
1

Multitask Genetic Programming Based
Generative Hyper-heuristics: A Case Study

in Dynamic Scheduling
Fangfang Zhang, Graduate Student Member, IEEE, Yi Mei, Senior Member, IEEE, Su Nguyen, Member, IEEE,

Kay Chen Tan, Fellow, IEEE, and Mengjie Zhang, Fellow, IEEE

Abstract—Evolutionary multitask learning has achieved great
success due to its ability to handle multiple tasks simultaneously.
However, it is rarely used in the hyper-heuristic domain which
aims at generating a heuristic for a class of problems rather
than solving one specific problem. The existing multitask hyper-
heuristic studies only focus on heuristic selection, which is not
applicable to heuristic generation. To fill the gap, we propose
a novel multitask generative hyper-heuristic approach based on
genetic programming in this paper. Specifically, we introduce
the idea in evolutionary multitask learning to genetic program-
ming hyper-heuristics with a suitable evolutionary framework
and individual selection pressure. In addition, an origin-based
offspring reservation strategy is developed to maintain the quality
of individuals for each task. To verify the effectiveness of the
proposed approach, comprehensive empirical studies have been
conducted on the homogeneous and heterogeneous multitask
dynamic flexible job shop scheduling. The results show that
the proposed algorithm can significantly improve the quality of
scheduling heuristics for each task in all the examined scenarios.
In addition, the evolved scheduling heuristics verify the mutual
help among the tasks in a multitask scenario.

Index Terms—Multitask Learning, Hyper-heuristic, Genetic
Programming, Dynamic Scheduling, Job Shop Scheduling.

I. INTRODUCTION

Multitask learning is a paradigm that aims at solving mul-
tiple self-contained tasks simultaneously. The paradigm

of multifactorial optimisation toward evolutionary multitask

Manuscript received XXX; revised XXX and XXX; accepted XXX. This
work is supported in part by the Marsden Fund of New Zealand Government
under Contract VUW1509 and Contract VUW1614; in part by the Science
for Technological Innovation Challenge Fund under Grant E3603/2903; and
in part by the MBIE SSIF Fund under Contract VUW RTVU1914. This work
is partially supported by the Research Grants Council of the Hong Kong
SAR under grant No. CityU11202418 and No. CityU11209219. The work
of Fangfang Zhang was supported by the China Scholarship Council/Victoria
University Scholarship. This article was recommended by Associate Editor
XXX. (Corresponding author: Fangfang Zhang.)

Fangfang Zhang, Yi Mei, and Mengjie Zhang are with the Evo-
lutionary Computation Research Group, School of Engineering and
Computer Science, Victoria University of Wellington, Wellington 6140,
New Zealand (e-mail: fangfang.zhang@ecs.vuw.ac.nz; yi.mei@ecs.vuw.ac.nz;
mengjie.zhang@ecs.vuw.ac.nz).

Su Nguyen is with the Centre for Data Analytics and Cogni-
tion, La Trobe University, Melbourne, VIC 3086, Australia (e-mail:
p.nguyen4@latrobe.edu.au).

Kay Chen Tan is with the Department of Computing, Hong Kong Poly-
technic University (e-mail: kctan@polyu.edu.hk).

This article has supplementary downloadable material available at XXX,
provided by the authors.

Colour versions of one or more of the figures in this article are available
online at XXX.

Digital Object Identifier XXX

(MFEA) was given in [1], [2] for solving multiple tasks simul-
taneously in evolutionary algorithms. The success of MFEA
relies on the knowledge sharing mechanism [3] between tasks
by assortative mating and vertical cultural transmission during
the evolutionary process. Specifically, the candidate solutions
in a population for tasks enhance each other by harnessing
the hidden relationships between them via continuous genetic
transfer in a unified search space. Based on the assumption that
most problems in real life are interconnected, MFEA has been
widely and successfully applied to solve different problems
such as continuous numeric optimisation [2], [4], [5], symbolic
regression [6], job shop scheduling [7], [8], feature selection
[9] and timetabling [10].

A hyper-heuristic [11], [12] approach seeks to select or gen-
erate heuristics to solve hard computational search problems
efficiently in a search space with heuristics. The unique char-
acteristic of hyper-heuristic is that its search space consists of
heuristics rather than solutions. The goal of a hyper-heuristic
is to find a sequence of low-level heuristics (selective hyper-
heuristic) or generate an informative high-level heuristic (gen-
erative hyper-heuristic) rather than finding the solution directly
[13]. In other words, hyper-heuristic outputs a heuristic rather
than a solution. Hyper-heuristic approaches have two main
advantages. First, the learned high-level heuristics have good
reusability, and can easily be applied to a range of problem
scenarios. Second, generative hyper-heuristic approaches can
handle the dynamic problems efficiently, because the evolved
heuristics are typically used as priority functions and can
make real-time decisions. Multitask selective hyper-heuristic
has been investigated in [10] on exam timetabling and graph
colouring problems, however, to the best of our knowledge,
there is no study on multitask generative hyper-heuristic.

Genetic programming (GP) [14], as one of the most popular
used evolutionary algorithms, is a promising hyper-heuristic
approach [11], [15], especially in heuristic generation due
to its flexibility of representation. Compared with heuristic
approaches [16], hyper-heuristic approaches work on heuristic
space with heuristics (e.g., the dispatching rule in scheduling)
rather than solution space with solutions (e.g., the schedule
in scheduling). It is noted that the obtained heuristics of
hyper-heuristic approaches can be used to generate solutions
depending on the investigated problem. More details about
hyper-heuristics can be found in [13], [17]. A GP individual
is a combination of terminals and functions. The terminals
correspond to the inputs of the computer program, which
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are specific to the problems. The functions can include any
arithmetic operations, logical functions, and domain-specific
functions. GP hyper-heuristic with tree-based representation
has been successfully used for evolving scheduling heuristics
for complex combinatorial optimisation problems such as
dynamic job shop scheduling [18], [19], [20], [21], [22].
However, GP is rarely used in multitask learning. Multitask
GP was successfully used to the symbolic regression problem
in [6]. However, the GP approach in [6] worked on the solution
space rather than heuristic space. In addition, gene expression
representation [23], [24] with a fixed length of strings was
used in [6], which is a vector-based representation rather than
tree-based representation. It is noted that handling with tree-
based representation in GP is more challenging than vector-
based representation in genetic algorithms due to its variable-
length characteristic. A slight change of an individual with
tree-based representation in GP can lead to a severe change to
its quality. There are a number of related dynamic tasks in real-
world applications such as cloud computing [25] and job shop
scheduling [26], [27] with a preference for hyper-heuristic
approaches. Thus, this paper presents an attempt to fill the
gap of multitask in generative hyper-heuristic by adapting the
idea of MFEA to multitask GP hyper-heuristic for evolving
scheduling heuristics in dynamic scheduling. The benefit of
multitask GP learning in this paper is that by handling a
number of tasks simultaneously, each task can be solved more
effectively with the help from solving the other tasks than
being solved independently.

