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We investigate the out-of-sample predictability of implied volatility using the

information over the implied volatility surface. We show that implied volatility

surface is useful for the out-of-sample forecast of implied volatility up to 1 week

ahead. Trading strategies based on the predictability of implied volatility could

generate significant risk-adjusted gains after controlling for transaction costs.

Significant results also depend on the way of modeling implied volatility surface.We

then calibrate a two-factor stochastic volatility option pricing model to implied

volatility data. Results show that implied volatility is better explained by both long-

and short-term variance factors.
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1 | INTRODUCTION

Whether asset returns are predictable has been a longstanding research question in literature.1 On option market, Harvey and
Whaley (1992), Gonclaves and Guidolin (2006), Konstantinidi, Skiadopoulos, and Tzagkaraki (2008), Chalamandaris and
Tsekrekos (2010, 2011) and Neumann and Skiadopoulos (2013) find that option implied volatilities are statistically predictable.
However, the economic profits become insignificant once the transaction costs are accounted for. Literature documents a
disparity between statistical and economical significance of option market predictability.2

In this paper, we solve the disparity by using implied volatility surface information. The trading of the option market is
dominated by short-maturity options. Nevertheless, Bakshi, Cao, and Chen (1997) find that long-dated options have information
not readily available from short-dated options. Recently, Christoffersen, Jacobs, Ornthanalai, and Wang (2008) and
Christoffersen, Heston, and Jacobs (2009) proposed component volatility models, and decomposed stochastic volatility into
long- and short-term components. They find that component volatilitymodels perform better than one-factor stochastic volatility

1See, for example, Fama and Schwert (1977), Fama and French (1988), Campbell and Shiller (1988), Kothari and Shanken (1997), Rapach et al. (2010,
2013), Pettenuzzo, Timmermann, and Valkanov (2014), Rapach, Ringgenberg, and Zhou (2016) on predicting stock returns; Keim and Stambaugh (1986),
Fama and French (1989), Greenwood and Hanson (2013), Lin et al. (2014), Lin, Wu, and Zhou (2017) on predicting corporate bond returns; and Fama
and Bliss (1987), Campbell and Shiller (1991), Cochrane and Piazzesi (2005), Goh, Jiang, Tu, and Zhou, (2012), Sarno, Schneider and Wagner (2016),
Gargano, Pettenuzzo, and Timmermann (2017), Lin, Liu, Wu, and Zhou (2017) on predicting Treasury bond returns.
2Similar disparity of statistical and economic significance on Treasury return predictability is documented in Thornton and Valente (2012).
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model. These findings suggest there exists useful information in the whole implied volatility surface. Bakshi et al. (1997),
Christoffersen et al. (2008, 2009) analyze the statistical significance. We extend their analysis to investigate the economic
significance of implied volatility surface, and document significant economic gains by using the information of implied volatility
surface.

We test whether incorporating the information of implied volatility surface can improve the prediction of implied volatility.
If both long- and short-maturity implied volatilities contain useful information, using the whole implied volatility surface
information will be able to improve the volatility forecast that is only based on one particular maturity information. We examine
14 models and compare their out-of-sample performance with that of the benchmark AR(1) model. These competing models
are two adapted Nelson and Siegel models used by Diebold and Li (2006) for Treasury securities and by Chalamandaris and
Tsekrekos (2011) for currency options, six time series models similar to Diebold and Li (2006), five combination models as in
Rapach, Strauss, and Zhou (2010) and a Mallows model averaging (MMA) combination as in Hansen (2007, 2008). We use the
implied volatility surface information of the at-the-money (ATM) options and the options with Δ0.40 and Δ0.60.We choose call
option in our main analysis, and use put option as a robustness check. We find that, historical surface information plays a
significant role in the prediction of implied volatilities. When daily data are used to forecast the 30-day implied volatility 1 day
ahead and 5 days ahead, the best out-of-sample R2 value is as high as 7.39% and 7.64%, respectively.3 Results are significant
across almost all maturities. Our results reveal the importance of using the whole implied volatility surface information.
However, these models lose their predictive power beyond a week, suggesting that only the historical information within 1 week
of the forecast date is important for the short-term forecast of index option market.

To examinewhether the predictability has economic value, we construct a trading strategy based on a forecast by eachmodel,
and compare the portfolio performance with that of the benchmark AR(1) model. Using the gain on Leland's alpha (Leland,
1999) as the performance measure, we find that those models that utilize information from the entire surface generate significant
economic profits up to 5 days ahead even after transaction costs are considered. For example, when daily data are used, the
trading strategy based on the 1-day-ahead forecast by the VAR(1) model of volatility change (VARC) generates a gain on
Leland's alpha of 11.13% relative to the benchmark, and is significant at the 1% level. The trading strategy based on the 5-day-
ahead forecast by the VAR(1) model of volatility change (VARC) generates a gain on Leland's alpha of 2.13% relative to the
benchmark, and is significant at the 10% level. Results are robust to the impact of transaction cost. This finding distinguishes our
study from most other literature that finds no predictability of the option market after considering transaction costs.

Our findings are robust over time and over different options. A sub-sample analysis using data during the recent 2007–2009
financial crisis period finds that the predictability still exists during the crisis. Implied volatilities can still be predicted 5 days
ahead. Moreover, their economic significance of 1-day-ahead forecast becomes stronger during the crisis. Analysis using put
option data and data with a broader range of Δ further confirms our main results.

In order to explain why implied volatility surface information helps improve the forecast, we estimate a two-factor stochastic
volatility option pricing model to extract a long-term and a short-term variance factor. Regressions of option implied volatilities
on these two factors reveal that both variance factors are important to explain the time variations of implied volatility. Long-
maturity implied volatilities are more associated with the long-term variance factor, while short-maturity implied volatilities are
more related to the short-term variance factor. Both long- and short-maturity implied volatilities contain useful information of
the implied volatility term structure. We are able to provide a better prediction by using them jointly.

Our study contributes to the literature in several ways. Our findings shed light on volatility modeling. We evaluate an
extensive set of 14 models. Our finding that the whole implied volatility surface provides useful information in forecasting
implied volatility suggests that a one-factor model is not sufficient for volatility modeling. In this regard, we provide empirical
evidence consistent with the emerging component volatility models.

We document both statistical and economic significance of option market predictability using the information of implied
volatility surface. This finding is different from literature that documents significant statistical predictability but fails to uncover the
economic significance. This finding provides new insights to the economic profit by the predictability of implied volatility.4

Egloff, Leippold, and Wu (2010) and Johnson (2017) show that besides level, slope also helps predict the implied
variance. We differ from them by considering more flexible models to use the information contained in the surface of implied
volatilities. As a robustness check, we also compare the 14 models with the two-factor model that uses level and slope as the

3These results are higher than or comparable to studies on the predictability of other financial markets. See, for example, Gargano et al. (2017) on
Treasury return predictability, Lin et al. (2014) and Lin, Wu, et al. (2017) on corporate bond return predictability, and Rapach et al. (2010), Pettenuzzo
et al. (2014) and Rapach et al. (2016) on stock return predictability.
4Galai (1977), Chiras and Manaster (1978), Poon and Pope (2000) and Hogan, Jarrow, Teo, and Warachka, (2004) also find significant excess returns of
option trading strategies even when transaction costs are considered.
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predictors. Results continue to show that a more flexible model specification using VAR framework provides a superior
forecasting power up to 1 week.

The rest of the paper is structured as follows. Section 2 introduces our empirical methodologies, including the 14 prediction
models tested, the out-of-sample performance evaluation criteria, and the two-factor stochastic volatility option pricing model.
Section 3 discusses the data and presents the empirical results of out-of-sample forecast. Section 4 provides several robustness
checks, including a sub-sample analysis using data covering the recent crisis period, the out-of-sample performance of put options,
the comparison with other benchmark, predictability using option data with a differentΔ range and gain on alpha from a different
asset pricing model. Section 5 reports the results of stochastic volatility model calibration. Section 6 concludes the paper.

2 | EMPIRICAL METHODOLOGY

In this section, we first explain the prediction models to be tested, and the statistical and economic significance measures for
evaluating prediction performance. We then introduce the two-factor stochastic volatility option pricing model used to calibrate
the term structure of implied volatilities.

2.1 | Out-of-sample forecast

We use out-of-sample forecast to test the importance of using the information of implied volatility surface. Suppose we have
implied volatility data from time 1 to time T, and the out-of-sample forecast starts from timem. At any time t betweenm and T, we
use the information up to time t to estimate the coefficients, and then use the estimated coefficients and information at time t to
forecast the implied volatility h days ahead. At time t+ h, we compare the forecast implied volatility and the realized implied
volatility to calculate the out-of-sample forecast errors. This procedure is repeated from time m to T− h.

