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Abstract 

The operation of mat.roid union was introduced by Nash-Williams in 1966. A 

matroid is indecomposable if it cannot be written in the form M = M1 V M2, 

where r(M1), r(M2) > 0. In 1971 Welsh posed the problem of characteriz­

ing indecomposable matroids, this problem has turned out to be extremely 

difficult. As a partial solution towards its progress, Cunningham charac­

terized binary indecomposable matroids in 1977. In this thesis we present 

numerous results in topics of matroid union. Those include a link between 

matroid connectivity and matroid union, such as the implication of having a 

2-separation in the matroid union, and under what conditions is the union 3-

connected. We also identify which elements in binary and ternary matroids 

are non-fixed. Then we create a link between having non-fixed elements in 

binary and ternary matroids and the decomposability of such matroids, and 

the effect of removing non-fixed elements from binary and ternary matroids. 

Moreover, we show results concerning decomposable 3-connected ternary 

matroids, such as what essential property every decomposable 3-connected 

ternary matroid must have, how to compose a ternary matroid, and what 

a 3-connected ternary matroid decomposes into. We also give an alterna­

tive statement and an alternative proof of Cunningham's theorem from the 

perspective of fixed and non-fixed elements. 
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Introduction 

The operation of matroid union was introduced by Nash-Williams in 1966. 

A matroid is indecomposable if it cannot be the union of matroids. In 

1971 Welsh posed the problem of characterizing indecomposable matroids, 

this problem has turned out to be extremely difficult. As a partial solution 

towards its progress, Cunningham characterized binary indecomposable ma­

troids in 1977. In this thesis I present numerous results in topics of matroid 

union. We start by looking at general properties of matroid union, then 

proceed to show the link between matroid connectivity and matroid union. 

Then we look at properties of non-fixed elements in binary and ternary ma­

troids, and how t he presence of those elements can inform us about the 

decomposability of those matroids. Finally we show some results concern­

ing decomposable 3-connected ternary matroids. The concept of fixed and 

non-fixed elements plays an essential role in proving many results in this 

thesis. 

This thesis has been written with the assumption that the reader is 

familiar with the basic definitions, ideas and concepts of Matroid Theory. 

Although Chapter 1 contains all the preliminaries needed, it is only for the 

purposes of this thesis, and it is far from being an exhaustive reference for 

matroid theory as a whole. For an exhaustive reference on t he basics of 

matroid theory, the reader is encouraged to read the early sections of [5]. 

The first section of Chapter 2 introduces the operation of matroid union 

in a formal way. The second section discusses the important issue of the 

ground sets of the matroids whose union we are considering. The third 

section explores some properties of matroid union, and finally we show which 

minors of a decomposable matroid are also decomposable. 
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X INTRODUCTION 

Chapter 3 discusses the relationship between matroid union and connec­

tivity. First we note why we are not interested in disconnected unions. Then 

we look at the rank of the connected union, the link with series connections, 

and what it means to have a 2-separation in a matroid union. The final 

section answers the question: 'When is the union 3-connected?'. 

Chapter 4 investigates properties of fixed and non-fixed elements in the 

union of two matroids in general, and in binary and ternary matroids in par­

ticular. Cunningham's result is restated and reproved in terms of fixed and 

non-fixed elements, so that an alternative picture of decomposable binary 

matroids is presented. 

Chapter 5 contains results relating to decomposable 3-connected ternary 

matroids, including how to compose a ternary matroid. Finally, Chapter 6 

presents some conjectures that may be catalysts for further research in the 

problem of matroid union. 

A final note on which results in this thesis are original and which are 

known. Chapter 1 contains the preliminary information needed for this 

thesis, so everything in this chapter is known. In Chapter 2, everything 

prior to Section 2.4 is known, the results of Section 2.4 are not found in the 

literature, however, they are straightforward. The material of Sections 3.1 

and 3.2 of Chapter 3 is known, and the remaining sections of this chapter 

contain new material. The definitions and results of Section 4.1 of Chapter 4 

are known. Section 4.2 contains new material. Theorem 4.3.3 and Corollary 

4.3.5 of Section 4.3 are new, and although Corollary 4.3.2 is straightforward, 

it is not currently present in the literature. The rest of the material in this 

section is known. The material in Section 4.4 is known but is restated and 

re-proven using the new material in Section 4.2, and using Lemma 4.3.1 

which is known. The results of Sections 5.1, 5.2 and 5.3 in Chapter 5 are 

new, apart from Proposition 5.3.6 and Theorem 5.3.8. Propositions 5.4.2 

- 5.4.4 and Theorem 5.4.5 of Section 5.4 are known, and the rest of the 

material in the section is new. 



Chapter 1 

Matroids and matroid 

operations 

This chapter catalogues some basic facts of matroid theory that will be 

needed later on in this thesis. 

1.1 Independent sets and circuits 

A matroid M is an ordered pair ( E, I) consisting of a finite set E and a 

collection I of subsets of E satisfying the following three conditions: 

(Il) 0 E I. 

(I2) If IE I and I'~ I , then I' E I . 

(I3) If h and h are in I and lhl < lhl, then there is an element e of 

h - h such that h U e E I. 

Condition (I3) is called the independence augmentation axiom. 

If M is the matroid (E,I), then M is a matroid on E. The members of 

I are the independent sets of M, and E is the ground set of M. A subset of 

E that is not in I is a dependent set. A basis of M is a maximal independent 

set. 

A circuit of an arbitrary matroid M is a minimal dependent set all of 

1 



2 CHAPTER 1. MATROIDS AND MATROID OPERATIONS 

whose proper subsets are independent, and we shall denote the set of circuits 

of M by C or C(M). Circuits have the following properties: 

(Cl) 0 tt C. 

(C2) If C1 and C2 are members of C and C1 ~ C2, then C1 = C2. 

(C3) If C1 and C2 are distinct members of C and e in C1 n C2, then there is 

a member C3 of C such that C3 ~ ( C1 u C2) - e. 

Condition (C3) is the circuit elimination axiom. Next we state some facts 

about matroids, but first we recall what it means for a matroid to be repre­

sentable over a field F. 

The two fundamental classes of matroids arise from matrices and from 

graphs. A vector matroid is the matroid that arises from a matrix, and a 

graphic matroid is the matroid that arises from a graph. If M is isomorphic 

to the vector matroid of a matrix D over a field F , then M is said to be 

representable over F or F -representable. 

1.2 Rank 

In this section we define what a rank of a matroid is, and state a fact about 

ranks. First we define a fundamental matroid construction. Let M be the 

matroid (E,I) and suppose that X ~ E. Let IIX be {I ~ X : I E I}. 
Then the pair (X, I) is a matroid. This matroid is the restriction of M to 

X or the deletion of E-X from M. It is denoted by MIX or M \(E-X). 

The rank r(X) of X is the size of a basis B of MIX. Evidently r maps 2E 

into the set of non-negative integers. This function , the rank function of M, 

will be written as rM orr. 

Lemma 1.2.1. [5, Lemma 1.3.1] The rank fun ction r of a matroid M on 

a set E satisfies the following condition: 

(R3) If X andY are subsets of E , then 

r(X U Y) + r(X n Y) :S r(X) + r(Y). (1.2.1) 
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1.3 Duality 

In this section we define the dual of a matroid and state a useful property. 

Note that B(M) is the set of bases of a matroid M. 

Theorem 1.3.1. [5, Theorem 2.1.1} Let M be a matroid and B*(M) be 

{E(M)- B: BE B(M)}. Then B*(M) is the set of bases of a matroid on 

E(M). 

The matroid obtained in the theorem above, whose ground set is E(M), 
and whose set of bases is B*(M) is the dual of M, and is denoted by M* . 

The circuits, hyperplanes, independent sets, and spanning sets of M are the 

cocircuits, cohyperplanes, coindependent sets, and cospanning sets of M* 

respectively. 

Proposition 1.3.2. [5, Proposition 2.1.6] Let M be a matroid on a set E 

and suppose X ~ E. Then 

(i) X is independent if and only if E - X is cospanning. 

(ii} X is spanning if and only if E - X is coindependent. 

(iii} X is a hyperplane if and only if E - X is a cocircuit. 

(iv) X is a circuit if and only if E - X is a cohyperplane. 

1.4 Minors 

In this section we define what minors are. If M is a matroid on E and T 

is a subset of E, then the contraction ofT from M is denoted M/T and is 

given by M/T = (M* \ T)*. A sequence of deletions and contractions from 

M can be written in the form M \ X/Y for some pair of disjoint sets X and 

Y, where X, Y ~ E(M), either of which may be empty. Matroids of this 

form are minors of M. 

Proposition 1.4.1. [5, Corollary 3.1 . 8} Suppose that Br is a basis of MIT. 

Then 

I(M/T) ={I ~ E- T: I U Br E I(M)} 

={I~ E- T: MIT has a basis B such that B U IE I(M)}. 
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Proposition 1.4.2. [5, Proposition 3.1.26} Let T1 and T2 be disjoint subsets 

of E(M). Then 

(i) (M \ Tl) \ T2 = M \ (T1 U T2) = (M \ T2) \ T1; 

(ii) (MjT1 )/T2 = Mj(T1 U T2) = (M/T2)/T1; and 

(iii) (M \ T1)/T2 = (M/T2) \ T1. 

1.5 Connectivity 

In this section we define connectivity for matroids and state some important 

facts about connectivity. 

Proposition 1.5.1. [5, Proposition 4.1.4} The matroid M is connected if 

and only if, for every pair of distinct elements of E(M), there is a circuit 

containing both. 

The following observation follows from the above. 

Proposition 1.5.2. A connected matroid with at least two elements does 

not have any coloops. 

Proof. Suppose M is a connected matroid that has a coloop e. By Proposi­

tion 1.5.1 , there must be a circuit containing e and any other element f of 

E(M). But since a coloop is not contained in any circuit, then e is not con­

tained in any circuit, giving a contradiction. Therefore a connected matroid 

does not have any coloops. D 

Similarly, the following is true for connected matroids. 

Proposition 1.5.3. A connected matroid with at least two elements does 

not have any loops. 

Proof. Suppose M is a connected matroid that has a loop e. By Proposition 

1.5.1, there must be a circuit containing e and any other element f of E(M) . 

But a loop is a 1-element circuit, and therefore is not contained in any circuit 

other than itself. Hence e is not contained in any circuit other than itself, 

giving a contradiction. Therefore a connected matroid does not have any 

loops. D 



1.6. DIRECT SUMS 5 

The following proposition links the connectivity of a matroid with its 

dual. 

Proposition 1.5.4. [5, Corollary 4.2.8] M is connected if and only if M* 

is connected. 

The following proposition describes the structure of a disconnected ma­

troid. 

Proposition 1.5.5. [5, Proposition 4.2.11] The matroid M is disconnected 

if and only if, for some proper non-empty subset T of E(M) , T(M) = {h U 

/2: hE T(MIT) , hE T(MIE- T))}. 

1.6 Direct sums 

In this section we define and state facts about direct sums. Note the follow­

ing. 

Proposition 1.6.1. [5, Proposition 4.2.12] Let M1 and M2 be matroids on 

disjoint sets E1 and E2. Let E = E1 U E2 and T = {h E T(M1), h E 

T(M2)}. Then (E,T) is a matroid. 

The matroid (E,T) in the proposition above is the direct sum or 1-sum 

of M1 and M2 and is denoted M1 E9 M2. 

What follows are equivalent ways of describing direct sums. 

Proposition 1.6.2. [5, Proposition 4. 2.16} C is a circuit of M1 E9 M2 if 

and only if C is either a circuit of M1 or a circuit of M2. 

Proof. Let C be a circuit of M1 E9 M2 , then we will show that C is either 

in C(MI) or in C(M2). If for all x E C, x was in E(MI) then C is in 

C(MI), and if for all x E C, x was in E(M2) then C is in C(M2) and we 

are done. So suppose the elements of Care from E(M1) and from E(M2). 

Without loss of generality, choose x E C, such t hat x is in E(Ml). Then 

C- { x} = I is independent in M1 E9 M2, and hence of the form h U h where 

h is independent in M1 and h is independent in M2. It is also true that for 

any other element y E C where y is in E(M2), C- {y} is independent. But 

C - {y} contains x and contains h. Since x is a proper subset of C, then 
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it is an independent set of M 1 . Meaning I' = h U { x} is independent in 

M1, because I' is a proper subset of C. So that I' U I2 must be independent 

in M1 EB M2, but I' U I2 = C, contradiction. Therefore if C is a circuit of 

M1 EB M2, then it is either in C(M1) or in C(M2). 

Conversely, if C is either a circuit of M1 or M2, then its elements are 

either completely from E(Ml) or completely from E(M2) respectively. Sup­

pose without loss of generality that all its elements are from E(Ml). Con­

sider C in M1 EB M2 . C is either dependent or independent in M1 EB M2. It 

cannot, however, be independent because then it has to be independent in 

M1 when of course it is not. So it must be dependent in M1 EB M2. Moreover, 

every proper subset of Cis independent in M1, because Cis a circuit of M1. 

It follows that every proper subset of Cis independent in M1 EB M2 as well. 

Therefore C is a minimal dependent set in M1 EB M2, that is a circuit of 

M1 EB M2. 0 

The rank of a set in the direct sum is calculated as follows. 

Proposition 1.6.3. [5, Proposition 4.2.11] If X ~ E(M1 EB M2) then 

rM1 E!lM 2 (X) = rM1 (X n E(MI)) + rM2 (X n E(M2)). 

Proof. Let Y be the maximal independent subset of X. Then Y can be 

partitioned into the two independent sets Y1 ~ E(MI) and Y2 ~ E(M2). But 

in order for Y to be a maximal independent set, both Y1 and Y2 have to be 

maximal independent sets in M1 and M2 respectively. It follows that IY11 = 

rM1 (X n E(MI)), and IY2I = rM2 (X n E(M2)). Therefore rM1 E!lM 2 (X) 

IYI = IY1I + IY2I = rM1 (X n E(MI)) + rM2 (X n E(M2)). 0 

Next we look at the bases in the direct sum. 

Proposition 1.6.4. [5, Proposition 4.2.18] The set of bases of M 1 EB M 2 

are {B1 U B2 : B1 E B(MI), B2 E B(M2)}. 

Proof. Let B be a basis of M1 EB M2. B is a maximal independent set. So it 

follows from Proposition 1.6.1, that B is the union of two independent sets 

h and h, where h is independent in M1 and I2 independent in M2. But 

in order for B to be a maximal independent set, both h and h have to be 

maximal independent sets in M1 and M2 respectively. So that h and I2 are 

bases of M1 and M2 respectively. 0 
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The flats of the direct sum are as follows. 

Proposition 1.6.5 . [5, Proposition 4.2.20] F is a fiat of M1 E9 M2 if and 

only ifF n E(M1) and F n E(M2) are fiats of M1 and M2 respectively. 

Proof. Let FM1 (JJ M2 denote a flat of M1 E9 M2. If F is a flat of M1 E9 M2, 

then cl(F) =F. Let F = F1 U F2 , where F1 and F1 are disjoint sets such 

that F1 = F n E(M1), and F2 = F n E(M2). Then cl(F) = F = F1 U F2. 

By Proposition 1.6.3, any increase in the rank of F1 , will increase the rank 

of FM1$ M2 , and any increase in the rank of F2 will increase the rank of 

FM1 (f)M2 • So it follows that cl(F) = clM1 (Fl) U clM2 (F2)· So now we have 

cl(F) = F = F1 U F2 = clM1 (F1) U clM2 (F2)· Since clM1 (Fl) only contains 

elements from E(Ml), then clM1 (F1) must be equal to F1. Similarly clM2 (F2) 

must be equal to F2. Therefore F n E(M1) and F n E(M2) are flats of M1 

and M2 respectively. 

Conversely, suppose F n E(M1) is a flat of M1 and F n E(M2) is a flat 

of M2. Let F1 = F n E(M1) and F2 = F n E(M2), and let F = F1 U F2. 

Since F1 and F2 are flats of M1 and M2 respectively, then clM1 (F1) = F1 and 

clM2 (F2) = F2. So F1 U F2 = F = clM1 (F1) U clM2 (F2)· But the elements 

that you can add to F1 without increasing its rank in M1, together with the 

elements that you can add to F2 without increasing its rank in M2, are the 

elements that you can add to F without increasing its rank in M1 EB M2. 

In other words cl M 1 (H) U cl M 2 ( F2) = F = cl (F). Therefore F is a flat of 

D 

The closure operator of the direct sum is as follows . 

Proposition 1.6.6. {11 , Proposition 1.6.1}. If X is a set in E(M1 E9 M2), 

then the closure of X in the direct sum is clM1 (X1) U clM2 (X2) for some 

partition {X1 , X2} of X , where X= X1 U X2, X1 =X n E(M1) , and X2 = 
X nE(M2). 

