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Abstract

The Boltzmann transport equation describes the dynamics of electrons via the

time evolution of a 6−D scalar field. This semiclassical description is valid in any de-

vice where the external field is relatively constant over the decoherence length. Near

equilibrium, the electron distribution can be characterized by a local chemical po-

tential and the lattice temperature, leading to a simplified electron state described by

a 3−D scalar field. When external fields are large, this approximation breaks down

as the electrons are accelerated far away from a lattice temperature thermal equilib-

rium. If the external field is quasi-homogeneous, the local field or average kinetic

energy can be used to characterize the shape of the distribution function, leading to

an electron state described by one or two 3−D scalar fields. However, if the external

field is not quasi-homogeneous, there is currently no significant simplification of the

Boltzmann transport equation that is widely accepted as being theoretically sound.

In this thesis, we derive significant simplifications of the semiclassical electron

state in devices where the external fields are highly inhomogeneous. We argue

that in many materials where the crystal momentum transfer in one scattering time

is large, the scattering operator will drive the electron distribution toward a local

elastically-constrained quasi-equilibrium, which is characterised by a 4−D scalar field.

Furthermore, we argue that in materials where the energy spectrum of scattering is

not narrow, electrons in the device are efficiently driven toward one of three quasi-

equilibria at different temperatures, one of which is also constrained by an upper

limit on the chemical potential. The result is an electron state characterized by four

to six 3−D scalar fields, depending on whether electron-electron scattering between

two high energy electrons can or cannot be neglected. We present equations of mo-

tion for these simplified electron states that can be solved efficiently if the transport

parameters— associated with well-defined weighted integrals of the scattering op-

erator and bandstructure over these quasi-equilibria— are precomputed and stored

in a look-up table.
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Chapter 1

Introduction

1.1 Economic Value of Semiconductor Device Models

Electronics have created a significant fraction of total wealth of humankind. The func-
tionality of almost all modern electronics is enabled by the integrated circuits produced
by the ∼ $350B USD semiconductor industry [1].

We expect that innovation in integrated circuit design will continue to have an outsized
effect on the rest of the economy. The efficiency of this innovation is limited by the
speed, accuracy and flexibility of the modelling and simulation tools the semiconduc-
tor industry possesses. These modelling and simulation tools are known as ELECTRONIC

DESIGN AUTOMATION (EDA) tools, and the large subset of these tools that are directly
based on the physical simulation of matter in space are known as TECHNOLOGY COM-

PUTER AIDED DESIGN (TCAD) tools.

One might assume given the enormous economic value of improving the physics under-
lying TCAD tools that private-sector EDA companies would be strongly incentivised to
invest in basic research. However on closer examination of the incentives, it is far from
obviously that this is actually the case. Any improvements the private sector make
in their understanding of the underlying physics is not patentable, and therefore—

15



16 CHAPTER 1. INTRODUCTION

roughly speaking— will only be of commercial value if kept secret. This is problem-
atic for two reasons. Firstly, this secrecy greatly diminishes the reliability of the physics
knowledge private companies can gain, as it is not subject to outside criticism and im-
provement. Secondly, this secrecy greatly diminishes the value of the physics knowl-
edge, since in order to keep this knowledge from competitors it must be hidden even
from the users of TCAD products; that is, any new physics discovered by the EDA industry
must be hidden from the semiconductor industry itself if it is to remain a commercially
valuable asset.

As such, the EDA industry should not be thought of as a reliable contributor to the
basic physics that underlies TCAD tools. Instead, the ∼ $8B USD EDA industry [1] is
more accurately thought of as a powerful and efficient distribution network, transforming
academic advances in fundamental physics that are relevant to TCAD into modelling
tools that are convenient and practical for engineers in the semiconductor industry to
use [2]. The existence of this distribution network means academic advances in the
physics underlying TCAD tools will be leveraged to create wealth at a large scale, in
a short timeframe, with high probability. These impact characteristics are not common
in academic physics research, and make this area of research attractive for academic
physicists who are interested in having a unusually tangible economic impact.

We can divide TCAD tools into two1 basic levels:

The process level, concerned with modelling the processes that are used to fabricate
the integrated circuit.

The device level, concerned with modelling electronic, thermal, and mechanical char-
acteristics of a small physical subregion of a fabricated integrated circuit, typically
one associated with an individual device such as a diode or transistor.

In this thesis we are concerned with the electronic part of the device level. That is, we
are concerned with modelling electron transport in semiconductor devices.

1The EDA tools expand on the two TCAD levels by adding a circuit level, concerned with modelling
the abstraction of devices and interconnects known as a circuit.
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1.2 Transport in the Quasi-Homogeneous Regime

Historically the DRIFT-DIFFUSION model2 has been the back-bone of TCAD electron trans-
port models, and it remains in heavy use even today [3]. In its domain of validity the
drift-diffusion model is accurate, flexible, and fast. The accuracy of the drift-diffusion
model is primarily due to the fact it can be derived from first-principles using well-
justified assumptions. The flexibility of the drift-diffusion is primarily due to the fact
that these assumptions have a broad range of validity. The speed of the drift-diffusion
model is primarily due to the fact that the electron state3 is defined uniquely by only a
single parameter at each point in space— the electron density. In addition the accuracy,
flexibility, and speed of the drift-diffusion model is secondarily enhanced by the fact
that an unconditionally stable discretization of it can be defined on arbitrary 1−D, 2−D
or 3−D unstructured meshes [4].

The derivation of the drift-diffusion model from first principles relies on being able to
define the MOBILITY— a transport parameter that relates the local driving forces to the
local electron flux— in terms of the device state4 and an electron state characterized only
by position-dependent electron density. This can be done in a theoretically sound5 man-
ner only if the electron distribution is in LOCAL DYNAMIC EQUILIBRIUM with the external
field; that is, so long as the electron distribution function is approximately6 the same

2The STATE of an entity can generally be understood as the information concerning that entity at some
time t that is necessary to predict the entity’s state at t + ∆t. This subtle, seemingly-circular definition is
a surprisingly powerful guide for creating useful physics.

3Unless explicitly stated otherwise, the reader should assume that the transport models mentioned are
only closed when coupled to Poisson’s equation, which defines the state of the external electromagnetic
field via an electric potential at each point in space.

4By DEVICE STATE, we mean the state of the physical environment that the electron state is subject
to. Typically this is defined by a position-dependent lattice temperature, bandstructure, electric potential
and doping density.

5We use the term THEORETICALLY SOUND heavily in this thesis to refer to a consistency between
a macroscopic model and the underlying microscopic reality. A model is theoretical sound if it has a
derivation from first principles using well-justified assumptions. Since most of the macroscopic models
of electron transport in the literature we discuss make assumptions that obviously contradict the underlying
microscopic physics, "well-justified assumptions" should be understood as relative to the state-of-the-art.
As such, we will freely refer to a macroscopic model as theoretically sound if its assumptions do not
obviously contradict the underlying microscopic physics.

6This qualifier is used because there is a perturbation to the homogeneous electron distribution func-
tion due to the diffusion current.
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as it would be in a homogeneous external field7 which is the same as the local external
field [5].

The assumption that the distribution function is determined uniquely by the local field
requires that the field changes sufficiently slowly in space that the effect of non-local
fields on the distribution function is negligible. The problem with this assumption is
that as devices change scale by a factor s, the average external field in a device changes
by a factor 1

s
, and the average spatial rate of change of the external field in a device changes

by a factor 1
s2

, assuming the voltage change is kept relatively constant. Therefore, every
time Moore’s Law has halved the length scale of a device, it has roughly doubled the av-
erage external field, and has roughly quadrupled the spatial rate of change in the external
field. When the characteristic length scale of devices crosses below ∼ 300nm, the local
dynamic equilibrium approximation has usually begun to break down [6, Fig. 23] [7,
Fig. 4].

One obvious symptom that the local dynamic equilibrium approximation is breaking
down comes from examining the energy density of the electron distribution. In a steady-
state homogeneous field, the rate the distribution gains energy density w from the ex-
ternal field,

(
∂w
∂t

)
field , must be equal to the rate at which the distribution loses energy

density to the lattice via scattering,
(
∂w
∂t

)
scat :

Zero in steady state︷︸︸︷
∂w

∂t
=

(
∂w

∂t

)

field
+

(
∂w

∂t

)

scat
. (1.1)

The rate the distribution gains energy density from the field is easy to define in terms of
the particle flux density j and the external force F:

(
∂w

∂t

)

field
= j · F. (1.2)

The rate at which the distribution loses energy density to the lattice via scattering is
more complex to define, but in a thermal distribution it increases if the local energy
density of the distribution increases. This behaviour can also be expected for distri-

7The external field/force is simply the part of the electric— or more generally, electromagnetic—
field/force in a device that remains once one has removed the part of the electric field/force associated with
the bandstructure and scattering operator.
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butions which are very roughly thermal, such as those in local dynamic equilibrium.
Therefore, in a homogeneous external field, local dynamic equilibrium is reached when
the average energy of the distribution gets large enough that the rate of energy loss due
to scattering is equal to the rate of energy gain from the field.

The assumption underlying this analysis of a homogeneous field— and underlying the
local dynamic equilibrium assumption— is that in steady-state the rate of change of
energy density in a small volume is zero. However, imagine a small volume between
two cross-sections of a 1−D device where the field increases rapidly in the direction
of current flow. The external field on the upstream face of this volume will be smaller
than the external field on the downstream face by construction. According to the local
dynamic equilibrium approximation, we can expect that the average energy of electrons
will be smaller on the upstream side of the small volume than on the downstream side.
In steady state, the particle flux through both these faces will be the same.8 But due
to the difference in average energy, the energy flux entering the cross-sectional volume
from the upstream face will be smaller than the energy flux exiting that small volume to
the downstream face.9 This fact is significant, because according to the general continuity
equation, this implies that the net rate of energy change in the volume due to fields and
scattering must be positive in steady-state. Therefore local dynamic equilibrium is only
valid when the average energy of the distribution changes slowly enough that we can neglect
the divergence of the energy flux.

Given the above analysis, a natural approach to move beyond the drift-diffusion equa-
tion is to find a transport equation where the energy density is also part of the electron
state. The resulting model is known as an ENERGY TRANSPORT MODEL. This approach was
pioneered by Stratton in 1962 [8], though most of the assumptions he used to derive the
energy transport model have been superseded [9].

To form an energy transport model, we have to add the energy density continuity equa-
tion described earlier to our set of equations. As Bløtekjær showed in 1970 [10], one can
derive the terms in the energy density continuity equation rigorously by simply multi-

8Ignoring net particle creation or destruction inside the cross-sectional volume.
9It is technically possible for a distribution to have a larger or identical energy flux than another distri-

bution with the same particle flux and a larger average energy. This technical possibility is highly unlikely
to be realized in realistic situations, and can be regarded as a pathological case.
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plying both sides of the Boltzmann transport equation by energy, and integrating over
all bands and crystal momenta. The terms in the energy density continuity equation
are therefore weighted integrals of the distribution function, bandstructure and scatter-
ing operator. Apart from the weighted integral that defines the energy density, these
weighted integrals are excess unknown variables. In order to close this equation, we
therefore need some technique for estimating these excess unknown variables. This is
known as the CLOSURE PROBLEM.

It is difficult to solve the closure problem in a theoretically sound manner [6, 9]. The
fundamental problem is that a theoretically sound closure is only possible if there is
a well-defined mapping from the total state variables— a position-dependent electric
potential, electron particle density, and electron energy density— to an approximation
of the distribution function at each point. Currently, there are only two special cases
where such a mapping is known to exist.

The first special case is if the local dynamic equilibrium is just beginning to break down.
When the local dynamic equilibrium approximation is just beginning to break down,
the distribution can be approximated as being in local dynamic equilibrium with an
external field slightly upstream of the local external field. A simple, unbiased estimate
of this slightly upstream external field is the homogeneous field that creates a electron
distribution which has the same average energy as the electron state. When this ap-
proximation is valid, the field of the homogeneous simulation associated with the local
average energy will always be similar to the actual local field. If there is a large discrep-
ancy between the local field and the homogeneous field that gives the same average
energy as the local electron state, then this is a clear sign that transport is far from the
local dynamic equilibrium regime, in which case the approximation described has no
physical justification.

The second special case is if electron-electron collisions are sufficiently dominant to en-
sure the distribution efficiently relaxes to an internal equilibrium. In this case, the distribu-
tion can be assumed to be approximated by small perturbations to a heated Maxwell-
Boltzmann distribution (or Fermi-Dirac distribution, if degeneracy effects matter). And
this will be true whether or not the that heated distribution is created by a homogeneous or
inhomogeneous field. Thus, if the electron-electron collisions are strong throughout the
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device, then the energy transport equations can be closed in a theoretically sound way
by using homogeneous field data with the same electron density.

This first special case is of limited theoretical significance. The energy transport equa-
tion was proposed in order to overcome the weaknesses of the local dynamic equilib-
rium approximation, so proposing a model based on the near local dynamic equilibrium
approximation does not greatly expand the range of device geometries we can model [6,
Fig. 23]. This exact same criticism can be levelled at the so-called ”six moment model”
[11], which has also gained popularity in TCAD applications [12]. The six moment
model expands on the energy transport model by allowing for a small perturbation to
the square energy predicted by the local dynamic equilibrium. Accordingly, we may ex-
pect that a six moment model correctly closed using homogeneous field data will give
better results than the energy transport model or drift diffusion model when the average
energy and square average energy diverge slightly from their local dynamic equilibrium
values. But once again we have no theoretically sound reason to expect better results
from this model when the perturbations from local dynamic equilibrium are large and
electron-electron collisions are insufficiently strong to drive the distribution toward in-
ternal equilibrium.

On the other hand, the second special case— where frequent electron-electron colli-
sions bring electrons into an internal equilibrium— allows us to model a genuinely new
regime of transport. The transport parameters can be gleaned from a homogeneous
simulation which possesses the same local energy and density, even when this homoge-
neous field is completely different from the local field [13, Fig. 4]. In the presence of dominant
electron-electron collisions, the energy-transport model significantly expands the length
scale of modelling capability beyond the drift-diffusion model in a theoretically sound
manner.

Unfortunately it is seldom the case that this internal equilibrium approximation holds
everywhere in a device. Most practical devices contain enormous spatial variations in
the density of electrons, often including regions that are effectively depleted of electrons.
The internal equilibrium approximation of the second special case is only a valid a few
mean free paths into the interior of regions with sufficiently high electron density. Un-
fortunately, the field is its most inhomogeneous outside the interiors described, since the
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relative absence of mobile charge is precisely what allows large inhomogeneities in the
external field to exist. This means the energy transport model is only valid for a device
as a whole if the near local dynamic equilibrium approximation is valid in these highly
inhomogeneous, relatively depleted regions.

The theoretical viewpoint we have described in this section can be used to interpret, for
example, the results of Vasicek et al. [14, Fig. 6], shown in Fig. 1.1. These results show
the drain current prediction error of macroscopic models for Double-Gate MOSFETs of
various channel lengths. The macroscopic models are essentially those proposed by
Grasser et al. [15], which are distinctive because unlike many other proposed closures
[9] these closures are constructed from near-optimal use of homogeneous field data,
without any ad-hoc alterations or unnecessary bandstructure or scattering operator sim-
plifications. As such, if we are in a regime where a sound closure using homogeneous
field data is theoretically possible, we expect these particular macroscopic models to
actually achieve that theoretically possible accuracy.
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Fig. 4. Transfer characteristics of the 30-nm device for drain voltages of
50 mV and 1 V calculated with the DD, ET, SM, and DSMC models. The
macroscopic models overestimate the drain current at low Vg , whereas the SM
model is particularly accurate at higher voltages.

Fig. 5. Velocity profile of a 30-nm-long device calculated with the DD, ET,
SM, and DSMC models. A source-to-drain voltage of 0.8 V has been applied.
The vertical position of the velocity profile is very close to the interface.

Fig. 4 shows transfer characteristics of the 30-nm device
calculated with the DD, ET, SM, and DSMC models for drain
voltages of 50 mV and 1 V. The overestimation by macroscopic
models at low gate voltages Vg is here more clearly visible.

Fig. 5 presents the velocity profile of the 30-nm-long device.
The velocity profile is notoriously difficult to reproduce by
macroscopic models and often contains a spurious velocity
overshoot at the end of the channel [41]. The ET model clearly
overestimates the velocity with respect to the DSMC model,
whereas the DD velocity is limited by the saturation velocity.
Again, the result closest to the reference DSMC is delivered by
the SM model.

Fig. 6 illustrates the relative error in the output current of
the macroscopic models as a function of the channel length for

Fig. 6. Relative error in the maximum drain current as a function of the
channel length for the DD, ET, and SM models relative to the DSMC results.
The error of the ET model rapidly increases for devices with a channel length
below 80 nm, where even the DD model shows lower errors. The SM model is
the most accurate model for short-channel devices. The ±10% error bounds are
indicated by the dotted lines.

the DD, ET, and SM models. For 100 nm, the ET and the SM
models yield an output current with an error below 5%, whereas
the error in the current of the DD model is about −8%. With a
further decrease in the channel length down to 80 nm, the error
of the ET model rapidly increases, whereas the SM model stays
within 5%. Astonishingly, at about 60 nm, the magnitude of
the error of the DD model becomes smaller than that of the
ET model. For a critical channel length of 30 nm, the errors
of the DD, ET, and SM models are −20%, 54%, and 14%,
respectively. The SM model is thus the most accurate model.
However, below 30 nm, the results obtained by macroscopic
models become questionable. For instance, at a channel length
of 16 nm, the errors of the DD, ET, and SM models are −33%,
127%, and 42%, respectively.

It is interesting to note that the error of the DD current is
relatively small. This has been explained as a consequence of
error cancelation: While the velocity is underestimated, the
zero-field conductivity is overestimated [9], [37], [42] (see
Figs. 2 and 3). No such error cancelation occurs when other
figures-of-merit are considered such as the transit frequencies.
Fig. 7 shows the error of the transit frequencies as a function of
the channel length. The transit frequencies have been calculated
following [9], which requires an accurate velocity profile in the
channel but otherwise no additional parameters. We first see
that the SM model provides results very close to the reference
DSMC simulation down to about 30 nm. In the DD model, the
error in fT is much more severe than the one in Id (see Fig. 6)
due to the lower velocity in the channel (see Fig. 5). Better
agreement between MC and DD is usually enforced by modify-
ing the saturation velocity vsat employed in the mobility model,
which then introduces errors at different channel lengths [43].
However, in a consistent model valid for all channel lengths,
the SM approach yields the best results and outperforms the ET
and the DD models.

Figure 1.1: The results of Vasicek et al. [14, Fig. 6]. The error of a Drift-Diffusion (DD), Energy Trans-
port (ET), and Six Moment (SM) in predicting the drain current of a Double Gate MOSFET with various
channel lengths relative to a detailed Monte Carlo simulation. Regardless of channel length, the Double
Gate MOSFET is subject to a source-drain bias of 1V, a gate-source bias of 1V, and an average transverse
external field of 950kV/cm.
An important caveat is that the closure of these macroscopic models is more complicated than compar-
ing to data generated by homogeneous field simulations in a bulk semiconductor. This is because the
majority of conduction electrons in the channel of a MOSFET exist in a INVERSION LAYER parallel to a
semiconductor–oxide heterojunction10. In effect, the conduction electrons in the channel do not exist in a
bulk silicon crystal, but in a small portion of silicon crystal parallel to the heterojunction.
The extent to which conduction electron states are ”squashed” against the face of the silicon crystal de-
pends on the size of the relatively homogeneous field perpendicular to the heterojunction. At zero field,
no such squashing occurs and the material is bulk silicon. When the field is large, the conduction electrons
in the channel experience more of a 2−D bandstructure, and experience new surface scattering mecha-
nisms in addition to the ordinary bulk ones. Put loosely, the effective ”material” that the conduction
electrons in the channel experience depends on the field strength perpendicular to the heterojunction. As
a result, the homogeneous transport simulations required to close the macroscopic models need to in-
volve the entire spectrum of different effective ”materials” that channel conduction electrons experience.
To achieve this, the transport parameters are derived from an infinite planar Si–SiO2 junction— rather
than bulk silicon— subject to various homogeneous fields. The homogeneous11 field perpendicular to
the junction defines the effective ”material”, and the homogeneous field parallel to the junction defines
the driving force on the electron distribution.

10Which in this case is a silicon–silicon-dioxide heterojunction.
11A minor caveat is that these fields are only nearly homogeneous, since the heterojunction creates small

field inhomogeneities in silicon. The size of the fields perpendicular to the heterojunction are therefore
characterized by the average perpendicular field strength the channel conduction electron density is subject
to.
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The results of Vasicek et al. are in the regime where local dynamic equilibrium is well-
broken. This is ensured by the fact that the results for a device with a relatively large
source-drain bias (∼ 1V) and a characteristic length scale which is at most 100nm—
considerably shorter than the ∼ 300nm required for local dynamic equilibrium. Ac-
cordingly, the drift-diffusion model does not accurately predict the drain current for
any of the devices shown, since the largest device has a channel length of 100nm, and
the gradient of error with respect to channel length (∼ 1% per 20nm) suggests that the
drift-diffusion model will not be accurate until the channel length is ∼ 300nm.

The results of Vasicek et al. are also in a regime where electrons crossing the device are
subject to fairly strong electron-electron scattering throughout their entire transit. This
is ensured by the high gate-source voltage (1V), which implies that the conductive part
of the channel is a high-density inversion region. We expect then that the domain of va-
lidity of the energy transport and six moment model is extended beyond the near local
dynamic equilibrium approximation, and that this fact is responsible for the accuracy
of the energy transport model down to ∼ 100nm, and the accuracy of the six trans-
port model all the way down to ∼ 80nm. We expect then that in MOSFET’s where the
gate-source voltage is small, and the source-drain voltage is similarly large, the assump-
tions underlying both the energy transport and six moment model would break down
at larger length scales then this. Unfortunately, we cannot illustrate this using actual
results from the paper, because the paper omits all results with Vg < 0.2V. However, the
paper does acknowledge that ”the macroscopic models overestimate the drain current
at low Vg” which supports our expectations.

Finally, the results of Vasicek et al. also show a regime where the assumptions under-
lying all models are clearly broken down: specifically, below ∼ 50nm. It is valuable to
show this regime because it makes clear the point that once models are not theoretically
sound there is no reason to expect a more sophisticated model to be more accurate than
a less sophisticated model. That is, when models are fundamentally theoretically un-
sound, it is just as plausible that additional terms lead to larger errors as it is that they
lead to smaller errors. This is illustrated by the fact that the energy transport model is
far less accurate than the drift diffusion model in the regime where all models are bro-
ken. In this particular example, the six moment transport model remains more accurate
than the drift-diffusion model down to ∼ 20nm, but this provides no guarantee that the
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six moment model will not generate even larger errors than the energy transport model
in another device when the assumptions underlying both models are broken.

To conclude this section, the most popular models in TCAD applications are the drift-
diffusion model, the energy transport model and— more recently— the six moment
model. We refer to these models as QUASI-HOMOGENEOUS MACROSCOPIC TRANSPORT MOD-

ELS: macroscopic in the sense that the electron state is defined by simple macroscopic den-
sities, quasi-homogeneous in the sense that the closure of these models relies on an simi-
larity between the local distribution function in a device and the distribution function in
a homogeneous field. In the case of the drift-diffusion model, this quasi-homogeneous
closure is only theoretically sound when the external field is sufficiently homogeneous
for the local dynamic equilibrium approximation hold. In the case of the energy trans-
port and six moment models, this local closure is only theoretically sound when either
the external field is sufficiently homogeneous for the near local dynamic equilibrium
approximation to hold, or when the electron-electron collisions are sufficiently strong
to ensure the electron distribution is near internal thermal equilibrium. We refer collec-
tively to these assumptions as QUASI-HOMOGENOUS CLOSURE ASSUMPTIONS. We refer to
the regime of transport in which none of the quasi-homogeneous closure assumptions
hold as the INNATELY INHOMOGENEOUS regime of transport.12

1.3 Transport in the Innately Inhomogeneous Regime

When we begin to investigate transport in the innately inhomogeneous regime it quickly
becomes apparent that quasi-homogeneous macroscopic transport models not only pro-
vide a solution to the primary problem of finding a sound mapping between the state
variables and the distribution function, they also provide a very elegant solution to a
secondary difficulty in overcoming the closure problem. The secondary problem is that

12In the existing literature, the quasi-homogeneous and innately inhomogeneous regimes of transport
will often be referred to respectively as the LOCAL and NON-LOCAL regimes. We avoid this terminol-
ogy, because local and non-local are important mathematical terms that we may want to use in other
contexts without confusion. For instance, the full Boltzmann transport equation— which is a valid model
of transport for both the quasi-homogeneous and innately inhomogeneous regimes of transport in the
semiclassical regime— is local in position-space, and non-local in momentum-space. This statement would
becomes confused if we use the existing terminology.
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in any device much smaller than a micron which is subject to modest supply voltages
of a few volts, the average energy of the distribution function inside the device will be
large enough that low energy approximations of the bandstructure and scattering oper-
ator will no longer be valid for many semiconductors— including silicon. Accordingly,
for these semiconductors the precise nature of the full band-structure and full scatter-
ing operator will have important effects on electron transport [16]. The elegant solution
quasi-homogeneous macroscopic models provide is that they neatly factor this problem
out of the device modelling step. When quasi-homogeneous closure approximations are
valid, quasi-homogeneous macroscopic models incorporate almost all the effects of a
complex scattering operator and bandstructure on electron transport in a device simply
by extracting a small set of transport parameters from highly detailed simulations of
homogeneous field transport [15].

Unfortunately, in the innately inhomogeneous regime there is currently no known theo-
retically sound approach that similarly separates the problem of modelling the effect of
complex scattering operators and bandstructures from the problem of modelling the ef-
fect of the highly inhomogeneous external fields inside modern semiconductor devices
[6, 17, 12]. This is problematic, because encoding the net effect of a complex bandstruc-
ture and scattering operator on electron transport into a set of device-agnostic transport
parameters that can be precomputed and tabulated greatly increases the speed with which
a device model can be solved. Accordingly, all currently proposed theoretically sound
models of electron transport in the innately inhomogeneous regime are much, much
slower to solve than the quasi-homogeneous macroscopic models.

At present, the only method that can claim to be truly capable of simultaneously in-
corporating detailed scattering operators, arbitrary bandstructure, and an arbitrary po-
sition dependent external potential is the Monte Carlo method [16, 18, 17]. Therefore,
the Monte Carlo method is currently the only theoretically sound model of innately
inhomogeneous transport available, as all other models make assumptions that contra-
dict the microscopic reality of the situation. The problem with using the Monte Carlo
method to evaluate the transport characteristics of a device is that, compared to macro-
scopic modelling, it is CPU intensive. For example, in the paper of Vasicek et al. from
which Fig. 1.1 is taken, finding the entire I-V curve on an Intel Core i7 CPU 3.4 GHz
machine with the drift diffusion, energy transport and six-moment models took ∼ 3,
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∼ 5 and ∼ 15 minutes respectively. In contrast finding the current at a single voltage
point with the Monte Carlo model they used as the control took to 6-7 hours [14]. While
much faster Monte Carlo simulations are possible— Vasicek et al. admit in the paper the
Monte Carlo simulation they use is not optimized for speed— this illustrates common
problem that Monte Carlo models which do not ignore crucial physics have CPU-times
that are several orders-of-magnitude greater than macroscopic models.

The extent to which a model is used in TCAD applications is determined primarily
by the speed with which it generates the transport characteristics of a given device
[12, 2]. Accordingly theoretically unsound device models that are empirically calibrated
to give accurate results in a narrow set of device geometries will always be necessary
in TCAD applications as long as theoretically sound models of the innately inhomoge-
neous regime take significantly longer to solve than quasi-homogeneous macroscopic
models. And as long as theoretically sound models are much slower than macroscopic
models, their role in TCAD applications will always be limited to determining tuning
parameters for these empirical models, and providing insight and intuition into the
physics of transport [13, 19].

Despite the pragmatic workaround afforded by empirical models, speed improvements
to theoretically sound models of the innately inhomogeneous regime are still incredi-
bly valuable to the semiconductor industry. This is especially true in an environment
where device designers are exploring complex 3−D designs with novel geometries that
are constantly exposing novel physical effects [19]. This trend means more and more
theoretically sound simulations are required, both to understand this novel physics and
to recalibrate theoretically unsound empirical models that are only narrowly reliable by
their very nature. This trend means that the time taken to perform theoretically sound
simulations in the innately inhomogeneous regime is becoming more and more of a
bottleneck to innovation [2].

The need for theoretically sound models of innately inhomogeneous electron transport
that are much faster to solve than Monte-Carlo is precisely what we aim to address in
this thesis. In this thesis we propose two novel innately inhomogeneous electron trans-
port models that we argue are theoretically sound: the ELASTICALLY-CONSTRAINED EQUI-

LIBRIUM MODEL, and the THREE-EQUILIBRIA MODEL. Both models rely on an ansatz for the
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distribution function, which allows us to precompute and tabulate transport parameters
that describe the effect of the complicated scattering operators and bandstructures on
these ansatz. The two models differ primarily by the fact that the ansatz used in the
elastically-constrained equilibrium model makes fewer assumptions than in the three-
equilibrium model. As a result, the elastically-constrained equilibrium model has a
broader range of validity than the three-equilibria model, but it is considerably slower to
solve. However both models are expected to be much much faster to solve than a Monte
Carlo simulation with the same level of detail, it is simply that the THREE-EQUILIBRIUM

MODEL is expected to have a speed comparable to quasi-homogeneous macroscopic
models. Both models are valid well into the innately inhomogeneous regime, and can
incorporate the effects of arbitrary bandstructure and a wide range of scattering oper-
ators. As such, both approaches seem to offer significant value to the semiconductor
industry and therefore are worthy of further research and development.

1.4 The Structure of this Thesis

The two models of transport we present in this thesis are quite general. The focus of
this thesis, however, is to elucidate the kernel of both transport models in a clear and
concrete manner. To achieve this, we limit ourselves to modelling transport in simple,
concrete conditions. Specifically, we will model devices in which electrons travel via
pure semiclassical transport through a single crystal of silicon.

We expect with further research and development, these models can be adapted beyond
these specific conditions using similar techniques that are used to adapt local transport
models and Monte Carlo models to beyond these conditions. That is, we expect that the
two models presented in this thesis can be adapted for:

• devices in which holes contribute significantly to transport,

• devices based on semiconductors other than silicon,

• devices involving heterojunctions,
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• devices in which the bandstructure is altered by mechanical stress,

• devices in which the bandstructure is altered by quantum confinement effects, and

• devices in which the external electric potential is replaced by an external effective
potential that includes first-order quantum corrections.

It is well beyond the scope of this thesis to explicitly attempt to demonstrate any such
adaptions, however. In this thesis, we focus entirely on monopolar, pure semiclassical
transport in silicon.

In the background chapter, we derive a model of transport in this regime that is well-
accepted to be theoretically sound [17]. Specifically, we derive the Boltzmann–Poisson
transport equation system subject to the scattering operator and bandstructure used in
the IBM DAMOCLES program [16, 20, 6]. We take pains to describe clearly the many
assumptions that underlie this model, relying more heavily on first principles than on
established explanations. This effort is not as gratuitous as it may seem. The rapid pace
of device innovation and scale-reduction in the semiconductor industry means that in
the long term it is likely all assumptions underlying any regime of electron transport
will eventually be stretched or broken by new technologies. If our understanding of
these assumptions is not as clear as possible, we will underestimate or overestimate the
regimes of validity for these assumptions. Underestimation leads to premature model
complexity, and overestimation leads to unexpected inaccuracy. Both are undesirable.
Therefore new perspectives on old assumptions are useful as they help to generate ad-
ditional clarity within the field.

The background section ends with a brief review of innately inhomogeneous electron
transport models proposed in the literature. Each model is described in terms of the
simplifying assumptions it makes to the state, bandstructure and scattering operator
of the full Boltzmann transport equation. The models are then judged in terms of the
theoretical soundness of these assumptions, and in terms of the computational resources
required to solve the model.

In the theoretical framework chapter, we describe the approach this thesis endorses
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for simplifying the state of the Boltzmann transport equation. Since this theoretical
framework is essentially a novel non-equilibrium statistical mechanical argument that
is potentially of broader interest, we will give a fairly detailed outline of it here.

The basic argument begins with the observation that there are two types of terms in
the Boltzmann transport equation. The parts of the device environment that are pre-
cisely controlled are associated with REPRODUCIBLE HAMILTONIAN terms, which in the
semiclassical regime are associated with an external field and bandstructure, whereas
the parts of the device environment that are imprecisely controlled are associated with
NON-REPRODUCIBLE HAMILTONIAN terms, which in the semiclassical regime are associ-
ated with a spatially localized scattering operator.

The reproducible Hamiltonian terms result in the classical Hamiltonian evolution of the
distribution function. This is a reversible, one-to-one mapping of the entire distribu-
tion function to another distribution function at any particular later time. Accordingly
any distribution function which has been subject to only these classic dynamics will be
the result of only one distribution function at a given earlier time. Thus if a distribution
function is only subject to these classic dynamics, all the information encoded into the dis-
tribution function is strictly required to determine the future distribution function of the
electrons. The electron state is intrinsically unable to be simplified without discarding
essential information. As such, if electrons are subject to only these classical dynam-
ics, there would be no theoretically sound manner to simplify the Boltzmann transport
equation.

The non-reproducible Hamiltonian terms are associated with an irreversible, many-to-one
mapping of the local distribution function. Accordingly any distribution function which
has been subject to scattering dynamics can be the result of multiple distribution func-
tions at earlier times. Thus if a distribution is subject to scattering, only some subset of the
information encoded in the distribution function is strictly required to determine the future state
of the electrons. Put another way, the imprecisely defined environment the electrons are
subjected to results in a continuous erasure of the physical information contained in the
distribution function. The result of this information destruction means that the space of
physically possible local distribution functions is no longer accurately described by the
function space of arbitrary 3−D scalar functions. In intuitive terms, the ”information
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storage capacity” of this function space is much larger than physically required, and it
is possible to use a much smaller function space to encode the same physical informa-
tion. As such, we have a theoretically sound reason for arguing that a careful evaluation
of the scattering operator will lead to a simplification of the electron state function. The
remainder of the theoretical framework section goes toward understanding the precise
physical information that scattering erases.

The first layer of information erasure we describe is intuitively well-known: the era-
sure of crystal momentum information. We formalize this process by arguing scattering
drives the local distribution efficiently toward an ELASTICALLY CONSTRAINED EQUILIB-

RIUM. An elastically constrained equilibrium is a state in which all microstates con-
sistent with a given energy-dependent density function are equally probable. In the first
results chapter, we use essentially only this assumption in order to derive a correspond-
ing model of innately inhomogeneous electron transport in which the electron state is
defined by a position and energy dependent distribution function, which is subject to
diffusion at constant total energy, and an arbitrary, purely inelastic scattering operator.

The second layer of information erasure we describe is the erasure of energy distribu-
tion information. The erasure of energy information by the purely inelastic component
of scattering is far less complete than the erasure of crystal momentum information
by the purely elastic component of scattering. The reason is that a very broad range
of crystal momenta are typically exchanged between an electron and the environment
during scattering, while the energy exchanged between an electron during scattering is
generally much more narrowly defined. As a result, the energy distribution function
information is typically inefficiently erased by the inelastic scattering operator. There
are two well-known exceptions. The first is electron-electron scattering events which,
unlike other scattering mechanisms, are associated with a very broad range of energy
exchanges for the electrons involved. These scattering events efficiently erase all en-
ergy distribution function information apart from the total energy and particle density.
The second is electron-phonon scattering events for subpopulations of electrons that
are close to being thermally distributed at the lattice temperature. In this specific situa-
tion, the inelastic scattering does in fact efficiently erase all perturbations from thermal
equilibrium in the energy distribution function.
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The two efficient energy distribution information erasure mechanisms associated with
the inelastic scattering operator are insufficient to meaningfully simplify the electron
energy distribution function in the innately inhomogeneous regime. There is however,
a third mechanism of energy distribution erasure that is associated with the elastic com-
ponent of scattering rather than the inelastic: diffusion at constant total energy. Diffu-
sion at constant total energy is an irreversible, many-to-one mapping of the distribution
function. This diffusion process acts to erase information concerning short-range dis-
tribution function fluctuations at constant total energy. As a result, the occupation rate at
constant total energy will only tend to reflect the long-range spatial trends in sources
and sinks for electrons entering and exiting the total energy level, rather than the short
range trends in these quantities. If the external field is very small, the precise kinetic-
energy dependent details of the inelastic scattering operator can generate the long-range
spatial trends in the sources and sinks of electrons entering or exiting a total energy
level. However, when the field is large, the precise kinetic-energy dependent details
of the inelastic scattering operator can only generate short range trends in the sources
and sinks entering or exiting a total energy level, which will not be reflected in the dis-
tribution function. As a result, in devices where external fields are large, we have a
theoretically sound reason for expecting that information regarding the precise kinetic-
energy dependent details of inelastic scattering will not be reflected in the shape of the
distribution function.

We propose a simple three-equilibria ansatz for the energy distribution function that we
argue roughly captures the small amount of energy-distribution function information
that is not erased by the three aforementioned efficient energy-distribution information
erasure processes. This ansatz relies on some simple qualitative assumptions about the
inelastic scattering operator and the shape of the external potential, the former of which
is believed to be valid in silicon, the latter of which is believed to be valid in many
devices of interest. In the second results chapter, we derive a complete transport model
for silicon devices based on this ansatz.

In the discussion and conclusion sections we discuss the caveats of the two models,
and the urgent need to test these models. We then describe broader implications of this
work, both for the semiconductor industry and for theoretical physics as a discipline.
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On the practical side, the potential impact of these models on the semiconductor indus-
try is very large. But this impact will not materialize until these models are made into
flexible, easy to use tools that can be used to model a wide range of devices. This will
require significant additional effort both from more research and development, both
within the TCAD industry and in academia.

On the theoretical side, the framework used to derive the models proposed in this the-
sis is quite broadly applicable. The approach presented to simplifying the scattering
operator is quite general, and may find application in other transport problems.
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Statement of Contribution

The major original contributions in this thesis are as follows:

1. In the Theoretical Framework chapter: the definition of— and description of scat-
tering mechanisms that lead to— the WEDGE CONSTRAINED, ELASTICALLY CON-

STRAINED, and CHEMICALLY CONSTRAINED QUASI-EQUILIBRIA. These novel forms
of quasi-equilibrium far from thermal equilibrium are likely to be of wide interest.

2. In the Results I chapter: the derivation of the ELASTICALLY CONSTRAINED TRANS-

PORT model from first principles. This demonstrates that the model of Dmitruk et
al. [21] is a much more generally applicable class of model than the field has yet
appreciated.

3. In the Results II chapter: the derivation of a completely novel THREE EQUILIBRIUM

TRANSPORT model from first principles. No macroscopic model has ever been de-
rived from an ansatz that is so realistic in the innately inhomogeneous regime.

4. In the Results II chapter: the derivation of ansatz-parameter dependent diffusion
and inelastic scattering parameters directly from a scattering operator and band-
structure with a DAMOCLES level-of-detail [16]. No macroscopic model has ever
directly incorporated such a realistic scattering operator and bandstructure.
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Chapter 2

Background

2.1 Introduction

Entropy is an increasing function of the expected number of precise microscopic states
that can be associated with a system characterized by a non-precise specification of state
[22, 23]. If we have two systems, and the total entropy of both systems can be increased
by moving particles from one system to the other then, on average, particles will be
transferred between these systems in this direction of increasing entropy. However, the
actual rate at which particles are transferred from one system to the other is determined
by the specific mechanism for particle transfer. Entropy considerations alone can only
reveal the average direction of particle transfer.

In semiconductor transport theory, we study the entropy driven transfer between sys-
tems of particles called TERMINALS, via the specific mechanism of the movement of CAR-

RIER QUASIPARTICLES through a SEMICONDUCTOR DEVICE. In this thesis, we study devices
in which there is sufficient disorder that the carrier state can be described by a SEMICLAS-

SICAL DISTRIBUTION FUNCTION, and in which the external field is so large and inhomo-
geneous that this distribution function at any given point cannot be assumed to be small
perturbation from the distribution function in any homogeneous field simulation. This
is the INNATELY INHOMOGENEOUS regime of SEMICLASSICAL TRANSPORT. In this chapter,

37



38 CHAPTER 2. BACKGROUND

we seek to provide a solid introduction to a model of transport in this regime that is
well-accepted to be theoretically sound, the BOLTZMANN TRANSPORT EQUATION subject
to a DETAILED SCATTERING OPERATOR and FULL BANDSTRUCTURE. We refer to this model
as the FULL BOLTZMANN TRANSPORT EQUATION.

2.2 Roots of the Semiclassical Regime

In this section we briefly review how disorder in a device leads to carriers which are
governed by semiclassical— instead of fully quantum— dynamics.

We begin by examining the basic concept of a carrier. In the ground state of an ideal, pure
semiconductor, each primitive cell is filled with a suitable number of pairs of electrons
such the next available state for an electron is precipitously higher in energy than the
last available state for an electron, by a BAND GAP. This band gap inhibits the net transfer
of these ground state VALENCE ELECTRONS from one primitive cell to another, even in the
presence of quite large electric fields. In order for there to be a transfer of charge that is
not inhibited by this precipitous energy cost, we either need to add an electron which
has already paid this precipitously higher energy cost to the CONDUCTION BAND of the
system, or we need to remove an electron from system and leave a HOLE in the VALENCE

BAND which can transport charge from primitive cell to primitive cell without paying
the precipitous energy cost. This mobile subpopulation of conduction electrons and
holes are known collectively known as carriers.

Next, we observe that a semiconductor device is a non-precise specification of a physical
state. Fundamentally, a device is a collection of particles that has some reproducible or-
ganization due to process control during fabrication or experimental control during use,
juxtaposed with degrees of freedom that are beyond process or experimental control.1

The reproducible organization in a semiconductor device is:

• the position-dependent ideal semiconductor crystal the device locally approxi-

1The author learned the general strategy of first identifying the reproducible and non-reproducible
parts of a physical system from Jaynes [24].
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mates,

• the lattice temperature,

• the position-dependent dopant/defect density, and

• a reproducible position-dependent ”external” force.

The degrees of freedom that can be assumed to be beyond process or experimental con-
trol are:

• the effect of a local dopant/defect density on each precise primitive cell, and

• the effect of a known lattice temperature on each precise primitive cell at a each
precise time.

It is true that the carrier state associated with the Hamiltonian of a single manifestation of
a device at a particular increment of time may have a complex pattern of constructive
and destructive quantum interference that is intractably complex to compute. How-
ever, our model will only ever be required to predict the statistics associated with re-
producible experiments, which by their very nature involve a population of different
device manifestations tested at different times. Accordingly, it is appropriate that our
DEVICE MODEL is a statistical mixture of the pure Hamiltonians that would be associated
with a particular device manifestation at a particular time. This statistical mixture rep-
resents the population of possible precise device manifestations a carrier is statistically
expected to encounter in a set of reproducible experiments. If there are many degrees of
freedom that are beyond process and experimental control, then many of the intricate
patterns of constructive and destructive quantum interference that exist for the carrier
state of a single device manifestation will be averaged out when we consider the carrier
state of the device model.

The only details in the quantum interference patterns that will remain are those that are
reproducible across all the pure Hamiltonians in our statistical mixture. These repro-
ducible interference patterns can only be due to the sub-Hamiltonians common to all
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Hamiltonians in our statistical mixture. Since averaging over the uncontrolled degrees
of freedom will not average out the interference patterns associated with the common
sub-Hamiltonian, it is important that the time evolution of the carrier that is associated
with this common sub-Hamiltonian is treated as fully quantum mechanical. The physi-
cal effect of the remaining non-reproducible Hamiltonians in our statistical mixture can
be described as simply scattering carrier probability density incoherently; that is, without
phase information, since phase information will be averaged out over the device popu-
lation. The first-order effect of incoherent perturbations is a standard result of quantum
mechanics known as FERMI’S GOLDEN RULE. We will discuss these incoherent scattering
perturbations later, and will first discuss the reproducible order in a population of de-
vices that leads to a common sub-Hamiltonian across all Hamiltonians in our statistical
mixture.

We separate the device–carrier interaction common to all Hamiltonians in our statistical
mixture into two parts: a quickly varying potential due to the reproducible crystal, and a
slowly varying ”external” force. The external force can be thought as the slowly-varying
macroscopic vector force field that remains after averaging over all uncontrolled degrees
of freedom in the device, and removing the quickly varying, approximately periodic,
crystal potential. The use of the word ”external” is conventional but confusing termi-
nology: the external force will typically be attributed to unbalanced charge inside the
semiconductor device.

If it helps the reader, in Fig. 2.1 we show a crude schematic illustrating the step-by-
step paring back of the pure Hamiltonian associated with a particular device manifes-
tation, to the sub-Hamiltonian associated with the reproducible order common to all
device manifestations in the device population. All the unreproducible effects that are
removed will be treated later as perturbations that cause incoherent scattering. Note the
role of the blue crystal in this figure could just as easily be played by a vacuum or other
insulator, and so the crystal interface can also represent the edge of a finite semicon-
ductor device. The purpose of this process is to illustrate the sub-Hamiltonian which
creates patterns of constructive and destructive interference that are not averaged out
across the population of particular device manifestations; that is, the sub-Hamiltonian
that will effect carriers in a purely quantum mechanical manner.



2.2. ROOTS OF THE SEMICLASSICAL REGIME 41

(a) A particular device manifestation. The schematic repre-
sentation of the pure Hamiltonian a carrier experiences due
to a particular instance of a device near a crystal interface
at a particular time. The reproducible, non-periodic ”exter-
nal” force is represented by grey arrows. (Technical note:
the discontinuity in external force at the interface typical,
and is caused by the band energy of a carrier in the blue
crystal being higher than that of a carrier in the red. The
scale of this discontinuity will in general be k dependant,
which is atypical as outside this kind of discontinuities the
external force is roughly independent of k.)

(b) Removing phonons. The precise momentary change to
the carrier potential due to the excitation of atoms from
their equilibrium positions is not coordinated between
other possible pure Hamiltonians in the statistical mixture,
so its reproducible effect on carriers can treated by an in-
coherent scattering perturbation (represented by light or-
ange) to a phononless potential. Note, the anharmonic ef-
fects of these excitations will lead to a uniform thermal ex-
pansion of the average ion positions, which is reproducible
across the statistical mixture for a given lattice temperature.

(c) Removing dopants. The position dependent forces due
to the precise location of dopants are not reproducible
across other possible pure Hamiltonians, as the precise
atomic position of dopants are not experimentally con-
trolled. So the reproducible effect on carriers of dopants
can be found by a incoherent scattering perturbation (rep-
resented by light blue and red) to a dopantless potential.
Note, the contribution of dopant atoms to the occupation
of carrier states is a reproducible effect, as well as their con-
tribution to the external force when their contrasting nu-
clear charge is not balanced by similarly contrasting local
electron charge.

(d) Removing defects. The position dependent forces due
to defects are in general not a reproducible effect, and there-
fore as before we treat their effect as an incoherent scat-
tering perturbation (represented by light purple) a defect-
less potential. Depicted in the diagram is the diagram
is a borderline case of this reasoning— that of surface
reconstructions— which in very controlled device growth
conditions could cause reproducible patterns of carrier in-
terference as the forces would be reproducible across the
pure Hamiltonians in our statistical mixture.

Figure 2.1: Removing non-universal force fields in a statistical mixture of Hamiltonians as incoherent
scattering perturbations.

Finding the solution for carrier states in this electromagnetic field common to all devices
in the population is still a fairly intractable problem if tackled directly. To make progress,
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r

(a)

r

(b)

Figure 2.2: A schematic illustration of the assumption that a coherent carrier wavepacket centred at r
is sufficiently localized that it interacts with the reproducible part of the Hamiltonian as if it were the
superposition of a perfectly periodic crystal and a uniform force.

we presume that the non-reproducible parts of the device Hamiltonian localize the car-
rier to a small enough area of the crystal such that the carriers experiences a quickly
varying crystal potential that is roughly equivalent to perfectly periodic potential, and
experiences the slowly varying external force as a uniform force. This presumption is
illustrated schematically in Fig. 2.2, and is the essential assumption that leads to semiclassical
dynamics.

It is well-known that there are no stable eigenstates to this simple Hamiltonian involv-
ing a perfectly periodic lattice and a uniform external field, if the uniform external field
is non-zero [25]. Accordingly, we begin in a standard manner by first finding the eigen-
states of the zero external force problem, and only then will we investigate their time-
dependant evolution when the uniform field is turned on.

The single carrier eigenstates in a perfectly periodic potential are known as BLOCH

WAVES, and are labelled by a CRYSTAL MOMENTUM k— which is restricted by convention
to a BRILLOUIN ZONE— and a BAND INDEX ν.2 The energy eigenvalues— εkν— corre-
sponding to each of these single carrier eigenstates— |kν〉— are given by a function
known as the BANDSTRUCTURE. The background of these terms is described in Ap-

2We will present the variables crystal momentum k and band index ν as a combined pair of variables
kν. This notational convention highlights the fact that the pair of variables is associated with a single 3−D
degree of freedom, since it is possible to create an extended zone scheme where k ∈ R3 and there is only
one band, so ν = 1. We will not use this extended zone scheme unless explicitly specified, as in most cases
a reduced zone scheme in which k ∈ BZ (where "BZ" is the first Brillouin Zone) and ν ∈ Z \ {0} is much
more physically intuitive. Nevertheless, it is useful to have a notational reminder that fundamentally it
is the pair of variables that is associated with a single 3−D degree of freedom.
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pendix A. In near-equilibrium carrier transport, the carriers tend to be concentrated
in the bottom of the conduction band and top of the valence band. By Taylor’s theorem,
this allows one to approximate the energy eigenvalues as a function of displacement
from the crystal momentum at the extrema as a 3−D quadratic. In far-from-lattice-
temperature-equilibrium transport no such approximation can be relied upon— carri-
ers are widely dispersed throughout conduction and valence band energies— and so
the full bandstructure is required.

The problem of calculating a full bandstructure from first principles is an area of active
research that can be considered to be completely disconnected from this thesis. As ex-
plained in Section 2.4, this is because there is a phenomenological approach— known
as the EMPIRICAL PSEUDOPOTENTIAL METHOD— that enables one to approximate the full
bandstructure from experimental measurements of the optical band gaps. However,
we would like to note here a possible point of confusion with regard to bandstructure
calculation. From the perspective of bandstructure physicists, the bandstructure is the
solution to a many-body electron problem that is concerned with every electron but the
carriers. Whereas from the perspective of a carrier transport physicist, it is simply a
statement of the kinetic energy to crystal momentum relationship for carrier quasipar-
ticles that allows us to ignore every electron but the carriers. It is worth briefly outlining
why these two views are not contradictory.

The field due to a highly localized carrier will be a locally significant perturbation to the
ideal crystal. As such, we expect a correlation between the position of a carrier and the
local state of the ideal crystal. This correlation typically takes the form of a polarization
of the ideal lattice, since the local electrons in the crystal can only rearrange themselves
in a manner that conserves the charge in each primitive cell. This is because— as dis-
cussed earlier— charge transport between primitive cells requires the precipitous en-
ergy cost defined by the band gap. Thus carrier–ideal crystal correlations can typically
be described by an altered dielectric constant. We note that, if a carrier has a kinetic en-
ergy greater than the band gap, then valence band electrons can respond dynamically.
Thus to complete the description of the carrier–ideal crystal correlation we must also
include an IMPACT IONIZATION term in the scattering operator, which is associated with
carriers that have an energy greater than the band gap.
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We define a perfect bandstructure calculation as providing the set of energy eigenstates
of a single valence electron state at a given crystal wavevector, taking into account the
perfectly periodic interaction of the electron with ground state of the crystal ions and
every other valence electron. To create a single carrier quasiparticle, we flip the ground-
state occupation number at a single wavevector and band index. The eigenvalues of a
carrier will only be the same as the eigenvalues of the bandstructure if the correlation
term is negligible.3 In a monatomic semiconductor such as silicon, we expect the polar-
izability of a primitive cell to be small, and therefore expect the bandstructure to yield
the energy eigenvalues of isolated carriers.

The Bloch waves have a well-defined average velocity. It can be shown (for instance,
see Ashcroft and Mermin [26]) that this average velocity is proportional to the k-space
gradient of the bandstructure:

v(kν) =
1

~
∇kεkν . (2.1)

There are two different ways in which this equation can be seen as physical intuitive.
On the one hand, if we think of the bandstructure (divided by ~) as a dispersion relation,
then eq. (2.1) is the equation for the group velocity of a wavepacket made of frequencies
near εkν

~ . On the other hand, if one thinks of k (multiplied by ~) as a quasi-momentum4

p = ~k, and the energy eigenvalues as the kinetic energy of the carrier εkinetic(kν) = εkν ,
it can be considered to be analogous to the formula in classical mechanics v = ∇pεkinetic.

Having found the carrier Bloch eigenstates of the zero external force problem, and writ-
ten down an expression for their velocity, it is time to examine the dynamic evolution
of these carriers when we turn on the uniform external force. When we turn on the
uniform external force we are immediately confronted with the INTERBAND TRANSITION

issue: the uniform external force will stimulate electrons to make transitions between
bands. For instance, if the valence band and conduction band at k are separated by

3Generally, we only refer to a carrier as a carrier if the carrier–ideal crystal correlation is negligible.
If the carrier–ideal crystal correlation is significant, we generally refer to the carrier and induced local
polarization as a POLARON to emphasize the fact that its eigenvalues are not given by the bandstructure.

4Often called the CRYSTAL MOMENTUM, but k by itself is also called this at least as often, including
in the vast majority of this thesis. This convention probably originates from unit systems where ~ = 1.
We also note that this is the only time in this thesis we use p to refer to this quasi-momentum. In the rest
of this thesis, it will be used to refer to the Bloch wavevector associated with a secondary carrier.
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an energy εdirect
gap (k), an electron previously stuck in the valence band can always ZENER

TUNNEL to a state in the conduction band a distance d =
εdirect

gap

|F| downfield that will have
the same total energy. This process will create two carriers: a conduction electron and
a hole. However, unless the field is very large and the current very small, the rate at
which interband transitions mediate the transport of carriers is usually negligible com-
pared to the rate at which carriers flow due to other transport mechanisms. As such, we
assume in this thesis that the rate of external force induced interband transitions is zero,
and simply note that this approximation can be corrected for by adding a Zener term to
the scattering operator if required.

It is shown in Appendix B that when the interband transition rate is set to zero, the
uniform force has an astoundingly simple dynamic effect on a Bloch carrier state: the
carrier wavevector will change in accordance with eq. (2.2). This equation is known
as NEWTONS LAW FOR BLOCH STATES because the external force affects ~k— the quasi-
momentum associated with Bloch states— in exactly the same way that a real force
affects real momentum:

F =
∂~k

∂t
. (2.2)

We assumed that in the region that a carrier is localized to, the reproducible device
potential can be approximated as the superposition of an ideal crystal and a uniform
external field. This localization implies that we assume a single carrier is a coherent su-
perposition of Bloch waves, as opposed to a pure Bloch state which would be perfectly
delocalized. In Appendix B, we demonstrate an important fact about the effect of an
external force on coherent superpositions of Bloch waves. Namely, the effect of a uni-
form field on a coherent superposition of Bloch waves is exactly the same as the effect of a
uniform field on a classic statistical mixture of Bloch waves. Since scattering is incoherent, we
similarly have that the effect of scattering on a coherent superposition of Bloch waves
is exactly the same as the effect of scattering on a classic statistical mixture of Bloch waves.
These two facts enable us to model the evolution of any statistical collection of coherent
Bloch carrier wavepackets by stripping that collection of its phase information and only
tracking the movement of a classical distribution of fictitious "Bloch particles"— each of
which have both an exact position and an exact Bloch wavevector— which has the same
probability density as the actual carrier wavefunction in a coarse grained phase space.
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The probability density associated with the statistical mixture of fictitious Bloch parti-
cles is expressed by the carrier’s DISTRIBUTION FUNCTION, f(kν, r, t). Since the carrier
state is defined by a classical phase space distribution function over states with fairly
classical dynamics except for idiosyncratic kinetic details defined by pure quantum me-
chanics via the bandstructure, this is referred to as a SEMICLASSICAL MODEL of a carrier.

Our derivation so far has made it appear that the semiclassical model requires an ex-
ternal force which is uniform over the localization length scale. However, we note that
we have not actually ruled out the validity of semiclassical model in the more general
condition where the carrier is localized to a non-uniform external force. The most intu-
itive way to explore this question is to reformulate Schrödinger’s equation in terms of
Wigner’s quasiprobability distribution [27, 28, 29, 30].

The Wigner quasiprobability distribution is a representation of the density matrix on
phase space. It has the attractive feature that the expectation value of any physical
quantity is the same weighted integral that would determine that same physical quan-
tity for a classical probability distribution. The only difference from an ordinary prob-
ability distribution is that the quasiprobability distribution is permitted to have values
greater than one and less than zero. This does not cause impossible results with respect
to experimentally verifiable questions because— as has been known since the dawn
of quantum mechanics [31]— there is a limit to which we can experimentally localize
particle density in phase space.

We can transform Schrödinger’s equation into an equation for the evolution of the
Wigner quasiprobability distribution. From this transformation, we find that the evo-
lution of the quasiprobability distribution in an external potential V (r) can always be
modelled as the classical evolution of a simple probability distribution of fictitious parti-
cles unless there exists a λ ∈ {3, 5, . . . } such that ∂λV

∂rλ
6= 0 [32].5

It may be thought, then, that we can rigorously strengthen our claim of the validity of
the semiclassical regime when the external potential takes a quadratic form over the re-
gion the carrier is localized to. However, we note that the derivation of Newton’s law for
Bloch states does not involve perturbation theory, and therefore the result holds for arbitrar-

5We note that if these derivatives are not defined, then they are not equal to zero.
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ily strong fields, so long as one also includes a scattering term which models interband
transitions. In the case of a non-uniform external field, there is no known analogous
non-perturbative separation of the periodic part of the potential from the non-periodic part. As
such, the result of the Wigner formulation can only be taken to suggest that, if a carrier is
localized to an external potential that can be approximated by a quadratic, this external
potential will be consistent with the semiclassical model to a first-order approximation.

So far, we have only really dealt with the dynamics of a single carrier, so we now con-
sider the problem of many carriers. These carriers will interact with one another, and
thus their positions will be correlated and not independent as implicitly assumed so
far. As is becoming a habit, we begin by separating this interaction Hamiltonian into
reproducible and non-reproducible parts. We consider the reproducible part to be as-
sociated with a coarse-grained, position-dependent density of carriers, and the non-
reproducible part to be associated with the precise instantaneous position of the carriers.
The reproducible bulk density of carriers is associated with long-range, reproducible
carrier–carrier correlations that can be captured in the definition of the external field,
while the precise instantaneous position of any given carriers results in short-range,
non-reproducible carrier–carrier correlations that can be captured by the definition of
an incoherent, carrier–carrier scattering rate.

In order for the reproducible carrier–carrier correlations to be captured by the exter-
nal field, it is clear that the external field must be updated at a frequency significantly
greater than the frequency of plasma oscillations [16, 6]. This only leaves open the ques-
tion of an appropriate size for the coarse grain. It is shown by the rigorous analysis of
jellium by Bohm and Pines [33] that the Debye screening length is a natural length scale
for the coarse-grain. This is physically intuitive for two complimentary reasons, that are
really just two ways of looking at the same physics. Firstly, the Debye screening length
is the length-scale associated with the canonical example of a reproducible carrier–carrier
density correlation: screening. Secondly, incoherent carrier–carrier scattering— associ-
ated with the non-reproducible, precise position of carriers— quickly vanishes at length
scales larger than the Debye screening length because of that screening, and therefore cor-
relations that occur above this length scale must not be due to the precise position of
carriers.
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The purpose of this section was to give a conceptual introduction to the semiclassical
model of carriers. It is clear that the validity of the semiclassical model relies on the
carriers being localized to regions over which the external field is reasonably uniform.
To safely use the semiclassical model of carriers, we must justify this assumption in the
devices we investigate in this thesis.

In this thesis we investigate non-equilibrium transport that is PHONON COLLISION DOMI-

NATED. By phonon collision dominated, we mean that most scattering events are phonon
scattering events, and that the mean free path for a carrier between phonon scattering
events is much smaller than the characteristic length scale of the device. The crucial
point about transport in this regime is that, while there is a phonon state associated
with every crystal momentum, there is not a phonon state associated with every energy.
In particular, there is no phonon that has a higher energy that the highest energy optical
phonon state. The result is that in a device with a large field, scattering with phonons
tends to relax the crystal momentum gained between collisions effectively, while not
effectively relaxing the energy gained between collisions. The result is a distribution of
carriers that has a high average energy, is highly non-equilibrium, but is fairly isotropic.

The primary localization mechanism for carriers in this regime is decoherence [34, 35]
via phonon interaction. However, it is the authors understanding that the most im-
portant insight as to how this localization actually works in this regime has not been
directly discussed before. For the completeness of this section, we will roughly describe
it here. A phonon of wavevector q, in band η, which has a frequency of ωqη can scat-
ter with a carrier in eigenstate |kν〉 if and only if there a carrier band ν ′ such that the
phonon annihilation/creation conserves energy and crystal momentum; that is, such
that ε(k±q)ν′ − εkν = ±~ωqη. As such, the set of phonons that can scatter with carriers is
therefore a peculiar function of the crystal momentum/kinetic energy of the carrier, and
so the phonon annihilated or created in a scattering event reveals a lot of information
about the crystal momentum/kinetic energy of the carrier state. In a strong field, the
crystal momentum/kinetic energy of a carrier is strongly coupled to the position of the carrier.
Accordingly, the carrier can be expected to leak fairly precise information about its posi-
tion to the phonon system once every mean free scattering time. This essentially means
that the position of the carrier is expected to be measured, and therefore the carrier local-
ized, with a precision roughly proportional to the field strength, every mean scattering
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time.