2.1.1 | Prediction models

TheNelson andSiegel (NS, 1987)model and its extension (Diebold&Li, 2006) arewidely accepted by industry for forecasting the
yield curve due to their simplicity and efficiency. The interest rate and implied volatility term structures are quite similar in many
aspects (see Christoffersen et al., 2009; Derman, Kani, & Zou, 1996). Just as each Treasury security has a corresponding yield to
maturity, each traded index option has a corresponding implied volatility. Both the yield curve and implied volatility term structure
exhibit a high degree of time and cross-sectional variation. Since theNSmodel is an empiricalmodel, it can be borrowed directly to
model the term structure of implied volatilities. We fit the implied volatility curve with moneyness v, σvt ðτÞ, using the NS model,

σvt τð Þ ¼ βv1t þ βv2t
1� exp �λtτð Þ

λtτ
þ βv3t

1� exp �λtτð Þ

λtτ
� exp �λtτð Þ

� �
; ð1Þ

where τ is time to maturity and parameters βv1t; β
v
2t, and β

v
3t are estimated by ordinary least squares (OLS) with λt fixed at a pre-

specified value of 0.0147.5 The loading on βv1t is 1, a constant that does not decay to 0 in the limit; hence βv1t may be viewed as a

long-term factor. The loading on βv2t is
1�exp �λtτð Þ

λtτ
, a function that starts at 1 but decays monotonically and quickly to 0; and hence

may be viewed as a short-term factor. The loading on βv3t is
1�exp �λtτð Þ

λtτ
� exp �λtτð Þ, which starts at 0 and increases, and then decays

to 0, hence it may be viewed as a medium-term factor.6

Besides the NS model, we consider six time series models following Diebold and Li (2006), five combination models as in
Rapach et al. (2010) and theMMA combination as in Hansen (2007, 2008). Table 1 lists all 14models evaluated in this paper. By
using dummy variables for the options of different moneyness, we are able to combine the volatility surface information that has
advantage over the use of the volatility curve information alone. We use the the implied volatility surface information of the
ATM options and the options with Δ0.40 and Δ0.60.7 We define three dummy variables ID1 ¼ if it is an ATM option and 0
otherwise, ID2 ¼ if the option's Δ0.40 and 0 otherwise, ID3 ¼ if the option's Δ0.60 and 0 otherwise. We use superscript v to

5Parameter λt governs the exponential decay rate; small values of λt produce slow decay and can better fit the curve for long maturities, while large values
of λt produce fast decay and can better fit the curve for short maturities. Parameter λt also governs where the loading on βv3t achieves its maximum. As a
result, we choose a λt value that maximizes the loading on the medium-term (122-day) factor, which gives 0.0147.
6Please refer to Guo, Han, and Zhou (2014) for a more detailed discussion.
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denote the moneyness. For implied volatility curve, we use the information of short-, medium- and long-maturity implied
volatilities. In particular, we use 30-, 91-, 152-, 365-, and 730-day implied volatilities in the analysis. We then forecast the
implied volatility surface h days ahead with the following models:

(1) Nelson-Siegel factors as univariate AR(1) processes (NSAR):

σ̂v
tþh τð Þ ¼ β̂

v
1; tþh þ β̂

v
2; tþh

1� exp �λtτð Þ

λtτ
þ β̂

v
3; tþh

1� exp �λtτð Þ

λtτ
� exp �λtτð Þ

� �
; ð2Þ

where β̂
v
i;tþh ¼ a1;iID1 þ a2;iID2 þ a3;iID3 þ b1;iID1 þ b2;iID2 þ b3;iID3

� �
β̂
v
i;t; i ¼ 1; 2; 3: a1ia2ia3i, b1ib2ib3i are all scalars.

(2) Nelson-Siegel factors as multivariate VAR(1) processes (NSVAR):

σ̂v
tþh τð Þ ¼ β̂

v
1;tþh þ β̂

v
2;tþh

1� exp �λtτð Þ

λtτ
þ β̂

v
3;tþh

1� exp �λtτð Þ

λtτ
� exp �λtτð Þ

� �
; ð3Þ

where β̂
v
tþh ¼ a1ID1 þ a2ID2 þ a3ID3 þ b1ID1 þ b2ID2 þ b3ID3ð Þβ̂vt ; β̂

v
t¼ β̂

v
1t β̂

v
2t β̂

v
3t

� �
T: a1; a2; a3 are 3 × 1 vectors, and

b1; b2; b3 are 3 × 3 matrices.
(3) VAR(1) on volatility levels (VARL):

σ̂v
tþha1ID1 þ a2ID2 þ a3ID3 þ b1ID1 þ b2ID2 þ b3ID3ð Þσvt , where

σvt ¼

σvt 30ð Þ
σvt 91ð Þ
σvt 152ð Þ
σvt 365ð Þ
σvt 730ð Þ

2
6666664

3
7777775
. a1; a2; a3 are 5 × 1 vectors, and b1; b2; b3 are 5� 5 matrices.

TABLE 1 Prediction models

Model framework Model No. Model ID Model description

Nelson-Siegel (1) NSAR Nelson-Siegel factors as univariate AR(1) processes

Nelson-Siegel (2) NSVAR Nelson-Siegel factors as multivariate VAR(1) processes

VAR (3) VARL VAR(1) on volatility levels

VAR (4) VARC VAR(1) on volatility changes

ECM (5) ECM1 ECM(1) with one common trend

ECM (6) ECM2 ECM(1) with two common trends

PCA (7) PCA AR(1) regression on three principal components

Empirical component (8) EC VAR(1) on empirical level, slope and curvature

Combination forecast (9) MC Mean combination forecast

(10) MD Median combination forecast

(11) TM Trimmed mean combination forecast

(12) DMSPE1 DMSPE combination forecast with θ ¼ 1

(13) DMSPE2 DMSPE combination forecast with θ ¼ 0:9

(14) MMA MMA combination forecast

Benchmark AR(1) on volatility levels

This table lists the 14 prediction models tested in this paper. The last row explains the benchmark model.

7This choice follows Bollen and Whaley (2004), Han (2007) and Yan (2011). For example, Bollen and Whaley (2004) and Han (2007) define ATM calls
with Δ between 0.50 and 5/8 (approximately 0.60), and ATM puts with Δ between −0.50 and −3/8 (approximately −0.40). Yan (2011) defines OTM puts
with Δ between −0.45 and −0.20. In the robustness check, we test the predictability using data with Δ between 0.30 and 0.70.
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(4) VAR(1) on volatility changes (VARC): ẑvtþh ¼ a1ID1 þ a2ID2 þ a3ID3 þ b1ID1 þ b2ID2 þ b3ID3ð Þzvt,

where zvt ¼

σvt 30ð Þ � σvt�h 30ð Þ
σvt 91ð Þ � σvt�h 91ð Þ
σvt 152ð Þ � σvt�h 152ð Þ
σvt 365ð Þ � σvt�h 365ð Þ
σvt 730ð Þ � σvt�h 730ð Þ

2
6666664

3
7777775
. a1; a2; a3 are 5� 1 vectors, and b1; b2; b3 are 5� 5 matrices.

(5) ECM(1) with one common trend (ECM1): ẑvtþh ¼ a1ID1 þ a2ID2 þ a3ID3 þ b1ID1 þ b2ID2 þ b3ID3ð Þzvt, where

zvt ¼

σvt 30ð Þ � σvt�h 30ð Þ
σvt 91ð Þ � σvt 30ð Þ
σvt 152ð Þ � σvt 30ð Þ
σvt 365ð Þ � σvt 30ð Þ
σvt 730ð Þ � σvt 30ð Þ

2
6666664

3
7777775
. a1; a2; a3a1; a2; a3 are 5� 1 vectors, and b1; b2; b3 are 5� 5 matrices.

(6) ECM(1) with two common trends (ECM2): ẑvtþh ¼ a1ID1 þ a2ID2 þ a3ID3 þ b1ID1 þ b2ID2 þ b3ID3ð Þzvt,

where zvt ¼

σvt 30ð Þ � σvt�h 30ð Þ
σvt 91ð Þ � σvt�h 91ð Þ
σvt 152ð Þ � σvt 30ð Þ
σvt 365ð Þ � σvt 30ð Þ
σvt 730ð Þ � σvt 30ð Þ

2
6666664

3
7777775
.a1; a2; a3 are 5� 1 vectors, and b1; b2; b3 are 5� 5 matrices.

(7) AR(1) regression on three principal components (PCA). We first conduct a principal component analysis on the volatility
time series data. Denote the largest three eigenvalues by λv1, λ

v
2, and λ

v
3, with associated eigenvectors q

v
1, q

v
2, and q

v
3, and the first

three principal components xvt ¼ xv1t xv2t
vx3t½ �T. We first forecast xvtþ1 with an AR(1) model, x̂vi;tþh ¼ a1;iID1 þ a2iID2 þ

a3iID3 þ biID1 þ biID2 þ biID3ð Þxvi;t; i ¼ 1; 2; 3; and then generate forecasts for volatilities as
σ̂v
tþh τð Þ ¼ qv1 τð Þx̂v1;tþh þ qv2 τð Þx̂v2;tþh þ qv3 τð Þx̂v3;tþh. a1;i; a2;i; a3;i, b1;i; b2;i; b3;i are all scalars.

