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Abstract 

 
To claim and understand the uniqueness of any physical, chemical, or biological 

system, it is necessary to use the same set of approaches, tools, and analyses to probe 

other systems. Accordingly, to assess whether and how people are unique in their 

perceptual, cognitive, and behavioural skills and algorithms when making decisions, a 

parallel set of studies is required to examine how human and non-human animals 

would respond. This thesis provides a structured experimental analysis of each of the 

recognition system’s components; perception, cognition, and response; in the context 

of avian brood parasitism. The study species are several potential hosts of brood 

parasitic birds but an explicit aim of this work to provide a reference for future studies 

on how to probe the perceptual, cognitive, and response traits in non-verbal 

experimental paradigms, including non-hosts and working with people.  

 

Hosts of avian brood parasites represent a powerful experimental system in which to 

study well defined and evolutionarily relevant behavioural decision: brood parasitic 

birds lay their eggs in other nests and the costs of parental care and reduced 

reproductive success are borne by the hosts. Hosts, in turn, may reject costly 

parasitism by ejecting foreign progeny or deserting parasitized nests. The cues used 

by hosts to perceive, recognize, discriminate, and respond to foreign eggs have been 

well studied in a variety of avian host-parasite systems. How, in turn, the hosts’ 

sensory and cognitive processes receive, sort through, and determine the behavioural 

responses to these cues, remains mostly unclear. 
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The main chapters of the thesis set out to describe the results of two unpublished 

studies on hosts’ recognition systems. The first study uses artificial colour 

manipulation of hosts’ own eggs to determine whether specific colours are perceived 

similarly to trigger rejection behaviours, irrespective of the presence of hosts’ own 

eggs in the nest. The results suggest that foreign egg colours are perceived similarly 

and rejection is triggered through comparisons with internal filters, or recognition 

templates, even when hosts’ own eggs are not present. The second study also uses 

artificial colour manipulation to assess the hosts’ specific behaviours to foreign eggs 

and reveals that relative patterns of egg ejection and nest desertion are indicative of 

hosts’ responses to foreign eggs.  

 

These results provide detailed new information for our understanding of parasitic 

birds’ impacts on hosts’ perceptual processes. It is also the aim of this thesis that these 

studies may also be used as starting points towards a sample set of methodological 

and analytical tools to determine whether and how other species, including people, 

may use similar perceptual, cognitive, and behavioural decision rules to detect foreign 

items in odd-egg-out paradigms. 
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 Background and Overview 

 

Brood parasitic birds deposit their eggs in the nests of other individuals or species, 

sparing the cost of providing care for their own young (Croston & Hauber, 2010). The 

result is often a coevolutionary arms race of sophisticated host defences to circumvent 

or reject parasitism and escalating steps of parasite breaches of host defences 

(Rothstein & Robinson, 1998; Lyon & Eadie, 2004). Brood parasitism may be 

obligate, with all eggs are laid in others’ nests, or facultative, with some own eggs 

incubated and others in foreign nests (Davies, 2000). Interspecific brood parasitism 

involves the laying of eggs in other species’ nests, whereas in intraspecific parasitism 

eggs are laid in nests of conspecifics (Davies, 2000).  

 

Irrespective of the type and mechanism of parasitism, theory predicts that hosts 

should reduce or eliminate the many costs of parasitism to increase the benefits of 

parental care for own genetic progeny (Servedio & Hauber, 2006). In turn, some 

parasites trick hosts by producing perceptually mimetic eggs (Avilés, 2008), laid into 

a clutch of several of the hosts’ own eggs during laying stage (Moskát & Hauber, 

2007), with their thicker eggshells making it more difficult or even impossible to 

puncture and eject (Antonov et al., 2009). The sensory, perceptual, and behavioural 

responses triggered by parasitic eggs therefore set the stage for testing each of the 

SENSORY, COGNITIVE, and BEHAVIOURAL limits of the hosts’ recognition 

systems (see Discussion and Implications chapter). This thesis sets out to 

experimentally address each component of the tripartite recognition systems approach 

(sensu Sherman et al., 1997, Fig. B.1).  
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Figure B.1. Schematics of the recognition systems approach, as outlined by Sherman, 

Reeve, and Pfennig 1997.  

