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Abstract

We examine the importance of volatility and jump risk in the time‐series
prediction of S&P 500 index option returns. The empirical analysis pro-

vides a different result between call and put option returns. Both volatility

and jump risk are important predictors of put option returns. In contrast,

only volatility risk is consistently significant in the prediction of call op-

tion returns over the sample period. The empirical results support the

theory that there is option risk premium associated with volatility and

jump risk, and reflect the asymmetry property of S&P 500 index

distribution.
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1 | INTRODUCTION

The importance of time‐varying volatility and jump risk in option pricing has been extensively documented in
the literature. For example, D. S. Bates (2000), Duffie, Pan, and Singleton (2000), Pan (2002), Eraker (2004),
and Santa‐Clara and Yan (2010) propose no‐arbitrage option pricing models to combine them into the standard
Black–Scholes–Merton (BSM) option pricing model. Naik and Lee (1990), Broadie, Detemple, Ghysels, and
Torrés (2000), and Branger, Schlag, and Schneider (2008) investigate the general equilibrium of options market
with stochastic volatility or (and) jump. Recently, Christoffersen, Feunou, and Jeon (2015), Yang and
Kanniainen (2017), and H.‐L. Chang, Chang, Cheng, Peng, and Tseng (2019) introduce models allowing the
underlying asset with volatility and jumps for option pricing. These models provide a rich option pricing
framework in which both stochastic volatility and jump risk are considered. However, whether these two risks
have predictive powers on option returns in the time series remains an unexplored question.

In this paper, we provide a comprehensive empirical study of the importance of volatility and jump risk in
the time‐series predictability of option returns. In particular, we investigate whether there is any difference
between the results of the call and put option returns. Theoretically speaking, call option returns reflect the
expectation of right‐hand side distribution of underlying asset value, while put option returns reflect the ex-
pectation of left‐hand side distribution. Any difference between call and put option indicates the asymmetry
property of the underlying asset value distribution, which is of great importance for asset pricing and risk
management.
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Following numerous literatures on the predictability of asset returns,1 we run several tests. We run in‐sample
regression to test the significance of aggregate volatility and jump risk predictors on predicting the call and put
option returns. We follow the in‐sample test by out‐of‐sample evaluation that investigates the statistical sig-
nificance and economic value of out‐of‐sample forecast. Finally, we run several robustness tests to make sure our
results are stable.

How to measure the aggregate volatility and jump risk is a critical question for our empirical analysis. We use variance risk
premium (VRP) as a measure of aggregate volatility risk following Bollerslev, Tauchen, and Zhou (2009), and follow Cremers,
Halling, and Weinbaum (2015) to construct two aggregate jump risk variables that they use in their robustness check. The two
jump risk predictors are SMIRK,2 the slope of the implied volatility proposed by Yan (2011), and TAIL3 proposed by Du and
Kapadia (2012). Since VRP is also affected by jump risk (Bollerslev & Todorov, 2011), we run the regression of VRP on SMIRK
and TAIL and use the residuals (VRP‐SMIRK and VRP‐TAIL) as the alternative measures of aggregate volatility risk. We use
these five variables in the empirical analysis and test their performance on the prediction of option returns. We also include the
variables that are used in the stock return forecast literature and compare our results with the forecast using Coval and Shumay
(CS, 2001). Coval and Shumway (2001) show that expected option return could be determined by the capital asset pricing
model (CAPM) model under Geometric Brownian Motion (GBM) assumption. We are interested in whether there is additional
improvement by aggregate volatility and jump risk predictors once the other predictors are controlled.

We employ both the standard predictive regression models and combination methods. The predictive regression model is a
good way of testing the predictability when the number of predictors is limited. However, it loses power when the number of
predictors is large. To address this concern, we follow Rapach et al. (2010) to use the combination forecast, and Lin et al. (2018)
to use the regressed combination forecast. They show that these approaches are better ways of extracting useful information
from a large set of predictors and provide a better forecast result than the predictive regression model that puts all variables into
the multiple regression. We use two popular combination forecast, the mean combination (MC) forecast and J. M. Bates and
Granger's (1969) weighted‐mean combination (WC) forecast. These two forecasts are then regressed to obtain the regressed
mean combination (RMC) forecast and the regressed weighted‐mean combination (RWC) forecast, respectively.

Our empirical result shows that aggregate volatility risk is important for the prediction of both call and put option
returns. The results are both statistically and economically significant. For example, using VRP as the predictor could
generate an in‐sample R2 of 10.81% for the 30‐day call option returns, and 14.16% for 30‐day put option returns. The out‐
of‐sample R2’s and utility gains are 9.54% and 5.38%, respectively, for 30‐day call option returns, and 6.31% and 7.15%,
respectively, for 30‐day put option returns. Using the residuals of VRP provide similar results. The finding is also robust
across different option series and forecast horizons. The results by grouped mean are also significant. These findings
show the importance of volatility risk for both calls and puts.

In contrast, the results of jump risk show a different pattern between calls and puts. The jump risk is not significant
in the prediction of call option returns. On the other hand, it is highly significant for the put option return. The different
performances of jump risk predictors on the forecast of call and put option returns reflect the market's expectation
about the asymmetry distribution of S&P 500 index. The forecast using CS (2001) is not significant for either calls or
puts, which provides the evidence of rejection of the GBM assumption of S&P 500 index. The results show there is
option risk premium associated with volatility and jump risk. Call and put options share similarities on the aggregate
volatility risk component, while they are different on the jump risk component.

The combination forecast shows that aggregate volatility and risk predictors significantly improve the forecast performance
once they are used in the combination forecast. For example, if only the predictors from stock return forecast literature are
used, the out‐of‐sample R2’s of the 30‐day call option and put option returns are only 3.74% and 2.84%, respectively, when MC
forecast is used. However, they increase to 7.24% and 5.70% when the aggregate volatility and jump risk predictors are also
utilized. Regressed combination forecast improves the forecast performance furthermore.

We also run several robustness tests. We evaluate the performance of other aggregate volatility risk predictors, including
Volatility Index (VIX) that is a measure of the implied volatility of S&P 500 index options, Bernische Kantonal‐Musikverband

1
For example, Fama and Schwert (1977), Fama and French (1988), Campbell and Shiller (1988), Kothari and Shanken (1997), Pontiff and Schall (1998), Ang and Bekaert (2007), Rapach, Strauss, and

Zhou (2010), Dangl and Halling (2012), Rapach, Strauss, and Zhou (2013), Pettenuzzo, Timmermann, and Valkanov (2014), and Huang, Jiang, Tu, and Zhou (2015) for predicting stock returns; Keim

and Stambaugh (1986), Fama and French (1989), Greenwood and Hanson (2013), Lin, Wang, and Wu (2014), and Lin, Wu, and Zhou (2018) for predicting corporate bonds; and Fama and Bliss (1987),

Campbell and Shiller (1991), Cochrane and Piazzesi (2005), Ludvigson and Ng (2009), Thornton and Valente (2012), Goh, Jiang, Tu, and Zhou (2012), Sarno, Schneider, and Wagner (2016), Gargano,

Pettenuzzo, and Timmermann (2017), and Fulop, Li, and Wan (2017) for predicting Treasury bonds.

2
SMIRK is defined as the difference in the implied volatilities of put and call options.

3
TAIL is defined as the difference between the realized volatility and the annualized integrated volatility.
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(BKMV) that is the aggregate volatility indicator following Bakshi, Kapadia, and Madan (2003)4; and volatility risk premium
(VolP) that is calculated using the difference betweenmodel‐free implied and realized standard deviation. We find that VIX and
BKMV have different prediction performances for put and call option returns, while VolP keeps quite significant. This finding
again suggests a different return dynamics between call and put option returns, and has interesting implication for stochastic
volatility modeling. We also test the results using different option series and various forecast restrictions and find the results are
robust.

Our subperiod analysis shows that aggregate volatility and jump risk predictors have better forecasting performance
during the recent crisis. Both call and put option returns are more predictable between 2007 and 2011. This is consistent
with the finding that asset returns are more predictable during recession periods (Henkel, Martin, & Nardari, 2011; Lin
et al., 2018; Rapach et al., 2010).

This paper is related to Cremers et al. (2015) in that we both address the importance of aggregate volatility and jump
risk and use similar measures. However, Cremers et al. (2015) investigate their impact on the cross‐section of stock
returns, while we examine their predictive power on the time series of option returns. Similarly, there are many other
studies that construct volatility and jump risk measure from option market, see, for example, Ang, Hodrick, Xing, and
Zhang (2006), Bollerslev and Todorov (2011), B. Y. Chang, Christoffersen, and Jacobs (2013), and others. However, they
use the option‐based measure to examine stock market while our focus is on the options market. This paper is also
relevant to other studies that look at the predictability of asset returns, such as stock return and corporate bond returns.
Our contribution lies in that we provide a first empirical study on the options market using several new predictors.

Our paper is about the time‐series predictability of option returns, which is different from the cross‐sectional predictability
studied by others. Goyal and Saretto (2009) analyze the impact of volatility in the cross‐section of options. They construct
portfolios using straddles and delta‐hedged calls and find a positive relation between stock returns and the difference between
historical realized volatility and implied volatility. Cao and Han (2013) investigate the impact of idiosyncratic stock volatility on
the cross‐section of option returns. They find that delta‐hedged option returns are negative for most stocks and decrease with
total and idiosyncratic volatility. Bali and Murray (2013) document that the risk‐neutral skewness could predict the cross‐
section of option portfolio returns. Hu and Jacobs (2019) analyze the relationship between the volatility of the underlying asset
and expected option returns. Vasquez (2017) finds the slope of the implied volatility term structure is positively related to future
equity option returns. These studies look at the cross‐sectional predictability of option returns. While cross‐sectional and
time‐series predictability are different questions, both sides of the research provide meaningful insights about the pricing in the
options market.

