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Abstract

Fish populations are subject to natural growth, environmental pressures,
and natural mortality. In addition, they may experience pressure from
anthropic fishing mortality. Management of fish stocks requires the col-
lection of suitable data from which population models can be built. State-
space models (SSMs) are one modelling approach, and this project investi-
gates their application to data-moderate stocks. We define data-moderate
stocks as those for which there are no survey data, no information on age
composition, and fisheries-dependent data are the only available source
of information. We find that many existing state-space models are either
too simple (e.g., state-space surplus production models) or too complex
(e.g., state-space age-structured models) for these stocks, although many
fisheries around the world face data-moderate situations.

A state-space model is becoming a favoured choice in modelling fish
population dynamics, as it allows one to incorporate both measurement
and process errors. However, several studies have found that separation
of the two sources of variability can result in estimability problems even in
simple state-space models. Using a state-space surplus production model
as an example, we found that such estimability problems can occur even
in a simple stock assessment model, especially when measurement error is
large relative to process error. This problem even exists when constraints
are imposed on most of the model parameters. Such findings suggest the
limitations of SSMs and the importance of model diagnostics.

Using data collected from South Korean fish stocks as application ex-
amples, we developed two stock assessment models in state-space form.
The first model is a state-space two-life stage-structured production model



which can be applied to stocks where juvenile and adult fish have been
separately exploited by different fisheries. The key feature of the model
is that in the absence of any composition data (e.g., age and size), demo-
graphic relationships between juvenile and adult populations are incor-
porated using abundance indices collected from different fisheries, each
of which selectively targets the two different life stages of fish.

The second model is a state-space length-based age-structured model.
This integrated model is developed to utilise length composition data to
inform the age structure of a population. Such data are often available
in many data-moderate stocks, instead of a direct measure of age compo-
sition, such as catch-at-age data. Separating age groups based on length
compositions is not a new concept, but most existing models do not allow
process error. Thus, the development of such a model in state-space form
could provide a more reliable assessment tool for many data-moderate
stocks.

This thesis research contributes to the better understanding of potential
estimability issues in SSMs for fish stock assessments, as well as develop-
ment of the two new state-space models for data-moderate fisheries. We
also identified several issues associated with our findings which could be
useful for future research.
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Chapter 1

Introduction

Fish stock assessment is the process of analysing data collected from either
scientific surveys or commercial fisheries or both, to estimate changes in
fish stock abundance in response to harvesting (i.e., fish catch), based on
a population dynamics approach (Hilborn and Walters, 1992). Harvesting
triggers many changes in natural fish populations, which include growth,
maturity, population size, age composition, and productivity. Fish popula-
tion dynamics describes those changes based on basic demographic com-
ponents: birth and death (in some cases, migration is also considered), us-
ing statistical and mathematical models which are generally called stock
assessment models in fisheries science (Hilborn and Walters, 1992; Had-
don, 2010). The data used for such assessments are typically a relative
abundance index (e.g., catch-per-unit-effort: CPUE or fishery-independent
survey), yield (e.g., annual catch in biomass), age composition (e.g., catch-
at-age), sexual maturity (e.g., maturity-at-age or -length), gear selectivity,
and somatic growth (e.g., length-at-age).

Fisheries scientists apply stock assessment models to provide fisheries
managers with scientific information that can be used to manage fishing
activities. Thus, developing a model that closely approximates the observ-
able behaviour of a fish stock is a key part of a stock assessment process.

1



2 CHAPTER 1. INTRODUCTION

Such model development is an interdisciplinary task which involves un-
derstanding the ecological and biological behaviour of marine species as
well as advanced statistical and mathematical techniques.

Numerous stock assessment models have been developed since Fedor
Baranov laid a cornerstone of quantitative fisheries science in early 1900s
(Baranov and Ricker, 1945; Aeberhard et al., 2018). Those models continue
to evolve as more information about fish stocks and implementation of
advanced statistical techniques that can integrate various sources of infor-
mation become available. It is not surprising that as model complexity
grows, the model becomes a more realistic representation of a fish stock,
thereby providing better quality of assessment results; thus, many previ-
ous studies have attempted to develop new models that incorporate more
detailed behaviour of a fish stock. In recent decades, a state-space mod-
elling framework has received much attention in fisheries science (Millar
and Meyer, 2000; Nielsen and Berg, 2014; Cadigan, 2016; Miller et al., 2016;
Miller and Hyun, 2017), especially after the development of new model es-
timation software, such as ADMB and TMB (Fournier et al., 2012; Kristensen
et al., 2016), which largely facilitated computationally efficient implemen-
tation and estimation of such complex models by using the Laplace ap-
proximation.

State-space modelling is extremely useful for stock assessments as the
framework allows us to accommodate both process and observation errors
by separately modelling two different time series that appear in most fish
population dynamics models (Aeberhard et al., 2018; Auger-Méthé et al.,
2021). To be specific, process error refers to stochastic processes affect-
ing the size of a fish population over time (e.g., environmental changes),
whereas observation error describes differences between the latent state
(e.g., population size) and observed data (e.g., CPUE), caused by uncer-
tainty in sampling (Auger-Méthé et al., 2021). Thus, the first time series
is often termed as a state time series which is modelled to reflect a hid-
den unobserved state of nature, such as actual fish stock size over time.
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Most conventional stock assessment models treat those state transitions as
a deterministic process, but in state-space models (SSMs), such transitions
are modelled as a stochastic process to accomodate the impact of random
variation on population abundance, such as environmental changes. The
second time series is an observation time series which is modelled to filter
out random measurement errors that reflect differences between the un-
observed states and the observations. In SSMs, these two stochastic com-
ponents are hierarchically structured, which allows them to be separately
modelled. By fitting a SSM to observed time series data, one can simul-
taneously estimate both unobserved states and model parameters which
include process and observation error variances.

As explained above, because of additional stochasticity incorporated
in unobserved states, SSMs are desirable as they better represent actual
dynamics of fish stocks compared to conventional models that assume de-
terministic state transitions. Because of this advantageous property, SSMs
have been actively used to assess and manage fish stocks around the world
(Aeberhard et al., 2018), but we find the following two major problems that
hinder a wider application of these powerful tools in practice:

(i) First, many existing SSMs are age-structured and designed for par-
ticular data-rich stocks (Nielsen and Berg, 2014; Cadigan, 2016; Miller
et al., 2016; Miller and Hyun, 2017). Thus, they are not applicable for
many data-limited or -moderate fish stocks world wide. For exam-
ple, almost all fish stocks in South Korea are managed under data-
limited or -moderate situations where age composition data are ei-
ther completely lacking or intermittently available. Because of such
deficiencies in age composition data, a majority of published stud-
ies which used SSMs for assessing Korean fish stocks applied age-
aggregated models, such as state-space surplus production models
(Choi and Kim, 2019; Choi et al., 2020; An et al., 2021). Although
these studies have their own values and made contributions to fish-
eries management in South Korea, we find that some of those appli-
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cations have underutilised other existing data, such as length com-
position and life stage-specific information (e.g., juvenile and adult
catch) that can be used to inform more detailed demographic struc-
tures of fish stocks.

(ii) Second, SSMs are associated with estimability issues in certain con-
ditions under which some model parameters as well as unobserved
states are not estimated well. Such estimation problems seem to arise
when SSMs fail to separate out the two different types of errors (i.e.,
observation and process errors) from each other. Previous studies
discovered that those estimation issues tend to occur when obser-
vation error is larger than process error (Dennis et al., 2006; Auger-
Méthé et al., 2016; Hyun and Kim, 2022), but our preliminary study
indicated that the existence of trends in time series data can also af-
fect the estimability of model parameters in SSMs.

The two problems listed above motivated us to investigate the follow-
ing research questions in this thesis:

(i) Is one of the simplest SSMs in stock assessments, the state-space
surplus production model which has been widely and continu-
ously applied to many data-deficient fisheries world wide, asso-
ciated with estimability issues? If so, under what conditions do
such estimation problems occur?

(ii) What model validation procedures are required for identifying po-
tential estimation problems in SSMs? What precautions are neces-
sary when deriving conclusions from SSMs?

(iii) Can we develop new SSMs that can be applied to data-moderate
stocks for which popular exisiting SSMs, such as state-space sur-
plus production and age-structured models, are not applicable?

We address these research questions in this thesis in the main three chap-
ters (i.e., Chapters 3 to 5) which investigate different SSMs, using actual
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fisheries data. Apart from this introductory chapter, the remaining two
chapters (i.e., Chapters 2 and 6) respectively discuss the methodology for
estimating SSMs and contain the conclusions of this thesis.

To be specific, in Chapter 2, we introduce a maximum marginal likeli-
hood method and the Laplace approximation, which we extensively use
throughout the rest of the thesis for inference of SSMs. In Chapter 3, we
demonstrate that even a simple SSM in stock assessments has estimabil-
ity issues, using a state-space surplus production model. We show that
such estimation problems can occur in many practical situations, using
extensive simulation studies designed based on actual fisheries data. In
Chapter 4, we develop a new SSM that is specifically designed for the Ko-
rea pollock stock where fisheries information on juvenile and adult stocks
is separately available. We evaluate the performance of the new model by
comparing it with an existing SSM (i.e., a state-space general surplus pro-
duction model), based on simulated data which closely mimic the Korea
pollock stock. After the performance test, we apply the model to actual
pollock data to conduct a stock assessment. We then perform validation
tests which identify potential estimability problems associated with this
new stock assessment model. In Chapter 5, we develop another new SSM
that can be applied to many data-moderate stocks where length composi-
tion data are available instead of age composition data. We apply this new
length-based state-space model to actual fisheries data collected from the
Korea mackerel stock as a case study. After the application, we conduct
several model validation tests to evaluate estimability and robustness of
the model. Finally, in Chapter 6, we discuss the main conclusions of the
thesis, where we suggest several precautions that are associated with the
development and application of SSMs in stock assessments. In summary,
the original contributions to quantitative fisheries science from this thesis
research are as follows:

(i) Identification of estimability issues in a state-space surplus pro-
duction model that has been extensively applied to many data-
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limited stocks around the world (Chapter 3).

(ii) Development of two novel SSMs for data-moderate fish stocks (Chap-
ters 4 and 5)

(iii) Demonstration of model validation tests in SSMs, which can iden-
tify potential estimability problems (Chapters 3, 4, and 5).

We finish this introductory chapter by briefly describing the two most
popular existing SSMs (i.e., a state-space surplus production model and a
state-space age-structured model) in stock assessments to aid the reader
in understanding the concept of stock assessment models and state-space
modelling framework.

1.1 Stock assessment models

A range of fish population data are required for reliable stock assessments.
These typically include information on length-at-age, length-at-weight,
male to female ratio, fecundity, relative abundance (e.g., catch-per-unit-
effort), total catch, fishing gears (e.g., gear-selectivity), and spatio-temporal
distributions of collected data. Although utilising all of the above infor-
mation is necessary to accurately assess fish stocks, only a few of them are
often available in practice. Under these circumstances, fisheries scientists
need to choose the model best suited for the available data, and such a
choice is usually made depending on the availability of composition data.
In the absence of composition data that can inform the demographic struc-
ture of fish stocks, surplus production models (Hilborn and Walters, 1992;
Schaefer, 1954; Quinn and Deriso, 1999; Haddon, 2010), which lump the
overall effects of biological processes in a single production function, may
be a reasonable choice. However, if age composition data are available,
age-structured models are used for more detailed assessments (Hilborn
and Walters, 1992; Quinn and Deriso, 1999; Haddon, 2010).
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In this section, we describe the two most popular stock assessment
models, a surplus production model and an age-structured model, as rep-
resentative examples. To provide the reader with an overview of a general
state-space modelling framework in fisheries science, we show how the
state-space modelling framework has been applied to these two models.
A method for the inference of model parameters and state variables in
SSMs is discussed in the next chapter (i.e., Chapter 2), so here we only
discuss their fundamental structures.

1.1.1 Surplus production model

The surplus production model (SPM) is one of the simplest stock assess-
ment models. It represents stock dynamics in terms of changing levels
of biomass (Quinn and Deriso, 1999; Haddon, 2010). The SPM calculates
a new biomass by summing current biomass with surplus production,
which is calculated by subtracting the yield (i.e., catch in weight) from
the net production:

Next biomass = Current biomass + Production − Yield! "# $
Surplus production

The main advantage of a SPM is its ease of application because of rel-
atively simple data requirements. However, its simple structure ignores
some key biological processes of fish populations that can significantly af-
fect stock productivity (e.g., recruitment, fish growth, etc.). The basis of
a SPM is the stock productivity function g(·). Although there are many
other versions of formulas available for g(·), the most conventional choice
is the logistic growth extended to include yield Yt (Hilborn and Walters,
1992). Note that we use the term “yield” for fishing catch in biomass units
throughout this thesis to differentiate it from that in numbers.

With the productivity function g(·) and the yield term Yt, the change in
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population biomass over time t can be expressed as

Bt+∆t − Bt

∆t
= g(Bt)− Yt

= r · Bt ·
%
1− Bt

K

&
− Yt,

where Bt is the biomass at time t, ∆t is the duration of a time interval, r is
the intrinsic growth rate, and K is the carrying capacity for the population
of interest. Then, rearranging the above equation with respect to Bt+∆t

gives

Bt+∆t! "# $
Next biomass

= Bt!"#$
Current biomass

+∆t ·
'
r · Bt ·

%
1− Bt

K

&
− Yt

(

! "# $
Surplus production

.

Since fisheries data are often collected at discrete times (such as daily,
monthly, yearly, etc.), we set ∆t = 1, which gives us the following stan-
dard form of the surplus production model (also known as the Schaefer
production model) (Schaefer, 1954):

Bt+1!"#$
Next biomass

= Bt!"#$
Current biomass

+ r · Bt ·
%
1− Bt

K

&

! "# $
Production

− Yt!"#$
Yield

. (1.1)

1.1.2 State-space surplus production model

In this section, we show how a state-space modelling framework can be
applied to the deterministic model in Equation (1.1) (see Figure 1.1 for its
overall structure). The data for a SSM mainly consists of the two differ-
ent time series, a process time series and an observation time series. We
explain each component of a state-space surplus production model in the
following two subsections.
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Process model

It is generally assumed that the natural logarithm of the biomass Bt+1 in
year t+ 1 (i.e., log(Bt+1)) is normally distributed conditional on the previ-
ous biomass Bt, and the model parameters (i.e., the intrinsic growth rate r,
the carrying capacity K, and the process variance parameter, σ2

η), and the
observed yield Yt (Millar and Meyer, 2000; Punt, 2003):

log(Bt+1) = log

'
Bt + r · Bt ·

%
1− Bt

K

&
− Yt

(
+ ηt+1,

where ηt
iid∼ N

)
0, σ2

η

*
is a stochastic process error representing the effect of

environmental randomness on population growth and measurement error
in observed yield.

Observation model

To estimate the latent states Bt, we need to include an observation model
that links those latent states (i.e., Bt) with observed time series data. A
common assumption is that the relative abundance index of each time t

(i.e., It) is related to the latent biomass Bt through a stochastic observation
model, where log(It) is normally distributed conditional on the biomass
Bt, the catchability parameter q, and the observation variance σ2

ε :

log(It) = log(q · Bt) + εt,

where εt
iid∼ N (0, σ2

ε) is a stochastic observation error representing the dif-
ference between the log of the observation (i.e., log(It)) and its expected
value (i.e., E[log(It)]).
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Figure 1.1: Directed acyclic graph (DAG) representation of the state-space
surplus production model. White circles are non-observed probabilistic
nodes (i.e., Bt), and those in gray are observed probabilistic nodes (i.e., It).
Squares in gray are observed deterministic nodes (i.e., Yt). Arrows with
solid lines represent conditional probabilistic dependencies, and those
with dotted lines represent deterministic dependencies between nodes

1.1.3 Age-structured model

An age-structured model attempts to describe the composite behavior of
cohorts within a population, which involves tracking the development
and changes within each cohort separately. Obviously, this is an improve-
ment over an age-aggregated model, such as the surplus production model
described above, as different ages of animals tend to grow at varying rates
and have varying weights. Depending on the level of information avail-
able, an age-structured model could be a better reflection of natural popu-
lation processes and the impacts of harvesting than simple models.

In theory, after a cohort has recruited, its numbers can only decline
(assuming no immigration and emigration). The design of the model de-
pends upon how this decline is modeled. Using an exponential decay
model, the changing numbers within a cohort can be expressed as follows:

Na+1! "# $
Numbers at age a+ 1

= Na!"#$
Numbers at age a

× exp[−(Fa +Ma)],! "# $
Survivor rate for fish of age a

for 1 < a < A,
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where Na is the number of fish of age a, Ma and Fa are the instantaneous
rates of natural and fishing mortality for fish of age a, and A is the terminal
age group.

Modelling an age-structured population through time is a standard
problem in fisheries stock assessment. In modern fisheries stock assess-
ments, age-structured models, such as the virtual population analysis (VPA)
and the statistical catch-at-age model (SCAA) (Fournier and Archibald,
1982; Quinn and Deriso, 1999; Haddon, 2010), are widely used and con-
sidered the most reliable assessment methods as they follow identifiable
cohorts. Although estimation procedures are different, the base structure
of those methods can be expressed as follows

Na,t =

+
,,,,,,-

,,,,,,.

N1,t,

Na−1,t−1 · exp[−(Ma−1,t−1 + Fa−1,t−1)], for 1 < a < A

NA−1,t−1 · exp[−(MA−1,t−1 + FA−1,t−1)]

+NA,t−1 · exp[−(MA,t−1 + FA,t−1)]

, (1.2)

where Na,t is the number of fish of age a for time t, Ma,t is the instantaneous
natural mortality rate (time−1) for fish of age a at time t, and Fa,t is the
instantaneous fishing mortality rate for fish of age a at time t (time−1).

1.1.4 State-space age-structured model

In this section, we show how the age-structured model in Equation (1.2)
is commonly modelled in state-space form (see Figure 1.2 for its overall
structure). Note that age-structured models generally include numerous
sub-models, which parameterise biological traits of a species of interest
and selectivity associated with fishing gears and fleets. Details about those
sub-structures are discussed in Chapters 4 and 5.
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Process model

In state-space age-structured models, it is generally assumed that the nat-
ural logarithm of abundance for ages and times are normally distributed
(Nielsen and Berg, 2014; Cadigan, 2016; Miller et al., 2016; Miller and Hyun,
2017):

log(Na,t) =

+
,,,,,,-

,,,,,,.

log(N1,t) + η1,t

log(Na−1,t−1 · exp[−(Ma−1,t−1 + Fa−1,t−1)]) + ηa,t, for 1 < a < A

log(NA−1,y−1 · exp[−(MA−1,t−1 + FA−1,t−1)]

+NA,y−1 · exp[−(MA,t−1 + FA,t−1)]) + ηA,t

,

where ηa,t
iid∼ N

)
0, σ2

a,η

*
. To reduce the number of variance parameters σ2

a,η,
the process variance for older ages (e.g., a > 1) is assumed to be the same
(i.e., σ2

a,η = σ2
2,η, for a > 1).

Observation model

To link the unobserved states Na,t with sets of time series observations,
the following two observation models can be used. Note that depending
on types of data at hand, other alternative observation models can be ap-
plied instead of the models given below, which we discuss in Chapter 5.
The first observation model assumes that the relative abundance index for
each age a and time t (i.e., Ia,t) is related to the unobserved abundance Na,t

through a stochastic observation model, where log(Ia,t) is normally dis-
tributed conditional on the abundance Na,t, the age-specific catchability
parameter qa, and the observation variance σ2

a,ε for the abundance index
data (Nielsen and Berg, 2014; Auger-Méthé et al., 2021):

log(Ia,t) = log(qa ·Na,t) + εa,t, where εa,t
iid∼ N

)
0, σ2

a,ε

*
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Figure 1.2: Directed acyclic graph (DAG) representations of the state-space
age-structured model: the process model (a) and the observaiton model
(b). White circles are non-observed probabilistic nodes (i.e., Na,t), and
those in gray are observed probabilistic nodes (i.e., Ia,t and Ca,t). Arrows
with solid lines represent conditional probabilistic dependencies between
nodes. Dotted rectangular frames with rounded corners indicate repeti-
tion of structure over units.

The second observation model links the catch-at-ages for time t (i.e., Ca,t)
with the two types of mortality parameters and the abundance, using the
baranov catch equation (Baranov and Ricker, 1945). Again, it is often as-
sumed that the natural logarithm of Ca,t (i.e., log(Ca,t)) is normally dis-
tributed (Nielsen and Berg, 2014; Miller and Hyun, 2017; Auger-Méthé
et al., 2021):

log(Ca,t) = log

'
Fa,t

Ma,t + Fa,t

· {1− exp(−Ma,t − Fa,t)} ·Na,t

(
+ νa,t,

where νa,t
iid∼ N

)
0, σ2

a,ν

*
.

In the next chapter, we discuss a maximum marginal likelihood method
and the Laplace approximation, which are widely used to infer these SSMs
in fisheries science.
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Chapter 2

Inference in state-space models

In this chapter, we discuss a maximum marginal likelihood estimation ap-
proach that is widely used in quantitative fisheries science. In this ap-
proach, the approximation of the integral over random effects (e.g., state
variables in state-space models) is performed using the Laplace approxi-
mation (Skaug and Fournier, 2006; Fournier et al., 2012; Kristensen et al.,
2016).

There are two main ways of fitting state-space models (SSMs) to ob-
served data, namely the frequentist and Bayesian approaches. Frequen-
tists infer parameters by maximising the likelihood function, and Bayesians
derive a posterior density of the respective unknown quantity by sampling
(if the posterior distribution is not analytically tractable). It is important to
note that there is a significant difference in how the two statistical frame-
works deal with parameters and states. In the frequentist approach, each
parameter is considered as an unknown fixed constant, while the hidden
states are treated as random variables. In the Bayesian approach, both pa-
rameters and states are treated as random variables (Auger-Méthé et al.,
2021). Despite these differences between the two approaches, both ap-
proaches require dealing with a high-dimensional integration, which is at
the core of the problems associated with fitting SSMs to data (Aeberhard

15
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et al., 2018; Auger-Méthé et al., 2021).
In this thesis, we use the frequentist approach as our main estimation

method because of its superior efficiency in terms of computational speed
over Bayesian sampling approaches (Auger-Méthé et al., 2021). In particu-
lar, in Chapters 3, 4, and 5, these significant computational advantages al-
lowed us to test the performance of different SSMs using parametric boot-
strap, where we run a few hundreds or thousands of bootstrap replicates
to obtain robust results.

Therefore, the rest of this chapter is largely devoted to discussing the
frequentist approach, where we review the classical and extended likeli-
hoods as well as the Laplace approximation. After the description of the
likelihood-based method, we briefly discuss its counterpart, the Bayesian
approach, for comparison between the two approaches.

2.1 Frequentist approach

Fitting a state-space model (SSM) to data involves estimating the parame-
ters θ and the latent states v. Since the states are random variables, v has
a probability distribution. Thus, it is common to refer to state variables as
random effects or latent variables (Auger-Méthé et al., 2021).

The premise of maximum likelihood estimation is to find values of pa-
rameters θ and the states v that maximise their joint likelihood. However,
direct maximisation of the joint likelihood with respect to both types of
unknown quantities is challenging (Aeberhard et al., 2018; Auger-Méthé
et al., 2021). Thus, the parameters are commonly estimated by maximis-
ing a marginal likelihood instead, which is obtained by integrating out
the state variables from the joint likelihood (Aeberhard et al., 2018; Auger-
Méthé et al., 2021). This estimation process is the same as the classical max-
imum likelihood method for a model that has no random effects. How-
ever, the difference from the classical method is that there is one more
maximisation step for the estimation of state variables.
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As explained, the maximum likelihood approach for models with ran-
dom effects, such as SSMs, can be considered an extension of the clas-
sical likelihood method. Thus, in the following sub-sections, we show
how the classical likelihood can be extended to incorporate random ef-
fects. Note that for clarification, here we use the term “classical likelihood”
for a model with no random effects and “extended likelihood” for a model
with random effects. We adopt the terminology, extended likelihood, from
Pawitan (2001), which has also been referred to as h-likelihood in a mixed
effect framework (Lee et al., 2018).

2.1.1 The classical likelihood

Let y and θ be vectors of observations and model parameters, respectively.
Then, the probability distribution for the data y conditional on the param-
eters θ can be denoted as

f (y|θ) .

Support of the data for different values of θ can be expressed using the
likelihood function of θ conditional on y, which is equal to f (y|θ) but
written with the argument, revised to emphasise the fact that θ is un-
known and the data y are regarded as fixed (Pawitan, 2001):

L (θ|y) = f (y|θ) .

Estimates of θ (i.e., θ̂) can be found by maximising L (θ|y) with respect
to θ given the data y. In practice, it is computationally more stable to
maximise the log-likelihood ℓ(θ) instead of L (θ|y):

ℓ(θ|y) = log[L(θ|y)]

since the log-likelihood is less prone to overflow or underflow when eval-
uated. Moreover, the log-likelihood is often analytically simpler to han-
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dle. Thus, maximising the log-likelihood with respect to the parameters θ
gives us the maximum likelihood estimator of the parameters θ (Pawitan,
2001):

θ̂ = argmax
θ

ℓ(θ|y).

For the maximisation, we use the first derivatives of the log-likelihood
ℓ(θ|y) with respect to the parameters θ if the log-likelihood function is
reasonably quadratic. This first derivative is commonly referred to as the
score function S(θ) (Pawitan, 2001):

S(θ) ≡ ∂ℓ(θ|y)
∂θ

.

The maximum likelihood estimates (MLEs) of θ is then the solution of the
following vector equation

S(θ) = 0.

The Fisher information I(θ) is defined as the negative of the Hessian ma-
trix and is given by

I(θ) ≡ −∂2ℓ(θ|y)
∂θ∂θT

.

The inverse of the observed Fisher information I(θ̂), which is obtained
by evaluating the Fisher information at θ = θ̂, gives us the variance-
covariance matrix of the estimates θ̂ (Pawitan, 2001):

ˆcov(θ̂) = I(θ̂)−1.

2.1.2 The extended likelihood

If we include an additional layer for the unobservable random quantities
v in the model with the parameters θ (i.e., f (y|θ)), whose probability
distribution function is denoted as f(v|θ), the joint density f(y,v|θ) can
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be expressed as

f(y,v|θ) = f(v|θ) · f(y|v,θ) (2.1)

so that
f(y|θ) =

/
f(v|θ) · f(y|v,θ)dv.

In terms of the data generation process, the stochastic model in Equation
(2.1) can be interpreted as follows (Lee et al., 2018):

(i) From a probability distribution function f(v|θ) with known input
values for the parameters θ, generate realisations of the random quan-
tities v (e.g., stock abundance in fisheries models, such as Bt, and
Na,t).

(ii) Then, from a probability distribution function f(y|v,θ) where both
θ and v are fixed at the values obtained from the process above, gen-
erate the observations y.

For inference, similar to the classical likelihood, a joint likelihood for
both the parameters θ and the random effects v (i.e., extended likelihood
in our terminology) can be expressed as

L(θ,v|y) ≡ f(y,v|θ).

Unlike for the classical likelihood, maximising the extended likelihood
with respect to both the parameters θ and the random effects v is chal-
lenging. Thus, for inference, the following approach is used instead:

(i) From the extended likelihood L(θ,v|y), obtain the marginal log-likelihood
ℓ(θ|y) by integrating out the random effects v and take the natural
logarithm (Lee et al., 2018):

ℓ(θ|y) = log

%/
L(θ,v|y)dv

&
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(ii) Make inference by maximising the marginal log-likelihood ℓ(θ|y)
with respect to the parameters θ:

θ̂ = argmax
θ

ℓ(θ|y)

and

cov(θ̂) = −
'
∂2ℓ(θ|y)
∂θ∂θT

000
θ=θ̂

(−1

(iii) After θ̂ is found, one can sequentially infer v by maximising the ex-
tended log-likelihood ℓ(θ̂,v|y) with respect to v, where θ is fixed at
θ̂ (Lee et al., 2018):

v̂ = argmax
v

ℓ(θ̂,v|y), where ℓ(θ̂,v|y) = log[L(θ̂,v|y)] (2.2)

and

cov(v̂) = −
1
∂2ℓ(θ̂,v|y)
∂v∂vT

000
v=v̂

2−1

. (2.3)

A major disadvantage of the plug-in method in Equations (2.2) and (2.3)
is that it underestimates cov(v̂) by ignoring the additional uncertainty
that originates from the fact that θ̂ is itself only an estimate. Taking this
into account, we use the following formula which is already implemented
in statistical software such as ADMB and TMB (Skaug and Fournier, 2006;
Fournier et al., 2012; Kristensen et al., 2016):

cov(v̂) = −
1
∂2ℓ(θ̂,v|y)
∂v∂vT

000
v=v̂

2−1

+
∂v̂

∂θ

000
θ=θ̂

· cov(θ̂) ·
%
∂v̂

∂θ

000
θ=θ̂

&T

,

where ∂v̂/∂θ is the expression for the Jacobian matrix that takes into ac-
count the dependence of the likelihood estimator on the parameters θ

(Skaug and Fournier, 2006).
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2.1.3 Laplace approximation

To approximate the marginal likelihood of θ (i.e., L(θ|y)) from the ex-
tended likelihood (i.e., L(θ,v|y)) , we use the Laplace approximation method
(Skaug and Fournier, 2006; Fournier et al., 2012; Kristensen et al., 2016).
Previously, we showed that

L(θ|y) =
/

L(θ,v|y)dv

which can be written as

L(θ|y) =
/

exp(ℓ(θ,v|y))dv.

Then, the Laplace approximation of the marginal likelihood is obtained
by approximating ℓ(θ,v|y), using a second order Taylor polynomial in
the random effects v. Thus, by taking a Taylor series approximation of
ℓ(θ,v|y) around v̂ which maximises the extended log-likelihood ℓ(θ,v|y)
with respect to v:

L(θ|y) =
/

exp(ℓ(θ,v|y))dv

≈
/

exp [ℓ(θ, v̂|y) + ℓ′(θ, v̂|y) · (v − v̂)

+
1

2
(v − v̂)T · ℓ′′(θ, v̂|y) · (v − v̂)2

(
dv,

where the vector ℓ′(θ, v̂|y) and matrix ℓ′′(θ, v̂|y) are the first and second
derivatives with respect to v of the extended log-likelihood, evaluated at
the point v̂.

Since by definition ℓ′(θ, v̂|y) = 0, we can simplify the above expression
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to be

L(θ|y) ≈ L(θ, v̂|y) ·
/

exp

%
1

2
(v − v̂)T · ℓ′′(θ, v̂|y) · (v − v̂)2

&
dv

= L(θ, v̂|y) ·

3
(2 · π)n

det(−ℓ′′(θ, v̂|y)) ,

where n is the dimension of the vector of random effects v.

2.2 Bayesian approach

In this section, we briefly describe how the Bayesian approach is used to fit
SSMs. In the Bayesian approach, the posterior distribution for the hidden
states v and parameters θ given the data y and the prior distribution for
the parameters θ (i.e., π(θ)) is defined by applying Bayes’ theorem:

f(θ,v|y) = L(θ,v|y) · π(θ)44
L(θ,v|y) · π(θ)dvdθ

, (2.4)

where
f(θ,v|y) ∝ f(y|θ,v) · f(θ,v)

= f(y|θ,v) · f(v|θ) · π(θ)

= f(y,v|θ) · π(θ)

= L(θ,v|y) · π(θ).

The denominator in Equation (2.4) represents the marginal probability of
the data y. The posterior distribution f(θ,v|y) provides the basis for the
inferences of the random variables θ and v; thus, a main objective of a
Bayesian analysis is to determine the posterior distribution.

Equation (2.4) contains a denominator that involves high-dimensional
integrals that cannot often be expressed analytically and therefore must
be approximated. Thus, most of Bayesian inference is concerned with the
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computable parts of the posterior:

f(θ,v|y) ∝ L(θ,v|y) · π(θ).

Such computational difficulty in Bayesian inference suggests that both fre-
quentist and Bayesian approaches to SSMs have the same challenge in
computing integrals of large dimensions. In the frequentist approach, we
use Laplace’s method to approximate such high-dimensional integration.
In the Bayesian approach, simulation-based techniques that approximate
the posterior distribution are used instead. The posterior distribution can
be approximated with a large sample of dependent draws using various
algorithms, such as Markov chain Monte Carlo (MCMC) methods.

MCMC methods are a general category of algorithms that are based
upon sampling from a Markov chain rather than sampling directly from
the posterior distribution f(θ,v|y). Different MCMC approaches have
been developed, and Hamiltonian dynamics techniques, which are avail-
able in MCMC software such as Stan (Stan Development Team, 2016), have
been found to be the most efficient for SSMs (Aeberhard et al., 2018).
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Chapter 3

Estimability of a state-space

surplus production model

3.1 Introduction

The surplus production model (SPM) has long been used in fisheries stock
assessment, and its utility has been demonstrated by many previous stud-
ies (Hilborn and Walters, 1992; Polacheck et al., 1993; Quinn and Deriso,
1999; Mueter and Megrey, 2006; Haddon, 2010). Its simple structure ren-
ders it less data-demanding compared to other contemporary stock assess-
ment models, thus it has been applied to many data-moderate fisheries to
estimate fish stock status. Despite some structural limitations (Maunder,
2003; Wang et al., 2014), the SPM still remains a popular choice for fish-
eries modellers possibly due to considerable progress in the improvement
of its framework by adapting a state-space approach. Numerous studies
have demonstrated the implementation of the state-space framework for a
SPM and developed effective software tools for stock assessment scientists
(Millar and Meyer, 2000; McAllister, 2014; Winker et al., 2018, 2020).

The state-space surplus production model (SSPM) is a hierarchical model,

25
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which is structured to incorporate both observation and process errors si-
multaneously, where the time-series of biomass (i.e., Bt, where B is the
biomass and t is the time) is treated as a sequence of unobserved states
(also known as latent variables), and those unobserved states Bt are linked
to observed variables, such as the time series of relative abundance index
(often denoted as It) collected from either scientific surveys or commer-
cial fisheries (e.g., catch-per-unit-effort: CPUE) (Millar and Meyer, 2000).
Unlike a conventional SPM, where the transition of the biomass Bt is de-
terministic (i.e., no process errors), a SSPM allows a stochastic transition
of Bt to capture the effect of environmental randomness on the population
changes.

Although a SSPM has a relatively simple structure compared to other
contemporary stock assessment models, the likelihood surface may be al-
most flat or have long level ridges (Hyun and Kim, 2022), so that estima-
bility of its model parameters is often questionable, thus requiring some
external aids (e.g., constraints on parameters) for the successful conver-
gence of a model (Millar and Meyer, 2000; McAllister et al., 2001; Punt,
2003; Ono et al., 2012; Parent and Rivot, 2012; Winker et al., 2018, 2020).
We consider parameters to be estimable if a unique set of estimates that
optimise the likelihood function exists (Auger-Méthé et al., 2016; Auger-
Méthé et al., 2021). This condition is almost never satisfied in a SSPM,
unless one incorporates extra constraints on the model parameters (Hyun
and Kim, 2022). Those constraints are applied through a set of assump-
tions, or by incorporating strong prior information on model parameters.
The assumptions commonly used in the published literature are that (i)
the initial biomass is equal to the maximum capacity of the population
size (B1 = K, where K is the carrying capacity) (Millar and Meyer, 2000;
Punt, 2003; Rankin and Lemos, 2015), and (ii) the observation and process
error variances are equal to each other (σ2

ε = σ2
η , where σ2

ε and σ2
η are the

observation error and process error variances, respectively) (Ono et al.,
2012; Parent and Rivot, 2012; Thorson and Minto, 2015). Alternatively, es-
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pecially in a Bayesian setting, the incorporation of prior knowledge has
been used to aid the convergence of a model instead of applying those
common assumptions (Millar and Meyer, 2000; McAllister, 2014; Winker
et al., 2020). To do so, information available from the published literature
on stock levels has been utilised, based on which a probability density
function for each of the model parameter is included in a model.