GP and hyper-heuristics have their own features so that
directly applying MFEA [2] to GP and hyper-heuristics may
not achieve satisfactory effectiveness and efficiency. First, GP
and genetic algorithm [28] use different ways to control the
selection pressure. In GP, the selection pressure is typically
implemented by the parent selection for breeding. However,
MFEA follows a common genetic algorithm framework that
combines the parent and offspring populations, and select
the best individuals from the combined population to the
next generation. Using both the parent selection in GP and
environment selection in MFEA simultaneously will make
MFGP too greedy and lose the population diversity. Second,
in addition to the training performance, hyper-heuristic ap-
proaches ultimately aims to achieve good performance on the
unseen test instances, which is known as generalisation. To
improve generalisation, a commonly used strategy used in
GP hyper-heuristic is to rotate the training instances at each
generation [11], [29]. Concatenating parent population with
offspring population requires to re-evaluate the individuals
in parent population on the same training instances of the
offspring. This can lead to a lengthy training process. Last
but not least, the evaluations of heuristics are normally time-
consuming, which requires to run a long simulation to measure
the quality of the heuristics. The way in MFEA that allocates
offspring to different tasks by calculating their fitness on all the
tasks and assigns them to the best task at the first generation is
not efficient. To address the above issues, this paper proposes
an effective hyper-heuristic multitask algorithm based on the
characteristics of GP. Specifically, we remove the concatena-
tion operation by introducing multiple subpopulations for tasks

with tournament selection and effective knowledge sharing
mechanism between tasks.

The overall goal of this work is to develop a novel and ef-
fective multitask genetic programming based generative hyper-
heuristic approach. The proposed algorithm is expected to
improve the quality of the evolved high-level heuristics for
all the tasks considered in the multitask scenario. Specifically,
the contributions of this paper are given as follows:

1) Propose an effective multitask GP based generative
hyper-heuristic approach according to the characteris-
tics of GP. Specifically, tasks are solved independently
via multiple subpopulations. An novel origin-based off-
spring reservation strategy is proposed to share knowl-
edge between different tasks via crossover.

2) Verify the proposed algorithm on homogeneous and
heterogeneous multitask scenarios in dynamic flexible
job shop scheduling problems. The results show that
the proposed algorithm can evolve highly-competitive
scheduling heuristics for different tasks in all exam-
ined homogeneous and heterogeneous multitask dy-
namic scheduling scenarios.

3) Analyse the evolved scheduling heuristics and show
that the proposed algorithm can solve multiple tasks
collaboratively in terms of the structure and behaviour
of obtained high-level scheduling heuristics.

II. BACKGROUND

A. Multifactorial Evolutionary Algorithm

The main feature of MFEA is the use of skill factor τ to
represent the allocation of individuals for different tasks. The
skill factor represents the task that one individual is best at.
The knowledge transfer is realised by the crossover operator
between individuals with different skill factors explicitly.

Fig. 1 shows the flowchart of MFEA with k tasks [2]. In the
beginning, a population of individuals are randomly initialised
based on the predefined unified representation. Then, each
individual is evaluated on all tasks, and the individual is
allocated for its fittest task. As an evolutionary algorithm, the
working of MFEA is based on the transmission of cultural
genetic materials from parents to their offspring. This is an
important step of MFEA that plays a role of transferring
knowledge between tasks. In particular, assortative mating
and vertical cultural transmission are used with two randomly
selected parents to generate the offspring. Assortative mating
states that individuals prefer to mate with those belonging to
the same cultural background. In MFEA, the skill factor is
regarded as an individual’s cultural bias. The individuals with
the same or different skill factor(s) have the same or different
culture in MFEA. Vertical cultural transmission is a mode of
inheritance that the phenotype of an offspring is directly af-
fected by the phenotype of its parents. In MFEA, it is realised
by allowing offspring to inherit the skill factor of their parents.
Finally, the parent population P and offspring population Pnew

are concatenated as an intermediate population Pimd, and the
top popsize fittest individuals from Pimd are kept into the
next generation. The output of MFEA is k individuals, each
for one task.
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Fig. 1. The flowchart of MFEA with k tasks, where P , Pnew , and Pimd denote the evaluated, newly generated offspring, and the concatenated population.
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Fig. 2. An example of generating offspring of MFEA, where P1 and P2

indicate the selected parents, and O1 and O2 represent the generated offspring.

Fig. 2 shows an example of how the interaction of the
knowledge is achieved. Assume there are two tasks in a
multitask scenario. The individuals for task 1 and task 2
are in grey and dark blue, and the star and circle indicate
different genetic materials of individuals for task 1 and task 2,
respectively. Two parents (P1 and P2) are randomly selected
from the parent population uniformly with a random value
from 1 to popsize (i.e., the index of individuals). If the
selected parents are optimised for the same task (τ1 = τ2),
then their offspring will inherit their culture for optimising
the same task (Case 1). If the selected parents are designed
for different tasks (τ1 6= τ2), then there are two options. If
the random value is larger than the predefined random mating
probability (rmp), the mutation operator will be triggered to
produce one offspring for each parent, and the corresponding
offspring inherits the culture of the parent directly (Case 2).
Otherwise, two offspring will be produced, and each of them
has 50% probability of inheriting one of the parents’ cultures
(Case 3). There are four different situations according to how
they inherit the skill factors.

B. Genetic Programming Hyper-heuristics

The optimal structures of heuristics are normally not known
in real-world applications, which makes the heuristic learning

process challenging. GP, as a hyper-heuristic method [30],
has been successfully applied to evolve scheduling heuristics
for combinatorial optimisation problems [31], [32], [33], [34].
Tree-based GP [11], [35] is a good candidate to learn heuristics
for solving problems due to its flexible representation. This
implies that the structures of heuristics do not need to be
defined in advance. The goal of GP hyper-heuristic is to
find an effective high-level heuristic by constructing low-level
heuristics and functions properly.

Fig. 3 shows the flowchart of a typical GP to learn heuristic.
Compared with Fig. 1, Fig. 3 shows that MFEA differs from
GP mainly in the way of evaluating individuals, selecting
parents and producing offspring. Different from MFEA, the
GP individuals only need to be evaluated for a single task
rather than multiple tasks. The parent(s) are selected using
tournament selection in GP [6], [14], and the newly generated
individuals do not need to be evaluated immediately. In
addition, there is no population concatenation operation in GP.
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Fig. 3. The flowchart of a typical GP.

C. Knowledge Transfer in Genetic Programming

In the field of transfer learning in GP, regarding “what
to transfer”, there are two main schemes [36]. One is the
“FullTree” that migrates a number of individuals with good
quality directly. The other is to transfer the “SubTree” which
is extracted from individuals. Different from the traditional
transfer learning in GP [37], there are no source and target
domains in this work. Thus, there is no knowledge extraction
process from the source problem. The knowledge should be
transferred between different tasks during the evolutionary
process. Migrating individuals for sharing knowledge to other
tasks [38], [39] highly relies on the quality of selected
individuals. If poor-quality individuals are moved to other
tasks, or good-quality individuals perform poorly on other
tasks, they will be eliminated quickly and fail to play a
role in knowledge sharing. Crossover is an important genetic
operator in GP to produce offspring, which is an effective
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carrier for knowledge sharing. In addition, changing build-
blocks between individuals via the crossover can relieve the
dependence on the quality of individuals. Therefore, taking the
effectiveness and efficiency into consideration, we can transfer
the knowledge between tasks by exchanging the subtrees of
the individuals for different tasks via the crossover operator.