 

The structure of the thesis includes this conceptual introductory chapter, which is my 

own work, revised following comments on an earlier draft on this and all other 

chapters from my M.Sc. adviser at the School of Psychology, Victoria University of 

Wellington, J. Low. This is followed by Chapter 1, which describes a complex set of 

experiments whose aim was to understand the sensory basis of egg rejection by 

applying the same set of colour manipulations to a single, several, or all eggs in the 

clutch of a rejecter host. The central hypothesis of this study was that sensory cues for 

egg rejection include the perceived difference between own and foreign eggs, 

irrespective of whether own eggs are available for inspection or need to be 

remembered. The prediction of this hypothesis was that eggs with the same colour 

manipulations would be rejected at relatively the same rates, irrespective of the 

number of eggs treated in the clutch.  

 

The second focus of the experiment was to test the hypothesis that the cognitive basis 

of egg rejection involved self-referencing through the concurrent inspection of the 

hosts’ own and foreign eggs. This hypothesis was again tested from the data yielded 
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by the manipulation of different numbers of host eggs with colour treatments, 

including clutches where all host eggs were dyed. The analytical approach to the data 

from this study allowed the testing of both of these types of hypotheses in chapter 1.  

 

Specifically, this study’s overall premise was that many hosts of avian brood parasites 

have evolved egg discrimination to reduce the cost of parasitism (Davies, 2000). 

Great reed warblers (Acrocephalus arundinaceus) in Hungary are frequently 

parasitized by common cuckoos (Cuculus canorus), and use several cognitive 

mechanisms to accurately reject a foreign egg in a clutch of own eggs, even when that 

egg is closely mimetic (Hauber et al., 2006). Yet, antiparasite defences are less 

effective when the host clutch is parasitized by multiple cuckoo eggs, suggesting a 

role for discordancy and/or self-referent phenotype matching of own eggs against 

foreign eggs (Moskát et al., 2009). The experiments here consisted of three 

treatments, dying hosts’ own eggs with one of several artificial colours so that 

clutches contained (a) 1 dyed egg and 4 unmanipulated own eggs, (b) 3 differently 

dyed eggs and 2 own eggs, and (c) 5 differently dyed eggs. Rejection rates of dyed 

eggs in treatment (a) varied widely for the different colours (7-77%). Critically, 

however, relative rejection rates of dyed eggs were also consistent between the eggs 

of the different artificial colours applied, and for some eggs, rejection rates exceeded 

responses to control eggs. These results support the hypothesis that the sensory basis 

of egg rejection of own and foreign eggs is the perceived difference between 

acceptable and unacceptable phenotypes. In support of both a discordancy and self-

referencing based cognitive mechanisms to identify and recognize foreign eggs, 

rejection rates were lower in treatments (b) and (c). These results indicate that in the 

absence of discordancy or self-referencing, these hosts may rely on comparisons of 
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foreign eggs against a recognition template. The implication is that simultaneous 

comparisons of own and foreign eggs are not always required for the perceptual and 

cognitive processes leading to behavioural rejection of eggs. My contribution to the 

study was to conceive and design the complex set of experiments to complete the 

study, to fund and participate in the field work and analyses, and to produce a write-

up suitable to be submitted for peer-review in the Journal of Comparative 

Psychology, as corresponding author together with co-authors M. Bán, C. Moskát, and 

Z. Barta. 

 

 Chapter 2, in turn, is based on a study which addresses the behavioural manifestation 

of egg rejection decisions in response to foreign egg colours in rejecter hosts’ nests. 

