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Abstract—Dynamic flexible job shop scheduling is an impor-
tant combinatorial optimisation problem with complex routing
and sequencing decisions under dynamic environments. Genetic
programming, as a hyper-heuristic approach, has been suc-
cessfully applied to evolve scheduling heuristics for job shop
scheduling. However, its training process is time-consuming, and
it faces the retraining problem once the characteristics of job
shop scenarios vary. It is known that multitasking is a promising
paradigm for solving multiple tasks simultaneously by sharing
knowledge among the tasks. To improve the training efficiency
and effectiveness, this paper proposes a novel surrogate-assisted
evolutionary multitasking via genetic programming to share
useful knowledge between different scheduling tasks. Specifically,
we employ the phenotypic characterisation for measuring the
behaviours of scheduling rules and building a surrogate for
each task accordingly. The built surrogates are used not only
to improve the efficiency of solving each single task but also
for knowledge transfer in multitasking with a large number
of promising individuals. The results show that the proposed
algorithm can significantly improve the quality of scheduling
heuristics for all scenarios. In addition, the proposed algorithm
manages to solve multiple tasks collaboratively in terms of the
evolved scheduling heuristics for different tasks in a multitasking
scenario.

Index Terms—Surrogate, Multitasking, Genetic Programming,
Hyper-heuristics, Dynamic Flexible Job Shop Scheduling.

I. INTRODUCTION

Job shop scheduling (JSS) [1] has been widely studied
in both academia and industry such as manufacturing

processes [2] and grid computing [3] due to its practical
applications. In a job shop, a number of jobs (each with a
sequence of operations) need to be processed by a set of
machines (an operation can only be processed on a specific
machine). The JSS is an NP-hard problem [4], and flexible
JSS (FJSS) [5] is a general extension of JSS in which each
operation can be processed by a set of candidate machines
rather than a specific machine. There are two decisions that
need to be made simultaneously in FJSS. One is machine
assignment (i.e., assign an operation to a particular machine),
and the other is operation sequencing (i.e., choose an operation
as the next operation to be processed by an idle machine).
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Dynamic FJSS (DFJSS) [6] is more challenging than JSS and
FJSS, since it tends to optimise the machine resources under
a dynamic environment with unpredicted events such as new
jobs arriving at any time [7] and breakdown of machines [8].
In DFJSS, not only the machine assignment and operation
sequencing decisions need to be made simultaneously, but also
dynamic events are considered when making schedules.

Exact optimisation methods such as dynamic program-
ming [9] and integer linear programming [10] are usually
not applicable to large scale problems. Approximate solu-
tion optimisation methods such as simulated annealing [11],
tabu search [12] and genetic algorithms [13], which aim to
find a near-optimal solution, have been widely applied to
JSS. These methods can obtain high-quality solutions in a
reasonable time. However, most of them can hardly handle
dynamic environments efficiently because the re-optimisation
process is too time-consuming to react in real-time. Heuristics
are strategies derived from previous experiences with similar
problems [14], which are widely used in decision-making.
Scheduling heuristics such as dispatching rules [15], [16] are
perhaps the most popularly used heuristics for JSS. Typical
scheduling heuristics make decisions by prioritising the opera-
tions or machines at the decision points. However, the common
scheduling heuristics, such as SPT (shortest processing time)
[17] and some composite rules [15], are usually manually
designed by experts. The design highly relies on domain
knowledge, especially for complex scenarios, which is often
unavailable to the end users, and the designed heuristics are
usually too specific to be reused in other scenarios.

Genetic programming (GP) [18], as a hyper-heuristic ap-
proach (GPHH), has been successfully applied to evolve
scheduling heuristics automatically for JSS [7], [19], [20],
[21]. The most advantageous feature of GP is its flexibility of
representation. DFJSS is widely studied with simulation [22]
which is a promising technique to examine complicated real-
world applications such as healthcare [23] and manufacturing
[24]. However, the main disadvantage of GPHH for DFJSS is
its high demand for computing resources, mainly due to two
reasons. One is that there are lots of priority calculations for
candidates, e.g., machines and operations, with GP individuals
for making decisions during the execution of the simulation.
The other is that the scheduling heuristics evolved by GPHH
are not always applicable to other scheduling scenarios, and
new heuristics need to be retrained when facing new problems.
This is because the characteristics of DFJSS such as the
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machine resources and order quantity may vary, which is
common in practical applications [25].

Surrogate models [26], [27], [28] have been widely used
to reduce the computational cost in evolutionary computation.
The success lies in building computationally cheap models
to approximate the fitness of individuals without requiring
the original computationally expensive evaluations. In the past
decades, surrogate-assisted GPHH has been successfully used
in JSS. In terms of the surrogate model itself, existing studies
are either based on k nearest neighbour (KNN) [29] or simpli-
fied simulation model [24], [30], [31]. In terms of applications,
surrogates are used to replace the real evaluation directly [31]
or assist pre-selection [24], [29], [30] that approximates the
fitness of a large number of offspring and only revaluate
the top individuals that have good estimated fitness with real
fitness evaluations. All of these studies confirm the superiority
of using surrogate techniques in JSS. However, these studies
only focus on improving the efficiency and effectiveness of
GPHH for a single JSS task.

The paradigm of evolutionary multitasking was given in
[32], [33] for solving multiple tasks simultaneously. The
success of evolutionary multitasking relies on the knowledge
sharing mechanism between tasks during the evolutionary
process. Evolutionary multitasking has been successfully ap-
plied to solve different problems such as continuous numeric
optimisation [33], [34], [35], symbolic regression [36] and
job shop scheduling [37], [38]. However, most of the existing
approaches are only applied on continuous, numeric optimi-
sation problems rather than discrete, combinatorial problems
such as DFJSS. In real-world applications, each product has
different demand at different times, which is a typical DFJSS
problem. The complexities of job shops such as the frequencies
of production orders for producing a specific product may
vary [39]. For example, in the clothing industry, the orders
for the down jacket in winter are usually higher than in
summer. For the down jacket job shop, the frequencies of
orders for producing down jacket vary between seasons. It is
thus beneficial to have various kinds of scheduling heuristics
for a company to handle different cases. Intuitively, giving
multiple solutions simultaneously for a company is an effective
way to improve the problem-solving capability.

Although surrogate and multitasking techniques can im-
prove the efficiency and effectiveness of evolutionary optimi-
sation in different aspects, they are often used independently.
To the best of our knowledge, there are only a few studies on
surrogate-assisted multitasking [40], [41], [42], [43]. In [40],
Gaussian Process was introduced to build a surrogate model
for the designed global search component of the algorithm. In
[41], surrogates are applied to reduce the fitness evaluations
for each task on benchmark problems. In [42], [43], com-
putationally cheap models are applied to handle expensive
optimisation problems by sharing its acquired knowledge.
Although these studies have showed good performance for
multitasking optimisation, the surrogate technique is only used
to improve the effectiveness for a single task independently
rather than multiple tasks simultaneously. In other words, these
studies are not about using surrogate for the core mechanism
of multitasking such as knowledge transfer between tasks.

Moreover, it is not easy to apply existing approaches [40],
[41], [42], [43] in DFJSS with GPHH directly. Firstly, the way
to allocate individuals for different tasks is computationally
expensive for DFJSS. Secondly, the typical way for multitask-
ing in [32], [33] that puts parent population and the newly
generated offspring together and then allocates individuals to
different tasks could be too greedy for GP to converge in
evolution. Besides, existing approaches are mostly applied to
benchmarks with continuous, numeric optimisation problems
[36] rather than discrete, combinatorial optimisation problems,
which are not applicable for DFJSS.