As the field tends to infinity, localization will tend toward a delta function in position.
However, such a carrier will— according the uncertainty principle— be a superposition
of an infinite number of crystal momenta eigenstates. As such, in a mean free time,
the wavepacket will delocalize into a wavepacket with a width roughly twice that of
the mean free path. The average localization of the wavepacket in the infinite field limit
is therefore a wavepacket with a width roughly halfway between perfect localization
and this two mean free path wavepacket. As such, as the field tends to infinity, the
expected localization of carriers will be approximately equal to the mean free path be-
tween phonon scattering events. We will call this the LARGE FIELD APPROXIMATION of
localization in the phonon collision dominated regime.

In the large field approximation, the semiclassical model will hold so long as the mean
free path is much larger than a primitive lattice cell, and the field is approximately
uniform over the mean free path between phonons. Additionally, the semiclassical— as
opposed to full quantum— treatment of plasma oscillations via frequent updates to the
external potential will hold if the wavelength of plasma oscillations is much greater than
the mean free path between phonon collisions, as this implies the plasma oscillations
are largely incoherent. Thus it is crucial to know that in room temperature silicon, the
mean free path between phonon collisions is on the order of ∼ 2− 3nm [12].

2.3 The Boltzmann–Poisson System

In the previous section, we argued that non-equilibrium, phonon collision dominated
carrier transport can be modelled semiclassically. That is, the mechanics of carriers in a
device can be modelled using a classical time-dependent distribution function f(kν, r, t)

on a semiclassical phase space characterized by crystal momentum k, band index ν and
position r. The distribution function itself can be understood as the probability density
associated with the existence of a given "Bloch particle": a fictitious, highly classical
carrier particle that has a specific position, crystal momentum and band index.
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The semiclassical model is an extremely powerful and intuitive model of carrier trans-
port when it is valid. Its elements are as follows. The reproducible, periodic crystal
potential leads to the bandstructure, which defines the kinematics of Bloch particles.6

The reproducible, aperiodic external force leads to Newton’s law for Bloch states, which
states that the external force affects crystal momentum in exactly the same way that the
net force affects momentum in classical mechanics. Finally the unreproducible carrier–
carrier and carrier–device interactions lead to the definition of the rate at which Bloch
particles abruptly scatter into states with different crystal momentum and band index,
which is not unlike classical particle scattering.

The abstract, high-level origin of this beautiful simplification of quantum mechanics
into semiclassical mechanics can be understood as follows. The classical uncertainty
with respect to the carrier–carrier and carrier–device interaction Hamiltonians creates
enough "wiggle-room" for us to be able to create this fictional, nearly classical microscopic
mechanics that leads to the same predictions as the experimentally verified, fully quantum
microscopic mechanics.

In this section, we will describe how to find a closed equation of motion for the semi-
classical carrier distribution function. As is often the case in carrier transport theory, we
begin by forming an open equation of motion for the carrier state using little more than
a simple continuity argument.

Suppose that, at time t, we have a Bloch particle with wavevector/crystal momentum
k, band index ν, at a position r. If we wait a time δt, in the absence of scattering, this Bloch
particle:

• will have a Bloch wavevector k + F
~ δt according to Newtons law for Bloch states,

• will be in the same band ν since interband transitions are always incorporated into
scattering, and

6These kinematics are admittedly complex: the effective mass of the Bloch particle is neither scalar, nor
constant, nor positive definite. So one must vigilantly fight the classical habit of slipping into thinking of
velocity and (crystal) momentum as interchangeable quantities, or thinking there is a simple quadratic
relation between these quantities and the kinetic energy.
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• will be at a position r + vδt by the definition of velocity.

Thus, in the absence of scattering, the probability of a Bloch particle at (kν, r, t) would
be the same as the probability of a Bloch particle at

(
(k + F

~ δt)ν, r + vδt, t + δt
)
. If the

latter probability is smaller, there must be a net positive probability of diverting carriers
out of the trajectory that leads toward

(
(k + F

~ δt)ν, r + vδt, t + δt
)
; whereas if the latter

probability is larger, there must be a net positive probability of diverting carriers into
the trajectory that leads toward

(
(k + F

~ δt)ν, r + vδt, t + δt
)
. To reiterate, if we follow a

single Bloch particle trajectory, in the absence of scattering, we can only attribute a single
probability to the entire locus of time-dependent phase space points that defines a Bloch
particle trajectory.

This does not seem to imply that, in the absence of scattering, we can only attribute a sin-
gle probability density, f(kν, r, t), to the entire locus of phase space points that defines
a trajectory. That is, it seems naïvely possible that Bloch particle trajectories might be
such that they are more dense in some parts of phase space and less dense in others.
However, it is well-known result known as Liouville’s theorem that this compression
and expansion of trajectories in phase space does not occur [36]. As such, we can apply
the reasoning of the previous paragraph to probability densities also. Thus the reasoning
of the previous paragraph leads to the following equation for the phase space probabil-
ity density f(kν, r, t), where

(
∂f(kν,r,t)

∂t

)
scat

is the net density of Bloch particles per unit
time that scatter into a small volume of points near (kν, r, t):

f
( (

k + F
~ δt
)
ν, r + vδt, t+ δt

)
− f(kν, r, t) =

(
∂f(kν, r, t)

∂t

)

scat
δt. (2.3)

We now perform explicitly a step-by-step Taylor expansion of the leftmost term of
eq. (2.3), which can be rigorously truncated to first order as δt becomes infinitesimal:
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f
( (

k + F
~ δt
)
ν, r + vδt, t+ δt

)

= f(kν, r + vδt, t+ δt) +
F

~
δt · ∇kf(kν, r + vδt, t+ δt) +O(δt2)

= f (kν, r, t+ δt) +
F

~
δt · ∇kf(kν, r, t+ δt) + vδt · ∇rf (kν, r, t+ δt) +O(δt2)

= f(kν, r, t) + vδt · ∇rf(kν, r, t) +
F

~
δt · ∇kf(kν, r, t) + δt

∂

∂t
f(kν, r, t) +O(δt2).

(2.4)

We substitute eq. (2.4) truncated to first order in δt into eq. (2.3) and divide by δt. This
leads to the following expression:

∂

∂t
f(kν, r, t) + v · ∇rf(kν, r, t) +

F

~
· ∇kf(kν, r, t) =

(
∂f(kν, r, t)

∂t

)

scat
. (2.5)

Eq. (2.5) is known as the BOLTZMANN TRANSPORT EQUATION. It is the general equation of
motion for carriers in the semiclassical regime. When the Boltzmann Transport Equation
is presented from here on out, we will generally suppress the domain of the distribution
function, and therefore write it simply as follows:

∂f

∂t
+ v · ∇rf +

F

~
· ∇kf =

(
∂f

∂t

)

scat
. (2.6)

In order to close this equation, we need to find independent expressions for the external
force F, the velocity v, and the scattering term

(
∂f
∂t

)
scat. We begin with the external force

F.

The external force is a Lorentz force, which is a function of the local electromagnetic
field at a given time, the charge of the Bloch particle, and the velocity of the Bloch par-
ticle. Accordingly, the external force is generally a function of (kν, r, t). However, this
thesis is concerned exclusively with carrier transport in non-magenetic homogeneous
semiconductor devices. Since the device is non-magnetic, we assume the external mag-
netic field is negligible. Additionally, since semiconductor transport typically involves
relatively small current densities, we assume that the magnetic field induced by current
flow is negligible. Since both the induced and external magnetic field are negligible,
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the Lorentz force associated with the magnetic field is also negligible, and as such the
Lorentz force does not depend on the velocity of the Bloch particle.

Furthermore, according to Maxwell’s equations, the electric field has a curl-less com-
ponent due to the instantaneous charge distribution, and a divergence-less component
due to the rate of change of the magnetic field. Since the magnetic field is negligible,
we assume the electric field E and— by extension— the external force F are curl-less,
indicating the external force can be related to the gradient of the electric potential φ(r, t):

F
(
sign(ν), r, t

)
= −sign(ν)eE(r, t) by definition of Lorentz force,

= sign(ν)e∇rφ(r, t) by definition of electric potential. (2.7)

Here e is the fundamental charge, and we have used the convenient convention that the
band index ν is a positive integer for conduction electrons and a negative integer for
holes. The electric potential can be determined by POISSON’S EQUATION, where ρ(r, t) is
the coarse-grained charge density:

∇2
rφ(r, t) = −ρ(r, t)

ε
. (2.8)

Suppose we have a number of different doping fields, each indexed by an integer i, and
each described by a position-dependent dopant density N i

dop(r). We suppose Zi
dop is the

number of electrons per dopant added to the conduction band, which is equivalent to
the number of additional protons the dopant contributes to the local charge compared
to the ideal crystal. We note that by this definition Zi

dop is positive if the dopant is a
donor, and negative if the dopant is an acceptor.

The full valence band balances the charge of the ideal crystal. Accordingly, the local
charge density is proportional to the local net difference of added dopant proton density
and hole density from subtracted dopant proton density and conduction electron density:

ρ(r, t)

e
= p(r, t)− n(r, t) +

∑

i

N i
dop(r)Zi

dop. (2.9)

Here the density of holes p(r, t) and conduction electrons n(r, t) is defined by integrating
the distribution function over the Brillouin zone for all negative bands and all positive
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bands respectively, and multiplying by Γ— the density of carrier states per unit volume
of k-space, per band7:

p(r, t) = Γ
∑

ν<0

∫

BZ
f(kν, r, t)dk, (2.10a)

n(r, t) = Γ
∑

ν>0

∫

BZ
f(kν, r, t)dk. (2.10b)

Through the set of prior equations, we have related the external force to the distribution
function f . Next, we wish to find an expression for the velocity. We simply note that in
this thesis we are concerned with devices made from a homogeneous material, which
implies the local bandstructure is independent of position r. As such, the velocity of the
distribution function at crystal wavevector k is simply given by eq. (2.1), and is position
independent:

v(kν) =
1

~
∇kεkν . (2.11)

Finally, we note that at this point we will not simplify the problem of relating the
scattering term to the distribution function any further. Instead, we now combine
eq. (2.6) – eq. (2.11), in order to define the tightly coupled pair of equations known
as the BOLTZMANN–POISSON SYSTEM:

∂f

∂t
=

(
∂f

∂t

)

scat
− 1

~
∇kεkν · ∇rf −

sign(ν)e

~
∇rφ · ∇kf

∇2
rφ =

e

ε

( n−p︷ ︸︸ ︷
Γ
∑

ν

sign(ν)

∫

BZ
fdk−

∑

i

N i
dopZ

i
dop

)

(2.12a)

(2.12b)

In the Boltzmann–Poisson system, the Boltzmann transport equation (2.12a) is the equa-
tion of motion for the distribution function f in terms of the external electric potential
φ, and the Poisson equation (2.12b) is the equation of motion for the external electric
potential φ in terms of the distribution function f . We note that the Boltzmann–Poisson
system is closed if and only if we can find expressions for the bandstructure εkν and the
net scattering rate term

(
∂f
∂t

)
scat in terms of distribution function f and/or the external

7For spin-degenerate bands of silicon, Γ = 1
4π3
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electric potential φ.

In conventional, near-lattice-temperature-equilibrium carrier transport, it is trivial to
close the Boltzmann–Poisson system with analytic expressions for the bandstructure
and scattering rate term [26]. We outline one robust approach here. The scattering rate
term is given by the LATTICE TEMPERATURE EQUILIBRIUM RELAXATION TIME APPROXIMA-

TION. In this relaxation time approximation, we presume there exists a local equilibrium
distribution for each band characterized by a band-dependent quasifermi level8 εFν (r, t)

and the lattice temperature TL:

fequilibrium(kν, r, t) =
1

e
εkν−εFν (r,t)

kTL + 1

. (2.13)

Here k is Boltzmann’s constant, and the size of the quasifermi level is determined by the
conservation of local carrier density. We then assume that perturbations from the local
equilibrium distribution exponentially decay in time, with the decay constant conven-
tionally represented by a equilibrium relaxation time τ equilibrium

relax :
(
∂f

∂t

)

scat
= −f(kν, r, t)− fequilibrium(kν, r, t)

τ
equilibrium
relax

. (2.14)

For the near-lattice-temperature-equilibrium bandstructure, we proceed as follows. First,
we note the number of valleys within 3kTL of the conduction band minima or the va-
lence band maxima. Second, we change the band index convention so that only the
valleys noted are associated with a unique band index ν. Finally, we apply a band-
index-dependent crystal momentum translation to both sides of the Boltzmann trans-
port equation, such that all the valleys noted now occur at the gamma point of the trans-
formed domain. It is clear from inspection that such a translation does not effect the
LHS or RHS of the Boltzmann transport equation in the relaxation time approximation
except via the transformed bandstructure. Thus in the relaxation time approximation,
we can use a fictitious "centred" bandstructure.

Finally, we can approximate each of valleys in the centred bandstructure as being parabolic
in k over the range of small thermal range of energy where carriers are concentrated:

8Typically, the quasifermi level is assumed to be single-valued for all hole bands, and single-valued
for all conduction electron bands.
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εkν = ε0
ν +

1

2
~2(m−1

ν k) · k. (2.15)

Herem−1
ν is the inverse effective mass tensor at the kinetic energy minima of the ν band.

We note that, if desired, we can define a small non-parabolic correction by mulitplying
the RHS by

(
1 + αεkν

)
, where α is a non-parabolicity factor [9].

While closing the Boltzmann-Poisson system in the near-lattice-temperature-equilibrium
regime is straightforward, in the far-from-thermal-equilibrium regime relevant to this
thesis, there is no similarly simple analytic closure that is theoretically sound. Instead,
considerable effort is required to define the full bandstructure and the full scattering
rate term [16]. Thus, we now turn our attention to defining the full bandstructure and a
full scattering rate term.

2.4 Generating the Full Bandstructure

In far-from-lattice-temperature-equilibrium transport, it is typical for the average ki-
netic energy of carriers to be on the order of an electron volt, rather than on the order
of the lattice thermal energy kTL � 1eV. As a result, carriers are spread throughout
a wide range of energies in the conduction and/or valence bands— and correspond-
ingly spread widely throughout the entire Brillouin zone— instead of being concen-
trated around a few kinetic energy minima. As such for many materials— including
silicon— we cannot approximate the bandstructure as parabolic or near parabolic, and
must instead incorporate the full bandstructure into our carrier transport model if the
model is to be theoretically sound [6]. In this section, we will therefore give an overview
of the theory required to generate a reliable estimate of the full 3−D bandstructure.

A full bandstructure calculation generates the expected energy eigenvalues associated
with carrier eigenstates of fixed crystal wavevector. This calculation is difficult to do
from first principles, as there are an enormous number of non-negligible effects one
must take into account. Since bandstructure calculation is not the focus of this work,
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we would ideally like to be able to simply assume the bandstructure is a measured ex-
perimental quantity. However, since the bandstructure defined by M 3−D scalar fields,
whereM is the number of bands of interest, this is not the most pragmatic approach. In-
stead, we will use a simple phenomenological approach known as the EMPIRICAL PSEU-

DOPOTENTIAL METHOD. This method enables us to generate a full bandstructure from
a small set of phenomenological constants, which can be determined implicitly from
empirical optical absorption data.

We begin by expanding a valence electron Bloch eigenstate ψkν into two parts: a valence
pseudoeigenstate ϕpseudo

kν and a core orthogonalization term. The core orthogonalization
term is equal to the projection of the pseudoeigenstate onto the core Bloch eigenstates
ψkνcore multiplied by −1:

ψkν = ϕ
pseudo
kν −

∑

νcore

〈
ψkνcore |ϕpseudo

kν

〉
ψkνcore . (2.16)

The point of the orthogonalization term is to ensure that the real valence electron Bloch
eigenstate ψkν is automatically orthogonal to the core states no matter how non-orthogonal
the pseudoeigenstate ϕpseudo

kν might be to the core states:

〈ψkν |ψkµcore〉 =
〈
ϕ

pseudo
kν |ψkµcore

〉
−
∑

νcore

δνcoreµcore

〈
ϕ

pseudo
kν |ψkνcore

〉

= 0. (2.17)

The valence electron pseudoeigenstate is therefore a valence electron eigenstate with
an arbitrary amount of the core electron eigenstates mixed in. The point of this is as follows.
There is a minimum rate of spatial variation for the real valence electron Bloch eigenstate,
enforced by the fact that the valence electron eigenstate must vary fast enough to be
orthogonal with all the core electron Bloch eigenstate at the same crystal momentum.
There is, however, no such minimum rate of spatial variation for the pseudoeigenstate of
a valence electron. This raises the possibility that the pseudoeigenstate for a valence
electron might be able to be described in terms of a much smaller basis of plane waves
than the real Bloch eigenstate of a valence electron. A smaller set of basis functions
implies that such eigenstates will be less computationally demanding to find.

We would like then to derive a pseudo-Hamiltonian Ĥpseudo that has the pseudoeigen-
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states as its eigenstates, and that has the same energy eigenvalues as the real valence elec-
tron Bloch eigenstates. We begin by expanding the expression for the real Hamiltonian
operating on the real valence electron Bloch eigenstate in terms of the pseudoeigenstate:

Ĥψkν = Ĥϕ
pseudo
kν −

∑

νcore

〈
ψkνcore |ϕpseudo

kν

〉
Ĥψkνcore . (2.18)

We can now substitute in the energy eigenvalues for eigenstates of the real Hamilto-
nian, and eliminate the dependence of eq. (2.18) on the valence electron eigenstates ψkν .
The core electron energy eigenvalues are written as εkνcore while the valence electron
eigenvalues are written as εkν :

εkν

(
ϕ

pseudo
kν −

∑

νcore

〈
ψkνcore |ϕpseudo

kν

〉
ψkνcore

)
= Ĥϕ

pseudo
kν −

∑

νcore

εkνcore

〈
ψkνcore |ϕpseudo

kν

〉
ψkνcore .

(2.19)

If we simply rearrange so that the energy eigenvalue of the state ψkν and the pseu-
doeigenstate are on the LHS, then the RHS must automatically define the desired pseudo-
Hamiltonian Ĥpseudo:

εkνϕ
pseudo
kν = Ĥϕ

pseudo
kν +

∑

νcore

(εkν − εkνcore)
〈
ψkνcore |ϕpseudo

kν

〉
ψkνcore

= Ĥpseudoϕ
pseudo
kν . (2.20)

This means that the pseudo-Hamiltonian is the real Hamiltonian plus a repulsive arti-
ficial potential term that adds the difference in energy between the valence electron eigen-
state and the core electron eigenstate, weighted by the overlap of these functions:

Ĥpseudo = Ĥ + V̂artificial, (2.21a)

where V̂artificial =
∑

νcore

(εkν − εkνcore)
〈
ψkνcore|ϕpseudo

kν

〉
|ψkνcore〉

∣∣∣ϕpseudo
kν

〉

=
∑

νcore

(εkν − εkνcore) |ψkνcore〉〈ψkνcore | . (2.21b)

This can be understood as follows. The pseudoeigenstate is nothing more than a partic-
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ular superposition of the core electron eigenstates and the valence electron eigenstate.
The energy expectation of the pseudoeigenstate according to the actual Hamiltonian
will be the weighted average of the valence and core electron eigenstate energies. Since
we want the pseudo-Hamiltonian to assign the pseudowavefunction the same expected
energy as the valence eigenstate, we need to "make up" the deficit of the energy by
adding the repulsive artificial potential V̂artificial the real Hamiltonian, which grows the
greater the difference between core and valence energies, and grows the greater the
amount of core state that is incorporated into the pseudowavefunction.

This notion of an artificial potential was originally proposed by Phillips and Kleinman
[37]. There are three critical points to note about the artificial potential, and the pseudo-
Hamiltonian it is associated with.

Firstly, the artificial potential— and by extension the pseudo-Hamiltonian— is only di-
agonal in a basis containing the core eigenstates if we associate the artificial potential
with a single distinct energy eigenvalue at k. If we associate more than one energy
eigenvalue with k, then the artificial potential is no longer diagonal in a basis contain-
ing the core eigenstates.

Secondly, if we do associate the pseudo-Hamiltonian with a single distinct eigenvalue
at k, then the pseudo-Hamiltonian associates an infinite number of degenerate pseu-
doeigenstates with that single eigenvalue εkν . More precisely, if there isN core electrons
per primitive cell, then there is N degrees of freedom associated with the pseudoeigen-
state, as the pseudoeigenstates can possess an arbitrary amount of each of the N core
electron eigenstates.

Thirdly, if we do associate the pseudo-Hamiltonian with a single distinct eigenvalue at
k, then it is inherently non-local. Thus, we cannot associate the artificial potential with
a universal position-dependant artificial potential. We can only express the artificial
potential as a position dependent function for a given pseudoeigenstate ϕpseudo

kν that has
a well-defined amount of each of the N core electron eigenstates:

V
ϕ

pseudo
kν

artificial(r) =

〈
r
∣∣∣ V̂artificial

∣∣∣ϕpseudo
kν

〉

〈
r|ϕpseudo

kν

〉 . (2.22)
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The critical conclusion is this. There is a N dimension space of pseudoeigenstates that
can be associated with any single energy eigenvalue in the bandstructure, and each pseu-
doeigenstate in this space will be associated with a different position-dependent artificial

potential V ϕ
pseudo
kν

artificial(r). The position-dependent artificial potentials will always be near zero
in the space where there is very little core electron density, and will be a pseudoeigenstate-
dependent positive function in the space where there is substantial core electron density.

We can write the real Hamiltonian in terms of the kinetic energy T̂ and the "natural"
potential V̂natural. This natural potential that the valence Bloch electrons experience is
dominated by the ionic cores. The net potential the pseudoeigenstate experiences is thus
the sum of the natural potential and the artificial potential. We call the net potential the
PSEUDOPOTENTIAL:

Ĥpseudo = T̂ + V̂natural + V̂artificial, (2.23a)

= T̂ + V̂pseudo. (2.23b)

We note that the natural potential is most quickly varying near the nuclei, exactly where
there is also significant core electron density. Since the space of possible artificial po-
tentials is so large when there is significant core electron density, we expect that there
exists some pseudoeigenstates for which this quickly varying natural potential is essen-
tially cancelled by the quickly varying artificial potential. We expect this to be the case
regardless of the energy eigenvalue the pseudoeigenstate is associated with. We just need
more core state wavefunction in the pseudoeigenstates associated with smaller energy
eigenvalues, and less core state wavefunction in the pseudoeigenstate associated with
larger energy eigenvalues.

Inside the enormous space of all possible pseudoeigenstates, we expect that there ex-
ists a tiny subset of pseudoeigenstates— one pseudoeigenstate associated with each
eigenvalue— such that all pseudoeigenstates across the entire bandstructure are subject
to roughly the same slowly-varying, position-dependent pseudopotential: a pseudopotential
which only matches the natural potential in the space outside the core states. In fact, we
expect there to be many such subsets of pseudoeigenstates, where each subset is associ-
ated with a particular, idiosyncratically shaped pseudopotential inside the core region.
This allows us to define a MODEL HAMILTONIAN where we replace the exact pseudopo-
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tential operator V̂pseudo in the pseudo-Hamiltonian, with a universal, slowly-varying, lo-
calized pseudopotential Vpseudo(r). The solution of the time-independent Schrödinger
equation for this model Hamiltonian will generate this very special collection of pseu-
doeigenstates, and by extension, generate the eigenvalues for the entire bandstructure.

What we have outlined is an approximate existence theorem that was first noted by Cohen
and Heine [38]. Stated simply, we can expect there exists a universal local pseudopo-
tential Vpseudo(r) that is much more slowly-varying than the natural potential is inside
the core region, and that approximately reproduces the eigenvalues of the entire va-
lence electron bandstructure. While many existence theorems are futile, this particular
existence theorem leads directly to two very useful conclusions.

The first useful conclusion is that the pseudopotential Vpseudo(r) should be easy to char-
acterize using empirical data. We begin by firstly noting that the universal local pseu-
dopotential must respect all crystal symmetry. Thus a Fourier series expansion of the
pseudopotential will only require reciprocal lattice vector components, and furthermore
many of these components will be forced by the point symmetries of the crystal to be
equal to other components or to be zero. Secondly, a slowly-varying universal local pseu-
dopotential can be fully described by an reciprocal lattice vectors that have a relatively
small magnitude. The net result is that universal local pseudopotential can be charac-
terized by an extremely small number of Fourier coefficients. Accordingly, the universal
local pseudopotential should be able to be determined from a small number of pieces
of experimental data about the bandstructure. The result is known as a LOCAL EMPIRI-

CAL PSEUDOPOTENTIAL. The local empirical pseudopotential we use for silicon is that of
Chelikowsky and Cohen [39], and is characterized by only three distinct Fourier compo-
nents.

The second useful conclusion is that the resulting model Hamiltonian is easy to solve.
We are generally only interested in the lowest energy bands for valence electrons, since
these are the bands that carriers with several eV of kinetic energy will occupy. Since
the magnitude of kinetic energy increases with increasing spatial variation in the wave-
function, the lowest energy bands will be associated with pseudoeigenstates that do
not vary much more quickly than the pseudopotential. As such, the time-independent
Schrödinger equation associated with these pseudoeigenstates can be solved using a
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basis of plane waves that is only slightly larger than the basis used to describe the pseu-
dopotential.

The argument of Cohen and Heine effectively shows that we can expect a universal
local pseudopotential to exist, that is easy to characterize empirically, and that gener-
ates a robust estimate of the bandstructure without requiring significant computational
power. The empirical pseudopotential method is thus very appropriate for our pur-
poses, and the details of the specific calculation done to generate the bandstructure is
discussed in Appendix C. The basic conclusion is that the non-core bandstructure εkν
can be generated by solving the following time-independent Schrödinger equation:

εkνϕ
pseudo
kν (r) =

(
− ~2

2me

∇2
r +

∑

G

cos(G · τ)Ṽ
sym

pseudo(G)e iG·r
)
ϕ

pseudo
kν (r), where

τ =
a

8
(1, 1, 1), and

Ṽ
sym

pseudo(G) =





−0.2241 Rydbergs for |G|2 = 3

0.0551 Rydbergs for |G|2 = 8

0.0724 Rydbergs for |G|2 = 11

0 otherwise.

(2.24)

2.5 Generating the Full Scattering Operator

2.5.1 The Breakdown of the Relaxation Time Approximation

We have discussed the coherent quantum mechanical evolution of a carrier due to the
reproducible sub-Hamiltonian in the device, which is associated with Newton’s law for
Bloch states and the bandstructure. We now turn to discuss the incoherent quantum
mechanical evolution due to the non-reproducible sub-Hamiltonian in the device, which
is associated with the scattering term

(
∂f
∂t

)
scat.



2.5. GENERATING THE FULL SCATTERING OPERATOR 63

Near thermal equilibrium,9 we can use the relaxation time approximation:
(
∂f

∂t

)

scat
= −f − fequilibrium

τ
equilibrium
relax

= − f

τ
equilibrium
relax

+
fequilibrium

τ
equilibrium
relax

. (2.25)

The relaxation time approximation can be seen as the generic linear response of a sta-
ble system to a perturbation from a stable point. It is therefore almost always valid for
small perturbations from thermal equilibrium [40, 41]. However, in eq. (2.25) we have
presented the relaxation time approximation in a form that makes the crudeness of this
assumption for large perturbations explicit. The relaxation time approximation is equiv-
alent to a scattering operator that simply annihilates carriers in the actual distribution
f in a mean free time τ equilibrium

relax , and generates carriers in an equilibrium distribution
fequilibrium in the same mean free time. As such, the relaxation time approximation is
incapable of describing any process where scattering transforms the actual distribution
function into an intermediate distribution that is distinct from the equilibrium distribu-
tion. Accordingly, in order for the relaxation time approximation to be theoretically
sound, scattering must be such that it drives carriers from the actual distribution f into
the equilibrium distribution fequilibrium in a single scattering event.

If we examine the distribution function at a position inside a non-equilibrium trans-
port device, we will typically find that the carriers require approximately ten scattering
events in order to become thermalized with the lattice [42]. It is also typical in these
devices that there are positions where carrier–carrier scattering is not sufficiently strong
to ensure the carrier distribution is always only a small perturbation from an internal
thermal equilibrium [6]. Carriers are not, therefore, a single scattering event from be-
ing in equilibrium with the lattice or being in equilibrium with one another. In fact,

9Note that being near thermal equilibrium is a more general condition than being near lattice temper-
ature equilibrium. The thermal equilibrium relaxation time approximation is thus more generally appli-
cable in this regard than the parabolic or near-parabolic bandstructure approximation. For the thermal
equilibrium relaxation time approximation the average energy of the distribution can be large— i.e. on
the order of ∼ 1eV— so long as the shape of the distribution is approximately thermal; in contrast, for
many materials— including silicon— the parabolic or near-parabolic approximation of the bandstructure
actually requires the vast majority of distribution function density is associated with kinetic energies that
are much smaller than 1eV. On the other hand, the parabolic or near-parabolic approximation of the
bandstructure is more general in another regard: within this low kinetic energy constraint, the distribu-
tion function can be any shape.
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from our perspective this characteristic defines the far-from-thermal-equilibrium regime
that is the focus of this thesis. Using the relaxation time approximation to describe the
manner in which scattering drives the carriers toward thermal equilibrium is therefore
unphysical by definition in the far-from-thermal-equilibrium regime, and we must use a
more detailed expression for scattering term.

This section is devoted to deriving an expression for the scattering operator in far-from-
thermal-equilibrium transport in silicon that is well-accepted as being reliable and fairly
accurate. The scattering operator we will use as an example in this thesis is roughly
that which was implicitly proposed in 1988 by Fischetti and Laux [16], which itself was
used as the original basis for the IBM DAMOCLES Monte Carlo simulation program
[20]— the gold-standard semiclassical transport model [17]. The derivation given here
is essentially this authors own attempt to clarify and make explicit Fischetti and Laux’s
scattering model, so little of this derivation and the actual scattering operator derived
can be found in Fischetti and Laux’s paper. Instead, this derivation more closely follows
the work Jacoboni and Reggiani [43] and Ziman [44].

We note that in 1995 Fischetti, Laux and Crabbé wrote an update to Fischetti and Laux’s
1988 paper [6]. In this update, several adjustments were made to the original 1988 scat-
tering operator in order to increase its accuracy. We will largely ignore these adjust-
ments as they add considerable complexity to what is already fairly complex discus-
sion, and they are peripheral to the central point of this thesis. The central point of this
thesis is that the full Boltzmann transport equation can be quite accurately mapped to a
macroscopic model that is much quicker to solve at run time. Demonstrating the exis-
tence of this mapping does not require that all features of carrier scattering are perfectly
described. It simply requires that the scattering operator we use is sufficiently detailed to
act as a reasonable representative of a class of fairly general scattering operator that can appear
in the full Boltzmann transport equation. We have made the judgement that the scattering
operator proposed in the original 1988 DAMOCLES model is sufficiently detailed for
this purpose, and thus only make some very minor adjustments to it that we believe
increase accuracy without adding additional complexity.
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2.5.2 General Scattering Theory

We will begin our discussion of carrier scattering in very general terms. We note first
that the non-kinetic part of the carrier Hamiltonian is associated with forces on the car-
rier, and forces act between two bodies and act equally on both bodies. Thus, when we
speak of the non-kinetic part of carrier Hamiltonian we are speaking of a collection of
forces, where each force is between the carrier and another body. We will refer to the
other body involved in an interaction with a carrier as the PARTNER body of the inter-
action Hamiltonian. A partner body is, in general, a useful abstraction rather than a
fundamental entity. In the devices we investigate, we will express the non-reproducible
part of the carrier Hamiltonian as a collection of interactions between the carrier and
the following partner bodies:

• a dopant ion,

• another carrier,

• a valence band electron,10 or

• a phonon mode.

We are only able to ignore the effect of the carrier–partner interaction on the partner
state if the effective mass of the carrier is negligible compared to the effective mass of
the partner body. In the list of partner bodies given, the only partner body that has a
large enough effective mass that its state change can be ignored is the dopant ion. As
such, the carrier–partner interactions we explore in this section will typically cause both
interacting bodies to change state appreciably.

According to Fermi’s golden rule [44, 43]— the canonical equation of first-order inco-
herent perturbation theory— the rate of transition from an initial state to a final state of
a system is non-zero if and only if the zeroth-order total energy of initial state and the
final state is the same.11 Fermi’s golden rule does not simply apply to the initial and

10The partner body associated with impact ionization is a valence band electron.
11By zeroth order total energy, we mean the total energy attributed to the system by the Hamiltonian
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final state of the carrier subsystem— which would imply inelastic carrier scattering is
impossible— Fermi’s golden rule applies to the initial and final state of the total system.
If we express the non-reproducible Hamiltonian as a sum of carrier–partner interaction
Hamiltonians Ĥcar–par for all possible partners, then we can characterize the initial and
final total state by the initial and final carrier–partner state since the carrier–partner
interaction will only cause state changes between the carrier and the partner. Fermi’s
golden rule can then be expressed as follows:

Spar(kν, spar; k
′ν ′, s′par) =

2π

~

∣∣∣
〈
k′ν ′, s′par

∣∣Ĥcar–par
∣∣kν, spar

〉∣∣∣
2

×δ
(
ε(k′ν ′, s′par)− ε(kν, spar)

)
. (2.26)

Here S(kν, spar; k
′ν ′, s′par) is the probability per unit time that an initial carrier state |kν〉

and initial partner state |spar〉 becomes a final carrier state |k′ν ′〉 and a final partner state
|s′par〉, and ε(kν, spar) is the first-order energy associated with the initial total system. It
is common to refer to

〈
k′ν ′, s′par

∣∣Ĥcar–par
∣∣kν, spar

〉
simply as the MATRIX ELEMENT for the

scattering transition.

We note that we are not so much interested in the carrier–partner scattering operator in
and of itself, but in the scattering term it generates in the Boltzmann transport equation.
These two quantities are connected by the single-carrier scattering operator S(kν; k′ν ′),
which defines the rate at which occupation probability is transferred from |kν〉 to empty
states at |k′ν ′〉. The single-carrier scattering operator is determined by taking the sum
(or integral) of the carrier–partner scattering S(kν, spar; k

′ν ′, s′par) over all occupied initial
and available final partner states, for every partner body present in the device:

(
∂f(kν, r, t)

∂t

)

scat
=
∑

ν′

∫

BZ
S(kν; k′ν ′)f(kν, r, t)

(
1− f(k′ν ′, r, t)

)
dk′,

S(kν; k′ν ′) =

occupied∑

spar

available∑

s′par

Spar(kν, spar; k
′ν ′, s′par).

(2.27a)

(2.27b)

While we derive Fermi’s golden rule in detail in Appendix D, it is so central to scat-
tering theory that it is worth spending a few paragraphs here to describe the essential

that does not contain interaction terms.
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physics behind it. We can express a given carrier–partner interaction Hamiltonian as a
sum of single-matrix-element Hamiltonians. Since Fermi’s golden rule is a one-to-one
mapping of each individual matrix element of Ĥcar–par to an individual transition, we
can consider Fermi’s golden rule to deal with a perturbation due to a particular single-
matrix-element Hamiltonian. We also abstract out all the details of the initial and final
total state, and consider the initial and final total state simply as names for two states in
a generic two-state system.

We begin by turning off the interaction Hamiltonian, and we will assume that in this
case the energy eigenvalues of initial and final total states are the same. Accordingly,
any superposition of initial and final total state will define a eigenstate with the same
energy eigenvalue. If we now turn on the interaction Hamiltonian, this space of super-
positions is no longer a space of degenerate eigenstates. Rather, there will be only two
eigenstates in the new system, where one is an equally weighted superposition of initial
and final total state with a particular relative phase, and the other an equally weighted
superposition of initial and final total state with the opposite phase. The eigenvalues of
the new eigenstates will be greater and less than the the zeroth order eigenvalue by the
modulus of the matrix element.

Notice then, that when the interaction is turned on, the initial total state of the carrier–
partner system must now be an equal superposition of the two new total eigenstates. That is, the
initial state is an equal combination of the two new total eigenstates that has a particular
relative phase. The final state is also an equal combination of the new eigenstates, except
that it has the opposite relative phase. Since the new total eigenstates have slightly dif-
ferent eigenvalues, a superposition of total eigenstates will not have a constant relative phase.
Thus the initial state of the carrier–partner system must be a transient phenomena, and
the probability amplitude given purely to the initial state at time zero will be transferred
to the final state at some rate. This rate at which probability amplitude is transferred to
the final state is proportional to the rate at which relative phase changes. The rate at
which probability amplitude is transferred to the final state is therefore proportional
to the "beat frequency" or difference in eigenvalues of the new eigenstates, and thus
proportional to the modulus of the single matrix element in the single-matrix-element
interaction Hamiltonian.
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For convenience, the details of the discussion so far have relied on the fact that the
zeroth-order energy eigenstates are the same.12 But it is only now that the equivalence of
zeroth-order energy of the total eigenstates becomes truly essential. This is because the
phase of the probability amplitude transferred to the final state at a given time depends
on the phase of the initial state at that given time. Therefore, the probability amplitudes
transferred to the final state a given time will generally cancel a probability amplitude
transferred at some past time unless the phase of the initial and final state rotates at the
same frequency. That is, there will only a significant probability amplitude transferred
to the final state in the characteristic time-scale of carrier transport if the zeroth-order
energy eigenvalues of initial and final state are essentially the same.

We have shown then, that there is only a significant probability transferred from an initial
state to a final state if there zeroth order energy eigenvalues of the initial and final state
are the same. We have also shown that if the zeroth order energy eigenvalues are the
same, then the rate probability is transferred from the initial state to the final state is
proportional to the modulus of the matrix element squared, since the probability amplitude
transfer is proportional to the modulus of the matrix element. Thus we have described
the essential physics behind Fermi’s golden rule.

The problem of calculating Spar(kν, spar; k
′ν ′, s′par) is, according to eq. (2.26), essentially

equivalent to the problem of calculating the appropriate matrix element of the interac-
tion Hamiltonian. We now wish to separate the dependence of this matrix element on
the states of the partner and of the carrier. Since carriers will primarily interact via the
Coulomb interaction, we can expect that any interaction Hamiltonian associated with
carrier will depend only on the position of the carrier (and its charge), and not on its
crystal momentum or band index. As such, we can expand the interaction Hamiltonian
in terms of a carrier-position dependent Hamiltonian Ĥr

car-par, which is a function of the
position r of the carrier, but that technically only acts on the partner state:

Ĥcar–par =

∫

V

|r〉〈r| ⊗ Ĥr
car–pardr. (2.28)

Here V is the entire volume occupied by the crystal sample. It may help the reader

12If the zeroth-order energy eigenstates were not the same, then the new eigenstates would be uneven
superpositions of the initial and final state, and the difference in new eigenvalues would no longer be
proportional to the modulus of the matrix element.
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to note that when the carrier–partner Hamiltonian is expressed in this form, it can be
represented by a block diagonal matrix, where the block that occurs at the set of rows
and columns associated with carrier position r is defined by the operator Ĥr

car–par.

We make the assumption that the total state of the carrier partner system can be ex-
pressed as the tensor product of the state of the carrier system and the partner system:∣∣kν, spar

〉
=
∣∣kν
〉∣∣spar

〉
. That is, we make the assumption that the carrier and partner

states are so weakly entangled/correlated that we can calculate the matrix element as-
sociated with their interaction as if they were independent. This is known as the BORN

APPROXIMATION, and it is reasonable so long the carrier–partner interaction is small com-
pared to the zeroth-order carrier and partner kinetic energies. The Born approximation
allows us to rewrite the matrix element for the interaction as follows:

〈
k′ν ′, s′par

∣∣Ĥcar–par
∣∣kν, spar

〉
=

〈
k′ν ′, s′par

∣∣∣∣
∫

V

|r〉〈r| ⊗ Ĥr
car–pardr

∣∣∣∣kν, spar

〉

=

∫

V

〈k′ν ′|r〉 〈r|kν〉
〈
s′par

∣∣Ĥr
car–par

∣∣spar
〉
dr. (2.29)

In order to simplify this expression further, we will express Ĥr
car–par in terms of a Fourier

series. To properly understand this Fourier series expansion, it is helpful to note two
points. First, for any chosen partner basis, a single matrix element of Ĥr

car–par can be
viewed as a simple scalar function of r, which according to periodic boundary condi-
tions has the same periodicity as the entire crystal sample.13 Therefore, for any chosen
partner basis, it is clear then that we can express the r dependence of each matrix el-
ement of Ĥr

car–par in terms of a Fourier series over reciprocal space vectors q. Second,
for any chosen partner basis, we can combine the set of all Fourier components asso-
ciated with a wavevector q into a matrix. Therefore, for any basis, there is a matrix
representation of the operator Ĥq

car–par defined in eq. (2.30). Thus it clear that Ĥq
car–par is a

well-defined operator:

Ĥr
car–par =

∑

q

Ĥq
car–pare

iq·r. (2.30)

13By "the same periodicity as the entire crystal sample", we do not mean periodicity with respect to
lattice vectors, but periodicity with respect to a unit cell defined by V , the volume occupied by the entire
crystal sample.
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Noting that 〈r|kν〉 = ψkν(r) we can rewrite eq. (2.29):

〈
k′ν ′, s′par

∣∣Ĥcar–par
∣∣kν, spar

〉
=
∑

q

〈
s′par

∣∣Ĥq
car–par

∣∣spar
〉 ∫

V

ψ∗k′ν′(r)ψkν(r)e iq·rdr.

(2.31)

Bloch’s theorem states that ψkν = 1√
N
ukν(r)e ik·r where ukν(r) = ukν(r + R) if R is a

lattice vector and N is the number of unit cells in the crystal sample.14 If we examine
the integral over the crystal sample, we note that the integral over any unit cell can only
differ from the integral over any other unit cell by a phase factor. As such, we can take
the integral of the volume occupied by the unit cell at R = 0— which we refer to as Ω—
and multiply this integral by the sum of all phase factors relative to this unit cell:

∫

V

ψ∗k′ν′(r)ψkν(r)e iq·rdr =
1

N

∑

R

e i(q+k−k′)·R
∫

Ω

u∗k′ν′(r)ukν(r)e i(q+k−k′)·rdr.

(2.32)

Each phase factor in the sum can be viewed as a step in a 2−D plane with an absolute
angle determined (q + k−k′) ·R mod 2π. Roughly speaking, a "walk" of evenly spaced
lattice of R vectors is transformed into an kind of "walk" of evenly changing angles in
the 2−D plane. Thus, the 2−D vector sum of steps will form closed "circles" unless there
is no change in angle for each step. Thus we can understand the well-known result that the
sum will vanish unless q + k− k′ is a reciprocal lattice vector:

1

N

∑

R

e i(q+k−k′)·R =





1 if q + k− k′ = G,

0 otherwise.
(2.33)

We can therefore substitute eq. (2.32) and eq. (2.33) into our expression for the matrix
element in eq. (2.31):

〈
k′ν ′, s′par

∣∣Ĥcar–par
∣∣kν, spar

〉
=
∑

G

〈
s′par

∣∣Ĥk′−k+G
car–par

∣∣spar
〉
I G(kν,k′ν ′), (2.34a)

where I G(kν; k′ν ′) =

∫

Ω

u∗k′ν′(r)ukν(r)e iG·rdr. (2.34b)

We refer to the quantity I G(kν; k′ν ′) as the OVERLAP INTEGRAL [43]. This new expression
for the matrix element in turn creates a new expression for Fermi’s golden rule from that

14We have normalized ukν(r) over a unit cell of the crystal.



2.5. GENERATING THE FULL SCATTERING OPERATOR 71

expressed in eq. (2.26):

Spar(kν, spar; k
′ν ′, s′par) =

2π

~

∣∣∣∣∣
∑

G

〈
s′par

∣∣Ĥk′−k+G
car–par

∣∣spar
〉
I G(kν; k′ν ′)

∣∣∣∣∣

2

×δ
(
εk′ν′ + εs′par − εkν − εspar

)
. (2.35)

There are two important points to note about this updated form of Fermi’s golden rule.
The first point is that the overlap integral I G(kν; k′ν ′) is entirely independent of the part-
ner state, and therefore can be calculated purely from knowledge of the carrier system
alone. For reasons that will become clear latter, we will discuss overlap integral only
after we discuss electron-phonon scattering. The second point is that, from a high level
perspective, eq. (2.35) is simply the combination of Fermi’s golden rule with the Born
approximation and Bloch’s theorem. It is therefore a fairly general starting point for
describing many semiclassical scattering processes.

2.5.3 General Theory of Scattering with a Charged Partner

We remind the reader that in Section 2.2, we noted the general scheme for incorporating
interactions between carriers and charged partners into the semiclassical model. Firstly,
the reproducible, long-range interactions between carriers and charged partners are to
be treated by frequently coupling the Boltzmann transport equation to a coarse grained
solution of the Poisson equation. Secondly, the non-reproducible, short-range interac-
tions between carriers and charged partners are to be treated as incoherent scattering
perturbations. In this section, we now turn to discussing the short-range interaction
between carriers and charged partners in detail.

The short-range interaction between a charged partner and a carrier can be assumed
to take the form of a screened Coulomb potential in a dielectric. The dielectric effect—
or polarization of the bound charge in response to an applied electric field— is char-
acterized by a dielectric constant ε. The screening effect— or redistribution of the free
charge in the response to a (static) applied electric field— is characterized by an inverse
screening length βS . The interaction Hamiltonian for a screened Coulomb potential in a
dielectric is written as follows:
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Ĥcar–cha = Zchae
24πε|r̂− r̂cha|e−βS |r̂−r̂cha|. (2.36)

Where Zcha is the ratio of the charge of partner to the charge of the carrier, and r̂cha is
the position operator for the charged partner. In eq. (2.28) we introduced the concept
of an interaction operator that depends on carrier position but acts on the partner state,
Ĥr

car–cha. For the interaction Hamiltonian in eq. (2.36), this operator is written as follows,
where Î is the identity operator in the partner state:

Ĥr
car–cha =

Zchae
2

4πε|rÎ − r̂cha|
e−βS |rÎ−r̂cha|. (2.37)

We can interpret eq. (2.37) as an operator-valued function of carrier position. The Fourier
components of this operator-valued function can be calculated in the same way Fourier
components are calculated for any other function of carrier position. If we assume peri-
odic boundary conditions about the crystal sample volume V , the Fourier components
are given as follows:

Ĥq
car–cha =

1

V

∫

V

Ĥr
car–chae

−iq·rdr.

(2.38)

We note that in eq. (2.38), r now plays the role of a dummy variable that is replaced
by every point in the unit cell V . If we take a unit cell of any periodic lattice, and shift
every point by an arbitrary constant vector r′, we have defined another unit cell. As such,
the integral over the unit cell V +r′ can equally be used to define the Fourier component
of eq. (2.38). By the simple manipulation shown below, this leads to the conclusion that
the Fourier component of Ĥr+r′ is only a phase shift from the Fourier component of Ĥr:

Ĥq
car–cha =

1

V

∫

V+r′
Ĥr

car–chae
−iq·rdr

=
1

V

∫

V

Ĥr+r′
car–chae

−iq·(r+r′)dr

= e−iq·r
′ 1

V

∫

V

Ĥr+r′
car–chae

−iq·rdr. (2.39)
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In retrospect, eq. (2.39) should be fairly obvious. The magnitude of a Fourier component
cannot depend the choice for the origin of the position coordinate, but the phase of a
Fourier component can.

The purpose of the preceding discussion is that it enables us to write down calculate
the matrix representation of Ĥq

car–cha in the position basis of the charged partner state.
This matrix representation is diagonal, and each of the diagonal matrix elements can be
shown to be a phase shift to the same analytic integral by setting r′ = rcha in each case.
The result is the following:

Ĥq
car–cha =

Zchae
2

4πεV
e−iq·r̂cha

∫

V

e−βS |r|

|r| e−iq·rdr. (2.40)

The integral in eq. (2.40) is a well-known standard integral, sometimes referred to as
the YUKAWA POTENTIAL integral. Evaluating this integral we are led to the following
algebraic expression for Ĥq

car–cha:

Ĥq
car–cha =

Zchae
2

εV

1

β2
S + q2

e−iq·r̂cha . (2.41)

It is well-known that using the Born approximation ignores the Coloumb correlations
between the carrier and the charged partner, and can lead to miscalculating the scat-
tering rate by a factor of ∼ 5 for scattering processes which involve only low energy
carriers [45]. We note in passing that Fischetti, Laux and Crabbé improved upon the
Born approximation by introducing a phase-shift correction in their 1995 update to the
DAMOCLES model [6], and this is a relatively important improvement that could be
made to the scattering model we describe here.

In addition to the problems with the Born approximation, we also note that accurately
modelling the inverse screening length βS in the far-from-thermal-equilibrium regime is
challenging. The inverse screening length is fundamentally a function of the entire dis-
tribution function, as well as the states of both the carrier and charged partner involved
in scattering [26]. One of the most important effects that was discussed in the 1995 up-
date paper is that the inverse screening length is greatly reduced for pairs of charged
particles that have a large relative velocity— owing to the fact that the background car-
riers cannot respond dynamically to the interactions between such partners— resulting
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in significantly stronger scattering for these pairs than was predicted in the original 1988
paper.

Our approach for modelling the inverse screening length in this thesis differs slightly
from any approach Fischetti et al. have suggested in any of the major papers relating to
the DAMOCLES model [16, 46, 6]. It is a very crude model in which we simply assume
that, given we are most interested in the scattering with carriers that have a high energy,
we assume that charge density never responds dynamically at all. Instead, the only screening
effect of the free charge is a statistical screening effect due to the random distribution of
charge.

This statistical screening effect was first noted by Ridley [47], in relation to ionized
dopants. Note that in this section, we will only deal with scattering between a single
charged partner and the carrier. The tacit assumption we will later use is that the total
carrier scattering with many charged can be viewed as the sum of carrier scattering with
all charged partners. However, if two charged partners are close together, the electric
fields due to each ion will often cancel out one another due to their vectorial nature. In
the devices of interest, the density of charged partners is typically sufficiently high that
this kind of cancellation is common. Ridley was the first to attempt to account for this
kind of cancellation.

Ridley accounted for this cancellation by making the assumption that a carrier could
only interact with the ionized dopant nearest to it [47], which we will modify into the
assumption that a carrier can only interact with the charged partner nearest to it. To
understand this assumption, consider the following. The electric force on the carrier due
the nearest charged partner is larger than the charged partners at larger distances. We
can view the charged partners at larger distances as adding a perturbation, of random
size and orientation, to this nearest charged partner field. We can make the argument
then that there is no reproducible effect on the nearest charged partner field, due to the
other charged partners. This, in turn implies that carriers can be modeled as being
scattered only by the nearest charged partner field.

When the density of charged partners is small, and carrier screening ensures there is
negligible overlap between adjacent charged partner fields, Ridleys statistical screening
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effect is negligible. However, when the charged partner density is heavy, and there is
significant overlap between adjacent charged partner fields, Ridleys statistical screening
assumption creates an effective radial exponential cutoff on the perturbation field due
to a dopant, in a similar manner that the dynamic response of carriers creates a radial
exponential cutoff in ordinary dynamic screening theory.

Ridley himself was interested in the direct effect of this statistical screening on mobilities
rather than on the inverse screening length, and so we do not use his expression directly.
Instead, we follow and expand the simple method used by Fischetti, Frank and Laux
in their 1990 DAMOCLES paper [46]. In this paper, Fischetti et al. model the statistical
screening effect of the dopant fields on the inverse screening length βS . We simply
expand this model to include not only the statistical screening effect of dopant fields,
but also the statistical screening effect of carrier fields, and we then ignore the dynamic
screening effect of the carrier fields. The result is the following:

βS(r, t) =

(
eρunsigned(r, t)

εkTL

) 1
2

, where

ρunsigned(r, t) = e

(∑

i

N i
dop(r)|Zi

dop|+

n(r,t)+p(r,t)︷ ︸︸ ︷
Γ
∑

ν

∫

BZ
f(kν, r, t)dk

)
.

(2.42)

2.5.4 Carrier–Dopant Scattering

We are interested here in the scattering rate with a single ionized dopant atom at posi-
tion Rdop that has Zdop additional protons relative to the ideal lattice, where Zdop might
be negative. We assume the dopant is sufficiently large to be safely treated as inert
during the interaction with the carrier. As such, the initial and final state of a partner
dopant can characterized by a single lattice position

∣∣Rdop
〉
, and the initial and final en-

ergy eigenvalue of the dopant can be assumed to be identical. By substituting eq. (2.41)
into eq. (2.35), we are led to the following expression for the scattering rate:

Sdop(kν,Rdop; k′ν ′,Rdop) =
2πZ2

dope
4

~ε2V 2

∣∣∣∣∣
∑

G

e−i(k−k
′+G)·RdopI G(kν; k′ν ′)

β2
S + (k− k′ + G)2

∣∣∣∣∣

2

δ(εk′ν′ − εkν).
(2.43)
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Fischetti and Laux make the approximation that the sum is dominated by the G∗ term,
where G∗ is defined such that k − k′ + G∗ is in the first Brillouin zone. This leads to
the following expression for the scattering operator for a carrier and an ionized dopant
partner:

Sdop(kν,Rdop; k′ν ′,Rdop) =
2πZ2

dope
4

~ε2V 2

∣∣I G∗(kν; k′ν ′)
∣∣2

(
β2
S + (k− k′ + G∗)2

)2 δ(εk′ν′ − εkν). (2.44)

2.5.5 Carrier–Carrier Scattering

It is well-known that the Born approximation ignores the exchange correlation in cal-
culating the scattering rate between similar carriers, which can lead to miscalculating
the scattering rate by a factor of ∼ 2 [48]. However, the effect of this exchange correla-
tion is much less important for carriers which have a large relative wavevector. While
Fischetti, Laux and Crabbé included these correlation effects in the 1995 update to the
DAMOCLES model [6], this is not a particularly important addition to the scattering
model we describe here. The reason is that the carrier–carrier scattering processes that
actually affect transport tend to involve carriers which have a large relative wavevector.
This will be discussed in more detail in the results chapters of this thesis.

With this in mind, we are interested here in the scattering rate of a carrier with a single
carrier partner in initial state |pµ〉 which transforms to a final state |p′µ′〉 after scatter-
ing.15 Inserting eq. (2.41) into eq. (2.35) for this situation leads to the following expres-
sion:

Scar(kν,pµ; k′ν ′,p′µ′) =
2πe4

~ε2V 2

∣∣∣∣∣
∑

G

〈p′µ′| e−i(k′−k+G)·r̂par |pµ〉I G(kν; k′ν ′)

β2
S + (k′ − k + G)2

∣∣∣∣∣

2

× δ(εk′ν′ + εp′µ′ − εkν − εpµ). (2.45)

We can use eq. (2.32) and eq. (2.33) to rewrite the matrix element over the partner carrier:

〈p′µ′| e−i(k′−k+G)·r̂par |pµ〉 =
∑

G′

δK−G′I
K−G(pµ; p′µ′). (2.46)

15In this thesis, the symbol µ is slightly overloaded. It is used to reference both the band index of a
partner state, and later, the chemical potential of various quasi-equilibria.
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Here K is defined as total initial crystal momentum minus total final crystal momentum
K = k + p − k′ − p′ and the sum over G′ is a sum over reciprocal lattice vectors.
Substituting eq. (2.46) into eq. (2.45) yields the following:

Scar(kν,pµ; k′ν ′,p′µ′) =
2πe4

~ε2V 2

∣∣∣∣∣
∑

G,G′

δK−G′I K−G(pµ; p′µ′)I G(kν; k′ν ′)

β2
S + (k′ − k + G)2

∣∣∣∣∣

2

× δ(εk′ν′ + εp′µ′ − εkν − εpµ). (2.47)

Fischetti and Laux make the assumption that the sum over G is dominated by the term
with the smallest denominator, at G = G∗. We note that G∗ is reciprocal lattice vector
such that k′ − k + G is in the first Brillouin zone. We separate out the sum over G′, so
it is clear that the only effect of this series is to ensure that K is equal to some reciprocal
lattice vector. Accordingly we have the following expression for the scattering operator
of a carrier with another carrier:

Scar(kν,pµ; k′ν ′,p′µ′) =
2πe4

~ε2V 2

∣∣I K−G∗(pµ; p′µ′)
∣∣2∣∣I G∗(kν; k′ν ′)

∣∣2
(
β2
S + (k′ − k + G∗)2

)2

× δ(εk′ν′ + εp′µ′ − εkν − εpµ)
∑

G′

δK−G′ .

(2.48)

2.5.6 Impact Ionization

Impact ionization occurs due to the Coulomb interaction between a carrier and an elec-
tron in the valence band. The scattering between a carrier and a vacancy in the valence
band or an electron in the conduction band is accounted for by carrier–hole or carrier–
conduction electron scattering respectively. The scattering between a carrier and an
electron in the valence band can only take place if the carrier has a kinetic energy larger
than the band gap εgap, since the only available final states for the valence band elec-
tron are in the conduction band. When an electron is moved from the valence band to
the conduction band two additional carriers are generated: a conduction electron and a
hole.

The 1995 update paper describes the updated impact ionization model as "major progress"
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on the original 1988 model [6]. Since the new model is trivial to implement, we use the
updated impact ionization model of Cartier et al. [49]. In both the 1988 and the 1995
models, rather than directly modelling the interaction Hamiltonian relevant to impact
ionization, the impact ionization rate itself is modelled as an empirical function of initial
carrier kinetic energy, and all energy-conserving final states as presumed to be equally
probable.

We note that this is equivalent to modelling the matrix elements as a function of the car-
riers initial kinetic energy only, and is equivalent to ignoring entirely crystal momentum
pseudo-conservation: an approximation which was first justified by Kane [50]. The idea
behind this approximation is that the total impact ionization rate of a given initial state
|kν〉 is dominated by the effect of the simultaneous density of energy-conserving final
states, which itself is only a function of initial kinetic energy. The conservation of crys-
tal momentum on the other hand does not significantly adjust this, on that basis that
a fixed initial and final carrier crystal momentum state imposes no restriction on the
crystal momentum of the created electron, since— in the absence of energy conserva-
tion restrictions— the created hole can always ensure crystal momentum conservation.
The impact ionization rate is also not strongly impacted by variations in matrix element,
simply because the impact ionization processes associated with a given initial state |kν〉
have so many possible final states, and accordingly the matrix elements are averaged
over an enormous space of final states. For this reason, we will not "reverse-engineer"
the implicitly assumed formula for the matrix elements as it is not of direct interest to
us and is not likely to be accurate. Instead, we will simply state the implicitly assumed
scattering operator for impact ionization as a function of 1

τii(εkν)
, the empirically mod-

elled impact ionization time:

Sii(kν; k′ν ′,k′eν
′
e,k
′
hν
′
h) =

(
V 3

∫ εkν−εgap

0

∫ εkν−εgap−εe

0

Dcon(εe)Dval(εh)Dcar(εkν − εgap − εe − εh)dεhdεe
)−1

× 1

τii(εkν)
δ(εk′ν′ + εk′eν′e + εk′hν′h + εgap − εkν).

(2.49)

Here Dcar(ε) is the density of states per kinetic energy, per volume for a given carrier
type at kinetic energy ε, similarly Dcon(εe) is the conduction band density of electrons
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at kinetic energy εe, and Dval(εh) is the valence band density of holes at kinetic energy
εh. The formula above can be derived as follows. Suppose we have an initial state |kν〉.
The rate of impact ionization of |kν〉 is 1

τii(εkν)
, by definition. The number of energy

conserving final states after impact ionization of |kν〉 is given by the term in the large
parenthesis. The rate of transition to a particular energy-conserving final state must be
proportional to 1

τii(εkν)
and inversely proportional to the number of final states since we

assume all energy conserving final states are equally likely. Finally the delta function
ensures the rate of transition to states that do not conserve energy is zero.

The empirical form for the net impact ionization rate is that determined by Cartier et al.
[49], and is a Keldysh-type formula [51] with multiple threshold energies:

1

τii(ε)
=
∑

i

θ
(
ε− εthr

i

)
Ri

(
ε− εthr

i

εthr
i

)2

. (2.50)

Here θ(x) is the Heaviside step function, i is the number of threshold energies, and Ri

and εthr
i are the empirically determined threshold rate parameters and threshold ener-

gies respectively.

2.5.7 General Phonon Theory

In order to properly describe carrier–phonon scattering, we first need to briefly describe
the theoretical basis of phonons themselves.

A general deformation of the ions in an ideal crystal lattice can be described by asso-
ciating each of the ion j ions with a displacement vector u(Rj), where Rj is the ideal
position of the jth ion. The result is a vector field of deformations u(R) defined on a
3−D lattice of discrete points. Hypothetically, suppose we propose that the net restor-
ing force on the jth ion is linearly proportional to u(Rj). Notice, that in the case that
every ion is displaced by the same vector, this proposal implies there will be a non-zero
restoring force. Since physically this deformation is associated with a translation of the
entire crystal sample in the room, such a restoring force is clearly unphysical. As such, a
more physical first-order approximation of the effect of ion displacements is to assume
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that the net restoring force on the jth ion is linearly proportional to the changes in near-
est neighbour distances as a result of the discrete vector field of deformations u(R). As
discussed in Appendix E, in a continuum, this change in nearest neighbour distances is
measured by the STRAIN TENSOR FIELD e(R).

While we have rejected the assumption that the jth ion experiences a net force linearly
proportional u(Rj), it is useful to notice that under this incorrect assumption the motion
of each individual ion would define an independent harmonic oscillator. In the accepted
assumption that each ion experiences a restoring force that is linearly proportional to
the local strain, the independent harmonic oscillators cannot be localized to individual
ions, and are instead inherently collective motions. These collective independent harmonic
oscillators are known as PHONON MODES. The phonon modes can, by Bloch’s theorem,
be associated with a precise Brillouin zone crystal momentum q and a band η. The
evenly-spaced energy eigenstates in each of these collective independent harmonic os-
cillators/phonon modes are interpreted as referring to the "number of phonons" which
occupy the phonon mode.16 Accordingly an eigenstate of the phonon mode at qη is
written |nqη〉.