Specifically, I designed a set of experiments which utilized the availability of two 

different rejecter species coexisting in sympatry within the New Zealand landscape, 

the introduced Turdus thrushes of the European blackbird (T. merula) and song thrush 

(T. philomelos) (Evans et al., 2005). The study takes advantage of past theoretical 

work on life history theory predicting that the responses of hosts to reject avian brood 

parasitism will be shaped by the extent of costs, which in turn is a function of both 

parasitism rate and the virulence of the parasite (Hauber, 2003). Accordingly, suitable 

hosts of more virulent nestmate-evictor parasites should eject parasite eggs, 

irrespective of clutch size, while hosts of less virulent nestmate-tolerant parasites, 

with smaller clutch sizes, should desert parasitized clutches (Servedio & Hauber, 

2006). These contrasting predictions can therefore be used to evaluate the extent of 

brood parasitism’s cost under which egg rejection behaviours in Turdus thrushes may 

have evolved.  

 



  11 

For this study, the egg rejection behaviours of European blackbirds, T. merula, and 

song thrush, T. philomelos, in their introduced range in New Zealand, were 

experimentally induced by manipulating the colour of one of the birds’ own eggs. The 

results showed that eggs dyed all black were more often rejected than eggs dyed with 

20 black spots but with the background colour left visible. Rejections of all black eggs 

occurred mainly through nest desertion in blackbirds, which have smaller clutch sizes, 

and mainly through egg ejection in song thrush, which have larger clutch sizes. The 

results demonstrate that the use of control manipulations and the detailed assessment 

of the behavioural outcomes of hosts’ responses to experimental manipulations are 

critical. This is because both, or either, nest desertion and egg rejection can be 

experimentally induced as the response behaviours of these hosts to the presence of 

foreign egg colours in their nests. My contribution consisted of the full conception of 

the study, including the application of published theory to generate novel predictions 

for these two species regarding their behavioural outcomes in response to 

experimental parasitism. I conducted the largest block of the field experiments, 

analyzed all of the resulting data set, and produced drafts of the resulting manuscript 

and thesis chapter, to be expanded with the addition of a new set of data from a 

common cuckoo host in Finland, the common redstart (Phoenicurus phoenicurus), to 

increase phylogenetic breadth for comparative analyses. I will submit this manuscript 

as first author to the comparative psychological journal Behavioural Processes, with 

co-authors P. Samaš, M. Anderson, T. Grim, J. Rutila, P. Cassey, and J. Low. 

 

The final section of the thesis overviews the conceptual, methodological, and 

experimental benefits of applying the recognition systems approach in studying host-

parasite interactions, and will form the basis of a first-authored, invited, peer-refereed 
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manuscript, co-authored with C. Moskát and J. Low, to be submitted to a special issue 

of the journal Avian Biology Reviews. This section addresses the possibility that the 

experimental tool sets of avian host-parasite research may be applicable to several 

other fields of experimental psychology, both in research and in teaching. As such, the 

aim of this final section is to illustrate a set of experimental scenarios, questions, and 

predictions to probe animal and human minds, for example through class-room 

applicable, hands-on, computer-screen based experiments. These experiments may 

then be used to illustrate both the cognitive conclusions and the powerful hypothesis-

testing implications that can be drawn from concurrently designed and parallel-run 

experimental designs, providing a novel relevance of avian host-parasite research for 

studies of general, non-host including human, dimensions of animal cognitive 

complexity.   
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Chapter 1: 

Testing alternative perceptual and cognitive mechanisms to reject brood 

parasitism in the presence and absence of hosts’ own eggs 

 

Obligate avian brood parasites lay their eggs into the nests of other bird species 

(Davies, 2000), relying on hosts to incubate foreign eggs and to provision parasitic 

nestlings (Payne, 2005). The benefits and the costs of brood parasitism to elicit 

parental care for genetically unrelated young represent an important evolutionary 

selection pressure, so that, respectively, typical avian brood parasites show 

morphological and behavioural adaptations to exploit hosts, and these hosts often 

show antiparasite adaptations to reduce the costs of parasitism (Dawkins & Krebs, 

1979: Krüger, 2007; Rothstein & Robinson, 1998).  

