuels (mainly coal, natural gas, and oil) are expected to 

supply 78% of the global energy used (aggregated over all sectors) in 2040. For indicative 

purposes, Fig. 5 shows the global primary energy consumption by fossil fuel sources until 

2019 and energy is measured in terawatt-hours (TWh) (Global Fossil Fuel consumption, 

2019). Most notably, coal is still a major source of power generation due to its abundance in 

many countries, making it relatively inexpensive and accessible compared to renewable 

energy technologies. Also, natural gas-fired power plants and natural gas combined-cycle 

power plants make up a significant portion of developing, fossil-fuel-exporting countries‘ 

power generation mix (Dulal et al., 2013).  

 

Figure 5. Global primary energy consumption by fossil fuel sources until 2019. 

2.4.2.2. Subsidies of energy generation 

In developing, fossil fuel-exporting countries, fossil fuel-fired power plants are still receiving 

significantly higher government subsidies compared to renewable energy generation 
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schemes, making a high penetration of RESs in the generation mix an uneconomical option 

for the power industry. For example, natural gas, which has a significant 70% share in Iran‘s 

power generation mix, received $35 billion in subsidies in 2020 (Financial Tribute, 2021). 

2.4.2.3. Renewable energy investment with limited financing institutions 

In the lack of tailored financial instruments and organisations, renewable energy 

developments can be financed using corporate finance or project finance structures. The 

corporate finance structure is based on a balance sheet (for instance, a utility), whereas the 

project finance structure is based on an off-balance sheet in a legal entity. It has also been 

found that private developers are responsible for a large share of market openings across 

various scales of renewable energy development. Furthermore, it has been recognised that, 

while high-risk renewable energy projects might need to be funded from public funding 

sources, it is still private actors that draw on public finance instruments to push renewable 

energy to new frontiers  (Steffen et al., 2018).  

Moreover, securing financing at competitive rates with those of fossil fuel energy projects is 

a substantial barrier for renewable energy developers in the developing world. In this light, a 

hybrid debt-equity finance structure is promoted in the literature. More specifically, debt is 

defined as the portion of the investment procured by external lenders and supported by the 

project‘s financial flows or the credit of the corporate. On the other hand, equity represents 

the value that would be returned when all the project assets are liquidated based on future 

cash inflows generated by the project. In this context, determining the optimal percentage of 

debt and equity in the project‘s financial structure requires holistic risk-aware capital 

budgeting analyses (Krupa, Poudineh and Harvey, 2019).  

2.4.2.4. Cost of capital 

Renewable energy projects are associated with high initial investment costs, which are 

exacerbated by inefficiencies in technologies, resulting in relatively long net payback periods 

– the amount of time it takes to recoup the cost of investment – that leave investors behind 

(Hainz and Kleimeier, 2012). Both energy-as-a-service and community-financed business 

models suffer from high initial capital costs – an issue that is more pronounced where more 

stringent lending standards are in place, making it more difficult to borrow money without 

having substantial credit (Ansari et al., 2013).   

2.4.3. Social barriers 

Despite broad public support for renewable energy, in some regions, the transition to 

renewables away from conventional sources (or more specifically, the siting of infrastructure) 

has faced local resistance and opposition due to a lack of quality information. That is, the 

review indicates that although a lot of work has been conducted on public attitudes towards 

sustainable energy equipment, true understanding of the dynamics of social acceptance has 

remained elusive due to the scarce consideration of all the determinants of social acceptance 

at the same time (Devine-Wright, 2007). 

2.4.3.1. Symbolic aspects of facility siting 

A review of the literature indicates that there is a need to more systematically study the 

symbolic aspects of renewable energy infrastructure siting disputes due to the very few 
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empirical studies exploring such dimensions. A discursive approach has also been utilised in 

a number of recent studies to better understand the public resistance to the siting of WTs, 

solar PV panels, and micro-hydro generation systems, which have shown how rhetorical and 

communicative dimensions at the social-psychological level can positively impact the 

decisions of individuals and local communities involved in renewable energy siting disputes 

(Steffen et al., 2018), (Devine-Wright, 2007). 

2.4.3.2. Not-in-my-backyard phenomenon 

The not-in-my-backyard phenomenon describes the situations in which individuals oppose 

the nearby development of a technology or service, despite general, abstract support of the 

idea. The notable reasons behind the not-in-my-backyard behaviour are found to be landscape 

impact, environmental degradation, noise concerns, government giveaways of public lands to 

private solar and wind farm developers, and lowering local property values (Grafström et al., 

2020), (Nasirov et al., 2015), (Smith and Klick, 2007). 

2.4.3.3. Land use 

Inherent land-per-unit-of-power-produced characteristics of WTs and solar PV panels make 

conflict over land use and project siting, resulting in the objection of farmer communities to 

the development of renewable energy projects near their lands (Steffen, 2020). Accordingly, 

a growing body of research has been devoted to reducing the land use impact of non-

dispatchable renewables. To this end, combining renewable power with other land uses, 

notably agriculture, as well as installing solar panels on rooftops, have been reported to be the 

most effective interventions to minimise land use conflicts. Also, the direct involvement of 

communities in renewable energy planning and land use zoning has been recognised as an 

effective policy to alleviate such concerns (Jeslin Drusila Nesamalar, Venkatesh and Charles 

Raja, 2017), (Gross, 2020). 

2.4.3.4. Lack of skilled labour 

The literature review also identifies the lack of skilled professionals in designing, building, 

operating, and maintaining renewable energy and storage technologies a significant barrier 

for a smooth transition to a low-carbon economy (Ansari et al., 2013). That is, not only is 

bridging the skills gap key for energy access, but it also plays a significant role in achieving 

100% renewable energy (Karakaya and Sriwannawit, 2015). More strikingly, driving the 

post-COVID19 renewable energy transformation requires additional investment and 

innovation in higher education, as well as long-term investments in staffing. 

2.4.4. Legal and regulatory barriers 

A number of legal and regulatory barriers to sustainable energy systems have also been 

identified, namely: lack of legal frameworks and standards for independent power generators, 

limited transmission line access, liability insurance requirements, and lack of equipment 

standards (Beck and Levine, 2004), (Stokes, 2013). 

2.4.4.1. Lack of legal frameworks and standards for independent power generators 

In many developing countries, electricity companies are still monopolistic from generation to 

transmission to distribution. In such conditions, where there is a lack of standardised legal 
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frameworks, independent electricity generators are not able to enter the market and invest in 

sustainable energy systems with energy-as-a-service business models. Also, such 

circumstances lead to ad-hoc-based, non-systematic power purchase agreements, which make 

the planning and management of renewable energy development particularly challenging 

(Sun and Nie, 2015), (Beck and Levine, 2004). 

2.4.4.2. Limited transmission line access 

Where conventional power utilities control a monopoly on transmission lines, they may not 

allow emerging renewable energy generation companies to fairly access the transmission 

lines. Equitable access to transmission lines is of utmost importance for newly established 

renewable energy generation companies, notably wind farms and large-scale biopower plants, 

as they may be sited far from consumption nodes. Accordingly, a set of well-defined and 

consistent rules are necessary to effectively avoid right-of-way disputes (Zhang et al., 2014), 

(Beck and Levine, 2004).  

2.4.4.3. Liability insurance requirements 

Small-scale renewable energy systems, particularly solar PV-driven household and 

community systems, which feed back into the grid during the periods of excess generation 

under net metring tariffs, may require liability insurance. This is because when those small 

generators continue to supply back into the wider utility grid, when upfront lines are 

disconnected for repair purposes, can cause injury to repair crews, although modern 

protective devices can prevent the so-called ―islanding‖ issue (Stokes, 2013), (Beck and 

Levine, 2004). 

2.4.4.4. Lack of equipment standards 

Standardisation within the renewable energy supply chain is essential to guarantee that the 

equipment and spare parts are manufactured in compliance with technical regulations. 

Effective development of the relevant standards requires extensive verification processes 

based on benchmarking against a set of criteria. It also entails conformity assessment 

processes through independent, third-party certifications or other verification processes 

(Emodi, Yusuf and Boo, 2014), (IRENA, 2013). 

2.5. Drivers of renewable energy  

The review of the relevant literature has also identified that the drivers of renewable energy 

development can be broadly classified into the following four groups, or a combination 

thereof: (i) climate change mitigation, (ii) energy security, (iii) energy access, and (iv) socio-

economic growth. These drivers are discussed in more detail in the following sections, which 

are also summarised in Table A2 in Appendix A. 

2.5.1. Climate change mitigation 

Addressing climate change by limiting global temperature rise to well below 2 degrees 

Celsius – or to strive for 1.5 degrees Celsius – is a major driver of renewable energy 

proliferation efforts (Shah Danish et al., 2019). Given the fact that energy use accounts for 

around two-thirds of total greenhouse gas emissions with the power generation sector 

recognised as a major contributor, decarbonisation of the energy sector, including the power 



 

 

Page |   
 

20 

sector, using renewables is at the forefront of efforts. While the share of renewable in the 

global power generation mix is around 29%, it is projected to increase to approximately 60% 

by 2030 (Papageorgiou et al., 2020).  

2.5.2. Energy security 

Particularly relevant to the provisioning of clean and affordable energy to remote and less 

economically developed communities is energy security, given the fact that most remote 

communities currently rely on diesel as the primary energy source. In addition to the negative 

climate impact, the use of diesel in remote areas has important negative energy security 

implications. In this setting, the use of local renewable energy systems that use well-

diversified technologies has been shown in the literature to be able to increase energy security 

in remote, off-grid applications, whilst additionally reducing the associated energy costs 

(Verbruggen et al., 2010).  

2.5.3. Energy access 

While global access to electricity has been steadily increasing over the past few decades, 940 

million people (13% of the world) still do not have access to electricity. In the pre-MG era, 

this was mainly attributed to the cost-inefficiency of extending a power line to the electricity 

grid. However, the emergence of advanced, smart MGs, accompanied by unprecedented 

improvements in the cost-effectiveness and efficiency of renewable and storage technologies, 

has provided an effective platform to accelerate the progress in electrifying remote and low-

income communities (Shieh, Ersal and Peng, 2019). Also, the integration of advanced water 

purification, filtration, and treatment systems, as well as water desalination systems, into the 

stand-alone MGs tailored to communities that do not have access to safe driving water has 

provided them with effective clean water solutions in several instances (Okedu, Salmani and 

Waleed, 2019). 

2.5.4. Socio-economic growth 

The human development index and per capita income have been shown to be directly 

correlated with per capita energy use (Steffen, 2020). That is, measuring the amount of 

electricity usage of a community is an important social and economic indicator, with direct 

implications for health, education, and the wider welfare of people (Dalton et al., 2015), 

(Pahle, Pachauri and Steinbacher, 2016), (Karytsas and Theodoropoulou, 2014). In this 

context, off-grid, integrated, smart energy systems that produce electricity locally using RESs 

are found to be an effective tool for sustainable rural development with their potential to 

deliver multi-faceted socio-economic benefits, including net job creation and greater social 

inclusiveness (IRENA, 2017).  

2.6. MG capacity planning optimisation  

Determining the optimal combination of the size of the components integrated into MGs, 

such as solar PV panels, WTs, micro-hydro power plants, battery storage systems (BSSs), 

and hydrogen-based energy storage systems to name a few, requires evaluating the 

operational performance of the candidate combinatorics in an intelligent (optimisation-based) 

manner for reasons of computational tractability (Jin et al., 2021). It is also noteworthy that 

MG design and operation are inter-connected problems, as the operational strategy affects the 

equipment capacity required, while the capacity of the system can limit the optimal operation 



 

 

Page |   
 

21 

exercise. Uncertainties in forecast data additionally influence the operation of the system and 

their impact propagates upward to the optimal sizing problem (Gamarra and Guerrero, 2015). 

In addition to the aleatory sources of uncertainty, the MG capacity planning optimisation 

problem and the associated decision-making processes are subject to various epistemic 

uncertainties, which arise from the lack of knowledge about future scenarios that cannot be 

modelled probabilistically (Billinton and Huang, 2008). 

In this context, both analytical solutions and meta-heuristic-based algorithms have been 

employed in the literature to yield the optimum MG designs subject to a set of technical and 

economic constraints in the operational and planning levels. The following sections classify 

the wider MG sizing approaches and critically review the most vigorous approaches to MG 

design and investment planning optimisation in the relevant reviewed literature. 

2.6.1. Classification of MG sizing approaches 

As mentioned above, all the MG sizing approaches involve evaluating various designs by 

determining the operational performance of the system at discrete time-steps over some time 

period, which makes them computationally complex. The classic approach to MG sizing is 

using exact mathematical programming techniques, such as linear programming, mixed-

integer linear programming (MILP), mixed-integer nonlinear programming (MINLP), and 

dynamic programming. While these techniques are relatively fast, they suffer from a lack of 

accuracy due to the necessity of making several decompositions and mean-field 

approximations for application to the non-deterministic polynomial time-hard (NP-hard) MG 

sizing problem with integrated nonlinear and non-convex objective functions, as well as 

planning- and dispatch-level constraints (Baños et al., 2011). A growing body of literature 

has also formulated multi-objective models for the strategic, long-term MG capacity planning 

optimisation in the presence of multiple criteria. This strand of the literature has considered 

the optimisation of reliability, greenhouse gas emissions, curtailed energy, self-sufficiency, 

and resilience objectives simultaneously to the total discounted cost of the system, rather than 

considering them as constraints to the classic single-objective, least-cost-oriented MG sizing 

practice. The overarching goal of multi-objective energy planning optimisation is to make 

effective decisions in the presence of trade-offs between a number of competing objectives. 

The mainstream exact mathematical optimisation-based approach in the literature for multi-

criteria MG planning optimisation is found to be the Ɛ-constraint method. The Ɛ-constraint 

method is essentially an algorithm transformation method, the main advantage of which is 

that it enables controlling the density of the representation of each objective by assigning a 

set of equidistant grid points to other objectives and treating them as constraints. However, 

breaking down a multi-objective problem into several single-objective problems and solving 

them for various input settings is a computationally costly method for large-scale problems. 

That is, the main disadvantage of the Ɛ-constraint method is that it fails to generate a set of 

non-dominated solutions in a single run (Mavrotas, 2009), (Puchinger and Raidl, 2006). 

To address the computational intensiveness of closed-form solution algorithms in inherently 

NP-hard MG sizing applications, a recent, growing body of literature has focused on the 

utilisation of meta-heuristic-based solution approaches to the MG capacity planning 

optimisation problem. The main advantage of meta-heuristics is that they can be readily 

applied to the relevant full models, whereas they are principally limited by the so-called ―no 

free lunch‖ theorem, which postulates that no single meta-heuristic is universally the best-

performing algorithm for all algorithms. This necessitates comprehensive, multi-test-case-

oriented efficiency testing of meta-heuristics, especially given the rapid advancements in this 
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highly active field (Gamarra and Guerrero, 2015), (Mohseni, Brent, Burmester, et al., 2021). 

