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Abstract 
 
Climate change is changing the nature of extreme weather events across the globe. Extreme 

event attribution is used to quantify the extent to which anthropogenic climate change is 

responsible for the change in frequency or severity of a specific extreme weather event. 

Using this quantification, we can estimate the proportion of economic costs from a specific 

extreme weather event that are attributable to climate change. However, research is yet to use 

this approach to estimate the value of climate change-attributed economic costs from extreme 

weather that have already been experienced globally. In this paper, extreme event attribution 

data has been collected, allowing us to estimate an average fraction of attributable risk (i.e. 

the portion of risk for which climate change is responsible) for different classes of extreme 

weather events – including heatwaves, droughts, floods, storms, wildfires, and cold waves. 

We then combine this with existing economic cost data from EM-DAT, including the number 

of deaths (converted using a value of statistical life) and economic damages, to approximate 

the climate change-attributed global cost of extreme weather using extrapolated reasoning. 

From this, we estimate that US$2.90 trillion in economic costs from extreme weather are 

attributable to climate change over the period from 2000 to 2019, equivalent to an annual 

average cost of US$145 billion. This shows that present estimations of the global cost of 

climate change are largely underestimated. This attribution-based estimate is higher than 

estimates from some Integrated Assessment Models, including William Nordhaus’s DICE 

model, which are designed to measure the total economic impact of climate change inclusive 

of, but not limited to, extreme weather-related costs. This demonstrates that the crude nature 

of climate inputs in existing climate-economy modelling has a limited ability to capture costs 

from tail-end extreme weather events. The experimental attribution-based approach to global 

estimation is a best first-attempt which provides a new, alternative tool for measuring the 

costs of climate change. 
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Introduction 
The future economic impact of climate change is a matter of much concern and debate. 

Surprisingly, less attention is given to the costs the world has already endured because of 

climate change. Estimating the economic cost of climate change involves analysing many 

complex interacting systems, all of which have embedded uncertainties. Therefore, it is 

inherently difficult to put a definitive number to the nuanced question of how much climate 

change is costing our global economy. However, an attempt at quantification is essential so as 

to enable policymakers to make well-informed decisions about mitigation and adaptation 

policies. A critical piece of this puzzle is understanding how the costs associated with 

extreme weather events globally are caused by anthropogenic climate change. What we do 

know is that human activity and associated greenhouse gas emissions are changing the 

location, spatial extent, intensity, and frequency of extreme weather across the globe (IPCC, 

2021). By extension, climate change is responsible for some of the costs of extreme weather 

events. A better understanding of the magnitude of the role of climate change in the economic 

impact of extreme weather would prove helpful to global decision-makers as they plan for a 

future characterized by even hotter temperatures and more extreme weather events. 

Considering this, Allen (2003) proposed using extreme event attribution studies to quantify 

the economic costs associated with climate change. This research here uses an attribution-

based approach to quantify the global cost of extreme weather events induced by 

anthropogenic activity over the last 20 years.   

  

The economic costs associated with extreme weather events vary. They include direct 

economic losses, which occur during or immediately after the event. Using flooding as an 

example, where the hazard is heavy precipitation, direct economic loss may include destroyed 

housing or lost crops. Moreover, an extreme weather event can also cause indirect economic 

losses. These are declines in economic value-added because of the direct economic losses. 

The examples of these indirect losses are wide-ranging. However, for the flood example, they 

could include microeconomic impacts such as revenues lost by businesses when access routes 

are inundated by floodwater and meso-economic impacts such as temporary unemployment 

in the affected area or even more wide ranging supply-chain disruptions. These indirect 

economic losses can often spill out beyond the affected area and have long time lags, making 

them difficult to quantify.   
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Extreme event attribution is a relatively young field of climate science – it aims to determine 

the contribution of anthropogenic climate change to an extreme weather event. Often this is 

done by quantifying the fraction of attributable risk (FAR), i.e. how much of the risk of a 

specific event occurring can be attributed to climate change. By extension, this can be 

combined with economic impact estimates to approximate the fraction of the cost of an 

extreme event for which climate change is responsible. Aggregation of these economic cost 

estimates can be used to approximate the cost of climate change-induced extreme weather. 

This attribution-based method fundamentally differs from other approaches to climate cost 

estimation where macroeconomic modelling methods are employed, specifically in various 

types of integrated assessment models (IAM). The approximation in this research is not a 

direct comparison, nor a substitute, for other economic estimations such as the IAMs. Instead, 

it is a new form of evidence that enhances the current knowledge regarding the economic cost 

of climate change, specifically extreme weather events.   

  

As is the nature of first-attempt research, the purpose of this paper is to be exploratory and 

prove the use-value of the employed methodology. This approach has many limitations, 

mostly regarding data availability and coverage, which are examined in this paper. However, 

as better data becomes available over time and the method is refined, the robustness of this 

approach's estimation will increase in tandem. Ultimately, the aim of this research is to 

provide ever-improving information on the cost of climate change that feeds into better 

public and private decision-making globally.   

 

1. Literature review 
 

1.1. The economic impact of extreme weather events 
 
Extreme weather events have devastating impacts on individuals, communities, economies, 

and environments. Extreme weather events, by definition, are rare weather events at a 

particular place and time of the year (IPCC, n.d.). An extreme weather phenomenon by itself 

is not a disaster, but when a weather-driven hazard intersects with an exposed and vulnerable 

population, the extreme weather event becomes a disaster (IPCC, 2012). These events, when 

they occur, can cause a range of economic impacts. The Intergovernmental Expert Working 

Group on Indicators and Terminology relating to disaster risk reduction provides a set of 

definitions that allow for effective communication and categorization of disaster-related 
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economic impacts. Firstly, an event can cause disaster damages which occur during and 

immediately after the disaster. This is usually measured in physical units and describes the 

total or partial destruction of physical assets, the disruption of basic services, and damages to 

sources of livelihood in the affected area. Relatedly, direct economic loss is the monetary 

value of disaster damages, for example, the monetary value of totally or partially destroyed 

physical assets. Secondly, disasters can cause indirect economic losses, defined as a decline 

in economic value-added because of direct economic loss (damages) and/or human or 

environmental damages (Frame et al., 2020A). These indirect losses often occur outside the 

hazard area and with a time lag, sometimes meaning they are intangible and/or challenging to 

measure, a gap which can sometimes be filled by modelling (Jahn, 2015).  Finally, disaster 

impact is the total effect of a disaster, including negative effects (e.g. economic losses) and 

positive impacts (e.g. economic gains). This term includes economic, human, and 

environmental impacts, including death, injuries, disease, and other adverse effects on human 

physical, mental, and social well-being. This research will attempt to understand disaster 

impacts in aggregate and present them in terms of monetary valuation, referred to as the total 

economic cost. This is predominantly comprised of direct losses and the statistical value of 

life loss, given limitations on the data collected in EM-DAT.   

  

The availability of well-categorized economic impact data for extreme weather events is 

limited. Chatterton et al. (2010) provides an excellent example of an in-depth and well-

categorized recording of the economic impacts of an extreme weather event, notably the 2007 

floods in the United Kingdom. This paper shows that economic impacts can be highly 

variable across the short and long term. The total economic cost of the UK floods is assessed 

at USD$6.4 billion (£3.2 billion1) – which includes direct economic losses and indirect 

economic losses. An example of a direct economic cost, which is relatively easy to measure, 

is the US$660 million (£330 million) in power and water utility damages. Moreover, indirect 

economic losses from this flooding event included mental health costs which accounted for 

US$520 million (£260 million). Indirect costs, such as these, are much more difficult for 

researchers, organisations, and governments to measure. Therefore, it is rare to have 

estimates for the total economic cost that are as comprehensive and detailed as that in 

Chatterton et al. (2010). There is a paucity of economic impact data globally and an even 

 
1 2007 average GBP USD XR = 2.00, in 2007 prices.  
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more significant limitation on well-categorized economic data. Consequently, when 

researching this space, there is often a reliance on incomplete data. 

 

Understanding the total economic costs for an individual event is important. However, we 

also need to understand the global impact of extreme weather from a macro-lens. From the 

available data, the World Meteorological Society (2021B) reports that there has been a seven-

fold increase in the reported disaster losses from extreme weather since the 1970s. The 

reported losses from 1970-1979 were on average US$49 million per day, while this increased 

up to US$383 million in 2000-2019. This is of notable concern and prompts the question of 

what is causing these changes. Many underlying reasons could be driving this rise. For 

example, a higher level of development may mean assets of greater value are vulnerable to 

damage (although better building quality should reduce vulnerability), improvements in the 

reporting of economic losses, global shifts to exposed coastal areas, urbanization, and many 

other factors. However, the a fundamental question for policymakers is how this increase is 

related to anthropogenic changes in the climate system. To properly make decisions to 

mitigate climate change, we first need to understand how climate change alters the patterns of 

occurrence, severity, and economic impact from extreme weather events globally. 

 

1.2. Detecting a relationship between climate change and extreme weather 
events 

 
Changes in the frequency and nature of extreme weather events have been observed (IPCC, 

2013). Extreme weather events can occur because of natural variability in the climatic 

system, external forcings such as greenhouse gas emissions, or – in most modern cases – 

from a combination of the two. The act of observing changes in extreme weather patterns is 

formalized through the ‘detection’ process. Detection involves identifying a statistically 

significant change in the extreme values of a climate variable over time; for example, this 

may involve detecting a significant change in the severity or frequency of a type of extreme 

weather event (Easterling, Kunkel, Wehner & Sun, 2016). The climate system is well-

monitored, and despite some challenges regarding data availability, changes in extreme 

weather events over the latter half of the twentieth century have been detected. The most 

recent research from the IPCC AR6 report (2021) finds that it is virtually certain that the 

frequency and severity of hot extremes have increased (Seneviratne et al., 2021). While the 

frequency of cold extremes has decreased since 1950, human-induced greenhouse gas forcing 
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is the primary driver of this global change (Seneviratne et al., 2021). For other climatic 

variables, the changes are less distinct. It is likely that the frequency and intensity of heavy 

precipitation events have increased over the majority of land areas globally, with human 

influence the likely main driver. Moreover, with high confidence, the IPCC finds that the land 

area affected by increasing drought frequency and severity is increasing with increased global 

warming. While it is likely that the global proportion of major tropical cyclones intensities 

has increased over the past four decades, this cannot be explained by natural variability alone 

(medium confidence) (Seneviratne et al., 2021). The detection of these changes in the 

frequency, severity, and geographical coverage of extreme weather events and the evident 

links to anthropogenic climate change help inform us of patterns observed in the past and 

what may occur in the future. However, these detected changes exhibit generalised changes 

in the climatic system and cannot be directly applied to an individual extreme weather event. 

Therefore, there is additional demand for evidence to show how anthropogenic activity 

changes the nature of specific events. Resultantly, there is a need to go through the climate 

change attribution process.  