Since ions obey the laws of quantum mechanics, an ion cannot simultaneously have an
arbitrarily precise position and a bounded momentum. Since the energy eigenstates of a
phonon mode have a bounded momentum, they cannot simultaneously be eigenstates
of ion position. Thus we not cannot associate an eigenstate of a phonon mode with a
precise discrete deformation vector field. We can however associate a phonon mode
with a deformation vector field operator ûqη(R). It is a standard textbook result [52] that
the deformation vector operator associated with a phonon mode can be expressed in
terms of the energy eigenstate ladder operators of that phonon mode â†qη and âqη, which are
equivalent to the phonon creation and annihilation operators respectively:

ûqη(R) =

(
~

2ρV ωqη

) 1
2 (
âqηe

iq·R + â†qηe
−iq·R)ξη. (2.51)

16It is worth noting that the historical decision to reify the gaps in the energy eigenstates of collective
phenomena into BOSON PARTICLES such as phonons or photons was, from a conservative perspective,
somewhat eccentric. It is not that difficult to imagine a physics which evolved without referring to these
gaps in energy eigenstates of collective phenomena as particles. Nevertheless, when properly understood
the idea has proven to be useful, efficient, intuitive and fruitful. This author merely believes that one part
of this proper understanding is noting the extent to which these bosonic particles are particles simply by
agreed convention.
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Here ξη is the polarization vector for a phonon band, ρ is the (mass) density of the crys-
tal sample, and as previously mentioned V is the volume of the crystal sample and ωqη is
the frequency of the phonons associated with the qη mode. The various phonon bands
indexed by η which are associated with a single crystal momentum q arise as follows.
Firstly, in a 3−D crystal, there three are independent phonon modes associated with dif-
ferent polarizations ξη. There is one LONGITUDINAL band associated with displacement
vector fields that are parallel to q, and two TRANSVERSE bands that are associated with
displacement vector fields that are perpendicular to q. Secondly, in a crystal in which
the unit cell contains two basis atoms, there is an ACOUSTIC band associated with oscil-
lations where these basis atoms move in phase and an OPTICAL MODE associated with
oscillations where these phonons move 180◦ out of phase. As such, each crystal mo-
mentum point in the conventional Brillouin zone of a material such as silicon— which
has a two atom basis if associated with face centred cubic unit cell, and therefore a base
centred cubic Brillouin zone— is associated with six phonon bands.

For the phonon bandstructure, Fischetti and Laux fit very simple analytic expressions
to known phonon bandstructure data [16]. For acoustic bands, they assume the bands
are of the following form.

ωac
qη =




ωmax
η

(
1− cos |q|a

4

) 1
2

for |q| < 2π
a
,

ωmax
η for |q| ≥ 2π

a
.

(2.52a)

The simplicity of this form is more apparent when we note that the obviously crude
|qa|
2π

is never more than 9% from the function
(

1− cos |q|a
4

)1/2

on its specified domain.
For the optical bands, Fischetti and Laux make the strong assumption that all optical
phonons have the same energy:

ωop
qη = ωmax

η . (2.52b)

2.5.8 Carrier–Phonon Scattering

We now turn to the discuss the interaction between a phonon mode and a carrier. By
direct analogy to the argument used in the discussion of phonons in and of themselves,
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we expect that the carrier energy eigenstates will not be changed by a uniform displace-
ment of every ion. As such, we begin by exploring the effect of lattice strain on the
carrier eigenstates.

A crystal lattice subject to a uniform strain tensor field is simply a crystal lattice with
a different unit cell. As such, a uniformly strained crystal lattice will still have energy
eigenvalues associated with each crystal momenta and band, as Bloch’s theorem will
still apply. That there exists an energy eigenstate which can be labelled by |kν〉 both
before and after the uniform strain is applied is most easily visualized in the extended
zone scheme rather than the reduced zone scheme, since the Brillouin zone will change
size but the extended zone scheme will continue to occupy the entire 3−D space and
associate a single band with each position in that space.

For small uniform strains, Taylor’s theorem tells us we can expect an approximately
linear relationship between a uniform strain tensor e and an energy eigenvalue shift
∆εkν to the carrier state |kν〉. An arbitrary linear relationship between a scalar and
a symmetric tensor can itself always be characterized by a similarly sized symmetric
tensor, which we will refer to as the DEFORMATION POTENTIAL Ξkν , where the subscript
reflects the fact that it will generally depend on the carrier eigenstate:

∆εkν =

3,3∑

i,j

Ξij
kνeij

= Ξkν : e (2.53)

Here the colon operator ":" represents the double dot, or tensor contracted product. We
make the ADIABATIC or BORN-OPPENHEIMER approximation, that the carrier finds the
new eigenstates on a time-scale that is negligible to the time-scale of the variation of the
strain. We also make the BAND-DEPENDENT DEFORMATION POTENTIAL APPROXIMATION,
that the deformation potential is only a function of the band index of the carrier. This
latter approximation can be understood as follows. We first note that a carrier localized
to a given unit cell must be an equal superposition of eigenstates with every different
crystal momentum in the Brillouin zone. As such, if a carrier is located to a unit cell, the
only other information it can possess is a band index. The relationship of energy shift
to strain for a carrier in a given band, located to a unit cell at R is given as follows:
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∆εν(R, t) = Ξν : e(R, t), (2.54)

where Ξν =

∫
BZ Ξkνdk∫

BZ dk
.

In the band-dependent deformation potential approximation, we make the assumption
that a single band-dependent deformation potential determines the position-dependent
energy shift for any carrier state, not only for carrier states that are localized a unit cell.
That is, we make the approximation:

Ξkν ≈ Ξν . (2.55)

We now wish to explore the process by which strain leads to scattering in the band-
dependent deformation potential approximation. To elucidate the situation, suppose
we have a sinusoidally varying strain of wavevector q. As a function of lattice position
vector and time, there will be an energy shift ∆εν(R, t) = Ξν : e(R, t). Thus the expected
net energy shift of a carrier eigenstate |kν〉 is zero since the energy increases will be
balanced by equal and opposite energy decreases elsewhere in the crystal.

In fact, for states which are delocalized across the entire crystal sample, a non-zero en-
ergy shift can only be associated with a superposition of carrier eigenstates that differ in
crystal momentum by q mod G— only in such a superposition can we, for instance,
systematically constructively interfere to increase probability density in the unit cells
where strain reduces eigenstate energy, and systematically destructively interfere to
decrease probability density in the unit cells where strain increases eigenstate energy.
The amount of constructive and destructive interference in a weighted superposition
of carrier eigenstates separated by q is determined by the overlap integral. For equally
weighted superpositions of carrier eigenstates in different bands, the net energy shift
is determined simply by averaging the deformation potentials Ξν over the two bands.
Accordingly, there is an interaction Hamiltonian between pairs of phonon states that
generate sinusoidal strains of wavevector q, and pairs of carrier states seperated by
crystal momentum q mod G. The analagous expression to eq. (2.34) for the interaction
Hamiltonian matrix element relevant to scattering between a carrier and a partner body
defined by qη phonon mode, is therefore the following:
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〈
k′ν ′, n′qη

∣∣ Ĥcar–pho |kν, nqη〉 =
∑

G

Ξν + Ξν′

2
:
〈
n′qη
∣∣ êk′−k+G |nqη〉

×I G(kν,k′ν ′). (2.56)

Here êk′−k+G is an operator that acts on the phonon state and determines the Fourier
component of the strain tensor field at wavevector k′−k+G. The next step in determin-
ing this carrier–phonon matrix element is to write down an explicit expression for this
operator in terms of the state of the qη phonon mode. We first note that the strain tensor
field operator associated with acoustic modes and optical modes is qualitatively differ-
ent, because in optical modes the strain is dominated by the relative displacements of
basis atoms, whereas in acoustic modes it is dominated by the relative displacements of
lattice points. We will discuss acoustic modes first. Hypothetically, if the displacement
operator in eq. (2.51) was associated with a continuous vector field of displacements,
rather than a discrete vector field of displacements, the strain operator would be given
by eq. (2.57):

ê(r, t) =
1

2

(
∇⊗ û(r, t) + (∇⊗ û(r, t))T

)
. (2.57)

Thus the strain operator is simply a symmetrized Jacobian of the displacement oper-
ator. The simplicity of the strain operator in eq. (2.57) motivates us to make a SEMI-

CONTINUUM APPROXIMATION for acoustic modes. This approximation consists of two
transformations. The first transformation is to extend our discrete displacement opera-
tor û(R) into an operator defined for all positions û(r), so that the expression for strain
given in eq. (2.57) can be used. The second transformation is effectively to remove the
meaningless smooth variation of strain within a unit cell that the first transformation
creates, and replace it with a constant strain within a unit cell. This meaningless varia-
tion is associated with the factor e iq·r in the overlap integral, and therefore is removed
by multiplying the overlap integrand in eq. (2.35) by e−iq·r. We refer to this transformed
overlap integral as the MODIFIED OVERLAP INTEGRAL I mod(kν,k′ν ′).17

Due to the first transformation in the semi-continuum approximation, we can combine

17The modified overlap integral does not depend on G, since according to eq. (2.33) e i(G−q)·r =

e i(k−k
′)·r. The same result can be seen by multiplying eq. (2.32) by e−iq·r.
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eq. (2.51) and eq. (2.57) in order to generate the equation for the continuous strain field
operator associated with an acoustic mode:

êqη(r) = i

(
~

2ρV ωqη

) 1
2 (
âqηe

iq·r − â†qηe−iq·r
) q⊗ ξ + ξ⊗ q

2
. (2.58)

We note that the fact that the strain operator is always linear in crystal momentum is an
artifact of the pseudocontinuum approximation. In a discrete lattice, the strain operator
would only be linear in crystal momentum for long wavelength phonons.

Since the initial and final state of the phonon mode are zeroth order eigenstates, we
wish to evaluate the strain operator in the eigenstate basis of a phonon mode. We note
that in this basis, all matrix elements of the creation and annihilation operators are zero
except those associated with a pair of eigenstates that differ by a single phonon. More
specifically, the creation and annihilation operators are defined as follows:

â† |nqη〉 =
√
nqη + 1 |nqη + 1〉 , (2.59a)

â |nqη〉 =
√
nqη |nqη − 1〉 . (2.59b)

Accordingly, there is only a non-zero expected strain tensor field associated with a su-
perposition of phonon mode eigenstates that differ by one phonon, since all phonon
mode eigenstates— associated with different values of nqη— are orthogonal. Note this
implies that the expected strain tensor field for any pure phonon eigenstate is zero. Thus the
carrier–phonon matrix element must be zero unless the initial and final phonon mode
eigenstates differ by one phonon. For the non-zero matrix elements, the expected strain
for the matrix element is given by eq. (2.60):

〈nqη ± 1| ê |nqη〉 = i

(
~

2ρV ωqη

(
nqη + 1

2
± 1

2

)) 1
2 q⊗ ξη + ξη ⊗ q

2
e∓iq·r. (2.60)

We note that all matrix elements are thus associated with a single Fourier component
of the strain tensor field. In the case qη–phonon creation, the Fourier component is
associated with a −q wavevector. In the case of qη–phonon annihilation, the Fourier
component is associated with a +q wavevector. By combining eq. (2.60) with a version
of eq. (2.56) that contains the modified overlap integral I mod(kν,k′ν ′) we obtain the
following:
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〈
k′ν ′, n′qη

∣∣ Ĥcar–pho |kν, nqη〉 = i

(
~

2ρV ωqη

(
nqη + 1

2
± 1

2

)) 1
2

I mod(kν,k′ν ′)δq±k′−k+G

×
(

Ξν + Ξν′

2
:

q⊗ ξη + ξη ⊗ q

2

)
. (2.61)

Fischetti and Laux make the ISOTROPIC COUPLING CONSTANT, or ISOTROPIC BAND-DEPENDENT

DEFORMATION POTENTIAL APPROXIMATION, which builds upon the band-dependent de-
formation approximation to also assume that the energy shift does not depend on the
direction of q:

Ξν :
q⊗ ξη + ξη ⊗ q

2
= ∆η,ν |q|. (2.62)

This leads to the following expression for carrier scattering by acoustic phonons:

Spho(kν, nac
qη; k

′ν ′, nac
qη ± 1) =

π

ρV ωqη

(
nqη + 1

2
± 1

2

)(∆η,ν + ∆η,ν′

2

)2

q2
∣∣I mod(kν,k′ν ′)

∣∣2

×δ(εk′ν′ ± ~ωqη − εkν)δq±k′−k+G∗ . (2.63)

For the coupling of optical phonons to carriers via the strain operator, the argument dif-
fers only slightly. In optical phonons, the strain is typically dominated by the internal
strain inside the unit cell, rather than the strain due to the changing size of the unit cell.
Such a strain is not associated with a new unit cell, but with a new basis. By parallel
reasoning to the case for a changing unit cell, we can again assume a change in carrier
eigenstate energy that is linearly proportional to the strain. We will assume however,
that in the case of optical phonons, this internal strain in a unit cell is directly propor-
tional to the displacement operator, and thus we assume that the magnitude of internal
strain is independent of the phonon wavevector. We note that the wavevector of the
phonon still plays precisely the same role in determining the superposition of carriers
that have a non-zero expected eigenstate energy shift. That is, the wavevector of the
phonon still determines which superposition of carriers are capable of systematically
increasing carrier probability density in low eigenstate energy positions and systemati-
cally decreasing density in high energy eigenstate positions. Thus, following a parallel
analysis for optical phonons similar to the analysis for acoustic phonons, we are led to
the following expression:
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Spho(kν, nop
qη; k

′ν ′, nop
qη ± 1) =

π

ρV ωqη

(
nqη + 1

2
± 1

2

)((∆q)η,ν + (∆q)η,ν′

2

)2 ∣∣I mod(kν,k′ν ′)
∣∣2

×δ(εk′ν′ ± ~ωqη − εkν)δq±k′−k+G∗ . (2.64)

In the case of optical phonons, the isotropic coupling constant is denoted as (∆q)η,ν , for
no other reason than to emphasize the dimensional difference between this isotropic
coupling constant and the acoustic isotropic coupling constant ∆η,ν . If, for bands η
corresponding to acoustic phonons, we define (∆q)η,ν = ∆η,ν |q|, then we have the fol-
lowing universal expression for acoustic or optical phonon scattering:

Spho(kν, nqη; k
′ν ′, nqη ± 1) =

π

ρV ωqη

(
nqη + 1

2
± 1

2

)((∆q)η,ν + (∆q)η,ν′

2

)2 ∣∣I mod(kν,k′ν ′)
∣∣2

×δ(εk′ν′ ± ~ωqη − εkν)δq±k′−k+G∗ .

(2.65)

2.5.9 The Overlap Integral

It is important to distinguish the ordinary and modified overlap integrals. The modi-
fied overlap integral, for which the phase factor e iq·r is removed from the overlap in-
tegrand, is associated only with carrier–phonon scattering. The reason is that, in the
case of phonons, the e iq·r term is associated with a smooth variation of the Hamilto-
nian across a unit cell. However, this concept makes no physical sense when we use
deformation potentials, which express the relationship between a change in unit cell (or
basis) and the change in eigenstate energy. The fictitious variation associated with the
e iq·r term arises as a consequence of the continuum approximation, in which we asso-
ciate the phonons with a continuous field of displacements, rather than a discrete field.
To undo this effect of the continuum approximation, Thus instead of a pure continuum
approximation, we removing this fictitious variation of the Hamiltonian within a unit
cell resulting in a modified overlap integral. We have called this approximation, the
quasicontinuum approximation.

For the modified overlap integral, we use the very simple approach of Ziman [44] refer-
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enced of the original 1988 paper [16]. We begin with the fundamental definition of the
modified overlap integral:

I mod(kν,k′ν ′) =

∫

Ω

u∗k′ν′ukνe
i(k−k′)·rdr. (2.66)

Following Ziman, we make the strong assumption that carriers are free electrons, and
as such ukν is of uniform magnitude for any kν, and is normalized over a unit cell. This
leads to the following:

I mod
rigid ion(kν,k′ν ′) =

1

Ω

∫

Ω

e i(k−k
′)·rdr. (2.67)

We also assume that the integral over a Wigner-Seitz unit cell can be approximated by
an integral over a sphere of radius asph which has the same volume as the unit cell. We
orient the coordinate system such that the z axis along k − k′, and then transform the
system to spherical coordinates:

I mod
rigid ion(kν,k′ν ′) =

3

4πa3
sph

∫ asph

0

∫ π

0

∫ 2π

0

e i|k−k
′|r cos θr2 sin θdφdθdr (2.68)

Evaluating the integral integral over φ, and substituting u = cos θ, and Θ = |k − k′|r
leads to the following:

I mod
rigid ion(Θsph) =

3

2Θ3
sph

∫ Θsph

0

∫ −1

1

−Θ2e iΘududΘ. (2.69)

Where Θsph = asph|k − k′|. Both integrals can now be computed trivially. The result is
the following:

I mod
rigid ion(Θsph) =

3

Θ3
sph

(
sin Θsph −Θsph cos Θsph

)
. (2.70)

It is worth explicitly noting that the limit of this equation as Θsph → 0 does not diverge
as it might naively appear on first glance:

limΘsph→0

[
I mod

rigid ion(Θsph)
]

= limΘsph→0

[
3

Θ3
sph

((
Θsph −

1

6
Θ3

sph

)
−
(

Θsph −
1

2
Θ3

sph

)
+O(Θ5

sph)

)]

= 1.
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For the ordinary overlap integral, we simply use the same expression, except we replace
|k− k′|with |G|. This leads to the following expressions for the overlap integrals:

I G(kν,k′ν ′) =
3

(asph|G|)3

(
sin(asph|G|)− (asph|G|) cos(asph|G|)

)
,

I mod(kν,k′ν ′) =
3

(asph|k− k′|)3

(
sin(asph|k− k′|)− (asph|k− k′|) cos(asph|k− k′|)

)
.

(2.71)

In the 1995 update, Fischetti, Laux and Crabbé improve upon these expressions near
band minima by using k · p theory. Once again, we will largely ignore such improve-
ments in this thesis.

2.5.10 Scattering Parameters of Conduction Electrons in Silicon

In this section, we have discussed the scattering of non-equilibrium carriers in a non-
polar semiconductor. However, this thesis concerned with the more specific case of
the transport of non-equilibrium conduction electrons in silicon. In Table 2.1 we list all
the give the values of parameters that are pertinent to the non-equilibrium conduction
electron scattering in silicon, extracted largely from Fischetti and Laux’s 1988 paper [16].

We note that having defined these parameters, if we now collect all the boxed equations
given in this chapter, we form a closed semiclassical model of non-equilibrium transport
in homogeneous silicon would be well-accepted by the field as being close to theoreti-
cally sound. For convenience, we refer to this model as a FULL BOLTZMANN TRANSPORT

EQUATION, noting that the coupling to Poisson’s equation is taken for granted. We note
that there are also many other models that would qualify as a "full" Boltzmann trans-
port equation, all that is required is that the model makes a reasonable effort to include
a realistic scattering operator and bandstructure into the Boltzmann transport equation.
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Quantity Value

a 0.543 nm
asph a

(
3

16π

)1/3

Γ 1
4π3

ε 11.9 ε0
ρ 2.328 g/cm3

εthr
1 1.2 eV
εthr

2 1.8 eV
εthr

3 3.45 eV
R1 6.25 x 1010

R2 3.0 x 1012

R3 6.8 x 1014

~ωmax
TA 22.1 meV

~ωmax
LA 44.3 meV

~ωmax
TO 62.0 meV

~ωmax
LO 62.0 meV

(∆q)TA,ν=1 1.2 eV x |q|
(∆q)TA,ν 6=1 1.7 eV x |q|
(∆q)LA,ν=1 1.2 eV x |q|
(∆q)LA,ν 6=1 1.7 eV x |q|
(∆q)TO,ν=1 1.75 x 108 eV/cm
(∆q)TO,ν 6=1 2.10 x 108 eV/cm
(∆q)LO,ν=1 1.75 x 108 eV/cm
(∆q)LO,ν 6=1 2.10 x 108 eV/cm

Table 2.1: Table of empirical parameters pertinent to conduction electron scattering. In Fischetti and
Laux’s 1988 paper, ~ωLA = 22.1 meV and a ~ωTA = 44.3 meV, but this is likely to be a typographical error.



Chapter 3

State Of The Art

3.1 Introduction

The aim of this thesis is to model innately inhomogeneous semiclassical electron trans-
port in a theoretically sound manner that is considerably less computationally intensive
than the current state of the art. In the background chapter we have argued that the
Boltzmann transport equation— subject to a full bandstructure and complex scatter-
ing operator— coupled to Poisson’s equation is universally accepted as a theoretically
sound model of electron transport in the semiclassical regime,1 and that the chief as-
sumption of the semiclassical regime in high field transport is that the external field
must be approximately constant on the length scale of electron coherence. The problem
with the Boltzmann–Poisson system is that it is infeasible to solve the full Boltzmann
transport equation numerically without making further assumptions. In this chapter
we review the state of the art with respect to simplifying this equation into a form that
is feasible to solve numerically.

The reason that the full Boltzmann transport equation is manifestly infeasible to solve
numerically is because the corresponding ELECTRON STATE— that is, the minimal set of

1Assuming magnetic fields are negligible. In the general case, the full Boltzmann transport equation
needs to be coupled to Maxwell’s equations and the Lorentz force equation.
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time-dependent ”unknown variables” (or degrees of freedom) associated with electrons—
simply requires too much memory to describe. In the full Boltzmann transport equation,
the electron state is defined by an arbitrary 6−D scalar field. If we suppose each scalar in
the field is a 64-bit (8-byte) number, and each dimension of the scalar field is discretized
into 100 points, then the instantaneous state of an arbitrary 6−D scalar field requires
1006 8-byte numbers, or 8Tb to store.2 Since solving a moderately complex equation
requires frequent reading and rewriting of this memory— and manipulating the hard
drive memory is very slow— these 8Tb would need to primarily be RANDOM ACCESS

MEMORY (RAM) in order for the computation to be able to be completed in a reasonable
time frame. This is not feasible with current computer architectures.

The electron state can obviously be simplified if we make the assumption that the de-
vice can be defined in terms of 1−D or 2−D doping field and boundary conditions. We
will ignore this method of state simplification in this review. A sufficient reason for do-
ing this is that more and more modern devices are inherently 3−D in nature, meaning
reducing the dimensionality is inherently unphysical. It is also instructive to mention a
second, slightly more subtle point. The problem with solving the Boltzmann equation
numerically is not just that the electron state is infeasibly large, it is also that the Boltz-
mann transport equation is also much more computationally expensive to solve than a
pure partial differential equation with a similar size state. This is a consequence of the
fact that while the Boltzmann transport equation is local in real space like a pure partial

2When comparing the computational resources for the various models considered in this chapter, our
main consideration is the number of scalars required to define the discretized electron state. Essentially—
with the exception of the ensemble Monte Carlo model which is unusually computationally expensive
even with a relatively low-information electron state— we make the crude assumption that computa-
tional expense is roughly linearly related to the information/number of scalars required to define a dis-
cretized electron state. This is likely to generally underestimate the differences between models since the
computational expense is likely to be superlinear in the size of the state— especially given that scattering
is non-local in crystal momentum/energy space. Regardless of the exact details, the irrefutable point is
that as we reduce the number of dimensions of the electron state from 6−D (full semiclassical electron
state) to 5−D (high-order spherical harmonic electron state) to 4−D (energy-dependent electron state) to
3−D (macroscopic electron state), the computational expense of the model will drop dramatically, given the
information required to define the electron state will change by between one or two orders of magnitude
(i.e. require 10−100 times fewer scalars) each time the electron state changes by 1−D, and there will be a
similar decrease in the number of simultaneous scalar equations to solve. The difference in computational
expense between the detailed ensemble Monte Carlo models and the deterministic models described here
is harder to quantify from abstract analysis, so estimates given are not reliable and sensitive to the exact
details of the ensemble Monte Carlo algorithm. In the end, the author leaves the problem of measur-
ing the exact difference in computational expense between all styles of model mentioned here for future
work.
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differential equation, it is non-local in crystal momentum space. That is, in a small time
step, while the value of the occupation rate at a particular point in phase space is only af-
fected by the occupation rate at nearby points in real space, it is potentially affected by the
occupation rate at all other points in crystal momentum space because of scattering. This
means that reducing the dimensionality of crystal momentum space decreases the number
of computations that are necessary to solve the equation by orders of magnitude more
than a similar reduction to the dimensionality of real space.

We will review the Ensemble Monte Carlo Approach3, the Spherical Harmonic Approx-
imation approach, the Elastic Relaxation Time approach, the Fokker Planck approach,
and the innately inhomogeneous Macroscopic approaches. We describe each approach in
terms of the simplifications made to the full Boltzmann transport equation state function.
In addition, we discuss the simplifications made to the full bandstructure and full scat-
tering operator. The models are then judged on the basis of the theoretical soundness of
these simplifications and the solution speed of the resulting model.

3.2 The Ensemble Monte Carlo Electron State

The state simplification in the MONTE CARLO METHOD is usually described as follow-
ing the phase-space trajectories of a random sample of particles [53]. This an excellent
mental picture for understanding the method so long as one remains cognizant of the
fact that the "particles" involved are the fictitious Bloch particles described in the back-
ground chapter. That is, it is important to remain aware that in the semiclassical regime,
the behaviour of a single electron is dictated by a distribution of the "particles" whose
trajectories we track using the Monte Carlo method. The qualifier ENSEMBLE refers to
the fact that all "particles" need to be simultaneously tracked because the Boltzmann–
Poisson system is non-linear, meaning that the evolution of a "particle" depends on the
positions of other "particles" [48, 54]. In the simpler models, this non-linearity may not
be modelled at all [55], of occur only indirectly through the long-range electron–electron

3Which, in fact, simplifies the spatial dependence in a manner that does not require assuming the
dopant field and boundary conditions are 1−D or 2−D .
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interactions that are modelled by via Poisson’s equation [43].4 In more accurate models
this non-linearity will also occur directly in the Boltzmann Transport Equation through
short-range electron–electron scattering and degeneracy effects [48, 16, 6].

While the mental picture of following "particles" is extremely useful as a starting point,
it is also useful to understand the Monte Carlo method in a slightly more abstract fash-
ion. We first note that the 6−D distribution function associated with the full Boltz-
mann transport equation can be viewed as a 6−D list of weight scalars associated with
a basis delta function at each point in real space and crystal momentum space. In the
Monte Carlo method, we reduce the electron state function significantly by following
the time evolution of only a random sample of the basis delta functions, where the scalar
weight associated with each delta function is typically forced to be uniform.5 The uni-
form weight of delta functions in the Monte Carlo sample means that the probability of
a particular delta belonging to the sample is proportional to the distribution function
weight at that point, and vice versa that the number of delta functions in a given region
of phase space is proportional to an estimate of the average distribution function in that
region.

The full Boltzmann transport equation dictates that the full 6−D electron state is subject
to two two types of time-evolution terms: the pure Hamiltonian evolution terms, and
the scattering terms. The pure Hamiltonian terms, according to Liouville’s theorem [36],
describe a complicated incompressible "flow" on the set of delta functions, where the
weight associated with each delta function is carried with it. Thus following the effect
of the pure Hamiltonian terms on a delta function is simple: we just do exactly what we
would do for a classical particle subject to the same Hamiltonian. The effect of scatter-

4This indirect coupling will model plasma oscillations if and only if the Poisson equation is updated
significantly more frequently than the plasma oscillation frequency [16].

5In more sophisticated Monte Carlo models [43, 16, 53], the weight functions are typically multi-step
functions, that are only locally uniform in phase space rather than globally uniform. The problem with a
globally uniform weight function is that the relative statistical error in estimating the distribution function
in a given region of phase space is inversely proportional to the size of the distribution function. This is
problematic because in many devices unusually high energy electrons have outsized effects because they
can overcome an energy barrier that otherwise stop a physical process from occurring. In such devices, a
uniform weight function is inappropriate. A better approach is to have a much smaller weight function
in these important but rarely occupied high-energy regions of phase-space, which results in so called
STATISTICALLY ENHANCED REGIONS. Upon entering a statistically enhanced region in which the
weight function is reduced by a factor M , a delta function is cloned into M independent delta functions,
and upon exiting such a region, a delta function is deleted with a probability 1

M .
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ing on a delta function is a little more subtle. The scattering operator is a one-to-many
function that spreads the weight associated with an delta function to many different
delta functions. These delta functions all have the same real space coordinates, but not
the same crystal momentum space coordinates. However, since the weight associated
with all delta functions in the Monte Carlo sample is uniform by decree, scattering must
preserve the number of delta functions if it is to preserve the total distribution function
weight associated with the initial delta function. Therefore we treat the scattering opera-
tor as determining the statistics for an indeterministic random process, and thus model the
evolution of the distribution due to scattering as an indeterministic one-to-one mapping
of delta functions.

The Ensemble Monte Carlo process occurs as follows. The initial distribution function
is randomly sampled to produce an initial sample of delta functions. These delta func-
tions evolve according to both deterministic Hamiltonian evolution and indeterministic
scattering. At any point in time, the number of delta functions in a given region of phase
space can be assumed to be roughly proportional to the distribution function in that re-
gion. Various conditions can be used to define the interaction of delta functions with the
boundaries of the device, the most common being reflecting boundary conditions and
ohmic boundary conditions. In reflecting boundary conditions, the crystal momentum
space vector of the delta function is reflected along an axis. In ohmic boundary condi-
tions, an expected density of delta functions is defined for a given region of space, and
delta functions are randomly deleted when there are too many, and randomly created
from a lattice temperature distribution when there are too few.

The first problem the Ensemble Monte Carlo method addresses is that it massively re-
duces the memory requirements needed to solve the full Boltzmann transport equation.
The reason is that the number of simultaneous delta functions needed for a physically
sound simulation is relatively small, and so one can achieve the accuracy of an arbi-
trarily large sample of delta functions by compiling the results of an arbitrarily large
number of smaller simulations. In the case of transient simulations, this compilation
is achieved by literally running multiple independent simulations. In the the case of
steady-state simulations, this compilation can be achieved simply by taking a long time-
average of a sample of positions of the delta functions of a single simulation once the
transients have disappeared. Either of these techniques is fine so long as the delta func-
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tions in each of the simulations being compiled are subject to physically realistic evolu-
tion.

The number of delta functions required in order for the evolution of each to be phys-
ically realistic is not very large. Indeed, if the Boltzmann–Poisson system was linear,
the evolution of a solitary delta function could be modelled in a physically sound man-
ner. While it is true that the Boltzmann–Poisson system is non-linear, it is also true the
non-linearity can be largely predicted from only the real space distribution of electrons;
that is, simulating the precise crystal momentum distribution of electrons is unnecessary
for modelling non-linear effects. This is crucial, because we can get a fairly accurate
estimate of the spatial distribution of electrons— and therefore a physically accurate
simulation— using fairly small sample (∼ 104 − 105) of delta functions [17]. Tracking 6

scalars that define the phase space position for each of ∼ 100, 000 delta functions only
takes 600, 000 64-bit numbers, or 4.8Mb, so the memory requirements for a valid En-
semble Monte Carlo simulation are very modest compared to those required for a full
Boltzmann transport equation solution.

As stated previously however, the Boltzmann transport equation is not simply infeasi-
ble to solve due to memory issues, it is also very CPU intensive. The massive reduction
in memory required does also offer a practical improvement to processing speed, since
the smaller the memory requirements the more feasible it is to store the relevant data
in locations closer to the CPU with faster read/write properties. However, the Monte
Carlo approach also has disadvantages. Adding new additional sample points at ran-
dom phase space is generally a suboptimal way to improve a mesh, and therefore the
ensemble Monte Carlo method is theoretically expected to require more total CPU time
in order to solve than a direct Boltzmann solution of similar accuracy.6

This leads to the second problem the ensemble Monte Carlo approach solves. It allevi-
ates the need to estimate the full 6−D distribution function at all. Typically the physical
quantities of interest are not the full 6−D distribution function, but certain weighted in-
tegrals over the crystal momentum states of the distribution function— most obviously
densities and net currents. Therefore, we do not need our Monte Carlo simulations to
reach the level of statistical accuracy required to define an accurate 6−D distribution

6Assuming the speed of memory access is identical.
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function, we only need the accuracy required to define the 3−D weighted integrals of
the distribution function. This reduces the accuracy of the simulation required by sev-
eral orders of magnitude, and therefore the CPU requirements of the ensemble Monte
Carlo approach by several orders of magnitude.

For a review of the early developments of the Monte Carlo approach to electron trans-
port see Jacoboni and Reggiani [43]. This describes the initial implementation of the
Monte Carlo approach to electron transport before the inclusion of very detailed scat-
tering operators and bandstructures, which are described well in the book edited by
Hess [53], and in the original DAMOCLES papers [16, 46, 6]. For a review of the early
impact of the DAMOCLES model, see the 1996 review of the field by Fischetti and Laux
[56]. This review describes the "standard model" that emerged for modelling electron
transport in bulk silicon, including a detailed scattering operator and full band struc-
ture. For a slightly more recent developments aimed toward increasing the statistical
accuracy of the basic algorithm, see the 2000 review by Kosina et al. [18]. Finally for a
broad historical overview of the role of ensemble Monte Carlo approaches in TCAD, see
the 2004 review by Fischetti et al. [13].

The strength of the ensemble Monte Carlo approach is its minimal memory require-
ments and the ease with which one can include arbitrary scattering operators and band-
structures. It is a truly theoretically sound approach to solving the Boltzmann transport
equation. The weakness of the approach is that— even only when weighted integrals
of the distribution function are computed and not the entire distribution function— it
is vastly more computationally expensive to solve than macroscopic models, and there-
fore plays a limited role in TCAD applications.

3.2.1 The Spherical Harmonic Electron State

Unlike the Monte Carlo approach, the spherical harmonic approach involves a relatively
orthodox simplification of the 6−D scalar function state in the full Boltzmann equation.
The spatial coordinates are left unchanged, and the crystal momentum dependence is
expressed as a sum of spherical harmonic terms.
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It is simplest to visualize the transformation of the crystal momentum dependent dis-
tribution function in terms of spherical harmonics in three steps. Let us examine the
distribution function for a single band at a single point in space, which is a 3−D scalar
function of crystal momentum and band index (kx, ky, kz, ν).

• First, let us apply a band-dependent affine transformation7 to the crystal momen-
tum coordinates designed to transform the equipotential surfaces into surfaces
that are as close as possible to concentric spheres centred at the origin. In gen-
eral, the only equipotential surfaces such a transformation can distort into perfect
concentric spheres is a set of off-centre concentric ellipses [57]. The distribution
function for a single band at a single point in space is now a 3−D scalar function
of Shifted And Stretched (SAS) crystal momentum (k′x, k

′
y, k
′
z, ν).

• Second, let us transform this function into pseudo-spherical polar coordinates. If
one uses the magnitude of SAS crystal momentum as the radial distance, then
the resulting coordinate system is an ordinary spherical polar coordinate system
and the transformation is always possible. However, this is much less physically
sound than using the energy as the radial coordinate, since it is the energy that
relaxes at a different rate to the crystal momentum. The problem with using the
energy as the radial coordinate is that the distribution function is not necessarily a
single-valued function of polar and azimuthal angle. Therefore, using the energy
as the radial coordinate is only possible if the ray exiting the SAS crystal momen-
tum origin at a each polar and azimuthal angle only crosses each constant energy
surface once. That is, the coordinate (ε, θk′ , φk′ , ν) must refer to one, and only one
point. If this is not the case, then the psuedo-spherical polar coordinates cannot
be well-defined.

• Third, we express the distribution functions on each constant energy surface, de-
fined as a scalar function on the 2−D space (θk′ , φk′ , ν), using a truncated set of
spherical harmonic coordinates. This is the step that actually reduces the size of
the distribution function.

The strength of the spherical harmonic approach is manifested when the contours of

7That is, a linear transformation with an origin shift
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the bandstructure are approximately concentric ellipsoids. In such a case, the affine
transformation transforms these into concentric spheres centred on the origin, and the
distribution function on each sphere is likely to be able to be modelled using only a
few low order spherical harmonics. This means that the 2−D scalar function associated
distribution function on the constant energy surfaces at a single point in real space is
reduced to a few scalars, and the 3−D scalar function associated with the distribution
function at a point is reduced to a few 1−D scalar fields. Local scattering thus becomes
a non-local mapping of only a few 1−D scalar fields rather than of a 3−D scalar field,
and the entire electron state is reduced to a few 4−D scalar fields. Thus, if the energy
contours of the bandstructure can be approximated by concentric ellipsoids, the spher-
ical harmonic approximation radically reduces the memory and computational effort
required to solve the full Boltzmann transport equation by several orders of magnitude,
while still being technically able to incorporate detailed scattering operators.

The weakness of this spherical harmonic approach is that its theoretical validity is pred-
icated on the idea that constant energy surfaces of the bandstructure can be approxi-
mated by concentric ellipsoids. In non-equilibrium transport there is generally no reason
to expect this approximation to be remotely true. While at low energies almost all bandstruc-
tures can be approximated as a set of concentric ellipsoids, this is seldom similarly true
at higher energy. And one of the major difficulties nearly all modern device models
must reckon with is that it is normal for electrons to have energies well above the ener-
gies that simple analytic approximations to the bandstructure are remotely accurate [6].
That is, in modern devices it is normal for electrons to have energies in which the con-
stant energy surfaces are not remotely elliptical. The only general truth about the shape
of these high constant energy surfaces is that they reflect the point symmetry of the un-
derlying crystal; for instance, the high energy constant energy surfaces of silicon reflect
the 48− fold dioctahedral point-symmetry associated with the silicon lattice. No matter
what affine transformation one applies to the bandstructure, the resulting shape of the
higher constant energy surfaces are nothing like spheres, and the distribution functions on
these constant energy surfaces has nothing to do with spherical harmonics. Indeed, of-
ten the constant energy surfaces cannot even be parameterized using pseudo-spherical
polar coordinates because the tuple (ε, θk′ , φk′) defines zero or multiple points [58].

The constant energy contours of valence bands are typically easier to parameterize us-
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ing pseudo-spherical coordinates. Therefore, the spherical harmonic expansions ap-
proach to hole transport in silicon has been successfully implemented with a full valence
bandstructure [59]. Unfortunately this does not change the fact that at high hole energy
the contour surfaces reflect the dioctahedral symmetry of silicon. Therefore, it is found
that hundreds of spherical harmonic terms are needed for an accurate description of the
distribution function [59].

For the conduction band, where typically the actual constant energy surfaces at high en-
ergies cannot be parameterized using spherical polar coordinates, a different approach
must be taken. The best way forward is to redefine the bandstructure using concentric
ellipsoids which are separated by energies that are defined such that the density of states
of the actual bandstructure is reproduced. If the bandstructure is simultaneously redefined
such that the average speed of states at a given total energy is reproduced, the results
can be quite accurate for a small number of spherical harmonics [60]. It is far from clear
that this approach is internally consistent however, and it is unclear what theoretical
foundation these approximations are founded on as the resulting distribution functions
in crystal momentum space do not remotely resemble the actual distribution functions
in crystal momentum space. We believe this is a contrived, superfluous attempt to insert
spherical harmonics into a theory based that can be based purely on the elastic relaxation
time approximation, which we describe in the next section.

3.3 The Energy-Dependent Electron State

3.3.1 Elastic Relaxation Time Approach

Given the theoretical weakness of the spherical harmonic approach in complex band-
structures, it is surprising how popular the approach is. This is especially true given the
fact that a reduction of the electron state to an energy-dependent distribution function
can be achieved in a theoretically sound way.

The proper technique was introduced in a 1992 paper by Dmitruk et al. [21], which was
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also used in the work of Vecchi and Rynan [61]. Rather than arbitrarily assuming a
spherical harmonic expansion, the approach begins instead with splitting the distribu-
tion function into an odd and even part. The even distribution is further split into an
energy-dependent part, and an even anisotropic part. The effect of scattering on the
odd part and the even anisotropic part of the distribution function is to make it decay in a
relaxation time— which we refer to in this thesis as the ELASTIC RELAXATION TIME. The
energy dependent part of the scattering operator is then left to be described by a more
detailed scattering model.

It is notable that a 4−D electron state model of non-equilibrium electron transport can
be derived from the full Boltzmann transport equation essentially using only the elastic
relaxation time approximation. The fact that this technique has nothing to do with spher-
ical harmonics seems not to be properly appreciated in the literature [62, 60, 63]. The
ELASTICALLY-CONSTRAINED EQUILIBRIUM model we present in the Results I chapter of
this thesis is an attempt to isolate, clarify and expand upon this powerful and under-
appreciated elastic relaxation time approximation of Dmutrik et al. In contrast to the
simple scattering operator of Dmutrik et al., the scattering operator we use to define the
transport parameters is the DAMOCLES style [16, 46, 6] scattering operator introduced
in the Background chapter.

The strength of this approach is that, with a single well-justified approximation, the
electron state of the full Boltzmann transport equation is reduced by two dimensions.
That is, rather than having to model the evolution of f(kν, r, t), we only have to model
the evolution of f(εkν , r, t). One weakness of this approach is that, while faster than
ensemble Monte Carlo, the approach is still more than an order magnitude more com-
putationally expensive to solve than most macroscopic models owing to the simple fact
that the electron state function is still a dimension larger than the 3−D macroscopic elec-
tron state function, and that scattering is still non-local in energy. However in the view
of this author, the real weakness is simply a lack of proper recognition by the field: it
is not recognized that the approach is fully independent of the spherical harmonic ap-
proximation, it is not recognized that the approach is capable of incorporating arbitrary
band structure and scattering operators, and it is not recognized that the approach has
a theoretically sound, intuitive basis.



102 CHAPTER 3. STATE OF THE ART

3.3.2 Fokker–Planck Approach

Other models have been proposed in which the electron state is characterized by an
energy-dependent scalar function. Apart from the first-order spherical harmonic ex-
pansions already criticized, there is the Fokker–Planck approach pioneered by Bringuier
[64, 65] and later developed into a complete device simulator by Kolobov [66]. The basic
model underlying this is simple and physically intuitive: electrons undergo 4−D drift–
diffusion in real space and energy space. Accordingly, the electron state is similarly
a simple 4−D scalar field and– unlike the elastic relaxation time approach— inelastic
scattering is always local in energy.

The strength of the Fokker–Planck approach is that it is physically intuitive, is capable
of including the effects of an arbitrary bandstructure, and is fast— being only an order
of magnitude more computationally expensive to solve than a macroscopic transport
model, owing to the fact that the scattering operator is local in energy [66]. The fun-
damental theoretical weakness of the approach is that it is innately incapable of mod-
eling highly inelastic scattering processes. Thus the model cannot take into account
important highly inelastic processes such as impact ionization and electron–electron
scattering. Secondly, even in cases where the energy exchanged is small, we argue that
the present form of the Fokker–Planck model is not theoretically ideal. The Fokker–
Planck approach of Bringuier was not derived from the full Boltzmann transport equa-
tion using well articulated assumptions, but instead is presented as a distinct formal-
ism [64, 65]. If instead, as will be shown later in this thesis, one attempts to derive a
model similar to the Fokker–Planck model by formally separating the elastic and in-
elastic components of scattering, the resulting model has pure diffusion at constant total
energy which is driven by the gradient in occupation rate rather than the gradient in
particle density. If inelastic scattering is limited to events that involve small energy ex-
changes with a lattice, the result is again pure diffusion in energy space that is driven by
the gradient in lattice-temperature chemical potential rather than by the gradient in parti-
cle density.8 However, these can be seen as minor technical flaws of the current iteration
of the Fokker–Planck approach, rather than fundamental weaknesses of the main idea.
The only true fundamental weakness of the Fokker–Planck approach is the fundamen-
tal to inability accurately model highly inelastic processes such as impact ionization and
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electron–electron scattering.

3.4 The Macroscopic Electron State

In the introduction, we discussed in relative detail quasi-homogeneous macroscopic mod-
els which are theoretically sound in a well-defined regime. In this literature review, we
focus on macroscopic models which have been proposed which claim to be accurate in
the innately inhomogeneous regime.

All INNATELY INHOMOGENEOUS MACROSCOPIC MODELS share the simplification of state
that is characteristic of macroscopic models. In macroscopic models the electron state
is defined by a small number of 3−D scalar fields, that are defined by simple weighted
integrals of the distribution function over crystal momentum. Examples of the result-
ing macroscopic quantities are particle density, average square velocity, average energy,
average square energy etc. All macroscopic models share a similar strength that— due
to this very simple electron state— they are very fast to solve. And all innately inhomo-
geneous macroscopic models share a similar weakness— that they are not theoretically
sound. In order to understand why this is the case, we need to look at the derivation of
macroscopic models in more detail.

The first step of deriving a macroscopic model of non-equilibrium transport is to use
Bløtekjær ’s technique of taking various weighted integrals of the Boltzmann transport
equation over all crystal momentum states and all conduction bands [10]. This solves
the problem of defining rigorous macroscopic transport equations. However, as stated
in the introduction, this process always creates a larger set of unknowns than the set of
equations. As a result, the equation set is open, and needs to be closed by specifying
additional relationships between the set of macroscopic unknowns. Defining these ad-

8The importance of this is relatively easy to understand if one thinks of the end-state equilibrium these
diffusion processes are driving toward. In the case of diffusion at constant total energy, the irreversible
diffusion process is attempting to equalize the occupation rate at constant total energy. In the case of
the inelastic scattering, the diffusion process is attempting to equalize the lattice temperature chemical
potential. When the density of states is a complex function of energy, these entropy-increasing pure
diffusion processes have no simple link to gradients in particle density, and no simple link to the drifting
of particle density.
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ditional relationships for macroscopic transport coefficients, is known as the CLOSURE

PROBLEM of macroscopic models. The innately inhomogeneous closure techniques can be
roughly categorized into two types.

Inhomogenous Simulation Based Closure : In this type of closure, the transport coef-
ficients are derived from a set of inhomogenous simulations.

Ansatz Based Closure : In this type of closure, an ansatz is proposed for the distribu-
tion function and on the basis that ansatz the transport model is closed without
reference to inhomogeneous simulation data.

We will briefly review both closure approaches.

3.4.1 Inhomogeneous Simulation Based Closure

Inhomogeneous simulation based closure is a closure technique similar to the quasi-
homogeneous closure technique, in that excess variables are removed by extracting pa-
rameters from a set of Monte Carlo simulations. There are, however, significant differ-
ences in using inhomogeneous simulation data to close an equation set. The set of possi-
ble homogeneous simulations is naturally restricted, and each simulation is mapped to a
unique single set of macroscopic densities; for example, in a given material there is only
one homogeneous simulation that will produce a particular local particle and energy
density. In contrast, the set of possible inhomogeneous simulations is effectively infinite,
and furthermore a range of particle and energy densities are associated with each sim-
ulation. This means that— unlike in case of quasi-homogeneous simulation closures—
there is no known set of macroscopic densities that has a one-to-one mapping with the
approximate distribution function specified in a particular inhomogeneous simulation.
Instead, the most obvious sets of macroscopic densities such as a particular specification
of particle density, energy density and a few higher order moments can generally be
associated with a large range of very different inhomogeneous simulations, implying a
large range of very different distribution functions underlying these macroscopic den-
sities. This implies that the remaining transport parameters used to close the model—
associated with integrals of the distribution function that are weighted by terms that de-
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pend on the complex bandstructure and/or scattering operator— never have any solid
theoretical reason for being single-valued functions of the macroscopic properties used
to close the model. In every innately inhomogeneous closure proposed, this fundamen-
tal theoretical problem is hidden somewhere. This basic theoretical issue was noted
more than twenty years ago by Fischetti and Laux on their discussion of these models,
and has still not been properly addressed [6].

We can demonstrate this theoretical problem for a few examples of popular innately in-
homogeneous closures. The most popular innately inhomogeneous closures of macro-
scopic models generally share the following two properties.

1. Hot carrier effects— defined as effects which involve a high threshold energy, such
as impact ionization— are determined by coupling to an independent model de-
signed only to determine the density of electrons above the threshold energy.

2. They are constructed to be consistent with homogeneous Monte Carlo simulations
[9].

The first property regarding the independent modelling of hot carrier effects has re-
sulted in the trend that it is typical to publish models of impact ionization indepen-
dently from the more general transport model, due to the very loose coupling between
these models.9 Generally, the most that is required from the macroscopic model is a
position-dependent electron density, which must be generated by every macroscopic
model in order to close Poisson’s equation. Examples of broadly applicable innately
inhomogeneous impact ionization models are the models of Ridley [42], Meinerzhagen
[67], Schrobohaci and Tang [68], and Ahn et al. [69]. The exception to this rule is the
class of innately inhomogeneous impact ionization models that can only be coupled to a
six-moment model of transport. The models tend to define the impact ionization via an
ansatz for the distribution function which requires all the local moments defined by the
six moment model [70, 71]. Beyond this requirement however, the impact ionization
models are still independent of the macroscopic transport model since the ansatz used
to define the impact ionization rate typically has no relation to the assumptions used to
close the six moment transport model [72, 11, 14].

9By "loose coupling" in this context, we simply mean that we can match a wide range of impact ion-
ization models with a wide range of macroscopic models of electron transport.
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Regarding the second property, consistency with homogeneous Monte Carlo data is
achieved using the same abstract method [9, 7, 15]. One takes one or more quasi-
homogeneous closure relations, adds a term or two which is always zero in a homo-
geneous simulation, and weights each of these terms by an undefined scalar the value
of which can be determined by comparing to a set of inhomogeneous simulations. The
details and justification for the precise alterations made to the quasi-homogeneous clo-
sure relations differ greatly between various models closed using inhomogeneous sim-
ulation data, but beneath these details the basic trick used is always the same. Similarly,
the theoretical criticism of such approaches is always the same: there are no theoretically
compelling reasons why the tuning parameters added to the model are expected to be
single-valued scalars across a range of inhomogeneous devices. Accordingly, the mod-
els produced by this closure method are unreliable when used on devices that are not
similar to those used in the set of inhomogeneous Monte Carlo simulations used to tune
them.

An example of a very simple, transparent application of the core principle used to build
an innately inhomogeneous macroscopic model is given by Bork et al [73]. These au-
thors built upon the quasi-homogeneous macroscopic model of Thoma et al. [74]. As is
common to many quasi-homogeneous macroscopic models, in the model of Thoma et
al., there is a HEAT FLUX term in the definition of energy flux which is proportional to the
gradient in average electron temperature.10 In a homogeneous simulation this heat flux
term is zero due to the average temperature being a constant function of position. As
such Bork et al. transformed the quasi-homogeneous model of Thoma et al. into an in-
nately inhomogeneous macroscopic model simply by multiplying the heat flux term by
a tuning scalar. The value of the tuning scalar could then be determined by comparing
the net current predictions of the macroscopic model with various values for the tuning
scalar, to the predictions made by Monte Carlo simulation, for nMOSFETs with channel
lengths of 100− 500nm.

While the approach of Bork et al. is manifestly empirical, there have been much more
thoughtful efforts to incorporate inhomogeneous simulation data into a macroscopic
closure. An example is the model of Tang et al. [75]. We note that in general, the greater

10This term is consistent with quasi-homogeneous assumption, since in a uniform field the distribution
function is typically close to a thermal distribution [6]. We know from basic transport theory that in a
distribution that is thermal, gradients in the temperature drive both particle and energy currents.
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the number of data points fitted, and the fewer the number of empirical tuning param-
eters, the stronger the circumstantial evidence that the model is robust. According to
this metric, Tang et al. produce an excellent model of both the (first order) stress-energy
tensor, and the second order stress-energy tensor (which is more commonly known as
the fourth order moment).11 Their model of the stress-energy tensor as a function of
average energy requires zero inhomogeneous tuning parameters and is shown to be
consistent with the stress energy tensor found at hundreds of average energies found
at various points in three n+nn+ diodes of different lengths. Their model of the sec-
ond order stress-energy tensor requires one inhomogeneous tuning parameter to fit the
same data.12 Since Lee and Tang earlier used similar inhomogeneous data as evidence
that the energy relaxation time is a single-valued function of average energy that can be
determined without inhomogeneous tuning parameters [76], this reduces the problem
of closing the macroscopic model in an innately inhomogeneous manner to modelling
the (particle flux) mobility and energy flux mobility.

In order to model particle and energy flux mobilities, Tang et al. relied on the usual
empirical technique of adding terms to the quasi-homogeneous closure that are zero
in a homogeneous field. The scattering term associated with particle flux mobility—
the momentum scattering term— was assumed to be equal to the homogeneous scat-
tering term at the same average energy, plus a term proportional to the divergence in
stress-energy tensor. The scattering term associated with energy-flux mobility— the
momentum-energy scattering term— was assumed to be equal to the homogeneous
scattering term at the same average energy, plus a term proportional to the divergence
in the second order stress-energy tensor. The constants of proportionality in each of
these relations are assumed to be piecewise functions, each of which is determined by
two scalars. The net result of these assumptions in the resulting model is simply that

11The STRESS-ENERGY TENSOR is defined by Û = 〈v ⊗ p〉, where v is velocity, p is crystal momentum
and 〈〉 is the distribution function weighted average over all bands and crystal momenta. The SECOND-
ORDER STRESS-ENERGY TENSOR or "fourth order moment" is defined by R̂ = 〈εv ⊗ p〉 where ε is
(kinetic) energy. These represent the net flux of crystal momentum carried by the current, and the flux of
energy-momentum carried by the flowing electrons. These are tensors since the crystal momentum can be
in a different direction to the current.

12One slightly confusing issue in the paper of Tang et al. is that the stress energy tensor and second
order stress energy tensor are plotted as if they are scalars [75, Fig. 5,7]. Furthermore, the divergence in
these quantities is talked about as being "greater or less than zero", even though it is technically a vector.
This only seems to make sense if these first and second order stress-energy tensors can always be written
down as the product of a dynamic scalar and a fixed invariant matrix, such as the identity matrix. And
yet such a formulation does not seem to be consistent with the assumptions that Tang et al. make.
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both the heat flux and the thermodynamic particle flux are weighted by two empirical
tuning parameters each. The evidence that these four empirical tuning parameters are
indeed single valued across the devices investigated is equivocal [75, Fig. 13,14]. Ac-
cordingly, the robustness of the model is compromised by the fact that only a moderate
number of data points have been reproduced from a comparatively large number of
empirical tuning parameters.

Finally, there is scant evidence at all that any of the assumptions made in the model are
true in devices other than nn+n diodes. Nevertheless, the techniques used in this pa-
per are particularly admirable for a single reason: compared to Bork et al., the authors
showed how one may extract an enormous amount of tuning data from just three inhomo-
geneous Monte Carlo simulations. Given that each high quality Monte Carlo simulation
is extremely computationally expensive, this is an important advance in reducing the
computational cost of tuning empirical models.

3.4.2 Ansatz Based Closure

The terms required to close a macroscopic model are integrals of the distribution func-
tion weighted by bandstructure and/or scattering operator dependent terms. In cases
where the bandstructure and scattering operator are complicated, it is essentially im-
possible to directly define a theoretically sound relationship between the macroscopic
densities and these weighted integrals unless one can also propose a theoretically sound
relationship between the macroscopic densities and the distribution function. This re-
quires an ansatz: an assumption about the functional form the distribution function
takes.

The classic starting point for the ansatz used to close the distribution function is the
expression of the distribution function as a sum of a zeroth order and first order spher-
ical harmonic [8]. However, the fundamental theoretical unsoundness of assuming the
distribution function can be expressed in terms of low order spherical harmonics in
complex bandstructures has already been discussed. A much better starting point is the
elastic relaxation time approximation. This is the starting point used by Chen et al. [77],
and used by Vecchi and Reyna [61].
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As is the case outside the macroscopic closure literature, the elastic relaxation time ap-
proximation is generally misunderstood inside the macroscopic closure literature. This
can occur by being conflated with the far stronger relaxation time approximation that the
distribution relaxes to a thermal distribution in a relaxation time [9], or by being oth-
erwise believed to only be theoretically valid in unnecessarily restricted circumstances
[75]. A failure to properly understand the elastic relaxation time approximation is even
evident in the original paper of Chen et al., which contains the following non-sequiter:

"For materials like Si, where the mean kinetic energy13 1
2
m 〈v〉2 is much smaller

than the mean thermal energy 1
2
m 〈v2〉, the correction from the field-induced

anisotropy is generally not important. Therefore, [the even part of the distri-
bution function] f0 can be approximated by an isotropic distribution f0(εkν)

and [the macroscopic transport parameters] become scalar functions of the mean
carrier energy 〈εkν〉." [emphasis added on non-sequiter]

This quote suggests that the authors conflate the assumption that the even distribution
function is an arbitrary energy-dependent function f0(ε) with the far, far stronger as-
sumption that the even distribution function is an average energy dependent function
f0(〈ε〉).

The elastic relaxation time approximation alone is obviously not enough to close a
macroscopic model. One must also make exactly the kind of mapping Chen et al. de-
scribe, and define the even distribution function in terms of the even macroscopic mo-
ments. Unlike the elastic relaxation time approximation which is under-appreciated,
the assumptions made about this part of the ansatz are correctly acknowledged as be-
ing very poor [9].

Vecchi and Reyna use the distribution function in a homogeneous field which has the
same average energy as the actual distribution function [61], making their closure an
example of the theoretically sound quasi-homogeneous closures described in the Intro-
duction chapter. Stratton used a heated Maxwellian [8]. Chen et al. used the product of
a heated Maxwellian and an arbitrary linear function of energy [77]. No convincing case
has ever been made for why any of these are theoretically sound descriptions of the even

13Note that in this thesis, "mean kinetic energy" refers to 〈εkν〉, and not the quantity given here.
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part of the distribution function in highly inhomogeneous devices, and empirical results
suggest this is because they are simply inaccurate [6]. Despite this empirical evidence to
the contrary, crude ansatz such as a heated Maxwell-Boltzmann distribution have often
been theoretically justified on the basis that they maximize the entropy subject to the
constraints provided by the macroscopic densities [78, 79], making them the "least bias"
way to close a macroscopic transport model [80]. Unfortunately, there is no theoreti-
cally sound reason why ignoring the microscopic physics underlying non-equilibrium
electron transport in the "least bias" manner possible will lead to an accurate model:
nature will act in a manner that is most certainly biased by the microscopic physics [81].
It is the perspective of this thesis that arguments on the basis of entropy maximization
are only theoretically sound when one can point to a physical mechanism that actually
acts to maximize the entropy that is assumed to be maximized. But even ignoring this
viewpoint, Jaynes himself— the father of the Maximum Entropy Principle— always
maintained that any maximum entropy ansatz which contradicts empirical evidence
must immediately be abandoned [80].

One of the few attempts to capture innately inhomogeneous effects in a physically
sound manner is the model of Bordeleon et al. [82]. In their model, the even distri-
bution function is assumed to be the sum of a lattice temperature Maxwellian— asso-
ciated with the low energy population of electrons approximately in chemical equilib-
rium with the drain terminal— and a quasi-homogeneous distribution characterized by
an average energy— associated with the electrons from the source terminal. Unfortu-
nately, there is no theoretically sound reason for why the part of the distribution func-
tion associated with electrons originating from the source terminal should have a quasi-
homogeneous distribution. In addition, the model ignores electron-electron scattering
events which mix the source and drain populations. The THREE EQUILIBRIUM MODEL of
non-equilibrium transport we propose in the second results chapter can be considered
as an attempt to address both of these concerns with the simple two population closure
of Bordeleon et al.



Chapter 4

Theoretical Framework

4.1 Introduction

In the Background chapter we derived a valid model of innately inhomogeneous non-
equilibrium transport in bulk silicon: a Boltzmann transport equation, subject to a full
band structure and scattering operator. In the State Of The Art chapter we then argued
that the rough consensus of the TCAD field is that one must choose one of the following
paths.

High Computational Cost: Accept the computational price for solving the full Boltz-
mann transport equation in a stochastic manner via full-band detailed ensemble
Monte Carlo.

Intermediate Computation Cost: Accept the memory price for a model that is a little
faster to solve1 based on a truncated spherical harmonic expansion, which is phys-
ically dubious in complex bandstructures.

Low Computational Cost: Accept the serious unphysical assumptions associated with
macroscopic models that are much faster to solve, and mitigate their impact on
accuracy via empirical tuning.

111
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We agreed with the consensus regarding detailed ensemble Monte Carlo simulation.
Detailed programs such as DAMOCLES [16], are capable of producing accurate simu-
lations for a high computational cost.

We disagreed with the consensus regarding spherical harmonics. We argued that bas-
ing a transport model on a spherical harmonics expansion is inappropriate given the
complex bandstructure of silicon, and that a much better solution is to base a theory
purely on what we called the elastic relaxation time approximation which makes a spher-
ical harmonic expansion superfluous. We argued that this viewpoint is consistent with a
short paper written in 1992 by Dmitruk et al. [21], but is inconsistent with the vast body
of more modern literature that endorses the spherical harmonic expansion approach
[83, 84, 62, 85, 86, 87, 63, 59, 58].

We agreed with the consensus regarding currently proposed macroscopic models, but
we argued that this is not fundamental, and suggested that a theoretically-sound closure
of a macroscopic model in the innately inhomogeneous regime is possible if it combines
the elastic relaxation time approximation with a theoretically-sound ansatz for the en-
ergy distribution function. We argued that Bordelon et al. were on the right track with
their two population ansatz [82], but that this ansatz fell short of theoretical soundness.

