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Abstract

Purpose – Longevity risk, that is, the uncertainty of the demographic survival rate, is an important
risk for insurance companies and pension funds, which have large, and long-term, exposures to
survivorship. The purpose of this paper is to propose a new model to describe this demographic
survival risk.

Design/methodology/approach – The model proposed in this paper satisfies all the desired
properties of a survival rate and has an explicit distribution for both single years and accumulative years.

Findings – The results show that it is important to consider the expected shift and risk premium of life
table uncertainty and the stochastic behaviour of survival rates when pricing the survivor derivatives.

Originality/value – This model can be applied to the rapidly growing market for survivor derivatives.
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1. Introduction
Longevity risk, that is, the uncertainty of demographic survival rate, is very important
for those who run pension schemes and provide annuities. Systematic underestimation
of the demographic survival rate will result in the increase of payment by the benefit
providers, putting at a huge loss and even causing bankruptcy. The Economist (2010)
estimates that every additional year of life expectancy at age 65 is reckoned to bump
up the present value of pension liabilities in British defined-benefit schemes by
3 per cent, or £30 billion (US$48 billion). In Britain alone, the total exposure to
longevity risk exceeds £2 trillion. The International Monetary Fund (2012) also reports
a huge extra cost for pension funds if the individual life increases, that is, if people live
three years longer than expected, an additional 50 per cent of GDP will need to be paid
in advanced economies and 25 per cent of GDP in developing economies. The social
security systems, especially pension funds, are vulnerable to the unexpected
increase of demographic survival rate (the unexpected decrease of mortality rate).
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Therefore, financial institutions need tools to hedge longevity risk and benefit from
allocating money to longevity-related financial assets (Sherris and Wills, 2008; Coppola
and D’Amato, 2012; Cocco and Gomes, 2012).

In recent years, survivor derivatives have developed quite rapidly to manage the
longevity risk (The Economist, 2010). In 2009, Babcock International completed a
longevity swap with Credit Suisse, and a group of bankers and insurers launched the
Life and Longevity Markets Association (LLMA) on 1 February 2010 to spur
the development of a liquid longevity market. For example, LLMA wants to speed up
the survivor swaps transactions by standardizing documentation.

The recent development of the longevity market calls for corresponding pricing and
hedging methods (Ballotta and Haberman, 2006; Dowd et al., 2006; Bauer et al., 2010;
Wang and Yang, 2012; Cocco and Gomes, 2012). How to model the survival rate is one
of the largest obstacles. The classical stochastic models for interest rate and equity
derivatives are not applicable in describing the demographic survival rate.
The modelling of the demographic survival rate (hereafter referred to as “SR”) or
demographic mortality rate (hereafter referred to as “MR”) has two properties, including:

(1) the value of SR should be always in the domain [0,1); and

(2) a slight disturbance on SR today will have a persistent effect on cumulative SR
in the future.

This means that a small fitting error will induce a significant cumulative deviation in
the long run. In addition, a good SR model should be able to capture the exhibited
volatility pattern of historical SR. SR has historically been significantly less volatile
than other stochastic variables, such as equity return or interest rates, and this creates
significant challenges in curve fitting. The volatility of SR increases before the age of
80, reaches its peak around the 80s and decreases to zero at the age of 115.

The prior literature has done a lot of work to model SR. Janssen and Skiadas (2006),
Dahl (2004) and Schrager (2006) relax some of the constraints mentioned above to
construct stochastic SR (MR) models with mathematical convenience. For example,
Janssen and Skiadas (2006) propose a first-passage time process to model individual
mortality. Their model makes meaningful economic sense in describing individual
deaths. Dahl (2004) introduces an affine stochastic mortality model analogous to the
affine interest rate model framework, which is both analytically tractable and flexible.
Schrager (2006) extends Dahl (2004) by allowing an age-varying parameter to fit the
mortality of multiple cohorts. However, his model suffers considerable fitting errors.
In particular, his model violates the requirement of non-negativity of MRs, which makes
the practical implementation difficult. Some studies also attempt to explain the
unexpected change of MR by adding jump components. For example, Chen et al. (2010)
adopt the dynamic mortality models with jumps to capture the permanent effects caused
by unexpected factors. Deng et al. (2012) introduce a double-exponential jump process to
capture the asymmetric movement in MR. Lin et al. (2012) propose a multivariate jump
diffusion process to capture the common mortality shock across countries.

On the other hand, some researchers focus on the effect of stochastic SR or MR on
the price of derivatives. Dowd et al. (2006) use a transformed beta distribution to model
longevity shocks. Their model is calibrated to match life tables and to capture
historical SR volatility. Dawson et al. (2010) extend Dowd et al. (2006) by allowing
age-varying parameters of the beta distribution. However, these two models neither

Longevity
risk

141



have a closed-form solution to cumulative SR nor do they consider the stochastic
dynamics of interest rates. Ballotta and Haberman (2006) propose a stochastic MR
model by introducing the effects of a stochastic reduction factor. They argue that the
increase in volatility of MR will lead to the decrease of SR, and the price of guaranteed
annuity options (hereafter referred to as “GAO”) becomes lower. Wang and Yang
(2012) discuss the cohort mortality dependence under the Lee-Carter framework and
apply their model on the pricing of survivor floor and survivor swaps.

The literature on MR keeps searching for a model either fitting the historical data well
or pricing the derivatives properly, but few studies address the problems in both fields.
As Cairns et al. (2011) state, a good MR model should satisfy the following condition:

[. . .] biological reasonableness; the plausibility of predicted levels of uncertainty in forecasts
at different ages; and the robustness of the forecasts relative to the sample period used to fit
the model.

In this paper, we attempt to fill the gap between fitting and pricing. We illustrate
that our model can fit the historical data well and, at the same time, generate a
MR volatile enough to describe the risk without violating any biological attribution.
In particular, we use gamma distribution to model stochastic age-varying SR and take
the impact of stochastic interest rates into account. We illustrate how to calibrate the
model parameters from an SR curve and volatility structure using UK males’ life table
data. We also apply our model to pricing survivor derivatives. The pricing results
show that the prices of survivor derivatives are highly sensitive to the assumption
about the expected life table shift in risk-neutral measure. It is important to consider
the expected shift and risk premium of life table uncertainty and the stochastic
behaviour of SRs when we price the survivor derivatives.