Our research is also relevant to the literature that documents the difference between call and put returns. For example,
Constantinides, Jackwerth, and Perrakis (2008) and Constantinides, Czerwonko, Carsten Jackwerth, and Perrakis (2011)
showed that out‐of‐money (OTM) European calls on the S&P 500 index and OTMAmerican calls on the S&P 500 index futures
frequently violate stochastic dominance relationship, while this rarely happens for puts. Bondarenko (2014) argued that the
historical returns of the equity index put options are puzzling and reported that average excess return is −39%/month for
at‐the‐money (ATM) puts and is as low as −95%/month for deep OTM puts. Similarly, Driessen and Maenhout (2004) and
Santa‐Clara and Saretto (2009) find large certainty equivalent gains from selling put options. Broadie et al. (2000) explained this
phenomenon by analyzing market‐neutral portfolios and find that jump risk premiums and estimation risk can explain these
portfolios. Our findings provide another explanation to this question that the different return characteristics of calls and puts
could be due to their different risk components.

The rest of this paper is organized as follows. Section 2 introduces the methodology to construct the two main predictors,
predictive regression models, and the statistical and economic significance measures we use in the out‐of‐sample evaluation.
Section 3 describes our data to be used in the analysis. Section 4 presents the main empirical results. Finally, Section 5
concludes the paper.

2 | METHODOLOGY

2.1 | Aggregate volatility and risk predictor

Constantinides, Jackwerth, and Savov (2013) prove that, in the Black and Scholes (1973) and R. Merton (1973) model
(BSM), the instantaneous expected return of a leverage‐adjusted option equals the expected return of its underlying

4
Cremers et al. (2015) use these two measures in their robustness test.
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asset.5 Numerous studies have shown since then that there are other priced factors besides the single factor in the BSM
model, for example, the stochastic volatility factor in Heston (1993) and Britten‐Jones and Neuberger (2000), the jump
factor in R. C. Merton (1976), the combined stochastic volatility and jump factors in D. S. Bates (1996), and so forth.
With the additional priced factors, the instantaneous expected return of an option becomes the expected return of its
underlying asset plus premiums associated with each additional factor (Constantinides et al., 2013), which motivates us
to construct those three aggregate predictors. We follow Bollerslev et al. (2009) to use variance risk premia representing
aggregate volatility risk and follow Cremers et al. (2015) to use two aggregate jump predictors: SMIRK and TAIL. Next
we introduce the three predictors one by one.

Our aggregate volatility risk predictor is the VRP, a measure of the difference between the model‐free implied and
realized variances. Bollerslev et al. (2009) find this variable is able to explain a fraction of the variation in stock market
returns and dominates other commonly employed variables in the literature. We define it as VRP = IV − RV, where
we use the square of the VIX index as a proxy for implied variance (IV) and estimate realized variance (RV) as

p pRV = [ − ] ,t

n

j

t j n t j n

=1

−1+ Δ −1 + ( −1)Δ
2∑ ∕ ∕ (1)

where p is the log price. We set Δ to be 5min when calculating the RV. This high‐frequency mode‐free realized variance
measure provides a more accurate observation of true return variation than other traditional sample variances based on
daily data (Barndorff‐Nielsen & Shephard, 2002; Meddahi, 2002).

We follow Yan (2011) to construct the aggregate jump predictor as the slope of the implied volatility SMIRK. In his
model, the SMIRK is approximately proportional to the product of jump intensity and average stock jump size. So
similar to Yan (2011), we estimate the aggregate jump predictor, SMIRK, as the difference between the implied
volatility of an OTM put option (Δ = −20) and an ATM call option (Δ = 50).

To construct the second aggregate jump risk predictor, we first calculate Bakshi et al. (2003) measure of option‐
implied volatility (BKMV) by
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μ T e(0, ) = − 1,rT (4)

where r is the risk‐free rate, K is the strike price, S is the underlying asset price, and C and P are the associated call and
option prices, respectively.

We then construct our second aggregate jump predictor, TAIL, as the difference of Bakshi et al. (2003) volatility
measure in Equation (1) and the annualized integrated volatility estimated as follows:
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The construction of both volatilities requires continuous strike prices for a given maturity T . In this study, we use the
interpolated implied volatility curve provided by the OptionMetrics and solve the integration over a range of zero to three
times the underlying asset price. Similar to Cremers et al. (2015), we use 30‐day options to be consistent with the VIX index.

5
Coval and Shumway (2001) provide a similar study.
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Bollerslev and Todorov (2011) show that compensation for rare events accounts for a large fraction of VRP. Besides
VRP variable, we further decompose it into two components by regressing VRP on either SMIRK or TAIL variable and
use the residuals for empirical analysis, naming it VRP‐SMIRK or VRP‐TAIL predictor.

2.2 | Predictive regression model

We forecast h‐month option return with a standard predictive regression model

r α β x β x ε= + + + + ,t h t J J t t h+ 1 1, , +⋯ (6)

where rt h+ is the S&P 500 option return, x j T, = 1, …,j t, is the jth predictor, and εt h+ is an error term. We run a
regression of h‐month option return on each predictor value to estimate the coefficients α and β j T, = 1, …,j , and adjust
the in‐sample standard errors by Newey and West (1987) estimator when the predictive horizon is beyond 1month to
account for the impact of data overlapping. In our empirical study, we focus on the predictability on 3‐month horizon,
and test the predictability on other horizons as a robustness check.

We then run the out‐of‐sample test. Suppose we have the option return data from 1 up to time T , and the out‐of‐sample
forecast starts sincem. At any time t betweenm andT , we use the information up to timem to estimate the coefficients, and
then use the estimated coefficients and information at time m to forecast the h‐month option return rt h+ . At time t h+ , we
could compare the forecasted and realized return to calculate the out‐of‐sample forecasting errors. This procedure is repeated
from timem toT h− . As in other prediction studies (Rapach et al., 2010; Welch & Goyal, 2008), we generate forecasts using a
recursive estimation window and choose the historical average of the option return as a benchmark forecasting model. Besides
the univariate predictive regression, we consider the bivariate predictive regression by using aggregate volatility and jump risk
predictors jointly.

When the number of predictors is large, the predictive regression model by putting all variables into the regression
(“kitchen sink model”) is generally poorly behaved and ends up with useless out‐of‐sample forecast. A possible solution is to
use combination forecast. Researchers have shown that combination forecasts typically outperform individual forecasts both
statistically and economically. For example, Rapach et al. (2010) find combination delivers consistent forecast gains for equity
premium prediction. Lin et al. (2014) show that combining individual predictors improves the significance of out‐of‐sample
forecasts and increases forecasting stability considerably. So we further combine the N individual forecasts as

r w rˆ = ˆ ,c t h

k

N

k t k t h, +

=1

, , +∑ (7)

where wk t, is the weight of individual forecast in the combination forecast. We consider the MC forecast used in Rapach
et al. (2010), and the WC forecast in J. M. Bates and Granger (1969), in which they give greater weights to those
individual forecasts that contain the lower mean‐squared errors and set the weights to be inversely proportional to the
estimated residual variances.6

Lin et al. (2018) propose a regression‐based combination approach and provide the evidence of its good predictability power
on the corporate bond market. It is a very general method and is identical to another powerful procedure of forecast, the partial
least squares (PLS) forecast method,7 when the univariate prediction regression models are used in the MC forecast. It provides
a powerful tool to extract useful information from a large set of predictors. In this paper, we also test its performance on the
forecast of option returns. On the basis of any combination forecast, rc t h, + , we first regress the return on it

r δ δ r r u= + (ˆ − ¯ ) + ,t h c t h t h t+ 0 , + + +1 (8)

and use the predicted value δ δ r r+ (ˆ − ¯ )c t h t h0 , + + as the forecast. The motivation behind regressed combination forecast
is similar to the portfolio choice under which an optimal portfolio will almost do better than investing in each asset
individually. We also apply the regressed combination forecast out‐of‐sample using a recursive time window.

6
Rapach et al. (2010) show that the combination forecast using simple mean performs as well as using complicated weighted schemes.

7
Kelly and Pruitt (2013, 2015) show that the PLS provides a way of extracting information from a large set of predictors.
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Depending on the choice of combination forecast used in the regression, we could obtain different regressed combi-
nation forecast results. In this paper, we consider the RMC forecast and the RWC forecast that are associated with the
use of MC and WC forecast in the regression of Equation (8), respectively.

2.3 | Out‐of‐sample forecast evaluation

We conduct out‐of‐sample analysis in addition to in‐sample analysis. To check the efficiency of the out‐of‐sample
forecasts, we calculate the out‐of‐sample R2 statistics, ROS

2 , of each predictor, given by

R
r r

r r
= 1 −

( − ˆ )

( − )
,

j m

T h
j h j h

j m

T h
j h j h

OS
2 =

−
+ +

2

=

−
+ +

2

∑

∑
(9)

where r̂ and r̄ are the return forecast of an option by a predictor j and by the benchmark model, respectively. The out‐of‐
sample R2 measures the improvement of the predictive regression model over the benchmark model in reducing the mean
square prediction errors. A positive ROS

2 indicates the forecast model that outperforms the benchmark model.
We calculate the mean‐squared prediction error (MSPE)‐adjusted statistic to test the significance of ROS

2 following
Clark and West (2007). Define

f r r r r r r= ( − ¯ ) − [( − ˆ ) − (ˆ − ¯ ) ].t h t h t h t h t h t h t h+ + +
2

+ +
2

+ +
2 (10)

MSPE‐adjusted statistic is obtained by regressing ft h+ on a constant. The p value for a one‐sided test corresponding to
the constant determines the significance of ROS

2 . We use Hodrick (1992) to calculate the standard errors that are robust
for the data overlapping.