Proof. By Proposition 1.6.3 rM1$ M2 (X) = rM1 (X1) + rM2 (X2)· So cl(X) = 

{x : r(X U {x}) = r(X) for all x E E(M1 E9 M2)}. Element x can be 

either in E(Ml), or in E(M2) . So cl(X) = {x1 : r(X1 U {xi}) = r(Xl) 

for x1 E E(M1)} U {x2 : r(X2 U {x2}) = r(X2) for X2 E E(M2)} . The 

aforementioned is equal to clM1 (X1) U clM2 (X2). D 
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1. 7 Representable matroids 

In this section we state some facts about representable matroids. Recall 

from Section 1.1 that an F-representable matroid, is a matroid isomorphic 

to t he vector matroid of a matrix D over the field F. A matroid is binary 

if it is representable over GF(2) , a matroid is ternary if it is representable 

over GF(3), a matroid is regular if it is both binary and ternary. 

Proposition 1. 7 .1. {5, Corollary 2. 2. 9} If M is representable over the field 

F, then M* is also representable over F. 

Proposition 1. 7.2. [5, Proposition 3.2.4} Every minor of an F-representable 

matroid is F-representable. 

The next result lists some classes of matroids that are closed under direct 

sums. Please note that transversal matroids will be defined later. 

Proposition 1. 7.3. [5, Proposition 4.2.15} The classes ofF-representable, 

graphic, cographic, transversal, and regular matroids are all closed under the 

operation of direct sum. 

One of the important matroids in Matroid Theory, that will be referred 

to a lot in this thesis is known as the Fano matroid , denoted F7 and shown 

in Figure 1.1 below. The next proposition shows when F7 is representable. 

h 

The Fano matroid F7 

Figure 1.1: The Fano matroid 

Theorem 1. 7.4. [5, Theorem 6.4.8} Let F be a field. Then F7 is F­

representable if and only if the characteristic ofF is two. 

The remaining results of this section show what conditions are needed 

for a matroid to be binary, ternary or regular. 
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Theorem 1.7.5. (5, Theorem 6.5.4} A matroid is binary if and only if it 

has no u2,4 -minor. 

Theorem 1.7.6. (5, Theorem 6.5. 7} A matroid is ternary if and only if it 

has no minor isomorphic to any of the matroids U2,5, U3,5, F7 or F7. 

Theorem 1. 7. 7. ( 5, Theorem 6. 6. 3 j The following statements are equivalent 

for a matroid M: 

(i) M is regular. 

(ii) M is representable over every field. 

(iii) M is binary and, for some field F of characteristic other than two, M 

is F -representable. 

Theorem 1.7.8. (5, Theorem 6.6.4} A matroid is regular if and only if it 

has no minor isomorphic to any of the matroids U2,4, F7 or F7. 

1.8 Series and parallel connections 

In this section we state some facts about series and parallel connections. We 

also define and state facts about the 2-sum operation. We assume the reader 

is familiar with series connections and parallel connections of matroids, for 

background information on this subject see [5, Section 7.1]. 

Let M1 and M2 be two matroids with E(Ml) n E(M2) = {p}. Let E = 

E(M1) U E(M2). If the collection of circuits of the series connection of M1 

and M2 is Cs, and the collection of circuits of the parallel connection of M1 

and M2 is Cp, then the following is true: 

Proposition 1.8.1. (5, Theorem 7.1.4} Each ofCs and Cp is the collection 

of circuits of a matroid on E. 

The matroids on E that have Cs and Cp as their sets of circuits will be 

denoted by S(M1, M2) and P(M1, M2) respectively. In this context, pis the 

base-point of the connections. What follows are facts about the base-point, 

series and parallel connections, and the link between series connections and 

direct sums. 

Proposition 1.8.2. (5, Theorem 7.1.8} If the base-point p is a coloop of 

M1, we define S(M1, M2) = M1 EB (M2 \ p). 
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Proposition 1.8.3. {5, Theorem 7.1.11 J The base-point p is a co loop of 

S(M1, M2) if and only if it is a coloop of M1 or M2 . 

Proposition 1.8.4. [5, Theorem 7.1.12} The base-point p is a loop of 

P(M1, M2) if and only if it is a loop of M1 or M2 . 

Proposition 1.8.5. [5, Proposition 7.1 .13} Let M1 and M2 be matroids 

with E(M1) n E(M2) = {p}. Let E = E(MI) U E(M2) and B be a subset 

of E. 

(i) Assume that, in at least one of M1 and M2, p is not a coloop. Then 

B is a basis of S(M1, M2) if and only if B can be written as a disjoint union 

of bases of M1 and M2. 

(ii} Assume that, in at least one of M1 and M2, p is not a loop. Then 

B is a basis of P(M1, M2) containing p if and only if B n E(Mi) is a basis 

of Mi containing p for i = 1,2. Moreover, B is a basis of P(M1, M2) not 

containing p if and only if p tl. B and, for some distinct i and j in {1 , 2} , 

the set [BnE(Mi)]Up and BnE(M1) are bases of Mi and M1, respectively. 

Theorem 1.8.6. [5, Theorem 7.1 .16} Let p be an element of a connected 

matroid M. 

(i) If M \ p = M1 EB M2 where both M1 and M2 are non-empty, then 

M = S(MjE(M1) , MjE(M2)) . 

Dually, 

(ii) If Mjp = M1 EB M2 where both M1 and M2 are non-empty, then M = 
P(M \ E(M1) , M \ E(M2)). 

A matroid is said to have a k-separation if there is a partition (X, Y) of 

the ground set E such that: 

(i) lXI and IYI are each at least k, and 

(ii) r(X) + r(Y)- r(E) is less than or equal to k- 1. The smallest k 

such that M has a k-separation is called the connectivity of M. If k is at 
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least 2, we say that M is n-connected for all integers n no larger than k. If 

k = 1, then we say that M is dis connected . So in general: 

( i) If a matroid has k-separation then it is not {k+ 1 )-connected. 

( ii) If a matroid is k-connected then it is {k-1 )-connected. 

The next example illustrates parts (i) and (ii) of Theorem 1.8.6. 

Example 1.8. 7. Figures 1.2 and 1.3 illustrate parts (i) and (ii) of Theorem 

1.8.6 respectively. In Figure 1.2 M is a series connection on base-point p. 

Let A= {x,y, z },B = {s , t ,u, p} . So that rM(A) +rM(B) = 2+3 = 5 = 
r(M) + 1 = 4 + 1, thus indicating that (A, B) is a 2-separation of M. The 

series connection can be disconnected by deleting the base-point element p. 

So in M \ p we get rM\P(A) + rM\P(B- {p}) = 2 + 2 = 4 = r(M), thus 

indicating that (A , B - {p}) is a !-separation of M \ p. 

A z 

B 
X 

Q~ . ~ ----M 

Series connections get disconnected by deleting the basepoint element 

M\P gives: 

A B- {p) 

• • • u 

Figure 1.2: Series connection and deletion. 

Figure 1.3 shows how a parallel connection can be disconnected by con­

tracting the base-point p. Let A= {x, y,z},B = {s,t,u,p} . So that 

rM(A) + rM(B) = 2 + 2 = 4 = r(M) + 1 = 3 + 1, thus indicating that 

(A, B) is a 2-separation of M. The parallel connection can be disconnected 

by contracting the base-point element p. So in Mjp we get rMjp (A) + 

rMjp(B- {p}) = 1 + 1 = 2 = r(Mjp), thus indicating that (A ,B- {p}) is 
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a !-separation of Mjp. 

X M A B- {p} 

X S 
y A 

z I lu t 
If we contract p we get a I - separation: Y 

2
-t.-----e-::-

u 

p 

B 
r(M/p)=rMip (A)+ rMip ( B- {p}) 

M is a parallel connection on basepoint p 

Figure 1.3: Parallel connection and contraction. 

The following proposition shows that the connectivity of the series and 

parallel connection of two matroids depends on the connectivity of the two 

matroids. 

Proposition 1.8.8. [5, Proposition 7.1 .17] If the matroids M1 and M2 each 

have at least two elements and E(Ml) n E(M2) = {p}, then the following 

statements are equivalent: 

(i) Both M1 and M2 are connected. 

(ii} S(M1, M2) is connected. 

(iii} P(M1, M2) is connected. 

Let M and N be matroids each with at least three elements, and let 

E(M) n E(N) = {p}. Suppose that neither M nor N has {p} as a sepa­

rator. Then the 2-sum of M and N denoted M EB2 N is S(M1 , M2)/p or, 

equivalently, P(M1, M2) \p. Clearly M EB2 N = N EB2 M. M and N are the 

parts of the 2-sum. What follows are results about 2-sums. 

Proposition 1.8.9. [5, Proposition 7.1.19] Both M and N are isomorphic 

to proper minors of M EB2 N. 

Proposition 1.8.10. [5, Proposition 7.1. 20] (i} (M EB2 N)* = M* EB2 N*. 

(ii} If IE(Ni)l 2:: 2 for i= 1, 2, then P(N1 , N2) \ p is connected if and only 

if both N1 and N2 are connected. In particular, M EB2 N is connected if and 

only if both M and N are connected. 
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Some classes of matroids are closed under 2-sums, as shown in the next 

result. 

Proposition 1.8.11. [5, Corollary 7.1.23] The classes of graphic, cographic, 

F-representable, and regular matroids are all closed under 2-sums. 

The following proposition describes the set of circuits in the 2-sum. 

Proposition 1.8.12. [6] The 2-sum of M1 and M2 is the matroid whose 

ground set is ( E1 U E2)- {p} and whose set of circuits consists of all circuits 

of M1 \ p together with all circuits of M2 \ p and all sets of the form ( C1 U 

C2)- {p} where each Ci is a circuit of Mi containing p. 

The next figure gives a general illustration of the three different ways 

2-separation occurs. 

Figure 1.4(a) illustrates a !-separation in M. It has a partition (A, B) 

such that r(A) + r(B) = r(M). Figure 1.4(b), (c) and (d) illustrate the 

three ways 2-separation can occur. Part (a) shows a parallel connection, (b) 

shows a series connection and (c) shows a 2-separation where there is no 

base-point. Figure 1.4 only gives the general view. The figure in the next 

example shows concrete instances of 2-separation. 

Example 1.8.13. Figure 2.l(a) shows a !-separation of matroid M. The 

two disjoint sets are A= {x},B = {a,b}, so that M =(MIA) EB (MIB) . 

Figure 2.1(b) shows a 2-separation as a parallel connection. In (b) A = 

{p,x,y} and B = {p,b,c}. So that M = P(MIA,MIB). Figure 2.l(c) 

shows a 2-separation as a series connection. In (c) A = {p,x,y,a} and 

B = {p, b, c, d, e }. So that M = S(MIA, MIB). Finally Figure 2.1(d) shows 

a 2-separation where there is no base-point p. Here A = {p, a, x, y }, and 

B = {p, d, b, c}. So that M = (MIA) EB2 (MIB). 

F-representable matroids are also closed under the operation of series 

and parallel connections, as shown in the next result. 

Proposition 1.8.14. [5, Proposition 7.1. 21 j Let F be a field. If M1 and 

M2 are F-representable matroids such that E(MI) n E(M2) = {p}, then 

both P(M1,M2) and S(M1,M2) are F-representable. 
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00 
I - separation 

(a) 

Parallel connection 

(b) 

2-separation with no basepoint p 

(d) 

0 

Series connection 

(c) 

Figure 1.4: General view of !-separation and 2-separations. 
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X 

A e 
a b 

• • 
!-separation 

(a) 

A B 

.~ 
y c 

Parallel connection 

(b) 

B 

A\p 
rank-3 matroid • • • X y a 

• • • Blp 
b c d 

2-separation with no basepoint p 

(d) 

A 

Series connection 

(c) 

Figure 1.5: Examples of 1- and 2-separations. 
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The following proposition ties together the operations of 2-sum, parallel 

and series connections. 

Lemma 1.8.15. Let M be the 2-sum of the two matroids MA and Ms where 

{p} = E(MA) nE(Ms) is the base-point. Then the following are equivalent: 

(i) M = MA EB2 Ms. 

(ii) M = P(MA, Ms) \ p. 

(iii) M = S(MA , Ms)fp. 

The operation of 2-sum and 3-connected matroids are linked as will soon 

be shown in Theorem 1.8.19, but first we state an important fact about 

connectivity. The next proposition says that given a matroid M, if you 

delete or contract an element from M, then the connectivity of M drops by 

at most one. 

Proposition 1.8.16. [5, Proposition 8.1.13] If e is an element of an n­

connected matroid M, then, provided IE(M)I 2:: 2(n- 1) , both M \ e and 

Mje are (n- 1)-connected. 

The connectivity of a matroid M, is determined by its connectivity func­

tion r(X) + r(E(M)- X)- r(M) defined on all subsets X of E(M). 

Lemma 1.8.17. [5, Lemma 8.1.14] A matroid and its dual have the same 

connectivity function. 

The following lemma shows that if the condition IE( M) I 2:: 2( n- 1) does 

not hold in Proposition 1.8.16, then the proposition fails. 

Lemma 1.8.18. [2, Section 5] Let e be an element of a 3-connected matroid 

M, where M ~ U2,3· Then M \ e is disconnected. 

The following theorem shows the link between 3-connected matroids and 

2-sums. 

Theorem 1.8.19. [5, Theorem 8.3.1] A 2-connected matroid M is not 3-

connected if and only if M = M1 EB2M2 for some matroids M1 and M2, each 

of which is isomorphic to a proper minor of M. 

The two following results show how matroids that are not 3-connected 

can be constructed. 
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Theorem 1.8.20. [5, Theorem 8.3.4] Every matroid that is not 3-connected 

can be constructed from 3-connected proper minors of it by a sequence of the 

operations of direct sum and 2-sum. 

Proposition 1.8.21. [5, Proposition 8.3.5] Let M be a connected matroid. 

Then, for some positive integer k, there is a collection M1, M2, ... , Mk of 

3-connected matroids and a k-vertex tree T with edges labeled e1, e2, ... , ek-l 

and vertices labeled M1, M2, ... , Mk such that 

(ii) if the edge ei joins the vertices Mjl and Mj2, then E(Mjl) n E(Mj2) is 

{ei}; and 

(iii) if no edge joins the vertices Mj1 and Mj2, then E(Mjl) n E(Mj2) zs 

empty. 

Moreover, M is the matroid that labels the single vertex of the tree 

T j e1, e2, ... , ek-l at the conclusion of the following process: contract the edges 

e1, e2, ... , ek-l ofT one by one in order; when ei is contracted, its ends are 

identified and the vertex form ed by this identification is labeled by the 2-sum 

of the matroids that previously labeled the ends of ei. 
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Chapter 2 

Fundamentals of matroid 
• Union 

Given two matroids M1 and M2, we can consider a way of joining the two 

matroids, this operation is called 'matroid union'. Here we define it for two 

matroids, but that can be easily extended for any finite number of matroids. 

2.1 Matroid union 

Let M1 and M2 be two matroids, and let I= {It U h: It E I(M1),h E 

I(M2)}. Then the following is true. 

Theorem 2.1.1. I is the collection of independent sets of a matroid on 

E(MI) U E(M2). 

Proof. Consider the set I . Since 0 is in both I(M1) and I(M2) by definition 

of matroids, and since 0 U 0 = 0, then we have 0 E I , and so (Il) is satisfied. 

Now if I E I and I' s;;; I , then we have I = It U h where It E I(M1) 

and h E I(M2) . If either I' s;;; !r , or I' s;;; h , then I' E I(M1) , or I' E 

I(M2) respectively. It follows that I' E I . Or else I' s;;; (It U h), without 

being a subset of either It or I 2 . But in this case I' itself is the union of 

two independent sets, one being the set I' n It = Ii, and the other being 

I' nh =I~ . That gives I~ s;;; It, implying I~ E I(MI), and similarly I~ s;;; I2, 

implying I~ E I(M2) . Hence I' E I , and (12) is satisfied. If X andY are in 

19 
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I with lXI < IYI , then X= xl ux2, where xl in I(Ml), and x2 in I(M2), 

and similarly Y = Y1 UY2, where Y1 in I (Ml), and Y2 in I(M2). So we have 

IX1 UX2 I < IY1 UY2I· Without loss of generality suppose IX1I < IY1I· Then 

there exists an element e in Y1 - X1 such that (X1 U { e}) E I(Ml) . Since 

X2 is already in I(M2) , then (X1 U X2 U { e}) E I. Now that we have (Il) , 

(12) and (13) satisfied, we conclude that I is the collection of independent 

sets of a matroid on E(M1) U E(M2). D 

The matroid constructed via Theorem 2.1.1 is the union of M1 and M2, 

and is denoted by M1 V M2. It follows that we can also talk about the 

operation of decomposition of matroids, where a matroid is written as the 

union of two matroids. Note that any matroid can be written as the union 

of itself with a rank-zero matroid. However, since this is a trivial operation, 

we will not be concerned with it. What we are concerned with is a proper 

decomposition. A matroid M is decomposable if there exist matroids M 1 

and M2 such that M = M1 V M2 where r(M1) 2: 1 and r(M2) 2: 1. Oth­

erwise a matroid is indecomposable. Some authors use the words reducible 

for decomposable, and irreducible for indecomposable. In t his thesis, how­

ever, we will always use the words decomposable and indecomposable. The 

following figure gives an example of a matroid union . 

• c 

X X c 

I ~ v ly· - • • • • -
b X y a b 

M, M, M
1
VM

2 

Figure 2.1: An example of a matroid union. 