In view of the approximate nature of meta-heuristics, they involve iterative, nature-inspired 

master processes to guide and modify the operation of the underlying heuristics (low- or 

high-level procedures) to effectively yield high-quality solutions (Fouskakis and Draper, 

2002). In single-objective, least-cost-based MG sizing applications, this entails the evaluation 

of the fitness of each search agent/particle/individual of the meta-heuristics at each iteration 

by evaluating the associated operational performance of the candidate solution set. The 

solution set consists of the size of components as decision variables and the associated total 

discounted cost of the system. The iterative process of searching for the cost-minimal 

solution then continues until reaching the stopping criterion, which is commonly a maximum 

number of iterations. Additionally, multi-objective variants of meta-heuristics have been 

found to be particularly effective in solving multi-criteria MG design optimisation problems 

compared to analytical methods. A review of the relevant literature also finds that the multi-

objective evolutionary algorithms employed in MG sizing applications can be broadly 

classified into Pareto-based and non-Pareto-based classes. The Pareto-based algorithms have 

been found to be more popular in the literature given their potential to generate useful 

insights on the best-compromise solutions. 

Moreover, in terms of the subordinate heuristics employed, meta-heuristics can be generally 

categorised into the following two classes: 

Trajectory meta-heuristics: Trajectory meta-heuristics typically use a single agent at a time to 

trace out a path over the course of iterations. The commonly used meta-heuristics in this 

category include the simulated annealing (SA), the tabu search (TS), the greedy random 

adaptive search procedures (GRASP), the evolutionary strategy (ES), and the iterated local 

search (ILS) (Gamarra and Guerrero, 2015). 

Population-based meta-heuristics: Population-based meta-heuristics use multiple search 

agents, which interact with each other and trace multiple paths as the iterations continue. The 

most commonly used meta-heuristics in this category include the genetic algorithm (GA) and 

the particle swarm optimisation (PSO) (Gamarra and Guerrero, 2015). 

Furthermore, various hybridisations of meta-heuristics have been proposed and employed in 

the MG capacity planning literature. The main idea behind the hybridisation of different 

meta-heuristics is to exploit the advantage of one meta-heuristic for addressing the limitation 

of another, leading to a rich and fruitful ground for the cross-fertilisation of different ideas of 

meta-heuristic optimisation. In addition, the meta-heuristic hybridisation efforts can be 

mainly classified into sequential and parallel efforts, with the parallel algorithms benefitting 

from faster running times (Blum et al., 2011). 

Moreover, the non-Pareto-based, multi-objective meta-heuristics, alternatively referred to as 

single objective-based multi-objective meta-heuristics, commonly employ the weighted sum 

method to combine all multi-objective functions into one scalar, composite objective 

function. This class of algorithms has the advantage of determining a single unique solution 

for actual implementation. However, it fails to provide decision-making support for the 

identification of a preferred solution from the set of Pareto-optimal solutions, as opposed to 

the provision of a set of alternatives. The approach is commonly considered to be subjective 

given that it involves the direct allocation of the weights by decision-makers (Vergara et al., 

2015). On the other hand, Pareto-based multi-objective optimisation algorithms provide the 

non-dominated set of the entire feasible decision space. To illustrate, where one solution 
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dominates the other, it means that it is strictly better than the other solution in at least one 

objective, but no worse than it in all objectives. Given a set of multi-criteria solutions, the 

non-dominated solution set is defined as a set of all the solutions which are not dominated by 

any member of the solution set. The set of non-dominated solutions in the feasible decision 

space is called the Pareto-optimal set. Also, the boundary represented by the set of all points 

mapped from the Pareto-optimal solutions is referred to as the Pareto-optimal front (Deb, 

2001), (Baños et al., 2011).  

It is noteworthy that two major components of all meta-heuristics, which generate an initial 

random population of solutions and evolve them towards the global optimality, are 

intensification and diversification, alternatively referred to as exploitation and exploration, 

respectively. The exploitation phase is responsible for effective long-range jumps around the 

global search space, while the exploitation phase seeks to perform efficient local search near 

the global optima. An optimal trade-off between these two components is necessary to ensure 

global optimality (Blum and Roli, 2003). 

In addition, the existing MG techno-economic analysis software tools in the industry and 

academia can be broadly classified into two categories. The first category adopts a full-

factorial approach to the MG sizing problem; the noteworthy tools in this class are the 

original HOMER and RETScreen software packages, the main limitation of which is the so-

called ‗combinatorial explosion‘ when considering a large number of candidate technologies 

or increasing the fidelity of the decision space. The second class of MG techno-economic 

feasibility assessment tools use simplified exact mathematical optimisation algorithms. The 

most popular software packages in this category are HOMER Pro, Hybrid2, iHOGA, REopt, 

and DER-CAM. Expectedly, these software packages suffer from the same limitations of the 

aforementioned analytical solution approaches to MG planning (Mendes et al., 2011). 

2.6.2. Major trends in meta-heuristic-based MG sizing approaches 

The literature review indicates a number of major trends in meta-heuristic-based MG sizing. 

Notably, the particle swarm opposition (PSO) (Kennedy and Eberhart, 2005) and the genetic 

algorithm (GA) (Jong, 1988), as well as their multi-objective variants, have been found to be 

the dominant meta-heuristics used in the literature. For instance, Nikmehr and Ravadanegh 

(2015) have proposed a PSO-based solution algorithm for the optimal sizing of grid-

connected MGs, which is aware of the optimal power exchange decisions between the MG 

and the main utility grid. The PSO has also been employed by Samy and Barakat (2019) for 

the optimal sizing of a MG considering solar PV and biomass generation resources and its 

performance is benchmarked against the invasive weed optimisation (IWO) considering the 

total net present cost (TNPC) as the main objective subject to limitations on the maximum 

allowable total excess energy fraction and the loss of power supply probability (LPSP). 

A PSO-based MG sizing solution algorithm has also been proposed for both grid-connected 

and islanded solar PV/wind MGs in (Razmi and Doagou-Mojarrad, 2019), which has been 

shown to generate statistically robust and valid results to the MG capacity planning problem. 

In another instance, Karuppasamypandiyan et al. (2019) have used the non-dominated sorting 

genetic algorithm-II (NSGA-II) to simultaneously optimise the cost and greenhouse gas 

emissions of a MG integrating WTs, solar PV panels, and fuel cells in conjunction with a 

diesel generator. Mosbah et al. (2017) have also proposed a solution approach for the 

simultaneous optimisation of the cost and voltage stability of grid-connected MGs using the 

NSGA-II algorithm. In addition, in a comprehensive, multi-case-oriented study, Hlal et al. 
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(2019) have shown that the NSGA-II algorithm yields more statistically robust solutions in 

MG planning applications incorporating several conflicting objectives compared to the multi-

objective PSO, though at the cost of increased computational complexity. 

Also, more recently, the moth-flame optimisation algorithm (MFOA) (Mirjalili, 2015), which 

is inspired by the navigation mechanism of moths at nights (referred to as transverse 

orientation), has shown to be an efficient algorithm in MG sizing applications in several 

studies. For example, (Mohseni et al., 2021) have shown that the MFOA-optimised MG 

sizing solution outperforms those of the GA, the PSO, the hybrid GA-PSO, the harmony 

search algorithm, the simulated annealing algorithm, the artificial bee colony algorithm, the 

ant colony optimiser, and the ant lion optimiser.  

The literature review also indicates that hybrid meta-heuristics have gained significant 

attention in recent years (Altbawi et al., 2021). For example, Suresh and Ganesh (2019) have 

shown the higher efficiency of a hybrid MFOA-bat search algorithm (BSA) for capacity 

planning of MGs integrating solar PV, WTs, fuel cells, and battery storage resources, 

compared to the MFOA and the BSA alone. Another novelty of their research is the 

consideration of both active power and reactive power during the design phase of MGs, 

which is shown to be important for improved quality of the power supply.  

A growing body of the literature has also explored the optimal integration of electric vehicles 

(EVs) into MGs, which has important implications for the dispatch of the system (Monfared 

et al., 2019). For example, Rasouli et al. (2019) have presented a MILP approach for the 

optimal system integration of EVs into systems that are mainly driven by solar PV and micro-

turbine resources. They have additionally quantified the uncertainties in forecasts of EV-

charging loads, electricity market prices, residential loads, as well as the power outputs from 

solar PV and micro-turbine technologies. A similar MILP-based modelling approach for the 

optimal integration of EVs has been employed by Lekvan et al. (2021) for application to 

systems integrating wind resources, boilers, combined heat and power units, storage 

technologies, as well as responsive loads. They have also characterised the uncertainties in 

wind speed and load demand. Furthermore, a fundamentally different modelling framework 

based on the simulated annealing (SA) algorithm, has been formulated by Yi et al. (2020) for 

the integration of EV-charging loads, in conjunction with solar PV and wind resources, whilst 

additionally factoring the optimal power exchange schedules with the wider utility grid into 

the analyses. 

2.6.3. Potential of state-of-the-art meta-heuristics  

As the above overview of the MG planning literature has shown, meta-heuristic algorithms 

are playing an increasingly important role in the optimal planning and designing of renewable 

and sustainable energy systems. Fig. 6 shows a summary of the percentage contribution of 

different sources of inspiration for the meta-heuristics in the literature (Dragoi and Dafinescu, 

2021).  

The review has also identified model-order reduction as an effective tool for handling the 

inherent computational expensiveness of meta-heuristics. For instance, Cagnano et al. (2018) 

have used a reduced model of voltage control profile, while optimising the size of the 

components of the network. Similarly, Chaspierre et al. (2017) have presented a reduced-

order model to simplify the distribution network under planning. Ramli et al. (2018) have 

also considered a lower-than-standard resolution for wind speed, solar irradiance, ambient 
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temperature, and load data, while optimising a MG integrating solar PV, WT, and diesel 

generator technologies. Similarly, Augustine et al. (2012) have used representative days to 

reduce the computational expensiveness of optimising the total planning cost of a MG.  

 

Figure 6. Distribution of inspiration sources of meta-heuristics in the literature (Dragoi and 

Dafinescu, 2021). 

There also exists a growing body of evidence in the literature lending support to the argument 

that newly advanced (state-of-the-art) meta-heuristics have the potential to improve the 

optimality (quality) of energy optimisation solutions, including MG sizing solutions, 

compared to the well-established algorithms. For instance, Ramadan et al. (2021) have shown 

that the wild horse optimiser (WHO), which is a biology-based algorithm inspired by the 

social life behaviour of wild horses – dominating, grazing, leading, chasing, and mating – 

performs better than the evolutionary algorithm (EO) and the gradient-based optimiser 

(GBO) in modelling the nonlinearity of solar PV panels. In another instance, Abdollahzadeh 

et al. (2021) have shown the outperformance of the artificial gorilla troops optimiser (AGTO) 

to the well-established meta-heuristics in modelling the frequency response in energy systems 

integrating solar PV panels, WTs, diesel generators, and battery storage devices. They have 

also verified the statistical robustness and validity of their findings by repeating the 

simulations for a variety of battery storage technologies. Furthermore, Alharthi et al. (2021) 

have shown that a multi-objective variant of the marine predator algorithm (MPA) has a 

superior efficiency to the well-established multi-objective meta-heuristics in optimal 

dispatching applications of energy systems where several conflicting objectives – energy 

losses, total cost, carbon dioxide emissions, and fuel costs – are considered concurrently. 

Wadood et al. (2021) have additionally shown the effectiveness of the MPA compared to 

conventional meta-heuristics in minimising the total operational time of relays, which has 

salient implications for the reduction of interference and failure of MG systems. In another 

instance, Ahmed et al. (2021) have demonstrated the superior effectiveness of the equilibrium 

optimiser, first introduced by Faramarzi et al. (2020), in multi-objective MG energy 

management problems where cost minimisation, as well as the maximisation of voltage 

profile and system stability, are simultaneously factored into the associated analyses. 

2.7. Conclusions 

This chapter has reviewed the wider literature on the optimal capacity planning of grid-

connected and stand-alone MGs. To this end, a literature review methodology has been 

devised to identify and select the eligible studies for review. The review of the relevant 
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literature has then laid the foundation for the identification of the main factors that affect the 

economics and configurations of different configurations of MGs. This, consequently, has 

allowed for illustrating the pathways of and the associated barriers to the energy transition 

towards renewable energy resources from conventional energy generation. A thematic 

characterisation of the literature, furthermore, has highlighted the salient innovative ideas 

proposed in the literature to surmount the identified barriers, including the use of advanced 

computational planning models and novel MG configurations. Accordingly, this chapter has 

paved the way for positioning the novel contributions of this study, presented in the following 

chapter, within the identified gaps in knowledge.  
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Chapter 3: Meta-heuristic-based modelling framework 

3.1. Introduction 

This chapter addresses Research Objective 2, which seeks to develop a general meta-

heuristic-based modelling framework to yield the optimal configuration and sizing of micro-

grids (MGs). To this end, it first presents the mathematical modelling of the components of 

three conceptual test-case MG systems. It then proceeds to illustrate the rule-based dispatch 

strategy developed to decide the operational schedules of the systems. Subsequently, the 

developed test-case systems with pre-defined dispatch strategies are employed to parametrise 

the proposed modelling framework. They additionally serve to verify the effectiveness of the 

proposed MG sizing model, which uses the forecasts of solar irradiance, wind speed, and 

power load demand data as inputs. 

Collectively, the components of the proposed MGs are solar photovoltaic (PV) panels, wind 

turbines (WTs), battery storage systems (BSSs), and various power converters. More 

specifically, MG 1 is driven by wind and solar PV resources, whereas MGs 2 and 3 are 

assumed to be solely driven by solar PV power. The employed power conversion apparatuses 

can be classified as DC/AC inverters, AC/DC converters, and DC/DC converters. The project 

lifetime is considered to be 25 years, in accordance with the lifetime of the most durable 

component, namely solar PV panels. The following sections present the mathematical 

modelling of the test-case MG systems and their energy management strategies, as well as the 

overall meta-heuristic-based MG sizing framework parametrised for the test cases, which 

entails MG life-cycle cost minimisation subject to a set of operational- and planning-level 

constraints, notably reliability. 

3.2. Micro-grid 1  

The schematic diagram of the first stand-alone MG system is depicted in Fig. 7. It uses solar 

PV and WT technologies for power generation, which are supported by a BSS. A dump load 

is also considered to be able to maintain the balance of power supply and demand when total 

non-dispatchable generation outstrips total loads. Furthermore, the optimal size of all power 

conditioning devices that lie between the generation/storage components and the DC bus is 

assumed to be equal to the optimal size of the devices they couple to the common DC bus. 

Moreover, as it can be seen from the figure, the total load on the system can be broken down 

into residential, commercial, and electric vehicle (EV)-charging loads. Accordingly, the 

optimal capacities of the residential and commercial loads‘ inverter, as well as the EV-

charging loads‘ inverter, are controlled by the relevant peak demands. The following sections 

mathematically model the components of MG 1 and define the operational strategy of the 

network. 
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Figure 7. Schematic diagram and energy flow of MG 1. 

3.2.1. Wind turbines 

The 3-blade Senwei SWT-50 kW wind turbine is selected, which has a rated power of 50 kW 

AC with a hub altitude of 34 m. The characteristic curve of the WT is shown in Fig. 8. The 

wind speed data, measured at the height of     , is normalised to the hub height   using the 

following equation (Ramli et al., 2018): 

                  
 , (1) 

where      is the reference wind speed recorded at the height of     ,   is an exponent in the 

range [0.1, 0.25], which reflects the characteristics of the terrain. Given the non-flat, tree-

covered land characteristics of the site,   is considered to be 0.2 in this study. 

