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Abstract—Dynamic flexible job shop scheduling is a chal-
lenging combinatorial optimisation problem due to its com-
plex environment. In this problem, machine assignment and
operation sequencing decisions need to be made simultaneously
under the dynamic environments. Genetic programming, as a
hyper-heuristic approach, has been successfully used to evolve
scheduling heuristics for dynamic flexible job shop scheduling.
However, in traditional genetic programming, recombination
between parents may disrupt the beneficial building-blocks by
choosing the crossover points randomly. This paper proposes
a recombinative mechanism to provide guidance for genetic
programming to realise effective and adaptive recombination for
parents to produce offspring. Specifically, we define a novel mea-
sure for the importance of each subtree of an individual, and the
importance information is utilised to decide the crossover points.
The proposed recombinative guidance mechanism attempts to
improve the quality of offspring by preserving the promising
building-blocks of one parent and incorporating good building-
blocks from the other. The proposed algorithm is examined on
six scenarios with different configurations. The results show that
the proposed algorithm significantly outperforms the state-of-the-
art algorithms on most tested scenarios, in terms of both final
test performance and convergence speed. In addition, the rules
obtained by the proposed algorithm have good interpretability.

Index Terms—Recombinative Guidance, Correlation Coeffi-
cient, Genetic Programming, Hyper-heuristics, Dynamic Flexible
Job Shop Scheduling.
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Job shop scheduling (JSS) [1] is an important but chal-
lenging optimisation problem in computer science and

operations research in which jobs are assigned to machines
at particular times. For JSS, the task is to process a number
of jobs (e.g., each job has a sequence of operations) by
a set of machines. Flexible JSS (FJSS) [2] is a relaxation
of JSS where each operation can be processed on a set of
candidate machines. In FJSS, we need to make two decisions
simultaneously. One is machine assignment (i.e., assign an
operation to a particular machine) and the other is operation
sequencing (i.e., choose an operation as the next operation to
be processed by an idle machine). Dynamic FJSS (DFJSS)
[3] aims to optimise the machine resources under a dynamic
environment with unpredicted events, such as new job arrivals
[4], [5], [6] and machine breakdown [7], [8]. DFJSS is an
NP-hard problem [9]. Job shop environments are crucial in
many industries, such as manufacturing processes [10], [11]
and cloud computing [12]. As a result, the ability to create
efficient production schedules for job shops can be a key value
added propositions for manufacturers. It is hardly possible
to find effective solutions by hand, especially for large scale
problems or in dynamic environments.

Exact optimisation methods such as dynamic programming
[13] and integer linear programming [14] are usually not
applicable for real-world large problem instances. Approximate
solution optimisation methods, such as simulated annealing
[15], tabu search [16], particle swarm optimisation [17] and
genetic algorithms [18], which aim to find a near-optimal
solution within a reasonable time budget, have been widely
applied for JSS. However, most of them can hardly han-
dle dynamic problems efficiently because the re-optimisation
process is still too slow to be able to react in real-time.
Scheduling heuristics such as dispatching rules [19], [20], [21],
might be the most popularly used heuristics for dynamic JSS.
Scheduling heuristics make decisions based on the priorities
of machines or operations at the decision points. There are two
main reasons for the success of scheduling heuristics in dy-
namic JSS. One is their ability to handle large scale problems.
The other is their efficiency to make real-time decisions with
dynamic events. A scheduling heuristic in DFJSS consists of
a routing rule (i.e., for machine assignment) and a sequencing
rule (i.e., for operation sequencing). There are several rules
such as SPT (shortest processing time) and some composite
rules [22] which have been identified as effective rules for
JSS. However, they are manually designed by experts, which
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highly relies on domain knowledge, especially for complex
scenarios. In addition, many potential rules have never been
investigated [18]. For complex DFJSS problems, on the other
hand, human experts are often unable to identify all the subtle
and interrelated conditions between different types of attributes
to create and evaluate rules, or the use of highly experienced
experts is too expensive.

Tree-based genetic programming (GP) [23], as a hyper-
heuristic approach (GPHH), has been successfully applied to
evolve scheduling heuristics automatically for JSS [24], [25],
[26], [27], [28], [29], [30]. In an evolutionary computation al-
gorithm, genetic operators play important roles for generating
offspring. The crossover is an essential genetic operator for
GP to produce offspring during the evolutionary process. In
essence, the crossover is a recombination of different materials
from the parents. In traditional GP, subtrees are randomly
chosen from two parents to swap with each other to produce
two offspring. However, the importance of subtrees in each
individual can be different. Some subtrees are redundant or
less important, and removing them might not affect the fitness
of an individual too much. On the other hand, some subtrees
play essential roles for an individual and losing them will
cause considerable loss to the fitness. The random way of
recombination may disrupt beneficial building-blocks.

To the best of our knowledge, little is yet known to improve
the recombinative effectiveness of GPHH via the crossover
for JSS. Riccardo et al. provided a comprehensive general
schema theory for GP with subtree-swapping crossover in [31],
[32]. This theory suggests that the biases of GP operators
can be beneficial for different purposes, such as improving
the quality of the offspring and controlling the size or shape
of the offspring. However, it is challenging when we apply
bias in GP in practice, such as the DFJSS problem. One
critical challenge is how to measure the subtrees based on
the desired purpose. The other challenge is how to apply the
expected “biases” in GP for a specific problem. The guided
subtree selection strategy proposed in [33] is the first attempt
to improve the quality of offspring by guiding the behaviour
of genetic operators of GP for solving the DFJSS problem.
The importance of a subtree is measured by a simple average
score based on the occurrences of features. However, using the
occurrences of features to measure the importance of subtrees
may not be accurate due to the redundant branches in GP.

To address the above issues, this paper proposes to use
correlation coefficient based recombinative guidance to im-
prove the quality of offspring for GPHH in DFJSS via the
crossover operator. The developed importance measure reflects
the degree of relationship between the behaviour of the subtree
and the entire tree. The probability of a subtree to be chosen
is then set based on its importance. An offspring is generated
by replacing an unimportant subtree from one parent with an
important subtree from the other.

The goal of this paper is to develop an effective correlation
coefficient based recombination guidance for GPHH to evolve
effective scheduling heuristics in the DFJSS problem automat-
ically. The proposed algorithm is expected to help GPHH find
better scheduling heuristics more efficiently by improving the
quality of the produced offspring. Specifically, this work has

the following research objectives:
1) Develop an effective way to measure the importance of

subtrees of an individual according to the characteristics
of the investigated DFJSS problem.

2) Propose a novel recombinative guidance mechanism for
the crossover operator in GPHH.

3) Analyse the effectiveness and efficiency of the proposed
algorithm in terms of the performance of evolved rules,
the convergence speed, and training time.

4) Analyse how the proposed algorithm influences the
behaviour of GPHH to select crossover points.

5) Analyse the evolved scheduling heuristics in terms of
size and rule structure.

The major contribution of this paper is to propose a new
effective recombinative guidance for GP to generate offspring
by measuring the importance of the subtrees. The way of
measuring the importance of subtrees can provide guidance for
developing subtree importance measures for other problems.
In addition, the algorithm analyses provide us with a better
understanding of the mechanism of GP based algorithms from
the perspective of building-blocks recombination.

The rest of this paper is organised as follows. Section II
gives a background introduction. Detailed descriptions of the
proposed algorithm are given in Section III. The experiment
design is shown in Section IV, followed by results and discus-
sions in Section V. Further analyses are conducted in Section
VI. Finally, Section VII concludes the paper.