2.2 Ground sets of the union 

If M = M1 V M2, t hen it follows from the definition of matroid union 

that M1 and M2 may have different ground sets. However, at times it is 

convenient to have E(M1) = E(M2). The next proposition shows that we 

can always do that. 
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Proposition 2.2.1. If a matroid M is decomposable such that M = M1 V 

M2 , then there are matroids Mt , M:j on a common ground set E such that 

M = Mt V M:j, where r(Mt), r(M:j) ~ 1. 

Proof. If M1 and M2 above have the same ground set E then we are done. 

So let us assume that M1 and M2 do not have a common ground set and that 

M1 is defined over E1 and M2 defined over E2, and let E = E1 U E2. Define 

Mt to be the following extension of M1. Take E1 and adjoin to it a set of 

loops where these loops are labeled by the elements of E- E1. The same 

is done for M:j. Thus MtiEi = Mi and Mti(E- Ei) has rank zero, for 

i E {1, 2}. Note that now Mt and M:j have a common ground set E. Since 

the loops in Mt cannot be members of any of the independent sets of Mt, 

then the set of independent sets of Mt is the same as the set of independent 

sets of M1. Similarly for M:j. So we have I(Mt V M:j) = I(M1 V M2). 

Therefore Mtv M:j = M1 V M2, with the only difference being that now Mt 

and M:j have common ground sets. So E(Mt) = E(M:j) = E(Mtv M:j) = 
E(M). D 

The disadvantage of assuming that we have the same ground sets is that 

M1 and M2 may have loops that play no structural role. At times it is 

convenient to assume that M1 and M2 are loopless. The next proposition 

shows that we can always do that . 

Proposition 2.2.2. If M is a loopless decomposable matroid, then there 

exist loopless matroids M 1 and M 2 , each having rank at least one, such that 

M=M1 VM2. 

Proof. Since M is decomposable, then suppose M = N1 V N2 . Suppose that 

N1 and N2 are not loopless. Consider e E E(M). If e E E(N1)nE(N2) and e 

is a loop in N1 and a loop in N2, then e is a loop in M contradicting the fact 

that M is loopless. So let A be a set of loops of N1 without loss of generality. 

A is a set of loops of N1 only by the above. Then I(N1) = I(N1 \A), because 

A is a set of loops, and therefore none of its elements are contained in any 

independent set of N1. Let M 1 = N1 \ A. Similarly, let B be the set of 

loops of N2. Let M2 = N2 \B. Then I(N2) = I(N2 \B) . It follows that 

M = M1 V M2, where both M1 and M2 are loopless. D 
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In this thesis we will at times assume that M1 and M2 have different 

ground sets, and at other times we will assume they have the same ground 

sets according to convenience. We will always be clear as to which case we 

are in. 

2.3 Properties of matroid union 

In this section we state some properties of matroid union. We also look 

at equivalent ways of describing matroid unions when the ground sets are 

the same. The two following propositions are elementary, they show that 

matroid union is commutative and associative. In these two propositions we 

make no assumption about the ground sets. 

Proposition 2.3.1. Let M1 and M2 be two matroids, then M 1 V M2 

M2 V M1. 

Proposition 2.3.2. Let M1, M2 and M3 be three matroids, then (M1 V 

M2) V M3 = M1 V (M2 V M3). 

Proof. We observe that a set I in (M1 V M2) V M3 is independent if and only 

if it is the union of two independent sets h2 and !3 , where h2 is independent 

in M1 V M2, and h is independent in M3. But !12 itself must be the union 

of two independent sets h and h, where h is independent in M1 and 12 

independent in M2. Since the order in which we take the union of h , !2 and 

h does not matter, then it follows that (M1 V M2) V M3 and M1 V (M2 V M3) 

have exactly the same independent sets. Therefore they are equal. D 

The following theorem shows what the rank function of the union is when 

the ground sets are the same. 

Theorem 2.3.3. [5, Theorem 12.3.1} Let M1 and M2 be two matroids on 

E. If X~ E, its rank in M1 V M2 is 

min{r1(Y) + r2(Y) +IX- Yl : Y ~X} 

where r1 and r2 are the rank functions of M1 and M2 respectively. 
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To prove Theorem 2.3.3, first we state a couple of results. Note that the 

notion of matching mentioned in the next theorem will be defined later in 

case the reader is not already familiar with it. 

Theorem 2.3.4. [5, Theorem 12.2.12} Let 6 be a bipartite graph with vertex 

classes S and J and let M be a matroid on J. Suppose that 6(I) is the set 

of subsets X of S that are matched in 6 onto a member of I(M). Then 

6(I) is the set of independent sets of a matroid 6(M) on S. 

Note that the symbol U used in the proof for the next proposition indi­

cates a disjoint union. 

Proposition 2.3.5. [5, Corollary 12.2.14] If X s;;; S, its rank in 6(M) is 

equal to min{rM(N(Y)) +IX- Yl: Y s;;; X} . 

Proof of Theorem 2.3.3. Construct the bipartite graph 6. as follows . Let 

</>1 and </>2 be bijections from E onto disjoint sets E1 and E2. Then for 

i = 1, 2. the function </>i induces an isomorphic copy of Mi on Ei. Hence 

on E1 U E2, we have a matroid isomorphic to M1 EB M2. Let 6 have E 

as one vertex class and E1 U E2 as the other. Join each element e of E 

to </>1(e) and </>2(e) and to no other vertices in E 1 U E2 as in Figure 2.2. 

Now consider the matroid N on E induced from M1 EB M2 by 6.. Since 

M1 EB M2 has rank function r 1 + r 2, Proposition 2.3 .5 implies that the rank 

function of N is as specified in the theorem. Moreover, one easily checks 

that I(N) = {h U !2 : h E I(Ml), hE I(M2)}. 0 

When the ground sets are the same, then the collection of circuits in the 

union is as follows. 

Proposition 2.3.6. {11 , Proposition 7.6.1 2] Let M1 and M2 be two ma­

troids on E. The collection of circuits C in M1 V M2 is as follows: C consists 

of minimal sets of the form {C: An C contains a circuit of M1, orC-A 

contains a circuit of M2 for all A s;;; C}. 

The closure operator for the matroid union M, where the ground sets 

are the same is as follows. 

Proposition 2.3.7. [11, Proposition 7.6.12} Let M1 and M2 be two ma­

troids on E. For a set X in M = M1 V M2 ,clM1 vM2 (X) = X U {x : 
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E 

E 

Figure 2.2: M1 V M2 is induced from M1 E9 M2 by 6 . 

there exists xl , x2 <;;; X , with xl n x2 = 0, such that X E clMl (Xl) and 

x E clM2(X2), X1 <;;; clM2(X2), and X2 <;;; clM1 (X1)}. 

The bases in the union, when the ground sets are the same are as follows: 

Proposition 2.3.8. {11 , Proposition 7.6.12} Let M1 and M2 be two ma­

troids on E . A basis B in the union is a maximal set of the form { B1 U B2 : 

where B1 is a basis of M1 and B2 is a basis of M2}. 

Proof. Let B be a basis of M1 V M2 . B is a maximal independent set. So it 

follows from the definition of matroid union, that B is the union of two in­

dependent sets hand h , where his independent in M1 and h independent 

in M2 . But in order for B to be a maximal independent set, at least one of 

hand h has to be a maximal independent set in M1 or M2 respectively, say 

h. The independent seth, however, can always be chosen to be a maximal 

independent set, even if that requires having common elements between h 
and !2. So that they are bases of M1 and M2 respectively. 0 

Having introduced the operation of matroid union, and some properties 

of the operation, we now state a well known unsolved problem in Matroid 

Theory. 
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Problem 2.3.9. [5, Problem 12.3.9] Characterize all indecomposable ma­

troids. 

The problem mentioned above has been solved for some classes of ma­

troids. Some examples of such classes are the classes of graphic, transversal, 

and binary matroids. The following is a characterization of graphic matroids 

M which are indecomposable, meaning that the only decomposition possible 

is the trivial decomposition in which a matroid is the union of itself with 

the empty matroid. 

Theorem 2.3.10. {8] The cycle matroid M(G) of a graph G is indecom­

posable if and only if the removal of any edge leaves the graph 2-connected. 

It is known that if M (G) is the union of two matroids then it is the union 

of two graphic matroids as well, see [8]. 

Next we look at a characterization of the decomposition of transversal 

matroids. If A is the family (A1, A2, ... , Am) of subsets of a set S and 

J = {1 , 2, ... , m }, then the bipartite graph 6[A] associated with A has 

vertex set S U J; its edge set is { xj : x E S, j E J, and x E Aj }. A matching 

in a graph is a set of edges in the graph no two of which have a common 

endpoint. A subset X of S is a partial transversal of A if and only if there 

is a matching in 6[A] in which every edge has one endpoint in X. Note the 

following. 

Theorem 2.3.11. {5, Theorem 1.6.2] Let A be a family (A1,A2, . .. ,Am) 

of subsets of a set S. Let I be the set of partial transversals of A. Then I 

is the collection of independent sets of a matroid on S. 

The matroid obtained above from the set of partial transversals of A is 

denoted by M[A]. If M is an arbitrary matroid and M ~ M[A] for some 

family A of sets, then M is a transversal matroid. 

In other words, if M is a transversal matroid, then there is a bipartite 

graph G with vertex sets V and E(M) , such that I<;;;;; E(M) is independent 

in M if and only if I can be matched in G. In this case I is called a partial 

transversal of V. For I to be matched means that every element x in I is 

connected to exactly one unique point in V. 
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The following construction will be used in the next proposition. Say 

V = {1, 2, ... , n}. Fori in V , define Mi on E(M) as follows: if e is in E(M) 

and there is an edge from e to i then { e} is independent in Mi, otherwise 

e is a loop in Mi. If { e, f} ~ E(M) and e and f are both connected to i 

in V , then { e, f} is dependent in Mi. Mi in this case is a rank-1 matroid. 

The following is the characterization of the decomposition of transversal 

matroids. 

Proposition 2.3.12. [5, Proposition 12.3. 7} A matroid M with rank at 

least one is transversal if and only if it is a union of rank-1 matroids. 

Proof. Since we are working with a transversal matroid M, then we can 

construct a bipartite graph G as follows. It has vertex sets V and E(M) , 

where V is the set of rank-1 matroids M1, M2, ... , Mn, and E(M) is the 

set of elements of M. If I is independent in the transversal matroid M, 

then I can be matched in G. Meaning that every element in I has exactly 

one endpoint in V. Since each of those single element sets have exactly one 

endpoint in V, then I meets the requirement of being independent in Mi. 

Implying that I can be partitioned into single element sets, each of which is 

a match in G. Therefore each element of I is independent in some rank-1 

matroid Mi. But I is the union of those single element independent sets. So 

I is independent in M1 V M2 V · · · V Mn. Therefore if I is independent in M 

then I is independent in M1 V M2 V · · · V Mn. 

Conversely, if I is independent in M1 V M2 V · · · V Mn, then I is the union 

of n number of independent sets, each having exactly one element. Meaning 

each one-element set is a match in G. But because each one-element set 

of I is a match in G, then I itself is a match in G. So it follows that I 

is a transversal of M1 V M2 V · · · V Mn = M . But if I is a transversal of 

M, then I is independent in M by definition. Therefore if I is independent 

in M 1 V M2 V · · · V Mn, then I is independent in M. The two directions 

show that a matroid M is transversal if and only if it is the union of rank-1 

matroid. D 

The class of uniform matroids is also another class of decomposable 

matroids. But first we note the following. 

Proposition 2.3.13. All uniform matroids are transversal. 
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Proof. Let A be a family of independent sets of M, where M is a uniform 

matroid. Consider the general form of uniform matroids Um,n· All the 

independent sets in M have size less than or equal to m. Since m ::; n, then 

we can construct a bipartite graph 6. [A] as follows. It has vertex sets N of 

n elements and M of m elements. Each edge represents an element in a set, 

the element is the endpoint of the edge in M, and so a certain collection 

of edges represents a certain set. It follows each and every independent set 

of M is a matching in 6. [A], because m ::; n. Meaning that the set I of 

independent sets of M are partial transversals of A. Therefore by Theorem 

2.3.11 , M is a transversal matroid. D 

By combining Propositions 2.3.12 and 2.3.13 we get: 

Corollary 2.3.14. All uniform matroids of rank at least 2 are decomposable. 

Another class for which there exists a characterization of decomposability 

is the class of binary matroids. It has been solved by Cunningham. In 

Chapter 4 we will give an alternative proof of his result. Here we state 

Cunningham's original result. 

Theorem 2.3.15. {1] A binary matroid M onE is indecomposable if and 

only if M is connected and M \ e is connected for each e E E. 

As a corollary of Theorem 2.3.15 we get the following . 

Corollary 2.3.16. With the exception of U2,3, every 3-connected binary 

matroid is indecomposable. 

Proof. A binary matroid is decomposable by Theorem 2.3.15 if and only 

if it contains an element whose deletion disconnects the matroid. But by 

Proposition 1.8.16 a 3-connected matroid cannot be disconnected by deleting 

one element. The only exception to this case, however, is U2,3 as stated in 

[2, Section 5]. Therefore with the exception of U2,3 , 3-connected binary 

matroids are indecomposable. D 

2.4 Minors of a decomposable matroid 

In this section we show which minors of a decomposable matroid are also 

decomposable. First we look at minors obtained by deletions. In the special 
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case when the ground sets of M1 and M2 are the same, the following is true. 

Proposition 2.4.1. Let M be a decomposable matroid so that M = M 1 V 

M 2 , where E(M1) = E(M2). If X~ E(M), then 

(i) M\X = (M1 \X) V (M2 \X). 
(ii) If neither M 1 \ X nor M2 \ X consists entirely of loops, then M \ X is 

decomposable. 

Proof. (i) If I is independent in M\X, then I is independent in M, so that 

I = hUh, where h is independent in M1 , and h is independent in M2. 

As I n X = 0, then h is independent in M1 \ X, and I2 is independent in 

M2 \X. Therefore I is independent in (M1 \X) V (M2 \X). Conversely, 

if I is independent in (M1 \X) V (M2 \X) , then I= h U I2, where h is 

independent in M1 \X, and I2 is independent in M2 \X. It follows that his 

independent in M1, and his independent in M2. Meaning I is independent 

in M. But I n X = 0. Therefore I is independent in M \X. (ii) By (i) 

M \X = (M1 \X) V (M2 \X). If neither M1 \X nor M2 \X consists 

entirely of loops, then r(M1 \X) > 0 and r(M2 \X) > 0. So by definition 

of decomposable matroids in Section 2, M \ X is decomposable. D 

More generally, the following is true. 

Proposition 2.4.2. Let M = M1 V M2, and suppose x E E(M). Then 

(i) M \ x = (M1 \ x ) v (M2 \ x) if x E E(M1) n E(M2). 

(ii) M \ x = (M1 \ x) V M2 if x E E(M1)- E(M2). 

Proof. Proof of (i) is the same as that of Proposition 2.4.1(i) . Consider 

(ii). If I is independent in M \ x, then I is independent in M , so that 

I = h U I 2, where h is independent in M1, and I2 is independent in M2. 

As I n X = 0, then h is independent in Ml \ x, and h is independent 

in M2. Therefore I is independent in (M1 \ x) V M2. Conversely, if I is 

independent in (M1 \ x) V M2, then I= hUh, where h is independent in 

M 1 \ x, and I2 is independent in M2. Meaning his independent in M1, and 

h is independent in M2. So that I is independent in M. But I n x = 0. 
Therefore I is independent in M \ x. D 

The following are two immediate corollaries. 
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Corollary 2.4.3. If M = M1 V M2, where D ~ E(M), then MID = 

M1I(D n E(M1)) V M2I(D n E(M2)). 

Corollary 2.4.4. If M = M1 V M2, where D ~ E(M1) - E(M2), then 

M1ID = (M1 V M2)ID. In particular, if I ~ D , then I is independent in 

M1 V M2 if and only if I is independent in M1. 

Second, we look at minors obtained by contractions. 

Proposition 2.4.5. Let M1 and M2 be two matroids such that x E E(Ml)­

E(M2)· Then 

{i) (M1 V M2)jx = (MI/x) V M2. 

{ii) If MI/x does not consist entirely of loops, then Mjx is decomposable. 

Proof. (i) Consider (M1 V M2)jx. If x is a loop, then (M1 V M2)/x = 

(M1 V M2) \ x and it follows from Proposition 2.4.2(ii) that (M1 V M2) \ x = 

(M1 \x) V M2 = (MI/x) V M2. So assume xis not a loop. If I is independent 

in (M1 V M2)jx, then I U {x} is independent in M1 V M2 by Proposition 

1.4.1. Hence I U { x} = h U h, where h is independent in M1 and h is 

independent in M2. As x ~ E(M2), x E h, so that h =I~ U {x}. Now I~ 

is independent in Ml/ x. Therefore I = I~ U h where I~ is independent in 

MI/x and h independent in M2. Therefore I is independent in (Ml/x)V M2. 