The aim of the remainder of this thesis is to define our proposed theoretically-sound re-
placements for the intermediate computational cost model and the low computational
cost model. This is the ELASTICALLY-CONSTRAINED EQUILIBRIA MODEL, and the THREE

QUASI-EQUILIBRIA MODEL respectively. Both ansatz rely on the existence of presently
unrecognized, atypical forms of quasi-equilibrium. The aim of this theoretical frame-
work chapter is to define these equilibria and to explain why the Boltzmann transport
equation drives the electron distributions toward them.

1The memory and computational costs obviously depend on the order of the spherical harmonics
expansion used. The computation costs are much smaller than an equivalent ensemble Monte Carlo for
very low order expansion, such as that proposed by Vecchi and Rudan [60], but will often be higher than
an equivalent ensemble Monto Carlo for high order expansions such as that proposed by Jungemann et
al. [59].
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4.2 On Simplifying the Electron State

We define a VALID ELECTRON STATE FUNCTION as a set of degrees of freedom that if speci-
fied at time t, provide sufficient information about electrons to predict the electron state
function at a later time t + ∆t in the class of devices the transport model is used for.
This definition of state might naïvely seem tautological and empty, but on the contrary
almost all choices of electron state function are invalid since predicting the future of an ar-
bitrary hypothetical state function almost always requires information about electrons
that is not contained in the state function. This is precisely the problem that manifests
when previous authors have tried to use a position-dependent particle and energy den-
sity to predict the future values of position-dependent particle and energy density in
innately inhomogeneous non-equilibrium transport.

Recognizing this, simplifying the state function in the semiclassical regime then appears
to be difficult because the reproducible Hamiltonian terms in the Boltzmann transport
equation move all degrees of freedom in the 6−D distribution function f(kν, r, t) along
different phase space vectors in a short time step. According to Hamilton’s equation,
these phase space velocity vectors are defined by the 6−D gradient partial derivative of
the Hamiltonian rotated 90◦ in each 2−D subspace defined by each canonical conjugate
pair of coordinates x̂i×~k̂i.2 Notice that this means that the product of the velocity along
a phase space coordinate and the directional gradient along that component will always
be equal in magnitude and opposite in sign to the product of these two factors along the
canonical conjugate coordinate. Since this product is equal to the partial time derivative
of the Hamiltonian, any rate of change in the Hamiltonian associated with the move-
ment along a phase space coordinate will always be compensated for by an equal and
opposite change in the Hamiltonian associated with the movement along the canonical
conjugate phase space coordinate. These dynamics ensure that the only changes in the
Hamiltonian at any point along a phase space trajectory are those associated with the
explicit time-dependence of the Hamiltonian.

2This is a very useful— but not immediately obvious— geometric way to understand Hamilton’s
equations of motion. The partial derivative defined by ∂H

∂~ki is rotated 90◦ in the (xi, ~ki) plane to define
the velocity along xi, and partial derivative defined by ∂H

∂xi
is rotated 90◦ in the (xi, ~ki) plane to define

the velocity along −~ki.
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To put it another way, each possible reproducible Hamiltonian is associated with a
unique, intricate pattern of "stirring" it performs on the full phase space distribution
function as time increases. This stirring occurs by moving the distribution function val-
ues at each point in phase space along a 5−D collection of 1−D trajectories defined by
placing the phase space velocity vectors end-to-end. The degrees of freedom— the dis-
tribution function scalars attached to each position in phase space— are never averaged
in any way by this reproducible Hamiltonian-based "stirring", just moved.3 In a finite
time, the effect of this stirring is to permute the set of scalars associated with each point
in phase space, and as this finite time tends to zero this permutation smoothly becomes
arbitrarily close to the identity operation. The complexity4 of this phase-space stirring
is defined by the complexity of the phase space gradient of the reproducible component
of the Hamiltonian.

This complexity is limited by the fact that the spatial component of the phase-space gra-
dient is not a function of k, and the crystal momentum component of the phase space
gradient is not a function of x. However, beyond this restriction, there is little we can
say. The spatial velocity as a function of k is innately complicated due to the innate com-
plexity of the bandstructure. The crystal momentum velocity as a function of x is also
relatively complicated due to fact the electric potential is a fairly arbitrary 3−D function
of position. Without enormous simplicity of either the spatial or crystal momentum
gradients, the effect of each becomes tightly intertwined, and two particles starting ar-
bitrarily close in phase space can become separated by large distances in phase space
over finite times, due to a positive feedback loop encoded into Hamiltonian dynamics.
For instance, two particles with the same crystal momentum, at slightly different points
in space will gain crystal momentum at slightly different rates, leading to a difference
in spatial velocity, leading to larger differences in space, leading to larger differences in
spatial velocity.

Since the complicated bandstructure and position-dependent electric potential dictate
that the 5−D space of trajectories all evolve differently from one another, a simplifica-
tion of the semiclassical electron state function is only possible if we can approximately
recreate the entire distribution function from a smaller set of degrees of freedom. This
recreation needs to be universal in the sense that the mapping needs to work across a

3This is Liouville’s theorem.
4Synonym for "complicatedness". Nowhere in this thesis do we refer to complex numbers.



4.2. ON SIMPLIFYING THE ELECTRON STATE 115

large range of devices. That is, we require that the distribution function is universally
constrained to a sub-domain of the full six-dimensional scalar function space that can
be relatively simply described. But even if we limit the boundary or initial distribution
function to a simple universal subdomain of the full distribution function, the "permuta-
tion" of the scalars over finite times associated with the reproducible Hamiltonian terms
will change the initial simple universal function space into one which is incredibly com-
plicated and tightly coupled to the precise reproducible Hamiltonian associated with a given
device. The reproducible Hamiltonian terms cannot therefore be the basis for universal
simplification of the electron state.

We have described then, why it is the very nature of the reproducible device Hamilto-
nians in a class of devices to drive the distribution function away from universal subdo-
mains of 6−D scalar-function space that might serve as simpler state functions. Thank-
fully then, it is also in the very nature of the non-reproducible device Hamiltonians to
drive the distribution function toward universal subdomains of the 6−D scalar-function
space.

As described in the background chapter, the non-reproducible device Hamiltonians are
associated with local scattering. This local scattering is an irreversible process, meaning
that it maps a large set of input distribution functions to a smaller set of output distribu-
tion functions. Thus it formally erases degrees of freedom from the electron state. One
simple way to understand this is that local scattering causes a complicated "averaging"
process of a subset of the local distribution function values, and the weighted sum of
several degrees of freedom results in one degree of freedom. The caveat of this is that
since there is a complicated average— or unique weighted sum— associated with ev-
ery crystal momentum state (and band index), it is formally possible for the effect of
the scattering operator to be reversible if the complicated averaging process associated
with each crystal momentum state is linearly independent of the complicated averaging
process associated with every other crystal momentum state.5 This however, is easily
shown not to be the case for the scattering operator.

5For simplicity we are describing cases where the scattering operator is a linear transformation of
the distribution function. However the fundamental argument we are making is also true for electron–
electron scattering. In fact, for high average energy distributions electron–electron scattering is the most
irreversible scattering mechanism in its average scattering time, since it relaxes the distribution to a drift-
ing internal thermal equilibrium on the timescale of one scattering time.
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The product, or sequential application, of a set of reversible transformations is another
reversible transformation. And yet, if we re-apply the scattering operator for long
enough6 to any distribution function, in the absence of an external force the end result
will always be a lattice temperature equilibrium distribution. That is, the end distribu-
tion will be inside a function space characterized by a single scalar— the local chemical
potential— rather than a 6−D field of scalars. Our model of how this incredibly irre-
versible mapping occurs is that in each average scattering time, the distribution func-
tion maps the set of input distribution functions to a significantly smaller function space
of output distributions, until lattice temperature equilibrium is reached. The aim of this
chapter is primarily to understand and accurately approximate the function space the
distribution function is reduced to on the timescale of a single average scattering time in
semiclassical silicon devices.

We refer to the reduced function space the full distribution function is driven toward
on the order of a single scattering time as ATYPICALLY CONSTRAINED QUASI-EQUILIBRIA.
The basic mental picture is that the scattering operator maximizes the entropy of the de-
grees of freedom associated with the atypical constraints significantly slower than a scat-
tering time, whereas it maximizes the entropy associated with the remaining degrees of
freedom on the order of a scattering time. This is a simple generalization of the same
process that underlies the established idea that when the electron–electron component
of scattering is strong it drives the local distribution to a warmed internal thermal equi-
librium. In this case, the entropy associated with local average energy is maximized on
a timescale significantly slower than the average scattering time, whereas the entropy
associated with all other degrees of freedom is maximized on a timescale on the order of
the average scattering time. In our extension from classically constrained quasi-equilibria
to atypically constrained quasi-equilibria, all we are doing is abandoning the notion that
the degrees of freedom for which entropy is maximized the slowest are only allowed to be
the conserved quantities which are the focus of classical thermodynamics, such as total
particle number and total energy.

The successful definition of relevant atypically constrained quasi-equilibria leads di-
rectly to a simplification of the Boltzmann transport equation. This is essentially because
we can view transport as a sequence of perturbations to the quasi-equilibria. To a first

6The scattering operator acts continuously, which means that it is reapplied to the distribution function
every instant.
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order approximation, the distribution function can be described by the balance between
the reproducible Hamiltonian terms associated with the local field and gradient in the
degrees of freedom of the quasi-equilibrium distribution, and the non-reproducible Hamil-
tonian evolution associated with the relaxation toward quasi-equilibrium in a scattering
time. We expect this first approximation to be accurate to the extent that the local field
and gradients in quasi-equilibrium degrees of freedom are constant over the length scale
associated with scattering, and the extent to which the boundary conditions are constant
in the time-scale associated with scattering. The local field is already guaranteed by the
semiclassical assumptions to be relatively constant over the length scale associated with
scattering, since this is equal or shorter than the length scale associated with decoher-
ence. Similarly, the timescale at which the boundary conditions of a device change are
slow compared to the scattering time.7 Accordingly, a valid simplified electron state
can be defined in terms of the degrees of freedom of the quasi-equilibria that the scat-
tering operator drives the distribution function toward. This motivates our extensive
investigation of novel forms of quasi-equilibria in the rest of this chapter. The explicit
demonstration that degrees of freedom of quasi-equilibria are sufficient to define valid
electron state functions is given in the two results chapters that follow this chapter.

Finally it is worth briefly noting the relationship of this theoretical framework to the
work of Jaynes [80], since both argue that entropy maximization subject to constraints
occurs. Simply put, this framework should not be viewed as an application of Jaynes’ in-
famous MAXIMUM ENTROPY PRINCIPLE. We are very much concerned with understand-
ing the physical mechanism of entropy maximization, whereas Jaynes was not. The reason
we do not appeal to Jaynes Maximum Entropy Principle is because of its unrestricted
flexibility. The Maximum Entropy Principle can be used to justify literally any distribution
function, because the space of possible constraints is larger than the 6−D scalar function
space of the distribution function.8 Thus Jaynes Maximum Entropy Principle is primar-
ily a technique for generating empirical models and is orthogonal to the first-principles
approach of this thesis.

7Note, this is not true if we follow Fischetti and Laux [16] and treat plasmons semiclassically by up-
dating Poisson’s equation at a faster rate than the plasma frequency. As such, the models we derive in
this thesis can only incorporate plasmons via a contribution to the scattering operator.

8For instance, if we define the distribution function to be the maximum entropy distribution subject
to the constraint that it has a given occupation rate at every point in the six dimensional phase space.
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4.3 Wedge Constrained Quasi-Equilibria

The first quasi-equilibria we will investigate is the WEDGE-CONSTRAINED QUASI-EQUILIBRIA

and it is by far the weakest we will investigate in the sense that it reduces the degrees
of freedom of the distribution function by the smallest amount. The wedge-constrained
quasi-equilibria is a result of what could be called the UNBIASED WALK APPROXIMATION,
which is a simplification of the linear component of scattering.9 In addition to the linear
component, the scattering operator will have a non-linear contribution due to carrier–
carrier scattering and degeneracy effects:

(
∂f

∂t

)

scat
= Slinear[f ] + Snon-linear[f ]. (4.1)

We can express the linear component of scattering as the sum of in-scattering— associ-
ated with the transfer of occupation rate from all other states to a state kν— and out-
scattering— associated with the transfer of occupation rate at kν to all other states10:

Slinear[f ] = Sin
linear[f ] + Sout

linear[f ]. (4.2)

For a linear scattering operator, the out-scattering operator is independent of the occu-
pation rate at all other states. Accordingly, we can express it in terms of a state depen-
dent scattering rate 1

τscat(kν)
:

Sout
linear[f ] = − f

τscat(kν)
. (4.3)

The linear in-scattering operator is far more complicated, since it is a functional of all
states that conserve total energy and total crystal momentum with a partner state tran-
sition. For most scattering operators, there is a set of partner state transitions associated
with every possible change in electron crystal momentum. However, it is not the case
that all these transitions conserve total energy. Since typically if a n−D scalar field
intersects another n−D scalar field, the intersection will be a possibly disconnected,

9If we scale the entire distribution function by some factor, the "linear component of scattering" is the
component of the scattering rate that scales by the same factor.

10Since scattering is local, in this chapter, we generally take for granted that all the dynamics described
are occurring at some fixed position in the device r, and that scattering parameters can depend on this
position.
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(n− 1)−D hypersurface, the in-scattering operator for the state kν is dependent on the
distribution function on a set of complicated, 2−D surfaces embedded in the Brillouin
zone.

Let us examine where this set of 2−D surfaces intersects a particular change in partner
energy of ∆ε, and electron energy of −∆ε. This will be a complicated, disconnected set
of closed 1−D loops embedded on the constant energy surface of the electron bandstruc-
ture at εkν + ∆ε. The rate of in-scattering from the electron states at εkν + ∆ε is defined
by the line integral of the distribution over these 1−D loops, weighted by a coupling
term defined in the scattering operator.

If the standard deviation of crystal momentum exchange with the partner system in a
scattering time is typically small, the subset of these closed loops which is most heavily
coupled to the state kν, will typically be confined to a subregion of the constant energy
surface near k + 〈∆k〉, where 〈∆k〉 is the average crystal momentum change. However,
if the standard deviation of the crystal momentum exchange in a scattering time is a
sizeable fraction of the radius of the Brillouin zone, the most heavily coupled of these
closed loops will typically traverse a wide sample of the constant energy surface.

Suppose we now express the local distribution function as the sum of the following
terms.

• An energy dependent distribution function fε, which has the same energy-dependent
particle density as the actual distribution function:

fε(k
′ν ′) = fε(k

′′ν ′′) if εk′ν′ = εk′′ν′′ , and

Γ
∑

ν′

∫

BZ
fε(k

′ν ′)δ(ε− εk′ν′)dk′ = Γ
∑

ν′

∫

BZ
f(k′ν ′)δ(ε− εk′ν′)dk′.

• An antisymmetric/odd distribution function fA:

fA(k′ν ′) = −fA(−k′ν ′).

• A symmetric/even perturbation to the energy dependent distribution fS/ε:
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fS/ε(k
′ν ′) = fS/ε(−k′ν ′).

In an inversion-symmetric bandstructure, the density at constant energy associated with
both fA and fS/ε is equal zero. In a non inversion-symmetric bandstructure, the density
associated with fA and fS/ε is equal and opposite, so it is better to think of them as a
single perturbation to the energy dependent bandstructure that has zero density at each
constant energy. We express them separately since inversion symmetry is extremely
common, and is present in silicon. Either way, if we examine the entire constant energy
surface of the bandstructure at εkν + ∆es, the distribution function is now expressed as
a constant function of all the states on the entire energy surface, plus a perturbation to
that function which is positive just as often as it is negative.

In the case where the standard deviation of crystal momentum exchange in a scattering
time is large, we can make the Unbiased Walk Approximation. The Unbiased Walk
Approximation is that as one "walks" along these widely dispersed 1−D loops of points
embedded on the constant energy surface, weighting the local distribution function by
a coupling term that is not sharply peaked as this is inconsistent with a large standard
deviation of crystal momentum, and adding this scalar to the sum that determines the
rate of in-scattering to kν from states at kν + ∆ε, the effect of the perturbations to the
energy dependent distribution function approximately cancel, since one is just as likely
for the "walk" to cross a state where they are negative as it is to cross a state where they
are positive.

That is, if we express the linear in-scattering rate as the sum of the in-scattering rate due
to the energy-dependent distribution and the in-scattering rate due to the perturbations
to the energy-dependent distribution, the Unbiased Walk Approximation is that the in-
scattering rate due to the perturbations to the energy-dependent distribution can be
neglected:

Sin
linear[f ] = Sin-scat[fε] + Sin-scat[fA + fS/ε]

≈ Sin-scat[fε]. (4.4)

This is a simple but extremely powerful, theoretically sound simplification which can
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be applied to many scattering operators, since the assumption that the standard devi-
ation in crystal momentum exchanged in a scattering time is a sizeable fraction of the
Brillouin zone is extremely commonly satisfied.

The Unbiased Walk Approximation can even model the effect of asymmetric scattering
operators and asymmetric bandstructures simply by examining their effect on the 1−D
local energy distribution function rather than on the full 3−D local distribution function.
This however is tangential to the aim of this thesis. More to the point is that each state
is therefore subject to a linear out-scattering rate, equal to the linear scattering time,
a linear in-scattering rate, equal to the linear in-scattering rate acting on the energy
distribution function. The relevant picture of electron transport that emerges from the
Unbiased Walk Approximation is that, apart from the effects on the energy distribution, the
perturbations to a distribution function induced by the Hamiltonian flow are wiped clean
in a scattering time.

This is not to say necessarily that we can describe the distribution function as an energy-
dependent distribution function subject to perturbations due to Hamiltonian flow. The
linear in-scattering rate of states at a given point in the distribution function associ-
ated with a change in the partner energy of ∆ε, is therefore proportional simply to the
"length" of the 1−D manifold that conserves energy, weighted by the coupling strength.
This does not imply that the distribution of in-scattering is the same for a state k′ν ′

which has the same energy as kν, since the "length" of the 1−D total energy and mo-
mentum conserving manifold can easily be a function of position on a constant energy
surface εkν .

However, we do have the important result that if the scattering partner distribution in
crystal momentum space has the same or higher point symmetry than the symmetry
of the local crystal, this means than the in-scattering distribution must have at least the
point symmetry of the local crystal. Thus, for instance, in the case of scattering in silicon
with a distribution of phonons in lattice equilibrium, the in-scattering distribution to an
energy state can be described by an energy dependent density function, and a pertur-
bation to each density function that has the dioctrahedral point-symmetry of the silicon
crystal.
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As a result, in the case where the distribution of scattering partners has the same higher
symmetry as the crystal, this reduces the effective electron state from a distribution
function on the entire Brillouin zone to a distribution function on the irreducible wedge
of the Brillouin zone, which is perturbed by the Hamiltonian flow terms to create less
symmetric perturbations to the distribution function which are deleted on the scattering
time-scale. We refer to this as a Wedge-Constrained Quasi-Equilibria, since it is the max-
imum entropy distribution subject to the set of constraints defined by the distribution
function on an irreducible wedge. This nomenclature may seem a little clumsy in this
case, but we use it as it is part of the general pattern of trying to understand the distri-
bution function information that scattering destroys efficiently, and which information
is not destroyed efficiently.

4.4 Elastically Constrained Quasi-Equilibria

The Unbiased Walk Approximation is applicable to a wide range of semiclassical trans-
port problems since the assumption that the standard deviation in the crystal momen-
tum exchanged with the scattering partners in a scattering time is a significant fraction
of the size of the Brillouin zone is very commonly valid. The strength of the approx-
imation is that it clearly shows that in scattering operators with this quality, the only
effects due to the reproducible Hamiltonian terms that last on a longer time-scale than
the scattering time are those terms that effect the energy distribution of electrons. The
weakness of the approximation is that the degrees of freedom for the quasi-equilibrium
distribution are still described by a 6−D scalar field, it is just a scalar field that is smaller
by a factor determined by the number of point symmetries the semiconducting crystal
and scattering partner distribution have in common. The reason for this is that while the
quasi-equilibrium distribution does not reflect the perturbations to the energy distribu-
tion produced by the reproducible Hamiltonian terms, it will reflect the perturbations to
an energy distribution associated with the non-reproducible Hamiltonian terms. These
perturbations exist because in general, any given state kν may be coupled with a par-
ticular energy level εkν + ∆ε more or less strongly than any other given state k′ν ′ at
the same energy level εk′ν′ = εkν but at a different position in the irreducible wedge. A
quasi-equilibrium defined only by an energy distribution requires stronger assumptions
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about the scattering operator.

In this section we will investigate a stronger form of quasi-equilibria than the Wedge-
Constrained Quasi-Equilibria which we refer to as the ELASTICALLY CONSTRAINED QUASI-

EQUILIBRIA. An Elastically-Constrained Quasi-Equilibrium would be defined in the
classically statistical mechanical sense as the state where all microstates consistent with
a given energy dependent density are equally probable, or equivalently can be defined as
the distribution function which maximizes the entropy subject to this same constraint.
In this section, we investigate two different mechanisms that can lead to such a form of
quasi-equilibrium.

4.4.1 Equilibrating Mechanism of the First Type

The most obvious scattering operator that will lead to an Elastically-Constrained Quasi-
Equilibrium is a scattering operator dominated by purely elastic scattering, such as that
due to dopants. In such a case, at any given energy level, scattering will tend to maxi-
mize the entropy of the distribution, subject to the constraint that the number of parti-
cles is conserved, since this is the constraint that purely elastic scattering preserves. This
idea is completely independent of the earlier Unbiased Walk Approximation and holds
so long as all pairs of states at the same energy are coupled directly or indirectly11 by
a coupling strength that has inversion symmetry.12 Under these conditions, the distri-
bution of occupation rates at constant energy is stable if and only if every occupa-
tion rate is the same. If the initial distribution is a large perturbation from elastically
constrained equilibrium, the relaxation to elastically constrained equilibrium may take
slightly longer than the scattering time since the crystal momentum exchange associ-
ated with dopant scattering is often biased toward small crystal momentum exchanges.
However, as argued in the 1995 update to the DAMOCLES model of Fischetti et al., at
the high energies typical of non-equilibrium transport even dopant scattering is asso-
ciated with large crystal momentum exchanges [6]. Regardless, the fact remains that
scattering involving negligible energy transfer drives the distribution toward an elas-
tically constrained equilibrium at some time-scale, and this time-scale will approach
the scattering rate in the case where the typical momentum exchanges in scattering are
large, or in the case where the perturbations from elastically constrained equilibrium
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are small.

If dopant scattering dominates, the assumption that the distribution relaxes to an elas-
tically constrained equilibrium on a timescale that is at most a small multiple of the
scattering time, and is most likely very similar to the scattering time, has a sound the-
oretical basis. The more important question is whether this also applies in the far more
common case where phonon scattering is dominant, and if so under what conditions.

Phonon scattering is not elastic, and the distribution of phonons is usually assumed to
be in thermal equilibrium at the lattice temperature. This means that— unlike dopant
scattering— the formal equilibrium that phonon scattering tends to drive the distribu-
tion function toward is a lattice temperature equilibrium. It is also well known, how-
ever, that phonon creation and destruction typically involves large crystal momentum
changes— since phonon states are distributed widely across the entire Brillouin zone—
and small energy changes— since all phonon states have relatively small energies. As
a result, it is reasonable to suspect that phonon scattering may drive the distribution
toward an elastically constrained quasi-equilibria efficiently on the order of a single
scattering time, and then to a lattice thermal equilibrium much more slowly.

While intuitively appealing, in order for this to actually happen by the same mechanism
as applied for genuinely elastic scattering, we need the same formal conditions to hold
albeit over an finite energy range. We need that all states within a small energy band are
directly or indirectly coupled by a dominant scattering process which has a symmetric
coupling strength. This symmetry is in conflict with the fact that the phonon coupling
strength between states with an energy difference ∆ε differs by an amount proportional
to the Boltzmann factor e

−∆ε
kTL .13 Thus the phonon coupling between states is only ap-

proximately symmetric in the case where ∆ε— the energy of the phonon being created
or destroyed— is negligible compared to the lattice thermal energy. Unfortunately this
is typically only a reasonable approximation for a minority of phonon scattering events

11By indirect coupling we simply mean that state A couples to state B by passing occupation rate prob-
ability through a set of intermediate states at the same energy.

12By an inversion symmetric coupling strength, we simply mean that the coupling strength from elec-
tron state A to electron state B is the same as the coupling strength from B to A for states at the same
energy. For this not to be true requires that the probability of a scattering partner transition involving
negligible energy change and a transfer of crystal momentum ∆k is not symmetric to scattering partner
transition involving negligible energy change and a change of crystal momentum of −∆k.

13For details on this, see Section 4.5, particularly the Aside.
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in the far-from-equilibrium regime. For instance, in room-temperature silicon when
electrons are far-from-lattice-temperature-equilibrium, the majority of phonon scatter-
ing events involve large wavevector transverse acoustic phonons. Such phonons are
associated with an energy that is close to the maximum energy of the phonon band
(∼ 25meV), which is approximately equal to the lattice thermal energy.

Thus we cannot typically rely on the phonon scattering to drive the distribution effi-
ciently toward an elastically constrained equilibrium according to the same mechanism
used for dopants.

4.4.2 Equilibrating Mechanism of the Second Type

The equilibrating mechanism of the first type is a conventional equilibration mecha-
nism as it leads to a conventional detailed balance, where on average there is no net
transfer of particles from one state to another. In this section, we wish to describe a
dynamic mechanism of equilibration to an Elastically-Constrained Quasi-Equilibrium,
which does not rely on detailed balance.

The starting point for this mechanism is the Wedge-Constrained Quasi-Equilibrium.
The essential point that came from the Wedge-Constrained Quasi-Equilibria is that the
in-scattering rate, while a functional only of the energy distribution function, is gener-
ally a function of the position in the irreducible Brillouin zone. Note, however, that the
assumption that this innately drives a distribution toward a state that also depends ex-
plicitly on the position in the irreducible Brillouin zone relies on the assumption that the
out-scattering rate does not have a similar dependence on the position in the irreducible wedge
as the in-scattering rate does. In the case that the dependence is similar, then the addi-
tional particles scattering into a state kν which is associated with a particularly strong
coupling to higher energy states, will only result in a greater "flux" of particles flowing
through the state and not a particularly large buildup of particles in the state, as the state
will also have a proportionally strong coupling to lower energy states. We refer to this
as the EASY COME–EASY GO approximation, and a scattering operator which possesses
Easy Come–Easy Go dynamics will be driven toward an Elastically-Constrained Quasi-
Equilibrium, rather than just a Wedge-Constrained Quasi-Equilibrium by the scattering
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operator Slinear = Sin
linear[fε] + f

τscat(kν)
.

If the most frequent energy exchange ∆ε with the scattering partners in a scattering
time is small enough, we expect Easy Come–Easy Go dynamics to exist. The reason is
as follows. Suppose that the shape of a constant energy surface does not change much
over an energy scale 2∆ε, so that the 1−D manifold of final electron states associated
with subtracting an energy of ∆ε from the partner distribution and adding to an elec-
tron state is similar in shape to the 1−D manifold associated with adding an energy of
∆ε to the partner distribution and removing it from the electron state. We suppose that
the total line integral of the scattering operator on the 1−D manifold on the constant en-
ergy surface at ε+∆εmaintains the same rough shape but is scaled by some factor close
to unity for the 1−D manifold on ε − ∆ε. The change in scale is determined primarily
by the fractional change in the total density of states at (ε + ∆ε) and (ε − ∆ε), since
the phonons involved— and by extension the coupling strength— are approximately
inversion symmetric to one another. Accordingly, the out-scattering rate is approxi-
mately proportional (though not necessarily equal) to the in-scattering rate across the
irreducible Brillouin zone, which is the condition required for the Easy Come–Easy Go
approximation to hold. This is shown schematically in Fig. 4.1.

As ∆ε tends to zero, the Easy Come–Easy Go assumption becomes more and more
accurate by virtue of the shape of the 1−D manifolds on the constant energy surfaces
becoming more and more identical, and the phonons involved becoming closer and
closer to being related by perfect inversion symmetry, and therefore the out-scattering
rate becomes more perfectly proportional to the in-scattering rate (and infact tending to
become equal, but this is not required). We schematically illustrate this limit in Fig. 4.2.

The Easy Come–Easy Go approximation is more accurate at higher energies, since the
shape of the bandstructure will change less over the energy scale associated with 2∆ε,
than at the very low energies where the bandstructure can change radically. Thus the
Easy Come–Easy Go approximation becomes more accurate precisely for high aver-
age energy non-equilibrium distributions where the ordinary relaxation time breaks
down, making the assumption that electrons are in an Elastically-Constrained Quasi-
Equilibrium theoretically sound at both extremes. In distributions that are only a single
scattering event from a lattice temperature equilibrium, the ordinary relaxation time en-
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Figure 4.1: An illustration of the Easy Come–Easy Go approximation. If the shape of the constant energy
surface of the bandstructure does not vary much over an energy scale 2∆ε, then the shape of the 1−D
manifolds that intersect the partner states of energy ∆ε will not vary much either, so long as the partner
energy bandstructure possesses inversion symmetry. As a result, the ratio of in-scattering of state kAνA
to state kBνB at the same energy, will be approximately the same as the ratio of out-scattering of state
kAνA to state kBνB .
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Figure 4.2: An illustration of the fact that phonons involved in the transition from ε + ∆ε → ε and
ε → ε − ∆ε become closer and closer to being related by inversion symmetry as the constant energy
surfaces at ε + ∆ε and ε −∆ε become more and more similar in shape. Shown here is the same phonon
absorbed twice, which results in a manifold at energy ε − ∆ε which is equal to the manifold at ε + ∆ε
inverted about intermediate state at ε. If the second phonon was inverted about the origin, then the 1−D
manifolds at ε−∆ε would be identical to the 1−D manifolds at ε+ ∆ε.
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sures it, while in distributions that are many scattering events from a lattice temperature
equilibrium transport, the Easy Come–Easy Go approximation ensures it.

4.5 Chemically Constrained Quasi-Equilibria

The Elastically-Constrained Quasi-Equilibrium approximation can be used as the basis
of a model of semiclassical transport in the innately inhomogeneous regime, as will be
shown in the Results I chapter. In this ELASTICALLY-CONSTRAINED TRANSPORT model, the
electron state is determined by a position and energy dependent distribution function
fε(ε, r, t). This electron state is then subject to pure diffusion driven by the gradient of
the occupation rate at constant total— rather than kinetic— energy, and a purely inelastic
scattering operator.

The result is a theoretically sound, flexible model of phonon collision-dominated, semi-
classical electron transport that is several orders of magnitude faster to solve than the
full Boltzmann transport equation. However, this model still has the problem that it is
1−D larger— and therefore one or two orders of magnitude more computationally in-
tensive to solve— than a macroscopic transport model. In order to simplify the model,
we need to further make assumptions about the shape of the energy distribution. In this
section, we will accept the validity of the Elastically-Constrained Transport model, and
try to find a functional form for the energy dependent distribution function. Our focus
in this section is on describing an ansatz for the subpopulation of carriers that are injected
from a high potential energy terminal into a device with a highly inhomogeneous field, and which
are subject to scattering with partners that are in thermal equilibrium with the lattice. The rea-
son for focussing on this particular subpopulation of carriers is that it is precisely the
subpopulation that is not described by a conventional thermal equilibrium distribution,
since these carriers are typically neither in thermal equilibrium with one another nor
with the lattice. Since this subpopulation is the focus of this entire section, we will refer
to the energy distribution function of this subpopulation simply as fε(ε, r, t) without
any qualifying subscripts or superscripts.
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4.5.1 Chemical Potential Equalization by Inelastic Scattering

The first thing to note is that when non-equilibrium carriers scatter with partners which
are in thermal equilibrium with the lattice, the direction of net particle transfer between
any two non-equilibrium carrier states is fixed. Namely, between any two energy states
in the subpopulation the net effect of scattering will be move carriers from energy states
with high effective chemical potential to the energy states with low effective chemical potential,
where the EFFECTIVE CHEMICAL POTENTIAL is defined as follows:

µeff
ε (ε, r, t) = ε+ kTL ln

(
fε(ε, r, t)

1− fε(ε, r, t)

)
. (4.5)

Note that according to this definition, the energy-dependent distribution function is
defined as follows:

fε(ε, r, t) =
1

1 + e
ε−µeff

ε (ε,r,t)
kTL

. (4.6)

Put a different way, if we have different carrier states separated by an energy of magni-
tude |∆ε|, and the occupation rates of the carrier states are equal, the energy decreasing

transitions will be a factor e
|∆ε|
kTL more frequent than the energy increasing transitions.

While it is not immediately obvious, this is actually consistent with the scattering oper-
ator derived in the Background chapter.

• It is consistent with scattering with a phonon mode at qη which is in thermal
equilibrium with the lattice:

– Transitions associated with phonon creation— which decrease carrier energy
by ~ωqη— are proportional to nqη + 1.

– Transitions associated with phonon destruction— which increase carrier en-
ergy by ~ωqη— are proportional to nqη.

– The lattice temperature Bose-Einstein distribution has the property that

nB-E + 1 = nB-Ee
~ωqη
kTL . Therefore the first rate is greater than the second rate by
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a factor e
~ωqη
kTL .

• It is consistent with scattering involving a transition between a pair of partner
electron states |pAµA〉 and |pBµB〉 separated by an energy ∆ε = εpBµB − εpAµA
which are in thermal equilibrium with the lattice:

– Transitions in which |pBµB〉 is the final partner state and |pAµA〉 is the ini-
tial partner state— which decrease the primary carrier energy by ∆ε— are
associated with a transition rate proportional to fF-D(εpAµA)

(
1− fF-D(εpBµB)

)
.

– Transitions in which |pAµA〉 is the final partner state and |pBµB〉 is the ini-
tial partner state— which increase the primary carrier energy by ∆ε— are
associated with a transition rate proportional to fF-D(εpBµB)

(
1− fF-D(εpAµA)

)
.

– The lattice temperature Fermi–Dirac distribution has the property that
1 − fF-D(ε) = e

ε
kTL fF-D(ε). Accordingly the first rate is proportional to

fF-D(εpAµA)fF-D(εpBµB)e
εpBµB
kTL , and the second rate is proportional to

fF-D(εpAµA)fF-D(εpBµB)e
εpAµA
kTL . Therefore the first rate is greater to the second

rate by a factor e
∆ε
kTL .

This Boltzmann factor difference in the rate of scattering transitions which decrease (pri-
mary) carrier energy and scattering transitions which increase (primary) carrier energy
is a fundamental fact of scattering with a system of partner bodies in thermal equilib-
rium. This is described in more detail in the following aside.

Aside: On Scattering with Partners in Thermal Equilibrium

Suppose we have a set A of gA carrier states with kinetic energy εA which
has an occupation rate fA, and we have a set B of gB carrier states with
kinetic energy εB which has an occupation rate fB.
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Let us suppose these carriers scatter with a bath of partner states which
is in thermal equilibrium at a temperature TL, and let us suppose some
of these scattering events are able to create transitions from states in A to
states in B, and vice versa.

The number of carriers in A is nA = gAfA, and the number of carriers in B
is nB = gBfB. The rate carriers are scattered from A to B can be defined as
follows:

(
∂nB
∂t

)

A→B
= −

(
∂nA
∂t

)

A→B
=

Occupied A states︷ ︸︸ ︷
gAfA

Empty B states︷ ︸︸ ︷
gB(1− fB)

Transition rate︷ ︸︸ ︷
TA→B .

(4.7)

Here TA→B is the transition rate from A to B per empty final state at B.
Similarly, the rate carriers are scattered from B to A can be defined as fol-
lows

(
∂nA
∂t

)

B→A
= −

(
∂nB
∂t

)

B→A
=

Occupied B states︷ ︸︸ ︷
gBfB

Empty A states︷ ︸︸ ︷
gA(1− fA)

Transition rate︷ ︸︸ ︷
TB→A .

(4.8)

Here TB→A is the transition rate from B to A per empty final state at A. We
are interested in which of these two rates is larger, which can be expressed
via the ratio of the two rates:

∣∣∣∣∣

(
∂nA
∂t

)

A→B

/(
∂nA
∂t

)

B→A

∣∣∣∣∣ =

∣∣∣∣∣

(
∂nB
∂t

)

A→B

/(
∂nB
∂t

)

B→A

∣∣∣∣∣

=
fA(1− fB)TA→B
fB(1− fA)TB→A

. (4.9)

When the carriers in A and B are in thermal equilibrium with a tempera-
ture TL, the ratio of these rates must be equal 1, due to detailed balance. By
definition of the lattice temperature Fermi function, in this case when the
carriers at A and B are at temperature TL, we have the following:
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fA
1− fA

= e
− εA
kTL , (4.10a)

fB
1− fB

= e
− εB
kTL . (4.10b)

As such, in thermal equilibrium, we must have that the rate of the transi-
tion rates per density of final states is as follows:

TA→B
TB→A

=
e

εA
kTL

e
εB
kTL

. (4.11)

This ratio of transition rates is not affected by the occupation rate ofA orB,
and therefore eq. (4.11) must also be true when A and B are not in thermal
equilibrium. Therefore, if we attribute an EFFECTIVE CHEMICAL POTENTIAL

to a state X by µeff
X = εX + kTL ln

(
fX

1−fX

)
, we can re-express eq. (4.9) in

terms of these effective chemical potentials:
∣∣∣∣∣

(
∂nA
∂t

)

A→B

/(
∂nA
∂t

)

B→A

∣∣∣∣∣ = e
µeff
A−µ

eff
B

kTL . (4.12)

The above ratio of rates of particle transfer is greater than 1 when µA > µB

and is less than 1 when µA < µB. As such, between any two carrier states,
the net rate of particle transfer stimulated by scattering with partners in
thermal equilibrium is such that net carriers transfer is always from the
state of higher effective chemical potential to the state of lower effective
chemical potential. The important point is that this is a completely gen-
eral result, and does not presume the carrier distribution to be at, or near,
equilibrium. The only thermal equilibrium required is that the scattering
partner distribution is in thermal equilibrium at kTL.
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4.5.2 Chemical Potential Equalization by Total Energy Diffusion

Unlike the case for the full Boltzmann transport equation where only the explicit scat-
tering term is a many-to-one mapping of the distribution function, in the Elastically
Constrained Equilibrium model both the pure inelastic scattering operator and the dif-
fusion at constant total energy are many-to-one, entropy increasing functionals, since
the latter includes the elastic component of scattering. As a result, both components con-
tribute toward irreversibly driving the energy distributions toward a subspace of the
set of all possible energy distributions.

Diffusion at constant total energy always acts to equalize the occupation rate at constant
total energy of distribution function at neighbouring positions. This can be converted
into an equalization of effective chemical potential by rewriting the effective chemical
potential as a function of total energy as opposed to kinetic energy. We refer to this as
the thermodynamic form of the effective chemical potential. That is, if fH(H, r, t) is the
distribution function as a function of total energy H , rather than kinetic energy ε, the
thermodynamic effective chemical potential µeff

H is defined as follows:

µeff
H = H + kTL ln

(
fH(H, r, t)

1− fH(H, r, t)

)
. (4.13)

According to this definition, the distribution function as a function of total energy is
defined as follows:

fH =
1

1 + e
H−µeff

H
(H,r,t)

kTL

. (4.14)

4.5.3 Elastically and Inelastically Connected States

Both the inelastic scattering operator and the diffusion at constant total energy act to
equalize the thermodynamic effective chemical potential between states. The difference
is that the inelastic scattering operator acts to equalize the thermodynamic effective
chemical potential between states at the same position but different energies, whereas
diffusion at constant total energy acts to equalize the thermodymamic effective chemical
potential between states at the same total energy but at neighbouring positions. The cru-
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cial point to understanding the interplay between these two equilibriating forces is that,
if we are in the far-from-lattice-temperature regime, diffusion at constant total energy
must be much more efficient at equalizing thermodynamic effective chemical potential
than the inelastic scattering operator is. If this were not the case, then the distribution
at each point in space would be in thermal equilibrium with the lattice.

Accordingly, the inelastic scattering operator can only be expected to approximately
achieve the local equalization14 of the effective chemical potential different energy states
in the far-from-thermal-equilibrium regime if and only if diffusion at constant total energy
is not primarily acting to disrupt this local equalization of effective chemical potential. Because
of this fact, it is useful to define two different types of states. We define the ELASTICALLY

CONNECTED STATES as any state which has a positive kinetic energy path15 to a point
where the local electron population is in thermal equilibrium with the lattice16— that
is, to a point where the local electron population is defined by a single effective chemi-
cal potential. Conversely, we define INELASTICALLY CONNECTED STATES as all remaining
states. We note that it is simple to show that at any point r, if a state at an energy ε is
an elastically connected state, then all states are higher energies at the same position are
also elastically connected states. Accordingly, we can define two regions of the total
energy axis at any given point: those associated with elastically connected states, and
those associated with inelastically connected states. Such a partitioning is illustrated
schematically in Fig. 4.3.

As indicated earlier, we can neatly seperate near-equilibrium and non-equilibrium trans-
port by the relative efficiency of the thermodynamic effective chemical potential equal-
ization by pure inelastic scattering and by diffusion at constant total energy. In devices
where pure inelastic scattering is more efficient at equalizing thermodynamic effective
chemical potential, the effective chemical potential is a single valued function of posi-
tion, and the transport is defined to be near equilibrium. In devices where diffusion at
constant total energy is more efficient at equalizing the thermodynamic effective chem-

14By "local equalization", we mean equalization at a single position in space.
15By "has a positive kinetic energy path", we simply mean to say that if there is point that is separated

from the lattice temperature distribution by a potential barrier which cannot be detoured around, then it
is not elastically connected.

16This "point where the local electron population is in thermal equilibrium with the lattice" is roughly
equivalent to the high energy terminal from which electrons originate. The only difference is that if there
is near-equilibrium transport near the terminal, this point can move to lower total energy.
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ical potential, elastically connected states will tend to have a much higher chemical
potential than inelastically connected states. This is true for all but a small energy re-
gion of states near the crossover energy between elastically and inelastically connected
states.

We note that the only influence that drives the distribution function away from a con-
stant chemical potential at energies well above the crossover region17 is the energy de-
pendence of the diffusion parameter. We expect that this second-order perturbing force
is not close to being strong enough to overcome the thermalizing effect of acoustic
phonons, since in distributions which are already near lattice temperature thermal equi-
librium, the relaxation to a lattice temperature equilibrium occurs on the time-scale of
the acoustic phonon scattering time. As a result, we expect that the distribution func-
tion asymptotically approaches some maximum effective chemical potential at high en-
ergies. This constant effective chemical potential part of the distribution is referred to
as the THERMAL TAIL. As a result of this fact, it is only the inelastically connected and
crossover regions that may have distribution function forms that are not determined by
the lattice temperature. Put another way, it is only the inelastically connected and crossover
regions that are far-from-lattice-temperature-equilibrium. We note that while the crossover
region will move upwards in total energy in non-equilibrium— owing to the fact that
the net transfer of carriers toward lower chemical potential states by the inelastic scatter-
ing operator will generally be faster when the difference in effective chemical potential
occurs over small energy changes, since most inelastic scattering events involve small
energy changes18— this movement will be stabilized and largely prevented by elastic
diffusion, as illustrated schematically in Fig. 4.3.

We note that in the case where the scattering operator is dominated by very narrow
bands of energy transition that are large compared to the thermal energy, the distri-
bution function below the tail will have gaps, associated with inelastically connected
states that are very weakly coupled to the most heavily occupied elastically connected
states. In silicon however, the most frequent scattering processes have ∼ 25meV or less,
meaning that any oscillation in the energy distribution occurs can be neglected. This
leaves the problem of defining the overall shape as a large-scale function of energy. We

17If 〈|∆ε|〉 is the average magnitude of energy exchange in a scattering event, "well above the crossover
region" is defined as being ∼ 3 〈|∆ε|〉 above the crossover region.

18If this were not the case, we would be in the near equilibrium regime.
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Figure 4.3: Schematic of dynamics, where εC is the conduction band minimum and fH is a schematic de-
piction of the energy distribution function as a function of total energy. At point A, we have a distribution
in thermal equilibrium, which defines the elastically connected states for the adjacent point B. At point
B, the elastic diffusion is inefficient enough that the rate of inelastic scattering is sufficient to equilibrate
the chemical potential of the inelastically connected states with the elastically connected states. Accord-
ingly the elastically connected states are redefined at the bottom of the conduction band at point B. At
point C, elastic diffusion now equilibrates the chemical potential of the elastically connected states with
the chemical potential at point B faster than the inelastic scattering can equalize the chemical potential
of the inelastic states at point C with the elastically connected states at point C. As a result, the elasti-
cally connected states are only in chemical equilibrium with one another, excepting a small crossover
region that loses particle density. This crossover region has to be limited to a small region because the
decrease in particle density results in an increase in the particle flux at point B, thus stabilizing it. These
same dynamics occur at point D, with the crossover region becoming a little larger, and the tail in chem-
ical equilibrium starting a little higher. The number of inelastically connected states grows even faster,
and the gap between the chemical potential in the tail and the chemical potential at the bottom of the
conduction band grows even larger.
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make the assumption that, in the case where there are no "gaps" of weakly coupled
states, the distribution simply maximizes entropy, subject to the local maximum effec-
tive chemical potential, local energy density and local particle density. This turns out
to be equivalent to the assumption that the crossover region and inelastically connected
states maximize entropy subject to their local energy density and local particle density.
We refer to this maximum entropy distribution function as a CHEMICALLY-CONSTRAINED

QUASI-EQUILIBRIUM. In Appendix G, we prove that such a distribution fCCE is given by
the following form:

fCCE =





1
eαε+βε+1

for ε < ε∗,

1

e
ε−µmax

ε
kTL +1

for ε ≥ ε∗.
(4.15)

Here αε and β are uniquely defined by the constraints on the particle density and energy
density, µmax

ε is the maximum effective chemical potential and ε∗ is the KNEE ENERGY,
which is implicitly defined by demanding fCCE is continuous:

αε + βε∗ =
ε∗ − µmax

ε

kTL
(4.16)

Accordingly, we now have a simple ansatz for the electron subpopulation injected from
the high energy "source" terminal into a device with highly inhomogeneous fields, which
is subject to scattering with partners which are in thermal equilibrium with the lattice.
This is precisely the subpopulation which is not described by ordinary forms of equi-
librium. When combined with the subpopulation of electrons in thermal equilibrium
with one another due to electron-electron scattering, and the subpopulation of electrons
which are near effective chemical equilibrium with the low energy "drain" terminal, we
can write down an ansatz for the entire electron population in the innately inhomogeneous
regime. This ansatz forms the basis of the THREE QUASI-EQUILIBRIA TRANSPORT model
which is derived in the Results II chapter.
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Chapter 5

Results I: Elastically-Constrained
Transport

5.1 Introduction

In the background chapter we derived a valid model of semiclassical non-equilibrium
transport: a Boltzmann transport equation, subject to a full band structure and scatter-
ing operator. The aim of this thesis as a whole is to derive a valid model of innately
inhomogeneous semiclassical transport that is much faster to solve.

In the theoretical framework, we argued that the complexity of the transport equation
is naturally linked to the size of the domain, or degrees of freedom, of the distribution
function. This is because the more degrees of freedom the distribution function has,
the larger the set of continuity equations the transport equation needs to express in
order to be closed. Therefore, if we reduce the domain of the distribution function in
a theoretically sound manner, we can naturally reduce the complexity of the transport
equation in a theoretically sound manner.

The question then becomes how to reduce the domain size of the distribution function in
a theoretically sound manner. We showed that the reproducible parts of the Hamiltonian,

139
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associated with non-scattering terms in the Boltzmann equation, are of no assistance in
this regard. This was shown to be a consequence of Liouville’s theorem. The only terms
mathematically capable of squeezing the distribution function into some subdomain of
the general domain are the non-reproducible parts of the Hamiltonian, associated with
the scattering operator.

Our next aim then was to find what the smaller function space the full scattering op-
erator might act to squeeze the general distribution function into in non-equilibrium
transport. One of the things we noticed is that semiclassical non-equilibrium transport
is characterized by frequent phonon scattering, since the external field has to be ap-
proximately uniform on the length scale of decoherence. In phonon scattering, crystal
momentum is relaxed efficiently, but energy is not. We argued that the efficient crystal
momentum relaxation of scattering drives the distribution efficiently toward a distribu-
tion function constrained by point symmetry, and on top of this the inefficient relaxation
of energy results in a distribution function which is constrained to have the same occu-
pation rate in all states at the same energy. In classical statistical mechanics terms, this
is a distribution function representing an ensemble of particles where all microstates
consistent with a given energy distribution function are equally probable. Accordingly, we
referred to this distribution as an elastically-constrained quasi-equilibrium.

Our aim in this chapter is to incorporate this tendency of the scattering operator to
squeeze the distribution function toward an elastically-constrained equilibrium into
our model of non-equilibrium transport. In doing so, we will derive the ELASTICALLY

CONSTRAINED QUASI-EQUILIBRIUM MODEL of transport: a theoretically sound simplifica-
tion of the Boltzmann transport equation that is valid for semiclassical non-equilibrium
transport that involves frequent low-energy collisions.

This chapter consists of two major sections. In the first section, we derive the generic
form of the elastically constrained equilibrium model. In the second section, we de-
scribe in detail how to calculate the energy-dependent transport parameters from the
scattering operator and band structure described in the background chapter.
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5.2 The Generic Elastically Constrained Transport Model

5.2.1 Overview

In a semiclassical non-equilibrium transport system, carriers frequently scatter with
partners which exchange only a small amount of carrier energy. Accordingly, energy
relaxation requires many collisions and therefore passes through many intermediate
states on its way back to equilibrium. Thus we cannot approximate this relaxation of the
distribution back to thermal equilibrium using a relaxation time approximation. On the
other hand, the crystal momentum exchanged in these scattering events is often large,
typically of the same order of magnitude as the crystal momentum of the carrier. As
such, crystal momentum is randomized in very few (∼ 1) collisions. As shown in the
theoretical framework, this allows us to assume that the distribution relaxes toward
an ELASTICALLY CONSTRAINED QUASI-EQUILIBRIUM in a relaxation time that is similar
to the scattering time. In this section, we build a model of collision-dominated non-
equilibrium electron transport based on this observation.

The content of this section can be summarized as follows.

• We separate out the purely elastic component of scattering, by arguing the real
scattering operator can be approximated by the sum of a purely elastic scattering
operator and a purely inelastic scattering operator.

• We argue that in the collision-dominated regime, the relaxation time approxima-
tion can be used to describe the purely elastic component of scattering. This is not
the same as the highly dubious approach of using the relaxation time approxima-
tion to describe inelastic scattering processes.

• We separate the Boltzmann transport equation into an energy dependent compo-
nent, an antisymmetric component and a symmetric perturbation to the energy
dependent component.
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• We show that the antisymmetric component is a perturbation to the energy de-
pendent component that is first order in relaxation time, and that the symmetric
component is second order in relaxation time. Accordingly, the perturbations to
the first order approximation to the antisymmetric component are third order in
the relaxation time.

• We derive a drift-diffusion model for particle flux at single energy, which requires
only an accurate estimate for the energy dependent component and the antisym-
metric component. This model is derived by taking an appropriate weighted inte-
grals of the Boltzmann transport equation.

5.2.2 The Elastically-Constrained Scattering Operator

The aim of this subsection is to simplify the scattering operator by incorporating the
tendency of scattering to relax the distribution toward an elastically constrained equi-
librium. Since this is only part of the effect of scattering, our first step is to separate out
the part of the scattering operator that is associated with only this effect. This requires
we make an approximation, since the natural decomposition of the scattering operator
is in terms of different carrier–partner scattering terms, each of which contributes to
crystal momentum relaxation.

The approximation we will make is, at an abstract level, widespread in physics. It is the
decoupling of phenomena at different timescales. The basic idea is that when we have two
coupled phenomena, but one has a characteristic timescale that is very short compared
to the other, we approximate the faster phenomena as occurring while the slower phe-
nomena is held as static.1 In our case, the two coupled phenomena we are interested in
are the relaxation to an elastically constrained equilibrium, and the relaxation to thermal
equilibrium.

It is perhaps useful at this stage to provide a concrete example that explicably displays
these phenomena occurring at different timescales. The most explicit such example is
where there are no spatial gradients in occupation rate, since then there are no fluxes

1A classic example of this type of approximation is the Born–Oppenheimer approximation [26].
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to distort the effect of scattering on the distribution function. Accordingly, imagine if at
t = 0, we place a spatially-uniform arbitrary distribution function f(kν, 0) that has an
average energy of about ∼ 1eV, into a zero-field collision-dominated device that has a
uniform temperature lattice. We expect that, after some short period of time comparable
to the average collision time τ1 ∼ 〈τC〉, the distribution will have been driven toward an
elastically constrained equilibrium. That is, we expect the following:

f(kν, t) = fε(εkν , t) for t ≥ τ1 ∼ 〈τC〉 . (5.1)

This is our fast relaxation phenomena, and we investigated in detail the underlying
microscopic physics that leads to such a distribution. It is not until a much later time,
τ2 ∼ 10τ1, that the distribution will have reached thermal equilibrium with the lattice:

f(kν, t) = fF−D(εkν) for t ≥ τ2 ∼ 10τ1. (5.2)

This therefore is our slow relaxation phenomena. The general technique of decoupling
phenomena at different timescales suggests we can decouple scattering into two com-
ponents. The component that leads to elastically constrained equilibrium, while the
relaxation toward thermal equilibrium is static, and the part that leads to thermal equi-
librium assuming the distribution is already in elastically constrained equilibrium. We
refer to the former as the PURELY ELASTIC scattering term, and the latter as the PURELY

INELASTIC scattering term.

To achieve this technically, we will express the inelastic scattering term in terms of an
inelastic scattering operator that acts only on the energy distribution function, which we
define as the average occupation rate at energy ε:

fε(ε, . . . ) =

∑
ν

∫
BZ f(kν, . . . )δ(εkν − ε)dk∑

ν

∫
BZ δ(εkν − ε)dk

. (5.3)

We have, thus far, glossed over the phenomena of creation and annihilation. We as-
sume creation and annihilation processes typically occur at the timescales longer than
the momentum relaxation timescale, and so we also construct fictitious pure creation
and pure annihilation operators that also only operate on the energy dependent distri-
bution function. Accordingly, we will approximate the scattering term as the sum of
four fictitious "pure" scattering terms:
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(
∂f

∂t

)

scat
(kν) =

(
∂f

∂t

)elastic

scat
(kν) +

(
∂f

∂t

)inelastic

scat
(εkν) +

(
∂f

∂t

)creation

scat
(εkν) +

(
∂f

∂t

)annihilation

scat
(εkν).

(5.4)

We define each pure term type as being generated from a corresponding scattering op-
erator Spure type as follows, where the square brackets indicate the distribution function
that the scattering operator acts on.

• The elastic scattering term:

(
∂f

∂t

)elastic

scat
(kν) = −f(kν, . . . )− fε(εkν , . . . )

τrelax(kν, . . . )
.

• The inelastic scattering term:

(
∂f

∂t

)inelastic

scat
(εkν) = Sinelastic(ε

i; εf)[fε].

• The particle creation term:

(
∂f

∂t

)creation

scat
(εkν) = Screation(εi; εf, εf

e, ε
f
h)[fε].

• The particle annihilation term:

(
∂f

∂t

)annihilation

scat
(εkν) = Sannihilation(εi, εi

h)[fε].

The assumptions underlying the very simple, relaxation time form of the elastic scatter-
ing operator have been given in the theoretical framework. If our assumptions made in
the theoretical framework are true, the relaxation time at the state is equal to the scat-
tering time. We do not make this substitution on the basis that if, for instance, crystal
momentum is nearly but not totally relaxed in a scattering time, we can phenomenologi-
cally correct for this by using a relaxation time that is slightly longer than the scattering
time.
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5.2.3 Simplifying via the Elastically-Constrained Scattering Operator

Having simplified the scattering operator, we now wish to find a transport equation for
the distribution function. We begin with the Boltzmann transport equation:

∂f

∂t
=

(
∂f

∂t

)

scat
− v · ∇rf −

F

~
· ∇kf. (5.5)

As with any function, we can separate the electron distribution function into its sym-
metric and antisymmetric parts with respect to inversions in k) f = fS + fA, and we can
also separate the scattering term into its symmetric and antisymmetric parts2:

∂fS
∂t

+
∂fA
∂t

=

(
∂fS
∂t

)

scat
+

(
∂fA
∂t

)

scat
− v · ∇rfS − v · ∇rfA −

F

~
· ∇kfS +

F

~
· ∇kfA.

(5.6)

Separating the symmetric and antisymmetric terms, we form the following two coupled
equations:

∂fS
∂t

=

(
∂fS
∂t

)

scat
− v · ∇rfA −

F

~
· ∇kfA, (5.7a)

∂fA
∂t

=

(
∂fA
∂t

)

scat
− v · ∇rfS −

F

~
· ∇kfS. (5.7b)

We note that in general fS = fε+fS/ε, where fS/ε is symmetric with respect to inversions
of k, but is associated with zero total density when integrated over local states in a thin
shell of constant energy. Accordingly, we can separate the symmetric component into
two parts in a similar manner, leading to three coupled equations, where (. . .)ε repre-
sents the energy dependent component of the enclosed function, and (. . .)S/ε represents
the symmetric perturbation component of the enclosed function:

2By this we mean that
(
∂fS
∂t

)
scat

should be interpreted as the symmetric component of scattering term,

not necessarily the action of the scattering operator on the symmetric component of the distribution func-
tion. That is, at this stage we are treating the scattering term as an ordinary function that can be split into
antisymmetric and symmetric components.



146 CHAPTER 5. RESULTS I: ELASTICALLY-CONSTRAINED TRANSPORT

∂fε
∂t

=

(
∂fε
∂t

)

scat
−
(

v · ∇rfA +
F

~
· ∇kfA

)

ε

, (5.8a)

∂fS/ε
∂t

=

(
∂fS/ε
∂t

)

scat
−
(

v · ∇rfA +
F

~
· ∇kfA

)

S/ε

, (5.8b)

∂fA
∂t

=

(
∂fA
∂t

)

scat
− v · ∇rfS −

F

~
· ∇kfS. (5.8c)

So far we have made no approximations. The equations in eq. (5.8) are in every way
equivalent to the full Boltzmann transport equation. At this point, however, we in-
sert our approximation for the scattering operator. According to this approximation,(
∂fε
∂t

)
scat = S[fε],

(
∂fS/ε
∂t

)
scat

= − fS/ε
τrelax

and
(
∂fA
∂t

)
scat = − fA

τrelax
. This leads to the fundamental

transport equations of the Elastically-Constrained Equilibrium regime:

∂fε
∂t

= S[fε]−
(

v · ∇rfA +
F

~
· ∇kfA

)

ε

, (5.9a)

∂fS/ε
∂t

= − fS/ε
τrelax(kν, r)

−
(

v · ∇rfA +
F

~
· ∇kfA

)

S/ε

, (5.9b)

∂fA
∂t

= − fA
τrelax(kν, r)

− v · ∇rfS −
F

~
· ∇kfS. (5.9c)

The elastic relaxation time is on the order of picoseconds, which is almost always much
faster than the characteristic time for the rate of change of boundary conditions in the
device.3 Accordingly, we can assume that the antisymmetric and symmetric perturba-
tion components are in steady-state in a typical device. This leads to the following direct
expressions for the antisymmetric and symmetric components:

fS/ε = τrelax(kν, r)

(
v · ∇rfA +

F

~
· ∇kfA

)

S/ε

, (5.10a)

fA = −τrelax(kν, r)

(
v · ∇rfS +

F

~
· ∇kfS

)
. (5.10b)

This set of equations can be iteratively solved using perturbation theory, beginning with

3In the DAMOCLES model, plasmon scattering is modelled implicitly by updating the Poisson’s equa-
tion significantly faster than the plasma frequency, which is of the order of femtoseconds. Thus in the
elastically-constrained model we need to model plasmon scattering explicitly as another scattering mech-
anism analogous to the other scattering mechanisms. We leave this as a problem for future work.
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the approximation that fS = fε. The first order approximation to the distribution func-
tion is the following:

f 1
A = −τrelax(kν, r)

(
v · ∇rfε +

F

~
· ∇kfε

)
. (5.11)

We note that, if we interpret fε as a function of (ε, r, t) rather than a function of (k, r, t),
we can use the chain rule to re-express∇kfε as∇kε

∂fε
∂ε

. Since∇kε = ~v, this leads to the
following expression:

f 1
A = −τrelaxv ·

(
∇rfε + F

∂fε
∂ε

)
. (5.12)

This equation becomes even simpler if we express the energy distribution function as
a function of total energy fH . The proper application of the chain rule in this case is
slightly more subtle, so this time we will take care when changing derivatives. Techni-
cally what we mean when we change variables is that fε = fH ◦ (H, r, t), where (H, r, t)

is a vector valued function of the argument of fε— in this case (ε, r, t)— and "◦" is the
composition operator. Conversely, we can express fH = fε ◦ (ε, r, t), where (ε, r, t) is a
vector valued function of (H, r, t). Let us use the latter form, and expand∇rfH using the
full multivariate chain rule. For clarity, we write (. . .)x,y to mean the partial derivative
where x, y is constant:

(∇rfH)H,t = (∇rε)H,t

(
∂fε
∂ε

)

r,t

+ (∇rr)H,t (∇rfε)ε,t + (∇rt)H,t

(
∂fε
∂t

)

ε,r

=
(
∇r (H − V (r, t))

)
H,t

(
∂fε
∂ε

)

r,t

+ (∇rfε)ε,t . (5.13)

Here V (r, t) is the potential energy. Removing the subscripts, and noting that the force F

is equal to F = −∇rV (r, t), we have the expression for the transformation of the spatial
gradient:

∇rfH = F
∂fε
∂ε

+∇rfε. (5.14)

Accordingly, we can rewrite the first order approximation to the antisymmetric distri-
bution function given in eq. (5.12) as the following wonderfully simple expression:
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f 1
A = −τrelaxv · ∇rfH . (5.15)

If we wanted to, we can substitute this expression into eq. (5.10a) in order to find an
estimate for the symmetric perturbation to the distribution function. This will be pro-
portional to τ 2

relax. We can then in turn substitute this expression back into eq. (5.10b) in
order to find an improved estimate for the antisymmetric distribution, which will differ
from eq. (5.15) by an absolute term proportional to τ 3

relax, or equivalently a relative term
proportional to τ 2

relax. If we refer to r as a rough characterization of the relative magni-
tude of the first order antisymmetric distribution to the energy distribution, we expect
the absolute error in the first order of approximation to the antisymmetric distribution
to be proportional to r3 of the energy distribution, and the relative error to be propor-
tional to r2. Thus, this first order approximation is definitely accurate if r2 � 1, and in
some circumstances it will be sufficient if r3 � 1. Outside these regimes, it is necessary
to calculate higher order perturbations.