To examine whether the forecasts of the volatility and jump predictors bring additional information contents, we
conduct an encompassing test. Considering a forecast r̂t h+ as a combination of two forecasts by predictor i and j:

r λ r λrˆ = (1 − ) ˆ + ˆ ,t h i t h j t h+ , + , + (11)

where λ0 1≤ ≤ . The forecasts by the predictor i encompass the forecasts by the predictor j if λ = 0 as the latter does
not contain any useful information beyond that provided by the former. If λ = 1, the forecasts r̂t h+ are purely con-
tributed by the predictor j and thus the predictor j encompasses the predictor i.

We estimate the Harvey, Leybourne, and Newbold (1998) MHLN statistics. Define d μ μ μ= ( ˆ − ˆ ) ˆt h i t h j t h i t h+ , + , + , + ,

where μ r r μ r r d d V d T h ϕˆ = ˆ − ˆ , ˆ = ˆ − ˆ , ¯ = [ ] , ˆ ( ¯) = ( − ) ˆ
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with a t‐distribution of T h− − 1 degree of freedom. We can then examine the information content added by the
volatility and jump predictors by testing the null hypotheses that λ = 0 compared with other predictors.

Following Welch and Goyal (2008), Rapach et al. (2010), and many others, we calculate realized utility gains for a
mean–variance investor to gauge the economic significance of our predictors. Suppose an investor chooses to allocate
her portfolio between options and risk‐free bills based on the benchmark forecasts, at the end of period t , the weight of
her portfolio to options in t + 1 is

w
γ

r

σ
=

1 ¯

ˆ
,t

t

t
0,

+1

+1
2

⎛
⎝⎜

⎞
⎠⎟
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⎞
⎠⎟ (13)
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where γ is the risk aversion parameter and σ̂t+1
2 is the rolling‐window estimate of the variance of option returns. The

investor achieves an average utility over the out‐of‐sample period:

υ u γσˆ = ˆ −
1

2
ˆ ,0 0 0
2 (14)

where û0 and σ̂0
2 are, respectively, the sample mean and variance of the portfolio returns of the investor using the

benchmark forecasts.
We then compute that the utility of the investor can realize if she allocates her portfolio utilizing a predictor j, the

weight to options in t + 1 becomes

w
γ

r

σ
=

1 ˆ

ˆ
,j t
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t
,
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+1
2

⎛
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⎞
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⎛
⎝⎜

⎞
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and her utility is

υ u γσˆ = ˆ −
1

2
ˆ ,j j j
2 (16)

where ûj and σ̂ j
2 are, respectively, the sample mean and variance of the portfolio returns of the investor using the

predictor j.
We measure the utility gain as the difference between υ̂j and υ̂0, which can be interpreted as the portfolio management fee

that the investor is willing to pay for obtaining additional information brought by the predictor j (Rapach et al., 2010).
Running out‐of‐sample forecast sometimes provides a result that is too extreme to be reasonable. A restriction is

normally imposed to make it within an interval in the literature. For example, Campbell and Thompson (2008) impose
the economic constraint that out‐of‐sample stock return forecast should be nonnegative and show that such constraint
significantly improves the out‐of‐sample performance.8 Option return premium could be negative due to the impact of
negative VolP. We impose the restriction that the quarterly option return must be between −7% and 10%.9 If a model
gives an out‐of‐sample forecast that is out of this interval, we replace that with the historical average for the predictive
regression model and combination forecast. For the two regression‐based combination results, we replace those ex-
treme forecasts with the simpler mean or WC forecasts, respectively. The restriction minimizes the impact of volatile
out‐of‐sample forecasts when a regression is estimated over a short sample period or when the data suffers structural
break. We demonstrate the robustness of our results over different restriction intervals in the robustness test. For utility
gains, we restrict the weight to be between −100% and 150% and γ = 3 to be practical.10

3 | DATA DESCRIPTION

Constantinides et al. (2013) show that the returns of index options are highly volatile, skewed, and nonlinear that impose a
difficulty on the linear models. Having a highly skewed dependent variable may make the standard ordinary least squares
(OLS) regression rather inappropriate. OLS regression models the mean that usually is not a good measure of central tendency
in a highly skewed distribution. Moreover, high skew tends to significantly inflate variance and possibly push it towards
infinity, which makes the conditions of Gauss–Markov theorem not being reasonably satisfied.

To address this concern, they construct a panel of leveraged‐adjusted option portfolios that have targeted market
beta of one and also maintain targeted maturity and moneyness. An option's 1‐day return is converted to a leveraged‐
adjusted return by a hypothetical portfolio with ψBSM

−1 dollars invested in the option and ψ1 − BSM
−1 dollars invested in the

risk‐free asset, where ψBSM
−1 is the BSM elasticity based on the implied volatility of the option, and equals

8
Rapach et al. (2010) and Pettenuzzo et al. (2014) also use similar constraint.

9
This is equivalent to an annual return between −28% and 40% for a portfolio with unit beta, which is a large interval.

10
Rapach et al. (2010) restrict the weight between 0% and 300%, and Thornton and Valente (2012) require the weight between −100% and 200%.
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C S S C( ) × ( ) > 1BSM BSM∂ ∕∂ ∕ for a call and P S S P( ) × ( ) < −1BSM BSM∂ ∕∂ ∕ for a put. As a result, a leverage‐adjusted call
option portfolio consists a long position in both call and risk‐free asset, while a leverage‐adjusted put includes a short
position in a put and more than 100% position in the risk‐free asset. The leverage‐adjusted option returns are then
combined into daily portfolio returns, which are then compounded into monthly returns. Constantinides et al. (2013)
show that these adjustments are necessary to guarantee the monthly portfolio returns to have low skewness and are
close to normal, which allows us to investigate the predictability of linear forecasting models.11

We use the adjusted option returns in Constantinides et al. (2013) in our empirical analysis. Data are downloaded
from Alexi Savov's website. Their data start from 1986. Since our aggregate jump risk predictors are constructed using
OptionMetrics data set that only contains end‐of‐day quotes from 1996, we only use their data from 1996 to match the
time period of the predictors. Our sample includes month‐end S&P 500 index option portfolio returns from January
1996 to December 2011. We focus on the ATM options and test the options with different moneyness for robustness.

We use the standardized volatility surfaces, taken from the Ivy DB OptionMetrics database, to calculate the Bakshi
et al. (2003) volatility measure and Du and Kapadia (2012) jump index. Since not all moneyness options are traded on
each end of month, OptionMetrics interpolates the surface to obtain the missing data. We further obtain the VIX data
from the Chicago Board Options Exchange (CBOE) and the 1‐year constant Treasury yield for risk‐free rate from the
Federal Reserve Bank. The 5‐min high‐frequency data of S&P 500 index used to calculate the realized variance are from
SIRCA Thomson Reuters Tick History.

The underlying asset of S&P 500 option is S&P 500 index. It is highly possible that the variables used to forecast equity
returns are also useful in predicting the option market returns. Besides the aggregate volatility and jump risk measure, we also
use the predictors in Welch and Goyal (2008) and Rapach et al. (2010) in their stock return forecast.12 These variables include:

1. Book‐to‐market ratio, B/M: Ratio of book value to market value for firms included in the Dow Jones Industrial Average.
2. Treasury bill rate, TBL: Interest rate on a 3‐month Treasury bill (secondary market).
3. Long‐term yield, LTY: Long‐term government bond yield.
4. Net equity expansion, NTIS: Ratio of the 12‐month moving sum of net issues by New York Stock Exchange (NYSE)‐

listed stocks to total end‐of‐year market capitalization of NYSE stocks.
5. Long‐term return, LTR: Return on long‐term government bonds.
6. Stock return variance, SVAR: Sum of squared daily returns on the S&P 500 index in a month.
7. Inflation, INFL: Calculated from the CPI (all urban consumers). Since inflation rate data are released in the

following month, following Welch and Goyal (2008), we use the 1‐month lag inflation data.
8. Dividend–price ratio (log), D/P: Difference between the log of dividends paid on the S&P 500 index and the log of

stock prices (S&P 500 index), where dividends are measured using a 1‐year moving sum.
9. Dividend yields (log), D/Y: Difference between the log of dividends and the log of lagged stock prices.
10. Dividend–payout ratio (log), D/E: Difference between the log of dividends and the log of earnings.
11. Earnings–price ratio (log), E/P: Difference between the log of earnings on the S&P 500 index and the log of stock

prices, where earnings are measured using a 1‐year moving sum.
12. Term spread, TMS: Difference between the long‐term yield and the Treasury bill rate.
13. Default yield spread, DFY: Difference between BAA‐ and AAA‐rated corporate bond yields.
14. Default return spread, DFR: Difference between long‐term corporate bond and long‐term government bond returns.

Table 1 summarizes the statistics of monthly option portfolio returns of different maturities and moneyness. The
return distributions of ATM calls are close to normal with skewness near zero for all 30‐, 60‐, and 90‐day options (−0.02,
0.00, and 0.00) and moderate excess kurtosis (0.65, 0.64, and 0.57); the ATM puts also have the skewness of about −0.71
and excess kurtosis around 3.25 for all maturities. The first‐order autoregressive coefficients are all small with a
maximum of 0.12 for 30‐day puts. The OTM calls and in‐the‐money (ITM) puts are more right skewed and the ITM calls
and OTM puts are more left skewed, nevertheless, all skewness and excess kurtosis indicate that the option portfolio
return distributions are temperately deviated from normality. This feature is desirable for our linear predictive re-
gression. The ITM calls and OTM puts have higher average returns than the OTM calls and ITM puts. The last two rows

11
In their concluding remark, Constantinides et al. (2013) argue that the construction of delevered monthly returns of option portfolios lowers the skewness of monthly portfolio returns and renders

them close to normal thereby allowing the future exploration of linear factor models, as well as linear forecasting models.

12
Data were downloaded from Amit Goyal's website.
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report the return statistics of the S&P 500 index as a comparison. The returns of ATM puts are closer to the S&P 500
index than that of ATM calls. Figure 1 plots the time series of the 30‐, 60‐, and 90‐day options, returns are more volatile
during the 1998–1999 Asian crisis and the 2008–2009 financial crisis and are relatively stable during other periods.
There are several spikes of option returns during the 1998–1999 Asian crisis and the 2008–2009 financial crisis, which
reflects the impact of crisis on option market. Put returns have a larger fluctuation than the corresponding call returns,
consistent with the standard deviation values in Table 1.