Stewart and Essenwanger, (1978) have derived the power output from WTs as a more 

flexible version of the general Weibull distribution of WT power output, which can be 

expressed as:  
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where                      , and       respectively denote the power output from the 

WT (kW), the turbine‘s rated power (kW), normalised wind speed (m/s) at time-step  , as 

well as the associated cut-in and cut-out wind speeds (kW). Also,     is the optimum 

number of WTs, which is determined at each iteration of the optimal sizing process as a 

decision variable. 

The selected turbine has a lifetime of 20 years. Also, the rated, cut-in, and cut-out wind 

speeds of the turbine are 9.5 m/s, 3.5 m/s, and 20 m/s, respectively. Furthermore, the capital 

investment and replacement costs of the WT are $65,000/unit, while its O&M cost is 

$2,600/unit/year. 

It should be noted that all costs are cited in the 2021 New Zealand dollars throughout this 

study. 

 

Figure 8. Characteristic curve of the SWT-50kW wind turbine. 

(Senwei Model SWT-50kW - Variable Pitch Wind Turbine, 2021). 

3.2.2. Photovoltaic panels 

In this study, the Half Cut PERC Mono Photovoltaic solar panel is considered. The panel has 

a rated capacity of 330 W with an expected lifetime of 25 years. Eq. (3) can be used to 

calculate the aggregate power output from the solar generation system at time-step  : 

 

                          (3) 

         

where     is the optimum number of solar panels, which is updated at each iteration of the 

sizing process, and       is the global solar irradiance ( /    at time-step  . It should also 

be noted that the power output from the solar panels decreases over time due to degradation – 

induced by wiring losses, frame corrosion, high temperatures, dust layer, and so forth. 
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Therefore, a calendar-induced degradation factor (DF) of 85% is taken into account for the 

solar PV generation system (Mohseni et al., 2019). Also, a tilt angle of 36˚ was considered 

for the PV panels. 

 

Furthermore, the associated capital investment and replacement costs of the panels are 

$335/unit, while their O&M costs are considered to be $6/unit/year. Moreover, the lifetime of 

solar panels is 25 years; hence, no replacement occurs over the project lifespan. 

3.2.3. Battery storage system 

The 14-kWh Tesla Powerwall battery pack is considered in this study, which has a lifetime of 

10 years. Also, the associated capital investment and replacement costs are $390/unit, while 

the O&M cost is $2/unit/year. 

Furthermore, the following equality constraint is used to ensure that the battery bank‘s state 

of charge (SOC) at each time-step   is aware of the underlying charging and discharging 

processes (Chen et al., 2012): 

              +                                  , (4) 

where      is the battery bank‘s charging power,      is the battery bank‘s discharging 

power, while      and      are the charging and discharging efficiencies of the battery packs, 

respectively, both of which are assumed to be 95% in this study.  

Moreover, the energy content of the overall BSS is subject to the following constraint, in line 

with physical, real-world conditions (Chen et al., 2012): 

  
            

   ,  (5) 

where   
    and   

    are the minimum and maximum allowable energy contents of the BSS. 

More specifically,   
    is controlled by the optimal capacity of the battery bank, while   

    

is controlled by the maximum depth of discharge (DOD) of the battery packs, which is 

mathematically expressed in Eq. (6) (Kwon et al., 2006). Also, the maximum DOD is set to 

90%. 

  
    

       

   
   

                                                                                                              

3.2.4. EV-charging station 

An electric vehicle (EV) charging station was also considered to serve the EV-charging loads. 

For the site under consideration, 10 medium-sized plug-in personal passenger EVs and 5 

medium-sized plug-in utility EVs were planned for integration into the conceptual MG. To 

this end, 7.6-kW SOLAREDGE SE7600H-US EV-chargers with an accompanying single-

phase DC/AC inverter was considered, which has an overall efficiency of 99%. The lifetime 

of the overall EV-charging unit is 20 years. The associated capital and replacement costs of 

the EV-charging unit including the DC/AC inverter costs are $4,000/unit, while the O&M 

cost of the station is $160/unit/year. 

It is noteworthy that the optimal size of the EV-charging station is not treated as a separate 

decision variable, but rather it is determined based upon the peak EV-charging load following 
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the specifically developed dispatch strategy. Accordingly, the cost of the station is 

exogenously added to the optimal whole-life cost of the system. 

3.2.5. Power conversion apparatuses 

The following converters are considered in this study: 

1. The Red Prime AC/DC converter is used for the integration of 50-kW WTs. The 

converter‘s efficiency and lifetime are 98% and 15 years, respectively; 

 

2. The SAMLEX IDC-360A-24 DC/DC converter is used to couple the 360-W solar PV 

panels to the common DC bus. The converter has an efficiency of 85%, and a lifetime 

of 15 years; and 

 

3. The Eaton DG1 IP21 DC/AC inverter is utilised to supply the AC residential and 

commercial loads from the DC bus. The rated capacity, efficiency, and lifetime of the 

selected inverter are 50 kW, 96%, and 20 years, respectively. Similar to other 

converters in the system, it does not form part of the decision variable vector, and is 

calculated outside the model based upon the expected total residential and commercial 

loads. (Mohseni et al., 2021). 

 

Table 3 presents a summary of techno-economic specifications of the selected components in 

the candidate pool for MG 1. It is noteworthy that all costs are cited in 2021 New Zealand 

Dollars. 

Table 3. Techno-economic specifications of the candidate components of MG 1. 

Component Manufacturer part 

number 

Capital cost Replacement 

cost 

Operation and 

maintenance 

cost 

Lifetime 

(years) 

Wind turbine Senwei SWT $65,000/unit $65,000/unit $2,600/unit/year 20 

Solar PV panel Half Cut PERC $335/unit $335/unit $6/unit/year 25 

Battery POWERWALL $390/unit $390/unit $2/unit/year 10 

AC/DC inverter Red Prime $4,770/unit $4,770/unit $382/unit/year 15 

DC/DC inverter SAMLEX IDC $50/unit $50/unit $0.04/unit/year 15 

Inverter Eaton DG IP21 $8,000/unit $8,000/unit $320/unit/year 20 

EV-charger SOLAREDGE $4,000/unit $4,000/unit $160/unit/year 20 

 

3.3. Energy management of MG 1 

A rule-based energy management strategy is specifically developed to ensure that generation 

always satisfies demand. To this end, the battery storage linking variables are used. Three 

main dispatch strategies tailored to different scenarios are considered for the operation of MG 

1, which are detailed in the following sections.  
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3.3.1. Generation meets total demand 

In this scenario, the total power output from renewable generation technologies is equal to the 

sum of residential, commercial, and EV-charging loads, which can be mathematically 

modelled as: 

                                      ,                                                      (7) 

  

              ,                                            

 

(8) 

                 ,            (9) 

where       is the total residential and commercial load on the system at time-step  ,     and 

        are the expected EV-charging load and the actual power delivered to EVs at time-step 

 , respectively, while      and     respectively denote the efficiencies of the 

residential/commercial loads‘ inverter and EV chargers. 

3.3.2. Excess generation 

In this scenario, it is assumed that the aggregate power output from renewable energy 

generation technologies is greater than the total load demand (including the EV-charging 

loads). Accordingly, the excess energy generation is stored in the BSS. The operational 

strategy of the system can be mathematically modelled as: 

                                                  , 

 

(10) 

                +              ,  

 

(11) 

                 .             (12) 

3.3.3. Excess residential and commercial loads 

In this scenario, the total residential/commercial load demand is greater than the total power 

output from renewable energy generation technologies. Therefore, the battery bank is 

discharged to meet the residential and commercial loads as far as possible. However, for 

reasons of energy efficiency, the EV-charging load is not served by discharging the stationary 

battery bank, which leads to the loss of total EV-charging loads, in addition to potentially part 

of the residential and commercial loads. This scenario can be mathematically modelled as: 

                                     , 

 

(13) 

                                     , (14) 
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            , 

 

(15) 

   ( ) =    ( ).     (16) 

Where residential and commercial load shedding is necessary to maintain the power balance 

of the system, the associated lost load can be obtained from the following equation:  

     ( ) =           (                (
        

   

  
)      )        

(17) 

More specifically, the onsite storage is used to its maximum capacity to meet the residential 

and commercial loads. Yet, despite doing so, there exists unserved demand, apart from 

unsupplied EV-charging loads. 

3.4. Micro-grids 2 and 3  

The second and third BSS-supported MGs are expected to generate electricity solely by solar 

PV panels, in accordance with Fig. 9. Also, the mathematical models of the associated 

components – solar PV panels, the battery bank, the EV-charging station, and system-wide 

converters – are the same as those presented for MG 1. Note that MGs 2 and 3 are indeed the 

same, and the reason for the separate numbering is to minimise the potential ambiguity given 

the presentation of three case studies in the next chapter.  



 

 

Page |   
 

34 

DC

DC

DC

AC

DC

AC

Photovoltaic 

system

DC dump load

Ppv

Pdump

Pload

Residential and commercial 

loads Battery packs

Pdch

Pch Pev,ch

EV charging

Inverter

 

Figure 9. Schematic diagram and energy flow of MGs 2 and 3. 

3.5. Energy management of MGs 2 and 3 

Similar to MG 1, a rule-based, cycle-charging energy management strategy was formulated 

for MGs 2 and 3, which seeks to balance generation and demand with the aid of the BSS, 

given the variability inherent in the power output of the solar PV plant. Accordingly, the 

following three main energy dispatch scenarios were considered for the operation of MGs 2 

and 3. 

3.5.1. Generation meets total demand 

In this scenario, the total power output from the solar PV generation system is equal to the 

sum of residential, commercial, and EV-charging loads; hence: 

                                 , 

 

(18) 
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              ,  

 

(19) 

                 ,            (20) 

where       represents the total residential and commercial loads at time-step  ,     and 

        are the expected EV-charging load and actual power delivered to EVs at time-step  , 

respectively, while      and     are the efficiencies of the residential/commercial loads‘ 

inverter and EV chargers, respectively. 

3.5.2. Excess generation 

In this scenario, it is assumed that the total power output from the solar PV generation system 

is greater than the total load demand (including the EV-charging loads). Accordingly, the 

excess energy generation is stored in the BSS. The operational strategy in this scenario can be 

mathematically modelled as: 

                                           , 

 

(21) 

              +              , 

 

(22) 

                 .             (23) 

3.5.3. Excess residential and commercial loads 

In this scenario, it is assumed that the total solar PV generation falls short of the total 

residential and commercial power load demand. Accordingly, the BSS is discharged to serve 

the residential and commercial loads. Similar to MG 1, the stationary battery storage is not 

used to charge the EVs to minimise energy conversion losses. Also, a separate equality 

constraint is employed to model the entirely unserved demand of EVs during the periods 

where the total residential and commercial loads exceed the solar PV generation. The 

following equations mathematically model this operating scenario: 

                              ,  

 

(24) 

                                   , 

 

(25) 

            , 

 

(26) 

   ( ) =    ( ).     (27) 
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Furthermore, the total lost residential and commercial loads, following the potential depletion 

of the battery storage can be obtained from the following equation: 

     ( ) =        )   (        (
        

   

  
)      )        

                           (28) 

3.6. MG life-cycle cost estimation methodology 

The objective of the proposed MG life-cycle cost estimation method is to minimise the 

whole-life cost of off-grid MGs based on net present valuations subject to a set of operation- 

and planning-level constraints. More specifically, the objective function consists mainly of 

the size of the equipment multiplied by the associated per-unit cost factors, as (Chen et al., 

2012): 

              + RC   SPPW +  
    

        
  – SV), (29) 

where      is the net present cost of component  , while   ,    ,     , and RC represent 

the optimal capacity, capital cost, operation and maintenance cost, and replacement cost of 

the MG component  , respectively. Also, SPPW,     and SV respectively denote the single 

payment present worth, capital recovery factor, and salvage value of the corresponding 

component. 

The salvage value can be determined as follows: 

SV = RC × 
         [

 

 
] 

 
, 

(30) 

where   and   respectively denote the expected life-cycle of the associated component 

(years) and the expected life-cycle of the MG system (years), which is considered to be 25 

years. 

Furthermore, the SPPW represents the present value of a one-time cash outflow 

corresponding to a series of equal future payments, which can be modelled as: 

SPPW = ∑
 

        
 
    , (31) 

where  = [
 

 
], and   is the real interest rate, which is assumed to be 6% in this study. 

Moreover, the capital recovery factor is the ratio of a constant annuity to the corresponding 

present value for a considered length of time, which can be calculated as follows: 

CRF( ,T) = 
       

        
.  

(32) 

Accordingly, the total net present costs of MGs 1 to 3 can be modelled as: 

TNPCMG 1 = NPCPV + NPCWT + NPCBSS + NPCCCONV + NPCEV-Charger + pen1 + pen2, 

 

(33) 
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TNPCMG 2, 3 = NPCPV + NPCBSS + NPCCONV + NPCEV-Charger + pen1 + pen2, (34) 

where NPCPV, NPCWT, NPCBSS, NPCCONV, and NPCEV-Charger respectively denote the net 

present costs of the PV panels, WTs, the BSS, the converters, and EV-chargers. Also, pen1 

and pen2 are the penalty terms (as sufficiently large values) associated with not meeting the 

desired reliability levels in serving the residential/commercial and EV-charging loads, 

respectively. That is, they are employed to mark the positions in the search space where any 

of the imposed constraints are violated as infeasible equipment size combinations. 

The equivalent loss factor (ELF) is used to measure the reliability of the system, which unlike 

other relevant reliability indicators, is aware of both the frequency and magnitude of lost 

loads. In the context of this study, the ELF associated with unmet residential/commercial and 

EV-charging loads can be expressed as: 

        = 
 

 
 ∑

        

        

 
    , 

 

(35) 

      = 
 

 
 ∑

      

      

 
    , (36) 

where   is the number of time-steps in the planning horizon. In this study, the         

associated with the residential/commercial loads was assumed to be 0, while the 

      associated with EV-charging loads was considered to be 0.005.  

The minimisation of the objective function is additionally subject to a number of other 

constraints, as (Xu et al., 2018), (Chen et al., 2012): 

 

   
              

     
 

 (37) 

    
                

     
 

(38) 

  
            

   , (39) 

        
      (40) 

                 (41) 

Specifically, Eqs. (37)–(39) ensure that, at each hour of the MG operation, the charging and 

discharging power capacities of the storage, as well as its energy content, lie within the 

associated pre-defined ranges. Also, Eq. (40) assumes that the battery bank is initially full-

charged to adequately handle the peaks that occur early in the time-series load data without 

oversizing. Furthermore, for balanced analyses, Eq. (41) ensures that the energy in-store at 

the last hour of the representative one-year operating horizon is not lower than the pre-

specified initial battery state of charge. Recall that the operational analyses are carried out 

over a one-year horizon with hourly granularity.  

