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Abstract
Speech enhancement was, is, and will be the key technology for dig-

ital speech transmission. When developing speech enhancement algo-
rithms, the intelligibility or the quality of the processed speech needs to
be evaluated. Intelligibility is more fundamental than quality. The evalua-
tion of speech intelligibility can be carried out through subjective listening
tests and objective metrics. Carrying out subjective listening tests is time-
consuming and costly. Using the objective metrics is more efficient. Thus,
there has been an increasing research in speech intelligibility prediction.

Speech intelligibility can be measured in terms of the informa-
tion received by a listener. This thesis aims at developing a mutual
information-based speech intelligibility predictor (SIP) and using the mu-
tual information-based predictor to assist the fitting process in hearing in-
struments. To achieve this goal, this thesis carried out three studies.

First, it studied the modeling of the transmitted message. For mu-
tual information-based SIPs, the most important thing is to determine the
transmitted message. This thesis studied two approaches of modeling of
the message: one is the continuous-valued sound, and the other is the
discrete-valued linguistic message. Two corresponding SIPs were devel-
oped. By comparing their predicted intelligibility results with the psy-
chometric curves, which are the subjective intelligibility scores, it shows
that the modeling of discrete-valued message gives a better match to the
psychometric curves.

Second, based on the modeling of the discrete-valued message, this
thesis proposed a mutual information-based SIP. Since the discrete-valued
message cannot be obtained from a speech signal, the proposed SIP cal-
culates the mutual information between the clean speech and the received



speech, instead of calculating the mutual information between the mes-
sage and the received speech. The proposed SIP considers frequency cor-
relation for both the clean speech and the received speech. The evaluation
results show that the proposed SIP performs better than the existing state-
of-the-art mutual information-based SIPs.

Third, this thesis proposed an automatic fitting tool for the nonlinear
frequency compression (NFC) operator, which is a frequency lowering op-
erator used in hearing instruments. The automatic fitting tool adjusts the
parameter in the NFC by maximizing the mutual information between the
message and the frequency-lowered speech. To evaluate the automatic fit-
ting tool, the parameter was also searched by listening tests. The results
show that the parameter determined by the automatic fitting tool is con-
sistent to the parameter determined by the listening tests.
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Chapter 1

Introduction

1.1 Problem Statement

Hearing instruments are intended to improve speech intelligibility for
hearing-impaired people. When developing an enhancement algorithm,
its performance is evaluated through a listening test, which is time-
consuming. Moreover, audiologists need to fit a hearing aid for each in-
dividual user due to their different audiograms and cognitive characteris-
tics [4]. A less experienced audiologist cannot maximize the intelligibility
improvement for hearing aid users. For these reasons, hearing aid manu-
factures are seeking a more efficient way to measure speech intelligibility
for their products.

Nowadays, there is a growing consumer market for hearing aids. Ac-
cording to the statistical data from World Health Organization in the year
of 2015, there are 360 million people worldwide, which takes up over 5%
of the world’s population, having disabling hearing loss [5]. Among them,
328 million are adults and 32 million are children. Among the group of el-
derly people, hearing loss is more prevalent, because approximately one-
third of people over 65 years old suffer disabling hearing loss. With the
help from hearing aids, hearing-impaired people can benefit in their daily
life. However, the current production of hearing aids meets less than 10%

1



2 CHAPTER 1. INTRODUCTION

of the global need.

In the development of an enhancement algorithms, speech intelligibil-
ity of the enhanced speech needs to be measured. Currently, there are
different subjective measures for speech intelligibility, such as nonsense
syllable test, word and sentence tests [6–8]. These subjective tests provide
a reliable way to assess speech intelligibility, but they are time-consuming
and require access to trained listeners. For example, Diagnostic Rhyme
Test (DRT) is a widely used word test for evaluating speech intelligibility.
In this test, a listener is presented to a word, and is asked to select the pre-
sented one from a pair of words. This process is repeated for 192 different
pairs of words [7].

An efficient speech intelligibility measure is also required for the fit-
ting of hearing aids. After a hearing aid has been manufactured with new
enhancement algorithms, the hearing aid needs to be fitted for individual
hearing-impaired person. For example, frequency lowering techniques are
used by hearing aids for the listeners with severe hearing loss [9]. Nonlin-
ear frequency compression (NFC) is one of the frequency lowering tech-
niques and its parameters need to be fitted [10]. Speech intelligibility pre-
diction establishes the starting point for the fitting, as it produces a mean
value for all hearing-impaired listeners having the same audiogram. The
fitting effect is largely dependent on the experience of audiologists. An ef-
ficient speech intelligibility measure can be expected to provide assistance
during the fitting process.

In summary, speech intelligibility can be used to guide the develop-
ment of intelligibility enhancement algorithms and the fitting of hearing
aids. However, speech intelligibility obtained by the subjective tests is a
time-consuming process. To obtain speech intelligibility more efficiently,
objective intelligibility measure is necessary.
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1.2 Limitation of the Existing Speech Intelligi-

bility Predictors

Since listening test is costly, there have been increasing research in objec-
tive speech intelligibility predictors (SIPs). As speech intelligibility is a
measure of how well the meaning of a spoken message is transmitted to
a listener [11], it can be quantified in terms of information. In [12, 13],
SIIB (speech intelligibility in bits) and SIIBGauss (SIIB for Gaussian commu-
nication channel) estimate speech intelligibility by calculating the mutual
information between a message signal and a received signal. The mes-
sage is defined as the content of a speech signal and it has nothing to do
with the other information, such as talker, environment, emotion, etc. The
message is embedded in speech and carries all the information that con-
tributes to speech intelligibility. SIIB and SIIBGauss model the transmission
from the message and the clean speech as a production channel, which is
an additive noise channel.

SIIB and SIIBGauss achieved good intelligibility prediction results [13].
They consider correlation in frequency for both the clean speech and the
received speech. As SIIB and SIIBGauss calculate mutual information as the
sum of the mutual information for each band, the bands should be inde-
pendent. However, the bands of the original log-auditory spectrogram are
correlated for the clean speech and the received speech. To remove the
correlation across frequency bands, Karhunen-Loève transform (KLT) is
applied to both the clean speech and the received speech.

There are three problems in SIIB and SIIBGauss. First, they assume a
constant correlation coefficient between the transformed message and the
transformed clean speech across the channels. However, it is unlikely to
be true, because the variances of the transformed message across the trans-
formed bands are not approximately constant. In other words, the correla-
tion coefficient should gradually decrease, as the index of the transformed
band increases.
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Second, SIIB and SIIBGauss treat the transformed bands as uncorrelated
in frequency for the transformed received speech. This is not true, as the
KLT matrix is derived based on the covariance matrix of the clean speech,
instead of the covariance matrix of the received speech.

Third, SIIB and SIIBGauss require the numbers of bands in the clean
speech and the received speech to be identical, since they calculate mutual
information for each transformed band individually. For the frequency-
lowered speech, the high frequency components are lowered at low fre-
quency. Since the bandwidth of the frequency-lowered speech is smaller
than the bandwidth of the original clean speech, SIIB and SIIBGauss cannot
be directly applied for speech intelligibility prediction.

This thesis aims at solving these problems. The research goal will be
outlined in the next section.

1.3 Research Goals

The overall goal of this thesis is to develop a mutual information-based SIP
and use it to assist the fitting of hearing instruments. In order to fulfill the
overall goal, three objectives have been established to guide this research.

1. Evaluate two assumptions of the probability distribution of the mes-
sage. The first one assumes the message has a continuous-valued
distribution, and the second one assumes the message has a discrete-
valued distribution.

2. Propose a better mutual information-based SIP based on the correct
modeling of the message.

3. Propose an automatic fitting tool for the nonlinear frequency com-
pression operator, which is one of the frequency lowering operators.
This research goal is not part of solving the three problems discussed
in Section 1.2.
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1.4 Organization of the Thesis

This thesis consists of seven chapters. The remainder of the thesis is or-
ganized as follows. Chapter 2 presents the literature review. Chapters 3
to 6 present the main contributions of the thesis. Chapter 7 concludes the
work and discusses the possible future works. A brief overview of each
chapter is as follows.

Chapter 2: Literature Review
This chapter introduces the current SIPs based on different categories,

which include SNR, correlation coefficient, neural network, and mutual
information. The transmission of the message is studied for the perspec-
tive of communication theory. Finally, it introduces the background of the
frequency lowering operators in hearing instruments.

Chapter 3: Speech Transmission Model based on Continuous-valued
Message

This chapter studies the validity of the modeling of the continuous-
valued message. The transmitted message, the clean speech, and the re-
ceived speech are assumed Gaussian distributed. The transmitted mes-
sage is modeled as continuous-valued sound. The constant correlation
coefficients between the transformed message and the transformed clean
speech are replaced by the correlation coefficients that were calculated via
CHAINS data set. The SIP is based on the continuous-valued message.
Speech intelligibility was estimated for four types of noisy speech signals.
The experimental results show that the predicted intelligibility did not
match well to the psychometric curves, which are subjective intelligibil-
ity results.

Chapter 4: Speech Transmission Model based on Discrete-valued
Message

This chapter studies the validity of the modeling of the discrete-valued
message. The transmitted message is modeled as discrete-valued linguis-
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tic unit. Given a speech signal, the discrete-valued message cannot be
obtained. However, the mutual information rate between the transmit-
ted message and the clean speech can still be estimated from the linguistic
study. Mutual information between the transmitted message and the re-
ceived speech is calculated for each band, and then summed up across the
frequency bands. The evaluation results show that the predicted intelligi-
bility based on the discrete-valued message matches to the psychometric
curves better than the predicted intelligibility based on the continuous-
valued message.

Chapter 5: Mutual Information based Speech Intelligibility Predic-
tor

This chapter proposes a mutual information-based SIP for normal-hearing
listeners based on the findings in the Chapters 3 and 4. As the discrete-
valued message cannot be generated from a clean speech signal, the SIP
calculates the mutual information between the clean speech and the re-
ceived speech. The proposed SIP performs better than the state-of-the-art
mutual information-based SIP.

Chapter 6: Mutual Information based Frequency Lowering Fitting
This chapter proposes an automatic tool, which is a mutual information-

based SIP, for the fitting of the NFC operator. The NFC operator is one of
the frequency lowering operators, and has two parameters: one is the cut-
off frequency and the other is the compression ratio [10]. Since the NFC
operator does not change the signal below the cutoff frequency, the mutual
information between the clean speech and the frequency-lowered speech
is infinite. To solve this problem, the modeling of the continuous-valued
message is used. As the NFC operator changes the spectrum of speech,
the frequency-lowered speech is not familiar to the listeners. This requires
acclimatization procedure before carrying out speech recognition test. To
improve the efficiency, we propose a sound distinction test instead recog-
nition test. The sound distinction test and the proposed SIP show similar
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compression ratios that maximize the intelligibility of frequency-lowered
speech.

Chapter 7: Conclusions and Future Work
This chapter summarizes the findings in Chapters 3 to 6 and present

the future work.
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Chapter 2

Literature Review

This chapter starts by introducing basic concepts about speech intelligibil-
ity, such as the definition and enhancement of speech intelligibility. Then,
a review of current objective measures of speech intelligibility is given. It
addition, the message transmission is investigated from the perspective of
communication theory. At last, the background of frequency lowering is
introduced.

2.1 Fundamentals of Speech Intelligibility

2.1.1 What is speech intelligibility?

The word intelligibility refers to how much a conveyed message can be in-
terpreted correctly by a recipient. In speech communication, it is the extent
to which a spoken message can be understood by a listener. Speech intel-
ligibility can be measured quantitatively at different levels of abstraction,
such as the acoustic signal waveform, the sequence of phonemes, and the
sequence of spoken words [14]. For example, when speech is measured at
the level of spoken words in a listening test, if 100 words are spoken by a
speaker and 90 words are received correctly by a listener, then the speech
intelligibility is 0.9.

9
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2.1.2 What affects speech intelligibility?

Speech intelligibility can be affected by each module of a communication
system, i.e., the speaker, the transmission channel, and the listener. In this
section, we introduce how each module can affect the speech intelligibility.

When speech is produced, its intelligibility is affected by the speech
material, the speaker, and the loudness. As the contextual information
can be used by the listener, the speech sentence transmitted over a noisy
channel has a higher intelligibility than the non-sense syllables or single
words. In addition, the speaker’s ability to speak clearly and linguisti-
cally correctly affects speech intelligibility [15, 16]. Speech intelligibility is
also reduced if the speech level is too low or too high [17–19]. This phe-
nomenon might be caused by the excessive vocal effort, which leads to the
change in speech intelligibility [20, 21].

When speech is transmitted through the channel, its intelligibility is
subject to the characteristics of channel, such as the environmental noise,
reverberation time, and the spatial configuration of the speaker and the
noise source [22–25]. For example, people often feel hard to understand
each other when talking in a cocktail party, where the target speaker is
masked by the surrounding irrelevant speakers. By changing the location
of the listener with respect to the target speaker and the other irrelevant
speakers, we can improve the transmission channel, thus increase the in-
telligibility of the received speech.

The cognitive characteristic and hearing ability of listeners also have
profound influence on the speech intelligibility. Native listeners can better
understand a noisy speech signal than non-native listeners. In addition,
hearing-impaired people usually have higher hearing threshold at high
frequency [26] than normal-hearing people. This makes it particularly dif-
ficult for them to understand speech, because the high frequency covers
some phonemes, which are important to speech intelligibility. For exam-
ple, the phoneme /s/ has most signal power located at high frequency,
and plays an important role in grammar. Without the ability to perceive
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high frequency information, /s/ is hardly recognized by listeners.

2.1.3 How to enhance speech intelligibility?

As speech intelligibility is affected by the speaker, the transmission chan-
nel, and the listener, it can be enhanced from these three aspects.

When people talk in a noisy environment, like in a cocktail party, the
speaker might raise his or her voice level, change the pitch or speech rate
to make it audible by the listener [22, 27]. The phenomenon of this invol-
untary change in vocal tract is known as Lombard effect [28–30].

Speech intelligibility can also be enhanced based on the characteristics
of the transmission channel. In mobile communication, the listener re-
ceives both far-end speech from mobile phone and environmental noise.
If the environmental noise is loud, speech intelligibility decreases. To in-
crease speech intelligibility, the mobile phone can detect the environmen-
tal noise and reprocess the speech signal prior to play-out [23, 31, 32].

Speech intelligibility is able to be enhanced on the listener’s side. In
hearing aid industry, various signal processing algorithms have been de-
veloped, which aim at compensating the hearing loss of hearing-impaired
people [33]. One approach is to amplify speech level, such as automatic
gain control (AGC) and wide dynamic-range compression (WDRC), which
automatically adjusts the gain based on the level of input signals [34–38].

2.2 Current Objective Measures of Speech Intel-

ligibility

This section starts by introducing the purpose of speech intelligibility pre-
diction. Then, different speech intelligibility predictors are described.
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2.2.1 Speech intelligibility prediction

As speech intelligibility measures how well the meaning of a spoken mes-
sage is transmitted, it can be used to guide the development of speech
enhancement algorithms. Speech intelligibility can be evaluated by the
subjective listening tests that require the recruitment of trained listeners.
This is time-consuming and costly. To obtain speech intelligibility more
efficiently, many speech intelligibility predictors have been developed.

SIPs can be classified into intrusive SIPs and non-intrusive SIPs. In-
trusive SIPs require a reference signal (either clean speech or noise) and a
degraded signal, while non-intrusive SIPs require only a degraded signal.
The current intrusive SIPs perform better than the non-intrusive SIPs [39,
40]. Intrusive SIPs consist of model-driven metrics and data-driven met-
rics. The model-driven metrics use a certain relationship between the
reference and the degraded speech to predict speech intelligibility. The
data-driven metrics train the relationship, and predict speech intelligibil-
ity based on the trained relationship.

For model-driven metrics, the certain relationships include mutual in-
formation, correlation coefficient, coherence, and SNR. SIIB and SIIBGauss

calculate the mutual information between the message and the degraded
signal [13, 41]. STOI and ESTOI predict speech intelligibility based on the
correlation coefficient between the temporal envelopes of the clean and
degraded speech signals in short-time segments [42, 43]. HASPI uses cor-
relation coefficients based on the temporal envelopes and the narrow-band
time domain signals produced by the auditory filter bank [44]. CSII uses
the magnitude-squared coherence to estimate the powers of speech and
distortion, which are then used for intelligibility prediction [45]. sEPSM
and mr-sEPSM predict speech intelligibility based on the SNR of the signal
envelopes after the processing by the auditory modulation filterbank [46,
47].

For data-driven metrics, the relationship can be represented by a neural
network or a model whose parameters are determined through training.
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In [48], a neural network using the auditory spectra of speech as inputs is
proposed. This neural network consists of a convolutional layer and three
fully connected layers. In [49], a neural network using the time-domain
speech as inputs is proposed. This neural network is based on U-net [50],
which consists of multiple layers of convolution and transpose convolu-
tion at encoder and decoder, respectively. Differently from neural net-
work, wSTMI [51] proposes a linear model, whose weight parameters are
optimized through training. wSTMI is based on STMI [52], which predicts
speech intelligibility by calculating the correlation coefficient between the
spectro-temporal modulation spectrograms of the clean and the degraded
signals. wSTMI assigns trained weights for the correlation coefficients to
predict speech intelligibility.

At the moment, there is no conclusion about which SIP performs best,
as the performance strongly depends on the data sets. However, we can
still obtain a view about which SIPs perform relatively well. In [41], where
SIIB and SIIBGauss are compared with ESTOI, HASPI, and the other nine
SIPs, SIIB and SIIBGauss perform best among 13 data sets. In [51], the lat-
est developed wSTMI was compared with SIIB, SIIBGauss, ESTOI, HASPI,
and the other nine SIPs. By using some new data sets, wSTMI performs
best, with ESTOI ranked second, HASPI ranked third, and SIIBGauss ranked
fourth.

The theory of speech intelligibility prediction starts developing from
the articulation index theory in 1940s [19, 53, 54]. The articulation index
describes the relationship between the amount of audible speech (in terms
of percentage) and the channel signal-to-noise ratio (SNR). After the ar-
ticulation index theory, many speech intelligibility predictors have been
proposed. These predictors are based on different categories that include
the generic SNR [45,47,55,56], the correlation coefficient [44,51,57], neural
network [48, 49], and mutual information [13, 41]. In the following sec-
tion, we will give an overview of the state-of-the-art speech intelligibility
predictors from each category.
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2.2.2 Generic SNR based metric

The SNR-based metric estimates speech intelligibility by calculating the
power of narrowband speech and noise signals. Instead of calculating
SNR directly, some speech intelligibility predictors use the signal-to-noise
and distortion ratio (SDR), or calculate the SNR indirectly. Thus, we use
the word ”generic” to include these speech intelligibility predictors.

The SNR can be calculated in the auditory domain and modulation do-
main. The auditory domain refers to the space produced by the narrow-
band signals after the processing of the auditory filter. The modulation
domain refers to the space produced by the modulated signals of these
narrowband signals. We will describe two SIPs related to the auditory
domain and one SIP related to the modulation domain.

Speech intelligibility index

Speech intelligibility index (SII) [55] is the first standard intelligibility pre-
dictor that is evolved from the articulation index (AI) theory [19]. Speech
intelligibility can be derived from SII based on a transfer function. The
transfer function depends on the speech material and the proficiency of
the talkers and the listeners.

We first have a quick review of the articulation index theory, since it is
fundamental to the SII. When calculating the articulation index, the speech
and the noise are decomposed into a set of narrowband signals, and they
are assumed independent in frequency. Let P and Pj be the probabilities of
recognition error for a fullband speech and its narrowband speech signal
at band j, respectively. As the bands are independent, we have [19]

P = P1 · P2 · · ·PJ , (2.1)

where J is the total number of frequency bands. The relationship between
the probability of recognition error and the audibility of speech can be
expressed as [53]

Pj = 10−AIj (2.2)
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where AIj is the articulation index for the narrowband speech at band j.
Substitute (2.2) into (2.1), we have

P = 10−
∑J

j=1 AIj

= 10−AI ,
(2.3)

where AI is the articulation index for the fullband speech. Thus, the artic-
ulation index of a speech signal can be calculated as

AI =
J∑
j=1

AIj. (2.4)

The calculation of AI was improved later by considering the spread of
masking, the distortion caused by extremely high level voice and the band
importance function. The AI changed its name to SII and was standard-
ized in 1997 [55]. Fig. 2.1 shows the diagram for computing the SII. Here
we introduce main steps of the calculation of SII. A detailed calculation
can be found in [55]. The disturbance spectrum Dj is determined as the
maximal value between the masking spectrum Zj and the internal noise
spectrum Xj :

Dj = max(Zj, Xj),

where Zj depends on self-masking and the masking from lower frequency
bands. The level distortion factor Lj is given by

Lj = min(1− Sj − Uj − 10

160
, 1),

where Sj is the power spectrum of the clean speech, and Uj is the reference
spectrum level of normal speech [55]. The SNR for band j is calculated as

SNRj =
Sj −Dj + 15

30
.