An option is a derivative whose value largely depends on the underlying asset. It is therefore possible that the correlation
between option and stock index return is close to one, and it is not worthwhile to investigate the forecast option return
separately. We test whether the correlation between S&P 500 index return and the ATM option returns is significantly different
from one. The t values for the six option series are −3.49, −3.27, −3.21, −3.15, −3.02, and −2.98, respectively. All are highly
significant. The rejection of the test suggests that the information content between these return series may not be the same.

TABLE 1 Summary statistics of option returns

Mean Std. Min. Max. Skewness Kurtosis ρ (1)

K/S = 100
30‐Day call (%) −0.02 4.26 −12.93 13.35 −0.02 0.65 −0.02
60‐Day call (%) 0.05 4.30 −12.13 13.96 0.00 0.64 0.01
90‐Day call (%) 0.11 4.30 −12.24 14.24 0.00 0.57 0.02
30‐Day put (%) 0.65 5.65 −27.02 19.53 −0.72 3.54 0.12
60‐Day put (%) 0.58 5.56 −26.27 19.31 −0.71 3.25 0.10
90‐Day put (%) 0.52 5.53 −26.33 18.32 −0.71 3.25 0.10

K/S = 90
30‐Day call (%) 0.18 4.44 −13.09 12.97 −0.22 0.48 0.02
60‐Day call (%) 0.17 4.40 −12.83 13.20 −0.18 0.46 0.03
90‐Day call (%) 0.18 4.39 −12.57 13.34 −0.16 0.44 0.03
30‐Day put (%) 1.72 7.06 −33.30 28.38 −1.25 5.59 0.17
60‐Day put (%) 1.12 6.59 −32.74 25.72 −1.06 4.90 0.15
90‐Day put (%) 0.88 6.28 −32.19 24.10 −0.95 4.75 0.14

K/S = 95

30‐Day call (%) 0.12 4.37 −13.14 13.42 −0.16 0.51 0.02
60‐Day call (%) 0.13 4.35 −12.60 13.87 −0.11 0.57 0.02
90‐Day call (%) 0.15 4.33 −11.95 13.81 −0.09 0.44 0.02
30‐Day put (%) 1.17 6.29 −28.74 24.24 −0.92 3.95 0.12
60‐Day put (%) 0.83 6.00 −28.79 23.31 −0.81 3.96 0.12
90‐Day put (%) 0.71 5.90 −29.57 21.54 −0.81 4.14 0.12

K/S = 105
30‐Day call (%) −0.14 4.28 −13.32 18.06 0.45 1.92 −0.01
60‐Day call (%) 0.00 4.29 −11.80 15.39 0.24 1.02 0.01
90‐Day call (%) 0.08 4.29 −12.89 14.68 0.16 0.90 0.01
30‐Day put (%) 0.43 5.09 −23.47 16.12 −0.56 2.64 0.09
60‐Day put (%) 0.43 5.17 −23.97 16.28 −0.60 2.71 0.09
90‐Day put (%) 0.43 5.23 −24.35 16.68 −0.60 2.85 0.09

K/S = 110

30‐Day call (%) −0.10 4.12 −13.38 23.58 1.20 6.00 −0.02
60‐Day call (%) −0.01 4.23 −11.78 20.07 0.77 2.93 0.02
90‐Day call (%) 0.05 4.28 −12.67 15.46 0.34 1.34 0.02
30‐Day put (%) 0.37 4.85 −20.93 14.64 −0.44 1.86 0.06
60‐Day put (%) 0.36 4.94 −22.06 14.77 −0.50 2.15 0.07
90‐Day put (%) 0.37 5.03 −22.82 15.61 −0.53 2.36 0.07

Stock
S&P 500 (%) 0.50 4.70 −16.94 10.77 −0.59 0.65 0.10

Notes: This table reports the summary statistics of the option returns. Option return data include call and put option of 30‐, 60‐, and 90‐day maturities. We
report the results of option returns with different moneyness, including K/S = 100, 95, 90, 105, and 110, respectively. ρ (1) is the autoregressive coefficients at
lag 1‐month interval. The t value in the last row is to test correlation coefficient being different from one. K/S is the ratio of the strike price to the underlying
stock price.
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Table 2 reports the statistics of those predictors we use. The VRP has a mean of 0.03 and a standard deviation of 0.03. It is
also slightly right skewed with skewness being 1.19 and has an excess kurtosis of 9.69. The TAIL predictor is more right
skewed and has higher peakedness. Figure 2 illustrates the movements of these three predictors: They have spikes in late
1998 and 2008 due to the impact of Long‐Term Capital Management (LTCM) and Lehman Brother's bankruptcy.

4 | EMPIRICAL RESULTS

In this section we present our empirical results. First, we run univariate regression for each predictor to test both its in‐
sample and out‐of‐sample performances starting from January 2002 to December 2011. Then we investigate the
performance of bivariate regression of the three volatility and jump predictors and the combination and regressed
combination forecasts, followed by robustness tests.

4.1 | Univariate and bivariate predictive regressions

Table 3 presents the regression results for the ATM option returns. The performance of the volatility and jump
predictors for the 30‐day options is shown in the first panel. The in‐sample test shows that the volatility risk predictors
have significant coefficients for calls at the 1% level while none of the jump risk indicators is significant, with the largest
in‐sample R2 11.76% for the VRP‐TAIL. In contrast, all of the in‐sample results for puts are significant at the 1% level
except those for the TAIL, with the largest 14.16% in‐sample R2. The bivariate regression is consistent with the
univariate regression and slightly improves the in‐sample performance. All significant coefficients are positive sug-
gesting that the higher the volatility or jump risk, the larger the option return.

The second and third panel of Table 3 also shows the results for 60‐ and 90‐day options. They are very close to those
of 30‐day options. To compare the results of predictive regression models between option returns and stock index
return, we also run the predictive regressions for S&P 500 index. The results are very close to those of call option
returns. The predictive coefficients of stock returns are larger than option returns, suggesting that stock returns are
more sensitive to these risk predictors. The VRP predictor has good predictability on index returns, in line with the
findings in Bollerslev et al. (2009). None of the jump risk predictors is significant in‐sample. The predictability of call
option return is closer to stock index return. In contrast, there is significant difference between the predictability of put
option return and stock index return, indicating the differences of forecasting stock and option returns, especially put
option returns.

1996 1999 2002 2005 2008 2011
-0.4

-0.2

0

0.2
30-day option

Call
Put

1996 1999 2002 2005 2008 2011
-0.4

-0.2

0

0.2
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Call
Put

1996 1999 2002 2005 2008 2011
-0.4

-0.2

0

0.2
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Put

FIGURE 1 Option returns. Note: This graph plots the time series of call and put option returns from 1996 to 2011 [Color figure can be
viewed at wileyonlinelibrary.com]
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Turning now to the out‐of‐sample performance reported in Table 4, consistent with the in‐sample results, the
volatility predictors have significant ROS

2 for both calls and puts, while the jump predictors are only significant for puts.
Between the two jump risk predictors, the prediction power of SMIRK is stronger than that of TAIL. The utility gains
for puts are all positive and mostly larger than the corresponding calls. The aggregate volatility and jump risk are both

TABLE 2 Summary statistics of predictors

Mean Std. Min. Max. Skewness Kurtosis ρ (1)

VRP 0.03 0.03 −0.09 0.14 1.08 9.69 0.35

SMIRK 0.05 0.02 −0.02 0.16 1.19 2.45 0.57

TAIL (×100) 0.21 0.18 −0.06 1.40 3.48 17.04 0.72

BM 0.25 0.07 0.12 0.44 0.22 −0.76 0.95

TBL 0.03 0.02 0.00 0.06 −0.11 −1.59 0.99

LTY 0.05 0.01 0.02 0.07 −0.09 −0.23 0.95

NTIS 0.01 0.02 −0.06 0.03 −1.34 1.42 0.96

LTR 0.01 0.03 −0.11 0.14 0.00 2.72 −0.01

SVAR 0.00 0.01 0.00 0.06 5.72 43.03 0.69

INFL 0.00 0.00 −0.02 0.01 −1.12 5.52 0.47

D/P −4.06 0.23 −4.52 −3.28 0.42 0.76 0.97

D/Y −4.05 0.23 −4.53 −3.29 0.32 0.60 0.97

D/E −0.84 0.50 −1.24 1.38 2.83 8.34 0.98

E/P −3.21 0.42 −4.84 −2.57 −1.71 3.77 0.97

TMS 0.02 0.01 0.00 0.05 −0.06 −1.35 0.97

DFY 0.01 0.00 0.01 0.03 2.83 9.34 0.96

DFR 0.00 0.02 −0.10 0.07 −0.44 6.50 0.04

Notes: This table reports the summary statistics of the predictors. The predictors used in the analysis are variance risk premium (VRP) following Bollerslev et al.
(2009), the implied volatility SMIRK measure following Yan (2011; SMIRK), and the tail index defined in Du and Kapadia (2012; TAIL), and other predictors
used in Welch and Goyal (2008) and Rapach et al. (2010) for stock return forecast, including the book‐to‐market ratio (B/M), Treasury bill rate (TBL), long‐term
yield (LTY), net equity expansion (NTIS), long‐term return (LTR), stock variance (SVAR), inflation rate (INFL), the dividend–price ratio (D/P), dividend yields
(D/Y), the dividend–payout ratio (D/E), the earnings–price ratio (E/P), term spread (TMS), default yield spread (DFY), and default return spread (DFR). ρ (1) is
the autoregressive coefficients at lag 1‐month interval.