Our preliminary simulation studies on the estimation performance of
a SSPM indicated that the potential estimation problems associated with
a SSPM can be two fold. First, a trend in time-series data should show
enough contrast to inform model parameters to be estimable (Hilborn and
Walters, 1992). Without such contrast in the data, a model would fail to
uniquely describe how a stock responds to exploitation, which implies
that there could be many other possible explanations for such a monotonic
trend. This uninformative data trend is often termed as “one-way-trip” in
fisheries science (Hilborn and Walters, 1992; McAllister et al., 2001), and
its impact on the estimation of the parameters in a conventional SPM is
well-described in Hilborn and Walters (1992), where a relationship be-
tween fishing effort, population abundance, and a population growth rate
is explained in terms of the amount of contrast in time-series data. In
Bayesian analysis of a SSPM, many attempts have already been made to
overcome such an estimation problem associated with uninformative data
in a SSPM by introducing prior knowledge in the form of a prior proba-
bility distribution to the model (Millar and Meyer, 2000; Parent and Rivot,
2012; Rankin and Lemos, 2015; Winker et al., 2018, 2020). However, to
our knowledge, its consequences have not yet been thoroughly tested. For
example, many studies that applied SSPMs did not test the estimability
of model parameters, rather they focused on convergence of the models
and validation tests (Millar and Meyer, 2000; Punt, 2003; Parent and Rivot,
2012; Winker et al., 2018, 2020). Although Ono et al. (2012) conducted a
model performance test of a Bayesian SSPM, using various metrics, their
performance test mainly focused on the comparison of models with dif-
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ferent error types.
Second, the ratio between observation and process errors is an impor-

tant factor for estimability of their variance parameters. Such an estima-
tion problem in state-space models has already been discussed in previ-
ous studies (Dennis et al., 2006; Knape, 2008; Auger-Méthé et al., 2016),
but they did not investigate the models where parameters are strongly in-
formed by the incorporation of prior knowledge, which are the most com-
mon cases in Bayesian SSPMs in real applications (Sant’Ana et al., 2017;
Winker et al., 2018; Sant’Ana et al., 2020; Winker et al., 2019, 2020). An
estimation problem even in a simple linear state-space model, using a ran-
dom walk process, has been demonstrated by Auger-Méthé et al. (2016).
In their study, it is illustrated that if observation error is larger than pro-
cess error, even a simple linear state-space model often fails to differenti-
ate those two types of errors as the two variance parameters for the errors
become inestimable. Our preliminary studies indicated that such an esti-
mation problem associated with the error ratio can exist even in a Bayesian
SSPM where parameters are strongly informed by their priors.

As we discussed in Chapter 2, A SSPM can be fitted using both fre-
quentist and Bayesian approaches. The former can be conducted by a
maximum marginal likelihood method, where unobserved states are inte-
grated out through a Laplace approximation technique, and the resultant
marginal likelihood is maximised to obtain the maximum likelihood es-
timates (MLEs) of the parameters (Skaug and Fournier, 2006; Kristensen
et al., 2016). In this frequentist approach, constraints on model parame-
ters can be incorporated as penalties on a likelihood function, prior distri-
butions in a Bayesian setting. The latter is analysed by a Markov Chain
Monte Carlo (MCMC) sampling method, where random samples from the
posterior distribution of the parameters are drawn for inference (Gelman
et al., 2013; Monnahan and Kristensen, 2018). For our simulation studies,
we mainly use the frequentist approach because of its substantial compu-
tational efficiency compared to the Bayesian sampling method, and this
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has allowed us to explore a large number of simulation-estimation runs in
a relatively short amount of time. To reassure ourselves that the choice of
the estimation method does not affect the results of our simulation studies,
we use both frequentist and Bayesian approaches for selected scenarios
and compare those results. Since we apply both frequentist and Bayesian
paradigms, we use the term “constraints” to refer to both penalties in a
frequentist method and priors in a Bayesian method.

The main purpose of this study is to systematically identify the source
of the estimation problems in a SSPM, which were detected in our prelim-
inary studies. We conduct comprehensive simulation studies which cover
many different possible scenarios in practice. Incorporating constraints
into a SSPM becomes a standard technique because of the well-known dif-
ficulty in estimating all model parameters and state variables without any
external aid; thus, we aim to test model estimation performance under the
condition that each model parameter is strongly and correctly informed
by its constraint. With such a strong constraint, one may easily expect a
successful convergence of a model as well as its good performance (e.g.,
parameter estimates with low bias and high precision), but our prelimi-
nary studies informed us that even the correct application of parameter
constraints (e.g., a true value for each parameter is given the most weight)
can result in biased estimates of the parameters, which simultaneously af-
fects the prediction of the state variables (i.e., Bt). To construct realistic and
convincing scenarios, we obtain input values, which are used to simulate
data, from a coventional SPM fitted to the Namibian hake and Atlantic
albacore data sets. Such data sets are well studied and widely applied to
both SPMs and SSPMs for demonstration purposes in quantitative fish-
eries science (Hilborn and Walters, 1992; Polacheck et al., 1993; Millar and
Meyer, 2000; Punt, 2003; Parent and Rivot, 2012; Rankin and Lemos, 2015).

The rest of this chapter is structured as follows. First, we describe a
SSPM and constraints imposed on the parameters of a SSPM. Second, af-
ter a mathematical description of the model, the two different estimation
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methods are discussed. Third, details of the simulation scenarios and eval-
uation metrics are described. We also explain a sensitivity analysis used
to examine the effect of incorporation of parameter constraints on model
performance. Lastly, simulation results are illustrated and discussed.

Table 3.1: Notation summary

Notation Description

t index for time

T total number of time steps t

s index for each simulation scenario

i index for each simulation run

It abundance index at time t (e.g., catch-per-unit-effort: CPUE)

Yt fishery yield at time t (i.e., total catch)

Bt biomass at time t

Ht harvest rate at time t (i.e., Ht = Yt/Bt)

Pt Scaled biomass (or stock status; Pt = Bt/K) at time t

εt observation error at time t

ηt process error at time t

σ2
ε variance of the observation error

σ2
η variance of the process error

b proportion of B1 relative to K

q catchabiliy coefficient

r intrinsic growth rate

K carrying capacity

MSY maximum sustainable yield (i.e., MSY =
r ·K
4

)

θ vector of the six model parameters (i.e., θ = (ση, σε, b,K, r, q))
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3.2 Methods

In this section, we describe a logistic production model in a state-space
framework, which is used throughout this study. This logistic form is the
simplest type of a production function considered in a SPM and has been
well studied (Hilborn and Walters, 1992; Polacheck et al., 1993; Quinn and
Deriso, 1999; Haddon, 2010). Using this form of a SSPM, we explore the
estimability of the model parameters under different scenarios which are
designed to address various questions that concern the application of a
SSPM. In all scenarios, we impose probability density functions on all of
the model parameters as constraints, which are precisely specified, where
the true values of the parameters are used as the modes of those con-
straints, and their dispersions are set to be 30% of the coefficient of varia-
tion (CV). The implementation of those constraints can be considered ex-
treme because in a real world application, such precise information is not
known, which would make results of our simulation studies rather con-
servative.

The data simulation process, a metric used for evaluation of the model
performance, and sensitivity analysis are also described. A summary of
the notation used in this study can be found in Table 3.1.

3.2.1 State-space surplus production model (SSPM)

Referring to previous studies (Millar and Meyer, 2000; Winker et al., 2018,
2020), we use a logistic production model in the following state-space
form, where two sources of variability, observation error εt and process
error ηt, are separately incorporated:
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+
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,,,,.

B1 = b ·K · exp(η1)

Bt+1 =

'
Bt + r · Bt ·

%
1− Bt

K

&
− Yt

(
· exp (ηt+1) , for 1 ≤ t < T

It = q · Bt · exp (εt) , for 1 ≤ t ≤ T

,

where εt
iid∼ N

)
0, σ2

ε

*
and ηt

iid∼ N
)
0, σ2

η

*

(3.1)
where Bt is the biomass at time t, b is the proportion of B1 relative to the
carrying capacity K, ηt is the process error, which is normally distributed
with mean 0 and variance σ2

η , r is the intrinsic growth rate, Yt is the fish-
ery yield at time t, It is the abundance index (e.g., CPUE) at time t, q is
the catchability coefficient, and εt is the observation error, which is also
normally distributed with mean 0 and variance σ2

ε .
To improve the efficiency of the numerical estimation, we scale down

Bt by dividing it by K (i.e., Pt = Bt/K) (Millar and Meyer, 2000), and
linearise Equation (3.1) by taking the natural logarithm:

+
,,,,-

,,,,.

logP1 = log b+ η1

logPt+1 = log

'
Pt + r · Pt · (1− Pt)−

Yt

K

(
+ ηt+1, for 1 ≤ t < T

log It = log q + logPt + logK + εt, for 1 ≤ t ≤ T

, (3.2)

In this reparameterised form, Pt is treated as the state variable instead of
Bt.

Constraints

We impose constraints on all of the six parameters (i.e., θ = (b,K, q, r, ση, σε))
to aid the convergence of the SSPM. Based on the independence assump-
tion between the parameters θ (Millar and Meyer, 2000; Ono et al., 2012),
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the constraints are expressed as a product density of all model parameters:

π(θ) = π(σ2
ε , σ

2
η, b,K, q, r)

= π(σ2
ε) · π(σ2

η) · π(b) · π(K) · π(q) · π(r),

where +
,,,,,,,,,,,,-

,,,,,,,,,,,,.

σ2
ε ∼ inverse-gamma(αε, βε)

σ2
η ∼ inverse-gamma(αη, βη)

b ∼ lognormal(µb, σ
2
b )

K ∼ lognormal(µK , σ
2
K)

q ∼ lognormal(µq, σ
2
q )

r ∼ lognormal(µr, σ
2
r)

The choice of the probability distribution for each parameter is based on
previous studies (Millar and Meyer, 2000; Ono et al., 2012; Rankin and
Lemos, 2015). The domain of all six parameters is the positive real line.
Note that imposing a uniform distribution for the natural logarithm of the
catchability coefficient q (i.e., log(q)) is a more popular choice than using a
lognormal distribution for q in some literature due to a lack of sufficient in-
formation to construct a stronger constraint for q (Millar and Meyer, 2000;
Ono et al., 2012; Rankin and Lemos, 2015). The values for parameters of
the constraints are determined using the mode and coefficient of variation
(CV) (see Table 3.2).

3.2.2 Estimation

The penalised likelihood of the parameters (i.e., θ = (σε, ση, b, r, k, q)) and
the state variables (i.e., P = (P1, P2, P3, ..., PT ) ) is the joint density of those
unknowns, constraints (i.e., penalties), and the data I = (I1, I2, I3, ..., IT ),
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Table 3.2: Probability densities and their parameters, which are used as the
constraints for the six model parameters in the state-space surplus produc-
tion model (SSPM). The parameters for the distributions are determined,
using the true input values of the model parameters, shown in Table 3.3,
as the modes of their corresponding probability distributions (denoted by
the subscription o) and the coefficient of variation (CV).

Distribution Parameters

σ2
ε ∼ inverse-gamma(αε, βε) αε = 1/CV2 + 2, βε = σ2

ε,o · (αε + 1)

σ2
η ∼ inverse-gamma(αη, βη) αη = 1/CV2 + 2, βη = σ2

η,o · (αη + 1)

b ∼ lognormal(µb, σ
2
b ) µb = log(bo) + σ2

b , σ2
b = log

)
CV2 + 1

*

K ∼ lognormal(µK , σ
2
K) µK = log(Ko) + σ2

K , σ2
K = log

)
CV2 + 1

*

q ∼ lognormal(µq, σ
2
q ) µq = log(qo) + σ2

q , σ2
q = log

)
CV2 + 1

*

r ∼ lognormal(µr, σ
2
r) µr = log(ro) + σ2

r , σ2
r = log

)
CV2 + 1

*

which can be written as

L(θ,P |I) = π
)
σ2
ε , σ

2
η, b,K, q, r

*
· f

)
P1 | σ2

η, b
*
·

T5

t=2

f(Pt|Pt−1, σ
2
η, K, r;Yt−1)

×
T5

t=1

f(It|Pt, σ
2
ε , q).

(3.3)
To estimate those unknowns (i.e., θ and P ), we use both frequentist and
Bayesian methods although, as noted in Chapter 2, the former is our pri-
mary method due to its considerable computational efficiency.

In a frequentist setting, a marginal maximum likelihood method, where
the joint density π(θ) serves as a penalty on the likelihood function, is con-
ducted, using the R package TMB (R Core Team, 2014; Kristensen et al.,
2016). The marginal likelihood L(θ | I) is obtained by integrating out the
state variables P :

L(θ | I) =
/

L(θ,P | I)dP .
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In TMB, this integration is approximated by the Laplace approximation
technique (Skaug and Fournier, 2006; Kristensen et al., 2016).

By maximizing the marginal likelihood with respect to θ, using nu-
merical optimisation techniques in R such as a function minimiser like
nlminb(), the estimate of θ (i.e., θ̂) can be obtained:

θ̂ = argmax
θ

log[L(θ | I)].

Once θ̂ is found, TMB sequentially estimates the state variables P by max-
imizing the estimated conditional likelihood with respect to P , where θ is
fixed at θ̂:

P̂ = argmax
P

log[L(θ̂,P |I)].

Furthermore, the uncertainty of parameter estimates is evaluated via
the delta method, where the determinant of a Hessian matrix of the marginal
likelihood is found via a numerical Cholesky decomposition (Skaug and
Fournier, 2006; Kristensen et al., 2016). If the absolute value of the maxi-
mum gradient component of the parameters is less than 0.01, and the Hes-
sian matrix is positive definite, we deem that the frequentist model has
successfully converged (Kristensen et al., 2016).

In the Bayesian setting, we use a MCMC method to draw random sam-
ples from a posterior distribution of the parameters for inference. We use
the R package tmbstan to perform the Bayesian inference (Monnahan
and Kristensen, 2018), which allows users to implement the MCMC sam-
pling from a TMB object, using the R package rstan (R Core Team, 2014;
Stan Development Team, 2016). We conduct MCMC runs of 20,000 iter-
ations and discard the first 5,000 samples as the burn-in period for each
chain. For convergence criteria, we check the number of divergent tran-
sitions and the potential-scale-reduction statistic R̂ (Gelman et al., 2013).
We deem that the Bayesian model has successfully converged if there is no
divergent transition, and R̂ is smaller than 1.01 (Stan Development Team,
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2016).

3.2.3 Simulation studies

Harvest rates used for data simulation

For our simulation studies, besides the input values of the six model pa-
rameters, we use the time-series of the fishing harvest rate Ht to simulate
data on both the relative abundance index It and the yield Yt. The harvest
rate Ht is defined as the proportion of the total yield Yt relative to the total
biomass Bt:

Ht =
Yt

Bt

.

To obtain realistic input values for Ht instead of using arbitrarily gen-
erated values, we utilise the model estimated Ht (i.e., Ĥt) obtained from
a conventional SPM (i.e., σ2

η = 0) fitted to actual data sets on It and Yt,
which are collected from the Namibian hake and Atlantic albacore stocks
(see Figure 3.1 (a), (b), (d) and (e)). In this study, we do not aim to as-
sess those two popular stocks, so we do not provide detailed information
about them as this information is already available in other publications
(Hilborn and Walters, 1992; Polacheck et al., 1993; Millar and Meyer, 2000).

The reason why we use a SPM instead of a SSPM to obtain Ĥt from
the actual data sets is because (i) the former can be successfully fitted to
the data sets without the aid of the strong constraints which largely affect
the estimates of the parameters in the SSPM, and (ii) a previous study
by Polacheck et al. (1993) demonstrated the fitting procedure of the SPM,
using the same data sets.

To estimate the parameters of the SPM (i.e., θSPM = (r,K, σε, q)), which
are used to derive the estimates of Ht, we use the maximum likelihood
estimation (MLE) method:

θ̂SPM = argmax
θSPM

log[L(θSPM | I)],
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where

L(θSPM|I) =
T5

t=1

f(It|r,K, σε, q;Yt).

Following Polacheck et al. (1993), we assume that the initial biomass B1 is
equal to the carrying capacity K (i.e., B1 = K), so the parameter b is not
estimated, but given as an input (i.e., b = 1).

Using those actual data sets, we obtain the two sets of the model es-
timated harvest rates Ĥt, which show the two distinct time-series trends,
increase-decrease and increase. To consider more trends in Ht for sim-
ulation studies, we simply invert those two sets of Ĥt (i.e., H inverted

t =

−Ĥt+min(Ĥt)+max(Ĥt) ), whereby the two additional time-series trends,
decrease-increase and decrease, are obtained. We denote the four trends
of Ht as HR1, HR2, HR3, and HR4, respectively (see Figure 3.1 (c) and (f)).

Scenario settings

To explore various scenarios systematically, we formulate scenarios, based
on two different types of sub-scenario. The first type of sub-scenario con-
cerns the sensitivity to input parameter values. In this sub-scenario, we
vary the input values for ση, σε, and r to investigate the impact of those pa-
rameter values in the estimation process. The candidate values for ση and
σε are selected by referring to previous studies (i.e., ση, σε ∈ {0.05, 0.1, 0.15},
and ση+σε = 0.2) (Millar and Meyer, 2000; Parent and Rivot, 2012; Rankin
and Lemos, 2015), and those for r are chosen based on biological realism
(i.e., r ∈ {0.2, 0.4, 0.6}). The values for q and K are arbitrarily chosen as
q = 0.01 and K = 100 and kept constant in all simulation scenarios, includ-
ing a few additional scenarios described in the next section. One should
note that q and K only affect the overall scaling of It and Yt; thus, we do
not consider varying these parameter values in our simulation scenarios.
The value for b is chosen as b = 1 and kept constant in all 36 scenarios
described in this section, but we also test the sensitivity of b by changing
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Figure 3.1: Time-series of catch-per-unit-effort (CPUE; panels (a) and (d)),
fishery yield (panels (b) and (e)), and estimated harvest rates (panels (c)
and (f)) on Namibian hake and Atlantic albacore stocks. Each column of
the panels shows those of each data set. The points in panels (a) and (b)
are observed CPUEs, and the red lines in the same panels are the model
estimated values obtained from a conventional surplus production model
(i.e., ση = 0) fitted to those CPUEs. The solid lines in panels (c) and (f) are
the estimated harvest rates, and the broken lines in the same panels are
the inverted values of those estimated harvest rates, which are denoted as
HR1, HR2, HR3, and HR4, respectively.

it to 0.7 in additional scenarios described in the next section.
Using those candidate values for ση, σε, and r, we design nine different
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cases, which are denoted as S1-S9, respectively (see Table 3.3).

Table 3.3: Nine cases in terms of the input parameter values, which are
designed to test the impact of observation and process error variances and
the intrinsic growth rate on the model performance. The values for b, q,
and K are kept constant in all nine cases.

Parameter
Scenario σε b ση K q r

S1 0.05 1.00 0.15 100.00 0.01 0.20
S2 0.10 1.00 0.10 100.00 0.01 0.20
S3 0.15 1.00 0.05 100.00 0.01 0.20
S4 0.05 1.00 0.15 100.00 0.01 0.40
S5 0.10 1.00 0.10 100.00 0.01 0.40
S6 0.15 1.00 0.05 100.00 0.01 0.40
S7 0.05 1.00 0.15 100.00 0.01 0.60
S8 0.10 1.00 0.10 100.00 0.01 0.60
S9 0.15 1.00 0.05 100.00 0.01 0.60

The second type of sub-scenario concerns the impact of the trends of
the abundance index It and the fishery yield Yt on the model performance.
In this sub-scenario, we use the four different sets of time-series of harvest
rates Ht, which were described in the earlier section (Figure 3.1). The time-
series length of each data set differs by two (i.e., 25 for the hake data and
23 for albacore data), so we discard the last two points of the HR1 and HR2
trends, giving us the same time-series length of 23 for all four harvest rate
trends. Those four sets of Ht are then used to simulate both It and Yt in all
simulation scenarios considered in this study.

All possible combinations of those two types of sub-scenario are con-
sidered, and are denoted jointly as s ∈ { HR1.S1, HR1.S2,...,HR1.S9,...,HR4.S1,
HR4.S2,...,HR4.S9}. Thus, a total of 36 scenarios (i.e., 9 × 4 = 36) are de-
signed to address the following questions:

(i) Which source of variability between the observation and process er-
rors affects the model estimation more? To test this, we set the ratio
of the observation and process error standard deviations differently.
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Three different ratios are considered for this experiment: σε/ση =

1/3, σε/ση = 1, and σε/ση = 3, where σε, ση ∈ {0.05, 0.1, 0.15} and
ση + σε = 0.2.

(ii) Do the trends in the time-series of abundance index (i.e., It) and fish-
ery yield (i.e., Yt) data affect the estimation? For this question, we
use the four different trends of the time-series of harvest rates (i.e.,
HR1-4) and the three different values for the intrinsic growth rate r

(i.e., r ∈ {0.2, 0.4, 0.6}) to simulate the data on It and Yt.

(iii) Is the simultaneous estimation of both parameters and state vari-
ables a cause of parameter estimation problems in the SSPM? To
examine this question, we compare the estimates obtained from the
model where both unknowns are simultaneously estimated with those
from the models where either the parameters or the state variables
are fixed at their true values, and only the remaining unknowns are
estimated.

Additional scenarios

Besides these 36 scenarios, we investigate a few more additional scenarios
to examine (i) the sensitivity of parameter b, (ii) the impact of the disper-
sion of the constraints, and (iii) the impact of the incorporation of two
more replicated sets of the data on the model performance. For the sen-
sitivity test of the parameter b, we set b = 0.7 instead of b = 1 which is
kept constant for all 36 scenarios. For the sensitivity to the dispersion of
the constraints, we use either CV = 0.1 or CV = 0.5 instead of CV = 0.3.
The incorporation of more data sets is simply conducted by including two
more replicated sets of It, which are simulated with different seed val-
ues, for each simulation-estimation run. All these alternative settings are
investigated under the six selected scenarios which are HR4.S1, HR4.S3,
HR4.S4, HR4.S6, HR4.S7, and HR4.S9. These six scenarios are chosen be-
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cause they seem to well represent the overall results of the 36 simulation
scenarios.

Simulation-estimation procedure

For each scenario s, we simulate 500 sets of the abundance index and
fishery yield data (i.e., Ist,i and Y s

t,i), given the input values described in
Table 3.3 and Figure 3.1, where i denotes each simulation run (i.e., i ∈
{1, 2, 3, ..., 500}):

+
,,,,,,,-

,,,,,,,.

Bs
1,i = bs ·Ks · exp(ηs1,i)

Bs
t+1,i =

'
Bs

t,i + rs · Bs
t,i ·

%
1−

Bs
t,i

Ks

&
−Hs

t · Bs
t,i

(
· exp

)
ηst+1,i

*
, for 1 ≤ t < T

Ist,i = qs · Bs
t,i · exp(εst,i), for 1 ≤ t ≤ T

Y s
t,i = Hs

t · Bs
t,i, for 1 ≤ t ≤ T

,

where ηst,i
iid∼ N(0, (σs

η)
2) and εst,i

iid∼ N(0, (σs
ε)

2),

(3.4)
Then, each set of those simulated data is applied to Equation (3.2) to ob-
tain the estimates of the six parameters and the biomass (i.e., θ̂

s
and B̂s

t,i).
The median trend of those simulated data is shown in Figure 3.2. By com-
paring those estimates with their true values, we are able to test the model
performance for each scenario s. A metric used for the performance test is
described in the following section.
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Evaluation of model performance

We use the median of relative difference (RD) to investigate if there is
any systematic bias in the point estimates of the parameters and the stock
status (i.e., Bt/K) for each scenario s ∈ {HR1.S1-9, HR2.S1-9, HR3.S1-9,
HR4.S1-9}:

RDi(Θ
s) =

Θ̂s
i

Θs
i

− 1, (3.5)

where i ∈ {1, 2, 3, ..., 500}, Θs ∈ {σs
ε, σ

s
η, b

s, qs, Ks, rs, Bs
1/K

s, Bs
2/K

s, ..., Bs
23/K

s},
Θs

i is the true value for the quantity of interest for the ith simulated data
set under the scenario s, and Θ̂s

i is the estimate of the quantity.
Since RD can be unstable if the denominator is close to zero, we also

evaluate relative difference between the median (RDM) of the estimates of
the last biomass Bs

23 and stock status Bs
23/K

s and that of their true values:

RDM(Ψs) =
median({Ψ̂s

i}i=500
i=1 )

median({Ψs
i}i=500

i=1 )
− 1,

where Ψs ∈ {Bs
23, B

s
23/K

s}.
To examine if the potential cause of the estimation problem is involved

with the simultaneous estimation of the state variables and the parame-
ters, we fit the same model to simulated data sets, where we fix either pa-
rameters or state variables at their true values, depending on the purpose
of the investigation. For example, to examine the problem in parameter es-
timation, we fix the state variables (logPt) at their true values (i.e., values
obtained from Equation (3.4)) and only estimate the model parameters.
The estimates are then compared with those from the model which simul-
taneously estimates the state variables and the parameters. Similarly, to
examine the problem in state variable estimation, we fix the parameters at
their true values (i.e., input parameter values given in Table 3.3) and esti-
mate the state variables, which are compared with those from the model
for the simultaneous estimation.
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Sensitivity of the parameter estimates to the constraint

To examine the sensitivity of estimates of the model parameters to the con-
straint π(θ), we reevaluate performance of the SSPM based on the RD of
the parameter estimates, where we exclude each of the independent prob-
ability densities one by one from the joint penalised likelihood L(θ,P |I) in
Equation (3.3) and refit the resultant model. The exclusion of each penalty
in a frequentist setting is equivalent to imposing a uniform prior on each
parameter in a Bayesian setting. This sensitivity analysis is conducted
under scenarios HR4.S4 and HR4.S6. We chose these two scenarios be-
cause the SSPM showed the poorest performance under scenario HR4.S6
among the 36 scenarios, and scenario HR4.S4 is the counterpart of scenario
HR4.S6 in terms of the input values of the two variance parameters (i.e.,
σ2
ε > σ2

η in scenario HR4.S6, and σ2
ε < σ2

η in scenario HR4.S4).
We also check the loglikelihood profile of the natural logarithm of each

parameter when its corresponding probability distribution is excluded from
the model while the other five parameters are still strongly informed by
their constraints. This examination allows us to investigate estimability
and sensitivity of each parameter. The loglikelihood profiles of the param-
eters differ in each simulation-estimation run. Thus, in each of the two se-
lected scenarios (i.e., HR4.S4 and HR4.S6), we randomly selected 100 sets
of simulation-estimation runs to derive 100 different loglikelihood profiles
for each parameter. For visual inspection, the loglikelihood values of the
profiles are standardised to lie between 0 and 1.

3.3 Results

3.3.1 Simulation evaluation

All 500 simulation-estimation runs for each scenario s have successfully
converged with the frequentist approach. The median RD for the six model
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parameters and the biomass and the stock status at the last time step (i.e.,
B23 and B23/K) in all 36 scenarios are tabulated in Tables 3.4 and 3.5. In Ta-
ble 3.4, the estimates are obtained from the models where both the param-
eters and the state variables are allowed to be estimated, whereas those in
Table 3.5 are obtained from the models where either parameters or state
variables are fixed at their true values. Overall, the biases in RDM are
slightly greater than those in the median RD, but both metrics indicate
that the model performs poorly under the HR2 and HR4 scenarios (Table
3.6).

The model generally shows poor performances in terms of the median
RD under the scenarios where the observation error variance is equal or
greater than the process error variance (S2, S3, S5, S6, S8 and S9; Table
3.4). The worst performance seems to occur when (i) the HR4 trend is in-
volved, and (ii) the observation error variance is greater than the process
error variance (i.e., HR4.S3, HR4.S6, and HR4.S9; see Table 3.4 and Figure
3.3). The biases are prominent especially in the parameters b and q, which
showed biases of 12% and -9%, respectively under scenario HR4.S6. How-
ever, when the process error variance is larger than the observation error
(i.e., Scenario HR4.S4), such biases are reduced to 5% and -3%, which is
over twice the performance improvement on average (Table 3.4). The rel-
atively large biases in the estimates of the parameters b and q induce the
positive bias of the stock status Bt/K, which are observed by comparing
Figures 3.3 and 3.4 with Figures 3.5 and 3.6.

When either the parameters or the state variables are estimated alone,
the biases in the estimates of both parameters and state variables are al-
most negligible under all 36 scenarios (all absolute biases are less than 5%;
see Table 3.5), which suggests that the poor model performance in cer-
tain scenarios, such as scenario HR4.S6, is also partially involved with the
simultaneous estimation of the parameters and the state variables in the
SSPM.

Differences in input values for parameter r are not clearly associated
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with the bias of parameter estimates. For example, under the scenarios as-
sociated with the HR2 trend (i.e., HR2.S1-S9), when r = 0.2 (i.e., HR2.S1-
S3), the model generally shows poor performance, but under the scenar-
ios associated with the HR4 trend (i.e., HR4.S1-S9), the worst performance
occurs when r = 0.4 (i.e., HR4.S4-S6). This suggests that the model perfor-
mance in terms of a trend of time-series data is involved jointly with both
Ht and r as those quantities together determine the trend of time-series
data.



3.3. RESULTS 47

Table 3.4: Median of relative difference (%) (i.e., a median value of RDi(·)
of Equation (3.5) in percent) of the estimates of the six model parameters,
the biomass at the last time step t = 23 (i.e., B̂23), and the stock status at
the last time step t = 23 (B̂23/K̂) under the 36 scenarios. The estimates
are obtained from the model for the simultaneous estimation of both the
parameters and the s tate variables. Absolute biases greater than 5% are
shaded in gray.

Median Relative difference (%)
Scenario σ̂ε b̂ σ̂η K̂ q̂ r̂ ˆMSY B̂23 B̂23/K̂

HR1.S1 -0.4 3.4 -3.6 -2.6 -1.1 4.1 1.6 0.2 2.8
HR1.S2 -0.8 3.7 -4.4 -1.1 -2.7 2.0 0.8 2.5 3.7
HR1.S3 -2.1 4.4 -3.3 -0.3 -3.0 -0.5 -0.8 2.7 3.7
HR1.S4 -0.4 4.3 -4.2 -3.4 -0.9 6.8 3.8 1.2 2.9
HR1.S5 -1.0 3.6 -4.3 -1.1 -2.1 4.8 3.3 1.7 2.2
HR1.S6 -2.2 2.6 -3.2 -0.2 -1.2 2.0 1.7 2.1 1.2
HR1.S7 -0.5 2.7 -4.0 -2.3 -0.0 6.0 5.2 0.3 1.2
HR1.S8 -1.4 2.4 -3.8 -1.3 -1.3 5.6 4.0 0.7 1.4
HR1.S9 -2.5 1.5 -2.4 -1.0 0.3 3.7 2.3 -0.7 0.6
HR2.S1 -0.4 3.2 -3.3 -1.7 -1.6 3.5 0.0 1.1 3.6
HR2.S2 -0.8 6.0 -4.1 -1.7 -4.4 1.2 -2.5 3.9 6.5
HR2.S3 -1.5 8.6 -3.3 -2.4 -5.2 -0.5 -4.3 6.7 10.0
HR2.S4 -0.5 3.7 -3.7 -1.7 -2.8 5.7 3.5 2.0 3.8
HR2.S5 -1.0 5.6 -4.0 -0.5 -5.4 5.6 4.2 5.5 5.8
HR2.S6 -2.2 6.2 -3.2 -0.2 -4.4 4.4 4.0 5.7 6.5
HR2.S7 -0.5 1.8 -4.0 -0.1 -1.5 4.6 4.1 1.5 1.6
HR2.S8 -1.5 3.2 -3.8 1.0 -3.0 5.2 5.3 3.3 2.1
HR2.S9 -2.8 1.7 -2.3 1.0 -1.9 3.8 3.3 2.6 1.8
HR3.S1 -0.4 3.7 -3.5 -1.9 -2.2 5.2 2.3 1.4 2.9
HR3.S2 -0.9 5.4 -3.9 -0.7 -3.7 3.1 0.9 4.5 4.1
HR3.S3 -1.6 5.0 -3.2 -0.1 -4.1 0.0 -0.5 5.6 5.7
HR3.S4 -0.5 3.8 -3.8 -1.6 -2.1 6.5 5.8 2.2 3.0
HR3.S5 -1.3 5.1 -3.6 -0.4 -3.6 6.1 5.6 4.1 3.4
HR3.S6 -2.0 3.8 -2.8 -0.1 -2.6 4.2 2.7 3.8 4.2
HR3.S7 -0.5 2.3 -3.6 -0.7 -1.1 6.1 5.4 1.2 1.5
HR3.S8 -1.6 3.3 -3.2 -0.1 -2.3 6.6 6.3 2.5 1.9
HR3.S9 -2.6 1.0 -1.8 -0.4 -1.4 4.5 3.2 2.1 2.3
HR4.S1 -0.5 2.6 -3.5 -1.2 -1.4 1.3 -0.6 1.7 2.9
HR4.S2 -0.8 5.1 -4.1 -0.9 -3.8 -2.2 -4.2 4.0 6.0
HR4.S3 -1.7 7.3 -2.9 -2.0 -5.9 -6.7 -8.7 5.5 8.1
HR4.S4 -0.5 5.3 -3.7 -2.3 -3.1 3.4 0.7 2.8 4.8
HR4.S5 -1.0 9.2 -4.2 -1.1 -6.9 1.0 -0.5 6.0 7.4
HR4.S6 -1.8 12.2 -3.1 -0.9 -9.4 -1.7 -2.7 8.8 9.1
HR4.S7 -0.5 3.3 -3.6 -0.5 -2.9 3.9 3.3 1.9 2.3
HR4.S8 -1.2 6.5 -3.6 1.3 -6.3 3.8 4.1 5.2 3.8
HR4.S9 -2.2 6.6 -2.5 1.4 -6.2 3.3 3.4 4.5 3.9
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Table 3.5: Median of relative difference (%) (i.e., a median value of RDi(·)
of Equation (3.5) in percent) of the estimates of the six model parameters,
the biomass at the last time step t = 23 (i.e., B̂23), and the stock status at
the last time step t = 23 (B̂23/K̂) under the 36 scenarios. The estimates are
obtained from the models where either the parameters or the state vari-
ables are fixed at their true values and only the remaining unknowns are
allowed to be estimated.