 

1.3. Attributing climate change as a causal factor in extreme weather events 
 
Climate change attribution is a process that examines the degree to which anthropogenic 

emissions caused a specific extreme weather event to occur. It is especially common in the 

aftermath of high-impact extreme weather events for there to be heightened interest in the 

causal factors that contributed to the event – from government, individuals, businesses, and 

others.  In these circumstances, it is commonplace to see some sectors of society arguing that 

it is impossible to link an event to climate change, whilst others confidently attribute the 

event to human causes in the absence of scientific backing (Stott et al., 2013). However, a 

process of attribution needs to formally identify the causal link between anthropogenic 

climate change and the changing nature and frequency of extreme weather events. At the 

beginning of the century, there was no formal practice for attributing an individual weather 

event to anthropogenic climate change. This allowed climate change scepticism and 

denialism to promote a narrative based on “no proof”. Until in 2003, Allen (2003) observed a 

rising flood in his backyard and wondered – with a method of averaging over probabilities – 

whether the contribution of climate change to the risk of an individual weather event could be 

quantified. This seminal paper spurred the rise of extreme event attribution as a sub-discipline 

of climate science. 
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The proposed methodology compared the probability of the event occurring in a factual 

world, where anthropogenic climate change is existent, to the probability in a counterfactual 

world – the world without any presence of anthropogenic emissions. From this, a fraction of 

attributable risk (FAR) metric is calculated to describe what portion of the risk of an extreme 

weather event occurring is the result of climate change. This is known as the risk-based 

approach to attribution (Otto, 2017). To undertake this methodological approach, the weather 

must be simulated under current climatic conditions and, similarly, simulated under 

counterfactual climatic conditions, free from human influence, to determine the likelihood of 

that weather event occurring in each state. This provides information on the degree to which 

climate change has altered the risk of event occurrence. This method was first used to 

quantify the role of climate change in the 2003 European heatwave and has been evolving in 

methodology and sophistication ever since (Stott, Stone, & Allen, 2004). Other attribution 

methods have also been developed to approach these critical research questions. This 

includes the Boulder approach, sometimes also called the storyline approach, this involves 

disentangling the causal factors which contribute to the likelihood of event occurrence with a 

lesser focus on statistical quantification (Otto, 2017). This approach tends to focus more 

heavily on the role of sea surface temperatures and other large circulation patterns. In the 

subsequent literature examination and research, the focus will primarily be on the risk-based 

approach as the quantifiable nature is beneficial to the economic lens. 

 

1.4. Methods for estimating the global economic impact of climate change 
 

As previously discussed, extreme weather events have large and varying economic impacts 

and established scientific causal links to anthropogenic climate change. Therefore, these 

separate pieces of information can be used in conjunction to retrospectively quantify the 

economic costs of climate change as related to extreme weather events.  

 

There have been many attempts to quantify the global impact of climate change. Well-

known, well-regarded, and equally well-criticized examples include Nordhaus (2017) and 

Stern (2007). The primary tool used to quantify the economic impact of climate change, used 

in both these reports, are integrated assessment models (IAMs). Integrated assessment models 

are defined by Nordhaus (2011) as “approaches that integrate knowledge from two or more 

domains into a single framework”, in this context this refers to an integrated analysis of the 
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climatic and economic systems. These IAMs, typically, use damage functions that express the 

economic impact of climate change as a function of a global or regional mean temperature 

(Diaz & Moore, 2017; Keen, 2020). This method fails to capture the change in extreme 

temperatures or the variability in daily weather, which is fundamental to patterns of extreme 

weather events across the globe (Goodess, Hanson, Hulme, & Osborn, 2003). Resultantly, 

these models only tend to include the costs of extreme weather crudely, or they are omitted 

entirely (Bouwer, 2011; Tol, 2005; van den Bergh, 2009). For people outside of the field, 

including policymakers, it may not be immediately apparent upon viewing the results of an 

IAM that costs from extreme weather are included in such a simplistic manner. This, 

alongside wider concerns such as a misrepresentation of climatic tipping points, has driven a 

call for improved transparency around modelling techniques and limitations embedded in 

IAM findings (Keen, 2020; Vaidyanathan, 2021).  

 

1.5. Using extreme event attribution to estimate the economic costs of climate 
change 

 
An idea emerging within the literature is to use extreme event attribution to fill gaps in the 

current knowledge regarding the climate change-attributed cost of extreme weather events. 

Allen’s (2003) paper initially prompted using event attribution to assign liability. It was 

proposed that liability relating to economic losses from extreme weather could be 

proportionately split between natural variability and anthropogenic activity, using risk-based 

attribution. Frame et al. (2020A) illustrates how this approach can attribute climate change-

induced economic costs when both a fraction of attributable risk and economic cost inputs are 

available for an individual event. The methodology used to reach this estimate is simple – 

multiply the fraction of attributable risk (FAR) by the estimated economic costs (Frame, 

Wehner, Noy, & Rosier, 2020B). These assessments essentially allow researchers to describe 

the monetary cost from a particular extreme weather event for which climate change can be 

considered responsible. This process can be replicated across different types of economic 

impacts – including deaths, damages, and losses – to provide individualized assessments of 

the climate change-attributed value of each. Furthermore, Frame et al. (2020A) is an example 

of how the aggregation of attributed costs creates a retrospective estimate of the impact of 

climate change over a specified period and locality. For example, this paper estimated climate 

change-attributable insured costs of major flooding events in New Zealand at NZ$140 million 

for the decade 2007-2017 – based on the aggregation of attributed costs from 12 major 
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flooding events. This was calculated based on individually calculated FARs for each event 

and individual economic cost measurements. At the current point, research has not been 

conducted that extrapolates further by using known FARs to estimate the climate change-

attributed cost of an extreme weather event that has not been formally attributed.  

  

There is no study in the current academic literature that attempts to use this climate change 

attribution method to assess extreme weather's cost globally and retrospectively. Given the 

limited availability of FARs in the literature, the FAR*Cost methodology cannot be applied 

across every extreme weather event using an individualistic and linear multiplication 

approach. Consequently, a global application relies on the extrapolation of known FAR 

values and patchy economic data at best. Moreover, Van Oldenborgh et al. (2021) argue that, 

with the current existence of event attribution studies, there are issues in attempting to 

aggregate economic impacts. Firstly, there are biases in the selection of attribution studies 

conducted. Generally, events with higher human and economic impacts will be favoured, 

there is a skew of studies toward events in high-income regions and more densely populated 

areas, and events that become less likely are underrepresented in the analyses (Stott et al., 

2013; van Oldenborgh et al., 2021). Additionally, the economic impacts of past events are 

recorded in an ad-hoc manner across a wide variety of sources – from disaster databases, 

government agencies, academic literature, and media publications (Clarke, Otto, & Jones, 

2021). These issues, when combined, impact the accuracy of aggregate results. However, 

given the fundamental importance of empirical evidence to drive an informed climate change 

policy response, aggregation and extrapolation based on available knowledge would be of 

use, given that limitations and inherent biases are transparently acknowledged. This research 

gap will form the foundation of this study, with the purpose being to show the application of 

a new methodology on a global scale. 

 

2. Research Problem 
 
“Using the extreme event attribution methodology, estimate the climate change-

attributed global economic cost of extreme weather events over the period from 2000-

2019.”  
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This research will show how extreme event attribution can be used to estimate the climate 

change-related cost of extreme weather events globally for a period dictated by the 

availability of FAR studies. Rather than being interpreted as an accurate estimate, the purpose 

of this paper is to prove the valuable nature of an attribution-based estimation of the cost of 

climate change-induced extreme weather. This will provide a starting point for developing 

this methodology, which will evolve as data availability and quality improve. 

 

The economic cost of climate change must be estimated, to the highest degree of accuracy 

possible, to drive important policy decisions with precision. Current approaches used to 

estimate the global cost of climate change, such as IAMs, are flawed. This makes the 

exploration of new, alternative, and complementary cost estimation methods, such as this, 

fundamentally important.    

 

3. Data collection and terminology 
 

3.1. Terminology: Fraction of attributable risk 
 
The fraction of attributable risk (FAR) is a metric that describes the portion of the risk of the 

extreme weather event for which anthropogenic climate change is responsible. Risk, in this 

sense, refers to the probability of occurrence. The FAR is equivalent to necessary causality 

pertaining to human activity (Otto, 2017). The FAR is a ratio of the difference between the 

probability of occurrence in a factual climate and a counterfactual climate where the 

counterfactual is devoid of anthropogenic influence (Jézéquel et al., 2018).  

 

When the risk of an event has increased due to anthropogenic behaviour, it is calculated as 

shown in Equation 1, in line with the IPCC (n.d.) definition. This is referred to as the fraction 

of attribution increasing risk. 

 
Equation 1: Fraction of attributable increasing risk 

𝐹𝐴𝐼𝑅 = 1 −
𝑃!
𝑃"

 

P! = Probability	of	a	climatic	event	occurring	if	anthropogenic	forcings	had	not	been	present 

P" = Probability	of	the	event	occurring	in	the	presence	of	anthropogenic	forcings	in	the	climate	system 
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A FAR value of 1 means that the event would not be possible in the absence of anthropogenic 

climate change. While a FAR of 0 indicates that climate change did not influence the 

probability of the event occurring (Jézéquel et al., 2018).  A FAR less than 0 means that the 

event became less likely because of anthropogenic climate change.  

 

As argued by Wolski, Stone, Tadross, Wehner and Hewitson (2014), the FAR is designed to 

assess the fraction of attributable increasing risk – which should lie between 0 and 1 - when 

climate change has a positive impact on event probabilities. Whereas, to assess events that 

become less likely because of human-induced climate change, the index definition should be 

changed to obtain the fraction of decreasing risk (FADR), which lies between 0 and 1, 

calculated as 𝐹𝐴𝐷𝑅 = 1 − 𝑃! 𝑃") . In this study, the FAIR and FADR abbreviations will be 

used in specific circumstances of increasing and decreasing events, respectively. FAR will be 

used more generally to refer to the attribution metrics.  

 

3.2. Data collection 
 
The data collection process formed a substantial portion of this research. Given that there was 

no existing database of global FAR measurements, and additionally no database with the 

matching economic cost data, this data had to be collected before any analysis could occur.  

 
3.2.1. FAR data collection 

 
The FAR measurements for individual extreme weather events, which form the basis of the 

dataset, are gathered from a review of the extreme event attribution literature. The starting 

source for accessing a wide range of extreme event attribution literature was the CarbonBrief 

(2021) Google Sheet. This spreadsheet compiles papers that attribute weather events to 

climate change, including a mixture of published scientific papers and rapid studies. A copy 

of this CarbonBrief spreadsheet is available in the supplementary material. The results from 

these attribution studies, and the details of the events they study, are not recorded in the 

spreadsheet. To collate FAR measurements from extreme weather events globally, literature 

in the CarbonBrief spreadsheet was refined to papers that are relevant to this research 

question. Studies from the CarbonBrief sheet were not examined for this research if: 
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1. The study recorded inconclusive results or a null effect of anthropogenic climate 

change. These studies do not provide any useful insight into the human-induced cost 

of extreme weather events; 

2. Studies analysing events with no direct link to economic damages or losses – includes 

sunshine hours, ocean/marine events, coral bleaching, river flow, and ecosystem 

functioning. This refinement meant that all this research focused on heatwaves, 

precipitation/flooding, drought, storms, and wildfires; 

3. Studies attributing global events or weather trends – because economic costs are not 

clearly linked to events with either large spatial or temporal scope; 

4. Studies that did not use a FAR metric or a transformable measure such as a risk ratio 

(RR) to ensure a consistent methodology could be applied. 