It is also noteworthy that the decision variables (size of the solar PV panels, WTs, and the 

BSS) are enforced to lie within the range [0, 1000]. 
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3.7. Overview of the proposed modelling framework 

Fig. 10 displays the flowchart of the proposed modelling framework for the capacity planning 

optimisation of off-grid MGs, which is parameterised for the conceptualised MGs. As the 

figure shows, first, all input data are loaded. The meta-heuristic algorithm employed to 

optimise a solution to the problem at hand is then initialised before iteratively updating the 

position of the individuals.  

At each iteration, energy balance analyses are carried out to guide the search process based 

on the unmet residential/commercial and EV-charging loads, as well as other violated 

constraints. The process of updating the optimal size of the equipment, and in turn, the 

estimated total net present cost of the MG is continued until reaching the stopping criterion 

(maximum number of iterations). 
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Figure 10. Flowchart of the meta-heuristic-based MG sizing modelling framework. 

3.8. Conclusions 

This chapter has developed the overall meta-heuristic-based off-grid MG capacity planning 

optimisation method, which employs net present cost valuations, the equivalent loss factor 
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reliability index, and a specifically developed rule-based, cycle-charging dispatch strategy in 

the presence of EV-charging loads. The operational planning model is novel in that (i) it 

minimises the probability of oversizing the components by discharging the battery storage to 

its maximum capacity during the periods where total residential/commercial loads fall short 

of total renewable power generation, and (ii) it entails distinct rules for serving 

residential/commercial and EV-charging loads. The proposed model has been parametrised 

for two stand-alone, battery-supported system topologies feeding residential/commercial and 

EV-charging loads. The first system is driven by a combination of solar PV panels and WTs, 

whereas the second system is driven by solar PV panels alone. A further salient feature of the 

proposed model is considering separate reliability indices for meeting residential/commercial 

and EV-charging loads, based on which distinct penalty factors have been formulated. 

Finally, the flowchart of the proposed model has been presented, which shows an in-depth 

overview of the general modelling framework, within which various meta-heuristic 

algorithms can be embedded to optimise a solution to the derived off-grid MG capacity 

planning problem. The techno-economic specifications of the selected components have, 

furthermore, been presented, which are used as input data for the application of the model to 

the case studies. The next chapter presents and discusses the time-series input data, including 

the forecast meteorological and energy consumption profiles, for the sites of interest.  
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Chapter 4: Case study – Aotea–Great Barrier Island  

4.1. Introduction    

This chapter presents the input data supplied to the proposed meta-heuristic-based MG 

designing model for the cases of interest within an Aotearoa–New Zealand context. First, the 

overall graphical and climatic conditions of the case study sites are briefly described. The 

chapter then proceeds to more specifically detail the meteorological and energy consumption 

data forecasts. To this end, the derived hourly forecasts of solar irradiance and wind speed 

time-series data – based on the corresponding historical data retrieved from the relevant 

databases – as well as the energy consumption forecasts – based on the aggregation of 

appliance-level loads (including residential/commercial power loads) and EV-level loads 

(EV-charging loads) – are presented. The profiling of meteorological and load demand data is 

carried out separately for the three case communities residing on Aotea–Great Barrier Island, 

Aotearoa–New Zealand. 

4.2. Geographical and climatic background  

Aotea–Great Barrier Island is situated in the outer Hauraki Gulf, 100 km north-east of 

central Auckland, with an area of 285 square kilometres and the following coordinates: latitude 

–36.26˚S and longitude 175.49˚E. It is the sixth-largest island of Aotearoa–New Zealand. 

According to the 2018 census, the island has a usually resident population of 936 people 

(Census, 2018). However, the total population of the island increases significantly over 

holiday periods due to tourism. 

4.2.1. Climatic conditions of Aotea–Great Barrier Island 

Aotea–Great Barrier Island is richly endowed with solar resources in summer, with a daily 

average of 11.3 hours of sunlight during the summertime according to the SolarView 

database of NIWA (2019). More specifically, December is the sunniest month – with 6.4 

hours of sunlight per day (on average) – whereas May is associated with the least sunlight 

hours – with an average of 3.3 hours of sunlight per day. 

In terms of wind resources, October is the windiest month, with an average maximum wind 

speed of approximately 34 km/h, whereas April is the weakest month in terms of wind 

resources, with an average minimum wind speed of around 14 km/h. The solar and wind 

resources exhibit significant complementary characteristics. Prior techno-economic feasibility 

assessments have estimated that harnessing solar and wind resources for electricity 

generation is able to serve the energy needs of the island‘s inhabitants in a reliable, 

affordable, self-sufficient, and sustainable manner (Park, 2021).   

As mentioned above, the solar irradiance data were retrieved from the NIWA‘s SolarView    

database, while the wind speed data were collected from the Cliflo database of NIWA (2020). 

To this end, 15 years‘ worth (2007 to 2021) of hourly-basis, year-round historical solar 

irradiance and wind speed records (8,760 data points) were collected from the relevant 

databases for the three micro-communities residing on the island, namely: Medlands (MG 1), 

Tryphena (MG 2), and Mulberry Grove (MG 3).  



 

 

Page |   
 

41 

4.3. Meteorological data 

The meteorological data requirements of the three MGs are as follows: solar irradiance (MGs 

1–3), and wind speed (MG 1). It should be recalled that MG 1 integrates both solar 

photovoltaic (PV) and wind turbine (WT) technologies, whereas MG 2 and MG 3 are driven 

solely by solar PV resources. That is, prior techno-economic feasibility and business case 

analyses have indicated that the WT technology is an unviable choice for MGs 2 and 3 given 

the associated hilly, tree-covered terrain. Therefore, unlike MG 1, the WT technology has not 

been considered in the candidate pool for MGs 2 and 3. Fig. 11 shows the geographical 

locations of the three communities considered for off-grid MG installations. In terms of 

geographical location, MGs 2 and 3 are about 6.3 km and 8.1 km far from MG 1, 

respectively. 

   𝑔𝑙𝑒 𝑍     𝑔𝑙𝑒 𝑍  

 

Figure 11. Locations of the conceptualised MGs for installation on Aotea–Great Barrier 

Island (image courtesy of Google Earth™ mapping service). 

4.3.1. MG 1: Medlands  

Medlands is close to the south-eastern end of Aotea–Great Barrier Island. Fig. 12 shows the 

corresponding monthly mean daily profiles for solar irradiance and wind speed. Note that the 

associated one-year time-series data were converted to monthly averaged 24-h data streams 

not only for reasons of better visualisation, but also for use in the reduced version of the 

original model in the next chapter. It is also noteworthy that the solar irradiance data were 

retrieved for solar PV panels with a tilt angle of 36˚. 
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(a) 

 

(b) 

 

Figure 12. Monthly mean daily solar irradiance and wind speed profiles for MG 1: (a) solar 

irradiance (W/  ), and (b) wind speed (m/s). 
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4.3.2. MG 2: Tryphena 

Tryphena is situated at the south-western end of the island, which is about 6.3 km far from 

Medlands, and surrounded by hills and mountains. As noted earlier, MG 2 conceptualised for 

the Tryphena site is purely driven by solar PV resources. Fig. 13 depicts the monthly mean 

daily profile for solar irradiance at the Tryphena site. Again, it should be noted that the solar 

irradiance data were retrieved for solar PV panels with a tilt angle of 36˚. 

 

Figure 13. Monthly mean daily solar irradiance profile for MG 2 (W/  ). 

4.3.3. MG 3: Mulberry Grove 

Mulberry Grove is a small community, which is about 8.1 km far from Medlands and 2 km 

far from Tryphena. As stated earlier, the MG conceptualised for the Mulberry Grove site is 

driven solely by solar PV resources (solar PV panels with a tilt angle of 36˚) as it is the only 

viable renewable power generation technology based on the associated pre-feasibility 

analyses. Fig. 14 depicts the monthly mean profile for solar irradiance at the Tryphena site. 
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Figure 14. Monthly mean daily solar irradiance profile for MG 3 (W/  ). 

4.4. Energy consumption data  

This section presents the derived load profiles of the three communities, which are loaded as 

inputs to the proposed MG sizing framework, along with the meteorological and techno-

economic data. The following sections describe the total energy consumption data associated 

with each case, which are broken down into the constituent power load components, namely 

appliance loads and EV-charging loads. 

4.4.1. Residential and commercial power loads  

Table 4 presents the number of residential and commercial end-users of the cases of interest. 

As the table details, a total of 43 buildings were considered for the case of MG 1, while the 

total number of buildings connected to MG 2 and MG 3 were 36 and 18, respectively. The 

reason for a relatively higher number of buildings in MG 1 compared to MGs 2 and 3 is that 

it is recognised as the island‘s most popular location among visitors coming for holidays or 

leisure (Park, 2021).  

Table 4. Number of buildings in the three MGs. 

Micro-grid MG 1 MG 2 MG 3 

Load 

components 

40 residential 

and 3 

commercial 

loads 

30 residential 

and 6 

commercial 

loads 

15 residential 

and 3 

commercial 

loads 

Total number 

of buildings 
43 36 18 
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To derive the total appliance loads on the MGs, a novel energy consumption aggregation 

strategy was developed, which specifically considers the power consumption of frequently 

switched on-off appliances, occasionally running appliances, and continuously running 

appliances. The list of appliances considered for the cases studied and their corresponding 

hourly-resolved, customer-class-adjusted nominal power usages are detailed in Table B1 in 

Appendix B, while their detailed specifications are presented in Tables B2 and B3 (Gruber 

and Prodanovic, 2012). It is also noteworthy that low-temperature heating and cooking loads 

are assumed to remain non-electrified. Furthermore, while power load time-series of 8,760 

data values are considered in the full, non-reduced variant of the proposed model, the 

corresponding monthly mean daily load forecast profiles for MGs 1–3 are respectively 

displayed in Figs. 15–17 for the sake of improved visualisation. As it can be observed from 

the figures, the total appliance load demand on MG 1 is (expectedly) greater than those of 

MGs 2 and 3. The reader is referred to Figs. B1–B3 in Appendix B for an illustration of the 

typical energy consumption profile of households (MGs 1–3), commercial buildings (MGs 1–

3), and a pub (MG 2), respectively. 

 

Figure 15. Forecasted monthly mean daily profile for the total appliance energy consumption 

of the Medlands site (kW). 
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Figure 16. Forecasted monthly mean daily profile for the total appliance energy consumption 

of the Tryphena site (kW). 

 

Figure 17. Forecasted monthly mean daily profile for the total appliance energy consumption 

of the Mulberry Grove site (kW). 
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4.4.2. EV-charging loads 

In general, the fleet of electric vehicles (EVs) can be categorised into five main classes, 

namely: (i) private EVs, (ii) utility EVs, (iii) commercial EVs, (iv) electric goods trucks, and 

(v) electric buses (Su et al., 2019). In this study, private EVs and utility EVs are considered 

for integration into the conceptual systems, in accordance with the transportation needs of the 

sites of interest. 

In this context, private EVs were selected to be of the model Nissan Leaf, which has a 

charging power capacity of 6.6 kW and a battery capacity of 40 kWh, which provides 270 

kilometres of range. Furthermore, the utility EVs were chosen to be of the model LDV EV-

80, which has a charging power capacity of 6.6 kW and a battery capacity of 56 kWh, which 

provides 190 kilometres of range (Su et al., 2019). 

A rule-based energy management strategy was additionally developed to decide the timing of 

EV charging – as part of the specifically developed rule-based, cycle-charging expert 

decision support system for the dispatch of the entire system. To coordinate the charging of 

EVs in MG 1, it was assumed that the charging of the 10 private EVs and 5 utility EVs occurs 

during the period between 9 p.m. and 5 a.m. using level-1 chargers. The reason behind the 

aforementioned scheduling strategy of EV-charging loads is to flatten the overall net load 

demand (total loads minus total renewable power generation) and improve the load factor, 

and consequently reduce the excess renewable power curtailments, as well as the size of the 

capital-intensive stationary battery bank – and, therefore, the total discounted system cost. 

Recall that the excess renewable power generation that cannot be stored in the battery bank – 

due to capacity and/or charging power limits – is spilt in a dump load. On the other hand, if 

the battery bank is not able to fully meet the loads, load shedding is necessary, which leads to 

an increase in the loss of load probability, necessitating greater storage capacities. 

It was also assumed that the private EVs were charged every alternate day, whereas the utility 

EVs are charged on a daily basis. Fig. 18(a) displays the forecasted total energy demand of 

EVs on MG 1 for a typical representative day – during the off-peak hours. For simplified 

analyses, it was assumed that the energy consumption of EVs remains the same for the 365 

days of the baseline representative year of the MG operation. That is, the effect of weekdays 

versus weekend days on the charging behaviour is neglected. It is also noteworthy that the 

same EV charger model can be used for both private and utility EVs, in view of their similar 

charging power capacities. It should also be recalled that the EV-charging load is assumed to 

be left unmet during the periods where the onsite stationary battery bank is in the discharge 

mode for reasons of energy efficiency.  

The number of private and utility EVs were also respectively set to 10 and 5 in MGs 2 and 3. 

However, given the different dynamics that take place in MGs 2 and 3 compared to MG 1 

(due to the absence of WTs), the charging of EVs is scheduled to occur during the period 

between 12 p.m. and 4 p.m. More specifically, as mentioned earlier, the loads on MGs 2 and 

3 are met solely by solar PV generations. This is the main reason why the EV-charging is 

scheduled to take place during the afternoon hours. It is also noteworthy that the total EV-

charging load is evenly distributed amongst the EVs in the pool considering the associated 

pre-defined charging hours. 
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(a) 

 

(b) 

 

 

Figure 18. Illustration of the aggregate charging pattern of EV-charging loads (kW): (a) MG 

1, and (b) MGs 2 and 3. 

4.5. Conclusions 

This chapter has presented and discussed the meteorological and load demand data forecasts 

associated with MGs 1–3, which are respectively tailored to the Medlands, Tryphena, and 

Mulberry Grove sites on Aotea–Great Barrier Island, Aotearoa–New Zealand. The forecasted 

time-series data – solar irradiance, wind speed, residential/commercial loads, and EV-

charging loads – have also been comparatively analysed. Furthermore, the differences in the 

scheduling strategies of EV-charging loads using level-1 chargers in MG 1 and MGs 2 and 3 

– in accordance with the associated topological differences – are explained. The derived time-

series data are utilised as inputs to the proposed meta-heuristic-based off-grid MG sizing 

model parametrised for the notional MGs 1–3, which are populated for the three cases of 

interest, with the associated numeric simulation results presented and discussed in the next 

chapter.   
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Chapter 5: Simulation results and discussion 

5.1. Introduction 

This chapter addresses Research Objective 4, which seeks to compare the efficiency of the 

well-established and competitively selected, state-of-the-art, herd-behaviour-oriented meta-

heuristic algorithms in long-term off-grid micro-grid (MG) planning applications. The results 

obtained from the application of the meta-heuristics under consideration to the MG sizing 

cases of interest are then comparatively evaluated. The comparative analyses of the 

efficiencies of the meta-heuristics incorporate various summary statistics to systematically 

measure the accuracy and precision of the algorithms. The section then proceeds to provide 

comprehensive univariate sensitivity analyses that provide important insights into the 

robustness of the system costs and configurations to changes in load demand and power 

outputs of renewable energy technologies. Finally, case-specific cash flow, energy flow, and 

capital budgeting analyses substantiate the technical feasibility and economic viability of the 

project proposals before verifying the validity of the model through a direct comparison of 

the results of the Medlands test-case system with those of the industry-leading software 

package for MG sizing, namely HOMER Pro.  