(8) VAR(1) on empirical level, slope and curvature (EC): σvtþh ¼ a1ID1 þ a2ID2 þ a3ID3 þ b1ID1 þ b2ID2 þ b3ID3ð ÞFv
t;

where Fv
t ¼

σvt 365ð Þ
σvt 365ð Þ � σvt 30ð Þ

2� σvt 122ð Þ � σvt 365ð Þ þ σvt 30ð Þ� �

2
64

3
75. We compute the empirical level, slope and curvature of the volatility term

structure. The empirical level is defined as the 365-day implied volatility. The slope is the 365-day implied volatility minus the
30-day implied volatility. Finally, the curvature is two times the 122-day implied volatility minus the sum of the 365- and 30-day
implied volatilities. a1; a2; a3 are 3� 1 vectors, and b1; b2; b3 are 3� 3 matrices.

Research has shown that combination forecasts typically outperform individual forecasts both statistically and economically. For
example, Rapach et al. (2010) find that combinations deliver consistent forecast gains for equity premiumpredictions. Lin,Wang, and
Wu (2014) document similar findings using corporate bond return data. So besides the forecasts in model (1) to (8), we further
combine them as σ̂v

ctþh τð Þ ¼ ∑8
k¼1w

v
k;t h; τð Þσ̂v

k;tþh τð Þ; where σ̂v
k;tþh τð Þ is the individual forecast using model k and wv

k;t h; τð Þ is the
weight to be placed for the model-k forecast. Depending on the choice of weight wv

k;t h; τð Þ, we provide five combination forecasts:
(9) The mean combination forecast (MC): wv

k;t h; τð Þ ¼ 1=8.
(10) The median combination forecast (MD): the median of σ̂v

k;tþh τð Þ; k ¼ 1; 2; . . .; 8.
(11) The trimmed mean combination forecast (TM): wv

k;t h; τð Þ ¼ 0 for the smallest and largest forecasts andwv
k;t h; τð Þ ¼ 1=6

for the remaining forecasts.

(12) DMSPE (discount mean square prediction error) combination forecast one (DMSPE1): wv
k;t h; τð Þ ¼ ϕv

k;t h;τð Þð Þ�1

∑8
i¼1 ϕv

i;t h;τð Þð Þ�1,

where ϕv
k;t h; τð Þ ¼ ∑t�h

j¼mθ
t�h�j σvjþh τð Þ � σ̂v

k;jþh τð Þ
� 	2

. This weighting scheme gives more weight to the individual forecast
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with smaller out-of-sample prediction error. θ is a discounting factor deciding the size of the weights given to recent
forecasts and m is the starting time of the out-of-sample forecast. We take θ ¼ 1 for no discounting to the remote
forecast.

(13) DMSPE combination forecast two (DMSPE2): Same as model (12) except that θ ¼ 0:9 to give greater weight to recent
forecasts.

Hansen (2007, 2008) proposes a forecast combination based on theMMAmethod. Thismethod selects the forecast weight by
minimizing a Mallow criterion that is a penalized sum of the square residuals. Hansen shows that MMA forecasts have better
performance than other feasible forecasts.

(14) MMA combination (MMA). Let wv
t h; tð Þ ¼ wv

1;t h; τð Þ. . .wv
8;t h; τð Þ

h i
T be the weight vector of the individual forecast,

σvjþh τð Þ ¼ σ̂v
1;jþh τð Þ. . .σ̂v

8;jþh τð Þ
h i

T be the vector of the individual h-day ahead forecast of T-day implied volatility with

moneyness v at time j, and G ¼ g 1ð Þ. . .g 8ð Þ½ �T be the vector of the predictor number used in the individual forecast. The MMA
combination forecast set wv

t h; τð Þ to minimize Cv
t h; τð Þ with the conditions that all wv

k;t h; τð Þ are non-negative and that

∑8
k¼1w

v
k;t h; τð Þ ¼ 1: Cv

t h; τð Þ is calculated by Cv
t h; τð Þ ¼ ∑t�h

j¼m σvjþh τð Þ � σvjþh τð ÞTwv
t h; τð Þ

� 	2
þ 2wv

t h; τð ÞTGs2v , where s2v is an
estimate of the variance of residuals from the largest fitted model.

The benchmark model is an AR(1) model on volatility levels: σ̂v
tþh τð Þ ¼ a τð Þ þ b τð Þσvt τð Þ: It only utilizes the time

series information of an individual option series. If a model using the whole curve information significantly outperforms
the benchmark, then we can be confident about the critical role of the surface information in implied volatility
forecasting.

2.1.2 | Out-of-sample forecast evaluation

In order to check the performance of the prediction models relative to the benchmark model, we calculate the out-of-sample R2

statistics of each model for each maturity across different moneyness, given by

R2
OS τð Þ ¼ 1�

∑v∑
T�h
j¼m σvjþh τð Þ � σ̂v

jþh τð Þ
� 	2

∑v∑
T�h
j¼m σvjþh τð Þ � �σvjþh τð Þ

� 	2 : ð4Þ

σ̂v τð Þ and �σv τð Þ are the forecast of implied volatility with moneyness v by model (1) to model (14) and the forecast by the
benchmark AR(1) model, respectively. A positive R2

OSðτÞ value indicates that the prediction model outperforms the benchmark
model. For model (12) andmodel (13) that require hold-out period (p) to calculate the optimal weight, the forecasting errors used
to calculate the R2

OS τð Þ values start from mþ p until T � h. We calculate the MSPE-adjusted statistic to test the significance of
R2
OS τð Þ. Define

f tþh τð Þ ¼ ∑v σvtþh τð Þ � �σvtþh τð Þ� �� �2 �∑v σvtþh τð Þ � σ̂v
tþh τð Þ� �2 � σ̂v

tþh τð Þ � �σvtþh τð Þ� �2h i
; ð5Þ

and theMSPE-adjusted statistic is obtained by regressing f tþh τð Þ on a constant. The p-value corresponding to the constant from a
one-sided test determines the significance of R2

OS τð Þ. We use Hodrick (1992) to calculate the standard errors that are robust to
data overlap. To test the overall performance of the prediction models relative to the benchmark model, we also calculate the
overall out-of-sample R2 statistics of each model using

R2
OS ¼ 1�

∑τ∑v∑
T�h
j¼m σvjþh τð Þ � σ̂v

jþh τð Þ
� 	2

∑τ∑v∑
T�h
j¼m σvjþh τð Þ � �σvjþh τð Þ

� 	2 ð6Þ

and test its significance with

f tþh ¼ ∑τ∑v σvtþh τð Þ � �σvtþh τð Þ� �� �2 �∑τ∑v σvtþh τð Þ � σ̂v
tþh τð Þ� �2 � σ̂v

tþh τð Þ � �σvtþh τð Þ2
h i

: ð7Þ

650 | GUO ET AL.



2.1.3 | Economic significance

We follow Cao and Han (2013) to evaluate the trading performance of the out-of-sample forecast and test whether the models
generate abnormal profits. In order to avoid the potential problems by using the interpolated data in the economic
significance analysis, we use S&P 500 index option transaction data to construct the portfolio. The trading strategies are
simply based on the forecast volatility. Specifically, at date t we long (short) an option if the forecast volatility for that
maturity at date t þ h is larger (smaller) than the current volatility. We delta-hedge our option position by buying (selling) Δ
shares of S&P 500 index if we short (long) the options. The hedge ratio is calculated using the Black-Scholes option pricing
formula. Its daily gain is calculated as

πi;tþ1 ¼ Ci;tþ1 � Ci;t
� �� Stþ1 � Stð ÞΔitð Þ � a

rf ;t
365

Ci;t � ΔitSt
� ��

ð8Þ

C is the call option price, S is the S&P 500 index price, rf ;t is the risk-free rate at date t, a is the number of calendar days
between two trading dates. The same equation for the delta-hedged put options is applied, except we replace the call option price
and delta with those of put option. We finally scale the dollar return πi;tþ1 by the absolute value of Ci;t � ΔitSt to convert to
percentage return.