Our paper makes several contributions. First, our model satisfies all the desired
properties of SR[1], and fits the historical statistical characteristics well. Second, though
there are numerical solutions and approximations to get the value of
longevity contingent (Cairns, 2011), our setting ensures that the distribution of
cumulative SR is tractable, while another extraordinary value comes from the existence
of closed-form solutions of the swap premium and the prices of survivor caps and floors.
Moreover, compared with other distributions, modelling mortality with exponential
gamma distribution allows the occurrence of extreme events, though with rare
probability, such as war, an infectious disease epidemic or other catastrophes. We show
that besides its use for the usual derivatives (survivor swap, survivor caps and survivor
floors), it can also be a general framework in pricing contingent claims on either SR or
interest rates or both, that is, GAOs, survivor caps and floors and survivor swaptions.

The paper is organized as follows. Section 2 introduces our SR model and calibrates
it to the UK males’ life table data from 1980-1982 to 2004-2006. Section 3 tests the
effects of stochastic interest rate. Section 4 uses our model to price survivor caps,
survivor swaptions and GAOs. Section 5 concludes the paper.

2. Longevity risk model
In the last few decades, human MRs have decreased in a definite trend because of the
improvement in life quality and medical techniques. Though slow, this trend has
a significant impact on the management of insurance companies and pension funds
which are exposed to long-horizon commitments. Thus, systematic longevity risk
needs to be taken seriously.
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To illustrate, we plot the MR (panel (a)) and cumulative SR (panel (B)) of UK males
of different cohorts in Figure 1. MR is defined as the average probability that a person aged
x exactly will die before reaching age (x þ 1), while cumulative SR is defined as
the average probability that a person will survive until age x. Figure 1 plots three
subperiods, 1980-1982, 1990-1992 and 2000-2002, to show the change of MR with time.
The data are obtained from the web site of the UK Govenment actuary’s department
(historic interim life tables)[2]. MR and cumulative SR become steeper after the age of 60.
We can also see a very gentle downward (upward) long-term trend of MR (cumulative SR)

Figure 1.
The MR and cumulative

SR of UK males at
different ages

(a)

(b)

Notes: Panel (a) plots the MR of UK males at different ages in the
1980-1982, 1990-1992 and 2000-2002 periods; panel (b) plots the
cumulative SR of UK males at different ages in the 1980-1982,
1990-1992 and 2000-2002 periods; the data are obtained from the
web site of the UK Govenment actuary’s department (historic
interim life tables)
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at most ages, especially from age 50 to age 90. However, we will show later that a slight
change of MR or SR will significantly affect the pricing of survivor derivatives.

To see the effects more specifically, we calculate the quantitative impact of a
deterministic change of historical MR on the basic survivor derivative: a survivor
swap. In a survivor swap, the pay-fixed party agrees to pay defined sums at defined
intervals over the life of the contract and to receive in return payments predicated on
the actual survivorship of the cohort referenced in the swap contract. The premium in a
survivor swap can be written as (Dawson et al., 2010)[3]:

ps; f ¼

Pf
n¼tþ1NY nDðt; nÞEQ

t ðSðt; nÞÞPf
n¼tþ1NY nDðt; nÞH ðt; nÞ

2 1 ð1Þ

t : age at the time of the contract agreement.

s : age at the time of the first payment.

f : age at the time of the final payment.

n : age at the time of any given anniversary.

N : the size of the cohort at age t.

EQ
t ðSðt; nÞÞ is expected cumulative SR from the age t to n at time t under the

risk-neutral measure, Yn is the payment per survivor due at age n ( ¼ 0 for n , s),
D(t, n) is the discount factor and H(t, n) is the SR on the referenced life table at time
t. As N, Yn, D(t, n) and H(t, n) are known at time t, all we need to compute ps, f is
EQ

t ðSðt; nÞÞ. For simplicity, we assume there is no risk premium for the life table
uncertainty for the moment; that is, EtðSðt; nÞÞ ¼ EQ

t ðSðt; nÞÞ, where Et(S(t, n)) is
expected cumulative SR from age t to n at time t under the physical measure[4]. We can
write Et(S(t, n)) as the following:

EtðSðt; nÞÞ ¼
Yn

i¼t

1 2 mortalityu
i

� �
ð2Þ

where u is an expected shift of S(t, n) from that on life table at time t. When u ¼ 1, the
expected SR does not change; when u . 1, SR increases and otherwise SR decreases.

To capture the long-term trend of MR change, we relax the assumption of power
term u in equation (2) and let it be age varying and linear with time, that is:

EtðSðt; nÞÞ ¼
Yn

i¼t

1 2 mortalityuiðtÞ
i

� �
ð3Þ

where ui(t) ¼ 1 þ ai(i 2 t). We then calibrate the parameters ai to the annual life tables
of UK males from 1980-1982 to 2004-2006[5].

Table I reports the calibration results. Panel (a) reports the summary statistics of ai

and panel (b) reports the calibration error of our models. The mean and median of ai is
positive, which implies that the SR increases in the long run. The max ai happens
at the age of 88, which is possibly due to the improvement of medical techniques
since the 1980s. The minimum of ai occurs at the age of 34, which probably reflects that
increasing work pressures cause deteriorating health conditions at this age. In order to
show whether this model calibrates the data well, we calculate the mean absolute

JRF
14,2

144



relative error (MARE) as follows:

MAREi; t ¼
j dMRi; tMRi; t 2 MRi; tj

MRi; t
ð4Þ

where MRi; t ¼ mortality1þaiði2tÞ
i . Panel (b) reports the summary statistics of MARE.

The results show that the calibration errors are limited. The mean and median of
MARE are both smaller than 5 per cent.