The SNRj value is limited within the range between 0 and 1. The final SII
value is computed as

SII =
18∑
j=1

Wj · Lj · SNRj,
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where Wj is the band importance function.

Figure 2.1: Diagram of the SII.

As the SII measure computes the band SNR based on the long-term
spectrum, it can effectively predict intelligibility of speech affected by sta-
tionary noise, but cannot be applied for fluctuating noise maskers. More-
over, speech enhancement algorithms may disrupt the one-to-one band
relationship between the clean speech and the degraded speech. For ex-
ample, frequency compression operators [58, 59] that are used in hearing
instruments generate a speech signal with reduced bandwidth. The intel-
ligibility cannot be evaluated by the SII, because the SII is based on inde-
pendent frequency bands.

Coherence-based speech intelligibility index

Instead of only using SNR, the coherence-based speech intelligibility in-
dex (CSII) is based on signal-to-noise and distortion ratio (SDR), which
is computed from the magnitude-squared coherence (MSC) between the
clean speech and the processed speech. Compared with the SII, CSII takes
into account signal distortion in hearing aids, like peak-clipping [45], [60].

The MSC measures the strength of linear relationship between two sig-
nals. Assuming SXX(w) and SY Y (w) are the autospectral densities of the
input and the output of the system, and SXY (w) is the cross-spectral den-
sity, the MSC between the spectra of the input and the output can be com-
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puted as

|γ(w)|2 =
|SXY (w)|2

SXX(w)SY Y (w)
. (2.5)

In a linear system, the MSC between the input and the output is 1. In a
non-linear system, it takes a value between 0 and 1. The SDR is computed
as [61]

SDR(w) =
|γ(w)|2

1− |γ(w)|2
. (2.6)

Note that scaling of a speech signal does not reduce speech intelligibility,
as long as the loudness of speech is still in the suitable range. Since the
linear relationship between the original signal and the scaled signal does
not change, the MSC is 1. If we use the SII in this scenario, the SII will
predict that speech intelligibility is reduced.

When calculating CSII for normal-hearing listeners, the signal is di-
vided into a sequence of overlapped segments. Based on the energy of the
segment, all the segments are classified into three levels that are high-level,
mid-level, and low-level. CSII is calculated for each level. The speech in-
telligibility is estimated by applying a logistic function to the weighted
sum of the CSII of different levels. Fig. 2.2 shows the diagram of the com-
putation of CSII for one level. In the computation of the CSII, the SDR
is calculated for each auditory critical band from the Table I of [55]. The
ro-ex filter in [62] is used to model the spectral shaping properties of the
auditory filter. The band SDRjdB is calculated as

SDRjdB = 10 log10

∑
kGj(wk)|γ(wk)|2SY Y (wk)∑

kGj(wk)(1− |γ(wk)|2)SY Y (wk)
,

where Gj(wk) is the magnitude of the jth band’s ro-ex filter at frequency
wk. As with the computation of the SII, the CSII is a weighted average of
SDR over the whole critical bands.
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Figure 2.2: Diagram of the CSII.

For hearing-impaired listeners, the CSII considers the increased hear-
ing threshold and speech power amplification. The hearing threshold is
modeled as an internal noise. The new distortion level is the sum of the
interval noise level and the original distortion level. The amplification in-
creases speech gain, thus it partly restores the SDR.

Speech transmission index

The speech transmission index (STI) predicts speech intelligibility based
on the modulation transfer function (MTF) in the modulation domain [56,
63–65]. It measures the quality of the transmission channel. The modula-
tion transfer function (MTF) can be derived from the reverberation time of
an auditorium. Thus, the STI can be used as a design tool for auditorium
acoustics.

The STI does not calculate the SNR directly but derives an apparent
SNR for each critical band from the MTF which measures the depth of the
modulation envelope of the received signal. As a narrow-band (a critical
band) speech can be viewed as a noise signal that is intensity-modulated
by low-frequency signal, it can be written as

x(t) =
√

1 + cos(2πFt)s(t),

where F is the modulation frequency and s(t) is a narrow-band noise.
A full-band speech signal is the sum of the narrow-band speech signals
with different center frequencies. The modulation frequency ranges from
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0.63 Hz to 12.7 Hz [66–69]. Speech signal has the frequency range from
100 Hz to 8 kHz, which means the center frequencies of narrow-band noise
signals range from 100 Hz to 8 kHz. The intensity envelope of x(t) is com-
puted as

Ii(t) = IIN · (1 + cos(2πFt)), (2.7)

where Ii(t) is the envelope of x(t), IIN is the mean of the input intensity
envelope. Let x(t) be transmitted through the system and the intensity
envelope of the output signal is denoted by

Io(t) = IOUT · (1 +mF · cos(2πFt)), (2.8)

where IOUT is the mean of the output intensity envelope and mF is called
modulation index with the value between 0 and 1. The larger the mod-
ulation index, the less degradation the received signal suffers during the
transmission. The MTF is obtained by computing the modulation indexes
for different modulation frequencies.

The STI predicts speech intelligibility based on the apparent SNR which
can be derived from the MTF. Assuming the noise in the transmission
channel has a constant intensity envelope IN , then the output intensity
envelope can be expressed as

Io(t) = Ii(t) + IN

= IIN · (1 + cos(2πFt)) + IN

= (IIN + IN) · (1 +
IIN

IIN + IN
cos(2πFt))

= IOUT · (1 +mF · cos(2πFt)).

(2.9)

Then, the SNR at the modulation frequency F can be calculated by

SNR =
mF

1−mF

.

Fig. 2.3 shows the diagram of computing the STI in practice. For the
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Figure 2.3: Diagram of the STI.

narrowband signals in each octave band, the MTF is computed as

MTF (f) = α

√
Pyy(f)

Pxx(f)
,

where α is the ratio of the means of the intensity of the clean and noisy
speech signals. Pxx(f) and Pyy(f) are the autospectral densities of the in-
tensity envelopes of the clean speech and the noisy speech, respectively
[70]. From the MTF, we can derive the average SNR (transmission index)
in that octave band, and finally obtain the STI.

Compared with the SII, the STI computes the SNR indirectly from the
MTF. The advantage of the STI is that it considers both reverberation and
additive noise. As with the SII metric, the STI is based on the one-to-
one mapping between the frequency bands of the clean speech and the
degraded speech. Thus, it is unable to predict intelligibility of speech pro-
cessed by frequency lowering operators.

2.2.3 Correlation coefficient based metric

The second type of SIPs estimate speech intelligibility based on the corre-
lation coefficient between the clean speech and the degraded speech. The
correlation coefficient can be calculated in the auditory domain and the
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modulation domain. We will describe two SIPs (STOI and HASPI) that
calculate the correlation coefficient in the auditory domain and one SIP
(wSTMI) that calculates the correlation coefficient in the modulation do-
main.

Short-time objective intelligibility

The short-time objective intelligibility (STOI) metric estimates speech in-
telligibility by measuring the strength of linear relationship between the
envelopes of the clean speech and the degraded speech in each one-third
octave band [57, 71]. Human auditory perception depends on the firing
rate, which is the amount of electrical pulses generated by auditory neu-
rons within a unit time. As the envelopes determine the firing rate in the
one-third octave bands over time, the strength of linear relationship be-
tween the envelopes reflects the strength of linear relationship between
the firing rates of the clean speech and the degraded speech.

DFT-based one-
third octave band 
decomposition 1

Short-time 
segmentation

Compute correlation 
coefficient

Clean speech

Processed speech

𝑑

DFT-based one-
third octave band 
decomposition J

Short-time 
segmentation

Compute correlation 
coefficient

Average over bands 
and segments

Clean speech

Processed speech

Figure 2.4: Diagram of the STOI.

Fig. 2.4 shows the diagram of computing STOI. Let x̂(k,m) denote the
short-time Fourier transform (STFT) of the clean speech at the kth bin and
the mth frame. Using STFT can capture speech features over time, as
speech is short-term stationary. The temporal envelope of the clean speech
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in each one-third octave band is calculated by

Xj(m) =

√∑
k∈Kj

|x̂(k,m)|2,

where j is the index of the one-third octave band and Kj is the set of bins
belonging to the jth one-third octave band. Thirty consecutive frames
with the total length of 384 ms comprise the short-time segmentation of
the clean speech, which is denoted by

xj,m = [Xj(m−N + 1), Xj(m−N + 2), · · · , Xj(m)]T , (2.10)

where N = 30. Similarly, we can compute the short-time segmentation of
the processed speech yj,m. As the processed speech may contain severely
degraded frames, which can excessively affect the final intelligibility score,
the clipping procedure is introduced to upper bound this degradation by

ȳj,m(n) = min

(
‖xj,m‖
‖yj,m‖

yj,m(n), (1 + 10−β/20)xj,m(n)

)
,

where ‖·‖ and n represent the `2 norm and the frame index among N

frames, respectively. ȳj,m(n) denotes the normalized and clipped enve-
lope of the processed speech. The value of β is chosen as -15 to indicate
the lowest signal-to-distortion bound. Thus, the time frequency depen-
dent intermediate intelligibility is computed by

dj,m =
(xj,m − µxj,m

)T (ȳj,m − µȳj,m
)

‖xj,m − µxj,m
‖‖ȳj,m − µȳj,m

‖
, (2.11)

where µ(·) represents the sample average of the corresponding vector. Fi-
nally, the overall intelligibility score is computed as

d =
1

JM

∑
j,m

dj,m,

where J and M represent the number of one-third octave bands and the
total short-time segments of speech signals, respectively.
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It should be noted that STOI does not consider the band correlation in
frequency. To solve this problem, ESTOI was proposed [43]. The supervec-
tor (2.10) in STOI is changed to a spectrogram matrix in ESTOI. However,
when calculating the intermediate intelligibility in ESTOI, which is simi-
lar to the intermediate intelligibility (2.11) in STOI, the dimensionality of
the supervectors of the clean speech and the degraded speech should be
identical. Since the dimensionality of the clean speech is larger than the
dimensionality of the frequency-lowered speech, STOI and ESTOI cannot
be used to predict the intelligibility of frequency-lowered speech.

Hearing-aid speech perception index

The Hearing-Aid Speech Perception Index (HASPI) version 1 [44] also uses
the correlation coefficient to predict speech intelligibility. Unlike STOI and
ESTOI that are based on the temporal envelope of the narrowband signal,
HASPI uses both the envelope and the temporal fine structure (TFS).
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+
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(OHC loss, 
input level)

×
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(IHC loss)
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Figure 2.5: Peripheral auditory system in HASPI.

The envelope and the TFS for each frequency band are obtained through
a complex peripheral auditory system which is shown in Fig. 2.5. The
bandwidth of the auditory filterbank is controlled by the outer hair cell
loss and the input signal level. The outputs of the auditory filterbank are
the narrowband signal and its envelope. A frequency-dependent com-
pression gain, which is also controlled by the outer hair cell loss and the
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input signal level, applies to the output of the auditory filterbank. Then,
the signals are converted from linear scale to dB scale. A linear level shift
is applied to the dB signal due to inner hair cell loss. The Max operator
performs as a half-wave rectifier. Inner hair cell adaptation simulates the
forward masking in the auditory nerve. A constant low-level noise which
represents the auditory threshold is added on the basilar membrane (BM)
vibration signal.

The correlation coefficients are calculated for both the envelope and
the narrowband signal, which are referred to as cepstral correlation and
auditory coherence, respectively. In the calculation of the cepstral corre-
lation, the cepstral signals are obtained by applying a transform on the
envelopes of the clean speech and the degraded speech through five co-
sine basis functions. In the calculation of the auditory coherence, the cor-
relation coefficients are calculated for low, mid, and high level energy of
the segments. The speech intelligibility is estimated by applying a logistic
function to the weighted sum of the cepstral correlation and the auditory
coherence.

Weighted spectro-temporal modulation index

The weighted spectro-temporal modulation index (wSTMI) [51] predicts
speech intelligibility based on the correlation coefficient calculated in the
modulation domain. Let X(f, n) denote the signal representation in the
auditory domain for the clean speech, where f is the frequency index
and n is the frame index. In wSTMI, 11 spectral and five temporal mod-
ulation filters are applied on X(f, n) to generate 55 filter spectrograms
X̃(f, n; si, rj), where si and rj are spectral and temporal modulation fre-
quencies, respectively. Similarly, the filtered spectrograms for the degraded
speech are denoted by Ỹ (f, n; si, rj).

The normalized cross-correlation for each filtered spectrogram and each
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frequency is calculated as

d(f ; si, rj) =
〈X̃(f, n; si, rj)− µX̃ , Ỹ (f, n; si, rj)− µỸ 〉
||X̃(f, n; si, rj)− µX̃ || ||Ỹ (f, n; si, rj)− µỸ ||

, (2.12)

where || · || denotes `2 norm, and

µX̃ =
1

N

∑
n=1

X̃(f, n; si, rj), (2.13)

whereN is the total number of time frames. An intermediate intelligibility
ρ(si, rj) is defined as

ρ(si, rj) =
1

F

∑
f

d(f ; si, rj), (2.14)

where F is the total number of frequency bins. wSTMI estimates speech
intelligibility as

wSTMI =
S∑
i=1

R∑
j=1

w(si, rj)ρ(si, rj) + b, (2.15)

where w(si, rj) and b are parameters optimized by minimizing the root
mean square error between the wSTMI scores and the subjective intelli-
gibility scores. Compared with the other SIPs, wSTMI achieves the best
intelligibility prediction results. There are two factors that make wSTMI
achieve the best performance. First, it considers modulation domain, while
most SIPs do not. Second, the parameter optimization is based on data-
driven, which is able to simulate the complex signal processing mecha-
nism in the brain.

2.2.4 Neural network based metric

The neural network based metrics estimate speech intelligibility by train-
ing a neural network. There are different neural networks that can be used
for intelligibility prediction. In [48], the neural network has three fully con-
nected layers and uses the auditory spectrogram as the input. In [49], the



26 CHAPTER 2. LITERATURE REVIEW

neural network is based on U-Net [50] and uses the time-domain speech
signals as the input. The SIP in [49] performs better than the SIP in [48]. It
also performs better than the classical SIPs for the seen data sets. However,
it does not perform as well as the classical SIPs for unseen data sets.

2.2.5 Mutual information based metric

The mutual information-based measures predict speech intelligibility from
the information theoretical point of view [12, 13, 41]. As discussed in Sec-
tion 2.2.2, speech intelligibility was first estimated through the AI (artic-
ulation index). In [54], the relationship between the AI and the Shannon
channel capacity was studied. It has shown that the AI is an approxima-
tion of the channel capacity.

As mutual information measures dependence beyond the conventional
second-order statistics (e.g., correlation coefficient), it is able to quantify
more complicated relationship between two variables. For one-dimensional
variables that have Gaussian distribution, the mutual information is cal-
culated as

I = −1

2
log2(1− ρ2), (2.16)

where ρ is the correlation coefficient between the two variables. Thus, the
mutual information metric is the same as the correlation metric.

Various mutual information-based metrics have been developed. There
are two main differences among them. First, which two variables are used
for calculating mutual information? Second, how is the mutual informa-
tion calculated? In [72–74], the two variables are clean speech and de-
graded speech. In [12, 13, 41], the message embedded in clean speech is
considered as the original variable, instead of the clean speech itself. The
calculation of mutual information depends on the probability distribution
of two variables. For specific distributions, the mutual information can
be directly calculated [12, 41, 72]. For unspecific distributions, the mu-
tual information can be calculated through the non-parametric approach



2.3. MESSAGE TRANSMISSION AND COMMUNICATION THEORY 27

STFT Auditory 
filterbank

Log-auditory 
spectraClean speech FMF

Mutual 
information 𝐼

KLT

STFT Auditory 
filterbank

Log-auditory 
spectra FMF KLTDegraded speech

Figure 2.6: Diagram of SIIB and SIIBGauss.

(k-nearest neighbor) [13] or the parametric approach (Gaussian Mixture
Model) [73].

SIIB and SIIBGauss [13, 41] are two state-of-the-art mutual information-
based metrics. Fig. 2.6 summarizes their calculation procedures. As with
many other speech intelligibility metrics, human auditory system (mod-
ules of STFT, Auditory filterbank, and Log-auditory spectra) is used to
derive the representations of the clean speech and the degraded speech.
Forward masking function (FMF) [75] simulates the temporal masking in
the auditory system. The module of KLT is used to remove the correlation
in the frequency for the clean and the degraded speech. The KLT matrix
is derived from the clean speech and is also used for the degraded speech.
At last stage, the mutual information is calculated for each transformed
band and them summed up over all the bands.

2.3 Message Transmission and Communication

Theory

As speech consists of the message and the other information (e.g., talker
information and environmental information), it can be viewed as a code
of message. In this section, we study the message transmission from the
perspective of communication theory.
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2.3.1 Information rate of message and channel capacity

First, let us do a rough mathematical computation for the maximal in-
formation rate between the message and the clean speech. Take the lan-
guage of English as an example, the fastest rate at which people produce
and perceive speech signals is about 20 to 30 phonemes per second [76].
As English consists of 42 phonemes, the maximal entropy per phoneme
is − log2

1
42
≈ 5.4 bit/phoneme, if these phonemes have a uniform dis-

tribution. However, the realistic information rate per phoneme is lower,
because of the dependence between adjacent phonemes and their non-
uniform distribution. Thus, an upper bound for the maximal informa-
tion rate of the transmitted message carried by an English speech signal is
about 108 (20× 5.4) to 162 (30× 5.4) bit/s.

Next, we compare the upper bound of the maximal information rate
of a message with the channel capacity of the voice communication. A
conventional voice communication system has a bandwidth about 3 kHz.
Assuming a SNR of 15 dB for the voice channel, according to Shannon’s
theorem [77], the channel capacity is

C = 3000 · log2(1 + 101.5)

≈ 15 kbit/s,

which is the maximal rate at which information can be transmitted over
this channel with an arbitrarily small probability of error. Comparing the
information rate of message with the channel capacity of the voice com-
munication, we can see the channel capacity is extremely higher than the
information rate of the message. This suggests that the message embed-
ded in a speech signal is sparse.

2.3.2 Linguistic channel code

When two people talk in a noisy environment or read out the same sen-
tence, the message may still be understood. This shows speech production
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is actually a coding process, which shares the same idea of channel coding
in communication theory.

Figure 2.7: Message transmission over voice channel.

Fig. 2.7 illustrates the message transmission, which includes three parts:
source, channel, and receiver. The channel capacity of human ear is much
larger than the information rate of message. The source part shows how a
message is encoded into a speech signal, and the receiver part illustrates
the reversed process. Now let us study how a message is encoded into a
speech signal. Since speech signals contain both the message and the other
information (e.g., speaker information and environmental information),
the dimensionality of speech should be larger than the dimensionality of
the message. As shown in Fig 2.7, this dimension extension is realized by
the linguistic code, which maps a message to a linguistic codeword. Ac-
cording to the information theory, a one-to-one function does not change
the entropy of the input and output variables, which means the entropy
of the linguistic codewords is identical to the entropy of the message [78].
However, as linguistic codewords have a higher dimensionality, the min-
imum distance of linguistic codewords becomes larger, which makes it
possible for error correction at the receiver side. In addition, as the lin-
guistic codewords do not span the whole space, the remaining space can
be used to transmit the nonlinguistic information.

From the above analysis, we can see the linguistic code shares the same
idea with the channel code in communication theory (technological chan-
nel code), which also maps a message into a high-dimensional space by in-



30 CHAPTER 2. LITERATURE REVIEW

troducing redundant bits. The difference between linguistic channel code
and technological channel code is the constraint of length on the code-
word. To make the information rate achieve the channel capacity, in com-
munication theory the codeword is extremely long, which means a large
sequence of information bits are encoded into one codeword. However,
in linguistic code one message is mapped into one codeword, which sug-
gests that the codeword length of linguistic channel code is shorter than
the technological channel code. The constraint of length on the linguistic
codeword probably comes from the inability of human brain to decode a
long codeword.

2.3.3 Linguistic decode for hearing-impaired listeners

For hearing-impaired people, the hearing loss makes them unable to re-
ceive the message correctly, which means a decreased bit rate of received
message from the information theoretical point of view. This is not caused
by the linguistic decode of hearing-impaired people, but the speech inter-
pretation process, which is unable to provide the correct linguistic code-
words.

Figure 2.8: Message transmission over voice channel for hearing-impaired
people.