Median Relative difference (%)
Scenario σ̂ε b̂ σ̂η K̂ q̂ r̂ ˆMSY B̂23 B̂23/K

HR1.S1 -1.6 0.9 -3.5 -1.4 1.2 2.3 1.6 -0.2 -0.2
HR1.S2 -1.6 0.7 -3.8 -1.2 1.4 2.5 1.6 -0.5 -0.5
HR1.S3 -1.6 0.4 -4.1 -0.8 0.7 1.6 0.8 -0.7 -0.7
HR1.S4 -1.6 0.9 -3.5 -1.8 2.0 3.5 1.5 -0.1 -0.1
HR1.S5 -1.6 0.7 -3.7 -2.1 1.9 3.5 1.0 -0.6 -0.6
HR1.S6 -1.6 0.4 -4.0 -1.6 1.0 1.9 0.8 -0.5 -0.5
HR1.S7 -1.6 0.9 -3.5 -2.2 2.2 3.3 1.3 -0.2 -0.2
HR1.S8 -1.6 0.7 -3.8 -2.3 2.2 3.4 0.9 -0.4 -0.4
HR1.S9 -1.6 0.4 -4.0 -1.8 2.0 2.6 0.5 -0.4 -0.4
HR2.S1 -1.6 0.9 -3.5 -0.9 0.9 3.4 2.0 -0.1 -0.1
HR2.S2 -1.6 0.7 -3.8 -0.6 0.7 2.7 1.6 -0.6 -0.6
HR2.S3 -1.6 0.4 -4.1 -0.2 0.2 1.2 0.9 -0.8 -0.8
HR2.S4 -1.6 0.9 -3.5 -1.2 1.2 2.9 1.1 -0.2 -0.2
HR2.S5 -1.6 0.7 -3.8 -0.9 0.5 1.8 0.6 -0.7 -0.7
HR2.S6 -1.6 0.4 -4.0 -0.2 -0.1 0.8 0.4 -0.8 -0.8
HR2.S7 -1.6 0.9 -3.5 -1.2 0.9 2.2 0.8 -0.2 -0.2
HR2.S8 -1.6 0.7 -3.7 -0.5 0.1 1.6 0.6 -0.5 -0.5
HR2.S9 -1.6 0.4 -3.9 0.1 -0.1 0.8 0.2 -0.5 -0.5
HR3.S1 -1.6 0.9 -3.3 -0.3 0.3 3.5 2.5 -0.1 -0.1
HR3.S2 -1.6 0.7 -3.5 -0.6 0.8 3.4 2.0 -0.5 -0.5
HR3.S3 -1.6 0.4 -4.0 -0.8 0.5 2.1 1.3 -0.5 -0.5
HR3.S4 -1.6 0.9 -3.3 -1.2 1.1 3.2 2.1 -0.2 -0.2
HR3.S5 -1.6 0.7 -3.5 -1.3 1.3 3.2 1.6 -0.6 -0.6
HR3.S6 -1.6 0.4 -3.9 -1.0 1.0 1.5 0.9 -0.9 -0.9
HR3.S7 -1.6 0.9 -3.5 -1.3 1.3 2.7 1.5 -0.1 -0.1
HR3.S8 -1.6 0.7 -3.5 -1.4 1.2 2.1 1.2 -0.7 -0.7
HR3.S9 -1.6 0.4 -3.7 -0.8 0.9 0.9 0.7 -0.7 -0.7
HR4.S1 -1.6 0.9 -3.5 -0.8 1.1 2.9 1.6 -0.2 -0.2
HR4.S2 -1.6 0.7 -3.8 -0.6 0.8 2.1 1.4 -0.6 -0.6
HR4.S3 -1.6 0.4 -3.9 -0.2 0.5 1.0 0.8 -0.5 -0.5
HR4.S4 -1.6 0.9 -3.7 -1.1 1.4 3.6 0.8 -0.1 -0.1
HR4.S5 -1.6 0.7 -3.8 -0.9 1.3 2.4 0.7 -0.6 -0.6
HR4.S6 -1.6 0.4 -3.9 -0.5 0.5 0.9 0.4 -0.4 -0.4
HR4.S7 -1.6 0.9 -3.7 -1.1 1.1 3.1 0.3 -0.2 -0.2
HR4.S8 -1.6 0.7 -3.8 -1.2 1.0 2.2 0.4 -0.4 -0.4
HR4.S9 -1.6 0.4 -3.9 -0.7 0.2 1.0 0.2 -0.4 -0.4
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Table 3.6: Relative difference between the median (RDM) of the estimates
of the last biomass Bs

23 and stock status Bs
23/K

s and that of their true values
in percent under the 36 scenarios. Those in the first two columns (denoted
as “Estimated”) are the RDM of the estimates obtained from the model
for the simultaneous estimation of both the parameters and the state vari-
ables, and those in the last two columns (denoted as “Fixed”) are the RDM
of the estimates obtained from the model where the parameters are fixed
at their true values and only the biomass is allowed to be predicted. Ab-
solute biases greater than 5% are shaded in gray.

Estimated Fixed

Scenario B̂23 B̂23/K̂ B̂23 B̂23/K
HR1.S1 3.9 7.1 1.3 1.3
HR1.S2 2.9 5.2 1.6 1.6
HR1.S3 2.4 4.3 -0.5 -0.5
HR1.S4 2.4 5.9 0.4 0.4
HR1.S5 2.5 4.5 0.2 0.2
HR1.S6 1.4 2.3 0.1 0.1
HR1.S7 -1.5 2.0 -0.5 -0.5
HR1.S8 0.6 1.7 -0.1 -0.1
HR1.S9 -0.6 0.5 -0.3 -0.3
HR2.S1 1.6 3.3 0.8 0.8
HR2.S2 4.6 8.2 0.5 0.5
HR2.S3 6.7 11.3 -0.1 -0.1
HR2.S4 3.7 6.6 -0.6 -0.6
HR2.S5 7.4 7.2 0.4 0.4
HR2.S6 7.1 8.5 0.3 0.3
HR2.S7 1.7 3.0 -0.6 -0.6
HR2.S8 4.0 3.5 0.2 0.2
HR2.S9 3.1 3.3 0.1 0.1
HR3.S1 1.2 3.0 -0.7 -0.7
HR3.S2 4.7 7.1 -0.0 -0.0
HR3.S3 4.7 6.5 -0.4 -0.4
HR3.S4 1.4 5.0 -0.6 -0.6
HR3.S5 5.0 5.9 0.3 0.3
HR3.S6 5.0 5.4 0.3 0.3
HR3.S7 1.5 3.1 -0.3 -0.3
HR3.S8 2.9 3.9 -0.2 -0.2
HR3.S9 2.9 2.8 -0.0 -0.0
HR4.S1 2.0 4.5 -0.6 -0.6
HR4.S2 4.3 7.7 -0.4 -0.4
HR4.S3 5.0 7.4 -0.7 -0.7
HR4.S4 5.2 9.3 1.1 1.1
HR4.S5 8.7 10.2 1.0 1.0
HR4.S6 8.5 10.3 0.3 0.3
HR4.S7 3.3 4.8 -0.3 -0.3
HR4.S8 5.9 5.7 0.5 0.5
HR4.S9 4.7 4.5 0.1 0.1
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Figure 3.3: Relative difference (RD) of the estimates of each parameter
under the scenarios where the process error variance is smaller than the
observation error variance (i.e., ση = 0.05 and σε = 0.15). The red box-
plots denote the RD of the parameter estimates obtained from the model
for the simultaneous estimation of the parameters and state variables. The
blue boxplots denote the RD of the parameter estimates obtained from the
model where the state variables are fixed at their true values, and only the
parameters are estimated. Each column of panels shares the simulation
condition associated with the trend of harvest rates, which is denoted at
the top of each column (i.e., HR1, HR2, HR3, and HR4). Each row of pan-
els shares the simulation condition associated with input values of the six
parameters, which is denoted at the right side of each row (i.e., S3, S6, and
S9)
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Figure 3.4: Relative difference (RD) of the estimates of the stock status
at time t (B̂t/K̂) under the scenarios where the process error variance is
smaller than the observation error variance (i.e., ση = 0.05 and σε = 0.15).
The red boxplots denote the RD of the stock status at time t obtained from
the model for the simultaneous estimation of the parameters and state
variables. The blue boxplots denote the RD of the estimates of the stock
status at time t obtained from the model where the parameters are fixed
at their true values and only the state variables are estimated. Each col-
umn of panels shares the simulation condition associated with the trend
of harvest rates, which is denoted at the top of each column (i.e., HR1,
HR2, HR3, and HR4). Each row of panels shares the simulation condition
associated with input values of the six parameters, which is denoted at the
right side of each row (i.e., S3, S6, and S9)
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Figure 3.5: Relative difference (RD) of the estimates of each parameter un-
der the scenarios where the observation error variance is smaller than the
process error variance (i.e., ση = 0.15 and σε = 0.05). The red boxplots
denote the RD of the parameter estimates obtained from the model for
the simultaneous estimation of the parameters and state variables. The
blue boxplots denote the RD of the parameter estimates obtained from the
model where the state variables are fixed at their true values and only the
parameters are estimated. Each column of panels shares the simulation
condition associated with the trend of harvest rates, which is denoted at
the top of each column (i.e., HR1, HR2, HR3, and HR4). Each row of pan-
els shares the simulation condition associated with input values of the six
parameters, which is denoted at the right side of each row (i.e., S1, S4, and
S7)
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Figure 3.6: Relative difference (RD) of the estimates of the stock status at
time t (B̂t/K̂) under the scenarios where the observation error variance is
smaller than the process error variance (i.e., ση = 0.15 and σε = 0.05). The
red boxplots denote the RD of the stock status at time t obtained from the
model for the simultaneous estimation of the parameters and state vari-
ables. The blue boxplots denote the RD of the estimates of the stock status
at time t obtained from the model where the parameters are fixed at their
true values and only the state variables are estimated. Each column of
panels shares the simulation condition associated with the trend of har-
vest rates, which is denoted at the top of each column (i.e., HR1, HR2,
HR3, and HR4). Each row of panels shares the simulation condition as-
sociated with input values of the six parameters, which is denoted at the
right side of each row (i.e., S1, S4, and S7)
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3.3.2 Additional scenarios

The sensitivity to the constraints with the different dispersion levels is il-
lustrated in Figures 3.7 - 3.10. In the case of the strong constraints (CV =

0.1), the bias of the estimates of the parameter and the stock status is al-
most non-existent, regardless of the scenarios considered (the first column
of Figures 3.7 - 3.10), which implicitly verifies the correct implementation
of our simulation studies. However, in the case of the weaker constraints
(CV = 0.5), the bias patterns observed in Figure 3.3 (j)-(l) are even more
prominently shown when the observation error variance is larger than the
process error variance (Figure 3.7 (d)-(f)), which also induces the large pos-
itive bias of the estimates of the stock status (i.e., Bt/K) (Figure 3.8 (d)-(f)).
This large bias is substantially reduced when the process error variance
is larger than the observation error variance (Figure 3.9 (d)-(f) and Figure
3.10 (d)-(f)). The same bias patterns as those in Figure 3.3 (j)-(l) are pro-
duced even though the different value for b is used (b = 0.7) (Figure 3.7
(g)-(i)). The incorporation of two more replicated data sets on It does not
significantly improve the model performance compared to the case where
a single set of It is applied, which can be observed by comparing the last
column of Figures 3.7 and 3.8 with that of Figures 3.3 and Figures 3.4.
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Figure 3.7: Relative difference (RD) of the estimates of the parameters un-
der additional scenarios coupled with sub-scenario S3, S6, and S9 (i.e.,
ση = 0.05 and σε = 0.15), where the CV of the penalties is set to be ei-
ther 0.1 (the first column: panels (a)-(c)) or 0.5 (the second column: pan-
els (d)-(f)), the value of the parameter b is set to be 0.7 (the third column:
panels (g)-(i)), and the two additional sets of It are incorporated into the
model (the fourth column: panels (j)-(l)). The red boxplots denote the RD
of the parameter estimates obtained from the model for the simultaneous
estimation of the parameters and state variables. The blue boxplots de-
note the RD of the parameter estimates obtained from the model where
the state variables are fixed at their true values and only the parameters
are estimated.
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Figure 3.8: Relative difference (RD) of the estimates of the stock status at
time t (B̂t/K̂) under additional scenarios coupled with sub-scenario S3, S6,
and S9 (i.e., ση = 0.05 and σε = 0.15), where the CV of the penalties is set
to be either 0.1 (the first column: panels (a)-(c)) or 0.5 (the second column:
panels (d)-(f)), the value of the parameter b is set to be 0.7 (the third col-
umn: panels (g)-(i)), and the two additional sets of It are incorporated into
the model (the fourth column: panels (j)-(l)). The red boxplots denote the
RD of the stock status at time t obtained from the model for the simulta-
neous estimation of the parameters and state variables. The blue boxplots
denote the RD of the estimates of the stock status at time t obtained from
the model where the parameters are fixed at their true values and only the
state variables are estimated.
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Figure 3.9: Relative difference (RD) of the estimates of the parameters un-
der additional scenarios coupled with sub-scenario S1, S4, and S7 (i.e.,
ση = 0.15 and σε = 0.05), where the CV of the penalties is set to be ei-
ther 0.1 (the first column: panels (a)-(c)) or 0.5 (the second column: pan-
els (d)-(f)), the value of the parameter b is set to be 0.7 (the third column:
panels (g)-(i)), and the two additional sets of It are incorporated into the
model (the fourth column: panels (j)-(l)). The red boxplots denote the RD
of the parameter estimates obtained from the model for the simultaneous
estimation of the parameters and state variables. The blue boxplots de-
note the RD of the parameter estimates obtained from the model where
the state variables are fixed at their true values and only the parameters
are estimated.
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Figure 3.10: Relative difference (RD) of the estimates of the stock status
at time t (B̂t/K̂) under additional scenarios coupled with sub-scenario S1,
S4, and S7 (i.e., ση = 0.15 and σε = 0.05), where the CV of penalties is set
to be either 0.1 (the first column: panels (a)-(c)) or 0.5 (the second column:
panels (d)-(f)), the value of the parameter b is set to be 0.7 (the third col-
umn: panels (g)-(i)), and the two additional sets of It are incorporated into
the model (the fourth column: panels (j)-(l)). The red boxplots denote the
RD of the stock status at time t obtained from the model for the simulta-
neous estimation of the parameters and state variables. The blue boxplots
denote the RD of the estimates of the stock status at time t obtained from
the model where the parameters are fixed at their true values and only the
state variables are estimated.
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3.3.3 Frequentist vs. Bayesian

With both frequentist and Bayesian approaches, all 500 simulation-estimation
runs under the selected scenarios (i.e., HR4.S1-S9 and the additional sce-
narios associated with the different CVs for the constraints) have success-
fully converged. There are slight differences between the frequentist and
Bayesian estimates of the parameters in terms of the relative differences,
but both types of estimates show similar bias patterns (Figures 3.11 and
3.12), which reassure us that the choice of estimation method does not af-
fect the overall results of our simulation studies. Such differences in esti-
mates are expected, considering use of the Laplace approximation method
and the inherent bias of the variance of the maximum likelihood estimate
in the frequentist approach.
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Figure 3.11: Relative difference (RD) of the estimates of each parameter
under the scenarios associated with the HR4 trend. The red boxplots de-
note the RD of the parameter estimates obtained from the model for the
simultaneous estimation of the parameters and state variables, using the
frequentist approach. The light blue boxplots denote the RD of the pa-
rameter estimates obtained from the same model, using the Bayesian ap-
proach.
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Figure 3.12: Relative difference (RD) of the estimates of each parameter un-
der the additional scenarios associated with the different dispersion levels
(i.e., the first two columns of panels: CV=0.1; the last two columns of pan-
els: CV=0.5), which are coupled with sub-scenario S1, S3, S4, S6, S7, and
S9. The red boxplots denote the RD of the parameter estimates obtained
from the model for the simultaneous estimation of the parameters and the
state variables, using the frequentist approach. The light blue boxplots
denote the RD of the parameter estimates obtained from the same model,
using the Bayesian approach.
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3.3.4 Sensitivity analysis

The two variance parameters (i.e., σ2
ε and σ2

η) are highly sensitive to inclu-
sion of the constraints in the model. The other four parameters are less
sensitive to the constraints and often estimable without the constraints.
However, the estimates tend to be more biased when they are obtained
without such constraints. The sensitivity and estimability of the two vari-
ance parameters depend on the ratio of those two parameter values. When
either of them is larger than the other, the one with a larger value is ines-
timable without the aid of its own penalty.

To be specific, when the penalty for the process error variance (i.e.,
π(σ2

η)) is excluded under scenario HR4.S6 (σ2
ε > σ2

η), which is the same
as imposing a uniform prior on σ2

η in a Bayesian setting, the median RD
of the estimates of all other parameters become close to 0, whereas the
median RD of ση becomes largely biased (Figure 3.13 (g)-(l)). This large
bias indicates that the parameter ση is not identifiable without a strong
constraint, which is supported by its corresponding loglikelihood profile
depicted in Figure 3.14 (g).

Similarly, when the penalty for the observation error variance (i.e.,
π(σ2

η)) is excluded under scenario HR4.S4 (σ2
ε < σ2

η), the median RD of
the estimates of all other parameters become less biased, but the median
RD of σε becomes more biased (Figure 3.13 (a)-(f)). However, in contrast
to σ2

ε in scenario HR4.S6, depending on simulated data, the observation
error variance σ2

ε in scenario HR4.S4 is partially estimable even without
its penalty (Figure 3.14 (b)).

As visually illustrated in Figure 3.13, estimability of the variance pa-
rameters is more problematic when the observation error variance is greater
than the process error variance. This problem is also investigated by the
loglikelihood profile of each parameter, shown in Figure 3.14.
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Figure 3.13: Relative difference (RD) of the estimates of the parameters
obtained from the models fitted to the data simulated under scenarios
HR4.S4 (panels (a)-(f)) and HR4.S6 (panels (g)-(l)), where the penalties for
the parameters are excluded one by one (denoted by the legend “Without
π(·)” at the top right corner of each panel). The red boxplots denote the
RD of the parameter estimates obtained from the model for the simulta-
neous estimation of the parameters and state variables. The blue boxplots
denote the RD of the parameter estimates obtained from the model where
the state variables are fixed at their true values and only the parameters
are estimated. The legend “Without π(·)” can be interpreted as imposing
a uniform prior on the parameter in the Bayesian approach.
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Figure 3.14: Loglikelihood profiles of the natural logarithm of the six pa-
rameters (gray curves) evaluated after their corresponding penalties are
excluded one by one (denoted by the legend “Without π(·)” at the top
right corner of each panel), while other five parameters are constrained
by their strong penalties. Those in the first two columns are evaluated
with the data sets simulated under scenario HR4.S4, and those in the last
two columns are evaluated with the data sets simulated under scenario
HR4.S6. The vertical solid black line of each panel is the true input value
of the parameter. The legend “Without π(·)” can be interpreted as impos-
ing a uniform prior on the parameter in the Bayesian approach.
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3.4 Discussion

In this study, we show the estimation problem of the SSPM even under
the setting that all model parameters are strongly informed by their con-
straints. We demonstrated that successful convergence of the model aided
by such strong constraints does not guarantee good performance in terms
of relative difference, and some significant biases in parameter estimates
can occur, depending on the values of the two variance parameters σ2

η and
σ2
ε as well as the trend of the time-series data applied to the model.

The SSPM used in this study is considered one of the simplest forms in
stock assessment models. We show that even this simple model can have
the parameter estimation problem, which consequently induces bias of the
estimates of both parameters and state variables. An estimation problem
is relatively well studied for a conventional SPM, which is known to oc-
cur when time series data show a lack of contrast (Hilborn and Walters,
1992; McAllister et al., 2001), but the problem associated with its state-
space form seems to be not well understood. This could be because in
many previous studies, one of the conditions for the occurrence of the es-
timation problem (i.e., σ2

ε > σ2
η) is prevented by an assumption that con-

strains the values of the two variance parameters (Punt, 2003; Ono et al.,
2012; Rankin and Lemos, 2015; Thorson et al., 2015). For example, pub-
lished studies, which applied the Namibian hake data to the SSPM for
demonstration purposes, assumed that the process error variance is either
smaller than or equal to the observation error variance (Punt, 2003; Par-
ent and Rivot, 2012; Rankin and Lemos, 2015). These settings are similar
to some of our scenarios, such as scenarios HR1.S4, HR1.S5, HR3.S4, and
HR4.S5, under which the estimation problem is hardly detectable or al-
most non-existent.

From our stimulation studies, we also illustrate that the trend of It and
Yt is an important factor, which seems to largely determine the estimabil-
ity of the variance parameters. For instance, the scenarios associated with
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the HR4 trend show the most biased results, where both It and Yt show al-
most a monotonic decrease with little contrast (see Figure 3.2). However,
one should note that the data trend alone cannot explain the bias of the
estimates because such bias is substantially reduced when the observation
error is smaller than the process error while the overall data trend remains
the same. Moreover, when the state variables are fixed at their true values,
and only the parameters are estimated, the bias of the parameter estimates
almost disappears in all 36 scenarios (see Table 3.5). These experiments in-
dicate that the estimation problem of the SSPM could originates from the
state-space framework of the model and the general difficulty in differen-
tiating between observation and process errors in state-space models. This
finding is consistent with Auger-Méthé et al. (2016), but our study further
demonstrates that such an estimation problem can arise even in models
with strong parameter constraints.

Although our simulation studies are extensively designed, more fo-
cused simulation scenarios for testing the impact of the two variance pa-
rameters on parameter estimability could be considered for future research
to better identify which variance parameter is the cause of the bias. For
example, one can consider fixing either the process or observation error
variances at their true values and estimate other remaining parameters.

The practical usefulness of the SSPM is well supported in the fish-
eries science community as it has been applied often by Regional Fishery
Management Organizations (RFMOs) (Winker et al., 2019; Sant’Ana et al.,
2020). However, our study raises a question about reliability of the model
in terms of the performance. Although the SSPM still remains a useful
tool for data-moderate fish stocks, our study demonstrates that the model
could provide biased results under certain conditions (i.e., σ2

ε > σ2
η and the

one-way trip trend of the time-series data), which seems to be not well un-
derstood. Our finding emphasises the importance of a model performance
check in the SSPM and the general difficulty of the model estimation in
state-space models.



Chapter 4

A two-life stage-structured

production model

4.1 Introduction

Age-structured models (ASMs) are the preferred choice of most fisheries
modellers as those models explicitly incorporate the composite behaviour
of different cohorts of fish (Hilborn and Walters, 1992; Haddon, 2010).
However, in many data-moderate situations where compositional data are
lacking, simpler models, such as surplus production models (SPMs) have
been used as alternative methods (Polacheck et al., 1993; Winker et al.,
2020).

SPMs are considered the most simple and least data-demanding stock
assessment models in fisheries, where the dynamic process of population
growth in biomass is simply expressed as a function of age-aggregated
biomass. These production models require two types of information, a
time-series of relative abundance index (e.g., catch-per-unit-effort: CPUE)
and total yield (e.g., annual catch in weight). Although such fisheries data
are often available and relatively easy to collect, one should be aware that

67
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acquiring such information does not always ensure applicability of these
simple models. This is because there are some practical situations where
these models are not appropriate, mainly because of their simplistic struc-
ture that ignores demographic impact on population productivity.

Changes in the demographic structure of a population subsequently
affect the productivity of a population. Such an effect is easily reflected in
age-structured dynamics where age-specific contributions to reproduction
and density dependence in recruitment are explicitly modelled. In SPMs,
however, this demographic phenomenon is neglected because population
productivity is simply expressed as a function of age-aggregated biomass,
using a single production function (Wang et al., 2014; Winker et al., 2020).
Despite this critical drawback, fisheries scientists still apply SPMs to many
fish stocks due to a lack of sufficient composition data that allow them to
apply more complex and detailed representation of the dynamics models,
such as ASMs.

The choice of using a SPM over other more reliable options tends to
be made when only a time-series of relative abundance index and yield
are available in the absence of any auxiliary information on population
structure. Although such a compromise is necessary for most data-limited
cases, we observed an exceptional case from the Korean walleye pollock
(Gadus Chalcogrammus) fisheries, in which a demographic effect on popu-
lation growth could be modelled, based only on information on fisheries
yields and relative abundance indices, collected from multiple fisheries.
Those pollock fisheries in South Korea have targeted adults and juveniles
separately in different fishing locations; thus, such fishery-dependent data
provide information on fish at each life stage.

Since CPUE data, collected from commercial fisheries, are often avail-
able in many data-limited or -moderate stocks, many researchers have ap-
plied SPMs where they assumed that multiple sets of CPUE data collected
from different fisheries are independent to each other (Hyun, 2018; An
et al., 2021). However, in the case of the pollock fisheries, we find that
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such an application violates the underlying assumption about the pro-
portionality between the total (or exploitable) biomass and CPUE (e.g.,
CPUE = catchability × Biomass), often used in SPMs, since each set of
CPUE data is for either juvenile or adult stocks alone (e.g., adult CPUE =

adult catchability×adult Biomass; juvenile CPUE = juvenile catchability×
juvenile Biomass;).

Spatial separations of juvenile and adult populations are well-known
ecological behaviours of many marine fish species, including walleye pol-
lock, since they show ontogenetic migration patterns and seasonal differ-
ences in habitat use (Honda et al., 2004; Smart et al., 2013; Barbeaux and
Hollowed, 2018) (e.g., juveniles tend to inhabit in nearshore areas and mi-
grate toward offshore areas as they grow). Thus, depending on fishing
location, each fishery may show a distinct pattern of life stage-specific se-
lectivity, from which information on separate yields and CPUEs from fish
in different life stages can be obtained. The Harden-Jones’ migration trian-
gle of marine fishes, which is illustrated in Figure 4.1, effectively describes
how such life stage-specific migratory patterns (Harden Jones, 1968) are
associated with selectivity in the Korea pollock fisheries (Kim and Hyun,
2018).

The main purpose of this research is to develop a two-life stage-structured
production model (TSPM) that is applicable to the Korea pollock fish-
eries, which does not require composition data, but allows us to separately
match those multiple sets of abundance indices with their corresponding
sub-groups (i.e., juvenile and adult) of a population. We develop this
new model by bifurcating a general surplus production model (GSPM),
based on a life stage-structured matrix model, known as a Lefkovich ma-
trix model in demographic analysis (Caswell, 2000). We also incorpo-
rate a density-dependent term following the method by Jensen (1995) and
make necessary modifications. This new model is specifically designed for
stocks where both juveniles and adults are targeted by multiple fisheries;
thus, information on separate yields from the two life stages are required.
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Figure 4.1: Diagram depicting the Harden-Jones migration triangle with
hypothetical life stage-selective catches.

Such a specific design may limit its usability, but capturing both juvenile
and adult fish is not uncommon in some open-access fisheries (Jung et al.,
2008; Najmudeen and Sathiadhas, 2008; Kim and Hyun, 2018).

To accommodate environmental noise and uncertainty in harvest rate
as process error, we formulate a TSPM in a state-space framework. Fur-
thermore, to check strength of a TSPM over a GSPM, we conduct a simula-
tion test where we use an ASM as an operating model to generate pollock-
like age-structured data which are fitted to both a GSPM and a TSPM for
performance comparison. For clarity of presentation and ease of read-
ing, mathematical details of the model development process are given in
the Appendix. Thus, the rest of this chapter is organised as follows: First,
background information on the Korea pollock fisheries is discussed, which
provides readers with a better understanding of the necessity of our new
model and the motivation for the model development. Second, we con-
duct a simulation test to investigate how a TSPM performs compared to a
GSPM by fitting both models to data generated from an ASM. We intro-
duce both a GSPM and a TSPM in state-space forms as estimation models.
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Lastly, we fit a TSPM to the actual pollock data and perform model vali-
dation, based on which we discuss the status of the pollock fisheries and
some possible issues associated with parameter estimability of the model.

4.2 Korean pollock fisheries

In this section, we describe some background information on the Korean
pollock fisheries. This information provides readers with a fundamental
research question that we attempt to solve by developing a new model
which is applicable to situations similar to the Korea pollock stock.

The Korea pollock stock has collapsed since the late 1990s. Korean fish-
eries scientists conjecture that such a collapse would have occurred due
to some environmental changes in Korean waters and overexploitation of
both juvenile and adult populations, but no reliable scientific analysis is
available due to limited data available and a lack of stock assessment (Kim
and Hyun, 2018).

Interestingly, juvenile and adult pollock were considered different species
until the early 1970s, and both of them were caught until the late 1990s.
This misconception launched two separate data collection schemes on the
species, where individuals smaller than 27 cm were categorised as juve-
niles, and those equal or larger than 27 cm were considered adults (Kim
and Hyun, 2018). Although annual time series data for adult and juve-
nile stocks were separately collected from commercial fisheries (details are
given in the following section), having only this information without an-
nual composition data still seems to limit analysis to use of a simple stock
assessment model, such as a GSPM.

Despite being an applicable option because of the limited data, it should
be noted that a GSPM may not be the correct model for separate CPUEs on
juvenile and adult stocks, as each set of those CPUEs does not represent
a trend of the total exploitable biomass well. Moreover, a GSPM cannot
reflect a demographic response to such selective fishing mortality as there
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is no demographic structure in the model. Instead, age-aggregated total
yield is simply subtracted from the total exploitable biomass to incorpo-
rate the impact of fishing mortality on population growth.

Such modelling issues for the pollock stock motivated us to develop a
TSPM where separate information on juvenile and adult stocks is correctly
and fully utilised. In the next section, we describe more details about the
data collected from the Korea pollock fisheries.

4.2.1 Data

Spatial separation of juvenile and adult stocks is indicated by the differ-
ent fishing location of each fishery (Figure 4.2). Such ontogenetic spatial
separation of walleye pollock is also reported by Honda et al. (2004). Long-
line and gillnet fisheries have exclusively captured adults, whereas Danish
seine fishery has primarily caught juveniles (Kim and Hyun, 2018). Thus,
we refer to CPUEs collected from longline and gillnet fisheries as adult
CPUEs and that from Danish seine fishery as juvenile CPUE.

A single set of juvenile CPUE collected from Danish seine fishery and
two sets of adult CPUEs collected from gillnet and longline fisheries are
available along with separate yields from juvenile and adult stocks (see
Figure 4.3) (Kim and Hyun, 2018). We refer to these CPUE and yield series
using Ijt , Ia1,t, Ia2,t, Y

j
t , and Y a

t , respectively, where I denotes the relative
abundance index (i.e., CPUE), subscript t denotes the time (in year), Y
denotes the yield (in biomass), and superscripts j and a denote juvenile
and adult stocks, respectively. The subscript values 1 and 2 on Ia1,t and Ia2,t

refer to gillnet and longline fisheries, respectively.
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Figure 4.2: Spatial locations where three major pollock fisheries operated.
The red shaded area indicates where longline and gillnet fisheries oper-
ated, exclusively targeting adult fish (i.e., fish equal or larger than 27 cm in
length). The blue shaded area indicates where Danish seine fishery oper-
ated, mostly capturing juvenile fish (i.e., fish smaller than 27 cm in length).



74CHAPTER 4. A TWO-LIFE STAGE-STRUCTURED PRODUCTION MODEL

Figure 4.3: Data on catch per unit effort (CPUE) collected from gillnet,
longline, and Danish seine fisheries (from top to bottom) and yield from
juvenile and adult stocks (the bottom panel). A sheet is a unit area of the
gillnet whose width ranges from 45 m to 72 m and whose height ranges
from 4 m to 4.125 m. One basket in the longline contains approximately
300 hooks.
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4.3 State-space production models

Throughout this section, we describe both a GSPM and a TSPM in state-
space form, which we also reparameterise in terms of derived quantities
that can be matched with those from ASMs for construction of parameter
constraints. Functional relationships between the two production models
and ASMs can be derived by matching optimum equilibrium character-
istics of those models, such as biological reference points (BRPs). BRPs
reflect a combination of demographic components (e.g., recruitment, mor-
tality, growth, etc.) of fish stock dynamics in single indices, such as max-
imum sustainable yield (MSY), the biomass at which MSY is obtained
(BMSY), and the harvest fraction required to achieve the MSY (HMSY; note
that these BRPs are theoretical concepts; thus not necessarily equivalent
to management objectives). Hence, mathematically, these reference points
can be viewed as derived quantities, which can potentially provide func-
tional links between different types of stock assessment models.

Our preliminary study as well as the simulation studies in Chapter 3
indicated that those state-space production models require constraints on
parameters to be estimated. Thus, we construct parameter constraints for
those two state-space models, using ASMs with Monte-Carlo simulations,
where input values for parameters of ASMs are obtained from previous
studies. Distributional assumptions on natural mortality and productiv-
ity parameters of ASMs are made to reflect uncertainties in model inputs
when performing Monte-Carlo simulations with ASMs. This method for
construction of parameter constraints for a GSPM has already been used
by Winker et al. (2020), but that for a TSPM is newly developed in this
study. We discuss these methods in the next section for more details (i.e.,
Section 4.4), but readers should bear in mind that the purpose of repa-
rameterisations in the two production models is to incorporate parameter
constraints that are derived from ASMs.

We use a GSPM to demonstrate why a GSPM is not an appropriate
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model for the pollock stock and to show how a TSPM is different from a
GSPM. Moreover, in Section 4.6, we evaluate performance of a TSPM by
comparing it with that of a GSPM, using two different types of simulated
data for each model. Thus, we present a total of four models in this section,
which we refer to as GSPM1, GSPM2, TSPM1, and TSPM2, respectively.
The numbers, 1 and 2, after the name of each model indicate what type of
data are applied to those models. For example, in GSPM1 and TSPM1, life
stage-specific data, such as separate CPUEs collected from juvenile and
adult fisheries, are used, whereas in GSPM2 and TSPM2, CPUEs collected
from fisheries targeting a combined stock (i.e., juvenile stock + adult stock)
are used. Through the comparison of GSPM2 and TSPM2, we aim to inves-
tigate whether or not accounting for different fishing pressures on juvenile
and adult stocks improves model performance in terms of accuracy of es-
timates. To compare the performance of the two production models, we
use data simulated from an ASM which has a more realistic and complex
structure than those of the two production models. We obtain input val-
ues for ASMs from previous studies, which is discussed in detail in Section
4.6.1. After the simulation test, we fit a TSPM1 to the actual pollock data
as a case study in Section 4.7.

To reproduce the condition of the Korean pollock stock in terms of data
availability, we assume three different sets of CPUE data for each of the
four models are available. For example, for GSPM1 and TSPM1, we use a
single set of juvenile CPUE and two sets of adult CPUE (i.e., Ijt , Ia1,t, and
Ia2,t), which is the case for the pollock stock, but for GSPM2 and TSPM2,
we use three sets of CPUE for a combined stock (i.e., I1,t, I2,t, and I3,t). The
differences between four models are illustrated in Figures 4.4 and 4.5.
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Figure 4.4: DAG representations of GSPM1 (a) and TSPM1 (b). White
circles are non-observed probabilistic nodes (i.e., Bj

t , Ba
t , and Bt), and

those in colour are observed probabilistic nodes (i.e., Ij
dj ,t

, Iada,t, and Id,t).
Squares in colour are observed deterministic nodes (i.e., Y j

t , Y a
t , and Yt).

Arrows with solid lines represent conditional probabilistic dependencies,
and those with dotted lines represent deterministic dependencies between
nodes. Dotted rectangular frames with rounded corners indicate repeti-
tion of structure over units. Colouring the nodes blue, red, and blue-red
gradient compositionally represents juvenile, adult, and both juvenile and
adult biomasses, respectively.
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Figure 4.5: DAG representations of GSPM2 (a) and TSPM2 (b). White cir-
cles are non-observed probabilistic nodes (i.e., Bj

t , Ba
t , and Bt), and those

in colour are observed probabilistic nodes (i.e., Id,t). Squares in colour are
observed deterministic nodes (i.e., Y j

t , Y a
t , and Yt). Arrows with solid lines

represent conditional probabilistic dependencies, and those with dotted
lines represent deterministic dependencies between nodes. Dotted rect-
angular frames with rounded corners indicate repetition of structure over
units. Colouring the nodes blue, red, and blue-red gradient composition-
ally represents juvenile, adult, and both juvenile and adult biomasses, re-
spectively.
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4.3.1 General surplus production model (GSPM)

Base structure

The logistic production model, which we used in Chapter 3, has been crit-
icised because the maximum growth rate always occurs when the popula-
tion is at half of the carrying capacity K, which is not the case for most fish
species (Hilborn and Walters, 1992; Maunder, 2003; Haddon, 2010). Thus,
a few studies generalised the production function g(Bt) by including one
more parameter which gives flexibility in the shape of g(Bt) (Pella and
Tomlinson, 1969; Fletcher, 1978; Polacheck et al., 1993). Among those, we
use the form reparametrised by Polacheck et al. (1993):

Bt+1 = Bt + g(Bt)− Yt; g(Bt) =
r

n− 1
· Bt ·

1
1−

%
Bt

K

&n−1
2
, (4.1)

where Bt is the biomass at time t, r is the intrinsic growth rate, and n is the
inflection point of the production function g(Bt) relative to the carrying
capacity K. Using n, one can express any particular form of a production
model. For example, with n = 2, Equation (4.1) becomes identical to the
logistic production model (Schaefer, 1954), and with n → 1, it becomes the
Fox model (Fox Jr, 1970; Polacheck et al., 1993).