FIGURE 2 Aggregate volatility and jump risk predictor. Note: This graph plots the time series of variance risk premium (VRP) measure
and aggregate jump risk measure (SMIRK and TAIL) from 1996 to 2011. VRP is the variance risk premium following Bollerslev et al. (2009),
and SMIRK is the slope of the implied volatility SMIRK proposed in Yan (2011). TAIL is the tail index following Du and Kapadia (2012)
[Color figure can be viewed at wileyonlinelibrary.com]
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statistically and economically important for the forecast of put option returns. On the other hand, only aggregate
volatility risk plays a role in the prediction of call option returns. The different performances of aggregate volatility and
jump risk on call and put option predictability reflect the asymmetry property of S&P 500 index distribution, indicating
that the jump risk is a more important factor of option return for puts than for calls.

Besides those volatility and jump predictors, we show the performance of a naive predictor called grouped average
(GA), which simply sorts the option return series into three groups using their implied volatility levels at time t − 1 and
calculate the mean of option returns in each group. At time t , we first determine the group that the current volatility
level belongs to, then use the mean of that group as the forecast. GA thus naively takes into consideration of option
returns under different stochastic volatility environments. Interestingly this naive predictor has good out‐of‐sample
performance, especially for puts, achieving the largest utility gain at 10.32%. They are significant for both puts and calls,
suggesting that stochastic volatility is an important factor for option returns.

Coval and Shumway (2001) examine expected option returns in the context of asset pricing theory and show that
under GBM assumption, expected option returns vary linearly with option betas. Since the leverage‐adjusted option
portfolios used in our empirical analysis have targeted market beta of one, their expected return could be approximated
by the expected return of stock market portfolio. Following this, we first forecast the stock market return and use it as a

TABLE 3 In‐sample predictive regression: aggregate jump and volatility risk predictors

Variable β1 t Value β2 t Value R2 (%) β1 t Value β2 t Value R2 (%)

30‐Day call 30‐Day put
VRP 0.90* 4.84 10.81 1.34* 5.27 14.16
SMIRK 0.29 0.77 0.51 1.02* 3.15 7.08
TAIL 1.21 0.17 −0.44 11.84 1.54 5.03
VRP‐SMIRK 0.99* 4.60 10.18 1.14* 2.90 7.68
VRP‐TAIL 1.01* 5.13 11.76 1.20* 2.95 9.54
VRP‐SMIRK+ SMIRK 0.99* 4.98 0.29 1.07 10.75 1.14* 4.66 1.02* 4.13 14.86
VRP‐TAIL + TAIL 1.01* 5.45 1.24 0.37 11.39 1.20* 6.39 11.88* 3.31 14.68

60‐Day call 60‐Day put
VRP 0.95* 4.79 11.31 1.31* 5.34 14.03
SMIRK 0.36 0.93 1.01 0.98* 3.02 6.71
TAIL 2.10 0.29 −0.25 11.14 1.47 4.57
VRP‐SMIRK 1.01* 4.37 9.95 1.13* 2.99 7.78
VRP‐TAIL 1.04* 4.82 11.69 1.19* 3.03 9.68
VRP‐SMIRK+ SMIRK 1.01* 4.91 0.36 1.29 11.03 1.13* 4.75 0.98* 3.97 14.58
VRP‐TAIL + TAIL 1.04* 5.37 2.14 0.59 11.51 1.19* 6.41 11.18* 3.13 14.36

90‐Day call 90‐Day put
VRP 0.96* 4.84 11.30 1.33* 5.32 14.35
SMIRK 0.39 1.01 1.22 0.98* 3.02 6.81
TAIL 2.47 0.34 −0.15 11.20 1.47 4.63
VRP‐SMIRK 1.01* 4.27 9.66 1.14* 3.00 7.99
VRP‐TAIL 1.04* 4.73 11.44 1.20* 3.05 9.94
VRP‐SMIRK+ SMIRK 1.01* 4.83 0.39 1.41 10.95 1.14* 4.76 0.99* 3.98 14.90
VRP‐TAIL + TAIL 1.04* 5.37 2.50 0.69 11.36 1.20* 6.44 11.23* 3.15 14.68

Stock
VRP 1.23* 6.94 13.45
SMIRK 0.55 1.25 2.01
TAIL 2.70 0.30 −0.21
VRP‐SMIRK 1.26* 5.44 10.94
VRP‐TAIL 1.35* 6.19 13.92
VRP‐SMIRK+ SMIRK 1.27* 6.72 0.55 1.60 13.03
VRP‐TAIL + TAIL 1.35* 7.56 2.75 0.64 13.80

Notes: In this table, we report the results of in‐sample univariate predictive regressions of option returns using different aggregate jump and volatility risk
predictors. The prediction horizon is one quarter. *, **, and *** denote the significance level of 1%, 5%, and 10%, respectively.
Abbreviation: VRP, variance risk premium.
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forecast of option returns. We follow Rapach et al. (2010) and use the mean of 14 individual forecasts as the forecast of
stock returns. The last row of each panel in Table 4 reports ROS

2 of this approach. The forecast is not significant for either
calls or puts. This provides the evidence of rejection of GBM assumption for S&P 500 index.

The empirical results in Table 4 show that option returns are associate with GBM, volatility, and jump risk
components. Volatility risk is important for both puts and calls, while jump risk is only significant for the puts. Call and
put option returns share both similarities and difference in their predictability. The different performances of jump risk
predictors on the prediction of call and put option returns reflect the asymmetry property of S&P 500 index distribution.
This is consistent with Constantinides et al. (2008), Constantinides et al. (2011), and Constantinides and Lian (2015)
about the different patterns of call and put option returns.

Figure 3 plots the time series of option return forecasts by the VRP and SMIRK predictors against the benchmark
historical average forecasts. Clearly the forecasts by the two predictors are more volatile and capture the dynamics of
actual returns better for puts than for calls, and the historical average forecasts are too stable to predict returns timely.

Table 5 shows the results for other predictors that are widely applied for stock. For brevity, we only report the results
of 30‐day option returns.13 The results show that NTIS and D/Y have significant in‐sample coefficients for the call
returns, and B/M, D/P, D/Y, and D/E have significant in‐sample coefficients for the put returns. The out‐of‐sample
results also suggest that there are some variables that could be used to forecast option returns. For example, ROS

2 of TBL
and DFY of call returns are significantly positive, while ROS

2 of LTY, NITS, INFL, D/Y, and DFY of put returns is
significantly positive. This means the variables used in the stock return forecast are also helpful on the forecast of
option returns.

Next we conduct an encompassing test to examine whether the forecasts by the volatility and jump predictors bring
additional information content. Table 6 reports the p values corresponding to a test of the null hypothesis that the
forecast given in the column heading encompasses the forecast given in the row heading against the alternative
hypothesis that the forecast given in the column heading does not encompass the forecast given in the row heading.
Panel A reports the results of 30‐day calls while Panel B reports the results of 30‐day puts. For example, the result of
intersection of column (8) and row (1) is 0.00. This means the probability that the forecast of call option returns by BM
encompasses the forecast by VRP is 0.00.

Most of the numbers in the up‐right part of matrix in Panels A and B are <0.10. This indicates that the forecasts by
other predictors largely do not encompass the forecasts by the volatility and jump predictors. These results suggest that
the volatility and jump predictors contain information that is not captured by those predictors widely used for stock
returns. VRP encompasses most of the other three predictors. This implies that VRP has most information content
among the predictors.

4.2 | Other option series and forecast horizon

So far we focus on the quarterly returns of 30‐, 60‐, and 90‐day ATM options. To show the robustness of our results, we
test our predictive regression on option returns with different moneyness and forecasting horizon.

Panel A of Table 7 reports the results of 30‐day options with different moneyness, including
K S = 0.90, K S = 0.95, K S = 1.00∕ ∕ ∕ , and K S = 1.05∕ . The results are similar to those of ATM options. The coefficients of
predictive regression gradually decrease with the increase of K/S. This suggests the returns of deep OTM call option and deep
ITM put options are more sensitive to these risk predictors.

Panel B of Table 7 reports the results of longer horizon, including two quarters, three quarters, and 1 year. The
results are even stronger than those of quarterly return forecast. For example, using the best‐performing predictor, VRP,
in the forecast of 30‐day put option returns gives an ROS

2 of 7.15% at the quarterly horizon as reported in Table 3, and
provides an ROS

2 of 10.61% at the yearly horizon. There is also some evidence of predictability of call option return at
longer horizon. For example, the jump risk predictors are significantly positive in‐sample at the yearly horizon, and all
of ROS

2 are significantly positive.
Overall, the results of other option series and forecast horizon show that the predictability of put option return by

volatility and jump risk predictors and the predictability of call option return by volatility risk predictors are robust. The
predictability of option returns is more significant at a longer forecast horizon.

13
The results of 60‐ and 90‐day option returns are similar and available upon request.
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4.3 | Combination forecast and regressed combination forecast

Given the different performances of the volatility and jump predictors and their additional information content, in this
section we investigate the option return forecast using combination forecast and regressed combination forecast. For
the combination forecast, we report the results of using other predictors only and using all the predictors, including the
volatility and jump risk and GA predictors.