To show the impact of MR modelling on the swap premium, we calculate the
premium under a simple assumption that Yn is constant after s and the interest rate is
zero; thus, the swap premium can be written as:

ps; f ¼

Pf
n¼sþ1E

Q
t ðSðt; nÞÞPf

n¼sþ1H ðt; nÞ
2 1 ð5Þ

Figure 2 plots the swap premium in equation (5) for different s and f. H(t, n) is based on
UK males’ life tables in the 1980-1982 period, while EQ

t ðSðt; nÞÞ ¼ EtðSðt; nÞÞ and
Et(S(t, n)) are from the model calibration. The surface of the swap premium with
respect to different start age and expiration age demonstrates that the swap premium
is very sensitive at the 80s, when the SR decreases rapidly. This age-varying
sensitivity places challenges on risk management, especially over this age period.

The realized future SR might deviate from its expectation. To model the uncertainty
of future SR, we introduce a gamma-distributed stochastic variable in power terms:

Sðt; nÞ ¼
Yn

i¼tþ1

piðtÞ
1iðtÞ ð6Þ

where pi(t) is the calibrated SR from age i to age i þ 1[6]. 1iðtÞ , Gðkit;2ut= lnpiðtÞÞ; that
is, 1i(t) is assumed to be independently gamma distributed with two parameters. One is
an age-varying shape parameter kit and the other is a constant scale parameter ut. In order
to make stochastic factor 1i(t) not affect the long trend of SR calibrated from the data,
we choose these two parameters so that the expectation of pi(t)

1i(t) equals to pi(t).

Panel (a) – summary statistics of ai

ai Max Min Mean Median SD
Value 0.0086 20.0007 0.0044 0.0043 0.0029
Age 88 34
Panel (b) – calibration errors of ui(t)
MARE Max Min Mean Median SD
Value 0.268 1.76 £ 1025 4.66% 3.67% 0.0401
Age 21 20

Notes: Table I reports the calibration results of the long-term trend model to the historical MR of UK
males from 1980-1982 to 2004-2006; panel (a) reports the summary statistics of the parameters; panel (b)
reports the calibration error, which is calculated by the MARE; the MARE is calculated as follows:

MAREi; t ¼
jdMRi; tMRi; t2MRi; t j

MRi; t

where MRi;t ¼ mortality1þaiði2tÞ
i

Table I.
Calibration results of the

long-term trend model
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In other words, we introduce a stochastic gamma variable to the SR which does not affect
the expectation.

According to the property of gamma distribution:

yiðtÞ ¼ 21iðtÞlnpiðtÞ , Gðkit; utÞ

we have:

piðtÞ
1iðtÞ ¼ piðtÞ

2
yi ðtÞ

lnpi ðtÞ ¼ e2yiðtÞ

Therefore:

Etð piðtÞ
1iðtÞÞ ¼ Etðe

2yiðtÞÞ ð7Þ

Since the introduction of the stochastic variable does not change the expectation, we
also have:

Etðe
2yiðtÞÞ ¼ piðtÞ

The analytical solution of expectation and variance of e 2 yi(t) can be computed as
follows:

Etðe
2yiðtÞÞ ¼

Z 1

0

e2yiðtÞgð yiðtÞÞdyiðtÞ ¼

Z 1

0

e2yiðtÞyiðtÞ
ðkit21Þ e ð yiðtÞÞ=ut

u
kit

t gðkitÞ
dyiðtÞ

¼ 1=ðuðkitÞ
t gðkitÞÞ

Z 1

0

; e ð2yiðtÞÞ½yiðtÞ�
ððkit21ÞÞe ð2ð yiðtÞÞ=utÞ

dyiðtÞ ¼ 1=ðuðkitÞ
t Þ ¼ ð1 þ utÞ

2kit

ð8Þ

varðe2yiðtÞÞ ¼ ð1 þ 2utÞ
2kit 2 ð1 þ utÞ

22kit ð9Þ

Figure 2.
The survivor swap
premium
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100 80 60Age at the start of the contract Age at the expiration
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Notes: This figure plots the survivor swap premium for different s and f
under a simple assumption that Yn is constant and the interest rate is zero,
such that:

where H(t, n) is based on the UK males’ life table for the 1980-1982
period; EQ

t (S(t, n)) = Et(S(t, n)) and Et(S(t, n)) are from the model calibration

Σ f
n = s+1

EQ
t (S(t, n))

Σ f
n = s+1

H(t, n)
–1,πs, f =

JRF
14,2

146



Given the information on the expectation and volatility level of SR, we could take two
steps to get the kit and ut:

(1) Given the expectation, kit is a function of ut. Thus, kit can be written as:

kit ¼ 2
lnðEtðe

ð2yiðtÞÞÞÞ

lnð1 þ utÞ
¼ 2

ln piðtÞ

lnð1 þ utÞ
ð10Þ

where piðtÞ ¼ 1 2 mortalityuiðtÞ
i and ui(t) ¼ 1 þ ai(i 2 t)[7].

(2) Calibrate ut to volatility level of SR:

varðe2yiðtÞÞ ¼ ð1 þ 2utÞ
2kit 2 ð1 þ utÞ

22kit

¼ ð1 þ 2utÞ
lnð pi ðtÞÞ

lnð1þut Þ 2 ð1 þ utÞ
2lnð pi ðtÞÞ

lnð1þut Þ

ð11Þ

The variance of SR can be estimated from historical MR as follows:

varðe2yiðtÞÞ ¼
1

M

XM
t¼1

ðSRit 2 EðSRiÞÞ
2

Using the historical data of UK males’ life tables from 1980-1982 to 2004-2006,
we calibrate the parameter of ut equal to 0.0010, and kit varies from 0.2257 to 486.69 for
different ages.

These parameters are calibrated in the physical measure. Under regular conditions,
the drift term should be adjusted by the risk premium when transforming the
distribution from the physical measure to the risk-neutral measure so that survivor
derivatives can be priced. Since we have no ideas about the risk premium of mortality
risk, we simply assume two levels of risk premium. One is low risk premium and the
impact on shift equals to (1/3)ai(i 2 t), that is, uQ

i ðtÞ ¼ 1 þ ð2=3Þaiði 2 tÞ, where Q
means the risk-neutral measure. The other is high risk premium and
uQ

i ðtÞ ¼ 1 þ ð1=3Þaiði 2 tÞ. Because the impact of the risk premium is mainly on the
expected shift of the life table in the risk-neutral measure, this analysis could also show
the importance of expected shift changes for survivor derivatives pricing.