In order to compute returns of constant maturity, we construct option portfolios targeting maturities of 30, 91, 152, 365, and
730 days, with portfolio weights estimated in a way similar to Constantinides, Jackwerth, and Savov (2013). We form five
portfolios made up of calls, each with targeted time to maturity of 30, 91, 152, 365, or 730 days. The weight of each option in a
portfolio is calculated using an univariate Gaussian weighting kernel in days to maturity, with bandwidths of 10 days to maturity
for the weighting kernel. We delete the options in a portfolio with weight smaller than 1% to remove outliers and normalize
portfolio weights to sum to one. Thus, on any day our trading includes 15 portfolios with maturities of 30, 91, 152, 365, and 730
days, and moneyness of ATM, Δ0.40 and Δ0.60. We rebalance the portfolio daily and repeat the trade in the out-of-sample
period. We then compound daily returns to h-day-ahead portfolio returns. We use the same approach to put options.

The gain on Leland's alpha is used to gauge the economic performance of these trading strategies. Leland's alpha takes into
account the deviation of portfolio returns from normal distribution and is αp ¼ E rp

� �� βp E rm � rf
� �� �� rf , where rm denotes

the market return approximated by the S&P 500 index return, βp ¼
cov rp;� 1þrmð Þ�γð Þ
cov rm;� 1þrmð Þ�γð Þ measures the systematic risk and γ ¼

ln E 1þrm½ �ð Þ�ln 1þrfð Þ
var ln 1þrmð Þð Þ measures the relative risk aversion. For comparison, these measures are then subtracted by the corresponding

Leland's alpha of the benchmark AR(1) model.8 A larger-than-zero gain on Leland's alpha thus indicates that the trading strategy
generates an excess risk-adjusted return over the benchmark model. We annualize the gain on Leland's alpha and test its
significance with Newey and West (1987) t-statistics adjusted for serial correlation.

Transaction cost is an important factor we need to control when we compare the performance of two trading strategies. A
positive gain on Leland's alpha of one trading strategy might be due to its more aggressive trading. Thus its economic
significance disappears once the transaction cost is accounted for. In order to examinewhether our results are robust to the impact
of transaction cost, we follow Cao, Han, Tong, and Zhan (2017) and introduce the transaction cost into the trading. We first use
the mid price (MidP) that is the mid-point of bid and ask price. It does not assume any transaction cost. We then consider the
effective option spread to be 10%, 25%, and 100% of the quoted spread.9

2.2 | A two-factor stochastic volatility option pricing model

In order to measure the impact of different volatility components on the implied volatility term structure, we estimate a two-
factor stochastic volatility option pricing model, as in Christoffersen et al. (2009), where the variance of the risk-neutral ex-
dividend stock return is determined by two factors,

8By saying gains from using information over surface of implied volatilities, we are more interested in comparing the models that use surface information
with the benchmark model that does not use it. Thus all the statistical and economic significance measure we report in the paper are the comparison
results to reflect our research focus.
9Studies of effective spread on equity options include Mayhew (2002), De Fontnouvelle, Fisher, and Harris (2003) and Muravyev and Pearson (2016).
Mayhew (2002) and De Fontnouvelle et al. (2003) find that the ratio of effective spread to the quoted spread is less than 50% for equity options.
Muravyev and Pearson (2016) show that for the average trade, effective spreads that take account of trade timing are one-third smaller than the
traditionally used effective spreads.
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dSt ¼ rStdt þ
ffiffiffiffiffiffiffi
V1t

p
Stdz1t þ

ffiffiffiffiffiffiffi
V2t

p
Stdz2t; ð9Þ

dV1t ¼ a1 � b1V1tð Þdt þ σ1
ffiffiffiffiffiffiffi
V1t

p
dz3t;

dV2t ¼ a2 � b2V2tð Þdt þ σ2
ffiffiffiffiffiffiffi
V2t

p
dz4t;

where z1t and z2t are uncorrelated, the correlation between z1t and z3t is ρ1 and the correlation between z2t and z4t is ρ2. We
define the factor that is more persistent (b closer to zero) as the long-term variance factor, while the other is the short-term
variance factor. As shown in Christoffersen et al. (2009), European options can be valued by a closed-form formula under
this framework.

3 | DATA AND EMPIRICAL RESULTS

Our sample includes the implied volatilities of S&P 500 index options from 1996 to 2015. We use the volatility surfaces taken
from the Ivy DBOptionMetrics database, with 10 different maturities (30, 60, 91, 122, 152, 182, 273, 365, 547, and 730 days) on
each observation date. Since not all maturities are traded on each date, OptionMetrics interpolates the surface to obtain the
missing data. Table 2 reports the mean, maximum, minimum, standard deviation, and autocorrelation of implied volatilities of
ATM call options with different maturities.10 The volatility curve is upward sloping, and long-maturity implied volatilities have
smaller standard deviations than short-maturity implied volatilities. For example, the 730-day implied volatility has a mean of
20.17% and a standard deviation of 4.43%, while the 30-day implied volatility has a mean of 18.83% and a standard deviation of
7.51%. The different persistence across maturities suggests a necessity to model the long- and short-maturity implied volatilities
separately.

Figure 1 plots the time series of the implied volatilities of ATM call options. It is clear that volatilities are time varying,
with spikes occurring between 1998 and 1999, between 2002 and 2003 and between 2008 and 2009. They reflect the impact
of the Asian crisis, the accounting scandal and the credit crisis, respectively. In the following empirical studies, we focus on
the implied volatilities of five different maturities (30, 91, 152, 365, and 730 days) to reduce the dimensions in panel data
model.

Table 3 reports the trading summary of options with different maturities. We report both the trading volume and the open
interest. The option data with a negative bid-ask spread, a negative trading volume and open interest or a negative implied
volatility are excluded. The trading volume and open interest of ATM (call and put) options, call options with Δ0.60 and call
options with Δ0.40 are calculated from the options with moneyness between 45% and 55%, between 55% and 65% and between
35% and 45%, respectively.

TABLE 2 Summary statistics

Maturity (days) Mean (%) Std. dev. (%) Min. (%) Max. (%) ρ (10) ρ (30) ρ (60) ρ (180)

30 18.83 7.51 8.14 74.83 0.89 0.75 0.61 0.34

60 19.07 6.87 9.08 67.22 0.92 0.80 0.66 0.38

91 19.21 6.45 9.70 60.45 0.93 0.82 0.69 0.41

122 19.33 6.09 10.23 57.44 0.94 0.84 0.71 0.43

152 19.44 5.78 10.45 53.84 0.94 0.85 0.73 0.45

182 19.54 5.56 10.60 50.38 0.95 0.86 0.75 0.46

273 19.70 5.17 10.96 46.48 0.95 0.88 0.78 0.49

365 19.81 4.96 11.25 44.48 0.96 0.89 0.79 0.50

547 20.02 4.60 11.61 40.19 0.96 0.90 0.81 0.52

730 20.17 4.43 11.74 38.66 0.96 0.90 0.81 0.53

This table reports the summary statistics (mean, standard deviation, minimum,maximum, autocorrelation with lags of 10, 30, 60, and 180 days) of the implied volatilities of
ATM call options. The sample period is from 1996 to 2015.

10The results of other moneyness are close to those of ATM options.

652 | GUO ET AL.



Trading in the optionmarket is dominated by short-maturity options. For example, for the ATM call options, the options with
maturities less than three months contribute about 79.39% to the total trading volume and about 54.90% to the total open interest.
On the other hand, the options with maturities longer than 1 year only account for 2.96% of the total trading volume and 9.57% of
the total open interest. The trade of long-maturity options is much less than that of short-maturity options. It is of great interest to
investigate whether these limited trading contains useful information about future implied volatilities.

As a comparison, we also report the trading summary of call options with Δ0.70 using the options with moneyness between
65% and 75%, and Δ0.30 using the options with moneyness between 25% and 35%. Trading of call options with Δ0.70 is less
active than those of Δ0.60, and dominated by short-maturity options. Nevertheless, trading of call options with Δ0.30 is more
active than those of Δ0.40. This suggests that these options are liquid and frequently traded by investors.11 In the robustness test,
we add the options with Δ0.70 and Δ0.30 in the analysis to test whether the forecast result is robust to inclusion of more options.

We start the out-of-sample forecast in 2002. Parameters are estimated using a recursive window. Implied volatilities are
forecast 1, 5, and 20 days ahead. The holdout out-of-sample period for model (12) and model (13) is set as 60 days.

We fit the implied volatility curve using the NSmodel by OLS on each observation date. Unreported results show that β1t, as
a long-term factor, displays amore persistent pattern than the other two factors. On the contrary, β2t and β3t are volatile since they
represent the short and medium terms. They are especially pronounced when the market is turbulent. β1t moves smoothly and
captures the trend of the volatility very well, verifying that it reflects a long-term volatility. β2t and VIX mimic each other, and
taken together with the close movement between β2t and the empirical slope lines, indicate that β2t reflects the short-term
volatility component and can be interpreted as a slope factor. The time variations of these factors provide some preliminary
evidence that confirms the necessity of decomposing volatilities into long- and short-term components.12

3.1 | Statistical significance

Table 4 reports the out-of-sample R2
OS statistics for all 14 models. The top, middle and bottom panels report the forecast results of

1, 5, and 20 days ahead, respectively. The results in the top panel show that most of our models beat the benchmark for a 1-day
forecast. For example, 13 out of the 14 models generate a positive R2

OS statistic at the 5% significance level or above for the 30-
day implied volatility, and all combination forecasts have a greater than zero R2

OS statistic and are significant at the 1% level.
Similarly, there are 10 models that outperform the benchmark model at the 5% level or above for the 730-day implied volatility.