III. RELATED WORKS OF EVOLUTIONARY MULTITASK
ALGORITHMS

Although evolutionary multitask [1], [2] is a relatively new
paradigm, it has recently received much research interests in
optimising multiple tasks simultaneously. Most existing mul-
titask approaches aims at improving the qualities of solutions
for all the tasks directly [40], [41], thus ignoring the hyper-
heuristic research area. A unified framework of graph-based
evolutionary multitask hyper-heuristic approach was proposed
and examined on timetabling and graph-colouring problems
[10]. However, the proposed approach was a heuristic se-
lection approach rather than heuristic generation approach.
In addition, it was only compared with the simple single-
tasking hyper-heuristics, and there is no further analysis of the
heuristic structure. From the perspective of involved research
fields, evolutionary multitask has been successfully applied
to continuous numeric optimisation with benchmarks [2], [4],
[42], [43], and regression problems [6]. However, the studies
on discrete, combinatorial problems which have more complex
situations are still very limited. This limits its applications in
practice. In terms of solution representation, most studies are
conducted with the vector-based search space [43], [44], [45],
[46] rather than tree-based search space.

Multitask GP has been investigated for combinatorial op-
timisation problems, such as team orienteering [38] and dy-
namic job shop scheduling [7], [39]. The problem investigated
in [38] is static. The training instances are clustered for
each island, and several individuals with better fitness are
transferred between islands. However, the approach cannot
be applied for dynamic problems with simulation, since the
training instances are not available for clustering. In addition,
in [39], a niching approach was proposed for dynamic job
shop scheduling. However, the main drawback is that the
niched individuals need further evaluations, which is not an
efficient way. In [7], multitask GP was applied to dynamic
flexible job shop scheduling, and the efficiency of solving
multiple dynamic flexible job shop scheduling problems was
dramatically improved. However, the quality of the evolved
scheduling heuristics were not improved.

In summary, the research on hyper-heuristic multitask is
still in its early stage. In this paper, we propose a multitask
GP based generative hyper-heuristic approach. It is a good case
study for enhancing the development of multitask learning into
the hyper-heuristic domain.

IV. THE MULTITASK GENETIC PROGRAMMING BASED
GENERATIVE HYPER-HEURISTICS

A. The Framework of the Proposed Algorithm

We propose to use multiple independent subpopulations
to solve different tasks but keep knowledge sharing between

Algorithm 1: The Framework of the Proposed Algorithm

Input : k tasks T1, T2, ... , Tk

Output: The best evolved heuristics for each task h∗
1 , h∗

2 , ... , h∗
k

1: Initialisation: Randomly initialise the population with k subpopulations
2: set h∗

1 , h∗
2 , ... , h∗

k ← null
3: set fitnessh∗

1
, fitnessh∗

2
, ... , fitnessh∗

k
← +∞

4: gen← 0
5: while gen < maxGen do
6: // Evaluation: Evaluate the individuals in the population
7: for i = 1 to k do
8: for j = 1 to subpopsizei do
9: Calculate fitnesshj

based on fitness function of Ti

10: end
11: end
12: for i = 1 to k do
13: for j = 1 to subpopsizei do
14: if fitnesshj

< fitnessh∗
i

then
15: h∗

i ← hj

16: end
17: end
18: end
19: if gen < maxGen− 1 then
20: // Instance rotation with a new random seed
21: // Evolution: Generate offspring for each subpopulation
22: for i = 1 to k do
23: for j = 1 to subpopsizei do
24: if Crossover is applied then
25: if rand ≤ rmp then
26: Choose the first parent from Subpopi
27: Choose the second parent from Subpopqi
28: Produce one offspring with the proposed

origin-based offspring reservation strategy
29: else
30: Choose two parents from Subpopi, and produce
31: two offspring with traditional GP crossover
32: end
33: else
34: Choose one parent from Subpopi
35: Do mutation or reproduction accordingly
36: end
37: end
38: end
39: end
40: gen← gen+ 1
41: end
42: return h∗

1 , h∗
2 , ... , h∗

k

them. The low-level heuristics are set as the terminal set of GP
and combined with the function set to form a GP individual.
To handle multiple tasks (T1, T2, ... , Tk) simultaneously,
we group the GP individuals by equally dividing the entire
population into k subpopulations (Subpop1, Subpop2, ... ,
Subpopk). The individuals in the same (different) subpopu-
lation are used to optimise the same (different) task. On the
one hand, each subpopulation is independent from each other,
and the individuals in different subpopulations are evolved
for different tasks. Each subpopulation can be seen as the
individuals with the same skill factor in MFEA. On the
other hand, different subpopulations assist with each other by
sharing their knowledge with others, which is realised by the
genetic operator.

The main framework of the proposed algorithm is presented
in Algorithm 1. The input is the k tasks that are expected to
be solved. The output of a GP run consists of k best evolved
rules (h∗1, h∗2, ... , h∗k), each for a task. subpopsizei indicates
the number of individuals of subpopulation i. The fitness
of a heuristic hi is denoted by fitnesshi

. There are three
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Fig. 4. The framework of the proposed multitask GP based generative hyper-
heuristic with a focus on the knowledge transfer.

main differences between the proposed multitask GP hyper-
heuristic and the traditional GP for a single task. Specifically,
at the initialisation stage, the population consists of multiple
subpopulations, and each subpopulation is designed to solve
one task (line 1). During the evaluation process, the individ-
uals in different subpopulations are evaluated independently
(from line 6 to line 11). During the evolution stage, the
crossover operator is applied to share knowledge between
the tasks. If the knowledge sharing condition is met, the
offspring of each subpopulation are generated according to
the proposed knowledge sharing mechanism with the origin-
based offspring reservation strategy (from line 25 to line 28).
Otherwise, traditional GP crossover will be used to produce
two offspring (from line 29 to line 32). It is noted that
the proposed knowledge sharing mechanism via crossover is
conducted on the individuals from different subpopulations
(for different tasks), which the traditional GP crossover works
on the individuals from the same subpopulation (for the same
task). If the algorithm meets the stopping criterion, the current
best heuristic will be selected as the final obtained high-
level heuristic. Otherwise, the search process continues. The
final high-level heuristic is the best generated heuristic in the
population.

B. Knowledge Sharing

Fig. 4 shows the framework of the proposed multitask
GP based generative hyper-heuristic with a focus on the
knowledge transfer. At generation 0, a population with k sub-
populations is initialised for solving k tasks. The individuals
in each subpopulation are equally assigned for each task and
fixed for that task during the whole evolutionary process.
Specifically, the individuals with white, grey and blue colours
are initialised for T1 (task 1), T2 (task 2), and Tk (task k),
respectively. When generating offspring to the next generation,

Parent1 from Subpop1 Parent2 from Subpop2

Offspring1 (Retained) Offspring2 (Abandoned)

(b) Traditional crossover operator retains both offspring

(c) The origin-based offspring reservation retains only the 

offspring derived from Subpop1

Offspring1 (Retained) Offspring2 (Retained)

(a) Selected parents for crossover

 

Fig. 5. An example of generating offspring for Subpop1 by sharing
knowledge from Subpop2.

we use the crossover operator for knowledge transfer but
keep the individuals for each task fixed, and the offspring for
each subpopulation are produced sequentially. Finally, the best
evolved high-level heuristic for one task consists of the genetic
materials of individuals that originally belong to other tasks.
This is a clear manifestation of mutual learning between tasks.