5.2. Selected meta-heuristics and simulation setup 

The conceptual MG 1 incorporates solar photovoltaic (PV) panels, wind turbines (WTs), and 

a battery storage system (BSS), while MG 2 and MG 3 are solely driven by a solar PV 

generation system supported by a battery bank. The three MGs were assumed to be stand-

alone systems tailored to providing clean electricity to remote areas. A number of state-of-

the-art meta-heuristic algorithms, namely the moth-flame optimisation algorithm (MFOA), 

the wild horse optimiser (WHO), the artificial hummingbird algorithm (AHA), the artificial 

gorilla troops optimiser (AGTO), the marine predators algorithm (MPA), and the equilibrium 

optimiser (EO) were selected for comparative performance analyses and benchmarking 

against the well-established meta-heuristic in the field, namely the particle swarm 

optimisation (PSO). The algorithms were also used to test the technical feasibility and 

economic viability of the conceptual MGs, as well as to verify the effectiveness of the 

proposed method in yielding cost-optimal solutions. To this end, the relevant meteorological 

and load demand data were supplied to the proposed method – within which the above-

mentioned algorithms are separately embedded for comparative analyses – with the following 

resolutions: (i) monthly-averaged daily profiles of 12 months × 24 hours or 288 data points 

(considering model reduction), and (b) hourly-resolved, year-round profiles of 8,760 data 

points (without model reduction).  

The model was simulated on the Intel® Core™ i5-4310M, 2.70 GHz CPU processor with a 

RAM of 8 GB. The coding was performed in the MATLAB R2020b software. 

5.2.1. Performance comparison of the selected algorithms 

Inspired by a relevant framework recently developed in (Mohseni and Brent, 2020), a 

statistics-oriented meta-heuristic performance ranking technique was specifically designed to 

rank the efficiency of the meta-heuristics of interest in MG equipment capacity planning 

applications. The proposed ranking technique incorporates the following five descriptive 

statistics: the standard deviation, mean, and median of the total net present costs (TNPCs) 
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obtained throughout 30 independent simulation runs, as well as the associated best-case and 

worst-case results out of the 30 trials of optimising a solution to the three MG sizing 

problems. The standard deviation measures the amount of variation or dispersion of the 

population of TNPC outputs, while the mean of the set of TNPC observations represents the 

arithmetic average of the values – and indicates the central tendency of the values. Also, the 

median is the value separating the higher half of the population of TNPC outputs from the 

lower half. The mean of the results, as well as the best-case and worst-case solutions, indicate 

the accuracy of the algorithms under comparison, whereas the median and standard deviation 

values indicate the precision of the algorithms over 30 independent trials. Furthermore, for 

the sake of fair comparisons, the population size (number of search agents), the maximum 

number of iterations, as well as the upper and lower bounds of the decision variables were 

respectively set to 100, 200, 10000, and 0 in all simulations. 

Table 5 presents the total discounted system costs obtained from the application of the 

algorithms, the comparative efficiency of which is under investigation, to the optimal 

equipment capacity planning problem of the three MG instances over 30 simulation runs, 

whilst accounting for the model reduction technique. The rank order of the algorithms is 

determined by taking the average of the descriptive statistics for each MG sizing case first 

(Avg. 1) – which determines the case-specific scores of meta-heuristics when applied to the 

optimal MG sizing problems of interest – and then taking the average of the resulting scores 

over the three cases (Avg. 2). The following points should be noted for a better interpretation 

of the comparative results presented in Table 5: 

1. Low standard deviation values indicate that data are clustered around the mean (i.e., 

the data values are concentrated close to the mean), whereas high standard 

deviation indicates that data are more spread out (i.e., the data values show more 

variation from the mean). 

2.  A standard deviation equal to zero indicates that there is no spread in data. 

3. When the mean value is greater than the median value, the distribution curve is 

skewed to the right (positively skewed). On the other hand, when the median value is 

greater than the mean value, the distribution curve is skewed to the left (negatively 

skewed). 

4. The best-case and worst-case values respectively indicate the minimum and maximum 

TNPCs obtained over 30 independent simulation runs. 

5. The AGTO and the MPA have almost the same performance, and therefore decimal 

values were specifically considered for the comparison of their efficiencies. 

The comparative results presented in Table 5 are revealing in the following ways: 

1. The MFOA and the EO have the best and worst performances, respectively. More 

specifically, the summary-statistics-based meta-heuristic comparison framework 

confirms that the MFOA outperforms the other six algorithms investigated, namely 

the PSO, the WHO, the AHA, the AGTO, the MPA, and the EO. The utilisation of the 

MFOA for the optimal sizing of the cases of interest reduces the expected TNPC by 

$2,647 (~1%), $2,864 (~1%), and $6,037 (~2%) for MG 1, MG 2, and MG 3, 

respectively, compared to the EO, which is the least well-performing meta-heuristic. 
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2. The standard deviation of the TNPC outputs of the MFOA and the EO when applied 

to the third MG are both equal to 0. This indicates the robustness of the MFOA in 

yielding the globally optimal solution, whilst substantiating the comparative 

inefficiency of the EO in MG planning applications. 

3. Based on the Avg. 2 metric, the following rank order can be established for the meta-

heuristics under comparison: the MFOA > the AGTO > the MPA > the AHA > the 

PSO > the WHO > the EO.      

Table 5. Summary-statistics-based efficiency comparison of the selected meta-heuristics 

applied to the three MG planning cases. 

Alg. Sys. 
St. 

Dev. 
Best Worst Mean Median Avg. 1 Score Avg. 2 Rank 

PSO MG 1 1523 438,177 444,152 439,070 438,611 440,003 6 

  

 

MG 2 126 426,553 427,241 426,576 426,553 426,731 4 5 5 

 

MG 3 974 272,791 278,123 272,968 272,791 274,168 5 

  MFOA MG 1 296 435,539 436,589 435,651 435,539 435,830 1 

  

 

MG 2 218 423,689 423,720 423,223 423,218 423,462 1 1 1 

 

MG 3 0 266,754 267,000 266,754 266,754 266,816 1 

  WHO MG 1 37689 438,171 515,553 468,126 438,171 465,005 5 

  

 

MG 2 1 426,553 426,554 426,553 426,553 426,553 7 6 6 

 

MG 3 1 272,791 272,792 272,791 272,791 272,791 6 

  AHA MG 1 106 435,838 436,287 435,972 435,944 436,010 3 

  

 

MG 2 737 431,073 434,475 431,265 431,075 431,972 6 4 4 

 

MG 3 1 266,999 267,004 267,001 267,000 267,001 3 

  AGTO MG 1 256 435,791 436,546 435,945 435,804 436,021 2 

  

 

MG 2 1 431,073 431,074 431,073 431,073 431,073 5 3 2 

 

MG 3 1 266,999 267,000 266,999 266,999 266,999 2 

  MPA MG 1 1 438,171 438,173 438,171 438,171 438,171 4 

  

 

MG 2 1 426,553 426,554 426,553 426,553 426,553 2 3.33 3 

 

MG 3 1 272,791 272,793 272,791 272,791 272,791 4 

  EO MG 1 2400 438,186 445,214 439,341 438,219 440,240 7 

  

 

MG 2 1 426,553 426,554 426,553 426,553 426,553 3 6 7 

  MG 3 0 272,791 272,793 272,791 272,791 272,791 7     

 

Furthermore, Table 6 presents the optimal mix of the technologies in the candidate pool for 

the three cases, which represent the best-case performance of the meta-heuristics considering 

input data reduction. It can be observed from the table that, compared to the AHA and the 

AGTO, the MFOA allocates more WTs in the case of MG 1 to reduce the need for a large 

battery storage capacity. Also, although the number of WTs selected by the MFOA for MG 1 

is equal to those optimised by the PSO, the WHO, the MPA, and the EO, it returns 

comparatively lower capacities for the solar PV plant and the BSS. This can be explained by 

the MFOA‘s unique feature of dynamically rebalancing exploration – the early stages of the 

optimisation process that represents the long-range movement of search agents – for 

improved exploitation – the local search around promising regions of the search space 

identified in the exploration phase. Such rebalancing procedure is found to be particularly 
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useful for optimising a solution in the general multi-dimensional, nonlinear, non-convex 

shape of the decision space of MG sizing problems.  

It is noteworthy that the size of the inverter does not constitute part of the solution set, as it is 

calculated exogenously (outside the model) based upon the peak load demand. It should also 

be noted that the optimal size of each component is rounded up to the nearest integer given 

the continuous nature of the selected meta-heuristics. The associated TNPCs were, 

accordingly, rounded up to the nearest integer. 

Table 6. Optimal mix of the candidate technologies and the corresponding TNPCs for the 

three cases optimised by the selected algorithms in their best performance considering data 

reduction. 

Alg. Sys. PVs (no.) BSS (no.) WTs (no.) TNPC ($) 

PSO MG 1 127 390 3 438,177 

 

MG 2 792 261 N/A* 426,553 

 

MG 3 541 134 N/A* 272,791 

MFOA MG 1 102 381 3 435,539 

 

MG 2 784 261 N/A* 423,689 

 

MG 3 523 135 N/A* 266,754 

WHO MG 1 127 391 3 438,171 

 

MG 2 792 261 N/A* 426,553 

 

MG 3 541 134 N/A* 272,791 

AHA MG 1 209 424 2 435,838 

 

MG 2 796 267 N/A* 431,073 

 

MG 3 536 127 N/A* 266,999 

AGTO MG 1 208 424 2 435,791 

 

MG 2 796 267 N/A* 431,073 

 

MG 3 536 127 N/A* 266,999 

MPA MG 1 127 391 3 438,171 

 

MG 2 792 261 N/A* 426,553 

 

MG 3 541 134 N/A* 272,791 

EO MG 1 127 390 3 438,186 

 

MG 2 792 261 N/A* 426,553 

  MG 3 541 134 N/A* 272,791 

*N/A = Not applicable because the WT is not considered as a candidate technology in MG 2 

and MG 3. 

 

Fig. 19 depicts the convergence curves of the selected meta-heuristics in their best runs when 

applied to MG 1 considering input data reduction. It can be observed from the figure that the 

MFOA, the AGTO, and the MPA have almost the same convergence behaviour, whereas the 

AHA, the PSO, and the WHO take more iterations to converge. The figure also reveals that 

the weaker performance of the EO can be explained by its premature trapping in poor local 

optima. These observations collectively confirm the comparable simulation speed of the 

MFOA to the fastest meta-heuristics in the candidate pool – for efficiency comparisons. 
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Figure 19. Best-case convergence curves of the selected meta-heuristics when applied to MG 

1 considering input data reduction ($). 

5.3. Verification of the MFOA with and without model reduction  

To verify the effectiveness of the model-order reduction technique employed, this section 

compares the results obtained from the application of a reduced variant of the model that 

considers representative days (with 288 data points) to those of a non-reduced model (with 

8,760 data points). To this end, the MFOA is used as the optimiser due to its validated 

superiority over the other algorithms in the previous section. Also, a single run was deemed 

sufficient given the considerably low (and in one case, zero) standard deviation of the MFOA 

revealed from the statistical performance analyses above. The associated comparative results 

(with and without input data reduction) are presented in Table 7. 

Table 7. Optimal sizing solutions of the three MGs obtained from a single run of the MFOA 

with and without model reduction. 

Case Sys. PVs (no.) 
BSS 

(no.) 

WTs 

(no.) 
TNPC ($) 

With model reduction 

MG 1 102 381 3 435,539 

MG 2 784 261 N/A* 423,689 

MG 3 523 135 N/A* 266,754 

Without model reduction 

(full model) 

MG 1 480 84 3 435,330 

MG 2 779 259 N/A* 420,900 

MG 3 530 118 N/A* 260,446 

*N/A = Not applicable because the WT is not considered as a candidate technology 

in MG 2 and MG 3. 

The computational time for the proposed model is approximately 5 minutes and 300 minutes 

for the cases with 288 and 8,760 data points, respectively. Accordingly, using a reduced 

variant of the model significantly reduces the computational expensiveness of simulations 

without a statistically significant impact on the resulting TNPCs, as shown in Table 7. More 
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specifically, the TNPCs yielded considering input data reduction are associated with 

inaccuracies of approximately 0.05%, 0.6%, and 2% respectively for MGs 1–3 compared to 

the corresponding full model versions. The above-mentioned deviations of the TNPCs 

optimised by the reduced model from the corresponding values obtained from the full model 

reveal the inverse correlation of the inaccuracy of model reduction with the overall size of the 

MG indicated by the average annual load. That is, the lower the size of the MG, the greater 

the inaccuracy of the model with input data reduction compared to the corresponding full 

model.  

 

It is also noteworthy that the component size mix obtained for the case of MG 1 using the 

superior MFOA algorithm in the non-reduced input data scenario is less technically viable 

from a resiliency perspective – given the presence of a significantly smaller battery capacity – 

compared to the scenario with model reduction. This indicates that although using one-year-

long time-series data during the MG planning phases is important for numeric simulations to 

better reflect globally optimum solutions, there might exist locally optimum solutions that 

provide a better trade-off between cost and resilience. However, this requires operating the 

system with component capacities obtained from the counterpart reduced models (with 288 

data points) over full time periods (with 8,760 data points) to ensure that they adequately 

relax the relevant reliability and other operational- and planning-level constraints. 

 

5.4. Scenario analyses for MG 1: Indicative impact analyses of the timing of 

EV charging 

To evaluate the impact of the timing of EV charging on the costing and configuration of 

MGs, this section presents and discusses the results of scenario analyses carried out for MG 

1, which integrates solar PV panels, WTs, a BSS, and EVs. To this end, the considered 

scenarios include: (i) scheduling the charging of EVs to the late evening and early morning 

hours (9 p.m. to 5 a.m.), (ii) shifting the EV-charging loads to the afternoon hours (12 p.m. to 

4 p.m.), and (iii) exclusion of EV-charging loads. For better-informed decision-making 

support, each of the scenarios, additionally, address two cases, namely: (1) without solar PV 

generation, and (2) without WT generation. The simulations were carried out using the 

MFOA for a single run considering input data reductions to alleviate the computational 

burden.  

 

5.4.1. Supplying the EV-charging loads in the late evening and early 

morning hours 

Table 8 (a) presents the results of the optimum size of the components of MG 1, where the 

charging of EVs is scheduled to occur between the hours 9:00 p.m. to 5:00 a.m. It can be 

observed from the table that the exclusion of the solar PV plant from the candidate pool 

results in a slight decrease in the size of the BSS, but no significant change in the TNPC is 

expected compared to the baseline value. More specifically, a ⁓2% increase in the TNPC was 

observed, which equates to ⁓$9k. However, the case without a wind resource has had a more 

significant impact on the TNPC of the system. Specifically, a ⁓8% increase in the TNPC was 

observed (equating to ⁓$37k) due to the consequent modest increase in the size of solar PV 

panels and the BSS.  
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Table 8 (a). Relative importance of solar PV and WT plants on the economic viability of MG 

1 with EV-charging loads supplied during the late evening and early morning hours. 