Since the harvest rate for the maximum sustainable yield (i.e., HMSY) of
the GSPM is calculated by HMSY = r/n, the above equation can be repa-
rameterised as a function of HMSY (Winker et al., 2020):

Bt+1 = Bt +
HMSY · n
n− 1

· Bt ·
1
1−

%
Bt

K

&n−1
2
. (4.2)

We use the above reparameterised form to utilise functional links between
the GSPM and an ASM, where HMSY is approximated by that derived from
an ASM.
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Process equations

By incorporating a multiplicative error term exp(εp,t), where the subscript
p indicates that it is a process error term, in Equation (4.2), the process
equations of the GSPM can now be expressed in the following state-space
form, where the initial biomass B1 is scaled by introducing the scaling
coefficient b to estimate the ratio of the initial biomass to the carrying ca-
pacity K:

Bt =

+
,,,,,-

,,,,,.

b ·K · exp(εp,t), for t = 1

1
Bt−1 +

HMSY · n
n− 1

· Bt−1 ·
1
1−

%
Bt−1

K

&n−1
2
− Yt−1

2
· exp(εp,t), for t > 1

,

where Yt = Y j
t + Y a

t , and εp,t
iid∼ N(0, σ2

p). We define the scale free relative
biomass Pt = Bt/K for numerical efficiency when estimating the parame-
ters (Millar and Meyer, 2000; Hyun, 2018):

Pt =

+
,,,,-

,,,,.

b · exp(εp,t), for t = 1

'
Pt−1 +

HMSY · n
n− 1

· Pt−1 ·
6
1− (Pt−1)

n−17− Yt−1

K

(
· exp(εp,t), for t > 1

Observation equations

In the majority of previous studies that used a GSPM, a relative abundance
index It was assumed to be proportional to the total exploitable biomass
Bt with multiplicative observation error (i.e., It ∝ Bt · exp(εo,t), where the
subscript o indicates that it is an observation error term) (Polacheck et al.,
1993; Millar and Meyer, 2000; Thorson and Minto, 2015). If multiple CPUE
indices are available, they are assumed to be conditionally independent on
Bt. Thus, for the case of the Korean pollock stock, we have the following
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observation equations:

+
-

.
Ijt = qj · Pt ·K · exp(εjo,t)

Iada,t = qada · Pt ·K · exp(εao,da,t)
, (4.3)

where da ∈ {1, 2}, εjo,t
iid∼ N(0, (σj

o)
2), εao,da,t

iid∼ N(0, (σa
o,da)

2), (σj
o)

2 is the
observation error variance for the juvenile CPUE, and (σa

o,da)
2 is the obser-

vation error variance for the dath adult CPUE. We label the GSPM, where
the observations are modelled by Equation (4.3), as GSPM1 (see Figure
4.4a).

Additionally, for the purpose of testing the sole impact of not account-
ing for the life stage-specific fishing pressures in the GSPM compared to
a TSPM, we assume another possible case that CPUEs collected from the
total exploitable stock are available instead of those from separate sub-
stocks. In this alternative case, the observation equations are given by

Id,t = qd · Pt ·K · exp(εo,d,t); εo,d,t
iid∼ N

)
0, σ2

o,d

*
, (4.4)

where d ∈ {1, 2, 3}, and σ2
o,d is the observation error variance for the dth

index data. We label the GSPM, where the observations are modelled by
Equation (4.4), as GSPM2 (see Figure 4.5a).

4.3.2 Two-life stage-structured production model (TSPM)

Base structure

In the absence of density-dependent effect and fishing mortality, relation-
ships between the two sub-stocks in biomass can be modelled using the
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following simple matrix equation:

1
Bj

t+1

Ba
t+1

2

! "# $
Bt+1

=

1
gj Rj

Ra ga

2

! "# $
D

1
Bj

t

Ba
t

2

! "# $
Bt

, (4.5)

where gj is the net growth rate for Bj
t+1 (e.g., somatic growth, emigration

after sexual maturation, and natural mortality), Rj is the recruitment rate
for Bj

t+1 (e.g., spawning), Ra is the recruitment rate for Ba
t+1 (e.g., immi-

gration from the juvenile stock after sexual maturation), and ga is the net
growth rate for Ba

t+1 (e.g., somatic growth and natural mortality).
Similar to the derivation of the GSPM from an exponential growth

model (i.e., Bt+1 = Bt + r · Bt), we may extend Equation (4.5) by incor-
porating a density dependent effect (i.e., Kt in the equation below) and
life stage-specific fishing mortality (i.e., Y t in the equation below) after
rewriting the matrix model in a discrete time form:
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,

(4.6)
where Kj is the carrying capacity for the juvenile biomass, nj is the shape
parameter for a productivity curve of the juvenile biomass, and Y j

t and
Y a
t are the yields from the juvenile and adult stocks, respectively (i.e.,

Y j
t = Hj

t · B
j
t , and Y a

t = Ha
t · Ba

t ). Note that in a majority of ASMs, den-
sity dependence is introduced via a stock recruitment relationship (e.g.,
Beverton-Holt, Ricker, etc.) where the maximum number of recruits is lim-
ited, not the spawning stock size. Thus, we include the density dependent
term only in the juvenile biomass.

We further reparameterise Equation (4.6), based on the dominant eigen-
value and eigenvector of the matrix G (i.e., rm and ψ in the equation below;
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see Appendix A.3 for the derivation), which provides us with the form that
can be functionally linked to the dominant eigenvalue and eigenvector of
an age-structured density-independent matrix model (e.g., Leslie Matrix
Model: LMM):

+
,,,,,,,,,-

,,,,,,,,,.

Bj
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t +
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nj − 1
· Bj
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8

91−
>
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=− Y j
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Ba
t+1 = Ba

t + rm · Ba
t +Ra ·

)
Bj

t − ψ · Ba
t

*
− Y a

t

, (4.7)

where rm is the dominant eigenvalue of the matrix G, which is calculated
as rm = gj − 1+Rj/ψ = ga − 1+ψ ·Ra (see Appendix A.3.3 for the proof),
and ψ is the ratio of the two elements in the dominant eigenvector of the
matrix G.

Process equations

Similar to the GSPM, we incorporate multiplicative error terms (i.e., exp(εjp,t)
and exp(εap,t)) in Equation (4.7) and assume that the total exploitable biomass
for the initial time step (i.e., B1) is a fraction of the carrying capacity K,
which is further divided into the two sub-groups (i.e., Bj

1 and Ba
1 ) by the

initial juvenile proportion c. That is, for the juvenile stock, the process



84CHAPTER 4. A TWO-LIFE STAGE-STRUCTURED PRODUCTION MODEL

equations of the state-space TSPM are given as

Bj
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+
,,,,,,,,,,,,,,,,,-

,,,,,,,,,,,,,,,,,.
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(4.8)
where εjp,t

iid∼ N
)
0, σ2

p

*
, and σ2

p is the process error variance. The total
carrying capacity K can be expressed as the sum of the two seperate stage-
specific carrying capacities, Kj and Ka (i.e., K = Ka + Kj , where Ka =

Kj/(ψ− rm/R
a)), Then, for the adult stock, we have the following process

equations

Ba
t =

+
,,,-

,,,.

b · (1− c) ·K · exp(εap,t), for t = 1

6
Ba

t−1 + rm · Ba
t−1 +Ra ·

)
Bj

t−1 − ψ · Ba
t−1

*
− Y a

t−1

7
· exp(εap,t), for t > 1

,

(4.9)
where εap,t

iid∼ N
)
0, σ2

p

*
.

For numerical efficiency in model estimation, we form the relative biomass
by dividing Bj

t and Ba
t by Kj and Ka, respectively, denoted by P j

t and P a
t

(i.e., P j
t = Bj

t /K
j and P a

t = Ba
t /K

a). Thus, we can reexpress Equations
(4.8) and (4.9) in terms of P j

t and P a
t as follows
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P j
t =

+
,,,,,,,,,,,,,,-

,,,,,,,,,,,,,,.

b · c ·
%
Ka

Kj
+ 1

&
· exp(εjp,t), for t = 1

'
P j
t +

rm
nj − 1

· P j
t ·

@
1−

)
P j
t

*nj−1
A

+
Rj

nj − 1
·
%
P a
t · K

a

Kj
− 1

ψ
· P j

t

&
·
@
1− (P j

t )
nj−1

A

−
Y j
t−1

Kj

2
· exp(εjp,t), for t ≥ 1

P a
t =

+
,,,,,,,,-

,,,,,,,,.

b · (1− c) ·
%
1 +

Kj

Ka

&
· exp(εap,t), for t = 1

6
P a
t−1 + rm · P a

t−1

+Ra ·
%
P j
t−1 ·

Kj

Ka
− ψ · P a

t−1

&
−

Y a
t−1

Ka

(
· exp(εap,t), for t > 1

Observation equations

For observation equations of the TSPM, we also consider the two situa-
tions, depending on availability of the relative abundance data. If we have
the data separately collected from the juvenile and adult stocks (i.e., Ijt and
Iada,t), which are used in GSPM1, we formulate the following observation
equations: +

-

.
Ijt = qj · P j

t ·Kj · exp(εjo,t)

Iada,t = qada · P a
t ·Ka · exp(εao,da,t)

, (4.10)

where da ∈ {1, 2}, εjo,t
iid∼ N (0, (σj

o)
2), and εao,da,t

iid∼ N
)
0, (σa

o,da)
2
*
. We

label the TSPM, where the observations are modelled by Equation (4.10),
as TSPM1 (see Figure 4.4b).
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If we have the data collected from the total exploitable biomass Bt (i.e.,
Id,t), we use the same observation equations as those of GSPM2:

Id,t = qd · Pt ·K · exp(εo,d,t); εo,d,t
iid∼ N

)
0, σ2

o,d

*
, (4.11)

where Pt = (Bj
t + Ba

t )/(K
j +Ka). We label the TSPM, where the observa-

tions are modelled by Equation (4.11), as TSPM2 (see Figure 4.5b)

4.4 Parameter constraints

Estimating all the model parameters of a GSPM without any constraints
(e.g., priors in a Bayesian approach or penalties in a frequentist approach)
is notoriously difficult (Maunder, 2003), which is a problem also found in
a TSPM. Thus, we impose multivariate constraints on parameters of each
state-space production model, which are derived based on relationships
between the two production models and ASMs.

Following a prior construction method suggested by Winker et al. (2020),
we construct a bivariate constraint for HMSY and n of the GSPM, using
Monte-Carlo simulations with a conventional density-dependent equilib-
rium age-structured model, which we simply refer to as an equilibrium
ASM. However, for the TSPM, we develop a novel method to construct a
multivariate constraint for rm, nj , ψ, Rj , and Ra, using Monte-Carlo sim-
ulations with two different types of ASMs (i.e., an equilibrium ASM and
a Leslie matrix model (LMM)). Input values for life-history and fisheries
parameters associated with ASMs are obtained from previous studies (see
Tables 4.1 and 4.2 for a summary of key notation and input values used
in ASMs). In Figure 4.6, we plot the curves for quantities calculated from
sub-models nested in ASMs, given the input values listed in Table 4.2. De-
tails about those sub-models are discussed in the following subsection.

Some of those input values in Table 4.2 are roughly chosen, based on
information provided in Kim and Hyun (2018) as exact values for those
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parameters are unable to be obtained from other published studies. For
example, the input values for the parameters for the age at 50% selectivity
for juvenile and adult fish (i.e., ijsel50 = 1.5 and iasel50 = 2.7) are determined,
based on the length frequency samples shown in Kim and Hyun (2018).

We could not find any input values for the slope parameters of the
two selectivity curves (i.e., νj

sel and νa
sel) and the maturity curve (i.e., νmat)

from previous studies; thus, we simply assume the value of 2 for those
parameters. Other input values, such as the female proportion (i.e., φ) and
the unfished age-1 recruitment at equilibrium (i.e., R∗(0)), are arbitrarily
chosen because values of those parameters do not change distributions of
parameter constraints.

The rest of this section is organised as follows: First, we discuss an
equilibrium ASM and derive BRPs of the model, from which we find func-
tional links between the two production models and an ASM. Second, we
describe a LMM (i.e., a density-independent age-structured matrix model),
a dominant eigenvalue and eigenvector of which are functionally linked to
rm and ψ of the TSPM. Lastly, using functional links derived from the two
ASMs, we describe how multivariate constraints for the two production
models can be derived.
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Table 4.1: A summary of the key notation used in the ASMs

Notation Description Dimension
a, j superscripts indexing adult (a) and juvenile (j)
c superscript denoting a stable distribution
i subscript indexing age time
A maximum age time
t discrete time time
T final time step time
∗ subscript denoting an equilibrium state

Ni,t numbers-at-age at time t count
Yt yield at time t mass
Ht harvest fraction at time t dimensionless
Bt exploitable biomass at time t mass
K exploitable unfished biomass mass
Rt recruitment at time t count

Eggt total egg production at time t count
α Beverton-Holt SR parameter dimensionless
β Beverton-Holt SR parameter count−1

h steepness parameter dimensionless
M instantaneous rate of natural mortality time−1

φ female proportion dimensionless
Feci fecundity-at-age count
η1 length-fecundity relationship parameter count/length
η2 length-fecundity relationship parameter dimensionless

MSY maximum sustainable yield mass
BMSY biomass that provides MSY mass
HMSY long-term constant harvest fraction for MSY dimensionless
Mati maturity-at-age dimensionless
νmat slope steepness parameter of a maturity curve time−1

imat50 age at 50% maturity time
vi selectivity-at-age dimensionless
νsel slope steepness parameter of a gear selectivity curve time−1

isel50 age at 50% selectivity time
La length-at-age length
k growth parameter in the von Bertalanffy growth function (VBGF) time−1

i0 theoretical age at length 0 in the VBGF time
L∞ asymptotic length in the VBGF length
wi weight-at-age mass
ω1 length-weight relationship parameter mass/length
ω2 length-weight relationship parameter dimensionless
b scaling coefficient for the initial exploitable biomass B1 (i.e., b = B1/K) dimensionless
It relative abundance index at time t mass/effort
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Table 4.2: Input parameter values used for the age-structured models
(ASMs)

parameter value unit range reference
L∞ 46 cm (0,∞) Kooka (2012)
k 0.31 year−1 (0,∞) Kooka (2012)
i0 −0.17 year (−∞,∞) Kooka (2012)
A 18 year (0,∞) Kooka (2012)

imat50 4.6 year (0,∞) Kooka (2012)
νmat 2 year−1 (0,∞)

ω1 0.134 · 10−3 gram/cm (0,∞) Kooka (2012)
ω2 2.47 (0,∞) Kooka (2012)
η1 0.16 egg/cm (0,∞) Kooka (2012)
η2 3.72 (0,∞) Kooka (2012)

M , M0 0.22 year−1 (0,∞) Kooka (2012)
ijsel50 1.5 year [0,∞) Kim and Hyun (2018)
νj

sel 2 year−1 [0,∞)

iasel50 2.7 year [0,∞) Kim and Hyun (2018)
νa

sel 2 year−1 [0,∞)

φ 0.5 (0, 1)

R∗(0) 1000 recruit (0,∞)

h, h0 0.647 (0.2, 1] A’mar et al. (2008)
q1, q2, q3 10−5 effort−1 (1/∞, 1]

qj 10−5 effort−1 (1/∞, 1]

qa1 , qa2 10−5 effort−1 (1/∞, 1]

σp,1 0.4 [0,∞)

σp,2 0.2 [0,∞)

σo,1, σo,2, σo,3 0.1 [0,∞)

σj
o 0.1 [0,∞)

σa
o,1, σa

o,2 0.1 [0,∞)
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Figure 4.6: Plotted curves for quantities calculated from the sub-models
nested in the ASMs, given the input values listed in Table 4.2. The dashed
lines in panels (a) and (b) (i.e., vji and vai ) are gear selectivities assumed
for each juvenile and adult fisheries. Details about the structure of those
sub-models are provided in Section 4.4.1
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4.4.1 Equilibrium age-structured model

The equilibrium population abundance for age i under a given constant
harvest fraction H (i.e., Ni,∗(H), where the subscript ∗ denotes the popula-
tion is at equilibrium) is equal to the equilibrium survivor rate per recruit
at H (i.e., BNi,∗(H)) multiplied by the equilibrium recruitment at H (i.e.,
R∗(H)):

Ni,∗(H) = BNi,∗(H) ·R∗(H).

The equilibrium survivor rate per recruit at H (i.e., BNi,∗(H)) is given by

BNi,∗(H) =

+
,,,,,,,,,,-

,,,,,,,,,,.

1 for i = 1

BNi−1,∗(H) · exp(−M) · (1−Hi−1), for 1 < i < A

exp(−M) · (1−HA−1)

1− exp(−M) · (1−HA)
· BNA−1,∗(H), for i = A

,

(4.12)
where A is the maximum age group (the “plus group”; see Appendix A.2
for the derivation of the starting condition), M is the instantaneous rate of
natural mortality, and Hi is the harvest fraction for fish of age i.

Using the separability assumption (Doubleday, 1976), the harvest frac-
tion for fish of age i (i.e., Hi) is expressed as the products of the constant
harvest fraction H and the age-dependent vulnerability Vi (note that H

defines the fully selected harvest fraction; thus, H ∕=
CA

i=1 Hi):

Hi = Vi ·H, (4.13)

The age-dependent vulnerability Vi is then calculated, based on the stock-
specific age-gear selectivities, vji and vai , and the maturity-at-age, Mata:

Vi = vji · (1− Mati) + vai · Mati.
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The two stock-specific age-dependent gear selectivities (i.e., vji and vai ) are
computed from the following logistic curve:

vst
i =

1

1 + exp
6
−νst

sel ·
)
i− ist

sel50

*7 , (4.14)

where the superscript st identifies which sub-stock (i.e., st ∈ {j, a}) is as-
sociated with the gear selectivity curve, ist

sel50 is the age at 50% selectivity,
and νst

sel is the slope steepness of the selectivity curve. Similarly, for the
maturity-at-age (i.e., Mati), the following logistic curve is used:

Mati =
1

1 + exp [−νmat · (i− imat50)]
,

where imat50 is the age at 50% maturity, and νmat is the slope steepness of
the maturity curve.

The equilibrium recruitment at H (i.e., R∗(H)) is expressed in terms
of eggs, using the following Beverton-Holt stock-recruitment (BHSR) rela-
tionship (Beverton and Holt, 1993):

R∗(H) =
α · Egg∗(H)

1 + β · Egg∗(H)
,

where α/β defines the maximum recruitment level, 1/β defines the num-
ber of eggs which will result in 50% of the maximum recruitment, and
Egg∗(H) is the equilibrium total annual egg production (in numbers) at
H , which can be further expressed as

Egg∗(H) = R∗(H) · DEgg∗(H),
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where DEgg∗(H) is the number of eggs produced per recruit at equilibrium:

DEgg∗(H) =
AE

i

Feci · Mati · φ · BNi,∗(H).

The female fraction φ of the population is assumed to be constant over age
groups. Feci is the fecundity-at-age, which is defined as the number of
eggs that are likely to be laid by a fish during the spawning season. Feci is
assumed to be related to the mean length-at-age (i.e., Li):

Feci = η1 · Lη2
i ,

where η1 and η2 are the length-fecundity relationship parameters. Then,
the mean length at age i (i.e., Li) can be modelled by using the von Berta-
lanffy growth function (von Bertalanffy, 1938):

Li = L∞ · [1− exp(−k · (i− i0))],

where L∞ is the asymptotic length, k is the growth coefficient which de-
scribes how quickly L∞ is achieved, and i0 is the theoretical age at length-
0.

Note that the two BHSR parameters are often expressed in terms of
the steepness parameter h, which is defined as the fraction of recruitment
from an unfished population when the total egg production is 20% of its
unfished level (Mace and Doonan, 1988) (see Appendix A.1 for the deriva-
tion):

α =
4 · h ·R∗(0)

(1− h) · Egg∗(0)
; β =

5 · h− 1

(1− h) · Egg∗(0)
, (4.15)

where R∗(0) is the equilibrium unfished recruitment, and Egg∗(0) is the
equilibrium unfished eggs (in numbers).

Since the production models are expressed in terms of biomass, we
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need to derive the following quantities from the equilibrium ASM:

+
,,,,,,,,,,,,,,,,,,,,,-

,,,,,,,,,,,,,,,,,,,,,.

B∗(H) = R∗(H) ·
CA

i=1
BNi,∗(H) · wi · Vi

Bj
∗(H) = R∗(H) ·

CA
i=1

BNi,∗(H) · wi · vji · (1− Mati)

Ba
∗ (H) = R∗(H) ·

CA
i=1

BNi,∗(H) · wi · vai · Mati

K = R∗(0) ·
CA

i=1
BNi,∗(0) · wi · Vi

Kj = R∗(0) ·
CA

i=1
BNi,∗(0) · wi · vji · (1− Mati)

Ka = R∗(0) ·
CA

i=1
BNi,∗(0) · wi · vai · Mati

Y∗(H) = B∗(H) ·H

Y j
∗ (H) = Bj

∗(H) ·H

Y a
∗ (H) = Ba

∗ (H) ·H

(4.16)

The mean weight-at-age (i.e., wi) is modelled by a length-weight relation-
ship function:

wi = ω1 · Lω2
i ,

where ω1 and ω2 are the two parameters which govern the above allometric
curve.

We evaluate those derived quantities in Equation (4.16) at the optimum
harvest rates to obtain BRPs. Then, those BRPs from the ASM are matched
with corresponding ones from the two production models to derive func-
tional links between the three different models. The BRPs from the ASM
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are defined as

+
,,,,,,,,,,,,,,,,,,,,,-

,,,,,,,,,,,,,,,,,,,,,.

MSY = Y∗(HMSY)

Y j
MSY = Y j

∗ (HMSY)

Y a
MSY = Y a

∗ (HMSY)

MSYj = Y j
∗ (HMSYj)

BMSY = MSY/HMSY

Bj
MSY = Y j

MSY/HMSY

Ba
MSY = Y a

MSY/HMSY

Bj

MSYj = MSYj/HMSYj

Ba
MSYj = R∗(HMSYj) ·

CA
i=1

BNi,∗(HMSYj) · wi · vi · Mati

, (4.17)

where HMSY and HMSYj can be obtained by solving

dY∗(H)

dH

0000
HMSY

= 0;
dY j

∗ (H)

dH

0000
HMSYj

= 0.

We numerically obtain the solutions for the above equations, but those can
also be analytically solved (Forrest et al., 2008).

By substituting MSY, BMSY, and K of the GSPM with those derived
from the equilibrium ASM, the two parameters (i.e., HMSY and n) in the
GSPM can be approximated as follows

+
,,,,,-

,,,,,.

HMSY =
MSY
BMSY

n =

%
BMSY

K

&1−n

, (4.18)

where the quantities on the left-hand side (i.e., HMSY and n) are the pa-
rameters of the GSPM, while MSY, BMSY, and K on the right-hand side
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are of the equilibrium ASM. Similarly, for the TSPM, the three parameters
(i.e., nj , Ra, and Rj) are approximated as follows (see Appendix A.4 for
the derivation) +

,,,,,,,,,,,,,,,,,,-

,,,,,,,,,,,,,,,,,,.

nj =

>
Bj

MSYj

Kj

?1−nj

Ra =
rm

ψ − Kj

Ka

Rj =
nj ·HMSYj − rm
Ba

MSYj

Bj

MSYj

− 1

ψ

, (4.19)

where Bj

MSYj , HMSYj ,Ba
MSYj , Ka, and Kj are those obtained from the equi-

librium ASM, not from the TSPM.

4.4.2 Leslie matrix model (LMM)

In this section, we show how the two parameters rm and ψ in the TSPM
can be approximated by corresponding values derived from a density-
independent age-structured matrix model, also known as a Leslie matrix
model (LMM) in demographic analysis.

Using the same life history parameters of the ASM, a LMM can be ex-
pressed as follows (Mangel et al., 2010)

8
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, (4.20)
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where fi is the per capita average number of offspring from individuals of
age i, which is given by

fi = α · Feci · Mati · φ.

Note that the BHSR parameter α can be derived from the steepness pa-
rameter h, using Equation (4.15).

In the matrix model above, because the transition matrix L has con-
stant elements, the population N t tends to reach a stable age structure
over time, from which age proportions of N t remains in equilibrium. Once
the population reaches its stable age structure, the age-aggregated abun-
dance N (i.e., N =

CA
i=1 Ni ) grows according to the following differential

equation (McAllister et al., 2001):

dN

dt
= log(Λ1) ·N,

where Λ1 is the dominant eigenvalue of L.
In the absence of the density-dependent effect and fishing mortality,

the matrix model shown in Equation (4.6) also tends to reach a stable life-
stage structure, from which the ratio of juvenile and adult biomasses re-
mains in equilibrium. Then, after reaching a stable structure, the biomass
B grows at the rate of rm (recall that rm is the dominant eigenvalue of the
matrix G in Equation (4.6)):

Bt+∆t − Bt

∆t
= rm · Bt.

Although the LMM describes population abundance in numbers, the
dominant eigenvalue Λ1 remains the same in biomass (see Appendix A.3.4
for the proof). Thus, the following approximate relationship can be satis-
fied:

rm ≈ log(Λ1). (4.21)
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Then, the dominant eigenvector of the matrix L can be used to approxi-
mate ψ of the TSPM as follows

ψ =

CA
i Ci · wi · (1− Mati) · vjiCA

i Ci · wi · Mati · vai
,

(4.22)

where Ci is the proportion of age-i fish (in numbers) at the stable age struc-
ture, which is obtained by normalising elements in the dominant eigenvec-
tor of the matrix L.

4.4.3 Multivariate normal constraints

Using Equations (4.18), (4.19), (4.21), and (4.22) derived from equilibrium
ASM and the LMM described in the previous sections, multivariate con-
straints for the parameters of the GSPM and the TSPM can be constructed.
We use Monte-Carlo simulations to reflect uncertainties in inputs of the
natural mortality parameter M and the steepness parameter h. To do
that, we randomly draw 5000 input values for M and h from gamma and
beta distributions, respectively (Michielsens and McAllister, 2011; Winker
et al., 2020), where modes of the distributions, denoted by M0 and h0 (i.e.,
M0 = 0.22 and h0 = 0.647), are the point estimates obtained from previ-
ous studies, which are given in Table 4.2 (A’mar et al., 2008; Kooka, 2012),
while variances of those distributions are determined by the coefficient of
variation (CV). We use 25% and 15% of CV for the gamma and beta distri-
butions, respectively; thus, the resulting distributions correspond to 2.5th
and 97.5th percentiles for M of 0.13 and 0.36 and those for h of 0.51 and
0.77.

To be more specific, we illustrate several steps involved with the con-
struction of multivariate parameter constraints for the GSPM and the TSPM
as follows, which is also depicted in Figure 4.7:
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Figure 4.7: Diagram depicting the process of constructing multivariate
constraints for the GSPM and TSPM, using the two ASMs (i.e., the equi-
librium ASM and the LMM) with input values for the parameters of the
ASMs. The boldface symbols and grey ellipses indicate sets of 5000 quan-
tities for each parameter. Those in the grey rectangles have a single input
value.
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(i) We assume the natural mortality M follows a gamma distribution
with shape parameter κ and the scale parameter τ , from which we
randomly draw 5000 samples of M (i.e., Mℓ, where ℓ ∈ {1, 2, 3, ..., 5000}):

Mℓ
iid∼ Gamma(κ, τ), where ℓ ∈ {1, 2, 3, ..., 5000},

where we derive κ and τ , based on the mode of M (i.e., M0) and
its coefficient of variation (CVM ), which are given as 0.22 and 0.25,
respectively:

κ =
M0

τ
+ 1 and τ =

M0

CV−2
M − 1

.

(ii) For the steepness parameter h, we draw 5000 random samples of h
(i.e., hℓ, where ℓ ∈ {1, 2, 3, ..., 5000}) from a beta distribution, where
we rescale the distribution to constrain hℓ to lie within the defined
range of h (i.e., 0.2 ≤ hℓ ≤ 1) (Michielsens and McAllister, 2011):

hℓ = Vℓ · 0.8 + 0.2,

where

Vℓ
iid∼ Beta(ξ, ζ).

The two shape parameters, ξ and ζ , are derived given the mode and
coefficient of variation (i.e., h0 = 0.647 and CVV = 0.15):

ζ =
(2 · V0 + (1− V0) · ξ − 1)

V0

, where V0 =
h0 − 0.2

0.8
,

and

ξ =

3
V 2
0 · ξ · (2 · V0 + ξ − 1− V0 · ξ)

(2 · V0 + ξ − 1)2 · (3 · V0 + ξ − 1)
· ξ + ζ

CVV

.

The above implicit equation for ξ is derived from the following rela-
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tionship:

Var[V ] =(CVV · E[V ])2,

where Var[V ] =
V 2
0 · ξ · (2 · V0 + ξ − 1− V0 · ξ)

(2 · V0 + ξ − 1)2 · (3 · V0 + ξ − 1)

and E[V ] =
ξ

ξ + ζ
.

(iii) Using Mℓ, hℓ and the input values for the other parameters of the
equilibrium ASM, provided in Table 4.2, we calculate MSYℓ, BMSY,ℓ,
and Kℓ from the equilibrium ASM. Then, using the following equa-
tions, we obtain HMSY,ℓ and nℓ:

+
,,,,,-

,,,,,.

HMSY,ℓ =
MSYℓ

BMSY,ℓ

nℓ =

%
BMSY,ℓ

Kℓ

&1−nℓ

,

where ℓ ∈ {1, 2, 3, ..., 5000}
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Similarly, for the TSPM, we obtain rm,ℓ, ψℓ, n
j
ℓ , R

a
ℓ , and Rj

ℓ as follows:

+
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,-

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,.

rm,ℓ = log(Λ1,ℓ)

ψℓ =

CA
i Ci,ℓ · wi · (1− Mati) · vjiCA

i Ci,ℓ · wi · Mati · vai

nj
ℓ =

>
Bj

MSYj ,ℓ

Kj
ℓ

?1−nj
ℓ

Ra
ℓ =

rm,ℓ

ψℓ −
Kj

ℓ

Ka
ℓ

Rj
ℓ =

nj
ℓ ·HMSYj ,ℓ − rm,ℓ

Ba
MSYj ,ℓ

Bj

MSYj ,ℓ

− 1

ψℓ

, (4.23)

where Λ1,ℓ and Ci,ℓ are derived from the LMM, and Bj

MSYj ,ℓ
, Ba

MSYj ,ℓ
,

HMSYj ,ℓ, K
a
ℓ , and Kj

ℓ are derived from the equilibrium ASM.

(iv) Then, we parameterise the joint distribution of log(HMSY,ℓ) and log(nℓ),
where ℓ ∈ {1, 2, 3, ..., 5000}, using a multivariate normal (MVN) dis-
tribution with mean vector θGS,0 and covariance matrix ΣGS:

θGS ∼ MVN(θGS,0,ΣGS),

where

θGS,0 =
@
log(HMSY), log(n)

AT
(4.24)
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and

ΣGS =

1
Var[log(HMSY)] Cov[log(HMSY), log(n)]

Cov[log(HMSY), log(n)] Var[log(n)]

2
. (4.25)

The bar symbol means the average of the 5000 samples for each pa-
rameter, and Var and Cov are the variance and covariance of the 5000
samples of stated parameters. The operator T is the transpose oper-
ator.

For the TSPM, we parameterise the joint distribution of log(rm,ℓ),
log(nj

ℓ), log(R
j
ℓ), log(R

a
ℓ ), and log(ψℓ), where ℓ ∈ {1, 2, 3, ..., 5000}, us-

ing a multivariate normal (MVN) distribution with mean vector θTS,0

and covariance matrix ΣTS:

θTS ∼ MVN(θTS,0,ΣTS),

where

θTS,0 = [log(rm), log(nj), log(Rj), log(Ra), log(ψ)]T, (4.26)

and

ΣTS =

8

FFFF9

Var[log(rm)] Cov[log(rm), log(nj)] · · · Cov[log(rm), log(ψ)]
Cov[log(rm), log(nj)] Var[log(nj)] · · · Cov[log(nj), log(ψ)]

...
... . . . ...

Cov[log(rm), log(ψ)] Cov[log(nj), log(ψ)] · · · Var[log(ψ)]

<

GGGG=
.

(4.27)

(v) We also impose a normal distribution on the parameter log(b) with
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mean µb and variance σ2
b :

log(b) ∼ N(µb, σ
2
b ),

where µb = log(b0) + σ2
b , σ2

b = log(CV2
b + 1), and CVb is the coefficient

of variation for log(b). We use CVb = 0.3 for both simulation and
application studies, but the value of b0 varies depending on the study
settings. For a simulation study, discussed in Section 4.6, we use the
true value for b as b0 for each scenario. For a case study, discussed in
Section 4.7, we use b0 ∈ {0.3, 0.5, 0.7} for three alternative models.

4.5 Estimation methods

To estimate the parameters of the four models, a marginal maximum like-
lihood method is used, using the TMB package (Kristensen et al., 2016).
In TMB, one needs to specify a joint likelihood function for the model
parameters (see the following subsections). TMB takes care of approxi-
mating the marginal likelihood (i.e., LModel(ΨModel|Data), where Model ∈
{GSPM1,GSPM2,TSPM1,TSPM2}, and ΨModel denotes a vector of the model
parameters), by integrating out the state variables (i.e., P for the GSPM
and P j , P a for the TSPM), using a Laplace appoximation technique (Skaug
and Fournier, 2006; Kristensen et al., 2016). That is, the marginal likeli-
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hoods for the four estimation models can be expressed as follows

LGSPM1(ΨGSPM1 | Ij, Ia
1, I

a
2;Y

j,Y a)

=

/
LGSPM1(ΨGSPM1,P | Ij, Ia

1, I
a
2;Y

j,Y a)dP ,

LGSPM2(ΨGSPM2 | I1, I2, I3;Y
j,Y a)

=

/
LGSPM2(ΨGSPM2,P | I1, I2, I3;Y

j,Y a)dP ,

LTSPM1(ΨTSPM1 | Ij, Ia
1, I

a
2;Y

j,Y a)

=

//
LTSPM1(ΨTSPM1,P

j,P a | Ij, Ia
1, I

a
2;Y

j,Y a)dP jdP a,

LTSPM2(ΨTSPM2 | I1, I2, I3;Y
j,Y a)

=

//
LTSPM2(ΨTSPM2,P

j,P a | I1, I2, I3;Y
j,Y a)dP jdP a,

where the parameters of the each estimation model are given by

ΨGSPM1 = (b, r, n,K, σp, σ
j
o, σ

a
o,1, σ

a
o,2, q

j, qa1 , q
a
2),

ΨGSPM2 = (b, r, n,K, σp, σo,1, σo,2, σo,3, q1, q2, q3),

ΨTSPM1 = (b, c, rm, n
j, K,ψ, Rj, Ra, σp, σ

j
o, σ

a
o,1, σ

a
o,2, q

j, qa1 , q
a
2),

ΨTSPM2 = (b, c, rm, n
j, K,ψ, Rj, Ra, σp, σo,1, σo,2, σo,3, q1, q2, q3).

Then, by maximizing the marginal likelihoods with respect to ΨModel, us-
ing numerical optimisation techniques in R (R Core Team, 2014), the esti-
mates of ΨModel (i.e., Ψ̂Model) can be obtained:

Ψ̂GSPM1 = arg max
ΨGSPM1

log[LGSPM1(ΨGSPM1 | Ij, Ia
1, I

a
2;Y

j,Y a)]

Ψ̂GSPM2 = arg max
ΨGSPM2

log[LGSPM2(ΨGSPM2 | I1, I2, I3;Y
j,Y a)]

Ψ̂TSPM1 = arg max
ΨTSPM1

log[LTSPM1(ΨTSPM1 | Ij, Ia
1, I

a
2;Y

j,Y a)]

Ψ̂TSPM2 = arg max
ΨTSPM2

log[LTSPM2(ΨTSPM2 | I1, I2, I3;Y
j,Y a)]
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Once Ψ̂Model is found, TMB sequentially infers the state variables by max-
imizing the estimated conditional likelihoods, where ΨModel is fixed at
Ψ̂Model:

P̂ GSPM1 = argmax
P

log[LGSPM1(Ψ̂GSPM1,P |Ij, Ia
1, I

a
2;Y

j,Y a)]

P̂ GSPM2 = argmax
P

log[LGSPM2(Ψ̂GSPM2,P |Ij, Ia
1, I

a
2;Y

j,Y a)]

P̂
j

TSPM1 = argmax
P j

log

'/
LTSPM1(Ψ̂TSPM1,P

j,P a|I1, I2, I3;Y
j,Y a)dP a

(

P̂
a

TSPM1 = argmax
P a

log

'/
LTSPM1(Ψ̂TSPM1,P

j,P a|Ij, Ia
1, I

a
2;Y

j,Y a)dP j

(

P̂
j

TSPM2 = argmax
P j

log

'/
LTSPM2(Ψ̂TSPM2,P

j,P a|I1, I2, I3;Y
j,Y a)dP a

(

P̂
a

TSPM2 = argmax
P a

log

'/
LTSPM2(Ψ̂TSPM2,P

j,P a|I1, I2, I3;Y
j,Y a)dP j

(

Furthermore, the uncertainty of parameter estimates is evaluated via the
delta method, where the determinant of a Hessian matrix of the marginal
likelihood is found via a numerical Cholesky decomposition (Skaug and
Fournier, 2006; Kristensen et al., 2016).