Conversely, if I is independent in (Ml/x) V M2, then I= hUh, where h 
is independent in Ml/ x and h independent in M2. So that I~ = h U { x} 

is independent in M1. It follows that I U { x} = I~ U h is independent in 

M1 V M2. Therefore I is independent in (M1 V M2)/x by Proposition 1.4.1. 

(ii) By (i) (M1 V M2)/x = (MI/x) V M2 . If Ml/x does not consist entirely 

of loops, then r(MI/x) > 0. Therefore by the definition of decomposable 

matroids in Section 2, Mjx is decomposable. D 

We shall give two examples, the first one shows how (M1 V M2)/x is 

not equal to (Ml/x) V (M2jx) when x is in both M1 and M2. The second 

example shows that a decomposable matroid may become indecomposable 

by contracting an element from E(M1) n E(M2). 

Example 2.4.6. Consider the matroid union shown in Figure 2.3. Here 

E(M1) = {x,y,a}, E(M2) = {x,y,b} and E(M) = {x,y,a,b}. Mt,M2 ~ 
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U1,3 and M ~ U2,4 as shown in (a) . We see that MI/x ~ Uo,2, and M2/x ~ 

Uo,2· Therefore (MI/ x ) V (M2/x) ~ Uo,3 · Whereas M/x ~ Ul,3· Therefore 

M/x i= (MI/x) V (M2/x) as shown in (b). 

X 

I ~ v • • • • 
X y a b 

M 
(a) 

y 

a I 
b 

y{J 
v 

y{J 
\)a 

\Jb Mix (b) 

M 1 /x 

M 2 /x 

Figure 2.3: Contracting an intersection element. 

Example 2.4. 7. This example shows that if x E E(Ml) n E(M2), then 

(M1 V M2)/x is indecomposable. Consider the matroid M = M1 EB2 M2 

shown in Figure 2.4. Here E(Ml) ={a, b, c, d, x, r,p}, E(M2) = {f ,g, h, i, q, e, p} , 

where M1 , M2 ~ F7. By Lemma 1.8.15(iii) we have M = S(M1 , M2)jp. 

Proposition 3.2.1 in the next section gives M1 V M2 = S(M1 , M2) . So 

M = (M1 V M2)jp. But by combining Theorem 3.3.1 with Lemma 4.2.3 

that we shall encounter later, we get that M is indecomposable because 

both M1 and M2 are indecomposable. 
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S(M I' M 2)/p 
p 

Figure 2.4: Contracting an intersection element may give an indecomposable 
matroid. 
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Chapter 3 

Matroid union and 

connectivity 

A disconnected matroid M is simply the direct sum of two disjoint matroids 

by Proposit ion 1.6.1. That of course is the same as saying M is the union 

of two disjoint matroids. So the case of decomposing disconnected matroids 

is trivial. Therefore we shall focus entirely on connected matroids from now 

on. 

Sometimes the connectivity of a matroid can tell us whether the matroid 

is decomposable or not. Being decomposable does not necessarily mean hav­

ing a low connectivity. In general it is possible to be decomposable and at 

t he same time be highly connected. An example of this is U10o,200 which 

is highly connected but by corollary 2.3.14 is decomposable. However, if a 

matroid is the union of two matroids whose ground sets have few elements in 

common, then that can tell us something about the connectivity of the ma­

troid M. In this chapter we explore the connection between matroid union 

and connectivity. First we look at the rank of t he connected union. Second 

we look at the relationship between matroid union and series connection, 

then we look at the union that has a 2-separation, and finally we look at 

when the union is 3-connected. 

33 
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3.1 The rank of a connected matroid union 

The following is a Theorem of Cunningham [1 , Theorem 2]. First we need 

a definition. Let M be a matroid and i be a positive integer not exceeding 

r(M). Then M ' is a truncation of M denoted Ti(M) , if I (Ti(M)) = {X~ 

I(M) : lXI :S r(M) - i}. We state Cunningham's result below for two 

matroids only. 

Theorem 3 .1.1. If M = M1 V M2, then there exists a truncation Mf for 

M1, and M~ for M2, such that r(M) = r(Mf) + r(M~), and we have M = 

M{ V M~. Moreover, if M has no co loop, then the only choices for M{ and 

M~ are M1 and M2 respectively. 

The two following results are corollaries of Theorem 3.1.1, the first one is 

immediate. The second is for the case when the matroid union is connected. 

Corollary 3 .1.2. If M = M1 V M2 is a matroid with no coloops, then 

r(M) = r(M1) + r(M2). 

Corollary 3.1.3. If M = M1 V M2 is a connected matroid with rank at least 

two, then r(M) = r(M1) + r(M2). 

Proof. By Theorem 3.1.1 r(M) = r(Mf) + r(M~), where Mf and M~ are 

truncations of M1 and M2 respectively. Since M is connected, then by 

Proposition 1.5.2 M has no coloops. So it follows by Theorem 3.1.1 that 

the only choices for M{ and M~ are M1 and M2 respectively. Therefore 

r(M) = r(Ml) + r(M2). D 

The following is a corollary about the bases in a connected matroid 

union. 

Corollary 3.1.4. If M = M1 V M2 has no coloops, then B is a basis of 

M if and only if B = B1 U B2 where B1 and B2 are bases of M1 and M2 

respectively. 

Proof. If B is a basis of M, then by definition of matroid union we have 

B = h U h, where h is independent in M1 and h independent in M2. 

Since M has no coloops, then by Corollary 3.1.2 r(M) = r(M1) + r(M2) . 
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Let B1 be a basis of M1, and B2 be a basis of M2. Since r(M) lEI, 

r(M1) = IB1I and r(M2) = IE2I, then 

But lEI = lh U hi = lhl + lhl , and hence h must be a basis of M1 and h 
a basis of M2 . Conversely, if B = B1 U B2 , where B1 and B2 are bases of 

M1 and M2 respectively, then IB1I = r(MI), and IB2I = r(M2). So 

(3.1.2) 

But r(M1) + r(M2) = r(M) by Corollary 3.1.2. So that r(M) = IBI , hence 

B is a basis of M. 0 

3.2 Matroid union and series connection 

In this section we look at the relationship between matroid union and series 

connection. We prove the following proposition, which is left as an exercise 

in [5]. 

Proposition 3.2.1. [5, Proposition 12.3.6] Let M1 and M2 be two matroids. 

If E(Ml) n E(M2) = {p}, then M1 V M2 = S(M1 , M2). 

First we observe the following. 

Lemma 3.2.2. Let M1 and M2 be matroids and assume that z is a coloop 

of M1 or M2 . Then z is a coloop of M1 V M2. 

Proof. Assume without loss of generality that z is a coloop of M1, and 

assume that E is a basis of M1 V M2. Then B = B1 U E2, where E1 is a 

basis of M1, and B2 is a basis of M2 . If z rf_ B, then z rf_ B1. But as z is a 

coloop of M1 , it follows that z should be in every basis of M1 , so we have a 

contradiction. Therefore z is in every basis of M meaning z is a coloop of 

M. 0 

Proof of Proposition 3. 2. 1. There are two cases to consider. 

Case 1. pis not a coloop in at least one of M1 and M2 . By Proposition 

1.8.5, B is a basis of S(M1 , M2) if and only if B = B1 U B2 , where E1 is a 
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basis of M1 and B2 is a basis of M2. It follows from the definition of matroid 

union that B is a basis of M1 V M2. Therefore S(M1, M2) = M1 V M2. 

Case 2. pis a coloop of both M1 and M2. By Lemma 3.2.2, pis a coloop 

of M1 V M2. So that, without loss of generality, M1 V M2 = (M1 \ p) EB 

(M2 \p) EB (M2I{p}). But (M2 \P) EB (M2I{p}) = M2. So that 

(3.2.1) 

By Proposition 1.8.2, 3.2.1 is equal to S(M1 , M2). 0 

3.3 2-separation in the union 

In this section we look at the connected matroid union that has a 2-separation. 

The following theorem is the main result of this section. 

Theorem 3.3.1. Let (A , B) be a 2-separation of M such that M = MA EB2 

Ms. If M is decomposable, then at least one of MA and Ms is decomposable. 

The next few results will be used in constructing a proof for the theorem 

above. 

Proposition 3.3.2. Let M be a connected matroid, then the following is 

true: 

(i} If M \ x is not connected, where x is in E(M) , then M is decomposable. 

(ii} If M has a series pair then M is decomposable. 

Proof. (i) If M\x is disconnected, then it is a series connection by Theorem 

1.8.6(i) , and then it follows by Proposition 3.2.1 that it is a union of two 

matroids. (ii) If M has a series pair {a , b} , then M\a and M\b have coloops, 

which implies they are both disconnected by Proposition 1.5.2. From part(i) 

now of the proposition it follows that M is decomposable. 0 

Lemma 3.3.3. Let (A ,B) be a 2-separation of a connected matroid M where 

M = MA EB2Ms andp is the base-point. Ifc is a coloop of MIA, then {c,p} 

is a series pair of MA, similarly, if c is a coloop of MIB , then {c,p} is a 

series pair of Ms. 
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Proof. By a property of 2-sum, MA \ p = MIA. It follows that c IS a 

coloop of MA \ p. So that A - c is a hyperplane of MA \ p by Proposition 

1.3.2(iii) . If p E clMA (A- c), then cis a coloop of MA, implying that MA is 

disconnected by Proposition 1.5.2. But because M is connected, then MA 

must also be connected by Proposition 1.8.10(ii), giving a contradiction. So 

p tJ_ clMA(A- c), meaning A-cis a hyperplane of MA. Hence {p,c} is a 

cocircuit of MA, that is a series pair of MA. 

0 

Lemma 3.3.4. If MIA has a coloop, then MA is decomposable. 

Proof. If MIA has a coloop, then by Lemma 3.3.3 above MA has a series 

pair. But if MA has a series pair, then it follows by Proposition 3.3.2(ii) 

that MA is decomposable. 0 

Finally before constructing a proof for Theorem 3.3.1, we need a defini­

tion. If a matroid M is obtained from a matroid N by deleting a non-empty 

subset T of E(N) , then N is an extension of M. In particular, if ITI = 1, 

then N is a single-element extension of M. Two obvious ways to extend a 

matroid M are to adjoin a loop or to adjoin a coloop. In these cases the 

resulting matroids are isomorphic toM EB Uo,l and M EB U1,1, respectively. 

Another type of well-defined extension is parallel extension of M. Here we 

add a new element in parallel to some existing element of M. For more 

details see [5, Section 7.2]. 

Now we prove Theorem 3.3.1. 

Proof of Theorem 3.3.1. Assume that M is decomposable. If M is not con­

nected, then Proposition 1.8.10(ii) tells us that either MA or MB is discon­

nected and hence decomposable, and the theorem holds. So let us assume 

that M is connected. Let N1 and N2 be two matroids such that M = N1 V N2. 

We also assume that E(N1) = E(N2) = E(M). 

If MIA has a coloop, then by Lemma 3.3.4 above, MA is decomposable 

and we are done. So assume that neither MIA nor MIB have coloops. Since 

M is connected, then r(M) = r(N1) + r(N2) by Corollary 3.1.3. It also 
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follows by Corollary 3.1.2 that 

(3 .3.1) 

Similarly, 

(3.3.2) 

Since (A, B) is a 2-separation of M, then 

r(M) = TM(A) + rM(B) - 1 

= TN1 (A)+ TN2 (A) + TN1 (B)+ TN2 (B)- 1. (3.3.3) 

The aforementioned tells us on one hand that either r(NI) equals rN1 (A)+ 

rN1 (B) - 1, or it equals rN1 (A) + TN1 (B). In the former (A, B) is a 2-

separation of N 1, in the later (A, B) is a !-separation of N1. On the other 

hand, either r(N2) equals rN2 (A) + TN2 (B)-1 , or it equals TN2 (A) + TN2 (B). 

In the former (A , B) is a 2-separation of N2, in the later (A, B) is a !­

separation of N2. 

Without loss of generality we assume from now on that (A, B) is a 2-

separation of N1 and a !-separation of N2. 

Define a single element extension M' of Mas follows. By Lemma 1.8.15 

M = P(MA , Ms) \ p. Let M' be P(MA , Ms). Then M' is a single element 

extension of M with ground set E(M') = E(M) U {p}, as shown in Figure 

3.1. 

M' 
A 

Figure 3.1: M' = P(MA, Ms). 

We now define two single element extensions Nf and Nf of N1 and N2 

respectively. We have assumed that (A, B) is a 2-separation of N1, meaning 

N 1 is the 2-sum of two matroids. Let N1 be the 2-sum of N1A and N1s. So 

by Lemma 1.8.15 N1 = P(NlA , NIB) \p. Let Nf be P(NIA, N1s) , as shown 

in Figure 3.2. 
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Figure 3.2: N{ = P(N1A , N1s). 

Since (A , B) is a !-separation of N2, then N2 is the 1-sum of two ma­

troids. So N2 = (N2 IA) E9 (N2IB). Here the single element extension of N2 

giving N~ is as follows. Add {p} as a loop to N2 and get the new matroid 

N~ = (N2IA) E9 (N2IB) E9 Uo,l, on the ground set E(N~) = E(N2) u {p} as 

shown in Figure 3.3. 

~.~ 
P added as a loop 

Now that we have extended M , N1, and N2 toM', N{ and N~ respec­

tively, we show that M' = N{ V N~. We will analyze the bases for both 

sides. We have two cases to consider, one where bases contain p and the 

other where they do not. 

Case 1. Consider the bases of M' = P(MA, Ms) containing p. They are 

by Proposition 1.8.5(ii) of the form 

(3.3.4) 

where BA = B n E(MA) is a basis of MA containing p, and Bs = B n 
E(Ms) is a basis of Ms containing p. A basis of N{ V N~ containing pis of 

the form 

B' u B" , (3.3.5) 

where B' is a basis of N{, and B" is a basis of N~. Element p cannot be in 

B" as p is a loop of N~. Therefore p E B' . 

A basis of N{ = P(NlA , N1s) containing pis of the form 

(3.3.6) 
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where B~ = B' n E(N1A) is a basis of N1A containing p, and B~ = B' n 
E(N1B) is a basis of N1B containing p. A basis of N~ is of form 

B" = B~ UB'B, (3 .3.7) 

where B~ = B" n E(N2IA) is a basis of N2IA, and B'B = B" n E(N2IB) is 

a basis of N2IB. 

A basis of N{ v N~ is by 3.3.6 and 3.3.7 B'uB" = B~ u B~ u B~ u B'B = 

(B~ U B~) U (B~ U B'B). Since (NlA) U (N2 IA) = MA, and (NIB) U 

(N2IB) = MB, then (B~ U B~) is a basis of MA, and (B~ U B'B) is a basis 

of M B. Therefore B = B A U B B = B' U B", and so the bases of M' and 

N{ V N~ are equal. 

Case 2. Now consider the bases that do not contain p. Those bases of 

M' = P(MA , MB) are by Proposition 1.8.5(ii) of the form 

B = (BA U BE)- {p}, (3.3.8) 

where BA = (B n E(MA)) U {p} is a basis of MA containing p, and BB = 

BnE(MB) is a basis of MB not containingp. Note that we lose no generality 

if p was in BB and not in EA. 

Bases of N{ = P(NlA , NlB) are 

B' = (B~ U B~)- {p}, (3.3.9) 

where B~ = (B' n E(NlA)) U {p} is a basis of N1A containing p, and B~ = 

(B'nE(N1B)) is a basis of NlB not containing p. Again we lose no generality 

if p was in B~ not B~. 

As for the bases of N~, they are of the form 

B" = B~ U Bs (3.3.10) 

not containing p , where B~ = (B" n A) is a basis of (N2IA) , and B'B = 

(B"nB) is a basis of (N2IB). We see that a basis of N{ V N~ not containing 

p by 3.3.9 and 3.3.10 is B' U B" = (B~ U B~ U B~ U B'B)- {p} = (B~ U 

B~) U (B~ U B'B)- {p}. Which is equal to (BA U BB)- {p} as discussed in 

Case 1. From Cases 1 and 2 we conclude that M' = N{ V N~. 
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If every element of E(M) is either a loop in N1 or a loop in N2, then 

N1 V N2 will be equivalent to a direct sum and hence disconnected, giving a 

contradiction. So there must exist an element z E E(M) , such that z is not 

a loop in N1 and not a loop in N2. So without loss of generality we assume 

that z E A. Since M' = N~ V N~, then M' \ B = (N~ \B) V (N~ \B) by 

Proposition 2.4.1(i) , where 

M'\B = MA. (3.3 .11) 

Element z E A and z is not a loop. Also A~ E(N~ \B), and A~ E(N~ \ 

B) as shown in Figures 3.2 and 3.3. So it follows that neither N~ \ B 

nor N~ \ B consists entirely of loops. Therefore it follows from 3.3.11 and 

Proposition 2.4.1(ii) that MA is decomposable. Therefore we conclude that 

if M = MA EB2 Ms is decomposable, then at least one of MA and Ms is 

decomposable. D 

The converse of Theorem 3.3.1 is not necessarily correct as we shall see 

shortly. The next theorem, however, is a weaker result. 

Theorem 3.3.5. Let M = MA EB2 M 8 , such that {p} = E(MA) n E(Ms). 

If one of MA and Ms is decomposable, say MA , such that MA = N1 V N2 , 

and p t:J. [E(N1) n E(N2)], then M is decomposable. 