 

In the co-evolutionary arms race between parasite and host sometimes hosts win, and 

eliminate the parasites altogether (Lovászi & Moskát, 2004). Alternatively, brood 

parasites may have only recently begun to parasitize some host species so that these 

have not yet evolved antiparasite responses (Hauber et al., 2004), or parasitic mimicry 

is so perfect that the hosts’ sensory systems cannot detect foreign eggs or young in the 

nest (Avilés, 2008; Ranjard et al., 2010). In most cases studied, however, the arms 

race is ongoing, and some parasitism attempts succeed against the imperfect defence 

repertoire of hosts’ antiparasite responses (e.g. Davies & Brooke, 1988; Moksnes et 

al., 1993, Moskát & Honza, 2002; Takasu et al., 2009). If some of the hosts possess 

the ability to recognize and reject the parasite egg(s), this may stabilize both the 

population level interactions of the hosts and brood parasites (Barabás et al., 2004; 

Takasu et al., 1993). Accordingly, foreign egg discrimination is typically the most 
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important antiparasite adaptation for many host lineages, although the arms race may 

escalate to include chick discrimination and the evolution of host-parasite chick 

mimicry (Grim, 2006; Langmore et al., 2003, 2011; Schuetz, 2005).     

 

The most extensively studied avian brood parasite is the common cuckoo (hereafter: 

cuckoo), whose females form host-specialized races (‘gentes’), showing egg mimicry 

of a particular host species; in turn, most hosts of the cuckoo show behavioural 

strategies to discriminate and reject imperfect mimic foreign eggs (e.g. Davies & 

Brooke, 1988; Hauber et al., 2006; Moksnes et al., 1991; Røskaft et al., 2002). 

Cuckoo eggs typically resemble host eggs in colour and pattern (Davies & Brooke 

1988, 1989; Moksnes & Røskaft, 1995), but not in egg shape (Bán et al., 2011), to 

generate a sensory image that closely mimics the hosts’ own eggs’ appearance 

(Avilés, 2008: Cassey et al., 2008a). The cognitive basis of behavioural responses to 

brood parasitism has been considered to include both self-referenced and socially 

learned signals of the parasitic eggs’, chicks’, and adults’ phenotypes (Lotem et al., 

2005, Moskát & Hauber, 2007). For example, the discrimination of own versus 

foreign eggs appears to depend on how the avian sensory system receives visual 

information (Avilés, 2008; Cassey et al., 2008a; Spottiswoode & Stevens, 2010; 

Stoddard & Stevens, 2010, 2011) and interprets the differences between the physical 

patterns of coloration and maculation of own versus foreign eggshells (Cherry et al., 

2007; Davies & Brooke, 1989; Honza et al., 2007; Moskát et al., 2008b; Røskaft & 

Moksnes, 1991).  

 

The behavioural process of egg discrimination can be divided into several main parts, 

as defined by recognition systems analyses (Sherman et al., 1997): the perception of 
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the eggshell, the cognitive algorithms involved in recognizing and generating a 

response to perceived cues, and the behavioural responses (if any) to the egg, 

including the cases when hosts recognize the foreign eggs but are unable to pierce or 

grasp, or decide not to reject them (Antonov et al., 2009; Davies et al., 1996; Hauber 

& Sherman, 2001; Moskát & Hauber, 2007; Spottiswoode, 2010). Most studies to 

date have used data on the subjects’ displays of behavioural patterns and outcomes of 

egg rejection to infer perceptual abilities of egg discrimination (Avilés, 2008; Cassey 

et al., 2008a; Spottiswoode & Stevens, 2010; Stoddard & Stevens, 2010, 2011), while 

others used video-observations on duration of inspection, latency to reject, and 

patterns of egg-pecking to reveal that discrimination can take place before or in the 

absence of egg rejection (Antonov et al., 2009; Honza et al., 2007; Soler et al., 2002). 