In the next following subsections, we provide details about the joint
likelihood for each estimation model.
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4.5.1 Joint likelihoods for GSPM1 and GSPM2

The joint likelihoods for GSPM1 and GSPM2 are

LGSPM1(ΨGSPM1,P | Ij, Ia
1, I

a
2;Y

j,Y a) =fI,GSPM1(I
j, Ia

1, I
a
2|P , qa1 , q

a
2 , q

j, σj
o, σ

a
o,1, σ

a
o,2, K)

× fP (P |r,K, b, n, σp;Y
j,Y a)

× fθGS(θGS) · fb(b),

LGSPM2(ΨGSPM2,P | I1, I2, I3;Y
j,Y a) =fI,GSPM2(I1, I2, I3|P , q1, q2, q3, σo,1, σo,2, σo,3, K)

× fP (P |r,K, b, n, σp;Y
j,Y a)

× fθGS(θGS) · fb(b),

where

fP (P |r,K, b, n, σp;Y
j,Y a)

=
T−15

t=1

'
1

σp ·
√
2 · π

· exp
H
− [log(Pt+1)− log(E(Pt+1|Pt, r,K, b, n, σp;Y

j,Y a))]2

2 · σ2
p

I(

× 1

σp ·
√
2 · π

· exp
H
− [log(P1)− log(b)]2

2 · σ2
p

I
,

fI,GSPM1(I
j, Ia

1, I
a
2|P , qa1 , q

a
2 , q

j, σj
o, σ

a
o,1, σ

a
o,2, K)

=
25

da=1

T5

t=1

1
1

σa
o,da ·

√
2 · π

· exp
J
−
(log(Iada,t)− log(qada · Pt ·K))2

2 · (σa
o,da)

2

K2

×
T5

t=1

1
1

σj
o ·

√
2 · π

· exp
J
−(log(Ijt )− log(qj · Pt ·K))2

2 · (σj
o)2

K2
,

fI,GSPM2(I1, I2, I3|P , q1, q2, q3, σo,1, σo,2, σo,3, K)

=
35

d=1

T5

t=1

1
1

σo,d ·
√
2 · π

· exp
J
−(log(Id,t)− log(qd · Pt ·K))2

2 · σ2
o,d

K2
,

fθGS(θGS) =
1L

(2 · π)2 · |ΣGS|
·exp

H
−1

2
· (θGS − θGS,0)

′ ·Σ−1
GS · (θGS − θGS,0)

I
,
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and
fb(b) =

1

σb ·
√
2π

· exp
H
−(log(b)− µb)

2

2 · σ2
b

I
.

4.5.2 Joint likelihoods for TSPM1 and TSPM2

The joint likelihoods for TSPM1 and TSPM2 are

LTSPM1(ΨTSPM1,P
j,P a | Ij, Ia

1, I
a
2;Y

j,Y a) =fIj(Ij|qj,P j, σj
o, K

j)

× fIa(Ia
1, I

a
2|qa1 , qa2 ,P a, σa

o,1, σ
a
o,2, K

a)

× fP j(P j|P a, rm, b, c, n
j, Rj, Kj,ψ, σp;Y

j)

× fP a(P a|P j, rm, R
a,ψ, b, c, σp, K

j;Y a)

× fθTS(θTS) · fb(b),
(4.28)

LTSPM2(ΨTSPM2,P
j,P a | I1, I2, I3;Y

j,Y a) =fI(I1, I2, I3|q1, q2, q3,P j,P a, σo,1, σo,2, σo,3, K)

× fP j(P j|P a, rm, b, c, n
j, Rj, Kj,ψ, σp;Y

j)

× fP a(P a|P j, rm, R
a,ψ, b, c, σp, K

j;Y a)

× fθTS(θTS) · fb(b),

where

fP j(P j|P a, rm, b, c, n
j, Rj, Kj,ψ, σp;Y

j)

=
T−15

t=1

1
1

σp ·
√
2 · π

· exp
J
−
[log(P j

t+1)− log(E(P j
t+1|P

j
t , P

a
t , K

j, nj, rm, R
j;Y j

t ))]
2

2 · σ2
p

K2

× 1

σp ·
√
2 · π

· exp
J
− [log(P j

1 )− log(b · c · (Ka/Kj + 1)]2

2 · σ2
p

K
,

fP a(P a|P j, rm, R
a,ψ, b, c, σp, K

j;Y a)

=
T−15

t=1

1
1

σp ·
√
2 · π

· exp
J
−
[log(P a

t+1)− log(E(P a
t+1|P a

t , P
j
t , rm, R

a,ψ, Kj;Y a
t ))]

2

2 · σ2
p

K2

× 1

σp ·
√
2 · π

· exp
H
− [log(P a

1 )− log(b · (1− c) · (Kj/Ka + 1))]2

2 · σ2
p

I
,
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fIj(Ij|qj,P j, σj
o, K

j)

=
T5

t=1

1
1

σj
o ·

√
2 · π

· exp
J
−(log(Ijt )− log(qj · P j

t ·Kj))2

2 · (σj
o)2

K2
,

fIa(Ia
1, I

a
2|qa1 , qa2 ,P a, σa

o,1, σ
a
o,2, K

a)

=
25

da=1

T5

t=1

1
1

σa
o,da ·

√
2 · π

· exp
J
−
(log(Iada,t)− log(qada · P a

t ·Ka))2

2 · (σa
o,da)

2

K2
,

fI(I1, I2, I3|q1, q2, q3,P j,P a, σo,1, σo,2, σo,3, K)

=
35

d=1

T5

t=1

'
1

σo,d ·
√
2 · π

· exp
H
−(log(Id,t)− log(qd · Pt ·K))2

2 · (σo,d)2

I(
,

fθTS(θTS) =
1L

(2 · π)5 · |ΣTS|
·exp

H
−1

2
· (θTS − θTS,0)

′ ·Σ−1
TS · (θTS − θTS,0)

I
,

and
fb(b) =

1

σb ·
√
2π

· exp
H
−(log(b)− µb)

2

2 · σ2
b

I
.

The next two sections (i.e., Sections 4.6 and 4.7) describe procedures for
simulation study and application to pollock data, respectively. Results and
discussions of those simulation and application studies follow in Section
4.8.

4.6 Simulation study

In this section, we investigate the performance of the TSPM compared to
the GSPM, using simulated data imitating those collected from the Korean
pollock fisheries. We use a dynamic ASM, which has the same structure
as that of the equilibrium ASM, but the harvest fractions are age-specific
and time-varying, as an operating model to simulate an age-structured
pollock-like population, from which data on relative abundance indices
(i.e., Ijt , Iada,t, and Id,t) and yields (i.e., Y j

t and Y a
t ) are generated. We con-
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sider eight different scenarios to investigate the effects of trends in popula-
tion size and harvest regimes on model performances, which is discussed
in more detail in the following sections.

Although we attempt to mimic the situation in the Korean pollock fish-
eries for the simulation (discussed in Sections 4.6.1 and 4.6.2 for more de-
tails), where both juveniles and adults have been caught by multiple fish-
eries, and only a 20-year-long time series of CPUEs and yields on both
sub-stocks are available, in this simulation study, we assume the length of
the time series is 40 instead of 20 to improve reliability and robustness of
simulation results. One should note that the main purpose of this simula-
tion study is to investigate how the TSPM and GSPM perform when the
same set of data is given to each model; thus, the simulation settings are
not necessarily required to be the exact imitation of the pollock fisheries.

This section is organised as follows: First, we describe an operating
model (i.e., a dynamic ASM), designed to generate relative abundance in-
dices and yields for juvenile and adult stocks. Second, we describe the
scenarios and performance metrics, used for this simulation study.

4.6.1 Operating Model

Based on the equilibrium ASM with the input values given in Table 4.2, we
simulate pollock-like age-structured data. We make the equilibrium ASM
dynamic by simulating changes in numbers-at-ages at time t (i.e., Ni,t)
with the age-specific time-varying harvest rates, Hi,t, where we consider
normal process errors for transitions in log-abundance for times and ages
(i.e., εp,1,t

iid∼ N(0, σ2
p,1) and εp,i,t

iid∼ N(0, σ2
p,2), for i > 1). Furthermore, to ini-

tialise a population, we assume that only the initial population (i.e., Ni,1)
is at equilibrium, which is calculated by Ni,1(Hinit) = R∗(Hinit) · BNi,∗(Hinit),
where Hinit is the constant harvest rate at times t < 1. The dynamic ASM
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is then given by

Ni,t =

+
,,,,,,,,,,,,,,,,,,,,,,,,,,,,-

,,,,,,,,,,,,,,,,,,,,,,,,,,,,.

R∗(Hinit) · BNi,∗(Hinit), for 1 < i ≤ A, and t = 1

4 · h ·R∗(0) · Eggt−1

Egg∗(0) · (1− h) + (5 · h− 1) · Eggt−1

× exp(εp,1,t−1), for i = 1, and t > 1

Ni−1,t−1 · exp(−Mi−1) · (1−Hi−1,t−1)

× exp(εp,i,t−1), for 1 < i < A, and t > 1

[NA−1,t−1 · exp(−MA−1) · (1−HA−1,t−1)

+NA,t−1 · exp(−MA) · (1−HA,t−1)]

× exp(εp,A,t−1), for i = A, and t > 1

,

To mimic the harvest regimes on the Korean pollock fisheries where
both juvenile and adult fish were targeted under different fishing pres-
sures over time with the stock-specific selectivity-at-ages (i.e., vji and vai ),
we derive the time-varying age-specific harvest fraction Hi,t by substitut-
ing the fully selected harvest fraction H in Equation (4.13) with the life
stage-specific harvest fractions Hj

t and Ha
t accordingly:

Hi,t = vji · (1− Mati) ·Hj
t + vai · Mati ·Ha

t ,

where both vji and vai are calculated using the logistic curve in Equation
(4.14) with corresponding parameters (i.e., νj

sel and ijsel50 for vji , and νa
sel and

iasel50 for vai ) whose input values are given in Table 4.2.
The exploitable biomass of juvenile, adult, and total stocks at time t
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(i.e., Bj
t , Ba

t , and Bt, respectively) can be computed by

+
,,,-

,,,.

Bj
t =

CA
i vji · (1− Mati) ·Ni,t · wi

Ba
t =

CA
i vai · Mati ·Ni,t · wi

Bt = Bj
t +Ba

t

,

from which the relative abundance and yield data can be obtained as fol-
lows +

,,,,,,,,,-

,,,,,,,,,.

Ijt = qj · Bj
t · exp(ε

j
o,t)

Iada,t = qada · Ba
t · exp(εao,da,t)

Id,t = qd · Bt · exp(εo,d,t)

Y j
t = Hj

t · B
j
t

Y a
t = Ha

t · Ba
t

.

We repeat this data simulation process for each simulation-estimation run
in each scenario.

4.6.2 Simulation scenarios and performance metrics

To compare the model performance between the four estimation models,
we vary the harvest rates for both Hj

t and Ha
t , based on the HMSY of the

simulation model, which allows us to systematically investigate different
trajectories of relative abundance data (e.g., Id,t, I

j
t , and Iada,t), according to

different harvest regimes (Table 4.3). For example, to simulate a popula-
tion, where a juvenile population is heavily caught, we set Hj

t > HMSY and
Ha

t < HMSY. In addition, we also vary Hinit, depending on the scenarios,
along with Hj

t and Ha
t , as it largely affects an overall trend of a population

trajectory. We set eight different simulation scenarios for these various
conditions.

Under each scenario, we generate six sets of relative abundance data
for each simulation run: Ijd,t, I

a
da,t, and Id,t, where da ∈ {1, 2}, and d ∈
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{1, 2, 3}) and separate yields on juvenile and adult stocks: Y j
t and Y a

t . In
each simulation-estimation run, those simulated data are fitted to the four
estimation models, depending on the model assumption and configura-
tion (see Figures 4.4, 4.5, and 4.8). We repeat this simulation-estimation
procedure thousands of times for each scenario until 500 converged runs
for all four estimation models are obtained. In each simulation-estimation
run, we deem the model has successfully converged if the maximum gra-
dient component (mgc) of the parameters is close to 0 (i.e., less than 0.01),
and the Hessian matrix is positive definite. If at least one of the four mod-
els fails to fulfil that criteria, we discard entire results of that particular
simulation-estimation run.

To quantify the model performance, we use two performance metrics:
the median relative difference (MRD) to measure bias of the estimates,
and median absolute relative difference (MARD) to evaluate accuracy of
the estimates (Ono et al., 2012; Winker et al., 2020). To obtain the values
of those metics, in each converged simulation run, we record the relative
difference (RD) of the quantity of interest Θ:

RDℓ(Θ) =
Θ̂ℓ

Θ
− 1,

where Θ̂ℓ is the estimated quantity in the ℓth converged run (i.e., ℓ ∈
{1, 2, ..., 500}), and Θ is the corresponding true value (i.e., BMSY, HMSY,
MSY, Bt, Bt/K, Ht, and Ht/HMSY; note that no analytical solutions for
BRPs of the TSPM are available, thus we numerically calculate those quan-
tities.). Additionally, we record the RD for Bj , Ba, Bj

t /K
j , Ba

t /K
a, Hj

t , and,
Ha

t when TSPM1 and TSPM2 are evaluated. Once RDℓ(Θ) is obtained, the
MRD of Θ̂ is calculated as

MRD(Θ) = Median(RDℓ(Θ)).
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Similarly, the MARD is obtained by

MARD(Θ) = Median(|RDℓ(Θ)|).

Table 4.3: Input harvest values used for eight different simulation scenar-
ios which are denoted as S1-S8. Note that harvest values are expressed as
fractions of HMSY (HMSY = 0.126).

Scenarios

parameters S1 S2 S3 S4 S5 S6 S7 S8

Hj
t for 1 ≤ t ≤ 20 1

3

2

1

2

3

2
1

3

2

1

2

3

2

Hj
t for 20 < t ≤ 40 1

1

2

3

2

3

2
1

1

2

3

2

3

2

Ha
t for 1 ≤ t ≤ 20 1

1

2

3

2

3

2
1

1

2

3

2

3

2

Ha
t for 20 < t ≤ 40 1

3

2

1

2

3

2
1

3

2

1

2

3

2

Hinit 0 0 0 0 1 1 1 1
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Figure 4.8: Schematic overview of the simulation study. The data simu-
lation is represented by a directed acyclic graph (DAG). White circles are
non-observed probabilistic nodes (e.g., state variables in the estimatation
models), simulated from the ASM, and those in colour are observed prob-
abilistic nodes (i.e., relative abundance indices: Id,t, I

j
t , and, Iada,t; yields:

Y j
t and Y a

t ), fitted to the estimation models. Arrows with solid lines rep-
resent conditional probabilistic dependencies, and those with dotted lines
represent deterministic dependencies between nodes. Dotted rectangular
frames with rounded corners indicate repetition of structure over units.
Colouring the nodes blue, red, and blue-red gradient compositionally rep-
resents juvenile, adult, and both juvenile and adult biomasses, respec-
tively. Note that the size of each node indicates the relative magnitude
of values.
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4.7 Application to the Korea pollock stock

In this section, we apply the state-space TSPM (i.e., TSPM1) to the actual
data collected from the Korean pollock fisheries to investigate the appli-
cability of the model and the stock status. For this case study, we fit the
TSPM with three different assumptions on the constraints of the parameter
b, which is discussed in the next section.

After fitting the three models to the actual data, we perform three
model validation tests, jitter analysis (i.e., sensitivity of model fit to ini-
tial parameter values), residual analysis, and parametric bootstrap.

4.7.1 Estimation

For estimation, the joint likelihood given in Equation (4.28) is used (i.e.,
TSPM1), as we have information on yields and abundance indices col-
lected from both juvenile and adult stocks. For parameter constraints, the
same multivariate constraint as used in the simulation study is applied,
but for the constraint on the scaling coefficient b, we try three candidate
values as the modes of b (i.e., b0 ∈ {0.3, 0.5, 0.7}) since information on the
initial population size (i.e., Bt=1975) is not obtainable from other studies.
We label the models with three different constraints for b as M1 (b0 = 0.3),
M2 (b0 = 0.5), and M3 (b0 = 0.7), respectively.

4.7.2 Model validation

Jitter analysis

To evaluate the stability of the model, we perform a “jitter” analysis (i.e.,
sensitivity to initial parameter values) (Cass-Calay et al., 2014), using all
three models (i.e., M1-M3) considered in our study, for which we generate
different initial random values for the model parameters and use them for
parameter estimation with the pollock data. We repeat this procedure until
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200 sets of converged results are obtained. We generate such random val-
ues using uniform distributions, where a reasonably wide range of lower
and upper limits for each parameter is chosen. We visually inspect if all
200 converged results show a unique set of parameter estimates. A well-
behaved model should converge to a global solution regardless of initial
values (Cass-Calay et al., 2014).

Residual analysis

To assess the validity of the model assumptions associated with the state
equations, we use a single sample approach suggested by Thygesen et al.
(2017). We randomly draw samples of a time series of P j

t and P a
t from

their posterior distributions and calculate the standardized process errors
(details about the calculation are given in Equation 4.7.2 below). In our fre-
quentist approach, the posterior modes of those state variables in log-scale
(i.e., log(P j

t ) and log(P a
t )) are found by maximising the joint likelihood dis-

cussed in Section 4.5, and the Hessian of the model is obtained by using
the automatic differentiation technique with TMB (Kristensen et al., 2016;
Thygesen et al., 2017), from which the precision matrix for the state vari-
ables can be identified. Then, with the modes and precision matrix, we
approximate the posteriors of log(P j

t ) and log(P a
t ) using a MVN distribu-

tion, which allows us to draw random samples for P j
t and P a

t .
For a correct model, we expect that those standardised process residu-

als are normally distributed with mean 0 and variance 1 (Thygesen et al.,
2017). Thygesen et al. (2017) used a Kolmogorov Smirnov (K-S) test to
check the normality assumption of those process residuals, but such a test
is known to be conservative if one or more parameters of a distribution
is estimated (Lilliefors, 1967). Thus, in our study, instead of using a K-S
test, we visually check the normality assumption of those residuals, us-
ing a normal quantile-quantile plot. Our preliminary study showed that
using a single set of the residuals for checking the normality can be mis-
leading as the distribution of those residuals also depends on the random
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variability in sample drawing. Therefore, we use 200 sets of standardised
process residuals to find any systematic patterns, which are obtained by
using the following equations, where ejt,s and eat,s denote the standardised
process residuals associated with juvenile and adult stocks, respectively,
and the subscript s denotes the sample index of the process residuals (i.e.,
s ∈ {1, 2, 3, ..., 200}):
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+
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Parametric bootstrap

We employ a parametric bootstrap approach to test the estimability of the
model parameters. State-space models can be associated with estimability
problems if a model is overparameterized or both observation and process
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variances are attempted to be estimated (Dennis et al., 2006; Auger-Méthé
et al., 2016; Auger-Méthé et al., 2021). Non-estimable parameters are often
biased with large variances (Auger-Méthé et al., 2021).

To simulate data on the annual relative abundance and yield, we use
the estimates obtained from fitting the models (i.e., M1-M3) to the actual
pollock data as true input values. We fit the same model to these generated
data and repeat this procedure 2000 times.

In each simulation and estimation run, we check the convergence by
examining the maximum gradient component (mgc) and the Hessian ma-
trix (i.e., mgc < 0.01, and the Hessian matrix is positive definite). In each
converged run, we calculate the median relative difference (RD) for the
model parameters (i.e., ΨTSPM1), BRPs (i.e., BRPs ∈ {BMSY, Bj

MSY, Ba
MSY,

MSY, Y j
MSY, Y a

MSY, 1}), and biomasses (i.e., Bj
t , Ba

t , and Bt):

RDs(Φ) =
Φ̂s

Φs

− 1,

where Φ̂ is the estimated set of quantities of interest (i.e., Φ ∈ {ΨTSPM1, Bj
t ,

Ba
t , Bt, BRPs} ), Φ is the set of true values for those quantities of interest,

and s denotes the simulation run (i.e., s ∈ {1, 2, 3, ..., 2000}).
The difficulty of estimating variance parameters in state-space mod-

els has already been discussed by previous studies (Dennis et al., 2006;
Auger-Méthé et al., 2016). In Chapter 3 of this thesis, we demonstrated
that such estimation problems occur when observation error is larger than
process error. Thus, we have done additional experiments to detect if set-
ting the values of the observation error variances to be smaller than the
process error variance improves model performance. We also investigate
the impact of simultaneous estimation of both process and observation
error variances. To do that, we additionally consider three alternative
parametric bootstrap tests for each estimation model (i.e., M1-M3), which
are denoted by the suffixes ‘V1’, ’V2’, and ‘V3’, respectively (e.g., M1.V1,
M1.V2, M1.V3, ..., M3.V3). These additional tests are designed as follows:
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(i) ‘V1’ is designed to investigate the effect of the simultaneous estima-
tion of both observation and process error variances. Thus, we fit the
model to the data generated with the estimates obtained from fitting
the models to the actual pollock data as input values, where we treat
all observation error variances as known.

(ii) ‘V2’ is designed to investigate the effect of the large observation er-
ror variances in parameter estimation. Thus, we fit the model to data
generated with low observation error standard deviations (i.e., σj

o,
σa
o,1, and σa

o,2), where we set all of those standard deviations as 0.1,
which is less than half of the process error standard deviation es-
timated in each model. We estimate both observation and process
error variances.

(iii) ‘V3’ is designed to investigate performance of the models when both
‘V1’ and ‘V2’ conditions are met (this is known to be an ideal condi-
tion, where state-space models show the best performance). We fit
the models to the same data used in V2 test, but treat those observa-
tion error standard deviations as known.

4.8 Results and discussion

4.8.1 Parameter constraints

Overall, multivariate constraints on the parameters of the GSPM and the
TSPM in the log-scale are well approximated by multivariate normal dis-
tributions, which are visually demonstrated in Figures 4.9, 4.10, and 4.11.
The Monte-Carlo samples for the parameters n and HMSY of the GSPM are
derived from Equation (iii), and those for the parameters nj , Ra, Rj , ψ,
and rm of the TSPM are calculated from Equation 4.23. Those approxi-
mated distributions for the constraints of the parameters in the original
scale are given in Figure 4.12.
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We visually evaluate the performance of the functional links between
the two production models and the equilibrium ASM by comparing the
yield curve of each model at different depletion levels, which is depicted
in Figure 4.13. For the yield curve of the equilibrium ASM, we use the
input values given in Table 4.2, but for the yield curves of the GSPM and
TSPM, we use the input values given in Table 4.4, which are obtained from
Equations (4.18), (4.19), (4.21), and (4.22). In terms of approximating the
total yield of the ASM, the GSPM slightly outperforms the TSPM. How-
ever, it should be noted that the TSPM is able to account for the yields of
two separate sub-stocks of the ASM, which is not possible with the GSPM.
The closeness between the three different types of curves in Figure 4.13
confirms the derivations of Equations (4.18), (4.19), (4.21), and (4.22).

Table 4.4: Input values for the parameters of the GSPM and the TSPM,
which are derived from Equations (4.18), (4.19), (4.21), and (4.22) with the
equilibrium ASM where the input values for the parameters are given in
Table 4.2.

n HMSY rm nj ψ Rj Ra

1.165 0.126 0.238 2.313 1.088 0.452 0.322
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Figure 4.9: Distributions of 5000 samples for the natural mortality M
and the steepness h (i.e., Mℓ and hℓ, where ℓ ∈ {1, 2, 3, ..., 5000}, which
are drawn from gamma and beta distributions, respectively; see Sec-
tion 4.4.3 for more details) and those for the parameters of the GSPM
(i.e., log(HMSY,ℓ) and log(nℓ)) and the TSPM (i.e., log(rm,ℓ), log(ψℓ), log(n

j
ℓ),

log(Ra
ℓ ), and log(Rj

ℓ)) in log-scale. The purple curves show the sample dis-
tributions, and the black curves represent corresponding MVN approxi-
mations.
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Figure 4.10: Scatter plot (bottom left) between the samples of log(HMSY)
and log(n) (i.e., log(HMSY,ℓ) and log(nℓ), where ℓ ∈ {1, 2, 3, ..., 5000}; purple
points). The black points underlaid in the scatter plot are 5000 samples
drawn from a multivariate normal distribution with mean vector θGS,0 and
covariance matrix ΣGS, obtained from Equations (4.24) and (4.25). The top
right panel shows the correlation coefficient between the two parameters.
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Figure 4.11: Pair-wise scatter plots (panels in the lower triangle) of the
samples for the five parameters of the TSPM (i.e., log(rm,ℓ), log(ψℓ), log(n

j
ℓ),

log(Ra
ℓ ), and log(Rj

ℓ), where ℓ ∈ {1, 2, 3, ..., 5000}; purple points). The black
points underlaid in the scatter plot are 5000 samples drawn from a multi-
variate normal distribution with mean vector θTS,0 and covariance matrix
ΣTS, obtained from Equations (4.26) and (4.27). The panels in the upper
triangle show the pair-wise correlation coefficients between the parame-
ters.
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Figure 4.12: Constraints imposed on the parameters of the GSPM (a, b,
and h) and the TSPM (c, d, e, f, g, and h). Those in panels a-g are used for
both the simulation and application studies. Constraints on the parameter
b (panel h) are varying by scenario in the simulation study (the red line for
S1-S4, and the blue line for S5-S8) or by model (i.e., the purple broken line
for M1, the brown broken line for M2, and the orange broken line for M3)
in the application study.
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Figure 4.13: Yield curves derived from the equilibrium ASM (solid curves),
GSPM (dotted curve), and TSPM (broken curves). The red and blue
colours represent juvenile and adult yields, respectively, and the black
colour represents a total combined yield (i.e., juvenile yield + adult yield).
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4.8.2 Simulation study

Overall, TSPM1 performs the best among the four models in our simu-
lation settings although under S2 and S4, the estimates of BMSY are more
biased than those of other models. Especially, under S1-S4 (Figures 4.14-
4.17), where the initial biomass is at the carrying capacity K (i.e., Hinit = 0),
it is shown that TSPM1 presents the least biased results (i.e., close to 0) in
most of the derived quantities, except for those of HMSY. However, under
S6-S8 (Figures 4.19-4.21), where the initial biomass is at BMSY (i.e., Hinit =

HMSY), TSPM2 shows less biased results than those of TSPM1 although
most of the differences are quite marginal. In other words, TSPM shows
better performance than GSPM in all eight scenarios tested, which demon-
strates that the incorporation of demographic relationships between the
two life stages, using the life stage-specific yield information, can result in
more accurate and less biased estimation.

The convergence rate varies among the four estimation models (Table
4.5). GSPM2 converged most frequently followed by TSPM1, GSPM1, and
TSPM2, but the differences between those four models are not significant
as all four models show the good convergence rates (the lowest conver-
gence rate is 74%) although TSPM2 has the lowest convergence rates in all
eight scenarios (recall that in this simulation study, the operating model
has more complex structure than those of the estimation models; so, we
deem that the over 70% of convergence rates are satisfactory results). Such
low convergence rates of TSPM2 compared to those of TSPM1 indicate
that the incorporation of separate CPUEs increases the robustness of the
TSPM.

Under S5-S8 (Figures 4.18-4.21), because of a relatively low initial biomass
(i.e., B1 = 0.39 · K) compared to that of S1-S4 (i.e., B1 = K), the overall
trend of population biomass is less affected by the harvest fractions (i.e.,
Hj

t and Ha
t ), whereby less distinct performance differences among the four

models are observed.
One of the interesting results is that even under S1, S4, S5, and S8 (Fig-
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ures 4.14, 4.17, 4.18, and 4.21), where Hj
t and Ha

t share the same harvest
fractions to imitate situations where a stock has been exploited by a sin-
gle fishery which simultaneously targets both juveniles and adults, both
TSPM1 and TSPM2 generally outperform GSPM1 and GSPM2. Such re-
sults indicate that even without the fishery-induced demographic changes
(i.e., different life stage-specific fishing pressures), the single production
function of the GSPM cannot fully capture the effect of demographic changes
on population growth.

GSPM1 shows the worst performance in all eight scenarios, showing
the largest biases in MRD and MARD of almost all quantities investigated.
Such results are expected as the structure of the model does not correctly
account for the separate relative abundance indices for each sub-stock. Es-
pecially, the estimates of the initial biomass show large biases in all eight
scenarios, which affects those in subsequent time points.

In the estimates of the BRPs, those of BMSY show the most biased and
inaccurate results in all four models. Such biases and inaccuracies tend to
be larger when the values of Hj

t and Ha
t differ. However, the estimates of

HMSY show the least biased and most accurate results, which is consistent
in all scenarios regardless of the values of Hj

t and Ha
t assigned.

Table 4.5: Convergence rate in percent for each of the four estimation mod-
els under all eight scenarios (i.e., S1-S8). The numbers in the parentheses
are the total number of simulation-estimation runs required for 500 mu-
tual converged results for all four models under each scenario.

Scenario (total) GSPM1 GSPM2 TSPM1 TSPM2
S1 (606) 99 100 96 87
S2 (710) 98 100 93 77
S3 (677) 98 100 95 79
S4 (683) 84 94 92 74
S5 (584) 98 100 94 92
S6 (654) 98 100 94 84
S7 (666) 98 99 94 81
S8 (932) 76 94 92 76
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Figure 4.14: Median relative difference (MRD) and median absolute rela-
tive difference (MARD) of 500 sets of estimates under Scenario 1, where
exploitation rates for both juveniles and adults are set to be equal at HMSY

(i.e., Hj
t = HMSY and Ha

t = HMSY, ∀t), and the initial biomass is at the max-
imum capacity K (i.e., b = 1). TS and GS represent the type of model used
(i.e., abbreviation of TSPM and GSPM), respectively, and the numbers “1”
and “2” represent the type of abundance indices used for estimation (i.e.,
“1” indicates those collected separately from juvenile and adult stocks,
and “2” indicates those collected from a combined stock).
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Figure 4.15: Median relative difference (MRD) and median absolute rela-
tive difference (MARD) of 500 sets of estimates under Scenario 2, where
exploitation rates for both juveniles and adults are set to differ (i.e., Hj

t =
1.5 · HMSY and Ha

t = 0.5 · HMSY for 1 ≤ t ≤ 20, and Hj
t = 0.5 · HMSY and

Ha
t = 1.5 ·HMSY for 20 < t ≤ 40), and the initial biomass is at the maximum

capacity K (i.e., b = 1). TS and GS represent the type of model used (i.e.,
abbreviation of TSPM and GSPM), respectively, and the numbers “1” and
“2” represent the type of abundance indices used for estimation (i.e., “1”
indicates those collected separately from juvenile and adult stocks, and
“2” indicates those collected from a combined stock).
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Figure 4.16: Median relative difference (MRD) and median absolute rela-
tive difference (MARD) of 500 sets of estimates under Scenario 3, where
exploitation rates for both juveniles and adults are set to differ (i.e., Hj

t =
0.5 · HMSY and Ha

t = 1.5 · HMSY for 1 ≤ t ≤ 20, and Hj
t = 1.5 · HMSY and

Ha
t = 0.5 ·HMSY for 20 < t ≤ 40), and the initial biomass is at the maximum

capacity K (i.e., b = 1). TS and GS represent the type of model used (i.e.,
abbreviation of TSPM and GSPM), respectively, and the numbers “1” and
“2” represent the type of abundance indices used for estimation (i.e., “1”
indicates those collected separately from juvenile and adult stocks, and
“2” indicates those collected from a combined stock).
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Figure 4.17: Median relative difference (MRD) and median absolute rela-
tive difference (MARD) of 500 sets of estimates under Scenario 4, where ex-
ploitation rates for both juveniles and adults are set to be equal at 1.5·HMSY

(i.e., Hj
t = 1.5 · HMSY and Ha

t = 1.5 · HMSY, ∀t), and the initial biomass is
at the maximum capacity K (i.e., b = 1). TS and GS represent the type
of model used (i.e., abbreviation of TSPM and GSPM), respectively, and
the numbers “1” and “2” represent the type of abundance indices used for
estimation (i.e., “1” indicates those collected separately from juvenile and
adult stocks, and “2” indicates those collected from a combined stock).
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Figure 4.18: Median relative difference (MRD) and median absolute rela-
tive difference (MARD) of 500 sets of estimates under Scenario 5, where
exploitation rates for both juveniles and adults are set to be equal at HMSY

(i.e., Hj
t = HMSY and Ha

t = HMSY, ∀t), and the initial biomass is at BMSY

(i.e., b = 0.39). TS and GS represent the type of model used (i.e., abbre-
viation of TSPM and GSPM), respectively, and the numbers “1” and “2”
represent the type of abundance indices used for estimation (i.e., “1” in-
dicates those collected separately from juvenile and adult stocks, and “2”
indicates those collected from a combined stock).
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Figure 4.19: Median relative difference (MRD) and median absolute rela-
tive difference (MARD) of 500 sets of estimates under Scenario 6, where
exploitation rates for both juveniles and adults are set to differ (i.e., Hj

t =
1.5 · HMSY and Ha

t = 0.5 · HMSY for 1 ≤ t ≤ 20, and Hj
t = 0.5 · HMSY

and Ha
t = 1.5 · HMSY for 20 < t ≤ 40), and the initial biomass is at BMSY

(i.e., b = 0.39). TS and GS represent the type of model used (i.e., abbre-
viation of TSPM and GSPM), respectively, and the numbers “1” and “2”
represent the type of abundance indices used for estimation (i.e., “1” in-
dicates those collected separately from juvenile and adult stocks, and “2”
indicates those collected from a combined stock).
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Figure 4.20: Median relative difference (MRD) and median absolute rela-
tive difference (MARD) of 500 sets of estimates under Scenario 7, where
exploitation rates for both juveniles and adults are set to differ (i.e., Hj

t =
0.5 · HMSY and Ha

t = 1.5 · HMSY for 1 ≤ t ≤ 20, and Hj
t = 1.5 · HMSY

and Ha
t = 0.5 · HMSY for 20 < t ≤ 40), and the initial biomass is at BMSY

(i.e., b = 0.39). TS and GS represent the type of model used (i.e., abbre-
viation of TSPM and GSPM), respectively, and the numbers “1” and “2”
represent the type of abundance indices used for estimation (i.e., “1” in-
dicates those collected separately from juvenile and adult stocks, and “2”
indicates those collected from a combined stock).
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Figure 4.21: Median relative difference (MRD) and median absolute rela-
tive difference (MARD) of 500 sets of estimates under Scenario 8, where ex-
ploitation rates for both juveniles and adults are set to be equal at 1.5·HMSY

(i.e., Hj
t = 1.5 · HMSY and Ha

t = 1.5 · HMSY, ∀t), and the initial biomass is
at BMSY (i.e., b = 0.39). TS and GS represent the type of model used (i.e.,
abbreviation of TSPM and GSPM), respectively, and the numbers “1” and
“2” represent the type of abundance indices used for estimation (i.e., “1”
indicates those collected separately from juvenile and adult stocks, and
“2” indicates those collected from a combined stock).