The impaired part in message transmission for hearing-impaired peo-
ple is marked in red color in Fig 2.8. If a hearing-impaired person has
hearing loss at high frequency, he or she cannot construct the correspond-
ing linguistic codewords. However, in Section 2.3.2 we know that the lin-
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guistic codewords do not span the whole space of speech signal, which
means the linguistic codewords can be represented by a lower dimen-
sional space, i.e., a narrower frequency range. Since human can under-
stand all the speech signal, the frequency resolution of human auditory
system is higher than the frequency resolution of speech. As long as the
frequency resolution of frequency-lowered speech is lower than the fre-
quency resolution of the human auditory system, the frequency-lowered
speech can be learned by the listeners. In other words, as long as the resid-
ual hearing can provide enough space for the new linguistic codewords, it
is possible to transmit the whole linguistic information reliably.

With the help of hearing aid, the intelligibility of received speech can
be enhanced. Based on the audiogram of a hearing-impaired person, the
hearing aid can decide the dimensionality of the new space, which rep-
resents the new frequency range for the linguistic information. Ideally, if
the hearing-impaired people can extract the linguistic codewords from the
input speech signal and there exists a one-to-one mapping function for the
standard and new linguistic codewords, the hearing-impaired people can
still receive the whole linguistic information.

2.4 Frequency Lowering in Hearing Instruments

In this section, we give a background of frequency lowering techniques
that are used in current hearing instruments, and their corresponding im-
plementation.

2.4.1 Frequency lowering techniques

Hearing impairment usually starts at high frequency. Some people can
have severe hearing loss at high frequency, such that they completely lose
the audibility for high frequency. The region, where audibility is com-
pletely lost, is referred to as dead region.
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Figure 2.9: Periodogram of sound /s/.

Losing high-frequency information can damage speech intelligibility.
For example, the sound /s/ has its main components at high frequency.
It plays an important grammatical role, such as pluralization (cake and
cakes), possession (Peter’s cake), contraction (it and it’s) and third per-
son singular (he eats cake), and it has most of the signal power located
at high frequency. From the periodogram of /s/, as shown in Fig. 2.9,
we can see that a lot of power is located above 3 kHz. Without receiving
the high-frequency information, /s/ is hardly recognized by listeners. For
hearing-impaired children, obtaining the information at high frequency is
particularly important, because developing a language system needs to
learn and imitate the sounds that they can hear.

Frequency lowering aims to recover high-frequency information by
moving signal at high frequency to low frequency, such that the signal
becomes audible at low frequency. Based on whether the bandwidth of
frequency-lowered components changes or not, frequency lowering tech-
niques can be classified into frequency transposition and frequency compres-
sion, which are illustrated in Fig. 2.10. For frequency transposition, the
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Figure 2.10: Illustration of frequency lowering. Figures are modified
from [1].

bandwidth of high-frequency components remains the same. The high-
frequency components are extracted and added directly to low frequency.
For frequency compression, the bandwidth of high-frequency components
is squeezed. There is no overlap of low-frequency and high-frequency
components.

2.4.2 Implementation of frequency transposition

Since speech is short-time stationary, the power spectrum of speech varies
over time. When implementing frequency lowering, we use the short-time
Fourier transform (STFT) to obtain the magnitude and phase information
at a time instant. Both magnitude information and phase information con-
tribute to speech intelligibility [79–81].

As shown in Fig. 2.10, frequency lowering techniques used by the cur-
rent commercial hearing instruments can be classified into frequency trans-
position and frequency compression. In frequency transposition, the band-
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Figure 2.11: Diagram of frequency transposition.

width of frequency-lowered components does not change. Thus, the band-
width of destination area is the same as the bandwidth of original area.
Frequency lowering can be performed by directly shifting the magnitude
of STFT to low frequency [82,83]. The phase information at low frequency
is replaced by the phase information at high frequency. The frequency-
lowered speech is synthesized by using the overlap-add method [84]. A
general diagram of frequency transposition is shown in Fig. 2.11.

2.4.3 Implementation of non-linear frequency compression

In frequency compression, the bandwidth of the original area is squeezed.
The signal at high frequency cannot be shifted directly to low frequency
through STFT. Instead, the signal at high frequency is represented by a
set of oscillators and is transferred to low frequency by changing the fre-
quency of oscillators [58]. A perfect reconstruction of the original signal
can be obtained by the oscillators, if their magnitude and frequency are
selected properly.

The perfect reconstruction can be seen from the filter bank perspective,
which is shown in Fig. 2.12. A band-limited signal is defined by

x : Z→ R, withx ∈ BL1[−1

2
ω0,

1

2
ω0], (2.17)

where ω0 ∈ [0, 2π). The subband signal obtained from a band-limited sig-
nal is also band-limited. At the kth subband, the subband signal x̄k(n) can

1BL denotes a subspace of bandlimited sequences.
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Figure 2.12: Diagram ofN -channel filter bank. Figure is modified from [2].

be obtained by spectral shifting and low-pass filtering x(n):

x̄k(n) = w(n) ∗ (x(n) e−jωkn)

=
∞∑

m=−∞

w(n−m)x(m) e−jωkm,
(2.18)

where ∗ is the convolution operator, ωk = 2π
N
k, w(n) is the low-pass filter

realized by a smooth window function, N is the number of subbands. A
perfect reconstruction of x(n) can be realized by summing up the demod-
ulated subband signals followed by a normalization:

y(n) =
N−1∑
k=0

x̄k(n) ejwk n. (2.19)

Substitute (2.18) into (2.19), we have

y(n) =
N−1∑
k=0

∞∑
m=−∞

w(n−m)x(m) e−jωkm ejwk n

=
∞∑

m=−∞

w(n−m)x(m)
N−1∑
k=0

ejωk(n−m).

(2.20)
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Since
N−1∑
k=0

ejωk(n−m) =

N, m = n− r N, r ∈ Z

0, otherwise,
(2.21)

(2.20) can be written as

y(n) = N
∑
r∈Z

w(r N)x(n− r N). (2.22)

If the window w(n) has the window length Nw ≤ N ,

w(r N) = 0, r = ±1,±2, · · · (2.23)

Thus, a perfect reconstruction can be obtained by scaling y(n):

x(n) =
1

N w(0)
y(n). (2.24)

If Nw > N , the window needs to be appropriately set up such that (2.23)
is satisfied. In practice, this window can be set as the product of a nor-
mal window function and the sinc function. The reason why a perfect
reconstruction of x(n) can be achieved by using fewer FFT bins is that the
frequency response of the base band window function is overlapped with
the frequency response of the modulated window function, and the sum
of these frequency responses is a constant.

Based on (2.19), we can generate a set of oscillators to realize a perfect
construction of the input signal. The amplitude and frequency of oscillator
at kth FFT bin are determined by the subband signal x̄k(n). The complex-
valued subband signal x̄k(n) can be represented in the polar coordinate
as

x̄k(n) = |x̄k(n)|ej∠x̄k(n). (2.25)

We only consider non-negative frequency bands. Each subband is repre-
sented by a single oscillator. The frequency of the oscillator can be esti-
mated by

vk(n) = ∆θk(n) + ωk, (2.26)
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where ∆θk(n) is the principal value (between ±π) (between ±pw
2

) of the
phase difference

∠x̄k(n)− ∠x̄k(n− 1), (2.27)

and pw ∈ [0, 2π) is the bandwidth of the low-pass filter w(n). The phase of
the oscillator can be calculated as the accumulation of the frequency

φk(n) =
n∑

m=0

vk(m)

= wk n+ ∠x̄k(n),

(2.28)

where vk(0) is the initial phase of the subband signal. For the oscillators
representing DC component and Nyquist frequency, their magnitude is
|x̄k(n)|. For the other oscillators, their magnitude is 2 |x̄k(n)|. By summing
the outputs of the oscillators, we have

y(n) = 2

N
2
−1∑

k=1

|x̄k(n)| cos(φk(n)) + |x̄0(n)| cos(φ0(n)) + |x̄N
2

(n)| cos(φN
2

(n))

=
N−1∑
k=0

|x̄k(n)| ejφk(n)

=
N−1∑
k=0

|x̄k(n)| ej(wk n+∠x̄k(n))

=
N−1∑
k=0

x̄k(n) ejwk n.

(2.29)

From eqs. (2.19) and (2.24), we can prove that (2.29) generates a perfect
reconstruction of the original input signal.

To use (2.29) to obtain a perfect reconstruction of the input signal, the
subband signal x̄k(n) needs to be calculated at every instant. Since the
main lobe bandwidth of the frequency response of w(n) is much lower
than 2π, x̄k(n) can be approximately treated as a band-limited signal. Thus,
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we can downsample x̄k(n) to reduce the computation complexity. The dec-
imation rate needs to be properly selected, such that the downsampling
process does not cause aliasing, which means the bandwidth of the down-
sampled subband signal does not exceed π. Assuming that the subband
signal is downsampled by an integer D, (2.26) can be rewritten as

vk(m) =
∆θ′k(n)

D
+ ωk, m = n−D + 1, n−D + 2, · · · , n (2.30)

where ∆θ′k(n) is the principal value (between ±π) of the phase difference:

∠x̄k(n)− ∠x̄k(n−D). (2.31)

Note that the frequency estimated in (2.30) is an approximation of the true
frequency, due to the averaging of the phase difference. However, the
phase at the integer times ofD, which is the accumulation of the estimated
frequency, is exactly the same phase of the original subband signal. Thus,
the synthesized signal y(n) at the integer times of D is exactly the same as
the original input signal x(n).



Chapter 3

Speech Transmission Model
based on Continuous-valued
Message

In this chapter, we study the validity of a speech transmission model based
on continuous-valued message. The message refers to the information that
is related to speech intelligibility, and it is independent of talker and acous-
tic environment. The speech transmission model can be used by speech in-
telligibility predictors [13, 41], which calculate the amount of information
about the message in a received speech signal. The speech transmission
model comprises a production channel and an acoustic channel. For the pro-
duction channel, the input is the message and the output is clean speech.
For the acoustic channel, the input is clean speech and the output is de-
graded speech.

A good speech intelligibility predictor depends on the proper model-
ing of speech transmission. In [13, 41], the speech intelligibility predictors
SIIB and SIIBGauss have not addressed two problems yet. First, the corre-
lation coefficients between the transformed message and the transformed
clean speech are assumed to be equal across channels. This is an over-
simplified assumption, as we will show that correlation coefficients vary

39
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across channels. Second, the channels in the transformed degraded speech
are assumed to be independent. Since the KLT matrix is obtained from the
clean speech rather than the degraded speech, applying this KLT matrix
directly on the degraded speech hardly makes the channels in the trans-
formed degraded speech independent. In this chapter, we address these
two problems, and compare the improved model with SIIB and SIIBGauss.

3.1 Transmission Model

The original transmission model was proposed in [12, 13]. We denote the
message, the clean speech, and the degraded speech by multidimensional
continuous-valued random variables M , X , and Y , respectively. The mes-
sage is considered as continuous-valued sound. The transmission model
is represented by a Markov chain:

M → X → Y, (3.1)

where the production channel is represented by M → X , and the acoustic
channel is represented by X → Y . The transmission over the production
channel is modeled as [85]

Xk = Mk + Pk, (3.2)

where k is the channel index,Mk is the message, Pk is the production noise,
Xk is the clean speech. The production noise models the inter- and intra-
talker variability. Since the acoustic channel can have different forms, such
as additive noise, reverberation, etc., we cannot model the acoustic chan-
nel by an additive model as we did for the production channel. Fig. 3.1 il-
lustrates the diagram of the speech transmission model for the continuous-
valued message.
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Figure 3.1: Speech transmission model for continuous-valued message.

Given the above Markov chain, we need to determine the exact form
of the variables in the chain. Instead of the common STFT spectra, we
choose log-auditory spectra for these variables. The auditory spectra take
account of the frequency resolution of human ear. We apply a logarithm
on the auditory spectra for two reasons. First, a logarithm can separate
the vocal tract signal and the excitation signal. This is based on the fact
that the convolution of the vocal tract signal and the excitation signal in
the time domain is equivalent to the multiplication of their frequency re-
sponses. The frequency responses consist of magnitude spectra and phase
spectra that both contribute to speech intelligibility [80, 86, 87]. It is un-
known whether these two spectra contribute in a complementary or inde-
pendent fashion [80]. In computational auditory scene analysis, it has been
demonstrated that the ideal binary mask based on the magnitude spectra
can improve speech intelligibility [88–90]. Thus, in the current study, we
only consider magnitude spectra. The second reason for using the log-
arithm is that it simulates the human loudness perception of sound. As
speech intelligibility depends on human hearing, taking the human hear-
ing perception into account benefits the modeling of the transmission of
the message.

The modeling of the message varies in different communities. In the
engineering community [13,41], the message is considered as continuous-
valued sound. However, in the linguistic community [91, 92], the mes-
sage is considered as discrete-valued linguistic message, which includes
phonemes, syllables, words, etc. The linguistic messages are by nature
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discrete-valued. Due to the success of the speech intelligibility predic-
tor [41] that uses the modeling of continuous-valued message, we first
improve this transmission model. In the next chapter, we study the case,
where the message is considered as discrete-valued linguistic message.

3.2 Gaussian Distributed Pseudo Message

In our model, we hypothesize that speech intelligibility can be estimated
by the mutual information between the message and the degraded speech.
In the modeling of continuous-valued message, the message is found out
through ensemble average of the same speech message recorded by differ-
ent talkers. Given only one speech signal, we cannot find out the under-
lying message. However, if we know the statistical properties of the mes-
sage, we can generate a pseudo message M̂ , such that I(M ;Y ) = I(M̂ ;Y ).
Thus, we can use I(M̂ ;Y ) to estimate speech intelligibility. For the sake of
simplicity, in the following sections we assume the message M , the clean
speech X , and the degraded speech Y have multidimensional Gaussian
distribution.

3.2.1 Mutual information for pseudo message

The mutual information between the message and the received speech is
calculated as

I(M ;Y ) = h(M) + h(Y )− h(M,Y ), (3.3)

where h(·) denotes the differential entropy of a random variable. To have
I(M ;Y ) = I(M̂ ;Y ), we need to ensure

h(M̂) = h(M) (3.4)

h(M̂, Y ) = h(M ;Y ). (3.5)
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Let us first figure out the condition to satisfy (3.4), then we will determine
the condition to satisfy (3.5). Since

h(M) =

∫
M

pM(m)dm, (3.6)

we need to have
pM̂(m) = pM(m) (3.7)

to satisfy (3.4). The message is continuous-valued sound and is repre-
sented in the log-auditory spectrogram domain. For a simplified model,
we assume the message has a multivariate normal distribution, i.e.,

M ∼ N (µM ,ΣM), (3.8)

where
µM = E[M ]

ΣMi,j
= Cov[Mi,Mj].

(3.9)

Thus, in order to satisfy (3.4), the pseudo message M̂ should also be mul-
tivariate normally distributed and have the same mean vector and covari-
ance matrix as the original message M .

Next, we find out the condition to satisfy (3.5). The differential entropy
h(M,Y ) is calculated as

h(M,Y ) =

∫
Y

∫
M

pM,Y (m, y)dmdy

=

∫
Y

∫
M

∫
X

pM,Y,X(m, y, x)dxdmdy

=

∫
Y

∫
M

∫
X

pM,X(m,x)pY |M,X(y|m,x)dxdmdy.

(3.10)

Due to the Markov chain (3.1), we have

pY |M,X(y|m,x) = pY |X(y|x). (3.11)

Substitute (3.11) into (3.10), we have

h(M,Y ) =

∫
Y

∫
M

∫
X

pM,X(m,x)pY |X(y|x)dxdmdy. (3.12)
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Thus, in order to satisfy (3.5), we need to have

pM̂,X(m,x) = pM,X(m,x). (3.13)

Let us denote Z = [M ;X] and Ẑ = [M̂ ;X]. For a simplified model, we
again assume Z has a multivariate Gaussian distribution, i.e.,

Z ∼ N (µZ ,ΣZ), (3.14)

where
µZ = E[Z]

=

[
µM

µX

]
,

(3.15)

and

ΣZ =

[
ΣM ΣMX

ΣXM ΣX

]
. (3.16)

In order to satisfy (3.13), Ẑ should have Gaussian distribution, and

µẐ = µZ (3.17)

ΣẐ = ΣZ . (3.18)

Thus, we have

µM̂ = µM (3.19)

ΣM̂ = ΣM (3.20)

ΣM̂X = ΣMX . (3.21)

We conclude that (3.19) and (3.20) are the necessary conditions to sat-
isfy (3.4). To satisfy (3.5), the additional condition (3.21) also needs to be
met. In conclusion, if the generated pseudo message can satisfy eqs. (3.19)
to (3.21), we have

I(M ;Y ) = I(M̂ ;Y )

= h(M̂) + h(Y )− h(M̂, Y ).
(3.22)
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3.2.2 Message with frequency independent bands

When generating the pseudo message, eqs. (3.20) and (3.21) need to be sat-
isfied. As the covariance matrices in eqs. (3.20) and (3.21) do not have to
be diagonal, the correlation in frequency needs to be considered. We first
consider a simpler case, where the frequency bands in a message are in-
dependent. Then, the covariance matrices in eqs. (3.20) and (3.21) become
diagonal, and can be written as

σM̂k
= σMk

Cov(M̂k, Xk) = Cov(Mk, Xk).
(3.23)

We denote P̂k as the pseudo production noise. Xk can be written as

Xk = M̂k + P̂k. (3.24)

Since the production noise represents the talker variability, it is reasonable
to assume

µPk
= 0, (3.25)

and the message and the production noise are independent. These as-
sumptions also apply to the pseudo message and the pseudo production
noise. Thus, (3.23) can be written as

σM̂k
= σMk

(3.26)

Cov(M̂k, P̂k) = 0. (3.27)

As the pseudo message has the same variance and mean of the true
message, we can generate the pseudo message by scaling the true mes-
sage and adding a noise signal. To satisfy eqs. (3.19), (3.26) and (3.27), we
generate the pseudo message and the pseudo production noise as

M̂k = ak(Xk − µXk
) + bkNk + µXk

(3.28)

P̂k = (1− ak)Xk + akµXk
− bkNk − µXk

, (3.29)
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where ak and bk need to be solved. Nk ∼ N (0, 1) is a white noise signal.
Substitute (3.28) and (3.29) into eqs. (3.26) and (3.27), we have

ak = ρ2
MkXk

(3.30)

bk = ρMkXk

√
1− ρ2

MkXk
σXk

, (3.31)

where ρMkXk
is the correlation coefficient between the message and the

clean speech.

3.2.3 Message with frequency correlated bands

For a multi-dimensional message with frequency components that are in-
dependent, the pseudo message only needs to satisfy eqs. (3.19), (3.26)
and (3.27). The off-diagonal components in eqs. (3.26) and (3.27) are zeros.
For frequency correlated multi-dimensional message, the pseudo message
also needs to satisfy the conditions on these off-diagonal components.

Speech signals have non-zero off-diagonal components in the covari-
ance matrix. Thus, (3.28) cannot be directly used to generate a pseudo
message. To show this, we take a two-dimensional signal as the exam-
ple, where the frequency bands in the message are correlated, but the fre-
quency bands in the production noise are independent. By using (3.28),
the pseudo message is generated as

M̂1 = a1(X1 − µX1) + b1N1 + µX1

M̂2 = a2(X2 − µX2) + b2N2 + µX2 .
(3.32)

Now we show that this pseudo message does not satisfy eqs. (3.20) and (3.21).
In (3.20), the off-diagonal component

Cov(M̂1, M̂2) = E[(M̂1 − µX1)(M̂2 − µX2)]

= E[(a1(X1 − µX1) + b1N1)(a2(X2 − µX2) + b2N2)]

= a1a2E[(M1 − µM1)(M2 − µM2)]

6= Cov(M1,M2).

(3.33)
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In (3.21), the off-diagonal component

Cov(M̂1, X2) = E[(M̂1 − µX1)(X2 − µX2)]

= E[(a1(X1 − µX1) + b1N1)(X2 − µX2)]

= a1Cov(X1, X2),

(3.34)

and
Cov(M1, X2) = E[(M1 − µM1)(X2 − µX2)]

= E[(X1 − P1 − µX1)(X2 − µX2)]

= E[(X1 − µX1)(X2 − µX2)]

= Cov(X1, X2).

(3.35)

Thus,
Cov(M̂1, X2) 6= Cov(M1, X2). (3.36)

To generate the pseudo message for a speech signal, we can remove the
frequency correlation in the speech before applying (3.28). Recall that the
transmission over production channel is modeled as

X = M + P, (3.37)

where M and X consist of bands that are correlated in frequency. Since M
and P are independent, we have

ΣX = ΣM + ΣP . (3.38)

In the next section, we will study the statistical characteristics of these co-
variance matrices. At the moment, let us assume the production noise is a
white noise. Then, ΣP is a scaled identity matrix cI , where c is a constant.
We have

ΣM + ΣP = UΛMU
T + cIUUT

= U(ΛM + cI)UT ,
(3.39)

where the column vectors in U are the eigenvectors of ΣM . We put (3.39)
into (3.38), and it forms an eigendecomposition of ΣX :

ΣX = U(ΛM + cI)UT . (3.40)
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Thus, ΣM and ΣX have the same eigenvectors. By applying the transform
matrix UT on both sides of (3.37), the bands are not correlated in frequency
for the transformed speech UTX and the transformed message UTM . The
additive model still holds. Since the bands are uncorrelated in frequency,
we can use (3.28) to calculate the pseudo message.