We will focus the rest of this thesis on the first order elastically constrained equilibrium
model, which is defined by the following two transport equations:

∂fε
∂t

= S[fε]−
(

v · ∇rfA +
F

~
· ∇kfA

)

ε

, (5.16a)

fA = −τrelaxv · ∇rfH . (5.16b)

5.2.4 The Energy-Dependent Particle Continuity Formulation

One of the most useful properties of the Boltzmann transport equation is that we can
derive continuity equations for smaller sets of information by evaluating weighted in-
tegrals of the Boltzmann transport equation over momentum space.

Since the electron state in the elastically constrained equilibrium model is uniquely de-
fined by the position and energy dependent particle density, the most intuitive way to
think about the elastically constrained equilibrium transport equations is in terms of the
continuity of particle density at each position and energy. We can derive this set of con-
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tinuity equations from the Boltzmann transport equation by integrating over constant
energy surfaces. In order to do this, it is convenient to define the CONSTANT ENERGY

SURFACE FUNCTIONAL, σε(ε), as follows:

σε(ε) [X] = Γ
∑

ν

∫

BZ

δ(εkν − ε)Xdk. (5.17)

Here X is a some arbitrary function. The factor Γ refers to the density of states, per
unit volume, in k space multiplied by the degeneracy of the bands indexed by ν. For
spin-degenerate bands of silicon, this is equal to 1

4π3 .

The Constant Energy Surface functional is linear, on the basis of the linearity of the inte-
gration operator. In addition, it possesses the following behaviour with the differential
operators in the Boltzmann transport equation:

σε(ε)

[
∂X

∂t

]
=

∂

∂t
σε(ε) [X] , (5.18a)

σε(ε) [∇rX] = ∇rσ
ε(ε) [X] , (5.18b)

σε(ε) [∇kX] =
∂

∂ε
σε(ε) [X∇kε] . (5.18c)

The first identity assumes that the bandstructure is a constant function of time, which
may be broken if the bandstructure model is coupled to the Schrödinger equation. The
second identity assumes that the bandstructure is independent of position, which may
be broken if the device is heterogeneous. The final identity is due to a subtle multidi-
mensional form of integration by parts. We prove this non-trivial piece of calculus in
detail in an aside found at the end of this section.

In addition, we can define the following terms.

• The Density of States:

D(ε) := σε(ε) [1] . (5.19a)

• The Energy-Dependent Particle Density:

nε(ε, r, t) := σε(ε) [f ] = σε [fε] = D(ε)fε. (5.19b)
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• The Energy-Dependent Particle Flux:

jε(ε, r, t) := σε(ε) [vf ] = σε [vfA] . (5.19c)

• The Energy-Dependent Density Scattering Term:
(
∂nε

∂t

)

scat
:= σε(ε)

[(
∂f

∂t

)

scat

]
= D(ε)

(
∂fε
∂t

)

scat
. (5.19d)

We can apply the constant energy surface functional to both sides of the Boltzmann
transport equation. Using the definitions given above, this results in the following equa-
tion:

σε(ε)

[
∂f

∂t

]
= σε(ε)

[(
∂f

∂t

)

scat
− v · ∇rf −

F

~
· ∇kf

]
. (5.20)

Applying the linearity of the Constant Energy Surface functional, we have the follow-
ing:

σε(ε)

[
∂f

∂t

]
= σε(ε)

[(
∂f

∂t

)

scat

]
− σε(ε) [v · ∇rf ]− F

~
· σε(ε) [∇kf ] . (5.21)

Applying the differential identities of (5.18), leads to the following:

∂

∂t
σε(ε) [f ] = σε(ε)

[(
∂f

∂t

)

scat

]
−∇r · σε(ε) [vf ]− F · ∂

∂ε
σε(ε) [vf ] . (5.22)

Here we have used the assumption that the spatial divergence commutes with the
Constant Energy Surface functional in the same way as the spatial gradient, and that
v · ∇rf = ∇r · (fv), using the assumption again that the bandstructure is position-
independent. In addition, we have used the identity that ∇kε = ~v. Finally, substitut-
ing the definitions in (5.19) leads to the Energy-Dependent Particle Density Continuity
Equation:

∂nε

∂t
=

(
∂nε

∂t

)

scat
−∇r · jε − F · ∂jε

∂ε
. (5.23)

In a similar fashion to eq. (5.15) we can make this more elegant by defining the particle
flux as a function of total energy H , rather than as a function of kinetic energy ε. This
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leads to the following simple, intuitive expression:

∂nε

∂t
=

(
∂nε

∂t

)

scat
−∇r · jH . (5.24)

It is important to note that so far in this section, the only assumption we have used is
that the bandstructure is not a function of position or time. In order to derive this ex-
pression, we have made no assumptions concerning the scattering operator or the form
of the expression for the energy dependent particle flux. We now turn to determining
an expression for the energy dependent particle flux, which does require using the as-
sumptions we have previously made about scattering and the size of perturbations. In
this thesis we will use the first-order approximation for the antisymmetric scattering
derived earlier. To derive an expression for the particle flux, we simply multiple both
sides of eq. (5.15) by the velocity v, and apply the Constant Energy Surface functional
to both sides. The result is the following:

σε(ε) [vfA] = σε(ε) [−τrelaxv(v · ∇rfH)] . (5.25)

The term on the L.H.S. is the energy-dependent particle flux, which can be defined either
as a function of kinetic energy or total energy. For this equation we will use the total
energy form, since this is the form used in eq. (5.24). On the R.H.S. we notice that the
term ∇rfH can be moved to the outside of the Constant Energy Surface functional, on
the basis that it is a single valued function at a single energy. In order to achieve this we
make use of the tensor product ⊗, which can be used in order to "delay" a dot product
operation; that is, A(B · C) = (A⊗B) · C. This leads to the following:

jH = −D(ε)Dε · ∇rfH . (5.26)

Here we define the termEnergy-Dependent Diffusion Tensor Dε as follows:

Dε(ε, r) =
σε(ε) [τrelaxv ⊗ v]

σε(ε)[1]
. (5.27)

Thus, in a device where the distribution relaxes to an Elastically Constrained Quasi-
Equilibrium in a given relaxation time, to first order the particle flux at each energy
is determined by pure diffusion which is driven by the spatial gradient in occupation
rate at constant total energy. This is a simple, elegant and theoretically sound model of
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semiclassical non-equilibrium electron transport.

Aside: Non-Trivial Calculus

We wish to prove the following identity:

σε(ε) [∇kX] =
∂

∂ε
σε(ε) [X∇kε] . (5.28)

Or in explicit form:

Γ
∑

ν

∫

BZ
δ(εkν − ε)∇kXdk =

∂

∂ε
Γ
∑

ν

∫

BZ
δ(εkν − ε)X∇kεdk. (5.29)

This identity relies on a kind of multidimensional integration by parts. In
order to derive this identity, we will express the delta function on the left
hand side in as an infinitesimal volume integral:

∫

BZ
δ(εkν − ε)∇kXdk = lim

δε→0

Q

δε

∫

Ων(ε,ε+δε)

∇kXdk. (5.30)

Here Ων(ε, ε + δε) is the volume of k space in which states in the ν band
have a kinetic energy in (ε, ε+δε), andQ is some weight factor. We can use
the divergence theorem for gradients to rewrite the integral on the R.H.S.
of eq. (5.30) above in terms of the surface integrals that are infinitesimally
close to one another:

lim
δε→0

∫

Ων(ε,ε+δε)

∇kXdk = lim
δε→0

∫

∂Ων(ε+δε)

XSk −
∫

∂Ων(ε)

XSk.

Here δΩ(ε) is the 2−D space of surface of states with kinetic energy ε, and
dSk is an infinitesimal surface element vector, which points normal the the
surface.
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According to the fundamental theorem of calculus, we can express the
R.H.S. of eq. (5.31) as a definite integral of a derivative:

lim
δε→0

∫

Ων(ε,ε+δε)

∇kXdk = lim
δε→0

∫ ε+δε

ε

∂

∂ε′

(∫

∂Ων(ε′)
XdSk

)
dε′.

(5.31)

The variation of the surface integral with respect to ε′ is a constant to first
order between ε and ε + δε. Therefore we can take ∂

∂ε′ = ∂
∂ε

. This leads to
the following:

lim
δε→0

∫

Ων(ε,ε+δε)

∇kXdk = lim
δε→0

∂

∂ε

∫ ε+δε

ε

∫

∂Ων(ε′)
XdSkdε′. (5.32)

We now wish to convert the right hand side back to an integral over Ων(ε, ε+

δε). This means converting the element dε to an element dknorm, an infini-
tisimal crystal momentum element which points normal to the constant
energy surface. It is clear that we must have the following:

∇kε · dknorm = dε. (5.33)

Accordingly, we now have the following identity:
∫

Ων(ε,ε+δε)

∇kXdk =
∂

∂ε

∫

Ων(ε,ε+δε)

X∇kεdk. (5.34)

We can now complete the proof of eq. (5.29) by multiplyeq. (5.34) by Q
δε

,
returning them to delta functions, and then multiplying both sides of the
resulting expression by Γ and summing over all states.



154 CHAPTER 5. RESULTS I: ELASTICALLY-CONSTRAINED TRANSPORT

5.3 The Energy-Dependent Transport Parameters in Sili-

con

5.3.1 Overview

We have constructed expressions for the full electron–partner scattering operators, and
for the band structures of phonons and electrons. This is microscopic information nec-
essary to model the transport of an electron–partner distribution function. However, as
discussed earlier, we are not interested in the transport of the partner system; we are
only interested in the transport of the electron distribution. Accordingly, we can reduce
the full electron–partner scattering operators to the part of each scattering operator that
acts on the electron state. We do this by integrating over all possible initial and final
partner states, for a single partner type:

Spar(kν; k′ν ′) =
∑

spar

∑

s′par

Spar(kν, spar; k
′ν ′, s′par). (5.35)

Here Spar(kν; k′ν ′) is the rate of transition from kν to k′ν ′ per occupied initial state kν,
per unoccupied final state k′ν ′ due to interaction with the partners of type "par". The
sum over spar is the sum over occupied initial partner states, and the sum over s′par is the
sum over available final partner states.

The reduced scattering operators given above, together with the band structure, are
the parameters necessary to understand the precise transport of an arbitrary electron
distribution function f(k, r, t). However, as discussed in the last section, in elastically
constrained non-equilibrium transport we are not concerned with the transport of an
arbitrary distribution function, we are concerned with the transport of a distribution
function that is a small antisymmetric perturbation from a non-degenerate, energy-
dependent distribution function fε(ε, r, t). Using a relaxation time approximation for
the antisymmetric part of the scattering operator, we have shown how to derive a closed
transport equation for the symmetric part of the distribution function. The parameters
required for this closed transport equation for the energy-dependent symmetric distri-
bution function, which is valid in the collision-dominated regime, are simpler than those
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required for the Boltzmann transport equation, which requires the full band structure
and the reduced scattering operator. Specifically, we only require the following set of
salient transport parameters that are only associated with the kinetic energy of electrons.

• The Density of States:

D(ε) = Γ
∑

ν

∫

BZ
δ(ε− εkν)dk. (5.36)

• The Energy-Dependent Diffusion Tensor:

Dε(ε, r) =
Γ
∑

ν

∫
BZ τrelax(kν, r)v(kν)⊗ v(kν)δ(ε− εkν)dk

Γ
∑

ν

∫
BZ δ(ε− εkν)dk

. (5.37)

• The Conservative4 Inelastic Scattering Operator:

S(εi; εf ) =
V 2Γ2

∑
ν

∑
ν′
∫

BZ

∫
BZ S(kν; k′ν ′)δ(εkν − εi)δ(εk′ν′ − εf )dkdk′

V Γ
∑

ν

∫
BZ δ(εkν − εi)dk

.

(5.38)

• The Energy-Dependent Creation/Annihilation Operator5:

C(εei ; ε
e
f , ε

h
f , ε

e2
f ),

A(εei , ε
h
i ).

We will now attempt to find directly computable expressions for the contribution to the
salient transport parameters for each scattering partner type.

For dopants, scattering events are elastic and conservative, therefore dopant scattering
only contributes to the diffusion tensor. For phonons, scattering events are inelastic
and conservative, therefore phonon scattering contributes to the diffusion tensor and
the conservative inelastic scattering operator. For impact ionization, scattering events
are non-conservative, therefore these scattering events contribute to the diffusion tensor

4In this thesis, we use the term conservative to mean that the scattering type conserves the number of
particles.

5We omit further details here, since they are complex and irrelevant. The only detail of this operator
that ends up being relevant is the rate of electron creation/destruction.
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and the creation operator. Finally for electron scattering partners, scattering events are
inelastic and conservative, but are not expected to have a net contribution toward the
elastic relaxation time, therefore electron–electron scattering contributes to the inelastic
scattering operator.

We will equate the elastic relaxation time with the velocity relaxation time, in order to
phenomenologically account for the fact that the crystal moment and velocity may not
be perfectly randomized in a single scattering time. We use the velocity relaxation rate
as it is the velocity relaxation rate that is correlated with the distance electrons travel
in a relaxation time. A simple approximation for the velocity relaxation rate due to a
scattering partner is the following:

1

τ vpar
=

1

〈|v|〉ε

(
∂|v|
∂t

)

par
. (5.39)

Here 〈|v|〉ε is the average speed at constant energy, and
(
∂|v|
∂t

)
par

is the average rate of

change of speed of the distribution due to scattering with the partners.

5.3.2 Dopant Scattering

The only salient scattering parameter that is effected by ionized dopant scattering is the
diffusion tensor, via the velocity relaxation rate. The aim of this subsection is therefore
to write down an expression for the dopants’ contribution to the velocity relaxation rate.

We begin by integrating out the dopant states, by writing a special case of eq. (5.35):

Sdop(kν; k′ν ′) =
∑

Rdop

∑

R′dop

Sdop(kν,Rdop; k′ν ′,Rdop). (5.40)

There are two facts mentioned in the full scattering operator section we can use to
greatly simplify eq. (5.40). First, we have argued it is safe to assume that the state of
the dopant is not changed by carrier scattering. As such, the sum over available final
partner states always contains only one non-zero term. Second, we have shown that the
carrier–dopant scattering rate is independent of the precise initial position of the ion.
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As such, the sum over all initial states is simply the product of the carrier–dopant scat-
tering rate over a single initial carrier state and the number of initial states. These two
facts lead to the following simplification:

Sdop(kν; k′ν ′) = NdopV Sdop(kν,Rdop; k′ν ′,Rdop). (5.41)

The rate of change of speed due to dopant scattering is defined by the following integral:
(
∂|v|
∂t

)

dop
(kν) = V Γ

∑

ν′

∫

BZ
|v(k′ν ′)− v(kν)|Sdop(kν; k′ν ′)dk′

= NdopV
2Γ
∑

ν′

∫

BZ
|v(k′ν ′)− v(kν)|Sdop(kν,Rdop; k′ν ′,Rdop)dk′.

(5.42)

Before we try to calculate this integral, we remind the reader that according to Fermi’s
golden rule, all the scattering operators we deal with can be expressed as the following
product:

Spar(kν, spar; k
′ν ′, s′par) = spar(kν, spar; k

′ν ′, s′par)δ
(
εk′ν′ + εs′par − εkν − εspar

)
. (5.43)

Here spar(kν, spar; k
′ν ′, s′par) = 2π

~

∣∣∣
〈
k′ν ′, s′par

∣∣∣ Ĥcar–par

∣∣∣k ν, spar

〉 ∣∣∣
2

. Accordingly, in the in-
tegral over the Brillouin zone of final states we rewrite eq. (5.42) so that the delta func-
tion is explicit:
(
∂|v|
∂t

)

unit-dop
(kν, βS) = V 2Γ

∑

ν′

∫

BZ
|v(k′ν ′)− v(kν)|sdop(kν,Rdop; k′ν ′,Rdop)δ

(
εk′ν′ − εkν

)
dk′.

(5.44)

The point to takeaway from this is that scattering operators are in general infinitely
sparse. The scattering rate between any two random electron states is almost certainly
zero, because it is almost certain that these two random electron states do not satisfy the
zeroth-order energy conservation condition. This is important, because it means any
naïve attempt to numerically integral eq. (5.44) using a classic trapezium type method
will almost certainly return zero.

Accordingly, to correctly compute an integral such as that of eq. (5.44), we need to first
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locate the 2−D subspaces of final states that conserve energy, and only then can we
numerically integrate in a classical manner over the subspace. In order to do this, we
use an simple algorithm based on the approach taken by Fischetti and Laux [16], and
Gilat and Raubenheimer [88].

Aside: Integrating Over an Energy Surface

We begin by calculating the band structure from empirical pseudopoten-
tials on a cubic mesh irreducible Brillouin zone. We then use inverse point
symmetry operations, and a spline type interpolation to produce a con-
tinuous band structure over the entire Brillouin zone that possesses the
correct point symmetry.6 We then construct a "fine" cubic mesh of the Bril-
louin zone. Using the continuous band structure, we can compile a list of
the following quantities for each of the cubes in the fine mesh.

• The kinetic energy at the centre of the cube, for each band.

• The velocity at the centre of the cube, for each band.

• The maximum and minimum kinetic energy inside the cube, for each
band, assuming the velocity at the centre is constant throughout the
cube.

In addition, we collect a group of fine mesh cubes, say 8 × 8 × 8, into a
"rough" mesh cube. A sensible rule of thumb is to have about as many

6The more theoretically effective way to do this is to interpolate using a basis set of functions that pos-
sesses the correct symmetries, such as those suggested by Monkhorst and Pack [89]. We use the method
suggested instead for convenience. Well-tested, easy-to-use cubic or cubic spline interpolation packages
exist in programs like MATLAB that are especially efficient on cubic grids. The output of such packages
will possess a point symmetry if its fed data with that same point symmetry. Perfect translational sym-
metry is not possible with these packages, but all that really matters is that the interpolation inside the first
Brillouin zone has the shape associated with the translational symmetry of the bandstructure. This can be
achieved by simply adding points outside the first Brillouin zone to the interpolated data set.
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fine mesh cubes in a rough mesh cube, as there is rough mesh cubes in
the Brillouin zone. For the rough mesh cube, we compile a list of only the
maximum and minimum kinetic energy inside the cube, for each band,
from the list of fine mesh cube data.

For convenience, we will use kirough to refer to the set of k points that defines
the volume of ith rough mesh cube, and ki,jfine to define the set of points that
define the volume of the jth fine mesh cube in the ith rough mesh cube.
Similarly, we use εkiroughν

to refer to the set of kinetic energies in the ν band of
the ith rough cube, and εki,jfineν

to refer to the the set of kinetic energies in the ν
band of the (i, j)th fine mesh cube. Since we are viewing the band structure
as a continuous function, these energy sets are simply the closed intervals
between the minimum and maximum kinetic energy for each band.

We will now use this notation to rewrite a specific scattering integral, given
in eq. (5.44), as follows:

(
∂|v|
∂t

)

unit-dop
(kν, βS) = V 2

∑

ν′

∑

i,j

Γ

∫

ki,jfine

|v(k′ν ′)− v(kν)|sdop(kν,Rdop; k′ν ′,Rdop)δ
(
εk′ν′ − εkν

)
dk′.

(5.45)

We can now remove all i from the sum iff εkiroughν
′ ∩ εkν = ∅. For the remain-

ing i, we can remove all j from the sum iff εki,jfineν
′ ∩ εkν = ∅. These relations

can be checked quickly from using the precompiled list of quantities asso-
ciated with each cube.7

Additionally, we make an important approximation. We assume that the
fine mesh cubes are sufficiently small, that both the velocity and the matrix
element in the fine mesh cube can be approximated by velocity and the
matrix element at the centre of the fine mesh cube ki,jcentre. As a result of
this approximation we can bring these terms outside the fine mesh cube
integral, and as a result of the earlier elimination we can perform the sum
over a filtered of (i, j), which we represent by a dash over the Sigma:

7We note that, in the general case, this elimination step is slightly more complicated as the target
energy for the kinetic energy is itself a function of k′, rather than being a constant such as εkν .
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(
∂|v|
∂t

)

unit-dop
(kν, βS) = V 2

∑

ν′

′∑

i,j

|v(ki,jcentreν
′)− v(kν)|sdop(kν,Rdop; ki,jcentreν

′,Rdop)

×Γ

∫

ki,jfine

δ
(
εk′ν′ − εkν

)
dk′.

(5.46)

We note that the definition of the density of states (per unit volume), in
band ν ′, in the (i, j)th mesh cube, is the following:

Di,j
ν′ (ε) = Γ

∫

ki,jfine

δ(εk′ν′ − ε)dk′. (5.47)

As such, we can rewrite eq. (5.46) in terms of eq. (5.47)8:

(
∂|v|
∂t

)

unit-dop
(kν, βS) = V 2

∑

ν′

′∑

i,j

|v(ki,jcentreν
′)− v(kν)|sdop(kν,Rdop; ki,jcentreν

′,Rdop)Di,j
ν′ (εkν).

(5.48)

We note that eq. (5.48) is directly computable so long as we find a com-
putable expression for Di,j

ν′ (ε). Accordingly we turn our attention to find-
ing such an expression. The intrinsic density of states per volume of k

space, for a spin-degenerate band is Γ. To convert this to a density of states
per interval of ε space, we simply need to multiply this by the conversion
factor between (infinitesimal) intervals of ε space, and volumes of k space
within a fine mesh cube.

We remind the reader that we have made the assumption that the velocity
in a fine mesh cube is assumed to be constant and equal to v(ki,jcentreν

′).
This is equivalent to the assumption that the band structure inside the fine
mesh cube simply consists of planes of equal energy normal to the velocity.
Suppose Ai,j(ε) is the cross sectional area of the plane of states in the ν ′

8We note once again, that in the general case, this substitution is more complicated as the target energy
is a function of k′ rather than being a constant such as εkν . For phonon scattering, the target energy
varies sufficiently slowly over a fine mesh cube that we can approximate it as constant for fixed (i, j)
and therefore the analysis is similar. For electron–electron scattering, the target energy varies sufficiently
quickly over a fine mesh cube that the analysis is changed qualitatively.
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band with energy ε, in the fine mesh cube at i, j and ∂k⊥
∂ε

is the rate of
change of k · n̂ per change in energy. The density of states in the fine mesh
cube for the ν band is therefore written as follows:

Di,j
ν′ (ε) = ΓAi,jν′ (ε)

∂k⊥
∂ε

= ΓAi,jν′ (ε)
1

~
∣∣v(ki,jcentre)

∣∣ . (5.49)

The only remaining unknown in eq. (5.49) is the cross sectional area of
the intersection of an arbitrary plane and cube. This can be expressed in
closed analytic form, as is given in the paper of Gilat and Raubenheimer.
Accordingly, we now wish to sketch the conceptual underpinnings of this
closed analytic form.

We begin by choosing a sensible coordinate system. It is natural to choose
a coordinate system in which the origin is at ki,jcentre, and to choose a perpen-
dicular coordinate system aligned with the edges of the cube. Suppose we
call the axes 1, 2 and 3. We note that we still possess some freedom in our
coordinate system, since 1 could refer to one of six directions. To specify
our coordinate system completely, suppose we express the velocity direc-
tion our coordinate system as follows:

v(ki,jcentreν
′)∣∣v(ki,jcentreν
′)
∣∣ = (v̂1, v̂2, v̂3). (5.50)

We choose the coordinate system for which v̂1 ≥ v̂2 ≥ v̂3 ≥ 0. It is most
natural to find an expression for the cross sectional area in terms of the
direction of the normal to the plane (i.e. v̂), and the distance the plane is
from the centre of the cube, ∆k⊥. We will refer to this function asA(∆k⊥).9.
We note that A(−∆k⊥) = A(∆k⊥) so we can assume ∆k⊥ ≥ 0 without loss
of generality.

The plane can be considered to partition the corners of the cube into two
sets. The shape of the cross sectional area is determined by how many

9To find the cross sectional area in terms of energy, we simply need to write down the composition
function Ai,jν′ (ε) = A(∆k⊥) ◦∆ki,j⊥,ν′(ε)
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edges connect the two sets. The number of such edges is uniquely deter-
mined by the shape of made by the smaller set of corners. The possibilities
are as follows.

1 corner: The plane cuts three edges; the cross section is a triangle.

2 corners: The plane cuts four edges; the cross section is a trapezium.

3 corners: The plane cuts five edges; the cross section is a pentagon (four
parallel sides).

4 corners, square: The plane cuts four edges; the cross section is a paral-
lelogram.

4 corners, tetrahedron: The plane cuts six edges; the cross section is a hex-
agon (six parallel sides).

When ∆k⊥ = 0, the set of corners in bisected into two sets of four. As ∆k⊥

increases, the shape of the cross section will change every time the plane
intersects a corner. As such, we can expect then that A(∆k⊥) is a piecewise
function that changes each time the plane intersects a corner. Suppose the
cube is of side length 2b. The 8 corners are then at (±b,±b,±b), where each
± sign can vary independently. According to elementary geometry, the
corners intersect the plane at the following values of ∆kcritical

⊥ , where once
again each ± sign can vary independently:

∆kcritical
⊥ = (v̂1, v̂2, v̂3) · (±b,±b,±b)

= b(±v̂1 ± v̂2 ± v̂3). (5.51)

It is useful to label order these ∆kcritical
⊥ from lowest to highest. We label

any negative critical value using a negative index since these are not in the
domain of ∆k⊥, and any positive critical value using a positive index:
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∆k−4
⊥ = b(−v̂1 − v̂2 − v̂3),

∆k−3
⊥ = b(−v̂1 − v̂2 + v̂3),

∆k−2
⊥ = b(−v̂1 + v̂2 − v̂3),

∆k−1
⊥ = min

[
b(v̂1 − v̂2 − v̂3), b(−v̂1 + v̂2 + v̂3)

]
,

∆k1
⊥ = max

[
b(v̂1 − v̂2 − v̂3), b(−v̂1 + v̂2 + v̂3)

]
,

∆k2
⊥ = b(v̂1 − v̂2 + v̂3),

∆k3
⊥ = b(v̂1 + v̂2 − v̂3),

∆k4
⊥ = b(v̂1 + v̂2 + v̂3).

We note that the smallest positive critical point has the value ∆k1
⊥ = |b(v̂1−

v̂2 − v̂3)| unambiguously. What is ambiguous is the position of the corner
of the cube that is intersected at this value of ∆k. If v̂1 > v̂2 + v̂3, then the
corner intersected at ∆k1

⊥ is coplanar with the corners intersected at higher
∆kcritical
⊥ ; as such, below ∆k1

⊥ the plane cuts four edges and the cross section
is a parallelogram. If v̂1 < v̂2 + v̂3, then the associated corner intersected at
∆k1
⊥ is not coplanar with the corners intersected at higher ∆kcritical

⊥ ; as such,
below ∆k1

⊥ the plane cuts six edges and the cross-section is a hexagon.

Deriving the precise formula for the calculation of the cross sectional areas
of the various shapes is tedious. It is derived by viewing each shape as
a combination of parallelograms and triangles. Since this is conceptually
simple, we will simply write down the piecewise formula for the cross-
sectional area:
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A(∆k⊥) =





4b2

v̂1
(∆k1

⊥ ≥ ∆k⊥ ≥ 0) ∧ (v̂1 ≥ v̂2 + v̂3),

2b2(v̂1v̂2+v̂2v̂3+v̂3v̂1)−(∆k⊥)2−b2
v̂1v̂2v̂3

(∆k1
⊥ ≥ ∆k⊥ ≥ 0) ∧ (v̂1 ≤ v̂2 + v̂3),

2b2(v̂1v̂2+3v̂2v̂3+v̂3v̂1)+b∆k⊥(v̂1−v̂2−v̂3)− 1
2

(∆k⊥)2− 1
2
b2

v̂1v̂2v̂3
∆k2
⊥ ≥ ∆k⊥ ≥ ∆k1

⊥,

2b2v̂3(v̂1+v̂2)−2b∆k⊥v̂3

v̂1v̂2v̂3
∆k3
⊥ ≥ ∆k⊥ ≥ ∆k2

⊥,

(b(v̂1+v̂2+v̂3)−∆k⊥)2

2v̂1v̂2v̂3
∆k4
⊥ ≥ ∆k⊥ ≥ ∆k3

⊥,

0 ∆k⊥ ≥ ∆k4
⊥.

(5.52)

We note that ∆k⊥(ε) =
ε−ε

k
i,j
centreν

′

~|v(ki,jcentre)| . As a result, the density of states at ε for
the ν ′ band, in the i, j fine mesh cube is given by the following analytic
function:

Di,j
ν′ (ε) = Γ

1

~
∣∣v(ki,jcentreν

′)
∣∣A
(

ε− εki,jcentreν
′

~|v(ki,jcentreν
′)|

)
. (5.53)

As such, we can now compute eq. (5.48) directly, and calculate(
∂|v|
∂t

)
unit-dop

(kν, βS) on a mesh of kν and βS values. For scattering rates
1
τX

that depend on the screening wavevector, rather than tabulating 1
τX

directly, we will generally tabulate β4
S

τX
, as this function is typically very

slowly varying as function of β.

5.3.3 Phonon Scattering

The scattering components affected by phonon scattering are energy dependent dif-
fusion tensor via the velocity relaxation rate, and the conservative inelastic scattering
operator. The aim of this section is therefore to derive the contribution to these terms.
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The first step to deriving the contribution to both terms is to find the reduced scattering
operator associated with all phonon transitions. We will find its is more convenient to
treat phonons in different bands as different scattering partners, and therefore to find
the electron scattering operator with all phonon transitions in a single band, η. The
initial state and final for each phonon mode in that band are characterized by an initial
and final occupation numbers, nqη and n′qη. The electron scattering operator associated
with all phonon transitions in a band is then the following special case of eq. (5.35):

Sηpho(kν; k′ν ′) =
∑

q

∑

n′qη

Spho(kν, nqη; k
′ν ′, n′qη). (5.54)

Here the initial occupation number nqη can be calculated from the analytic approxima-
tion to the phonon band structure and from the assumption that the phonons are in
thermal equilibrium. We argued in the derivation of the full scattering operator that
the full scattering operator is zero unless except for phonon state transition that annihi-
late or create a single phonon. Therefore we eliminate every term in the sum over final
phonon states, except for these phonon annihilation and creation transitions:

Sηpho(kν; k′ν ′) =
∑

q

(
Spho(kν, nqη; k

′ν ′, nqη − 1) + Spho(kν, nqη; k
′ν ′, nqη + 1)

)
.

(5.55)

We also note that we have argued that the scattering operator is necessarily zero if crys-
tal momentum not conserved modulo G. For phonon annihilation transitions, we can
therefore eliminate every term in the sum over q except the unique crystal momentum
q = [k′ − k] mod G.10 For phonon creation transitions, we can similarly eliminate ev-
ery term in the sum over q except and a unique crystal momentum conserving mode q

specified by q = [k− k′] mod G:

Sηpho(kν,k′ν ′) =
∑

±
spho(kν, n±[k′−k]Gη; k

′ν ′, n±[k′−k]Gη ∓ 1)δ(εk′ν′ − εkν ∓ ~ω±[k′−k]Gη).

(5.56)

Here all the ± are simultaneously fixed, we use the unusual summation index to indi-

10We use the notation "[x] mod G"— or "[x]G" for short— to mean that a reciprocal lattice vector G′ is
added to x so that x + G′ is in the (Gamma centered) Brillouin zone.
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cate that the two resulting possibilities are added together. We note that in an inversion
symmetric material such as Silicon, we have that ~ωqη = ~ω−qη, and so the energy of
the created and annihilated phonon is identical. The scattering rate is therefore zero
unless |εk′ν′ − εkν | = ~ω[k′−k]Gη. Thus, for a fixed initial state kν, the rate of scattering is
zero except for all final states not on a special energy conserving 2−D subspace of the
Brillouin zone.

We are interested in the following two integrals of the single particle scattering operator
due to phonons. Firstly, the rate of speed change due to phonons,

(
∂|v|
∂t

)
pho

:
(
∂|v|
∂t

)

pho
(kν) = V Γ

∑

ν′

∫

BZ

∣∣v(k′ν ′)− v(kν)
∣∣Spho(kν,k′ν ′)dk′. (5.57)

Secondly the average rate of transfer from an occupied state at εi to a state at εf due to
phonons, Spho(εi; εf ):

Spho(εi; εf ) =
V 2Γ2

∑
ν

∑
ν′
∫
BZ

∫
BZ

Spho(kν; k′ν ′)δ(εkν − εi)δ(εk′ν′ − εf )dkdk′

V Γ
∑

ν

∫
BZ

δ(εkν − εi)dk
. (5.58)

The integration of Spho(εi; εf ) is a line integral rather than a surface integral, however if
we set the interval of allowed finite energies to be a finite interval, then the result is
a thin surface "ribbon" that we can integrate using a similar algorithm to that used to
determine the dopant density. The issue with this approach is that it requires a very
fine mesh of the Brillouin zone to do accurately. An alternative approach is to assume
a functional form for the inelastic scattering operator that can be specified by a few
moments of the operator.

We note that the phonon band structure specified by Fischetti and Laux has a very delta
function in the density of states at the maximum energy associated with each band. This
is a crude reflection of a real phenomena in silicon, where the phonon bands near the
edge of the Brillouin zone are very flat. Because of this, we can view approximate the
inelastic scattering operator due to each band of phonons as possessing only two final
energies associated with εi±~ωηmax, or only one final energy when εi−~ωηmax < 0. We can
then force this simple inelastic scattering operator to have the correct rate of scattering
with η band phonons, 1

τηpho(εi)
and the correct average energy change in η band phonon

scattering events,
〈
∆εpho

〉η
(εi), by writing it as follows:
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Spho(εi; εf ) =
∑

η

1

τ ηpho(εi)
×




rηδ
(
εf − εi + ~ωηmax

)
+ (1− rη)δ

(
εf − εi − ~ωηmax

)
for εi − ~ωηmax > 0,

δ
(
εf − εi +

〈
∆εpho

〉η
(εi)
)

for εi − ~ωηmax ≤ 0.

(5.59)

Here the parameter rη is the fraction of phonon creation events to phonon scattering
events that ensures the average energy is correct:

rη =

〈
∆εpho

〉η

2~ωηmax
+

1

2
. (5.60)

The average rate of scattering with η phonons as a function of electron energy, 1
τηpho(ε)

, is
defined in the following manner:

1

τ ηpho(ε)
=
V Γ
∑

ν

∫
BZ

1
τηpho(kν)

δ(εkν − ε)dk

V Γ
∑

ν

∫
BZ δ(εkν − ε)dk

. (5.61)

While the average energy of electrons due in an η band phonon scattering event,
〈
∆εpho

〉η
(ε),

is defined by in the following manner:

〈
∆εpho

〉η
(ε) =

V Γ
∑

ν

∫
BZ

(
∂ε
∂t

)η
pho (kν)δ(εkν − ε)dk

V Γ
∑

ν

∫
BZ

1
τηpho(kν)

δ(εkν − ε)dk
. (5.62)

The important thing to notice about these two equations, is that so long as the functions(
∂ε
∂t

)η
pho (kν) and 1

τηpho(kν)
are known, and can be approximated as being constant within

a fine mesh cube, then the equations in both these integrals can be computed using
exactly the same numerical method used to compute eq. (5.44). If we use this approach,
we are led to the following computable expressions for these terms:

〈
∆εpho

〉η
(ε) =

∑
ν

∑′
i,j

(
∂ε
∂t

)η
pho(ki,jcentreν)Di,j

ν (ε)
∑

ν

∑′
i,j

1

τηpho(ki,jcentreν)
Di,j
ν (ε)

, (5.63a)

1

τ ηpho(ε)
=

∑
ν

∑′
i,j

1

τηpho(ki,jcentreν)
Di,j
ν (ε)

∑
ν

∑′
i,j D

i,j
ν (ε)

. (5.63b)

We have thus reduced the problem of computing S(εi, εf ), to the problem of finding
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the function
(
∂ε
∂t

)η
pho (kν) and the function 1

τηpho(kν)
. The function

(
∂ε
∂t

)η
pho(kν) is the rate

of energy change of an electron at kν due to interactions with η band phonons, and is
defined as follows:

(
∂ε

∂t

)η

pho
(kν) = V Γ

∑

ν′

∫

BZ

(
εk′ν′ − εkν

)
Sηpho(kν,k′ν ′)dk′. (5.64)

The function 1
τηpho(kν)

is the rate an electron at kν scatters with η band phonons, and is
defined as follows:

1

τ ηpho(kν)
= V Γ

∑

ν′

∫

BZ
Sηpho(kν,k′ν ′)dk′. (5.65)

When combined with eq. (5.57), we therefore reduced the salient information required
from the scattering operator, to three integrals of Sηpho(kν,k′ν ′). We will now derive
directly computable expressions for these integrals.

Our method is essentially identical to the computation of eq. (5.44) with a minor adjust-
ment to allow for the fact that the instead of a single constant target energy for the delta
function, there are two target energies εtarget = εkν ± ~ω([k′−k]G)η, which are functions of
the Brillouin zone. The adjustment is minor because these target energies vary slowly
enough that we are able to safely assume they are constant over a fine mesh cube.

The main adjustment concerns the elimination of rough cubes. For each rough cube,
we determine the point on the ith rough cube closest to k (mod G) , and the point on
the ith rough cube farthest from k (mod G). From this, we can quickly determine the
minimum and maximum crystal momentum between k and a point in the rough cube:

qimin(k) = min
(
|[k− kirough]G|

)
, (5.66a)

qimax(k) = max
(
|[k− kirough]G|

)
. (5.66b)

As discussed in the section deriving the full scattering operator, we assume phonon en-
ergy is a monotonically increasing function of the magnitude of the phonon wavevector.
Thus, by computing the phonon energies associated with the wavevectors in eq. (5.66),
we can compute the range of phonon energies. If the range of final state electron en-
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ergies does not overlap the initial energy plus or minus the range of phonon energies,
then we can eliminate that rough cube from the summation. That is, we eliminate all i
for which the following statement is true:

[
εmin
kirough,ν

, εmax
kirough,ν

]
∩ εkν ±

[
~ωqimin(k)η, ~ωmaxqimax(k)η

]
= ∅. (5.67)

We note that this is a necessary but not sufficient condition for energy conservation.
That is, if a rough mesh cube makes it through the above filter, this is not sufficient to
guarantee there is energy and momentum conserving transition within that cube, as
the phonon corresponding to the correct energy change may have the wrong crystal
momentum for the transition.

For the rough cubes that pass the filter, we evaluate the fine mesh. In contrast to the
rough mesh, we make the assumption that the phonon energy associated with a transi-
tion to any point in the (i, j)th fine mesh cube is equal to ±~ωqi,jcentre,ν

, where qi,jcentre is the
change in crystal momentum associated with a transition from an initial state k to the
centre of the (i, j)th fine mesh cube. Accordingly, we can eliminate the jth fine mesh cube
of the ith rough mesh cube if the following statement is true:

εkν ± ~ωqi,jcentre,ν
/∈
[
εmin
kifine,ν

, εmax
kifine,ν

]
. (5.68)

We can now write down a directly computable expression for
(
∂|v|
∂t

)η
pho
(kν), the rate of

velocity relaxation due to scattering with η band phonons for an electron at kν using
the same method as was used for eq. (5.42). Namely:

1. We partitioning the integral into the sum of the integrals over the cubes in the fine
mesh that are not filtered out by the two elimination steps.

2. We assume that the velocity and matrix element are constant within a unit cell and
equal to their values at the centre of the fine mesh cube. Accordingly we can move
all except the delta function outside the integral over a fine mesh cube.

3. Given the assumption that the target energies for the delta function are constant
over a fine mesh cube, we relate the remaining integral to the density of states



170 CHAPTER 5. RESULTS I: ELASTICALLY-CONSTRAINED TRANSPORT

of electrons at the target energies, in the band ν ′, in the (i, j)th fine mesh cube.
As discussed earlier, this density of states has an analytic expression due to the
assumption that velocity is constant within a fine mesh cube.

(
∂|v|
∂t

)η

pho
(kν) =

∑

ν′

′∑

i,j

∣∣v(ki.jcentreν
′)− v(kν)

∣∣sηpho(kν; ki.jcentreν
′)

×
(
Di,j
ν′
(
εkν + ~ωqη

)
+Di,j

ν′
(
εkν − ~ωqi,jcentreη

))
. (5.69)

This method is also sufficient to write a directly computable expression for
(
∂ε
∂t

)η
pho(kν),

the rate of energy change for an electron in state kν due to interactions with the phonons
in the band η. The energy change can be brought outside the integral because it is
equivalent to plus or minus the phonon energy, which is constant over a fine mesh cube
according to the third assumption:

(
∂ε

∂t

)η

pho
(kν) =

∑

ν′

′∑

i,j

~ωqi,jcentreη
sηpho(kν; ki.jcentreν

′)

×
(
Di,j
ν′
(
εkν + ~ωqi,jcentreη

)
−Di,j

ν′
(
εkν − ~ωqi,jcentreη

))
. (5.70)

Finally, it is obvious that this method is sufficient to write a directly computable expres-
sion for 1

τηpho(kν)
, the rate that an electron at state kν scatters with phonons in the band

η:

1

τ ηpho(kν)
=
∑

ν′

′∑

i,j

sηpho(kν; ki.jcentreν
′)

×
(
Di,j
ν′
(
εkν + ~ωqi,jcentreη

)
+Di,j

ν′
(
εkν − ~ωqi,jcentreη

))
. (5.71)

We have thus written down directly computable expressions for all the universal scat-
tering parameters associated with phonons that are relevant to our transport model.

5.3.4 Electron–Electron Scattering

The scattering component affected by electron–electron scattering is the conservative
inelastic scattering operator, which can be defined as follows:
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See(εi; εf ; βS) =
V 2Γ2

∑
ν,ν′
∫
BZ

∫
BZ

See(kν; k′ν ′; βS)δ(εkν − εi)δ(εk′ν′ − εf )dkdk′

V Γ
∑

ν

∫
BZ

δ(εkν − εi)dk
. (5.72)

Here See(kν; k′ν ′; βS) is the single particle electron–electron scattering operator, which
is defined from the two particle electron–electron scattering operator as follows:

See(kν; k′ν ′; βS) = V Γ
∑

µ,µ′

∫

BZ
See(kν,pµ; k′ν ′,p′µ′; βS)f(pµ, r, t)

(
1− f(p′µ′, r, t)

)
dp.

(5.73)

The single particle form of the inelastic electron–electron scattering operator is not par-
ticularly useful as it is infeasible to precompute and tabulate. The reason is that, unlike
for other scattering types where the distribution of scattering partners is fixed, the dis-
tribution of partner electrons dynamically changes in a device, as it is the distribution of
electrons. As such, it is better to keep the inelastic scattering operator due to electrons
expressed in terms of a two-particle operator. Thus the quantity we are wish to define
is S(εi, ε

par
i ; εf , ε

par
f ; βS).

In order to determine the non-zero terms in scattering operator, we need to integrate
over the 1−D manifold of final states that is consistent with total energy conservation,
total crystal momentum pseudoconservation, and the fact that one particle possess εf .
Using the algorithm we have described, this can be done by integrating over a series of
2−D "ribbons" surfaces between (εf , εf + ∆εf ), but this is inefficient. We avoided this
route in the phonon subsection by assuming a particular form for the distribution of
final energies which could be characterized by a simpler integral. We will take the same
approach here.

For electron–electron scattering, we will make a similar assumption to that made by
Fischetti and Laux for impact ionization: namely we will assume that the probability of
a pair of final state energies (εf , ε

par
f ) is proportional to the simultaneous density of states

D(εf )D(ε
par
f ). This allows us define the full inelastic two-particle scattering operator

from the total scattering rate for a pair of electrons of energy (εi, ε
par
i ), by noting that the

integral of the two-particle scattering operator over all final state energies must to be
equal to the latter:
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See
(
εi, ε

par
i ; εf , ε

par
f ; βS

)
=

(∫ εi+ε
par
i

0

D(εf )D(εi + ε
par
i − εf )dεf

)−1

× 1

τee(εi, ε
par
i ; βS)

δ(εf + ε
par
f − εi − ε

par
i )D(εf )D(ε

par
f ).

(5.74)

Technically, the total scattering rate for a pair of electrons of energy (εi, ε
par
i ), 1

τee(εi,ε
par
i ;βS)

,
is defined the average scattering rate per unit energy, between electrons with energy
εi and ε

par
i , per unit partner electron density. Specifically, it is the quantity that when

weighted by the energy dependent electron density, and integrated over all energy
states, yields to the electron–electron scattering rate for electrons at εi:

1

τee
(εi, βS) =

∫ ∞

0

1

τee(εi, ε
par
i ; βS)

D(ε
par
i )fε(ε

par
i )dε

par
i . (5.75)

We can now calculate 1
τee(εi,ε

par
i ;βS)

using a similar technique to that which we have used
for calculating the other energy dependent scattering rates for other particles. We begin
by defining the scattering rate between an electron at kν and a density of electrons at
εpar, 1

τee(kν;εpar;βS)
11:

1

τee(kν; εpar; βS)
=
V 3Γ2

∑
ν′,µ,µ′

∫
BZ

∫
BZ see(kν,pµ; k′ν ′, [k + p− k′]Gµ′; βS)δ(∆εtotal)dpdk′

V Γ
∑

µ′
∫

BZ δ(εpµ − εpar)dp
.

(5.76)

Here we have already separated out the crystal momentum and energy conserving delta
functions from the scattering operator, and thus we represent the remaining part of the
scattering operator using a lower case s. The scattering operator used here is the full
electron–electron scattering operator discussed in the background chapter. The denom-
inator is simply V D(εpar). We can calculate the numerator using a similar discretization
technique to that which was used to calculate the phonon scattering operator. There
are two major differences. The first major difference is that this time we have a double
integral. The second major difference is that this time rough cells are not useful, as there
is no simple predefined relationship between the change in electron crystal momentum

11The extra volume factor V in the numerator comes from the fact that we have defined τee(εi, ε
par
i ;βS)

in eq. (5.75) to be already have its factor of V incorporated.
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and the "target energy" for a transition: it depends on the initial state of the partner
electron. As a result of these facts, we perform the integration over two sets of fine cells
directly: one associated with integral over initial partner states indexed by l, and one
associated with the integral over final electron states indexed by m. We can express this
integral as follows:

1

τee(kν, εpar; βS)
= V 2

∑

ν′,µ,µ′

′∑

l,m

(
wlµsee(kν,p

l
centreµ; kmcentreν

′, [k + plcentre − kmcentre]
Gµ′; βS)

×Γ

∫

kmfine

δ(εk′ν′ + ε[k+plcentre−k′]Gµ′ − εkν − εpar)dk′
)
.

(5.77)

Here the weight faction wlµ are the fraction of total partner density that is expected to
reside in the the lth fine cell. If εpar = 0, wlµ = 1

6
for the six valid fine cells. Otherwise it is

given as follows as the fraction of the density of states that lies in the fine cell:

wlµ =
Dl
µ(εpar)

D(εpar)
. (5.78)

Since we do not have a simple expression for the target energy in the mth fine cell,
we cannot yet simplify the expression for the appropriate density of states. The dash
over the sum indicates that the sum over l is restricted to those fine cells that intersect
the nominal partner energy εpar, and the sum over m is restricted to cells that might
conserve total energy. To find the set of valid m, we use the following process. We
restrict ourselves to k that point to the centre of fine mesh points, as this means that
p′(k′) = [k + plcentre − k′]G defines a fine mesh cube for the locus of points at kmfine. Ac-
cordingly, using the maximum and minimum kinetic energies that occur in the fine
mesh cube kmfine, and the fine mesh cube p′(ki,jfine), we can eliminate all m from the sum-
mation for condition is true:

εkmfine,ν
′ ∩
(
εkν + εpar − εp′(kmfine)µ′

)
= ∅. (5.79)

This filtering of the set of fine mesh cubes cannot be done as efficiently as was the case
for phonons. In order to be able to use a rough mesh, we would require that k and plcentre

is aligned with the centre of the rough mesh, which is unreasonably restrictive.
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For the set of fine mesh cubes that are can plausibly conserve energy, we will use the
same assumptions as for phonons: namely that velocity is constant in a fine mesh cube
and equal to the value of velocity at the centre. However, this time we are not interested
in the density of states inside the cube; that is, we are not interested in the planes of
states in the fine mesh cubes for which εk′ν′ is constant. Instead, we are interested in the
planes of states in the cube for which εk′ν′ + ε[k+plcentre−k′]Gµ′ is constant, which will not
generally be perpendicular to the velocity at ki,jcentreν

′.

According to the assumption of constant velocity inside a mesh cube, the individual
final state energies can be expressed as follows:

εk′ν′ = εkmcentre,ν
′ + ~v(kmcentreν

′) · (k′ − ki,jcentre) (5.80a)

εp′(k′)µ′ = εp′(kmcentre)µ′ − ~v
(
p′(kmcentre)µ

′) · (k′ − ki,jcentre). (5.80b)

Here p′(k′) = [k + plcentre − k′]G. Therefore combining the equations, we can create a
effective band structure inside the mth fine mesh cube for the total energy:

εtotal
µ′ (k′ν ′) =

(
εkmcentre,ν

′ + εp′(kmcentre)µ′

)
+ ~
(
v(kmcentreν

′)− v
(
p′(kmcentre)µ

′)) · (k′ − ki,jcentre).

(5.81)

Here the first term in large parentheses is the total energy of the centre of the cube
εtotal
µ′ (kmcentreν

′), and the second term in large parentheses EFFECTIVE VELOCITY for total en-
ergy, veff

µ′ (k
m
centreν

′). This transformation is extremely useful because the target total energy
for delta function in eq. (5.77) is the constant. Accordingly, we have now transformed
the problem into one in which we can use the same method as for dopants. We can
express the scattering rate per unit partner electron density, 1

τeeunit
, as follows:

1

τee(kν, εpar; βS)
= V 2

∑

ν′,µ,µ′

′∑

l,m

wlµsee(kν,p
l
centreµ; kmcentreν

′, [k + plcentre − kmcentre]
Gµ′)Dm

ν′,µ′(εkν + εpar).

(5.82)

Here Dm
ν′µ′ is the density of states of the effective band structure, when final electrons

are in the mth fine mesh cell and the band ν ′, and final partners are in band µ′:

Dm
ν′,µ′(ε) = Γ

1

~
∣∣veff

µ′ (k
m
centreν

′)
∣∣A
(
ε− εtotal

µ′ (kmcentreν
′)

~|veff
µ′ (k

m
centreν

′)|

)
. (5.83)
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We have now constructed an algorithm for the calculation of the scattering rate between
an electron at kν and a set of partners at energy εpar. In order to turn this into a calcu-
lation for the rate of scattering over kinetic energy, we simply integrate the resulting
expression over constant total energy. This can be determined in an analogous manner
to eq. (5.61):

1

τee(ε, εpar; βS)
=
V Γ
∑

ν

∫
BZ

1
τee(kν,εpar;βS)

δ(εkν − ε)dk

V Γ
∑

ν

∫
BZ δ(εkν − ε)dk

. (5.84)

We have now constructed an algorithm that can in principle calculate the average scat-
tering rate between electrons at ε and partner electrons at εpar, and by extension with
eq. (5.86), the two-electron inelastic scattering operator.

The problem with this algorithm is that, compared to the algorithm for calculating the
inelastic scattering operator for phonons, it is extremely computationally intensive. This
is not simply because the scattering rates need to be calculated at a range of values of
the partner energy and screening wavevector. The main problem is that calculation of
the scattering rate at a single partner energy and screening wavevector is much more
expensive to calculate than scattering rate due to an entire band of phonons. The reason
is as follows. For phonon transitions, either the initial or final crystal momentum of
the phonon state is zero. For a given change in electron crystal momentum ∆k, there
is therefore only two phonon transitions per band that are consistent with this. In con-
trast, for electron–electron, there is no similar requirement for either the initial or the
final partner state to have zero momentum, and so there is a 2−D space of different
possible electron transitions— associated with the different possible initial states of the
partner— that are consistent a single change in the crystal momentum of the electron of
∆k. Therefore, the two processes that take order of magnitude the same amount of time
to compute is the average scattering rate between an electron at a given energy and an
entire band of phonons, and the scattering rate between an electron at a given energy
and a single initial (electron) partner state (pν).

In order to make the calculation of the two-particle inelastic electron–electron scattering
operator complete a reasonable amount of time, we may need to simplify the distribu-
tion of partners. In order to do this we need to make assumption on the functional form
for the pair scattering rate 1

τee(ε,εpar,βS)
. One obvious assumption such assumption we can
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make is that it only depends on the total energy:

1

τee(ε, εpar, βS)
=

1

τ total
ee (ε+ εpar, βS)

. (5.85)

The justification for this assumption is that the number of possible final states is also
only a function of total energy, if we ignore momentum conservation. Using this assump-
tion, it is now sufficient to calculate the pair scattering rate for only the six partners at
εpar = 0, or one can average the scattering time 1

τee(εtotal−εpµ,pµ;βS)
across a representative

sample of scattering partner states scattered throughout the Brillouin zone. 12

This line of reasoning can be taken even be further to argue that the two particle inelas-
tic scattering operator can be written in terms of a single phenomenological coupling
constant τ cons

ee , in the following manner:

See
(
εi, ε

par
i ; εf , ε

par
f ; βS

)
=

1

τ cons
ee

D(εf )D(ε
par
f )δ(εf + ε

par
f − εi − ε

par
i ). (5.86)

This coupling constant can then be estimated either empirically, or again by calculating
the electron–electron scattering operator at a representative sample of initial electron
states kν and initial partner electrons states pµ:

1

τ cons
ee

=

(∫ εkν+εpµ

0

D(εf )D(εi + ε
par
i − εf )dεf

)−1

× 1

τee(kν,pµ; βS)
. (5.87)

In order to partially account for the error induced by this assumption, one can even
make the coupling constant a function of the average energy of the electron distribution
by changing the representative sample accordingly.

5.3.5 Impact Ionization

The scattering components affected by impact ionization is the velocity relaxation time
and the electron creation operator.

12This is calculated from eq. (5.82) by setting the weight function wlµ at to 1 at pl = p, and to 0 every-
where else.
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We assume that impact ionization scattering events are totally velocity relaxing, on the
basis that while crystal momentum is pseudo-conserved it is partly distributed to a
particle of opposite charge, destroying the net current often associated with a net crystal
momentum. Therefore the velocity relaxation rate associated with impact ionization is
the same as the impact ionization rate given in the background chapter:

1

τ vii
(εi) =

1

τii
(εi)

=
∑

i=1

θ
(
ε− εthr

i

)
Pi

(
ε− εthr

i

εthr
i

)2

. (5.88)

For the energy-dependent creation operator, we note that the expression given in the
background for the impact ionization scattering operator is already energy-independent.
Therefore in order to determine the purely inelastic scattering operator we simply need
to multiply it by the density of final three-particle states, which is product of three
single-particle density of states:

S(εi; εf , εe, εh) =

(∫ ε−εgap

0

∫ εi−εgap−εe

0

Dcon(εe)Dval(εh)Dcar(εkν − εgap − εe − εh)dεhdεe
)−1

× 1

τii(εkν)
δ(εf + εe + εh + εgap − εi)D(εf )D(εe)Dval(εh). (5.89)

5.3.6 The Energy Dependent Diffusion Tensor

We now need to write down an computable expression for the energy dependent diffu-
sion tensor:

Dε(ε) =
Γ
∑

ν

∫
BZ τ

v
relax(kν)v(kν)⊗ v(kν)δ(ε− εkν)dk

Γ
∑

ν

∫
BZ δ(ε− εkν)dk

. (5.90)

The first thing we require is an expression for the velocity relaxation time as a function
of kν. If |v|(ε) is the average speed as a function of energy, then the kν dependent
expression for the velocity relaxation rate is as follows:

1

τ vpar
(kν) =

1

〈|v|〉ε

(
∂|v|
∂t

)

par
(kν). (5.91)
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We make the assumption that impact ionization events are perfectly velocity relaxing,
and that electron–electron scattering has no net velocity relaxation rate since these col-
lisions pseudoconserve crystal momentum. This leads to the following expression for
the total velocity relaxation time:

1

τ v
(kν, βS) = Ndop

1

〈|v|〉ε

(
∂|v|
∂t

)

unit-dop
(kν, βS) +

(
1

〈|v|〉ε

(
∂|v|
∂t

)

pho
(kν) +

1

τii(kν)

)

=
Ndop

τ vunit-dop (kν, βS)
+

1

τ vnon-dop
. (5.92)

We wish to tabulate the energy-dependent diffusion coefficient. We could tabulate it
entirely, in terms of ε, Ndop, and βS . However, we can avoid tabulating in terms of Ndop

if we make the simple approximation that we can tabulate the diffusion coefficients for
dopants and non-dopants separately, and can combine them to find a total diffusion
constant as we would velocity relaxation times to find a total relaxation time:

Dε(ε) =

(
1

Dεdop(ε, βS, Ndop)
+

1

Dεnon-dop(ε)

)−1

=

(
Ndop

Dεunit-dop(ε, βS)
+

1

Dεnon-dop(ε)

)−1

. (5.93)

We can now write down a computable expression for both Dε(ε), using the same tech-
nique as was used for the calculation of eq. (5.44) since we are interested in a constant
energy surface:

Dεunit-dop(ε, βS) =
1

D(ε)

∑

ν

′∑

i,j

τ vunit/non-dop(ki,jcentreν, βS) v(ki,jcentreν)⊗ v(ki,jcentreν)Di,j
ν (ε),

(5.94)

Dεnon-dop(ε) =
1

D(ε)

∑

ν

′∑

i,j

τ vunit/non-dop(ki,jcentreν) v(ki,jcentreν)⊗ v(ki,jcentreν)Di,j
ν (ε).

(5.95)

Here the density of states is given by the following obviously computable expression:

D(ε) =
∑

ν

′∑

i,j

Di,j
ν (ε). (5.96)



5.3. THE ENERGY-DEPENDENT TRANSPORT PARAMETERS IN SILICON 179

Aside: Exploiting Brillouin Zone Point Symmetry

The band structure has the following point symmetry relations:

ε(kx, ky, kx) = ε(ka, kb, kc), (5.97)

where ka ∈ {kx,−kx, ky,−ky, kz,−kz},
kb ∈ {kx,−kx, ky,−ky, kz,−kz}\{ka,−ka},
kc ∈ {kx,−kx, ky,−ky, kz,−kz}\{ka,−ka, kb,−kb}.

Since there are 6 choices for ka, 4 choices for kb, and 2 choices for kc, the
band structure can be reproduced from a wedge in the Brillouin zone that
is 1

48

th the size of the Brillouin zone. A natural way to define such a wedge
is to enforce the following:

ka ≥ kb ≥ kc ≥ 0. (5.98)

It is worth understanding the extent to which these point symmetries can
be used to speed up computation.

Put simply, integrals over the Brillouin zone can be reduced to an irre-
ducible Brillouin zone so long as the integrand has the same point symme-
tries as the Brillouin zone. This is not true for scattering or bandstructure
functions that depend on multiple points on the Brillouin zone such as
Sηpho(kν,k′ν ′), since the second point breaks the symmetry, but is true for
scattering or bandstructure functions that depend explicitly only on one
point in the Brillouin zone, such as 1

τηpho(kν)
.

For scalar functions, this transformation of the integral is simple. The in-
tegral is simply performed over the irreducible wedge and multiplied by
the number of symmetries— in the case of silicon this is 48. For non-scalar
functions, such tensorial term in the diffusion coefficient v(kν)⊗v(kν), the
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transformation is more subtle.