4.8. RESULTS AND DISCUSSION 137

4.8.3 Application to the Korea pollock stock

Estimation

All three models (i.e., M1-M3) successfully converged. The parameter es-
timates and their associated uncertainties in each model are given in Table
4.6. Given the parameter estimates in Table 4.6, we numerically calculate
the BRPs from each model (Table 4.7). Based on those estimated BRPs, we
evaluate the status of the Korea pollock stock.

The biomasses (i.e., juvenile, adult, and the total biomassess) estimated
under all three models, illustrated in Figures 4.22-4.24, show that the Ko-
rea pollock stock continuously decreased since the early 1980s. The fitted
results of the three models in Figures 4.22-4.24 also show that large ob-
servation errors are involved with Ijt and Ia1,t, which are collected from
Danish seine and gillnet fisheries, respectively. The configurations of the
three models only differ in the assumption on the constraint for the scal-
ing coefficient b (i.e., b0 = 0.3 for M1, b0 = 0.5 for M2, and b0 = 0.7 for
M3; see Figure 4.12h); thus, the estimated biomass trends in all three mod-
els are almost identical, but such differences affect the estimates for the
initial biomasses, which determine the overall scale of the other biomass
estimates in each model.

According to all three models, both juvenile and adult stocks were ei-
ther overfished or were in the overfishing phase, or both. Especially since
the early 1980s, the stock had been severely overfished and remained in
the overfished status (Figure 4.25).



138CHAPTER 4. A TWO-LIFE STAGE-STRUCTURED PRODUCTION MODEL

Table 4.6: Estimates of the parameters of the three models (i.e., M1-M3).
Numbers in the parenthesis indicate standard error.

Parameters M1 M2 M3
b̂ 0.332 (0.098) 0.553 (0.159) 0.756 (0.212)
ĉ 0.624 (0.176) 0.623 (0.162) 0.641 (0.152)
r̂m 0.206 (0.044) 0.213 (0.047) 0.216 (0.046)
ψ̂ 0.946 (0.335) 1.004 (0.365) 1.040 (0.368)
R̂a 0.338 (0.065) 0.328 (0.064) 0.321 (0.061)
R̂j 0.362 (0.202) 0.397 (0.227) 0.421 (0.234)
n̂j 2.307 (0.024) 2.304 (0.025) 2.303 (0.024)

K̂j (×105) 5.366 (2.126) 3.995 (1.242) 3.841 (1.580)
q̂j (×10−3) 1.448 (0.716) 1.218 (0.714) 0.994 (0.760)
q̂a1 (×10−3) 0.085 (0.041) 0.071 (0.040) 0.059 (0.043)
q̂a2 (×10−3) 0.041 (0.019) 0.035 (0.019) 0.029 (0.020)

σ̂p 0.278 (0.162) 0.277 (0.163) 0.299 (0.182)
σ̂j
o 1.403 (0.278) 1.447 (0.270) 1.460 (0.267)

σ̂a
o,1 0.678 (0.117) 0.680 (0.117) 0.680 (0.115)

σ̂a
o,2 0.160 (0.181) 0.159 (0.182) 0.131 (0.244)

Table 4.7: Biological reference points (BRPs) estimated from the three mod-
els fitted to the Korea pollock data (i.e., M1-M3)

BRPs M1 M2 M3
ĤMSY 0.104 0.108 0.110
B̂MSY 981724 703778 661235
ˆMSY 102099 76008 72736

B̂j
MSY 384650 285827 274498

Ŷ j
MSY 40004 30869 30195

B̂a
MSY 597074 417951 386737

Ŷ a
MSY 62095 45139 42541



4.8. RESULTS AND DISCUSSION 139

Figure 4.22: Assessment results of the Korea pollock stock under M1. The
red lines represent the point estimates, and the red shaded areas represent
(95%) uncertainties of the estimates. The horizontal dotted lines are the
corresponding BRPs.
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Figure 4.23: Assessment results of the Korea pollock stock under M2. The
red lines represent the point estimates, and the red shaded areas represent
(95%) uncertainties of the estimates. The horizontal dotted lines are the
corresponding BRPs.
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Figure 4.24: Assessment results of the Korea pollock stock under M3. The
red lines represent the point estimates, and the red shaded areas represent
(95%) uncertainties of the estimates. The horizontal dotted lines are the
corresponding BRPs.



142CHAPTER 4. A TWO-LIFE STAGE-STRUCTURED PRODUCTION MODEL

Figure 4.25: Kobe-plots for the Korea pollock stock. Stock trajectories
shown in each column of the panels are estimated from the model, de-
noted at the top of each column (i.e., M1-M3). The panels in each row
show the trajectories of the juvenile (Bj

t ; first row), adult (Ba
t ; second row),

and total (Bt; third row) exploitable biomasses, respectively. Each panel
is divided into four coloured zones. The red zone indicates that a stock
is overfished and in the overfishing phase, where biomass is lower than
its optimum level, but fishing mortality is greater than 1. The green zone
indicates that a stock is in a safe status where fishing mortality is below
1 and the biomass is above BMSY. The two yellow zones characterise in-
termediate situations (either overfishing or overfished). The open circles
represent the annual trajectory of the Korea pollock stock.
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Model validation

Our jitter analysis results demonstrate that all three models have con-
verged to a unique set of parameter estimates, regardless of the initial
guess values used for the model estimation (see Figures 4.26). The dis-
tributions of standardised process residuals in Figure 4.27 show that there
is insufficient evidence for a significant violation of the normality assump-
tion for the process error in all three models.

In the parametric bootstrap test, because of the short time series of data
and the large observation errors involved with Ijt and Ia1,t, all three models
show low convergence rates (i.e., 348/2000 (17.4%) with M1, 365/2000 (18.3%)

with M2, and 411/2000 (20.6%) with M3). Although we imposed some
strong constraints on the five model parameters, the median relative dif-
ference of some parameters show biased results, especially standard devi-
ation parameters (σj

o, σa
o,1, σa

o,2, and σp), Rj , and ψ (see Figures 4.28, 4.30,
and 4.32), which indicates that estimability issues exist in those param-
eters. However, it should be noted that since the bias of those parame-
ters is not significantly large (mostly less than 20%), the biomass predicted
and some of the estimated BRPs still show somewhat reliable estimation
performance (i.e., the biases of those derived quantities are mostly less
than 20%; see Figures 4.28-4.33), which supports the use of those estimated
quantities to analyse the status of the Korea pollock stock.

From the additional bootstrap tests (those denoted by the suffixes ‘V1’,
‘V2’, and ‘V3’), we confirm that such biases in relative difference of some
model parameters are associated with the large observation error vari-
ances as well as the simultaneous estimation of both observation and pro-
cess error variances. For example, under V1 (i.e., M1.V1, M2.V1, and
M3.V1, where large observation error variances are treated as known),
performance improvement in terms of relative difference is negligible, but
when the observation error standard deviations are set to be smaller under
‘V2’ and ‘V3’, significant performance improvement is observed although
the relative difference of the observation and process error standard devi-
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ations gets worse under ‘V2’ (see Figures 4.28-4.33).
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Figure 4.26: Box plots for 200 estimates of parameters from the three alter-
native models (first row; the name of the model is denoted at the top of
each column) and the corresponding 200 sets of initial guess values used
for the parameter estimation of each of the three models (second row).
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Figure 4.27: Normal quantile plots for 200 sets of process residuals, ob-
tained from the three models (red points; the name of the model is denoted
at the top of each panel). The blue points, which are given as a compar-
ative reference, in the last panel are generated from the standard normal
distribution.
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Figure 4.28: Relative difference (RD) of the parameters (i.e., ΨTSPM1) and
the BRPs under M1 (first column), M1.V1 (second column), M1.V2 (third
column), and M1.V3 (fourth column).
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Figure 4.29: Relative difference (RD) of the juvenile (i.e., Bj
t ), adult (i.e.,

Ba
t ), and total (i.e., Bt) exploitable biomasses under M1 (first column),

M1.V1 (second column), M1.V2 (third column), and M1.V3 (fourth col-
umn).
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Figure 4.30: Relative difference (RD) of the parameters (i.e., ΨTSPM1) and
the BRPs under M2 (first column), M2.V1 (second column), M2.V2 (third
column), and M2.V3 (fourth column).
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Figure 4.31: Relative difference (RD) of the juvenile (i.e., Bj
t ), adult (i.e.,

Ba
t ), and total (i.e., Bt) exploitable biomasses under M2 (first column),

M2.V1 (second column), M2.V2 (third column), and M2.V3 (fourth col-
umn).
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Figure 4.32: Relative difference (RD) of the parameters (i.e., ΨTSPM1) and
the BRPs under M3 (first column), M3.V1 (second column), M3.V2 (third
column), and M3.V3 (fourth column).
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Figure 4.33: Relative difference (RD) of the juvenile (i.e., Bj
t ), adult (i.e.,

Ba
t ), and total (i.e., Bt) exploitable biomasses under M3 (first column),

M3.V1 (second column), M3.V2 (third column), and M3.V3 (fourth col-
umn).
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4.9 Conclusion

Through the simulation study, we demonstrated problems with the GSPM
when the age-aggregated model is naively applied to data collected from
separate sub-groups (e.g., juveniles and adults) of a population. Those
problems that we found are consistent with previous studies (Maunder,
2003; Wang et al., 2014):

(i) Taking catch from the wrong component of the population (i.e. small
fish grow faster than large fish so their removal has a different effect).

(ii) Associating indices of abundance with the wrong component of the
population (e.g., link the juvenile index Ijt to the total exploitable
biomass Bt).

(iii) Assuming the production function stays the same over time when
multiple fisheries operate and the effort allocation among them changes.

(iv) Can not explicitly model time varying recruitment, particularly when
there is information (e.g. a juvenile index).

Conversely, the key advantages of using the TSPM are as follows: first,
the model is capable of accounting for the impacts of demographic changes
on population growth; second, catch (i.e., fishing mortality) is taken from
the appropriate component of the population; third, recruitment variation
is informed by the juvenile index; fourth, more detailed assessment re-
sults are provided compared to the GSPM (e.g., estimated biomasses for
juvenile and adult stocks); and lastly, since the model is formulated in a
state-space form, it is able to capture both observation and process errors,
which is a desirable property in modern stock assessment.
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Chapter 5

A state-space length-based

age-structured model

5.1 Introduction

In modern fisheries stock assessment, age-structured models such as sta-
tistical catch-at-age models (SCAAMs) are widely used and considered
the most reliable assessment methods. These models have continuously
evolved, and in a recent decade, state-space age-structured models (SSAMs)
have received much attention in the fisheries science community. A SSAM
is becoming a more favoured choice for fisheries scientists because its
state-space framework allows the model to differentiate between process
and observation errors, providing a more realistic representation of a fish
population dynamics than that of a SCAAM. The development of new
software such as TMB (Kristensen et al., 2016) facilitates the efficient imple-
mentation and estimation of such large-scale parametric models in state-
space form, where log-abundance for ages and years are treated as state
variables with normal process errors to account for demographic stochas-
ticity (Cadigan, 2016; Miller et al., 2016; Miller and Hyun, 2017; Aeberhard
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et al., 2018). Thus, many data-rich stocks around the world are actively
managed using SSAMs (Aeberhard et al., 2018). However, these meth-
ods have a high data demand, which cannot be fulfilled in many fisheries
where information on age composition is not available.

Age-structured models typically require catch-at-age data (Fournier
and Archibald, 1982; Methot and Wetzel, 2013), obtained from age deter-
mination methods such as the analysis of annuli on the scales, otoliths, and
vertebrae. Despite the importance of fish age information, the costly exam-
ination on such ageing parts and lack of technical expertise often restrict its
availability. Under these circumstances, fish length data are often the only
composition information available to researchers. Thus, as alternatives
to age-structured models, numerous length-based models have been de-
veloped and widely used for many fisheries stock assessments (Fournier
et al., 1998; Quinn et al., 1998; Punt et al., 2016).

Measuring fish length is an easy way to collect biological information
on fish populations, and its cost and labour-effectiveness have probably
made length data one of the most abundantly used fisheries information
globally. These advantageous properties of fish length data led to the
gradual development of length-based age-structured models (LBASMs),
where length frequency samples are utilised to infer the age composition
of a population as an alternative to direct observations such as catch-at-
age data (Fournier et al., 1998; Quinn et al., 1998). Except for the length
frequency analysis component, the overall structure of LBASMs is almost
identical to conventional SCAAMs as both types of models are designed
to account for age-structured dynamics of a fish population (Fournier and
Archibald, 1982; Deriso and Parma, 1988; Parma and Deriso, 1990; Fournier
et al., 1991, 1998; Quinn et al., 1998). Such structural similarity between
those models suggests a possible extension of LBASMs to state-space forms
as demonstrated in previous studies which developed SSAMs from con-
ventional SCAAMs (Cadigan, 2016; Miller et al., 2016; Miller and Hyun,
2017; Aeberhard et al., 2018).
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Therefore, the main purpose of this research lies in the development
of a LBASM in a state-space form. We evaluate goodness-of-fit and es-
timability of parameters to test the impact of the additional complexity on
model performance. For a state-space framework of LBASM, we adopt
an exisiting LBASM which has been gradually developed by Deriso and
Parma (1988); Parma and Deriso (1990); Quinn et al. (1998) and extend the
model into a state-space form, where process errors between transitions
in abundance for ages and years are newly incorporated. Furthermore,
we include the Dirichlet-multinomial distribution to account for overdis-
persion in length composition data (Thorson et al., 2017), which allows us
to avoid a subjective choice of data weighting. As an example application,
we fit our model to observations on the Korea chub mackerel stock, testing
different assumptions on natural mortality and the number of age groups
of the stock. Lastly, to evaluate model performance, goodness-of-fit, and
estimability of parameters, we conduct simulation studies.

5.2 Development of the state-space LBASM

To effectively describe the development process of a LBASM in state-space
form, we first introduce the basic structure of a LBASM for a single year
class, which has no state-space framework (Quinn et al., 1998). After intro-
ducing the structure and concept of the model, we expand it into a state-
space form, which is applicable to multiple year classes. All notation we
use throughout this study is defined in Table 5.1.

5.2.1 LBASM for a single year-class

In this section, we describe Quinn et al. (1998)’s LBASM (hereafter referred
to as Quinn’s LBASM) which we use as the underlying structure of our
state-space LBASM. Here, we consider only a single year class to effec-
tively describe the concept and the basic structure of the model.
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Table 5.1: Notation summary

Parameter Description

i, j index for length class bins

w length bin width

I number of length class bins

a index for ages

A last age group

r recruitment age

y index for years

T number of years

d index for replicated data sets (i.e., those in simulation study)

L̄i mid-point of length class i

Efforty fishing effort in year y

q catchability coefficient

Fy fully-selected fishing mortality in year y (i.e., Fy = q · Efforty)

Mati sexual maturity for fish of length L̄i

vi selectivity for fish of length L̄i

Fi,y fishing mortality rate for fish of length L̄i in year y (i.e., Fi,y = vi · Fy)

τ scale factor to account for the plus group accumulation for the last age group of the initial year class, which is given as 0

Mi natural mortality rate for fish of length L̄i

Zi,y total mortality rate for fish of length L̄i in year y (i.e., Zi,y = Mi + Fi,y)

µr expected length for recruits

µi,a+1 expected length at age a+ 1 for fish of length L̄i at age a

σa+1 standard deviation for a length distribution of fish at age a+ 1

k, L∞ parameters associated with µi,a+1 (i.e., µi,a+1 = L∞ · (1− ρ) + ρ · L̄i, where ρ = exp(−k) and L∞ is given as 40.6)

R̄ average number of recruitment

Wi weight of fish of length L̄i

b0, b1 parameters of the Lorenzen equation (i.e., Mi = b0 ·W−b1
i , where b1 is given as 0.305)

ω0, ω1 parameters of the length-weight relationship equation (i.e., Wi = ω0 · L̄ω1
i ), which are given as 0.003 and 3.425, respectively

σN,1 standard deviation of annual log-recruitment deviations from R̄

σN,2 standard deviation in stochastic annual transition of abundance at age

σr, σL parameters associated with σ2
a+1 (i.e., σ2

a+1 = σ2
L · 1− ρ2·(a+1−r)

1− ρ2
+ ρ2·(a+1−r) · σ2

r )

σY inter annual deviation in yield

γMat, l50,Mat parameters associated with Mati (i.e., Mati =
1

1 + exp[−γMat · (L̄i − l50,Mat)]
), which are given as 0.70 and 20.11, respectively

γ, l50 parameters associated with vi (i.e., vi =
1

1 + exp[−γ · (L̄i − l50)]
)

Ey sample size for length frequency samples in year y

Eeff
y effective sample size for length frequency samples in year y

θ parameter that governs the linear relationship between Eeff
y and Ey (i.e., Eeff

y =
1

1 + θ
+ Ey ·

θ

1 + θ
)

ni,y observed length frequency for length bin i in year y

ny vector of observed length frequencies in year y (i.e., ny = (n1,y, n2,y, n3,y, ..., nI,y))

Na,y number of fish at age a in year y

By biomass in year y

SSBy spawning stock biomass in year y

φ fraction of the year elapsed when spawning occurs, which is given as 0.33.

ϕ average female proportion, which is given as 0.6.

Ĉi,y model predicted catch-at-length i in year y

Yy observed total yield in year y

Ŷy model predicted total yield in year y

P̂ y vector of model predicted length composition proportions in year y

αy vector of concentration parameters in year y for a Dirichlet-multinomial distribution (i.e., αy = (α1,y,α2,y,α3,y, ...,αI,y) )
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In Quinn’s LBASM, survivorship of individual fish is length-dependent;
thus, modelling individual growth in length is one of the key components
in the model. To do so, Quinn et al. (1998) adopted Cohen and Fish-
man (1980)’s stochastic growth model which was derived from the von
Bertalanffy growth model by simple reparameterisation. Using Cohen and
Fishman (1980)’s model allows the modelling of transition probabilities of
individual growth in length to be both age- and length-specific. We dis-
cuss this brief description of the model in the following subsections.

Length growth model

The von Bertalanffy growth equation is frequently used when modelling
growth of a fish in length (von Bertalanffy, 1938):

La = L∞ · [1− exp{−k · (a− a0)}], (5.1)

where La is the length of a fish at age a, L∞ is the asymptotic length, k is the
growth parameter, and a0 is the theoretical age at length 0. This determin-
istic form has been applied in several length-based methods when mod-
elling the mean length of fish in each age group (Fournier et al., 1990, 1998;
Taylor et al., 2005). However, in those models, size (e.g., length or weight)
transitions between age groups were not explicitly modelled, thus failing
to incorporate cumulative impact of length-dependent mortality (e.g., big-
ger individuals are more susceptible to being caught, therefore the mean
length of fish in a population becomes smaller over time) on the length
distribution of a population.

Following Quinn et al. (1998), we use an alternative form of Equation
(5.1), which was reparameterised by Cohen and Fishman (1980) (see Ap-
pendix B.1 for derivation), to account for stochastic growth transitions of
individuals in length between age groups:

La+1 = L∞ · (1− ρ) + ρ · La + εa, for r ≤ a < A, (5.2)
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where r is the age at recruitment, A is the maximum age, ρ is the Brody
coefficient (i.e., ρ = exp(−k)), and εa denotes a normally distributed error
term with mean 0 and variance σ2

L.
For the initial condition of the equation above (i.e., a = r), we assume

that the length of a fish recruited to a population at age a = r is normally
distributed with mean µr and variance σ2

r :

Lr ∼ N(µr, σ
2
r). (5.3)

Then, the expected length and variance at age a + 1 for an individual of
length x at age a in Equation (5.2) can be expressed as (see Appendix B.1
for derivation)

E[La+1|x] = µa+1(x) = L∞ · (1− ρ) + ρ · x, for r ≤ a < A,

and

Var[La+1] = σ2
a+1 = σ2

L · 1− ρ2·(a+1−r)

1− ρ2
+ ρ2·(a+1−r) · σ2

r , for r ≤ a < A.

(5.4)
Another possible assumption on the standard deviation (SD) of the er-

ror term εa in Equation (5.2) is that the SD for each age a (i.e., σa,L) is
proportional to the expected length increment ∆La (Haddon et al., 2008):

σa,L = ζ ·∆La, (5.5)

where

∆La = La+1 − La, for r ≤ a < A,

and ζ is the proportionality coefficient (ζ > 0).
Then, the variance of La+1 under this proportionality assumption be-
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comes (see Appendix B.1 for derivation)

Var[La+1] = σ2
a+1 = ζ2 ·

a−rE

i=0

ρ2·i ·∆L2
a−i + ρ2·(a+1−r) · σ2

r , for r ≤ a < A.

(5.6)
Despite its biologically more reasonable assumption on fish growth in

length, the alternative form in Equation (5.6) for the variance σ2
a+1 is not

considered in this study because of its restricted form compared to that
in Equation (5.4). The variance curve in Equation (5.6) only takes a form
of a decreasing curve in older age groups, whereas that in Equation (5.4)
can model both decreasing and increasing trends in those age groups (see
Figure B.1 in Appendix B.1). We attempted to fit the model, using the
variance curve from Equation (5.6), but observed failure in estimation with
the mackerel data. Note that a gradual increase in length variance over
age is a common assumption in previous studies on length-based stock
assessment models (Fournier et al., 1990, 1998; Quinn et al., 1998).

In theory, stochastic growth trajectories of all individual fish can be
recursively obtained by Equation (5.2) with the initial condition given in
Expression (5.3). However, one should note that this calculation entails
two major problems:

(i) Incorporating individual-specific growth curves into a model requires
excessive computational power, which is further inflated when cal-
culating length-dependent mortality, based on those individual length
growth models.

(ii) The error term in Equation (5.2) allows for negative growth, which
is not possible for most fish species.

To account for the modelling issues listed above, we use a discretised ap-
proximation method, where we discretise the continuous variable for an
individual length (i.e., x) into a number of bins with a width of ∆w. Then,
we keep track of length growth trajectories of individuals by age on a bin-
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by-bin basis. For example, individuals of the same age, whose lengths
belong to the same bin, are assumed to follow the same stochastic growth
trajectory for their next length increments, where any negative growth is
restricted by assigning a zero probability to bins for lengths smaller than
their current size.

We use the subscripts i and j, both of which denote the same pre-
specified length bins (i.e., i, j ∈ {1, 2, 3, ..., I}, where I denotes a total num-
ber of bins), to express growth transition probabilities between length bins.
To be specific, since we assume that the midpoint of each length bin, de-
noted as either L̄i or L̄j , represents the length of all individuals that fall in
the same length bin, the probability that an individual of age a in length
bin i falls in length bin j at age a+ 1 is given by

Pr(L̄j|µa+1,i, σa+1) =

/ L̄j+w/2

L̄j−w/2

h(L|µa+1,i, σa+1)dL, for 1 ≤ i, j ≤ I and j ≥ i,

(5.7)
where h(·) is a normal probability density function, w is the length bin
width, and

µa+1,i = L∞ · (1− ρ) + ρ · L̄i.

Growth transition probabilities

As explained in the earlier section, for computational efficiency, we discre-
tise a normal length distribution of recruits, given in Expression (5.3), into
a number of bins. Thus, the probability that those of age a = r fall in the
length bin i (i.e., πi|r) can now be approximated by

πi|r =

exp

'
−(L̄i − µr)

2

2 · σ2
r

(

CI
i
′
=1 exp

'
−(L̄i′ − µr)

2

2 · σ2
r

(
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Similarly, the growth transition probabilities between the length bins
(i.e., πG

j|i,a) can be expressed through discrete approximation of Expression
(5.7) as follows

πG
j|i,a =

exp

'
−(L̄j − µi,a+1)

2

2 · σ2
a+1

(
· 1{j≥i}

CI
j′=i exp

1
−
(L̄j

′ − µi,a+1)
2

2 · σ2
a+1

2 , for r ≤ a < A,

where we incorporate the indicator function 1{j≥i} to omit the possibility
of the negative growth of individual fish.

In the absence of mortality, the length distribution of fish at subsequent
ages is recursively updated by

πj|a+1 =
IE

i=1

πi|a · πG
j|i,a, for r ≤ a < A, (5.8)

However, in the presence of mortality, where mortality is assumed to be
length-dependent, the length distribution must vary, depending on the
survivorship of individuals, and such changes accumulate through the re-
cursive property in Equation (5.8). Thus, by assuming that individuals
only survived from length-dependent mortality processes have a chance
to grow in length for their subsequent ages, we can rewrite Equation (5.8)
as follows

πj|a+1 =

C
i πi|a · exp(−Zi) · πG

j|i,aC
j′
C

i′ πi′ |a · exp(−Zi′ ) · πG
j
′ |i′ ,a

, for r ≤ a < A, (5.9)

where Zi is the length-dependent total mortality rate for those in length
bin i, which we discuss in the next section for more details.
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Length-dependent mortality

The length-dependent total mortality rate Zi consists of length-dependent
natural and fishing mortality rates, denoted by Mi and Fi, respectively:

Zi = Mi + Fi

For the natural mortality Mi, we consider three different assumptions
by referring to previous studies. The first assumption is that natural mor-
tality is length-dependent, which is expressed by the allometric relation-
ship of natural mortality to the body mass of fish in each length bin i

(Lorenzen, 1996):

Mi = b0 ·W−b1
i .

Here b0 is the natural mortality rate at unit weight, b1 is the allometric
scaling factor, and Wi is the weight of fish of length L̄i. This weight Wi is
also assumed to have an allometric relationship:

Wi = ω0 · L̄ω1
i ,

where ω0 and ω1 are the two length-weight relationship parameters. The
second assumption is that natural mortality is constant across all length
groups (i.e., Mi = M ); thus, the parameter M here is treated as a single free
parameter to be estimated (or given if not estimable). The third assump-
tion is that natural mortality is constant at 1.5 times the von Bertalanffy
growth parameter k (i.e., Mi = 1.5 · k) (Jensen, 2011), where the parame-
ters k and M simultaneously constrain each other when estimated. We test
those assumptions when we apply our model to actual data sets collected
from the Korea chub mackerel stock.

For the length-dependent fishing mortality Fi, we use the following
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separability assumption (Doubleday, 1976):

Fi = vi · F,

where vi is the selectivity for fish of length L̄i, and F is the fully selected
instantaneous fishing mortality rate.

The fully-selected fishing mortality F is assumed to be proportional to
the total effort (i.e., Effort):

F = q · Effort,

where q is the catchability coefficient.
For the selectivity vi, we use a two-parameter logistic function

vi =
1

1 + exp
6
−γ ·

)
L̄i − l50

*7 ,

where γ is the slope parameter, and l50 is the length at 50% selectivity.

5.2.2 State-space LBASM for multiple year classes

In this section, we describe the full structure of our state-space LBASM. We
divide the model into two parts, namely the population model and data
model. In the population model part, we formulate age-structured dy-
namics of a population, where abundances for ages and years are treated
as state variables. In the data model part, we relate those state variables to
observations (i.e., the time series of yield and length frequency samples),
where we assume a Dirichlet-multinomial distribution for the length fre-
quency samples and a normal distribution for the natural logarithm of
yield.

In the following subsections, we describe the two parts of the model.
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Population model

Fisheries data, such as total yield and fishing effort, are often collected
annually. Thus, we expand the single year-class model to be applicable
for such annual time series data. With year-specific fishing mortality rates
(i.e., Fi,y = vi · q · Efforty), Equation (5.9) can be written as

πj|a+1,y =

C
i πi|a,y · exp[−(Fi,y +Mi)] · πG

j|i,aC
j′
C

i′ πi′ |a,y · exp[−(Fi′ ,y +Mi′ )] · πG
j
′ |i′ ,a

, for r ≤ a < A.

The recursive process for the length composition proportions for ages and
years (i.e., πi|a,y) in Equation 5.2.2 is illustrated in Figure 5.1a. Although
mortality is length-dependent, our length-based model is designed to ac-
count for the age-structured dynamics of a population (see Equation (5.10)
below), where transitions in abundance occur between ages and years.
Thus, we derive the annual survival fraction for age a in year y (i.e., Sa,y)
from the length-dependent mortality rates Zi,y as follows

Sa,y =
IE

i=1

πi|a,y · exp(−Zi,y),

To account for the impact of demographic stochasticity and random en-
vironmental changes on abundance, we assume that the natural logarithm
of abundances for ages and years (i.e., log(Na,y)) are normally distributed
conditional on those at previous time steps, where the log of abundance
for the initial age group in each year class (i.e., recruitment) is also nor-
mally distributed around the mean log(R̄) (Miller and Hyun, 2017). Note
that for the first A − r years (i.e., 1 ≤ y < A + 1 − r), not all age groups
exist because their corresponding length composition proportions, where
the cumulative effect of fishing mortality cannot be incorporated, are not
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modelled (Figure 5.1). Thus, the population model is given by

log(Na,y) =

+
,,,,,,,,,,,,,,,,,,,,,,,,-

,,,,,,,,,,,,,,,,,,,,,,,,.

log(R̄) + εpa,y, for (1 ≤ y ≤ T ) ∧ (a = r)

log(Na−1,y−1 · Sa−1,y−1) + εpa,y, for (1 < y < A+ 1− r) ∧ (r < a < y + r)

or (A+ 1− r ≤ y ≤ T ) ∧ (r < a < A)

log[Na−1,y−1 · Sa−1,y−1

×(1 + τ)] + εpa,y, for (y = A+ 1− r) ∧ (a = A)

log(Na−1,y−1 · Sa−1,y−1

+Na,y−1 · Sa,y−1) + εpa,y, for (A+ 1− r < y ≤ T ) ∧ (a = A)

,

(5.10)
where τ is the scale factor (τ ≥ 0) to account for the plus group accu-
mulation for the maximum age group of the initial year class (see Figure
5.1), and εpa,y are normal process errors with mean 0 and variance σ2

N,a

(i.e., εpa,y
iid∼ N(0, σ2

N,a)). We assume two different variance parameters
for stochastic changes in abundance at age: one for the recruitment (i.e.,
σ2
N,a=r = σ2

N,1) and the other for those older than age r (i.e., σ2
N,a>r = σ2

N,2).
If σ2

N,2 = 0, the transitions in abundance at age are deterministic, similar to
a conventional SCAAM.

Once the state variables N y are estimated, the derived quantities for
management decisions, such as an annual total biomass and spawning
stock biomass, can be obtained. For instance, the total biomass in year y is
calculated by

By =
IE

i=1

AE

a=r

Na,y · πi|a,y ·Wi, for A+ 1− r ≤ y ≤ T.
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Then, the spawning stock biomass SSBy is calculated by

SSBy = ϕ ·
IE

i=1

AE

a=r

Na,y · πi|a,y ·Wi · Mati · exp(−φ · Zi,y), for A+ 1− r ≤ y ≤ T,

where φ is the fraction of the year elapsed when spawning occurs, ϕ is the
average female proportion of the population.

For the length-dependent maturity Mati, we use the logistic functional
form:

Mati =
1

1 + exp
6
−γMat ·

)
L̄i − l50,Mat

*7 ,

where γMat is the slope parameter, and l50,Mat is the length at 50% maturity.
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Figure 5.1: Directed acyclic graph (DAG) representing the length compo-
sition proportions for ages (rows) and years (columns) (πi|a,y; panel a) and
the abundances for ages (rows) and years (columns) (Na,y; panel b). White
circles are non-observed probabilistic nodes. Arrows with solid lines rep-
resent conditional probabilistic dependencies, and those with dotted lines
represent deterministic dependencies between nodes. The dotted rectan-
gular frame with rounded corners indicates repetition of structure over
units.
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Data model

The data model relates observations to the state variables (i.e., N y) in
Equation (5.10) (see Figure 5.2 for an overview). We assume a Dirichlet-
multinomial distribution (see Appendix B.2 for derivation) for the vector
of observed length frequencies in year y (i.e., ny = (n1,y, n2,y, n3,y, ..., nI,y)):

ny ∼ Dirichlet-multinomial(Ey,αy, P̂ y), for A+ 1− r ≤ y ≤ T,

where Ey is the sample size in year y (i.e., Ey =
CI

i=1 ni,y ), αy is the vector
of concentration parameters in year y (i.e., αy = (α1,y,α2,y,α3,y, ...,αI,y),
and P̂ y are the vector of model predicted length composition proportions
in year y, whose elements are calculated from the model predicted catch
in year y (i.e., Ĉi,y):

P̂i,y =
Ĉi,yCI

i′=1 Ĉi
′
,y

, for A+ 1− r ≤ y ≤ T,

where Ĉi,y is modelled using the Baranov catch equation:

Ĉi,y =
AE

a=r

Na,y · πi|a,y ·
Fi,y

Mi + Fi,y

· [1− exp(−Mi − Fi,y)], for A+ 1− r ≤ y ≤ T,

where Fi,y = q · vi · Efforty.
The advantage of using a Dirichlet-multinomial distribution for com-

positional data over a multinomial distribution (which is often used in an
integrated assessment model) is that the former can account for overdis-
persion of such data within a model by estimating the concentration pa-
rameters of a Dirichlet distribution (Thorson et al., 2017). Overdispersion
in compositional data, such as length frequency samples, arises because
those data mostly have greater variance than those predicted by a multi-
nomial distribution. This larger variance occurs mainly because sampling
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processes in fisheries are often involved with fish behaviours (e.g., onto-
genetic distribution, schooling, etc.) which violate the statistical indepen-
dence assumed in the multinomial distribution. For this reason, fisheries
scientists usually consider a sample size smaller than an actual input sam-
ple size when maximising likelihood for compositional data. The smaller
sample size is often termed as the effective sample size.

Following Thorson et al. (2017), we define the effective sample size of
a Dirichlet-multinomial distribution (i.e., Eeff

y ) for the vector of observed
length composition proportions (i.e., P y) as the sample size of a multi-
nomial distribution for P y. Thus, the variance of the observed length
composition proportion for bin i in year y (i.e., Pi,y) from a multinomial
distribution is defined as

Var(Pi,y|Eeff
y , P̂ y) =

P̂i,y · (1− P̂i,y)

Eeff
y

, for A+ 1− r ≤ y ≤ T.

Then, the variance of Pi,y from a Dirichlet-multinomial distribution is given
by

Var(Pi,y|Ey,αy) =
αi,y

Ey · αo
y

·
%
1− αi,y

αo
y

&
·
%
Ey + αo

y

1 + αo
y

&
, (5.11)

where αo
y =

CI
i=1 αi,y.

By assuming that the concentration parameter αi,y is proportional to Ey

and P̂i,y (Thorson et al., 2017), αi,y in Equation 5.11 can be further modeled
as follows

αi,y = θ · Ey · P̂i,y, for A+ 1− r ≤ y ≤ T,

where θ is the scaling parameter for overdispersion caused by the Dirichlet
distribution.

We can rewrite Equation (5.11) as follows

Var(Pi,y|Ey, P̂ y, θ) =
P̂i,y · (1− P̂i,y) · (1 + θ)

1 + θ · Ey

, for A+ 1− r ≤ y ≤ T,
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which then provides the following relationship between Eeff
y , θ, and Ey:

Eeff
y =

1 + θ · Ey

1 + θ
=

1

1 + θ
+ Ey ·

θ

1 + θ
, for A+ 1− r ≤ y ≤ T.