Among all the models, model VARC, which runs a VAR(1) model on the volatility change, andMMA combination, have the
greatest R2

OS value. Model ECM1 andmodel ECM2, which are ECMmodels with one and two common trends, respectively, also
perform well. This suggests that the historical surface information is helpful when forecasting a particular maturity implied

FIGURE 1 Implied volatility of selected maturities. This graph plots the time series of implied volatilities of selected maturities, specifically
30, 91, 152, 365, and 730 days. Sample period is from 1996 to 2015 [Color figure can be viewed at wileyonlinelibrary.com]

11Thanks for the anonymous referee to point this out.
12In Appendix 1, we plot the time series of β1t, β2t, and β3t of the NS model.
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volatility. It is interesting to observe that most of the R2
OS statistics for the models using NS factors (model NSAR and model

NSVAR) are negative, suggesting that they are not as good as the benchmark model in the out-of-sample period. This
demonstrates the difference between in-sample fitting and out-of-sample forecast.

It is also interesting to observe that although forecast performance is improved overall by the use of thewhole implied volatility
surface information, not allmodels generate desirable results. Results using the principal components of the impliedvolatility curve
(PCAandEC)are not significant. This finding is consistentwithKelly andPruitt (2013, 2015)who claim that principal components
may contain common error components that are irrelevant to forecasting, hence producing poor forecasting performance. Models
PCAandECuse level information,whilemodelsVARC,ECM1, andECM2use the information of volatility changes that removes
the volatility trend. Therefore, the performance difference across thesemodels implies that both the information set and the way of
modeling the information set are important when out-of-sample forecasts are performed on the option market.

Turning now to the performance of the 5-day-ahead forecast, the R2
OS are smaller than those of 1-day-ahead forecast. There

are nine models that have positive statistics that are significant at the 5% level for all maturities. The performance worsens for
long-maturity implied volatilities. There is only one model (ECM1) that is significant at the 5% level for the 730-day implied
volatility, while there are 10 such models for the 1-day-ahead forecast. However, models VARC, ECM1, and ECM2 continue to
perform quite well for the 5-day-ahead forecast. The combination forecasts seem to deliver stable and significant results. Thus, in
general, the implied volatility is still predictable 5 days ahead when we use daily data.

The bottom panel of Table 6 reports the results of theR2
OS statistics of the 20-day-ahead forecast. It is clear that the forecasting

abilities disappear and that none of the models is able to generate a positive R2
OS statistic consistently across all maturities at the

TABLE 3 Trading summary of S&P 500 index options

Maturity
(days) Volume Percentage

Open
interest Percentage Volume Percentage

Open
interest Percentage

ATM call ATM put

<30 40,826,704 29.12 193,057,678 20.17 42,851,640 30.27 180,550,841 21.07

30–91 70,480,199 50.27 332,449,354 34.73 72,196,523 51.00 326,092,925 38.06

91–152 14,868,885 10.61 123,813,077 12.93 15,524,699 10.97 122,601,772 14.31

152–365 9,870,019 7.04 216,370,952 22.60 8,436,133 5.96 169,304,814 19.76

365–730 3,257,799 2.32 77,318,610 8.08 2,169,028 1.53 52,129,581 6.08

>730 900,996 0.64 14,251,508 1.49 379,320 0.27 6,088,079 0.71

All 140,204,602 100.00 957,261,179 100.00 141,557,343 100.00 856,768,012 100.00

Call with Δ= 0.60 Call with Δ= 0.40

<30 23,023,845 38.11 195,034,840 24.31 34,707,239 44.34 189,011,008 22.96

30–91 25,997,656 43.03 308,898,741 38.50 29,377,294 37.53 288,242,921 35.02

91–152 4,682,105 7.75 99,185,971 12.36 5,848,476 7.47 113,299,573 13.76

152–365 4,439,338 7.35 147,334,272 18.36 6,264,739 8.00 178,055,275 21.63

365–730 1,800,099 2.98 45,091,625 5.62 1,778,007 2.27 48,277,885 5.86

>730 472,063 0.78 6,799,529 0.85 301,047 0.38 6,288,435 0.76

All 60,415,106 100.00 802,344,978 100.00 78,276,802 100.00 823,175,097 100.00

Call with Δ= 0.70 Call with Δ= 0.30

<30 13,014,136 55.83 201,197,166 33.64 37,280,577 46.16 203,664,354 24.08

30–91 7,809,005 33.50 244,844,064 40.94 28,084,411 34.78 285,230,619 33.72

91–152 980,076 4.20 65,617,431 10.97 5,995,761 7.42 119,034,913 14.07

152–365 1,081,000 4.64 70,052,792 11.71 7,302,547 9.04 188,065,864 22.23

365–730 354,853 1.52 14,594,019 2.44 1,799,856 2.23 43,772,154 5.17

>730 69,372 0.30 1,765,233 0.30 294,143 0.36 6,158,059 0.73

All 23,308,442 100.00 598,070,705 100.00 80,757,295 100.00 845,925,963 100.00

This table reports the tradingvolumeandopen interest ofS&P500 indexoptions from1996 to2015.Optiondatawitheither anegativebid-ask spread, anegative tradingvolumeandopen
interest or a negative implied volatility are excluded. The trading volume and open interest of ATM (call and put) options, call options with Δ equal to 0.60, 0.40, 0.70, and 0.30 are
calculated from the options with moneyness between 45% and 55%, between 55% and 65%, between 35% and 45%, between 65% and 75% and between 25% and 35%, respectively.
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5% significance level. Models VARC, ECM1, and ECM2 that perform well in the 1-day-ahead and 5-day-ahead forecasts fail to
beat the benchmark model in the twenty-day-ahead forecast.

In order to visually observe the performance of the models over time, we also calculate their monthly aggregate out-of-
sample forecast errors and compare them with those of the benchmark model. Figure 2 plots the difference of the monthly
aggregate out-of-sample forecast errors between model VARC, one of the best-performing models reported in Table 6, and the
benchmark model. A negative value means that model VARC performs better in that month. We standardize the series to make
the pattern clear. Figure 2 shows that, for the 1-day-ahead forecast of all maturities implied volatilities and the 5-day-ahead
forecast of short-maturity implied volatilities, most of the differences are negative, suggesting that model VARC consistently
outperforms the benchmark model during the sample period.

3.2 | Economic significance

The statistical significance results in Table 4 suggest that these models can forecast implied volatilities rather well up to 5 days
ahead. To explore the economic significance of this predictability, we further develop the option trading strategies as described in
section 2. Following Goncalves and Guidolin (2006), we apply several filters to avoid microstructure-related bias. First, we
exclude thinly traded options with less than 100 contracts per day. Second, we keep only the options with a positive bid-ask
spread, a positive open interest and a positive implied volatility. Third, we exclude noisy contracts with fewer than 6 trading days
to maturity and prices lower than $3/8. Since the Leland's alphas are subtracted from those of the benchmark, any model with
economically significant predictability returns a positive gain on Leland's alpha.

Table 5 reports the results. The performance of models VARC, ECM1, and ECM2 continues to be among the best. The
combination forecasts also provide better economic performance than the benchmark model. The economic significance of the
1-day-ahead forecast is much stronger than that of the 5-day-ahead forecast. MidP uses mid price and does not assume any
transaction cost. For model VARC, which performs the best, the gain on Leland's alpha for the 1-day-ahead forecast using MidP
is 11.13% and significant at the 1% level. It declines to 2.13% for the 5-day-ahead forecast. In sharp contrast, none of the 14
models considered is economically significant for the 20-day-ahead forecast. This is consistent with our earlier finding that the
historical implied volatility surface information is important for predicting the implied volatility only up to 1 week ahead.

The economic significance results are robust to the impact of transaction costs. Results change little when different levels of
transaction costs are introduced. For example, the gain on Leland's alpha of 1-day-ahead forecast using VARC only decreases
from 11.13% to 10.79% when we change the effective option spread from 0% (using MidP) to 100% of the quoted spread. One
possible reason is that both the tested models and the benchmark model involve transaction costs. As a result the impact of
transaction costs on their performance difference is balanced out.