 

Once the collection of studies was refined, as per these criteria, the remaining papers were 

read and key data compiled. This was an extensive process which involved reading over 200 

climate attribution papers to, firstly, determine if the paper contains a FAR or transferable 

metric that could be used in this research; and, secondly, extract key information about the 

event study and how it was defined. The data collected from each study included countries 

for which the event was relevant, the spatial and temporal definition used to study the event, 

the nature of the event, and the FAR measurement. If the study did not include a FAR 

directly, it was calculated from the risk ratio (𝐹𝐴𝑅 = 1 − 1/𝑅𝑅), or from the provided event 

probabilities for a factual and counterfactual climate. This data is available in the ‘Combined’ 

sheet in the economic attribution spreadsheet provided in the supplementary material.  

 
3.2.2. Economic data collection 

 
Economic cost data was collected for the extreme weather events for which a FAR was found 

in the attribution literature. A hierarchy of sources was used to gather economic data, as 

follows: EM-DAT, DesInventar, academic literature, national or international governance 

organisation estimates, and, finally, estimations from non-governmental organisations, or 

media reports.   

  

Given that EM-DAT was the primary source of economic data for extreme weather events, 

their categorizations were adopted for wider data collection. EM-DAT data covers four key 

variables: 
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- Number of deaths caused by the event: This measures the number of lives lost because 

of the event occurring. For this study, the economic cost of mortality is assessed using 

statistical value of life estimates. The primary statistical value of life estimate used is 

$7.08 million (USD 2020), which is the mean of the value used by the United States of 

America’s Department of Transportation estimate and the United Kingdom’s 

Treasury estimate2. 

 

- Number of people affected: This captures the people who required immediate 

assistance following the disaster during a period of emergency, i.e. requiring basic 

survival needs such as food, water, shelter, or requiring immediate medical attention. 

 

- Economic damage: EM-DAT defines this as the damage caused to livestock, property, 

and crops. This includes uninsured and insured economic damages. This is similar to 

the aforementioned definition of direct economic loss from the Intergovernmental 

Expert Working Group on Indicators and Terminology relating to disaster risk 

reduction.  

 
 

- Insured losses: Defined as a measurement of insurance payouts that occurred to cover 

losses resulting from the events. The data availability for insured losses is limited in 

this dataset and is highly skewed towards high-income countries. 

 

This data collection format from EM-DAT constituted the basis of the economic data 

collection categories for this research. The economic data collected from other sources did 

not always fit directly into these cost categories. For example, estimates of indirect economic 

losses are not technically economic damages nor insured losses. For consistent 

categorization, any monetary estimates from sources outside of EM-DAT – which were not 

insured - were recorded as economic damages. 

  

The economic data in EM-DAT is recorded in US dollars from the time of the event 

occurring. To allow accurate aggregation, all economic cost data has been adjusted for 

 
2 These estimates and their impact on results are discussed further in the results section of this report. 
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inflation to reflect the average price of the US Dollar in 2020. Furthermore, cost estimates 

from sources outside EM-DAT provided in alternative currencies were also exchanged to 

reflect the 2020 USD. Unless otherwise specified, all results will be stated in USD (2020 

value). 

  

Additionally, the data provided by EM-DAT on the economic costs of extreme weather 

events over 2000-2019 was collected to input into the calculation of a global climate change 

cost estimate. All EM-DAT data covering heatwaves, droughts, precipitation/floods, storms, 

wildfires, and cold events covering the study period were collected and formatted in a 

separate database. The same categorization of deaths, affected, damages, and insured losses 

are the data points used for global estimation data. This data was collected irrespective of 

whether the event had a matched FAR study, as it was used for the extrapolation calculations.  

 
3.2.3. Finalising data for matched events 

 
Data for individual extreme weather events were matched, where both a FAR and economic 

data had been acquired. These events were collated to form the ‘master database’, where each 

matched event was listed with the best estimate FAR and economic data available. 

 

The available data were refined to ensure the master database contained the best estimates for 

each event. Firstly, events with multiple attribution studies were considered. The Scimago 

Journal Rank (SJR), in the year of publication, was used as a proxy for the research quality. 

The SJR is a calculated rank of a journal’s scientific influence; a rank is calculated from a 

weighted measure of the citations a journal receives. The weighting is determined by the 

prestige of the publishing journal from which a citation originates (Scimago Research Group, 

2007). A FAR measurement for a specific event is considered superior if it has a higher SJR, 

inferring greater scientific influence. Therefore, when multiple studies were relevant to one 

event, the FAR from the study with the best SJR rank was included in the master database. 

For rapid studies conducted by the World Weather Attribution network, there was no 

recorded SJR as they are not published studies (WWA, n.d.). Resultantly, the average of the 

SJR scores for all other studies in the database was used as a rank for WWA studies. 

Moreover, in cases where the SJR did not differ between studies, the study closest to the 

spatial and temporal dimensions of the relevant economic cost data was utilized. This was 
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done because a FAR can differ based on event definition. Therefore, when the scale is 

matched closely to economic data, the attribution of the cost will be more accurate.   

  

On the final master database, there are 179 events spanning 2000-2019, 87% of which 

increase in probability due to anthropogenic forcing, and the remaining have decreased in risk 

probability. These 179 events are gathered from 112 event attribution studies, as many 

attribution studies cover more than one event. 

 

4. Methods 
 

4.1. Attributing the economic cost of events in the master database 
 
For this research, the climate change costs of extreme weather events have been estimated 

using a simple FAR*Cost method. As proposed in Allen (2003, p. 891):  

“If A has trebled the risk over its ‘pre-industrial’ level, then there is a sense in which A is ‘to 

blame’ for two-thirds of the current risk..." 

 

By extension, this suggests that if anthropogenic climate change has made an extreme 

weather event three times more likely, then climate change is responsible for two-thirds of 

the economic cost caused by that event. Resultantly, for each event in the master database, we 

use Equation 2 to estimate that individual event's climate change-attributed economic cost.  

 
Equation 2: Climate change attributed economic costs 

𝐶𝑙𝑖𝑚𝑎𝑡𝑒	𝑐ℎ𝑎𝑛𝑔𝑒	𝑐𝑜𝑠𝑡	𝑜𝑓	𝑒𝑣𝑒𝑛𝑡	𝐴 = 𝐹𝐴𝑅	𝑜𝑓	𝐴 ∗ 𝐸𝑐𝑜𝑛𝑜𝑚𝑖𝑐	𝑐𝑜𝑠𝑡	𝑜𝑓	𝐴 

 

Applying this approach to all events in the master database provides an estimation of the 

climate change-induced costs associated with these individual events. 

 

4.2. Extrapolation methods 
 
To create an estimate of the global cost of climate change, the FARs from attribution studies 

in the master database and the economic cost of extreme weather events3 across 2000-2019 

recorded in EM-DAT were utilised. Two extrapolation methods were adopted – these two 

 
3 Limited to heatwaves, floods, droughts, wildfires, and storms. 
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approaches are referred to as the global average extrapolation method and the regional 

average extrapolation method. These will be described further and assessed for their validity.  

 
4.2.1. Global average extrapolation 

 
The global average extrapolation method was conducted as follows. Using the FAR results 

from individual attribution studies in the master database, an average FAR for each specific 

event type was calculated. This average is based on all the FARs for a given event globally. 

This event type-specific average FAR was then multiplied by the economic costs and 

mortality of all relevant events in EM-DAT over the 2000-2019 period. The average FARs 

are calculated from individual attribution studies in the master database (from which there are 

112 observations) rather than the FARs from the individual 179 events. This is because some 

studies cover a large number of events, such as Zhang et al. (2016) covering 26 events; 

therefore, calculating an average FAR with each event as an individual data point would lead 

to a greater weight being placed on a smaller number of multiple-event studies.  

 

For example, the global average FAR for a heatwave in the dataset was 0.77, indicating that, 

on average, climate change was responsible for 77% of the risk of a heatwave occurring. This 

FAR was then multiplied by all global heatwave costs recorded in the EM-DAT database 

between 2000 and 2019. This method was repeated for each event type, creating an estimate 

for the global cost of climate change-attributed economic costs for heatwaves, droughts, 

floods, storms, wildfires, and cold waves across the study period. The calculated climate 

change-attributed costs from each event type were then aggregated to estimate the total 

climate change-attributed economic impact from all extreme weather between 2000-2019.  

 
4.2.2. Regional average extrapolation 

 
The regional average extrapolation method was conducted by calculating an average FAR per 

event type and per continent. This was, similarly, calculated from individual attribution 

results (FARs) rather than events. This regional average FAR was then multiplied by the 

relevant event type and region specific events in the EM-DAT database and subsequently 

aggregated. This attempts to account for differences in how climate systems influence 

extreme weather across different regions. There are no, or very few, FAR studies for some 

event-type and continental combinations. For example, only one study in the master database 

examines a heatwave in Africa, so the extrapolation result relies solely on this one study, 
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creating potentially an over-reliance on one modelling approach. Where there are no FAR 

studies conducted, for example, on storms in Europe, the global average for that event type is 

used as a substitute to fill the data gap. For example, the average FAR of a heatwave in Asia 

was 0.81; this was then be multiplied by the cost of all heatwaves in Asia recorded in EM-

DAT throughout the study period. At the same time, the costs from heatwaves in Europe 

were multiplied by the European-heatwave average FAR of 0.76. The regional, event type-

specific extrapolated costs were summed together to create a global estimate of the human-

induced cost of climate change. This is an imperfect substitution method. Therefore, given 

the high number of event-continent combinations with no, or few, FARs recorded, this 

method is not heavily relied upon in the final results. However, it would most likely be 

preferable to use this approach when more granular attribution data is available; potentially 

delving into more fine-grained spatial differentiation beyond the continental aggregate.  

 
4.3. Assigning a statistical value of life to extreme weather event mortality 

 
To assess the economic cost of mortality from climate change-attributed extreme weather, a 

value of statistical life (VSL) was employed. The value of statistical life describes a marginal 

rate of substitution between money and mortality risk in a defined period (Hammitt, 2000).   