This paper uses a knowledge transfer ratio of rmp to control
the frequency to gain knowledge from other subpopulations at
each generation. If the knowledge share mechanism is trig-
gered (rand ≤ rmp), the first parent parent1 will be selected
from the current subpopulation, and the other parent parent2
will be selected from one of the other subpopulations. Note
that if there are more than two subpopulations, when producing
offspring for one subpopulation, one of the remaining subpop-
ulations will be selected randomly. In the traditional GP, the
two parents will produce two offspring, as shown in Fig. 5
(b). Taking Subpop1 as an example, a random subpopulation
is chosen to share knowledge with Subpop1. Assume that
Subpop2 is selected, the generated offspring with knowledge
transfer for Subpop1 consists of white (from Subpop2) and
grey (from Subpop1) elements, thus, the knowledge transfer
between tasks is realised. We can see that the newly generated
offspring contain genetic materials from the individuals for
different tasks. Otherwise (rand > rmp), two parents will be
selected from the current subpopulation (i.e., the same subpop-
ulation) to produce two offspring for a new subpopulation.
However, for an individual, an effective knowledge sharing
mechanism should not only make the individual obtain useful
information but also maintain the original characteristics of the
individuals. We call this process the origin-based offspring
reservation. When producing offspring for the current task,
only the offspring generated based on the parent from the
corresponding subpopulation (e.g., Subpop1 in this example)
will be kept. Specifically, Fig. 5 (b) shows the traditional
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crossover operator that retains both offspring. On the other
hand, Fig. 5 (c) shows the origin-based offspring reservation,
which retains only the offspring generated based on the parent
from Subpop1.

C. Summary

The proposed algorithm is an extension of the traditional
multifactorial evolutionary multitask in [1] by optimising the
multitask framework according to the characteristics of GP
for developing hyper-heuristic approach. It is noted that the
proposed algorithm is not problem-dependent, and can be
applied to other domains but with proper construction of
related tasks for the specific problems such as evolving routing
rules for the arc routing problems, which will be investigated
in our future work. There are a number of improvements
compared with the traditional MFEA. First, in terms of the
number of evaluations, the proposed algorithm requires fewer
evaluations than MFEA. The individuals in the initialised
population do not need to be evaluated for all tasks for
deciding the skill factor for each individual (i.e., can save
popsize ∗ k evaluations). Second, in terms of the individual
selection pressure, there is no concatenation operation of the
parent and offspring populations, which brings another benefit.
If we handle dynamic problems with changed training instance
at each generation, we will avoid the extra re-evaluation
of the individuals in the parent population (i.e., potentially
popsize∗maxGen evaluations). Third, in terms of evaluation
resource, the number of individuals for each task is fixed
and equal, which is easy to manage. This also reduces the
parameters in the algorithm, such as skill factor. From the
perspective of computational cost, the proposed algorithm can
save up to popsize ∗ (k +maxGen) evaluations.

V. A STUDY ON MULTITASK GENETIC PROGRAMMING
BASED GENERATIVE HYPER-HEURISTIC FOR DYNAMIC

SCHEDULING

GP, as a hyper-heuristic approach, has been widely used
to evolve scheduling heuristics for the dynamic scheduling
problems [47]. Dynamic flexible job shop scheduling (DFJSS)
[48], [49] is a typical dynamic scheduling problem with
different but similar scheduling tasks which can benefit from
multitask learning. To verify the performance of the proposed
multitask GP based generative hyper-heuristic approach, we
take DFJSS as a test bed.

A. Dynamic Flexible Job Shop Scheudling

In DFJSS, n jobs J = {J1, J2, ..., Jn} need to be pro-
cessed by m machines M = {M1,M2, ...,Mm}. Each job
Jj has an arrival time at(Jj) and a sequence of operations
Oj = (Oj1, Oj2, ..., Oji). The completion of the last operation
for a job means the job has been finished. Each operation
Oji can only be processed by one of its optional machines
π(Oji) and its processing time δ(Oji) depends on the machine
that processes it. Therefore, machine assignment and operation
sequencing need to be made simultaneously in DFJSS. This
paper focuses on one dynamic event, i.e., dynamically and

continuously arriving new jobs. This means that the informa-
tion of a job is unknown until it arrives at the shop floor. The
following constraints must be satisfied in the DFJSS problem:
• A machine can process at most one operation at a time.
• Each operation can be processed only by one of its

candidate machines at a time.
• One cannot start processing an operation until all its

precedent operations have been processed.
• The processing of an operation cannot be stopped or

paused until it is completed.
The objective of the scheduling is the optimised performance
criterion for a problem while satisfying all the above con-
straints. We consider three commonly used objective functions.
The calculations of the objectives are shown as follows:

• Mean-flowtime =
∑n

j=1 {Cj−rj}
n

• Mean-tardiness =
∑n

j=1 Max{0,Cj−dj}
n

• Mean-weighted-tardiness =
∑n

j=1 wj∗Max{0,Cj−dj}
n

where Cj is the completion time of job Jj , rj is the release
time of Jj , dj is the due date of Jj , wj is the weight of Jj ,
and n is the number of jobs that are expected to be processed.

The simulation in this paper assumes that 5000 jobs need
to be processed by 10 machines. New jobs will arrive over
time according to a Poisson process with rate λ. The number
of operations of a job is randomly generated from a uniform
discrete distribution between 1 and 10. The number of can-
didate machines for an operation follows a uniform discrete
distribution between 1 and 10. In addition, the importance of
jobs varies, and the weights of 20%, 60%, and 20% of jobs
are set as 1, 2, and 4, respectively [50]. The processing time of
each operation is assigned by a uniform discrete distribution
with the range [1, 99]. The due time of a job is set at 1.5 times
of its total processing time. To improve the generalisation
of the evolved heuristics, the training sample used at each
generation is changed by assigning a new random seed for
sampling from these random distributions [26].

Utilisation level (p) is an essential factor to represent
different job shop scenarios [32]. It indicates the proportion
of time that a machine is expected to be busy. The expression
of λ is shown in Eq. (1), where µ is the average processing
time of the machines, and PM is mean the probability of
a job visiting a machine. For example, PM is 2/10 if each
job has two operations. It is noted that λ is fixed for all the
instances for a task with the same utilisation level, and a higher
utilisation level tends to lead to a busier job shop.

λ = µ ∗ PM/p (1)

To estimate the steady-state performance, the first 1000 jobs
are considered as warm-up jobs and discarded in the objective
calculations. This work collects data from the next 5000 jobs.
The simulation stops when the 6000th job is finished.

B. Multitask DFJSS Task Definition

Although there are lots of multitask studies, most of them
work on benchmark problems, and the relatedness between
tasks is widely studied [51]. However, what kinds of DFJSS
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problems are related and can be optimised in a multitask
scenario is not clear. In this subsection, we define the related
tasks based on the characteristics of DFJSS.

1) Tasks with the same objective but different utilisation
levels: In real applications, the demand for a specific product
varies over time rather than fixed [52]. For example, the
amount of orders of T-shirt in summer is likely to be larger
than that in winter. A larger amount leads to more complex
scheduling. Although the complexities of job shops can be
different, they are commonly similar in production, and have
the same goal such as minimising the total production time.
Thus, we define the tasks with different utilisation levels (i.e.,
indicate different complexities) but with the same objective to
be naturally related tasks for building a multitask scenario.

2) Tasks with different objectives but the same utilisation
level: For a scheduling task, different customers may have
different requirements [53]. One may require to minimise
the flowtime to reduce the total cost. Others may prefer to
minimise the tardiness to hand out to products to the customers
in time. Although the objectives are different, they both involve
reducing the idle time of the machines in the shop floor. The
knowledge learned from one objective might be also helpful
for the others. Therefore, we define the tasks with different
objectives but with the same utilisation level to be the related
tasks considered in a multitask scenario. In this way, we can
focus on verifying the effectiveness of the proposed algorithm
in heterogeneous scenarios with different objectives.