Proof. If M is disconnected, then it is decomposable. So assume that M is 

connected. By Proposition 1.8.10, both MA and Ms are connected, therefore 

neither of them has a coloop. Suppose without loss of generality that p E 

E(N2), and p t:J. E(Nl)· By Lemma 1.8.15, M = S(MA, Ms)fp. Since we 

have M = (N1 V N2) EB2 Ms, then Proposition 3.2.1 gives 

(3.3.12) 

That in turn by Proposition 2.3.2 is equal to 

(3.3 .13) 
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Since pis not in E(N1), then by Proposition 2.4.5 , 3.3.13 is equal to 

N1 V [(N2 V Ms)/p]. (3.3.14) 

We already know that N1 and N2 do not consist entirely of loops. Since 

N2 and Ms have element pin common, then p cannot be in parallel with 

any element in N2 V Ms, meaning contracting p from N2 V Ms can never 

make (N2 V Ms)/p consist entirely of loops. So (N2 V Ms)/p does not 

consist entirely of loops. Then it follows from Proposition 2.4.1(ii) that M 

is decomposable. 0 

To see why the converse of Theorem 3.3.1 may not work, consider the 

following example. 

Example 3.3.6. Let M1, M2 and M3 be three matroids, such that M1 ~ 

M2 ~ M3 ~ F7 , where element pis the only element they have in common. 

Consider S(M1, M2) EB2 M3 as shown in Figure 3.4. S(M1, M2) is a matroid 

union by Proposition 3.2.1. Moreover, since the series connection of two 

binary matroids is also binary by Proposition 1.8.14, then S(M1 , M2) is 

binary. Also, since F-representable matroids are closed under the operation 

of 2-sum by Proposition 1.8.11 , then S(M1 , M2) EB2 M3 is binary too. Every 

element now in this 2-connected binary matroid S(M1, M2) EB2 M3 is fixed, a 

notion that will be explained in the next chapter. In Section 4.4.1, Theorem 

4.4.3 shows why this structure gives an indecomposable matroid. 

3.4 When is the union 3-connected ? 

In this section we characterize when the union of two matroids is 3-connected 

under the assumption that there are two elements in common in their ground 

sets. First we need a definition. Let x and y be elements of the connected 

matroid M. Then x and y are split if there is no 2-separation (A, B) in 

M such that x, y E A or x, y E B. In other words, whenever you see a 

2-separation in M, then x is never in the same part of the 2-separation as 

y. Note that, if M is 3-connected, then every two elements are split. The 

following theorem characterizes when the union is 3-connected, in the case 
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X 

k 

S(M 1, M 2) on p 

m 

h 

that E(Mt) and E(M2) intersect in two elements, it is the main theorem of 

this section. 

Theorem 3.4.1. Let M1 and M2 be two loopless matroids with E(M1) n 
E(M2) = { x, y }. M1 V M2 is 3-connected if and only if the following hold: 

(i) M1 and M2 are connected with no series pairs. 

(ii) IE(Ml)l , IE(M2)I 2 3 and 

(iii) x andy are split in M1 and split in M2. 

The example below illustrates Theorem 3.4.1, that the union of two 

matroids is 3-connected if and only if the two matroids satisfy conditions 

(i)-(iii) in Theorem 3.4.1. 

Example 3.4.2. Let M 1 be the matroid on E(Mt) = {a, b, c, x, y, h, g }, and 

M2 be a matroid on E(M2) = {f,e,d,x,y,i,j} as shown in Figure 3.5(a). 

It is seen that neither M1 nor M2 is disconnected, and neither of them has 

a series pair. Moreover, x andy are split in both M1 and M2. As shown in 

Figure 3.5(b), M1 V M2 is the rank-6 whirl W 6 , which is 3-connected. 

To prove Theorem 3.4.1, we first establish some lemmas. The first is 

elementary. 

Lemma 3.4.3. Let x be an element of the matroid M. If C* contains a 

cocircuit of M \ x, then C* U x contains a cocircuit of M. 
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(a) The rank-6 whirl is 3-connected 

(b) 

Figure 3.5: A 3-connected matroid union. 

In the next lemma we make no assumptions about the cardinality of the 

intersections of the ground sets of M1 and M2. 

Lemma 3.4.4. Let M1 and M2 be matroids. If C* is a cocircuit of M1 or 

M2 , then C* contains a cocircuit of M1 V M2. 

Proof. Assume C* is a cocircuit of M1. If IC*I = 1, then the lemma follows 

from Lemma 3.2.2. Thus we may assume that IC*I = k and, for induction, 

that the lemma holds for any cocircuit of M1 with k - 1 elements. Say 

z E C* , then C*- {z} is a cocircuit of M1 \ z. If z E E(M2) , then M \ 

z = (M1 \ z) V (M2 \ z ) by Proposition 2.4.1, and if z rt E(M2) , then 

M \ z = (M1 \ z) V (M2) by Proposition 2.4.2. In either case it follows from 

the induction assumption that C* - { z} contains a cocircuit of M \ z . The 

lemma now follows from Lemma 3.4.3. 0 

Now we consider the different obstacles preventing M = M1 V M2 from 

being 3-connected. 

Lemma 3.4.5. Let M = M1 V M2, where M1 and M2 are two matroids 

with {x,y} = E(M1) nE(M2). If M1 or M2 is disconnected, then M is not 

3-connected. 

Proof. Without loss of generality, suppose that M1 is disconnected. Suppose 

that M1 has two components N1 and N2 , so that M1 = N1 El1 N2 = N1 V N2. 

There are two cases to consider. 
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Case 1. The elements x, yare in one component of M1, say N1 without 

loss of generality. Note that N1 and M2 have x andy in common as shown 

in Figure 3.6, so let N1M2 = N1 V M2. It follows by Propositions 2.3.2 and 

2.3.1 that 

(3.4.1) 

Sine N2 and N1M2 are disjoint, then 3.4.1 is equal to N2 E9 N1M2. Therefore 

M is disconnected and hence not 3-connected. 

Figure 3.6: Intersection elements in one component. 

Case 2. The element x is in one component of M1, say N1, andy is in 

the other component N2 as shown in Figure 3.7. Let M12 = N1 V M2. Since 

E(Nl) n E(M2) = { x }, then by Proposition 3.2.1 M12 = S(N1 , M2). By 

Propositions 2.3.2 and 2.3.1 , we get 

M = M2 V (N1 V N2) = (M2 V N1) v N2 

= S(M2, Nl) v N2 = M12 v N2. (3.4.2) 

Since E(M12) n E(N2) = {y}, then M12VN2 = S(M12, N2). But M12V N2 = 
M, so M is a series connection, showing M is not 3-connected. D 

Lemma 3.4.6. If M = M1 V M2 is such that at least one of M1 and M2 

is isomorphic to U2,3, and {x, y} = E(M1) n E(M2), then M is not 3-

connected. 

Proof. Suppose without loss of generality that M1 ~ U2,3· Since x E 

E(M1) n E(M2), then by Proposition 2.4.1 M \ x = (M1 \ x) V (M2 \ x). 

Now M1 \ x and M2 \ x have only the element yin common. Therefore by 
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Figure 3.7: One intersection element in each component. 

Proposition 3.2.1 (M1 \ x) V (M2 \ x) = S(M1 \ x, M2 \ x). But M1 \ x is 

disconnected, and hence by Proposition 1.8.8, M \ x = S(M1 \ x, M2 \ x) 

is also disconnected. It follows from Proposition 1.8.16 that M cannot be 

3-connected. 0 

The reason M was not 3-connected in Lemma 3.4.6 above, even though 

M1 was 3-connected, is that U2,3 has series pairs. So using Lemma 3.4.4 

presented earlier, we can generalize Lemma 3.4.6 to the following: 

Lemma 3.4.7. If M = M1 V M2 is such that IE(M)I ~ 4, M1 or M2 has a 

series pair, and E(M1) n E(M2) = {x, y}, then M is not 3-connected. 

Proof. Suppose without loss of generality that M1 has a series pair Ci = 

{s ,t}. Since a series pair is a 2-element cocircuit, then by Lemma 3.4.4, 

Ci contains a cocircuit C* in the matroid union M. But Ci only has two 

elements. So either C* itself is a series pair in M, implying that M can 

be disconnected by removing one of the elements s and t from C*. Hence 

by Proposition 1.8.16 M is not 3-connected, or C* contains a 1-element 

cocircuit, that is a coloop. Showing that M is not 3-connected. 0 

The results above are used in proving Theorem 3.4.1 part (i). The next 

Lemma is for proving part (ii). 

Lemma 3.4.8. Let M = M1 V M2 is such that IE(M)I :2:: 4, E(M1) n 
E(M2) = {x,y} , where M1 and M2 are two loopless matroids. If one of 

E(M1) and E(M2) has cardinality 2 or less, then M is not 3-connected. 

Proof. Suppose without loss of generality that IE(Ml) I :S: 2. IE(Ml) I cannot 

be one or zero, because M1 and M2 must have exactly two elements in 
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common. So assume IE(Ml)l = 2, so that E(M1) = {x , y}. Consider 

(M1 V M2) \ x. By Proposition 2.4.1 (M1 V M2) \ x = (M1 \ x) V (M2 \ x) . 

But now M1 \ x has only one element left in it which is y. Since M1 is 

loopless, then y is not a loop in M 1, so y is independent in M1, and hence 

it is in every basis of M \ x. Meaning y is a co loop of M \ x . Therefore by 

Proposition 1.5.2 M \ x is disconnected. This shows by Proposition 1.8.16 

that M cannot be 3-connected. D 

The next two Lemmas will be used to prove Theorem 3.4.1 Part (iii). 

Lemma 3.4.9. Let M = M1 V M2 be a connected matroid, with E(M1) n 
E(M2) = {x,y} , where both M1 and M2 are connected, neither of them has 

a series pair, and IE(Ml)l , IE(M2)I ~ 3. If at least one of M1 and M2 does 

not split x andy, then M is not 3-connected. 

Proof. Suppose without loss of generality that M1 does not split x and y, 

so that it has a partition (A, B) such that x, y E A as shown in Figure 3.8. 

Then 

(3.4.3) 

~ C (B, C) is a 2- separation of M 

Figure 3.8: When is the union not 3-connected ? 

Say E(M2) =C. SoC n A= {x, y}. Now, as M is connected, then by 

Corollary 3.1.3 r(M) = r(M1) + r(M2). But since M2IC = M2, then by 

Corollary 2.4.3 M I(A U C)= (M1IA) V (M2IC) = M2 V (M1IA). By Lemma 

1.2.1 

(3.4.4) 
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Also by Lemma 2.4.4 

(3.4.5) 

Hence by 3.4.3 we get 

(3.4.6) 

and that by 3.4.4 gives 

rM1 (A) + rM1 (B) - 1 + r(M2) ~ rM(A U C) + rM1 (B) - 1 

= rM(A U C) + rM(B) - 1. (3.4.7) 

But by Lemma 1.2.1 r(M) ~ rM(A U C) +rM(B). Therefore (AU C, B) 

is either a 2-separation or !-separation of M. As M is connected, then 

it must be that (AU C, B) is a 2-separation of M. Hence M is not 3-

connected. 0 

For the converse of Theorem 3.4.1, we have the following: 

Lemma 3.4.10. Let M = M1 V M2, where both M1 and M2 are con­

nected, {x, y} = E(Ml) n E(M2), neither M1 nor M2 has a series pair, 

and IE(Ml)l, IE(M2)I ~ 3. If neither M1 nor M2 splits x andy, then M is 

3-connected. 

The proof will use the following lemmas. 

Lemma 3.4.11. Let N be a connected matroid with no series pairs. If 

{ x, y} ~ E(N), such that x andy are split in N, then N \ x is connected. 

Proof. Assume that N \ x is disconnected. Let (A, B) be a separation of 

N \ x, where say y E A. Then (AU { x }, B) is a 2-separation of N unless 

IBI = 1. But if IBI = 1, then B U {x} is a series pair inN, contradicting 

the fact that N has no series pairs. But now both x and y are in A U { x}, 

meaning x and y are not split in N, contradiction. Therefore N \ x is 

connected. 0 

Lemma 3.4.12. Let N be a connected matroid with no series pairs. Let 

(A, B) be a 2-separation of N, such that z EA. Then z is a coloop of NIA 
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if and only if N \ z is not connected, where (A - { z}, B) is a separation of 

N \ z. Moreover, if the above holds, then (A- { z}, B U { z}) is a 2-separation 

ofN. 

Proof. Since (A , B) is a 2-separation of N, then r(A) + r(B) - 1 = r(N) . 

If z is a coloop of NIA, then r(A- {z}) = r(A) -1. So that r(A- {z}) = 

r(N) - r(B) + 1- 1 = r(N)- r(B). Therefore N \ z is disconnected, where 

(A - { z}, B) is a separation of N \ z. Conversely, if N \ z is disconnected, 

then (A- {z }, B) is a separation of N\z. So that r(A- {z}) +r(B) = r(N). 

But r(A) + r(B) - 1 = r(N). Meaning r(A- {z}) = r(A) - 1. Implying 

that z is a coloop of NIA. Moreover, if IAI = 2, then (A- {z }, B U {z}) is 

not a 2-separation of N. But if IAI = 2 and (A- {z }, B) is a separation of 

N \ z, then z is in a series pair in N, contradicting the fact that N has no 

series pairs. 0 

Proof of Lemma 3.4.10. By Lemma 3.4.11, both M1 \ x and M2 \ x are 

connected. By Proposition 3.2.1 (M1 \ x) V (M2 \ x) = S(M1 \ x, M2 \ x). 

So that by Proposition 1.8.8, (M1 \ x) V (M2 \ x) is also connected. By 

Proposition 2.4.1 M \ x = (M1 \ x) V (M2 \ x), so that M \xis connected. 

Similarly, M \ y is connected. Since M1 and M2 are both connected, then 

neither M1 nor M2 have loops or coloops, therefore M does not have loops 

or coloops. Hence M is connected. But because M \ x is also connected, 

then x is not in a series pair with any other element. 

Now suppose that M has a 2-separation (A, B). Let A1 = A n 
E(M1), A2 = A n E(M2), B1 = B n E(M1) and B2 = B n E(M2). We 

have two cases to consider. 

Case 1. { x, y} s;:; A or { x, y} s;:; B. Without loss of generality, assume 

that { x, y} s;:; A. By Lemmas 3.4.11 and 3.4.12, neither x nor y is a coloop of 

MIA. Hence we may assume that MIA has no coloops. So that by Corollary 

3.1.2 we have 

r(MIA) = r(M1IA1) + r(M2IA2). (3.4.8) 

But as {x, y} n B = 0, then 

(3.4.9) 
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By 3.4.8 and 3.4.9 we have 

r(M) = r(MIA) + r(MIB)- 1 

= r(M1IA1) + r(M2IA2) + r(M1IBI) + r(M2IB2) - 1. (3.4.10) 

But since M has no coloops, then by Corollary 3.1.2 r(M) = r(M1) +r(M2)· 

So that 

r(M1) + r(M2) = r(M1IA1) + r(M2IA2) 

+ r(M1IBI) + r(M2IB2) - 1. (3.4.11) 

It may be that some of the subsets A1, A2, B1 and B2 are empty. Without 

loss of generality we consider the two following cases. 

Case 1.1. B1 = 0. If B1 = 0, and A1 is also empty, then E(M1) = 
A1 U B 1 would be empty, giving a contradiction. Therefore A1 is not empty. 

Also, if B2 is empty, then B = B1 U B2 is empty. But (A, B) is a 2-

separation of M, meaning IBI must be at least 2, giving a contradiction. 

Therefore B2 is not empty. Finally if A2 is empty, then r(M1) + r(M2) = 

r(M1IAI) + r(M2IB2) - 1. But since B1 is empty, then M1IA1 must be 

equal to M1. Similarly, M2IB2 must be equal to M2 , giving a contradiction. 

Therefore if B1 is empty, then it must be that r(MI) +r(M2) = r(M1IA1) + 
r(M2IA2) + r(M2IB2) - 1. Showing that (A2, B2) is a 2-separation of M2 

that does not split x and y , contradicting the assumption that x and y are 

split in M2 . 

Case 1.2. B1 -:f. 0. If any of the other subsets are empty, then we get 

the same contradiction shown in Case 1.1. So suppose that none of the 

subsets are empty. Then either r(M1) = r(M1IA1) + r(M1IB1) , showing 

that (A1 , B1) is a separation of M1. Or r(M2) = r(M2IA2) + r(M2IB2), 

showing that (A2, B2) is a separation of M2. Both possibilities contradict 

the fact that both M1 and M2 are connected. 