The up panel of Table 8 reports the results of 30‐day ATM options. All combinations of the forecasts yield significant
out‐of‐sample ROS

2 at the 5% level, in line with these approaches' good performance for stock returns in Rapach et al.
(2010) and corporate bond returns in Lin et al. (2014). Introducing volatility and jump risk variables into the combi-
nation forecast improves the out‐of‐sample forecast performance of both the call and put option returns. For example,
ROS
2 of MC forecast using other variables for 30‐day call option and 30‐day put option returns are 3.74% and 2.84%,

respectively, while they significantly increase to 7.24% and 5.80%, respectively, when all variables are used. This
improvement shows the importance of aggregate volatility and jump risk predictors on forecasting option returns after

TABLE 4 Out‐of‐sample forecast of option returns: aggregate jump and volatility risk predictors

Call Put

Variable ROS
2 (%) UΔ (%) ROS

2 (%) UΔ (%)

Panel A: 30‐day
VRP 9.54* 5.38 6.31* 7.15
SMIRK −7.73 −1.29 2.92* 4.79
TAIL −6.90 −0.04 0.66** 3.93
VRP‐SMIRK 15.04* 6.80 7.51* 5.18
VRP‐TAIL 13.20* 7.38 7.70* 6.35
VRP‐SMIRK+ SMIRK 9.78* 4.62 7.50* 7.06
VRP‐TAIL + TAIL 9.07* 5.74 2.04* 6.19
Grouped average (GA) 2.00** 1.29 3.40* 10.32
Coval and Shumway (CS, 2001) −11.73 −8.62 0.89 4.38

Panel B: 60‐day
VRP 9.65* 5.45 6.55* 7.02
SMIRK −7.49 −0.68 1.39* 4.04
TAIL −7.69 −0.51 −0.21 3.51
VRP‐SMIRK 14.59* 6.88 8.08* 5.55
VRP‐TAIL 13.92* 7.52 10.21* 6.82
VRP‐SMIRK+ SMIRK 9.41* 4.72 7.60* 6.57
VRP‐TAIL + TAIL 7.86* 5.52 2.56* 5.97
Grouped average (GA) 1.01** 1.42 4.28* 9.65
Coval and Shumway (CS, 2001) −9.06 −7.06 0.78 2.93

Panel C: 90‐day
VRP 10.24* 5.38 6.46a 6.90
SMIRK −7.00 −0.21 1.15a 3.75
TAIL −7.24 −0.54 −0.57 3.14
VRP‐SMIRK 14.51* 6.75 10.24* 5.91
VRP‐TAIL 14.20* 7.51 10.32* 6.92
VRP‐SMIRK+ SMIRK 9.63* 4.80 7.60* 6.41
VRP‐TAIL + TAIL 7.57* 5.27 2.31* 5.74
Grouped average (GA) 0.25** 1.62 4.87* 9.05
Coval and Shumway (CS, 2001) −7.53 −6.00 0.67 1.91

Notes: In this table, we report the out‐of‐sample forecast of option returns using different aggregate jump and risk predictors. The prediction horizon is one
quarter. The out‐of‐sample forecast starts from 2002. The significance of ROS

2 is calculated from MSPE‐adjusted statistic following Clark and West (2007). We
use Hodrick (1992) to calculate the standard errors that are robust for the data overlapping. *, ** , and *** denote the significance level of 1%, 5%, and 10%,
respectively.
Abbreviations: MSPE, mean‐squared prediction error; VRP, variance risk premium.
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FIGURE 3 Option return forecast by aggregate volatility and jump risk measure. Notes: This graph plots the time series of option return
forecast by VRP and SMIRK. We also plot the forecast using the historical mean (HM) that is used as the benchmark model. VRP, variance
risk premium [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 5 Forecast of option returns by other variables

Call Put

In‐sample Out‐of‐sample In‐sample Out‐of‐sample

Variable Beta t Value R2 (%) ROS
2 (%) UΔ (%) Beta t Value R2 (%) ROS

2 (%) UΔ (%)

BM 0.09 0.96 0.46 −19.61 −4.54 0.20*** 1.69 2.12 −3.99 −3.74

TBL 0.42 1.18 1.00 2.22* 6.17 −0.30 −0.66 −0.06 −0.73 2.94

LTY 0.67 0.81 0.36 −3.50 6.15 −0.95 −0.96 0.52 1.37* 2.85

NTIS 0.84** 2.18 5.50 −10.41 0.38 0.76 1.31 2.37 4.77* 4.23

LTR −0.03 −0.12 −0.52 −1.15 −0.63 0.00 0.01 −0.53 0.37 0.87

SVAR −1.86 −1.69 2.08 −3.25 −0.49 0.27 0.18 −0.50 −2.51 −1.22

INFL 0.63 0.38 −0.42 −1.61 −0.19 −1.98 −0.95 0.15 1.38* 5.55

D/P 0.06 1.50 3.06 −10.53 −7.57 0.10** 2.26 5.82 0.00 −2.41

D/Y 0.06c 1.66 3.08 −7.83 −7.65 0.10* 2.51 6.18 1.44* −1.80

D/E 0.01 0.71 0.06 3.03 2.44 0.03*** 1.72 2.26 0.80 6.89

E/P 0.00 0.10 −0.52 −2.58 0.07 −0.01 −0.49 −0.16 −2.77 5.50

TMS −0.52 −1.18 0.69 −0.85 1.76 0.17 0.28 −0.45 −1.20 1.80

DFY −1.28 −0.58 0.28 6.20** 3.57 1.16 0.50 −0.14 6.87* 8.90

DFR 0.03 0.09 −0.53 −2.45 −0.78 0.39 0.76 0.09 −0.47 0.86

Notes: In this table, we report the results of 30‐day option return forecast by the variables used in the stock return forecast literature. The out‐of‐sample forecast
starts from 2002. The significance of ROS

2 is calculated from MSPE‐adjusted statistic following Clark and West (2007). We use Hodrick (1992) to calculate the
standard errors that are robust for the data overlapping. *, **, and *** denote the significance level of 1%, 5%, and 10%, respectively.
Abbreviations: BM, book‐to‐market ratio; D/E, dividend–payout ratio; D/P, dividend–price ratio; D/Y, dividend yields; DFR, default return spread; DFY, default
yield spread; E/P, earnings–price ratio; INFL, inflation rate; LTR, long‐term return; LTY, long‐term yield; MSPE, mean‐squared prediction error; NTIS, net
equity expansion; SVAR, stock variance; TBL, Treasury bill rate; TMS, term spread.
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TABLE 7 Results of predictive regressions: robustness test

Call Put

In‐sample Out‐of‐sample In‐sample Out‐of‐sample

Variable Beta t Value R2 (%) ROS
2 (%) UΔ (%) Beta t Value R2 (%) ROS

2 (%) UΔ (%)

Panel A: other moneyness
90% K/S
VRP 1.00* 5.66 11.59 8.04* 5.36 1.63* 4.82 13.10 3.57* 2.66
SMIRK 0.40 1.03 1.17 −5.78 −0.54 1.52* 5.09 10.23 2.20* 2.68
TAIL 2.14 0.28 −0.27 −7.74 −1.10 19.17* 2.54 8.71 −0.04 0.22
VRP‐SMIRK 1.06* 4.77 10.03 14.28* 7.22 1.21** 2.19 5.35 2.83* 1.73
VRP‐TAIL 1.10* 5.31 12.04 14.26* 8.00 1.30** 2.19 6.99 3.58* 2.80

95% K/S
VRP 0.97* 5.23 11.36 10.24* 5.53 1.45* 5.12 13.55 4.88* 7.29
SMIRK 0.36 0.93 0.96 −7.09 −1.03 1.21* 4.00 8.28 4.28* 5.96
TAIL 1.71 0.23 −0.36 −8.30 −1.03 14.73** 1.97 6.51 −0.49 3.73
VRP‐SMIRK 1.04* 4.66 10.07 14.68* 7.13 1.17* 2.57 6.55 5.73* 5.02
VRP‐TAIL 1.08* 5.21 12.07 14.33* 7.80 1.24* 2.57 8.27 6.27* 5.93

105% K/S
VRP 0.84* 4.27 9.64 8.28* 5.38 1.17* 5.19 13.52 10.90* 7.15
SMIRK 0.35 0.93 1.03 −8.74 −1.29 0.84* 2.69 5.89 1.10* 4.79
TAIL 1.93 0.27 −0.28 −4.78 −0.04 9.42 1.35 3.87 −0.21 3.93
VRP‐SMIRK 0.88* 3.95 8.15 12.90* 6.80 1.03* 3.05 7.82 10.06* 5.18
VRP‐TAIL 0.92* 4.61 9.93 11.31* 7.38 1.08* 3.11 9.63 11.26* 6.35

110% K/S
VRP 0.71* 3.93 7.05 6.87* 2.87 1.11* 5.19 13.16 10.95* 6.68
SMIRK 0.25 0.75 0.27 −4.93 0.33 0.74** 2.31 4.87 −0.13 2.84
TAIL 0.41 0.07 −0.52 0.06 1.69 7.84 1.14 2.80 −1.46 2.60
VRP‐SMIRK 0.78* 3.66 6.45 10.07* 3.63 1.00* 3.25 8.16 10.92* 5.90
VRP‐TAIL 0.82* 4.45 8.03 11.16* 4.89 1.05* 3.33 10.02 12.12* 7.15

Panel B: other horizon
Two quarters
VRP 1.02* 2.93 6.10 9.39* 3.72 1.80* 3.46 9.17 7.86* 5.36
SMIRK 0.60 1.54 1.65 0.09 1.05 1.73* 4.56 8.13 2.94* 3.39
TAIL 7.25 1.10 1.14 −0.06 1.40 25.37* 3.11 9.23 3.34* 4.77
VRP‐SMIRK 0.95** 2.32 3.89 10.60* 3.16 1.25 1.58 3.08 8.11* 5.04
VRP‐TAIL 0.93** 2.36 4.35 6.95* 3.12 1.25 1.57 3.60 7.30* 5.07

Three quarters
VRP 0.97** 2.09 3.20 13.71* 3.69 1.87* 2.69 6.43 7.82* 4.78
SMIRK 0.89* 2.17 2.50 6.91* 2.74 1.91* 3.29 6.48 6.13* 3.63
TAIL 11.64*** 1.72 2.19 11.97* 3.72 32.07* 3.80 9.80 4.88* 3.40
VRP‐SMIRK 0.70 1.29 0.95 11.52* 3.05 1.23 1.16 1.77 9.95* 5.02
VRP‐TAIL 0.73 1.43 1.36 11.61* 3.38 1.12 1.09 1.68 8.25* 4.78

One year
VRP 0.87*** 1.81 1.61 18.66* 4.78 2.06** 2.44 5.66 10.61* 5.80
SMIRK 1.04** 2.37 2.40 13.22* 4.27 2.40* 3.57 7.56 7.59* 3.99
TAIL 13.41** 2.42 2.01 18.84* 5.13 38.75* 4.71 10.57 8.23* 4.57
VRP‐SMIRK 0.48 0.80 −0.05 16.25* 4.16 1.17 0.90 0.99 11.67* 5.94
VRP‐TAIL 0.57 1.01 0.26 17.30* 4.52 1.13 0.88 1.09 11.52* 6.17

Notes: This table reports the results of several robustness tests. Panel A reports the results of other moneyness option, while Panel B reports the results of other
forecast horizon.The out‐of‐sample forecast starts from 2002. The significance of ROS

2 is calculated from MSPE‐adjusted statistic following Clark and West
(2007). We use Hodrick (1992) to calculate the standard errors that are robust for the data overlapping. *, **, and *** denote the significance level of 1%, 5%, and
10%, respectively.
Abbreviations: MSPE, mean‐squared prediction error; VRP, variance risk premium.