3. Stochastic interest rates
In the field of equity derivatives, stochastic interest rates usually play a trivial role
(Bakshi et al., 1997). The main reason for this is that interest rates are generally less
volatile than equity returns. However, in the insurance and pensions markets, the
uncertainty of future interest rates could be significant, since cumulative small changes
in interest rates might eventually give rise to a large shock in the present value of
long-duration contracts. Moreover, contrary to stock returns, the volatility of MRs is
lower than that of interest rates. Thus, it is useful to check the impact of stochastic
interest rates on survivor swap premiums.

The closed-form solution of ps,f can be solved under the assumption that interest
rate and MR are independent. In this paper, we use the Cox, Ingersoll and Ross
(hereafter referred to as “CIR”) (Cox et al., 1985) process to model the stochastic interest
rate in the risk-neutral measure, that is:

drt ¼ kðb 2 rtÞdt þ s
ffiffiffiffi
rt

p
dWQ

t
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where dWQ
t is a standard Brownian motion under the risk-neutral measure. The

discount factor D(t, n) can be represented analytically as:

Dðt; nÞ ¼ Aðt; nÞe2Bðt; nÞrt

where:

Bðt; nÞ ¼
2ðeg ðn2tÞ 2 1Þ

ðgþ kÞðeg ðn2tÞ 2 1Þ þ 2g

Aðt; nÞ ¼ exp ln 2gþ
1

2
ðgþ kÞðn 2 tÞ2 ln½ðgþ kÞðegðn2tÞ 2 1Þ þ 2g�

� �2kb=s 2

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k 2 þ 2s 2

p
In order to show the impact of stochastic interest rates, we follow the CIR structure
specified in Hull and White (1990), that is, drt ¼ 0:20ð0:10 2 rtÞdt þ 0:06

ffiffiffiffi
rt

p
dWQ

t . The
initial values r0 are 0.08, 0.10 and 0.12 to account for the different shapes of term
structure within the CIR framework[8]. We also calculate the survivor swap premium
where the value of the constant interest rate is set to be equal to the long-term mean 0.10.
We only report the result assuming no risk premium, that is, uQ

i ðtÞ ¼ 1 þ aiði 2 tÞ, for
simplicity[9].

Table II reports the difference and relative difference of premiums between a
constant interest rate and a CIR model when uQ

i ðtÞ ¼ 1 þ aiði 2 tÞ, where the
parameters of ai are calibrated to the annual life tables of UK males from 1980-1982 to
2004-2006. Panels (a)-(c) report the difference when r0 ¼ 0.08, 0.10 and 0.12,
respectively. The difference and relative difference are defined as:

Difference ¼ PremiumðconstantÞ2 PremiumðCIRÞ

Relative difference ¼
PremiumðconstantÞ2 PremiumðCIRÞ

PremiumðconstantÞ

Both differences and relative differences increase with duration. When r0 ¼ 0.08, the
largest relative difference is about25.93 per cent of the premium of constant interest rate.
When r0 ¼ 0.10, the largest relative difference is about 22.80 per cent of the premium of
constant interest rate. When r0 ¼ 0.12, the largest relative difference is about 2.19 per cent
of the premium of constant interest rate. Though the gap between constant and stochastic
interest rate is small, its value in the relative measure is not negligible, especially for long
duration. Figure 3 also plots the differences in premiums between a constant interest rate
and a CIR model when r0 ¼ 0.08, 0.10 and 0.12, respectively.

4. Pricing survivor derivatives
We first price survivor caps and floors. A survivor cap (floor) is a derivative in which
the buyer receives payments at the end of each period in which the real (agreed) SR
exceeds the agreed (real) level. Because the pricing of survivor caps and floors are
related by put-call parity, we analyse only cap pricing in this section. The value of
survivor caps can be expressed as:

caps ¼ N
Xf

n¼tþ1

Dðt; nÞEQ
t ½Sðt; nÞ2 Sstrikeðt; nÞ�

þ ð12Þ
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Start age\end age 70 75 80 85 90 95 100

Panel (a) – premium difference when r0 ¼ 0.08
Absolute difference
65 20.0001 20.0005 20.0011 20.0018 20.0023 20.0024 20.0025
70 – 20.0001 20.0006 20.0013 20.0018 20.0020 20.0021
75 – – 20.0002 20.0007 20.0013 20.0016 20.0017
80 – – – 20.0002 20.0007 20.0011 20.0011
85 – – – – 20.0002 20.0005 20.0006
90 – – – – – 20.0002 20.0003
95 – – – – – – 20.0001
Relative difference
65 (%) 22.00 23.20 24.26 25.13 25.68 25.89 25.93
70 (%) – 22.04 23.24 24.26 24.94 25.22 25.27
75 (%) – – 22.08 23.34 24.23 24.63 24.72
80 (%) – – – 22.16 23.38 23.99 24.15
85 (%) – – – – 22.11 23.19 23.54
90 (%) – – – – – 22.37 23.10
95 (%) – – – – – – 21.88
Panel (b) – premium difference when r0 ¼ 0.1
Absolute difference
65 20 20.0001 20.0004 20.0007 20.0010 20.0011 20.0012
70 – 20 20.0001 20.0004 20.0007 20.0008 20.0008
75 – – 20 20.0002 20.0004 20.0005 20.0005
80 – – – 20 20.0001 20.0003 20.0003
85 – – – – 20 20.0001 20.0001
90 – – – – – 20 20
95 – – – – – – 20
Relative difference
65 (%) 20.21 20.74 21.45 22.12 22.58 22.76 22.80
70 (%) – 20.21 20.72 21.36 21.86 22.08 22.13
75 (%) – – 20.21 20.71 21.23 21.50 21.57
80 (%) – – – 20.21 20.66 20.99 21.09
85 (%) – – – – 20.19 20.55 20.72
90 (%) – – – – – 20.21 20.43
95 (%) – – – – – – 20.13
Panel (c) – premium difference when r0 ¼ 0.12
Absolute difference
65 0.0001 0.0002 0.0003 0.0003 0.0002 0.0001 0.0001
70 – 0.0001 0.0003 0.0005 0.0004 0.0004 0.0004
75 – – 0.0001 0.0004 0.0005 0.0005 0.0005
80 – – – 0.0002 0.0004 0.0005 0.0005
85 – – – – 0.0002 0.0003 0.0004
90 – – – – – 0.0001 0.0002
95 – – – – – – 0
Relative difference
65 (%) 1.58 1.69 1.33 0.84 0.48 0.32 0.29
70 (%) – 1.61 1.77 1.50 1.18 1.01 0.97
75 (%) – – 1.65 1.89 1.73 1.56 1.52
80 (%) – – – 1.72 2.03 1.96 1.90
85 (%) – – – – 1.72 2.05 2.05
90 (%) – – – – – 1.92 2.19
95 (%) – – – – – – 1.61