Case 2. Assume without loss of generality that x E A, y E B. Suppose 

that z is a coloop of MIA. Since neither x nor y are coloops of MIA, then 

z -:f. x. As M has no series pairs, then M \ z has no coloops. Assume that 
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z E E(MI)· Then by Corollary 3.1.2 we have 

(3.4.12) 

and 

(3.4.13) 

But 

r(M \ z) = rM\z(A- {z}) + rM\z(B) 

= TM1 (A1- {z}) + TM2 (A2) + TM1 (B1) + TM2 (B2) 

= r(M1 \ z) + r(M2). (3.4.14) 

This shows that (A2, B2) is a separation of M2, contradicting the fact that 

M2 is connected. Thus MIA, and similarly MIB have no coloops. Therefore 

(3.4.15) 

(3.4.16) 

So that 

r(M) = rM(A) + rM(B)- 1 = r(MI) + r(M2) 

= TM1 (AI) +rM2 (A2) +rM1 (BI) +rM2 (B2) -1. (3.4.17) 

But since x E A 1 n A2 and x E B1 n B2, then none of the subsets A1 , A2, 

B1 or B2 is empty. It follows that one of M1 and M2 has a separation, 

contradicting the fact that they are both connected. So we conclude that 

M has no 2-separation. D 

Now by combining all the aforementioned results we have a proof for 

Theorem 3.4.1. 

Proof of Theorem 3.4.1. Let M1 and M2 be two loopless matroids with 

E( MI) n E( M2) = { x, y}. If M1 V M2 is 3-connected, then: (i) If at least one 

of M1 and M2 is disconnected, then by Lemma 3.4.5 M is not 3-connected, 

giving a contradiction. Therefore both M1 and M2 must be connected. If 
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at least one of M1 and M2 has a series pair, then by Lemma 3.4.7 M is not 

3-connected, also giving a contradiction. Therefore neither M1 nor M2 can 

have a series pair. (ii) If at least one of E(MI) and E(M2) has size less than 

3, then by Lemma 3.4.8 M is not 3-connected, giving a contradiction. So 

it must be that IE(MI)I, IE(M2)I ~ 3. (iii) If at least one of M1 and M2 

does not split x andy, then Lemma 3.4.9 implies that M is not 3-connected, 

giving a contradiction. So x andy must be split in M1 and split in M2. 

Conversely, suppose both M 1 and M2 are loopless connected matroids, 

neither of them has a series pair, x and y are split in M1 and M2, and 

IE(MI)I, IE(M2)I ~ 3. If M1 V M2 was not 3-connected, then by Lemma 

3.4.10 at least one of M1 and M2 does not split x andy, giving a contradic­

tion. Hence M is 3-connected. 0 



Chapter 4 

Freedom of elements 

4.1 Fixed elements and clones 

Certain elements of a matroid have 'freedom', while others are 'fixed'. These 

properties of elements will be used a lot in the material to come, in this 

chapter and the next. So in this section we present the basic facts about 

fixed elements and clones. For more details see [3, Sections 2 and 4]. 

Elements x and x' of a matroid M are clones if the map that interchanges 

x and x' and acts as the identity on E(M) - {x, x'} is an automorphism 

of M. In other words, x and x' are clones if they are indistinguishable up 

to labeling. An element z of M is fixed in M if there is no single-element 

extension of M by z' in which z and z' are independent clones. Dually, the 

element z is cofixed in M if there is no single-element coextension of M by 

z' in which z and z' are coindependent clones. 

Let x be an element of a matroid M. The matroid M' is obtained by 

cloning x with x' if M' is a single-element extension of M by x', and x and 

x' are clones in M'. 

If x is not fixed, then there is a matroid M' obtained by cloning x with 

x' such that {x, x'} is independent in M'. We say that M' is obtained by 

independently cloning x with x 1
• 

Proposition 4.1.1. {3, Section 4] If {x, x'} is a pair of loops, a pair of 

coloops, a parallel pair, or a series pair, then x and x' are clones. 

Next we state equivalent conditions for x and x' to be clones in a matroid 
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M, and then state further properties of fixed and non-fixed elements. 

Proposition 4.1.2. [3, Proposition 4.2]. Let x and x ' be elements of a 

matroid M. Then the following are equivalent. 

(i) x and x' are clones in M. 

(ii) The function that replaces x by x' and acts as the identity on other 

elements is an isomorphism from M \ x to M \ x' . 

(iii) M/x \ x' = M/x' \ x and r( {x}) = r( {x'} ). 

Proposition 4.1.3. [3, Corollary 4.4]. Let x be an element of a matroid 

M, and X be a subset of E(M)- x. 

(i) If x is not fixed in M, then x is not fixed in M \ X. 

Proposition 4.1.4. [3, Proposition 4.6]. Let x be an element of a matroid 

M. 

(i) If M has an element a such that x is fixed in M \a, then x is fixed 

inM. 

Proposition 4.1.5. [3, Proposition 4.8]. If x and x ' are independent clones 

in M, then x is fixed in neither M nor M \ x'. 

4.2 Freedom of elements in the union 

The aim of this section is to prove the following theorem. The theorem 

shows that when taking the union of two matroids, then the elements those 

two matroids have in common will not be fixed in the union. 

Theorem 4.2.1. Let M1 and M2 be two matroids such that M = M1 V M2, 

and let x E E(M1) n E(M2). If x is not a loop in M1 and not a loop in M2, 

then x is not fixed in M. 

First we establish a lemma. 

Lemma 4.2.2. Let M1 and M2 be two matroids with {x, x'} ~ [E(M1) n 
E(M2)]. If x and x' are clones in M1 and clones in M2, then they are clones 

in M1 V M2. 
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Proof. By Proposition 4.1.2(ii) we need to show that replacing x by x' and 

fixing all other elements is an isomorphism between (M1 V M2) \ x and 

(M1 V M2) \x'. To do this it suffices to show that if I~ E(M1 V M2)- { x, x'}, 

then I U { x'} is independent in (M1 V M2) \ x if and only if I U { x} is 

independent in (M1 V M2) \ x'. By Proposition 2.4.1 (M1 V M2) \ x = 

(M1 \x) V (M2 \x) and (M1 V M2) \x' = (M1 \x') V (M2 \x'). Let us suppose 

that I U { x'} is independent in (M1 V M2) \ x, then I U { x'} is independent 

in (M1 \ x) V (M2 \ x). It follows by definition of matroid union that there 

is a partition (J, K) of I U {x'}, where J is independent in M1 \ x and K is 

independent in M2 \ x. Without loss of generality, assume that x' E J. So 

that J = J' U {x'}. Now since x and x' are clones in M1 and clones in M2, 

then it follows by Proposition 4.1.2 that we can replace x by x' and have 

J = J' U { x} is independent in M1 \ x' and K is independent in M2 \ x' . 

Hence (J' U {x}) U K =I U {x} is independent in (M1 \ x') V (M2 \ x') . 

Implying that I U {x} is independent in (M1 V M1) \ x'. Similarly, if 

I U { x} is independent in (M1 V M1) \ x', then I U { x'} is independent in 

(M1 V M1) \ x. It follows that x and x' are indeed clones in M1 V M2. 0 

Proof of Theorem 4.2.1. Assume that xis not a loop in M1 and not a loop 

in M2. Let M{ be the parallel extension of M1 obtained by adding x' parallel 

to x, and similarly M~ be the parallel extension of M2 obtained by adding 

x' parallel to x. Now since x and x' are parallel to each other in M{, and 

parallel to each other in M~, then by Proposition 4.1.1, x and x' are clones 

in M{ and clones in M~. Therefore by Lemma 4.2.2, x and x' are clones in 

M{ V M~. Now {x, x'} is independent in M{ V M~, because it is the union 

of {x} and {x'}, where {x} is independent in M{ and {x'} is independent 

in M~. Meaning { x} and { x'} are independent clones in M{ V M~. By 

Proposition 4.1.5 x is not fixed in M{ V M~. By Proposition 4.1.3(i), x is 

not fixed in (M{ V M~) \ x'. But by Proposition 2.4.1 (M{ V M~) \ x' = 

(M{ \ x') V (M~ \ x') = M1 V M2. Therefore x is not fixed in M1 V M2 as 

required. 0 

As a consequence of Theorem 4.2.1, we get the following result. 

Lemma 4.2.3. If every element in a connected matroid M is fixed, then M 

is indecomposable. 
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Proof. Suppose M is decomposable. By Proposition 2.2.2 we can assume 

that M is the union of two matroids M1 and M2, such t hat M1 and M2 

are loopless. If X E E(MI) n E(M2), then it follows from Theorem 4.2 .1 

that x must be non-fixed in M. But every element in M is fixed. Therefore 

there are no elements in the intersection of E(MI) and E(M2). So that M 

is disconnected, contradicting the fact that M is connected. Hence M is 

indecomposable. 0 

4.3 Freedom of elements in binary and ternary 

matroids 

In this section we look at which elements in binary and ternary matroids 

are fixed and not fixed . First we look at binary matroids. 

Lemma 4.3.1. [2, Lemma 5.6} Let M be a connected binary matroid having 

at least two elements and let x be an element of M. If M \ x is connected, 

then x is fixed in M. 

As a result of combining Lemma 4.3.1, Proposition 1.8.16 and Lemma 

1.8.18 we get the following. 

Corollary 4 .3.2. With the exception of U2,3, every element of a 3-connected 

binary matroid M is fixed. 

Proof. Suppose that M has a non-fixed element a. Then M \a is discon­

nected by Lemma 4.3.1. But that by Proposition 1.8.16 contradicts the 

fact that M is 3-connected. By Lemma 1.8.18, U2,3 is an exception to this. 

Therefore every element of a 3-connected binary matroid is fixed, except 

U2,3· 0 

The following theorem provides a link between binary and 3-connected 

ternary matroids using non-fixed elements in ternary matroids. 

Theorem 4 .3.3. Let M be a 3-connected ternary matroid. If x E E(M) 

and x is not fixed, then M \ x is a regular matroid. 

Before we prove Theorem 4.3.3 we need definitions. A well-closed class 

of matroids is a class of matroids that is closed under isomorphism, minors, 
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and duality. A 3-connected matroid Nina well-closed class N is a universal 

stabilizer for N if the following holds for all 3-connected matroids M in N 
and all x in E(M): if M \ x is 3-connected and has an N-minor, then x 

is fixed in M, and if MIx is 3-connected and has an N-minor, then x is 

cofixed in M . For more details on universal stabilizers see [2] and [3]. The 

next theorem will be used in the proof. 

Theorem 4 .3.4. [2, Theorem 5.3} Let N be a 3-connected matroid in the 

well-closed class N. Then N is a universal stabilizer for N if and only if the 

following condition holds for every 3-connected matroid M in N and every 

x in E(M): 

If M \ x is connected with an N -minor, then x is fixed in M, and if MIx 

is connected with an N -minor, then x is co fixed in M. 

Proof of Theorem 4.3.3. Suppose M\x is not binary, then by Theorem 1.7.5 

it must have a U2,4-minor. It is shown in [3, Section 2] that U2,4 is a universal 

stabilizer for the class of all ternary matroids. Now if M\x has a U2,4-minor, 

then it follows that M has a U2,4-minor. Since M is 3-connected, and given 

that x is not fixed in M, then it follows by Theorem 4.3.4 that M \ x is 

disconnected. By Lemma 1.8.18, the only case where this would happen 

is when M ~ U2,3· But in that case M would not have a U2,4-minor. So 

we have shown that if M has a U2,4-minor, then it does not have a U2,4-

minor, contradiction. Then it must be true that M \ x is binary. Moreover, 

by Proposition 1.7.2 M \ x is also ternary. Meaning M \ x is binary and 

ternary. Therefore by Theorem 1.7.8, M \xis regular. 0 

The following corollary shows that by deleting two non-fixed elements 

from a ternary matroid, it gets disconnected. 

Corollary 4.3.5. Let M be a 3-connected ternary matroid not isomorphic 

to U2,3· Then for all x andy in E(M) where x andy are not fixed in M, 

M \ x, y is a disconnected matroid. 

Proof. Since M is 3-connected, then by Proposition 1.8.16 M \ x is con­

nected. Since x is not fixed, then by Theorem 4.3.3 M \ x is a binary 

matroid. By Proposition 4.1.3 y is not fixed in M \ x. By Corollary 4.3.2 

every element in a 3-connected binary matroid is fixed. So that M \ x cannot 
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be 3-connected. Therefore M \ x is a binary connected but not 3-connected 

matroid containing the non-fixed element y. It follows by Lemma 4.3.1 that 

M \ x, y is disconnected. D 

4.4 Decomposable binary matroids 

4.4.1 Alternative proof of Cunningham's theorem 

In this section we give an alternative proof for Cunningham's Theorem, 

which we also restate for convenience. We also restate and give an alternative 

proof for Corollary 2.3.16, and give an example showing that matroid union 

is not closed under duality. 

Theorem 4.4.1. (1] A binary matroid M on E is indecomposable if and 

only if M is connected and M \ e is connected for each e E E. 

Proof. Let M be a connected binary matroid. If M is decomposable, then 

by Lemma 4.2.3 it must have at least one non-fixed element x. Consider 

M \ x . By Lemma 4.3.1 M \ x is disconnected. So if M is decomposable, 

then it contains at least one element x such that M \ x is disconnected. 

Conversely, if M contains an element x such that M \ x is disconnected, 

then it has a separation (A, B). By Theorem 1.8.6(i) M = S(MjA, Mj B). 

It follows then by Proposition 3.2.1 that M = (M/A) V (M/ B) . But since 

M = S(MjA,M/B), then both M/A and M/B must have rank strictly 

greater than zero. Hence M is decomposable. D 

Next we restate and re-prove Corollary 2.3.16. 

Corollary 4.4.2. With the exception of U2,3, every 3-connected binary ma­

troid is indecomposable. 

Proof. Suppose M is 3-connected and is binary. Then by Corollary 4.3.2, 

every element in M is fixed. So that by Lemma 4.2.3, M is indecomposable. 

Since every uniform matroid is decomposable by corollary 2.3.14, then the 

only exception to this case is U2,3. D 

We can now give a restatement of Cunningham's theorem using the 

notion of non-fixed elements. 
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Theorem 4.4.3. Let M be a connected binary matroid. M is decomposable 

if and only if it contains at least one non-fixed element x. Moreover, if x is 

not fixed, then M \ x is not connected, so that there is a separation (A, B) 

in M \ x. In this case M = (M/A) V (M/ B). 

Next we illustrate an application of Lemma 4.2.3. We will show that if 

M is decomposable, then M* is not necessarily also decomposable. Consider 

the following example. 

Example 4.4.4. Consider the two matroids M1 and M2 where M1 ~ M2 ~ 

F-7- E(Ml) = {a , b,c, d ,e, f , h},E(M2) = {h,i,j,k,l , m , g}. S(M1,M2) on 

the base-point h is by Proposition 3.2.1 decomposable. The dual of that, 

however, is P(Mi , M2) , where Mi ~ M2 ~ F7. Every element in this 

parallel connection is fixed as shown in Figure 4.1. Which by Lemma 4.2.3 

means it is indecomposable. 

d 

Figure 4.1: A parallel connection of two Fano matroids. 
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Chapter 5 

Decomposable ternary 

matroids 

In this chapter we show what essential property every decomposable 3-

connected ternary matroid must have. We also present a theorem showing 

how a 3-connected ternary matroid can be composed from two other ma­

troids, and also present a partial converse of that. From now on we will be 

assuming that our matroid union is loopless. First we start by identifying 

the ternary matroids that for certain are indecomposable, as shown in the 

next section. 

5.1 4-connected ternary matroids are indecompos­

able 

The main result of this section is the following: 

Lemma 5.1.1. With the exception of U2 ,3, 4-connected ternary matroids 

are indecomposable. 

First we need a couple of results. 

Proposition 5.1.2. If M is a 4-connected ternary matroid, then with the 

exception of U2,3, M has at most one non-fixed element. 

Proof. Suppose that M has two non-fixed elements x andy. Then by Corol­

lary 4.3.5 M \ x, y is disconnected. But M is 4-connected, and hence by 

61 
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Proposition 1.8.16 cannot be disconnected by deleting two elements, so we 

get a contradiction. U2,3 is the exception here. Therefore with the exception 

of U2,3, M has at most one non-fixed element. 0 

Proposition 5.1.3. Let M1 and M2 be two loopless matroids such that 

M = M1 V M2. If S is the set of non-fixed elements of M, then E(M1) n 
E(M2) ~ S. 

Proof. If X E E(Ml) n E(M2) , then by Theorem 4.2.1 X is not fixed in M. 

Therefore XEs, so that E(Ml) n E(M2) ~ S. 0 

Now we prove Lemma 5.1.1. 

Proof of Lemma 5.1.1. Suppose M is decomposable. Then by Proposition 

2.2.2 there exist loopless matroids M1 and M2 such that M = M1 V M2 . If 

M has every element fixed , then by Theorem 4.2.3 M is indecomposable. 

So assume it has some non-fixed elements. But if M has some non-fixed 

elements, then by P roposition 5.1.2 it has at most one non-fixed element, 

call this element a. It follows by Proposition 5.1.3 that E(Ml) n E(M2) = 
{a}. By Proposition 3.2.1 M = S(M1, M2). So that M has a 2-separation, 

meaning it is not 4-connected. 0 

5.2 Property of decomposability 

The aim of this section is to prove the following theorem, which shows what 

essential property every decomposable 3-connected ternary matroid has. 

Theorem 5.2.1. Let M be a loopless 3-connected ternary matroid not iso­

morphic to U2,3· If M is decomposable, then it contains at least two non-fixed 

elements p and q. 