To address the above issues, we apply the surrogate tech-
nique to evolutionary multitasking with GP for DFJSS. The
built surrogates are not only used for improving the effec-
tiveness of solving a single task but also the effectiveness of
sharing knowledge between tasks. The objective of this work
is thus to develop an effective surrogate-assisted evolution-
ary multitasking approach to improving the effectiveness of
GPHH for evolving scheduling heuristics automatically for
multiple DFJSS tasks. The proposed algorithm is expected to
both speed up the convergence and improve the quality of
scheduling heuristics of GPHH for DFJSS. Specifically, the
contributions of this paper are given as follows:

1) We developed a novel and effective evolutionary mul-
titasking framework for GPHH to optimise multiple
DFJSS tasks simultaneously.

2) This work built surrogates for different tasks accordingly
by taking the behaviour of individuals and their fitness
into account. The proposed surrogates can not only
estimate the quality of individuals well but also speed
up the convergence of the algorithm to obtain effective
scheduling heuristics.

3) We proposed to transfer knowledge by allocating the
newly generated individuals to appropriate tasks incor-
porated with the surrogate for multitasking. The results
show that the proposed knowledge sharing mechanism
can effectively transfer knowledge between tasks.

4) The proposed overall GPHH algorithm with surrogate-
assisted multitasking outperforms the state-of-the-art al-
gorithm, and can evolve highly-competitive scheduling
heuristics for DFJSS for different tasks in all examined
multitasking scenarios.

The rest of this paper is organised as follows. Section II
introduces the background of this research work. Detailed
descriptions of the proposed algorithm are given in Section III.
The experiment designs are shown in Section IV. Simulation
results and discussions are presented in Section V. Further
analyses are conducted in Section VI. The conclusions are
given in Section VII.

II. BACKGROUND

This section provides a brief introduction of multitasking
DFJSS, and how to use GPHH to evolve scheduling heuristics
for solving DFJSS, which also includes the related work of
GPHH for JSS. In addition, the related work of evolutionary
multitasking, surrogate and knowledge transfer in GP is also
briefly described here.
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Fig. 1. An example of calculating the flowtime of a job (Job1).

A. Multitasking Dynamic Flexible Job Shop Scheduling

JSS focuses on improving production efficiency in a job
shop. In JSS, n jobs J = {J1, J2, ..., Jn} need to be processed
by m machines M = {M1,M2, ...,Mm}. Each job Jj has
an arrival time at(Jj) and a sequence of operations Oj =
(Oj1, Oj2, ..., Oji). The completion of the last operation for a
job means the job has been finished. An example of calculating
the flowtime of Job1 with three operations can be found in Fig.
1. In FJSS, each operation Oji can only be processed by one of
its optional machines π(Oji) and its processing time δ(Oji)
depends on the machine that processes it. Routing decision
and sequencing decision need to be made simultaneously
in FJSS. In DFJSS, not only the two decisions need to be
made simultaneously, but also dynamic events are necessary
to be taken into account when constructing schedules. This
paper focuses on one dynamic event, i.e., dynamically and
continuously arriving new jobs. The information of a job
is unknown until it arrives at the shop floor. The following
constraints must be satisfied in the DFJSS problem:

• A machine can process at most one operation at a time.
• Each operation can be processed only by one of its

candidate machines at a time.
• One cannot start processing an operation until all its

precedent operations have been processed.
• The processing of an operation cannot be stopped or

paused until it is completed.

The objective of the scheduling is the optimised perfor-
mance criterion for a problem while satisfying all the above
constraints. In this paper, we consider three commonly used
objective functions. The calculations of the objectives are
shown as follows:

• Mean-flowtime =
∑n

j=1 {Cj−rj}
n

• Mean-tardiness =
∑n

j=1 Max{0,Cj−dj}
n

• Mean-weighted-tardiness =
∑n

j=1 wj∗Max{0,Cj−dj}
n

where Cj is the completion time of job Jj , rj is the release
time of Jj , dj is the due date of Jj , wj is the weight of Jj ,
and n is the number of jobs that are expected to be processed.

This paper defines the tasks with different utilisation levels
(i.e., indicate different complexities) as related tasks to build
a multitasking scenario. A multitasking scenario consists of
k tasks P = {t1, t2, ..., tk} where tasks ti and tj (i 6= j)
share the same problem parameters but only different in the
utilisation level. The solution of a multitasking problem is a
set of scheduling heuristics Ps = {h1, h2, ..., hk}, each for
a task. Note that each scheduling heuristic is composed of a
routing rule and a sequencing rule.

Algorithm 1: Pseudo-code of GPHH to learn routing and
sequencing heuristics for DFJSS

Input : A task
Output: The learned scheduling heuristics h∗ with r∗ and s∗

1: Initialisation: Randomly initialise the population
2: set r∗ ← null and fitness(r∗)← +∞
3: set s∗ ← null and fitness(s∗)← +∞
4: set h∗ ← r∗ ∪ s∗

5: gen← 0
6: while gen < maxGen do
7: // Evaluation: Evaluate the individuals in the population
8: for i = 1 to popsize do
9: Run a DFJSS simulation with hi to get the schedule

Schedulei
10: fitnesshi

← Obj(Schedulei)
11: end
12: if gen < maxGen− 1 then
13: Evolution: Generate a new population by crossover,

mutation, and reproduction
14: end
15: gen← gen+ 1
16: end
17: for i = 1 to popsize do
18: if fitnesshi

< fitnessh∗ then
19: h∗ ← hi

20: end
21: end
22: return h∗ with r∗ and s∗

B. Genetic Programming Hyper-heuristics for DFJSS

The optimal structures of heuristics are normally not known
in real-world applications, which makes the heuristic learning
process challenging. GP, as a hyper-heuristic method [44], has
been successfully applied to evolve scheduling heuristics for
different types of JSS [45], [46], [47]. Tree-based GP [48],
[49] is a good candidate to learn heuristic for DFJSS due to
its flexible representation. This implies that the structures of
heuristics do not need to be defined in advance.

The pseudo-code of GPHH to learn heuristics for DFJSS is
shown in Algorithm 1. The input of the proposed algorithm
is a task that is expected to be solved, and the output is the
learned heuristic h∗ with a routing heuristic r∗ and sequencing
heuristic s∗. As a population-based algorithm, GP starts with
a randomly initialised population (line 1). It is noted that
each GP individual contains two trees [6]. The first tree
represents the routing rule and the second tree represents the
sequencing rule. Both trees are numerical priority functions,
which are used to prioritise the machines or operations at
different decision situations. When a new operation becomes
ready, the routing rule will be applied to prioritise its candidate
machines, and the operation will be assigned to the machine
with the best priority (e.g., has the least workload under the
least-work-in-queue rule). When a machine becomes idle, the
sequencing rule will be triggered to prioritise the operations in
its queue, and the operation with the best priority (e.g., the one
with the shortest processing time if the shortest-processing-
time rule is used) will be chosen to be processed next. The
qualities of heuristics are measured based on the objective
functions (from line 6 to line 10). Specifically, a simulation is
run with the heuristic hi that is expected to be examined to get
a schedule Schedulei (line 8). The quality of the heuristic hi
is assigned by calculating the objective value of its obtained
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schedule Schedulei (line 9). A new population is generated by
recombining the heuristics (crossover), mutating the heuristics
(mutation), or copying the heuristics with good fitness directly
(reproduction) (from line 11 to line 13) to the next generation.