To integrate perceptual and behavioural processes to identify the perceptual and 

cognitive basis of egg discrimination cues and thresholds requires in depth data 

collection using a combination of artificial parasitism and dynamic experimental 

manipulation of host egg appearance in space and time (Hauber et al., 2006).  

 

Another approach of testing alternative cognitive mechanisms underlying egg 

discrimination by potential hosts is to apply a standard experimental design to a large 

sample of host nests and to concurrently test alternative cognitive decision rules 

contributing to egg rejection (Hauber & Sherman, 2001; Moskát & Hauber, 2007). 

For example, Moskát et al. (2010) demonstrated that a regular host of the cuckoo, the 

great reed warbler (Acrocephalus arundinaceus), relied on both of two different 

cognitive methods of egg recognition. One of these mechanisms was discordancy, 

where hosts reject the egg phenotype in the minority, while accept the egg phenotypes 

in the majority in the clutch (Rothstein, 1974). Accordingly, in the great reed warbler, 
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10% of these hosts ejected even their own eggs (n = 30), when clutches contained four 

parasitic eggs and one own egg (Moskát et al., 2010). The alternative, but not 

mutually exclusive, mechanism was template recognition, whereby birds compared 

each egg against an internal, recognition template of own eggs, probably learned 

shortly after laying (Moskát & Hauber, 2007). The experimental separation of the two 

decision mechanisms required specially designed treatments of several different 

manipulations of dying a single egg, dying all but one egg in the nest, and dying all 

eggs in the nest, conducted concurrently in different host clutches, to test alternative 

cognitive mechanisms of foreign egg recognition (Moskát et al., 2010). The results 

revealed the simultaneous use of multiple cognitive algorithms by these hosts in 

rejecting foreign eggs. This finding was consistent with the hypothesis that multiple 

decision rules working in parallel may be beneficial in reducing recognition errors 

through redundancy (Hauber et al., 2000), including cuckoo egg rejection in those 

host populations, where parasitism rates are high, egg mimicry is good, and clutches 

are exposed to instances of multiple parasitism (Moskát et al., 2009).  

 

Critically, neither discordancy based on clutch learning (Hauber et al., 2004; Hoover 

et al., 2006; Rothstein, 1974, 1975), nor recognition templates (Moskát & Hauber, 

2007; Lotem, 1993; Lotem et al., 1995) need to involve the concurrent inspection and 

comparison of own and foreign eggs at the same time in the nest (sensu: online self-

referenced comparison, Hauber & Sherman, 2001). In turn, when faced with high and 

multiple parasitism rates, where cuckoos replace host eggs with parasitic eggs, hosts’ 

own eggs may frequently be in the minority or altogether absent in host nests during 

the laying or during the incubation period (Hoover, 2003; Rothstein, 1974; Trine, 

2000). As such, hosts faced with high parasitism rates are predicted to recognise 
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foreign eggs in the absence of own eggs in the clutch. Cuckoos parasitize great reed 

warblers in Hungary at unusually high rates, causing more than 50% parasitism rate in 

habitats where trees are available for vantage points for cuckoos (Moskát et al., 

2008a; Røskaft et al., 2002;). A consequence of heavy cuckoo parasitism, timed 

closely during the hosts’ laying cycle (Moskát et al., 2006), is the high frequency of 

multiple parasitism. However, previous work on great reed warblers in Hungary, also 

revealed that the reduced numerical and proportional presence of hosts’ own eggs in a 

naturally or experimentally parasitized clutch is predictive of lower cuckoo egg 

rejection rates in great reed warbler nests, including in natural clutches with multiple 

parasitism (Moskát et al., 2009) and in experimental clutches with multiple variably-

mimetic dyed eggs (Moskát et al., 2008b). Similarly, rates of rejections of natural 

cuckoo eggs decrease with more host eggs in the nest or when own eggs are 

experimentally exchanged with foreign eggs during the hosts’ laying period (Moskát 

& Hauber, 2007). Critically, in all these cases, the relative numbers of own vs. foreign 

eggs were variable, thus implying a potential role for the in situ simultaneous, online 

comparison of own and foreign eggs in the nests (Hauber & Sherman, 2001).  