Scenario 
PVs 

(no.) 

BSS 

(no.) 

WTs 

(no.) 
TNPC ($) 

Baseline 102 381 3 435,539 

Without PV - 341 4 445,215 

Without WT 614 474 - 472,087 

 

5.4.2. EV-charging loads shifted to the afternoon hours 

In this scenario, the EV-charging loads are shifted to the afternoon hours – specifically, from 

12:00 p.m. to 4:00 p.m. – which has increased the TNPC by around 7% (equating to $32,156) 

compared to the original case where the EV-charging loads are served during the late evening 

and early morning hours (see Tables 8 (a) and (b)). The main underlying reason for this 

observation is the decreased load factor – defined as the average load divided by the peak 

load – which necessitates adding more solar PV capacity. Furthermore, the optimal capacity 

of the WT plant and the battery bank is increased in the solar PV-less case, as one would 

expect, with a consequent TNPC increase of ⁓2% (equating to $6k). On the other hand, the 

WT-less scenario indicates a TNPC increase of ⁓5% (equating to $21k), which corroborates 

the relatively more significant impact of the WT plant on the cost-effectiveness of MG 1 

compared to the solar PV plant. 

Table 8 (b). Relative importance of solar PV and WT plants on the economic viability of MG 

1 with EV-charging loads shifted to the afternoon hours. 

Scenarios 
PVs 

(no.) 

BSS 

(no.) 

WTs 

(no.) 
TNPC ($) 

Baseline 397 205 3 467,695 

Without PV - 356 4 473,920 

Without WT 667 470 - 489,093 

 

5.4.3. No EV-charging loads 

In this scenario, it is assumed that the transportation sector is not electrified. Expectedly, the 

TNPC is reduced compared to the other scenarios that consider the integration of EV-

charging loads (see Tables 8 (a), (b), and (c)). Also, a comparison of the relevant solar PV-

less and WT-less cases has provided another layer of evidence on the greater importance of 

WTs on the financial sustainability of the project compared to solar PV panels. More 

specifically, the PV-less case is associated with a total discounted system cost increase of 

⁓3%, whereas the WT-less case is associated with a cost increase of ⁓8% compared to the 

associated baseline case. 
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Table 8 (c). Relative importance of solar PV and WT plants on the economic viability of MG 

1 without EV-charging loads. 

Scenarios 
PVs 

(no.) 

BSS 

(no.) 

WTs 

(no.) 
TNPC ($) 

Baseline 211 398 2 426,284 

Without PV - 341 4 441,215 

Without WT 614 474 - 468,087 

5.5. Sensitivity analyses 

Sensitivity analyses are useful to evaluate the effects of changes in input parameters on the 

total cost estimate and the corresponding MG configuration during the associated planning 

phases. Accordingly, a set of separate univariate sensitivity analyses are carried out to 

measure the robustness of the solutions to changes in the values of renewable power sources 

(on the generation side) and load demand (on the consumption side). The sensitivity variables 

on the generation side include solar irradiance and wind speed, which are inherently variable 

and weather-dependent, with the historical data retrieved from the SolarView tool and 

database of NIWA (2019), while the load demand data is specifically synthesised based on 

the forecast of the residents‘ appliance use. Also, the associated load demand sensitivity 

analyses provide insights into the impact of the potential variations of loads on the resulting 

MG cost and architecture – and can be effectively used to tailor the MG‘s sizing to the end-

consumers‘ robustness and reliability preferences. Again, the simulations were carried out 

using the MFOA for a single run considering input data reductions. 

 

As mentioned above, the impacts of the potential variations in solar irradiance, wind speed, 

and load demand were evaluated on the total net present cost (TNPC) and configuration of 

the conceptual MGs. To this end, the sensitivity analyses are conducted by increasing and 

decreasing the forecasted values of the sensitivity variables by 40% in 10% intervals.  

 

The following scenarios were specifically considered in determining the effect of changes in 

relevant time-series patterns: 

a) Fixed electricity load and solar irradiance, and varying wind speed. 

b) Fixed electricity load and wind speed, and varying solar irradiance. 

c) Fixed solar irradiance and wind speed, and varying electricity load. 

The above-mentioned scenarios were also considered in two cases, namely with and without 

electric vehicle (EV) charging loads, for a more holistic analysis. 

 

5.5.1. With EV-charging loads 

a) Fixed electricity load and solar irradiance, and varying wind speed  

The obtained results for MG 1 are presented in Fig. 20. As the figure shows, increasing the 

wind speed data from 10% to 40% of the original values steadily decreases the TNPC of the 

system. In addition, as shown in Table 9, this results in a rejection of the photovoltaic (PV) 

panels in all relevant scenarios, with a combination of the BSS and WTs providing the most 

economically viable choice for serving the load demand. The reason is that the wind resource 

is more abundant compared to solar irradiance. Also, from 20% increments in wind speed 



 

 

Page |   
 

57 

onwards, the number of required WTs is reduced to 2 from the original 3 with an 

accompanying decrease in battery storage due to the increased capacity factor of the WT 

generation system. Furthermore, a 40% increment of wind speed is associated with a 36% 

reduction in the TNPC compared to the baseline value. This suggests the significant impact 

of the required degrees of robustness and reliability on the produced cost estimates.  

On the other hand, for the scenarios with wind speed deviations in the range of  40% to 

 10%, no WT is selected due to an insufficient wind resource to make this technology 

economically viable. Consequently, the total cost of the system increases due a larger number 

of solar panels and battery packs required. Moreover, the insignificant changes in the size of 

the components and the cost of the MG for the scenarios of changing the wind speed from its 

original value to  40% of its original value (albeit no WT is selected in any of those cases) 

can be explained by the continuous formulation of the problem. In other words, the actual 

number of WTs is not exactly equal to 0, but it is rounded down to 0. 

 

Table 9. Components‘ size estimates and the associated TNPCs by varying wind speed for 

MG 1 with EV-charging loads. 

Variation 

(%) 
PVs (no.) 

BSS 

(no.) 

WTs 

(no.) 
TNPC ($) 

 40 634 473 0 478,506 

 30 645 477 0 484,817 

 20 661 479 0 491,196 

 10 696 479 0 504,305 

Baseline 102 381 3 435,539 

10 0 336 3 376,174 

20 0 336 2 331,991 

30 0 336 2 300,369 

40 0 309 2 276,330 
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Figure 20. Effects of variation in wind speed on the costing of MG 1 with EV-charging loads. 

   b) Fixed electricity load and wind speed, and varying solar irradiance  

For microgrid 1 (MG 1), increasing the value of solar irradiance from  40% of its original 

value to  20% of its original value results in zero PV panels with associated implications for 

the size of the BSS, WTs, and in turn, the TNPC, as illustrated in Table 10 (a). A further 

interesting observation is a significant rise in the size of the PV generation system from the 

case with  10% deviation in solar irradiance onwards. On the other hand, in the cases with a 

solar irradiance deviation of +10% to +40%, the TNPC steadily decreases, albeit 

insignificantly (specifically, 3% or $12k). However, the second and third MGs were found to 

be more sensitive to changes in solar irradiance increments. More specifically, a 18% 

(equating to $77k) and 19% (equating to $48k) cost reduction were observed for MG 2 and 

MG 3 at a +40% solar irradiance deviation compared to the baseline value, as presented in 

Tables 10 (b) and (c), and Fig. 21.  

Table 10 (a). Components‘ size estimates and the associated TNPCs by varying solar 

irradiance for MG 1 with EV-charging loads. 

Variation 

(%) 
PVs (no.) 

BSS 

(no.) 

WTs 

(no.) 
TNPC ($) 

 40 0 341 4 445,215 

 30 0 341 4 445,215 

 20 0 341 4 445,215 

 10 98 370 3 443,272 

Baseline 102 381 3 435,539 

10 103 386 3 435,171 

20 107 391 3 430,681 

30 250 404 0 426,989 

40 389 404 0 423,161 
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Table 10 (b). Components‘ size estimates and the associated TNPCs by varying solar 

irradiance for MG 2 with EV-charging loads. 

Variation (%) 
PVs 

(no.) 

BSS 

(no.) 
TNPC ($) 

 40 1243 297 605,397 

 30 1066 297 542,312 

 20 933 297 494,997 

 10 861 275 457,955 

Baseline 784 261 423,689 

10 720 261 400,985 

20 660 261 379,679 

30 609 261 361,650 

40 566 261 346,197 

 

 

Table 10 (c). Components‘ size estimates and the associated TNPCs by varying solar 

irradiance for MG 3 with EV-charging loads. 

Variation (%) 
PVs 

(no.) 

BSS 

(no.) 
TNPC ($) 

 40 720 231 385,458 

 30 712 167 350,357 

 20 625 166 318,838 

 10 581 149 294,158 

Baseline 523 135 266,754 

10 492 134 255,324 

20 451 134 240,769 

30 416 134 228,452 

40 387 134 217,896 
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Figure 21. Effects of variation in solar irradiance on the costing of the three MGs with EV-

charging loads. 

c)   Fixed solar irradiance and wind speed, and varying electricity load 

A significant direct correlation was observed between the changes in load demand and the 

TNPC for all the three MGs under consideration, as it can be seen from Fig. 22. That is, the 

number of PV panels, WTs, and battery packs is more significantly influenced by the load on 

the MG compared to other inputs. This observation is consistent with prior findings in the 

literature (Mohseni et al., 2019). At the extreme scenario (+40% deviation in load demand), 

the TNPC is increased by a significant 37% compared to the baseline scenario for MG 1 and 

MG 2. It can also be inferred from Table 11 and Fig. 22 that the sensitivity of the TNPC of 

the MG to changes in load demand, to some extent, depends on the original value of the total 

load it is expected to serve. 

Table 11 (a). Components‘ size estimates and the associated TNPCs by varying load demand 

for MG 1 with EV charging-loads. 

Variation 

(%) 
PVs (no.) 

BSS 

(no.) 

WTs 

(no.) 
TNPC ($) 

 40 60 220 2 281,886 

 30 65 269 2 321,275 

 20 118 344 2 363,711 

 10 105 294 3 405,257 

Baseline 102 381 3 435,539 

10 0 374 4 485,171 

20 335 510 2 534,285 

30 153 498 3 556,721 

40 348 584 3 596,690 
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Table 11 (b). Components‘ size estimates and the associated TNPCs by varying load demand 

for MG 2 with EV-charging loads. 

Variation (%) 
PVs 

(no.) 

BSS 

(no.) 
TNPC ($) 

 40 505 156 271,091 

 30 577 182 309,939 

 20 647 210 348,897 

 10 720 235 387,701 

Baseline 784 261 423,689 

10 864 287 465,431 

20 936 313 504,296 

30 989 354 544,065 

40 1045 393 583,710 

 

Table 11 (c). Components‘ size estimates and the associated TNPCs by varying load demand 

for MG 3 with EV-charging loads. 

Variation (%) 
PVs 

(no.) 

BSS 

(no.) 
TNPC ($) 

 40 279 81 152,666 

 30 307 109 176,853 

 20 330 160 211,078 

 10 455 133 241,505 

Baseline 523 135 266,754 

10 588 148 296,232 

20 619 173 320,290 

30 681 175 349,116 

40 727 189 366,582 
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Figure 22. Effects of variation in load demand with EV-charging loads on the costing of the 

three MGs. 

5.5.2. Without EV-charging loads 

    a) Fixed electricity load and solar irradiance, and varying wind speed  

The obtained results in the EV-less case have revealed practically the same insights into the 

sensitivity of the MG capacity planning solutions to changes in key time-series inputs. This 

substantiates the validity of the obtained insights. 

 

More specifically, increasing wind speed from  40% of its original value to  10% of its 

original value increases the TNPC, as presented in Table 12. In this case, given the absence 

of EV loads, only PV panels and stationary batteries are sufficient to serve the load demand. 

Then, for the wind speed variations in the range of  10% of the original value to +40% of the 

original value, the estimated TNPC decreases sharply, as shown in Fig. 23. More specifically, 

the TNPC is reduced by 37% as compared to the baseline case, which equates to a 

community saving of $155,669 in total energy costs. 

 

Moreover, an increase in the TNPC is observed, despite the decrease in wind speed by 10% 

and the consequent absence of WTs in the associated solution set. This observation can be 

explained by the continuous formulation of the problem, as illustrated above. 
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Table 12. Components‘ size estimates and the associated TNPCs by varying wind speed for 

MG 1 without EV-charging loads. 

Variation 

(%) 
PVs (no.) 

BSS 

(no.) 

WTs 

(no.) 
TNPC ($) 

 40 634 473 0 474,506 

 30 645 477 0 480,817 

 20 661 479 0 487,196 

 10 698 479 0 500,329 

Baseline 211 398 2 426,284 

10 0 336 3 372,174 

20 0 336 2 327,036 

30 0 336 2 304,317 

40 0 336 2 270,615 

 

 

Figure 23. Effects of variation in wind speed on the costing of MG 1 without EV-charging 

loads. 

b) Fixed electricity load and wind speed, and varying solar irradiance 

As Table 13 (a) indicates, for MG 1, no change in the TNPC is observed for the deviation of 

solar irradiance from  40% of its baseline value to  20% of its baseline value, which can be 

primarily attributed to the relatively long step size (nameplate capacity) selected for WTs. 

Then, for the deviations in the range of  10% to +20% of the original irradiance values, the 

TNPC is steadily reduced due to the availability of better solar resources. However, an 

insignificant rise is observed in the TNPC at the deviations of +30% and +40%, which is 

mainly due to the presence of small values of WT capacity, though rounded down to 0 in the 

reported solution set. The sensitivity of the TNPC of MGs 2 and 3 to changes in solar 

irradiance are also presented in Tables 13 (b) and (c), respectively – and also visualised in 
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Fig. 24. As an indication, for a +40% solar irradiance deviation, the total discounted system 

cost reduction is found to be approximately 2%, 16%, and 20% respectively for MG 1, MG 2 

and MG 3, respectively, which is comparable, on a percentage basis, to the case of ‗with 

EVs‘.  

Table 13 (a). Components‘ size estimates and the associated TNPCs by varying solar 

irradiance for MG 1 without EV-charging loads. 

Variation 

(%) 
PVs (no.) 

BSS 

(no.) 

WTs 

(no.) 
TNPC ($) 

 40 0 341 4 451,215 

 30 0 341 4 451,215 

 20 0 341 4 451,215 

 10 161 435 2 448,881 

Baseline 211 398 2 426,284 

10 220 401 2 425,706 

20 503 470 0 425,005 

30 506 488 0 431,794 

40 520 490 0 431,280 

Table 13 (b). Components‘ size estimates and the associated TNPCs by varying solar 

irradiance for MG 2 without EV-charging loads. 

Variation (%) 
PVs 

(no.) 

BSS 

(no.) 
TNPC ($) 

 40 1092 311 554,823 

 30 936 311 499,425 

 20 819 311 457,883 

 10 794 265 425,050 

Baseline 718 262 396,720 

10 652 262 373,556 

20 598 262 354,255 

30 552 262 337,924 

40 513 262 333,926 

Table 13 (c). Components‘ size estimates and the associated TNPCs by varying solar 

irradiance for MG 3 without EV-charging loads. 

Variation 

(%) 

PVs 

(no.) 