For simplicity, we name the multitask problem with the
same objective but with the different utilisation levels as homo-
geneous multitask, while the multitask problem with different
objectives but with the same utilisation level as heterogeneous
multitask. Intuitively, the tasks in the heterogeneous multitask
tend to be less related than the tasks in the homogeneous
multitask, since the objective is an important indicator to guide
the optimisation direction and the objectives in heterogeneous
multitask are different.

C. Scheduling Heuristics for DFJSS
The solution of a multitask problem is a set of schedul-

ing heuristics Ps = {h1, h2, ..., hk}, each for a task. Each
scheduling heuristic is composed of a routing rule for machine
assignment and a sequencing rule for operation sequencing
in DFJSS [49]. The routing rule or sequencing rule will be
used to prioritise the candidate machines or operations to
make a schedule. The most prior machine or operation will
be selected. Least work in the queue (WIQ) and shortest
processing time (SPT) are the commonly used scheduling
heuristics for machine assignment and operation sequencing,
respectively [54]. Taking these two rules as an example,
when a new operation comes, the routing rule WIQ will be
triggered to prioritise all its candidate machines, and assign
the operation to the most prior machine. The new operation
will be assigned to the machine whose has the least workload.
Similarly, when a machine is idle, the sequencing rule SPT
will be used to prioritise the operations in its queue, and the
most prior operation will be chosen to be processed next. The
operation which needs the shortest processing time will be
chosen to be processed next.

TABLE I
THE TERMINAL SET.

Notation Description

NIQ The number of operations in the queue
WIQ Current work in the queue
MWT Waiting time of a machine

PT Processing time of an operation on a specified machine
NPT Median processing time for the next operation
OWT The waiting time of an operation
WKR Median amount of work remaining for a job
NOR The number of operations remaining for a job

W Weight of a job
TIS Time in system

TABLE II
THE PARAMETER SETTINGS IN GP.

Parameter Value

*Number of subpopulations k
*Subpopulation size 400

*The number of elites for each subpopulation 10
*Parent selection Tournament selection

with size 5
*Crossover / Mutation / Reproduction rate 80% / 15% / 5%

**Number of tasks k
**Population size with re-evaluation 200 * k

**Population size without re-evaluation 400 * k
**The number of elites for each task 10

**Parent selection Random selection

Method for initialising population ramped-half-and-half
Initial minimum / maximum depth 2 / 6

maximal depth of programs 8
Terminal / non-terminal selection rate 10% / 90%

The number of generations 51
The transfer ratio 0.3

∗ : for the algorithms with multiple subpopulations only
∗∗ : for the algorithms with one population only

D. Parameter Settings in Genetic Programming

The features of the job shop are considered as the terminals
of GP. The features are commonly extracted based on the
characteristics of machines (e.g., NIQ, WIQ, and MWT),
operations (e.g., PT, NPT, and OWT), and jobs (e.g., WKR,
NOR, W, and TIS) in the job shop floor [55]. The low-level
heuristics are usually designed based on the features. The
details are shown in Table I. The function set is set to {+, −,
∗, /, max, min}, following the setting in [56]. Each function
takes two arguments. The “/” function is protected division,
returning one if divided by zero. The max and min functions
take two arguments and return the maximum and minimum of
their arguments, respectively. The other parameter settings of
GP are shown in Table II.

E. Design of Comparisons

For the homogeneous multitask, we consider three multitask
scenarios, and each with a different objective, i.e., mean
flowtime (denoted as Fmean), mean tardiness (denoted as
Tmean), and mean weighted tardiness (denoted as WTmean).
The utilisation level is a commonly used parameter [57],
[58] to represent different job shop scenarios for measuring
the effectiveness of the algorithms. The utilisation levels of
0.75, 0.85, and 0.95 are used in the homogeneous multitask
scenarios, since they are three typical distinct configurations in
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TABLE III
THE DESIGNED HOMOGENEOUS MULTITASK SCENARIOS WITH TASKS

REPRESENTED BY OPTIMISED OBJECTIVE AND UTILISATION LEVEL.

Scenario task 1 task 2 task 3

Scenario 1 <Fmean, 0.75> <Fmean, 0.85> <Fmean, 0.95>
Scenario 2 <Tmean, 0.75> <Tmean, 0.85> <Tmean, 0.95>
Scenario 3 <WTmean, 0.75> <WTmean, 0.85> <WTmean, 0.95>

TABLE IV
THE DESIGNED HETEROGENEOUS MULTITASK SCENARIOS WITH TASKS

REPRESENTED BY OPTIMISED OBJECTIVE AND UTILISATION LEVEL.

Scenario task 1 task 2

Scenario 1 <Fmax, 0.95> <Tmax, 0.95>
Scenario 2 <Fmean, 0.95> <Tmean, 0.95>
Scenario 3 <WFmean, 0.95> <WTmean, 0.95>

DFJSS [31], [47] with different complexities. Each utilisation
level represents a task in the homogeneous multitask [59],
which is used to verify the effectiveness of the proposed mul-
titask learning algorithm on the tasks with the same objective
but different complexities. The objective and the utilisation
level are two important factors to represent the characteristics
of a task in a scenario. It is noted that a higher utilisation level
will lead to a more complex task. The details of the designed
homogeneous multitask scenarios represented by optimised
objective and utilisation level are shown in Table III. For
the heterogeneous multitask, we consider three heterogeneous
multitask scenarios and choose the most complex scenario
with a utilisation level of 0.95 for investigation [21]. For each
heterogeneous multitask scenario, two different objectives are
involved without varying the utilisation levels between tasks.
In this way, we can focus on verifying the effectiveness of the
proposed algorithm on the tasks with different objectives in
heterogeneous scenarios. Except for the objectives introduced
earlier, max-flowtime, max-tardiness, mean-weighted-flowtime
are denoted as Fmax, Tmax, and WFmean, respectively. The
details are shown in Table IV.

The GP system with k subpopulations to solve k tasks inde-
pendently named GP is used as the baseline algorithm without
multitask. The second compared algorithm combines MFEA
in [2] with GP without rotating training instances named
MFGP. In addition, MFGP with rotating training instances
but without re-evaluation named MFGPr−, which MFGP with
rotating training instances and re-evaluation named MFGPr+.
The proposed multitask GP based generative hyper-heuristic
approach without the proposed offspring reservation strategy
named M2GP, since it involves both multitask and multi-
population. M2GP with the proposed offspring reservation
strategy named M2GPf .

To verify the adaptability of MFEA to GP, MFGPr−,
MFGPr+ and MFGP are compared. To verify the effectiveness
of the proposed M2GP and the origin-based offspring reser-
vation strategy, GP, MFGP, M2GP, and M2GPf are compared
in both homogeneous and heterogeneous multitask scenarios.
In addition, the effectiveness of the proposed M2GPf on
the common tasks between homogeneous and heterogeneous
scenarios are further compared with MFGP. The effectiveness
of the multitask mechanism is examined by analysing the

TABLE V
THE MEAN (STANDARD DEVIATION) OF THE OBJECTIVE VALUES ON TEST

INSTANCES OF MFGPr− , MFGPr+ AND MFGP OVER 30
INDEPENDENT RUNS IN THREE HOMOGENEOUS MULTITASK SCENARIOS.