Static JSS, dynamic JSS and DFJSS are three main types of
JSS. GP was firstly introduced in [19] to evolve sequencing
rules for static JSS and achieved good results. Due to the
efficiency of making online decisions with rules, GP has been
widely used to generate sequencing rules for dynamic JSS
[46], [50], [51] and DFJSS [7], [52], [53]. For DFJSS, routing
rule and sequencing rule are respectively used for machine
assignment and operation sequencing. In [52], sequencing rule
is evolved by GP with a fixed routing rule for DFJSS. Routing
rule and sequencing rule are evolved simultaneously in [6],
[53], which have been proven to achieve good performance.

C. Related Work
1) Evolutionary Multitasking: Evolutionary multitasking

[32], [33] has recently received much research interests in
optimising multiple tasks simultaneously. It has been applied
to different fields, such as continuous numeric optimisation
[33], [34], [54], and regression problems [36]. However, most
of the approaches are only applied to benchmarks with con-
tinuous, numeric optimisation problems rather than discrete,
combinatorial problems such as DFJSS. This thus limits its
applications in practice. In terms of solution representation,
most studies are conducted with the vector-based search space
such as genetic algorithms [33]. In contrast, our work is
based on tree-based search space, and the search consists of
heuristics rather than direct solutions to the problem.

There are a few studies that use multitasking with GP, such
as in team orienteering [55], dynamic JSS [56], and DFJSS
[37]. The problem studied in [55] is a static problem, and
the individuals are grouped to different islands for each task.
Training instances are clustered for each island with individu-
als. Several individuals that have a good fitness at each island
are transferred between islands to share the learned knowledge.
In this work, the training instances are not available, since
the research on DFJSS is based on simulation. In [56], a
niched approach was proposed for dynamic JSS. However,
the main drawback is that the niched individuals need further
evaluations, which is not an efficient way. In [37], multitasking
was applied to DFJSS in a multiple subpopulation manner,
and the efficiency of solving multiple DFJSS problems was
dramatically improved. However, the quality of the evolved
scheduling heuristics was not improved.

2) Surrogate: Surrogate has been used in JSS with GPHH
[29], [30], [24], [31]. Existing related surrogate works in
JSS with GPHH are grouped into two categories based on
the way it builds the surrogate model to estimate the fitness
of an individual. One is to use existing techniques such as
KNN for estimating the fitness of an individual by finding
the most similar individual in the pool (e.g., the individuals
evaluated in the previous generation) [29]. The other is to use
a simplified simulation model (e.g., with smaller number of
jobs and machines) as the surrogate [30], [24], [31].

Surrogate-assisted multitasking was proposed in [40] for
the memetic algorithm with benchmark problems. However,

the surrogate with Gaussian Process [57] was only used to
assist the search process in the designed component of global
search. In [41], surrogate models are built based on historical
search information for each task to reduce the number of
fitness evaluations in multitasking problems. These works [40],
[41] use the surrogate solely to improve the search efficiency
for each task independently or for a single component in a
multitasking problem rather than enhancing the core multi-
tasking mechanism such as knowledge sharing. In addition,
the mechanism of individual allocation for tasks based on the
original evaluations is computationally expensive if applied
to DFJSS, since reallocated individuals would need to be
revaluated with the simulation in the DFJSS.

3) Knowledge Transfer in Genetic Programming: In the
field of transfer learning in GP, according to “what to transfer”,
there are two main schemes [58]. One is the “FullTree” that
migrates a number of individuals with good quality from the
source domain to the target domain. The other is the “SubTree”
that is extracted from individuals in the source domain and
adapted to the target domain.

Different from the traditional transfer learning in GP, there
are no source and target domains in this work. The knowledge
is transferred between different tasks directly without the
knowledge extraction process from the source domain. In [36],
assortative mating and vertical cultural transmission [33] were
introduced to transfer information between different tasks in
GP, which can be seen as a “FullTree” transfer. In [37], the
knowledge transfer was realised by the crossover operator
between the GP individuals for different tasks, which belongs
to the “Subtree” transfer scheme. Compared with transferring
“SubTree”, the advantage of transferring “FullTree” is that
the knowledge extraction process is not necessary. The key
to transferring “FullTree” is that the chosen individuals must
be of good quality for the problem that is expected to be
solved. Otherwise, the transferred individuals will be elimi-
nated subsequently during the evolutionary process, and lose
the role of knowledge transfer [58]. On the contrary, compared
with transferring “FullTree”, the advantage of transferring
“SubTree” is that the transferred knowledge might be more
precise. However, the knowledge extraction of “SubTree”
is complex and time-consuming. In this paper, we aim to
propose an effective knowledge transfer mechanism via the
surrogate that can share knowledge between tasks by taking
the advantages of transferring “FullTree” and “SubTree”.

In summary, the research on multitasking with surrogate
mechanisms, especially for DFJSS is still in its early stage.
In this paper, we propose to use the surrogate not only to
improve the effectiveness of solving a single task but also for
knowledge transfer in a multitasking problem. It is a good
case study to illustrate the effectiveness of surrogate-assisted
evolutionary multitasking for solving dynamically discrete and
combinatorial optimisation problems.

III. THE PROPOSED ALGORITHM

The idea of the proposed algorithm is to improve the
knowledge sharing mechanism for multitasking by incorporat-
ing surrogate techniques. This section describes the proposed
surrogate-assisted multitasking based on GPHH for DFJSS.
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Algorithm 2: Framework of the Proposed Algorithm

Input : Tasks t1, t2, ... , tk
Output: The best evolved heuristics for each task h∗

1 , h∗
2 , ... , h∗

k
1: Initialisation: Randomly initialise the population with k subpopulations
2: set h∗

1 , h∗
2 , ... , h∗

k ← null
3: set fitness(h∗

1), fitness(h
∗
2), ... , fitness(h∗

k) ← +∞
4: gen← 0, |subpops| ← k
5: while gen < maxGen do
6: set S ← null
7: set newPop ← null
8: // Evaluation: Evaluate the individuals in the population
9: for i = 1 to |subpops| do

10: for j = 1 to subpopsize do
11: Run a DFJSS simulation with hj according to task ti to

get the schedule Schedulej
12: fitnesshj

← Obj(Schedulej)
13: end
14: for j = 1 to subpopsize do
15: if fitnesshj

< fitnessh∗
i

then
16: h∗

i ← hj

17: end
18: end
19: Calculate the phynotypic characterisation vector for each

individual in Subpopi
20: Build surrogate model Si with the phenotypic characterisations

and the corresponding fitness of indivudlas in Subpopi
21: S ← S ∪ Si

22: end
23: if gen < maxGen− 1 then
24: // Evolution: generate new population
25: Generate n ∗ subpopsize offspring for each subpopulation by

genetic operators, respectively.
26: Offspring Pool: Put the offspring of all subpopulations together
27: Clearing the individuals in the offspring pool
28: // Assign individuals to tasks
29: for i = 1 to |subpops| do
30: Estimate the fitness of individuals in the offspring pool

using the surrogate model Si built for Subpopi
31: newInds: Choose the top subpopsize individuals from

offspring pool based on the estimated fitness
32: newPop ← newPop ∪ newInds
33: end
34: end
35: gen← gen+ 1
36: end
37: return h∗

1 , h∗
2 , ... , h∗

k

A. The Framework of the Surrogate-Assisted Multitasking

The framework of the proposed algorithm is presented in
Algorithm 2. The inputs are the k tasks to be solved. The
output is a set of best evolved scheduling heuristics obtained
from subpopulations for different tasks.