II. BACKGROUND

This section provides a brief introduction of JSS with a
focus on DFJSS, scheduling heuristics for DFJSS, and how to
use GPHH for solving the DFJSS problem. In addition, related
studies on genetic operators of GP are reviewed.

A. Dynamic Flexible Job Shop Scheduling

Job shop scheduling focuses on improving production ef-
ficiency in a shop floor. In FJSS problem, n jobs J =
{J1, J2, ..., Jn} need to be processed by m machines M =
{M1,M2, ...,Mm}. Each job Jj has an arrival time at(Jj)
and a sequence of operations Oj = (Oj1, Oj2, ..., Oji). Each
operation Oji can only be processed by one of its candidate
machines π(Oji) and its processing time δ(Oji) depends on
the machine that processes it. It implies that there are two types
of decisions in FJSS, i.e.,, routing decision and sequencing
decision. DFJSS aims to make two decisions simultaneously
under dynamic environment with unpredicted events. In this
paper, we focus on the dynamic job arrivals. That is, the
information of a job is unknown until it arrives at the job shop.
The following constraints must be satisfied in the problem.
• The order of operations for each job is predefined, and

one cannot start processing an operation until all its
precedent operations have been processed.

• Each operation can be processed only by one of its
candidate machines.

• Each machine can process at most one operation at a
time.
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• The scheduling is non-preemptive, i.e., once start, the
processing of an operation cannot be stopped or paused
until it is completed.

The objective of the scheduling is to assign the operations to
proper machines and sequence the operations in the queue of
the machines so as to optimise some objective functions while
satisfying all the above constraints. In this paper, we consider
three commonly used flowtime-related objective functions,
which are calculated as follows. It is noted that the due dates
of jobs are not considered in this paper.

• Max-flowtime = max{C1 − r1, Ci − ri, ..., Cn − rn}
• Mean-flowtime =

∑n
i=1 {Ci−ri}

n

• Mean-weighted-flowtime =
∑n

i=1 wi∗{Ci−ri}
n

where Ci is the completion time of job Ji, ri is the release
time of Ji, and wi is the weight of Ji.

B. Scheduling Heuristics for DFJSS

Two decisions need to be made simultaneously in DFJSS.
Scheduling heuristics (i.e., routing rules and sequencing rules)
are needed in DFJSS. Tay et al. [11] proposed to use GP
to evolve the sequencing rule by fixing the routing rule as
a manually designed rule for FJSS. It is a simple way to
solve the FJSS problems with scheduling heuristics. Yska et
al. [4] introduced a cooperative coevolution framework with
GP (CCGP) to evolve routing and sequencing rules simultane-
ously. The proposed method shows its superiority due to the
coevolution mechanism for evolving two rules simultaneously.
Zhang et al. [5] introduced GP with multi-tree representation
for evolving two rules together. The proposed method is
promising in terms of the effectiveness, efficiency, and the
sizes of evolved rules. This paper adopts the CCGP framework.
Since the crossover operation of routing and sequencing is
independent, CCGP is suitable for validating the effectiveness
of the proposed crossover operator.

Due to the precedent constraint, only ready operations are
allowed to be allocated to machines. Two kinds of operations
will become ready operations. One is the first operation of
a job arrived at the shop floor. The other is the subsequent
operation whose preceding operation is just finished.

Fig. 1 shows an example of the decision making processes
of DFJSS with scheduling heuristics. There are three ma-
chines, each with several operations waiting in its queue. The
operation O81 is being processed on Machine 3.

a) Routing decision: Once an operation becomes a ready
operation (a routing decision situation is encountered), it will
be allocated to the machine with the highest priority according
to the routing rule. For example, when a new job (J9) arrives
the job shop, its first operation O91 is allocated to Machine 2
which has the highest priority value among the three machines
according to the routing rule. In addition, as O81 is just
finished, its next operation (O82) becomes a ready operation
and is allocated to Machine 1 by the routing rule.

b) Sequencing decision: When a machine (e.g., Machine
1) becomes idle, and its queue is not empty (a sequencing
decision situation is encountered), the sequencing rule will be
used to calculate the priority value of each operation in its

Machine 1

Machine 2

Machine 3

O63

O81

Routing Rule

O32 O22

O91

O71 O62

O82

O11

Operations

Sequencing RuleJob n

Unknown Jobs 

Machines

O52

O82
O81

Next Operation

Fig. 1. An example of decision making processes of dynamic flexible job
shop scheduling with scheduling heuristics.

queue. The operation with the highest priority is then chosen
as the next operation to be processed (e.g., O32 is selected in
this case to be processed on Machine 1).

C. Genetic Programming Hyper-heuristics for DFJSS

A hyper-heuristic [34] seeks to select or generate heuristics
to solve hard computational search problems efficiently. The
unique characteristic is that hyper-heuristic works on heuristic
space instead of the solution space. There are two types of
hyper-heuristics methods [35]. One is heuristic selection which
aims to choose existing heuristics for different scenarios. The
other is heuristic generation which aims to generate new
high-level heuristic using existing low-level heuristics. In JSS,
heuristic generation is commonly used to evolve scheduling
heuristics from the basic job shop state features.

GP, as a hyper-heuristic method [36], has been successfully
applied to evolve scheduling heuristics for combinatorial opti-
misation problems such as packing [37], [38], timetabling [39],
[40], arc routing [41], and scheduling [42], [43], [44], [45],
[46], [47]. GP can automatically generate computer programs
to solve problems without needing much domain knowledge.
There are some advantages of using GPHH for JSS. One
is its flexible representation. This implies that we do not
need to define the structure of rules in advance. The other
is that the tree-based programs obtained by GP provide us
with opportunities to understand the behaviour of the evolved
rules, which is very important for real-world applications.

Fig. 2 shows the overall research process of GPHH for
DFJSS in this paper. In the training phase, GPHH is used to
train heuristics based on a set of training instances. The outputs
of the training phase are heuristics (routing and sequencing
rules) rather than solutions (schedules). In the test phase, the
evolved heuristics obtained in the training phase are tested on
unseen instances to generate the final schedules. Based on the
final schedules, the processing information of jobs, such as the
starting and finishing time of each operation, can be confirmed.
Finally, the performance of evolved scheduling heuristics can
be measured along with the objectives such as flowtime.
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Fig. 2. The overall process of genetic programming hyper-heuristic for
dynamic flexible job shop scheduling.

D. Related Work on Genetic Operators of GP

The flexibility of GP makes it stand out among lots of
evolutionary computation algorithms. However, GP still has
some limitations. For example, an individual is likely to behave
very differently and become much worse even after small
changes. It is not fully clear what kinds of genetic operators
can make the performance of GP better. In terms of the way to
enhance the effectiveness of the genetic operators, we group
the related studies into three categories. In this section, we
review the related studies on genetic operators of GP with a
focus on the crossover.

Adaptive rate for genetic operators. Changing the rates of
genetic operators is a simple way to improve the effectiveness
of producing offspring. Adaptive operator selection rates with
designed reward policies were proposed in [48] for GP. The
results show that adaptive rate selection is an effective way to
improve the performance of GP. Different methods of adapting
the probabilities of genetic operators were proposed in [49]
based on population-level, fitness, or individual-level infor-
mation of GP. In [50], an adaptive decreasing mutation rate
was proposed for GP to solve the truss structure optimisation
problem. These methods succeed by balancing exploration and
exploitation during the evolutionary process.