Sce. Task MFGPr− MFGPr+ MFGP

<Fmean, 0.75> 339.97(1.11) 337.01(1.39)(–) 336.60(1.21)(–)(≈)
1 <Fmean, 0.85> 396.21(2.90) 387.91(3.72)(–) 386.67(2.93)(–)(≈)

<Fmean, 0.95> 586.77(6.50) 560.04(8.64)(–) 556.55(5.83)(–)(≈)

<Tmean, 0.75> 16.08(0.95) 13.90(0.66)(–) 13.60(0.25)(–)(≈)
2 <Tmean, 0.85> 46.32(2.74) 41.51(1.92)(–) 40.54(0.66)(–)(≈)

<Tmean, 0.95> 202.54(3.40) 182.88(5.60)(–) 180.39(4.46)(–)(≈)

<WTmean, 0.75> 33.56(2.55) 28.44(1.87)(–) 27.26(0.61)(–)(–)
3 <WTmean, 0.85> 97.12(5.22) 79.90(4.79)(–) 76.95(2.19)(–)(–)

<WTmean, 0.95> 381.03(29.32) 310.91(15.34)(–) 303.05(8.84)(–)(–)

evolved scheduling heuristics for each task in a multitask
scenario. The evolved rule is tested on 50 unseen instances,
and the average objective value across the 50 test instances is
reported as the test performance of the rule, which can be a
good approximation of the true performance of the rule.

VI. RESULTS AND DISCUSSIONS

Friedman’s test with a significance level of 0.05 is ap-
plied to rank the algorithms based on their performance. If
Friedman’s test gives significance results, we further conduct
Wilcoxon rank-sum test with Bonferroni correction between
the proposed algorithm and other algorithms with a signif-
icance level of 0.05 for the post-hoc pairwise comparisons.
In the following results, “–”, “+”, and “≈” indicate that the
corresponding result is significantly better than, worse than
or similar to its counterpart. An algorithm will be compared
with the algorithm(s) before it one by one. Since the tasks
in this paper are minimisation problems, a smaller value
indicates a better performance. “Win, Draw, Lose” means the
number of scenarios that a compared algorithm is statistically
better, similar, or worse than M2GPf . “Average Rank” shows
the average ranking of the algorithm on all the examined
scenarios.

A. The Adaptation of MFEA to GP in Dynamic Scheduling

The performance (i.e., objective value) on unseen data is
commonly used to examine the quality of the evolved schedul-
ing heuristics. Table V shows the mean and standard deviation
of the objective values on unseen instances of MFGPr−,
MFGPr+ and MFGP according to 30 independent runs
in three homogeneous multitask scenarios. Compared with
MFGPr−, the performance of MFGPr+ becomes significantly
better. This indicates that rotating training instances requires
the re-evaluation of the individuals in the next generation to
provide accurate fitness. The results show that MFGP without
rotating training instances can achieve similar or better perfor-
mance with MFGPr+ in six or three scenarios, respectively.
In addition, MFGP can achieve significant better performance
than MFGPr+ in three scenarios (i.e., <WTmean, 0.75>,
<WTmean, 0.85>, and <WTmean, 0.95>). We can see that
the multitask in dynamic scheduling of both rotating training
with re-evaluation and without rotating training instances can
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TABLE VI
THE MEAN (STANDARD DEVIATION) OF THE OBJECTIVE VALUES ON TEST INSTANCES OF GP, MFGP, M2GP, AND M2GPf OVER 30 INDEPENDENT

RUNS IN THREE HOMOGENEOUS MULTITASK SCENARIOS.

Scenario Task GP MFGP M2GP M2GPf

<Fmean, 0.75> 337.57(1.80) 336.60(1.21)(≈) 335.86(0.91)(–)(–) 336.17(1.04)(–)(≈)(≈)
1 <Fmean, 0.85> 388.79(4.30) 386.67(2.93)(≈) 385.14(1.94)(–)(–) 385.73(2.33)(–)(–)(≈)

<Fmean, 0.95> 561.35(9.16) 556.55(5.83)(≈) 553.11(4.26)(–)(–) 552.74(4.75)(–)(–)(≈)

<Tmean, 0.75> 14.08(1.10) 13.60(0.25)(≈) 13.34(0.27)(–)(–) 13.33(0.25)(–)(–)(≈)
2 <Tmean, 0.85> 41.61(2.73) 40.54(0.66)(≈) 39.75(0.87)(–)(–) 39.78(0.84)(–)(–)(≈)

<Tmean, 0.95> 182.34(7.72) 180.39(4.46)(≈) 176.84(3.10)(–)(–) 176.65(4.17)(–)(–)(≈)

<WTmean, 0.75> 28.81(2.66) 27.26(0.61)(≈) 27.27(0.99)(–)(–) 26.92(0.72)(–)(–)(≈)
3 <WTmean, 0.85> 81.23(7.63) 76.95(2.19)(≈) 76.43(3.19)(–)(–) 75.34(2.06)(–)(–)(–)

<WTmean, 0.95> 312.26(15.86) 303.05(8.84)(–) 297.72(10.38)(–)(–) 295.67(8.44)(–)(–)(≈)

Win / Draw / Lose 0 / 0 / 9 0 / 1 / 8 0 / 8 / 1 N/A
Average Rank 3.17 2.89 2.03 1.91

get comprising performance. The number of individuals eval-
uations in MFGPr+ and MFGP is the same, it is a trade-off
between sampling more individuals and re-evaluation. How-
ever, overall, MFGP outperforms MFGPr+. Therefore, MFGP
will be used for comparison later. Note that it does not mean
rotating training instances is not useful for DFJSS. Rotating
training instances with traditional GP evolutionary process can
achieve similar performance with individual selection pressure
by concatenating parent and offspring populations for DFJSS.

B. Quality of the Evolved Scheduling Heuristics

1) Homogeneous Multitask: Table VI shows the mean and
standard deviation of the objective values on the test instances
of GP, MFGP, M2GP, and M2GPf over 30 independent runs
in three homogeneous multitask scenarios. Overall, M2GPf

is the best algorithm based on the average ranking according
to the Friedman test. MFGP does not show any significant
difference from GP in most of the scenarios, which indicates
that applying the idea of MFEA into GP directly is not
effective in the context of GP hyper-heuristic. It is consis-
tent with our intuition, since the characteristics of GP are
quite different from other evolutionary algorithms. M2GP
performs significantly better than both GP and MFGP in all
the examined scenarios. This verifies the effectiveness of the
proposed M2GP in homogeneous multitask scenarios. M2GPf

also shows it superiority compared with GP and MFGP.
This verifies the effectiveness of the proposed origin-based
offspring reservation strategy.

Fig. 6 shows the violin plot of the average objective val-
ues on test instances based on 30 independent runs of GP,
MFGP, M2GP, and M2GPf in three homogeneous multitask
scenarios. According to the distribution of the 30 objective
values, MFGP can achieve smaller values than that of GP.
This indicates that the idea of MFEA [2] does help, however,
MFEA with GP does not perform well. We can see that
M2GP shows its superiority with smaller objective values in
general among the three involved algorithms. This shows that
tasks with the same objective but different utilisation levels in
DFJSS can be solved simultaneously in a mutually reinforcing
way. In addition, the objective values of M2GPf tend to be
smaller than M2GP in most of the scenarios (e.g., <Fmean,
0.95>, <Tmean, 0.75>, <Tmean, 0.95>, <WTmean, 0.75>,
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Fig. 6. The violin plot of the average objective values on test instances of
GP, MFGP, and M2GP based on 30 independent runs in three homogeneous
multitask scenarios (each row is a multitask scenario).