A VSL is deployed in this research to estimate the economic cost of mortality from climate 

change. The VSL used here is an average of two VSL estimates used in well-respected 

organisations across the United States and the United Kingdom. The first is the United States 

Department of Transportation estimate for 2020, which sets the VSL at $11.6 million, which 

itself is an average of VSL estimates from across the academic literature (Department of 

Transportation, 2021). The second is from the UK Treasury, which assesses the VSL4 to be 

£2 million ($2.57 million), estimated from average values from survey data looking at 

representative samples of the population (Dolan & Jenkins, 2020; HM Treasury, 2018). 

Kniesner and Visusi (2019) explain that estimates for the VSL differ across countries, which 

can be affected by the demographic profile differences across regions, but additionally an 

increase in VSL in areas with higher incomes given reducing mortality risk acts as a normal 

good. This is one reason why estimates from the United States tend to sit higher than that 

from non-United States countries. According to Viscusi (2018), across a full sample set of 

VSL estimates, the US median sits at $10.57 million while the non-US median sits at $7.36 

 
4 They refer to the VSL as the ‘Value of a Prevented Fatality’, but is reflective of the same concept. 
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million5.  For this study, the cost of death is presented using both the estimates from the US 

Department of Transport and the UK Treasury to demonstrate the significant impact the 

choice of VSL can have on policy decisions. However, for the dominant presentation of 

results in this paper, a VSL of $7.08 million per life lost is used, an average of the two 

estimates discussed above which sits near the non-US median seen in Viscusi (2018). For 

simplicity, this VSL is used for deaths in every country, and every year, implying that death 

has an equivalent economic value regardless of the time and place it occurs.  

 

5. Data description 
 

This section will describe the characteristics of attribution data and economic cost data 

collected in the database for this research.  

 

5.1. Extreme event attribution data 
 
Following the data collection method above, 179 extreme weather events were found to have 

both a FAR result and economic data available. The risk of 155 of these events increased 

because of anthropogenic climate change (FAIR), while the remaining 24 studies decreased 

in risk (FADR). Of these studies, there are 21 singular attribution studies (i.e. with one FAR) 

that cover multiple events in the database. For example, Zhang et al. (2016) studied the 

attribution of tropical cyclone energy across the Western North Pacific in 2015. This study 

alone covers 26 events in the database across China, the Philippines, Japan, and Taiwan. 

After accounting for multiple event coverage, such as this, there are 112 individual attribution 

results recorded. These 112 attribution results are a combination of papers with singular 

FARs or circumstances where one paper has attributed multiple events separately (each with 

an individual FAR). These attribution results formed the basis of the master database used for 

the analysis in this research. The relatively low number is primarily a product of the 

restrictive availability of FAR studies. 

 
5.1.1. Time series coverage 

 

The 179 matched events for which the risk of occurrence has been impacted by 

anthropogenic climate change cover the period from 2000 to 2019, as shown in Figure 1. 

 
5 Adjusted to 2020 USD. Originally reported as US$10.25 million and $7.1 million in 2018 paper.  
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Notably, 78% of these events, and similarly attribution results, occurred post-2013 because 

extreme event attribution studies have been conducted increasingly frequently only in recent 

years. Given the nature of this ever-improving science, the methods for climate attribution 

have been refined over time. Therefore, the dominance of more recent attribution studies in 

our dataset means the FAR records used for the results reflect the highest quality, up-to-date 

event attribution research. A significant number of events appear in 2015 because of the 

previously mentioned study by Zhang et al. (2016), which covers a large spatial and temporal 

scale. Calculating average FARs from matched events would create an overreliance and skew 

from singular FAR data points that cover multiple events. To refrain from this over-reliance 

on individual studies, the average FARs used to extrapolate have been calculated from 

individual matched attribution results, meaning each FAR datapoint is only included once in 

the averaging calculation. 

 

 
Figure 1:  Count of matched events and attribution results in the master database by year 

 
5.1.2. Geographical coverage 

 

Figure 2 shows the geographical coverage of the matched attribution results included in the 

dataset. These results cover continental regions including Africa, Asia, the Americas, Europe, 

and Oceania. North America and South America are collected as one continent because there 
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are very few FARs in South America. Events in South America making up only 5.0% of the 

total matched event in the master database, consequently, to use South America as its own 

continental region would lead to a reliance on only seven attribution results across all disaster 

types. Therefore, North and South America are combined for regional estimations.  The 

matched events in the database span 52 different countries. Events in China, the United 

States, New Zealand, Philippines, Japan, United Kingdom, and Australia combined makeup 

over half (54%) of the total dataset. Similarly, to the time-series coverage, this is impacted by 

attribution studies covering multiple events in a defined region, including the Zhang et al. 

(2016) study that covered 26 cyclones across the Western North Pacific Ocean and the Frame 

et al. (2020A) that studied 14 droughts and floods in New Zealand.  

 

 
Figure 2: Coverage of matched attribution results by continental region in master database – continent, count, percentage of 
total 

 
5.1.3. Disaster types 

 
By construction, the dataset contains six types of extreme weather events, as shown in Figure 

3. Notably, 53% of the attribution results in the master database are associated with high-

temperature phenomena – heatwaves, droughts, or wildfires. The remainder are either 

hydrological events, floods or storms, or cold weather events. In the original search for data, 

Africa, 11, 
10%

Americas, 27, 24%

Asia, 30, 27%

Europe, 23, 20%

Oceania, 21, 19%

Continental coverage of attribution results in the master 
database



 24 

there are also 105 events with a FAR which do not have matching economic data – 53% of 

these are heatwaves, which is expected as the science of attribution is well-established for 

heat events, but the process for measuring the economic impact of heatwaves is challenging. 

This is because the main impact of heatwaves, aside from mortality, are indirect economic 

losses (flows) which are substantially harder to identify and measure than damages (stocks) 

and may be intangible. This is because indirect economic losses often occur outside the 

distinct hazard area and with a time lag (Frame et al., 2020A). These under-measured 

heatwave losses include economic disruptions due to disturbed electricity distribution, 

transport failures, ongoing harm to agricultural crop yields and health, and harm to the natural 

environment, as a few examples (Disher, Edwards, Lawler, & Radford, 2021). Moreover, a 

further 27% of events without economic data are droughts – with a majority occurring in 

Africa – which is reflective of the uneven distribution of disaster cost records between lower 

and higher-income regions. This makes it difficult to accurately assess how different 

countries, or even continents, across the world are affected by economic disruptions resulting 

from climate-attributed extreme weather.  

 

 
Figure 3: Coverage of matched attribution results by event type in the master database 

 
5.1.4. FAR estimates 

 
All the events included in the dataset have at least one FAR associated with them. Of the 179 

events, 37 have multiple relevant attribution studies – 32 have two studies, 3 have three, and 
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2 have four. The ‘best’ FAR was selected based on two criteria – highest Scimago Journal 

Rank (SJR) of the publishing journal and spatial/temporal match to available economic data6. 

The distribution of FAR attribution results in the master database is shown in Figure 4. The 

peak at 0.3-0.4 is predominantly due to flood events – which make up 80% of the attribution 

results in this range. While 90% of the events with a FAR of between 0.7-1 are high-

temperature phenomena, namely heatwaves, droughts, and wildfires. Interestingly, 53% of 

the attribution results with a negative FAR (or FADR) are floods, while the remaining 47% 

are cold events.  

 
Figure 4: FAR distribution across matched attribution results in the master database 

 

To allow a global estimation of climate change-attributed costs to be made, a global average 

FAR for each event type has been computed, as shown in Figure 5. Based on this analysis, it 

appears that, on average, 77% of the risk of heatwaves occurring over the study period is due 

to anthropogenic climate change.  Floods have the greatest number of attribution results and 

show the greatest distribution range. Floods, moreover, are the only event type where 

 
6 Refer to data collection for explanation of SJR. 
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attribution results span both increasing and decreasing risk due to climate change. The global 

average FAR for floods, however, is 0.21. While, for droughts, globally, anthropogenic 

climate change is responsible for 49% of the risk. Wildfires and storms each have a FAR of 

0.60; however, this is calculated on a low number of data points, five and six attribution 

results, respectively. Lastly, on average, cold events are calculated as having a FADR of 0.79, 

meaning that 79% of the decrease in risk of cold events can be attributed to climate change. 

 

 
Figure 5: Global average FAR per event type, calculated using attribution results in the master database 

 
An average FAR per-continent per-event type has also been calculated to reflect the lack of 

uniformity in the global climate system. Figure 6 illustrates these observations. This shows 

very few, or no, matched attribution results to form the basis of a regional average FAR in 

many continents. Due to the heavy reliance on a small number of attribution results for some 

event type and regional combinations, these regional averages are heavily relied on for the 

final results of this paper.   
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Figure 6: Regional average FAR per event type 

 
5.2. Economic data 

 
The following section describes the features of the economic cost data collected regarding the 

events in the master database. 

 

5.2.1. Number of deaths 
 
In the dataset, 111 of the 179 events have mortality estimates. Thirty-nine of these events are 

responsible for greater than (or equal to) 100 deaths, including nine events with deaths over 

1,000 lives lost. Four events are responsible for the deaths of over 10,000 people – a 

heatwave in Russia (>55,000 deaths), a drought in Somalia (20,000 deaths), a heatwave in 

France (>19,000 deaths), and a cold event in the United Kingdom (27,500 deaths). The total 

number of deaths recorded from the events in this dataset is 152,727, equivalent to a 

statistical value of life lost of $1.1 trillion7. 

 

5.2.2. Number of people affected 
 

 
7 Calculated at a SLOL of $7.0837 million. 
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In the dataset, 116 of the 179 events have estimates for the number of people affected. These 

estimates range from 6 for a typhoon in Taiwan to 60 million estimated for two events in 

China, a 2009 drought and 2016 flood. The broad definition and interpretation of ‘people 

affected’ means that the economic cost of being affected is highly variable. Therefore, we 

cannot establish a monetary value for becoming affected, and do not include this impact 

variable in the results. This omission creates a limitation on the accuracy of our results, which 

is discussed further in Section 8.2.3.  

 
5.2.3. Total damages 

 
In the dataset, 110 of the 179 events have estimates for the economic damages caused. Across 

these 110 events, the total disaster damages stand at $435.4 billion. The event with the 

highest damage recorded in the master database is Hurricane Harvey in the United States, at 

$100.3 billion. The lowest recorded damages are $380,000 for a typhoon in Taiwan. Seventy-

nine of the events have estimated damages greater than $100 million, and 7 of those are over 

$10 billion. These high damages are symptomatic of the bias toward conducting FAR studies 

on events with high economic impacts that typically occur in high-income countries where 

asset values are high.  

 

5.2.4. Insured losses 
 
A small number of events in the dataset have insured loss estimates associated with them, just 

48 out of 179. The data is heavily skewed to high-income countries, notably the United 

States, New Zealand, Australia, and Japan, as well as China, which is upper-middle-income8. 

The restricted quality and quantity of data collection in low-income countries is one 

underlying reason for this. In addition, it is symptomatic of higher rates of disaster insurance 

in high-income countries. Insurance costs from Hurricane Harvey in the United States and 

Hurricane Maria in Puerto Rico have the highest insurance payouts at $31.7 billion9. 