BSS 

(no.) 
TNPC ($) 

 40 713 165 345,174 

 30 611 165 329,029 

 20 535 165 281,921 

 10 517 136 260,797 

Baseline 464 136 242,481 

10 424 135 227,379 

20 388 135 214,847 

30 358 135 204,244 

40 333 135 195,155 
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Figure 24. Effects of variation in solar irradiance on the costing of the three MGs without 

EV-charging loads. 

c)  Fixed solar irradiance and wind speed, and varying electricity load 

Tables 14 (a), (b), and (c) present the results of the load demand sensitivity analyses for the 

three MG instances, respectively. As visualised in Fig. 25, the sensitivity of the TNPC of the 

MGs of interest to changes in load values follows approximately the same pattern as that in 

the corresponding case with EV-charging loads. This further verifies the validity of the 

obtained findings.   

Table 14 (a). Components‘ size estimates and the associated TNPCs by varying loads for MG 

1 without EV-charging loads. 

Variation 

(%) 
PVs (no.) 

BSS 

(no.) 

WTs 

(no.) 
TNPC ($) 

 40 76 241 2 276,721 

 30 470 340 0 313,790 

 20 531 386 0 359,710 

 10 550 405 0 394,506 

Baseline 211 398 2 426,284 

10 231 452 2 480,037 

20 815 599 0 523,395 

30 323 543 2 565,850 

40 138 525 4 593,239 
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Table 14 (b). Components‘ size estimates and the associated TNPCs by varying loads for MG 

2 without EV-charging loads. 

Variation 

(%) 

PVs 

(no.) 

BSS 

(no.) 
TNPC ($) 

 40 431 166 245,460 

 30 502 184 280,125 

 20 574 210 318,973 

 10 646 236 357,845 

Baseline 718 262 396,720 

10 787 290 435,689 

20 861 320 472,920 

30 931 349 512,496 

40 1004 370 552,073 

 

Table 14 (c). Components‘ size estimates and the associated TNPCs by varying loads for MG 

3 without EV-charging loads. 

Variation (%) 
PVs 

(no.) 

BSS 

(no.) 
TNPC ($) 

 40 279 81 148,662 

 30 326 95 172,092 

 20 373 108 195,533 

 10 419 122 218,975 

Baseline 464 136 242,481 

10 512 149 265,871 

20 559 162 289,300 

30 606 176 312,742 

40 652 189 336,202 
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Figure 25. Effects of variation in load demand without EV-charging loads on the costing of 

the three MGs. 

5.6. Cash flow analyses of the optimised MGs  

The capital budgeting analyses were carried out in accordance with the best-case results of 

the MFOA for the three micro-grids considering 8,760-long time-series input data (without 

model reduction). As mentioned above, the best TNPCs of MGs 1–3 were respectively found 

to be $435,330, $420,900, and $260,446. Fig. 26 shows the contribution of the net present 

cost of the components, the optimal size of which constitute the decision variables, to the 

associated TNPCs, which additionally account for the costs of the inverter and EV chargers. 

It can be observed that the higher cost of MG 1 compared to the other two cases is mainly 

due to the added WT capacity needed to meet its comparatively larger load demand. It can 

also be inferred from the figure that MG 2 has the largest BSS and solar PV capacities. This 

can be, in large part, attributed to the absence of WTs in its generation mix (compared to MG 

1) and the larger demand on its network (compared to MG 3).  
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Figure 26. Breakdown of the TNPC into the net present costs of components for the three 

cases. 

5.7. Energy flow analyses of the optimised MGs 

The percentage contributions of different energy generation and consumption components to 

the total MG-wide energy generation and consumption are summarised in Fig. 27 for the 

solution set returned by the best run of the MFOA. For MG 1, approximately 85% of the total 

energy generation is attributable to solar PV panels, and 15% to WTs. On the consumption 

side, the sum of residential and commercial loads makes up around 67% of the total load, the 

EV-charging loads comprise around 10% of the total load, with a total loss of around 23% 

due to the non-ideal system conditions and unmet EV-charging loads – in view of the 

considered equivalent loss factor of 0.005 as the reliability index. 

MGs 2 and 3 were solely driven by solar energy, meaning that solar energy is responsible for 

100% of MG-wide energy produced. The energy consumption of the residential and 

commercial loads makes up around 52% of the total energy consumption in both cases. Also, 

in both cases, the EV-charging loads and total losses are responsible for around 11% and 37% 

of the total loads, respectively.  
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Figure 27. Balance of energy between the generation and consumption sides within the three 

simulated MGs. 

5.8. Levelised costs of electricity of the optimised MGs 

Current average retail price of domestic electricity in New Zealand is $0.29/kWh (MBIE, 

2021). Table 15 presents the levelised costs of electricity of the three MG systems optimised 

by the proposed method in the best run of the MFOA. A comparison of the levelised costs of 

electricity associated with the optimised MGs with the current average retail price of 

electricity in New Zealand further supports the economic viability of the modelled MGs. 

Table 15. Levelised costs of electricity associated with the optimised MGs. 

System LCOE ($/kWh) 

MG 1 0.09 

MG 2 0.10 

MG 3 0.09 

 

5.9. Capital budgeting analyses of the optimised MGs 

To further support the financial sustainability of the simulated MGs using the best run of the 

MFOA, this section presents comprehensive financial appraisal analyses. To this end, the 

following three capital budgeting criteria are employed: the profitability index (PI), the 

discounted payback period (DPP), and the internal rate of return (IRR). 

The PI refers to the ratio of the present value of the total investment over the project life-

cycle to the associated capital investment expenditure. The higher the value of the PI, the 
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more attractive the project. The following equation can be used to calculate the PI (Gurau, 

2012): 

PI = 100 × 
∑          

        

    
, 

(42) 

where   is the annual income from the provisioning of energy services to end-consumers, 

     denotes the total capital investment in the baseline year,   is the real interest rate, and   

is the expected service life of the conceptualised MG. Accordingly, it was assumed that the 

electricity rate is fixed at $0.19/kWh (in New Zealand currency) for the three MGs. 

The discounted payback period represents the number of years it takes to break even from 

undertaking the capital investment, by discounting future cash flows, and can be 

mathematically expressed as (Lefley, 1996): 

∑            
    – TNPC = 0. (43) 

The IRR represents a discount rate that makes the net present value of all discounted cash 

flows equal to zero (Steffen, 2020), which can be mathematically expressed as in Eq. (44). In 

general, the higher the IRR, the more desirable an investment project to undertake (Gurau, 

2012). 

∑
     

      
 
     = 0, (44) 

where       denotes the net cash inflow in the  -th year of the investment.  

Table 16 presents the resulting capital budgeting metrics of the three MG investment 

proposals. The resulting values collectively indicate that the investment proposals represent 

low-risk, high-yield projects, which not only would be able to provide affordable, reliable, 

clean electricity to the sites of interest, but would also generate a steady revenue stream for 

the investors. 

Table 16. Capital budgeting of the three MGs. 

Sys. PI (%) DPP (years) IRR (%) 

MG 1 2.51 7 17.93 

MG 2 2.01 12 10.55 

MG 3 2.46 8 17.53 

5.10. Model validation: Comparison with HOMER Pro 

This section validates the effectiveness of the model in nearing the globally optimum MG 

sizing results by benchmarking the case of Medlands against the design of a similar system 

using HOMER Pro. Fig. 28 displays the layout of the system simulated in the HOMER Pro 

software. To match the HOMER Pro model to the proposed model, the EV-charging loads 

were specifically profiled in the period from 9 p.m. to 5 a.m.  
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Figure 28. HOMER Pro model of the Medlands test-case system. 

Table 17 presents the comparative results of the proposed model and HOMER Pro. For the 

proposed model, the full version with 8,760 data points was used. Also, the optimiser was 

selected to be the MFOA due to its verified outperformance. Furthermore, the best-case 

results out of the 30 trials of the MFOA were used for comparisons. It is noteworthy that 

given the absence of a dedicated module for EV-charging in HOMER Pro, the cost of EV 

chargers was added as a fixed cost to the model, similar to the proposed model where the 

capacity, and in turn the cost of EV-chargers is calculated exogenously to the model. 

Additionally, the cost of the multi-mode inverter is determined endogenously in the HOMER 

Pro model, whereas it is calculated outside the model based upon the peak load in the 

proposed model. However, given the selected reliability constraint of 100% under which the 

loads must always be satisfied, this does not make any difference in the optimal capacity of 

the inverter, as can be seen from Table 17. The table also reveals that although the percentage 

difference between total discounted costs in the two models is as low as 5%, with an 

associated lower LCOE of $0.02/kWh in the proposed model, there is a substantial difference 

between the resulting optimal configurations. More specifically, HOMER Pro supports a 

solar PV-less energy generation mix, but a larger battery storage capacity. This can be in 

large part attributed to the fact that the cycle-charging energy dispatch strategy in HOMER 

Pro is treating the residential/commercial loads and EV-charging loads in the same manner. 

Put differently, it allows the stationary battery storage to be discharged to the EVs, with the 

consequent drawing of more energy from the onsite battery bank during the light-load hours, 

compared to the proposed MFOA-based model, resulting in mitigated WT generation 

curtailment – thereby improving the economics of WT generation and undermining the 

economics of solar PV generation – in view of the pre-defined timing of EV charging. It 

should be emphasised that the total curtailed energy of the HOMER Pro model is around half 
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the proposed MFOA-based model with a specifically developed dispatch strategy. However, 

not only does the modified dispatch strategy of the proposed MG sizing model – where EV-

charging loads cannot be served by releasing the energy stored in the stationary battery bank 

for energy efficiency reasons – result in a reduced total discounted cost solution, but it also 

improves the energy mix diversity necessary for energy security. On the other hand, the 

resilience of the system optimised by HOMER Pro against a severe outage that disrupts 

access to the electricity generated from the onsite renewable resources is modestly higher due 

to the presence of a relatively larger battery capacity – and, consequently, an improved 

battery bank autonomy. It should be noted that there might also be other more important 

factors involved in the lower cost yielded by the proposed MFOA-based model, notably using 

a fit-for-purpose meta-heuristic, the relative importance of which cannot be readily quantified 

due to the infeasibility of customising the dispatch strategy in the HOMER Pro model. Yet, 

collectively, the comparative results corroborate the aforementioned proposition that 

important dynamics are taking place around the global optima with important implications for 

the trade-offs between cost, energy efficiency, resilience, and security.  

Table 17. Comparison of the MFOA-based model and HOMER Pro results for the Medlands 

case. 

Output Optimisation method 

MFOA-based model HOMER Pro 

Total net present cost of the 

MG ($) 

435,509 458,176 

Levelised cost of energy 

($/kWh) 

0.09 0.11 

Total curtailed energy (kWh) 41,740 22,522 

PV size (no.) 102 0 

WT size (no.) 3 3 

Battery size (no.) 381 466 

Inverter (kW) 47 47 

 

5.11. Conclusions 

This chapter has compared the efficiency of the well-established and competitively selected, 

state-of-the-art, herd-behaviour-oriented meta-heuristic algorithms in long-term off-grid MG 

planning applications. The results obtained from the application of the meta-heuristics under 

consideration to the MG sizing cases of interest are then comparatively evaluated. The 

comparative analyses of the efficiencies of the meta-heuristics have incorporated various 

summary statistics to systematically measure the accuracy and precision of the algorithms. 
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The section has then proceeded to provide comprehensive univariate sensitivity analyses that 

provide important insights into the robustness of the system costs and configurations to 

changes in load demand and power outputs of renewable energy technologies. Finally, case-

specific cash flow, energy flow, and capital budgeting analyses have substantiated the 

technical feasibility and economic viability of the project proposals before verifying the 

validity of the model through a direct comparison of the results with those of the industry-

leading software package for MG sizing, HOMER Pro, for the case of Medlands. 
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Chapter 6: Conclusions and future work  

Remote, renewables-powered micro-grids (MG) have been recognised as a stepping stone 

towards achieving the objectives of decarbonisation and sustainable development. More 

specifically, localised MGs are of particular interest to areas where energy self-sufficiency 

and/or energy security are challenging, such as remote and island communities. The standard 

optimal sizing problem of stand-alone MGs seeks to determine the minimum total discounted 

cost associated with the variable generation, storage, and power conversion technologies that 

are able to reliably serve the loads subject to operational constraints. Furthermore, the wider 

economy-wide deep decarbonisation efforts have recently highlighted the importance of e-

mobility interventions. This has given rise to the major trend of transportation and electrical 

energy system hybridisation to leverage the potentially significant synergies – that can 

provide more efficient smart, integrated energy systems – such as buffering renewable energy 

variability, particularly in the presence of solar photovoltaic (PV) and wind resources. 

However, the non-dispatchability of renewables, especially where energy storage systems are 

present in the candidate pool and the charging scheduling of electric vehicles (EVs) need to 

be coordinated, make finding the optimal strategic resource mix for MGs particularly 

challenging. More specifically, the nonlinearities and non-convexities involved in the 

relevant problem formulation make it non-amenable to exact mathematical optimisation 

algorithms without strong mean-field approximations, the impact of which on the optimality 

of the resulting solutions cannot be measured by any known means. This brings to light the 

importance of meta-heuristic optimisation algorithms that can be readily applied to the 

associated full-models of MG sizing, but at the risk of sub-optimality due to the inherently 

approximate dimensions involved. This is especially so in view of the so-called ―no free 

lunch‖ theorem, which essentially implies that the suitable performance of no meta-heuristic 

can be generalised to all applications. This necessitates the comprehensive, systematic 

efficiency testing of state-of-the-art meta-heuristics for potential solution quality 

improvement when applied to NP-hard problems, including the MG capacity planning 

optimisation problem. 

In this context, this research has sought to determine and rank a number of competitively 

selected, newly developed, herd-behaviour-oriented meta-heuristics in MG infrastructure 

planning applications. To this end, Chapter 2 has presented a comprehensive review of the 

literature on optimal MG sizing to determine the non-explored meta-heuristics in the field, as 

well as the limitations in the associated rule-based energy dispatch strategies integrated into 

the upper-level sizing methods, particularly in off-grid, EV-charging-load-addressable MGs. 

More specifically, a systematic review of the MG resource planning literature has identified 

the lack of attention to the following state-of-the-art meta-heuristics: the wild horse optimiser 

(WHO), the artificial hummingbird algorithm (AHA), the artificial gorilla troops optimiser 

(AGTO), the marine predator algorithm (MPA), the equilibrium optimiser (EO), and the 

moth-flame optimisation algorithm (MFOA). Furthermore, the review of the mainstream 

literature has revealed the absence of tailored EV-charging scheduling strategies in the wider 

MG sizing models, thereby prohibiting the associated models from producing highly efficient 

integrated system designs. Moreover, a number of technical, economic, social, and regulatory 

barriers to locally-controlled, 100%-renewable energy deployment are identified from the 

review. In addition, the review has identified the drivers of off-grid MG development to be 

addressing climate change, energy security, energy access, and socio-economic growth.   
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To address the identified methodological gaps in the relevant reviewed literature, Chapter 3 

has presented a novel meta-heuristic-based off-grid MG sizing method, which uses net 

present cost valuations, the equivalent loss factor reliability index, and a specifically 

developed rule-based, cycle-charging dispatch strategy to determine the operational schedules 

of non-grid-connected MGs in the presence of EV-charging loads. Also, the chapter discusses 

the novel features of the formulated operational scheduling strategy, namely the minimisation 

of the probability of oversizing the components by discharging the battery storage to its 

maximum capacity during the periods where total residential/commercial loads fall short of 

total renewable power generation, as well as using distinct rules for serving 

residential/commercial and EV-charging loads. The proposed model has been parametrised 

for two stand-alone, battery-supported system topologies feeding residential/commercial and 

EV-charging loads. The first system is driven by a combination of solar PV panels and WTs, 

whereas the second system is driven by solar PV panels alone. A further salient feature of the 

proposed model is considering separate reliability indices for meeting residential/commercial 

and EV-charging loads, based on which distinct penalty factors have been formulated. 