Depth-dependent crossover. Intuitively, the depth of
crossover point is an important factor for the quality of
offspring because the performance of subtree is related to
the depth to some extent. A general heuristic that can be
used to guide the development of the most effective depth-
control strategy for any given problem was discussed in [51].
A “height-fair” crossover operator that only allowed to swap
subtrees with the same depth was proposed in [52]. A depth
selection probability was defined in [53] to ensure the node
towards the root of an individual has a higher probability of
being chosen as a crossover point than the ones towards leaves.
These methods aim to bias the crossover depth to improve the
performance of GP. However, it is not straightforward to apply
them to DFJSS, since the optimal depth is not known.

Semantic crossover. The information of GP individuals can
be used to produce offspring that bias to some semantics. Two
new geometric search operators were developed in [54] to
fulfil precise semantic requirements for symbolic regression.
A novel crossover operator was proposed in [55] to address
the exponential growth in the size of the individuals. The
constrained dimensionally aware GP was designed in [56] to
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Parent Selection
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Recombinative Guidance

End

No

Yes

Evaluation
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Reproduction

 

Fig. 3. The flowchart of the proposed algorithm.

ensure only semantically correct individuals can be generated
to improve the interpretability of evolved rules for JSS. The
crossover bias for having the more fit parent as the root parent
was presented in [57]. These methods tend to achieve the
goal by utilising the semantics of GP individuals during the
evolutionary process.

Although there are some studies [58], [59], [60] on genetic
operators of GP, little research has been conducted on the
crossover to improve the quality of offspring by investigating
the importance of subtrees directly. To this end, this paper
aims to improve the effectiveness of crossover by proposing
an effective and adaptive recombinative guidance mechanism
based on the importance of subtrees.

III. THE PROPOSED ALGORITHM

This paper proposes a correlation coefficient based recom-
binative guidance mechanism to improve the quality of the
produced offspring based on the importance of subtrees. The
framework of the algorithm is described first, followed by the
key components of the algorithm.

A. The Framework of the Proposed Algorithm

Fig. 3 shows the flowchart of the proposed algorithm. The
main processes are the same as the traditional GP. It starts
with initialising the population randomly, and then evaluates
the individuals in the population. It is noted that there are two
subpopulations. One subpopulation is designed for evolving
routing rules, and the other for evolving sequencing rules.
However, there are two new components that are different from
the traditional GP, which are highlighted in red in Fig. 3. First,
the importance of each subtree of parents is calculated before
the mating process. Second, during the mating process, the
crossover is conducted based on the proposed recombinative
guidance mechanism.
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Fig. 4. An example of a labelled tree-based GP individual.

TABLE I
AN EXAMPLE OF THE CALCULATION FOR DECISION VECTOR OF THE

SUBTREES IN AN INDIVIDUAL.

Subtree (Ti) M1 M2 M3 Decision Vector (di)

T1 100 1 150 2 200 3 (1, 2, 3)
T2 300 1 320 2 350 3 (1, 2, 3)
T3 140 3 120 2 110 1 (3, 2, 1)
T4 100 1 160 3 130 2 (1, 3, 2)

According to the framework of the proposed algorithm,
the two research questions in this paper are how to measure
the importance of subtrees, and how to apply the subtree
importance information to guide the recombination between
parents via the crossover.

B. Calculation of the Importance of Subtrees

An individual (i.e., a tree) in GP consists of multiple
subtrees. Fig. 4 shows an example of a GP individual with five
subtrees. Each subtree can be considered as an independent
“individual”, which has its own decision-making ability. To
characterise the behaviour of a subtree Ti under a decision
situation, this paper uses a decision vector ~di which is the
list of the ranks of the candidates (i.e., machines for routing
decision situations, or operations for sequencing decision
situations) decided by Ti.

Table I shows an example of how to calculate the decision
vectors of subtrees. The individual is a routing rule, and it
has four subtrees. For simplicity, the decision situation is
to allocate a ready operation to one of the three candidate
machines. The numbers in the machine columns are the
priority values (i.e., real numbers) based on the corresponding
subtrees (routing rules) and the ranks of the machines based
on the priority values. A machine with a smaller priority value
has a better priority than other machines. Finally, the decision
vectors are composed of the ranks. It shows that different
subtrees can have the same decisions (T1 and T2), opposite
decisions (T1 and T3) or partially same decisions (T1 and T4).
Since a decision is made solely based on the ranks rather than
the exact priority values of the candidates, this paper focuses
on the relationship in terms of the ranks rather than the priority
values.

Pearson and Spearman correlation coefficients [61] are
two commonly used measures of the relationship between
two variables. Pearson’s correlation coefficient assesses linear
relationships [62], while Spearman’s correlation coefficient
assesses monotonic relationships (regardless of whether they

TABLE II
AN EXAMPLE OF THE CALCULATIONS FOR CORRELATION OF SUBTREES

IN AN INDIVIDUAL IN A DECISION SITUATION.

Subtree (Ti) Decision Vector (di) Correlation (ci)

T1 (1, 2, 3, 4, 5, 6) 1
T2 (1, 2, 3, 4, 5, 6) 1
T3 (1, 3, 2, 6, 4, 5) 0.77
T4 (6, 5, 1, 2, 3, 4) -0.43
T5 (6, 5, 4, 3, 2, 1) -1

Algorithm 1: Calculation of the importance of a subtree

Input : An individual T , a subtree Ti of T , and a set of decision
situations

Output: The importance of the subtree Ti

1: S(Ti) ← null, ~di ← null
2: ci ← 0, sum(ci) ← 0
3: for j = 1 to |decisionSituations| do
4: Calculate the priority values of machines or operations based on

the subtree Ti

5: Rank machines or operations based on the priority values
6: ~di ← get the decision vector of subtree Ti based on the ranks
7: ci ← calculate the correlation of ~di and ~d1
8: sum(ci) ← sum(ci) + |ci|
9: end

10: S(Ti) ← sum(ci)
|decisionSituations|

11: return S(Ti)

are linear or not). Specifically, the Spearman correlation co-
efficient measures the statistical dependence between the rank
values of two variables. The decision making processes of
subtrees in DFJSS are based on the ranks of machines or
operations, therefore the Spearman correlation coefficient is
a natural candidate for measuring the correlation between the
behaviour of subtrees. This paper uses correlation ci between
the decisions (i.e., ~di and ~d1) made by Ti and T1 (i.e., the
whole tree) to measure the importance of a subtree Ti. The
values range between -1 and 1. If |ci| is close to 1, the
behaviour of Ti is highly consistent with T1 (either positively
or negatively), and Ti is an important subtree for an individual.
If |ci| is close to 0, the behaviour of Ti is almost irrelevant
with the behaviour of T1, and thus Ti is not important subtree
for T1.

Table II shows an example of the calculations for the corre-
lation of subtrees of the individual shown in Fig. 4. Different
subtrees have different correlations (i.e., either positive or
negative values). T2 makes exactly the same decisions with
T1, and thus is a very important subtree of T1. On the other
hand, T5 has a correlation of -1, which means its behaviour
is completely reverse as the behaviour of T1. In this case,
T5 is also a very important subtree of T1, since its behaviour
can be converted to be the same as that of T1 by a slight
modification, e.g., “0 − T1”. In contrast, T3 and T4 showed
relatively weaker relationship with T1, and thus are considered
to be less important than T2 and T5.