Proof. If M is 4-connected, then by Lemma 5.1.1 it is indecomposable. So 

assume that M is not 4-connected. If M is decomposable, then since it is 

loopless, we can assume by Proposition 2.2.2 that M = N 1 V N2 , where both 

N1 and N2 are loopless. Since M is connected, then N1 and N2 cannot be 

disjoint. If N1 and N2 have only one element in common, then by Propo­

sition 3.2.1 M is a series connection, and hence not 3-connected, giving a 
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contradiction. So N 1 and N 2 must have at least two elements in common, 

call them p and q. Since p and q are not loops, then by Theorem 4.2.1, p 

and q are not fixed in M. So if M is decomposable, then it contains at least 

two non-fixed elements. 0 

5.3 Composing ternary matroids 

The aim of this section is to prove the following theorem which shows how 

a ternary matroid can be constructed from two other matroids. Recall that 

if M = M1 V M2 is disconnected, then M = N1 EB N2, for some disjoint 

matroids N1 and N2. If M = M1 V M2 is 2-connected, then IE(Ml) n 
E(M2)1 2: 1, if M = Ml v M2 is 3-connected, then IE(Ml) n E(M2)1 2: 2, 

and if M = M1 V M2 is 4-connected, then IE(Ml) n E(M2)I 2: 3. Due to 

the fact that 4-connected ternary matroids are indecomposable as shown in 

Section 5.1, we are not interested in ternary matroids that are 4-connected. 

For this reason, we shall focus on the union of two matroids that have exactly 

two elements in common, thus making sure the union is not 4-connected. 

Note also that having two elements in common, x and y, means that x 

and y are non-fixed in the union by Theorem 4.2.1. Thus the 3-connected 

decomposable ternary matroid meets the decomposition property mentioned 

in Theorem 5.2.1. 

Theorem 5.3.1. Let M1 and M2 be two loopless regular matroids with 

IE(Ml) n E(M2) I ::; 2, such that M1 V M2 is 3-connected. Then M = 

M1 V M2 is a ternary matroid. 

We first establish some lemmas. 

Lemma 5.3.2. Let M be a matroid such that M = M1 V M2 where M1 and 

M2 are both loopless binary matroids with IE(M1) n E(M2)I = 1, then M is 

a binary matroid. 

Proof. Since IE(Ml) n E(M2)1 = 1, then by Proposition 3.2.1 Ml v M2 = 

S(M1, M2) . But since M1 and M2 are both binary, then it follows by Propo­

sition 1.8.14 that S(M1, M2) = M is also binary. 0 
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Lemma 5.3.3. Let M be a matroid such that M = M1 V M2 where M1 and 

M2 are both loopless binary matroids with E(M1) n E(M2) = {x,y}. Then 

M \ x and M \ y are both binary matroids. 

Proof. Without loss of generality, consider M \ x . By Proposition 2.4.1 

M \ x = (M1 V M2) \ x = (M1 \ x) V (M2 \ x) . (M1 \ x) and (M2 \ x) have 

only one element in common which is y. Moreover, (M1 \ x) and (M2 \ x) 
are both binary by Proposition 1.7.2. So by Lemma 5.3.2 M \ x is binary. 

Similarly, M \ y is also binary. D 

Lemma 5.3.4. Let M be a matroid and let x E E(M). If Mjx ~ U2,s, then 

for all z E E( M) - { x}, M \ z is non-binary. 

Proof. Since Mjx ~ U2 ,5, then Mjx \ z ~ U2,4 · By Proposition 1.4.2(iii) 

Mjx \ z = M \ zjx. Hence M \ z has a U2,4-minor, so that M \ z is non­

binary. D 

Lemma 5.3.5. Let M be a matroid and let x E E(M). If M \ x ~ U2,5, 

then for all z E E(M) - { x }, M \ z is non-binary. 

Proof. Since M \ x ~ U2 ,5, then M \ x, z ~ U2,4· By Proposition 1.4.2(i) 

M \ x, z = M \ z, x. Meaning M \ z has a U2,4-minor, and hence non-

binary. D 

The following proposition will also be used in proving Theorem 5.3.1. 

Proposition 5.3.6. [5, Corollary 11.2.20] A 3-connected matroid whose 

rank and corank exceed two has a minor isomorphic to one of M(W3 ), W3 , 

Q6, P6 and U3,6· 

First we prove a lemma that shows how to construct a matroid that has 

no U2,s or U3,s-minors. 

Lemma 5.3. 7. Suppose that M1 and M2 are both loopless binary matroids 

with IE(MI) nE(M2)I :S 2, such that M1 V M2 is 3-connected. Then M = 

M1 V M2 has no U2,5 or U3 ,s -minors. 

Proof. The proof is by induction. First we show the theorem holds for 

matroids with IE(M) I :S 7, and that becomes our base case. We then show 
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that it is not possible forM to have a U2,5 or U3,5-minors when IE(M)I 2: 8. 

But first we show that E(M1) and E(M2) cannot have less that two elements 

in common. 

If IE(Ml ) n E(M2)I = 0, then M is disconnected, giving a contradiction. 

If IE(Ml) n E(M2)I = 1, then M is a series connection and hence not 3-

connected, giving a contradiction. Therefore we may assume from now on 

that IE(Ml) n E(M2)I = 2. 

Base case step. Case 1. Suppose that IE(M)I = 5. We break this into 

two further cases, one for each minor. 

Case 1.1. Suppose M has a U2,5-minor, then since IE(M) I = 5, then 

M ~ U2,5· Now we examine the two different possibilities in which M can 

be constructed from two matroids with two elements in common. 

Suppose that M is the union of M1 and M2, where E(M1) has 5 elements, 

E(M2) has 2 elements, with two elements in common as shown in Figure 

5.1. Let E(M) = {a,b,c, x,y }, E(M1) = {a,b,c, x, y} and E(M2) = {x , y}. 

Since any 2-element set in U2,5 is independent, and because a and b are 

only in E(M1) , then {a, b} is independent in M1. Also, since both M1 and 

M2 are loopless, then any 1-element set in M2 is independent. So {x} is 

independent in M2. But then by matroid union definition, we should have 

{a, b} U { x} = {a , b, x} is independent in M. Contradicting the fact that 

M ~ U2 ,5 is a rank-2 matroid. Therefore it is not possible for M to have 

a U2,5-minor when E(M1) has 5 elements, and E(M2) has 2 elements, with 

two elements in common. 

Now suppose that M is the union of M1 and M2, where E(MI) has 4 

elements, and E(M2) has 3 elements, with two elements in common as shown 

in Figure 5.2. Let E(M) = {a, b, c, x, y }, E(Ml) = {b, c, x, y }, and E(M2) = 

{x ,y,a} . {b,c} is independent in M. So {b,c} must be independent in 

M1. Since M2 is loopless, then {a} must be independent in M2. Therefore 

{ b, c} U {a} = {a, b, c} must be independent in M, contradicting the fact 

that M is a rank-2 matroid. So M cannot have a U2,5-minor when IE(M) I 

= 5. 

Case 1.2. Suppose M has a U3,5-minor, then since IE(M)I = 5, then 

M ~ U3,5 · We will examine the two different possibilities in which M can 

be constructed from two matroids with two elements in common. 
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M2 

x and y are the intersection elements 

Ml = U5,7 

Figure 5.1: E(Ml) has 5 elements and E(M2) has 2 elements. 

M2 

x and y are the intersection elements 

Ml 

Figure 5.2: E(M1) has 4 elements and E(M2) has 3 elements. 

Suppose that M is the union of M1 and M2, where E(M1) has 5 elements, 

and E(M2) has 2 elements, with two elements in common as shown in Figure 

5.1. Let E(M) = {a,b,c,x,y}, E(M1) = {a,b,c,x,y} and E(M2) = {x , y}. 

Since any 3-element set in U3,5 is independent, and because a, b and c are 

only in E(M1) , then it must that {a, b, c} is independent in M1. Element xis 

not a loop in M2 , so { x} is independent in M2. It follows that {a, b, c }U{ x} = 

{a, b, c, x} is independent in M, contradicting the fact that M 3:! U3,5 is a 

rank-3 matroid. 

Now suppose that M is the union of M1 and M2 where M1 has 4 elements, 

M2 has 3 elements, with two elements in common as shown in Figure 5.2. 

Let E(M) = {a,b,c,x,y}, E(Ml) = {b,c,x , y} and E(M2) = {x,y,a}. 

If one of the two matroids is rank-0, then M is indecomposable, giving a 

contradiction. So one of the two matroids must be rank-1, and the other 

must be rank-2. Since any two-element set in M is independent, then {b, c} 

must be independent in M. So that {b, c} must be independent in M 1. 
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Therefore M1 is the rank-2 matroid, and M2 is the rank-1 matroid. It follows 

that any 2-element set in M2 is a circuit . Since {a, x, b} is independent in 

M, it is the union of two independent sets. But {a , x} is a circuit in M2. 

Therefore it must be that {b, x} is independent in M1. Similarly, the fact 

that {a, x, c} is independent in M, implies that { c, x} must be independent 

in M1. Also since the elements band care only in E(M1) , then {b , c} must be 

independent in M1 as well. In fact by following this reasoning we can show 

that any 2-element set in M1 is independent. But M1 is rank-2, meaning 

any set with size 3 is a circuit. Since M1 has four elements, then it follows 

that M1 ~ U2,4· This contradicts the fact that M1 is binary. So we conclude 

that when IE(M)I = 5, M has no U2,5 or U3,s-minors. Note that this case 

does not require the fact that the union is 3-connected. 

Case 2. Suppose that IE(M)I = 6. We break this into two further cases, 

one for each minor. 

Case 2.1. Suppose M has a U2,s-minor. Since IE(M)I = 6, there are two 

different ways we can obtain a U2,5-minor from M. 

The first one is when M\p ~ U2,5 for some p E E(M). By Lemma 5.3.5, 

M \ p ~ U2,5 implies that M \ z is non-binary for all z E E( M) - {p}. But 

z can be an intersection element of E(M1) and E(M2). So that by deleting 

z from M, we get by Lemma 5.3.3 a binary matroid, giving a contradiction. 

Therefore U2,5 cannot be obtained by deleting an element from M. 

The second possibility is when Mjp ~ U2,5· By Lemma 5.3.4, Mjp ~ 

U2,5 implies that M \ z is non-binary for all z E E(M)- {p} . If z is an 

intersection element of E(MI) and E(M2), then by Lemma 5.3.3 M \ z is a 

binary matroid. So we get a contradiction. Therefore it is not possible to 

obtain U2,5 from M by contracting or deleting an element. 

Case 2.2. Suppose M has a U3,5-minor, then since IE(M)I = 6, there 

are two different ways we can obtain a U3,5-minor from M. 

The first one is when M \ p ~ U3,5 for some p E E(M). If pis not in 

E(M1) n E(M2), then suppose without loss of generality that p E E(MI)· 

By Proposition 2.4.1 M \ p = (M1 \ p) V M2. In this case M \ p is a 5-

element decomposable matroid that is the union of two binary matroids 

with two elements in common. It follows by Case 1.2 that we cannot have 

M \ p ~ U3,5· If on the other hand p was in the intersection, then deleting 
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p from M leaves E(M1) and E(M2) with only one element in common. So 

M \ p by Proposition 3.2.1 is a series connection of two matroids. But U3,5 
is not a series connection of two matroids, so this contradicts the fact that 

M\p~ U3,5· 

The second possibility is when M/p ~ U3,5· If p is not in E(MI) n 
E(M2) , then we lose no generality if we assume that p E E(MI). By Propo­

sition 2.4.5 Mjp = MI/p V M2 . But M/p is a 5-element decomposable 

matroid that is the union of two binary matroids that have two elements 

in common. So we arrive at the same contradiction shown in Case 1.2. If 

pis in the intersection, then let us consider the dual of Mjp, to see what 

possibilities there are forM. Since Mjp ~ U3,5, then M* \p ~ U2,5, and we 

have the following possibilities: 

(i) Either pis a coloop in M* , implying that pis a loop in M, contra­

dicting the fact that M is connected. 

(ii) p is a loop in M *, implying that p is a coloop in M, contradicting 

the fact that M is connected. 

(iii) M* hasp in a parallel class with another element, implying that M 

has p in a series pair with another element. But M \ p must be connected 

by Proposition 1.8.16, giving a contradiction. 

(iv) Or M* ~ U2,6, implying that M ~ U4,6· Choose an element z not in 

E(M1) n E(M2) . Assume without loss of generality that z E E(MI). Then 

by Proposition 2.4.5 M/ z = (MI/z) V M2 . But M/z ~ U3,5 is a 5-element 

decomposable matroid that is the union of two binary matroids with two 

elements in common, contradicting what was shown in Case 1.2. 

Case 3. Suppose that IE(M)I = 7. We break this into two further cases, 

one for each minor. 

Case 3.1. Suppose M has a U2 ,5-minor, then since IE(M)I = 7, there are 

three different ways we can obtain a U2,5-minor from M . First one is deleting 

two elements from M , second one is deleting one element and contracting 

another, and the third one is contracting two elements from M. 

Consider the two ways involving a deletion. Suppose that either M \ 

p, q ~ U2,5 , M \ pjq ~ U2,5, or M \ qjp ~ U2,5· If the deletion element, say 

p, is in the intersection, then M \pis the union of two binary matroids that 

have one element in common. It follows by Proposition 3.2.1 that M \pis 
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a series connection of two binary matroids. So that by Proposition 1.8.14 

M \ p is a binary matroid too. Hence M \ p does not have a U2,s-minor, 

contradicting the assumption. If none of the deletion elements are in the 

intersection, then we can delete one of them say p, and get by Proposition 

2.4.1 M \ p as a 6-element decomposable matroid. But M \ p is the union 

of two binary matroids that have two elements in common, and has a U2,5-

minor, which contradicts what was shown in Case 2.1. 

Now consider Mjpjq ~ U2,S· If only one of the elements p and q is 

in the intersection, say q, then by Proposition 2.4.5 Mjp is a 6-element 

decomposable matroid. It is the union of two binary matroids that have two 

elements in common, and it has a U2,5-minor. But that contradicts Case 

2.1. Similarly, if none of the elements p and q are in the intersection, then 

Mjp and Mjq also give the same contradiction. Suppose on the other hand 

that both p and q are in the intersection. Let N = Mjp, so that Njq ~ U2,S· 

It follows that N* \ q ~ U3,S· Let us now consider the possibilities for what 

N could be: 

(i) If q is a coloop in N* , then it implies that N* is disconnected, and 

hence by Proposition 1.5.4 N is disconnected. But that contradicts the fact 

that M is 3-connected by Proposition 1.8.16. 

(ii) q is a loop in N*, implying that q is a coloop in N meaning N is 

disconnected, contradicting Proposition 1.8.16. 

(iii) q is in parallel to another element in N* , implying that N has a 

series pair. But if N = Mjp has a series pair, then M must have a series 

pair too, which means M can be disconnected by removing one element, 

contradicting the fact that it is 3-connected. 

Having made the observations (i-iii), we see that element q must be on 

the same plane as the other elements of U3,5· So that N* must be rank-3. 

Moreover, q can be collinear with at most two elements in N*, meaning q 

cannot create a 2-separation in N*. So that N* is 3-connected. But N* has 

6 elements, meaning its corank exceeds two. So it follows from Corollary 

5.3.6 that there are only 5 possibilities for N*, namely M(W3), W3, Q6 , P6 

and U3 ,6 as shown in Figure 5.3. From those 5 matroids, however, only the 

ones shown in Figure 5.3(a, b and c) have N * \ q ~ U3,S· If we examine 

their duals as shown in Figure 5.3( d, e and f) respectively, we will find that 
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no matter where the intersection element q is located in N , N \ q always 

has a U2,4-minor. Hence N \ q is not binary. If N \ q is non-binary, then 

Mjp\q = M\qjp is non-binary. But by Lemma 5.3.3 M\q is supposed to 

be binary, contradiction. Therefore when IE(M)I = 7, M has no U2,5-minor. 

b 

• d 

• 

d e 

N* = p6 

(a) 

c 

• 

• a 
N* = u3.6 

(c) 

a 

e 

• 
• q 

d 

q 

• 
a • 

b 

• 
• 

d 

• • • 

e q 

N=Q * 
(e) 6 

• e 

• b 

• d 

• 
c 

N =U * 
(I) 3,6 

Figure 5.3: Matroid with U3,5-minor. 

Case 3.2. Suppose M has a U3,5-minor, since IE(M)I = 7, then we 

consider the different ways M can have a U3,5-minor. 

The two ways involving deletions are M \ p, q ~ U3,5, M \ p / q ~ U3,5 or 

M \ qjp ~ U3,5. If none of the elements p and q are in the intersection, then 

M \ p having a U3,5-minor contradicts what was shown in Case 2.1. If any 

of the deletion elements is in the intersection, say p, then M \ p is a series 

connection of two binary matroids. Hence by Proposition 1.8.14 is binary, 

contradicting the fact that M \ p has a U3,5-minor. 
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The third way is when Mlplq ~ U3,5· Suppose none of the two elements 

are in the intersection. Then we can contract one element, say p, and get by 

Proposition 2.4.5 Mlp as a 6-element decomposable matroid, constructed 

from the union of two binary matroids with two elements in common, and 

it must be 3-connected. That contradicts what was shown in Case 2.2. 