Suppose that v(kx, ky, kz) = Tv(ka, kb, kc) where T is a linear transforma-
tion. We can then write down an expression for the transfomation for the
tensor v(kx, ky, kz)⊗ k(kx, ky, kz) as follows:

v(kx, ky, kz)⊗ v(kx, ky, kz) = (Tv(ka, kb, kc))⊗ (v(ka, kb, kc))

= (T⊗T) v(ka, kb, kc)⊗ v(ka, kb, kc). (5.99)

If we suppose that T is a different constant for each wedge, then we sim-
ply need to find the multiply the integral over the irreducible wedge, by
the sum of the 48 different transformation vectors. So we simply need
to find an expression for T. We start by writing down an expression for
vx(kx, ky, kz) in terms of v(ka, kb, kc):

vx(kx, ky, kz) =
∂ε(kx, ky, kz)

∂kx

=
∂ε(ka, kb, kc)

∂kx

=
∂(ka, kb, kc)

∂kx
· ∇(ka,kb,kc)ε(ka, kb, kc)

= Tx · v(ka, kb, kc). (5.100)

We can then extend this to vy(kx, ky, kz) and vz(kx, ky, kz) to find the follow-
ing:

T =




Tx

Ty

Tz


 =




∂(ka,kb,kc)
∂kx

∂(ka,kb,kc)
∂ky

∂(ka,kb,kc)
∂kx


 . (5.101)

Here the definition of (ka, kb, kc) implies that the vectors Tx, Ty, and Tz

must be limited to the following possibilities:
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Tx ∈ {(±1, 0, 0), (0,±1, 0), (0, 0,±1),

Ty ∈ {(±1, 0, 0), (0,±1, 0), (0, 0,±1)}\{±Tx},
Tz ∈ {(±1, 0, 0), (0,±1, 0), (0, 0,±1)}\{±Tz,±Ty}. (5.102)

Thus a typical example will look like the following:

T =




0 −1 0

1 0 0

0 0 −1


 . (5.103)

Which implies that kx = −kb, ky = ka, kz = −kc. Suppose we label the
48 possible transformation tensors by k. The diffusion tensor will then be
related to the diffusion tensor on an irreducible wedge in the following
manner:

DεBZ(ε) =

(
1

48

∑

k

Tk ⊗Tk

)
DεWedge(ε)

=




1
3

0 0 0 1
3

0 0 0 1
3

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
1
3

0 0 0 1
3

0 0 0 1
3

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
1
3

0 0 0 1
3

0 0 0 1
3




DεWedge(ε)

= I

(
1

3
Dε,xxWedge +

1

3
Dε,yy +

1

3
Dε,zzWedge

)
. (5.104)

That is, no matter what the diffusion tensor we determine on the irre-
ducible wedge of the Brillouin zone, the diffusion tensor over the Brillouin



182 CHAPTER 5. RESULTS I: ELASTICALLY-CONSTRAINED TRANSPORT

zone is equivalent to a scalar given by average of its diagonal entries.13

Thus in any material with dioctahedral symmetry, such as unstrained sili-
con, the diffusion coefficient must be a simple scalar.

13We have assumed here that the integral in the denominator of the wedge diffusion coefficient, that is
the density of states, has also been restricted to a wedge.



Chapter 6

Results II: Three Quasi-Equilibria
Transport

6.1 Introduction

In the first results chapter, we derived a model of semiclassical non-local transport by
assuming that the distribution function relaxed to an Elastically Constrained Quasi-
Equilibrium on a time-scale similar to the scattering time. The result was a simple
model Here the electron state is defined by an energy and position dependent distribu-
tion function subject to pure diffusion at constant total energy, and pure inelastic local
scattering. The only issue with this model is that it is a couple of orders of magnitude
slower to solve than local macroscopic models.

The aim of this chapter is to derive a model of semiclassical non-local transport that can
be solved at a speed comparable to existing local macroscopic models. In order to do
this, we need to make a stronger assumption than the Elastically Constrained Quasi-
Equilibrium assumption. The Elastically Constrained Quasi-Equilibrium is a maximum
entropy state subject to a 1−D scalar field of local constraints— the particle density
associated with each energy level. In order to simplify the model, we need to assume
the local electron state is defined by a small finite set scalars, i.e. a small finite set 0−D

183
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scalar fields.

In order to achieve this, we view the electron distribution as the superposition of three
seperate quasi-equilibria, each of which is defined as the maximum entropy distribu-
tion constrained by a few scalars. The result of this model is an electron state defined by
6 position dependent scalars. If electron–electron scattering between high-energy elec-
trons is not strong, then one of the quasi-equilibria can be neglected and the resulting
electron state can be defined by 4 position dependent scalars.

As a result of the small amount of information required to define the electron state,
the Three Quasi-Equilibria model can in principle be solved in a similar amount of
time as it takes to solve as a local macroscopic model. However, in the same way
that the Elastically-Constrained Equilibria transport model only provides device solu-
tions more efficiently than the full Boltzmann transport equation if the energy dependant
transport parameters are precomputed and stored in a look-up table, similarly the Three
Quasi-Equilibria transport model only provides device solutions more efficiently than
the Elastically-Constrained Equilibria transport model if the ansatz-parameter dependent
transport parameters are precomputed and stored in a look-up table. Thus the speed in-
crease of the Three Quasi-Equilibria model comes at the one-time upfront CPU cost and
persistent memory and cost of calculating and storing a large look-up table of ansatz-
parameter dependent transport parameters.

We divide this chapter into three major sections. In the first section, we describe the
Three Quasi-Equilibria ansatz. In the second section, we derive an unclosed equation of
motion for the ansatz parameters. In the third section, we close the equation of motion
by analytically relating the undefined terms to a large set of macroscopic transport param-
eters. These macroscopic transport parameters are our precomputed quantities, and are
defined in terms of integrals of each component quasi-equilibrium over the bandstruc-
ture and scattering operator.
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6.2 The Three Quasi-Equilibria Ansatz

6.2.1 Overview

The purpose of this section is firstly to define the class of devices that the Three Quasi-
Equilibria transport model applies to, secondly to describe how the carriers in the de-
vice will be represented, and thirdly to describe how the ansatz evolves in response to
inelastic scattering. We can summarize the content of this section as follows.

• We restrict ourselves to investigating semiclassical electron transport in source-
drain devices Here inelastic scattering is broadband, and all states are elastically
connected to the source and/or drain.

• We separate the electron population into three populations: a "cold" electron
population— primarily associated with electrons injected from the drain; a
"stunted" population— primarily associated with electrons injected from the
source; and a "warm" electron population— primarily associated with stunted
electrons that have scattered with each other.

• We assume that the cold electron population is a small perturbation from a lattice
temperature Fermi-Dirac distribution.

• We assume that the warm electron population is a small perturbation from a
heated Maxwell-Boltzmann distribution.

• We assume that the stunted electron population is a small perturbation from the
non-degenerate maximum entropy distribution associated with a given density,
energy density, and maximum chemical potential. This is the most idiosyncratic
assumption in our model.

• We describe the qualitative effect of inelastic scattering on these populations.
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6.2.2 The Limitations on Device Geometry

Beyond the assumptions of the Elastically-Constrained Equilibrium transport model,
the Three Quasi-Equilibria transport model described in this chapter is intrinsically lim-
ited to semiclassical devices in which inelastic scattering processes are broad spectrum
relative to the mean energy exchange.1 In the interest of presenting the critical kernel
of this model as explicitly as possible, we furthermore assume the device is a homoge-
neous "source-drain" type device, and the transport is monopolar, and that there are no
classically trapped states. Finally, for convenience, we assume the homogeneous mate-
rial is silicon, and that the monopolar carriers are conduction electrons. A device meets
these constraints if charge transport is dominated by

1. the movement of electrons,

2. from a single "source" terminal to a single "drain" terminal,

3. via states that are elastically connected at least one of these terminals

4. through a homogeneous piece of silicon,

5. that is of a characteristic length much larger than the decoherence length of the
electron.

The source is defined as the terminal in contact with the reservoir of electrons which
has a higher chemical potential and the drain as the terminal in contact with the reser-
voir of electrons which has the lower chemical potential. We note that there may be
other terminals in such a device— for example, gates— but we make the restriction that
charges injected into the device from these additional terminals can be assumed not to
occupy the same physical volume as the charges that are injected by the source or drain. As such,
the charges from other terminals can only have long-range interactions with source and
drain electrons that are mediated by Poisson’s equation. In contrast, source and drain
electrons may have short-range interactions with one another.

1That is, inelastic scattering is does not consist of sharply defined energy transitions.
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6.2.3 The Three Quasi-Equilibrium Populations

We partition the carriers in our device into three populations:

"Stunted" electrons A population of electrons that is assumed to be an antisymmetric
perturbation from a chemical potential constrained quasi-equilibrium, an atypical
constrained quasi-equilibria that has been defined in the theoretical framework.

"Warm" electrons A population of electrons that is assumed to be an antisymmetric
from an internal equilibrium with one another that is generally hotter than the
lattice.

"Cold" electrons A population of electrons that are assumed to be an antisymmetric
perturbation from thermal equilibrium with the lattice.

For the various electron populations, we will make mixed degeneracy assumptions.
We will assume that degenerate statistics apply for the cold electron population, but
we will assume that non-degenerate statistics apply for both the warm and the stunted
electron population. We note that this assumption of non-degeneracy for these popula-
tions means that we ignore the often significant reduction in the empty density of states
by the cold electron population. This assumption is justified using the argument that
in typical non-equilibrium transport scenarios, the vast majority of occupied warm and
stunted electron states are at energies much higher than fermi-level of the cold electron
population. These degeneracy assumptions are actually usually not most problematic
at the overlap between the stunted electron distribution and the cold electron distribu-
tion, but rather in the places Here the stunted electron distribution near lattice temper-
ature equilibrium near the source. As will be seen later, these degeneracy effects can be
roughly accounted for in a simple manner.

In the absence of electron–electron scattering, an electron which enters the device from
the source terminal would be considered to belong to the stunted electron population,
an electron which enters the drain terminal would be considered to belong to the cold
electron population, and the warm electron population would be empty. The particle
transfers induced by electron–electron scattering are discussed in the next section.
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As shown in the theoretical framework, the non-degenerate limit of the distribution
function associated with a chemically constrained equilibria is given by following the
three parameter function:

fε =




e−(αε+βε) ε ≤ ε∗,

e
− ε−µε
kTL ε ≥ ε∗.

(6.1a)

This is a three parameter functions since αε can be defined in terms of ε∗, β, and µε by
noting that the maximum entropy distribution is continuous at ε∗:

αε = − µε

kTL
+ ε∗

(
1

kTL
− β

)
. (6.1b)

We refer to αε SLOTBOOM ALPHA, µε as the SLOTBOOM CHEMICAL POTENTIAL, and ε∗ as
the KNEE ENERGY. The prefix "Slotboom" for αε and µε, refers to the fact that these are
terms relate to kinetic energies ε rather than total energies H . If we write the stunted
distribution ansatz in terms of a total energy H ,2 we can do so as follows:

fH =




e−(αH+βH) H ≤ H∗,

e
−H−µH

kTL H ≥ H∗.
(6.1c)

Here continuity implies the following relation:

αH = − µH

kTL
+H∗

(
1

kTL
− β

)
. (6.1d)

In this case we use the prefix "thermodynamic" for the relevant variables, and so refer
to αH as THERMODYNAMIC ALPHA, and µH as the THERMODYNAMIC CHEMICAL POTENTIAL.
For the same reason that fε and fH were both useful forms of the energy dependent
distribution function, the Slotboom forms and the thermodynamic forms are both useful
forms of the stunted electron distribution parameters. The mapping from one form to
another is trivial if one knows the local potential, so one should consider them to be
different expressions of the same set of variables.

The parameter β is the same in both eq. (6.1) and eq. (6.2), so while we could use either

2By kinetic energy ε, we simple mean the difference between total energy H , and the potential energy
of the conduction band minima εC , so H = ε+ εC .
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prefix, we will generally refer to it as termthermodynamic beta. Thermodynamic beta
is most intuitively thought of in terms of the corresponding "bulk" temperature:

Tbulk =
k

β
. (6.1e)

The reason we prefer to use the thermodynamic beta formulation rather than tempera-
ture to describe the energy dependence of the stunted distribution function below the
knee energy, is that it is possible for the bulk temperature to be infinite or even nega-
tive. Accordingly, it makes more sense store transport parameters in terms of thermody-
namic beta rather than the temperature, which instead of crossing from positive infinity
to negative infinity, infinitesimally similar distribution functions, simply crosses from
above zero to below zero. As a side note, this is also explains why we refer to warm
electron population as "warm" rather than "hot"— because typically it is the bulk of the
stunted electron distribution that contains the hottest electrons.

Note that we have omitted any qualification in these names related to the fact that they
refer only to the stunted electron population, and we have also omitted the qualification
that the chemical potential is in fact a maximum chemical potential for the stunted dis-
tribution. This is a convenient notational choice owing to the fact that the derivation of
the stunted electron transport equations is the least trivial, and thus we spend the most
time discussing it. Accordingly it makes sense for variables to the stunted distribution
by default and require qualifications only when referring to other populations. So we
refer to the stunted electron distribution by f , rather than by f stunted, and instead refer to
the total electron distribution function is denoted with a superscript "total". The ansatz
for the two forms of the warm electron energy distribution is given as follows:

fwarm
ε = e−(αεwarm+ ε

kTwarm ), (6.2a)

fwarm
H = e−(αHwarm+ H

kTwarm ). (6.2b)

Here were use thermodynamic alpha formulation again in order to avoid confusion
with the chemical potential, which we would like to have always measured relative to
the lattice temperature. Finally the ansatz for the two forms of the cold electron energy
distribution is given as follows:
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f cold
ε =

1

e
ε−µεcold
kTL + 1

, (6.3a)

f cold
H =

1

e
H−µHcold
kTL + 1

. (6.3b)

And our ansatz for the two forms of the total energy distribution function is as follows:

f total
ε = fε + fwarm

ε + f cold
ε , (6.4a)

f total
H = fH + fwarm

H + f cold
H . (6.4b)

6.2.4 The Effect of Scattering on the Populations

We define CARRIER–LATTICE scattering as all scattering that is not carrier-carrier scatter-
ing. In the case of DAMOCLES scattering operator for silicon described in the back-
ground chapter this includes all phonon scattering, dopant scattering and impact ion-
ization processes.

We assume that an electron subject to carrier–lattice scattering, the population type is
conserved. Accordingly, the purely inelastic effect of these scattering types is only to
change the CHARACTERISTIC DENSITIES associated with each population: that is, the set
of densities sufficient to characterize the ansatz for the population. The particle density
is sufficient to characterize the cold electron population, for the warm electron we also
require the energy density, and finally for the stunted population we require particle
density above the knee energy in addition to the other densities.

In the deep sub-micrometer scale of devices we are interested in, the strength of doping
is sufficiently strong that it is typically unreasonable to assume the electron–electron
scattering is negligible. As such, any model which does not incorporate these effects is
bound to be unphysical.

When electron–electron scattering is strong, it qualitatively changes the pure inelastic
scattering operator. For an input distribution of consisting of a delta function at an en-
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ergy ε, in one electron–electron scattering time the distribution very broadly distributed
between 0 and 2ε. Most importantly, unlike carrier–lattice scattering, it does not gener-
ally preserve the maximum chemical potential. This is problematic for the ansatz of the
cold electron population and the stunted electron population, both of which assume the
existence of a maximum chemical potential.

We assume that the effect of electron–electron on the pure-inelastic scattering operator
can be accounted for by moving electrons between our three quasi-equilibrium distri-
butions. The precise movement that occurs depends on the initial populations of the
electrons involved in scattering. Accordingly, we need to break down the various pos-
sible short-range electron–electron interactions according to the pair of populations in-
teracting. In general, n populations can combine in n(n+1)

2
ways, implying that three

populations combine in six ways. These are as follows.

Stunted—Stunted Electron Scattering This will result both electrons no longer being
in limited by the local maximum chemical potential for the stunted population.
The concept of a maximum chemical potential was derived on the assumption that
while stunted electrons are not in thermal equilibrium themselves, they only in-
teract inelastically with scattering partners at thermal equilibrium. It was proved
that in this scenario, scattering leads to the maximum chemical potential decreas-
ing monotonically. Accordingly, the electrons states after stunted—stunted elec-
tron scattering will not be well described by the stunted electron ansatz. We make
the assumption that both electrons involved in such an interaction are moved into
the warm electron population. Note, this will not quite be true, since the resulting
distribution will in fact have a sharp cutoff at twice the knee-energy, but we con-
sider this fact of minimal importance, since the higher the cutoff energy relative to
the average energy, the less of an influence it has on the shape of the distribution
function.

Warm—Warm Electron Scattering This will not effect the validity of the warm electron
ansatz, and in fact will only make it more accurate.

Cold—Cold Electron Scattering This will not effect the validity of the cold electron
ansatz these will not act to drive the cold electrons away from thermal equilib-
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rium. Therefore it is completely physically justified to ignore cold—cold electron–
electron scattering.

Stunted—Warm Electron Scattering This removes an electron from the stunted popu-
lation, and adds it to the warm electron population.

Stunted—Cold Electron Scattering This is an interaction between stunted electrons and
a set of partner bodies that are in thermal equilibrium. The assumption that
stunted electrons only scatter with partner bodies in a lattice temperature thermal
equilibrium is maintained, and accordingly the concept of a maximum chemical
potential for the stunted distribution still holds. Thus when a cold electron inter-
acts with a stunted electron, an electron is removed from the cold population and
added to the stunted population.

Warm—Cold Electron Scattering This removes the electron from the cold population,
and adds it to the warm electron population.

Finally, we assume that the population transfer effects associated with plasmon
scattering— the long-range scattering between a single electron and the collective state of
the electrons— is always the same: the particle is removed from its current population
and a particle is added to the warm electron distribution.3

We note that we assume that moving an electron from population A to population B

involves decreasing the total energy of population A and increasing the total energy of
population B by the average energy of A, and decreasing the population number of A
by one and increasing the population number ofB by one. This assumption neglects the
fact that the average energy of electrons that scatter may not be the same as the average
energy of the electrons in the population. If it is found that there is important differences
between these two averages, this error can be removed simply by precomputing both
types of average energy.

3Note that we do not describe how to calculate the plasmon scattering rate in this thesis, as we have
been using the DAMOCLES scattering operator, and in the DAMOCLES program scattering is modelled
implicitly by updating Poisson’s equation at a very high rate. However, this implicit model of plasmon
scattering is not compatible with either the Elastically Constrained Transport model or the Three Quasi-
Equilibria Model. We have left defining the plasmon scattering operator as a problem for future work.
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Thus we have described our model of the purely inelastic, population changing effects
of electron–electron scattering. We further assume that these are the only effects electron–
electron scattering has. That is, we assume that the elastic relaxation rate of electron–
electron scattering is zero, since such scattering pseudoconserves the total crystal mo-
mentum in the electron distribution.4 This is an assumption, since in a complex band
structure, pseudoconserving total crystal momentum is not the same as conserving total
velocity except at low energies. Accordingly, a strictly more accurate method to model
the effects of electron–electron scattering would be to assume that the electron–electron
scattering forms a drifted quasi-equilibrium that conserves total crystal momentum. It
is not obvious however, how such a model— which is considerably more complex—
would result in systematic changes to the particle flux distribution in energy apart from
the caused indirectly by the inelastic changes to electrons.

6.3 Generic Equations of Motion for the Ansatz Parame-

ters

6.3.1 Overview

The purpose of this section is to formulate an equation of motion5 for the ansatz param-
eters. The equations of motion derived in this section contain more unknowns variables
than equations, and are therefore open. The section can be summarized as follows.

• We relate the ansatz parameters to characteristic densities

• We derive continuity equations— or equations of motion— for these characteristic
densities by taking weighted integrals of the Boltzmann transport equation.

• We relate the time derivative in the characteristic densities to the time derivative
in the ansatz parameters.

4By "pseudoconserves", we simply mean conserves modulo a reciprocal lattice vector.
5By equation of motion we simply mean an equation that defines the time derivative in terms of the
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6.3.2 The Continuity Equations for the Characteristic Densities

The Stunted Electron Population

Our ansatz is that the stunted electron distribution equation is an antisymmetric per-
turbation from an energy distribution characterized by only three scalar quantities at each
point in space and time. There is a large choice of sets of scalar quantities we can use.
For instance we can use any set of three independent quantities the equations presented
in eq. (6.1). However, for the same reason that the most intuitive continuity equations
associated with the Elastically Constrained Transport model involved the densities that
characterize the energy dependent distribution function, the most intuitive continuity
equations associated with the stunted electron transport equations involve the densities
that characterize the distribution function.

The stunted electron distribution function is formally the maximum entropy distribu-
tion subject to a local particle density, local energy density and local maximum chemical
potential. We describe rate of change in particle and energy density directly, by deriv-
ing a continuity equation for these quantities. We describe the rate of change in the
maximum chemical potential indirectly, by finding a continuity equation for the rate of
change in density above the knee energy. Since the knee energy is a function of position
and time, and the continuity equations involve derivatives with respect to position and
time that do not intend the knee energy to change, there is a high chance of confusion
if we use the term knee energy to describe both the attribute of the ansatz, and the cutoff
energy of the continuity equation. To avoid this confusion, will refer to the knee energy
in the context of a continuity equation as the CUTOFF ENERGY εcut.

The continuity equations we derive for these characteristic densities are physically in-
tuitive. Each states that, in a small volume, the rate of change of a conserved quantity—
either particles, energy, or particles above the cutoff energy— is equal to the net rate
of flow of the conserved quantity into the volume, plus the rate of change of the con-
served quantity due to scattering in the volume, plus the rate of change of the conserved

instantaneous state. In this case, an equation that defines the time derivative of the ansatz parameters in
terms of the instantaneous state of a 3−D field of ansatz parameters.
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quantity due to the local electric field. Accordingly, it would arguably be legitimate to
simply state these continuity equations without derivation. We take the longer route of
describing how they are derived from the Boltzmann transport equation simply for the
sake of rigor and completeness.

In order to derive these equations, we need to take appropriate weighted integrals of
the Boltzmann Transport Equation. To assist us in this regard, we define the mth-order
energy density functional, or mth-order RHO FUNCTIONAL ρm(εmin, εmax) as follows:

ρm(εmin, εmax)[X] = Γ
∑

ν

∫

BZ

(
θ(εkν − ε1)θ(ε2 − εkν)

)
εmkνXdk

=

∫ εmax

εmin

εmσε(ε)[X]dε. (6.5)

Here θ(x) is the Heaviside step function and σε(ε)[X] is the Constant Energy Surface
functional defined in the first results chapter. The mth-order Rho Functional therefore
measures the integral of an arbitrary function between two constant energy surfaces in
the Brillouin Zone, weighted by the mth power of the kinetic energy.

Let us apply the Rho Functional to both sides of the Boltzmann transport equation:

ρm(εmin, εmax)

[
∂f

∂t

]
= ρm(εmin, εmax)

[(
∂f

∂t

)

scat
− v · ∇rf −

F

~
∇kf

]
. (6.6)

Using eq. (6.5), the definition of the Rho Functional in terms of the Constant Energy
Surface functional, and eq. (5.23), the expression from the first results chapter associ-
ated with the application of the Constant Energy Surface functional on the Boltzmann
transport equation, we have the following:

∫ εmax

εmin

∂nε

∂t
dε =

∫ εmax

εmin

εm
((

∂nε

∂t

)

scat
−∇r · jε − F · ∂jε

∂ε

)
dε.

(6.7)

For clarity, we substitute back in the relation nε = D(ε)fε and
(
∂nε

∂t

)
scat = D(ε)

(
∂fε
∂t

)
scat

of eq. (5.19). The temporal and spatial derivatives are taken with respect to constant
energy and so can be taken outside the integral. Finally, we can re-express the derivative
of particle flux per kinetic energy using integration by parts. This leads to the following
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expression, Here we have labelled all the terms according to their role in the continuity
of a density (which we have named ρ):

∂

∂t

ρ︷ ︸︸ ︷∫ εmax

εmin

εmD(ε)fεdε =

( ∂ρ∂t )scat︷ ︸︸ ︷∫ εmax

εmin

εmD(ε)

(
∂fε
∂t

)

scat
dε−∇r ·

Jρ︷ ︸︸ ︷∫ εmax

εmin

εmjεdε

( ∂ρ∂t )field︷ ︸︸ ︷
−F ·

(
εmjε

∣∣∣
εmax

εmin

−m
∫ εmax

εmin

εm−1jεdε

)
.

(6.8)

The specific densities we are interested in the particle density n, energy density byw and
particle density above the cutoff energy by nε>εcut . These are defined by the following
values of the Rho Functional:

n(r, t) = ρ0(0,∞)[fε] =

∫ ∞

0

D(ε)fεdε, (6.9a)

w(r, t) = ρ1(0,∞)[fε] =

∫ ∞

0

εD(ε)fεdε, (6.9b)

nε>εcut(εcut, r, t) = ρ0(εcut,∞)[fε] =

∫ ∞

εcut

D(ε)fεdε. (6.9c)

The corresponding rate of change of the characteristic densities due to scattering is de-
fined as follows:

(
∂n

∂t

)

scat
(r, t) = ρ0(0,∞)

[(
∂f

∂t

)

scat

]
=

∫ ∞

0

D(ε)

(
∂fε
∂t

)

scat
dε, (6.10a)

(
∂w

∂t

)

scat
(r, t) = ρ1(0,∞)

[(
∂f

∂t

)

scat

]
=

∫ ∞

0

εD(ε)

(
∂fε
∂t

)

scat
dε, (6.10b)

(
∂nε>εcut

∂t

)

scat
(εcut, r, t) = ρ0(εcut,∞)

[(
∂f

∂t

)

scat

]
=

∫ ∞

εcut

D(ε)

(
∂fε
∂t

)

scat
dε. (6.10c)

While the corresponding characteristic fluxes are defines as follows:
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j(r, t) = ρ0(0,∞)[vf ] =

∫ ∞

0

jεdε, (6.11a)

S(r, t) = ρ1(0,∞)[vf ] =

∫ ∞

0

εjεdε, (6.11b)

jε>εcut(εcut, r, t) = ρ0(εcut,∞)[vf ] =

∫ ∞

εcut

jεdε. (6.11c)

For the term associated with the rate of change in the characteristic densities due to the
field, we note the following:

• εmjε(ε, r, t)|ε=0 = 0, due to the velocity of states being zero at zero energy.

• εmjε(ε, r, t)|ε=∞ = 0, due to energy distribution tending exponentially to zero at
infinite energy, which dominates the tendency of the εm to diverge to infinity for
positive values of m.

On the basis of these equalities, we can derive the following:
(
∂n

∂t

)

field
(r, t) = ρ0(0,∞)

[
F

~
· ∇kf

]
= −F ·

(
ε0jε
∣∣∣
∞

0
− 0

∫ ∞

0

ε−1jεdε

)

= 0, (6.12a)
(
∂w

∂t

)

field
(r, t) = ρ1(0,∞)

[
F

~
· ∇kf

]
= −F ·

(
ε1jε
∣∣∣
∞

0
−
∫ ∞

0

ε0jεdε

)

= F · j(r, t), (6.12b)
(
∂nε>εcut

∂t

)

field
(εcut, r, t) = ρ0(εcut,∞)

[
F

~
· ∇kf

]
= −F ·

(
ε0jε
∣∣∣
∞

εcut

− 0

∫ ∞

0

ε−1jεdε

)

= F · jε(εcut, r, t). (6.12c)

These relations are intuitively easy to understand. Eq. (6.12a) says that the local electric
field does not create to create particles. Eq. (6.12b) states that the component of the
particle flux that is flowing parallel to the external force will drive an increase in the
kinetic energy. Eq. (6.12c) says that the component of the particle flux per kinetic energy
at the cutoff energy that is flowing parallel to the external force will drive particles from
below the cutoff energy to above the cutoff energy.
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Accordingly, the continuity equation for the particle density is defined as following
familiar equation:

∂n

∂t
=

(
∂n

∂t

)

scat
−∇r · j. (6.13a)

The continuity for the energy density is defined as the following expression:

∂w

∂t
=

(
∂w

∂t

)

scat
−∇r · S + F · j. (6.13b)

Finally, we not that if we express the cutoff for the particle flux in terms of a total energy,
the term in eq. (6.12c) disappears since the local field does not cause any electrons to
change their total energy. Accordingly, as we show formally in an aside at the end of
this section, the continuity equation for the density above cutoff energy can be defined
as follows:

∂nε>εcut

∂t
=

(
∂nε>εcut

∂t

)

scat
−∇r · jH>Hcut . (6.13c)

The Warm And Cold Electron Populations

In deriving the continuity equations for the characteristic densities of the stunted elec-
tron population, we have simultaneously derived continuity equations for the warm
and cold electron populations. This is because the characteristic densities of the warm
and cold populations are subsets of the characteristic densities on the stunted electron
distribution.

For the warm electron distribution, the characteristic densities are the warm electron
particle density and the warm electron energy density. The continuity equation for the
warm particle density is a simple copy of eq. (6.13):

∂nwarm

∂t
=

(
∂nwarm

∂t

)

scat
−∇r · jwarm. (6.14a)
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The continuity for the energy density is a simply copy of eq. (6.14):

∂wwarm

∂t
=

(
∂wwarm

∂t

)

scat
−∇r · Swarm + F · jwarm. (6.14b)

For the cold electron distribution, the characteristic density is the cold electron particle
density:

∂ncold

∂t
=

(
∂ncold

∂t

)

scat
−∇r · jcold. (6.15)

The terms in the warm and cold continuity equations are defined by simply substituting
the stunted electron ansatz f in eq. (6.9), eq. (6.10), and eq. (6.11) with the warm electron
ansatz fwarm or the cold electron ansatz f cold.

Aside: Simplifying the Tail Density Continuity Equation

The continuity equation for the particle density above εcut can be derived
by substituting m = 0, εmax =∞, and εmin = εcut into eq. (??). This leads to
the following relation:

∂nε>εcut

∂t
=

(
∂nε>εcut

∂t

)

scat
−∇rjε>εcut + F · jε(εcut, . . . ). (6.16)

Suppose we define jH>Hcut(Hcut, r, t) to be total energy version of
jε>εcut(εcut, r, t). Using a similar approach to eq. (5.13), we can express
the total energy form of the as following composition of functions, Here
(εcut, r, t) is a vector valued function of (Hcut, r, t):

jH>Hcut = jε>εcut ◦ (εcut, r, t). (6.17)

We can now express the spatial derivative in jH>Hcut using the chain rule,
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Here the first factor in the terms on the RHS refers to partial derivatives
in the coordinate system (εcut, r, t), while the second factor refers to partial
derivatives in the coordinate system (Hcut, r, t):

∇r · jH>Hcut =

(
∂jε>εcut

∂εcut

)
· (∇rεcut) + (∇r · jε>εcut)

(
∂r

∂r

)
.

(6.18)

The term ∂jε>εcut
∂εcut

= −jε(εcut, . . . ) while ∇rεcut = ∇r(Hcut − εC) = F. Sub-
stituting these relations, and multiplying by −1 leads to the following ex-
pression:

∇r · jH>Hcut = ∇r · jε>εcut − F · jε(εcut, . . . ). (6.19)

This can clearly be substituted into eq. (6.16) in order to yield eq. (6.14).

6.3.3 Converting the Characteristic Continuity Equations Into Equa-

tions of Motion for Ansatz Parameters

The Stunted Electron Distribution

In time-varying analysis the continuity equations will produce a non-zero rate of change
for the characteristic densities. If the characteristic densities are the fundamental vari-
ables, then it is obvious how to update the state of the fundamental variables in a given
time step. For this reason, characteristic densities are typically used as the fundamental
variables in time-varying analysis in most transport models.

However in the Three Quasi-Equilibria model we propose, using characteristic densities
as the fundamental variables is quite problematic, since it is awkward to precompute
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and store the transport parameters as functions of the functions of the characteristic
densities. It is far more natural to store these parameters as functions of the Slotboom
version of the ansatz parameters. Accordingly, in this subsection we convert the rate of
change of characteristic densities into a rate of change of ansatz parameters. Accord-
ingly, we will make the ansatz parameters the fundamental variables of our model even
in time-varying analysis. As such, in this subsection we describe how to determine equa-
tions of motion for the ansatz parameters from equations of motion— a.k.a. continuity
equations— for the characteristic densities.

Suppose we have an expression for each of the characteristic densities in terms of the
ansatz parameters. By using the multivariate chain rule, we can define a relationship
between the rate of change in the characteristic densities and the rate of change in the
ansatz parameters:




∂n
∂t
∂w
∂t

∂nε>εcut
∂t


 =




∂n
∂µε

∂n
∂β

∂n
∂ε∗

∂w
∂µε

∂w
∂β

∂w
∂ε∗

∂nε>ε∗
∂µε

∂nε>ε∗
∂β

∂nε>εcut
∂ε∗







∂µε

∂t
∂β
∂t
∂ε∗

∂t


 .

(6.20)

Here once again we use εcut only to emphasize the fact that the cutoff energy does not
change as the knee energy ε∗ varies. This partial derivative is the most interesting of the
terms in the matrix, because it is not immediately clear that it is well-defined. However
in Fig. 6.1, we argue that it is in fact well-defined, and is equal to zero. Additionally,
we note that at constant ε∗ and µε, a variation in β will not effect the density above ε∗.
Accordingly, two of the terms on the bottom row of the matrix in eq. (6.20) are zero:

∂nε>εcut

∂ε∗
=
∂nε>ε∗

∂β
= 0. (6.21)

Because of this, we will not begin by inverting the whole matrix in eq. (6.20). Instead,
we note that the equation associated with the third row of eq. (6.20) describes a one-to-
one relationship between ∂µε

∂t
and ∂nε>εcut

∂t
that can be inverted separately. This inversion

leads to a simple expression for the rate of change of the chemical potential:

∂µε

∂t
=

(
∂nε>ε∗

∂µε

)−1
∂nε>εcut

∂t
. (6.22)
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εcut + ∆ε∗1

εcut + ∆ε∗2

εcut fS

ε

Figure 6.1: An illustration of the effect varying ε∗ on the distribution function and the density above εcut.
The black plot shows the case without variation, Here ε∗ − εcut = 0. The red plot shows the case Here
ε∗ − εcut = ∆ε∗1 > 0. The cyan plot shows Here the case Here ε∗ − εcut = ∆ε∗2 < 0. The black line overlaps
the red plot and the cyan plot after the intersection. We are interested in the variation of particle density
above εcut, with respect to variations in ε∗. The particle density above εcut is a weighted integral of the plot
above εcut. The density above εcut associated with zero variation is represented shaded area. The density
above εcut is unchanged by negative variation, since the plot is the same above εcut. The density above
εcut is reduced by the weighted area of the slightly red shaded region for positive variation. However, for
small ∆ε∗1, both the height and the average width of this region are proportional to ∆ε∗1. Therefore there
is zero first order variation in the density above εcut with respect to infinitesimal positive variations. The
partial derivative of the density above εcut with respect to ε∗ is therefore well-defined as zero.
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Having already used the third row from eq. (6.20), we can remove this from the equa-
tion, and having determined ∂µε

∂t
, we can remove this from the vector of unknowns. The

updated form of the multivariate chain rule is then expressed as follows:
[
∂n
∂t
∂w
∂t

]
=

[
∂n
∂β

∂n
∂ε∗

∂w
∂β

∂w
∂ε∗

][
∂β
∂t
∂ε∗

∂t

]
+

[
∂µε

∂t
∂n
∂µε

∂µε

∂t
∂w
∂µε

]
.

(6.22a)

Since all entries of the matrix are typically non-zero, we will proceed to invert this ma-
trix equation in the standard manner so that the vector of unknowns the subject:

[
∂β
∂t
∂ε∗

∂t

]
=

[
∂n
∂β

∂n
∂ε∗

∂w
∂β

∂w
∂ε∗

]−1 [
∂n
∂t −

∂µε

∂t
∂n
∂µε

∂w
∂t −

∂µε

∂t
∂w
∂µε

]
.

(6.22b)

It is as this point we note that the partial derivatives of the densities with respect to
µε have a particularly simple form. The reason is as follows. The maximum chemical
potential µε only effects a scale factor of the occupation function, via an exponential re-
lation. Densities are weighted integrals of the occupation function, and the dependence
on the scale factor can always be brought outside this weighted integral. The derivative
of the scale factor with respect to µε is proportional to the scale factor. Accordingly, the
derivative of the density with respect to µε is proportional to the density:

∂n

∂µε
=

1

kTL
n, (6.22c)

∂w

∂µε
=

1

kTL
w, (6.22d)

∂nε>ε∗

∂µε
=

1

kTL
nε>ε∗ . (6.22e)

We can now eliminate all references to µε from the eq. (6.23), by substituting in eq. (6.22)
and eq. (6.23). The result is the following:

[
∂β
∂t
∂ε∗

∂t

]
=

[
∂n
∂β

∂n
∂ε∗

∂w
∂β

∂w
∂ε∗

]−1 [
∂n
∂t − n

nε>ε∗

∂nε>εcut
∂t

∂w
∂t − w

nε>ε∗

∂nε>εcut
∂t

]
.

(6.23)

The above equation is fairly simple to understand. The change in nε>εcut is caused purely
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by a change in µε, which means it is caused purely by a change in the scale factor for the
ansatz. Accordingly, the fractional change in nε>εcut is equal to the fractional change of
n and w that can be attributed to a change in µε. If we remove this change from the rate
of change of particle and energy density, then the remaining the changes in particle and
energy density must purely be due to changes in β and ε∗.

If the terms on the right hand side of eq. (6.23) are known, then solving this equation
is trivial.6 Thus determining the rate of change in the ansatz parameters is a trivial
extension of the problem of determining the rate of change in the characteristic fluxes.

The Warm and Cold Electron Populations

For the warm electron density, we have according to the chain rule the following ex-
pression for the rate of change of the characteristic densities:

[
∂nwarm
∂t

∂wwarm
∂t

]
=

[
∂nwarm
∂αεwarm

∂nwarm
∂Twarm

∂wwarm
∂αεwarm

∂wwarm
∂Twarm

][
∂αεwarm
∂t

∂Twarm
∂t

]
.

(6.24)

On the basis of the simple energy-independent scaling behaviour of αεwarm, we have that
∂nwarm
∂αεwarm

= −n and ∂wwarm
∂αεwarm

= −w. Substituting in these relations, are rearranging eq. (6.24)
in order to make the ansatz parameters the subject, we reach the following:

[
∂αεwarm
∂t

∂Twarm
∂t

]
=

[
−nwarm

∂nwarm
∂Twarm

−wwarm
∂wwarm
∂Twarm

]−1 [
∂nwarm
∂t

∂wwarm
∂t

]
.

(6.25)

Finally for the cold electron population, the chain rule leads to the simple relation:

∂ncold

∂t
=
∂ncold

∂µεcold

∂µεcold

∂t
. (6.26)

The cold electron population does not show simple energy-independent scaling behaviour
with µεcold. Rearranging to make the ansatz parameters the subject, we have the follow-
ing:

6For instance, there is a simple analytic formula for the inverse of a general 2× 2 matrix.
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∂µεcold

∂t
=

(
∂ncold

∂µεcold

)−1
∂ncold

∂t
. (6.27)

6.4 Closing the Ansatz Parameter Equation of Motion

6.4.1 Overview

The purpose of this section is to close the equation of motion for the ansatz parameters
derived in the last section. This is essentially achieved by taking every term in the equa-
tion of motion that is not defined in terms of ansatz parameters and defining it in terms
of ansatz parameters. In order to do this efficiently, we make heavy use of precomputed
macroscopic transport parameters, which are defined as integrals of the scattering op-
erator and bandstructure weighted by the energy component of the ansatz for each of
the three quasi-equilibrium populations. We summarise this section as follows.

• We express the characteristic particle densities as the product of a tabulated macro-
scopic average of the density of states and an analytic integral of the distribution
function.

• We express the characteristic energy densities as the product of a tabulated macro-
scopic average energy and the characteristic particle density.

• We express the partial derivatives of these functions using the product rule, and
tabulated values of the partial derivatives of the macroscopic average density of
states and the average energies.

• We express the characteristic fluxes as the sum of a fluxes each due to spatial gra-
dient in each thermodynamic ansatz parameter

• We express the flux due to the gradient in each thermodynamic ansatz parameter
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as being proportional to the product of an tabulated macroscopic average diffu-
sion coefficient, particle density, and spatial gradient in the ansatz parameter.

• We express the characteristic rate of change in density due to scattering following
the population dynamics described in the first section of this chapter. We express
these scattering rates in terms of small set of macroscopic average scattering pa-
rameters associated with each scattering partner type.

6.4.2 The Characteristic Densities as a Function of Ansatz Parameters

The Stunted Electron Population

The aim of this subsection is to describe a method of quickly relating the ansatz parame-
ters to the characteristic densities and their partial derivatives. In the case of the stunted
population the characteristic densities are defined as follows:

n =

∫ ∞

0

fεD(ε)dε, (6.28a)

w =

∫ ∞

0

εfεD(ε)dε, (6.28b)

nε>ε∗ =

∫ ∞

ε∗
fεD(ε)dε. (6.28c)

These integrals need to be calculated numerically since we are not assuming an analyt-
ically integrable form for the density of states D(ε). It is unacceptably slow to numeri-
cally compute these integrals at runtime, therefore we will make use of precomputation
and tabulation. However, rather than precomputing and tabulating the mapping of
ansatz parameters and the densities directly, we will search for intermediate quantities
to precompute and tabulate that are analytically related to the densities and possess
the following qualities: the quantities should be described by the minimum number of
variables possible, and the quantities should vary as slowly as possible.
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In order to minimize the number of variables, we eliminate the dependence of any tab-
ulated quantity on µε, by noting that this term is associated with a uniform change in
scale of the entire distribution function. having already achieved the same for the char-
acteristic densities and characteristic fluxes, the scale of the entire distribution.

In order to minimize the rate of change of the variable, we note that the densities also
have a natural exponential dependence on β and ε∗. For the energy density, we can
remove this natural dependence by simply tabulating the average energy as a function
of β and ε∗, reducing the problem to the problem of removing the natural exponential
dependence of the particle density. In order to remove this natural dependence for
the particle density, we tabulate the actual particle density to what the particle density
would be if the density of states was equal to unity at all energies. This quantity is both
relatively slowly varying, and has a natural interpretation as a macroscopic measure of
the density of states. Due to the fact that we have a seperate continuity equation for
the tail, it is sensible to write down seperate our expressions for the density of states
measure and average energy for the "hot bulk" of the distribution comprised of below
the knee energy, and for the "thermal tail" of the distribution that has kinetic energy
greater than ε∗. In order to be able to quickly determine the partial derivatives needed
to convert the continuity equations into equations of motion for the ansatz parameters,
we also need to precompute and tabulate the partial derivatives of the density of states
measures and average energies.

We define list of precomputed ansatz-parameter dependant density measures in Table 6.1
using the Rho Functional. We note that for functions X(ε; . . . ) that are only implicitly
dependent on the crystal momentum and band index via the kinetic energy, the Rho
Functional takes the following simple form:

ρm(εmin, εmax)[X(ε; . . . )] =

∫ εmax

εmin

σε(ε)[1]εmX(ε; . . . )dε

=

∫ εmax

εmin

D(ε)εmX(ε; . . . )dε. (6.29)

By solving the integrals on the denominator analytically, we find that the following
analytic mapping between the stunted electron ansatz parameters and the tail and bulk
densities:
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Dtail(ε
∗) =

ρ0(ε∗,∞) [fε]

ρ0(ε∗,∞)
[

fε
D(ε)

] Density of states measure for
electrons in the thermal tail.

Dbulk(ε∗, β) =
ρ0(0, ε∗) [fε]

ρ0(0, ε∗)
[

fε
D(ε)

] Density of states measure for
electrons in the hot bulk.

〈ε〉tail (ε∗) =
ρ1(ε∗,∞) [fε]

ρ0(ε∗,∞) [fε]
Average energy of electrons in
the thermal tail.

〈ε〉bulk (ε∗, β) =
ρ1(0, ε∗) [fε]

ρ0(0, ε∗) [fε]
Average energy of electrons in
the hot bulk.

∂Dtail

∂ε∗
(ε∗) =

∂

∂ε∗
ρ0(ε∗,∞) [fε]

ρ0(ε∗,∞)
[

fε
D(ε)

] Rate of change of density of
states measure with respect to
ε∗ for electrons in the thermal
tail.

∂Dbulk

∂ε∗
(ε∗, β) =

∂

∂ε∗
ρ0(0, ε∗) [fε]

ρ0(0, ε∗)
[

fε
D(ε)

] Rate of change of density of
states measure with respect to
ε∗ for electrons in the hot bulk.

∂Dbulk

∂β
(ε∗, β) =

∂

∂β

ρ0(0, ε∗) [fε]

ρ0(0, ε∗)
[

fε
D(ε)

] Rate of change of density of
states measure with respect to
β for electrons in the hot bulk.

∂〈ε〉bulk

∂ε∗
(ε∗, β) =

∂

∂ε∗
ρ1(0, ε∗) [fε]

ρ0(0, ε∗) [fε]
Rate of change of average en-
ergy with respect to ε∗ for elec-
trons in the hot bulk.

∂〈ε〉bulk

∂β
(ε∗, β) =

∂

∂β

ρ1(0, ε∗) [fε]

ρ0(0, ε∗) [fε]
Rate of change of average en-
ergy with respect to β for elec-
trons in the hot bulk.

Table 6.1: Description of the precomputed and tabulated stunted ansatz parameter dependent density
measures. These allow the values of characteristic densities and their partial derivatives to be quickly
computed from the ansatz parameters at run-time.

ntail =

(
kTLe

− ε∗−µε
kTL

)
Dtail, (6.30a)

nbulk =

(
1

β

(
eβε

∗ − 1
)
e
− ε∗−µε

kTL

)
Dbulk, (6.30b)

wtail = ntail 〈ε〉tail , (6.30c)

wbulk = nbulk 〈ε〉bulk . (6.30d)
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We now can write down expressions for the partial derivatives of these functions with
respect to the ansatz parameters. We have already discussed the simple partial deriva-
tive of any density with respect to the chemical potential, and the tail densities do not
dependent on the bulk thermodynamic beta. The remaining partial derivatives for the
tail and bulk particle densities are defined as follows:

∂ntail

∂ε∗
= −e−

ε∗−µε
kTl

(
Dtail + kTL

∂Dtail

∂ε∗

)
, (6.31a)

∂nbulk

∂ε∗
= e

− ε∗−µε
kTl

[(
− 1

kTLβ

(
eβε

∗ − 1
)

+ eβε
∗
)
Dbulk +

1

β

(
eβε

∗ − 1
) ∂Dbulk

∂ε∗

]
, (6.31b)

∂nbulk

∂β
=

1

β
e
− ε∗−µε

kTL

[(
− 1

β

(
eβε

∗ − 1
)

+ ε∗eβε
∗
)
Dbulk +

(
eβε

∗ − 1
) ∂Dbulk

∂β

]
. (6.31c)

Having expressed the partial derivatives of the tail and bulk densities in terms of the
ansatz parameters, it is now trivial to define an expression for the partial derivatives of
the energy densities in terms of ansatz parameters:

∂wtail

∂ε∗
=
∂ntail

∂ε∗
〈ε〉tail + ntail

∂〈ε〉tail

∂ε∗
, (6.32a)

∂wbulk

∂ε∗
=
∂nbulk

∂ε∗
〈ε〉bulk + nbulk

∂〈ε〉bulk

∂ε∗
, (6.32b)

∂wbulk

∂β
=
∂nbulk

∂β
〈ε〉bulk + nbulk

∂〈ε〉bulk

∂β
. (6.32c)

The Warm and Cold Electron Populations

A useful relation is that shape of the bulk electron population is identical to the warm
population when ε∗ =∞ and β = 1

kTwarm
. Accordingly, whenever we have a macroscopic

quantity for the bulk of the distribution as a function (ε∗, β), we can always convert it
into a corresponding macroscopic quantity for the warm distribution as a function of
Twarm. This leads to the following relations:
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Dwarm(Twarm) = Dbulk

(
∞, 1

kTwarm

)
, (6.33a)

〈ε〉warm (Twarm) = 〈ε〉warm

(
∞, 1

kTwarm

)
, (6.33b)

∂Dwarm

∂Twarm
= − 1

kT 2
warm

∂Dbulk

∂β

(
∞, 1

kTwarm

)
, (6.33c)

∂〈ε〉warm

∂Twarm
= − 1

kTwarm

∂〈ε〉bulk

∂β

(
∞, 1

kTwarm

)
. (6.33d)

We can now express the warm particle and energy density in terms of these functions
of the ansatz parameters as follows:

nwarm = kTwarme
−αεwarmDwarm, (6.34a)

wwarm = nwarm 〈ε〉warm . (6.34b)

And we can express the partial derivatives of these densities with respect to temperature
as functions of the ansatz parameters:

∂nwarm

∂Twarm
= e−α

ε
warm

(
kDwarm + kTL

∂Dwarm

∂Twarm

)
, (6.35a)

∂wtail

∂Twarm
=
∂nwarm

∂Twarm
〈ε〉warm + nwarm

∂〈ε〉warm

∂Twarm
. (6.35b)

We now turn to the cold particle density. We note that for the cold population, we need
to calculate a new density of states measure, and partial derivative of that density of
states measure. These are listed in Table 6.2.

As with the particle densities of the other distributions, we can now express the particle
density as the product of an analytic integral of the distribution function and the density
of states measure. Since the distribution is now a Fermi-Dirac function, the associated
integral is non-trivial:
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Dcold(µεcold) =
ρ0(0,∞) [fε]

ρ0(0,∞)
[

fε
D(ε)

] Density of states measure
for electrons in the cold
distribution.

∂Dcold

∂µεcold
(µεcold) =

∂

∂µεcold

ρ0(0,∞) [fε]

ρ0(0,∞)
[

fε
D(ε)

] Rate of change of density of
states measure with respect to
µεcold for electrons in the cold
population.

Table 6.2: Description of the precomputed and tabulated cold chemical potential dependent density mea-
sures. These allow the particle density of the cold population and its derivative to be quickly computed
from the cold electron chemical potential at run-time.

ncold =

(∫ ∞

0

fcolddε

)
Dcold

=

[
ε− kTLln

(
e
ε−µεcold
kTL + 1

)] ∣∣∣∣∣

∞

0

Dcold

=

[
µεcold + kTLln

(
e
−µ

ε
cold
kTL + 1

)]
Dcold. (6.36)

Here the derivative of the cold distribution with respect to the cold chemical potential
can be expressed as follows:

∂ncold

∂µεcold
=

1

1 + e
−µ

ε
cold
kTL

Dcold +
ncold

Dcold

∂Dcold

∂µεcold
. (6.37)

We can now conclude this section, having presented expressions for the characteristic
densities as functions of the ansatz parameters, and the partial derivatives of these func-
tions. So long as the quantities listed in Table 6.1 and Table 6.2 are precomputed and
stored in a look-up table, these characteristic densities and there partial derivatives are
able to be computed easily from the ansatz parameters at run-time.
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6.4.3 The Characteristic Fluxes as a Function of Ansatz Parameters

The Stunted Electron Population

The characteristic fluxes for the stunted electron population are determined by the fol-
lowing integrals:

j =

∫ ∞

0

jεdε, (6.38a)

S =

∫ ∞

0

εjεdε, (6.38b)

jH>Hcut =

∫ ∞

Hcut−εC
jεdε. (6.38c)

Here εC(r, t) is local the potential energy of the conduction band minimum, and the
particle flux per kinetic energy is given by the following:

jε(ε, r, t) = D(ε)Dε · ∇rfH . (6.39)

Here the function fH is assumed to be an explicit function of (H, r, t). Given the form
of our stunted ansatz in eq. (6.2), we wish to express this partial derivative in the case
Here the space and time dependence of fH is replaced with a dependence on the ansatz
parameters. While the stunted ansatz only has 3 degrees of freedom— owing to the
continuity atH∗— it is simpler if we express the fH as an explicit function of all 4 degrees
of freedom (µH , H∗, αH , β), and simplify the resulting expression by enforce continuity.
First, applying the chain rule leads to the following:

∇rfH =
∂fH
∂H∗
∇rH

∗ +
∂fH
∂µH
∇rµ

H +
∂fH
∂αH
∇rα

H +
∂fH
∂β
∇rβ. (6.40)

Substituting eq. (6.40) into expression for the particle flux per kinetic energy eq. (6.39),
we have the following:

jε = D(ε)Dε(ε; ...) ·
(
∇rH

∗ ∂fH
∂H∗

+∇rµ
H ∂fH
∂µH

+∇rα
H ∂fH
∂αH

+∇rβ
∂fH
∂β

)
. (6.41)
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The problem with this expression is that the partial derivative ∂fH
∂H∗ is not well defined

due to the gradient discontinuity at that point in the ansatz. However, we are not in-
terested in jε itself, but in the three weighted integrals of jε defined by eq. (6.38). We
show in an aside at the end of this section, that the weighted integrals of this term can
be defined, and that in the case Here fH is continuous, are equal to zero. The remaining
partial derivatives in eq. (6.41) can be expressed analytically:

∂fH
∂µH

=





0 forH < H∗,

1
kTL

fH forH > H∗,
(6.42a)

∂fH
∂αH

=




−fH forH < H∗,

0 forH > H∗,
(6.42b)

∂fH
∂β

=




−HfH forH < H∗,

0 forH > H∗.
(6.42c)

The partial derivatives of eq. (6.42) are simply defined they are defined relative to con-
stant H∗, which was our reason for making H∗ an explicit variable. When substituting
eq. (6.42) into eq. (6.41), we can change all terms not associated with spatial gradients
into their kinetic energy form, and we our final expression for the flux per kinetic en-
ergy:

jε(ε, r, t) = −D(ε)Dε(ε; ...)fε ·





(
∇rα

H + ε∇rβ
)

for ε < ε∗,

− 1
kTL
∇rµ

H for ε > ε∗.
(6.43)

This is expression is quite simple conceptually. The above flux relationship describes
ELASTIC DIFFUSION, or diffusion at constant total energy. Like near-equilibrium transport
processes, elastic diffusion is an entropic process driven by gradients in thermodynamic
potentials.

We can rewrite our expressions for the characteristic fluxes in eq. (6.38) using the eq. (6.43)
and the Rho Functional. This leads to the following:
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j = ∇rα
H · ρ0(0, ε∗)[Dεfε] +∇rβ · ρ1(0, ε∗)[Dεfε]−

1

kTL
· ∇rµ

Hρ0(ε∗,∞)[Dεfε],
(6.44a)

S = ∇rα
H · ρ1(0, ε∗)[Dεfε] +∇rβ · ρ2(0, ε∗)[Dεfε]−

1

kTL
· ∇rµ

Hρ1(ε∗,∞)[Dεfε],
(6.44b)

jH>Hcut = − 1

kTL
∇rµ

Hρ1(ε∗,∞)[Dεfε] +

∫ ε∗

εcut

jεdε.

(6.44c)

Computing the Rho Functional at run-time will make the model unreasonably slow,
accordingly we precompute and store the list of macroscopic diffusion coefficients in
Table 6.3, that allow us to quickly calculate the Rho Functionals in eq. (6.44).

Once again, when storing a numerical function, it is most efficient to store one that
varies as slowly as possible over its domain— thus instead of storing the Rho Function-
als in eq. (6.44) directly, we normalize each by an associated particle density, which has
the special benefit of being a natural definition of the macroscopic diffusion parameter.
It is also most efficient to store a function that depends on as few variables as possible—
thus instead of storing the full diffusion coefficient as a function of (ε∗, β, βS, Ndop), we
store the dopant and non-dopant diffusion coefficients separately and approximate the
total macroscopic diffusion coefficient in the following manner:

Dmtail/bulk =

(
1

Dm, non-dop
tail/bulk

+
Ndop

Dm, dop
tail/bulk

)−1

. (6.45)

Here if the macroscopic diffusion coefficients are genuine tensors, the preceding calcula-
tion is performed on entry-wise. We note that this is sufficient to simplify all terms except
the KNEE DISLOCATION FLUX, defined by

∫ ε∗
εcut

jεdε. This term is zero when εcut = ε∗, which
is true in the limit that the εcut = ε∗. In a realistic discretization scheme it is however
important to account for the dislocation flux. As explained in an aside in the end of this
subsection, we incorporate the perturbation due to the knee dislocation flux into the
chemical potential driven flux, which in turn becomes the flux driven by the gradient in
a clamped chemical potential. This leads to the following set of equations:
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D0,(non-)dop
tail (ε∗; βS) =

ρ0(ε∗,∞)
[
fεDε(non-)dop

]

ρ0(ε∗,∞) [fε]
Average particle diffusion co-
efficient for electrons in the
thermal tail associated with to
(non-)dopants.

D0,(non-)dop
bulk (ε∗, β; βS) =

ρ0(0, ε∗)
[
fεDε(non-)dop

]

ρ0(0, ε∗) [fε]
Average particle diffusion co-
efficient for electrons in the hot
bulk associated with to (non-
)dopants.

D1,(non-)dop
tail (ε∗; βS) =

ρ1(ε∗,∞)
[
fεDε(non-)dop

]

ρ0(ε∗,∞) [fε]
Average energy diffusion co-
efficient for electrons in the
thermal tail associated with to
(non-)dopants.

D1,(non-)dop
bulk (ε∗, β; βS) =

ρ1(0, ε∗)
[
fεDε(non-)dop

]

ρ0(0, ε∗) [fε]
Average energy diffusion coef-
ficient for electrons in the hot
bulk associated with to (non-
)dopants.

D2,(non-)dop
bulk (ε∗, β; βS) =

ρ2(0, ε∗)
[
fεDε(non-)dop

]

ρ0(0, ε∗) [fε]
Average square energy diffu-
sion coefficient for electrons in
the hot bulk associated with to
(non-)dopants.

Table 6.3: Description of the precomputed macroscopic diffusion parameters, which allow the character-
istic fluxes of the stunted distribution to be quickly computed at run-time.

j = nbulkD0
bulk · ∇rα

H + nbulkD1
bulk · ∇rβ −

ntail

kTL
D0

tail · ∇rµ
H , (6.46a)

S = nbulkD1
bulk · ∇rα

H + nbulkD2
bulk · ∇rβ −

ntail

kTL
D1

tail · ∇rµ
H , (6.46b)
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jH>Hcut =





−ntail(εcut)
kTL

D0
tail(εcut; . . . ) · ∇rµ

H εcut ≥ ε∗,

−ntail(ε
∗)

kTL
D0

tail(ε
∗; . . . ) · ∇rµ

H + jε
∗
εcut

εcut < ε∗.
(6.46c)

Here the term jε
∗
εcut

refers to the knee-displacement particle flux, a term which is zero in
the continuous limit, but which is non-zero in finite volume discretization scheme. We
estimate this term as follows:

jε
∗
εcut

= D( ε
∗+εcut

2
)Dε( ε∗+εcut

2
; ...) ·

(
1

β
∇rα

H +
1

β2
(βε+ 1)∇rβ

)
e−(αε+βε)

∣∣∣∣
ε∗

εcut

. (6.47)

The Warm and Cold Electron Populations

The identity of the bulk population ansatz at ε = ∞ and the warm population ansatz
leads to the following definition of the warm macroscopic diffusion coefficients:

Dmwarm(Twarm; . . . ) = Dmbulk(∞, 1

kTwarm
; . . . ). (6.48)

And we can define the characteristic fluxes for the warm electron population by simply
converting the gradients in β to gradients in Twarm using the chain rule:

jwarm = nwarmD0
warm · ∇rα

H
warm −

nwarm

kT 2
warm
D1

warm · ∇rTwarm, (6.49a)

Swarm = nwarmD1
warm · ∇rα

H
warm −

nwarm

kT 2
warm
D2

warm · ∇rTwarm. (6.49b)

The case of the flux relations for the cold electron distribution is more complicated,
due to degeneracy. We note that the corresponding form eq. (6.41) for the cold electron
population is as follows:

jεcold = −D(ε)Dε∂f
cold
H

∂µHcold
· ∇rµ

H
cold. (6.50)
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Leading to the following definition of the cold electron particle flux:

jcold = ∇rµcold · ρ0(0,∞)[Dε∂f
cold
H

∂µcold
]. (6.51)

We want our cold electron diffusion coefficient to tend toward
ρ0(0,∞)[Dεf cold

ε ]
ρ0(0,∞)[f cold

ε ]
in the non-

degenerate limit, and thus define its dopant and non-dopant components in the manner
defined in Table 6.4.

Having defined the cold electron diffusion coefficient, we can now define the cold elec-
tron particle flux is defined as follows:

jcold = −ncold

kTL
∇rµ

H
cold · D0

cold. (6.52)

D0,(non-)dop
cold (µεcold, βS) =

ρ0(0,∞)
[
−kTL ∂f

cold
ε

∂µεcold
Dε(non-)dop

]

ρ0(0,∞) [f cold
ε ]

Average particle diffusion co-
efficient for electrons in the
cold electron population due
to (non-)dopants.

Table 6.4: Precomputed macroscopic diffusion parameters which allow the characteristic flux term of the
cold electron population to be quickly computed at run-time.

Aside: On the Knee-Energy Driven Fluxes

The partial derivative of the function fH with respect to a change in knee-
energy, ∂fH

∂H∗ , is not well-defined near H∗. To understand why, it is useful to
define ∆fH(∆H∗;H,H∗, µ, α, β) to be the change to the distribution func-
tion for a finite change inH∗ equal to ∆H∗, with the all other variables kept
constant:
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∆fH(∆H∗; . . . ) =





sign(∆H∗)

(
e−(βH+αH) − e−

H−µH
kTL

)
forH ∈H∆H∗ ofH∗ ,

0 forH /∈H∆H∗ ofH∗ .

(6.53)

Here H∆H∗ ofH∗ is the interval (H∗, H∗+∆H∗) if ∆H∗ is positive, and (H∗+

∆H∗, H∗) if ∆H∗ is negative. The essential point to notice is that there is no
linear relationship between the magnitude of ∆H∗ and the size of the ∆fH

atH as ∆H∗ → 0. Instead, ∆fH has a step change in magnitude when ∆H∗

passes a threshold (namely, when it is larger in magnitude thanH−H∗ and
is of the same sign). While the partial derivative can be safely defined to
be zero for total energies far fromH∗, there is no meaningful interpretation
of the partial derivative near H∗. This means that our ansatz is manifestly
incompatible with the Boltzmann transport equation near H∗.