3.3 Statistical Characteristics of Speech

When generating a pseudo message, we need to consider if the frequency
bands in the original message are correlated. For independent frequency
bands, (3.28) can be used directly. For correlated frequency bands, a KLT
needs to be applied on the clean speech before using (3.28) to generate the
pseudo message. In this section, we study the statistical characteristics
of speech, and derive the correlation coefficient between the transformed
message and the transformed speech. The derived correlation coefficients
are used to generate the pseudo message.

3.3.1 Covariance matrices

The frequency correlation of the message can be illustrated by its covari-
ance matrix. To generate the message, we used the CHAINS data set [93],
which contains 33 sentences and each sentence was recorded by 36 talkers.

Let us denote the short-time Fourier transform (STFT) of clean speech
by Xs(j, t), where s refers to STFT, j is the FFT bin index, and t is the
time index. The sampling frequency is 16 kHz. Hann windows with 50%
overlap are used and the window length is 25 ms. Thirty gammatone
filters are equally ranged on the ERB-rate scale, which ranges from 100
Hz to 6500 Hz. The log-auditory spectra Xk(t) is calculated as

Xk(t) = 10 log10

(∑
j

W 2
k (j) |Xs(j, t)|2

)
, (3.41)
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where Wk(j) is the magnitude response of kth gammatone filter. The
speech recorded by the nth talker is denoted by Xn

k (t). As with [12], the
unbiased message for talker n is estimated as

Mn
k (t) =

1

N − 1

N∑
r=1
r 6=n

Xr
k(t). (3.42)

The unbiased production noise for talker n is estimated as

P n
k (t) = Xn

k (t)−Mn
k (t)

= Xn
k (t)− 1

N − 1

N∑
r=1
r 6=n

Xr
k(t).

(3.43)

For each talker, we have derived the message and the production noise.
Let us denote the message from talker n by

Mn =



Mn
1 (t)

Mn
2 (t)
...

Mn
k (t)
...

Mn
K(t).


(3.44)

We generate the message by concatenating the messages from each talker

M = [M1,M2, · · · ,Mn, · · · ,MN ]. (3.45)

Similarly, we generate the production noise as

P = [P 1, P 2, · · · , P n, · · · , PN ], (3.46)

and the clean speech as

X = [X1, X2, · · · , Xn, · · · , XN ]. (3.47)
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The covariance matrices for the message, the production noise, and the
clean speech are shown in Fig 3.2. Fig. 3.2a shows the frequency bands
of the message are correlated. Fig. 3.2b shows the frequency bands of the
production noise are also correlated. However, compared with the mes-
sage in Fig. 3.2a, the production noise can be approximately viewed as a
white noise. Due to the additive model, the frequency bands of the clean
speech are correlated, which is shown in Fig. 3.2c.
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Figure 3.2: Covariance matrices of the original signals.

3.3.2 Pseudo message for speech

As discussed in Section 3.2.3, when generating the pseudo message, the
bands of the clean speech should be uncorrelated in frequency. Since
speech has frequency correlated components, we need to apply KLT on
the clean speech before generating the pseudo message. In this section,
we first check the covariance matrices of the transformed message, the
transformed production noise, and the transformed clean speech. Then,
we derive the correlation coefficients between the transformed message
and the transformed clean speech.

When the production noise is white, the KLT matrix for the clean speech
is the same as the KLT matrix for the message. Fig. 3.3 shows the covari-
ance matrices for the transformed message, the transformed production
noise, and the transformed clean speech. Since the KLT matrix was de-
rived based on the clean speech, the bands of the transformed clean speech
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are uncorrelated, as is shown in Fig. 3.3c. Fig. 3.3b shows the bands of
the transformed noise are approximately uncorrelated. The energy goes
down with the band index. This indicates that the covariance matrix of
the production noise shows some similarity with the covariance matrix of
the clean speech. Thus, assuming the production noise as a white noise
is an approximation. Although the production noise is not exactly white,
Fig. 3.3a shows the KLT matrix derived from the clean speech can also
effectively remove the frequency correlation in the message. Since we as-
sume the message, the production noise, and the clean speech are multi-
variate normally distributed, after KLT, the bands of the transformed mes-
sage, the transformed production noise, and the transformed speech are
independent. Thus, we can use (3.28) to derive the pseudo message based
on the transformed speech.
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Figure 3.3: Covariance matrices of the transformed signals.

When using (3.28), we need to know the correlation coefficients be-
tween the transformed message and the transformed speech. The trans-
formed message is

MH = UTM, (3.48)

and the transformed speech is

XH = UTX. (3.49)
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The correlation coefficients ρMH
k XH

k
are shown by the blue dots in Fig. 3.4.

We fit these dots with an exponential function

ρfit
k = aeb k+c, (3.50)

where k is the index of the transformed band. Nonlinear least squares
method was used to find the parameters a, b, c. The fitted curve is

ρfit
k = 0.661e−0.132k+0.497. (3.51)

The fitted correlation coefficients are shown by the red curve in Fig. 3.4
and are used to generate the pseudo message.
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Figure 3.4: Correlation coefficients between the transformed message and
the transformed speech.

3.4 Evaluation

In this section, we evaluate the validity of the transmission model based
on the continuous-valued message. As speech intelligibility is quantified
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by the information about the message in the received speech, the mutual
information curve for a good modeling of the message should have a sim-
ilar trend as the intelligibility curve. Thus, to evaluate the validity of the
model, we compare the intelligibility curve with the mutual information
curve under different conditions.

3.4.1 Data set

The psychometric curve derived from the Kjems AN data set [94] was used
in the evaluation. In this data set, the clean speech is degraded by four ad-
ditive noises, which are speech shaped noise, babble noise, bottling noise,
and car noise. The clean speech sentences are from the Dantale II cor-
pus [95]. Speech intelligibility was measured under different SNRs for
each individual noise. The psychometric curve was fitted to the intelligi-
bility data. With the psychometric curve, we can obtain the intelligibility
for every SNRs. These intelligibility data points can be compared with
the mutual information data points to see if these two curves have similar
trend.

3.4.2 Estimation of the mutual information

We represent the signals in the form of a log-auditory spectrogram. The
parameters of the log-auditory spectrogram were the same as described in
Section 3.3.1. The clean speech and the received speech were calculated
as (3.41). The mutual information is given by

I(M ;Y ) = I(UTM ;Y )

= I(M̂H ;Y )

= h(M̂H) + h(Y )− h(M̂H , Y ),

(3.52)

where UT is the KLT matrix obtained from X , M̂H is the pseudo trans-
formed message for UTM .
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For a K-dimensional Gaussian variable X , we denote its covariance
matrix by ΣX and the unbiased estimate of the covariance matrix by SX .
Let L denote the number of samples. We have [96, p. 100]

|(L− 1)SX |
|ΣX |

∼
K∏
k=1

χ2
L−k, (3.53)

where χ2
L−k, for k = 1, · · · , K, denote independent central chi-square ran-

dom variables with L − k degrees of freedom. Since |SX | is a biased esti-
mate of |ΣX |, using |SX | directly leads to a biased estimate of h(X). A bias-
corrected estimate of the differential entropy can be calculated as [97, 98]

h(X) = 1
2 ln 2

(
ln
(

(2πe)K |ΣX |
)
−K ln 2

L−1
−
∑K

i=1 Ψ
(
L−i

2

))
,

(3.54)
where Ψ is the polygamma function.

3.4.3 Results and discussion

Fig. 3.5a shows the listening test results, which are illustrated by the psy-
chometric curve. For car noise, the intelligibility from 0 to 100% corre-
sponds to SNRs from -25 to -15 dB. For bottling noise, the intelligibility
from 0 to 100% corresponds to SNRs from -20 to 5 dB. Thus, the SNR inter-
val that makes the intelligibility saturate is between 10 and 25 dB. Fig. 3.5b
shows the objective results, which are illustrated by the mutual informa-
tion curve. For car noise, the SNR ranges from -25 to 20 dB. For bottling
noise, the SNR ranges from -15 to 35 dB. Thus, the SNR interval that makes
the intelligibility saturate is about 45 dB.
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Figure 3.5: Subjective and objective results.

The reason why the slope of the mutual information curve is more
gradual than the slope of the psychometric curve is that we assume the
message is continuous-valued. When the message has Gaussian distribu-
tion and the correlation coefficient ρMX of the production channel is large,
the environmental channel SNR needs to be high to make I(X;Y ) reach
I(M ;X). We illustrate this with a one-dimensional Gaussian variable.
The transmission model follows the Markov chain in (3.1). The acoustic
channel X → Y is modeled as an additive white Gaussian noise (AWGN)
channel. The mutual information between M and Y is calculated as

I(M ;Y ) = −1

2
log2(1− ρ2

MXρ
2
XY ), (3.55)

where ρMX is the correlation coefficient for the production channel,

ρ2
XY =

σ2
X

σ2
X + σ2

N

=
SNRXY

1 + SNRXY

.

(3.56)

We carried out two experimental results for ρMX = 0.9 and ρMX = 0.3,
respectively. Fig. 3.6 illustrates their corresponding mutual information
curves. The curve with larger ρMX shows wider SNR transition interval.
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For ρMX = 0.9, the SNR interval is about 30 dB. For ρMX = 0.3, the SNR
interval is about 20 dB.
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Figure 3.6: Impact of the production channel on the mutual information.

For real speech, Fig. 3.4 shows about one-third of the correlation coef-
ficients are larger than 0.3. Thus, the continuous model requires a large
SNR interval for I(M ;Y ) to reach the saturation point. The inconsistency
in the SNR interval between Fig. 3.5a and Fig. 3.5b indicates the modeling
of the message should be improved. However, as the curves in the two
figures have approximately consistent order, the mutual information met-
ric based on the continuous-valued message shows the merit for objective
intelligibility estimation.

3.5 Summary

In this chapter, we developed a message transmission model, where the
message is assumed continuous-valued. This model can be used to quan-
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tify the speech intelligibility by calculating the mutual information be-
tween the message and the received speech.

As the message cannot be obtained for one speech signal, we propose
to generate a pseudo message, such that I(M̂,X) = I(M ;X). When gener-
ating the pseudo message, the frequency bands of the clean speech should
be uncorrelated for the proposed model. Thus, a KLT matrix is applied
on the clean speech. We use the correlation coefficients between the trans-
formed message and the transformed clean speech to generate the pseudo
message.

To evaluate the validity of the transmission model based on continuous-
valued message, we use this model to calculate the mutual information
between the message and the noisy speech for four types of noise under
different SNRs. The mutual information curves were compared with the
psychometric curves. We found that the mutual information curves have
a larger SNR interval than the psychometric curve. This larger interval
is caused by the large I(M ;X), which is calculated based on the assump-
tion that the message is continuous-valued. In the next chapter, we will
study the inconsistency in the SNR interval between the mutual informa-
tion curve and the psychometric curve.
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Chapter 4

Speech Transmission Model
based on Discrete-valued
Message

In this chapter, we study the transmission model based on the assumption
of discrete linguistic units. We first investigate the relationship between
the subjective metric of speech intelligibility and the objective metric of
mutual information. Then, we show the advantage of the discrete mod-
eling of the linguistic units. Finally, we propose a speech intelligibility
predictor that is based on the discrete modeling of linguistic units.

4.1 Background

Speech intelligibility measures comprehensibility of a speech signal un-
der a given condition. The comprehensibility can be represented by the
proportion of linguistic units that are correctly received by listeners. For
example, word is a type of linguistic unit, and speech intelligibility is usu-
ally represented by the percentage of identified words. As linguistic units
are morphemes, words, and sentences, which are discrete, it leads us to
develop a model for discrete messages.

59
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In the last chapter, continuous sound is regarded as the message , while
in this chapter discrete linguistic unit is regarded as the message. Ta-
ble. 4.1 shows some linguistic concepts that are used in our study. Lin-
guistic units are meaningful language units. The smallest linguistic unit is
morpheme, and the largest linguistic unit is sentence. It should be noted
that a morpheme is a larger unit than a phoneme. For example, the word
”unpredictable” consists of four morphemes [”un” ”pre” ”dict” ”able”].
The morpheme ”able” consists of three phonemes: /@/, /b/, /l/.

Table 4.1: Linguistic items

Item Description
Phone Distinct speech sound, regardless of whether the exact

sound is critical to the meanings of words.
Phoneme Smallest unit of sound that is critical to the meanings

of words. A phoneme may contain several different
phones.

Syllable A unit of pronunciation having one vowel sound, with
or without surrounding consonants.

Morpheme Smallest meaningful unit of a word.
Linguistic unit Meaningful language unit. Morpheme, word, sen-

tence.

Since speech intelligibility is related to the semantic information, we
are interested in quantifying the mutual information between the trans-
mitted linguistic units and the received linguistic units. In our study, we
refer to the mutual information rate of the linguistic units as message rate.
We can estimate the message rate based on the rate of morpheme, word, or
sentence. In English, approximately 170,000 words are currently in use, as
indicated by the Second Edition of the Oxford English Dictionary [99]. We
make a crude assumption that the words are uniformly distributed, thus
an upper bound on the entropy of the word is log2 170000 ≈ 17.4 bit/word.
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An average person speaks 120 - 150 words per minute. This gives an upper
bound on the estimate of the message rate, which is 34.8 - 43.5 bit/second.
In [100], the message rate was estimated based on discrete syllables. It
estimated that the message rate is about 39 bit/second for all the studied
languages. In [101], continuous speech sound is viewed as message, and
it estimated that the message rate is around 100 bit/second. We can see
that the message rate based on the discrete linguistic unit does not match
to the message rate based on the continuous sound. In the following sec-
tions, we study the speech intelligibility prediction based on the discrete
linguistic unit.

4.2 Discrete Modeling of Linguistic Unit

4.2.1 Message transmission model

The message transmission model for discrete linguistic unit is shown in
Fig. 4.1. In the discrete modeling, the message represents morpheme,
word, and sentence. Unlike the continuous model in Fig. 3.1, the discrete
model has additional module of encoder, classification, and decoder. The
discrete linguistic unit is encoded into a codeword, which has frequency
and time correlation. The encoding procedure is a one-to-one mapping.
The production noise models inter- and intra-talker variability. The mod-
ules of classification and decoder together maps the received noisy speech
to discrete linguistic unit. The classification module quantizes a contin-
uous sample into discrete sample. The dimensionality of the input and
the output of the classification module does not change. The decoder is a
one-to-one mapping.
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Received message+Message 
(Discrete linguistic unit)

Production 
noise

Encoder Acoustic 
channel

Classification
(Remove noise) Decoder𝑀 "𝑀

Speech production Speech interpretation

Figure 4.1: Message transmission model for discrete linguistic unit.

4.2.2 Advantage of the discrete modeling of the message

The advantage of the discrete modeling of message is that it can provide
reliable communication. From Shannon’s noisy-channel coding theorem,
we know that if the rate of symbol is below channel capacity, there ex-
ists a code such that the symbols can be transmitted with arbitrarily small
chance of error. As continuous sound has infinite number of symbols, re-
liable transmission cannot be realized. When we transmit information via
speech, the information should be correctly received. Thus, the speech
information can be passed reliably through multiple relays, i.e., from one
person to a next person. This indicates that reliable speech communication
requires a discrete message.

The reliable transmission of linguistic units is realized in a similar way
as the repetition code, where symbols are repeated to increase the distance
between any two codewords. Speech is frequency and time correlated,
which means linguistic units are mapped into a large span of frequency
and time. Both frequency and time are dimensions. When mapping a
symbol into a higher dimensional space, redundancy is introduced in the
codeword. Thus, they are more robust to noise. Fig. 4.2 illustrates an ex-
ample, where repetition code can provide more reliable transmission. For
the blue curve, the binary symbols are transmitted directly over the noisy
channel. For the red curve, each binary symbol is repeated 10 times before
transmission. At the same SNR, the red curve shows a higher transmitted
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information per symbol than the blue curve.
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Figure 4.2: Higher dimensionality makes the transmission robust to noise.

4.3 Better Fit with Psychometric Curve

In Chapter 3, the mutual information is calculated between the continuous-
valued message and the four types of noisy speech signals. When compar-
ing the SNR transition widths of the psychometric curve and the mutual
information curve in Fig. 3.5, we find that the mutual information curve
has a wider SNR transition width than the psychometric curve. This is
caused by the continuous modeling of the message. If we model the mes-
sage as discrete linguistic units, the SNR transition width can be reduced.
There are two reasons for this. First, the mutual information I(M ;X) for
the continuous Gaussian modeling of message is always higher than the
discrete modeling of message. Thus, it requires a wider SNR interval for
I(M ;Y ) to approach I(M ;X). M is the message, X is the clean speech,
and Y is the received speech. Second, the length of the codeword for dis-
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crete message can affect the steepness of the mutual information curve,
while the length of the codeword for continuous message dose not. In this
section, we will discuss this in more detail.

4.3.1 Continuous modeling and discrete modeling

When calculating the mutual information between the message and the
clean speech, the continuous modeling of message gives a higher mutual
information than the discrete modeling of message. For the speech pro-
duction channel modeled by (3.2), the mutual information at channel k is
calculated as

I(Mk;Xk) = h(Xk)− h(Xk|Mk)

= h(Xk)− h(Mk + Pk|Mk)

= h(Xk)− h(Pk),

(4.1)

where Pk is Gaussian noise. Given a certain variance of Mk, the continu-
ous Gaussian modeling ofMk produces a Gaussian distribution ofXk. The
modeling of discrete-valued Mk also produces a continuous variable Xk,
but the distribution of Xk is not Gaussian. As the Gaussian distribution
for a given variance has maximal h(Xk), the continuous Gaussian model-
ing of the message always produces a larger I(Mk;Xk) than the discrete
modeling of message.

When the environmental channel SNR gradually increases, I(M ;Y ) for
the continuous modeling and I(M ; M̂) for the discrete modeling will ap-
proach I(M ;X). Since the continuous modeling has a larger I(M ;X), it
requires I(M ;Y ) to have a larger SNR to reach I(M ;X). To verify this, we
simulated I(M ;Y ) for the continuous Gaussian modeling and I(M ; M̂) for
the discrete modeling, respectively. We take a one-dimensional signal as
the example. The mutual information I(M ;Y ) for the continuous model-
ing is calculated as

I(M ;Y ) = −1

2
log2(1− ρ2

MXρ
2
XY ), (4.2)
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where ρMX = 0.99 and ρXY is a set of values, which correspond to the
environmental SNR from -30 dB to 30 dB.
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Figure 4.3: Mutual information for discrete modeling and continuous
modeling of message.

For the discrete modeling, we generated a binary sequence from {−1, 1}
with approximately equal probability. Thus, the variance of the discrete
signal was 1. The number of samples was 105. We generated a white
noise as the production noise and added it to the discrete signal to simu-
late the clean speech. The variance of the production noise was derived,
such that the correlation coefficient between the binary sequence and the
clean speech was ρMX = 0.99. The environmental noise was generated
as white noise with different SNRs from -30 dB to 30 dB. At the receiver
side, the decoder selects a binary signal from {−1, 1}, which is closest to
the received signal. The mutual information I(M ; M̂) is calculated as

I(M ; M̂) = H(M) +H(M̂)−H(M, M̂), (4.3)

where H(·) denotes the entropy. Fig. 4.3 illustrates the mutual informa-
tion curve for the continuous modeling and the discrete modeling, re-
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spectively. For the discrete modeling of message, the mutual information
I(M ; M̂) approaches 1 bit/symbol, which is equal to I(M ;X) = H(M).
For the continuous modeling of message, the mutual information I(M ;Y )

approaches−1
2

log2(1−0.992) = 2.8 bit/symbol, which is equal to I(M ;X).
In Fig. 4.3, we can see for the same variance of clean speech, the continu-
ous modeling of message requires a larger SNR to reach I(M ;X) than the
discrete modeling of message.

4.3.2 Length of the codeword

The second reason that the discrete modeling can provide a better fit of
mutual information curve to the psychometric curve is that the discrete
modeling can generate a steeper mutual information curve for a longer
codeword. This is because for a given codeword with higher dimensions,
its noisy samples are more likely to locate on the sphere of a ball. When
the balls of each codeword just contact, adding a little bit more noise will
make noisy samples of one codeword move to the space of another code-
word. Thus, the probability of correct transmission suddenly drops, which
means a quick drop of mutual information. In speech communication, we
decode the current linguistic information by taking into account the pre-
ceding and the following linguistic information. For example, we decode
a phoneme in the context of word, and decode a word in the context of a
sentence. By using the context information, the length of the codeword is
increased. Thus, the discrete modeling gives a sharper mutual information
curve.