The pseudo-code of measuring the importance of a subtree
is shown in Algorithm 1. An absolute value of the correlation
closer to 1 leads to a more important subtree. It is noted that
the correlation between the behaviours of two trees can vary
across different decision situations since the characteristics of
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jobs (e.g., processing time) and machines (e.g., the workload)
can be different. To have a reliable measure on the relationship,
we sample a set of representative decision situations [63], and
define the relationship between the behaviours of two trees to
be the average correlation values over all the sampled decision
situations. To sample a set of representative decision situations,
this paper uses the WIQ (work in the queue) rule for routing
and the SPT (shortest processing time) rule for sequencing,
and runs a preliminary simulation with 5000 jobs on 10
machines, which generate about 50,000 routing and 50,000
sequencing decision situations. In [63], decision situations are
created randomly containing between 2 and 20 jobs, which
have been proven to have good performance in dynamic JSS.
Taking the complexity of DFJSS into consideration, for both
routing and sequencing decisions, the number of candidates,
either machines or operations, is 7 in this paper. Then, we
randomly select 50 routing and 50 sequencing decision sit-
uations from the generated routing and sequencing decisions
with a length of 7. This means that each subtree has a decision
vector with a dimension of 7. The fixed dimension length aims
to get feasible correlation value. In each decision situation, the
priority values of machines or operations are calculated (line
4) to get their ranks (line 5). A vector ~di denotes the decision
made by Ti (line 6). The correlation ci between Ti and T1
is used to measure the importance of Ti (line 7). The final
importance of subtree Ti is the average ci over all decision
situations (line 10).

C. Crossover with Recombinative Guidance

A GP crossover operator is typically conducted on two
parents (parent1 and parent2) which are both considered
to be promising individuals in the population (e.g., selected
by tournament selection). For each parent, it is reasonable
to choose the unimportant subtree and replace it with an
important subtree from the other. Based on the importance of
subtrees S(T ), two probability calculations are designed for
different purposes. One is designed for selecting important
subtrees while the other for selecting unimportant subtrees.
Then, we design the crossover with recombinative guidance
according to the probabilities.

The probability for each subtree. Based on the subtree
importance information, this paper uses the idea of roulette
wheel selection to choose the desired subtrees. We continue
to use the example shown in Table II. We assume that there
is only one decision situation, and the calculated importance
(using Algorithm 1) of subtrees from T1 to T5 are 1, 1, 0.77,
0.43, and 1.

Fig. 5 shows an example of the two different ways to
calculate the probability of each subtree in an individual for
crossover. Fig. 5 (a) shows the way that tends to choose
unimportant subtrees. The larger the score of a subtree, the
lower the probability it has “↓” in the caption. Fig. 5 (b) shows
the way that tends to choose important subtrees. The larger the
score of a subtree, the higher the probability it has “↑” in the
caption. In other words, the way to calculate the probabilities
of subtrees follows the strategy in roulette-wheel selection, but
according to the correlation values rather than fitness.

T1

T2 T5

T3 T40.77 0.43

1 1

1T1

T2 T5

T3 T40.77 0.43

1 1

1

(b) Correlation (a) Correlation 

T1

T2 T5

T3 T40.77 0.43

1 1

1T1

T2 T5

T3 T40.23 0.57

0 0

0

(b) Converted Correlation (a) Converted Correlation 

T1

T2 T5

T3 T40.18 0.10

0.24 0.24

0.24T1

T2 T5

T3 T40.29 0.71

0 0

0

(b) Probability (a) Probability  

Fig. 5. An example of calculating the probabilities for subtrees. Fig. 5
(a) tends to choose unimportant subtrees while Fig. 5 (b) tends to choose
important subtrees.

As shown in Fig. 5, at the beginning, the correlation values
of subtrees are the same, as shown in Fig. 5 “(a) Correlation
↓” and Fig. 5 “(b) Correlation ↑”. However, different from
Fig. 5 (b), the correlation value of each subtree will be
converted to 1 − S(T ), as shown in Fig. 5 “(a) Converted
Correlation ↓” since we tend to choose unimportant subtrees.
The probabilities of subtrees are shown beside the function
nodes in the last row of Fig. 5. The rank of the probability
of subtrees in Fig. 5 (a) is T4 > T3 > T1 = T2 = T5, and
in Fig. 5 (b) is T1 = T2 = T5 > T3 > T4. In this way, this
paper can make sure that important and unimportant subtrees
can be selected in accordance with the requirements.

The recombinative guidance mechanism. The pseudo-
code of the proposed crossover operator is shown in Algorithm
2. The importance of subtrees of an individual is calculated
before choosing important and unimportant subtrees based
on roulette wheel selection (line 2 to line 8 for parent1,
line 9 to line 13 for parent2). Finally, one offspring is
produced by replacing the unimportant subtree parent1(T ∗)n

from parent1 with the important subtree parent2(T ∗)p from
parent2 (line 14). The other offspring is produced by replac-
ing the unimportant subtree parent2(T ∗)n from parent2 with
the important subtree parent1(T ∗)p from parent1 (line 15).

Continuing the example in Fig. 5, Fig. 6 shows an exam-
ple of produced offspring with the proposed recombinative
guidance. For parent1 (parent2), the unimportant subtree
with an unhappy face from parent1 (parent2) is expected
to be replaced by the important subtree with a happy face
from parent2 (parent1), aiming to produce an even better
offspring. The produced offspring are expected to preserve
the promising building-blocks of one parent and incorporating
good building-blocks from the other parent (i.e., produce
offspring with more happy faces).
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Algorithm 2: Crossover with recombinative guidance

Input : Two parents for the crossover (parent1 and parent2)
Output: The generated offspring (offspring)

1: set offspring ← null
2: if parent1 then
3: S(T ) ← Calculate the importance of subtrees (Algorithm 1)
4: S(T )p ← |S(T )|
5: S(T )n ← 1− |S(T )|
6: parent1(T ∗)p ← Selected important subtree based on roulette

wheel selection with S(T )p

7: parent1(T ∗)n ← Selected unimportant subtree based on
roulette wheel selection with S(T )n

8: end
9: if parent2 then

10: repeat from line 3 to line 5
11: parent2(T ∗)p ← Selected important subtree based on roulette

wheel selection with S(T )p

12: parent2(T ∗)n ← Selected unimportant subtree based on
roulette wheel selection with S(T )n

13: end
14: offspring1 ← produce offspring by replacing the subtree chosen

from parent1(T ∗)n with parent2(T ∗)p

15: offspring2 ← produce offspring by replacing the subtree chosen
from parent2(T ∗)n with parent1(T ∗)p

16: offspring ← offspring1 ∪ offspring2
17: return offspring

 

  

 

 
 

 
 

Parent1 Parent2

Offspring1 Offspring2  

Fig. 6. An example of produced offspring from two parents with the proposed
recombinative guidance mechanism.

D. Summary

The proposed algorithm aims to improve the effectiveness of
crossover by introducing recombinative guidance mechanism
rather than choosing subtrees randomly. We assume removing
an unimportant subtree from an individual does not make a
big difference to its fitness. However, introducing an important
subtree to the position of the removed unimportant subtree has
a high probability of making the individual better. It is noted
that the idea in this paper is not limited to DFJSS but can
benefit GP in general. An important issue is to design a proper
measure for the subtree importance based on the specific
problem to be solved. Taking the symbolic regression problem
as an example, the subtree importance can be measured with
sampling semantics [64].