However, we are not interested in solving the Boltzmann transport equa-
tion per se, but in solving a few specific moments of the Boltzmann trans-
port equation. These moment equations do not require that ∂fH

∂H∗ is well-
defined in the abstract, but only that a few specific weighted integrals of
∂fH
∂H∗ are well-defined. These integrals have been referred to as the knee-
energy driven fluxes, and are defined as follows:

j∇H∗ = ∇rH
∗ ·
∫ ∞

0

D(ε)Dε ∂f
∂H∗

dε, (6.54a)

S∇H∗ = ∇rH
∗ ·
∫ ∞

0

εD(ε)Dε ∂f
∂H∗

dε, (6.54b)

jH>Hcut
∇H∗ = ∇rH

∗ ·
∫ ∞

εcut

D(ε)Dε ∂f
∂H∗

dε. (6.54c)

If we express eq. (6.54) by first taking the weighted integral of ∆fH(∆H∗)
∆H∗ ,

and then taking the limit as ∆H∗ → 0, we obtain the following expression
for the knee-energy driven fluxes:
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Figure 6.2: An illustration of the effect varying ∆H∗ on the weighted integral of ∆fH(∆H∗). The black
plot shows the case without variation. The shaded red areas represent the weighted integral over ∆fH
for ∆H∗ > 0, and the shaded blue areas represent the weighted integral over ∆fH for ∆H∗ < 0. The
darker shaded regions are associated with smaller magnitude ∆H∗, and their shaded regions sit on top of
the lighter shaded regions associated with larger magnitude ∆H∗. We note that as ∆H∗ becomes small,
both the height and the average width of this region are proportional to ∆H∗. Therefore, the size of these
weighted integrals, divided by ∆H∗ will itself tend to zero as ∆H∗ tends to zero. This fact is not changed
by the possibility that the weight function may be zero in some regions, such as the region below some
given Hcut.

j∇H∗ = ∇rH
∗ ·
(

lim
∆H∗→0

1

∆H∗

∫ ∞

0

D(ε)Dε∆fH(∆H∗)dε

)
, (6.55a)

S∇H∗ = ∇rH
∗ ·
(

lim
∆H∗→0

1

∆H∗

∫ ∞

0

εD(ε)Dε∆fH(∆H∗)dε

)
, (6.55b)

jH>Hcut
∇H∗ = ∇rH

∗ ·
(

lim
∆H∗→0

1

∆H∗

∫ ∞

εcut

D(ε)Dε∆fH(∆H∗)dε

)
. (6.55c)

It can be shown that the integrals defined by eq. (6.55) are well-defined and
equal to zero. This can be demonstrated by simply substituting eq. (6.53)
and performing the integration. As this is quite tedious, we take the ap-
proach of demonstrating it graphically in Fig. 6.2.
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Aside: On Discretization and the Knee Dislocation

In a simple discretization of the continuity equations, the values of the
ansatz parameters will be determined at the roughly the centre of a finite
volume, Hereas the values associated with the gradients in the continuity
equations will be determined on the on the faces of a finite volume. The
fluxes depend on both the gradients of the ansatz parameters, and the
ansatz parameters themselves, therefore in order to determine the fluxes
on the faces we need to interpolate the ansatz parameters.

Many interpolation schemes for αH , β, µH , αHwarm, Twarm and µHcold are valid,
and even a simple linear interpolation scheme will lead to good results.
The problem is that in any sensible interpolation scheme will result in a
dislocation between the cutoff energy and the knee energy, as the cutoff
total energy stays constant while the knee total energy is implicitly inter-
polated. As a result, the "knee dislocation" flux

∫ ε∗
εcut

jεdε will be non-zero
on the faces of the finite volume Here the flux is measured. This is shown
schematically in Fig. 6.3.

Accounting for the knee dislocation flux is trivial in the case that εcut > ε∗—
instead of calculating the tail flux for a knee energy of ε∗, we calculate the
tail flux for a knee energy of εcut. In the case that εcut < ε∗, the problem is
not as trivial, but the flux can easily be estimated in a number of ways. One
straight-forward approach is to simply assume that the density of states
and energy-dependent diffusion coefficients are constant between ε∗ and
εcut. This leads to the following expression for the below knee dislocation
flux jε

∗
εcut

:
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jε
∗
εcut

=

∫ ε∗

εcut

−e−αε−βεD(ε)Dε(ε; ...) ·
(
∇rα

H + ε∇rβ
)

dε

≈ D( ε
∗+εcut

2
)Dε( ε∗+εcut

2
; ...) ·

∫ ε∗

εcut

−e−αε−βε
(
∇rα

H + ε∇rβ
)

dε

= D( ε
∗+εcut

2
)Dε( ε∗+εcut

2
; ...) ·

(
1

β
∇rα

H +
1

β2
(βε+ 1)∇rβ

)
e−(αε+βε)

∣∣∣∣
ε∗

εcut

.

This leads to the following expression for the particle flux above the cutoff
energy is the case of non-zero knee displacements:

jH>Hcut =





−ntail(εcut)
kTL

D0
tail(εcut; . . . ) · ∇rµ

H εcut ≥ ε∗,

−ntail(ε
∗)

kTL
D0

tail(ε
∗; . . . ) · ∇rµ

H + jε
∗
εcut

εcut < ε∗.
(6.56)

6.4.4 The Characteristic Scattering Terms as a Function of Ansatz Pa-

rameters

The Stunted Electron Population

The aim of this subsection is to describe a method of efficiently relating the ansatz pa-
rameters to the rates of change of characteristic densities due to scattering— in the case
of the stunted electron population,

(
∂n
∂t

)
scat,

(
∂w
∂t

)
scat and

(
∂nε>ε∗
∂t

)
scat

. The starting point
for this method is the calculation of the set of kinetic energy dependent, inelastic scat-
tering parameters tabulated in Table 6.5.

We wish to generate ansatz parameter dependent inelastic scattering parameters from this
set of kinetic-energy dependent inleastic scattering parameters that we can precompute
and tabulate. Since the tail of the stunted distribution follows its own continuity equa-



222 CHAPTER 6. RESULTS II: THREE QUASI-EQUILIBRIA TRANSPORT

r + �xix̂ir + �xix̂i

rr

r + �xi

2
x̂ir + �xi

2
x̂i

r � �xi

2
x̂ir � �xi

2
x̂i

HH

�C�C

Hcut = H�(r)Hcut = H�(r)

fHfH

fHfH

�
�n�>��

�t

⇥

scat
(r)

�
�n�>��

�t

⇥

scat
(r)

jxi
H>Hcut

�
r � �xi

2
xi

�
jxi
H>Hcut

�
r � �xi

2
xi

�
HH

�cut > ���cut > ��

jxi
H>Hcut

�
r + �xi

2
xi

�
jxi
H>Hcut

�
r + �xi

2
xi

�

r ��xix̂ir ��xix̂i

fHfH

HH

�cut < ���cut < ��

Figure 6.3: A schematic discretization of the continuity equation for the density above a cutoff energy.
The global horizontal axis represents position along some direction x̂i, the local horizontal axis represents
symmetric occupation rate, and the vertical axis represents total energy. The potential energy at the
bottom of the conduction band is represented by the thick grey line. The vertical black lines enclose the
cell associated with r. The shaded pink region represents the particle density above Hcut = H∗(r). The
pink arrows represent the particle flows in and out of the shaded pink region region. The dotted orange
lines represents the interpolation of the knee energy, which is generally non-linear even in schemes Here
the interpolation of αH , β, and µH is linear. The finite "knee displacement" between the local knee energy
and the cutoff energy that is typical in a discretization scheme is represented by the orange bar at r±∆xi

2 x̂i.
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1

τpho
(εi) =

∫ ∞

0

Spho(εi, εf )dεf Average rate of phonon scat-
tering for an electrons at initial
kinetic energy εi.

1

τ tail-f
pho

(εi, εcut) =

∫ ∞

εcut

Spho(εi, εf )dεf Average rate of phonon scat-
tering for an electrons at initial
kinetic energy εi that results in
a final state kinetic energy εcut.

〈
εpho

〉
(εi) = τpho

∫ ∞

0

(εi − εf )Spho(εi, εf )dεf Average energy of phonons
emitted from electron states
at initial kinetic energy at εi.
Absorbed phonons contribute
negatively to this average.

1

τii
(εi) =

∞y

0

Sii(εi, εf , ε
e
f , ε

h
f )dεfdε

e
fdε

h
f Average rate of impact ioniza-

tion for electron states at initial
kinetic energy εi.

〈εh〉 (εi) = τii

∞y

0

εhfSii(εi, εf , ε
e
f , ε

h
f )dεfdε

e
fdε

h
f Average kinetic energy of

holes created by the impact
ionization of electrons at
initial kinetic energy εi.

Table 6.5: Table of energy-dependent inelastic scattering parameters that are relevant to the Three Quasi-
Equilibria transport model.

tion, we will seperate each ansatz dependent scattering parameters into a component
associated with the tail, as this is necessary in most but not all cases.

To aid tabulation, it is crucial that the ansatz parameter dependent scattering functions
are slowly varying, and dependent on as few degrees of freedom as possible. Beyond
ensuring that the scattering parameter does not depend on extraneous parameters, and
is not exponentially increasing with as a function of ansatz parameters, we focus pri-
marily on scattering parameters with a simple physical meaning.

For impact ionization, we simply determine the mean value of the hole energy and the
mean impact ionization rate for electron in the tail and the bulk. For phonon scattering,
we determine a mean energy relaxation rate for electrons in the bulk and tail, as well
as the mean rate that tail electrons enter the bulk, and the mean rate that bulk electrons
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enter the tail. These sets of parameters are tabulated in Table 6.6

1

τ tail
ii

(ε∗) =
ρ0(ε∗,∞)

[
fε
τii

]

ρ0(ε∗,∞) [fε]
Average impact ionization rate for electrons
in the thermal tail.

1

τ bulk
ii

(ε∗, β) =
ρ0(0, ε∗)

[
fε
τii

]

ρ0(0, ε∗) [fε]
Average impact ionization rate for electrons
in the hot bulk.

〈εh〉tail (ε∗) =
ρ0(ε∗,∞)

[
fε〈εh〉
τii

]

ρ0(ε∗,∞)
[
fε
τii

] Average kinetic energy of the holes gener-
ated by the impact ionization of electrons in
the thermal tail.

〈εh〉bulk (ε∗, β) =
ρ0(0, ε∗)

[
fε〈εh〉
τii

]

ρ0(0, ε∗)
[
fε
τii

] Average kinetic energy of the holes gener-
ated by the impact ionization of electrons in
the hot bulk.

1

τ
pho
w,tail

(ε∗) =

ρ0(ε∗,∞)

[
fε〈εpho〉
τpho

]

ρ1(ε∗,∞) [fε]
Energy relaxation rate associated with
phonon scattering of electrons in the ther-
mal tail.

1

τ
pho
w,bulk

(ε∗, β) =

ρ0(0, ε∗)

[
fε〈εpho〉
τpho

]

ρ1(0, ε∗) [fε]
Energy relaxation rate associated with
phonon scattering of electrons in the hot
bulk

1

τ
pho
tail–dest

(ε∗) =

ρ0(ε∗,∞)

[
fε
τpho
− fε

τ tail-f
pho

]

ρ0(ε∗,∞)[fε]
Tail electron destruction rate associated
with phonon scattering of electrons in the
thermal tail.

1

τ
pho
tail–prod

(ε∗, β) =

ρ0(0, ε∗)

[
fε
τ tail-f

pho

]

ρ0(0, ε∗)[fε]
Tail electron production rate associated
with phonon scattering of electrons in the
hot bulk.

Table 6.6: Table of ansatz-parameter dependent scattering functions associated with stunted electron–
lattice inelastic scattering. These are to be precomputed and tabulated so that the characteristic scattering
terms can be computed quickly at run-time.

For electron–electron scattering, for electrons in the tail and bulk, we calculate the mean
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scattering time per unit stunted electron density, per unit warm electron density and per
unit cold electron density. Thus there are six precomputed scattering parameters asso-
ciated with electron–electron scattering. In order to define these scattering parameters,
it is useful to first define the scattering rate at a given kinetic energy, per unit stunted
electron density, per unit warm electron density and per unit cold electron density:

1

τee-stunted
(ε, ε∗, β; βS) =

ρ0(0,∞)
[
fε
τee

]

ρ0(0,∞)[fε]
, (6.57a)

1

τee-warm
(ε, Twarm; βS) =

ρ0(0,∞)
[
fwarm
ε

τee

]

ρ0(0,∞)[fwarm
ε ]

, (6.57b)

1

τee-cold
(ε; βS) =

ρ0(0,∞)
[

1
τee
e
− ε
kTL

]

ρ0(0,∞)
[
e
− ε
kTL

] . (6.57c)

Here we have ignored degeneracy effects associated with the cold electron density on
the basis that the cold electrons scattering is only physically important in cases Here the
electrons scattering with the cold electrons have a much larger average energy than the
cold electrons. We now express our macroscopic electron–electron scattering parame-
ters in Table 6.7 in terms of the scattering rates in eq. (6.57).

We will spend the rest of this subsection describing precisely how the rate of change of
characteristic densities is related to these macroscopic scattering functions.

We begin with determining the rate of change of electrons in the stunted electron distri-
bution due to scattering. According to our model, a stunted electron can be destroyed by
warm electron scattering scattering, or stunted electron scattering which also destroys
the stunted partner electron. A stunted electron can be created cold electron scattering
or by impact ionization. This leads to the following expression for the rate of change in
the particle density of stunted electrons:
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1

τ tail
ee-stunted

(ε∗, β; βS) =
ρ0(ε∗,∞)

[
fε

τee-stunted

]

ρ0(ε∗,∞) [fε]
Average tail electron scattering rate with
stunted electron partners, per unit stunted
electron density.

1

τ bulk
ee-stunted

(ε∗, β; βS) =
ρ0(0, ε∗)

[
fε

τee-stunted

]

ρ0(0, ε∗) [fε]
Average bulk electron scattering rate with
stunted electron partners, per unit stunted
electron density.

1

τ tail
ee-warm

(ε∗, β, Twarm; βS) =
ρ0(ε∗,∞)

[
fε

τee-warm

]

ρ0(ε∗,∞) [fε]
Average tail electron scattering rate with
warm partners, per unit warm electron
density.

1

τ bulk
ee-warm

(ε∗, β, Twarm; βS) =
ρ0(0, ε∗)

[
fε

τee-warm

]

ρ0(0, ε∗) [fε]
Average bulk electron scattering rate with
warm partners, per unit warm electron
density.

1

τ tail
ee-cold

(ε∗, β; βS) =
ρ0(ε∗,∞)

[
fε

τee-cold

]

ρ0(ε∗,∞) [fε]
Average tail electron scattering rate with
cold partners, per unit cold electron density.

1

τ bulk
ee-cold

(ε∗, β; βS) =
ρ0(0, ε∗)

[
fε

τee-cold

]

ρ0(0, ε∗) [fε]
Average bulk electron scattering rate with
cold partners, per unit cold electron density.

Table 6.7: Table of ansatz-parameter dependent scattering functions associated with stunted electron–
electron scattering. These are to be precomputed and tabulated so that the characteristic scattering terms
can be computed quickly at run-time. If it is too difficult to store the stunted-warm electron scattering
rates, these can be approximated by the stunted-stunted scattering rates since the distributions are ex-
pected to have similar average energies.

(
∂n

∂t

)

scat
= −

stunted+stunted→warm+warm︷ ︸︸ ︷
2 (ntail + nbulk)

(
ntail

τ tail
ee-stunted

+
nbulk

τ bulk
ee-stunted

)
−

stunted+warm→warm+warm︷ ︸︸ ︷
nwarm

(
ntail

τ tail
ee-warm

+
nbulk

τ bulk
ee-warm

)

+

stunted+cold→stunted+stunted︷ ︸︸ ︷
ncold

(
ntail

τ tail
ee-cold

+
nbulk

τ bulk
ee-cold

)
+

stunted→stunted+stunted+hole︷ ︸︸ ︷(
ntail

τ tail
ii

+
nbulk

τ bulk
ii

)
. (6.58)

Each of these scattering mechanisms also effects the energy density. In the case of



6.4. CLOSING THE ANSATZ PARAMETER EQUATION OF MOTION 227

electron–electron scattering, the electron approximately removes the average energy of
the distribution starts and adds it to the distribution it moves to. For impact ionization
we expect that each impact ionization event reduces the total kinetic energy of the pop-
ulation by the average energy of the hole produced. In addition to these energy change
mechanisms that are mediated by stunted particle creation and annihilation, we also
have the energy density change due to phonon scattering, which we express in terms of
the tabulated macroscopic energy relaxation time. Accordingly we have the following
expression for the rate of change of the energy density:

(
∂w

∂t

)

scat
= −

stunted+stunted→warm+warm︷ ︸︸ ︷
2 (ntail + nbulk)

(
wtail

τ tail
ee-stunted

+
wbulk

τ bulk
ee-stunted

)
stunted+warm→warm+warm︷ ︸︸ ︷

nwarm

(
wtail

τ tail
ee-warm

+
wbulk

τ bulk
ee-warm

)

+

stunted+cold→stunted+stunted︷ ︸︸ ︷
ncold 〈εcold〉

(
ntail

τ tail
ee-cold

+
nbulk

τ bulk
ee-cold

)
−

stunted→stunted+stunted+hole︷ ︸︸ ︷(
ntail 〈εh〉tail

τ tail
ii

+
nbulk 〈εh〉bulk

τ bulk
ii

)

−

stunted→stunted︷ ︸︸ ︷(
wtail

τ
pho
w,tail

+
wbulk

τ
pho
w,bulk

)
. (6.59)

Finally, for the rate of change of thermal tail density due to scattering, we assume that
each assume that each time an electron in the thermal tail undergoes impact ionization
or cold electron scattering, the total number of electrons in the thermal tail reduces by
one. That is, we assume that total number of electrons in the bulk grows by two for
each of these processes. Adding in the transfer of electrons between the bulk and tail
mediated by phonon scattering, and we are led to the following expression:

(
∂nε>ε∗

∂t

)

scat
= −

tail+stunted→warm+warm︷ ︸︸ ︷
(2ntail + nbulk)

ntail

τ tail
ee-stunted

−
tail+warm→warm+warm︷ ︸︸ ︷
nwarm

ntail

τ tail
ee-warm

−
tail→bulk+bulk+hole︷︸︸︷

ntail

τ tail
ii

−
tail+cold→bulk+bulk︷ ︸︸ ︷
ncold

ntail

τ tail
ee-cold

−
tail→bulk︷ ︸︸ ︷
ntail

τ
pho
tail—dest

+

bulk→tail︷ ︸︸ ︷
nbulk

τ
pho
tail—prod

. (6.60)

Thus we have now expressed the rate of change in the stunted characteristic densities
due to scattering as a function of the ansatz parameters that is efficiently computable at
run-time.



228 CHAPTER 6. RESULTS II: THREE QUASI-EQUILIBRIA TRANSPORT

The Warm and Cold Electron Populations

The identity of the bulk population ansatz at ε = ∞ and the warm population ansatz
leads to the following definition of the average rate warm electrons scatter with cold
electrons, per unit cold electron density:

1

τwarm
ee-cold

(Twarm; . . . ) =
1

τ stunted
ee-cold

(∞, 1

kTwarm
; . . . ). (6.61)

The processes that create warm electrons are stunted-stunted electron scattering, warm-
stunted electron scattering, warm-cold electron scattering, and warm electron impact
ionization, while no processes destroy warm electrons. This leads to the following ex-
pression for the rate of change of the warm electron density:

(
∂nwarm

∂t

)

scat
=

stunted+stunted→warm+warm︷ ︸︸ ︷
2 (ntail + nbulk)

(
ntail

τ tail
ee-stunted

+
nbulk

τ bulk
ee-stunted

)
+

stunted+warm→warm+warm︷ ︸︸ ︷
nwarm

(
ntail

τ tail
ee-warm

+
nbulk

τ bulk
ee-warm

)

+

warm→warm+warm+hole︷ ︸︸ ︷
nwarm

τwarm
ii

+

warm+cold→warm+warm︷ ︸︸ ︷
ncold

nwarm

τwarm
ee-cold

. (6.62)

Using the same argument as before for the stunted electron energy density, we can con-
vert the warm electron particle density into a warm electron energy density by mul-
tiplying each term in eq. (6.62) by an appropriate average energy, adding a term that
defines the rate of change of density due to phonon scattering. This leads to the follow-
ing expression:

(
∂wwarm

∂t

)

scat
=

stunted+stunted→warm+warm︷ ︸︸ ︷
2 (ntail + nbulk)

(
wtail

τ tail
ee-stunted

+
wbulk

τ bulk
ee-stunted

)
+

stunted+warm→warm+warm︷ ︸︸ ︷
nwarm

(
wtail

τ tail
ee-warm

+
wbulk

τ bulk
ee-warm

)

−

warm→warm+warm+hole︷ ︸︸ ︷
nwarm 〈εh〉warm

τwarm
ii

+

warm+cold→warm+warm︷ ︸︸ ︷
ncold 〈εcold〉

nwarm

τwarm
ee-cold

−

stunted→stunted︷ ︸︸ ︷
wwarm

τ
pho
w,warm

. (6.63)

Finally, for cold electrons we can ignore impact ionization, meaning there are zero cre-
ation processes for cold electrons. Instead there is simply the cold electron destruction
by scattering with stunted or warm electrons:
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(
∂ncold

∂t

)

scat
= −

stunted+cold→stunted+stunted︷ ︸︸ ︷
ncold

(
ntail

τ tail
ee-cold

+
nbulk

τ bulk
ee-cold

)
−

warm+cold→warm+warm︷ ︸︸ ︷
ncold

nwarm

τwarm
ee-cold

. (6.64)

Thus we have now expressed the rate of change in the characteristic densities due to
scattering as a function of the ansatz parameters, which is efficiently computable at
run-time. Having already achieved the same for the characteristic densities and charac-
teristic fluxes, we now derived an expression for the equation of motion of the ansatz
parameters that can in principle be computed efficiently at run-time. This is the Three
Quasi-Equilibria model, which when coupled with Poisson’s equation, can be used to
numerically model both time-dependent and steady-state non-local electron transport
in silicon devices.

6.5 Summary

In this chapter, we have derived a system of equations for modelling semiclassical elec-
tron transport in highly inhomogeneous fields for source-drain devices made of homo-
geneous silicon. We can summarise this equation system as follows.

We partition the electrons into a stunted electron population of density n, a warm elec-
tron population of density nwarm and a cold population of density ncold. The external
force on these populations resulting from long range Coloumb interactions can be cal-
culating via the Poisson equation:

F = e∇rφ, (6.65a)

∇r · (ε∇rφ) = e(n+ nwarm + ncold −
∑

i

N i
dopZ

i
dop). (6.65b)

The distribution of the stunted electron population are defined by the ansatz parameters
µε, β, and ε∗. The distribution of the warm electron population is defined by the ansatz
parameters αεwarm, and Twarm and the distribution of the cold electron population is de-
fined by the ansatz parameter µεcold. We can define a relationship between the ansatz
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parameters and a set of densities that characterize the electron population as follows:

n = ntail + nbulk, (6.66a)

w = wtail + wbulk, (6.66b)

ntail =

(
kTLe

− ε∗−µε
kTL

)
Dtail, (6.66c)

nwarm = kTwarme
−αεwarmDwarm, (6.66d)

wwarm = nwarm 〈ε〉warm , (6.66e)

ncold =

[
µεcold + kTLln

(
e
−µ

ε
cold
kTL + 1

)]
Dcold. (6.66f)

Here nbulk, wtail and wbulk are defined as follows:

nbulk =

(
1

β

(
eβε

∗ − 1
)
e
− ε∗−µε

kTL

)
Dbulk, (6.67a)

wtail = ntail 〈ε〉tail , (6.67b)

wbulk = nbulk 〈ε〉bulk . (6.67c)

From these relationships, we can define an equation for the rate of change in the ansatz
parameters in terms of the rate of change in the characteristic densities:

∂µε

∂t
=
kTL
ntail

∂nε>εcut

∂t
, (6.68a)

[
∂β
∂t
∂ε∗
∂t

]
=

[
∂n
∂β

∂n
∂ε∗

∂w
∂β

∂w
∂ε∗

]−1 [
∂n
∂t
− n

ntail

∂nε>εcut
∂t

∂w
∂t
− w

ntail

∂nε>εcut
∂t

]
, (6.68b)

[
∂αεwarm
∂t

∂Twarm
∂t

]
=

[
−nwarm

∂nwarm
∂Twarm

−wwarm
∂wwarm
∂Twarm

]−1 [
∂nwarm
∂t

∂wwarm
∂t

]
, (6.68c)

∂µεcold

∂t
=

(
∂ncold

∂µεcold

)−1
∂ncold

∂t
. (6.68d)

We can express the rate of change in the characteristic densities in terms via macroscopic
continuity equations:
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∂n

∂t
=

(
∂n

∂t

)

scat
−∇r · j, (6.69a)

∂w

∂t
=

(
∂w

∂t

)

scat
−∇r · S + F · j, (6.69b)

∂nε>εcut

∂t
=

(
∂nε>εcut

∂t

)

scat
−∇r · jH>Hcut , (6.69c)

∂nwarm

∂t
=

(
∂nwarm

∂t

)

scat
−∇r · jwarm, (6.69d)

∂wwarm

∂t
=

(
∂wwarm

∂t

)

scat
−∇r · Swarm + F · jwarm, (6.69e)

∂ncold

∂t
=

(
∂ncold

∂t

)

scat
−∇r · jcold. (6.69f)

In these macroscopic continuity equations, we can express the characteristic fluxes in
terms of ansatz parameters as follows:

j = nbulkD0
bulk · ∇rα

H + nbulkD1
bulk · ∇rβ −

ntail

kTL
D0

tail · ∇rµ
H , (6.70a)

S = nbulkD1
bulk · ∇rα

H + nbulkD2
bulk · ∇rβ −

ntail

kTL
D1

tail · ∇rµ
H , (6.70b)

jH>Hcut =





−ntail(εcut)
kTL

D0
tail(εcut; . . . ) · ∇rµ

H εcut ≥ ε∗,

−ntail(ε
∗)

kTL
D0

tail(ε
∗; . . . ) · ∇rµ

H + jε
∗
εcut

εcut < ε∗,
(6.70c)

jwarm = nwarmD0
warm · ∇rα

H
warm −

nwarm

kT 2
warm
D1

warm · ∇rTwarm, (6.70d)

Swarm = nwarmD1
warm · ∇rα

H
warm −

nwarm

kT 2
warm
D2

warm · ∇rTwarm, (6.70e)

jcold = −ncold

kTL
∇rµ

H
cold · D0

cold. (6.70f)

Here the thermodynamic versions of the ansatz parameters and knee dislocation parti-
cle flux is defined as follows:
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αH =
ε∗ − µε
kTL

− β(ε∗ − eφ), (6.71a)

µH = µε − eφ, (6.71b)

αHwarm = αεwarm + βeφ, (6.71c)

µHcold = µεcold − eφ, (6.71d)

jε
∗
εcut

= D( ε
∗+εcut

2
)Dε( ε∗+εcut

2
; ...) ·

(
1

β
∇rα

H +
1

β2
(βε+ 1)∇rβ

)
e−(αε+βε)

∣∣∣∣
ε∗

εcut

. (6.71e)

And finally we can express the rate of change in the characteristic densities due to scat-
tering in terms of ansatz parameters as follows:
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, (6.72a)
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(
∂nε>ε∗

∂t

)

scat
= − (2ntail + nbulk)

ntail

τ tail
ee-stunted

−nwarm
ntail

τ tail
ee-warm

−ntail

τ tail
ii

− ncold
ntail

τ tail
ee-cold

− ntail

τ
pho
tail—dest

+
nbulk

τ
pho
tail—prod

, (6.72c)
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The result of this chain of logic is that we have derived a closed equation-of-motion
for the stunted electron ansatz parameters. This efficient solution of this equation of
motion relies on the pre-computation and tabulation of the many macroscopic transport
parameters as functions of the ansatz variables.

The precomputation of these macroscopic transport parameters is a rather substantial
computational task, and the tabulation will require several gigabytes of storage until
good analytic approximations for these parameters are found, but this precomputation
and tabulation will save an enormous amount of computational effort at run-time. This
is because according to the assumptions of our model, these macroscopic transport pa-
rameters are universal to all semiclassical source-drain unstrained silicon devices. Thus
if these macroscopic transport parameters are tabulated, we can model any device ge-
ometry in this class without having to either make strong assumptions about scattering
operator or band structure, and without having to recompute numerically any of the
integrals required for closure.

If we precompute the macroscopic transport parameters, the time taken to solve our
Three Quasi-Equilibria Model in any device geometry that belongs to the specified class
should be comparable to a more conventional analytically closed macroscopic model.
However, unlike many macroscopic models, the accuracy and robustness of the model
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proposed will not be intrinsically limited due unphysical assumptions concerning band-
structure and scattering. The accuracy and robustness of the model proposed is limited
only by the accuracy of the ansatz. Another way to state this is that the accuracy and
robustness of the model proposed will approach the accuracy and robustness of a de-
tailed Monte-Carlo simulation to the extent that the proposed ansatz reflects reality. If
the ansatz we propose is unreasonable, then the effort we have taken to incorporate
the precise microscopic details that are used in accurate Monte-Carlo simulations will
achieve almost nothing in terms of improving accuracy and robustness.

However, if the ansatz we have proposed is reasonable, then the Three Quasi-Equilibria
model of non-equilibrium transport we have proposed will have a speed comparable
to a conventional macroscopic model, and an accuracy and robustness comparable to a
detailed Monte Carlo simulation. In the view of this author, this benefit easily justifies
the upfront computational effort and the storage costs associated with tabulating the
macroscopic transport parameters.



Chapter 7

Discussion

7.1 Introduction

In this thesis, we have derived two models of semiclassical electron transport– the ELAS-

TICALLY CONSTRAINED TRANSPORT MODEL and the THREE EQUILIBRIA MODEL.

Our derivation of the Elastically Constrained Transport model makes four major as-
sumptions in addition to the ordinary semiclassical assumptions, each of which we have
explained and justified in the previous chapters.

Assumption 1: Scattering is the combination of a purely elastic relaxation time, and a
purely inelastic scattering operator that non-locally connects energy levels.

Assumption 2: Electron-electron scattering does not contribute to the elastic relaxation
time.

Assumption 3: The antisymmetric perturbation from an elastically-constrained equi-
librium is small.

Assumption 4: The symmetric perturbation from elastically constrained equilibrium is
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negligible.

Our derivation of the Three Quasi-Equilibrium model of assumes the validity of the
Elastically Constrained Transport model, and makes the following additional four ma-
jor assumptions.

Assumption 5: The energy distribution for electrons injected from a non-drain terminal
subject to scattering with lattice temperature scattering partners is a STUNTED EQUI-

LIBRIUM, defined as the maximum entropy distribution subject to a local particle
density, energy density and maximum chemical potential.

Assumption 6: Degeneracy effects in subpopulations of electrons other than the drain
electron population can be ignored.

Assumption 7: Electron-electron scattering between electrons in a stunted equilibrium
distribution instantly relax into an internal thermal equilibrium energy distribu-
tion.

Assumption 8: The vast majority of electron transport occurs between a single source
terminal and a single drain terminal.

In this discussion chapter, we will briefly discuss opportunities to make these assump-
tions closer to the pure semiclassical transport assumptions described in the background
section, and then also . We discuss this in two major sections. In the first section, we
discuss possibilities for making these models closer to the model of pure semiclassical
electron transport in silicon. In the second section, we discuss the possibilities for adapt-
ing these models in the more complex regime of transport that is common in modern
devices.

To roughly quantify the difficulty of the extensions we discuss, we will use the following
"difficulty score" scale to describe the level of effort required to make the improvements
proposed.

Level 1: Trivial extension with no new insight or theory required.
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Level 2: Seemingly fixable without much new insight or theory required.

Level 3: Open question as to whether problem is fixable, considerable research needed
in order generate new insights and theory.

Level 4: Seemingly unfixable.

To roughly quantify the urgency of the extensions we discuss, we will use the following
"urgency score".

Level 1: The model does not need this extension in order to become a powerful, practi-
cal tool.

Level 2: The power and usefulness of model is noticeably limited without this exten-
sion.

Level 3: Essential for model to be practically useful.

7.2 Simplifying the Homogeneous Semiclassical Electron

State

We begin by analyzing the major assumptions of the Elastically Constrained Transport
model.

Assumption 1: It is the position of this thesis that the separation of the scattering oper-
ator into the sum of an elastic relaxation time and a purely inelastic scattering operator
between energy levels is fundamentally consistent with the semiclassical assumptions.
We do not believe that any important physical effects are missed by this assumption.
One interesting way to test this hypothesis would be to perform an ensemble Monte
Carlo simulation of electron transport using this formulation of the scattering opera-
tor and compare the results to a DAMOCLES ensemble Monte Carlo simulation. No
improvements are needed to this basic fundamental assumption.
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However the calculation for actual values of the elastic relaxation time and pure inelas-
tic scattering operator could be improved. The expressions derived in the background
chapter for the screening wavevector and overlap integral are dubious, and need im-
provement. Most of this work has already been done by the authors of the DAMOCLES
model [6]. In addition it would be optimal to include the effect of plasmons in the inelas-
tic scattering operator, as including the effect of plasma oscillations implicitly by solving
a time-dependent Poisson equation is inappropriate for the model we have proposed.
Difficulty: 1− 2. Urgency: 2− 3.

Assumption 2: Improving upon the assumption that electron–electron scattering events
do not effect the elastic relaxation time, while at the same time ensuring that the expres-
sion for the energy-dependent diffusion coefficient is feasible to store in a look-up table
requires fundamental new insight. In addition, it is unclear that improving upon this
assumption will make any practically relevant changes to the models predictions. Diffi-
culty: 3− 4. Urgency: 1.

Assumption 3: The assumption that the antisymmetric distribution is small is probably
the largest weakness of the Elastically Constrained Transport model, since when gradi-
ents in energy dependent occupation rate are very large it will not be true. However, it
is important to remember that because the inelastic component of relaxation is gener-
ally relatively slow compared to the elastic component, in steady-state the gradients in
the energy dependent component in a large field than would be the case if the inelas-
tic component of scattering was highly efficient. That said, it is the view of this thesis
that the assumption that the antisymmetric component is small is not necessarily fun-
damental to the elastically constrained equilibrium. One can easily imagine a model in
which the particle flux at constant energy does not scale linearly with increasing gra-
dient in total energy distribution function, but saturates as the gradient becomes very
large. The importance of this saturation will only be clear once the current formulation
of the Elastically Constrained Transport model is tested. Difficulty: 3. Urgency: 1.

Assumption 4: When the gradient of the antisymmetric distribution at constant total
energy is large, there is a generating force for a symmetric perturbation to the elasti-
cally constrained distribution function. Dmitruk et al. [21] have already shown how
to incorporate this term using a highly idealized scaling argument, but more research is
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needed to understand the role of this term in the regime where the antisymmetric distri-
bution properly understand it’s role in the regime where the antisymmetric distribution
function has a similar scale to the energy distribution function. Difficulty: 3. Urgency: 1.

We now move on analyzing the assumptions of the Three Quasi-Equilibrium model.

Assumption 5: The assumption that the electrons which enter a non-drain terminal
have the energy distribution of associated with a "stunted equilibrium" in a material
with a broadband inelastic scattering operator such as silicon is central to the simplic-
ity of the Three Quasi-Equilibrium model. The arguments for this distribution being
maximum entropy falls apart if there is a strong correlation between the energy state
of an Bloch particle in the distribution and the time it spends in the device. This will
occur if there is a large classical potential well that trap Bloch particles below a certain
energy. In devices with such wells, one need to add an additional "trapped source elec-
tron" population to the distribution function, as such a population of trapped electrons
will always undergo a sufficient number of inelastic collisions in order to reach thermal
equilibrium with the lattice. Difficulty: 1− 2. Urgency: 1

A more obvious error in the stunted equilibrium distribution is however the shape of
the distribution near the knee energy, as the shape of the distribution discontinuity in
the distribution is likely to be softened by both constant energy diffusion and the ef-
fects of very low-energy inelastic scattering events. The corrections to the shape over
such a small energy scale however, are not likely to be important. Another important
question is the consistency of the ansatz with low-density homogeneous field data. In a
low-density homogeneous field, the knee energy can be expected to diverge to infinity
so long as spatial diffusion is faster than energy diffusion. The ansatz is only consistent
with homogeneous field data so long as low-density homogeneous field data is thermal.
This is approximately, but not precisely true [6]. While the ansatz is not expected to be
precisely accurate, it is expected to roughly accurate, which is what ultimately matters
in order to be able to correctly predict the future values of ansatz parameters. It is diffi-
cult to see how to generally improve without sacrificing the simplicity of the transport
model. Difficulty: 3− 4. Urgency: 1.

Assumption 6: The electrons that enter the device through a non-drain terminal will
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typically end up spread thinly throughout across a broadband of energy levels, and
therefore ignoring the effects of degeneracy on non-drain electrons is expected to be
theoretically sound in most positions in the device. The only position where this is po-
tentially not true is very near the injection terminal, as in this position electrons are not
spread thinly throughout a broadband of energies. In order to fix this problem, we sug-
gest the following "hack". If the ansatz occupation rate is ever greater than 1, then β

should be set to 0, and maximum chemical potential set such that the knee energy has
an occupation rate of 1. This will exhibit the approximate transport characteristics of a
Fermi-Dirac distribution without having to complicate the model by formally incorpo-
rating degeneracy. Difficulty: 1− 2. Urgency: 1− 2.

Assumption 7: The basis of this approximation is the well known fact that electron-
electron scattering are very efficient at relaxing a distribution of electrons toward an
internal equilibrium, because the scattering operator associated with such collisions is
strongly coupled to most states in the Brillouin zone, since there are so many surfaces
that total energy and crystal momentum. The difficulty is that when two electrons scat-
ter, they are only strongly coupled to electron energy states that have less than the total
of the two electrons involved. This means that, since electron states more than a few
thermal energies above the knee energy are essentially empty, scattering between elec-
trons in a stunted equilibrium will never result in a significant occupation of electrons
in states with energies higher than double the knee-energy. The problem with incorpo-
rating this into the model is that, in cases where electron-electron scattering is strong,
one needs to incorporate more and more warmed distributions with more and more
thresholds. Furthermore, unless these additional thresholds are very near the band gap
and thus the thresholds for impact ionization it is unlikely they will have any signifi-
cant effect the physics of transport. Thus it is possible to extend the model to correct for
this approximation, but it adds considerable complexity, and is only expected to have
a physically significant effect on the transport model when the source-drain bias is in a
small range of values very close to half the band gap voltage. Difficulty: 2− 3. Urgency:
1.

Assumption 8: Many important devices can be viewed as being dominated by the trans-
port between a single source and single drain terminal with all other electrons– such as
electrons associated with a "gate" terminal– only affecting this transport via long range
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effects. However this restriction does limit the flexibility of the model. Adding elec-
tron populations associated with other terminals is expected to be relatively trivial, as
no fundamentally new mechanics need to be described. The resulting model will still
be a three equilibria model, in the sense that transport will always involve three types
of equilibrium, even if there are multiple populations of each type. Difficulty: 1 − 2.
Urgency: 2.

Finally, we note that the problem of discretizing these models is relatively trivial since
the models are underlying partial differential equations are never hyperbolic.

7.3 Beyond a Homogeneous Semiclassical Electron State

Hole Transport: Incorporating an accurate model of hole transport is critical for the
flexibility of the device model. Difficulty: 1− 2. Urgency: 3.

First-Order Quantum Corrections: First order quantum corrections can be included by
replacing the external potential with an effective external potential which is a weighted
average over the decoherence length scale. Such corrections are simple to implement
and have physically significant effects in many devices of interest. Difficulty: 1 − 2.
Urgency: 2− 3.

Dynamic Coupling To Schrödingers Equation: Some modern Monte Carlo simulators
are coupled dynamically to Schrödingers equation [90]. Attempting to do the same
with the models described in this thesis is deeply problematic because the models rely
heavily on being able to precompute and store integrals of the distribution function and
scattering operator that are very expensive to compute at run-time. If this is not pos-
sible, because the bandstructure and scattering operator associated with a device are
not known ahead of run-time, then the models in this thesis lose their advantage over
Monte Carlo simulation. Difficulty: 3− 4. Urgency: 1.

Non-Silicon Materials and Heterojunctions: While silicon is the backbone of the semi-
conductor industry, the ability to model transport accurately in other materials and
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across heterojunctions is becoming more and more important. The Elastically-Constrained
Equilibrium Model is expected can be expected to be valid in any material where acous-
tic scattering is dominant, and the Three Quasi-Equilibrium Model is expected to be
valid in any material where the inelastic scattering operator is broadband. Describe
the transport of these models across heterojunctions is a slightly more complicated is-
sue, that will require some new insights but will be based on similar physics that has
been used in ensemble Monte Carlo simulations of heterojunctions [6]. Difficulty: 2− 3.
Urgency: 2− 3.

Dynamic Coupling to Lattice Temperature: The dynamic coupling of both models to
a dynamic uniform lattice temperature is trivial. However, the dynamic coupling of the
models to a dynamic non-uniform lattice temperature is an open research problem for
electron transport models in general [91]. It is likely that a non-uniform lattice tem-
perature is fundamentally incompatible with the Three Quasi-Equilibrium model, as
the concept of a local maximum chemical potential becomes much more dubious when
lattice temperature changes from position to position. Difficulty: 3− 4. Urgency: 2.



Chapter 8

Conclusion

In this thesis we have described a theoretically sound way to simplify the semiclassical
model of electron transport in silicon to a model which depends only on a 4−D or 3−D
electron state. This had already been achieved in cases where the electron distribution is
near local dynamic equilibrium with the local field, but it had not yet been achieved in
the innately inhomogeneous regime where the models proposed in this thesis are valid.

The fundamental reason for being able to simplify the semiclassical model of electron
transport is that the model itself relied on the assumption that the field is relatively
constant over a decoherence length. In silicon, the primary decoherence mechanism is
acoustic phonon scattering and so in order for the semiclassical regime to be valid the
external field needs to be relatively constant over the mean free path between scattering
events. This fact is often missed by authors who argue that one can model ballistic
transport semiclassically.

The fact that the semiclassical model is only valid in silicon when the external field is
relatively constant over the mean free path between acoustic phonon scattering events
means that the electron distribution in the Boltzmann transport equation is not free to
be an arbitrary 6−D function. There is an acoustic phonon state associated with every
crystal momentum that has a very small amount of energy. Therefore in a relaxation
time that is similar to the acoustic scattering time, the distribution is driven efficiently
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toward a state in which all crystal momentum states associated with the same energy
distribution function are equally probable. We refer to this as relaxation to an ELASTI-

CALLY CONSTRAINED QUASI-EQUILIBRIUM. Due to the semiclassical assumptions, the ex-
ternal field is relatively constant on the length scale associated with this ELASTIC RELAX-

ATION TIME, and therefore the electron distribution function is confined to be a simple
local field perturbation to an energy dependent distribution function. This is the ELASTI-

CALLY CONSTRAINED TRANSPORT MODEL, which is expected to be valid in essentially the
same semiclassical conditions as the Boltzmann transport equation requires.1 The dif-
ference is that rather than an 6−D electron state, the Elastically Constrained Transport
model is associated with a 4−D electron state, which diffuses at constant total energy as
a result of the elastic relaxation time approximation, and is subject to a complex, purely
inelastic, scattering operator. Thus it is much less computationally intensive to solve.

We further showed that the semiclassical model of electron transport in silicon can be
further simplified into a model with a 3−D electron state by analysing the boundary
conditions the Elastically Constrained Transport model is typically subject to in a typical
silicon device. All silicon devices are typically subject to terminals that supply electrons
at a given chemical potential. The electrons that enter the device via the lowest chem-
ical potential "drain" channel will generally remain in thermal equilibrium unless they
scatter with non-drain electrons. The electrons which enter via a non-drain terminal
will not generally be in thermal equilibrium, but due to the mechanics of the Elastically
Constrained Transport model, the highest energy states of such a population of electrons
will remain in thermal equilibrium with one another unless they scatter with non-drain
electrons.

We argue— on the basis of an inelastic scattering operator which is broadband, and on
the basis that diffusion at constant total energy erases the detailed patterns of energy-
dependent particle creation and destruction caused by the inelastic scattering operator—
that the energy distribution of electrons associated with electrons from a non-drain ter-
minal that have not scattered with non-drain electrons can be approximated as being a
STUNTED EQUILIBRIUM DISTRIBUTION defined as the maximum entropy distribution sub-

1Our derivation of the elastically constrained model assumes that the antisymmetric part of the distri-
bution function is small, resulting in a particle flux at constant energy that is proportional to the gradient
in the occupation rate at constant total energy. There is however, no fundamental reason we cannot at-
tempt to remove this assumption and model the saturation of the flux that occurs when the antisymmetric
distribution is large.
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ject to a local particle density, energy density and maximum chemical potential. We
argue that the energy distribution of electrons that result from electron–electron scatter-
ing between non-drain electrons can be approximated as a heated thermal equilibrium
distribution.

For a device consisting of one non-drain "source" terminal and one drain terminal, we
can define an ansatz for the energy distribution as the sum of a lattice temperature
equilibrium, a stunted equilibrium, and a heated thermal equilibrium. We then derive
the THREE QUASI-EQUILIBRIA MODEL of semiclassical electron transport in silicon based
on this ansatz. In this model the electron state is defined by five 3−D scalar fields,
making it comparable in speed to other macroscopic models.

Essential to both these models is the precomputation and storage of transport parame-
ters that are often 2−D and 3−D functions. In the short term, it is important that access-
ing the values in the "look-up tables" associated with these functions is well-optimized.
In the long term, it would be ideal to find simple analytic forms that accurately recreate
the look-up table data so that the models could be closed analytically.

The practical implications of this thesis are significant, as these models have the po-
tential to have a large positive impact on the semiconductor industry. In order for this
impact to materialize these models must be transformed into flexible, easy to use com-
puter programs that can be used to model a wide range of devices. This will require
significant additional research and development, both within the TCAD industry and
in academia.

Aside from the real-world implications, it is expected that this thesis will also be of the-
oretical interest to many physicists. The models themselves add much new insight into
a previously opaque regime of electron transport. Furthermore the theoretical frame-
work used to derive these models shows one path of how new results in the field of
non-equilibrium statistical mechanics can be obtained.
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Appendix A

Bloch Waves and Bandstructure

A.1 Bloch Waves

We wish to understand the eigenstates available to a single carrier state in an otherwise
ideal semiconductor. Before the carrier is added to this ideal semiconductor, each elec-
tron was in the ground state of the system and the total electron density would have the
same symmetry as the crystal lattice. Therefore the interaction Hamiltonian between
the carrier and the ideal semiconductor crystal must have the same symmetry as the
underlying crystal lattice. As such, the interaction Hamiltonian must commute with a
translation operator R̂, so long as the corresponding translation R is a real lattice vector;
that is, if the primitive lattice vectors are {a1, a2, a3}, R must belong to the following set:

R ∈
{
n1a1 + n2a2 + n3a3

∣∣∣ n1, n2, n3 ∈ Z
}
. (A.1)

It is a well-known result known as Bloch’s Theorem [26] that the eigenstates of a par-
ticle described by a Hamiltonian which commutes with lattice translation operator has
the form of a BLOCH WAVE or BLOCH STATE. A Bloch wave consists of a plane wave of
wavevector k, modified by a periodic complex valued ”amplitude” function u(r) which
has the same periodicity as the primitive unit cell:
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ψ(r) = e ik·ru(r), (A.2)

where u(r) = u(r + R).

We would like to find a set of variables that uniquely identify our Bloch waves. An
obvious choice is to try to make k— the wavevector of the plane wave part— a unique
identifier, however we can show unless we specify another degree of freedom this is an
ambiguous choice. In order to see this, we make a small detour to describe an important
concept: the reciprocal lattice.

Aside: The Reciprocal Lattice

Suppose we want to construct a plane wave that always fits an integral
number of wavelengths between two point separated by any lattice vec-
tor R. The smallest wavevector in each direction which can possibly satisfy
this demand must represent a plane wave than can fit exactly 1 wavelength
along one primitive lattice vector, while fitting exactly 0 wavelengths along
the remaining two. Each such wavevector corresponds to a plane wave
which travels in a direction perpendicular to two of the primitive lattice
vectors— thus fitting exactly zero wavelengths along these directions—
and has a magnitude such that the the plane wave is exactly one wave-
length when projected onto the remaining primitive vector. We can con-
struct such a wavevector for each dimension of a 3−D crystal lattice, which
gives rise to three PRIMITIVE WAVEVECTORS b1, b2 and b3:

{
b1,b2,b3

}
=

{
2π (a2 × a3)

a1 · (a2 × a3)
,

2π (a3 × a1)

a2 · (a3 × a1)
,

2π (a1 × a2)

a3 · (a1 × a2)

}
. (A.3)

We define G as a member of the span of these primitive wavevectors:
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G ∈
{
n1b1 + n2b2 + n3b3

∣∣∣ n1, n2, n3 ∈ Z
}
. (A.4)

Since the span of primitive wavevectors defines a lattice in wavevector—
or RECIPROCAL— space, we refer to G as a RECIPROCAL LATTICE VECTOR,
and refer to the primitive wavevectors as defining a PRIMITIVE CELL OF THE

RECIPROCAL LATTICE.

Any reciprocal lattice vector G must fit an integral number of wavelengths
along each real space primitive lattice vector by construction, and vice-
versa, every plane wave which fits an integral number of wavelengths
along each along each primitive lattice vector is a reciprocal lattice vector
G. Since all lattice translation vectors R are made up of an integral number
of primitive vectors, it obviously follows that a plane wave of wavevec-
tor G must also have an integral number of wavelengths fit between two
points separated by any R.

The reciprocal lattice is therefore significant primarily because an arbitrary
function which is invariant under a real lattice translation— such as u(r)—
can always be expressed as a unique superposition of plane waves corre-
sponding to reciprocal lattice vectors.

We now return to the problem of demonstrating the ambiguity inherent in attempting
to make k— the wavevector for the plane wave part of the Bloch wave— a unique iden-
tifier of a Bloch wave/eigenstate. We note that since have defined the reciprocal lattice
vectors G such that an integral number of plane wave wavelengths will fit between two
points separated by a lattice vector R, by definition:

e−iG·R = 1. (A.5)
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This identity allows us to show a Bloch wave with a plane wave part of wavevector k,
is also a Bloch wave with a plane wave part k + G. All we need to do is change the
original periodic function u(r) to different periodic function u′(r) = u(r)e−iG·r:

ψk(r) = e ik·ru(r)

=
(
e ik·re iG·r

) (
e−iG·ru(r)

)

= e i(k+G)·ru′(r),

= ψk+G(r), (A.6)

where u′(r + R) = e−iG·re−iG·Ru(r + R)

= u′(r).

We therefore reach the conclusion that any Bloch wave that is a modulated plane wave
of wavevector k is simultaneously a modulated plane wave of wavevector k + G, for
any reciprocal lattice vector G. This ambiguity can be understood as arising because the
complex modulation function u(r) is permitted to contain an undesignated plane wave
of any reciprocal lattice wavevector G; as such, the wavevector of the designated plane
wave part can only be established modulo G.

There are a number of schemes for rectifying this ambiguity, but in this thesis we adapt
the REDUCED ZONE scheme. In the reduced zone scheme, we restrict the designated plane
wave part to be the smallest magnitude wavevector of the entire set of wavevectors which
can be associated with a Bloch wave. The result is that the wavevector k associated
with a Bloch wave is restricted to lie within a particular choice of primitive cell for the
reciprocal lattice, known as the FIRST BRILLIOUN ZONE1, which is made of the locus of
reciprocal space points that are closer to the k = 0 reciprocal lattice point than any other
reciprocal lattice point.

The restriction of k to the first Brillioun zone means there will be in general an infi-
nite number of different energy Bloch eigenstates associated with each wavevector k.
To demonstrate this, imagine we approach the ”empty lattice” limit where the strength
of periodic potential approaches zero. The energy eigenstates of Bloch waves must
become the energy eigenstates of free electron plane waves with no restrictions on

1Or simply, the BRILLOUIN ZONE.
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wavevector. As such, for each Bloch wave which has a wavevector k that falls within
the first Brillouin zone, there must be an infinite number of possible modulation func-
tion u(r) = e iG·r defined for every possible reciprocal lattice vector G, each of which
is an energy eigenstate. Therefore, we add a second variable ν, an integer called the
BAND INDEX, which enumerates all the Bloch functions associated with k in the order of
increasing energy eigenvalue. Using these two variables, we can now uniquely index a
Bloch wave eigenstate.

ψkν(r) = e ik·rukν(r), (A.7)

where k ∈
{

k
∣∣ |k| ≤ |k + G| ∀G

}
.

A.2 The Bandstructure

The energy of all the Bloch wave eigenstates corresponding to a single carrier in an ide-
alized crystal— εkν— is a function commonly known as the BANDSTRUCTURE. The calcu-
lation of the bandstructure from first principles is a non-trivial, active field of research.
We will not attempt to illuminate this field of research as the empirical pseudopotential
calculation of bandstructure is sufficient for the ends of this thesis, and this is already
discussed in Section 2.4 of the Background chapter and in Appendix C.

Instead we will briefly discuss the considerations that result in the near ubiquitous
presentation of bandstructures as plots over a 1−D domain, as this can be a source
of confusion. From the discussion so far, one would expect that the plot of eigenval-
ues will inherently require the 3−D domain of the entire Brillouin zone. The common
1−D presentation of bandstructure results firstly from a general information preserving,
symmetry-based reduction of the 3−D Brillioun zone to a much smaller 3−D subvol-
ume; followed secondly by much less general argument that the most important band-
structure information often occurs along certain high symmetry lines.

The first argument stems from noticing that the derivation of Bloch’s Thereom only
required the translation symmetry properties of the crystal lattice, while the crystal lat-
tice always has additional point symmetries defined by certain reflections, inversions
and rotations. These additional symmetries force the energy eigenstates of symmetry
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Figure A.1: (Public Domain) The Brillouin zone (grey) and irreducible Brillouin zone (green and red) of a
face-centred cubic (FCC) crystal lattice. It is worth noting that while the reciprocal lattice of a simple cubic
(SC) crystal is also SC, the reciprocal lattice of a FCC crystal transforms to a base-centred cubic (BCC) lattice
in reciprocal space. The high symmetry points and edges of the irreducible Brillouin zone are labeled in
a manner fitting with standard convention. Notably, the Brillouin zone of silicon is this shape.

related points in the Brillouin zone to be equal. As such the bandstructure is only a
unique function of a small wedge— often only ∼ 5% by volume— of the Brillouin zone
known as the IRREDUCIBLE BRILLOUIN ZONE, which can be unfolded using the symmetry
operations to define the energy eigenvalues of states at any point of the Brillouin zone.
An example showing the irreducible wedge of the face-centred cubic Brillouin zone is
shown in Fig. A.1.

The reduction by symmetry does not reduce the number of dimensions of the Brillouin
zone. If we wish to have a plot of eigenvalues which can be communicated quantita-
tively on a 2−D page, we can only plot the eigenstates 1−D path through the irreducible
wedge. An arbitrary path through the irreducible Brillouin zone will generally yield
insufficient information to approximately reconstruct the 3−D Brillouin zone. The pri-
mary problem is that the derivatives of the bandstructure in directions other than the
direction of the path is completely unknown. However, if we carefully select a path
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along a line of high symmetry, the gradient of the bandstructure— ∇kεkν— may have
restrictions enforced by its symmetry which allow us to we can infer additional infor-
mation it from the directional derivative along the path.

The most common and important example of the symmetry restriction of the bandstruc-
ture gradient occurs due to reflection symmetry. If there is a plane of reflection symme-
try in reciprocal space, ∇kεkν— if it is well-defined— must lie in that plane, since the
values of bandstructure on either side of the plane must be equal. If two planes of reflec-
tion meet at an edge, then∇kεkν— if it is well-defined— must be collinear to that edge,
since it must lie in both planes which form the edge. By the same argument, if three
planes of reflection symmetry meet at a vertex, then the vertex must be a local extrema
of the bandstructure, and∇kεkν— if it is well-defined— must equal zero.

We note that if these planes of reflection symmetry exist, they must be certain faces of
the irreducible wedge, as if they were inside the irreducible wedge, the wedge could be
further reduced by symmetry. As an obvious corollary, the edges and vertices where
these reflection planes meet will also be certain edges and vertices of the irreducible
wedge. A simple 2−D example of an irreducible wedge which has edges with high
reflection symmetry is shown in Fig. A.2.

A 1−D path between the high symmetry vertices of the irreducible Brillioun zone via
the high symmetry edges of the wedge, will therefore contain an unusual concentration
of the local extrema in the bandstructure, but it is not clear that these 1−D plots yield all
the information required to model a given phenomenon. In traditional transport calcu-
lations, the critical information the bandstructure contains is that required to recreate a
harmonic approximation to the absolute maximum of the valence band and absolute min-
imum of the conduction band. This is the critical information in traditional transport
modelling, because such a recreation will yield the effective mass tensor of the lowest
energy carriers of either type, and in approximately thermal distributions of carriers
characteristic of traditional transport models, these low energy carriers are overwhelm-
ingly more common than higher energy carriers with different effective mass tensors.
It is by no means clear that this 1−D plot will contain this information, since there is
nothing argued so far to stop the global extrema from occurring somewhere outside the
high symmetry path.
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Figure A.2: A small portion of the reciprocal lattice of a 2−D simple cubic (SC) lattice. The Brillouin zone
is shown by the square, and the darkened triangle is an irreducible wedge. The gray lines are lines of
reflection symmetry. The entire Brillouin zone can be reproduced by reflecting the irreducible wedge.
The high symmetry points and edges are labeled in a manner fitting with standard convention. The
green-red colouring schematically indicates the dependance of the states energy eigenvalue on k for a
single band of a fictitious material.
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However, in a manner consistent with bandstructures based on highly simplified Hamil-
tonians, extrema in the bandstructure across many materials do tend to occur most fre-
quently when forced to by symmetry restriction at a high reflection symmetry vertex,
or when the gradient is forced by symmetry to be collinear to a high symmetry edge. If
we ”get lucky”, and the valence band maximum and conduction band minimum occur
at high symmetry vertices, then such absolute extrema will be sufficiently characterized
to create a harmonic approximation. This is because if extrema occur at the intersection
vertex of three reflection planes, they simultaneously occur at the intersection of three
reflection edges, and a plot of the bandstructure along a path following these high sym-
metry edges will characterize the rate of change of the bandstructure gradients in three
dimensions. Additionally when studying the optical properties of semiconductors, we
have similar fortune and find that 1−D plots often contain the critical information re-
quired for understanding many optical phenomenon, as these are typically dominated
by local and global extrema in the bandstructure.

Indeed, the 1−D bandstructure plot along high symmetry edges— the style of band-
structure presentation so ubiquitous in the literature— often contains so much useful
information it is easy to slip into believing it is equivalent to the full bandstructure. But
in far-from-equilibrium transport carriers are often distributed throughout the whole
Brillouin zone, and not simply concentrated around a few high symmetry vertices and
edges. Therefore, when we refer to full bandstructure in this thesis, we are always re-
ferring to a 3−D full bandstructure calculation, and not the 1−D plot often used in its
place.



256 APPENDIX A. BLOCH WAVES AND BANDSTRUCTURE



Appendix B

Newton’s Law for Bloch States

B.1 The Expected Value of the Lattice Translation Opera-

tor

We follow the derivation of Kroemer [92]. We wish to examine the effect of a uniform
force F, on the single carrier Bloch eigenstates |kν〉 of an ideal crystal. The total single
carrier Hamiltonian Ĥ , is the Hamiltonian of a single carrier in an ideal crystal Ĥ0, plus
the position-dependent potential energy associated with the uniform force V̂external =

F · r̂:

Ĥ = Ĥ0 + F · r̂. (B.1)

We wish to find a non-perturbative solution to this problem. To do so, we take the slightly
non-obvious step of examining the rate of change of the expected value of a lattice vector
translation operator R̂ associated with a lattice vector R. It is a basic result of quantum
mechanics that the rate of change of the expected value of an operator Â is related to the
Hamiltonian Ĥ as follows:

∂

∂t

〈
Â
〉

=
i

~

〈[
Ĥ, Â

]〉
. (B.2)
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Therefore, the rate of change of the expected value of the translation operator R̂ is given
by eq. (B.3):

∂

∂t

〈
R̂
〉

=
i

~

〈[
Ĥ0, R̂

]
+ F ·

[
r̂, R̂

]〉
. (B.3)

The lattice vector translation operator commutes with the unperturbed Hamitonian,
since the infinite, ideal crystal is identical before and after such a shift:

[
Ĥ0, R̂

]
= 0. (B.4)

On the other hand, to find the commutator
[
r̂, R̂

]
we examine the effect of the operator

combination r̂R̂, on an arbitrary wavefunction |ψ〉. Supposing this wavefunction can
be expressed in the position basis as |ψ〉 =

∫
R3 ψ(r) |r〉 dr, we can derive the following

identity:

r̂R̂ |ψ〉 = r̂R̂

∫

R3

ψ(r) |r〉 dr by definition of |ψ〉,

= r̂

∫

R3

ψ(r) |r + R〉 dr by definition of R̂,

=

∫

R3

(r + R)ψ(r) |r + R〉 dr by definition of r̂,

= R̂

∫

R3

(r + R)ψ(r) |r〉 dr by definition of R̂,

= R̂r̂ |ψ〉+ RR̂ |ψ〉 by definition of r̂ and |ψ〉. (B.5)

From this identity, it is clear that the commutator
[
r̂, R̂

]
is defined as follows:

[
r̂, R̂

]
= RR̂. (B.6)

By substituting eq. (B.4) and eq. (B.6) into eq. (B.3), we arrive at the equation of motion
for the expected value of the translation operator:

∂

∂t

〈
R̂
〉

=
i

~
F ·R

〈
R̂
〉
. (B.7)

The interesting thing about this equation is the expected value of given translation op-
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erator can simply be viewed here as some unknown scalar function of time and lattice
vector R. The solutions to such an equation are therefore a standard result of first-order
differential equation theory, and have the following form:

〈
R̂
〉

= R0e
iξ(t)·R, (B.8a)

where
∂ξ

∂t
=

1

~
F. (B.8b)

The arbitrary constants of this equation are ξ0— the value of the vector ξ at time 0— and
R0— the magnitude of the expected value of R̂. Since the differential equation is linear,
any linear combination of solutions of this form is also a solution to the differential
equation.