FIGURE 2 Difference of the out-of-sample forecast errors between the VAR(1) model on volatility change (VARC) and the benchmark
model. This graph plots the standardized difference of monthly aggregate out-of-sample forecast errors between the best-performing model,
VAR(1) on volatility change, and the benchmark model. A negative value means a smaller out-of-sample forecast error for the VARC model
[Color figure can be viewed at wileyonlinelibrary.com]
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Figure 3 plots the standardized aggregate monthly returns of the portfolios that are based on the forecast one day ahead. For
thosemodels that have significantly positive gain on Leland's alpha (models VARL, VARC, ECM1, ECM2,MC, TM,DMSPE1,
DMSPE2, and MMA), returns are relatively stable during the normal time, but become volatile during the crisis period. Most
have a large downward spike during the crisis, suggesting that these trading strategies could be subject to downside risk. The only
exception is model VARC. It has a sudden return increase during the crisis, hence providing a better hedge against downside risk
compared with other models. Figure 4 plots the standardized aggregate monthly returns of the portfolios that are based on the
forecast five days ahead, and the findings are similar.

4 | ROBUSTNESS CHECKS

4.1 | Out-of-sample forecast during the recent financial crisis

Our data covers the recent financial crisis period. One question is whether the crisis has any impact on the implied volatility
predictability. We examine the performance of out-of-sample forecast between December 2007 and June 2009, the recession
period indicated by the National Bureau of Economic Research (NBER). Table 6 presents the results of the statistical and

FIGURE 3 Time series of monthly portfolio return: 1-day-ahead forecast. This graph plots the monthly return of portfolios that are based on
the 1-day-ahead forecast of implied volatility by 14 different models [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 4 Time series of monthly portfolio return: 5-day-ahead forecast. This graph plots the monthly return of portfolios that are based on
the five-day-ahead forecast of implied volatility by 14 different models [Color figure can be viewed at wileyonlinelibrary.com]
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economic significance during this period. Panel A reports the R2
OS statistics. In general, the results of 1-day-ahead forecasts

during the financial crisis are close to those for the full sample period. Overall, there are nine models that outperform the
benchmark model at the 5% significance level in predicting the implied volatility 1 day ahead. However, the results of 5-day-
ahead and 20-day-ahead forecasts are weaker compared with the full sample period. Only two models are significant for the
5-day-ahead forecast, and none of the 20-day-ahead forecasts is significant. This result is different from the finding of stronger
predictability during the recession period on stock market (Rapach et al., 2010) and corporate bond market (Lin et al., 2014).
Rapach et al. (2010) and Lin et al. (2014) focus on risk premium forecast. They use macroeconomic variables and aggregate
market variables to forecast the return at monthly or longer horizons, and impose the non-negative restriction to the forecast. Risk
premium tends to be more predictable during crisis period. On the other hand, we are interested in how fast implied volatility
reflects new information and focus on short horizon predictability using historical implied volatility surface information. We are
testing a different question and the results are not comparable. One possible reason is that during a crisis period, investors are
more sensitive to information available in the markets. As a result, it takes less time for the option market to absorb new
information.

Panel B of Table 6 reports the economic significance results. Different from the statistical result, the economic significance
of predictability actually strengthens. For example, the option trading strategy using 1-day-ahead forecasts based on model
VARC generates a 33.90% gain on Leland's alpha. The gain on Leland's alpha slightly decreases to 31.18%when 100% effective
option spread is used. They are much higher than those reported in Table 5. This shows that historical information is more
economically important during a crisis period, which is consistent with Loh and Stulz (2014) who find that analysts tend to
make poor forecasts during the crisis, but that the forecasts become more influential once the forecasts are adjusted.

4.2 | Out-of-sample forecast of put option

Another question is whether the findings using call options could be extended to put options. To answer this question, we run our
tests using implied volatility surface of put options.We use the ATM put options and the put options with Δ= 0.40 and Δ= 0.60.

The top panel of Table 7 reports the R2
OS statistics and the following panels report the gain on Leland's alpha of different

horizons. For simplicity, we only present the results of all maturity and moneyness. The implied volatilities of put options are
statistically predictable up to 20 days. Such predictability is stronger than that of call options. Model VARC, ECM1, ECM2, and
combination forecasts continue to perform well.

The predictability of implied volatilities of put options is also of economic significance. For the one-day-ahead forecast,
model VARC generates a gain on Leland's alpha of 12.05% if MidP is used, and 10.79% if 100% effective option spread is used.
Both of them are significant at the 1% level. The economic significance of 5-day-ahead forecast is still strong. Model VARC
generates a gain on Leland's alpha of 5.16% ifMidP is used, and 1.85% if 100% effective option spread is used. They are stronger
than those of call options. Overall, the results using put option data strengthen our findings that implied volatility surface contains
useful information for the forecast of implied volatilities.

4.3 | Out-of-sample forecast with other benchmark

Recently, Egloff et al. (2010) and Johnson (2017) show that slope is an important predictor of implied variance. As a robustness
check, we replace the benchmark model of AR(1) with the two-factor model that uses level and slope, and re-run all the tests.
Unreported results show that the earlier well-performingmodels, such as VARC, ECM1, ECM2, and combination forecast, have
significantly positive R2

OS up to 1 week.13 The overall R2
OS of VARC model is 12.47% for the 1-day ahead forecast, and is

significant at the 1% level. The results of ECM1, ECM2 and combination forecast are similar and also significant at the 1% level.
These models lose predictive power after 1 week.

Results of economic significance analysis also suggest that VARC, ECM1, ECM2, and combination forecast outperform the
two-factor benchmark model. The gain on Leland's alpha of the 1-day ahead forecast using VARC is 6.11% and significant at the
1% level. Results continue to be significant for the five-day-ahead forecast, and become insignificant after 1 week.

Our empirical analysis suggests that for the short-horizon implied volatility forecast, a flexible model framework such as
VARC and others is able to use the surface information more efficiently, and provides a better out-of-sample result. On the other
hand, when the forecast horizon is beyond 1 week, more flexible models generate more noise, and simple models such as AR and
two-factor model start to function better. This finding has useful implication for the portfolio management.

13The results are available upon request.
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4.4 | Option data with a different Δ range

We use options with Δ between 0.40 and 0.60 in our empirical analysis. Literature shows that the most liquid options are ATM as
well as +0.25 and−0.25 Δ options, which also contain valuable information.14 To test whether our results are robust to the use of
data with a different Δ, we re-run our analysis using the option data with Δ between 0.30 and 0.70, which covers the moneyness
between 25% and 75%.

Table 8 reports the results. Panel A and Panel B report the result of call and put options, respectively. We report the overall
R2
OS and the gain on Leland's alpha for the forecast of 1 day ahead, 5 days ahead, and 20 days ahead. Results clearly show that

implied volatility is still predictable when the data withΔ between 0.30 and 0.70 are used. The results are close to those using the
data with Δ between 0.40 and 0.60. For the 1-day-ahead forecast of call options, there are ten models with significant R2

OS and
gain on Leland's alpha. For the 5-day-ahead forecast of call option, there are nine models with significant R2

OS and three models
with significant gain on Leland's alpha. Results become insignificant for the 20-day-ahead forecast. The results of put option in
Panel B show a similar pattern.

4.5 | Gain on alpha from a different asset pricing model

We use the gain on Leland's alpha as the economic significance measure. Leland's alpha only considers the impact of
market risk on the option portfolio return. In order to test whether the economic significance is robust to the choice of
asset pricing model, we run the regression of Chen, Roll, and Ross (1986) five factor model on long-short option
portfolio return to get the gain on alpha. We construct long-short option portfolios following the option trading
strategies as described in section 2 for each model. We calculate the monthly cumulative option portfolio return of each
predictive model, and then the difference of the option portfolio return between the predictive model and the benchmark
model. We then run the time series regression of the option portfolio return difference on the five factors of Chen et al.
(1986),

ri;t � r0;t ¼ Alphaþ βMPMPt þ βDEIDEIt þ βUIUIt þ βUPRUPRt þ βUTSUTSt þ εit ð10Þ

where rit is the option portfolio return of predictivemodel i inmonth t, r0t is the option portfolio return of the benchmarkmodel in
month t, MPt, DEIt, UIt, UPRt, and UTSt are industrial production growth, changes in expected inflation, unexpected inflation,
risk premium, and term structure factor in month t, respectively.15 We are interested in whether the intercept, Alpha, is
significant after controlling for the five factors.

Table 9 reports the results of 1-day-ahead forecast.We report the results of call and put options with Δ between 0.40 and 0.60
(upper panel) and between 0.30 and 0.70 (bottom panel). Results strongly show that implied volatility predictability is
economically significant after controlling for the five factors of Chen et al. (1986). For the call option with Δ between 0.40 and
0.60, there are 10 models with significant gains on alpha if mid-price is used to calculate the option return. Results change little if
100% effective spread is used. Results of put option are stronger than those of call option. Using data with Δ between 0.30 and
0.70 generates a similar pattern. These results suggest that there exist significant economic gains of implied volatility
predictability form using the information of historical implied volatility surface.