IV. EXPERIMENT DESIGN

In this section, the simulation model, parameter setting, and
the comparison design, are presented in detail.

A. Simulation Model

Simulation is widely used to investigate complex real-world
problems [65]. A problem instance is an instantiation of the
problem with a particular pseudo-random number generator
seed [34]. Multiple different instances will be used to train and
test the scheduling heuristics. At each generation, we only use
one instance to evaluate the quality of evolved rules. However,
the instance will be changed at each generation during the
training process by assigning a different random seed to
improve the generalisation of the GP algorithm. This strategy
has been shown to be useful to improve the effectiveness and
generalisation of evolved rules of GP [66], [67].

The simulation model contains 5000 jobs that need to be
processed by 10 machines. Each job has a different number of
operations that are randomly generated from a uniform discrete
distribution between 1 and 10. The importance of jobs might
be different, which are indicated by weights. The weights of
20%, 60%, and 20% jobs are set as 1, 2, and 4 following
the setting in [63]. The processing time of each operation is
sampled from a uniform discrete distribution with the range
[1, 99]. The number of candidate machines for an operation
follows a uniform discrete distribution between 1 and 10.

To verify the effectiveness and efficiency of the proposed
algorithm, scenarios with different settings (i.e., different ob-
jectives and utilisation levels) are examined. New jobs will
arrive over time according to a Poisson process with rate
λ. The utilisation level (p) is an essential factor to simulate
different scenarios. It indicates the proportion of time that a
machine is expected to be busy. The expression is shown in Eq.
(1), where µ is the average processing time of the machines.
PM is the probability of a job visiting a machine. For example,
PM is 2/10 if each job has two operations. A larger utilisation
level leads to a busier and more complex job shop scenario.

λ = µ ∗ PM/p (1)

The first 1000 jobs are treated as warm-up jobs to get typical
situations occurring in a long-term simulation of a dynamic job
shop system, and jobs arrive as a continuous arrival process.
We collect data from the next 5000 jobs. The simulation stops
when the 6000th job is finished.

B. Parameter Setting

The terminals of GP serve as features of the problem to
capture sufficient information about the problem. The terminal
set of GP in this paper consists of a number of basic features
of machines, jobs and operations in the job shop following the
suggestions in [28], [34], [68].

Machine-related features: the states of machines such as
workload are key factors for allocating operations to machines.
A good schedule should not overload or underload a machine.
• NIQ is the number of operations in the machine’s queue.

It is designed to capture the workload of a machine by
counting the number of operations in its queue.

• WIQ is the total processing time of the operations in the
machine’s queue. It is used to capture the workload of a
machine by calculating the total processing time required
for a machine to finish all the operations in its queue.
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TABLE III
THE PARAMETER SETTING OF GP.

Parameter Value

Number of subpopulations 2
Subpopulation size 512

The number of elites for each subpopulation 5
Method for initialising population ramped-half-and-half
Initial minimum / maximum depth 2 / 6

maximal depth of programs 8
Crossover / Mutation / Reproduction rate 80% / 15% / 5%

Parent selection Tournament selection
with size 7

Terminal / non-terminal selection rate 10% / 90%
The number of generations 51

• MWT indicates the waiting time for the machine to
become idle again, i.e., the completion time of the current
processing on the machine minus the current time.

Job-related features: the states of jobs have a significant
effect on deciding which job has a better priority to be
processed earlier. A good schedule is expected to process
important jobs earlier, and take the current and look-ahead
job information into account.

• W is the weight of a job. A larger weight indicates a
more important job.

• NOR is the number of remaining operations for a job. It
reflects the current processing stage of the job.

• WKR is the median processing time needed for the
remaining operations. The median time is an estimation
of the processing time, since the exact processing time of
the operation in DFJSS depends on the machine, and is
unknown in advance as the machine is not decided yet.
This feature estimates the processing stage of the job in
terms of processing time.

• TIS is the time that the job has stayed in the job shop
since its arrival.

Operation-related features: the characteristics and states
of operations are important factors for choosing the next
operation to be processed. A good schedule is supposed to
consider the time cost of processing the operation and its
waiting time properly.

• PT is the processing time of the operation on the candi-
date machine.

• NPT is the median processing time of the next operation
of the candidate operation (0 if the candidate operation
is the last one of the job)

• OWT is the time that the operation has waited in the
machine’s queue.

GPHH can automatically select proper simple features from
the terminals and construct high-level features that are ap-
propriate for a particular problem. The function set is set to
{+, −, ∗, /, Max, Min} [68], [69]. The arithmetic operators
take two arguments. The “/” operator is a protected division,
returning one if divided by zero. The Max and Min functions
take two arguments and return the maximum and minimum of
their arguments, respectively. The other parameter settings of
GP are shown in Table III.

C. Comparison Design

The goal of this paper is to improve the effectiveness and
efficiency of the crossover operator of GP with correlation
coefficient based recombinative guidance mechanism to evolve
effective scheduling heuristics for DFJSS. Three algorithms
are taken into comparison in this paper. The cooperative
coevolution genetic programming (CCGP) [4] is selected as
the baseline algorithm with the uniform crossover operator.
The goal of this paper is to improve the effectiveness of
crossover by selecting subtrees to exchange building-blocks in
GP individuals to generate offspring rather than the problem
itself. In order to verify the effectiveness of CCGPc, it is
suitable to compare with the same kind of technique, and
the state-of-the-art algorithm (i.e., we name it as CCGPf )
[33] that chooses crossover points by calculating the scores
of subtrees based on the occurrences of features. The evolved
rules of the proposed algorithm are also compared with the
widely used manually designed rules by human experts, which
can be found in the supplementary materials. In addition,
to further verify the proposed subtree importance measure
and recombinative guidance mechanism, we compare with
a reverse algorithm named CCGP!c that uses unimportant
subtrees to replace important subtrees.

In this paper, we focus on the objective function and the
utilisation level to construct multiple problems because the
performance of evolved rules is influenced significantly by
these two factors. In order to verify their effectiveness and
efficiency, the proposed algorithm is tested on six scenar-
ios. The scenarios consist of three objectives (e.g., max-
flowtime, mean-flowtime, and mean-weighted-flowtime) and
two utilisation levels (e.g., 0.85 and 0.95). For the sake of
convenience, Fmax, Fmean, and WFmean are used to indicate
max-flowtime, mean-flowtime, and mean-weighted-flowtime,
respectively. All the evolved rules are tested on the same
set of 50 different unseen test instances, and the average
objective value across the 50 test instances is reported as the
test performance of a rule, which is a good approximation of
the true performance of the rule [66], [67].

V. RESULTS AND DISCUSSIONS

Wilcoxon rank-sum test with a significance level of 0.05
is used to verify the performance of the proposed algorithm.
Fifty independent runs are conducted in this paper. Note that
this paper works on minimisation problems. In the following
results, “-”, “+”, and “≈” indicate the corresponding result is
significantly better, worse or similar than (with) its counterpart.

A. The Performance of Evolved Rules

Table IV shows the mean (standard deviation) of the ob-
jective values of the four compared algorithms on unseen
instances based on 50 independent runs in six scenarios. It can
be seen that CCGPf shows similar performance with CCGP
in all scenarios. CCGPc is significantly better than CCGP in
half of the scenarios (e.g., <Fmean, 0.85>, <WFmean, 0.85>
and <WFmean, 0.95>) and no worse in all other scenarios.
Although CCGPc is not significantly better than that of
CCGP in scenario <Fmax, 0.85> and <Fmean, 0.95>, it
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TABLE IV
THE MEAN (STANDARD DEVIATION) OF THE OBJECTIVE VALUES OF

CCGP, CCGPf , CCGPc AND CCGP!c ON UNSEEN INSTANCES OVER 50
INDEPENDENT RUNS FOR SIX SCENARIOS.