At the initialisation stage, the population is formed with
k subpopulations to solve k tasks (line 1). During the eval-
uation process, the individuals in different subpopulations
are evaluated with different training instances according to
the tasks. In addition, the surrogate models are built with
the phenotypic characterisations of individuals and their real
fitness for each subpopulation (from line 8 to line 22). Note
that there are k surrogates generated at each generation,
one for each task and the surrogates are rebuilt at the next
generation. During the evolution stage, n∗subpopsize number
of offspring are generated for each subpopulation to build an
offspring pool (from line 24 to line 26). Then, the duplicated
individuals are removed from the offspring pool according
to their phenotypic characterisations (line 27). To obtain the
final offspring newInds for subpopi for taski, the fitness

of all the individuals in the offspring pool are estimated
by the surrogate Si (line 30). Then, the individuals in the
offspring pool are ranked according to the fitness estimated
by Si, and the top subpopsize individuals are selected as the
final offspring for subpopi (from line 28 to line 33). With
surrogates, more generated knowledge carried by individuals
can be evaluated efficiently. In addition, the surrogates can
help with knowledge transfer between tasks by allocating the
newly generated individuals from different subpopulations for
proper tasks.

B. Surrogate Model

The main idea in this paper is to use surrogate to assist
multitasking. Surrogate design itself is not the focus in this
paper, thus we simply choose a straightforward one that is
designed based on the characteristics of GP and job shop
scheduling. KNN with phenotypic characterisation has been
successfully proposed in [29] for dynamic JSS with GP. Since
KNN is efficient and straightforward, it is chosen as the surro-
gate to estimate the fitness of individuals by finding the most
similar individual based on the phenotypic characterisations
of individuals with Euclidean distance as suggested in [59].
The Euclidean distance is a reasonable technique to measure
the similarity of behaviour of individuals, since the phenotypic
characterisation is a vector of ranking number that indicates
the decision made by a rule, and it is not related to the
search space of the algorithm, either continuous or discrete.
The individuals with real fitness in the previous generation are
used to build the KNN surrogate, and the surrogate is updated
at each generation. Note that the phenotypic characterisation
consists of ordinal numbers, which makes it not necessarily
applicable to build accurate surrogates with other surrogate
techniques such as Gaussian process.

The phenotypic characterisation of an individual is a de-
cision vector based on a set of decision situations [29]. In
this paper, decision situations are sampled from preliminary
simulation runs with 5000 jobs on 10 machines using the
reference rules (e.g., WIQ, work in the queue for routing, and
SPT, shortest processing time for sequencing). The prelimi-
nary simulation generated about 50,000 routing and 50,000
sequencing decision situations. Following the steps in [29],
we randomly sampled decision situations from the generated
decision situations that contains 2 and 20 jobs. To balance the
accuracy and complexity of the phenotypic characterisation,
the number of candidates, i.e., machines for routing and
operations for sequencing, in each decision situation, is set to
7 in this paper. In other words, from all the generated decision
situations, a subset of 20 routing situations and 20 sequencing
situations with the length of 7 is sampled for measuring the
phenotypic characteristic of an individual. A smaller distance
between the phenotypic characterisations of two individuals
suggests that the two individuals are similar.

The phenotypic characterisation of a rule is a vector of rank
numbers, where the number of dimensions equals the number
of decision situations. The element in the ith dimension
indicates the rank of the most prior candidate, i.e., operation
or machine, by the characterised rule in the rank list of the
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TABLE I
AN EXAMPLE OF CALCULATING THE PHENOTYPIC CHARACTERISATION OF

A ROUTING RULE WITH FOUR DECISION SITUATIONS AND EACH WITH
THREE CANDIDATE MACHINES.

Decision Situation Reference Rule Characterised Rule PCi

1 (M1) 3 2
1 (M2) 2 3 1
1 (M3) 1 1

2 (M1) 1 3
2 (M2) 3 1 3
2 (M3) 2 2

3 (M1) 2 3
3 (M2) 3 2 1
3 (M3) 1 1

4 (M1) 1 3
4 (M2) 2 1 2
4 (M3) 3 2

PCi indicates the ith dimension of phenotypic characterisation.

reference rule (i.e., WIQ for routing, and SPT for sequencing).
Table I shows an example of calculating the phenotypic char-
acterisation of a routing rule with four decision situations, and
each decision situation consists of three candidate machines.
In the first decision situation, M3 is the most prior machine by
the characterised routing rule. When looking at the rank value
of M3 by the reference rule, we find that the rank value is 1.
Therefore, the value of the phenotypic characterisation in the
first situation PC1 is set to 1. Similarly, PCi can be obtained
in other decision situations. The corresponding observation
indicators for finalising the phenotypic characterisation are
underlined in each decision situation. Finally, the phenotypic
characterisation of this routing rule is [1, 3, 1, 2]. Note that the
way to calculate the phenotypic characterisation of sequencing
rule is the same as the routing rule, except that sequencing rule
is examined with sequencing decision situations rather than
routing decision situations.

This paper extends the idea in [60], [61] to calculate the
phenotypic characterisation for an individual in DFJSS by
concatenating the phenotypic characterisations of routing and
sequencing rules. An example of the phenotypic character-
isation of an individual in DFJSS is shown in Fig. 2. The
phenotypic characterisation of an individual consists of the
decision vectors of routing and sequencing heuristics. The
individuals with both similar routing (left part) and sequencing
(right part) phenotypic characterisations are considered to have
similar behaviour.

1 3 1 2 3 2 1 2

Routing PC Sequencing PC

 

Fig. 2. An example of the phenotypic characterisation of an individual in
DFJSS (PC indicates phenotypic characterisation).

Regarding the way of using the surrogate model, [29],
[30], [24] show that pre-selection is an effective approach.
Specifically, an intermediate population with a large number
of offspring is generated at each generation, then the surrogate
is used to estimate the fitness of all the offspring efficiently.
Only individuals with good surrogate fitness are pre-selected

Offspring Pool

Subpop2

Subpop3

Subpop1

S1 S2

S3

Subpop2*

Subpop3*  

Fig. 3. An example of the proposed surrogate-assisted multitasking with three
tasks in terms of the surrogate and knowledge transfer mechanism.

to the next generation, and are revaluated with the real fitness
evaluation. This paper uses the surrogate in a pre-selection
manner at each generation but in a different way. Specifically,
the surrogate is not only used to improve the effectiveness
of solving a single task but also sharing knowledge between
tasks. The details are shown in the next subsection.

C. Knowledge Transfer with Surrogate for Multitasking

For simplicity, the proposed algorithm applies the approach
of transferring “FullTree” between tasks. To find suitable
individuals for knowledge transfer, we employ the KNN-
based surrogate mechanism with phenotypic characterisation
to help transfer knowledge between different tasks due to its
effectiveness in distinguishing the behaviours of individuals.

Fig. 3 illustrates the knowledge transfer process in a mul-
titasking scenario with three tasks via surrogate. Assuming
there is one population with three subpopulations, and each
subpopulation consists of three individuals, each of which is
designed to solve a single task. The individuals in Subpop1,
Subpop2, and Subpop3 are marked in solid blue, orange, and
green circles, respectively. If there is no knowledge transfer
between them, the three subpopulations can be considered as
three independent evolutionary processes. For multitasking, a
main consideration is to design the mechanism for transferring
knowledge between these three subpopulations. Firstly, the
phenotypic characterisations and the fitness of individuals
in the subpopulations are used to build the corresponding
KNN surrogate model for each subpopulation (i.e., S1, S2,
S3), respectively. Secondly, to get more potentially useful
knowledge, a large number of offspring n ∗ subpopsize
(where n is two in this example) are generated based on
each subpopulation independently and put into the offspring
pool. The offspring pool is composed of the offspring, from
Subpop1, Subpop2 and Subpop3. Then, the individuals in
the offspring pool are cleared by removing the duplicated
individuals according to the phenotypic characterisations. The
clearing procedure for offspring pool is shown in Algorithm 3.
The removed individuals are marked in dotted circles. Finally,
the individuals in the offspring pool are evaluated based on
S1 (S2 or S3 respectively), and the best subpopsize individ-
uals according to fitness are selected as the final offspring
for Subpop1 (Subpop2 or Subpop3 respectively). The newly
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Algorithm 3: Pseudo-code of clearing procedure of offspring pool

Input : All the individuals in the offspring pool Ind
Output: Cleared individuals with different behaviours NonRepInd

1: set PC ← null
2: distance←∞
3: for i = 1 to |Ind| do
4: PCi: Calculate the phenotypic characteristic of Indi
5: PC ← PC ∪ PCi

6: end
7: for i = 1 to |PC| do
8: for j = i +1 to |PC| do
9: distance: Calculate the distance between PCi and PCj

10: if distance == 0 then
11: remove Indj from Ind
12: distance←∞
13: end
14: end
15: end
16: NonRepInd← Ind
17: return NonRepInd

generated subpopulations are shown as Subpop1∗, Subpop2∗,
and Subpop3∗. Note that an offspring in the offspring pool can
be allocated to multiple subpopulations, since an offspring is
possible to work well on multiple tasks.