5 | STOCHASTIC VOLATILITY MODEL

Our finding that implied volatility surface contains information for the prediction of implied volatilities is consistent with the
literature of multi-factor stochastic volatility model. To test this hypothesis, we calibrate the two-factor stochastic volatility
option pricing model (9) to the implied volatility data. Following Christoffersen et al. (2009) we calibrate the option pricing
formula to the weekly data of ATM calls and puts.16

Figure 5 plots the time series of the two variance factors for the calls (the upper panel) and puts (the bottom panel). The
variance factors fluctuate a lot over time, and reach a peak during the crisis period. The first factor is much more persistent than

14See for example, Carr and Wu (2007).
15MPt, DEIt and UIt are obtained from Federal Reserve Bank of St Louis, while UPRt and UTSt are downloaded from Amit Goyal's website.
16Appendix 2 reports the calibration results in each year for calls and puts respectively.
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the second factor. Indeed, themean β values of calls (puts) are 0.21 (0.13) and 3.21 (1.70) for the first factor and the second factor,
respectively. We therefore call the first factor the long-term variance factor while the second factor is the short-term variance
factor.

We then run the univariate regressions

σ2t τð Þ ¼ α τð Þ þ β1 τð ÞV1t þ εt τð Þ; ð11Þ

TABLE 10 Relationship between implied volatility and the extracted long-term and short-term variance factors

ATM call ATM put

Long-term
factor

Short-term
factor

Long-term
factor

Short-term
factor

Maturity (days) β1 t-stats β2 t-stats Adj. R2 β1 t-stats β2 t-stats Adj. R2

30 0.25 4.09 0.06 0.09 1.26 0.01

0.54 13.31 0.72 0.67 28.12 0.83

0.23 7.92 0.53 14.83 0.78 0.24 14.40 0.71 32.55 0.92

91 0.28 5.97 0.13 0.16 2.82 0.06

0.39 14.45 0.62 0.49 17.11 0.70

0.27 10.36 0.39 15.93 0.74 0.27 15.61 0.54 22.05 0.88

182 0.30 8.34 0.23 0.19 4.25 0.12

0.29 12.60 0.51 0.36 12.17 0.57

0.29 13.33 0.29 13.19 0.72 0.28 17.22 0.41 16.05 0.83

365 0.31 10.63 0.33 0.19 5.16 0.17

0.22 10.80 0.40 0.29 9.85 0.47

0.31 15.90 0.22 10.81 0.72 0.26 17.36 0.33 13.09 0.78

730 0.31 13.19 0.43 0.17 5.81 0.19

0.17 9.71 0.30 0.22 8.78 0.40

0.31 18.31 0.16 8.98 0.72 0.23 16.75 0.26 11.74 0.73

This table reports the results of regressing the squared implied volatilities of different maturities on the extracted long- and short-variance factors.We calibrate a two-factor
stochastic volatility option pricing model to the weekly data of ATM options each year from 1996 to 2015, using an iterative two-step optimization procedure as in
Christoffersen, Heston and Jacobs (2009). The t-statistics are adjusted by Newey-West standard errors.

FIGURE 5 Extracted variance factors. This graph plots the time series of two extracted variance factors calibrated from the two-factor
stochastic volatility option pricing model. The top panel plots the time series of two extracted variance factors for ATM calls, while the bottom
panel plots the time series for ATM puts [Color figure can be viewed at wileyonlinelibrary.com]
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σ2t τð Þ ¼ α τð Þ þ β2 τð ÞV2t þ εt τð Þ; ð12Þ

and the bivariate regression

σ2t τð Þ ¼ α τð Þ þ β1 τð ÞV1t þ β2 τð ÞV2t þ εt τð Þ; ð13Þ

to investigate the relationship between these two extracted variance factors and the implied volatilities. V1t and V2t are the two
variance factors in Eq. (9), while εt τð Þ is the residual of the regression for the τ-day implied variance.

Table 10 reports the regression results of the ATM calls and puts. Most implied volatilities are affected by both factors with
significant t statistics. Short-maturity implied volatilities are more related to the short-term variance factor, while long-maturity
implied volatilities are more related to the long-term variance factor. For example, the long-term variance factor only explains
6% of the variances of the 30-day call's implied volatility, but its explanatory power for the 730-day call's implied volatility
increases to 43%. Meanwhile, the adjusted R2 of the short-term variance factor on 30- and 730-day calls' implied volatilities are
72% and 30%, respectively. Results of ATM puts are similar. Consistent with our hypothesis, long-maturity implied volatilities
contain more information about the long-run equilibrium of variance, while short-maturity implied volatility contains more
information about short-term variance.

Another interesting finding is that the explanatory power of the two variance factors is higher for short-maturity implied
volatilities. For example, the adjusted R2 of the 30-day call's implied volatility on the two variance factors is 78%, while it is only
72% for the 730-day call's implied volatility. We have similar results for ATM puts. These suggest that the two-factor stochastic
volatility model better captures the prices of short-maturity options than long-maturity options.

6 | CONCLUSION

In this paper, we test the out-of-sample predictability of S&P 500 index option implied volatilities. In particular, we evaluate 14
different models that are based on historical implied volatility surface information. We investigate both statistical and economic
significance. To examine how long this predictability lasts, we also compare the results at different forecast horizons. We obtain
several interesting results.

Using out-of-sample R2
OS statistics as the statistical measure, we find that several models that use the entire historical implied

volatility surface information could predict the implied volatility significantly in the out-of-sample period. These models could
forecast the implied volatility up to 1 week ahead for the call options, and up to 20 days ahead for the puts.

Using the gain on Leland's alpha as the economic significance measure, we find that the predictability is of economic
significance. The models that use the information of implied volatility surface generate positive gain on Leland's alphas relative
to the benchmark model, even after transaction costs are accounted for. During the recent financial crisis, the predictability is
weakened but the economic significance becomes stronger. In particular, the VAR(1) model on volatility changes performs well
in hedging against the downside risk during the crisis.

By calibrating a two-factor stochastic volatility model to option data, we extract a long-term and a short-term variance
component. By regressing different implied volatilities on these two components, we find that short-maturity implied volatilities
are more related to the short-term variance factor, while long-maturity volatilities are more related to the long-term variance
factor. This helps explain why using them jointly improves the forecast performance.

Our findings have several interesting implications. Our results show the importance of historical implied volatility
information up to 1 week.We carry out delta-neutral trading strategies and document the economic significance of optionmarket
predictability. The results of significantly positive abnormal returns provide insight of profitable investment opportunities for
hedge fund managers, and show an economically effective way of using historical implied volatility curve information for
practitioners.

Our results are consistent with Bakshi et al. (1997) and the emerging component volatility models. Both short-term and long-
term volatilities should be considered in option pricing models to fully capture the price influence.

ACKNOWLEDGMENTS

We thank Henk Berkman, Jianguo Chen, Rong Chen, Toby Daglish, Wenjin Kang, Xingguo Luo, Ben Marshall, Michael Naylor,
Guoshi Tong, Nuttawat Visaltanachoti and seminar participants at Massey University, Renmin University of China, Southwestern
University of Finance and Economics, Xiamen University, Zhejiang University, Victoria University of Wellington 2015 Finance

668 | GUO ET AL.



Workshop, 2016 New Zealand Finance Colloquium, the Midwest Finance Association 2016 Annual Meeting, and 2016 FMA
European Conference for their helpful comments.Part of this work was done during Guo's visit to the University of Sussex, UK.
Guo acknowledges the support of the National Natural Science Fund of China (Grant No. 71503254). Han acknowledges
the support of the National Natural Science Foundation of China (NNSFCGrant No. 71471153) andNNSFCKey Project (Grant No.
71631004).