Notes: Table II reports the difference and relative difference between models using constant
and stochastic interest rates with different start and end ages; the stochastic interest rates are
assumed to follow the CIR structure specified in Hull and White (1990), that is,
drt ¼ 0:20ð0:10 2 rtÞdt þ 0:06

ffiffiffiffi
rt

p
dW Q

t ; the value of the constant interest rate is set to be equal to
the long-term mean 0.10; panels (a)-(c) report the difference when r0 ¼ 0.08, 0.10 and 0.12, respectively;
the results, assuming a no-risk premium, that is, uQ

i ðtÞ ¼ 1 þ aiði 2 tÞ, are reported; the difference and
relative difference are calculated as follows:

Difference ¼ PremiumðconstantÞ2 PremiumðCIRÞRelative difference ¼ PremiumðconstantÞ2PremiumðCIRÞ
PremiumðconstantÞ

Table II.
Premium differences

between models using
constant and stochastic

interest rates
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Figure 3.
Difference of swap
premium between
constant interest rate and
stochastic interest rate
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Notes: This figure plots the difference of swap premium between the constant
interest rate and the stochastic interest rate for each start age and expiration
age:
         Difference = Premium(constant) – Premium(CIR)
The risk premium of the life table is assumed to be zero, that is,
uQ

i (t) = 1 + ai(i – t); the stochastic interest rate is assumed to follow
a CIR process with drt = 0.20(0.10– rt)dt + 0.06 ÷ 

–
rt dWQ

t ; the value of the
constant interest rate is set to be equal to the long-term mean 0.1;
panel (a) plots the difference when the initial value r0 = 0.08, panel (b) reports
the difference when r0 = 0.1 and panel (c) reports the difference when r0 = 0.12
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First, we compute the value of caplet. Letting y:

ðt þ 1; nÞ ¼
Xn

i¼tþ1

yi

, G
Xn

i¼tþ1

ki; u

 !
we have:
Et½Sðt; nÞ2Sstrikeðt; nÞ�þ

¼ E
Yn

i¼tþ1

e2yi 2Sstrikeðt;nÞ

" #þ
¼ E e

2
Pn

i¼tþ1
yi 2 e2ðln 1Þ=ðSstrikeðt;nÞÞ

h iþ
¼

Z ðln 1Þ=ðSstrikeðt;nÞÞ

0

ðe2yðtþ1;nÞÞ2 ðe2ðln 1Þ=ðSstrikeðt;nÞÞÞ
yðtþ 1;nÞ

P
ki21

ð yðtþ1;nÞÞ=u
e

u
P

kig
P

ki

� � dyðtþ 1;nÞ

¼ ð1þ uÞ2
P

kig
ðð1þ uÞ=uÞln1

Sstrikeðt;nÞ
·
X

ki

� 	
2Sstrikeðt;nÞg

ð1=uÞln1

Sstrikeðt;nÞ
·
X

ki

� 	
¼ Et

Sðt;nÞgð1þ uÞ

u

ln1

Sstrikeðt;nÞ
·
X

; ki

� 	
2Sstrikeðt;nÞg

1

u

ln1

Sstrikeðt;nÞ

� 	
·
X

; ki

ð13Þ

where:

g
ðð1 þ uÞ=uÞln 1

Sstrikeðt; nÞ
·
X

ki

� 	
and g

ð1=uÞln 1

Sstrikeðt; nÞ
·
X

ki

� 	
are an incomplete gamma function in the form of:

g ða; bÞ ¼
1

g ðbÞ

Z a

0

e2xxb21dx

We then calculate EQ
t ½Sðt; nÞ2 Sstrikeðt; nÞ�

þ. We replace the ui(t) with uQ
i ðtÞ and get ki

and u under the risk-neutral measure following the similar calibration procedure using
equations (10) and (11). The parameters of ki and u under the risk-neutral measure are
then used to calculate EQ

t ½Sðt; nÞ2 Sstrikeðt; nÞ�
þ using equation (13). By substituting

equation (13) into equation (12), we can get the value of caps. For instance, we compute a
cap price by assuming interest rates to follow the CIR process and, assuming Sstrike(t, n)
is given by ustrike, without losing any generality. Parameters are given as follows:

. Parameters of contracts: N ¼ 10,000, f ¼ 100, t ¼ 65; ustrike ¼ 0.95, 0.98, 1.00,
1.02, 1.05.

. Parameters of gamma distribution: u ¼ 0.0005, 0.0010, 0.0015, ki varies with SR.

. Parameters of CIR: k ¼ 0.2, b ¼ 0.10, s ¼ 0.06, r0 ¼ 0.10.