From the perspective of transferred materials, the knowledge
is transferred by a FullTree via the surrogate-assisted multi-
tasking mechanism. However, in fact, the knowledge is also
shared in a SubTree manner via the crossover operator in each
subpopulation, since the chosen parents in each subpopulation
can come from different subpopulations. As a result, the pro-
posed approach can take advantage of transferring knowledge
by both the FullTree and SubTree.

D. Summary

The proposed algorithm combines the advantage of surro-
gate and multitasking in GPHH for DFJSS. It improves the
effectiveness of not only solving a single task but also sharing
knowledge between tasks. From the perspective of each task,
the surrogate is used in a pre-selection way by estimating the
fitness of a large number of individuals in the offspring pool.
From the perspective of all tasks, the surrogate plays a role
to share knowledge between different tasks by reallocating
the generated individuals to different tasks. The surrogate
technique makes it possible for multitasking to examine more
useful materials carried by the individuals in the offspring pool
efficiently, while multitasking with the surrogate can make a
better decision of individual allocations for tasks.

IV. EXPERIMENT DESIGN

A. Simulation Model

The simulation assumes that 5000 jobs need to be processed
by 10 machines. Each job consists of a different number of
operations that are randomly generated from a uniform discrete
distribution between 1 and 10. The number of candidate ma-
chines for an operation follows a uniform discrete distribution
between 1 and 10. In addition, the importance of jobs varies,
and the weights of 20%, 60%, and 20% of jobs are set as 1, 2,
and 4, respectively. The processing time of each operation is
assigned by a uniform discrete distribution with the range [1,

99]. The due date of a job is the sum of its release time and 1.5
times its total processing time. Note that the total processing
time of a job is defined as the sum of the average processing
time of all the operations on their candidate machines.

New jobs will arrive over time according to a Poisson
process with rate λ. Utilisation level (denoted as p) is an
essential factor to simulate different job shop scenarios. It is
the proportion of time that a machine is expected to be busy.
The expression of λ is shown in Eq. (1), where µ is the average
processing time of the machines, and PM is the probability of
a job visiting a machine. For example, PM is 2/10 if each job
has two operations. A larger utilisation level tends to lead to
a busier job shop.

λ =
p ∗ PM

1/µ
(1)

To estimate the steady-state performance, the first 1000 jobs
are considered as warm-up jobs and discarded in the objective
calculations [7]. This work collects data from the next 5000
jobs. The simulation stops when the 6000th job is finished.

B. Comparisons

In this paper, each multitasking scenario consists of three
tasks with different utilisation levels. We consider three mul-
titasking scenarios, and each with a different objective, i.e.,
mean flowtime (denoted as Fmean), mean tardiness (denoted
as Tmean), and mean weighted tardiness (denoted as WT-
mean). The utilisation levels (0.75, 0.85, and 0.95) are used
since they are three typical distinct configurations in JSS
[7], [45]. The details of the designed multitasking scenarios
are shown in Table II. The relatedness between tasks is an
important prerequisite for the effectiveness of multitasking
algorithm, and measuring the relatedness between tasks is
still an open question [62]. The correlation between the ranks
of a set of individuals in terms of their fitness for different
tasks was used to measure the relatedness of tasks in [63]. In
addition, the data generated in the evolutionary process was
successfully used to measure the relatedness between tasks
to guide the knowledge transfer between tasks in an online
fashion [64], [65], [66]. In this paper, we borrow the idea in
[63] to measure the relatedness between the designed tasks.
Briefly speaking, the ranks of 10 randomly selected individuals
(vectors A and B for task T1 and T2, respectively) are based
on the fitness obtained by the objective function f1 and f2.
The ordinal correlation between A and B is defined as the
relatedness of T1 and T2. The results show that the tasks in
each multitasking scenario are related to each other with a
correlation value around 0.8. The evolved rule is tested on 50
unseen instances, and the average objective value across the 50
test instances is reported as the test performance of the rule,
which can be a good approximation of its true performance.

TABLE II
THE DESIGNED MULTITASKING SCENARIOS.

Task Scenario 1 Scenario 2 Scenario 3

task 1 <Fmean,0.75> <Tmean,0.75> <WTmean,0.75>
task 2 <Fmean,0.85> <Tmean,0.85> <WTmean,0.85>
task 3 <Fmean,0.95> <Tmean,0.95> <WTmean,0.95>
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TABLE III
THE TERMINAL SET OF GP.

Notation Description

NIQ The number of operations in the queue
WIQ Current work in the queue
MWT Waiting time of a machine

PT Processing time of an operation on a specified machine
NPT Median processing time for the next operation
OWT The waiting time of an operation
WKR Median amount of work remaining for a job
NOR The number of operations remaining for a job

W Weight of a job
TIS Time in system

TABLE IV
THE PARAMETER SETTINGS OF GP.

Parameter Value

Number of subpopulations 3
Subpopulation size 400

The number of elites for each subpopulation 10
Method for initialising population ramped-half-and-half
Initial minimum/maximum depth 2 / 6

maximal depth of programs 8
Crossover / Mutation / Reproduction rate 80% / 15% / 5%

Parent selection Tournament selection
with size 5

Terminal / non-terminal selection rate 10% / 90%
The number of generations 51

The number of offspring for each task 400*12
Intermediate population size of SMTGP / SMT2GP 400*12*3 / 400*4*3

Four algorithms are taken into comparison here. The GP
with k subpopulations to solve k tasks independently named
MTGP (GP with multi-tree representation) [6], is selected as
the baseline algorithm, since there is no surrogate and mul-
titasking mechanism involved. The multitasking algorithm in
[37] named M2TGP, since it involves both GP with multi-tree
representation and multitasking, is also applied in the designed
multitasking scenarios. It is the state-of-the-art that introduces
multitasking in DFJSS. The algorithm in [29] that uses KNN to
build surrogate only, named SMTGP in this paper, is applied
in a multitasking framework. The proposed surrogate-assisted
multitasking algorithm in this paper is named SMT2GP, since
it involves surrogate, multitasking, and multi-tree GP.

To verify the effectiveness of the proposed SMT2GP, the
approaches of MTGP, M2TGP and SMTGP are compared
with SMT2GP in terms of the test objective values on unseen
instances. The effectiveness of the constructed surrogates in
DFJSS is illustrated by the comparison between MTGP and
SMTGP. The effect of multitasking mechanism of SMT2GP is
examined by the comparison between SMTGP and SMT2GP.