The mathematical proof is given in the following. We denote a code-
word by

XXX = [X1, X2, · · · , XL], (4.4)

where L is the dimension of the codeword. We generate a set of code-
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words, such that the power of each codeword is constant:

PX = X2
1 +X2

2 + · · ·+X2
L

= LPXi
,

(4.5)

where PXi
is the average power for each dimension. We also set the mean

of the codewords for each dimension as constant:

µXi
= E[X1] = E[X2] = · · · = E[XL]. (4.6)

Now we have two symbols xxxa and xxxb that are mapped into the L dimen-
sional space. The Euclidean distance between two symbols is

Dxxxaxxxb = ||xxxa − xxxb||2
=
√

(xa1 − xb1)2 + · · ·+ (xaL − xbL)2

=
√
x2
a1 + · · ·+ x2

aL + x2
b1 + · · ·+ x2

bL − 2xa1xb1 − · · · − 2xaLxbL

≈
√

2PX − 2LE2[Xi]

=
√

2L(PXi
− µ2

Xi
)

= D,

(4.7)
where D is a constant. Thus, the distance between any two codewords is
approximately constant for very long codewords.

Given a codeword xxxa, we generate a noisy sample yyy:

yyy = xxxa + nnn

=


xa1

xa2

...
xaL

+


n1

n2

...
nL

 ,
(4.8)

where nnn is a L-dimensional white noise. The distance between the code-
word and the noisy sample is Dxxxayyy = ||nnn||2. The probability of correct
recognition is

Pc = P (Dxxxayyy < Dxxxiyyy|xxxa), (4.9)
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𝑥" 𝑥#

𝑥$

𝑦

𝐷

Figure 4.4: An example of the distributions of codewords and noisy sam-
ples. The shaded area illustrates the region of noisy samples belonging to
xa.

where xxxi denotes any codeword except xxxa. Fig. 4.4 illustrates a set of code-
words, where any two codewords have the same distance D. The space
satisfying Dxxxayyy < Dxxxiyyy can be divided into two subspace, where Dxxxayyy <

D
2

and Dxxxayyy ≥ D
2

. As long as Dxxxayyy <
D
2

, the noisy sample yyy can always be cor-
rectly recognized. In some spaces of Dxxxayyy ≥ D

2
, the noisy sample yyy can still

be correctly recognized, as shown by the noisy sample yyy in Fig. 4.4. Since
there is no direct calculation of (4.9), we use the first subspace to calculate
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a lower bound, which is expressed as

Pc ≥ P (Dxxxayyy <
D

2
)

= P (||nnn||2 <
D

2
)

= P (||nnn||22 <
D2

4
)

(4.10)

We denote the standard deviation of nnn for each dimension by cn, which
is a constant. The noise is assumed to be

nnn = cn n̂nn, (4.11)

where n̂nn is a L-dimensional white noise, and the noise in each dimension
has a standard normal distribution. Substitute (4.11) into (4.10), we have

Pc ≥ P (||n̂nn||22 <
D2

4c2
n

). (4.12)

Note that ||n̂nn||22 is a chi-square distribution with L degrees of freedom, and
D2

4c2n
depends on L and cn. We can plot the lower bound of Pc with different

dimensions and noise levels. When the noise levels is infinite large, the
distances between a noisy sample and all the codewords are the same.
Thus,

Pc =
1

Ncw

, (4.13)

where Ncw is the number of codewords. Combining (4.12) and (4.13), we
obtain the lower bound

Pc ≥ max{P (||n̂nn||22 <
D2

4c2
n

),
1

Ncw

}. (4.14)

We run the simulation based on the transmission of auditory spectro-
gram, which is assumed to carry all the linguistic information. The audi-
tory spectrogram is a sequence of spectrum with the sampling frequency
of 80 spectra/second (25 ms window with 50% overlap). We assume in
speech the phoneme rate is 10 phonemes/second. We represent each spec-
trum with 30 ERB bands. Thus, each phoneme is represented by 8 spectra,
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and the total dimensionality of a phoneme is 30 × 8 = 240. In the simu-
lation, we set D = 1 for L = 240. Fig. 4.5a shows the lower bound of Pc
with different dimensions and noise levels. The blue line shows the noisy
samples are decoded every phoneme. The red line and the orange line
consider the context information by using longer codeword length. We
can see the curve of the probability of correct recognition becomes steeper
with longer codeword length. Fig. 4.5b shows similar performance for the
mutual information curve.
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Figure 4.5: Impact of the length of codeword.

As shown in Chapter 3, the psychometric curves are steep, which means
they have a narrow range of SNR corresponding to the intelligibility from
0 to 1. Thus, if a SIP can produce a steep curve, then we consider it to
be a good predictor. In speech interpretation, we use long codewords (a
sequence of phonemes), instead of short codewords (a single phoneme ).
Using long codewords produces a steep curve, which is consistent to the
psychometric curves.
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4.4 Mutual Information Estimate for Discrete-valued

Message

In this section, we first study the relationship between mutual information
and speech intelligibility. Then, we estimate mutual information between
the discrete message and the received speech.The transmission model con-
sists of production channel and acoustic channel. The clean speech and the
received speech are known. So the mutual information between them can
be calculated. However, the discrete linguistic unit underlying the contin-
uous clean speech cannot be immediately obtained. To solve this problem,
we estimate the mutual information in each band between the linguistic
unit and the clean speech via the theory of speech intelligibility index.

4.4.1 Relationship between speech intelligibility and mu-

tual information metric

When developing a mutual information based speech intelligibility pre-
dictor, we presume that the mutual information and the speech intelligi-
bility have a monotonic relationship. This assumption has not been ver-
ified yet. To verify this assumption, we study the relationship between
the speech intelligibility and the mutual information based on a simple
transmission model.

In this transmission model, speech intelligibility is measured as the
percentage of word recognition. Mutual information is calculated between
the transmitted word and the received word. We assume there are Nw

words, and they are uniformly distributed. Thus, the entropy of the source
is log2Nw bit/symbol. Let p denote the probability of correct transmission
for each word, M and Z denote the transmitted and received word, re-
spectively. The transmission matrix is
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P (Z = wj|M = wi) =

p, i = j

1−p
Nw−1

, i 6= j,
(4.15)

where wi denotes a word. Note that in the worst case, where the listener
cannot extract any information from the received signal, pmin = 1

Nw
.

Since M is uniformly distributed and the transmission matrix is the
same for all transmitted words, the probability of each received word is

1
Nw

. The entropy of the received word is

H(Z) = log2Nw. (4.16)

The conditional entropy H(Z|M) is calculated as

H(Z|M) = −
∑
i,j

P (M = wi, Z = wj) log2 P (Z = wj|M = wi)

= −
∑
i

P (M = wi)
∑
j

P (Z = wj|M = wi) log2 P (Z = wj|M = wi)

= −
∑
j

P (Z = wj|M = wi) log2 P (Z = wj|M = wi)

= −p log2 p− (1− p) log2

1− p
Nw − 1

(4.17)
The mutual information between the transmitted word and the received
word is calculated by

I(M ;Z) = H(Z)−H(Z|M)

= log2Nw + p log2 p+ (1− p) log2

1− p
Nw − 1

.
(4.18)
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(b) Nw = 100.
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Figure 4.6: Relationship between mutual information metric and speech
intelligibility.

The blue curve in Fig. 4.6 illustrates the relationship between the mu-
tual information metric and speech intelligibility for three sets of words.
The red curve is used as reference, which is a straight line. For the lowest
intelligibility of 1

Nw
, the mutual information is 0. For a 100% intelligibil-

ity, the mutual information is log2Nw bit/symbol. In figs. 4.6a to 4.6c, we
can see the mutual information metric is a monotonically increasing func-
tion of speech intelligibility. As the set of words increases, the relationship
becomes more linear.

4.4.2 Mutual information between the message and the re-

ceived speech

To predict speech intelligibility, we desire to calculate the mutual informa-
tion between the message and the received speech I(M ;Y ). Recall that
we have the Markov chain M → X → Y . Since the exact form of M is
unknown for a given speech signal, we use I(M ;X) and I(X;Y ) to get an
approximation of I(M ;Y ). According to the data processing inequality,
we have

I(M ;Y ) ≤ min(I(M ;X), I(X;Y )). (4.19)

As I(M ;X) represents the mutual information of linguistic information,
we estimate I(M ;X) through the statistical data of linguistic unit, which
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is a fixed term. For example, if we use I(M ;X) to measure the informa-
tion per phoneme, it is about log2 44 = 5.5 bit/phoneme (44 phonemes for
English).

The mutual information I(X;Y ) quantifies the quality of the acous-
tic channel. Recall that X and Y are multi-dimensional variables. If one
channel has perfect condition, I(X;Y ) approaches infinite, which makes
I(M ;Y ) constant according to (4.19). Thus, we apply (4.19) for each chan-
nel, rather than the whole channels. As speech channels are frequency
correlated, we have

I(M ;Y ) ≤
∑
k

I(Mk;Yk)

≤
∑
k

min(I(Mk;Xk), I(Xk;Yk)).
(4.20)

We assume Xk and Yk are continuous Gaussian distributed, then

I(Xk;Yk) = −1

2
log2(1− ρ2

MkXk
), (4.21)

where ρMkXk
is the correlation coefficient between the clean speech and the

received speech at channel k.

4.4.3 Mutual information for the production channel

AlthoughM is unknown for a given speech signal, we can estimate I(M ;X)

from the statistical data in linguistic study. However, we are interested in
I(Mk;Xk). Recall that speech intelligibility can be obtained from speech
intelligibility index (SII) by applying a transfer function [55]. If we ap-
proximate the ratio of mutual information and speech intelligibility to be
a constant, as shown in Fig. 4.6c, we can derive I(Mk;Xk) from the speech
intelligibility at each channel. The speech intelligibility at each channel
is the intelligibility of a narrowband clean speech and we can derive this
value by using the band importance function [55] and the transfer func-
tion [20].
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Let us first estimate I(M ;X). In our study, M , X , and Y are multi-
dimensional variables to represent the message, the speech, and the re-
ceived speech for a phoneme. Although the smallest linguistic unit is a
morpheme, we hypothesize that a better recognition of phoneme achieves
a better recognition of linguistic unit. Thus, we can use the mutual in-
formation between the transmitted phoneme and the received phoneme
to estimate speech intelligibility. Based on the probability of phonemes
appearing in speech [3], the entropy of phoneme is estimated as

I(M ;X) = H(M)

= −
∑
j

pi log2 pi

= 4.9 bit/phoneme.

(4.22)
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Figure 4.7: Transfer function for speech sentence.

Next, we estimate I(Mk;Xk) based on speech intelligibility. Fig. 4.6c
shows that the ratio of mutual information and speech intelligibility is al-
most a constant. Thus, we estimate I(Mk;Xk) as

I(Mk;Xk) = pk I(M ;X), (4.23)
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where pk is the speech intelligibility at channel k. The speech intelligibil-
ity can be derived from SII. The relationship between speech intelligibility
and SII is represented by the transfer function. The exact form of the trans-
fer function depends on speech material, e.g., words or sentence, and the
proficiency of listeners [19, 102–104]. For the speech material of the sen-
tence, the transfer function is expressed as [20]

p = (1− 10−
2.3

0.428
SII)2.729. (4.24)

Fig. 4.7 shows the relationship between speech intelligibility and SII for
speech sentence. To calculate pk, we need to calculate SII at channel k.
For clean speech, the SII at channel k is the same as the band importance
function. The band importance function for standard SII can be found
in [55]. To adjust the band importance function for the ERB-rate scale, we
first calculate the band importance function density, i.e., band importance
per Hz. Then, we integrate over the ERB band. Fig. 4.8 illustrates the
SII for different ERB bands. The points on the curve represent the center
frequency for each ERB band. Based on eqs. (4.23) and (4.24), and SIIk, we
can calculate the mutual information I(Mk;Xk) for each ERB band, which
is shown in Fig. 4.9.

4.5 Evaluation

In this section, we evaluate the proposed transmission model based on a
discrete-valued linguistic message. We estimated the mutual information
between discrete linguistic unit and received speech, and compare the mu-
tual information with the psychometric curve. If the discrete transmission
model can represent the true transmission model, the mutual information
curve based on the discrete model should give a better fit than the mutual
information curve based on our continuous model of Section 3.2.
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Figure 4.8: SII for different ERB band.

4.5.1 Data set

The data set is the same as the data set used for evaluating the continuous
model, as introduced in Section 3.4.1.

4.5.2 Implementation

The mutual information between transmitted linguistic unit and received
speech is calculated as (4.20). The log-auditory spectrogram was calcu-
lated as introduced in Section 3.3.1.

4.5.3 Results and discussion

The experimental results are shown in Fig. 4.10. Fig. 4.10a is the psycho-
metric curve. Fig. 4.10b is the mutual information metric based on the
discrete model. Fig. 4.10c is the mutual information metric based on the
continuous model. Comparing Fig. 4.10b and Fig. 4.10c, we can see the
SNR interval for the discrete model is more similar to the psychometric
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Figure 4.9: Mutual information for different ERB bands.

than the continuous model. This suggests that the linguistic unit has a
discrete-valued distribution.

Although Fig. 4.10b suggests the modeling of discrete-valued linguis-
tic unit, the mutual information curves do not match to the psychometric
curves. For the same SNR, the mutual information curves of four con-
ditions do not show consistent order as the psychometric curve. For the
SSN and cafe noise, the mutual information curves almost overlap. Recall
that in the discrete model, I(Xk;Yk) only depends on ρXkYk , which does
not distinguish stationary and non-stationary noise. In Fig. 4.10b, the lo-
cation of bottling noise curve does not match to the bottling noise curve
in the psychometric curve. However, in Fig. 4.10c the bottling noise curve
matches better to the psychometric curve than the bottling noise curve in
Fig. 4.10b. In Fig. 4.10b, we estimate the mutual information I(Mk;Xk)

for each band, which does not consider the frequency correlation, while in
Fig. 4.10c frequency correlation is considered. This indicates that when cal-
culating mutual information, taking into account of frequency correlation
can make the mutual information curve match better to the psychometric
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curve.
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Figure 4.10: Subjective and objective results.

4.6 Summary

In this chapter, we proposed a transmission model based on discrete-valued
linguistic unit. In the discrete model, the message goes through a chan-
nel codec. This explains the robustness of speech in a noisy environment,
while the continuous model fails, because channel codec does not exist.

We verified the discrete model by comparing the psychometric curve
and the mutual information curve. To obtain the mutual information curve,
we need to calculate the mutual information. Unlike the continuous model,
we cannot generate a pseudo-message based on the statistical character-
istics of the message. Since the message transmission can be modeled
as a Markov chain, we calculate the mutual information I(Mk;Xk) and
I(Xk;Yk) separately, and choose the minimal value as the mutual informa-
tion I(Mk;Yk). The mutual information I(M ;Y ) is the sum of I(Mk;Yk),
which implies frequency correlation is not considered.

When comparing the psychometric curve and the mutual information
curve, the SNR interval in the discrete model matches better to the psycho-
metric curve than the continuous model. This suggests that the message
is discrete-valued. However, in the discrete model, the order of the mu-
tual information curves of four noise conditions does not match better to
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the psychometric curve than the continuous model. The difference in the
calculation of mutual information between these two models is that fre-
quency correlation is considered in the continuous model, while not in the
discrete model.

In conclusion, the proposed discrete model verifies that the discrete-
unit model correctly predicts the steep transition from fully intelligible to
not intelligible. To obtain a correct order of the mutual information curves,
frequency correlation should be considered.



Chapter 5

Mutual Information based Speech
Intelligibility Predictor

In this chapter, we propose a speech intelligibility predictor (SIP) for
normal-hearing listeners. The proposed SIP is an extension of SIIB [13],
which is the best intelligibility predictor in the mutual information (MI)
criterion. SIIB assumes the underlying linguistic unit is a continuous-
valued sound, and predicts speech intelligibility by calculating mutual
information between the continuous-valued sound and the degraded
speech. In Chapter 4, we showed that the linguistic unit is discrete-valued.
Based on this finding, we propose a new mutual information based speech
intelligibility predictor.

5.1 Background

Speech intelligibility is a key criterion when developing a speech commu-
nication system, such as mobile communications, public address systems,
hearing instruments, etc. Speech intelligibility is defined as the proportion
of linguistic units that can be correctly perceived by a listener in a listen-
ing test [105]. Speech intelligibility is measured by listening tests, which is
time-consuming. To replace listening tests, the development of an objec-

81
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tive speech intelligibility predictor (SIP) has received significant research
interest.

Currently, SIIB and SIIBGauss are the best SIPs based on a mutual infor-
mation criterion. Since speech intelligibility is related to linguistic infor-
mation, it is natural to predict speech intelligibility by calculating mutual
information between linguistic units and degraded speech. In SIIB and
SIIBGauss, the continuous-valued sound is viewed as linguistic information.
However, in Chapter 3 and Chapter 4, we showed that the linguistic infor-
mation consists of discrete-valued symbols, as the discrete-valued linguis-
tic information gives a better fit for the mutual information curve with the
psychometric curve.

In this chapter, we modify SIIB and SIIBGauss in two aspects. First, the
new SIP is modified based on the fact that linguistic information is dis-
crete valued. As the linguistic information is unknown from a single clean
speech signal, speech intelligibility is estimated by calculating the mutual
information between the clean speech and degraded speech. Second, the
new SIP considers frequency correlation in the degraded speech. When
predicting speech intelligibility, the peripheral auditory system is usually
used. A speech signal is decomposed into a set of narrow-band signals, as
the human cochlea can be viewed as a filterbank. Linguistic information is
encoded redundantly in these auditory bands [106–108]. For these two MI-
based SIPs, frequency correlation among the auditory bands has not been
fully considered. In [109, 110], mutual information is calculated for each
one-third octave band independently and then summed up as the total
mutual information. In SIIB and SIIBGauss, frequency correlation has been
only considered for clean speech. The log-auditory spectra of clean and
degraded speech are assumed Gaussian distributed. The Karhunen-Loève
transform (KLT) is applied to the log-auditory spectra of clean speech to
remove frequency correlation. Since the original signal is multivariate
Gaussian distributed, the bands in the transformed log-auditory spectra
of clean speech are independent. The same KLT matrix is applied to the
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degraded speech. However, it cannot be guaranteed that the bands in the
transformed log-auditory spectra of degraded speech are uncorrelated, be-
cause the covariance matrix of the degraded speech is not the same as or
a scalar multiple of the covariance matrix of the clean speech. Instead
of calculating mutual information for each original auditory band, SIIB
and SIIBGauss calculate mutual information for each transformed band. Al-
though SIIB and SIIBGauss only consider removing frequency correlation in
the clean speech, they still achieve good prediction result when compared
to the other intrusive SIPs [41].

5.2 A New Mutual Information based SIP

In this section, we first recap SIIBGauss. To solve the issues in SIIBGauss, we
investigate the frequency correlation of the degraded speech and propose
a new SIP based on mutual information.

5.2.1 Recap of SIIBGauss

In SIIBGauss, speech intelligibility is estimated by calculating the mutual in-
formation between the message and the degraded signal. Let Xj,t and Yj,t

denote the time-stacked log-auditory spectrograms of clean speech and
degraded speech at band index j and time index t. A KLT matrix is ob-
tained from the clean speech. This KLT matrix is applied on both Xj,t

and Yj,t to remove the frequency correlation. Thus, the transformed clean
speech XH

j,t is frequency uncorrelated, while the transformed degraded
speech Y H

j,t is approximately frequency uncorrelated.

SIIBGauss has a two-stage process: the first is from message to clean
speech, the second is from clean speech to degraded speech. To take the
production channel into account, SIIBGauss assumes a constant correlation
coefficient of 0.75 between the transformed message and the transformed
clean speech. The mutual information between the message and the de-
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graded speech is calculated as

I(M ;Y ) =
1

K

KJ∑
j=1

min(I(MH
j ;XH

j ), I(XH
j ;Y H

j ))

=
1

K

KJ∑
j=1

min(−1

2
log2(1− 0.752),−1

2
log2(1− ρ2

XH
j Y

H
j

)),

(5.1)

where J is the number of frequency channel of the original log-auditory
spectrogram, K is the number of stacked frames, ρXH

j Y
H
j

is the correlation
coefficient between the transformed clean speech and the transformed de-
graded speech.