<WTmean, 0.85>, and <WTmean, 0.95>). This indicates
that the proposed origin-based offspring strategy does can
benefit the proposed algorithm M2GP. In addition, M2GP
and M2GPf can safely remove the repeated evaluations of
individuals on all the tasks at the first generation without
sacrificing the performance.

2) Heterogeneous Multitask: Table VII shows the mean and
standard deviation of the objective values on test instances
of GP, MFGP, M2GP and M2GPf based on 30 independent
runs in three heterogeneous multitask scenarios. Overall, the
proposed M2GPf is the first according to the average rank
obtained by the Friedman’s. Different from the observation
in homogeneous multitask, MFGP and M2GP do not out-
perform GP, since they are not significantly better than GP
in most scenarios. M2GPf , however, achieves significantly
better results than GP and MFGP in most of the scenarios,
and it outperforms M2GP in one scenario (e.g., <Tmean,
0.95>). One possible reason is that the tasks with different
objectives on heterogeneous multitask are less related, and
the proposed origin-based offspring reservation strategy can
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TABLE VII
THE MEAN (STANDARD DEVIATION) OF THE OBJECTIVE VALUES ON TEST INSTANCES OF GP, MFGP, M2GP, AND M2GPf OVER 30 INDEPENDENT

RUNS IN THREE HETEROGENEOUS MULTITASK SCENARIOS.

Scenario Task GP MFGP M2GP M2GPf

1 <Fmax, 0.95> 2032.96(98.29) 2081.77(76.40)(+) 1991.15(88.56)(–)(–) 1981.28(37.19)(–)(–)(≈)
<Tmax, 0.95> 1580.81(54.13) 1647.75(55.45)(+) 1576.03(54.94)(≈)(–) 1575.13(37.84)(≈)(–)(≈)

2 <Fmean, 0.95> 560.72(10.18) 556.10(6.10)(≈) 556.52(9.11)(≈)(≈) 553.79(7.43)(–)(–)(≈)
<Tmean, 0.95> 180.81(6.83) 178.76(3.47)(≈) 180.20(6.51)(≈)(≈) 177.55(5.72)(–)(–)(–)

3 <WFmean, 0.95> 1136.33(25.65) 1121.67(12.74)(–) 1123.87(20.45)(–)(≈) 1121.05(22.20)(–)(–)(≈)
<WTmean, 0.95> 311.20(16.82) 301.12(8.07)(–) 303.06(15.23)(–)(≈) 300.00(15.38)(–)(–)(≈)

Win / Draw / Lose 0 / 1 / 5 0 / 0 / 6 0 / 5 / 1 N/A
Average Rank 2.86 2.77 2.41 1.97

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

<Tmax, 0.95> <Tmean, 0.95> <WTmean, 0.95>

<Fmax, 0.95> <Fmean, 0.95> <WFmean, 0.95>

1100

1125

1150

1175

1200

300

320

340

550

560

570

580

180

190

1900
2000
2100
2200
2300
2400

1500

1600

1700

Algorithm

O
bj

ec
tiv

e 
V

al
ue

s 
on

 T
es

t I
ns

ta
nc

es

GP MFGP M2 GP M2 GPf

Fig. 7. The violin plot of the average objective values on test instances of
GP, MFGP, M2GP, and M2GPf based on 30 independent runs in three
heterogeneous multitask scenarios (each column is a multitask scenario).

maintain the quality of individuals for each task well, since
it aims to keep the main characteristics of the individuals for
the corresponding tasks.

Fig. 7 shows the violin plot of the average objective values
on unseen instances of GP, MFGP, M2GP, and M2GPf based
on 30 independent runs in three heterogeneous multitask
scenarios. It is obvious that the objective values achieved by
M2GP tend to be much smaller than that of GP and MFGP.
This indicates that tasks with different objectives but the same
utilisation level in DFJSS can also be solved simultaneously
in a mutually reinforcing way. In addition, we can see that the
objective values obtained by M2GPf tend to be smaller than
M2GP, which confirms the positive effect of the proposed
origin-based offspring reservation strategy.

3) Homogeneous Versus Heterogeneous Multitask: There
are three common tasks (i.e., <Fmean, 0.95>, <Tmean,
0.95>, and <WTmean, 0.95>) solved in both the homoge-
neous and heterogeneous multitask scenarios. It is interesting
to know the quality of the evolved scheduling heuristics
obtained for the same task in different types of multitask
scenarios. Note that they are comparable because the number
of evaluations for the corresponding tasks is equal.

Fig. 8 shows the violin plot of the average objective values
on unseen data of MFGP and M2GPf for the common tasks
between the homogeneous and heterogeneous multitask sce-
narios. Overall, for all scenarios, M2GPf performs better than
MFGP in both homogeneous and heterogeneous multitask.
Based on the distributions of the achieved objective values,
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Fig. 8. The violin plot of the average objective values on test instances of
MFGP and M2GPf in both homogeneous (denoted as homo) and heteroge-
neous (denoted as hete) multitask scenarios for their common tasks based on
30 independent runs.

both MFGP and M2GPf show it superiority in heterogeneous
multitask scenarios rather than homogeneous multitask sce-
narios for most of the common tasks. The objective values
obtained from heterogeneous multitask are distributed in a
relatively lower position.

In summary, the proposed algorithm M2GPf can achieve
better performance with both homogeneous and heterogeneous
multitask scenarios. In addition, we find that learning in
a heterogeneous multitask scenario has more potential to
improve the quality of the evolved scheduling heuristics.

C. The Evolved High-level Scheduling Heuristics

We choose the evolved scheduling heuristics, including
routing and sequencing rules for tasks in a heterogeneous
multitask scenario to investigate how the tasks help with each
other from the perspective of the genotypes of individuals. The
second heterogeneous multitask scenario is selected, since it
contains two out of three common tasks (e.g., <Fmean, 0.95>,
<Tmean, 0.95>, and <WTmean, 0.95>) with homogeneous
multitask scenarios. The routing rules are the best evolved
rules for task 1 and task 2 from the same run in heteroge-
neous multitask scenario 2, and the sequencing rules are the
corresponding sequencing rules of the routing rules mentioned
above. Note that a machine or an operation with a smaller
priority value is more prior.

1) Routing Rules: Fig. 9 and Fig. 10 show one of the
evolved routing rules for task <Fmean, 0.95> and <Tmean,
0.95> in the second scenario of heterogeneous multitask,
respectively. It is obvious that these two scheduling heuristics
share knowledge between each other, since the major part of



11

-

/ /

- NIQ

- Min

+ /

WKR -

PT MWT

WKR PT

NIQ WIQ

+ PT

/ WKR

+ /

WKR -

PT MWT

+ PT

W PT

Fig. 9. One of the best evolved routing rules for task 1 <Fmean, 0.95> in
heterogeneous multitask scenario 2.
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Fig. 10. One of the best evolved routing rules for task 2 <Tmean, 0.95> in
heterogeneous multitask scenario 2.

the rules is the same which is highlighted in grey. WKR and
PT are the most commonly appeared terminals in the grey
area, which are both important for the machine assignment in
minimising mean-flowtime and mean-tardiness.