C. Parameter Settings

The terminal set of GP is shown in Table III. The features
indicate the characteristics related to machines (e.g., NIQ,
WIQ, and MWT), operations (e.g., PT, NPT, and OWT), and
jobs (e.g., WKR, NOR, W, and TIS). The function set is
set to {+, −, ∗, /, max, min}, following the setting in
[67]. Each function takes two arguments. The “/” function
is protected division, returning one if divided by zero. The
max and min functions take two arguments and return the
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Fig. 4. The violin plot of average objective values on test instances of
MTGP, M2TGP, SMTGP, and SMT2GP over 30 independent runs in three
multitasking scenarios (each row is a multitasking scenario).

maximum and minimum of their arguments, respectively. The
other parameter settings of GP are shown in Table IV. Our
preliminary experiments show that 400*12 is a maximum
intermediate subpopulation size for SMTGP, and no further
improvement can be found if the size is further increased.
Accordingly, the number of generated offspring from each
subpopulation is set to 400*4 for SMT2GP in order to obtain
the same number of evaluations with surrogate (400*4*3 =
400*12) as SMTGP for each task.

V. RESULTS AND DISCUSSIONS

Due to the stochastic nature of evolutionary algorithms,
Wilcoxon rank-sum test with a significance level of 0.05 is
used to examine the performance of the algorithms with 30
independent runs. In the following results, “–”, “+”, and “=”
indicate the corresponding result is significantly better than,
worse than or similar to its counterpart. A smaller value
indicates a better performance in minimisation problem.

A. Quality of the Evolved Scheduling Heuristics with
Surrogate-Assisted Multitasking

Fig. 4 shows the violin plot of average objective values
on test instances of MTGP, M2TGP, SMTGP, and SMT2GP
over 30 independent runs in three multitasking scenarios.
Compared with MTGP, both M2TGP and SMTGP achieve
better performance in all scenarios. This shows the effec-
tiveness of using surrogate and multitasking techniques in
DFJSS in an independent way, which is consistent to the
conclusion drawn in [29], [37]. Compared with M2TGP and
SMTGP, SMT2GP achieves better performance with smaller
average objective values and standard deviations, illustrating
the effectiveness of SMT2GP.

Fig. 5 shows the curves of the average objective values
on test instances based on 30 independent runs of MTGP,
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Fig. 5. The curves of the average objective values on test instances based on
30 independent runs of MTGP, M2TGP, SMTGP, and SMT2GP in three
multitasking scenarios (each row is a multitasking scenario).

M2TGP, SMTGP, and SMT2GP in three multitasking sce-
narios with totally nine tasks. The results show that SMT2GP
converges faster than MTGP, M2TGP, and SMTGP during the
evolutionary process in all multitasking scenarios. As stated
earlier, the only difference between SMTGP and SMT2GP
is the allocation of individuals for different tasks with the
surrogate. This means that the proposed surrogates are capable
of sharing knowledge between different tasks by assigning
appropriate individuals from the offspring pool for different
tasks. This shows the effectiveness of the proposed surrogate-
assisted multitasking algorithm in terms of convergence speed
and quality of the evolved rules. This also shows that tasks
with the same objective but different utilisation levels in
DFJSS can be solved in a mutually reinforcing way.

B. Effectiveness of the Constructed Surrogate in Multitasking

A proper surrogate for DFJSS is important for the success of
surrogate-assisted multitasking. Table V shows the mean and
standard deviation of the objective values on unseen instances
of MTGP and SMTGP according to 30 independent runs
in three multitasking scenarios with nine DFJSS tasks. The
results show that SMTGP outperforms MTGP with a signifi-
cant difference for all the tasks of the examined multitasking
scenarios. This shows the effectiveness of the surrogates for
DFJSS in multitasking scenarios. In addition, for both MTGP
and SMTGP, the objective values in each multitasking task
increase along with the utilisation level. This shows that a
higher utilisation level leads to a more complex task, which
is harder to optimise.

Fig. 6 shows the curves of the average objective values
on test instances based on 30 independent runs of MTGP
and SMTGP in three multitasking scenarios with totally nine
tasks. For all the scenarios, SMTGP performs much better than
MTGP after a few generations, i.e., roughly five generations,
for all tasks with a higher convergence speed in the examined

TABLE V
THE MEAN (STANDARD DEVIATION) OF THE OBJECTIVE VALUES ON TEST

INSTANCES OF MTGP AND SMTGP OVER 30 INDEPENDENT RUNS IN
THREE MULTITASKING SCENARIOS.

Scenario Task MTGP SMTGP

<Fmean,0.75> 337.57(1.80) 335.60(1.20)(–)
1 <Fmean,0.85> 391.04(4.65) 384.35(1.86)(–)

<Fmean,0.95> 573.70(12.17) 548.77(4.60)(–)

<Tmean,0.75> 14.03(1.01) 13.15(0.48)(–)
2 <Tmean,0.85> 41.61(2.73) 39.16(0.81)(–)

<Tmean,0.95> 184.60(8.04) 173.32(1.25)(–)

<WTmean,0.75> 29.67(2.55) 26.53(0.59)(–)
3 <WTmean,0.85> 82.75(6.71) 74.84(2.63)(–)

<WTmean,0.95> 312.26(15.86) 289.48(6.73)(–)
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Fig. 6. The curves of the average objective values on test instances based on
30 independent runs of MTGP and SMTGP in three multitasking scenarios
(each row is a multitasking scenario).

multitasking scenarios. In most cases, before generation five
roughly, the difference of MTGP and SMTGP is not clear.
One possible reason is that the sample data in the surrogate
with KNN are not accurate before generation five, since the
individuals in the population are not well evolved at the begin-
ning of the evolutionary process. In summary, the simulation
results show the effectiveness of the way that surrogates are
constructed for the DFJSS problems in multitasking scenarios.

C. Diversity of Individuals for Tasks

The individuals in the offspring pool are cleared (as shown
in Algorithm 3) to reduce the duplicated individuals based on
their behaviour before assigning to different subpopulations
by the surrogates. Among the four algorithms, only SMTGP
and SMT2GP are designed with the clearing process. It is
interesting to see the effect of the proposed SMT2GP on
the number of cleared individuals in the offspring pool, since
the number of cleared individuals is a good indicator for
measuring the diversity of the individuals. A smaller number
of cleared individuals generally indicates a higher diversity of
individuals in the offspring pool.
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Fig. 7. The curves of the average number of cleared individuals for tasks
of SMTGP and SMT2GP over 30 independent runs in three multitasking
scenarios (each row is a multitasking scenario).

Fig. 7 shows the curves of the number of cleared individuals
for tasks of SMTGP and SMT2GP over 30 independent runs
in three multitasking scenarios. The results show that the
number of cleared individuals in the tasks with the utilisation
level 0.75 and 0.85 of SMT2GP is much smaller than that of
SMTGP during the evolutionary process. This indicates that
SMT2GP can improve the diversity of generated offspring of
Subpop1 for task 1 and Subpop2 for task 2. One possible
reason is that the final offspring for task 1 in Subpop1 and
task 2 in Subpop2 contain different kinds of individuals from
all subpopulations. In this case, the newly generated offspring
for task 1 in Subpop1 and task 2 in Subpop2 vary due to the
diversity of selected parents. However, it is not the case for
task 3 in Subpop3 that optimises the task with a utilisation
level 0.95, especially in <WTmean,0.95>.

D. Individual Allocation for Tasks

One of the main ideas in this work is to allocate individuals
to appropriate tasks. It is interesting to see the allocation
of individuals for each task, i.e., the individuals originally
generated for which task. Fig. 8 shows the curves of the
average number of assigned individuals for tasks of SMT2GP
over 30 independently runs in three multitasking scenarios.
The results show that the utilisation level is an important factor
for the individual allocation rather than the objective. The tasks
with the same utilisation level but with different objectives (the
same column) have a similar trend of allocated individuals.