5.2.2 Frequency correlation in degraded speech

Frequency correlation is an important factor when developing a SIP. For
many intrusive SIPs, the clean and degraded signals are processed through
the peripheral auditory system, which can be viewed as a filterbank. The
generated multi-dimensional signal is frequency correlated. In [41], it
shows that the SIPs that consider frequency correlation perform better
than the SIPs that do not consider frequency correlation. In SIIBGauss, the
clean and degraded signals are log-auditory spectra. Since the KLT ma-
trix is obtained based on the clean signal, the transformed clean signal is
frequency uncorrelated. However, it cannot be guaranteed that the trans-
formed degraded signal is frequency uncorrelated, as the covariance ma-
trix of the degraded signal is not the same as the covariance matrix of the
clean signal. Thus, the band j of the transformed clean speech is correlated
to the band j and its adjacent bands of the transformed degraded speech.

We illustrate this point with two examples. In the first example, the de-
graded signal is a noisy speech signal generated by a clean speech signal
and a cafeteria noise with the SNR of -10 dB. Fig. 5.1 shows the correlation
coefficients between the clean and the degraded signals. Since the two sig-
nals are multi-dimensional, the correlation coefficient in the matrices are
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Figure 5.1: The left-side figures represent the correlation coefficient be-
tween the clean signal and the degraded signal before KLT. The right-side
figures represent the correlation coefficient between the transformed clean
signal and the transformed degraded signal.
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not symmetric. Fig. 5.1a shows the band j of the clean signal is correlated
with the band j and its adjacent bands of the degraded signal. After KLT,
the correlation coefficient between the bands of the transformed clean sig-
nal and the transformed degraded signal is shown in Fig. 5.1b. We can see
the diagonal line, but the values of the diagonal elements are similar to the
off-diagonal elements. Thus, the off-diagonal elements should also be con-
sidered in the calculation of mutual information. In the second example,
the degraded signal is a frequency lowered speech signal, which aims to
improve high-frequency components of speech for hearing-impaired lis-
teners. Fig. 5.1c shows the most correlated bands are off-diagonal, due to
the frequency shift of the degraded signal. Fig. 5.1d does not show a di-
agonal line for the transformed signals. Since SIIB Gauss uses the diagonal
elements to estimate speech intelligibility, the frequency-lowered method
is not a suitable application for SIIB Gauss.

5.2.3 Intelligibility prediction by mutual information

The new intelligibility predictor is modified to account for the facts that the
message is a discrete linguistic unit and the transformed degraded signal
is frequency correlated. Ideally, the speech intelligibility is estimated as
I(M ;Y ). Due to the Markov chain M → X → Y , we have

I(Y ;X) = I(Y ;M,X)

= I(Y ;M) + I(Y ;X|M),
(5.2)

where M is the message, X is the clean speech, and Y is the degraded
speech. Then,

I(M ;Y ) = I(X;Y )− I(Y ;X|M). (5.3)

As I(Y ;X|M) ≥ 0, we have

I(M ;Y ) ≤ I(X;Y ). (5.4)

Calculating I(Y ;X|M) is impossible, because we do not know the ex-
act distribution of M . Thus, we use the upper bound I(X;Y ) to replace
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Figure 5.2: Diagram of the proposed SIP. FMF is the abbreviation of for-
ward masking function.

I(M ;Y ), and the error is I(Y ;X|M).
The diagram of the proposed SIP is shown in Fig. 5.2. The time-domain

speech is first processed by the auditory peripheral processing, which is
represented by the modules of STFT and log-auditory spectra. Then, the
signal is converted from dB scale to dB SPL scale. The module of for-
ward masking function (FMF) [75] takes into account the forward tem-
poral masking. Finally, the mutual information is calculated between the
clean speech and the degraded speech in this domain.

Now we study how the production noise can influence the error
I(Y ;X|M). (5.3) can be rewritten as

I(Y ;X|M) = I(X;Y )− I(M ;Y ). (5.5)

Note that the production noise affects only I(M ;Y ). When the production
noise is much larger than the environmental noise,

I(M ;Y ) ≈ I(M ;X)

� I(X;Y ).
(5.6)

Then the error
I(Y ;X|M) = I(X;Y )− I(M ;Y )

≈ I(X;Y )− I(M ;X)

≈ I(X;Y ).

(5.7)

When the production noise is much smaller than the environmental noise,

I(M ;Y ) ≈ I(X;Y ). (5.8)
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Figure 5.3: I(M ;Y ), I(M ;X), and I(X;Y ) for different acoustic channel
SNRs.

Then, the error

I(Y ;X|M) ≈ 0. (5.9)

(5.7) and (5.9) show two extreme cases for I(Y ;X|M). Based on (5.5),
I(Y ;X|M) ∈ (0, I(X;Y )).

We use an example of single channel system to illustrate the relation-
ship among I(M ;Y ), I(M ;X), and I(X;Y ). The discrete messages were
-1 and 1, which were uniformly distributed. The production noise was
simulated as white noise and added to the discrete message to gener-
ate the clean speech. The correlation coefficient between M and X was
0.9. The acoustic noise was also simulated as white noise. We fixed the
level of production noise, but varied the level of acoustic noise. The SNR
of acoustic channel was varied from -10 dB to 35 dB. Fig. 5.3 shows the
mutual information curves of I(M ;Y ), I(M ;X), and I(X;Y ) for different
acoustic channel SNRs. The entropy of the discrete message is H(M) =

1 bit/symbol. Due to the production noise, I(M ;X) is smaller than 1. At
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high acoustic SNR, the production noise is much larger than the acoustic
noise. We can see the blue line is overlapped with the red line, which is
consistent with (5.6). At low acoustic SNR, the production noise is much
smaller than the acoustic noise. We can see the blue line approaches the
yellow line, which is consistent with (5.8).

5.3 Listening Test Data

In this section, we introduce four listening test data, which provide the
results of subjective listening tests. These true intelligibility scores were
used in the evaluation of the proposed SIP that calculates the mutual in-
formation between the clean speech and the degraded speech.

5.3.1 Kjems AN

Kjems AN is a data set that consists of noisy speech. ’AN’ stands for ad-
ditive noise, which means the noisy speech were constructed by adding
noise directly on clean speech signals. In [94], Kjems et al. derived a psy-
chometric curve, which relates speech intelligibility and acoustic channel
SNR. Thus, based on the psychometric curve, we can obtain the intelligi-
bility for any SNR. The clean speech was from the Dantale II corpus [95].
Four types of noise were used, which included speech shaped noise (SSN),
cafeteria noise, car noise, and bottling noise. For each type of noise, 10
samples of the intelligibility data on the psychometric curve were selected.
Nine samples were uniformly distributed over the intelligibility from 10%
to 90%, and the tenth sample, which had the highest intelligibility value,
was 99%. In total 10× 4 = 40 conditions were used.

5.3.2 Kjems ITFS

Kjems ITFS is a data set that consists of ideal T-F segregation (ITFS) pro-
cessed speech [94]. A noisy speech signal was generated by adding one
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of four types of noise: SSN, cafeteria noise, car interior noise, or bottling
noise. An ideal binary mask (IBM) and target binary mask (TBM) were
used to generate ITFS processed speech. The mask was derived based on
the SNR of the clean speech signal and a reference noise signal. The mask
was set to 1, if the SNR was above a threshold. The mask was set to 0,
if the SNR was below this threshold. By using the mask, useful speech
components can be extracted from a noisy speech signal.

In IBM experiments, the noise reference was from each of the four types
of noise. In TBM experiments, only speech shaped noise was used as the
noise reference. Since the IBM experiment with speech shaped noise was
equivalent to TBM, there were seven categories in total: IBM (TBM)/ssn,
IBM/cafe, IBM/car, IBM/bottle, TBM/cafe, TBM/car, TBM/bottle. The
clean speech were scaled and mixed with noises at three different SNRs,
which correspond to 20% intelligibility, 50% intelligibility, and -60 dB. The
data set uses -60 dB for the case, where speech cannot be understood at
all. However, when applying appropriate binary mask on a noise spec-
trogram, a speech can still be reconstructed with good intelligibility. The
appropriate binary mask can be obtained by choosing suitable LC (local
criterion). When SNR>LC, the mask is set to 1, otherwise it is set to 0. RC
stands for relative criterion, and RC = LC-SNR. It is the RC that determines
the binary mask, not the absolute value of LC. The binary masks were cal-
culated for eight different RC. Thus, in total there were 7 × 3 × 8 = 168

conditions.

5.3.3 NELE Cooke data set

Near-end listening enhancement (NELE) Cooke data set evaluates near-
end speech enhancement algorithms. The near-end refers to the side of
listener. When people listen to a mobile phone in noisy environments,
the background environment cannot be changed. However, speech intel-
ligibility can still be increased by processing the speech signal before it is
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played back. NELE Cooke data set evaluates nine algorithms, which are
a subset of the original Cooke data set that evaluated 19 algorithms [111].
Since the entire sounds of the original Cooke data set were not available,
NELE was created and used in the evaluation of SIIB [13].

We use the same data set as SIIB, which contains unprocessed noisy
speech and enhanced speech by nine algorithms. The nine enhancement
algorithms include AdaptDRC, F0-shift, IWFEMD, on/offset, OptimalSII,
RESSYSMOD, SBM, SEO and SSS [111]. The noisy environment includes
six conditions: babble noise from a female talker with SNR of -7 dB, -14 dB,
and -21 dB; speech-shaped noise with SNR of 1 dB, -4 dB, and -9 dB. Thus,
in total there are 6× (1 + 9) = 60 conditions.

5.3.4 HuPost database

The HuPost database [112] evaluates the performance of eight enhance-
ment algorithms. The sampling frequency is 8 kHz and the bandwidth is
300 - 3400 Hz, due to the use of the intermediate reference system (IRS)
filter [113]. The clean speech signals were contaminated by four types of
noise: babble noise, car noise, street noise, and train noise, with SNR of 0
dB and 5 dB. The unprocessed noisy speech and processed speech by eight
enhancement algorithms were used in listening tests. Thus, in total there
are 4× 2× (1 + 8) = 72 conditions.

5.4 Evaluation

In this section, we evaluate the performance of the proposed SIP. The pro-
posed SIP uses I(X;Y ) to estimate speech intelligibility. We first introduce
the parameters that were used to calculate I(X;Y ). Then, we compare the
performance of the proposed SIP with SIIBGauss, and its modified version,
which uses a more accurate correlation coefficient for the production chan-
nel.
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5.4.1 Parameter setup

All the speech signals were resampled to 16 kHz and were normalized to
unit variance. A voice activity detector (VAD) was used to remove the
non-speech segments in the clean speech and the degraded speech. The
threshold of the VAD was set to the maximum power of the clean speech
signal minus 30 dB. The spectrogram of speech was obtained by the STFT
with 50% overlapped 25 ms Hann windows. For HuPost database, the
auditory spectorgram was obtained through 19 gammatone filters [114]
that were uniformly distributed on the ERB-rate scale from 300 Hz to
3400 Hz. For the other databases, the auditory spectrogram was obtained
through 30 gammatone filters that were uniformly distributed on the ERB-
rate scale from 100 Hz to 6.5 kHz.
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Figure 5.4: Loudness level (dB SPL) of a sampled speech signal and abso-
lute hearing threshold.

Since the proposed SIP uses the temporal forward masking function,
which is expressed in the unit of dB SPL, we need to covert the unit of
the log-auditory spectrogram from dB to dB SPL. Let us denote the short-
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time Fourier transform (STFT) of clean speech by Xs(j, t), where s refers
to STFT, j is the FFT bin index, and t is the time index. The log-auditory
spectrum X

log
k (t) is calculated as

X
log
k (t) = 10 log10

(∑
j

W 2
k (j) |Xs(j, t)|2

)
, (5.10)

where Wk(j) is the magnitude response of kth gammatone filter. To use
the absolute hearing threshold in the temporal forward masking function,
we convert the log-auditory spectrogram from dB to dB SPL by

XSPL
k (t) = X

log
k (t) +R, (5.11)

where R is a constant across the ERB bands. We denote the logarithm of
the average power of ERB bands between 800 Hz and 1200 Hz by X̄ log.
Since the speech banana shows that the average speech energy between
this frequency range is 40 dB SPL [115], the average sound pressure level
of this narrow-band speech signal is set to 40 dB SPL. Thus, the constant
R is calculated as

R = 40− X̄ log. (5.12)

Fig. 5.4 illustrates the loudness level of a sample speech signal in dB SPL
and the absolute hearing threshold of normal-hearing people. The tem-
poral forward masking function was used to consider the masking effect
of the ear [75]. The signal after the processing of the temporal forward
masking function is referred to as the log-auditory spectrogram. When
calculating the mutual information, time correlation in the log-auditory
spectrogram needs to be considered. As with SIIB, 15 continuous frames
were stacked at an instant to form a stacked log-auditory spectrogram.

5.4.2 Performance criteria

The performance criteria measure the relationship between the estimated
speech intelligibility produced by SIPs and the true speech intelligibility.
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Good SIPs can generate positive relation between these two quantities.
In our study, we choose Kendall rank correlation coefficient and Pearson
correlation coefficient to measure the ordinal association and the linear
relationship between them.

The range of Kendall rank correlation coefficient is between -1 and 1.
A coefficient of 1 means for different degraded speech signals, the order
of the estimated speech intelligibility is the same as the order of the true
speech intelligibility. A coefficient of -1 means these two orders are re-
versed. The coefficient of 0 means the estimated intelligibility is indepen-
dent of the true intelligibility. There are three types of Kendall rank corre-
lation coefficient. In the evaluation, we use Kendall’s Tau-b coefficient to
consider the cases, where some degraded speech signals generate identical
intelligibility or estimated intelligibility [116].

Pearson correlation coefficient measures the strength of linear relation-
ship between two variables. In the evaluation, we do not measure the
Pearson correlation coefficient directly between the true speech intelligi-
bility and the estimated speech intelligibility, due to the following three
reasons. First, Fig. 4.6 shows that the relationship between the speech in-
telligibility and the estimated mutual information is not linear when the
number of linguistic units in a listening test is small. Second, speech in-
telligibility is also affected by the speech material used in a listening test.
For example, in the same noisy environment, a listening test using speech
sentences achieves higher speech intelligibility than a listening test using
words. Third, we use I(X;Y ) rather than I(M ;X) to estimate speech in-
telligibility. To take into account of these factors, we use a logistic function
expressed as

f(I) =
100

1 + expa(I−b) , (5.13)

where f(I) is the estimated speech intelligibility represented as the per-
cent of correctly recognized words, I is the mutual information, a and b

are fitted parameters, which minimize the mean square error between the
estimated speech intelligibility and the true speech intelligibility.
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production channel.

5.4.3 True correlation coefficients of SIIBGauss

In SIIBGauss, the log-auditory spectrogram is represented as a sequence of
spectra. To consider time correlation, 15 continuous frames are stacked
at an instant to form a stacked log-auditory spectrogram. To consider
frequency correlation, the same KLT is applied on both the clean speech
and the degraded speech. The correlation coefficient between the trans-
formed message and the transformed clean speech is set as a constant of
0.75. However, as we discussed in chapter 3, the correlation coefficient
between the transformed message and the transformed clean speech is
not constant. In the continuous message-based SIP, we generate a pseudo
message based on the correlation coefficient of the transformed produc-
tion channel. To compare the performance of the discrete message-based
SIP and the continuous message-based SIP, the correlation coefficient of
the transformed production channel in SIIBGauss is updated.

As with chapter 3, we used the CHAINS data set to extract message
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Table 5.1: Kendall’s rank coefficient for the proposed SIP.

Kjems AN Kjems ITFS NELE Cooke HuPost Mean
Proposed SIP 0.89 0.77 0.79 0.74 0.80

SIIBGauss 0.80 0.73 0.77 0.72 0.76
SIIBGauss with true correlation coefficients 0.81 0.74 0.68 0.73 0.74

Table 5.2: Pearson correlation coefficient for the proposed SIP.

Kjems AN Kjems ITFS NELE Cooke HuPost Mean
Proposed SIP 0.97 0.92 0.95 0.93 0.94

SIIBGauss 0.92 0.89 0.95 0.92 0.92
SIIBGauss with true correlation coefficients 0.93 0.91 0.86 0.92 0.91

by ensemble average. The frequency range of log-auditory spectrogram
was from 100 Hz to 6500 Hz. Thirty gammatone filters were equally dis-
tributed on the corresponding ERB-rate scale. Then, we stacked the mes-
sage and the clean speech and applied KLT on both. The blue dots in
Fig. 5.5 represent the correlation coefficients between the transformed mes-
sage and the transformed clean speech. To reduce the fluctuation of adja-
cent correlation coefficients, a moving average filter with the span of 50
data points was used. The red curve in Fig. 5.5 illustrates the smoothed
correlation coefficients, which are used to generate the pseudo message in
the evaluation of the continuous message-based SIP.

5.4.4 Experimental results

In the evaluation, we compare the performance of the proposed SIP, SIIBGauss

and SIIBGauss with updated correlation coefficients. Kendall rank coeffi-
cient and Pearson correlation coefficient are shown in Table 5.1 and Ta-
ble 5.2, respectively. We can see the proposed SIP performs best, followed
by SIIBGauss and SIIBGauss with true correlation coefficients of the produc-
tion channel.

In order to verify if the performance of the proposed SIP is better than
the other two SIPs, we carried out a statistical hypothesis test. We only
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compare the proposed SIP with SIIBGauss, as SIIBGauss achieves a higher
mean value than SIIBGauss with true correlation coefficients. As each lis-
tening data set has a pair of coefficients that are from the proposed SIP
and SIIBGauss, we can test the difference between two population means
on the basis of such paired data [117]. If the difference is larger than
0, then the population mean from one SIP is larger than the other SIP,
which means better intelligibility prediction is achieved. The difference
of Kendall’s rank coefficients is calculated as

∆τ = τ − τSIIBGauss , (5.14)

where τ and τSIIBGauss are Kendall’s rank coefficients for the proposed SIP
and SIIBGauss, respectively. Table. 5.3 shows the paired Kendall’s rank co-
efficients and their differences for four data sets. We assume that the pop-
ulation of difference is approximately normal. As there are only four sam-
ples of the difference, we use the Student’s t test. Let µ∆τ denote the mean
of the population of differences. The null hypothesis and the alternative
hypothesis can be formulated as

H0 : µ∆τ ≤ 0

H1 : µ∆τ > 0.
(5.15)

The test statistic is

tτ =
∆τ

s∆τ/
√
NData

= 2.57,

(5.16)

where NData is the number of the listening test data, ∆τ and s∆τ are the
sample mean and corrected sample standard deviation of ∆τ , respectively.
From the t table, the P -value for the test statistic tτ is 0.04, which means
the plausibility of the null hypothesis is low. Thus, we can confidently
reject H0.

Similarly, we carried out the hypothesis test for the Pearson correlation
coefficient. The difference of Pearson correlation coefficients is calculated
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Table 5.3: Hypothesis test for Kendall’s rank coefficient.

Kjems AN Kjems ITFS NELE Cooke HuPost
Proposed SIP 0.89 0.77 0.79 0.74

SIIBGauss 0.80 0.73 0.77 0.72
Difference 0.09 0.04 0.02 0.02

Table 5.4: Hypothesis test for Pearson correlation coefficient.

Kjems AN Kjems ITFS NELE Cooke HuPost
Proposed SIP 0.97 0.92 0.95 0.93

SIIBGauss 0.92 0.89 0.95 0.92
Difference 0.05 0.04 0 0.01

as

∆ρ = ρ− ρSIIBGauss , (5.17)

where ρ and ρSIIBGauss are Pearson correlation coefficients for the proposed
SIP and SIIBGauss, respectively. Table. 5.4 shows the paired Pearson corre-
lation coefficients and their differences for four data sets. Let µ∆ρ denote
the mean of the population of differences. The null hypothesis and the
alternative hypothesis can be formulated as

H0 : µ∆ρ ≤ 0

H1 : µ∆ρ > 0.
(5.18)

The test statistic is

tρ =
∆ρ

s∆ρ/
√
NData

= 2.03,

(5.19)

where ∆ρ and s∆ρ are the sample mean and corrected sample standard
deviation of ∆ρ, respectively. From the t table, the P -value is 0.07, which
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means the plausibility of the null hypothesis is low. Thus, we can con-
fidently reject H0. Since the comparisons based on Kendall’s rank coef-
ficient and Pearson correlation coefficient are statistically significant, the
proposed SIP can achieve a better intelligibility prediction than SIIBGauss.

5.5 Summary

In this chapter, we proposed a mutual information-based SIP for the dis-
crete linguistic unit. The proposed SIP is different from SIIB and SIIBGauss

in two aspects. First, the proposed SIIB considers the fact that the speech
message is discrete, while SIIB and SIIBarg assumes speech message is con-
tinuous sound. Second, the proposed SIP uses a more accurate mutual
information equation for two Gaussian variables, while SIIB and SIIBGauss

use an approximation of the mutual information between two Gaussian
variables.