18 | GUO AND LIN



TABLE 8 Forecast of option returns: combination forecast and regressed combination forecast

Call Put

Model Variables R (%)IS
2 R (%)OS

2 UΔ (%) R (%)IS
2 R (%)OS

2 UΔ (%)

30‐Day option
Combination forecast Other predictors: mean 2.47 3.74** 2.03 1.89 2.84** 4.75

Other predictors: weighted mean 2.54 3.69** 1.97 1.96 2.87** 4.81
All predictors: mean 6.89 7.24* 4.47 6.89 5.70* 7.43
All: weighted mean 7.20 7.38* 4.52 7.25 5.80* 7.50

Regressed Mean 22.83 20.38* 9.39 20.56 16.67* 13.42
combination forecast Weighted mean 20.76 17.97* 9.20 18.25 16.01* 13.31

60‐Day option
Combination forecast Other predictors: mean 2.52 3.41** 1.78 1.95 3.12* 4.57

Other predictors: weighted mean 2.57 3.35** 1.69 2.01 3.16* 4.62
All predictors: mean 7.00 7.04* 4.27 7.04 6.07* 7.21
All: weighted mean 7.30 7.17* 4.30 7.38 6.17* 7.28

Regressed Mean 23.12 14.36* 8.26 21.38 18.11* 13.39
combination forecast Weighted mean 21.96 16.37* 8.04 19.62 17.41* 13.18

90‐Day option
Combination forecast Other predictors: mean 2.57 3.87** 2.08 1.91 3.23* 4.41

Other predictors: weighted mean 2.61 3.78** 1.97 1.96 3.27* 4.45
All predictors: mean 6.98 7.37* 4.44 7.16 6.26* 7.10
All: weighted mean 7.26 7.49* 4.44 7.52 6.37* 7.17

Regressed Mean 22.98 16.87* 10.16 21.69 18.33* 13.08
combination forecast Weighted mean 21.93 16.85* 9.87 20.32 17.63* 12.83

Notes: In this table, we report the results of option return forecast using bivariate regression, combination forecast, and regressed combination forecast. The
prediction horizon is one quarter. For the combination forecast, we report the results of using other predictors only and using all the predictors, including
aggregate volatility and jump risk predictors. We use mean and weighted mean to calculate the combination forecast. We use all variables in the regressed
combination forecast. The out‐of‐sample forecast starts from 2002. The significance of ROS

2 is calculated from MSPE‐adjusted statistic following Clark and West
(2007). We use Hodrick (1992) to calculate the standard errors that are robust for the data overlapping. *, **, and *** denote the significance level of 1%, 5%, and
10%, respectively.
Abbreviation: MSPE, mean‐squared prediction error.

FIGURE 4 Option return forecast by mean combination and regressed mean combination. Notes: This graph plots the time series of
option return forecast by mean combination (MC) and regressed mean combination (RMC). We also plot the forecast using the historical
mean (HM) that is used as the benchmark model [Color figure can be viewed at wileyonlinelibrary.com]
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the other variables are controlled for. Combining the volatility and jump predictors with other predictors generally have
larger utility gains for puts than for calls. For example, using all the predictors increases the out‐of‐sample utility gain
from 2.03% to 4.47% for calls, and they increase from 4.75% to 7.43%, when the MC approach is used.

Consistent with Lin et al. (2018), regressed combination forecast significantly improves both the in‐sample R2, the
out‐of‐sample R2, and utility gains for both calls and puts. ROS

2 of regressed combination forecast is around 20% that is
much higher than the other forecasts. They are also of high economic value. For the 30‐day puts, the utility gain using
regressed combination forecast could reach more than 13%, which are much higher than those of combination forecast
and bivariate predictive regressions. The results of 60‐ and 90‐day options are similar. This shows that regressed
combination forecast provides a superior forecast performance for the option returns.

Figure 4 plots the time series of option return forecast by MC and RMC. As expected, the forecast by MC is quite
stable across the time. On the other hand, the forecast by RMC is much more volatile, especially during the recent
financial crisis, but better captures the dynamics of option returns.

4.4 | Other test

In this section, we run several other tests. First we test whether the forecast performance is robust to different volatility
predictors. Then we test the performance of these predictors during subperiods. Finally investigate whether adding
different return constraints yields similar forecast performance.

We consider three alternative predictors of volatility risk, VIX, BKMV, and VolP. Under the stochastic volatility
framework, such as Heston (1993), D. S. Bates (2000), and Pan (2002), volatility follows a mean‐reverting process. The
market price of volatility risk is a linear function of volatility level. The current level of volatility is therefore an effective
measure of volatility risk and a useful predictor of option return. Du and Kapadia (2012) show that when there exist
price discontinuities, the VIX index is a biased estimator of market volatility, while the volatility measure of Bakshi
et al. (2003) is much less biased. Cremers et al. (2015) also use VIX and BKMV as the measure of volatility risk in their

TABLE 9 Forecast of option returns: other aggregate jump and volatility risk predictors

Call Put

Variable In‐sample R2 R (%)OS
2 UΔ (%) In‐sample R2 R (%)OS

2 UΔ (%)

30‐Day option
VIX −0.31 −4.84 0.35 4.57 0.72* 0.91
BKMV −0.47 −4.09 0.47 3.98 0.69* 0.01
VolP 5.11 10.52** 3.77 1.92 3.82** 5.30
VolP‐SMIRK 7.01 10.82* 4.43 5.20 7.44* 8.97
VolP‐TAIL 7.08 14.09* 5.26 7.41 12.30* 10.81

60‐Day option
VIX −0.12 −5.17 0.16 4.12 0.46* 0.99
BKMV −0.35 −4.40 0.33 3.55 0.36* −0.01
VolP 4.89 10.86** 4.25 2.08 4.05** 4.98
VolP‐SMIRK 7.09 11.71* 5.06 5.36 9.60* 9.00
VolP‐TAIL 7.37 15.11* 5.96 7.47 12.33* 10.07

90‐Day option
VIX 0.00 −4.68 0.19 4.03 0.09** 0.92
BKMV −0.27 −4.01 0.28 3.46 −0.02 −0.17
VolP 4.54 10.40* 4.33 2.36 4.35** 4.98
VolP‐SMIRK 6.78 11.50* 5.20 5.82 10.14* 8.88
VolP‐TAIL 7.12 14.92* 6.14 8.04 13.01* 9.94

Notes: In this table, we report the out‐of‐sample forecast of option returns using different aggregate jump and risk predictors. The prediction horizon is one
quarter. The out‐of‐sample forecast starts from 2002. The significance of ROS

2 is calculated from MSPE‐adjusted statistic following Clark and West (2007). We
use Hodrick (1992) to calculate the standard errors that are robust for the data overlapping. *, **, and *** denote the significance level of 1%, 5%, and 10%,
respectively.
Abbreviations: BKMV, Bernische Kantonal‐Musikverband; MSPE, mean‐squared prediction error; VIX, Volatility Index; VolP, volatility risk premium.
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empirical test. VolP is the difference between 30‐day realized volatility and 30‐day ATM implied volatility. The realized
volatility is measured by the square root of realized variance, while 30‐day ATM implied volatility is measured by VIX.
Goyal and Saretto (2009) find that the returns of stock portfolios constructed using this measure are both economically
and statistically significant. Similarly, we also run the regression of VolP on SMIRK and TAIL and use their residuals in
the forecast.

Table 9 reports the results when we use the VIX, BKMV, VolP, and its regression residuals on SMIRK or TAIL
variables as a proxy for the aggregate volatility risk. We find that both the VolP and its residual have similar perfor-
mances to VRP. They are both statistically and economically significant for the prediction of call and put option returns.