B.2 The Equation of Motion of a Pure Bloch State

We note that there is an expected value of R̂ associated with any arbitrary mixed quan-
tum state, and the corresponding time dependence of this expected value must be gov-
erned by eq. (B.7). To begin with, we examine the special case where the arbitrary mixed
quantum state is a pure Bloch state |kν〉 at time t = 0. We note that, for a Bloch wave
|kν〉, the only difference between the wavefunction at a point r and at a point r + R is
due to the plane-wave part, which will differ by a factor e ik·R, for any position r. This
implies that |kν〉 is an eigenstate of the operator R̂, with associated eigenvalue e ik·R:

R̂ |kν〉 = e ik·R |kν〉 . (B.9)

Therefore the expected value of the translation operator for an over an arbitrary Bloch
state |kν〉 is as follows:

〈
R̂
〉kν

= 〈kν| R̂ |kν〉

= e ik·R (B.10)

The time variation of this expected value in the presence of an external field F must be
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given by some linear combination of the solutions in eq. (B.8). The appropriate solution
is R0 = 1 and ξ(0) = k. By the definition of ξ(t), eq. (B.8) implies NEWTONS LAW FOR

BLOCH STATES must hold for k:

F = ~
∂k

∂t
. (B.11)

B.3 The Equation of Motion an Arbitrary Mixed State

It is instructive to also examine the expected value of the translation operator associated
with an arbitrary mixed state ρ at time t = 0. We suppose ρ is defined by ρ =

∑
i pi |ψi〉,

where pi is the real classical probability of a being in the arbitrary state |ψi〉, which is
itself a superposition of Bloch states |ψi〉 =

∑
ν

∫
R3 ψ

i
kν |kν〉 dk. The expected value of

the translation operator associated with the arbitrary mixed state ρ is as follows:

〈
R̂
〉ρ

=
∑

i

pi 〈ψi| R̂ |ψi〉

=
∑

i,ν,ν′

∫

BZ

∫

BZ
piψ

i∗
kνψ

i
k′ν′ 〈kν| R̂ |k′ν ′〉 dkdk′

=
∑

i,ν

∫

BZ
pi
∣∣ψikν

∣∣2 〈kν| R̂ |kν〉 dk

=
∑

ν

∫

BZ
pkν

〈
R̂
〉kν

dk, (B.12)

where pkν =
∑

i

pi|ψikν |2

The point of eq. (B.12) is to show no matter what quantum mechanical state a carrier is
in, the expected value of the translation operator is the same as the expected value of
the translation operator for a purely classical statistical distribution of pure Bloch states.
The time evolution of the expected value of the translation operator in turn implies that
an arbitrary quantum superposition of Bloch states must evolve in time as a classical
statistical distribution of Bloch states, where the crystal momenta of each follows New-
tons law for Bloch states, eq. (B.11). This is one of the important facts that allows us to
treat the local electron state as being a classical statistical distribution of pure Bloch states,



B.3. THE EQUATION OF MOTION AN ARBITRARY MIXED STATE 261

as opposed to needing to treat the local electron state as an arbitrary mixed state ρ. Since
we followed a non-perturbative treatment, this fact is true no matter how large the uniform
external force is.

The only novel effect that very large fields can have on Bloch states is to increase the
rate of transition from one band ν to another ν ′ at the same crystal momentum value to the
point where transitions from the valence band to the conduction band become a non-
negligible source of carriers. This process is known as ZENER TUNNELLING. We will not
investigate it in detail in this thesis, since it requires that the change in potential energy
across a decoherence length (∼ 2−3 nm) due to the external force is larger than the band
gap (∼ 1eV ). Since this condition will not generally be true in highly inhomogeneous
transport, this is a special subregime that is not part of the "kernel" model of highly
inhomogeneous transport that this thesis attempts to describe.
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Appendix C

The Pseudopotential Band Structure

C.1 A Local Pseudopotential in Terms of Reciprocal Lat-

tice Vectors

Let us assume that there exists an accurate, universal, slowly-varying local pseudopo-
tential Vpseudo(r). The form of that local pseudopotential will often be restricted by sym-
metries related to the positioning of the multiple basis ions within a unit cell. To incor-
porate this symmetry, we view the crystal as the superposition of n centred, single basis
ion crystals, where n is the number of basis ions in each unit cell. If τj is the basis vector
of the jth basis ion, the total pseudopotential Vpseudo(r) is expressed in terms of centred,
single basis component pseudopotentials V j

pseudo(r) as follows:

Vpseudo(r) =
n∑

j

V j
pseudo(r− τj). (C.1)

We wish to rewrite both the total pseudopotential Vpseudo(r) and the component pseu-
dopotentials V j

pseudo(r) as Fourier series, on the basis that they are both periodic with
respect to lattice translation vectors R:
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Vpseudo(r) =
∑

G

Ṽpseudo(G)e iG·r, (C.2a)

and V j
pseudo(r) =

∑

G

Ṽ j
pseudo(G)e iG·r. (C.2b)

If we multiply either of these equations by e−iG
′·r and integrate over a unit cell Ω, all

terms on the RHS will integrate to zero except where G = G′. All other terms vanish
because G′ − G is a non-zero reciprocal lattice vector, and non-zero reciprocal lattice
vector plane waves integrate to zero over a unit cell. Thus the total and component
Fourier series coefficients, Ṽpseudo(G) and Ṽ j

pseudo(G) respectively, are given by the fol-
lowing expressions:

Ṽpseudo(G) =
1

Ω

∫

Ω

Vpseudo(r)e−iG·rdr, (C.3a)

and Ṽ j
pseudo(G) =

1

Ω

∫

Ω

V j
pseudo(r)e−iG·rdr. (C.3b)

We wish to express the Fourier coefficients of the total pseudopotential Ṽpseudo(G) in
terms of the Fourier coefficients of the component pseudopotential Ṽ j

pseudo(G). We begin
by substituting eq. (C.1) into eq. (C.3a):

Ṽpseudo(G) =
1

Ω

∫

Ω

Vpseudo(r)e−iG·rdr

=
1

Ω

∫

Ω

n∑

j=1

V j
pseudo(r− τj)e

−iG·rdr

=
n∑

j=1

∫

Ω

V j
pseudo(r− τj)e

−iG·rdr. (C.4)

For each j, we can substitute the integral over r for an integral over r′ = r − τj . Due
to the periodicity of the function, Ω can be kept the same. By substituting eq. (C.3b),
we can express the total pseudopotential Fourier coefficients Ṽpseudo(G) in terms of the
centred, single basis component pseudopotential Fourier coefficients Ṽ j

pseudo(G):
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Ṽpseudo(G) =
n∑

j=1

∫

Ω

V j
pseudo(r′)e−iG·r

′
e−iG·τjdr′

=
n∑

j=1

e−iG·τj
∫

Ω

V j
pseudo(r)e−iG·rdr

=
n∑

j=1

e−iG·τj Ṽ j
pseudo(G). (C.5)

This expression is useful as it allows us to easily determine if the distribution of basis
ions within a unit cell forces particular Fourier series coefficients of the total pseudopo-
tential to vanish due to symmetry.

C.2 Zinc Blende and Diamond Reciprocal Lattices

We now wish to write down the smallest reciprocal lattice vectors for two technologi-
cally important lattice types: the ZINC BLENDE and DIAMOND lattices. These lattices are
superpositions of face-centred cubic (FCC) single atom crystals. The reciprocal lattice of
a FCC of lattice parameter a is a base-centered cubic (BCC) with a lattice parameter 4π

a
.

Thus the nearest neighbour reciprocal lattice vectors— the lowest spatial frequencies—
are as follows, in units of 2π

a
:
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G0 = (0, 0, 0) 1 centre lattice point

G3 = (±1,±1,±1) 8 vertices of unit cell

G4 = (±2, 0, 0), (0,±2, 0), (0, 0,±2) 6 centres through faces

G8 = (±2,±2, 0), (±2, 0,±2), (0,±2,±2) 12 centres through edges

G11 = (±3,±1,±1), (±1,±3,±1), (±1,±1,±3) 24 vertices of adjacent cells

G12 = (±2,±2,±2) 8 centres through edges

G16 = (±4, 0, 0), (0,±4, 0), (0, 0,±4) 6 centres through faces

G19 = (±1,±3,±3), (±3,±1,±3), (±1,±3,±3) 24 vertices...

G20 = (±2,±4, 0), (±4,±2, 0), . . . 24 centres...

G24 = (±2,±2,±4), (±2,±4,±2), (±4,±2,±2) 24 centres...
... (C.6)

Shown above are the reciprocal lattice vectors for the 10 sets of nearest neighbours to
the gamma point, indexed according to the square of their distance from the gamma point
in units of 2π

a
. These 10 sets of nearest neighbours define a total of 137 unique plane

waves. Since the total local pseudopotential is slowly varying, we seek to approxi-
mate both the local pseudopotential and the pseudoeigenstates of the corresponding
pseudo-Hamiltonian in terms of the plane waves associated with these relatively small
reciprocal lattice vectors.

The first point to notice is that the pseudopotential associated with G0 is fairly arbitary,
since it adds a uniform energy shift to every state. The second point to notice is that
since the total pseudopotential must have the point symmetry of the crystal, which
typically means that the Fourier coefficients of the total pseudopotential can only be
a function of the size of the reciprocal lattice vector |G|, and cannot be a function of
its direction, since usually small reciprocal lattice vectors of the same magnitude differ
only by a point symmetry operation.1 The third point to notice is that, in the case of
diamond, the Fourier coefficients associated with some of the reciprocal lattice vectors

1This is not guaranteed. It is perfectly possible to have two valid reciprocal lattice vectors of the same
length that do not differ by a point symmetry operation. It is simply that at small reciprocal lattice vectors,
this is unlikely.
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must vanish.

To understand this third point, we note that with a two-atom basis crystal, the symmetry
restrictions are most obvious if we place the lattice point at the midpoint between the
two interlaced crystals. In the case of zinc blende and diamond, this means that our
basis vectors are τ1 = −τ2 = τ = a

8
(1, 1, 1). Therefore the Fourier coefficients of the total

pseudopotential can be expressed in the following manner:

Ṽpseudo(G) =
n∑

j=1

e−iG·τj Ṽ j
pseudo(G)

= Ṽ 1
pseudo(G)e−iG·τ + Ṽ 2

pseudo(G)e iG·τ

= cos(G · τ)
(
Ṽ 1

pseudo(G) + Ṽ 2
pseudo(G)

)
− i sin(G · τ)

(
Ṽ 1

pseudo(G)− Ṽ 2
pseudo(G)

)

= cos(G · τ)Ṽ
sym

pseudo(G) + i sin(G · τ)Ṽ
anti

pseudo(G), (C.7)

where we have Ṽ sym
pseudo(G) and Ṽ

anti
pseudo(G) defined as follows:

Ṽ
sym

pseudo(G) = Ṽ 1
pseudo(G) + Ṽ 2

pseudo(G) (C.8a)

Ṽ
anti

pseudo(G) = Ṽ 1
pseudo(G)− Ṽ 2

pseudo(G). (C.8b)

In a diamond lattice— such as that of silicon— the antisymmetric pseudopotential coef-
ficient Ṽ anti

pseudo is zero, since Ṽ 1
pseudo(G) = Ṽ 2

pseudo(G). According to eq. (C.7), this implies
that the Fourier series coefficient vanishes for any for at any reciprocal lattice vector
where G · τ = 2n+1

2π
, which is true for any reciprocal lattice vector G in which the

sum of vector coordinates Gx + Gy + Gz— in units of 2π
a

— is equal to 4m + 2 where
m is some integer. This is clearly true for G4 where the sum of coordinates is ±2, and
for G12 and G20, where the sum of coordinates is ±2 or ±6. Accordingly, the Fourier
coefficients at these reciprocal lattice vectors vanish. Putting these results together,
we can express a slowly varying pseudopotential in terms of Fourier coefficients for
|G|2 ∈ {3, 8, 11, 16, 19, 24, ....}, where the coefficients should be functions only2 of |G|
and should eventually become rapidly decreasing as |G| increases.

2Again, unless there are two reciprocal lattice vectors of the same magnitude that cannot be mapped
onto one another by an octahedral point symmetry operation.
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Given these considerations, it is not too surprising that according to Chelikowsky and
Cohen [39], there is a fairly accurate local pseudopotential for silicon that can be char-
acterized by the following Fourier coefficients:

Ṽ
sym

pseudo(G) =





−0.2241 Rydbergs for |G|2 = 3

0.0551 Rydbergs for |G|2 = 8

0.0724 Rydbergs for |G|2 = 11

0 otherwise.

(C.9)

C.3 Solving the Pseudopotential Hamiltonian

We will now attempt to solve the time-independent Schrödinger equation for pseu-
doeigenstates:

εkνϕ
pseudo
kν = Ĥpseudoϕ

pseudo
kν

Here ϕpseudo
kν is the pseudoeigenstate associated with a single crystal momentum k in

the Brillouin zone that is indexed by ν, and Ĥpseudo is the pseudo-Hamiltonian which
is defined as the sum of the kinetic energy operator and the pseudopotential operator.
Having explicitly defined the pseudopotential in the position basis, we can now write
down an explicit expression for this equation in the position basis:

εkνϕ
pseudo
kν (r) =

(
− ~2

2me

∇2
r +

∑

G

cos(G · τ)Ṽ
sym

pseudo(G)e iG·r
)
ϕ

pseudo
kν (r). (C.10)

Since the pseudoeigenstates are Bloch waves, we can express them in the following
manner:

ϕ
pseudo
kν (r) = e ik·rukν(r)

= e ik·r
∑

G

ũkν(G)e iG·r. (C.11)

Thus, by substituting eq. (C.11) into eq. (C.10), we have the following result:



C.3. SOLVING THE PSEUDOPOTENTIAL HAMILTONIAN 269

0 =

(
− ~2

2me

∇2
r +

∑

G

cos(G · τ)Ṽ
sym

pseudo(G)e iG·r − εkν
)∑

G′

ũkν(G
′)e i(k+G′)·r.

(C.12)

We can expand now expand the brackets, and rewrite the gradient operator in terms of
its eigenvalues, since∇re

ik·r = ike ik·r:

0 =
∑

G′

ũkν(G
′)

(
~2(k + G′)2

2me

− εkν
)
e i(k+G′)·r +

′∑

G

∑

G

cos(G · τ)Ṽ
sym

pseudo(G)e i(k+G′+G)·r.

(C.13)

We notice that we can eliminate one of the summations in each term by multiplying
both sides of the equation by 1

Ω
e−i(k+G′′)·r and integrating both sides over a unit cell Ω.

The key here is that, after the multiplication, the only r dependence of any term in the
summation is via a phase factor e iG′′′·r, for some reciprocal lattice vector G′′′. Therefore,
after the integral over a unit cell, every term vanishes unless this characteristic reciprocal
lattice vector G′′′ is zero. This implies that every term in the first summation vanishes
except G = G′′, and every term in the second summation vanishes except G = G′′−G′:

0 = ũkν(G
′′)

(
~2(k + G′′)2

2me

− εkν
)

+
∑

G′

cos
(
(G′′ −G′) · τ

)
Ṽ

sym
pseudo(G′′ −G′)ũkν(G

′).

(C.14)

We can now rename G′′ as G, and move the energy term to the LHS:

εkν ũkν(G) = ũkν(G)
~2(k + G)2

2me

+
∑

G′

cos
(
(G−G′) · τ

)
Ṽ

sym
pseudo(G−G′)ũkν(G

′).

(C.15)

Thus, we have taken the time-independent Schrödinger equation for the pseudoeigen-
states, and transformed it into an equation for the Fourier coefficients of the periodic
part of the pseudoeigenstates at k. Given that the pseudopotential is zero at reciprocal
lattice vectors for any reciprocal lattice vector where |G|2 > 11, we assume that any low
energy eigenstate of the corresponding time-independent Schödinger equation will be
only slightly faster varying than this, and as such can be expressed in terms of a Fourier
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series over the 137 reciprocal lattice vectors we introduced earlier in eq. (C.6). As such,
suppose we index this set of vectors such we have Gi defined for i = 1, . . . , 137, and
write ũkν =

[
ũkν(G

1), . . . , ũkν(G
137)
]
. We can then write down an eigenvalue equation

for ũkν(G):

εkνũkν = Ĥk
pseudoũkν . (C.16)

Here the 137× 137 matrix Ĥk
pseudo is defined in the following manner:

[
Ĥk

pseudo

]ii
=

~2(k + Gi)2

2me

+ Ṽ
sym

pseudo(0)

[
Ĥk

pseudo

]ij
= cos

(
(Gi −Gj) · τ

)
Ṽ

sym
pseudo(Gi −Gj) (C.17)

Where Ṽ sym
pseudo(0) = 0 according to Chelikowsky and Cohen [39]. Thus we can find a set

of ∼ 137 pseudoeigenvalues by solving the following matrix equation for any k in the
Brillouin zone that interests us:

0 =
(
Ĥk

pseudo − εkν Î
)

ũkν . (C.18)

By construction of the local empirical pseudopotential, the ∼ 8− 10 pseudoeigenvalues
with the lowest energy will approximate the real eigenvalues of the valence band and
the lowest energy conductions bands.

C.4 Exploiting Symmetry in the Brillouin Zone

Much like the translational symmetry of a crystal Hamiltonian ensures that energy
eigenvalues separated by a reciprocal lattice vector are degenerate, the point group sym-
metries of a Hamiltonian ensures there are additional degeneracies in reciprocal space.
The point symmetry of the reciprocal space of a Zinc-Blende or Diamond lattice is the
same as the 48 point symmetries of a cube, known as the OCTAHEDRAL GROUP. Namely,
the energy eigenvalues do not does not change if we invert any subset of the reciprocal
lattice vectors, or if we permute the reciprocal lattice vectors. If we use a coordinate sys-
tem rectilinear with the reciprocal lattice, this can be expressed in the following manner:
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E(kx, ky, kz) = E(|kx|, |ky|, |kz|), (C.19a)

and E(kx, ky, kz) = E(kl, km, kn), (C.19b)

where l ∈ {x, y, z}, m ∈ {x, y, z}\{l}, n ∈ {x, y, z}\{l,m}.

The first condition clearly allows us to reduce the reciprocal space to the positive octant
of the coordinate system. Additionally, the six permutation relations described in the
second condition allows us to reduce the positive octant of the reciprocal space to the
wedge in which kx ≥ ky ≥ kz; that is, if we apply the permutation symmetry to this
wedge, it is clear that any coordinate in the positive octant must belong to some wedge,
and that either the coordinates will belong interior of a unique wedge, or will belong to
they belong to the border of a wedge. As such, it is clear that this wedge of the Brillouin
zone is irreducible.

The most succinct definition of the interior of the irreducible of the wedge is that is the
locus of points kx, ky, kz such that the following two conditions are both true:

2π

a
> kx > ky > kz > 0 due to nearest neighbours and 48 point symmetries,

(C.20a)

and
3π

2a
> (kx + ky + kz) due to next nearest neighbours.

(C.20b)

Thus, the most efficient way to find the energy eigenvalues of the whole Brillouin zone
of silicon is to:

1. Solve eq. (C.18) for each k point in a mesh of the irreducible Brillouin Zone.

2. Use the point symmetry permutations to generate a mesh of eigenvalues on the
whole Brillouin zone.

3. Use an interpolation scheme to generate a full band structure ε(kν).
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Here steps 2 and 3 can be inverted if it is more convenient. Alternatively, if generating an
interpolation from data on a cubic mesh is more convenient, more symmetry operations
can be used in step 2 to generate of mesh of eigenvalues on, for instance, a cube of side
length 4π

a
.



Appendix D

Fermi’s Golden Rule

D.1 A General State in a Perturbed Hamiltonian

We present in this chapter a very typical derivation of Fermi’s golden rule [93]. Suppose
we have a Hamiltonian that can be expressed as the combination of a soluble Hamilto-
nian Ĥ0 and a small perturbing Hamiltonian Ĥ ′:

Ĥ = Ĥ0 + Ĥ ′. (D.1)

Suppose Φ0
j(r, t) = φ0

j(r)e−
i
~ ε

0
j t are time-dependent eigenfunctions of the unperturbed

Hamiltonian. The time dependence of a general pure state Ψ0(r, t) in the unperturbed
Hamiltonian Ĥ0 will simply be determined by the superposition of the time dependence
of unperturbed eigenfunctions:

Ψ0(r, t) =
∑

j

a0
jφ

0
j(r)e−

i
~ ε

0
j t. (D.2)

Here a0
j is a constant, which is subject to the restriction that

∑
j |a0

j |2 = 1. On the other
hand, the time dependence of a general pure state Ψ(r, t) in the full Hamiltonian Ĥ can
be described simply by demanding that the coefficients aj are not constants, but are
instead functions of time:

273
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Ψ(r, t) =
∑

j

aj(t)φ
0
j(r)e−

i
~ ε

0
j t. (D.3)

D.2 An Equation of Motion for ak(t)

The time dependence of a particular coefficient ak(t) of the general wavefunction Ψ will
be determined by the time-dependent Schrödinger equation associated with the full
Hamiltonian:

i~
∂Ψ

∂t
= Ĥ0Ψ + Ĥ ′Ψ. (D.4)

In order to determine the equation of motion for ak(t) from this equation, we begin
by substituting eq. (D.3) into eq. (D.4), and expanding the time derivative using the
product rule:

∑

j

(
aj(t)ε

0
j + i~

daj(t)

dt

)
φ0
j(r)e−

i
~ ε

0
j t =

∑

j

aj(t)
(
ε0
j + Ĥ ′

)
φ0
j(r)e−

i
~ ε

0
j t. (D.5)

Notice that we can subtract
∑

j aj(t)ε
0
jφ

0
j(r)e−

i
~ ε

0
j t from both sides of eq. (D.5), leading to

the following equation:

i~
∑

j

daj(t)

dt
φ0
j(r)e−

i
~ ε

0
j t =

∑

j

aj(t)Ĥ
′φ0
j(r)e−

i
~ ε

0
j t. (D.6)

If we multiply both sides by φ0∗
k (r) and integrate over all space1, we have the following

expression:

i~
∑

j

daj(t)

dt
e−

i
~ ε

0
j t

∫

R3

φ0∗
k (r)φ0

j(r)dr =
∑

j

aj(t)e
− i

~ ε
0
j t

∫

R3

φ0∗
k (r)Ĥ ′φ0

j(r)dr. (D.7)

This development is useful because if we assume the eigenfunctions of the unperturbed
wavefunctions are normalized, the integral on the LHS simplifies to δkj , since the nor-
malized eigenstates always form an orthonormal set of basis functions. Multiplying

1A unit cell is sufficient if in cases where Bloch’s theorem applies.
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both sides by − i
~e

i
~ ε

0
kt, we find an equation of motion for ak(t):

dak(t)

dt
= − i

~
∑

j

aj(t)H
′
kje

i
~ (ε0k−ε0j )t, (D.8)

where H ′kj =

∫

R3

φ0∗
k (r)Ĥ ′φ0

j(r)dr.

In order to solve this equation and find ak(t), we integrate both sides of the equation
from t′ = 0 to t′ = t:

∫ t

0

dak(t
′)

dt′
dt′ = − i

~
∑

j

∫ t

0

aj(t
′)H ′kje

iωkjt
′
dt′, (D.9)

where ωkj =
ε0
k − ε0

j

~
.

This can be in principle be solved by applying the fundamental theorem of calculus:

ak(t) = ak(0)− i

~
∑

j

∫ t

0

aj(t
′)H ′kje

iωkjt
′
dt′. (D.10)

D.3 Transition Rate Between Two Unpertubed Eigenstates

In this section we are interested in the transition rate from one unperturbed eigenstate
state to another. Accordingly, we assume the initial state is a pure unperturbed eigen-
state:

aj(0) =





1 j = j′

0 j 6= j′.
(D.11)

In this section we are also interested in the case where the perturbation Hamiltonian Ĥ ′

is weak and can be associated with a single driving frequency ω′, such that it can be Ĥ ′ can
be expressed as follows:

Ĥ ′ = Ĥ′(r)e−iω
′t. (D.12)

.
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The maximum rate probability amplitude can be transferred per unit time from the jth

unperturbed eigenstate to the kth unperturbed eigenstate is equal to
|H′kj |
~ . Accordingly,

if we restrict ourselves to a time scale such that t� ~
|H′kj |

, aj(t) must be roughly constant:

aj(t) ≈ aj(0) for t� ~
|H′kj|

. (D.13)

We note that since we are assumingH′ is small compared to H0, the time scale on which
this approximation is true will generally be much larger than the timescale associated
with the period of the unperturbed eigenstates, and so within this timescale we will observe
many unperturbed eigenstate oscillations.

For k 6= j′, by substituting eq. (D.13), eq. (D.11), and eq. (D.12) into eq. (D.10), we have
the following:

ak(t) ≈ −
i

~
Ĥ′kj′

∫ t

0

e i(ωkj′−ω
′)t′dt′

=
H′kj′

~(ωkj′ − ω′)
(
e i(ωkj′−ω

′)t − 1
)
. (D.14)

This leads to a transition probability as a function of time, |ak(t)|2, defined as follows:

|ak(t)|2 ≈
|H′kj′ |2

~2(ωkj′ − ω′)2

(
e i(ωkj′−ω

′)t − 1
)(

e−i(ωkj′−ω
′)t − 1

)

= 2
|H′kj′|2

~2(ωkj′ − ω′)2

(
1− cos

(
(ωkj′ − ω′)t

))

= 4
|H′kj′|2

~2(ωkj′ − ω′)2
sin2

(
ωkj′ − ω′

2
t

)
. (D.15)

This is a basic result of first order perturbation theory. There is a resonance in the am-
plitude of the transition probability as a function of time when the driving frequency
ω′ is equal to the difference in frequency between the jth and j′th eigenstates, at which
point probability amplitude is initially transferred at the maximum rate, resulting in

|ak(t)|2 =
|H′
kj′ |

2

~2 t2. In the non-resonance case, a small fraction of the initial probability
oscillates between the states at the BEAT— or difference from resonance— FREQUENCY.

From the second to final line of eq. (D.15), we can easily derive the initial transition rate
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from the initial j′th unperturbed eigenstate to the final kth unpeturbed eigenstate:

Sj′→k =
d|ak|2

dt

∣∣∣∣∣

0

= 0. (D.16)

This result may be somewhat jarring initially. Transitions will obviously eventually
occur between individual eigenstates of the unperturbed Hamiltonian— as eq. (D.15)
shows— but it is a second-order rather than a first-order effect of increasing time. This is
caused by the simple fact that initial rate of probability amplitude transfer is linear in time,
and therefore initial probability transfer is quadratic in time. As we will show, the only
way to have a finite initial transition rate out from an initial eigenstate is if there is a
continuum of final states available.

D.4 Transition Rate Into a Continuum of Final States

Suppose we are interested in the probability that the single frequency perturbation
Hamiltonian drives initial unperturbed eigenstate i into a quasicontinuum of final un-
perturbed eigenstates f , such that there is Df (ε

0
f ) states per unit energy at eigenstate

energy ε0
f . Before we address this problem, we note that to find the transition prob-

ability to a countable set of final unperturbed eigenstates— fcount— we would simply
calculate the following:

Pi→fcount(t) =
∑

k∈fcount

|ak(t)|2. (D.17)

If aε0f (t) is the amplitude associated with unperturbed eigenstates of energy ε0
f , the anal-

ogous expression for the transition probability into the quasicontinuum of final unper-
turbed eigenstates— f— is the following:

Pi→f (t) =

∫ ∞

0

Df (ε
0
f ) |aε0f (t)|

2 dε0
f . (D.18)

Substituting eq. (D.15) and the relation ωfi = ω0
f −ω0

i into eq. (D.18), we find the follow-
ing:
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Pi→f (t) =
4

~
|Ĥ′fi|2

∫ ∞

0

Df (~ω0
f )

sin2
(
ω0
f−ω0

i−ω′
2

t
)

(ω0
f − ω0

i − ω′)2
dω0

f . (D.19)

We make the substitution θ = t
2
(ω0

f − ω0
i − ω′), which implies that 2

t
dθ = dω0

f , and the
limits change from 0→∞, into − t

2
(ω0

i + ω′)→∞.

Pi→f (t) =
2t

~
|Ĥ′fi|2

∫ ∞

− t
2

(ω0
i+ω′)

Df (~ω0
f (θ))

sin2 θ

θ2
dθ, (D.20)

where ω0
f (θ) =

2θ

t
+ ω0

i + ω′.

We note that ∼ 90% of the integral of sin2θ
θ2 is between (−π, π). We note that we are

not interested in the very rapid tiny oscillations of Pi→f (t) over times periods compara-
ble to the unperturbed eigenvalue periods, but are instead interested in the transition
probability at much longer times. Accordingly, we can assume firstly that the bottom
limit of the integral is much less than −π, and can accordingly be approximated as −∞.
We can assume secondly that the total variation of the final eigenvalue frequency, ω0

f ,
over the domain (−π, π), which is equal to ∆ω0

f = 4π
t

, is negligible so that ∆ω0
f << ω0

f .
Accordingly, we can assume ω0

f (θ) ≈ ω0
f (0). These assumptions lead to the following

expression:

Pi→f (t) ≈
2t

~
Df (~ω0

i + ~ω′)|Ĥ′fi
∫ ∞

−∞

sin2 θ

θ2
dθ

=
2πt

~
Df (ε

0
i + ~ω′)|Ĥ′fi|2. (D.21)

The rate of transition to final states, which is defined as Si→f =
dPi→f

dt
, is then given by

FERMI’S GOLDEN RULE:

Si→f =
2π

~
Df (ε

0
i + ~ω′)|Ĥ′fi|2. (D.22)



Appendix E

The Strain Tensor

E.1 The Deformation Tensor

Suppose each point of matter in a continuous body is labelled by an initial position
vector r, and we deform the body so that the each point of matter in the body initially
at r is now at a final position vector r′(r). We define the DISPLACEMENT VECTOR FIELD

u(r) as the displacement of the final position vector from the initial position vector, as a
function of initial position vector:

u(r) = r′(r)− r. (E.1)

We note that, in many cases, the most important physical effects of a deformation are not
associated with how much points are displaced in an absolute sense, but are instead as-
sociated with the relative change in displacements between points. For example, a large
uniform shift of the entire body— while associated with a large displacement vector
field— does not change the distances between points and as such will not be associated
with any physical effects unless the environment the entire body is in is non-uniform. We
will assume this is not the case.

A displacement vector field which does not change the relative displacement between

279
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points is equivalent to a displacement field in which dr′
dr

— the rate of change of final
position r′ relative to small changes in initial position r— is equal to unity. The deviation
of dr′

dr
from unity— d(r)— is therefore generally of more direct physical interest than the

displacement vector field u(r) when we examine bodies in uniform environments:

dr′

dr
=

r′(r + δr)− r′(r)

δr

=
r + δr + u(r + δr)− r− u(r)

δr

= 1 + d(r), (E.2a)

where d(r) =
du

dr
. (E.2b)

We refer to d(r) as the DEFORMATION TENSOR FIELD, and note that it measures how
quickly each displacement vector component changes in any given direction.

E.2 Strain and the Small Deformation Limit

We can often simplify further. We note that many important physical effects are not
necessarily associated with changes in the diplacements between all points, but more
simply with changes in the distance between nearby points. Accordingly the derivative
we are most often interested in is |∂r

′|
|∂r| , which can be expressed as follows:

|∂r′|
|∂r| =

|r′(r + δr)− r′(r)|
|δr|

=
|(1 + d)δr|
|δr|

= |(1 + d)δ̂r|

=

√
1 + 2(dδ̂r) · δ̂r + (dδ̂r) · (dδ̂r), (E.3)

where δ̂r =
δr

|δr| .

Here δ̂r is a unit vector in the direction of δr. If assume that the material being is only
slightly deformed we can make further simplifications. In the small deformation limit,
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each entry of d is small compared to unity, which implies the following:

1� 2(dδ̂r) · δ̂r� (dδ̂r) · (dδ̂r). (E.4)

Combining eq. (E.3) with the small deformation limit in eq. (E.4), and the first order
approximation

√
1 + x ≈ 1 + 1

2
x, we find the following expression:

|∂r′|
|∂r| ≈ 1 + (dδ̂r) · δ̂r. (E.5)

We note that it is only the symmetric part of d that contributes, since for any antisymmet-
ric tensor A, and any vector v, we have the following relationship:

(Av) · v =
∑

i,j

Aijvivj

= −
∑

i,j

Ajivjvi since Aij = −Aji and vivj = vjvi,

= −(Av) · v by definition of (Av) · v,

= 0. (E.6)

For this reason, we express d as the sum of a symmetric tensor e and an antisymmetric
tensor f , with entries defined as follows:

eij =
1

2
(dij + dji) (E.7a)

fij =
1

2
(dij − dji) . (E.7b)

This allows us to rewrite eq. (E.5) in terms of the symmetric deformation tensor e:

|∂r′|
|∂r| = 1 + (eδ̂r) · δ̂r. (E.8)

We remind the reader that the above expression is only true in the limit that the deforma-
tion is small. Outside this limit, one must use the full expression for the relative distance
derivative |∂r

′|
|∂r| given in eq. (E.3), which includes a contribution from the antisymmetric

deformation component. However the small deformation limit is widely used. Accord-
ingly the symmetric deformation tensor e is typically referred to as the STRAIN TENSOR,
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owing to the fact that it is typically the part of the deformation tensor associated with
the changes in distance between nearby points. Similarly, the antisymmetric tensor f

is sometimes referred to as the LOCAL ROTATION TENSOR, since its first order effect is a
simple rotation of the local coordinate system about the point where δr = 0.

E.3 Decomposing the Strain Tensor

There are a number of useful ways to further decompose the strain tensor, each of yield
an important insight. One classic decomposition is to view the strain as the sum of a
purely diagonal NORMAL STRAIN TENSOR— which describes the simple length dilation
factor along each coordinate— and purely off-diagonal SHEAR STRAIN TENSOR— which
describe the lateral displacement factors as one moves along each coordinate. Another
classic decomposition is to view the strain as the product of a basis transformation tensor,
and a purely diagonal, normal strain tensor, which emphasizes the fact that there always
exists a— possibly non-orthogonal— coordinate system in which there is no shear strain.
Finally, the decomposition we are most interested in is to view the strain as the sum of
a MEAN DILATION TENSOR— which replaces the length dilation factor along each coor-
dinate with the mean length dilation factor— and a STRAIN DEVIATION TENSOR— which
adjusts the length dilation factors to their correct values and adds shear strain. We can
express this decomposition as follows:

e =

Mean Dilation Tensor︷ ︸︸ ︷
exx + eyy + ezz

3
I +

Strain Deviation Tensor︷ ︸︸ ︷(
e− exx + eyy + ezz

3
I

)
. (E.9)

The idea behind this decomposition is very simply that it puts the strain trace informa-
tion into a single subtensor— the mean dilation tensor— and bundles all information that
is not the strain trace into the other subtensor— the strain deviation tensor. This is espe-
cially useful in cases where we care most about the strain trace and care much less about the
other components of strain, such as in this thesis where we care most about the volume
dilation effect of strain.

We can show that the volume dilation is equal to the trace of the strain tensor in the small
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deformation limit as follows. First, we note that a rectilinear cuboid volume between r

and r + δr will deform into a parallelepiped between r′ and r′ + δr′. The volume of this
parallelepiped is determined by the projection of the edges of the parallelepiped back on
to the cartesian coordinates. This in turn is determined only by the diagonal components
of the strain tensor. We can therefore express the rate of change of volume due to the
small deformation as follows:

dV ′

dV
=

(1 + exx)δx(1 + eyy)δy(1 + ezz)δz

δxδyδz

=

(
1 + exx + eyy + ezz +O(e2)

)
δxδyδz

δxδyδz
]

≈ 1 + Tr(e). (E.10)

Accordingly, in the small deformation limit the volume dilation is defined by the trace
of the strain tensor. Since the strain deviation tensor has zero trace by definition, it
does not contribute to the volume dilation. Since most of the changes to bandstructure
energy in this thesis are mediated by volume dilation, the physical effect of the strain
deviation tensor is largely neglected in this thesis.
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Appendix F

A General Macroscopic Continuity
Equation

F.1 A Generic Continuity Equation

In this appendix we derive a general macroscopic continuity equation for the quantity
measured by an arbitrary function of crystal momentum ζ(kν). We begin by noting that
the average value of ζ(kν) for carriers at (r, t) is as follows:

〈ζ〉 (r, t) =
1

n(r, t)

∑

ν

∫

BZ
f(kν, r, t)ζ(kν)dk, (F.1)

where n(r, t) =
∑

ν

∫

BZ
f(kν, r, t)dk.

As usual, the subscript ”BZ” implies the integral is over the Brillouin zone, and the term
n(r, t) is the density of carriers. We can define the density of the quantity measured by
ζ(kν) as the product of the average value of ζ(kν) at a point and the local carrier density:

ρζ(r, t) = n(r, t) 〈ζ〉 (r, t). (F.2)

Note that since carrier density and the distribution function are both scalar, 〈ζ〉 and ρζ

285
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must be the same kind of geometric object as ζ(kν); that is, all must be scalar, vector, or
tensor fields. The macroscopic continuity equation for the quantity measured by ζ(kν)

is an equation for the rate of change of the arbitrary density— ∂ρζ
∂t

.1 We can intuitively
partition this rate of change into two distinguishable parts: one part is the net rate that
the arbitrary quantity flows into a unit volume due to the movement of particles—(
∂ρζ
∂t

)
net flow in

— the other part is the net rate the arbitrary quantity is produced inside

a unit volume—
(
∂ρζ
∂t

)
net production

:

∂ρζ
∂t

=

(
∂ρζ
∂t

)

net flow in
+

(
∂ρζ
∂t

)

net production
. (F.3)

The net rate the arbitrary quantity flows into a volume can be defined in terms of a
transport flux of the arbitrary quantity— φζ(r, t). We represent the transport flux using
a boldface variable to acknowledge that in am−D position space, it is a geometric object
with m times more degrees of freedom than the density ρζ(r, t).2 Using this transport
flux and definition of divergence, we can express eq. (F.3) in familiar form of a generic
continuity equation:

∂ρζ
∂t

=

(
∂ρζ
∂t

)

net production
−∇r ·φζ. (F.4)

F.2 The Semiclassical Transport Flux

The transport flux φζ of some arbitrary tensor quantity ζ is geometric object defined
such that δAn̂ · φζ will yield the rate the arbitrary quantity crosses an oriented flat
surface of area δA and unit normal vector n̂. This quantity is commonly understood
when the quantity transported is a simple scalar, and it generalizes simply to the case
of vectors and tensor by noting that the projection along each dimension of the basis is
a scalar field that has an associated transport flux vector.

In order to determine an expression for the transport flux, it helps to first notice that
expectation of the rate at which carriers themselves cross the infinitesimal surface defines

1This rate must also be the same type of geometric object as ζ(kν).
2By this we mean the following: when ρζ is a scalar field, φζ is an m × 1 or 1 ×m vector field; when

ρζ is an n× 1 vector field, φζ is an n×m or nm× 1 tensor field; et cetera.
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φ1, or the transport flux associated with ζ(kν) = 1:

δAn̂ ·φ1 = δA
∑

ν

∫

BZ
(n̂ · v) fdk. (F.5)

The rate at which an arbitrary quantity crosses the infinitesimal surface must simply be
defined by multiplying the particle density crossing at each kν by the function ζ(kν):

δAn̂ ·φζ = δA
∑

ν

∫

BZ
(n̂ · v) ζfdk. (F.6)

We are now in a position to define transport flux directly, but in order to do so, we
must make use of the TENSOR PRODUCT. The tensor product is a way of combining two
vectors into a product without any reduction in the total number of degrees of freedom.
The tensor product is primarily useful to us because it allows us to ”wait” to preform
a dot product operation if it is not convenient to do so, by using the relation (a · b)c =

a · (b⊗c).3 In eq. (F.7), this manipulation allows us to take the arbitrary constant normal
vector n̂ outside the integral, and so allows us to write down an explicit definition of
the arbitrary transport flux:

δAn̂ ·φζ = δAn̂ ·
∫

BZ
(v ⊗ ζ) fdk,

therefore φζ = n 〈v ⊗ ζ〉 . (F.7)

F.3 The Semiclassical Production Rate

We now turn our attention to the net production rate term of eq. (F.4). This is associated
with the— possibly negative— rate the arbitrary quantity is produced inside a unit
volume which is not due to the divergence of the arbitrary transport flux. Since the measure
ζ(kν) is purely a function of kν, the contribution to the arbitrary quantity associated
with a local fictitious Bloch particle will only change if the Bloch particle changes eigenstate.

3Technically, the dot operator on the right hand side of this identity no longer represents the dot
product, but its generalization— the CONTRACTED TENSOR PRODUCT. We also note that the contracted
tensor product is equivalent to a simple matrix multiplication for tensors of order two, and so is often
represented without any dot symbol at all.
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As discussed in the Background chapter, there are two broad processes which cause lo-
cal transitions of probability density from one Bloch eigenstate to another: scattering by
non-reproducible perturbation force fields, and Bloch law acceleration by reproducibly
ordered "external" perturbation force fields:

(
∂ρζ
∂t

)

net production
=

(
∂ρζ
∂t

)

external
+

(
∂ρζ
∂t

)

scat
. (F.8)

While we largely ignore field assisted interband tunnelling in this thesis, we note that
if we wanted to incorporated it, we would incorporate it into the scattering term for con-
venience. Accordingly, the external force term is always mediated entirely by a deter-
ministic change to k and is not associated with a production rate of n. Therefore, if we
expand ρζ using eq. (F.2), we can move n outside the derivative:

(
∂ρζ
∂t

)

external
=

(
∂n 〈ζ〉
∂t

)

external

= n

〈(
∂ζ

∂t

)

external

〉
. (F.9)

Since the effect of the external field on ζ is mediated entirely by the effect of the field on
k, we use the chain rule to separate out this dependence. Additionally, we again make
use of the tensor product in order to delay the evaluation of the dot product:

(
∂ρζ
∂t

)

external
= n

〈((
∂k

∂t

)

external
· ∇k

)
ζ

〉

= n

〈(
∂k

∂t

)

external
· (∇k ⊗ ζ)

〉
. (F.10)

Under the assumption that we can localize the carriers to a region of the device in which
the force is due to an approximately uniform electric field, we can invoke eq. (2.2)—
Newton’s law for Bloch states— to yield an expression for

(
∂k
∂t

)
external. Gathering this

together with we can write down an expression for the production rate of ρζ due to an
external force F(r, t):

(
∂ρζ
∂t

)

external
=
n

~
F · 〈∇k ⊗ ζ〉 . (F.11)
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We are now in a position to rewrite the continuity equation given eq. (F.4) for the
semiclassical regime described in the Background chapter, by substituting eq. (F.7) and
eq. (F.11), to yield the macroscopic continuity equation for the density associated with
ζ(kν):

∂ρζ
∂t

=

(
∂ρζ
∂t

)

scat
−∇r ·

(
n 〈v ⊗ ζ〉

)
+
n

~
F · 〈∇k ⊗ ζ〉 . (F.12)
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Appendix G

Maximizing Entropy When Tail Density
is Limited

G.1 Maximum Entropy in Classical Statistical Mechanics

The MAXIMUM ENTROPY OCCUPATION FUNCTION1 is defined by the most probable occupa-
tion rate of any single carrier state, under the condition that all accessible many-particle
states in a small volume ∆V of our device are assumed to be equally probable. A mi-
crostate is ACCESSIBLE if it does not violate the ESTABLISHED CONSTRAINTS, which typ-
ically take the form of various known expected values of the carrier system. In this
appendix, we investigate the entropy maximization subject to established constraints
defined as follows for a small region of volume ∆V in our device:

• the expected number of carriers is n∆V ,

• the expected total kinetic energy is w∆V , and

• the expected number of carriers with energy greater than ε is less than or equal to

1We refer to the distribution function here as an occupation function for the simple reason that it does
not possess spatial dependence in this appendix.
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nlim(ε)∆V , where nlim(ε) is a known function of kinetic energy.

It is not obvious how to determine whether a given microstate in the volume ∆V vi-
olates the established constraints. However, the fact that the maximum entropy occu-
pation function is the most probable single state occupation rate allows a transformation
that avoids this problem. Suppose we consider a large volume V , defined to contain V

∆V

independent copies of the original system. The most probable single carrier occupation
function in the large volume occurs, by definition, when the single carrier occupation
functions in each of the V

∆V
original systems are the most probable single carrier occu-

pation functions. Thus, the maximum entropy occupation function associated with the
actual system is identical to the maximum entropy occupation function associated with
V

∆V
independent copies of the system. Accordingly, we will investigate the maximum

entropy of the enlarged system of volume V .

If we take V →∞, the accessible states in the enlarged system become clear. By the law
of large numbers, almost all accessible microstates of the enlarged system must have
densities that tend toward precisely n, energy densities that tend toward precisely w,
and an upper limit on the density of particles above ε that must tend toward precisely
nlim(ε).

To find the maximum entropy occupation function, it helps to isolate a single carrier state
from the rest of the distribution, since the occupation function defines the occupation
rate of any single carrier state. Suppose we do so, and partition a single carrier stateA of
kinetic energy εA from all other states in the volume V . If we assume that neither filling
this subsystem with a carrier, nor not filling this subsystem with a carrier violates the
established constraints, then there are two accessible "nanostates" for our single state
"nanosystem": occupied and unoccupied.2

If the single state is occupied, then the microstates associated with the all other states
in the volume must have 1 less carrier, and εA less total kinetic energy than if the parti-
tioned single state was unoccupied. As such, if fA is the occupation rate of state A, the
system associated with the remaining particles— which we will refer to as the MAJOR

2We use the term MICROSTATE to refer to the precise many particle state of a system expected to have
a large number of particles. We use the NANOSTATE to refer to the precise state of a special system—
referred to as a NANOSYSTEM— where the only possible microstates are occupied or unoccupied.
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SYSTEM— is expected to have fA less carriers, and fAεA less energy than if the state A is
unoccupied. Accordingly the rate of change of the total number of particles of the major
system— Nnot A— and the total energy of the major system— εnot A— with respect to the
occupation rate of state A— fA— are given respectively as follows:

∂Nnot A

∂fA
= 1, (G.1a)

and
∂εnot A

∂fA
= εA. (G.1b)

A change in the total carriers or total energy of the major system will, in general, change
the entropy of this system since it changes the set of possible microstates of the system.
Our aim is to find the fA that maximizes the entropy of the total system, which is the sum
of the entropy of the nanosystem—SA— and the entropy of the major system—SnotA. Since
entropy is a concave functional [23], this will occur at the point where the derivative of
the total entropy with respect to fA vanishes, or equivalently at:

∂SA
∂fA

= −∂Snot A

∂fA
(G.2)

We assume that for the major system, the rate of change of entropy with respect to a change
in total particle number, or a change in total energy over the range fA = [0, 1] can be consid-
ered constant. This is because the total number of particles or the total energy in system
of all other states changes by an infinitesimal fraction, since the volume V can be arbi-
trarily large. We will name the constants describing the rate of change of the entropy
of the major system— Snot A— with respect to the number of particles in the major system—
Nnot A— and the total kinetic energy of the major system— εnot A— as αε and β respectively:

∂Snot A

∂Nnot A
= αε, (G.2a)

and
∂Snot A

∂εnot A
= β. (G.2b)

Accordingly the rate of change of entropy of the major system with respect to a change
in the occupation rate of state A— ∂SnotA

∂fA
— is given as follows:
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∂Snot A

∂fA
=
∂Snot A

∂Nnot A

∂Nnot A

∂fA
+
∂Snot A

∂εnot A

∂εnot A

∂fA

= −αε − βεA. (G.3)

To solve eq. (G.2) we now only need to determine the rate of change of entropy of the
partitioned nanosystem with respect to a change in fA. The entropy of such a nanosys-
tem with respect to a change in occupation function can be calculated trivially from
first principles. In general, the entropy S associated with a set of microstates— each of
which is indexed by an integer i and has a probability of occupation pi— is given by the
following expression3 [23]:

S =
M∑

i

pi ln pi. (G.4)

The nanosystem associated with A has two micro/nanostates: a full nanostate asso-
ciated with probability pfull = fA and an empty nanostate associated with probability
pempty = 1− fA. Accordingly, its entropy is defined as follows:

SA = (1− fA) ln(1− fA) + fA ln fA. (G.5)

From here it is simple to calculate the rate of change of entropy of the nanosystem with
respect to the occupation rate:

∂SA
∂fA

= − ∂

∂fA

(
(1− fA) ln(1− fA) + fA ln fA

)

= ln
1− fA
fA

. (G.6)

As stated earlier, fA is the maximum entropy occupation function if and only if the rate
of change of total entropy with respect to fA vanishes, which leads to eq. (G.2). By
substituting eq. (G.3) and eq. (G.6) into this equation, we can find an expression for the
occupation rate of the single carrier state A.

3We use the dimensionless form of entropy, which differs from the energetic form of entropy by the
Boltzmann factor.
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ln
1− fA
fA

= αε + βεA,

therefore fA =
1

1 + eαε+βεA
. (G.7)

This argument has yielded the familiar Fermi-Dirac occupation function, which perhaps
would be more easily recognized if we were to rename the constants as αε = − µε

kT
and

β = 1
kT

. We will not do so as we wish to retain the emphasis on the fact that these
constants are just the rates of change of the (dimensionless) entropy of a very large system with
respect to a small perturbation of the total particle number or the total energy of the system.

The Fermi-Dirac occupation function has been derived in this case because we have as-
sumed that there are always two accessible "nanostates" associated with a single carrier
state A that has been partitioned from all other carrier states, and as such, we have not yet
enforced our condition on the upper limit for the expected number of carriers above an energy ε.
Thus the occupation function we have derived is not the maximum entropy occupation
function for any single carrier state but only for those partitioned single carrier states in
which both the occupied state and the unoccupied state are accessible.

G.2 The Maximum Entropy Occupation Function Ansatz

We must alter the Fermi-Dirac expression in order to account for cases where an iso-
lated nanosystem A does not have two accessible nanostates, due the upper limit on the
expected number of carriers above a given energy. We propose doing this in a simple,
intuitive manner. Essentially, we note that if the Fermi-Dirac occupation rate does not
violate the upper limit on particle density, then it appears to be the maximum entropy
rate. And if it is does violate the upper limit, then the occupation function should get as
close to this ideal of the Fermi-Dirac occupation rate as is possible without breaking the
limit.

In order to this notion of "as close as possible", we introduce the occupation function
flim(ε), which is defined as being equal to the negative right hand derivative of nlim(ε),
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divided by the density of states D(ε):

flim(ε) = − 1

D(ε)

dnlim

dε+

∣∣∣
ε

(G.8)

The relevance of the flim(ε) is more concretely illustrated when nlim(ε) is written in terms
of flim(ε), which shows it is a kind of partner probability density to the cumulative
density described by nlim(ε):

nlim(ε) =

∫ ∞

ε

flim(ε′)D(ε′)dε′ (G.9)

It is also useful to define a quantity nspare(ε), which is positive if and only if the particle
density above ε associated with the maximum entropy distribution function is below
limit imposed by nlim(ε):

nspare(ε) =

∫ ∞

ε

(
flim(ε′)− f(ε′)

)
D(ε′)dε′. (G.10)

With this, we can propose a simple ansatz for the maximum entropy occupation func-
tion. It is simply equal to the Fermi-Dirac occupation function whenever nspare is pos-
itive, and when nspare is not positive, it is equal to the closest f can get to fF-D, which
is simply the Fermi-Dirac occupation function fF-D if fF-D < flim, and the upper limit
occupation function flim otherwise:

f(ε) =





1
1+eαε+βε for ε ∈ eF-D =

{
ε
∣∣∣
(
nspare(ε) > 0

)
∨
(
fF-D < flim

)}
,

flim(ε) for ε ∈ elim =
{
ε
∣∣∣
(
nspare(ε) ≤ 0

)
∧
(
fF-D ≥ flim

)}
.

(G.11)

Here eF-D and elim are names for the domains where the maximum entropy occupation
function is equal to the Fermi-Dirac occupation function and the upper limit occupation
function respectively. While this is an intuitive ansatz, we cannot be confident that it
actually maximizes total entropy subject to its established constraints. The reason is
simple: by choosing an occupation rate of flim at some energy ε, we ensure that on the
continuous domain of connected lower energies where flim < fF-D, we also cannot reach
fF-D. Accordingly, there may be cases where it is entropically beneficial to undershoot
flim at some energy so that occupation rates at lower energies can overshoot it.
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The investigation of whether this is the case is actually made quite simple by the fact
that the entropy is a concave functional [23]. This means that for any given occupation
function g(ε) that satisfies the known statistics, there exists a sequence of small per-
turbations which transform g(ε) to the maximum entropy occupation function, where
each perturbation increases the total entropy and maintains the established constraints.4

Accordingly, it is sufficient to determine conditions under which no energy and upper
limit conserving redistribution of particles can be made that increases entropy.

We can express an arbitrary, small particle and energy preserving transformation to
the maximum entropy occupation function as the sum of transfers of c particles (where
0 < c ≤ 1) between any two single particle states at εi and εf , that are energy bal-
anced by any small redistribution of the occupation function in the domain eF-D that
changes its energy by −c(εf − εi). The reason we can leave the latter redistribution un-
specified is that all such transformations result in the same change in entropy equal to
−c(εf − εi)β. Since the entropy is extensive, the total entropy change associated with
associated with the arbitrary, small transformation is the sum of the entropy change
associated with each transformation. Accordingly, the entropy change associated with
an arbitrary, small particle and energy preserving transformation can only be positive
if the entropy change associated with one of these specified small particle and energy
preserving transformations.

Suppose we express the entire occupation function ansatz in a Fermi-Dirac form:

f(ε) =
1

1 + eαeff
ε (ε)+βε

. (G.12)

In this form, αeff
ε (ε) is now the constant αε over the domain eF-D, and a function of energy

bounded below by αε on the domain elim. We can now write down the rate of change of
entropy due to the two-state, energy balanced tranformation described, with respect to
the transformation scale c:

4This statement is true because the subspace of occupation functions that satisfy the known statistics
is (path) connected.
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∂S

∂c
=

remove c particles from state at εi︷ ︸︸ ︷
−
(
αeff
ε (εi) + βεi

)
+

add c particles from state at εf︷ ︸︸ ︷(
αeff
ε (εf ) + βεf

)
+

remove energy change from eF-D︷ ︸︸ ︷
−
(
εf − εi

)
β

= αeff
ε (εf )− αeff

ε (εi). (G.13)

We now make the following observations:

• If εi ∈ eF-D and εf ∈ eF-D, then there is no entropy change since αeff
ε (εf ) = αeff

ε (εi) =

αε.

• If εi ∈ eF-D and εf ∈ elim, then the transformation will break the upper limit for the
number of particles above εf − δε.

• If εi ∈ elim and εf ∈ eF-D, then the entropy change is less than or equal to zero since
αeff
ε (εf ) = αε ≤ αeff

ε (εi).

• If εi ∈ elim and εf ∈ elim, and εf > εi, then the transformation will break the upper
limit for the number of particles above εf − δε.

• If εi ∈ elim and εf ∈ elim, and εf ≤ εi, then the entropy change is positive if and only if
αε(εf ) > αε(εi).

Thus given the concavity of the entropy functional, we now have proved that, if the
occupation function for a given particle density, energy density, and upper limit on
tail density is of the form given in eq. (G.11), and αeff

ε (ε) as derived from eq. (G.12)
is a monotonically increasing function, then the occupation function is the maximum
entropy occupation function.

As a quick aside, it may help the reader to consider this thought experiment which is
yields some intuition into the proof we have outlined. Suppose every energy is associ-
ated with seperate reservoir of particles in thermal equilibrium with all other reservoirs
at some temperature T = 1

kβ
. Suppose each reservoir has its own chemical potential,

equal to µeff
ε (ε) = −kTαeff

ε (ε). And suppose all the states are connected by pipes allow-
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ing particle transfer, however the pipes connected to energies in elim contain one-way
valves that only allow net particle transfer to lower energy. If we leave such a set up to
reach equilibrium, there will be particle transfer until such time that the chemical poten-
tial in all the states of eF-D is the same, and is greater of equal to the chemical potential
in all the states of elim. In turn, throughout elim, there will be particle transfer until the
chemical potential is a montonically decreasing function of energy, at which point par-
ticle transfer will stop. Such an end state is thus an equilibrium, or maximum entropy,
state.

Returning to our main point, we note the fact that αeff
ε (ε) is a monotonically increasing

function implies that there exists a single crossover energy ε∗— possibly equal to zero
or infinity— such that eF-D = [0, ε∗) and elim = [ε∗,∞). Accordingly, we can rewrite
eq. (G.14) as follows:

f(ε) =





1
1+eαε+βε ε < ε∗,

flim(ε) ε ≥ ε∗.
(G.14)

In this thesis, we are interested in the case where the distribution is a CHEMICALLY CON-

STRAINED QUASI-EQUILIBRIUM distribution, which simply means that flim(ε) above ε∗ is
a lattice temperature equilibrium distribution with a chemical potential µmax

ε . So finally, we
note as a short corollary that for this case, so long as β ≤ 1

kTL
, αeff

ε (ε) will be a mono-
tonically increasing function of energy and the form given in eq. (G.14) will be a max-
imum entropy occupation function. Accordingly, the Chemically Constrained Quasi-
Equilibrium fCCE occupation function is defined as follows:

fCCE(ε) =





1
1+eαε+βε ε < ε∗,

1

1+e
ε−µmax

ε
kTL

ε ≥ ε∗.
(G.15)

In the non-degenerate limit, this simplifies to the following:

f
non-degenerate
CCE (ε) =





e−(αε+βε) ε < ε∗,

e
− ε−µ

max
ε

kTL ε ≥ ε∗.
(G.16)

In both the degenerate and non-degenerate case, the Chemically Constrained Quasi-
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Equilibrium occupation function must be continuous at the KNEE ENERGY ε∗, implying
that the following relation holds:

αε =
ε∗ − µmax

ε

kTL
− βε∗. (G.17)



Glossary

a Lattice constant
αε Slotboom alpha
αH Thermodynamic alpha
âqη Annihilation operator for phonon at qη

â+
qη Creation operator for phonon at qη

asph Lattice radius for a sphere the volume of unit cell
β Thermodynamic beta
βS Inverse screening length∫
BZ Integral over Brillouin Zone
D Density of states
D Diffusion parameter
Dε Diffusion parameter at single kinetic energy

∆η,ν Isotropic coupling constant (acoustic style)
(∆q)η,ν Isotropic coupling constant (optical style)〈

∆εpho
〉η Average energy exchanged with phonons in band η
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e Fundamental charge
e Strain tensor
E Electric field vector
ε Permittivity
ε∗ Knee Energy
εcut Cutoff Energy
εthr
i Impact ionization threshold energy

εgap Band gap
εC Conduction band potential energy
ε Kinetic Energy

εkν Kinetic Energy of carrier at kν

F External force
f Distribution function
fA Antisymmetric distribution function
fε Kinetic energy dependent distribution function

fequilibrium Thermal equilibrium distribution
fF-D Fermi–Dirac distribution
fH Total energy dependent distribution function
fM-B Maxwell–Boltzmann distribution
fS Symmetric distribution function

fS/es Symmetric perturbation to energy dependent distribution func-
tion

g State multiplicity/degeneracy
G Reciprocal lattice vector
Γ Number of states per unit volume of k-space

G∗ Reciprocal lattice vector which makes vector sum finish in first
Brillouin zone

H Total energy
Ĥ Hamiltonian operator
Ĥr Hamiltonian as a function of carrier position
Ĥq Fourier component of Hamiltonian as a function of carrier posi-

tion
Ĥcar–par Carrier–partner interaction Hamiltonian
Ĥpseudo Pseudo-Hamiltonian
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I G Overlap integral
I mod Modified overlap integral

j Carrier flux density
jε Carrier flux density per unit energy
k Crystal momentum/wavevector of carrier Bloch state
K Total initial carrier momentum minus total final carrier momen-

tum
µ Band index of secondary carrier Bloch state
µε Slotboom chemical potential (max Slotboom chemical potential

of stunted electron population in Results II)
µH Thermodynamic chemical potential (max thermodynamic chem-

ical potential of stunted electron population in Results II)
n Electron density
ν Band index of carrier Bloch state

nB-E Bose-Einstein distribution function
N i

dop Density of ith dopant field ]
nqη Numder of phonons occupying qη mode
ω Frequency (radians)
Ω Volume of unit cell

ωqη Frequency of qη phonons
ωmax
η Maximum frequency of phonons in η band
p Hole density
p Crystal momentum/wavevector of secondary carrier Bloch state
φ Electric potential

ϕ
pseudo
kν Pseudoeigenstate at kν

ψkν Bloch wavefunction at kν

q Crystal momentum of phonon mode
r Carrier position

R Lattice vector
ρ Density (charge density normally, mass density if in reference to

phonon scattering rate)
Ri Rate constant for ith impact ionization threshold
ρi Rho functional equivalent to integral weighted by εi over all kν

states between two given energies
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S Scattering operator with all partners
S Energy flux density

spar Scattering operator with particular partner, ignoring energy con-
servation delta function

spar Scattering partner state
Spar Scattering operator with particular partner
σε Sigma functional equivalent to integral over constant energy sur-

face
t Time
T Temperature
TL Lattice temperature
τii Impact ionization time

τ ηpho Average scattering time of phonons in band η

τ
equilibrium
relax Thermal equilibrium relaxation time

τrelax Elastic equilibrium relaxation time
τscat Scattering time
τ v Velocity relaxation time
ukν Periodic part of Bloch state at kν

ûqη Displacement vector field operator associated with phonon state
qη

v Velocity of carrier
V Volume

V̂pseudo Pseudopotential operator
Ṽpseudo Fourier components of pseudopotential

w Energy density
X Generic variable
ξη Phonon polarization vector
Ξ Deformation potential

Zi
dop Number of dopant protons relative to lattice ions for ith dopant

field
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