In the proposed SIP, the log-auditory representation of the underly-
ing discrete message cannot be obtained. Thus, it calculates mutual in-
formation between the log-auditory spectrograms of the clean speech and
the degraded speech. This avoids introducing error in the generation of
a pseudo message. In SIIB and SIIBGauss, the band k in the transformed
clean speech is assumed only correlated to the band k in the transformed
degraded speech, which is not true. For the enhancement algorithm of
frequency lowering, the effect is more obvious. By assuming a joint Gaus-
sian distribution for the clean and the degraded speech, the proposed SIP
considers frequency correlation in both signals.

The proposed SIP shows higher Kendall’s rank coefficient and Pear-
son correlation coefficient than SIIB and SIIBGauss. Although its perfor-
mance is the best among mutual information-based SIPs, it is not as good
as wSTMI [51], which is a data-driven SIP. This suggests a data-driven mu-
tual information-based SIP can achieve a higher performance. A possible
design is as follows. Note that the proposed SIP does not consider the pro-
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duction channel, since the representation of the discrete message cannot
be obtained. However, the mutual information for the production channel
can still be estimated, as shown in Fig. 4.9. Thus, we can estimate the mu-
tual information between the discrete message and the degraded speech
for each critical band. A data-driven mutual information-based SIP can
be created by assigning the trained weights to the mutual information of
each critical band.



Chapter 6

Mutual Information based
Frequency Lowering Fitting

In this chapter, we propose an automatic tool for the parameter fitting of
a non-linear frequency lowering operator. The automatic tool is an objec-
tive mutual information-based SIP. It searches the parameters that max-
imize the mutual information between the message and the speech re-
ceived by a hearing-impaired listener. To show the validity of the tool,
the objective results, which are from the mutual information based met-
ric, should be consistent to the subjective results, which are from listening
tests. Since frequency lowering produces new patterns for speech sounds,
the listeners may not be able to recognize speech sounds in the listening
tests. To overcome this issue, we propose a new listening test mechanism
that is based on sound distinction. The role of the sound distinction test
is to obtain subjective speech intelligibility efficiently. The role of the ob-
jective measure is to find the optimal parameter in hearing instruments.
We will show that the listening test results are consistent to the mutual
information-based objective measure.

101
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6.1 Background

Hearing instruments aim to enhance the intelligibility of speech received
by hearing-impaired people. For each enhancement operator, its parame-
ters need to be adjusted to maximize the intelligibility of processed speech.
Although speech intelligibility can be reliably measured through listening
tests, it is time-consuming. Thus, a good objective intelligibility measure
can improve the efficiency of hearing instrument fitting.

For hearing-impaired listeners with a dead region at high frequencies,
sound amplification in the dead region does not improve speech intelli-
gibility. To recover the high-frequency information, a frequency lowering
operator can be used. The main idea of frequency lowering is to present
high frequency information at low frequency bands. A fitting procedure
is required for the frequency lowering operator [118]. It has been shown
that hearing instrument users with frequency lowering are likely to gain
an improvement in speech intelligibility [119, 120].

In this chapter, we use a nonlinear frequency compression operator
proposed in [58] as an example of a frequency lowering operator. This
frequency lowering operator selects a cutoff frequency and compresses the
signal above the cutoff frequency nonlinearly. The output frequency can
be calculated as

fout =

fin, fin < fc

f
1−1/p
c · f 1/p

in , fin ≥ fc,
(6.1)

where fout is the output frequency, fin is the input frequency, fc is the cutoff
frequency, p ≥ 1 is the compression ratio.

To use the objective measure for the fitting of frequency lowering op-
erator, we need to show the objective measure and the subjective measure
can provide consistent results. Since frequency lowering operators move
high-frequency information to low frequencies, a high-frequency sound is
represented by a new spectrum pattern, which is unfamiliar to the listen-
ers. Thus, acclimatization is required for listeners to be able to identify
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the new sounds of phonemes. Acclimatization is a process during which
listeners start to learn the new patterns of a sound. Once the new patterns
have been learned, the listeners are able to recognize frequency-lowered
sounds by matching the input sound with the new patterns stored in the
brain. Acclimatization often takes 4-6 weeks [58]. To improve the effi-
ciency of the listening test, we propose a sound distinction test, which
simulates the matching process in the brain but does not require acclima-
tion.

6.2 Frequency Resolution of Human Auditory Sys-

tem

The human auditory system has a limited frequency resolution, which
means the human ear cannot distinguish two tones whose frequencies are
infinitely close. The frequency resolution of the human auditory system
depends on the shape of the auditory filter [121]. If a signal has indepen-
dent components that are very close in frequency, two different compo-
nents cannot be distinguished, since they are within the same auditory fil-
ter. We do not consider the beating effect. When implementing frequency
compression, different components get closer in the frequency. Although
moving high-frequency components to the audible frequency range can
increase the information in the received signal, extreme frequency com-
pression may reduce the information. Thus, we need to find, to what de-
gree the frequency lowering operator maximizes the received information.

The limited frequency resolution of the human auditory system can be
interpreted as a limited time-width of a gammatone filter. The time-width
describes the area in the time domain where the gammatone filter occu-
pies. The time-width of a signal can be calculated via the inverse Fourier
transform of the signal’s frequency representation. The firing rate for the
kth gammatone filter depends on the log-auditory spectra, which can be
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calculated by (3.41). Since the calculation of the auditory spectra involves
the summation of the energy of the speech signal, whose frequency com-
ponents are within the shape of the gammatone filter, the auditory spectra
can be viewed as a convolution of the speech spectra with the squared fre-
quency response of the gammatone filter. In the time domain, this means
after the peripheral auditory system, the time-width of the processed sig-
nal should always be within the time-width of the gammatone filter. As
clean speech is fully intelligible, the time-width of the message must be
within the time-width of the auditory filter. For speech with extreme fre-
quency compression, its time-width exceeds the time-width of the gam-
matone filter. Thus, the exceeding part is lost, which means extreme fre-
quency compression incurs information loss.

The time-width of the gammatone filter is determined by the shape of
the filter. On the Hz scale of frequency, the shape of the gammatone fil-
ter varies across frequencies. With increasing of the center frequency, the
bandwidth of the gammatone filter becomes gradually wider. However,
on the ERB-rate scale of frequency, the shape of the gammatone filter re-
mains identical for different center frequencies. In the following, we first
introduce the procedure to derive the frequency response of the gamma-
tone filter on the ERB-rate scale. Then, we plot the squared-magnitude
response of the gammatone filters on both the Hz scale and the ERB-rate
scale. Finally, we compare the time-width between speech and the human
auditory system.

On the Hz scale, the frequency response of the gammatone filter at
frequency f0 can be represented by [114]

G(f) ≈ [1 + j(f − f0)/b]−n, (6.2)

where j =
√
−1, b is the bandwidth of the gammatone filter, n is the filter

order. For a fourth-order gammatone filter, the bandwidth is calculated
by [114]

b = 1.019 ERB(f), (6.3)



6.2. FREQUENCY RESOLUTION OF HUMAN AUDITORY SYSTEM 105

0 1000 2000 3000 4000 5000 6000

Frequency (Hz)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
q
u
a
re

d
 m

a
g
n
it
u
d
e

Squared magnitude response

(a) Hz scale.

0 5 10 15 20 25 30

Frequency (ERB-rate)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
q
u
a
re

d
 m

a
g
n
it
u
d
e

Squared magnitude response

(b) ERB-rate scale.

Figure 6.1: Squared-magnitude response of gammatone filters.

where ERB(f) is the equivalent rectangular bandwidth (ERB) of the audi-
tory filter at the center frequency f in Hz. The ERB is calculated as [121]

ERB(f) = 24.7 (4.37 f + 1). (6.4)

The relationship between Hz scale and the ERB-rate scale can be expressed
by [122]

ERBS(f) = 21.4 log10(1 + 0.00437f). (6.5)

Substituting eqs. (6.3) to (6.5) into (6.2), the frequency response of a fourth-
order gammatone filter on the ERB-rate scale can be expressed by

Ĝ(e) ≈ [1 + j 9.09 (1− 10
e0−e
21.4 )]−4, (6.6)

where e0 corresponds to the center frequency f0. Comparing (6.2) and
(6.6), we find that (6.2) depends on f (b is a variable of f ) and the distance
|f − f0|, while (6.6) only depends on the distance |e − e0|. This indicates
that the shape of the squared magnitude response of the gammatone fil-
ter changes on the Hz scale, but remains identical on the ERB-rate scale.
Fig. 6.1 illustrates the squared magnitude responses of five gammatone
filters.
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Figure 6.2: Time-width of speech and the squared-magnitude of a gamma-
tone filter.

Since the shape of the gammatone filters remains unchanged on the
ERB-rate scale, gammatone filters with different center frequencies have
the same time-width. As long as the time-width of frequency-lowered
speech is smaller than the time-width of the gammatone filter, frequency
compression can increase mutual information of the received speech for
person with a hearing impairment. As the frequency scale is not the usual
Hz, we refer the time scale for the ERB rate to Etime. The time repre-
sentation of the auditory spectra can be obtained via the inverse Fourier
transform. Fig. 6.2 illustrates the time-width of speech and the gammatone
filter. We can see that the time-width of clean speech is smaller than the
time-width of the gammatone filter. Thus, moderate frequency compres-
sion can make inaudible high-frequency components audible, and does
not lead to information loss for the already audible frequency components.
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6.3 Mutual Information for Frequency-lowered

Speech

As we use nonlinear frequency compression (NFC) to generate frequency-
lowered speech, the frequency components below the cutoff frequency re-
main unchanged. This leads to an infinite mutual information between
the clean speech and the frequency-lowered speech. In this section, we
propose to use the pseudo message to calculate the mutual information.
In addition, we estimate the maximal benefit of the NFC operator in terms
of mutual information.

6.3.1 Mutual information calculation

In our study, we want to know if the automatic fitting tool can be used
to find the optimal parameters of frequency lowering operators. In our
proposed speech intelligibility predictor, the intelligibility is estimated as
the mutual information between clean speech and degraded speech in the
log-auditory domain. Production noise was omitted as it does not aid in
performance. Thus, the proposed intelligibility predictor only measures
the quality of the environmental channel that is between the clean speech
and the degraded speech.

When searching for the optimal parameters of a frequency lowering
operator, we need to consider the production noise as there is no environ-
mental noise. Without production noise, the mutual information between
the clean speech and the speech received by a hearing-impaired listener is
infinite. Given a clean speech signal, we cannot obtain the discrete-valued
message, since we do not have the codebook of speech. In Chapter 3, we
found that when the message is assumed to be continuous-valued, we can
generate a pseudo message, which has the same probability distribution
as the true message. Although the pseudo message does not represent the
true message, it is still able to generate the correct finite mutual informa-
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tion between the pseudo message and the clean speech. Thus, we can gen-
erate the continuous-valued pseudo message and use (3.22) to calculate
the mutual information between the message and the frequency-lowered
speech.

6.3.2 Benefits of the NFC operator

The NFC operator can increase the mutual information between the mes-
sage and the frequency-lowered speech. A natural question is that how
much is the benefit of the NFC operator? To solve this problem, we need
to know how much information is carried by the high-frequency bands.
The aim of the NFC operator is to transmit high-frequency information
through the low-frequency bands. Thus, the amount of information at
high frequency is an upper bound on the benefits of the NFC operator.

Let us denote a K-dimensional message and clean speech by M =

[M1, · · · ,MK ]T , and X = [X1, · · · , XK ]T , respectively. Assume a hearing-
impaired person can only hear signal components up to L dimension,
where L ≤ K. The information loss from high-frequency components
is calculated by

I(M ;X|X1, · · · , XL) = I(M ;X)− I(M ;X1, · · · , XL), (6.7)

where I(M ;X) is the mutual information between the message and the
clean speech, and I(M ;X1, · · · , XL) is the mutual information between
the message and the audible (low-frequency) speech. The information loss
I(M ;X|X1, · · · , XL) represents an upper bound on the benefit of the fre-
quency lowering operator.

We used the CHAINS data set to calculate the upper bound of the ben-
efit of the NFC operator. In the CHAINS data set, we randomly extracted
33 speech sentences. Each sentence was recorded by a different talker.
Voice activity detection with the threshold of 30 dB was used to remove
the silent segments in speech. The frequency range was from 100 Hz to
6500 Hz, which corresponded to 3.4 and 31.4 on the ERB-rate scale. Thirty
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gammatone filters were used to generate the log-auditory spectrogram. In
the received speech, we gradually increased the number of the gamma-
tone filters. The pseudo message M̂ was generated by using the smoothed
correlation coefficients in Fig. 5.5. Fig. 6.3a illustrates the mutual infor-
mation between the message and the clean speech for different audible
bandwidths. The larger the audible bandwidth is, the more information a
hearing-impaired person can receive. Fig. 6.3b illustrates the information
gain for each band, which is calculated by

I(M ;XL+1|X1, · · · , XL) = I(M ;X1, · · · , XL+1)− I(M ;X1, · · · , XL). (6.8)

We can see that above 2 kHz, the information gain for each band is almost
identical.
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Figure 6.3: Mutual information over frequency.

6.3.3 Hearing instruments fitting based on mutual infor-

mation

The goal of the hearing instruments fitting is to maximize the intelligibil-
ity of the received speech for hearing-impaired people. In our model, the
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intelligibility is quantified by the mutual information. The Markov chain
for the speech transmission can be expressed by M → S → S̃ → X̃ , where
S̃ = G(S), with G denoting the NFC operator and X̃ being the received
signal after the peripheral auditory processing of hearing-impaired peo-
ple. The mutual information between the message and the received signal
can be calculated as

I(M ; X̃) = h(M) + h(X̃)− h(M, X̃), (6.9)

where h(·) denotes differential entropy. Let θ denote the parameter of the
NFC operator in hearing instruments. We choose θ such that

θ∗ = arg max
θ

I(M ; X̃). (6.10)

The log-auditory spectrogram is calculated as introduced in Section 3.3.1.
The smoothed correlation coefficients in Fig. 5.5 are used to generate the
pseudo message.

6.4 Sound Distinction Test

In this section, we design a listening test for frequency-lowered speech.
As frequency-lowered speech is unfamiliar to the listener, time-consuming
acclimatization is required for normal speech recognition listening test. To
improve the efficiency of the listening test, we propose a sound distinction
listening test which does not require the acclimatization process.

6.4.1 Concept of sound distinction test

In speech recognition, listeners are already familiar with the sounds of
clean speech, which can be seen as templates stored in the brain of lis-
teners. For an incoming sound, the listener compares it with the tem-
plates and selects the template that is closest to the incoming sound. As
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frequency lowering operators change the pattern of clean speech, the lis-
tener has to acclimatize to the new templates (the frequency-lowered clean
speech) in normal speech recognition test.

Unlike a speech recognition test, a sound distinction test does not re-
quire the listener to acclimatize to the new templates, since they are played
back in the test. For an incoming frequency-lowered phoneme, the listener
is presented with the templates that are frequency-lowered phonemes.
One of these templates matches the incoming phoneme. We ask the lis-
tener to select the template that sounds most similar to the incoming phoneme.

In the listening test, we limit the number of the templates to two, be-
cause this makes it easier for the listener to respond. This is similar to
the diagnostic rhyme test (DRT) [7], where a word recording is played
back and the listener is asked to select the word from a given pair of two
words. In the DRT, no recordings of the two words are played back, since
the listener is assumed to be familiar with their pronunciations. In the
sound distinction test, the recordings of the two templates are played back.
To eliminate the cues from the talker in sound distinction, the incoming
sound and the templates were recorded by different talkers.

6.4.2 Speech material

The speech material is in the form of /i/ + fricative. The fricative is one of
the seven fricatives /D, f, S, s, T, v, z/ [10], which have dominant compo-
nents at high frequency. Their relative frequencies of occurrence in English
are 2.83%, 1.75%, 0.54%, 4.59%, 0.6%, 1.95%, and 3.01%, respectively [3].
This amounts to 15.27% occurrence of all the phonemes. The speech ma-
terial was recorded by three talkers. Each talker recorded each phoneme
five times. Thus, in total there are 7× 3× 5 = 105 sounds.

When comparing the incoming sound with the templates, the differ-
ences include spectral shape and phoneme length. Since we test the ben-
efit of frequency lowering operators, the distinction of phonemes should
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only be based on the spectral cue. Thus, we need to preprocess the speech
material to ensure all speech sounds have the same length.

Table 6.1: Average duration of the phonemes [3].

Phonemes D f S s T v z
Length (ms) 119 122 118 129 119 78 85

This requires both sound /i/ and the phonemes have constant length
for different phonemes. To realize that, we determine the starting point
of the phoneme in each recording. Then, we calculated the lengths of /i/
and the phoneme, respectively. Based on the lengths of /i/ from all the
recordings, we chose the minimal number, which was 0.19 seconds, as the
new length of /i/. The remaining part of /i/ was removed in each record-
ing. Similarly, we chose the maximal number from Table. 6.1, which was
129 milliseconds, as the new length of the phoneme. The remaining part of
the phoneme was removed in each recording. If the original phoneme was
shorter than the minimal number, this recording was removed from the
speech material. After this preprocessing, three recordings of the phoneme
/z/ and five recordings of the phoneme /D/ were removed. The record-
ings of the other phonemes were all kept in the new speech material. The
length of all the new speech material was 0.32 seconds. It should be noted
that for each phoneme, each talker has more than one recording in the new
speech material. Thus, we can always guarantee that the incoming sound
and the template are from different talkers.

6.4.3 Classification of fricatives

In the sound distinction test, we ask the listener to distinguish the incom-
ing sound and the templates. For some pairs of fricatives the spectra are
very similar. For example, Fig. 6.4 illustrates the spectra of the pair /f/-
/T/. Even for the original recordings of the fricatives, the distinction be-
tween these pairs is not obvious. When evaluating the frequency lowering
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Figure 6.4: Spectra of /f/ and /T/.

operators, the suitable speech material should be easily distinguished by
normal-hearing listeners and hardly distinguished by hearing-impaired
listeners. In other words, the pairs of fricatives should have clear differ-
ence at high frequency and similar spectrum at low frequency.

To generate suitable pairs of fricatives, we classify the seven fricatives
into three types, which are shown in Fig. 6.5. Fig. 6.5a shows the spectra
of the first type fricatives that include /D/, /f/, /T/, and /v/. Fig. 6.5b
shows the spectra of the second type fricatives that include /s/ and /z/.
Fig. 6.5c shows the spectrum of the third type fricative that includes only
/S/. The spectra of /D/ from the first type and /s/ from the second type
are also plotted for comparison. In Fig. 6.5, we can see the fricatives from
the same type have similar spectra and the fricatives from different types
have clearly different spectra.
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Figure 6.5: Spectra of the seven fricatives.

Since the two templates should have clear difference at high frequency
and share some similarity at low frequency, we can generate the pair of
templates by selecting two fricatives from different types. A pair of tem-
plates can be from type 1 and type 2, or type 1 and type 3, or type 2 and
type 3. When the pair is from type 1 and type 2, there are C1

4 · C1
2 = 8

combinations. When the pair is from type 1 and type 3, there are C1
4 = 4

combinations. When the pair is from type 2 and type 3, there are C1
2 = 2

combinations. Thus, we can generate 14 eligible pairs of the templates,
which is shown in Table 6.2.

Table 6.2: Template pairs for the sound distinction test.

No. Template pair No. Template pair No. Template pair
1 D - s 6 f - z 11 T - S

2 f - s 7 T - z 12 v - S

3 T - s 8 v - z 13 s - S

4 v - s 9 D - S 14 z - S

5 D - z 10 f - S
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6.5 Evaluation

In this section, we first introduce the procedure of the sound distinction
test. Then, we compare the subjective results from the listening tests with
the objective results from the SIPs.

6.5.1 Listening test procedure

To carry out the listening test, we first need to determine the parameters
of the NFC operator in (6.1). The cutoff frequency was chosen as 1.5 kHz,
so we can keep the pitch cue and most vowel sounds unchanged. We as-
sume hearing loss occurs above 2 kHz, so the hearing-impaired listener
has difficulty in distinguishing fricatives, as shown in Fig. 6.5c. Different
compression ratios were chosen in the listening test. As expressed in (6.1),
the compression ratio is determined by the input frequency and the out-
put frequency. We fixed the output frequency as 2 kHz and chose seven
input frequencies which were 2 kHz, 3 kHz, 4 kHz, 5 kHz, 6 kHz, 7 kHz,
and 8 kHz. Thus, seven different compression ratios were evaluated in
the listening test. The input frequency of 2 kHz means no frequency com-
pression, and the input frequency of 8 kHz means the extremest frequency
compression. We assume a complete hearing loss above 2 kHz. Thus, the
hearing loss was simulated by a low-pass filter with the cutoff frequency
of 2 kHz. To reduce the low-frequency cues, which can be observed in
Fig. 6.5c, in the sound distinction, we added a low-pass filtered speech-
shaped noise (SSN) with the SNR of 0 dB on the clean speech material.
The cutoff frequency was set to 2 kHz, so it did not mask the high fre-
quency of the fricatives. Fig. 6.6 illustrates the generation procedure of a
frequency-lowered speech received by the hearing-impaired listener.