For the subpopulation of task 1 with utilisation level 0.75,
the number of individuals originally generated for task 1
fluctuates around 40% over generations. The number of in-
dividuals originally generated for task 2 and task 3 shares a
similar trend during the evolutionary process, which is 30%
roughly. For task 2 with utilisation level 0.85, the number
of individuals from Subpop1 for task 1 is the largest, and is
approximately 45%. The number of individuals generated in
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Fig. 8. The curves of the average number of assigned individuals for a specific
task from different tasks of SMT2GP over 30 independent runs in three
multitasking scenarios (each row is a multitasking scenario).

Subpop2 for task 2 ranks second, fluctuating between 30% and
35%. The least number of individuals is generated in Subpop3
for task 3, which is lower than 25% roughly. For task 3 with
utilisation level 0.95, the trend of the number of individuals
generated for task 1 and task 2 is quite similar, fluctuating
between 35% and 40%. However, compared with the number
of individuals originally generated for task 1 and task 2, the
number of individuals generated for task 3 is quite small. In
other words, the individuals for task 3 are not well allocated.
This might be the reason that the diversity of individuals in
Subpop3 for task 3 of SMT2GP is not as high as expected,
which is shown in the last column of Fig. 7. In addition,
the offspring generated by the current subpopulation are not
guaranteed to perform well in the corresponding problem.

The samples in the pools of the surrogates contain individ-
uals from different subpopulations because of the knowledge
transfer. According to the mechanism of KNN, the newly
generated individuals in the intermediate population tend to
be selected into the next generation if they have similar
phenotypic behaviour with the top-ranked individual samples
in the surrogate pool. Taking task 3 as an example, based
on our investigation which is shown in Section III of the
supplementary file, we find that among the individuals in the
surrogate pool, the ones from task 1 and task 2 have better
ranks than that generated from task 3. On the other hand, the
newly generated individuals tend to have similar phenotypic
characterisation with the samples in the surrogate pool that
are originally for the same task. Therefore, the offspring from
task 1 and 2 tend to have better predicated fitness than that
from task 3, and thus more likely to be selected into the
next generation. In addition, Fig. 7 shows that the number
of removed individuals increases from task 1 to task 3. This
indicates that task 3 has the smallest number of individuals to
be allocated. These explain why the proportion of individuals
from Subpop3 is consistently smaller than that from other
subpopulations.
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Fig. 9. The curves of the average rule sizes (routing plus sequencing rule) for
tasks of MTGP, SMTGP, and SMT2GP over 30 independent runs in three
multitasking scenarios (each row is a multitasking scenario).

VI. FURTHER ANALYSES

A. The Sizes of Evolved Scheduling heuristics

Without considering the bloat problem of GP, the quality
of a rule is normally conflicting with its size (the number of
nodes). A larger scheduling rule tends to have a better quality
than a smaller rule. Therefore, SMTGP and SMT2GP are
expected to obtain scheduling heuristics with better qualities
and larger rule sizes than MTGP from an early stage of the
evolutionary process.

Fig. 9 shows the curves of the average rule sizes including
routing and sequencing rules in different tasks of MTGP,
SMTGP, and SMT2GP over 30 independent runs in three
multitasking scenarios. In terms of the complexity of the task,
the results show that a more complex task requires a larger
rule size for all the algorithms. For example, the rule sizes
of the tasks with utilisation level 0.95 are larger than that
of the tasks with utilisation level 0.75 and 0.85. The rule
sizes of SMTGP and SMT2GP are similar over generations,
and the rule sizes of SMTGP and SMT2GP are larger than
MTGP in all scenarios from the early stage. This indicates
that the inclusion of surrogate and multitasking techniques
tend to increase sizes of the evolved scheduling heuristics as
compared to MTGP. For SMTGP, one possible reason is that
it tends to choose scheduling heuristics that have large sizes
due to their good quality in the intermediate population. For
SMT2GP, another possible reason is that the parents may have
large sizes, since they may come from other subpopulations for
complex tasks with large rules. This might also be a reason that
the scheduling heuristics with good qualities can be obtained
by SMTGP and SMT2GP from the early stage.

To further study the effect of the proposed SMT2GP on
the rule size, the routing and sequencing rule are examined
respectively due to the similarity of rule sizes of SMTGP
and SMT2GP. Fig. 10 and Fig. 11 show the curves of the
average routing and sequencing rule sizes for tasks of MTGP,
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Fig. 10. The curves of the average routing rule sizes for tasks of MTGP,
SMTGP, and SMT2GP over 30 independent runs in three multitasking
scenarios (each row is a multitasking scenario).
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Fig. 11. The curves of the average sequencing rule sizes for tasks of MTGP,
SMTGP, and SMT2GP over 30 independent runs in three multitasking
scenarios (each row is a multitasking scenario).

SMTGP, and SMT2GP over 30 independent runs in three
multitasking scenarios with totally nine tasks, respectively. For
the sizes of both routing and sequencing rules, the sizes in
each multitasking (i.e., the tasks with the same objective but
with different utilisation level) show a similar trend but with
different scales. It may be due to the tasks in each multitask-
ing scenario are handled simultaneously by one population
with three subpopulations, and the rule sizes highly interact
between subpopulations. This is different from the individual
allocations for tasks as shown in Fig. 9. The trend of individual
allocation is highly related to the utilisation level, while the
trend of the rule size, either routing or sequencing, is highly
related to the objective examined.
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Fig. 12. One of the best evolved routing rules for task 1 <WTmean,0.75>
in multitasking scenario 3.

For the sizes of routing rules, as shown in Fig. 10, SMT2GP
tends to evolve larger rules than that of SMTGP for most
tasks (e.g., <Tmean,0.75>, <Tmean,0.85>, <Tmean,0.95>,
<WTmean,0.75>, <WTmean,0.85>, and <WTmean,0.95>).
In addition, the sizes of the evolved routing rules by SMTGP
is similar to that of MTGP. For the sizes of sequencing rules,
as shown in Fig. 11, SMTGP obtains larger rule sizes than
that of SMT2GP for all the tasks. The sizes of the evolved
sequencing rules of SMT2GP and MTGP are similar. This
indicates that the sizes of rules for tasks can be similar but
with various size combinations of routing and sequencing. In
addition, SMT2GP improves the quality of evolved schedul-
ing heuristics via routing rule, while SMTGP increases its
performance by sequencing rule. It shows that enhancing the
quality of routing rule may be an effective way to improve
effectiveness of the final schedules in DFJSS.

B. Insight of Evolved Scheduling Heuristics

As stated in the previous subsection, the proposed algo-
rithm SMT2GP has a significant impact on the routing rule.
In this subsection, we choose three routing rules evolved
by SMT2GP for each task in the multitasking scenario 3
that are related to WTmean for further analysis. Figs. 12-
14 show the best routing rules for task <WTmean,0.75>,
<WTmean,0.85> and <WTmean,0.95> in a multitasking
scenario, respectively. These three routing rules are evolved
together in the same multitasking scenario.