Table III reports the price of caps under the parameter settings. Panels (a)-(c) report
the results when uQ

t ðtÞ ¼ 1 þ aiði 2 tÞ (no risk premium), 1 þ (2/3)ai(i 2 t)
(low risk premium), 1 þ (1/3)ai(i 2 t) (high risk premium), respectively. There are
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significant differences among the results. The caps prices are higher when the risk
premiums are low. For example, when uQ

t ðtÞ ¼ 1 þ aiði 2 tÞ, the price of the cap with
ustrike ¼ 1.05 and u ¼ 0.0005 is 812.90. However, it is only 3.2 when
uQ

i ðtÞ ¼ 1 þ ð1=3Þaiði 2 tÞ. This reflects the importance of considering the risk premium
of SR when pricing survivor caps. On the other hand, the prices of caps decrease with
the increase of strike price parameter ustrike and increase with the variance parameter u.

We next price survivor swaptions. A survivor swaption gives the right, but not the
obligation, to enter into a survivor swap contract at a specified rate of pstrike.
Conditional on the future interest rate rT and the assumed interest rate structure, the
swaption payoff at maturity is (Dawson et al., 2010):

CTðrTÞ ¼ ½fðpexpiry 2 pstrikeÞ�
þN

Xf2ðTþtÞ

n¼0

DðT;T þ nÞYnH ðt; nÞ

where:

f ¼
21; receiver swaption

1; payer swaption

(
The present value of swaption is given by:

Ct ¼ EQ
t ½Dðt;TÞCTðrTÞ�

¼ Dðt;TÞEQ
t ½CTðrTÞ�

¼ Dðt;TÞ

Z
R

CT ðrT ÞdF QðrTÞC

ð14Þ

ustrike 0.95 0.98 1 1.02 1.05

Panel (a) – uQ
i ðtÞ ¼ 1 þ aiði 2 tÞ

u ¼ 0.0005 6,032.7 4,152.6 2,973.2 1,925.9 812.9
u ¼ 0.0010 6,038.3 4,173.8 3,016.5 1,990.1 860.4
u ¼ 0.0015 6,046.0 4,195.9 3,055.2 2,044.1 908.7
Panel (b) – uQ

i ðtÞ ¼ 1 þ ð2=3Þ þ aiði 2 tÞ
u ¼ 0.0005 5,060.8 3,182.6 2,017.2 1,038.3 222.3
u ¼ 0.0010 5,066.7 3,207.5 2,071.3 1,116.3 261.8
u ¼ 0.0015 5,075.2 3,233.6 2,118.8 1,181.4 305.7
Panel (c) – uQ

i ðtÞ ¼ 1 þ ð1=3Þ þ aiði 2 tÞ
u ¼ 0.0005 4,088.0 2,213.3 1,079.5 279.5 3.2
u ¼ 0.0010 4,094.5 2,244.5 1,154.4 372.6 16.5
u ¼ 0.0015 4,103.9 2,277.5 1,218.3 450.3 37.8

Notes: Table III reports the prices of caps under different u and ustrike, which is calculated as follows:

caps ¼ N
Xf

n¼tþ1

Dðt; nÞEQ
t ½Sðt; nÞ2 Sstrikeðt; nÞ�

þ

The parameters are set as follows: parameters of contracts: N ¼ 10,000, f ¼ 100, t ¼ 65; parameter of
gamma distribution: u ¼ 0.0005, 0.0010, 0.0015; ki varies with SR; parameters of CIR: k ¼ 0.20,
b ¼ 0.10, s ¼ 0.06, r0 ¼ 0.1; the benchmark MR is based on the life table of UK males during the
1980-1982 period; panels (a)-(c) report the result when uQ

i ðtÞ ¼ 1 þ aiði 2 tÞ, 1 þ (2/3)ai(i 2 t) and
1 þ (1/3)ai(i 2 t), respectively

Table III.
Prices of caps
under different
values of u and ustrike
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Since the price of the payer and receiver swaptions can be connected by put-call parity,
we analyse only the price of payer swaptions. Then:

CTðrTÞ ¼ ½ðpexpiry 2 pstrikeÞ�
þN

Xf2ðTþtÞ

n¼0

DðT;T þ nÞYnH ðt; nÞ

Since this formula has no closed-form solution, we price it using 100,000 simulations.
We choose the life table of UK males between 1980 and 1982 as the benchmark and use
our calibrated expected shift model with gamma distribution to simulate the life table
at time T. We also use a CIR model to simulate the interest rate rT. Then CT(rT) could
be calculated in each simulation. The mean of 100,000 simulated CT(rT) is discounted
by D(t, T) to get Ct. The simulated parameters are as follows:

. Parameters of contracts: Yn ¼ 1, N ¼ 10,000, T ¼ 15, f ¼ 100, t ¼ 50,
pstrike ¼ 20.05, 20.02, 0.00, 0.02, 0.05[10].

. Parameter of gamma distribution: u ¼ 0.0005, 0.0010, 0.0015, ki varies with SR.

. Parameters of CIR: k ¼ 0.20, b ¼ 0.1, s ¼ 0.06, r0 ¼ 0.10.

Table IV reports the prices of payer swaptions under the parameter settings. Panels
(a)-(c) report the results when uQ

t ðtÞ ¼ 1 þ aiði 2 tÞ (no risk premium), 1 þ (2/3)ai(i 2 t)
(low risk premium) and 1 þ (1/3)ai(i 2 t) (high risk premium), respectively. The results
are quite similar to those of caps. The prices of payer swaptions with no risk premiums
are much higher than those under high risk premium. For example, whenpstrike is20.05,

the prices of payer swaptions if uQ
i ðtÞ ¼ 1 þ aiði 2 tÞ are approximately two times those

if uQ
i ðtÞ ¼ 1 þ ð1=3Þ aiði 2 tÞ. It is about three times those whenpstrike is 0.05. The subtle

change of assumption on u Q makes a significant impact on the prices of survivor
derivatives, which again reflects the importance of accounting for risk premium of life
table uncertainty. The prices of payer swaptions decrease with the increase of pstrike,
while the assumption of u seems to have a limited impact on the prices of payer
swaptions.