 

Here a unified set of parallel experimental manipulations was again used, this time to 

specifically test the first two components of a recognition systems based approach to 

the study of avian brood parasitism and egg rejection displays. The aim was to test the 

hypothesis whether perceptual consistency exists regarding the sensory inputs of 

foreign egg coloration relative to acceptable-to-unacceptable egg phenotypes. 

Previous work showed that the decision to accept or to reject inaccurate (moderately) 

mimetic foreign eggs was based on contextual cues: the same egg phenotype (20 spot 

egg) which was overwhelmingly accepted by hosts was in turn overwhelmingly 
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rejected following the introduction of a highly non-mimetic foreign egg (Hauber et 

al., 2006). However, in this previous work only a single type of moderately mimetic 

egg manipulation was used, which did not allow the examination of whether and how 

differently mimetic egg types would elicit the same relative extent of egg rejection 

decisions, irrespective of contextual cues (i.e. the presence of other foreign eggs). 

Such an experiment was carried out here by repeatedly utilizing the same set of egg 

colour manipulations of hosts’ own eggs in clutches with a single, several, and all 

own eggs experimentally dyed. The prediction of the perceptual constancy hypothesis 

was that irrespective of the absolute levels, the relative rates of egg rejection should 

remain consistent across the different treatments and clutch content manipulations. 

 

In turn, regarding the cognitive basis of egg rejection decisions, the goal was to set 

out to examine the role and relevance of self-referencing and other cognitive 

mechanisms underlying egg rejection decisions by cuckoo hosts. The experimental 

approach was to specifically examine the role that the presence of own eggs might 

play in facilitating egg discrimination by great reed warbler hosts of the common 

cuckoo, while simultaneously manipulating the feasibility of both discordancy- and 

recognition template-based cognitive rules to contribute to egg rejection decisions. It 

was hypothesized that hosts’ egg rejection ability would be reduced in a range of 

experimental multiple parasitism, especially in cases where all eggs were treated to be 

parasitic, in contrast with experimental single parasitism. Accordingly, the prediction 

was that hosts would reject fewer eggs in multiple than in single parasitism. A second, 

novel hypothesis was also tested that the presence of hosts’ own eggs, within a mixed 

clutch of own and foreign eggs, would increase hosts’ egg recognition rates through 

self-referencing; it was predicted that great reed warblers would reject more foreign 
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eggs in multiple parasitism when hosts eggs are also present relative to clutches where 

all of the hosts’ own eggs are experimentally replaced with foreign eggs. Third, to 

integrate these hypotheses, a range of artificial colours was used to dye hosts’ own 

eggs to determine whether colour-dependent egg rejection rates in great reed warblers 

covaried with the presence, and thus potentially involve the inspection, of own eggs. 

It was predicted that in the absence of self-referencing own eggs, colour-dependent 

egg rejection rates would also decline. 

 

Methods 

 

The study was conducted in the surroundings of Apaj (47°07'N; 19°06'E), ca. 40-60 

km south of Budapest, Hungary, during the northern spring and summer of 2009 and 

2010, from mid-May until mid-June. Great reed warblers breed in 2-4 m wide reed-

belts along both sides of narrow irrigation channels. Sections of the channels were 

monitored every week to find nests during the nest-building or egg-laying stages. One 

or more host eggs in a clutch were manipulated using highlighter pens (type Stabilo 

Boss), of blue, green, yellow, orange and red highlighter colours (No. 70/31, 70/33, 

70/24, 70/54, and 70/40, respectively), to dye the hosts’ eggs (Figs 1.1 & 1.2). 

Representative spectrophometric reflectances (Cassey et al., 2008a) of the differently 

dyed eggs are illustrated in Fig. 1.1. In our own prior work, background colour 

manipulations with these and other colours have caused vastly different rejection rates 

(Hauber et al., 2006; Moskát et al., 2009). 