Sce. CCGP CCGPf CCGPc CCGP!c

1 1212.05(34.68)1215.55(32.62)(≈)1211.83(27.45)(≈)1291.96(48.23)(+)
2 1941.98(29.93)1939.84(32.97)(≈)1942.09(29.16)(≈)2026.88(80.15)(+)
3 385.95(3.22) 384.66(1.19)(≈) 384.68(1.92)(–) 389.79(3.96)(+)
4 551.18(5.78) 551.11(3.81)(≈) 550.30(3.72)(≈) 563.76(10.14)(+)
5 831.41(6.08) 829.89(4.76)(≈) 828.98(3.57)(–) 841.22(9.78)(+)
6 1111.01(12.02)1109.52(11.27)(≈) 1105.84(7.21)(–) 1141.54(23.04)(+)

* 1: <Fmax, 0.85> 2: <Fmax, 0.95> 3: <Fmean, 0.85>
* 4: <Fmean, 0.95> 5: <WFmean, 0.85> 6: <WFmean, 0.95>
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Fig. 7. The violin plot of the average objective values of CCGP, CCGPf ,
CCGPc and CCGP!c on unseen instances over 50 independent runs.

still shows its superiority in terms of the mean and standard
deviation values obtained. In addition, CCGPc is significantly
better than CCGPf in the most complex scenario (<WFmean,
0.95>), which is shown in bold. CCGP!c is significantly
worse than all other algorithms, which is as expected. This ver-
ifies the effectiveness of proposed subtree importance measure
and recombinative guidance from an opposite perspective.

Fig. 7 shows the violin plot of the test objective values
of CCGP, CCGPf , CCGPc and CCGP!c over 50 indepen-
dent runs in six different scenarios. It shows that although
CCGPf is not significantly better than CCGP in any sce-
nario, it achieves better performance (i.e., smaller objective
values) than CCGP in most scenarios (e.g., <Fmean, 0.85>,
<Fmean, 0.95>, <WFmean, 0.85> and <WFmean, 0.95>).
For CCGPc, most obtained test objective values distribute at
a lower position (i.e., the smaller, the better) than that of
CCGPf and CCGP in scenario <Fmean, 0.85>, <Fmean,
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Fig. 8. The curves of the average objective values of CCGP, CCGPf ,
CCGPc and CCGP!c on unseen instances over 50 independent runs.

0.95>, <WFmean, 0.85> and <WFmean, 0.95>. In addition,
the obtained objectives of CCGP!c are larger than other
algorithms as expected, since the idea of CCGP!c is the
opposite of that of the proposed algorithm CCGPc. This
verifies the effectiveness of the proposed subtree importance
measure and the proposed recombinative guidance based on
replacing unimportant subtrees with important ones.

Fig. 8 shows the convergence curves of the average objective
values based on 50 independent runs on the unseen instances
of CCGP, CCGPf , CCGPc and CCGP!c. In most scenarios
(e.g., <Fmean, 0.85>, <Fmean, 0.95>, <WFmean, 0.85>
and <WFmean, 0.95>), CCGPc achieves better performance
than its counterparts. In half of the scenarios (e.g., <Fmean,
0.85>, <WFmean, 0.85> and <WFmean, 0.95>), CCGPc

convergence much faster than CCGP and CCGPf . In addition,
the individuals evolved by CCGP!c are much worse than
other algorithms over generations, which also demonstrates the
effectiveness of CCGPc. For max-flowtime related scenarios
(e.g., <Fmax, 0.85> and <Fmax, 0.95>), the performance of
the involved three algorithms do not have obvious difference.
This may be because max-flowtime is not easy to be optimised
due to its sensitivity to the worst case.

B. The Depth Ratio of Selected Subtree

Both CCGPc and CCGPf tend to choose proper crossover
points, however, CCGPc shows its superiority. It is interesting
to analyse the different behaviours of CCGPc and CCGPf .
We define the depth ratio to measure the location of the
selected subtrees of a tree. The depth ratio is the division of
the number of depth where a selected subtree on and the depth
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Fig. 9. The curves of the average depth ratios for the selected important and
unimportant subtrees of CCGPc over 50 independent runs in six scenarios.

of the tree. A smaller (larger) ratio lends to a closer location
of the selected subtree to the root node (terminals) of a tree.

Fig. 9 and Fig. 10 show the average depth ratios for the
selected important and unimportant subtrees of CCGPc and
CCGPf , respectively. For both CCGPc and CCGPf , the
depth ratios of important subtrees are smaller than that of
unimportant subtrees. This is consistent with our intuition
that the subtrees closer to the root are more likely to be
important subtrees because they contain more comprehensive
components. The gaps in depth ratios between important
subtrees and unimportant subtrees of CCGPc is much bigger
than that of CCGPf . In addition, it can be seen that CCGPc

can detect important and unimportant subtrees better than that
of CCGPf in the early stage (i.e., before generation 10).

Fig. 11 shows the curves of average depth ratios of impor-
tant subtrees obtained by the 50 independent runs of CCGP,
CCGPf and CCGPc in different DFJSS scenarios. It shows
that the depth ratios of the selected important trees of CCGP,
CCGPf and CCGPc are similar to each other. The average
depth ratios of important subtrees of CCGP, CCGPf , and
CCGPc are consistently between 0.4 and 0.45 after generation
10, which means we do not usually select the important
subtrees towards the root. In general, the depth ratios of the
selected important subtrees of CCGPc are slightly smaller
than its counterparts. However, the main difference is that
CCGPc prefers to choose the subtrees which are further away
from root node with a larger depth ratio while CCGP and
CCGPf tend to select the subtrees that are closer to the root
node with a smaller depth ratio in the early stage (i.e., from
generation 1 to generation 5 roughly). It implies that the ability
of CCGPf to detect promising subtrees is limited at the early
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Fig. 10. The curves of the average depth ratios for the selected important and
unimportant subtrees of CCGPf over 50 independent runs in six scenarios.
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Fig. 11. The curves of the average depth ratios of important subtrees obtained
by CCGP, CCGPf and CCGPc over 50 independent runs in six scenarios.

stage. One possible reason is that the occurrences of features
are not accurate to measure the importance of features. This
shortcoming is more obvious at the early stage because the
individuals have not evolved well yet, and the occurrence
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Fig. 12. The curves of the average depth ratios of unimportant subtrees of
CCGP, CCGPf and CCGPc over 50 independent runs in six scenarios.

information of features is not reliable.
Fig. 12 shows the curves of average depth ratios of unimpor-

tant subtrees obtained by CCGP, CCGPf and CCGPc based
on 50 independent runs in six scenarios. Fig. 12 shows that
CCGP, CCGPf and CCGPc make clearly different decisions
when selecting unimportant subtrees. On the one hand, both
CCGPf and CCGPc tend to choose the subtrees with larger
tree depths, i.e., on the lower parts of an individual. On the
other hand, compared with CCGPf , the depth ratios of the
unimportant subtrees of CCGPc are much larger. At the later
stage (i.e., from generation 10 to generation 50 roughly), the
depth ratios of CCGPf fluctuate around 0.45 while the depth
ratios of CCGPc show a trend of fluctuation around 0.5. This
means that CCGPc treats the subtrees that are closer to the
leaf nodes as unimportant subtrees.