In this paper, we investigate the behaviour of the scheduling
heuristics with a focus on the rules for minimising mean-
tardiness. The routing rule for minimising mean-tardiness in
Fig. 10 can be further simplified, as shown in Eq. (2).

R ={WKR+ PT −MWT − WKR

PT
−Min{

Max{WKR,MWT}
PT

,
WKR

PT
−NOR}}/NIQ

− Min{WKR,TIS}
PT (NPT +W )

− WKR

PT

≈{PT −MWT − WKR

PT
−Min{

Max{WKR,MWT}
PT

,
WKR

PT
−NOR}}/NIQ

− Min{WKR,TIS}
PT (NPT +W )

− WKR

PT

(2)

WKR and PT are the two most commonly used low-level
heuristics for this routing rule based on the occurrences of
heuristics. However, the value of WKR (i.e., the remaining
work of the corresponding job of an operation for all the
machines) is the same. This indicates that WKR is not an
important factor for this rule to distinguish the machines, and
it can be considered as a constant. Similarly, W (i.e., the

+

- +

/ MWT

- Min

MWT TIS + *

* +

NOR NIQ NPT WKR

Min PT

/ /

WKR MWT NPT WIQ

WIQ -

/ MWT

- Min

MWT TIS + *

+ +

NPT W NPT WKR

- MWT

W OWT

Fig. 11. One of the best evolved sequencing rules for task 1 <Fmean, 0.95>
in heterogeneous multitask scenario 2.
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NPT W NPT WKR

- MWT

W OWT

Fig. 12. One of the best evolved sequencing rules for task 2 <Tmean, 0.95>
in heterogeneous multitask scenario 2.

importance of a job), NOR (i.e., the number of remaining
operations of a job), NPT (i.e., the median processing time of
the next operation), and TIS (i.e., the time that an operation
in the job shop floor) are also considered as constants here.
Without considering WKR, W and NOR if possible, this rule
can be further simplified as shown in step 2 in Eq. (2).

This rule tends to choose the machine with smaller pro-
cessing time (i.e., efficient machine for an operation) and a
longer waiting time (i.e., the time that a machine is idle). It
is consistent with our intuition, since we would like to use
efficient machines and make better use of the machine re-
sources to reduce the producing time for products. In addition,
this rule prefers to allocate an operation to a machine with a
larger number of operations (NIQ). Note that a larger NIQ
does not mean an overhead workload for a machine, since the
processing time of the operations can be small. In this case,
if an operation is allocated to a machine with a larger NIQ, it
might have higher chance to be processed soon, because the
sequencing decision is more often to be triggered.

2) Sequencing Rules: Fig. 11 and Fig. 12 show the corre-
sponding sequencing rules of the routing rules, as shown in
Fig. 9 and Fig. 10, respectively. The main framework of these
two sequencing rules for different tasks in a multitask scenario
is the same as shown in grey, and only two smaller parts of
them are different. This means that these two sequencing rules
strongly share their knowledge in the evolutionary process. In
the grey area, MWT and NPT are the two most important
terminals based on the frequency of terminals, which are both
important operation sequencing in minimising mean-flowtime
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and mean-tardiness.
The corresponding sequencing rule (Fig. 12) of the routing

rule in Fig. 10 is shown in Eq. (3). From step 1 to step 2,
“Min{W, PT * Min{WKR

MWT , NPT
WKR}}” can be further simplified

to W, since W (e.g., 1, 2 and 4) is more likely to be smaller
than “PT * Min{WKR

MWT , NPT
WKR}”. “(W - OWT) * MWT” is

more likely to be a negative number, because W is usually
smaller than OWT. Therefore, “Min{2NPT+W+WKR, (W-
OWT)*MWT}” can be further simplified as “(W - OWT) *
MWT”. Finally, since the value of W is much smaller than
OWT, W is removed, as shown in the last step in Eq. (3).

S =
MWT − TIS

Min{W,PT ∗Min{WKR
MWT

, NPT
WKR

}}
−

MWT − TIS

Min{2NPT +W +WKR, (W −OWT ) ∗MWT}
− 2MWT +WIQ

≈MWT − TIS

W
+

MWT − TIS

(OWT −W ) ∗MWT

≈MWT − TIS

W
+

MWT − TIS

OWT ∗MWT

(3)

For the operations that in the queue of a machine, MWT
(i.e., machine waiting time) is the same for all the operations,
and can be considered as a constant. This sequencing rule
suggests to choose the operation that comes to the job shop
floor for a long time (i.e., large TIS), and waits in the queue
of a machine for a long time (i.e., large OWT). It is consistent
with our intuition that a long time waiting will delay the
production, and it is conducive to minimise the tardiness. In
addition, the machine prefers to choose the important operation
with a large W. This is also consistent with our intuition that
important jobs should be processed earlier to reduce the delay
for improving customer satisfaction.

In summary, both the routing and sequencing rules for tasks
in heterogeneous multitask scenarios share lots of knowledge
with each other. We observe the same pattern in the homoge-
neous multitask scenarios, but it is not included in the paper
due to page limit. We can conclude that the proposed algorithm
can solve the tasks in a mutually reinforcing way.

VII. CONCLUSIONS

This paper has successfully proposed an effective multi-
task genetic programming based generative hyper-heuristic
approach. The effectiveness of the proposed algorithm was
examined on both homogeneous and heterogeneous multitask
scenarios with dynamic flexible job shop scheduling problems.
The contributions of the proposed generative hyper-heuristic
multitask algorithm are three-fold.

First, the proposed algorithm broadens the study of multi-
task on the hyper-heuristic domain. It extends the application
of the multitask approach to evolving high-level heuristics for
the complex dynamic combinatorial optimisation problems.
Second, a new variation of the traditional multitask framework
was proposed based on the characteristics of genetic pro-
gramming. It expands the paradigm of evolutionary multitask
to other popular evolutionary algorithms but with different
features such as selection pressure and representation. Last, the
way of defining multitask scenarios in dynamic combinatorial

optimisation problem can provide guidance for employing
multitask to real-world applications.

The results showed that the proposed M2GPf can achieve
scheduling heuristics with competitive quality in all of the
homogeneous and heterogeneous multitask scenarios. In ad-
dition, M2GPf is robust in terms of the performance in both
homogeneous and heterogeneous multitask scenarios. We also
found that the task with a heterogeneous multitask scenario
has more potential to be optimised well. The effectiveness
of the proposed multitask GP hyper-heuristic was examined
by not only comparing the quality of evolved scheduling
heuristics, but also the structures and behaviours of the evolved
scheduling heuristics for all tasks in a multitask scenario. It has
also been observed that the proposed algorithm does manage
to solve the tasks in a mutually reinforcing way.

Some interesting directions can be further studied in future.
We would like to investigate the effectiveness of M2GPf on
other problem domains such as the arc routing problems. We
plan to work on the multitask scenarios with more than three
tasks. We will find effective ways to construct multitask tasks
in the complex problems with unknown fitness landscape. We
will propose an effective way to measure the relatedness of
tasks to develop a more effective approach based on the cur-
rent multitask genetic programming based generative hyper-
heuristics framework. We will also investigate more on what
is transferred between tasks in the multitask scenarios from
different perspectives such as the phenotype of the individual.
In addition, more advanced knowledge sharing mechanism will
be designed based on the relatedness of tasks.
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