We finally turn to the pricing of GAOs. A GAO provides the holder of the contract
the right to either receive at retirement a cash payment or receive an annuity which
would be payable throughout his/her remaining lifetime and which is calculated at a
guaranteed rate, depending on which has the greater value. This was a common
feature of pension policies sold in the UK during the 1970s and 1980s. In a report by
Bolton et al. (1997), GAOs could be applied to over 10 per cent of the long-term
liabilities of the responding insurance companies. Ballotta and Haberman (2003)
introduce a theoretical model to price the GAOs. However, they do not consider the
longevity risk and derive SR directly from the life table. We extend their model by
allowing SR to be a stochastic variable with respect to age. Our model accounts for
uncertainty of the MR, which results in a larger risk exposure and different pricing
result.

Following Ballotta and Haberman (2003), the present value of a GAO at maturity is:

VtðTÞ ¼ EQ
t ½Dðt;TÞCT1ðtt.TÞ� ð15Þ

where:
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CT ¼ gST

Xf2ðTþtÞ

n¼0

PrðttþT . nÞDðT;T þ nÞ

 !
2 ST

( )þ

¼ gST

Xf2ðTþtÞ

n¼0

PrðttþT . nÞDðT;T þ nÞ

 !
2

1

g

( )þ
ð16Þ

in which T is the option life time, ST is the value of investment fund at time
T, Pr(tx . n) is the SR for people at age x to live n years, g is the guaranteed annuity
rate, and f is the largest survival age. In Ballotta and Haberman (2003), CT can be
written as:

CT ¼ gST

Xf2ðTþtÞ

n¼0

PrðttþT . nÞ½DðT;T þ nÞ2 Kn�
þ

where Kn is an “artificial” strike price[11], which satisfies:

pstrike 20.050 20.020 0 0.020 0.050

Panel (a) – uQ
i ðtÞ ¼ 1 þ aiði 2 tÞ

u ¼ 0.0005 4,026.9 3,571.6 3,319.9 3,076.2 2,727.6
u ¼ 0.0010 4,020.2 3,564.9 3,313.2 3,069.6 2,721.3
u ¼ 0.0015 4,012.6 3,557.4 3,305.8 3,062.3 2,714.1
Panel (b) – uQ

i ðtÞ ¼ 1 þ ð2=3Þ þ aiði 2 tÞ
u ¼ 0.0005 3,088.9 2,647.6 2,406.6 2,175.8 1,851.7
u ¼ 0.0010 3,087.6 2,646.3 2,405.4 2,174.7 1,850.9
u ¼ 0.0015 3,081.3 2,640.2 2,399.4 2,169.0 1,845.5
Panel (c) – uQ

i ðtÞ ¼ 1 þ ð1=3Þ þ aiði 2 tÞ
u ¼ 0.0005 2,072.8 1,657.9 1,439.1 1,237.7 969.6
u ¼ 0.0010 2,067.9 1,653.6 1,435.2 1,234.3 966.8
u ¼ 0.0015 2,067.2 1,653.2 1,435.2 1,234.6 967.4

Notes: Table IV reports the prices of payer swaption under different values of u and pstrike using
100,000 Monte Carlo iterations; the benchmark MR is based on the life table of UK males during the
1980-1982 period; panels (a)-(c) report the result when uQ

i ðtÞ ¼ 1 þ aiði 2 tÞ, 1 þ (2/3)ai(i 2 t) and
1 þ (1/3)ai(i 2 t), respectively; the pricing equations are as follows:

Ct ¼ EQ
t ½Dðt;TÞCT ðrT Þ�

¼ Dðt;TÞEQ
t ½CT ðrT Þ�

¼ Dðt;TÞ

Z
R

CT ðrT ÞdF QðrT Þ

where:

CTðrTÞ ¼ ½ðpexpiry 2 pstrikeÞ�
þN

Xf2ðTþtÞ

n¼0

DðT;T þ nÞYnH ðt; nÞ:

Parameters are set as follows: parameters of contracts: Yn ¼ 1, N ¼ 10,000, T ¼ 15, f ¼ 100, t ¼ 50;
parameter of gamma distribution: u ¼ 0.0005, 0.0010, 0.0015; ki varies with SR; parameters of CIR:
k ¼ 0.20, b ¼ 0.10, s ¼ 0.06, r0 ¼ 0.1

Table IV.
Prices of swaption
under different
values of u and pstrike
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Xf2ðTþtÞ

n¼0

PrðttþT . nÞDðT;T þ nÞ

 !
2

1

g

( )þ

¼
Xf2ðT2tÞ

n¼0

PrðttþT . nÞ½DðT;T þ nÞ2 Kn�
þ

To get Kn, it is necessary to find a critical value r*
T as a function of 1/g and

Pr(ttþT . n), so that:

Xf2ðTþtÞ

n¼0

PrðttþT . nÞD
r*

T

ðT;T þ nÞ ¼
1

g

However, when Pr(ttþT . n) is a stochastic variable, r*
T has many feasible values

given g, which induces the inability to get a closed-form solution. Thus, we follow
Ballotta and Haberman (2003) and model the interest rate under the Heath, Jarrow and
Morton (hereafter referred to as “HJM”) (Heath et al., 1990) framework with constant
volatility, derive prices of GAO by 100,000 Monte Carlo iterations and compare them
with the price conditioned on a non-stochastic SR. The parameters are the same as
Ballotta and Haberman (2003), that is:

u ¼ 0:0010;sS ¼ 0:2;sf ¼ 0:001; t ¼ 50; g ¼ 0:111; S0 ¼ 100;T ¼ 15; f ¼ 100:

Table V reports the prices of GAOs under two models. Panels (a)-(c) report the results
when uQ

i ðtÞ ¼ 1 þ aiði 2 tÞ (no risk premium), 1 þ (2/3)ai(i 2 t) (low risk premium) and
1 þ (1/3)ai(i 2 t) (high risk premium), respectively. Similarly, the difference between the
results in panels (a) and (c) reflects the importance of considering the risk premium of SR.
The results assuming no risk premium with uQ

i ðtÞ ¼ 1 þ aiði 2 tÞ are much higher than

those assuming high risk premium uQ
i ðtÞ ¼ 1 þ ð1=3Þ þ aiði 2 tÞ

� �
. The prices of GAOs

with stochastic SR are lower than those with non-stochastic SR, although the expectation
of stochastic SR is the same as the non-stochastic one[12]. These results are consistent with
Ballotta and Haberman (2006), who explain that the increase of volatility of SR makes the
mortality trend become more uncertain and the chance of surviving for another year
deteriorates. The results demonstrate that the stochastic SR should be taken into account
for the pricing of GAOs.