C. The Correlations of Selected Subtrees

The correlations of subtrees determine the subtree selection
probabilities. Fig. 13 shows the histogram plot for correlations
of the selected subtrees of CCGPc at early, middle and
late stages over 50 independent runs in scenario <WFmean,
0.95>. The “Gen X Large (Small)” in the subtitle indicates
that the subtree with a larger (smaller) score has a higher
(lower) chance of being chosen. All the correlations are
between -1 and 1. From the sub-figures in the first row (i.e.,
for selecting important subtrees), we find that the subtrees
with correlations as zero are seldom selected and the absolute
values of the correlations of the selected subtrees are close to 1.
This is in line with our expectation because we tend to choose
important subtrees, which have larger absolute correlation
values.
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Fig. 13. The histogram plot for correlations of the selected subtrees of
CCGPc at generation 1, 25, and 45 in scenario <WFmean, 0.95> over 50
independent runs.

For selecting unimportant subtrees, as shown in the sub-
figures of the second row, many selected subtrees have their
correlations close to zero, especially at the early stage (gen-
eration 1). However, it is inconsistent with our intuition that
there are still lots of correlations of the selected unimportant
subtrees between 0.5 and 1 at generation 25 and generation 45.
When we further look at the correlations during the process
of selecting unimportant subtrees, we find that it can occur
that all of the subtrees in an individual are important with
correlations range between 0.5 and 1, especially in the middle
and late stages. This is the reason why the correlations of the
selected unimportant subtrees show in such a distribution. In
other words, the proposed algorithm still chooses relatively
unimportant subtrees.

D. The Probability Difference

The basic idea in this paper is to differentiate the probabil-
ities of subtrees to be chosen instead of choosing subtrees
randomly. We use probability difference to measure how
the proposed algorithm influences the chance of subtrees
to be selected. The probability difference is defined as the
difference (i.e., subtraction) between the assigned probability
by the proposed recombinative guidance mechanism and the
uniform probability of the selected subtree. It is noted that the
probability difference can be positive, negative, and zero. A
positive probability difference indicates that the current subtree
is selected with a higher chance compared with uniform proba-
bility. A negative probability difference means that the current
subtree is selected with a lower chance compared with uniform
probability. If the probability difference is zero, the assigned
probability is the same as the uniform probability. This means
that the proposed algorithm does not have effective guidance
on choosing the crossover point for producing offspring.

We take CCGPc in scenario <WFmean, 0.95> as an exam-
ple to investigate how CCGPc affects the choice of a subtree
since CCGPc performs significantly better than the other
two algorithms in this scenario. Fig. 14 shows the histogram
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Fig. 14. The histogram plot of probability difference of the selected subtrees
of CCGPc at generation 1, 25, and 45 in scenario <WFmean, 0.95> over
50 independent runs.

TABLE V
THE MEAN (STANDARD DEVIATION) OF TRAINING TIME (IN MINUTES) OF
CCGP, CCGPf , AND CCGPc OVER 50 INDEPENDENT RUNS FOR SIX

DIFFERENT DFJSS SCENARIOS.

Scenario CCGP CCGPf CCGPc

<Fmax, 0.85> 73(9) 74(13)(≈) 74(11)(≈)
<Fmax, 0.95> 87(15) 88(13)(≈) 89(12)(≈)
<Fmean, 0.85> 71(10) 72(10)(≈) 72(9)(≈)
<Fmean, 0.95> 80(13) 81(11)(≈) 81(12)(≈)
<WFmean, 0.85> 73(13) 75(16)(≈) 74(15)(≈)
<WFmean, 0.95> 82(13) 82(12)(≈) 83(13)(≈)

plot of the probability difference in the early (generation 1),
middle (generation 25) and late (generation 45) stages of the
evolutionary process in scenario <WFmean, 0.95> over 50 in-
dependent runs. Overall, most of the probability differences are
positive numbers. This indicates that the proposed algorithm
increases the probabilities of both the selected important and
unimportant subtrees. This is in line with our expectation that
CCGPc can successfully guide GPHH to choose important or
unimportant subtrees for crossover as required.

E. Training Time

Table V shows the mean and standard deviation of the
training time (in minutes) of CCGP, CCGPf and CCGPc

over 50 independent runs in six scenarios. It is obvious that
there is no significant difference among CCGP, CCGPf and
CCGPc in terms of training time. In other words, although
more information calculations are involved in CCGPf and
CCGPc, both CCGPf and CCGPc are efficient algorithms
for solving the DFJSS problems.

For CCGPf , it verifies the advantages of taking the infor-
mation such as the occurrences of terminals during the evo-
lutionary process of GP to improve the algorithm further. For
CCGPc, it verifies the advantages of taking some techniques
such as correlation coefficient that can be quickly utilised
along with the information during the evolutionary process
of GP to enhance the performance of the algorithm.
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Fig. 15. The curve of average occurrences of potential invalid replacements
of CCGPf and CCGPc over 50 independent runs in six scenarios.

VI. FURTHER ANALYSES

To deeply understand the effect of the proposed algorithm,
the occurrences of the potential unsuccessful crossover whose
offspring exceed the maximum depth limit, the sizes of
evolved rules, and the evolved heuristics are further analysed.

A. The Occurrences of Potential Invalid Crossover

The sizes of offspring highly depend on the depth ratios of
selected subtrees from parents. If a subtree with large depth
ratio of a parent replaces with a subtree with a small depth
ratio of the other parent, the produced offspring tends to have
a large size. We are interested in how the proposed algorithm
affects the size of offspring, since the offspring whose depths
are larger than eight will be ignored during the crossover.

We record the number of “invalid” crossover which gener-
ates an offspring whose depth is larger than eight. We name the
“invalid” crossover as potential invalid replacements since the
produced offspring are ignored, and the crossover actually does
not happen. The number of potential invalid replacements can
be used to investigate how the proposed algorithm influences
the process of generating offspring. Fig. 15 shows the average
potential invalid replacements for the crossover of CCGP,
CCGPf and CCGPc at each generation over 50 independent
runs in six scenarios. In all scenarios, CCGPc leads to more
potential invalid replacements than that of CCGPf along with
the generations. It is consistent with the analyses in subsection
V-B. In CCGPc, the unimportant subtrees with larger depth
ratios are more likely to be replaced by the important subtrees
with smaller depth ratios, which leads to more potential invalid
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TABLE VI
THE MEAN (STANDARD DEVIATION) OF THE SIZES OF EVOLVED THE BEST ROUTING AND SEQUENCING RULES OF CCGP, CCGPf , AND CCGPc OVER

50 INDEPENDENT RUNS FOR SIX DIFFERENT DFJSS SCENARIOS.

Routing Rule Sequencing Rule

Scenario CCGP CCGPf CCGPc CCGP CCGPf CCGPc

<Fmax, 0.85> 61.48(18.30) 68.68(18.68)(≈) 62.32(19.07)(≈) 54.40(18.12) 51.36(15.01)(≈) 53.72(18.23)(≈)
<Fmax, 0.95> 59.28(19.20) 66.28(20.30)(≈) 60.68(18.87)(≈) 51.32(16.34) 53.92(16.77)(≈) 50.08(19.32)(≈)
<Fmean, 0.85> 59.84(15.05) 61.52(16.21)(≈) 59.40(18.09)(≈) 46.64(19.98) 47.32(18.43)(≈) 45.32(15.22)(≈)
<Fmean, 0.95> 64.16(19.42) 65.28(16.45)(≈) 59.60(16.52)(≈) 44.92(16.04) 44.80(15.47)(≈) 42.12(19.94)(≈)
<WFmean, 0.85> 59.00(17.35) 63.12(17.99)(≈) 64.52(17.20)(≈) 46.44(18.77) 50.92(13.93)(≈) 46.32(18.32)(≈)
<WFmean, 0.95> 63.88(15.95) 61.44(15.30)(≈) 65.20(18.11)(≈) 47.04(18.45) 52.92(20.33)(≈) 51.68(19.11)(≈)
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Fig. 16. One of the best evolved sequencing rules evolved by CCGPc in
scenario <Fmax, 0.95>.

replacements. Fortunately, it does not have a significant impact
on the efficiency of the proposed algorithm.