 
 
 
 
 

 
8 As per the World Bank classification 2020. 
9 Each assessed to have $30 billion dollars in insurance payouts, in 2017 dollars. 
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6. Results 
 
The results section will examine the climate change-attributed economic cost calculations for 

the events in the master database; and, subsequently, the results from extrapolating findings 

to create a global estimate.  

 
6.1. Attribution results for events in the master database 

 
The first section of the results focuses on the attributed economic costs associated with the 

179 events in the master database. These can be individually viewed for each event in the 

master database within the supplementary material (economic attribution database).  

 
6.1.1. Deaths 

 
From the 179 events in the dataset – a net of 60,951 total deaths are attributed to climate 

change. This is calculated from 75,139 deaths that occurred due to climate change increasing 

event probability and 14,187 deaths in events that have become less likely due to climate 

change.  From the attributed increase in deaths, 96% have resulted from heatwaves. The net 

statistical value of life cost across the events in the master database is US$431.8 billion.  

 
6.1.2. Damages 

 
Anthropogenic climate change is responsible for $260.8 billion of extreme weather event 

damages in the master database. This is equivalent to 60% of the total damages recorded for 

these 179 events. More than 64% of the climate change-attributed damages are connected to 

storms, which is expected given the high damages from events such as Hurricane Harvey. 

Furthermore, 16% of the attributed damages resulted from heatwaves, while floods and 

droughts are each responsible for 10% respectively – on net. Cold events, calculated as a fall 

in climate change-attributed damages, are responsible for -2% of net attributed damages. 

Lastly, wildfires account for 2% of the net attributed damages.  

 
6.1.3. Insured losses 

 
Moreover, human-induced climate change is responsible for a net $78.4 billion of insured 

damages from extreme weather events in the master database. This is equivalent to 30% of 

the total climate change-attributed insurance damages in the database. 65% of the climate-

attributed insured damages in the database are insurance costs related to storms. Notably, 

climate change-attributed insured damages from Hurricane Harvey, Hurricane Maria, and the 
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2012 Drought in North America combined makeup 83% of the net climate change-attributed 

insurance.  

 
6.2. Total climate change-related economic costs of extreme weather events, 

globally 
 
This section will focus on the results from extrapolating the attribution data across all global 

economic costs from extreme weather events10. Results from the two extrapolation methods 

will be compared, allowing examination of the impact of method choice on the results. 

Further, the globally attributed costs across time and event type will be shown. 

 
6.2.1. Comparison of results from differing extrapolation methods 

 
To estimate the cost of climate change from extreme weather using the attribution-based 

approach, the refined EM-DAT database of extreme weather events covering 2000-2019 is 

used. Two different approaches to extrapolation are used to attribute the costs of heatwaves, 

floods, droughts, storms, wildfires, and cold events over the relevant study period. The first 

method is the global average extrapolation method, and the second relies on regional average 

extrapolation11. Figure 8 shows how the global estimates for each event type, and impact 

metric, differ based on the extrapolation method used.  

 

 
10 Restricted to heatwaves, floods, droughts, storms, wildfires, and cold events.  
11 See method section for further explanation 
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Figure 7: Comparison of the climate change-attributed economic damage and deaths between the global average and 
regional average extrapolation methods 

 
The total climate change-attributed impacts, dictated by the respective extrapolation methods, 

have varying degrees of similarity. This is illustrated in Figure 7.  For heatwaves, the 

extrapolated estimates for deaths and damages are very closely aligned – less than one 

percentage point between the results from the two methods. For other event types, the 

disparities take on a wider range. Notably, the regional average extrapolation estimate is two 

percentage points higher for storm damages than the global average extrapolation estimate. 

This is important to note, given that storm damages contribute a lot to total attributed 

economic costs, making up over 60% of the total damages recorded in the EM-DAT extreme 

weather event dataset. There are three data comparisons where the estimates differ widely 

99% 99%

54%

111%

93%

109%

96%
101%

132%

102%
97% 99%

0%

20%

40%

60%

80%

100%

120%

140%

-100

0

100

200

300

400

500

600

700

800

900

1000

Deaths Damage Deaths Damage Deaths Damage Deaths Damage Deaths Damage Deaths Damage

Heatwave Flood Drought Wildfire Storm Cold event

Re
gi

on
al

 e
xt

ra
po

la
tio

n:
G

lo
ba

l e
xt

ra
po

la
tio

n 
co

st 
es

tim
at

e 
ra

tio

Cl
im

at
e 

ch
an

ge
-a

ttr
ib

ut
ed

 d
ea

th
s i

n 
in

di
vi

du
al

 u
ni

ts
Cl

im
at

e 
ch

an
ge

-a
ttr

ib
ut

ed
 d

am
ag

es
 in

 U
SD

 b
ill

io
ns

Impacts by event type

Climate change-attributed deaths and damages estimated the 
regional average and global average extrapolation type, repectively

Regional average FAR extrapolation Global average FAR extrapolation

Regional:Global FAR extrapolation ratio



 32 

(greater than ten percentage points) between a global and continental approach: flood deaths 

(54%), flood damages (111%), and storm deaths (132%). These discrepancies in flood results 

occur because the FAR data points vary widely across attribution studies. These flood results 

are significantly impacted by a regional average FADR for floods in Africa of 0.49, meaning 

that an estimated 49% of the decrease of risk of flooding in Africa can be attributed to 

anthropogenic climate change. Comparatively, the regional average FAR for floods in all 

other regions is postivie, indicating an increase in risk resulting from climate change (FAIR). 

This has a relatively large impact on the regional extrapolation results as floods cause a 

relatively high number of deaths in Africa and a lower level of damages. Resultantly, the net 

global climate change-attributed deaths are estimated to be lower when using the regional 

extrapolation method than the global method, and the climate change-attributed damages are 

estimated to be higher. Moreover, the discrepancy between climate change-attributed deaths 

from storms is primarily driven by a regional average FAR in Asia (0.81) at least 20 

percentage points higher than the FAR in all other regions. This has a notable impact on the 

results given a high number of storm-related deaths in Asia. However, it is important to 

recognise that the two noted regional average FARs that impact these results are calculated 

from a few data points – 3 for floods in Africa and 1 for storms in Asia. Due to the lack of 

data relating to important event type and continental combinations, the global average 

extrapolation method is used for headline results to minimize over-reliance on a small 

number of attribution studies.  

 
6.2.2. Attributed deaths 

 
Table 1 illustrates the estimated number of deaths caused by climate change-induced extreme 

weather through the 2000-2019 period. It is estimated that climate change is responsible for 

approximately 269,200 deaths over the study period, an estimate based on the average from 

the two extrapolation methods. 
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Table 1: Climate change-attributed deaths from extreme weather events between 2000-2019 
 

GLOBAL 
AVERAGE FAR 
EXTRAPOLATION 
METHOD 

REGIONAL 
AVERAGE FAR 
EXTRAPOLATION 
METHOD 

AVERAGE 

HEATWAVE 115,856 114,740 115,298 

FLOOD 21,543 11,666 16,604 

DROUGHT 10,510 9,763 10,137 

WILDFIRE 913 878 895 

STORM 118,956 156,890 137,923 

COLD 

EVENT 

-11,853 -11,465 -11,659 

TOTAL 255,925 282472 269,198 

 
 
The economic value of life lost to climate change-attributed extreme weather is highly 

dependent on the assumed statistical value of life. Academics and government departments 

have attempted to calculate this in many ways, and consequently, a wide range of values are 

used globally12. For this study, the climate change-attributed statistical loss of life using three 

varying VSL estimates were assessed. The first is used by the United States Department of 

Transportation, who use the estimate widely when assessing policy; this assumes a value of 

statistical life at $11.6 million (Department of Transportation, 2021). Using the global FAR 

extrapolation estimate for climate change-attributed deaths, at this VSL, the statistical loss of 

life from climate change is $2.97 trillion across 2000-2019. The second estimate used to 

calculate the climate change-attributed economic cost of lives lost is the United Kingdom 

Treasury’s value of a prevented fatality, which is £2 million (USD 2020 $2.57 million) 

(Dolan & Jenkins, 2020; HM Treasury, 2018). Using this VSL value, climate change is 

responsible for $0.66 trillion of lives lost from extreme weather events in 2000-2019, using 

the global extrapolation method. These two values create vastly different estimates of the 

economic impact from mortality and embed the individual judgements of each of these 

respective estimates. Consequently, the last value used to calculate the statistical economic 

loss of life is the average of these two values, $7.0837 million per life. This middle point is 

the VSL that is used for the final calculations. Given this VSL, the total climate change-

attributed VSL is a net $1.81 trillion from the global extrapolation method ($1.90 trillion if 

 
12 Refer to Section 4.3 for further elaboration.  



 34 

using the average between regional and global FAR extrapolation estimate). This is 

equivalent to an average statistical loss of life of approximately $90.6 billion per year 

between 2000-2019. 

 
6.2.3. Attributed damages 

 
Table 2 shows the estimated total damages from extreme weather for which climate change is 

responsible between 2000-2019. Taking an average across extrapolation methods, climate 

change is responsible for an estimated $1.11 trillion in damages from extreme weather. This 

is primarily due to the damages caused by storms, at approximately 77% of the total climate 

change-attributed damages. The high incidence of damages caused by storms, relative to the 

small number of storm-related attribution studies (6 studies) depended upon for calculating 

the average FARs, limits the robustness of this result. 

 
Table 2: Climate change-attributed economic damages (USD billions) from extreme weather events between 2000-2019 

 
GLOBAL 
AVERAGE FAR 
EXTRAPOLATION 
METHOD 
(USD BILLIONS) 

REGIONAL 
AVERAGE FAR 
EXTRAPOLATION 
METHOD (USD 
BILLIONS) 

AVERAGE 
(USD 
BILLIONS) 

HEATWAVE $14.40 $14.21 $14.31 

FLOOD $135.48 $150.34 $142.91 

DROUGHT $65.66 $71.28 $68.47 

WILDFIRE $56.95 $57.30 $57.13 

STORM $843.22 $864.12 $853.67 

COLD 

EVENT 

-$29.52 -$29.18 -$29.35 

TOTAL $1,086.19 $1,128.07 $1,107.13 

 
 

6.2.4. Insurance of climate change-attributed damages 
 
Table 3 shows the estimated insured losses from extreme weather events for which climate 

change is responsible from 2000 to 2019. These calculations are based on the global average 

extrapolation method. This shows that an estimated $385 billion of insurance payouts for 

extreme weather damages have occurred due to climate change, an average of $19.2 billion 

annually. This, across all extreme weather types, is 35% of total climate change-attributed 
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damages in the EM-DAT dataset. There is a large range in the rate of insurance across event 

types. Notably, 86% of the insured climate-attributed damages are from storm events, and 

therefore the overall rate of insurance sits close to that for storms (39%). Wildfires have the 

highest rate of insurance payout across the event types, with over 51% of damages insured. 