ORCID

Hai Lin http://orcid.org/0000-0003-4709-799X

REFERENCES

Bakshi, G., Cao, C., & Chen, Z. (1997). Empirical performance of alternative option pricing models. Journal of Finance, 52, 2003–2049.
Bollen, N., & Whaley, R. (2004). Does net buying pressure affect the shape of implied volatility functions? Journal of Finance, 59, 711–753.
Campbell, J. Y., & Shiller, R. J. (1988). The dividend-price ratio and expectations of future dividends and discount factors.Review of Financial Studies,

1, 195–228.
Campbell, J. Y., & Shiller, R. J. (1991). Yield spreads and interest rate movements: A birds eye view. Review of Economic Studies, 58, 495–514.
Cao, J., & Han, B. (2013). Cross-section of option returns and idiosyncratic stock volatility. Journal of Financial Economics, 108, 231–249.
Cao, J., Han, B., Tong, Q., & Zhan, X. (2017). Option return predictability (Working paper). University of Toronto.
Carr, P., & Wu, L. (2007). Stochastic skew in currency options. Journal of Financial Economics, 86, 213–247.
Chalamandaris, G., & Tsekrekos, A. E. (2010). Predictable dynamics in implied volatility surfaces fromOTC currency options. Journal of Banking and

Finance, 34, 1175–1188.
Chalamandaris, G., & Tsekrekos, A. E. (2011). How important is the term structure in implied volatility surface modeling? Evidence from foreign

exchange options. Journal of International Money and Finance, 30, 623–640.
Chen, N., Roll, R., & Ross, S. A. (1986). Economic forces and the stock market. Journal of Business, 59, 383–403.
Chiras, D. P., & Manaster, S. (1978). The information content of option prices and a test of market efficiency. Journal of Financial Economics, 6,

213–234.
Christoffersen, P., Heston, S., & Jacobs, K. (2009). The shape and term structure of the index option smirk:Whymultifactor stochastic volatility models

work so well? Management Science, 55, 1914–1932.
Christoffersen, P., Jacobs, K., Ornthanalai, C., & Wang, Y. (2008). Option valuation with long-run and short-run volatility components. Journal of

Financial Economics, 90, 272–297.
Cochrane, J. H., & Piazzesi, M. (2005). Bond risk premia. American Economic Review, 95, 138–160.
Constantinides, G. M., Jackwerth, J. C., & Savov, A. (2013). The puzzle of index option returns. Review of Asset Pricing Studies, 3, 229–257.
De Fontnouvelle, P., Fisher, R., & Harris, J. (2003). The behavior of bid-ask spreads and volume in options markets during the competition for listings

in 1999. Journal of Finance, 58, 2437–2463.
Derman, E., Kani, I., & Zou, J. Z. (1996). The local volatility surface: Unlocking the information in index option prices.Financial Analysts Journal, 52,

25–36.
Diebold, F. X., & Li, C. (2006). Forecasting the term structure of government bond yields. Journal of Econometrics, 130, 337–364.
Egloff, D., Leippold, M, &Wu, L. (2010). The term structure of variance swap rates and optimal variance swap investments. Journal of Financial and

Quantitative Analysis, 45, 1279–1310.
Fama, E. F., & Bliss, R. R. (1987). The information in long-maturity forward rates. American Economic Review, 77, 680–692.
Fama, E. F., & French, K. R. (1988). Dividend yields and expected stock returns. Journal of Financial Economics, 22, 3–25.
Fama, E. F., & French, K. R. (1989). Business conditions and expected returns on stocks and bonds. Journal of Financial Economics, 25, 23–49.
Fama, E. F., & Schwert, G. W. (1977). Asset returns and inflation. Journal of Financial Economics, 5, 115–146.
Galai, D. (1977). Tests of market efficiency of the Chicago board options exchange. Journal of Business, 50, 167–197.
Gargano, A., Pettenuzzo, D., & Timmermann, A. (2017). Bond return predictability: Economic value and links to the macroeconomy. Management

Science. https://doi.org/10.1287/mnsc.2017.2829
Goh, J., Jiang, F., Tu, J., & Zhou, G. (2012). Forecasting bond risk premia using technical indicators (Working paper). Washington University in

St. Louis.
Goncalves, S., & Guidolin, M. (2006). Predictable dynamics in the S&P 500 index options implied volatility surface. Journal of Business, 79,

1591–1635.
Greenwood, R., & Hanson, S. G. (2013). Issuer quality and corporate bond returns. Review of Financial Studies, 26, 1483–1525.
Guo, B., Han, Q., & Zhao, B. (2014). The Nelson-Siegel model of the term structure of option implied volatility and volatility components. Journal of

Futures Markets, 34, 788–806.
Han, B. (2007). Investor sentiment and option prices. Review of Financial Studies, 21, 387–414.
Hansen, B. E. (2007). Least squares model averaging. Econometrica, 75, 1175–1189.

GUO ET AL. | 669

http://orcid.org/0000-0003-4709-799X


Hansen, B. E. (2008). Least-squares forecast averaging. Journal of Econometrics, 146, 342–350.
Harvey, C. R., & Whaley, R. E. (1992). Market volatility prediction and the efficiency of the S&P 100 index option market. Journal of Financial

Economics, 31, 43–73.
Hodrick, R. J. (1992). Dividend yields and expected stock returns: Alternative procedures for inference and measurement. Review of Financial Studies,

5, 357–386.
Hogan, S., Jarrow, R., Teo, M., &Warachka, M. (2004). Testing market efficiency using statistical arbitrage with applications to momentum and value

strategies. Journal of Financial Economics, 73, 525–565.
Johnson, T. L. (2017). Risk premia and the VIX term structure. Journal of Financial and Quantitative Analysis, 52, 2461–2490.
Keim, D. B., & Stambaugh, R. F. (1986). Predicting returns in the stock and bond markets. Journal of Financial Economics, 17, 357–390.
Kelly, B., & Pruitt, S. (2013). Market expectations in the cross-section of present values. Journal of Finance, 68, 1721–1756.
Kelly, B., & Pruitt, S. (2015). The three-pass regression filter: A new approach to forecasting using many predictors. Journal of Econometrics, 186,

294–316.
Konstantinidi, E., Skiadopoulos, G., & Tzagkaraki, E. (2008). Can the evolution of implied volatility be forecasted? Evidence from European and US

implied volatility indices. Journal of Banking and Finance, 32, 2401–2411.
Kothari, S. P., & Shanken, J. (1997). Book-to-market, dividend yield, and expected market returns: A time-series analysis. Journal of Financial

Economics, 44, 169–203.
Leland, H. E. (1999). Beyond mean-variance: Performance measurement in a nonsymmetrical world. Financial Analysts Journal, 55, 27–36.
Lin, H., Liu, W., Wu, C., & Zhou, G. (2017). Prediction of Treasury bond returns (Working paper). Washington University in St. Louis.
Lin, H., Wang, J., & Wu, C. (2014). Predictions of corporate bond excess returns. Journal of Financial Markets, 21, 123–152.
Lin, H., Wu, C., & Zhou, G. (2017). Forecasting corporate bond returns with a large set of predictors: An iterated combination approach.Management

Science. https://doi.org/10.1287/mnsc.2017.2734
Loh, R. K., & Stulz, R. M. (2014). Is sell-side research more valuable in bad times? (Working paper). National Bureau of Economic Research.
Mayhew, S. (2002). Competition, market structure, and bid-ask spreads in stock option markets. Journal of Finance, 57, 931–958.
Muravyev, D., & Pearson, N. D. (2016). Option trading costs are lower than you think (Working Paper). Boston College.
Nelson, C. R, & Siegel, A. F (1987). Parsimonious modeling of yield curves. Journal of Business, 60, 473–489.
Neumann,M., & Skiadopoulos, G. (2013). Predictable dynamics in higher-order risk-neutral moments: Evidence from the S&P 500 options. Journal of

Financial and Quantitative Analysis, 48, 947–977.
Newey, W. K., & West, K. D. (1987). A simple, positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix.

Econometrica, 55, 703–708.
Pettenuzzo, D., Timmermann, A., &Valkanov, R. (2014). Forecasting stock returns under economic constraints. Journal of Financial Economics, 114,

517–553.
Poon, S.-H., & Pope, P. (2000). Trading volatility spreads: A test of index option market efficiency. European Financial Management, 6, 235–260.
Rapach, D. E., Ringgenberg, M. C., & Zhou, G. (2016). Short interest and aggregate stock returns. Journal of Financial Economics, 121, 46–65.
Rapach, D. E., Strauss, J. K., & Zhou, G. (2010). Out-of-sample equity premium prediction: Combination forecasts and links to the real economy.

Review of Financial Studies, 23, 821–862.
Rapach, D. E., Strauss, J. K., & Zhou, G. (2013). International stock return predictability: What is the role of the United States? Journal of Finance, 68,

1633–1662.
Sarno, L., Schneider, P., & Wagner, C. (2016). The economic value of predicting bond risk premia. Journal of Empirical Finance, 37, 247–267.
Thornton, D. L., & Valente, G. (2012). Out-of-sample predictions of bond excess returns and forward rates: An asset allocation perspective. Review of

Financial Studies, 25, 3141–3168.
Yan, S. (2011). Jump risk, stock returns, and slope of implied volatility smile. Journal of Financial Economics, 99, 216–233.

How to cite this article: Guo B, Han Q, Lin H. Are there gains from using information over the surface of implied
volatilities? J Futures Markets. 2018;38:645–672. https://doi.org/10.1002/fut.21903

670 | GUO ET AL.

https://doi.org/10.1002/fut.21903


APPENDIX 1

Coefficients of NS model

This graph plots the time series of β1t, β2t, and β3t that are calibrated from the ATM implied volatility curve information using the
NS model [Color figure can be viewed at wileyonlinelibrary.com]

APPENDIX 2

Calibration results of two-factor stochastic volatility option pricing model

This appendix reports the calibration results of the two-factor stochastic volatility option pricing model of Christoffersen et al.
(2009).
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