In terms of the structures of the routing rules, we can see
that the major part of the structure of the three routing rules are
the same (as shown in grey). One possible reason is that the
optimised objective in a multitasking scenario is the same, and
the rules for different tasks have inherent similarities. For the
evolved building-blocks, except for the building-blocks shown
in grey, the routing rule for task 1 shares the same component
(i.e., Max{*, Max{NOR, NIQ}}) with the routing rule for task
2. Similarly, “Max{NOR, NIQ}” and “NPT / TIS” are evolved
building-blocks of both the routing rule for task 2 and task
3. In addition, “Max{NOR, NIQ}” is a common constructed

-

Max MWT

* Max

/ Max

WIQ MWT - Max

TIS -

Max WIQ

NOR NIQ

NOR NIQ

- /

WIQ MWT WIQ -

* *

NIQ NPT / *

NPT TIS TIS NPT

Fig. 13. One of the best evolved routing rules for task 2 <WTmean,0.85>
in multitasking scenario 3.
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Fig. 14. One of the best evolved routing rules for task 3 <WTmean,0.95>
in multitasking scenario 3.

feature shared by the routing rule of task 1, task 2 and task 3.
This is a sign that the tasks in a multitasking scenario learn
from each other, which is as expected. In terms of the rule size,
the sizes (the number of nodes) of routing rules for task 1, task
2, and task 3 are 29, 35 and 37, respectively. We can see that
complex tasks often require larger rules, which is consistent
with the observation, as shown in Subsection VI-A.

To make it easy for analysis, we simplify the routing rules
by calculating its different components. Note that a machine
with a smaller priority value is considered to be more prior.
The routing rule for task 1 in Fig. 12 can be further simplified
as shown in Eq. (2).

R1 =Max{ WIQ

MWT
∗Max{NPT, TIS,NOR,NIQ},

WIQ−MWT,

WIQ

NIQ ∗NPT −OWT ∗ TIS ∗NPT
} −MWT

≈Max{ WIQ

MWT
∗ TIS,WIQ−MWT,

WIQ

NPT (NIQ−OWT ∗ TIS)} −MWT

=
WIQ

MWT
∗ TIS −MWT

(2)
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The Max function connects the main parts of this rule, and the
key of this priority function is the component with the largest
value. “Max{NPT, TIS, NOR, NIQ}” is simplified as TIS from
step 1 to step 2, since TIS is almost always larger than NPT,
NOR, and NIQ. Similarly, this rule can be further simplified
as WIQ

MWT ∗ TIS −MWT . We can see that this routing rule
suggests the choice of machine with a small workload (small
WIQ) and a long idle time (large MWT). Note than TIS is a
constant here which will not make a significant impact on the
final decision, since TIS is a property of operation and it is
the same for all the candidate machines of an operation.

The routing rule for task 2 in Fig. 13 can be simplified, as
shown in Eq. (3).

R2 =Max{ WIQ

MWT
∗Max{

TIS −Max{NIQ,NOR}+WIQ,NOR,NIQ},

WIQ−MWT,
WIQ

NPT (NIQ−NPT )
} −MWT

≈Max{ WIQ

MWT
∗Max{TIS −Max{NIQ,NOR}+WIQ},

WIQ−MWT,
WIQ

NPT (NIQ−NPT )
} −MWT

=
WIQ

MWT
∗ (TIS +WIQ−Max{NIQ,NOR})

−MWT

(3)

From step 1 to step 2, “Max{TIS-Max{NIQ, NOR} + WIQ,
NOR, NIQ}” can be simplified as “TIS - Max{NOR, NIQ} +
WIQ”, since “TIS - Max{NOR, NIQ} + WIQ” is more likely
to be larger than NOR and NIQ. Compared with Eq. (2), except
for WIQ and MWT, this routing rule takes NIQ or NOR into
consideration. If NIQ is larger than NOR, this rule will be sim-
plified as WIQ

MWT ∗ (TIS+WIQ−NIQ)−MWT . Compared
with the routing rule for task 1, except for WIQ and MWT,
this rule takes the number of operations in the queue (NIQ)
into consideration. This rule suggests selecting the machine
that has a larger number of operations but a smaller work in
queue. This means that this rule prefers to select the machine
with operations that need a short processing time. In this way,
the newly allocated operations have a high probability of being
processed earlier, since the number of sequencing decision
point is increased. If NOR is larger than NIQ, this rule will
be simplified as WIQ

MWT ∗ (TIS +WIQ − NOR) −MWT .
Like TIS, NOR (the number of operations remaining of a job)
is a characteristic of the operation, which is a constant for
candidate machine and will not affect the routing decision too
much. In addition, compared with the routing rule for task 1,
WIQ plays an important role in this rule since it appears twice.

The routing rule for task 3 in Fig. 14 can be simplified,
as shown in Eq. (4). “Max{NOR, NIQ, OWT + PT}” is
denoted as “OWT + PT”, since “OWT + PT” is almost always
larger than NOR and NIQ. PT is used to indicate “Min{WIQ,
TIS, PT}”, since PT is usually the smallest one among them.
Different from R1 and R2, R3 suggests choosing the machine
that has high processing efficiency for a specific operation.
It is consistent with our intuition that operations tend to be
assigned to the most efficient machine for processing it. In
addition, operation waiting time (OWT) can be considered as

a constant as it is the same for all its candidate machines of
an operation that are expected to be allocated.

R3 =Max{ WIQ

MWT
∗ {Max{NOR,NIQ,OWT + PT}

+Min{WIQ, TIS, PT}},WIQ−MWT,

WIQ

NPT (NIQ−NPT )
} −MWT

≈Max{ WIQ

MWT
∗ (OWT + PT + PT ),

WIQ−MWT,
WIQ

NPT (NIQ−NPT )
} −MWT

=
WIQ

MWT
∗ (OWT + 2PT )−MWT

(4)

In summary, the routing rules evolved in a multitasking sce-
nario that optimises the same objective have similarities. For
all rules, they are highly related to WIQ and MWT, and “WIQ
/ MWT” is a shared pattern of the routing rules. However, they
differ according to the complexities of tasks. For the slightly
complex task (task 2), the routing rule pays more attention
to the workload of the machine. For the most complex task
(task 3), the routing rule focuses on the processing efficiency
of the machine. This shows the effectiveness of the proposed
surrogate-assisted multitasking algorithm in DFJSS, since it
not only shares the knowledge between different tasks but also
keeps the unique characteristics for each task.

VII. CONCLUSIONS

This paper has proposed a new surrogate-assisted evolu-
tionary multitasking approach for genetic programming hyper-
heuristics in solving the dynamic flexible job shop scheduling
problems by improving both the effectiveness of solving a
single task and transferring knowledge between tasks.

The proposed surrogate-assisted multitasking algorithm has
three main features as compared to traditional multitasking
framework. Firstly, a large number of new offspring are
generated for providing useful materials for tasks rather than
combining the parent population and the offspring population.
Secondly, the newly generated individuals are evaluated with
surrogate rather than actual simulation evaluations. Thirdly, in-
dividuals are assigned to optimise tasks based on the estimated
fitness by surrogates directly rather than computationally ex-
pensive simulation revaluations. The results show that the
proposed SMT2GP can evolve highly-competitive scheduling
heuristics for dynamic flexible job shop scheduling with high
convergence speed for all the examined multitasking scenarios.
The effectiveness of SMT2GP are examined by comparing
the convergence speed, the quality of evolved scheduling
heuristics, the analyses of the diversity of individuals for tasks,
structures and behaviours of the evolved scheduling heuristics.
It has also been observed that the individual allocations for
tasks are highly related to the utilisation level. This implies
that the complexities of tasks have a significant impact on
knowledge transfer between tasks in a multitasking scenario.
In addition, we found that the sizes of the evolved rules
over generations for tasks are highly related to the objective
examined rather than the utilisation level. This indicates that
the rule evolving processes for different tasks highly interact
with each other in a multitasking scenario.
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Some interesting directions can be further studied in future.
It is still not clear what the optimal number of the transferred
individuals is, and how the tasks can help each other. In
addition, whether tasks with different objectives can be defined
as a multitasking scenario can be further examined. We also
hope to build a more effective surrogate model such as
Gaussian processes and neural networks instead of the KNN.
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