Floods, droughts, and cold events each have an insurance payout rate of between 10-20%. 

There is almost a non-existent insurance payout rate for heatwaves, nearing 0%. These low 

rates of insurance for climate change-attributed damages are concerning, prompting questions 

regarding who, and how, funds the recovery from increasingly severe weather events. 

 

 
Table 3: Climate change-attributed uninsured and insured damages (USD billions)  from extreme weather events across 
2000-2019 
 

UNINSURED 
CLIMATE 
CHANGE-
ATTRIBUTED 
DAMAGES (USD 
BILLIONS) 

INSURED CLIMATE 
CHANGE-
ATTRIBUTED 
DAMAGES (USD 
BILLIONS) 

PERCENTAGE OF 
CLIMATE 
CHANGE-
ATTRIBUTED 
DAMAGES 
INSURED 

HEATWAVE $14.39 $0.01 0.07% 

FLOOD $118.20 $17.28 12.76% 

DROUGHT $54.08 $11.59 17.65% 

WILDFIRE $27.96 $28.99 50.90% 

STORM $511.68 $331.55 39.32% 

COLD EVENT -$25.17 -$4.36 14.75% 

TOTAL  701.13 385.06 35.45% 

 

 

Furthermore, it is evident in Table 4 that the distribution of insurance for climate-affected 

extreme weather events is not evenly distributed across the globe. In high-income countries, 

it is estimated that 45% of climate change-attributed damages are insured. Concerningly, 

damages in all other countries – including upper-middle, lower-middle, and low-income areas 

– are estimated to have insurance pay-outs of less than 6%13. For low-income countries, only 

1% of damages for which climate change is responsible were covered by insurance. This 

shows a considerable inequity in the distribution of weather insurance globally.  

 
13 Excluding unclassified countries, which in the 2020 World Bank Classifications includes Venezuela.  
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Table 4: Rate of insurance for climate change-attributed across high to low-income countries 

 

 
 

6.2.5. Total climate change-attributed economic costs 
 
The estimated global cost of climate change over the 2000-2019 period is assessed using 

these results. These results are calculated using the global average extrapolation method, 

which is less sensitive to singular studies than the regional average extrapolation method. In 

aggregate, the climate change-attributed cost of extreme weather over 2000-2019 is estimated 

to be $2.90 trillion, or an average of $145 billion per year. Figure 8 is a time series plot 

illustrating climate change-attributed costs, including the statistical value of life lost, 

uninsured, and insured damages from extreme weather events between 2000-2019. The 

distribution of costs is highly variable by year. The year with the lowest costs attributed to 

climate change is in 2001 at $23.9 billion, while the year with the highest climate attributed 

costs is 2008 with $621.0 billion. The years in which costs reach high peaks - notably 2003, 

2008, and 2010 – are predominantly pushed to high levels because of high-mortality events. 

The events that drive these peaks are as follows: a 2003 heatwave across Europe where 

climate change was responsible for 55,400 deaths; Storm Nargis in Myanmar in 2008 where 

climate change claimed 82,400 deaths; and a 2010 heatwave in Russia and drought in 

Somalia where 42,800 and 9,900 deaths are attributed to climate change, respectively.  

ECONOMIC 
INCOME 
CLASSIFICATION 

PERCENTAGE OF CLIMATE 
CHANGE-ATTRIBUTED DAMAGES 

INSURED 

 

LOW INCOME 1.0% 

LOWER-MIDDLE 

INCOME 

3.3% 

UPPER-MIDDLE 

INCOME 

5.3% 

HIGH INCOME 44.6% 

UNCLASSIFIED 17.7% 
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Figure 8: Time series of estimated total and climate change-attributed statistical loss of life and damages from extreme 
weather events across 2000-2019 

The peaks in climate change-attributed costs differ when we look solely at damages and 

exclude the statistical loss of life, as shown in Figure 9. The greatest peaks in monetary 

damages occur in 2017 and 2005. Storm events in the United States drive these. In 2005, 

Hurricane Katrina, Hurricane Rita, and Hurricane Wilma together caused $123 billion in 

climate change attributed damages. In 2017, Hurricane Harvey and Hurricane Irma saw 

climate change responsible for almost $96 billion in damages across the United States of 

America and Hurricane Maria in Puerto Rico, causing another near $43 billion in climate 

change-attributed damages.  
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Figure 9: Time series of total and climate change-attributed uninsured and insured damages from extreme weather events 
between 2000-2019 

Figure 10 shows how total and climate change-attributed costs are distributed across high, 

upper-middle, lower-middle, and low-income countries. This provides context for how 

different countries, especially vulnerable countries, across the world are being impacted by 

climate change-induced extreme weather. As per the available data, high-income countries 

have the highest climate change-induced economic costs at around 46% of the total. A few 

elements drive this, the first being that the United States is highly vulnerable to storms, and 

given the dense, high-value property in US cities, these storms induce high amounts of 

damage. However, the distribution of economic costs from extreme weather events across 

low to high-income countries is also likely a product of data availability and measurement. 

High-income countries have more resources and expertise to gather economic data when an 

extreme weather event occurs, while lower-income countries do not have this same level of 

resource availability. Another notable result from this analysis is that 97% of the climate 

change-attributed insurance for damages occurs in high-income countries, while only 0.02% 

occurs in low-income countries. This dramatically impacts countries’ abilities to 

economically recover from high-impact extreme weather events.  
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Figure 10: Total and climate change-attributed economic costs from extreme weather events across low to high-income 
countries between 2000-2019 

 
These extrapolated estimates for the climate change-induced cost of extreme weather can be 

calculated as a proportion of GDP, as shown in Figure 14. Using the global average 

extrapolation method, the total economic cost inclusive of statistical loss of life, damages, 

and insured losses can be presented as a proportion of annual global GDP. This is not a direct 

comparison because GDP is a measure of economic flow, i.e. measured over a defined 

period, whilst damages and loss of life are a stock variable, i.e. measured at one point in time. 

With this considered, it remains interesting to view the cost of human-induced climate change 

relative to the size of the global economy annually. Climate change-attributed economic costs 

from extreme weather events vary between 0.05% to 0.82% of global GDP annually over the 

study period.  
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Figure 11: Total and climate change-attributed economic costs from extreme weather events as a proportion of annual 
global GDP, between 2000-2019 

 
These results indicate that climate change-attributed extreme weather costs are of significant 

value in the study period. Given that temperatures are expected to continue rising, and the 

nature of extreme weather events will consequently change, we can expect that human-

induced costs from extreme weather events may increase in the coming decades.  

 

7. Discussion 
 

Quantification of the economic cost of climate change is essential for well-informed, well-

balanced decision-making. The complexity and magnitude of climate change as an economic, 

environmental, and social problem means that this quantification is not simple nor free of 

uncertainty. However, we must quantify the economic impact as accurately as possible to 

ensure informed decisions can be made about mitigation and adaptation measures, globally, 

and in specific locations. This discussion will contextualize the estimations of climate 

change-induced economic costs from extreme weather events; explore how this event 

attribution approach compares, in both the methodology and result, to economic assessments 
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of climate change from integrated assessment models; and unpack the findings and 

implications concerning insurance, adaptation, and mitigation. 

 

7.1. Comparing cost estimates from the attribution-based method and integrated 
assessment models 

 
There are many different methods used to estimate the economic impact of climate change, 

with the attribution-based method of this research a new inclusion. The attribution-based 

method used is an event aggregation approach; it differs significantly from the 

macroeconomic method used in integrated assessment models (IAM). Comparing the results 

of IAM models to the results of this paper will allow an examination of how the methods 

differ and to what extent extreme weather events are considered in IAM. IAMs are 

macroeconomic models which attempt to estimate the global damages from anthropogenic 

climate change. Commonly this involves characterizing damages as a polynomial function of 

temperature (Nordhaus & Boyer, 1999; Nordhaus, 2017). One example of this is the dynamic 

integrated climate-economy (DICE) model, which can be used as a baseline for comparison 

to the results from the attribution-based approach (Nordhaus & Boyer, 1999). This model 

draws a simple relation between the climate and the economy, specifying that GDP falls as 

the average temperature rises above the pre-industrial baseline. DICE approximates the 

damages from climate change, as a proportion of the global economy, according to Equation 

3: 

 
Equation 3: DICE damage function 

𝐷(𝑇) = 	𝜑!𝑇 + 𝜑#𝑇# 

 

Where 𝑇 is the change in global mean surface temperature above the preindustrial threshold, 

currently sitting at 1.2℃ in 2020 (WMO, 2021A). To allow us to compare the results from 

attribution to those of DICE, the parameters from the DICE 2016R model have been adopted: 

𝜑! = 0;	𝜑# = 0.00236; and temperature change, since the preindustrial baseline, between 

2000-2019 was sourced from the World Meteorological Organisation State of the Global 

Climate Reports (2019-2015), IPCC AR5 estimates (2007-2014), and Hawkins et al. (2017) 

for years prior to 2006 (Nordhaus, 2017). This approach from DICE is not unique in the IAM 

space. The Policy Analysis of the Greenhouse Effect (PAGE) model, which was used in the 

well-known Stern Report (2007), also calculates economic and non-economic damages from 
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climate change using a polynomial function. However, in PAGE, this is done using regional 

temperatures (Hope, 2011). Nordhaus, to his credit, has made the DICE model especially 

transparent by posting the model and many publications on his website, allowing nuanced 

comparisons to be made (Metclaf & Stock, 2015). 

 

From this basic calculation, as per the DICE model, the assessed global damages from 

climate change over 2000-2019 is estimated to be US$2.75 trillion. Based on an aggregated 

event attribution approach, the approximation in this research is $2.90 trillion, i.e. 5% larger 

than the DICE estimate. The comparative calculations of climate change costs from DICE 

and the attribution-based approach, by year, are shown in Figure 12. However, these two 

metrics are not directly measuring the same cost estimate, with two key differences: 

 

1. IAM’s are a measurement of economic flow (proportioned to global GDP losses) while 

attribution-based estimates measure loss in economic stock;  

2. The attribution-based result solely estimates the economic cost of extreme weather events 

caused by anthropogenic activity, while IAM models attempt to estimate the overall annual 

cost of climate change. This, ideally, would include extreme weather costs as well as costs 

from changing crop yields, ocean acidification effect of fisheries, sea-level rise intrusion on 

assets, increased erosion, and many other impacts. 

 

These factors limit the comparability of these two measurements. However, it is notable that 

extreme weather events are only one category of the damages that are, in theory, calculated 

by DICE. Therefore, it is of concern that results from the attribution-based method are higher 

than those from DICE.  

 

The key limitation of IAMs, which is highlighted through comparison with the attribution-

based approach, is that they account only for changes in average temperature rather than the 

change in temperature distribution. The climate input in IAM models is the change in average 

temperature over the preindustrial level. This fails to capture changes in temperature 

extremes as they become both more frequent and severe because of anthropogenic effects. 