B. The Sizes of Evolved Rules

The size (i.e., the number of nodes) can be a measure
for the “interpretability” [70] of the evolved rules. A small
rule can be more easily interpreted than a large rule. In
this subsection, we investigate how the proposed algorithm
influences the sizes of the evolved rules in terms of the sizes
of the evolved best rules. Table VI shows the mean and
standard deviation of the sizes of the evolved best routing rule
and sequencing rules in different scenarios. Compared with
CCGP, for both routing rules and sequencing rules, there is no
statistical significant difference between the sizes of evolved
rules obtained by CCGPf and CCGPc. We can conclude that
the proposed algorithm CCGPc with recombinative guidance
achieves better performance without having impact on the
sizes of the evolved rules.

C. Insight on the Evolved Scheduling Heuristics

To study the behaviours of the evolved rules obtained by
CCGPc, this subsection conducts structural analyses on the
evolved sequencing rules. Specifically, the best sequencing
rules obtained by CCGPc for minimising max-flowtime and
mean-weighted-flowtime with utilisation level of 0.95 are

further investigated, respectively. It is noted that a small value
calculated by the rule leads to a better priority for the candidate
operation.

Evolved Rule for Max-flowtime. Fig. 16 shows one of the
best evolved sequencing rules by CCGPc in scenario <Fmax,
0.95>. It is observed that the rule is a combination of six
simple terminals (TIS, WKR, PT, NIQ, WIQ, and NOR), and
TIS and WKR are the most frequently used terminals for
building this rule. In addition, “TIS + WKR” might be an
effective constructed building block for this sequencing rule,
since it appears five times in this rule.

This paper simplifies the rule by calculating different com-
ponents. To make analysis easy, the rule in Fig. 16 is further
simplified, as shown in Eq. (2).

S1 =Min{TIS +WKR,

Min{PT − 2TIS − 4WKR,TIS +WKR}−
(TIS +WKR+NIQ− PT +Max{WIQ,NOR})}
≈Min{TIS +WKR,

2PT − 3TIS − 5WKR−NIQ−WIQ}
≈2PT − 3TIS − 5WKR−NIQ−WIQ

=2PT − 3TIS − 5WKR
(2)

From step 1 to step 2, “Min{PT - 2TIS - 4WKR, TIS +
WKR}” is simplified as “PT - 2TIS - 4WKR”, since “PT -
2TIS - 4WKR” is almost always smaller than “TIS + WKR”.
In addition, “Max{WIQ, NOR}” is represented as WIQ, since
WIQ (time) tends to be larger than NOR (between 1 and 10).
Similarly, the rule in step 2 can be mostly replaced by the
rule in step 3. Finally, NIQ and WIQ are the same for all
operations in the same queue, and can be safely ignored, since
they do not affect the final decision of choosing an operation.
This rule suggests that when a machine is idle, the machine
should process the operation with small processing time first.
In addition, the jobs that arrive at the job shop earlier or have
more remaining work should be processed earlier. Otherwise,
if they are completed too late, the max-flowtime will be
increased. It is consistent with our intuition for minimising
max-flowtime due to its sensitivity to the worst case. The
weights of the terminals may require domain knowledge and
many rounds of trial-and-error if manually designed.

Evolved Rule for Mean-weighted-flowtime. Fig. 17 shows
one of the best evolved sequencing rules obtained by CCGPc

in scenario <WFmean, 0.95>. This rule consists of four
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Fig. 17. One of the best evolved sequencing rules evolved by CCGPc in
scenario <WFmean, 0.95>.

simple terminals (WKR, W, PT, MWT), and four functions (+,
/, Max, Min). “WKR / W” is an important learned component
in this rule, and it appears four times. W tends to play its
role as a denominator. PT is also an important terminal which
mainly plays its role as a component for addition.

The simplification of the sequencing rule in Fig. 17 is shown
in Eq. (3).

S2 =(Min{WKR/W + PT,WKR}+ PT

+Min{WKR/W + PT,WKR/W +WKR}+ PT

+ PT +Max{WKR/W,PT}+W )/(W +MWT )

=(Min{WKR/W + PT,WKR}+ 3PT

+Min{PT,WKR}
+Max{WKR/W,PT}+W )/(W +MWT )

(3)

This rule suggests to process the important operation with
a large W earlier. In addition, the operations with short
processing time and the jobs with small remaining work are
preferred to be processed as soon as possible. Otherwise, the
weighted-flowtime will increase.

In summary, this paper shows the advantage of evolv-
ing scheduling heuristics with the proposed algorithm. The
evolved scheduling heuristics consist of simple heuristics but
are combined in an effective way, which is not easy to
be designed manually. In addition, the evolved scheduling
heuristics have good interpretability, which is important for
real-world applications.

VII. CONCLUSIONS AND FUTURE WORK

The goal of this paper was to develop an effective re-
combinative guidance strategy for GP to evolve effective
scheduling heuristics by improving the quality of produced
offspring for DFJSS automatically. The goal was achieved
by proposing an effective way to measure the importance of
subtrees of an individual based on the characteristics of DFJSS
with correlation coefficient technique and a properly designed
recombinative guidance mechanism for crossover in GP.

The results showed that the evolved rules by the proposed
algorithm with correlation coefficient based recombinative
guidance have better performance in most scenarios while
no worse in all other scenarios due to its effectiveness for
producing offspring. This is also verified by the analyses
in terms of the depth ratios of selected subtrees, the cor-
relations of selected subtrees, and the probability difference
during the evolutionary process. In terms of training time,
the proposed algorithm does not need extra computational
time compared with its counterparts. This verifies the advan-
tages of utilising the information produced by GP during the
evolutionary process and the efficient information calculation
techniques such as correlation coefficient. In addition, the
involved scheduling heuristics by the proposed algorithm have
a better interpretability, which is easily accepted for solving
practical problems.

Some interesting directions can be further investigated in
the future. We will carry out more investigations about the
effect on the evolved scheduling heuristics such as the rule
size when applying crossover bias. We would also like to
do a comprehensive study on the representation of GP for
DFJSS, including multi-tree representation. This work focuses
on flowtime-based objective functions and no due dates are
considered for the jobs. We will consider the due date assign-
ment in our future work. In addition, the proposed algorithm
could be applicable to other problems such as the knapsack
problem, if the importance of subtrees can be measured prop-
erly according to the characteristics of the examined problems.
This will be further investigated in the future.
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