The VIX and BKMV, nevertheless, are only significant for put option returns. They do not provide useful in-
formation for the prediction of call option returns. The different performances of VIX and BKMV on the prediction of

TABLE 10 Forecast of option returns: subperiod analysis

Call Put

Jan. 1999–Jun. 2007 Jul. 2007–Dec. 2011 Jan. 1999–Jun. 2007 Jul. 2007–Dec. 2011

Model R (%)OS
2 UΔ (%) R (%)OS

2 UΔ (%) R (%)OS
2 UΔ (%) R (%)OS

2 UΔ (%)

30‐Day option
VRP −7.83 4.61 17.90* 6.32 −2.21 0.49 8.84* 15.12
SMIRK −8.57 2.11 −7.33 −5.40 −12.60 −2.42 7.53* 13.48
TAIL −10.71 3.17 −5.06 −3.88 −18.88 −1.60 6.47*** 10.49
VRP‐SMIRK 2.20** 2.89 21.22* 11.83 8.20** 2.71 7.31* 7.97
VRP‐TAIL −6.07 4.00 22.46* 11.69 1.58* 1.03 9.52* 12.67
VRP‐SMIRK+ SMIRK −10.81 3.51 19.69* 6.01 −11.02 −1.16 13.00* 17.04
VRP‐TAIL + TAIL −11.54 3.70 18.98* 8.30 −17.40 −1.50 7.82** 15.45
GA 6.01** 1.24 0.07 1.32 20.78* 10.56 −1.77 9.93
CS (2001) −9.74 −3.50 −12.69 −14.68 4.59* 2.23 −0.21 7.11
RMC 15.00* 8.59 22.97* 10.37 13.63* 5.51 17.57* 23.08

60‐Day option
VRP −10.17 4.42 19.05* 6.71 −2.44 1.01 9.39* 14.26
SMIRK −9.36 1.94 −6.60 −3.86 −12.99 −2.22 5.93* 11.63
TAIL −13.17 3.02 −5.09 −4.72 −16.75 −0.93 5.00*** 8.78
VRP‐SMIRK 1.30** 2.85 20.90* 12.04 7.79* 3.07 8.17* 8.39
VRP‐TAIL −4.30 3.79 22.56* 12.25 1.33* 1.51 13.01* 13.20
VRP‐SMIRK+ SMIRK −12.70 3.34 19.90* 6.43 −11.70 −0.66 13.69* 15.41
VRP‐TAIL + TAIL −14.08 3.53 18.27* 7.98 −15.60 −0.82 8.29** 14.19
GA 5.04** 1.34 −0.89 1.47 23.19* 11.23 −1.69 7.63
CS (2001) −7.15 −2.60 −9.96 −12.36 5.23* 2.50 −0.62 3.60
RMC 12.82* 8.20 15.09* 8.29 14.67* 6.15 19.20* 22.32

90‐Day option
VRP −9.49 4.32 19.49* 6.66 −3.20 1.22 9.54* 13.78
SMIRK −8.66 2.00 −6.22 −2.91 −14.31 −2.23 6.08* 11.04
TAIL −12.37 3.11 −4.84 −4.89 −18.34 −0.84 5.09*** 7.87
VRP‐SMIRK 1.48** 2.72 20.62* 11.85 7.39* 3.26 11.15* 9.00
VRP‐TAIL −3.36 3.69 22.42* 12.31 0.85* 1.76 13.34* 13.19
VRP‐SMIRK+ SMIRK −11.86 3.29 19.70* 6.66 −12.62 −0.37 14.04* 14.76
VRP‐TAIL + TAIL −13.27 3.51 17.34* 7.42 −17.24 −0.72 8.54** 13.62
GA 4.02** 1.41 −1.52 1.83 25.02* 11.63 −1.56 5.83
CS (2001) −5.59 −2.03 −8.43 −10.70 5.62* 2.55 −0.91 1.28
RMC 12.70* 7.94 18.82* 12.89 11.46* 5.91 20.52* 22.03

Notes: In this table, we report the results of option return forecast before and after the financial crisis. We follow Dick‐Nielsen et al. (2012) and Subrahmanyam
et al. (2012) to use July 2007 as the starting point of financial crisis. The prediction horizon is one quarter. We report the results of univariate predictive
regression, bivariate predictive regression, and regressed combination forecast. For regressed combination forecast, we report the results of regressed mean
combination (RMC) using all predictors. *, **, and *** denote the significance level of 1%, 5%, and 10%, respectively.
Abbreviations: CS, Coval and Shumay; GA, grouped average; VRP, variance risk premium.
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call and put option returns again show the different patterns of calls and puts. Since the use of VIX or BKMV as a
measure of volatility risk is based on the assumption of linear relationship between VolP and volatility level, this finding
also suggests that these linear stochastic volatility models might be misspecified in the pricing of call options. These
models could be extended by considering a time‐varying risk price, or a nonlinear function form of VolP as discussed in
Pan (2002), to better capture the call option return dynamics.

The behavior of option return is quite different between crisis and noncrisis period. An interesting question is to test
the performance of these predictors during these two periods. We follow Dick‐Nielsen, Feldhütter, and Lando (2012)
and Subrahmanyam, Jankowitsch, and Friewald (2012) to use July 2007 as the starting point of financial crisis. We
separate data sample into two periods: from January 2002 to June 2007 and from July 2007 to December 2011.

Table 10 reports the results of option return forecast during these two subperiods. The up, middle, and down panels
report the results of 30‐, 60‐, and 90‐day ATM options, respectively. We find that the aggregate volatility and jump risk
predictors have better forecasting performance during the second subperiod that includes the financial crisis period. For
example, using VRP as the predictor to forecast 30‐day call option returns generates an out‐of‐sample R2 of 17.90% and a
utility gain of 6.32% during the second subperiod, while they are only −7.83% and 4.61%, respectively, during the first
subperiod. VRP‐SMIRK and VRP‐TAIL provide similar results. SMIRK and TAIL keep insignificant during both
subperiods for calls, suggesting that they do not help call option returns under both economic conditions. It is also
interesting to observe that jump risk predictors are only significant for puts during the second subperiod, which
suggests that jump risk is a more important component of option risk premium when the market is turbulent
(Table 11).

On the other hand, the forecast by GA performs better during the first subperiod than the second subperiod. When
the crisis comes, the historical grouped mean does not contain much useful information any longer because of structure
break. The results by RMC also show that option returns are more predictable during the second subperiod. Overall, the
higher predictability of option returns during the second subperiod is consistent with the literature that asset returns
are more predictable during the recession periods.

We next investigate the impact of forecast constraint on the forecast performance. We use [−7%, 10%] to constrain
the forecast in the above empirical analysis. It is a concern that forecast performance might be sensitive to the choice of

TABLE 11 Robustness check of regressed combination forecast using different forecast constraints

[−6%, 9%] [−6%, 10%] [−7%, 9%] [−8%, 8%]

Option Model R (%)OS
2 UΔ (%) R (%)OS

2 UΔ (%) R (%)OS
2 UΔ (%) R (%)OS

2 UΔ (%)

30‐Day option
Call RMC 16.97* 9.10 18.73* 9.18 18.61* 9.32 16.24* 9.32

RWC 20.03* 9.20 20.03* 9.20 17.97* 9.20 16.33* 9.15
Put RMC 16.85* 13.40 16.67* 13.42 16.85* 13.40 16.21* 13.30

RWC 16.17* 13.29 16.01* 13.31 16.17* 13.29 15.57* 13.20

60‐Day option
Call RMC 15.19* 8.05 15.19* 8.05 14.36* 8.26 14.36* 8.26

RWC 16.63* 8.04 18.55* 8.04 14.44* 8.04 14.44* 8.04
Put RMC 18.00* 13.36 18.11* 13.39 18.00* 13.36 17.23* 13.17

RWC 17.14* 13.18 17.41* 13.18 17.14* 13.18 17.94* 13.20

90‐Day option
Call RMC 19.29* 10.23 19.29* 10.23 16.87* 10.16 16.87* 10.16

RWC 18.96* 9.93 18.96* 9.93 16.85* 9.87 16.85* 9.87
Put RMC 18.50* 13.04 18.33* 13.08 18.50* 13.04 17.74* 12.89

RWC 17.63* 12.83 17.63* 12.83 17.63* 12.83 17.77* 12.80

Notes: In this table, we report the robust results of regressed combination forecast using different forecast constraints. If the regressed combination forecast is
not within this interval, then it is replaced with the combination forecast. We use all variables in the forecast, and then use mean and weighted mean to
calculate the combination forecast. They are further used to calculate the regressed mean combination forecast (RMC) and regressed weighted‐mean
combination forecast (RWC), respectively. The out‐of‐sample forecast starts from 2002. The significance of ROS

2 is calculated from MSPE‐adjusted statistic
following Clark and West (2007). We use Hodrick (1992) to calculate the standard errors that are robust for the data overlapping. *, **, and *** denote the
significance level of 1%, 5%, and 10%, respectively.
Abbreviation: MSPE, mean‐squared prediction error.
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forecast constraint. Table 10 reports the results of regressed combination forecast using different constraints.14 If the
regressed combination forecast is not within this interval then it is replaced with the combination forecast. We use all
variables in the forecast, and then use mean and weighted mean to calculate the combination forecast. They are further
used to calculate the RMC forecast and RWC forecast, respectively. The results clearly indicate that the performance of
regressed combination forecast is robust to the choice of forecast constraint.

5 | CONCLUSION

In this paper, we conduct a comprehensive study on the time‐series predictability of option returns by volatility and risk
predictors. We consider one measure of aggregate volatility risk, VRP, and two measures of aggregate jump risk
predictors, SMIRK, and TAIL. We find a different result between call and put option returns. The measure of volatility
risk, VRP, provides an important role in the forecast of both call and put option returns. In contrast, the aggregate jump
risk predictor is only significant for puts. The results are robust across option series, forecast horizon, and model
specification. The different performances of aggregate jump predictor on the prediction of call and put option returns
reflect the asymmetry property of S&P 500 index.

The empirical results suggest that there is option risk premium associated with volatility and jump risk. Call and put
options share similarity on their volatility risk component, while they are different on jump risk component. Separate
risk component between calls and puts might help explain the different patterns of call and put options documented in
the literature.

We find that the combination and the regressed combination forecast also provide stable and significant results for
options. The aggregate volatility and jump risk predictors have information contents that are not included in the other
predictors used in the stock return forecast. Subperiod analysis suggests that option returns are more predictable during
the crisis period.

We also find that the volatility risk predictors of VIX and BKMV have different performances on the prediction of
call and put option returns. They keep significant in the put option return forecast, while they lose predictive power for
calls.

Our empirical results have interesting implications for future research. The asymmetry property of underlying assets
suggests that different models might be necessary when we price calls and puts. Varying performance of VIX and
BKMV on calls and puts implies that the linear relationship between VolP and volatility level might be misspecified for
the call option pricing. Possibly extension include the consideration of a time‐varying risk price or a nonlinear re-
lationship. It will be of great interest to explore these issues in future research.
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