Chapter 4 has presented and discussed the meteorological and load demand data forecasts 

used to populate the notional MGs for the cases of Medlands, Tryphena, and Mulberry Grove 

sites on Aotea–Great Barrier Island, Aotearoa–New Zealand. The forecasted time-series data 

of the sites of interest – solar irradiance, wind speed, residential/commercial loads, and EV-

charging loads – have also been comparatively analysed. Furthermore, the underlying 

differences in the devised rule-based scheduling strategy of EV-charging loads in the three 

cases of interest have been explained. The derived time-series data are utilised as inputs to the 

proposed meta-heuristic-based off-grid MG sizing model parametrised for the conceptual 

MGs. 

The numeric simulation results obtained from the application of the proposed model to the 

three cases of interest are presented and discussed in Chapter 5. More specifically, using a 

statistics-oriented meta-heuristic performance ranking technique and based on the total net 

present costs obtained over 30 independent simulation runs of the three test-case problems, 

the following rank order has been established for the meta-heuristics under comparison: the 

MFOA > the AGTO > the MPA > the AHA > the PSO > the WHO > the EO. The results 

corroborate the previous findings on the suitability of the MFOA for MG capacity planning 

optimisation applications. To generate insights into the contribution of serving the EV-

charging loads to the total discounted system costs, e-mobility-less simulations have also 

been carried out, which demonstrate that serving EV-charging loads makes up a relatively 

significant portion of the associated system costs. Also, for the case that integrates both solar 

PV and wind resources (Medlands), specific solar PV-less and WT-less simulations have 

shown the considerable role of the associated seasonal and day-to-day complementarities in 

power outputs of solar PV and WT generation systems in reducing the associated total costs. 

Furthermore, comprehensive univariate sensitivity analyses have explored the effects of 

variation in load demand, solar irradiance, and wind speed on the resulting MG cost and 

configuration solutions. The sensitivity analyses have also provided insights into the 

sensitivity of the MG sizing solutions to changes in various time-series data. Given the 

computational expensiveness of the problem, an effective input data reduction technique has 

also been developed to ensure the tractability of the sensitivity analyses. A comparison of the 

full (with 8,760 data points) and reduced (with 288 data points) model variants for one run of 

each of the three cases (using the superior MFOA algorithm) has also verified the validity of 

the input data reduction technique, with the percentage deviation of the total cost found to be 
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0.05%, 0.6%, and 2% respectively for the cases of Medlands, Tryphena, and Mulberry Grove, 

respectively. Moreover, comprehensive cash flow and energy flow analyses have respectively 

shown the financial and energy balance of the optimised MGs. In addition, specific capital 

budgeting analyses using the profitability index, the discounted payback period index, and the 

internal rate of return index have substantiated the economic sustainability of the project 

proposals. A comparison of the associated levelised costs of electricity with the current 

average retail price of domestic electricity in New Zealand have provided an additional layer 

of evidence on the financial viability of the projects. 

6.1. Recommendations for future research 

There exist several opportunities for further work to improve the practical utility of the 

proposed modelling framework, which can be summarised as follows: 

1. Quantifying the uncertainties associated with data forecasts – notably power outputs 

from variable renewable energy technologies and load demand – in a probabilistic 

manner to tailor the MG planning decisions to the tolerable degree of risk of the 

communities.  

2. Incorporating a hybrid opt-in/opt-out demand response programme into the proposed 

model to more effectively coordinate the charging of EV loads, whilst additionally 

considering the discharge potential of EVs for supporting highly-renewable, off-grid 

MGs towards reducing the capacity of capital-intensive stationary storage. 

3. Characterising the interactions between the MG operator and EV owners in demand-

side management programmes to compare and contrast the impact of the strategic 

(self-interested) and pro-social behaviours on the optimal size of the components, and 

in turn, the total cost of the system. 

4. Comparing the efficiency of the selected meta-heuristics in other MG topologies and 

configurations, including grid-connected MGs and those integrating different 

generation and storage technologies, such as micro-hydro and hydrogen-based energy 

storage systems (incorporating electrolysers, hydrogen tanks, and fuel cells). 

5. Considering the dynamic nature of the efficiencies of the power electronics devices 

and the nonlinearities in the power outputs of solar PV and wind generation plants to 

minimise the so-called ―simulation-to-reality‖ gaps and better reflect reality. 
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Appendix A: Barriers to and drivers of MG development  

This appendix summarises and sub-categorises the identified barriers to the development of highly-

renewable micro-grids before outlining their drivers, identified from the review of the relevant 

literature. Specifically, Table A1 lists the identified technical, economic, social, and regulatory 

barriers, while Table A2 lists the associated drivers. The tables, additionally, provide the relevant 

important remarks and the corresponding notable sources. 

Table A1. Summary of the barriers to the development of MGs. 

Barrier Sub-category Remarks Reference(s) 

Technical Non-dispatchable renewable 

resources 

The degree of complexity of MG 

sizing increases as the dimension 

of the system components 

increases due to the correlations 

that exist between the associated 

uncertain factors, notably given 

the complementarities of 

different renewable energy 

sources. 

(Kumar et al., 

2016) 

 Energy storage complexities There exist salient inadequacies 

with regard to the standards and 

guidelines of energy storage 

integration that are critical for the 

reliable operation of highly-

renewable MGs. 

(Radosavljevic et 

al., 2016) 

 Lack of operation and 

maintenance culture 

Given that renewable energy 

technology is comparatively new 

and less optimally developed, 

there exists a lack of knowledge 

and expertise in operation and 

maintenance. 

(Seetharaman et 

al., 2019) 

Economic Competition with fossil fuels Fossil fuels (mainly coal, natural 

gas, and oil) are still expected to 

supply 78% of the global energy 

used (aggregated over all sectors) 

in 2040. 

(EIA, 2016) 

 Subsidies of energy generation In developing, fossil fuel-

exporting countries, fossil fuel-

fired power plants are still 

receiving significantly higher 

government subsidies compared 

to renewable energy generation 

schemes. 

(Financial Tribute, 

2021) 

 Renewable energy investment 

with limited financing 

institutions 

Securing financing at 

competitive rates with those of 

fossil fuel energy projects is a 

substantial barrier for renewable 

energy developers in the 

developing world. Accordingly, a 

hybrid debt-equity finance 

(Krupa et al., 

2019)  
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structure is promoted in the 

literature. 

 Cost of capital Both energy-as-a-service and 

community-financed business 

models suffer from high initial 

capital costs – an issue that is 

more pronounced where more 

stringent lending standards are in 

place, making it more difficult to 

borrow money without having 

substantial credit. 

(Ansari et al., 

2013) 

 Social  Symbolic aspects of facility 

siting 

Rhetorical and communicative 

dimensions at the social-

psychological level can 

positively impact the decisions of 

individuals and local 

communities involved in 

renewable energy siting disputes. 

(Steffen et al., 

2018), (Devine-

Wright, 2007) 

 Not-in-my-backyard 

phenomenon 

The notable reasons behind the 

not-in-my-backyard behaviour 

are found to be landscape impact, 

environmental degradation, noise 

concerns, government giveaways 

of public lands to private solar 

and wind farm developers, and 

lowering local property values. 

(Grafström et al., 

2020), (Nasirov et 

al., 2015), (Smith 

and Klick, 2007) 

 Land use Direct involvement of 

communities in renewable 

energy planning and land use 

zoning has been recognised as an 

effective policy to alleviate land 

use concerns. 

(Nesamalar et al., 

2017), (Gross, 

2020) 

 Lack of skilled labour Driving the renewable energy 

transformation requires 

additional investment and 

innovation in higher education, 

as well as long-term investments 

in staffing. 

(Karakaya and 

Sriwannawit, 2015) 

 Regulatory  Lack of legal frameworks and 

standards 

There is a lack of standardised 

legal frameworks for 

independent electricity 

generators to enter the market 

and invest in sustainable energy 

systems with energy-as-a-service 

business models. 

(Sun and Nie, 

2015), (Beck and 

Levine, 2004) 

 Limited transmission line access Monopoly utilities may not allow 

emerging renewable energy 

generation companies to fairly 

access the transmission lines. 

(Zhang et al., 

2014), (Beck and 

Levine, 2004) 
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 Liability insurance requirements Additional liability insurance is 

required for the so-called 

―islanding‖ issue. 

(Stokes, 2013), 

(Beck and Levine, 

2004) 

  Lack of equipment standards Effective development of the 

relevant standards requires 

extensive verification processes 

based on benchmarking against a 

set of criteria. 

(Emodi et al., 

2014) 

 

Table A2. Summary of the drivers of the development of MGs. 

Driver Remarks Reference(s) 

Climate change mitigation Given the fact that energy use accounts for around two-

thirds of total greenhouse gas emissions with the power 

generation sector recognised as a major contributor, 

decarbonisation of the energy sector, including the power 

sector, using renewables is at the forefront of climate change 

mitigation efforts. 

(Shah 

Danish et 

al., 2019) 

Energy security The use of local renewable energy systems that use well-

diversified technologies has been shown in the literature to 

be able to increase energy security in remote, off-grid 

applications, whilst additionally reducing the associated 

energy costs. 

(Verbruggen 

et al., 2010) 

Energy access The emergence of advanced, smart MGs, accompanied by 

unprecedented improvements in the cost-effectiveness and 

efficiency of renewable and storage technologies, has 

provided an effective platform to accelerate the progress in 

electrifying remote and low-income communities. 

(Shieh, 

Ersal and 

Peng, 2019) 

Socio-economic growth Off-grid, integrated, smart energy systems that produce 

electricity locally using renewable energy sources are found 

to be an effective tool for sustainable rural development with 

their potential to deliver multi-faceted socio-economic 

benefits, including net job creation and greater social 

inclusiveness. 

(IRENA, 

2017) 
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Appendix B  

B1. Appliance classification 

The classification of the considered appliances is conducted based on consumer usage patterns, power 

ratings, and load segments. The following three general consumption patterns were used to 

approximate the load duration of the appliances.  

Pattern 1: Continuously running appliances, which are never switched off, such as fridges and 

freezers. The energy consumption of such appliances, which can be of the type single- or multi-state, 

depends on the season and usage per person (Larson, Davis and Uslan, 2014). 

Pattern 2: Occasionally running appliances, which are often not used more than one time per day – 

usually in the morning and evening hours. Examples include washing machines and clothes dryers, 

the consumption pattern of which is, to a great extent, user-behaviour-dependent.  

Pattern 3: Frequently switched on and off appliances with variable power consumption, which are run 

during specific periods of time; for example, lighting loads. The frequency and magnitude of the loads 

in this category also depend on the season and usage per person. 

Table B1 indexes various household appliances and maps them to the above-mentioned three patterns. 

Table B1. Indexed household appliances mapped to the defined usage patterns. 

Type Appliance Pattern 

A Cold appliances: fridge and freezer 1 

B Audio-visual: music system, speaker, and modem 2 

C Audio-visual: television, radio, laptop, scanner, and printer 2 

D Washing: washing machine, clothes dryer, and dishwasher 

Others: vacuum cleaner 

2 

E Cooking: microwave and coffee machine 2 

G Charging accessory: phone charger 2 

H Fan 2 

F Lighting: LED lights and tube lights 3 

 

Furthermore, Tables B2 and B3 respectively present the detailed specifications of the residential and 

commercial loads considered for integration into the three MGs. The associated specifications of the 

appliances include the rated power (kW), the average number of devices (per household and per 

commercial building), the usage time (hours), and the energy consumption per day (kWh/day). The 

associated specifications are defined in accordance with the relevant appliance classes mentioned 

above. 
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Table B2. Detailed specifications of the residential appliances. 

Appliance Rated power 

(kW) 

Average 

number of 

devices per 

household 

Usage duration 

(h) 

Total load per 

day (kWh/day) 

Consumption 

type 

LED lights 0.009 3 5 0.13 F 

Small 

refrigerator 

0.100 1 24 2.40 A 

Phone charging 

unit 

0.005 2 2 0.02 G 

Radio 0.004 1 4 0.02 H 

Computer 0.200 1 8 1.60 C 

Washing 

machine 

0.500 1 0.29 0.14 D 

Dishwasher 0.500 1 1 0.5 D 

Fan 0.200 1 5 1.00 H 

Microwave 0.900 1 0.5 0.45 E 

Internet modem 0.010 1 24 0.24 B 

Scanner 0.010 1 2 0.02 C 

Printer 0.005 1 0.5 0.00 C 

Loudspeaker 0.050 1 0 0.00 B 

Vacuum cleaner 1.000 1 0.14 0.14 D 

Coffee machine 0.600 1 0 0.00 E 

 

Table B3. Detailed specifications of the commercial appliances. 

Commercial appliance Rated 

power 

(kW) 

Number of 

devices per 

commercial 

user 

Usage 

duration 

(h) 

Total load per 

day 

(kWh/day) 

Consumption 

Type 

LED lights 0.009 10 6 0.51 F 

Display fridge 0.300 4 24 28.80 A 

Phone charging unit 0.005 2 4 0.04 G 

Radio 0.004 1 6 0.02 H 

Library computers 0.200 4 4 3.20 C 

Laundromat (medium and 

large) washer 

0.500 3 12 18.00 D 

Laundromat (medium and 

large) dryer 

4.000 3 12 144.00 D 

Dishwasher 0.500 1 2 1.00 D 

Deep freezer 0.500 3 24 36.00 A 

Fan 0.200 2 3 1.20 H 

Microwave 0.900 2 4 7.20 E 

Internet modem 0.010 2 6 0.12 B 

Scanner 0.010 1 4 0.04 C 

Printer 0.005 1 6 0.03 C 

Loudspeaker 0.050 1 0 0.00 B 
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Vacuum cleaner 1.000 1 0.5 0.50 D 

Coffee machine 0.600 1 1 0.60 E 

LED tube light 18.000 1 4 72.000 F 

Disco lights 0.003 1 4 0.012 F 

Music system 0.025 1 4 0.100 B 

 

B2. Energy consumption pattern 

Figs. B1–B3 show the typical energy consumption profiles of the households (MGs 1–3), the 

commercial loads (MGs 1–3), and the pub (MG 2), respectively. 
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Figure B1. Monthly mean daily household energy consumption profile for the three MGs. 
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Figure B2. Monthly mean daily commercial building energy consumption profile for the three 

MGs. 
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Figure B3. Monthly mean daily energy consumption profile of a pub on the Tryphena site (MG 2). 
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