Suppose one of the elements, say p, is in the intersection and q is not. Then 

M I q is a 6-element decomposable matroid, constructed from the union of 

two binary matroids with two elements in common, which also must be 3-

connected, again contradicting what was shown in Case 2.2. If on the other 

hand both p and q are in the intersection, then since M I pI q ~ U3,5, it follows 

that M* \ p \ q ~ U2,5. Now we look at the different possibilities for M*. 

M* is a 5-point line in addition to the two other elements p and q. 

Because p and q are intersection elements, then by Theorem 4.2.1 they are 

not fixed in M. 

(i) If either p or q is a loop or coloop in M*, then it is a coloop or loop 

in M respectively, leading to contradictions as was shown in Case 3.1. 

(ii) If either p or q is in parallel with any other element z in M*, then 

that makes {p, z} or { q, z} a series pair in M. But then it follows that M 

can be disconnected by deleting one of the series pair elements, contradicting 

the fact that M is 3-connected. We would get the same contradiction if p 

and q are parallel to each other. 

(iii) If p or q is in a series pair with any other element z in M*, then that 

makes {p, z} or { q, z} a parallel pair in M respectively, and hence fixing p 

or q in M. Thereby contradicting the fact that p and q are both non-fixed 

in M . The same contradiction follows if p and q make a series pair together. 

Therefore the only place left for p and q in M* is on the 5-point line, 

such that {p, q} is independent on the line. Thus making M* ~ U2,1· Hence 

M ~ U5,7· Choose z E E(M), such that z is not an intersection element. 

Assume without loss of generality that z E E(M1). Since (MI/z) is binary 

by Proposition 1.7.2, and M2 is binary by assumption . Then it follows that 

M I z = ( MI/ z) V M2 ~ U4,6 is a 6-element decomposable matroid made from 

the union of two binary matroids. Moreover, the two matroids still have two 

elements in common, Mlz has a U3,5-minor, and must be 3-connected as 

well. This contradicts what was shown in Case 2.2. Therefore we conclude 
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that when IE(M)I = 7, M has no U3,s-minor. Thus we have established a 

base case for our induction. 

Inductive step. Assume that IE(M)I = IE(M1) U E(M2)I 2:: 8. Also 

assume that the result holds whenever IE(M)I :S 7, for all pairs of binary 

matroids M1 and M2 such that E(M1) n E(M2) = { x, y }. Suppose the result 

fails forM. Then there exists X , Y ~ E(M) , such that (M1 V M2) \ X/Y ~ 

U2,s or U3,5· Since IE(M)I 2:: 8, then there exists z in (XU Y)- {x , y}. 
Without loss of generality, assume z is in E(Ml), and also assume that z is 

in X. Then by Proposition 2.4.1 M\z = (M1 \ z)V M2. It means that M\z 

has a U2,5 or U3,s-minor, contradicting the fact that the result holds for any 

number of elements less than the size of E(M) . Similarly for the contraction, 

if z is in E(M1) , and we let z E Y , then since z is not in E(M1) n E(M2) , 

it follows by Proposition 2.4.5 M/z = (Ml/z) V M2. But if M/z has a U2,5 

or U3,s-minor, then that contradicts the fact that the result holds for any 

number of elements less than the size of E(M). Therefore we conclude that 

M has no U2,s or U3,s-minor. 0 

To complete the proof of Theorem 5.3.1, we use a result that has been 

proven by M.J .Piff and D.J.A.Welsh, see [7] for more details. We also state 

it here for the reader's convenience. Note that the theorem makes no as­

sumption about the ground sets being the same. 

Theorem 5.3 .8 . Let M1 and M2 be matroids on E1 and E2 respectively. 

There exists n such that if M1 and M2 are representable over a fi eld F , with 

IFI 2:: n, then M1 V M2 is also representable over F. 

Proof of Theorem 5.3.1. Since M1 and M2 are regular, then they are both 

binary and ternary, and therefore by Lemma 5.3. 7 we know that M1 V M2 

has no U2,s or U3,5-minors. By Theorem 1.7.6, if we show that M has no F7 

or F7'-minors, then that would complete the proof of M being ternary. 

Suppose now that M1 and M2 are both regular, such that M1 V M2 has an 

F7 or F7'-minors. Since M1 and M2 are regular , then by Theorem 1.7.7 they 

are representable over every field , and hence they are representable over the 

reals. It follows then by Theorem 5.3.8 that M1 V M2 is also representable 

over the reals. But F7 and F7 are minors of M1 V M2 by assumption. So by 

Proposition 1.7.2 we must have F7 and F7' as representable over the reals 
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as well, contradicting Theorem 1.7.4. This concludes the proof for Theorem 

5.3.I that M = M1 V M2 is a ternary matroid. D 

As a result of combining Theorem 5.3.1 with Theorem 3.4.1 we get the 

following corollary. 

Corollary 5.3.9. Let M1 and M2 be two loopless regular matroids with 

E(M1) n E(M2) = {x, y}. If M1 and M2 are both connected, neither of 

them has a series pair, IE(Ml)l , IE(M2) I ~ 3 and x andy are split in M1 

and split in M2, then M = M1 V M2 is a 3-connected ternary matroid. 

5.4 Decomposing ternary matroids 

The aim of this section is to prove the following theorem, which is a partial 

converse to Theorem 5.3.1. 

Theorem 5.4.1. Let M = M 1 V M2 be a 3-connected ternary matroid, such 

that IE(Ml) n E(M2)I = 2. If M 1 and M2 are 3-connected, then M1 and 

M2 are both regular matroids. 

A matroid M uses a set T, if T ~ E(M). A class N of matroids is 

t-rounded , if every member of N is (t +I)-connected, and the following 

condition holds: If M is a (t +I)-connected matroid having anN-minor, 

from the class and X is a subset of E(M) with at most t elements, then M 

has anN-minor using X. We are particularly interested in 2-roundedness. 

The following results will be used in the proof. 

Proposition 5.4.2. [5, Proposition 11.2.13} Every 3-connected matroid M 

having at least four elements has a minor isomorphic to U2,4 or M(K4). 

Proposition 5.4.3. [5, Corollary 11.2.14} Every 3-connected binary ma­

troid having at least four elements has a minor isomorphic to M(K4). 

Proposition 5.4.4. [5, Proposition 11.3.8} Let M be a 3-connected matroid 

having a U2,4 -minor and suppose that e and f are distinct elements of M. 

Then M has U2,4 -minor using { e, !} . 
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Theorem 5.4.5. [5, Proposition 11.3.9] Lett be 1 or 2 and N be a col­

lection of (t + 1)-connected matroids. Then N is t-rounded if and only if 

the following condition holds: If M is a ( t + 1) -connected matroid having an 

N-minor such that JE(M)- E(N)j = 1, and X is a subset of E(M) with at 

most t elements, then M has an N -minor using X. 

The following follows from Theorem 5.4.5. 

Proposition 5.4.6. [5] The collection of matroids {U2,4, M(K4)} is 2-

rounded. 

Next we prove two lemmas that will also be used in proving Theorem 

5.4.1. 

Lemma 5.4.7. Let N be a connected matroid that has at least 3 elements, 

such that N has no series pairs. If E(N) =AU {x,y}, then NIA consists 

entirely of loops. 

Proof. We first observe that E(NI A) = { x, y }. Let us consider what possi­

bilities x and y have in N I A. 

Case 1. { x, y} are independent inN I A. Meaning that x andy are coloops 

of N I A. But a coloop cannot be generated by a series of contractions. It 

follows that N must have had a coloop to start with, contradicting the fact 

that it is connected. 

Case 2. { x, y} is a parallel pair in N I A. Here there are two possibilities 

for x and y to be a parallel pair. 

Case 2.1. N has a minor containing three elements x, y and a, where 

{ x, y} is a parallel pair, and a as a co loop in this minor, as shown in Figure 

5.4(a). It follows that a must have been a coloop of N , giving a contradiction. 

Case 2.2. N has a minor isomorphic to U2,3 containing the elements 

x,y and a, as shown in Figure 5.4(b) . It follows that {x,y} is a series pair 

of this minor, and therefore must have been a series pair of N, giving a 

contradiction. 

Case 3. One of x and y is a loop in N I A, and the other is not. Assume 

without loss of generality that x is a loop in N I A. It follows that N must 

have a minor where x is in a parallel class, and y is not. So that y is a coloop 

of this minor, and hence a coloop of N , giving a contradiction. 
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X 

I • ••• 
y a x y a 

(a) (b) 

Figure 5.4: x andy as parallel pairs. 

Therefore it follows that the only possibility left for x and y, is for x to 

be a loop in N /A and y to be a loop in N /A. Hence N /A consists entirely 

of loops. D 

Lemma 5.4.8. Let M = M1 V M2, such that E(Ml) n E(M2) = {x, y}. If 

both M1 and M2 are connected, IE(M1)I 2: 3, IE(M2)I 2: 3, and neither of 

them has {x, y} as a series pair, then M/(E(M!)- {x , y}) = M2. Similarly, 

Mj(E(M2)- {x, y}) = M1 . 

Proof. Let E(M2)- {x,y} =A, and E(M1)- {x ,y} =B. Without loss 

of generality, consider M /A. By Proposition 2.4.5 M /A = M1 V M2/ A. 

But E(M2/A) = {x,y}. So it follows by Lemma 5.4.7 that M2/A consists 

entirely of loops. Hence M /A = M1. Similarly, M / B = M2. D 

Now we prove Theorem 5.4.1. 

Proof of Theorem 5.4.1. Let E(Ml) n E(M2) = {x , y}. Since M is the 

union of two matroids with exactly two elements in common, and M is 3-

connected, then by Theorem 3.4.1 it follows that both M1 and M2 have to 

be connected. Moreover, each must have size at least 3, and neither of them 

has a series pair. It follows then by Lemma 5.4.8 that both M1 and M2 are 

minors of M. Hence by Proposition 1.7.2 they are both ternary. So what 

we need to show now to complete the proof, is that M1 and M2 are both 

binary. Assume that both M1 and M2 are 3-connected. If both M1 and M2 

are binary, then we are done. So consider the following possibilities. 

Case 1.1. Only one of M1 and M2 is not binary. Assume without loss 

of generality that M1 is not binary and M2 is binary. By Proposition 5.4.4, 

M1 has a U2,4-minor using x and y. So let N1 = M1 \A/ B ~ U2,4 where A 

and B are subsets of E(M1) not containing x or y. So that by Propositions 
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2.4.1 and 2.4.5 M \A/ B = ( M1 \A/ B) V M2 = N1 V M2. Since M2 is binary 

and 3-connected, then by Propositions 5.4.3 and 5.4.6, it must have a minor 

isomorphic to M(K4) using x andy. Call this minor N2. From M(K4) we 

can obtain a U1,3-minor. It can be obtained by contracting two elements and 

deleting one element from M(K4), other than x andy. So let c, dE E(N2) 

be the contraction elements, and e E E(N2) be the deletion element. Then 

M \A/ Bjcjd \ e ~ (U2,4 V U1 ,3), where both U2,4 and U1,3 use {x, y}. But 

in this case U2,4 V U1,3 ~ U3 ,5 as shown in Figure 5.5, which is not ternary, 

contradicting the fact that M is ternary. 

g 

X • 
• • • • v yt- X • • y 

X y a b g • • a b 

u2.4 
ui .J 

u 2,5 

Figure 5.5: U2,5-minor. 
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Case 1.2. Both M1 and M2 are not binary. By Proposition 5.4.4 both 

M1 and M2 have a U2,4-minor using {x,y}. So that M1 \ A/B ~ U2,4, 

where A,B <:;;; E(M1) not containing x andy, and M2 \ C/D ~ U2,4, where 

C, D <:;;; E(M2) not containing x and y. By Propositions 2.4.1 and 2.4.5 

M\A/ B\ C / D = (U2,4 V U2,4) ~ U4 ,6· But U4,6 is not ternary, contradicting 

the fact that M is ternary. Hence we have shown that if M1 and M2 are 

3-connected, then they are regular. 

0 

As noted earlier, Theorem 5.4.1 is a partial converse of Theorem 5.3.1. 

The next proposition is not used in this thesis, but together with Conjecture 

6.1.2, which will be stated in the next chapter, makes a complete proof for 

a full converse of Theorem 5.3.1. 

Proposition 5.4.9. Let M be a non-binary connected but not 3-connected 

matroid, where {x,y} <:;;; E(M). If x andy are split in M, then M has a 

U2,4 -minor using x and y. 

Proof. The proof is by induction, first we prove the theorem is true for the 

base case when IE(M)I = 4. 

Base case step. If IE(M)I = 4, then since {x,y} <:;;; E(M), and M has a 

U2,4-minor, then M ~ U2,4 using x andy. 

Inductive step. Assume now that IE(M) I = n ~ 5, and assume that 

the theorem holds for all IE(M)I $ n. If M has a 2-separation (A, B) that 

splits x and y, then let us assume without loss of generality that x E A 

andy E B. Let MA and MB be two matroids such that M = MA EB2 MB. 

By Proposition 1.8.21 there must exist an intersection element between MA 

and MB. So let E(MA) n E(MB) = {p} be the base-point. By property of 

2-sum MA \ p =MIA and MB \ p = MIB. If both MA and MB are binary, 

then by Proposition 1.8.11, their 2-sum, which isM, is also binary, giving a 

contradiction. So at least one of MA and MB is non-binary. Assume without 

loss of generality that MB is non-binary. If MB has a U2,4-minor using x 

andy, then we are done, so assume that is does not have a U2,4-minor using 

x andy. 

Consider MB. Replace element p by x in MB, and call the resulting 

matroid N. N is a minor of M isomorphic toMB· SoN is non-binary. If 
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N is 3-connected, then by Proposition 5.4.4 it has a U2,4-minor using x and 

y and we are done. So let us suppose that it is not 3-connected, so that it 

has a 2-separation (P, Q). If every 2-separation in N splits x and y , then 

the inductive argument implies that N has a U2,4-minor using x and y and 

we are done. So let us suppose that x and y are not split in N. Without 

loss of generality assume that both x, y E P. 

Now replace x by pin N . The resulting matroid is MB again like it was 

at the start. The difference now, however, is that we know that MB has 

a 2-separation such that p and y are not split in MB. Suppose MB has a 

2-separation (P' , Q) , such that both p , y E P'. Then let M(P') and M(Q) 

be two matroids such that MB = M(P') EB2 M(Q) , and let E(M(P')) n 
E(M(Q)) = {z} be the base-point, so that P' U {z} = E(M(P')) , Q U {z} = 

E(M(Q)). We have the following: 

M = MA EB2 (M(P') EB2 M(Q)). (5.4.1) 

Let (Q, R) be a partition of M, such that R = P'- {p} U A. Due to the 

fact that the 2-sum of MA and MB was applied between MA and the set P' 

which contains p, we get 

MA EB2 (M(P') EB2 M(Q)) = (MA EB2 M(P')) EB2 M(Q). (5.4.2) 

Where E(MA EB2 M(P')) = R U {z }. Therefore (R, Q) is a 2-separation of 

M. Moreover, x andy are both in the same part of the 2-separation R . But 

that contradicts the assumption that M has no 2-separation that does not 

split x andy. Therefore N must split x andy. Since IE(N)I $ n , then N 

has a U2,4-minor using x and y. Since this was the case for IE(M)I = n, 

then the theorem holds for all values of n by induction. D 
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Chapter 6 

What is next ? 
• 

6.1 Conjectures 

In this chapter, we state some conjectures that we believe are true, but did 

not spend a lot of time thinking about due to severe time constraints. To 

resolve these issues would strengthen some of the results presented in the 

preceding chapters. 

Chapter 5: Decomposable ternary matroids 

Section 5.2. Theorem 5.2.1 shows that if a matroid M is decomposable, 

then it must have at least two non-fixed elements p and q. The next conjec­

ture is the converse of Theorem 5.2.1. 

Conjecture 6.1.1. Let M be a 3-connected ternary matroid that has two 

non-fixed elements p and q. Let (A, B) be a separation of M \p, q. Then M 

is decomposable such that M = (M/A) V (M/B). 

Section 5.4. Theorem 5.4.1 has shown that a 3-connected ternary ma­

troid decomposes into two regular matroid, provided that the two matroids 

are 3-connected. To be able to have a stronger version of the theorem, the 

following conjecture is needed. 

Conjecture 6.1.2. Let M be a connected but not 3-connected binary ma­

troid. If x andy are split in M , where {x, y} ~ E(M) , then M has a minor 

isomorphic to the matroid shown in Figure 6.1. 
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y a b 

Figure 6.1: Minor of a binary matroid that has x and y spilt. 

If the above conjecture is true, then by combining it with Proposition 

5.4.9, we can prove the following conjecture, which is a full converse of 

Theorem 5.3.1. 

Conjecture 6.1.3. Let M = M1 V M2 be a 3-connected ternary; matroid, 

such that IE(Ml) n E(M2) I = 2. Then both M1 and M2 are regular matroids. 
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