Consequently, this prevents the models from effectively including the impacts of extreme 

weather into the monetary estimates. Nordhaus acknowledges that these studies generally 

omit the impacts of some critical climate factors in his DICE 2013R user guide – including 

extreme weather (as well as biodiversity, ocean acidification, catastrophic climate events, and 
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more). The solution used to account for this, admittedly large, limitation is to add 25 percent 

of the monetized damages in the DICE model (Nordhaus & Sztorc, 2013). This is a very 

subjective adjustment, which would assume that extreme weather accounted for a maximum 

of $0.55 trillion14 across 2000-2019. Relative to the climate attribution-based figure of $2.90 

trillion. This is a large undershoot that exhibits how DICE fails to accurately assess the 

economic impacts of climate change from extreme weather.  

 

 

 
Figure 12: Comparison of the climate change cost per year as estimated by extreme event attribution and the DICE 
integrated assessment model 

 
Additionally, we can compare the attribution-based results to the Framework for Uncertainty, 

Negotiation, and Distribution (FUND) IAM, which is notably more complex than DICE. The 

FUND model differs from DICE as it calculates damages at a sectoral level, with nine 

sectoral damage functions operating across 16 regions of the world (Waldhoff, Anthoff, 

 
14 $0.55 trillion would mean that extreme events account for the full value of the 25% adjustment to the DICE 
estimate 
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Rose, & Tol, 2014). The key sector of interest in FUND, for this research, is the storm sector 

which is the only sector that is reflective of how climate change impacts the economic cost of 

extreme events. The FUND model calculates estimated damages (capital loss) and mortality 

for tropical and extra-tropical storms. This is a more sophisticated inclusion of extreme 

weather event costs compared to the DICE approach. As an example, the total damages and 

mortality from tropical storms in FUND are calculated for each region using Equations 4 and 

5: 

 
Equation 4: Total damages from tropical storms, FUND model 

𝑇𝑜𝑡𝑎𝑙	𝑑𝑎𝑚𝑎𝑔𝑒 = 	𝛼 ∗ 𝐺𝐷𝑃 ∗ (
𝑦$%&'(
𝑦!))"

)*[(1 + 𝛿 ∗ 𝑇)+ − 1] 

 
Equation 5: Total mortality from tropical storms, FUND model 

𝑇𝑜𝑡𝑎𝑙	𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦 = 	𝛽 ∗ 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ∗ (
𝑦$%&'(
𝑦!))"

),[(1 + 𝛿 ∗ 𝑇)+ − 1] 

 

Where the key inputs are temperature change over preindustrial levels (T), per capita income 

(𝑦), current damage as a fraction of GDP (a), current mortality as a fraction of the population 

(b), and income elasticities of storm damage (𝜖, 𝜂). The outputs from these calculations 

provide interesting examples for comparison with the attribution-based results. The 

MimiFUND web page, an accessible source for viewing the FUND model and results, 

estimates current damages from tropical cyclones as higher than the damages from extreme 

weather events calculated in the attributed results (MimiFUND, n.d.). FUND calculates the 

current damage from tropical cyclones as, on average globally, 0.08% of GDP. 

Comparatively, the climate change-attributed damages from storms calculated in this research 

are 0.06% of GDP on average per annum. Further, climate change-attributed damages from 

all extreme weather events in the research equate to an average of 0.07% of GDP per annum. 

The difference in the FUND tropical cyclone estimation and the climate change-attributed 

costs of storms is an interesting comparison. It may be a discrepancy that can, to some 

degree, be explained by under-estimated economic data recorded in EM-DAT and therefore 

depended upon in the attribution results. Furthermore, FUND estimates the current mortality 

from tropical cyclones to be on average 0.00015% of the population, while attribution-based 

results estimate that storms on average have a climate change-attributed mortality rate of 

0.00009% per annum. Further, the results estimate the average climate change-attributed 
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mortality rate from all extreme weather events at 0.00020% per annum. These inconsistencies 

are illustrative of how, especially when data is lacking, it is beneficial to analyse multiple 

approaches to quantitative research – with these macroeconomic and  event attribution 

techniques providing valuable contrasts.  

 

Given the increasing frequency and severity of many extreme weather events, it is of ever-

growing importance that economic cost estimates account for the costs that occur when high-

impact, low-probability events eventuate. This finding is essential for policymakers, 

especially when considering the use of adaptation to reduce the economic and human impact 

of extreme weather.  Ultimately, measurement tools including event attribution and IAMs 

should be viewed as part of a toolbox of evidence that can be drawn on by decision-makers, 

society, and individuals alike. Given that the limitations of all quantification approaches are 

presented transparently and subsequently understood by users, this gives decision-makers the 

best chance to make informed choices about problems that transcend the boundaries between 

climatic and economic issues.  

 

7.2. Implications for climate change adaptation and mitigation 
 
This research results rely on two elements – the level of anthropogenic emissions and their 

consequential effect on the climatic system (captured by the FAR) and the economic costs 

from extreme weather events. To minimize the climate change-attributed costs from extreme 

weather in the coming decades, to ideally be below the average of $145 billion annually seen 

in 2000-2019, there would need to be a reduction in the FARs or economic costs we are 

seeing. Reducing the FARs would require climate change mitigation, i.e. reducing the volume 

of greenhouse gases being emitted to below net-zero allowing the stock of greenhouse gas in 

the atmosphere to fall. In the longer-term, economic costs will also be reduced if effective 

mitigation is conducted today. While in the shorter term, reducing economic costs will likely 

result from good adaptation policies.  

 

Adaptation can make a considerable difference to the climate change-attributed economic 

impact of extreme weather events. Adaptation policies could include infrastructure 

development such as building flood protection or improving early warning signal systems for 

extreme weather events. An interesting example of this has been implemented in Europe, 

where a 2003 heatwave claimed upwards of 70,000 deaths, 55,400 of which were attributed 
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to climate change in this study. The extremely high mortality of this event shocked European 

countries into creating effective heatwave adaptation strategies to prevent a repeated high 

volume of deaths in the future. France, as an example, introduced a heat warning system that 

is triggered after three days of persistently high temperatures (Pascal et al., 2021). This 

system can enact the closing down of schools and public areas, the operation of a public 

heatwave helpline, and the opening of ‘cool rooms’ in public buildings, which allow people 

to regulate their temperature. This made a marked impact on the fatality of subsequent 

heatwaves – the French heatwave in 2019 was hotter than that of 2003, yet there were less 

than 1500 deaths, compared to over 19,000 across the nation in 2003. From this analysis, 

climate change attributed deaths in the 2019 heatwave were only 7% of those experienced in 

2003 in France. This shows how a well-designed and implemented adaptation policy can help 

reduce the climate change-attributed costs of extreme weather significantly. The results of 

this research provide an impetus to increase spending on climate change adaptation and 

mitigative policies. The quantification of economic costs allows us to better understand how 

climate change impacts different communities globally. It allows for more evidence-based 

policy formulation and better targeting of adaptation spending. This should ultimately help 

reduce climate change-attributed economic costs from extreme weather in the future.  

 

Overall, the results from the attribution-based approach provide another valuable tool for 

thinking about the economic impact of climate change. It can help contextualise and contrast 

the findings of IAMs, and shape funding prioritization for adaptation and mitigation globally. 

However, it is also imperative that the limitations of these estimates are understood fully.  

 
 

8. Current limitations of the attribution-based approach 
 
This research is designed to explore the potential of an attribution-based method for 

estimating the human-induced cost of extreme weather globally. Although event attribution 

has been used to measure the climate change-related economic impact of individual extreme 

weather events before, this methodology has not been extended to a global approximation 

prior to this research (Clarke, Otto, & Jones, 2021; Frame et al., 2020A; Frame, Wehner, 

Noy, & Rosier, 2020B). As is typical of a first attempt, this study does not provide a silver-

bullet approximation of the cost of extreme weather events. There are important limitations of 

the attribution-based approach which must be examined. These are primarily due to 
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restrictions on the quantity and quality of data. These limitations are explored in detail below 

to highlight the progress required to make better estimations in the future.   

 
8.1. Extreme event attribution limitations 

 
Extreme event attribution is a young, yet expanding, sub-field of climate science. Given the 

emerging nature of this research field, the literature is limited, methodologies are 

continuously being refined, and the field’s development faces many challenges. Notable 

limitations are the uneven geographical coverage of attribution studies and the lack of 

attribution studies conducted on important classes of extreme weather. These lacunae are 

significant, given the relatively small number of attribution studies conducted overall. The 

sensitivity of the FAR to event definition and question framing is additionally important to 

consider in the interpretation of this research. 

8.1.1. Geographical distribution 
 
Extreme event attribution studies are more commonly conducted in high-income countries, 

with lower-income regions underrepresented in the literature. From the CarbonBrief source 

spreadsheet, only 8% of the attribution studies are conducted on extreme events in Africa, 

while over half of the events studied are in either America (31%, with 75% of these in North 

America) or Europe (25%). In recent years, there has been a greater attempt to balance the 

geographical distribution. This includes research by the World Weather Attribution (WWA) 

network. The WWA use the following human-based threshold to determine which events to 

consider for study: the event resulted in greater than 100 deaths, 100,000 people affected, or 

more than half of the total population affected (van Oldenborgh et al., 2021). In opposition to 

an economic loss threshold for study, a human-based threshold causes less bias against low-

income countries where physical assets are of lesser value (Stott et al., 2015).  

 

Despite this, low-income countries currently remain underrepresented in the literature and, 

therefore, in the data used to calculate results in this study. Consequently, extrapolation based 

on the total average FAR per event type leans over-proportionately on event probabilities 

from high-income regions, notably Europe and America. Comparatively, for the regional 

extrapolation method, there are data gaps in Africa and Oceania, resulting in over-reliance on 

as low as one data point in the calculation of an average FAR – or relying on an imperfect 

substitute (the global average FAR). This is a notable limitation because different regions of 

the world are subject to different climatic systems and environmental conditions. 
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Consequently, the FAR for specific extreme weather events will differ by nation and even 

more locally within countries. Improved geographical coverage of event attribution studies 

would improve the robustness of the methodology presented, especially if this allowed for 

greater granularity in the extrapolation method. 

 
8.1.2.  Disaster types 

 
The second issue with event attribution data, specifically FAR measurements, is a highly 

uneven spread of research across different event types. In the CarbonBrief dataset, 33% of all 

attribution studies analyse the role of climate change in inducing heatwaves, the best-

represented category of event. Comparatively, storms, which are highly important when 

considering the human-induced economic cost of extreme weather, make up only 8% of the 

studies in this dataset. One reason behind this discrepancy is the degree of confidence, and 

related difficulty, associated with attributing different event classes. Heatwaves, and similarly 

extreme cold events, generally result in the most reliable event attribution estimates as the 

direct thermodynamic effects for these events are comparatively straightforward (National 

Academies of Sciences, 2016). Contrastingly, events such as droughts are caused by many 

compounding factors - such as precipitation, temperature, and soil moisture – making the 

attribution process significantly more complex. Cyclones, additionally, have high levels of 

complexity, which means that large-ensemble attribution studies of these storms have only 

become technically possible in recent years – and a high computational cost for each 

simulation persists (National Academies of Sciences, 2016). Resultantly, when assessing the 

average FAR across event types, such as storms, there are very few data points making the 

results subject to greater inaccuracy. This harms the robustness and increases the uncertainty 

of the approximation of the global cost of climate change-induced extreme weather.  