The above equation describes that Eeff
y is a linear function of the input

sample size Ey, where the intercept and the slope are determined by θ,
and if θ → ∞, Eeff

y = Ey (Thorson et al., 2017).
The log of the observed total yield in year y (i.e., log(Yy)) is assumed to

be normally distributed:

log(Yy) ∼ N [log(Ŷy), σ
2
Y ], for A+ 1− r ≤ y ≤ T,

where
Ŷy =

E

i

Ĉi,y ·Wi.
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Figure 5.2: Directed acyclic graph (DAG) illustrating the linkage between
the population model and the data model. White circles are non-observed
probabilistic nodes, and those in gray are observed probabilistic nodes.
Squares in gray are observed deterministic nodes. Arrows with solid lines
represent conditional probabilistic dependencies, and those with dotted
lines represent deterministic dependencies between nodes.
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5.2.3 Parameter estimation

To estimate the model parameters, a marginal maximum likelihood method
is used, using the TMB package (Kristensen et al., 2016). In TMB, one needs
to specify a joint likelihood function for both fixed effect parameters and
random effects. The joint likelihood L(Θ,N |D) is the product of three
likelihood functions, where we define Θ as fixed effect parameters to be es-
timated in the model (i.e., Θ = {R̄, q, µr, k, l50, γ,M(or b0), σL, σr, σN,1, σN,2, σY , θ}
), N as random effects (i.e., state variables: Na,y), and Y , Effort, and n as
observed yield, effort, and length composition data, respectively:

L(Θ,N |Y ,n;Effort) =fN(N |R̄, q, µr, k, l50, γ,M(or b0), σL, σr, σN,1, σN,2;Effort)

× fY (Y |σY , Ŷ )

× fLF(n|θ, P̂ ),

where

fN(N |R̄, q, µr, k, l50, γ,M(or b0), σL, σr, σN,1, σN,2;Effort)

=

1
T5

y=1

1√
2πσN,1

exp

1
−(log(Nr,y)− log(R̄))2

2σ2
N,1

22

×
1
y+r−15

a=r+1

A−r5

y=2

1√
2πσN,2

exp

1
−(log(Na,y)− log(Na−1,y−1 · Sa−1,y−1))

2

2σ2
N,2

22

× 1√
2πσN,2

exp

1
−(log(NA,A+1−r)− log(NA−1,A−r · (1 + τ))2

2σ2
N,2

2

×
1

T5

y=A+1−r

A−15

a=r+1

1√
2πσN,2

exp

1
−(log(Na,y)− log(Na−1,y−1 · Sa−1,y−1))

2

2σ2
N,2

22

×
1

T5

y=A+2−r

1√
2πσN,2

exp

1
−(log(NA,y)− log(NA−1,y−1 · SA−1,y−1 +NA,y−1 · SA,y−1))

2

2σ2
N,2

22
,
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fY (Y |σY , Ŷ ) =
T5

y=A+1−r

1√
2πσY

exp

1
−(log(Yy)− log(Ŷy)

2

2σ2
Y

2
,

and

fLF(n|θ, P̂ ) =
T5

y=A+1−r

8

9 Γ(Ey + 1)
MI

i=1 Γ (ni,y + 1)
· Γ(θ · Ey)

Γ(Ey + θ · Ey)
·

I5

i=1

Γ
:
ni,y + θ · Ey · P̂i,y

;

Γ
:
θ · Ey · P̂i,y

;

<

= .

Then, TMB takes care of approximating the marginal likelihood L(Θ |
Y ,n;Effort) by integrating out the random effects N :

L(Θ|Y ,n;Effort) =
/

L(Θ,N |Y ,n;Effort)dN ,

using a Laplace appoximation method (Skaug and Fournier, 2006; Kris-
tensen et al., 2016).

By maximizing the marginal likelihood with respect to Θ, using nu-
merical optimisation techniques in R, the estimate of Θ (i.e., Θ̂) can be
obtained:

Θ̂ = argmax
Θ

log[L(Θ | Y ,n;Effort)].

Once Θ̂ is found, TMB sequentially infers the random effects N by maxi-
mizing the estimated conditional likelihood with respect to N , where Θ is
fixed at Θ̂:

N̂ = argmax
N

log[L(Θ̂,N |Y ,n;Effort)].

Furthermore, the uncertainty of parameter estimates is evaluated via
the delta method, where the determinant of the Hessian matrix of the
marginal likelihood is found via a numerical Cholesky decomposition (Skaug
and Fournier, 2006; Kristensen et al., 2016).
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5.3 Application to the Korea chub mackerel stock

For demonstration purposes, we apply our model to the Korea chub mack-
erel stock. The two main purposes of this demonstration are (i) to suggest
the application of our length-based model for the future stock assessment
of the Korea mackerel stock (or similar stocks to which conventional age-
structured models are not applicable, which are most stocks in Korean
fisheries) and (ii) to show the applicability of our state-space LBASM to
data-moderate stocks where information on a time-series of total yield,
fishing effort (or CPUE), and length composition is available.

5.3.1 Background information

The chub mackerel stock in Korea is regulated by government issued quo-
tas of total allowable catch (TAC) for large purse seine (LPS) fishery. More
than six fisheries (e.g., large purse seine, small purse seine, gillnet, trawl,
etc.) target the mackerel stock, but over 90% of the annual total catch
of chub mackerel in Korea is from LPS fishery (Jung et al., 2021). The
Korean National Institute of Fisheries science (NIFS) has periodically col-
lected fishing effort of LPS fishery (number of hauls) since 1976, and pre-
vious studies on a quantitative assessment of this stock used this fishery-
dependent information. Besides the fishing effort data, the NIFS has also
collected samples of fish from landed catches by LPS fishery to sample bi-
ological parameters of the species, including length, weight, and sexual
maturity. The characteristics of the stock, including major fishing grounds
for LPS fishery in Korean waters, spawning grounds, and migratory pat-
terns, are depicted in Figure 5.3.
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Figure 5.3: Characteristics of the Korea mackerel stock. The green and
red shaded areas indicates the spawning ground and the major fishing
grounds for LPS fishery in Korean waters, respectively. The dotted arrows
show the migratory patterns of the stock.
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Length and weight of the samples have been periodically measured,
whereas age determination has been intermittently conducted (Hwang
et al., 2008; Kang et al., 2015). Thus, those age-length data were pooled
to obtain a single age-length key (ALK) (Kang et al., 2015). Many pub-
lished studies reported that applying a single ALK to other years of length
frequency data results in severe bias as this application fails to account
for temporal changes in age composition of a population (Kimura, 1977;
Westrheim and Ricker, 1978; Aanes and Vølstad, 2015; Ailloud and Hoenig,
2019) (e.g., an age composition of fish in length bin i in year y most likely
varies in year y + 1 due to recruitment and mortality, meaning that prob-
ability of age given length must be year-specific). Despite this problem of
using a single ALK, according to published reports on this stock, this ap-
plication seems to have long been used for mackerel stock assessment in
Korea (Kang et al., 2015; Gim et al., 2020).

The fishery data described above are not publicly available, thus we
extract the time series of CPUE and length composition from published
figures (Kim et al., 2018; Gim and Hyun, 2019; Gim et al., 2020; Jung et al.,
2021) using Web Plot Digitizer (Rohatgi, 2020) (Figures 5.4-5.6). Data on
annual yields are publicly available from Statistics Korea (Figure 5.4). We
make the simplifying assumption that the annual fishing effort of LPS fish-
ery is proportional to the total annual fishing effort of the mackerel stock
because (i) both the CPUE and length composition data were collected
only from LPS fishery which accounts for over 90% of the total annual
yield of chub mackerel in Korea, (ii) other data on this stock are not avail-
able, and (iii) the relatively short time series of the data set challenge the
use of the CPUE as an abundance index, which typically requires intro-
ducing two more variance parameters to be estimated: one for observation
errors of the CPUE and the other for transitions in fishing mortality rate.

Based on the assumption about the effort, we back-calculated the an-
nual total effort from the LPS CPUE and total yield (i.e., Effort=Yield/CPUE)
from 1995 to 2017 (Figure 5.4). The CPUE data from 1976 to 2017 were able
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to be extracted from several previous studies (Choi et al., 2004; Gim et al.,
2020; Jung et al., 2021), but the length composition data only exist from
2000 to 2017 in the figures of a few recent studies (Kim et al., 2018; Gim
and Hyun, 2019). We assume either five or six age groups as the total num-
ber of age groups for the mackerel stock by referring to previous studies
on the age determination of the species with samples collected from LPS
fishery (Hwang et al., 2008; Kang et al., 2015), treating the last age group
as the “plus group” in both cases. Note that our model requires a longer
time series of effort by A − r than those of length composition and yield;
thus, we use the effort data from 1996 to 2017 when five age groups are
assumed, but those from 1995 to 2017 are used when six age groups are
assumed instead (Figure 5.4) .
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Figure 5.4: Annual total yields of the chub mackerel stock in South Ko-
rea (top panel) and the annual mackerel CPUE (middle panel) and effort
(bottom panel) collected from a large purse seine fishery. Coloured dots
indicate the data used for the eight models. The red dot in the effort data
is only used for Models M5-M8 which require one more additional data
point on effort as those models assume six age groups (Models M1-M4
assume five age groups).
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Figure 5.5: Length frequency samples collected from large purse seine fish-
ery for chub mackerel during 2000-2008. Yr is the abbreviation of year.
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Figure 5.6: Length frequency samples collected from large purse seine fish-
ery for chub mackerel during 2009-2017. Yr is the abbreviation of year.
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5.3.2 Estimation

We consider a total of eight alternative models (i.e., two assumptions for
the number of age groups × four assumptions for natural mortality; see
Table 5.2) for the mackerel stock. For the first four models (i.e., M1-M4),
we assume five age groups, and for the last four model (i.e., M5-M8), we
assume six age groups. Differences within the two sets of four models are
the assumptions on natural mortality. To be specific, we allow models M1
and M5 to estimate the scale parameter b0 in the allometry relationship
for the length-dependent natural mortality, while we constrain b1 to 0.305
which was estimated by Lorenzen (1996) for marine species. The other
six models (M2-M4 and M6-M8) assume natural mortality to be constant
across all length bins. Models M2 and M6 estimate the natural mortality
M . The constant natural mortality M in models M3 and M7 are fixed at
0.45, which is the average value of constant natural mortality rates of chub
mackerel, obtained from previous studies (Hiyama et al., 2002; Cerna and
Plaza, 2014). In models M4 and M8, the natural mortality is assumed to
have a relationship with the von Bertalanffy growth parameter k (i.e., M =

1.5 · k) (Jensen, 2011).
Our preliminary study showed that the scaling parameter τ for the plus

group accumulation of the initial year class is inestimable with the mack-
erel data, indicated by an extremely large value for the standard error and
almost flat likelihood profile of the parameter. We assume that this esti-
mation problem occurs because of insufficient information obtained from
unimodal-like distributions of the length frequency samples as well as the
small sample size of the first year length data (i.e., Ey=2000) compared to
others. Thus, we assume no plus group accumulation for the initial year
class (i.e., τ = 0) in all eight models by visually investigating the length
frequency samples in year 2000, where we observe that the samples in year
2000 have a significantly narrower range of a fish length distribution than
that in other years in the absence of large size individuals.

Besides the scaling parameter τ , some of the life-history parameters as-
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sociated with the maturity (i.e., γMat and l50,Mat), weight (i.e., ω0 and ω1),
and length models (i.e., L∞) as well as the average female proportion (i.e.,
ϕ) are also assumed to be known, which is a standard treatment for estima-
tion of a large number of parameters in fully-integrated assessment mod-
els in fisheries (Nielsen and Berg, 2014; Cadigan, 2016; Miller and Hyun,
2017). We obtain the input values of 0.70 and 20.11 for the two maturity
parameters, γMat and l50,Mat, from Kim et al. (2020) and those of 0.003 and
3.425 for the two length-weight relationship parameters, ω0 and ω1, from
Gim and Hyun (2019). The input value of 40.6 for the asymptotic length,
L∞, was obtained from Shiraishi et al. (2008), and that of 0.6 for the aver-
age female proportion, ϕ, was obtained from Gim et al. (2020).

We have no information on the observation error variance as the data
we use were collected from a commercial LPS fishery; thus, we estimate
all three observation and process error variance parameters (i.e., σ2

Y , σ2
N1

,
and σ2

N2
) within the model. An estimation problem associated with obser-

vation and process error variances in state-space models has been investi-
gated by previous studies which suggested that using an input value for
a parameter of observation error variance can enhance parameter estima-
bility (Dennis et al., 2006; Auger-Méthé et al., 2016; Auger-Méthé et al.,
2021). Some previous studies in fisheries also treated the observation error
parameter as known (Miller et al., 2016; Miller and Hyun, 2017), but one
should note that this treatment is not applicable to most data-moderate
fisheries where survey data to inform such a variance parameter are not
available. We investigate a possible estimation problem in our state-space
LBASM, using a parametric bootstrap method, which we discuss in more
detail in the next section.

We check the convergence of the model by examining the maximum
gradient component (mgc) and the Hessian matrix. We deem the model
has successfully converged if mgc is less than 0.1 and the Hessian is posi-
tive definite (Kristensen et al., 2016).
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Table 5.2: Description of the eight models (M1-M8) considered for the Ko-
rea chub mackerel stock

Model Description

M1 Five age groups (0 to 4) assumed with the length-dependent natural mortality

(i.e., Mi = b0 ·W b1
i , where b0 is estimated, but b1 is fixed at 0.305 based on Lorenzen (1996))

M2 Five age groups (0 to 4) assumed with the constant natural mortality M estimated

M3 Five age groups assumed with the constant natural mortality M fixed at 0.45

M4 Five age groups (0 to 4) assumed with the constant natural mortality M ,

which is derived from the relationship: M = 1.5 · k
M5 Six age groups (0 to 5) assumed with the length-dependent natural mortality

(i.e., Mi = b0 ·W b1
i , where b0 is estimated, but b1 is fixed at 0.305 based on Lorenzen (1996))

M6 Six age groups (0 to 5) assumed with the constant natural mortality M estimated

M7 Six age groups (0 to 5) assumed with the constant natural mortality M fixed at 0.45

M8 Six age groups (0 to 5) assumed with the constant natural mortality M ,

which is derived from the relationship M = 1.5 · k

5.4 Simulation studies

We perform simulation studies to validate the statistical behaviour of the
eight models (i.e., M1-M8; see Table 5.2). To evaluate stability, goodness-
of-fit, distributional assumptions, and estimability of the model, we use
four model checking methods, namely (i) jitter analysis, (ii) posterior pre-
dictive check, (iii) residual analysis, and (iv) parametric bootstrap. Ini-
tially, we also attempted performing a retrospective analysis, but because
of the short time-series of the data, estimation results were highly sensi-
tive to removal of even a single observation, and therefore not considered
in this study.

5.4.1 Jitter analysis

To evaluate the stability of the model, we perform the “jitter” analysis
(Cass-Calay et al., 2014), using all eight models (i.e., M1-M8) considered in
our study, for which we randomly generate different initial values for the
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model parameters and use them for parameter estimation with the mack-
erel data. This analysis is to test the sensitivity of initial guess values for
parameter estimation. A well-behaved model should converge to a global
solution regardless of the initial values (Cass-Calay et al., 2014).

We repeat this procedure until 100 sets of converged results are ob-
tained. We generate such random values using uniform distributions,
where a reasonably wide range of lower and upper limits for each pa-
rameter is chosen (see Table 5.3). We visually inspect if all 100 converged
results show a single unique set of parameter estimates.

Table 5.3: Lower and upper bounds of the model parameters, based on
which we draw initial random values for the parameters from uniform
distributions (note that these bounds are not parameter constraints).

Parameter Lower Upper
l50 20.00 30.00
γ 0.20 2.00
k 0.20 0.60
µr 13.00 20.00
σr 1.00 3.00
σL 1.00 3.00
σY 0.10 1.00
σN,1 0.10 1.00
σN,2 0.10 1.00

θ (×10−3) 0.02 0.20
q (×10−3) 0.12 2.47

M 0.20 2.00
b0 2.00 6.00

R̄ (×106) 100.00 10000.00

5.4.2 Posterior predictive check

For the goodness-of-fit measure, we use a frequentist version of the pos-
terior predictive check (PPC) (Thygesen et al., 2017; Auger-Méthé et al.,
2021). The principal concept of this method is that if a model fits the ob-
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served data well, the data generated from the model should be similar to
the observed data (Gelman et al., 2013). Using the parameter estimates ob-
tained from fitting the model to the Korea chub mackerel data as the true
input values of the model parameters, we randomly replicate 1000 sets of
time series of yield and length frequencies (i.e., Y rep

y,d , and n
rep
i,y,d, where d de-

notes the replicated set: d = {1, 2, 3, ..., 1000}). Then, we compare the repli-
cated data with the observed data to assess the goodness-of-fit of the mod-
els. In fisheries stock assessment, the last few years of prediction are of
special interest for managers; thus, we use the last three years of yield and
length composition. For numerical comparison between all eight models,
we use the median relative difference (RD) as the performance metric (i.e.,
RDy,d = Y

rep
y,d /Y

obs
y,d − 1) for yield, and the root mean squared error (RMSE)

for length composition (i.e., RMSEy,d =
NCI

i=1 (n
rep
i,y,d − ni,y)2/I ).

5.4.3 Residual analysis

To assess the validity of the model assumptions associated with the state
equations, we use a single sample approach suggested by Thygesen et al.
(2017). We randomly draw samples of a time series of Na,y from their pos-
terior distributions and calculate the standardized process errors (details
about the calculation are given in Equations 5.4.3 and 5.4.3 below). In
our frequentist approach, the posterior modes of those state variables in
log-scale (i.e., log(Na,y)) are found by maximising the joint likelihood dis-
cussed in Section 5.2.3, and the Hessian of the model is obtained by using
the automatic differentiation technique with TMB (Kristensen et al., 2016;
Thygesen et al., 2017), from which the precision matrix for the state vari-
ables can be identified. Then, with the modes and precision matrix, we
approximate the posteriors of log(Na,y) using a MVN distribution, which
allows us to draw random samples for Na,y.

For a correct model, we expect that those standardised process residu-
als are normally distributed with mean 0 and variance 1 (Thygesen et al.,
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2017). Thygesen et al. (2017) used a Kolmogorov Smirnov (K-S) test to
check the normality assumption of those process residuals, but such a test
is known to be conservative if one or more parameters of a distribution
is estimated (Lilliefors, 1967). Thus, in our study, instead of using a K-S
test, we visually check the normality assumption of those residuals, using
a normal quantile-quantile plot. Our preliminary study showed that using
a single set of the residuals for checking the normality can be misleading
as the distribution of those residuals also depends on the random variabil-
ity in sample drawing. Therefore, we use 200 sets of standardised process
residuals to find any systematic patterns.

Since we assume two different variance parameters for Na,y (i.e., σ2
N,1

and σ2
N,2), we separately calculate a time series of standardized process er-

rors for recruitment (er,y,d) and abundances after recruitment (ea,y,d, where
a > r) for each replicate d ∈ {1, 2, 3, ..., 200} as follows

er,y,d =
log(Nr,y,d)− log( ˆ̄R)

σ̂N,1

, for 1 ≤ y ≤ T

and

ea,y,d =

+
,,,,,,,,,,,,,,,,,,,,,,-

,,,,,,,,,,,,,,,,,,,,,,.

log(Na,y,d)− log(Na−1,y−1,d · Ŝa−1,y−1)

σ̂N,2

, for (1 < y < A+ 1− r) ∧ (r < a < y + r)

or (A+ 1− r ≤ y ≤ T ) ∧ (r < a < A)

log(Na,y,d)− log[Na−1,y−1,d

×Ŝa−1,y−1 · (1 + τ̂)]

σ̂N,2

, for (y = A+ 1− r) ∧ (a = A)

log(Na,y,d)− log(Na−1,y−1,d · Ŝa−1,y−1

+Na,y−1,d · Ŝa,y−1)

σ̂N,2

, for (A+ 1− r < y ≤ T ) ∧ (a = A)

where ˆ̄R, Ŝa,y, σ̂N,1, σ̂N,2, and τ̂ denote the parameters estimated from the
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models fitted to the mackerel data.

5.4.4 Parametric bootstrap

We employ a parametric bootstrap approach to test estimability of the
model parameters. State-space models (SSMs) can have estimability prob-
lems if a model is overparameterized or both observation and process vari-
ances are estimated (Dennis et al., 2006; Auger-Méthé et al., 2016; Auger-
Méthé et al., 2021). These problems also lead the models to be non-identifiable,
meaning that there would be more than one set of parameter estimates
that maximize the likelihood. Parameter estimates from such problematic
models are often biased with large variances (Auger-Méthé et al., 2021).

We simulate the abundances for ages and years (i.e., Na,y) using the es-
timates from fitting models to the Korea chub mackerel stock, from which
we generate the observation time series of total yield and length compo-
sitions. We fit the same model to these generated data and repeat this
procedure 1000 times.

In each simulation and estimation run, we check the convergence by
examining the maximum gradient component (mgc) and the Hessian ma-
trix. In each converged run, we calculate the median relative difference
(RD) for the fixed effect parameters (Θ), biomass (By), and spawning stock
biomass (SSBy) to estimate the bias of those quantities:

RDd(Φ) =
Φ̂d

Φd

− 1

where Φ̂ is the estimated set of quantities of interest (i.e., Φ ∈ {Θ, By, SSBy}
), Φ is the set of true values for those quantities of interest, and d denotes
the simulated data set (i.e., d ∈ {1, 2, 3, ..., 1000}).
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5.5 Results

5.5.1 Application to the mackerel stock

All eight models fitted to the mackerel data successfully converged. Es-
timates and standard errors of the parameters from all eight models are
provided in Tables 5.4 and 5.5. Given the estimates in Table 5.4, we cal-
culated key derived quantities associated with the sub-models for each
estimation models, which are illustrated in Figures 5.7-5.9.

We present a series of plots, which compare the observed data with the
model fitted values, for visual inspection of goodness-of-fit of the models.
Those for length frequency samples are shown in Figures 5.10-5.17, and
those for yield data are presented in Figures 5.19 and 5.20. Bubble charts
for the normalised residuals for the fits to the mackerel length frequency
data under each estimation models are illustrated in Figure 5.18, which
are used to compare the details of the differences in fit for the different
models. The visual inspection show good fits for all observed data under
all eight models.

The estimates of annual biomass (B̂y), spawning stock biomass ( ˆSSBy),
and recruitment (R̂y) vary by model, but overall trends of those estimates
are similar in all eight models (see Figures 5.19 and 5.20). The assump-
tion on the different number of age groups (i.e., five for M1-M4 and six
for M5-M8) does not significantly affect the estimates. However, the as-
sumption on natural mortality strongly affects the population estimates.
For example, ˆSSBy from M2 and M6, where the constant natural mortality
M is estimated, are almost twice as larger as those from the other models
(see Figures 5.19 and 5.20).
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ŜE
(σ̂

Y
)

0.
20

0.
18

0.
20

0.
19

0.
18

0.
17

0.
20

0.
19

ŜE
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Figure 5.7: Mean length (a), mean weight (b), and length variance (c) as a
function of age, derived from each model (i.e., M1-M8). The estimates of
the associated parameters are listed in Table 5.4.
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Figure 5.8: Selectivity (a) and maturity (b) as a function of length, derived
from each model (i.e., M1-M8). The estimates of the selectivity parameters
(i.e., l̂50 and γ̂) for each model are listed in Table 5.4. The same maturity
curve is used for all eight models, where the values of the maturity param-
eters are given as inputs (i.e., l50,mat = 20.11 and γmat = 0.70).
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Figure 5.9: Fishing mortality (a) and natural mortality (b) rates, derived
from each model (i.e., M1-M8). The estimates of the associated parame-
ters for each model are listed in Table 5.4. Note that the estimated fishing
mortality rates in panel a are fully selected fishing mortality rates.
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Figure 5.10: Model M1 fitted to the observed length frequencies collected
during 2000-2017. Yr is the abbreviation of year. Note that M1 assumes
five age groups (from age-0 to age-4), where the last age group (i.e., age-4)
accumulates those older than age-4 (i.e., the “plus group”).
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Figure 5.11: Model M2 fitted to the observed length frequencies collected
during 2000-2017. Yr is the abbreviation of year. Note that M2 assumes
five age groups (from age-0 to age-4), where the last age group (i.e., age-4)
accumulates those older than age-4 (i.e., the “plus group”).
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Figure 5.12: Model M3 fitted to the observed length frequencies collected
during 2000-2017. Yr is the abbreviation of year. Note that M3 assumes
five age groups (from age-0 to age-4), where the last age group (i.e., age-4)
accumulates those older than age-4 (i.e., the “plus group”).
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Figure 5.13: Model M4 fitted to the observed length frequencies collected
during 2000-2017. Yr is the abbreviation of year. Note that M4 assumes
five age groups (from age-0 to age-4), where the last age group (i.e., age-4)
accumulates those older than age-4 (i.e., the “plus group”).
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Figure 5.14: Model M5 fitted to the observed length frequencies collected
during 2000-2017. Yr is the abbreviation of year. Note that M5 assumes
six age groups (from age-0 to age-5), where the last age group (i.e., age-5)
accumulates those older than age-5 (i.e., the “plus group”).
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Figure 5.15: Model M6 fitted to the observed length frequencies collected
during 2000-2017. Yr is the abbreviation of year. Note that M6 assumes
six age groups (from age-0 to age-5), where the last age group (i.e., age-5)
accumulates those older than age-5 (i.e., the “plus group”).



202 CHAPTER 5. STATE-SPACE LENGTH-BASED MODEL

Figure 5.16: Model M7 fitted to the observed length frequencies collected
during 2000-2017. Yr is the abbreviation of year. Note that M7 assumes
six age groups (from age-0 to age-5), where the last age group (i.e., age-5)
accumulates those older than age-5 (i.e., the “plus group”).
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Figure 5.17: Model M8 fitted to the observed length frequencies collected
during 2000-2017. Yr is the abbreviation of year. Note that M8 assumes
six age groups (from age-0 to age-5), where the last age group (i.e., age-5)
accumulates those older than age-5 (i.e., the “plus group”).
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Figure 5.18: Normalised residuals for the fits to the mackerel length fre-
quency data under M1-M8, given in Figures 5.10-5.17.
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Figure 5.19: Annual estimates of biomass, spawning stock biomass (SSB),
recruitment, and yields for each of the four models, where five age groups
are assumed (i.e., models M1 to M4). The red shaded areas indicate 95%
confidence intervals. The open circles depicted in the plots of the last col-
umn are the observed annual yields.
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Figure 5.20: Annual estimates of biomass, spawning stock biomass (SSB),
recruitment, and yields for each of the four models, where six age groups
are assumed (i.e., models M5 to M8). The red shaded areas indicate 95%
confidence intervals. The open circles depicted in the plots of the last col-
umn are the observed annual yields.
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5.5.2 Simulation studies

Jitter analysis

Our jitter analysis (i.e., sensitivity of model fit to initial parameter values)
results demonstrate that there exists more than a single set of estimates
when six age groups are assumed (M5-M8) depending on initial guess
values used for the parameter estimation, whereas models with five age
groups (M1-M4) converge to a unique set of parameter estimates regard-
less of initial guess values. These results are depicted in Figures 5.21 and
5.22.

In Figure 5.23, we visually demonstrate that assuming six age groups
(M5-M8) for the mackerel length frequency samples is redundant. In the
figure, we illustrate two different fitted results with M5-M8 for the length
frequency data collected in year 2001, where the first three age groups
(i.e., from age-0 to age-2) estimated from the models take up a large part
of length composition proportion, but those older than age 2 only share a
small remaining proportion. It is shown that the two different fitted lines
for each age groups largely differ in older age groups (i.e., those older than
age-2).
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Figure 5.21: Box plots for 100 estimates of each parameters from M1-M4
(first column; the name of the model is denoted on the left side of each
row) and the corresponding 100 sets of initial guess values used for the
parameter estimation of each of the four models (second column).
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Figure 5.22: Box plots for 100 estimates of each parameters from M5-M8
(first column; the name of the model is denoted on the left side of each
row) and the corresponding 100 sets of initial guess values used for the
parameter estimation of each of the four models (second column).
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Figure 5.23: Two different fitted results of models M5 to M8 for the length
frequency samples collected in year 2001.
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Posterior predictive check

Model M2 provides the best performance in terms of goodness-of-fit for
both the yield (i.e., the relative differences of M2 are closest to 0; see the
panels in the first column of Figure 5.24) and length frequency data (i.e.,
the RMSEs of M2 are the lowest values; see the panels in the second col-
umn of Figure 5.24) among the eight alternative models.

The inclusion of one additional age group (M5-M8) results in poorer
performance for fitting the length frequency data, which is observed by
comparing M1-M4 with M5-M8 in the second column of Figure 5.24. For
the yield data, the models with natural mortality fixed or constrained (M3,
M4, M7, and M8) show relatively poorer performance than those with nat-
ural mortality estimated (M1, M2, M5, and M6) (see the panels in the first
column of Figure 5.24).

This goodness-of-fit test demonstrates that (i) the length-dependent
natural mortality assumption (M1 and M5) is not supported as the con-
stant natural mortality models (M2 and M5) show better performance for
both the yield and length frequency data, and (ii) the models with five age
groups (M1-M4) show better performance than those with six age groups
(M5-M6) for the length frequency data.
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Figure 5.24: Median relative difference and root mean square error (RMSE)
for each of the eight models (i.e., models M1 to M8), obtained from a fre-
quentist version of the posterior predictive check. Plots in the first column
show the median relative differences between the simulated yields of the
last three years (i.e., from 2015 to 2017) and the corresponding observed
yields. Those in the second column show the RMSE obtained by compar-
ing the simulated length frequencies of the last three years (i.e., from 2015
to 2017) with the corresponding observed length frequencies.
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Residual analysis

The results of the jitter analysis and posterior predictive check show that
the models with six age groups (M5-M8) have issues (i.e., multiple sets
of parameter estimates and the poorer performance for fitting the length
frequency data) and were dropped for further analysis. Thus, residual
analysis is only conducted for those with five age groups (M1-M4).

The panels in the first column of Figure 5.25 show that the normality
assumption for the recruitment variability in all four models is satisfied.
However, those in the second column of Figure 5.25 demonstrate that the
normality assumption for the stochastic transitions in abundance for ages
and years are only satisfied under M1 and M2. The residuals for the abun-
dances under M3 and M4 (i.e., the panels in the third and fourth rows in
the second column) show systematic biases because the residual points in
the centre of the panels do not lie in the dashed straight lines.
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Figure 5.25: Normal quantile plots for 200 sets of the standardised process
residuals of M1-M4 (red points; the name of the model is denoted on the
left side of each row). The panels in the last row, which have blue points
generated from the standard normal distribution, are given as compara-
tive references (denoted as Ref). The panels in the first column are the
residuals for the recruitment process in each model (see Equation 5.4.3),
and those in the second column are the residuals for the abundances after
the recruitment (see Equation 5.4.3).
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Parameter estimability

Median relative difference of the fixed effect parameters and derived quan-
tities of all four models show satisfactory results, most of which are close
to 0 (see Figures 5.26-5.29). The model convergence rate for M2 is the high-
est among the four models, but those convergence rates are similar to each
other (Table 5.6).

The slight negative bias in variance parameters (see the top panel in the
second column of Figures 5.26-5.29), shown in all four models, is expected
as they are obtained from maximum likelihood estimation (MLE of vari-
ance is known to be biased) (Cadigan, 2016; Miller and Hyun, 2017). The
bimodal distribution of the bootstrap samples of σY in all four models (see
the bottom panel in the second column of Figures 5.26-5.29) indicates that
the observation variance parameter has an estimability problem (Auger-
Méthé et al., 2016; Auger-Méthé et al., 2021), which is also detected from
its likelihood profiles shown in Figures 5.30-5.33.

Table 5.6: Convergence rate in percent for each estimation model. A total
of 1000 simulation-estimation runs were performed for parametric boot-
strapping for each estimation model.

M1 M2 M3 M4
44.2 49.8 45.6 44.3
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Figure 5.26: Median relative difference (RD) of the fixed effect parame-
ters (i.e., Φ), biomass (i.e., By), spawning stock biomass (i.e., SSBy), and
recruitment (i.e., Nr,y), which are estimated from fitting model M1 to data
sets simulated from the same model M1, using the estimates obtained from
fitting M1 to the data on the Korea mackerel stock as input parameter val-
ues.
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Figure 5.27: Median relative difference (RD) of the fixed effect parame-
ters (i.e., Φ), biomass (i.e., By), spawning stock biomass (i.e., SSBy), and
recruitment (i.e., Nr,y), which are estimated from fitting model M2 to data
sets simulated from the same model M2, using the estimates obtained from
fitting M2 to the data on the Korea mackerel stock as input parameter val-
ues.
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Figure 5.28: Median relative difference (RD) of the fixed effect parame-
ters (i.e., Φ), biomass (i.e., By), spawning stock biomass (i.e., SSBy), and
recruitment (i.e., Nr,y), which are estimated from fitting model M3 to data
sets simulated from the same model M3, using the estimates obtained from
fitting M3 to the data on the Korea mackerel stock as input parameter val-
ues.
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Figure 5.29: Median relative difference (RD) of the fixed effect parame-
ters (i.e., Φ), biomass (i.e., By), spawning stock biomass (i.e., SSBy), and
recruitment (i.e., Nr,y), which are estimated from fitting model M4 to data
sets simulated from the same model M4, using the estimates obtained from
fitting M4 to the data on the Korea mackerel stock as input parameter val-
ues.



220 CHAPTER 5. STATE-SPACE LENGTH-BASED MODEL

Figure 5.30: Profile log-likelihoods for the fixed effect parameters of model
M1 fitted to the data on the Korea mackerel stock. Blue vertical lines
represent 95% confidence intervals (CIs) derived from the profile log-
likelihoods. Red vertical lines represent 95% Wald CIs derived based on
the asymptotic normality theory.
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Figure 5.31: Profile log-likelihoods for the fixed effect parameters of model
M2 fitted to the data on the Korea mackerel stock. Blue vertical lines
represent 95% confidence intervals (CIs) derived from the profile log-
likelihoods. Red vertical lines represent 95% Wald CIs derived based on
the asymptotic normality theory.
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Figure 5.32: Profile log-likelihoods for the fixed effect parameters of model
M3 fitted to the data on the Korea mackerel stock. Blue vertical lines
represent 95% confidence intervals (CIs) derived from the profile log-
likelihoods. Red vertical lines represent 95% Wald CIs derived based on
the asymptotic normality theory.
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Figure 5.33: Profile log-likelihoods for the fixed effect parameters of model
M4 fitted to the data on the Korea mackerel stock. Blue vertical lines
represent 95% confidence intervals (CIs) derived from the profile log-
likelihoods. Red vertical lines represent 95% Wald CIs derived based on
the asymptotic normality theory.
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5.6 Discussion

In this research, we show that the state-space LBASM we developed can be
applied to data-moderate fisheries, using the data collected from the Ko-
rea chub mackerel stock. The model can successfully estimate all model
parameters even with a relatively short time series of data, including vari-
ance parameters (σ2

N,1, σ2
N,2, and σ2

Y ) for process and observation errors and
the parameter for overdispersion (θ) in length frequency samples. We also
show the successful implementation of a Dirichlet-multinomial distribu-
tion for length composition proportions to estimate effective sample size
within the state-space model, which allows us to avoid subjective choice
of data-weighting between likelihoods (Thorson et al., 2017).

From the parametric bootstrap analysis, we find that the models (i.e.,
M1 to M4) are not robust since less than half of the bootstrap runs con-
verged (from 44.2% to 49.8%), but such low convergence rates are not sur-
prising as the models attempt to estimate both observation and process
error variances, as well as other fixed effect parameters, which are known
to be challenging even in simple state-space models (Auger-Méthé et al.,
2016; Auger-Méthé et al., 2021). If we fix some of those fixed effect pa-
rameters at some assumed values, the model performance would greatly
improve. Such treatment is not uncommon in state-space stock assess-
ment models even for data-rich stocks. For example, in previous papers
on state-space age-structure models (Miller et al., 2016; Miller and Hyun,
2017), observation error variance was fixed at some assumed value and
not estimated.

We believe a place of possible improvement in our current length-based
model to be in the deterministic relationship between fishing mortality
and effort (i.e., Fy = q ·Efforty). In our current approach, it is assumed that
the annual yield data Yy have observation error; thus, the model is fitted
to the yield data while conditioning on the annual fishing effort. To avoid
using such a simplelistic deterministic structure in the fishing mortality
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model, one can consider that observation error in the yield data is small,
and model temporal variation in the fishing mortality-effort relationship
to incorporate random deviation in effort (Fournier et al., 1998).

Our simulation studies show that the model with constant natural mor-
tality assumption (M2) performs better than that with length-dependent
natural mortality assumption (M1) for the mackerel stock, but it should
be noted that the mackerel data were collected from a commercial fishery,
and the data were not standardised. Moreover, we assume the catcha-
bility is constant to avoid overparameterisation, although it is probably
more likely to be varying over time. We initially attempted to incorporate
a time-varying catchability, using a random walk model, but observed a
failure in estimation, which we attribute to the short time series length of
the data.