5. Conclusion
In this paper, we introduce the gamma distribution to describe the uncertainty of SR in
a long horizon. Compared with prior models, our model has two main advantages.
First, our method of setting the parameters of the gamma distribution make our model
satisfy all the required properties of SR, including non-negativity, good curve-fitting
capacity and low level of volatility structure. Second, in our framework, either the SR of
a certain year or the cumulative SR for a long period follows gamma distribution and
the latter’s shape parameter is expressed as the sum of the former, which is convenient
for computing the prices of various survivor derivatives.

To make our model applicable, we illustrate how to calibrate the model parameters
from an SR curve and volatility structure using UK males’ life table data. We then test the
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effects of introducing stochastic interest rates. The results show that the impact of
stochastic interest is non-negligible in some cases. Finally, our model is applied to pricing
survivor caps, survivor swaptions and GAOs. We show that, in our setting, the price of
survivor caps with stochastic interest rates has analytical solutions, while the swaptions
and GAOs with stochastic interest rates could only be priced numerically. The pricing
results show that the prices of survivor derivatives are highly sensitive to the assumption
about the expected life table shift in the risk-neutral measure. It is very important to take

Benchmark life table 1980-1982 1990-1992 2004-2006

Panel (a) – uQ
i ðtÞ ¼ 1 þ aiði 2 tÞ

r ¼ 2 1
Stochastic SR 20.18 28.44 45.74
Non-stochastic SR 23.88 32.12 49.82

r ¼ 0
Stochastic SR 17.36 25.14 41.51
Non-stochastic SR 20.86 28.61 45.21

r ¼ 1
Stochastic SR 14.66 21.97 37.49
Non-stochastic SR 18.05 25.59 40.97
Panel (b) – uQ

i ðtÞ ¼ 1 þ ð2=3Þ aiði 2 tÞ
r ¼ 2 1

Stochastic SR 13.68 21.49 38.61
Non-stochastic SR 17.09 25.24 42.62

r ¼ 0
Stochastic SR 11.30 18.62 34.79
Non-stochastic SR 14.64 21.99 38.41

r ¼ 1
Stochastic SR 8.97 15.79 31.10
Non-stochastic SR 12.05 19.10 33.46
Panel (c) – uQ

i ðtÞ ¼ 1 þ ð1=3Þ aiði 2 tÞ
r ¼ 2 1

Stochastic SR 7.39 14.51 31.06
Non-stochastic SR 10.53 17.84 34.92

r ¼ 0
Stochastic SR 5.35 11.98 27.70
Non-stochastic SR 8.47 15.17 31.22

r ¼ 1
Stochastic SR 3.42 9.55 24.46
Non-stochastic SR 6.17 12.75 27.57

Notes: Table V reports the price of the GAO under stochastic and non-stochastic SRs with different
benchmark life tables and r; r describes the correlation between value of future investment asset ST

and interest rate; panels (a)-(c) report the results when uQ
i ðtÞ ¼ 1 þ aiði 2 tÞ, 1 þ (2/3)ai(i 2 t) and

1 þ (1/3) ai(i 2 t), respectively; the interest rate term structure follows an HJM model with constant
volatility:

V tðTÞ ¼ EQ
t ½Dðt;TÞCT 1ðtt.TÞ�

where:

CT ¼ gST

Xf2ðTþtÞ

n¼0

PrðttþT . nÞDðT;T þ nÞ

 !
2

1

g

þ

:

Parameters are set as follows:

u ¼ 0:0010;sS ¼ 0:2;sf ¼ 0:001; t ¼ 50; g ¼ 0:111; S0 ¼ 100;T ¼ 15; f ¼ 100:
Table V.
Prices of GAO
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the expected shift and risk premium of life table uncertainty and the stochastic properties
of life tables into account when we price the survivor derivatives. The results of simulation
also show that GAOs have a lower price when a stochastic SR is considered, which
suggests that stochastic SR should be taken into account in the pricing of GAOs.

Notes

1. Which, as mentioned above, include (a) the value of SR should be always in the domain [0,1), and
(b) a slight disturbance on SR today will have a persistent effect on cumulative SR in the future.

2. www.gad.gov.uk/demography%20data/life%20tables/historic_interim_life_tables.html

3. In pricing survivor derivatives, we follow the standard no-arbitrage assumptions that justifies
a risk-neutral pricing measure. Naturally, we recognize that, at present, no such market exists.

4. This assumption will be relaxed later by introducing the risk premium of life table
uncertainty when we price the other survivor derivatives.

5. That is, we have 25 annual life tables data.

6. pi(t) also equals 1 2 mortality1þaiði2tÞ
i .

7. A different value of uQ
i ðtÞ will be used when we calibrate the parameters under the

risk-neutral measure.

8. When r0 ¼ 0.08, the initial value is less than the long-term mean 0.10 and the term structure tends
to be upward sloping. On the other hand, it tends to be downward sloping when r0 ¼ 0.12.

9. The results under low risk premium uQ
i ðtÞ ¼ 1 þ ð1=3Þ þ aiði 2 tÞ and high risk premium

uQ
i ðtÞ ¼ 1 þ ð2=3Þ þ aiði 2 tÞ are available upon request.

10. These parameters of pstrike are approximately equal to ustrike ¼ 0.95, 0.98, 1.00, 1.02 and 1.05
when we calculate the ustrike from pstrike.

11. Kn is computed inversely from equation (16) in Ballotta and Haberman (2003), thus it always
satisfies equation (16).

12. Our further simulated results show that which one is higher depends on the assumption of
volatility. If the volatility parameter u is as small as what we use in this paper, the GAO prices
of stochastic SR are lower than those of static SR. On the other hand, if the volatility parameter
u is large enough (u equals to 0.06, for example), the GAO prices of stochastic SR will
become larger than those of static SR. These results are available upon request.
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