Next, we need to determine the arrangement of the listening test. Specif-
ically, we need to decide the content and the number of the speech mate-
rial that are presented to the listeners. Recall that we have 14 pairs of
templates. The incoming sound can be any fricative in one pairs. Thus,
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Frequency-lowered speech+Clean speech

Low-pass filtered SSN

NFC Low-pass filter

Figure 6.6: Diagram of the generation of a frequency-lowered speech sig-
nal.

we have 28 pairs of fricatives that need to be distinguished for one fre-
quency lowering condition. Since seven compression ratios were chosen,
there are 28 × 7 = 196 pairs of fricatives that need to be distinguished.
This is the minimal amount of the pairs that are required to evaluate the
performance of the NFC operator. Repeating the listening test can provide
a more accurate result.

Carrying out 196 sound distinction tests is a laborious task for a sin-
gle listener. To make the listening test doable, we divided the whole task
into small sections and assigned them to eight listeners. So each listener
only did a small part of the whole task. All of the listeners had normal-
hearing ability and were paid for the participation. The listening test was
approved by the Human Ethics Committee at Victoria university with the
application number 0000025109. For each frequency lowering condition,
each listener was asked to distinguish eight pairs of fricatives. The eight
pairs were randomly selected from the whole set of pairs, which was 28
pairs. The total pairs from all the listeners should cover the whole set of
pairs. Repetition is preferred, as more data can be collected. For example,
four participants would do 32 pairs, which cover all the 28 pairs and have
4 repeated pairs. Seven participants would do 56 pairs, which repeat the
whole set of pairs twice.

Before the actual listening test, the listeners were asked to go through
a training session which aims to familiarize them with the speech mate-
rial. In the training session, the clean speech signals were used. Similar to
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the sound distinction test, the listeners were asked to match the incoming
sound with a sound from the templates. However, the templates were all
the seven fricatives, instead of two fricatives. Since each fricative can be
the incoming sound, this sound distinction test was repeated seven times.
We require the eligible listeners should have at least six successful matches
in the training session. Seven participants achieved this goal, and one par-
ticipant did not. So we only collect data from these seven eligible partici-
pants. In the test session, each listener went through the seven frequency
lowering conditions. Thus, each listener did 8 × 7 = 56 sound distinction
tests, and there were 56× 7 = 392 sound distinction tests in total.

(a) Training session. (b) Test session.

Figure 6.7: The GUI for the listening test.

The listening test was carried out through GUI that was implemented
via MATLAB. In the training session, as shown in Fig. 6.7a, the ’Test signal’
is the incoming sound, which is one of the seven fricatives. The number
1-7 denote the templates. In the test session, the number of the templates
is limited to two, as shown in Fig. 6.7b.
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6.5.2 Subjective results

Although all seven participants went through the training session, we
found that the performance of some participants was not very consistent,
i.e., large fluctuation existed in their performance. Thus, we need to find
the participants, whose performance was consistent. In the listening test,
each listener did eight sound distinction tests for a specific frequency low-
ering condition. We can analyze the consistency of the performance by
calculating the standard deviation of the eight data for each frequency
lowering condition, and then averaging the standard deviations over all
the seven frequency lowering conditions. Table 6.3 shows the standard
deviation for each listener. We can see that participant 3 and participant
6 have large standard deviation in the listening test results. Thus, a more
accurate listening test result can be obtained by removing the results from
participant 3 and participant 6.

Table 6.3: Standard deviation of the results for each participant.

Participant No. 1 2 3 4 5 6 7 Mean
Standard deviation 0.23 0.21 0.50 0.38 0.31 0.48 0.33 0.35

(a) All the seven participants. (b) Selected five participants.

Figure 6.8: Listening test results.
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The listening test results from all the seven participants and the se-
lected five participants are shown in Fig. 6.8. In Fig. 6.8a, each frequency
lowering condition has 8 × 7 = 56 data. In Fig. 6.8b, each frequency
lowering condition has 8 × 5 = 40 data. As introduced in Section 6.5.1,
we chose seven frequency lowering conditions, where the signals from
2 kHz, 3 kHz, 4 kHz, 5 kHz, 6 kHz, 7 kHz, and 8 kHz were compressed
to 2 kHz. This corresponds to compressing the signal at 8 kHz to 8 kHz,
3 kHz, 2.45 kHz, 2.24 kHz, 2.12 kHz, 2.05 kHz, and 2 kHz, which represent
x-axis in Fig. 6.8. Both figures show that moderate frequency compres-
sion improves the sound distinction results. However, extreme frequency
compression (destination frequencies below 2.12 kHz) does not provide
further benefits. The standard error of the sample mean is plotted as error
bar in both figures.

6.5.3 Objective results

The objective result is the intelligibility estimated by SIPs. We evaluate the
proposed fitting procedure by comparing the subjective result and the ob-
jective result. We again used the CHAINS data set to predict the speech in-
telligibility for different frequency lowering conditions. The generation of
the speech material and the log-auditory spectrogram for the clean speech
was the same as described in Section 6.3.2. The correlation coefficients
between the transformed message and the transformed speech, as shown
in Fig. 5.5, were used to generate the pseudo message. The frequency-
lowered speech was generated through the diagram in Fig. 6.6, which was
used in the listening test. In the simulation, we chose twenty frequency
destinations which were uniformly distributed between 2 kHz and 8 kHz
on the ERB-rate scale.
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(c) SIIBGauss.
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Figure 6.9: Speech intelligibility estimated by SIPs.

The intelligibility of the frequency-lowered speech estimated by the
proposed mutual information metric is shown in Fig. 6.9a. It shows the
mutual information is maximized when the destination frequency is be-
tween 2 kHz and 2.3 kHz. This is consistent to the result of the sound
distinction test in Fig. 6.8a, which shows the destination frequency for the
highest distinction score is between 2 kHz and 2.24 kHz. By using (6.1),
we can calculate the compression ratio for a given destination frequency.
The compression ratios for the destination frequencies of 2 kHz, 2.24 kHz,
and 2.3 kHz are 5.8, 4.2, and 3.9, respectively. Thus, the objective result
shows that the optimal compression ratio is between 3.9 and 5.8, while the
listening test result shows that the optimal compression ratio is between
4.2 and 5.8. This approximately matches the time-width of the squared-
magnitude of the gammatone filter that is shown in Fig. 6.2. If we choose
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the magnitude of 0.5 (-6 dB) as the threshold, the time-widths for speech
and the gammatone filter are 0.09 and 0.45, respectively. This indicates
that if the compression ratio is below 0.45

0.09
= 5, there is no intelligibility

reduction, as the time-width of the compressed speech is still within the
time-width of the ear.

Figures 6.9b to 6.9e show the intelligibility estimated by the other four
state-of-the-art intelligibility predictors, which are wSTMI [51], SIIBGauss [41],
ESTOI [43], and HASPI [44]. The results from these four SIPs are not con-
sistent to the result of the sound distinction test. The intelligibility esti-
mated by wSTMI shows that the frequency destination should be between
6 kHz and 7 kHz. The intelligibility estimated by SIIBGauss, ESTOI, and
HASPI shows that the frequency destination should be between 4.2 kHz
and 5.2 kHz. SIIBGauss, ESTOI, and HASPI achieved similar results, be-
cause they use similar mechanism to predict speech intelligibility, i.e., the
original spectro-temporal components are decomposed into mutually or-
thogonal subspaces. The intelligibility is then estimated based on the com-
ponents in each subspace. Since SIIBGauss calculates the mutual informa-
tion for each transformed band individually, it applies KLT to remove cor-
relation of signals at different frequency bands. Similarly, HASPI applies a
set of cosine-based orthogonal functions to remove the correlation. ESTOI
calculates the inner product of the two supervectors of the clean speech
and the degraded speech. The supervectors include both spectral and
temporal components. As inner product measures the orthogonality be-
tween two vectors, any additional orthogonal transform does not impact
the result. However, each supervector can be viewed as a combination of
basis vectors which are from mutually orthogonal subspaces. Thus, the
intelligibility is based on the components projected onto the orthogonal
subspaces.
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6.6 Summary

We proposed a hearing instrument fitting method based on the mutual
information-based intelligibility predictor. The goal of hearing instrument
fitting is to find out the optimal parameter that maximizes the intelligibil-
ity of speech received by hearing-impaired people. Adjusting the param-
eter manually is time-consuming. We use the intelligibility predictor to
improve the efficiency of the fitting process.

The NFC operator is one of frequency lowering operators that are used
in some hearing instruments. We evaluated the proposed fitting method
based on the NFC operator. Since the NFC operator does not modify the
signal at low frequency, mutual information between the clean speech and
the frequency-lowered speech is infinite. Thus, we used the speech trans-
mission model based on the continuous-valued message to generate the
pseudo message. The intelligibility of the frequency-lowered speech is es-
timated by the mutual information between the pseudo message and the
frequency-lowered speech. Using the continuous-valued pseudo message
makes it possible to estimate the intelligibility of the frequency-lowered
speech, although the true message is discrete-valued.

To avoid the acclimatization in the speech recognition test for the
frequency-lowered speech, we proposed a sound distinction test to re-
place speech recognition test. The logic of the sound distinction test is
the same as the speech recognition test. In speech recognition test, the
listener matches the recording of input speech with the templates stored
in the brain. For frequency-lowered speech, the templates have not been
learned by the listener. Thus, in the sound distinction test, we also present
several recordings that are used as the templates. One of the templates
matches the recording of input speech.

We evaluated the fitting method by comparing the result of the sound
distinction test with the results of the objective SIPs. For the NFC op-
erator, the cutoff frequency was 1.5 kHz. We needed to determine the



6.6. SUMMARY 123

compression ratio which can be calculated through the bandwidth of the
frequency-lowered speech. We assumed hearing loss occurs above 2 kHz.
In the experiment, we chose different output bandwidths of the frequency-
lowered speech (destination frequencies). The sound distinction test shows
that the maximal intelligibility is achieved when the destination frequency
is between 2 kHz and 2.24 kHz. This is consistent to the proposed mu-
tual information-based metric that produces the maximal mutual infor-
mation, when the destination frequency is between 2 kHz and 2.3 kHz.
However, the subjective result is not consistent with the other four SIPs,
which are wSTMI, SIIBGauss, ESTOI, and HASPI. For wSTMI, the maximal
objective score is achieved between 6 kHz and 7 kHz. For SIIBGauss, ESTOI,
and HASPI, the maximal objective score is achieved between 4.2 kHz and
5.2 kHz.

Finally, the optimal destination frequency range obtained from the
sound distinction test matches the time-width of speech and the gamma-
tone filter. The destination frequencies of 2 kHz and 2.24 kHz correspond
to compression ratios of 4.2 and 5.8. Thus, the optimal compression ratio
is between 4.2 and 5.8 for the NFC operator. Fig. 6.2 shows the time-width
of the gammatone filter is approximately five times of the time-width of
speech. This means theoretically the compressed speech does not lose any
information, as long as the compression ratio is below five, which is within
the optimal range of the compression ratio obtained from the sound dis-
tinction test.
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Chapter 7

Conclusions and Future Work

The purpose of the objective SIPs is to replace the subjective listening
test which is time-consuming and costly. The subjective listening test is
required in the development of speech enhancement operators and the
fitting of hearing instrument. Mutual information based SIPs estimate
speech intelligibility by calculating the mutual information between the
transmitted message and the received message. Different mutual informa-
tion based SIPs use different representation forms of the message. There
are three objectives for this thesis: (1) study the correct representation form
of the message; (2) develop a mutual information based SIP according
to the representation form of the message; (3) develop a fitting method
for hearing instrument by using the mutual information based SIP. In this
chapter, we will summarize the findings of these three objectives and dis-
cuss the possible directions in the future work.

7.1 Conclusions

7.1.1 Modeling of the Message

For the mutual information based SIPs, one important thing is to deter-
mine what signal is used as the transmitted message. Speech is contin-
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uous sound, which includes the transmitted message and other informa-
tion, such as talker information and environment information. SIIB and
SIIBGauss model the transmitted message as a continuous-valued variable,
and the other information as additive noise. The received speech is con-
sidered as the received message. They achieved state-of-the-art prediction
results among the mutual information based SIPs. However, the correla-
tion coefficients between the transformed message and the transformed
clean speech are considered constant across the transformed bands, which
is not true.

In Chapter 3, we assume the transmitted message, the clean speech,
and the received speech have Gaussian distribution, which is the same as-
sumption as SIIBGauss. We improved SIIBGauss by using more realistic corre-
lation coefficients, which vary across the transformed bands. To evaluate
the modified model, we compared the objective prediction results with
the psychometric curves, which are subjective intelligibility results of four
types of noisy speech signals over different SNRs for the acoustic channel.
We found that the objective results did not match the subjective results
well. The modified model has a much wider SNR interval between 0 in-
telligibility and 100% intelligibility than the psychometric curves.

We analyzed this phenomenon, and we think this mismatch is caused
by the assumption that the transmitted message is continuous-valued. Note
that for an additive white Gaussian noise (AWGN) channel and a fixed
variance of the transmitted signal, the continuous-valued Gaussian dis-
tributed signal generates the maximal mutual information. Thus, the as-
sumption of the continuous-valued message gives an over estimate of the
mutual information for the production channel.

Chapter 4 studied the validity of the transmission model based on the
discrete-valued message. The transmitted message is modeled as discrete-
valued linguistic unit. There are three reasons for speech to have discrete-
valued message. First, the discrete-valued message can make speech ro-
bust to acoustic noise. Speech is short-time stationary, which can be viewed
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as a repetition code of the underlying message transmitted through an
AWGN channel. The repetition coding makes it possible to reliably trans-
mit the message from one end to the other end with any number of relays
in between.

Second, due to the sphere packing, a high-dimensional discrete-valued
message has its noisy realizations located on the sphere of a ball. If the
noisy realization is closer to its corresponding message than to any other
messages, the noisy realization can be correctly recognized. When the
noise level just makes two spheres touch, increasing the noise a bit more
will make the misrecognition suddenly happen. This is different to the
continuous-valued message, which makes the probability of misrecogni-
tion gradually happen as the noise level increases. Thus, when the acoustic
SNR increases from 0 intelligibility to 100% intelligibility (from misrecog-
nition to recognition), the discrete-valued message produces a narrower
SNR interval than the continuous-valued message.

The third reason why the message should be discrete-valued is that
the discrete-valued message gives a lower estimation of the mutual infor-
mation for the production channel than the continuous-valued message.
This can also generate a narrower interval for the acoustic SNR, since the
mutual information for the acoustic channel can quickly reach the same
level as the mutual information for the acoustic channel. In the simulation,
the mutual information for the production channel and the acoustic chan-
nel are calculated separately. The predicted intelligibility results based
on the discrete-valued message matches the psychometric better than the
predicted intelligibility results based on the continuous-valued message.

7.1.2 Speech Intelligibility Prediction based on Mutual In-

formation

Based on the findings in Chapters 3 and 4, Chapter 5 proposed a new mu-
tual information based SIP. As the transmitted message is discrete-valued,
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we cannot generate a pseudo message from a clean speech signal. Thus,
instead of calculating the mutual information between the message and
the received speech, we calculate the mutual information between the
clean speech and the received speech.

Since correlation exists in the frequency for both the clean speech and
the degraded speech, the mutual information cannot be calculated as the
sum of the mutual information for each band. The proposed SIP assumes
they are jointly Gaussian distributed and use the relevant equation to cal-
culate the mutual information. Unlike SIIB and SIIBGauss, the proposed SIP
also takes into account the correlation in the frequency for the transformed
received speech.

In addition, the proposed SIP improves the forward masking function.
In SIIB and SIIBGauss, the minimal values in each band of the clean speech
are used as the absolute hearing threshold. In the proposed SIP, the stan-
dard absolute hearing threshold is used. To convert the value of the log-
auditory spectrogram from dB scale to dB SPL, we add the original log-
auditory spectrogram by a constant, which is calculated as the level dif-
ference between the normal speech level (dB SPL) and the log-auditory
spectrogram in 1 kHz.

The proposed SIP was evaluated based on four data sets, which are
Kjems AN, Kjems ITFS, NELE Cooke and HuPost. Kendall rank correla-
tion coefficient and Pearson correlation coefficient were used as the per-
formance criteria. The proposed SIP shows higher correlation coefficients
than SIIBGauss.

7.1.3 Mutual Information based Hearing Instrument Fit-

ting

Chapter 6 proposed an automatic fitting method for hearing instruments.
Hearing instrument fitting is necessary, since different hearing-impaired
persons have different hearing losses. It is carried out by audiologists, who



7.1. CONCLUSIONS 129

adjust the parameters of hearing instruments to maximize the intelligibil-
ity of processed speech. Hearing instrument fitting is time-consuming,
since listening tests are required. To solve this problem, the automatic fit-
ting method uses an objective SIP to adjust the parameters.

Since hearing impairment usually starts at high frequency, our study
uses the NFC operator, which is a frequency lowering operator in hearing
instruments. The NFC operator can improve speech intelligibility, because
the frequency resolution capacity of the human ear is above the frequency
resolution of speech. Thus, the frequency-compressed speech can still be
resolved by the human ear. The question is to what extent we should
compress speech in frequency, such that the intelligibility is maximized.
The automatic fitting method finds the parameters of the NFC operator by
maximizing the mutual information between the transmitted message and
the received speech. The NFC operator has two parameters, which are the
cutoff frequency and the compression ratio. The signal below the cutoff
frequency remains the same. We cannot use the proposed SIP in Chap-
ter 5, since the unchanged low-frequency component makes the mutual
information between the clean speech and the frequency-lowered speech
infinite. To solve this problem, we use the modeling for the continuous-
valued message and generate the pseudo message as the transmitted mes-
sage. The mutual information is calculated between the pseudo message
and the received speech.

The automatic fitting method was evaluated by comparing the pre-
dicted speech intelligibility, which is from the mutual information based
SIP, with the listening test results. We proposed a sound distinction test
for frequency-lowered speech to improve the test efficiency. We assume a
hearing-impaired person cannot hear any signal above 2 kHz. The cutoff
frequency of the NFC operator was 1.5 kHz. We compressed the frequency
range [1.5 kHz 8 kHz] with different compression ratios. The objective
metric shows moving the signal frequency from 8 kHz to somewhere be-
tween 2 kHz and 2.3 kHz maximizes speech intelligibility, which is consis-
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tent to the listening test result that shows the frequency of 8 kHz should
be moved to somewhere between 2 kHz and 2.24 kHz. The results from
the other SIPs do not match the listening test result.

One remaining question is in what scenario we should use the pseudo
message for the mutual information based SIP. In Chapter 5 the proposed
SIP does not use the pseudo message, while in Chapter 6 the proposed SIP
does. Using the pseudo message in Chapter 6 is to avoid infinite mutual
information between the clean speech and the frequency-lowered speech.
When using the pseudo message in the proposed SIP in Chapter 5, the in-
telligibility prediction result gets a bit worse than SIIBGauss. Note that the
pseudo message is based on the modeling of the continuous-valued mes-
sage, which is not the true modeling of the message. Thus, the pseudo
message is necessary in the scenario where the mutual information be-
tween the clean speech and the received speech is infinite.

7.2 Future Work

All the SIPs use the knowledge from the human auditory system. A good
understanding of the human auditory system helps in modeling the rep-
resentation of the received speech. Human auditory system is complex.
The question is how deep we should go to build a satisfied SIP, given the
fact we are still exploring the mechanism of signal processing in the brain.

It seems data-driven SIPs can also produce good intelligibility predic-
tion without going deep to the signal processing mechanism in the brain.
Thus, in the future work, we can use the knowledge from the data-driven
SIPs to improve the current mutual information based SIP. For example,
we can calculate the mutual information between the message and the re-
ceived speech for each critical band, and assign trained weights for each
band to predict speech intelligibility.

The other future work relates to the development of a new frequency
lowering operator. In the NFC operator, we need to decide the start fre-
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quency. If we have a high start frequency, we have a good recognition of
vowel sounds. However, less space is kept for high-frequency fricatives.
Currently, we have frequency lowering operators that are based on lin-
ear/nonlinear frequency compression and frequency transposition on the
Hz scale. A nonlinear frequency transposition on the Hz scale is miss-
ing. In speech, the sound at one instant can be either vowel-like sound
or fricative-like sound. It cannot be both at the same time. Thus, a new
frequency lowering operator based on nonlinear frequency transposition
on the Hz scale (linear on the ERB-rate scale) would be worth considering.
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