We found that the constant natural mortality estimated from M2 (i.e.,
M = 1.5) is approximately two or three times the values estimated from
other models with different assumptions on the natural mortality and those
from previous studies (e.g., M typically ranges from 0.4 to 0.6). This high
natural mortality rate in M2 occurs because it freely estimates the natural
mortality parameter, whereas other models have some constraints associ-
ated with the natural mortality rate. Moreover, it is possible that the higher
estimated R compensates for the higher estimated M .

Such a high natural mortality rate estimated from a state-space age-
structured model was previously reported by Miller and Hyun (2017), al-
though their model was not length-based and was applied to the Aca-
dian redfish stock in the Gulf of Maine. However, Miller and Hyun (2017)
found that a model with a constant natural mortality estimated shows the
best performance in their simulation studies, which is consistent with our
simulation results.

The other possible explanation for the high estimate for the natural
mortality M in our study is the age range considered in the models. We
included the age-0 group in our models, which typically undergoes the
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highest natural mortality rate. The inclusion of this early life-stage group
in the models could increase the overall natural mortality rate.

From a fisheries perspective, such a large value for M could origi-
nate from various processess such as emigration of the species from the
area where the fishery-dependent data were collected and underreported
catch. In fact, the mackerel stock has been heavily and jointly harvested
by fisheries from three neighbouring countries, South Korea, China, and
Japan, while the species highly migrate around the waters of those coun-
tries (Hiyama et al., 2002; Hwang et al., 2008). Thus, our study results may
not well represent the stock status of the species, until more information
from two other countries are incorporated in the model.



Chapter 6

Conclusion

Management of fish stocks requires the collection of suitable data from
which population models can be built. State-space models (SSMs) are one
modelling approach, and this thesis investigates their application to data-
moderate stocks. We define data-moderate stocks as those for which there
are no survey data, no information on age composition, and fisheries-
dependent data are the only available source of information. We find
that many existing state-space models are either too simple (e.g., state-
space surplus production models) or too complex (e.g., state-space age-
structured models) for these stocks, although many fisheries around the
world face data-moderate situations. Complex models can suffer from
significant estimability problems.

In this thesis we have developed two state-space models (SSMs) for fish
stock assessment and applied those models to the data-moderate stocks
(i.e., the Korea pollock and chub mackerel stocks) where relatively short
time-series of data on relative abundance (e.g., catch-per-unit-effort: CPUE),
yield (i.e., catch in weight), and some indirect demographic information
(e.g., life-stage and length composition data) are available. We have also
shown how performance of those SSMs can be investigated using several
model checking methods, such as jitter analysis (i.e., test hundreds sets of
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initial values for parameter estimation and compare their corresponding
estimates to determine if those estimates converge to the same set), para-
metric bootstrapping, and process error residual analysis. From this work,
we have three main conclusions:

(i) Separation of observation and process error can be problematic
even in simple SSMs, such as state-space surplus production mod-
els. This estimation problem can occur even when correct and nar-
row constraints (i.e., priors in a Bayesian approach and penalties
in a frequentist approach) on most model parameters are imposed.

(ii) The availability of alternative demographic information (e.g., life
stage and length composition data) in data-moderate fisheries en-
ables the development of new stock assessment models in state-
space form, which allows one to take full advantage of existing
data. We developed two new state-space assessment models which
were applied to the two data-moderate stocks (i.e., the pollock and
chub mackerel stocks) in South Korean waters.

(iii) SSMs can be tested using several existing methods, each of which
detects different issues, so their combined use is essential.

We discuss each of these findings in more detail below, where we identify
what literature gaps are fulfilled by this thesis research.

6.1 Estimability of the variance parameters

In Chapter 3, we showed that even a simple SSM has estimation issues, us-
ing the state-space surplus production model. From our simulation stud-
ies, we conclude that parameter estimation for a state-space surplus pro-
duction model (SSPM) is sensitive to the ratio between process and ob-
servation error as well as trends in the time series data. Imposing strong
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constraints on model parameters did not completely address the issues,
unless one uses extremely narrow constraints (e.g., CV=0.1) which are al-
most impossible to obtain in real world situations.

We found that simultaneous estimation of both unobserved state vari-
ables and model parameters in the SSPM is the main cause of this estima-
tion problem, which suggests that the flexible structure of the SSPM due to
the incorporation of process variability often cannot be informed by obser-
vation data even with some strong constraints imposed on the parameters
(e.g., strong informative priors in a Bayesian approach). The results of
the simulation studies in Chapter 3 demonstrated that the SSPM tends to
show good performance (i.e., nearly unbiased estimates of the parameters
and state variables in bootstrap runs) when the following two conditions
are met:

(i) The parameter for the standard deviation of observation error is not
greater than that of process error (i.e., σo ≤ σp, where the subscripts
o and p indicate observation and process errors, respectively).

(ii) The time series of abundance index and yield data does not follow
the “one-way trip” trend (e.g., monotonic increasing or decreasing),
but mostly fluctuates over time.

Although many previous studies have used SSPMs, most of them have
not examined parameter estimability during their model checking process
and tend to focus on model convergence instead (Millar and Meyer, 2000;
Parent and Rivot, 2012; Winker et al., 2019, 2020). Our simulation studies
in Chapter 3, however, demonstrated using parametric bootstrapping that
even converged models produce biased results in parameter estimates.
The importance of checking estimability of parameters in SSMs has been
discussed in previous ecological studies (Dennis et al., 2006; Auger-Méthé
et al., 2016; Auger-Méthé et al., 2021), but those studies assume either un-
informative priors (in a Bayesian setting) or no constraints (in a frequentist
setting) for parameters. In fisheries stock assessments, some parameters
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are often treated as known or constrained, based on some previous infor-
mation. Thus, we initially thought that those treatments could not only
help models to converge, but also aid parameter identifiability. Surpris-
ingly, our simulation tests in Chapter 3 showed that even with such ex-
ternal aids, certain parameters (particularly, the two variance parameters)
had biased point estimates, which brings us to the question about the ro-
bustness of the almost ubiquitous application of SSPMs in fisheries stock
assessments.

The findings of our study suggest that future studies on stock assess-
ments using SSMs should verify estimability of the parameters before the
results are presented. Particularly for data-limited or data-moderate fish-
eries, observed data collected from commercial fisheries may contain large
errors, making it even more difficult for SSMs to distinguish process error
from observation error. In our study, we found that parametric bootstrap-
ping was the simplest method for evaluating parameter estimability.

6.2 The two new stock assessment models

In Chapters 4 and 5, we developed two new SSMs for stock assessment,
which are applicable to data-moderate fisheries where age composition
data are not available. Instead, these models can be used when alternative
demographic information, such as life stage and length composition data,
is available. These new models were applied to the Korea walleye pollock
and chub mackerel stocks as case studies in order to demonstrate their
applicability.

Most of South Korea’s managed fisheries, including those for the pol-
lock and mackerel stocks, are data-moderate. In our view, the stock as-
sessment models used for these fisheries in South Korea either underused
existing data or modelled the data incorrectly. Thus, Chapters 4 and 5 of
this thesis have developed new stock assessment models that are more
suitable for these types of data-moderate fisheries. In the following sub-
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sections, an overview of these two chapters, conclusions, and recommen-
dations for future research are discussed.

6.2.1 The two-life stage-structured model in Chapter 4

The Korea pollock stock collapsed in the late 1990s and has not recovered.
Some Korean fisheries scientists postulate that the collapse was caused by
a combination of environmental changes in Korean waters and overex-
ploitation of both juvenile and adult pollock stocks. However, a reliable
scientific report supporting this hypothesis could not be produced due to
the limited available data and the lack of stock assessments on this stock
(Kim and Hyun, 2018).

In fact, even one of the simplest stock assessment models, a surplus
production model, was not valid for the pollock stock because data on
stock abundance were specific to life stages (i.e., juveniles and adults).
As already discussed in Chapter 4, such a model misspecification prob-
lem was addressed by developing the state-space two-life stage-structured
production model, which offers the following advantages:

(i) The two-life stage model has a simple structure, but the model in-
corporates demographic relationships between juveniles and adults,
which cannot be achieved with a simple age-aggregated model (e.g.,
a surplus production model).

(ii) The model is constructed in state-space form, which allows transi-
tions between the two life stages (i.e., juvenile and adult stages) to
be stochastic. This demographic stochasticity in process equations
allows the model to incorporate unobserved variability, such as en-
vironmental changes.

(iii) Constraints (e.g., priors in a Bayesian approach and penalties in a fre-
quentist approach) on the model parameters can be derived from an
age-structured model where input values for life-history parameters
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are obtained from previous studies. Such parameter constraints, de-
rived from finer scale models (e.g., age-structured models), not only
aid all the model parameters to be estimable, but also allows those
parameters to remain within biologically reasonable boundaries.

While the advantages highlighted above are attractive, we caution that
future research should also consider the following limitations:

(i) The model parameters are reparameterised, based on the dominant
eigenvalue and eigenvector of the transition matrix. Thus, compared
to an age-structured model, direct biological interpretation of each
parameter is unclear. However, it still offers more detailed informa-
tion than a surplus production model.

(ii) Due to the state-space structure of the model, an estimability issue
may arise. We found that this estimation issue cannot be overcome
by parameter constraints, but rather is more related to the two con-
ditions discussed in Section 6.1.

6.2.2 The length-based age-structured model in Chapter 5

According to the Korean Coastal and Offshore Fishery Census reports, the
Korea chub mackerel stock has been assessed using virtual population
analysis (VPA). Based on published articles on this stock (Hwang et al.,
2008; Kang et al., 2015; Gim et al., 2020), we could assume that such an
age-structured assessment was conducted by converting length frequency
data into age composition proportions. The problem of this conversion
process is that only a single age-length key (ALK; probability of age given
length) estimated from length-at-age data collected during a certain pe-
riod of time was applied to all years of length frequency data (Gim et al.,
2020).

Several studies have demonstrated that applying a single ALK to length
frequency data across all years leads to substantial bias (Kimura, 1977;
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Westrheim and Ricker, 1978; Aanes and Vølstad, 2015; Ailloud and Hoenig,
2019). This naive approach does not take into account changes in age com-
position of populations over time, and is likely to preserve the propor-
tions described by the single ALK used. Despite those previous studies,
this obvious flaw in the naive application of ALK seems not to be well-
understood by local fisheries scientists as age composition data on the
mackerel stock have only been collected intermittently (Hwang et al., 2008;
Kang et al., 2015).

Therefore, we believe that the state-space length-based age-structured
model we developed in Chapter 5 can be used as a better alternative to
the VPA method used for the mackerel stock assessment because of the
following reasons:

(i) The new length-based model does not require an ALK and instead,
infers age compositions directly from length composition data within
the model. In addition, the model takes into account temporal changes
in age composition and allows for the propagation of errors in esti-
mating age proportions from length frequency data.

(ii) The state-space modelling considers transitions for ages and years to
be stochastic, which is a more realistic representation of fish stocks
than those used in VPA (or other contemporary age-structured mod-
els), which assume deterministic transitions.

(iii) The new model is capable of estimating an overdispersion parameter
within the model, which allows one to avoid the subjective choice
of data-weighting between the likelihood of the observed yield data
and that of the observed length frequency samples.

However, we note that in addition to the advantages highlighted above,
the following limitations need to be considered in future research:

(i) Due to a lack of information, the CPUE data we applied to the model
was not standardised. Therefore, collecting more information for
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standardizing the CPUE data would be necessary for a more accu-
rate assessment of the mackerel stock.

(ii) We assumed that the catchability was constant to avoid overparam-
eterisation, although it is probably more likely to be varying over
time. We initially attempted to incorporate a time-varying catchabil-
ity, using a random walk model, but observed a failure in estimation,
which we attribute to the short time series length of the data and pos-
sible confounding in two variance parameters, each of which is for
the random walk and the likelihood for the yield data, respectively.

6.3 Model checking methods

Throughout this thesis, we have demonstrated how SSMs can be validated
using various model checking methods, such as parametric bootstrapping,
jitter analysis, and process error residual analysis. Our study found that
the collective use of these model checking methods is helpful in diagnos-
ing SSMs because each method identifies a different type of problem.

In Chapter 3, we showed that parametric bootstrapping can identify is-
sues with estimability of parameters as inestimable parameters (e.g., vari-
ance parameters) were biased in terms of relative difference between their
point estimates and true values. We used the parametric bootstrap method
to test the two new models in Chapters 4 and 5, and found that even the
new models potentially have estimability problems. However, we showed
that such an estimation issue associated with model parameters did not al-
ways produce unreliable estimates for state variables. Since state variables
are often of primary interest (e.g., population abundance), in addition to
checking parameters, we recommend examining the bias of estimates for
state variables.

We found that jitter analysis is useful for checking stability of SSMs.
In Chapter 5, we demonstrated that the excessive flexibility of the model
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could be detected by jitter analysis. When we tested the length-based
model using mackerel data under two assumptions about the number of
age groups (five and six), we found that the model became too flexible
when six age groups are assumed, resulting in multiple sets of estimates
for parameters. It should be noted, however, that jitter analysis cannot de-
tect estimability of parameters, which we found in Chapter 4 when testing
the two-stage model using both jitter and bootstrap analyses.

In Chapters 4 and 5, we used process error residuals to check model
assumptions following the method from Thygesen et al. (2017). Although
the method has proven to be effective in testing model assumptions in
SSMs, we found that a single check using a Kolmogorov-Smirnov (K-S)
test, which was used in Thygesen et al. (2017), may lead to misleading
results because

(i) The distribution of process residuals can also be affected by sampling
variability, so using a single set of residuals for checking normality
can be misleading.

(ii) A K-S test is known to be conservative if one or more parameters
of a distribution is estimated (Lilliefors, 1967), but the method by
Thygesen et al. (2017) uses estimates of parameters when calculating
process residuals.

Thus, we applied the following methods to resolve the issues above and
suggest that they be considered for future research:

(i) Use hundreds of sets of process residuals to generalise overall pat-
terns rather than relying on a single set.

(ii) Visually check the normality of all those sets of residuals to detect
any systematic patterns, using a normal quantile-quantile plot.

In summary, this thesis research contributes to the better understand-
ing of the potential estimability issues in SSMs for fish stock assessments,
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as well as the development of the two new state-space models for data-
moderate fisheries. We also identified several issues associated with our
findings which could be useful in future research.



Appendix A

A two-life stage-structured

production model (TSPM)

A.1 Beverton-Holt steepness formulation

In this section, we show how the Beverton-Holt stock-recruitment model
(BHSR) can be expressed in terms of the steepness parameter h (Mace and
Doonan, 1988).

In the absence of fishing mortality and recruitment variability, using
the BHSR, the relationship between the equilibrium unfished recruitment,
R∗(0), and the equilibrium unexploited egg production, Egg∗(0), is ex-
pressed as

R∗(0) =
α · Egg∗(0)

1 + β · Egg∗(0)
. (A.1)

Although α and β have vague biological meanings, this parameteriza-
tion is not suitable for exploring a relationship between R∗(0) and Egg∗(0),
because changes in α and β result in a change to R∗(0). To circumvent this
problem, we use the steepness formulation devised by Mace and Doonan
(1988), where the parameters α and β are expressed in terms of R∗(0) and
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the steepness parameter h:

+
,,-

,,.

α =
4 · h ·R∗(0)

(1− h) · Egg∗(0)

β =
5 · h− 1

(1− h) · Egg∗(0)

, (A.2)

where Egg∗(0) =
DEgg∗(0) ·R∗(0), and DEgg∗(0) =

CA
i Feci ·Mati ·φi,∗ · BNi,∗(0).

Since the dynamic version of the BHSR is given by

Rt+1 =
α · Eggt

1 + β · Eggt

,

substituting β and α with those expressed in Equations (A.4) and (A.5)
yields the following reparameterised form:

Rt+1 =
4 · h ·R∗(0) · Eggt

Egg∗(0) · (1− h) + (5 · h− 1) · Eggt

.

In the following subsection, we show how Equation (A.2) is derived.

A.1.1 Reparameterisation of α and β in terms of h

By definition, the steepness parameter h is the fraction of R∗(0) to be ex-
pected when Egg∗(0) is reduced to 20% of its pristine level (i.e., 0.2·Egg∗(0))
(Mace and Doonan, 1988). That is,

h ·R∗(0) =
α · 0.2 · Egg∗(0)

1 + β · 0.2 · Egg∗(0)
. (A.3)

After rearranging Equation (A.1) for α, we have

α =
R∗(0) · (1 + β · Egg∗(0))

Egg∗(0)
,
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By substituting the above equation into Equation (A.3) and rearranging it
for β, we can express β in terms of h as follows:

β =
5 · h− 1

Egg∗(0) · (1− h)
(A.4)

Similarly, to obtain the equation for α, we substitute

β =
α · Egg∗(0)−R∗(0)

R∗(0) · Egg∗(0)

into Equation (A.3). Then, rearranging it for α gives us

α =
4 · h ·R∗(0)

Egg∗(0) · (1− h)
(A.5)

A.2 Plus group starting condition (i.e., t = 1)

In this section, we show how the plus group starting condition in Equation
(4.12) is derived. Let ℓa,∗ = (1− va ·H) · Sa. Then,

BNA,∗ = BNA−1,∗ · ℓA−1,∗ + BNA−1,∗ · ℓA−1,∗ · ℓA,∗ + BNA−1,∗ · ℓA−1,∗ · l2A,∗ + ...

= BNA−1,∗ · ℓA−1,∗ · (1 + ℓA,∗ + ℓ2A,∗ + ...).

(A.6)
Note that the above equation is a geometric series.

If we substitute U = 1 + ℓA,∗ + ℓ2A,∗ + ..., the following relationship can
be derived:

U = 1 + U · ℓA,∗

=
1

1− ℓA,∗
,
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which is then substituted back into Equation (A.6) to yield the form:

BNA,∗ =
ℓA−1,∗

1− ℓA,∗
· BNA−1,∗

=
SA−1 · (1− vA−1 ·H)

1− ·SA · (1− vA ·H)
· BNA−1,∗.

A.3 Reparameterisation of the TSPM

The four composite parameters in the matrix G of Equation (4.6) (i.e., Rj ,
Ra, gj , and ga) together represent demographic relationships between ju-
venile and adult populations in biomass. In the absence of density depen-
dence and fishing mortality (i.e., without the carrying capacity Kt and the
yield Y t), the population eventually reaches a stable stage structure, from
which the ratio of the juvenile and adult biomasses (i.e., the ratio of the
two elements in a dominant eigenvector) remains in equilibrium, which
we denote as ψ:

ψ =
X1

X2

, (A.7)

where X1 and X2 are the two elements of the dominant eigenvector of the
matrix G.

Then, using the equation above, we can express Bj
t and Ba

t in terms of
ψ: +

,-

,.

Bj
t = ψ · Ba

t + δjt

Ba
t =

1

ψ
· Bj

t + δat
, (A.8)

where δjt and δat denote the amount of juvenile and adult biomass at time
t, deviated from the stable stage ratio ψ.

In the following sections, based on the relationships given in Equation
(A.8), we show how the models in Equation (4.6) can be reparameterized
in terms of the dominant eigenvalue and eigenvector. The final reparame-
terised form is given in Equation (4.7).
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A.3.1 Reparameterization process for the juvenile model

For the juvenile biomass, we have the following model, which is obtained
from Equation (4.6):

Bj
t+1 = Bj

t +

%
gj − 1 +Rj · B

a
t

Bj
t

&

nj − 1
· Bj

t ·

8

91−
>
Bj

t

Kj

?nj−1
<

=− Y j
t

Substituting Ba
t with (1/ψ) · Bj

t + δat of Equation (A.8) and rearranging it
gives us

Bj
t+1 =Bj

t +

%
gj − 1 +

Rj

ψ
+Rj · δ

a
t

Bj
t

&

nj − 1
· Bj

t ·

8

91−
>
Bj

t

Kj

?nj−1
<

=− Y j
t

=Bj
t +

%
gj − 1 +

Rj

ψ

&

nj − 1
· Bj

t ·

8

91−
>
Bj

t

Kj

?nj−1
<

=

+
Rj

nj − 1
· δat ·

8

91−
>
Bj

t

Kj

?nj−1
<

=− Y j
t

Since δat = Ba
t − (1/ψ) · Bj

t by Equation (A.8), we have

Bj
t+1 =Bj

t +

%
gj − 1 +

Rj

ψ

&

nj − 1
· Bj

t ·

8

91−
>
Bj

t

Kj

?nj−1
<

=

+
Rj

nj − 1
·
%
Ba

t −
1

ψ
· Bj

t

&
·

8

91−
>
Bj

t

Kj

?nj−1
<

=− Y j
t .

(A.9)

Equation (A.9) shows that when the population reaches the stable stage
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structure (i.e., Bj
t = ψ · Ba

t ), the above equation reduces to

Bj
t+1 =Bj

t +

%
gj − 1 +

Rj

ψ

&

nj − 1
· Bj

t ·

8

91−
>
Bj

t

Kj

?nj−1
<

=− Y j
t ,

which becomes the exact same form as the GSPM, where the term corre-
sponding to the intrinsic growth rate r in the GSPM (i.e., gj − 1 +Rj/ψ) is
the dominant eigenvalue of the matrix G (see the proof given in Appendix
A.3.3 below). Then, by substituting gj − 1+Rj/ψ with rm, we finally have
the form shown in Equation (4.7):

Bj
t+1 =Bj

t +
rm

nj − 1
· Bj

t ·

8

91−
>
Bj

t

Kj

?nj−1
<

=

+
Rj

nj − 1
·
%
Ba

t −
1

ψ
· Bj

t

&
·

8

91−
>
Bj

t

Kj

?nj−1
<

=− Y j
t .

A.3.2 Reparameterization process for the adult model

For the adult biomass, we obtain the following model from Equation (4.6):

Ba
t+1 = Ba

t +

>
ga − 1 +Ra · B

j
t

Ba
t

?
· Ba

t − Y a
t .

Substituting Bj
t with ψ · Ba

t + δjt and rearranging it gives us

Ba
t+1 = Ba

t +

>
ga − 1 + ψ ·Ra +Ra · δjt

Ba
t

?
· Ba

t − Y a
t

= Ba
t + (ga − 1 + ψ ·Ra) · Ba

t +Ra · δjt − Y a
t .
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Since δjt = Bj
t − ψ · Ba

t by Equation (A.8), we have

Ba
t+1 = Ba

t + (ga − 1 + ψ ·Ra) · Ba
t +Ra ·

)
Bj

t − ψ · Ba
t

*
− Y a

t

When the population reaches the stable stage structure (i.e., Bj
t = ψ · Ba

t ),
the above equation reduces to

Ba
t+1 = Ba

t + (ga − 1 + ψ ·Ra) · Ba
t − Y a

t .

where the term in the parentheses (i.e., ga − 1 + ψ · Ra) is also the dom-
inant eigenvalue of the matrix G (see the proof below). Hence, the finial
structure of the model is given by

Ba
t+1 = Ba

t + rm · Ba
t +Ra ·

)
Bj

t − ψ · Ba
t

*
− Y a

t ,

which is the same as that in Equation (4.7)

A.3.3 Proof that rm = gj − 1 +Rj/ψ = ga − 1 + ψ ·Ra

In this section, we show the proof that rm = gj −1+Rj/ψ = ga−1+ψ ·Ra.
In Equation (4.6), the matrix G is given as

G =

1
gj − 1 Rj

Ra ga − 1

2
.

To find the eigenvalues and eigenvectors of G, we set the following equa-
tion:

G ·X = λ ·X.
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Then, solving det(G− λ · I) = 0 gives

0 =

00000
gj − 1− λ Rj

Ra ga − 1− λ

00000

=λ2 + (2− gj − ga) · λ

− gj − ga + gj · ga + 1−Rj ·Ra

Using the quadratic formula, we find the dominant eigenvalue λ1 as

λ1 =
gj + ga − 2 +

L
(gj − ga)2 + 4 ·Rj ·Ra

2

Note that
L

(gj − ga)2 + 4 ·Rj ·Ra > 0 as gj, Rj, Ra, ga > 0, so there is no
complex eigenvalue in this case.

For a dominant eigenvector, we solve the following matrix equation:

1
gj − 1− λ1 Rj

Ra ga − 1− λ1

21
X1

X2

2
=

1
0

0

2

By expanding, +
-

.
(gj − 1− λ1) ·X1 +Rj ·X2 = 0

Ra ·X1 + (ga − 1− λ1) ·X2 = 0

which yields
X1

X2

= − Rj

gj − 1− λ1

= −ga − 1− λ1

Ra

Since X1/X2 = ψ by Equation (A.7),

rm = gj − 1 +
Rj

ψ

= gj − 1−Rj · g
j − 1− λ1

Rj

= λ1
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and
rm = ga − 1 +Ra · ψ

= ga − 1−Ra · g
a − 1− λ1

Ra

= λ1

A.3.4 Population growth in numbers or biomass?

Although the matrix models describe population abundance in numbers,
the demographic analysis method is also applicable to population abun-
dance in biomass (McAllister et al., 2001). As shown above, in the absence
of fishing mortality, the population would eventually reach a stable (age or
stage) structure and exponentially grows at a rate of the dominant eigen-
value Λ1. That is,

Nt+1 = Λ1 ·Nt, where Nt =
AE

i

Ni,t

or
Λ1 =

Nt+1

Nt

, (A.10)

where the corresponding dominant eigen vector x1 is given by

x1 =
@
x1 x2 · · · xA

A′

.

If we assume that the same population at the stable structure in biomass
also grows exponentially at a rate of Λ1, we have

Λ1 =
Bt+1

Bt
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Since Bt =
CA

i wi ·Ni,t, we can rewrite the above equation as

Λ1 =

CA
i wi ·Ni,t+1CA
i wi ·Ni,t

. (A.11)

At the stable age structure, the proportion of each age group (i.e., Ci) in
the population is independent of the total population size Nt as it remains
the same regardless of the total population size:

Ni,t = Ci ·Nt, (A.12)

where
Ci =

xiCA
i xi

.

Then, substituting Equation (A.12) into Equation (A.11) yields

Λ1 =
Nt+1 ·

CA
i wi · Ci

Nt ·
CA

i wi · Ci

=
Nt+1

Nt

,

which becomes the same as Equation (A.10).

A.4 Functional links between the two ASMs and

TSPM

In this section, we show how we derive the functional links between the
two age-structured models (i.e., the LMM and the ASM) and TSPM, which
are given in Equation (4.23).

First, the parameters rm and ψ of the TSPM can be approximated by
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the LMM using the following equations, which we show in Section 4.4.2:

+
,-

,.

rm = log(Λ1)

ψ =

CA
i Ci · wi · (1− Mati) · vjiCA

i Ci · wi · Mati · vai

,

where Λ1 is the dominant eigenvalue of the matrix L in Equation (4.20),
and Ci is the proportion of age-i fish at a stable age structure, which is
obtained by normalising the dominant eigenvector of L (i.e.,

C
i Ci = 1).

Second, for the approximation of Ra, we derive the change in adult
biomass ∆Ba from Equation (4.7) as follows:

∆Ba = rm · Ba +Ra ·
)
Bj − ψ · Ba

*
−H · Ba

Then, setting ∆Ba = 0 gives

0 = rm · Ba
∗ (H) +Ra ·

)
Bj

∗(H)− ψ · Ba
∗ (H)

*
−H · Ba

∗ (H).

Rearranging the above equation for Ra with H = 0 (i.e., no fishing mortal-
ity) gives the equation for Ra, which we show in Equation (4.23):

Ra =
rm

ψ − Kj

Ka

,

where Kj and Ka are obtained from the equilibrium ASM (see Equation
(4.16)).

Third, for the approximation of Rj , we derive the change in juvenile
biomass ∆Bj from Equation (4.7) as follows:

∆Bj =

%
rm +

Ba

Bj
·Rj − 1

ψ
·Rj

&

nj − 1
· Bj ·

1
1−

%
Bj

Kj

&nj−1
2
−H · Bj.
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Setting ∆Bj = 0 and rearranging it for the equilibrium yield Y j
∗ (H) give

Y j
∗ (H) =H · Bj

∗(H)

=

%
rm +

Ba
∗ (H)

Bj
∗(H)

·Rj − 1

ψ
·Rj

&

nj − 1
· Bj

∗(H) ·
1
1−

%
Bj

∗(H)

Kj

&nj−1
2
.

Since the above form is the same as that derived from the GSPM for the
equilibrium yield, the analytical solutions for the BRPs of the GSPM (see
Equation (4.18)) can be applied for estimating nj and Rj of the TSPM.
Thus, for the shape parameter nj , we use the following equation:

nj =

>
Bj

MSYj

Kj

?1−nj

,

where Kj and Bj

MSYj are obtained from the equilibrium ASM (i.e., see
Equations (4.16) and (4.17)).

Similarly, for Rj , we use the following equation for HMSYj (recall that
HMSY = r/n in the GSPM):

HMSYj =

%
rm +

Ba
∗ (HMSYj)

Bj
∗(HMSYj)

·Rj − 1

ψ
·Rj

&

nj
,

where

Bj

MSYj = Bj
∗(HMSYj), and Ba

MSYj = Ba
∗ (HMSYj),

which we rearrange for Rj as follows

Rj =
nj ·HMSYj − rm
Ba

MSYj

Bj

MSYj

− 1

ψ

.



Appendix B

A state-space length-based

age-structured model

B.1 Cohen and Fishman (1980)’s growth model

In this section, we show how the Cohen and Fishman (1980)’s growth
function (CFGF) is derived from the von Bertalanffy growth function (VBGF).
Furthermore, after showing the derivation, we derive equations for the ex-
pected value and variance of CFGF.

First of all, the VBGF for the length of a fish at age a (i.e., La) is given
by

La = L∞ · [1− exp{−k · (a− a0)}], (B.1)

where L∞ is the asymptotic length, a0 is the theoretical age at length 0,
and k is the growth parameter. Then, for a fish of age a + ∆a, where ∆a

denotes the age increment, Equation (B.1) can be written as

La+∆a = L∞ · [1− exp{−k · (a+∆a− a0)}]

= L∞ − L∞ · exp{−k · (a− a0)} · exp(−k ·∆a)

249



250 APPENDIX B. STATE-SPACE LENGTH-BASED MODEL

We define the length increment ∆La as the difference between La+∆a

and La:

∆La = La+∆a − La

= L∞ − L∞ · exp{−k · (a− a0)} · exp(−k ·∆a)− L∞ · [1− exp{−k · (a− a0)}]

= L∞ · exp{−k · (a− a0)} · {1− exp(−k ·∆a)}

= [L∞ − L∞ + L∞ · exp{−k · (a− a0)}] · {1− exp(−k ·∆a)}

= (L∞ − La) · {1− exp(−k ·∆a)}

Then, rearranging the above equation with respect to La+∆a yields

La+∆a = La +∆La

= La + (L∞ − La) · {1− exp(−k ·∆a)}

= L∞ · {1− exp(−k ·∆a)}+ La · exp(−k ·∆a).

Letting ∆a = 1, ρ = exp(−k), and including the normal error term εa

finally give us

La+1 = L∞ · {1− exp(−k)}+ La · exp(−k) + εa

= L∞ · (1− ρ) + La · ρ+ εa,
(B.2)

where εa
iid∼ N(0, σ2

L).

B.1.1 Expected value and variance of the Cohen and Fish-

man’s growth model

The expected value of Equation (B.2) can be simply obtained by

E[La+1] = µa+1 = L∞ · (1− ρ) + La · ρ.
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Note that Equation (B.2) is a geometric series:

La+1 = L∞ · {1− exp(−k)}+ La · exp(−k) + εa

= α + La · ρ+ εa

= α ·
a−1E

i=0

ρi + L1 · ρa +
a−1E

i=0

ρi · εa−i

Thus, the variance of Equation (B.2) (i.e., Var(La+1)) can then be expressed
as follows

Var(La+1) = Var

>
α ·

a−1E

i=0

ρi + L1 · ρa +
a−1E

i=0

ρi · εa−i

?

= σ2
r · ρ2·a + Var

>
a−1E

i=0

ρi · εa−i

?

= σ2
r · ρ2·a + σ2

L · 1− ρ2·a

1− ρ2
∵ Var(εa) = σ2

L.

With the proportionality assumption in Equation (5.5) (i.e., Var(εa) =

ζ2 ·∆L2
a), the variance of Equation (B.2) becomes

Var(La+1) = σ2
r · ρ2·a + Var

>
a−1E

i=0

ρi · εa−i

?

= σ2
r · ρ2·a + ζ2 ·

a−1E

i=0

ρ2·i ·∆L2
a−i.
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Figure B.1: Length variance curves formulated based on the two differ-
ent assumptions on the standard deviation of the error term εa in Equa-
tion (5.2). The panels in the first column (denoted as “Original form”) are
obtained from Equation (5.4) where σL ∈ {2.5, 1.5, 0.5}, and those in the
second column (denoted as “Alternative form”) are from Equation (5.4)
where ζ ∈ {0.5, 0.3, 0.1}. Input values for other associated parameters
are obtained from the estimates (or given values) of M2 (i.e., σr = 1.73,
ρ = exp(−0.29), A = 5, L∞ = 40.6, and µr = 15.26; see Table 5.4).
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B.2 Derivation of a Dirichlet-multinomial distri-

bution

A Dirichlet distribution for length composition proportion Pi,y is given as

f (P y|αy) =
Γ
:CI

i=1 αi,y

;

MI
i=1 Γ (αi,y)

·
I5

i=1

P
αi,y−1
i,y

where αi,y is the concentration parameter.
A multinomial distribution for length composition proportion Pi,y is

given as

f (ny|P y) =
Γ(Ey + 1)

MI
i=1 Γ (ni,y + 1)

·
I5

i=1

P
ni,y

i,y

where ni,y is the sample size for length bin i in year y, and Ey is the total
sample size of those collected in year y (i.e., Ey =

CI
i=1 ni,y, where I is the

total number of length bins).
Multiplying the above two distributions and integrating across the length

composition proportion P y yield the following marginal probability den-
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sity function f(ny|αy) for a Dirichlet-multinomial distribution:

f(ny|αy) =

/
f (ny|P y) · f (P y|αy) dP y

=

/
Γ(Ey + 1)

MI
i=1 Γ (ni,y + 1)

·
I5

i=1

P
ni,y

i,y ·
Γ
:CI

i=1 αi,y

;

MI
i=1 Γ (αi,y)

·
I5

i=1

P
αi,y−1
i,y dP y

=
Γ(Ey + 1)

MI
i=1 Γ (ni,y + 1)

·
Γ
:CI

i=1 αi,y

;

MI
i=1 Γ (αi,y)

·
/ I5

i=1

P
ni,y+αi,y−1
i,y dP y

=
Γ(Ey + 1)

MI
i=1 Γ (ni,y + 1)

·
Γ
:CI

i=1 αi,y

;

MI
i=1 Γ (αi,y)

·
MI

i=1 Γ (ni,y + αi,y)

Γ
:
Ey +

CI
i=1 αi,y

;

=
Γ(Ey + 1)

MI
i=1 Γ (ni,y + 1)

·
Γ
:CI

i=1 αi,y

;

Γ
:
Ey +

CI
i=1 αi,y

; ·
I5

i=1

Γ (ni,y + αi,y)

Γ (αi,y)

Since we assume that αi,y = θ ·Ey · P̂i,y, the above equation can be rewritten
as

f(ny|θ, P̂ y) =
Γ(Ey + 1)

MI
i=1 Γ (ni,y + 1)

·
Γ
:CI

i=1 θ · Ey · P̂i,y

;

Γ
:
Ey +

CI
i=1 θ · Ey · P̂i,y

;

×
I5

i=1

Γ
:
ni,y + θ · Ey · P̂i,y

;

Γ
:
θ · Ey · P̂i,y

;

=
Γ(Ey + 1)

MI
i=1 Γ (ni,y + 1)

· Γ (θ · Ey)

Γ (Ey + θ · Ey)

×
I5

i=1

Γ
:
ni,y + θ · Ey · P̂i,y

;

Γ
:
θ · Ey · P̂i,y

; ∵
IE

i=1

P̂i,y = 1, ∀y
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