 
8.1.3. Question framing 

 
The question framing in an event attribution study can induce large discrepancies in how the 

role of anthropogenic emissions is quantified. One such example, which gained significant 

attention, was the 2010 Russian Heatwave. Two seemingly contradictory event attribution 

studies were conducted – one ruling a negligible role of human-induced climate change, and 

the other recording a five-fold increase in likelihood (Dole et al., 2011; Rahmstorf & 

Coumou, 2011). However, when reconciled, the importance of question framing became 

central to this difference, and it was shown that both results were scientifically sound. One of 
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the motivating factors behind the discrepancy was that Dole et al. (2011) analysed the change 

in intensity, whilst Rahmstrof and Coumou (2011) analysed the change in frequency. 

Moreover, subtle question framing differences - such as whether attribution is conditioned on 

the background atmospheric conditions (e.g. ENSO), or sea surface temperature conditions, 

or whether the counterfactual removes a single factor (GHG emissions) or all anthropogenic 

factors - can have a notable impact on the quantification (Hannart, Pearl, Otto, Naveau, & 

Ghil, 2016; Otto, 2017). The dependence on existent event attribution studies embeds 

question framing choices into the research results. In future, greater availability of FAR 

metrics would allow a greater specificity around the studies used, for example, allowing only 

for studies that calculate the FAR based on changing event frequency. However, given the 

limited data, such restrictions were not made in this study.  

 
8.1.4. Event definition 

 
To conduct an event attribution study, the author(s) must define the event in question across a 

broad range of variables. Each weather event is unique by nature, natural (external and 

internal), and human-induced forcings must culminate in a particular place, at a particular 

time, to create that event and its evolution through time (Otto, 2017). An author must define 

the boundaries of the event being analysed to measure a FAR, including the spatial and 

temporal definitions. These decisions ultimately impact the final FAR calculated, which feeds 

into the average value used for extrapolation in this study. Commonly, the event definition 

will reflect the extent of the event’s impacts, as the authors seek to answer what role 

anthropogenic climate change played in creating the economic and societal impacts (Otto, 

2017). For example, calculating a FAR using 3-day rainfall levels may be used when a flood 

has caused devastation, as it is the short burst of intense rainfall that caused water to 

accumulate. For this study, attribution studies that define events based on the extent of the 

largest human and economic impacts are beneficial. This is because it allows a closer 

geographical and temporal match between the FAR and economic impact data recorded in the 

dataset, making the calculation of attributed costs more reliable. However, events are not 

always defined in this way, as there may be barriers that prevent author(s) from using an 

impact-based definition. For example, it is often found that meteorological observational 

datasets are not extensive enough – across time or in granularity – to allow attribution to 

occur based at a specific locality or on a specific factor. Resultantly, the event definition must 



 50 

deviate from the boundaries of the actual impacts to ensure the adequacy of data records 

(Otto, 2017).  

 
8.1.5. Events made less likely in the presence of climate change 

 
This research looked at events that became more probable and less probable due to 

anthropogenic climate change. However, there is still an embedded underrepresentation of 

events that have become less likely because of human-induced climate change. This is 

because attribution studies are not conducted on events that have not occurred. For example, 

Van Oldenborgh et al. (2017) indicate that a flood that results from snowmelt has not recently 

occurred in England but did occur, occasionally, in the nineteenth and early twentieth 

century. This type of event may have become less likely because of climate change, but since 

there has been no recent occurrence, no attribution study has quantified this. Resultantly, 

there is an embedded upward bias in the attribution studies conducted and consequently in the 

results of this research. 

 
8.2. Economic impact data limitations 

 
The economic data used to quantify the global cost of climate change-attributed extreme 

weather events in this study is subject to an additional set of limitations. The economic data 

used in this study reflects the current best-available estimates—however, there are 

outstanding limitations regarding the data's quality, coverage, and granularity. 

 

8.2.1. Economic data quality 
 
The economic cost data used in this research underestimates the true costs of climate change 

over the study period. This is because economic cost measurements are chronically under-

measured and investigated globally. There is a need for greater attention and funding 

practices required by public and private institutions to ensure better information keeping. 

Additionally, some economic costs are difficult to measure, for example, productivity losses 

in a heatwave: how many people are not going to work due to heat? How many tradespeople 

are sent home once it becomes too hot? These questions require strong monitoring and 

research skills to estimate the total losses from a heatwave accurately. The Australian Climate 

Council attempted a thorough approximation of the total economic impact of Australia’s 

southwestern heatwave in 2009 (Steffen, Hughes, & Perkins, 2014). They estimated that the 

heatwave was responsible for up to AU$800 million in financial losses – predominantly 
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caused by power outages and transport system disruptions. This same event recorded zero 

damages or insured losses in EM-DAT. Improvements in the accuracy of economic impact 

measurements would improve the approximated results gained through this research. This 

limitation is present globally, but especially in lower-income countries where economic data 

measurement infrastructure is severely lacking. Better measurement and data gathering 

practices would allow decision-makers at all levels to make more informed choices on policy.  

 
 

8.2.2. Terminology 
 
As mentioned in Section 3.2.2, this research's economic data collection process grouped all 

monetary costs under the ‘damages’ category. This was done to ensure consistency with the 

EM-DAT approach. However, this is a loose use of terminology relative to the true variance 

of economic impacts from extreme weather. To better understand the nature of economic 

impacts, databases and measurement practices need to be improved to reflect an accurate 

breakdown of costs. For example, following the terminology of the Intergovernmental Expert 

Working Group on Indicators and Terminology relating to disaster risk reduction, which are 

fully outlined in Section 1.1, would improve understanding of the types of economic impacts 

that are most prominent for different events and in different countries. An inventory of events 

with the economic impacts differentiated into direct and indirect economic losses, at a bare 

minimum, would give decision-makers a better understanding of the wider economic impact 

of anthropogenic climate change (Clarke, Otto, & Jones, 2021). Consequently, better 

decisions about how to adapt in the face of increasing extreme weather would be made.  

 

8.2.3. Economic costs associated with ‘affected people’ 
 
The number of people affected is an impact datapoint recorded in EM-DAT, reflecting an 

economic cost resulting from an extreme weather event. From the global average 

extrapolation approach, it was found that climate change is responsible for 1.4 billion people 

being ‘affected’ by extreme weather between 2000-2019. Where affected, in line with the 

EM-DAT definition, means requiring immediate assistance following a disaster. This could 

range from an acute need for life-saving medical attention, the long-term provision of basic 

survival resources, or just some supply of short-term emergency provisions. This is 
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equivalent to between 18-23%15 of the global population, over 2000-2019, affected by 

climate change-induced extreme weather. Evidently, this must be related to economic costs, 

including healthcare costs, costs of provision of basic services such as emergency shelter, 

water, and food. However, given the extensive but imprecise range of costs that could be 

associated with someone being classed as an ‘affected’ party, using a singular monetary value 

for all affected parties would be misleading. Therefore, these costs are not included in the 

final calculation of global economic impact. This is an additional source of underestimation 

that is embedded in the results.  

 

Additionally, people can be affected in many ways by an extreme weather event aside from 

requiring immediate medical assistance or basic survival needs. For example, people may 

suffer from ongoing mental health impacts (e.g. stress, grief), lose a period of education after 

the event, or lose their job if their place of employment is harmed – to name a few. These 

people do not count as having been affected, under the EM-DAT definition, yet suffer high 

economic costs due to extreme weather events. These costs are not captured accurately in the 

data. They, therefore, are omitted from the results of this research, making a further 

contribution to the underestimation of the global cost of climate change-attributed extreme 

weather.  

 

The limitations of this research are extensive and demonstrate why the global approximation 

of the human-induced extreme weather event economic costs should not be considered 

robust. This research, however, provides a framework and methodology that should be built 

upon and improved to progress towards a more robust estimation of economic cost. Each 

limiting factor described above has the potential to be reduced with more research by climate 

scientists and economists, globally. Estimating the cost of climate change should never be the 

product of a singular methodology - whether that be this proposed event attribution approach, 

an IAM, or something different altogether. Alternatively, the knowledge produced through a 

toolbox of methods should be considered and scrutinized continuously. This would allow 

decision-makers to have a full suite of data and information that reflects the complexity and 

sensitivities embedded in this climate-economy research area.  

 

 
15 This estimation does not account for the possibility that one person can be affected by multiple climate-
attributed extreme weather events, although this is highly likely. The available data does not allow analysis to 
this depth.  
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Conclusion 
 
The characteristics of extreme weather events are changing because of anthropogenic climate 

change – some are becoming more frequent, less frequent, more intense, shorter, or longer. 

There are a multitude of these changes occurring globally, and they already cost the world 

hugely in terms of lives, direct, and indirect economic losses. This research has attempted to 

estimate how much economic cost climate change has been responsible for, pertaining to 

extreme weather events, over the last 20 years. This has been done using an attribution-based 

estimation method, which leans heavily on extreme event attribution studies and the 

subsequent calculations of the fraction of attributable risk for individual extreme events. 

Using the global extrapolation method, it was estimated that climate change is responsible for 

$2.90 trillion (US) in economic cost from extreme weather over 2000-2019 – a figure which 

includes economic damages and the statistical value of life. This is equivalent to an average 

of 0.20% of global GDP annually. In contrast, DICE, a well-recognized integrated assessment 

model, on average estimates climate change damages of 0.19% of annual global GDP over 

the same period. However, the attribution method is only approximating the climate change 

cost of one cost source, extreme weather events, while the DICE model attempts to create an 

estimate of the cost of climate change more broadly. The results suggest that climate change-

related costs from extreme weather events are not well captured in IAM, contributing to a 

likely underestimation of the global economic impact of climate change. However, as 

discussed, using an attribution-based method to approximate the global cost of climate 

change has not been done before, and therefore many limitations to the approach are 

outstanding. Hence, the cost estimation, rather than being considered accurate, should be 

interpreted as highly approximate and a best first attempt, given the available data.  

 

For now, more event attribution studies need to be conducted, and the geographical and event 

type representation of studies improved. This, in addition to better economic data, will allow 

the approximation of the global climate change-attributed economic cost of extreme weather 

to be continuously refined. Importantly, this attribution-based method provides another tool 

for decision-makers as they consider key adaptations to minimize the adverse impact of 

climate-related extreme weather events.  
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Supplementary Material 
 
The full economic attribution database, and the CarbonBrief (2021) spreadsheet, can be 
accessed in the supplementary material provided alongside this report. 
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