  20 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Representative clutch (above) and relative % reflectance curves (below, y-

axis against wavelength on x-axis) of the background colours of great reed warbler 

eggs dyed with one of five different colours (blue, green, yellow, red and orange). 

Photo credit: Mark E. Hauber. 
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This approach was demonstrated to be suitable for studying experimental parasitism 

in great reed warblers, because even though cuckoo eggs are thicker and stronger than 

host eggs, this host is able to reject cuckoo eggs by puncture ejection and parasite and 

host eggs are comparable in size (Antonov et al., 2008; Hargitai et al., 2010) and 

highlighter dyed eggs had been found to be ejected by this host in previous studies 

(Moskát et al., 2010). The following treatments were applied to nests in the study 

(Fig. 1.2.): 

(a) Treatment ‘1-egg’: One host egg per clutch was manipulated, using one of five 

colour types at a time, with one of the five highlighter pen colours at a clutch, so the 

original maculation pattern also remained visible. Experiments were started in the 

second half of the laying stage (3-5 eggs/nest).  

(b) Treatment ‘3-eggs’: Three eggs were manipulated in a clutch with different 

colours, using the blue, yellow and orange pens. In preliminary trials  which included 

several cases from Treatment (a) above, these three colours were recorded to evoke 

the lowest, intermediate, and highest values of rejection frequency. Experimental 

manipulations were done by dying 3 eggs simultaneously when clutches were 

completed with five eggs, assuring that the majority of eggs in the nest were dyed. 

(c) Treatment ‘5-eggs’: All eggs in five-egg clutches were dyed using different 

colours from Treatment (a) simultaneously in each clutch. Experiments were started 

on the day when hosts laid their fifth egg.  
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Figure 1.2.  The experimental schematics  of three treatment types for testing egg 

ejection in single parasitism (a) and multiple parasitism, either when two natural 

coloured eggs (white) of the host are present (b) or when none are present in the 

clutch (c). Five colours were applied for treatments (a; 12-17) and (c; 17): blue (14), 

green (15), yellow (12), red (16), and orange (13), and three colours were used for 

treatment (b; 16): blue, yellow and orange (illustrated below prior and after dyeing; 

the bottom right brown egg illustrates the egg type used previously in Hauber et al., 

2006). Sample sizes ( n = nests) are indicated in brackets. Photo credit: C. Moskát.   
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Experimental nests were checked until 6 days after the treatment on a daily basis to 

determine host responses. A clutch was deemed deserted during the daily check 

period when there were cold eggs and then no rotation of the eggs was observed 

between subsequent visits. If hosts ejected one or more eggs from clutch, the result 

was classified as ejection. If the manipulated eggs remained in the clutch at the end of 

the check period (6 days), the result was considered as acceptance (Hauber et al., 

2006; Moksnes et al., 1991; Moskát et al., 2010.)  

 

Individual hosts were not colour banded in this study but studied nests that were 

sufficiently distant and synchronous within years to reduce pseudoreplication; 

between years this host species shows a low level of breeding philopatry in this study 

population (Moskát et al., 2008a). Accordingly, each nest was considered as the unit 

of statistical analysis, with minimal chances of pseudoreplication at the level of host 

territory and breeding pair. Linear models were applied for the analyses of host 

rejections toward the parasitic eggs in the different treatments. For testing hosts’ 

reactions toward the differently coloured eggs in single parasitism (Treatment [a]), 

applied nominal logistic regression was run, which included host responses to 

parasitism (eject/accept) as a binary response variable, with laying date as a covariate 

and treatments as factors. From rejections either by ejection or desertion, only 

ejections were considered, because almost all of the responses belonged to this 

category, and only one case of desertion was observed, in Treatment (a), in response 

to a green dyed egg.  

 

The two treatments of multiple parasitism (Treatments b and c) were compared using 

a generalized linear model, where the response variable was the percent of parasitic 
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eggs ejected (square-root transformed), with laying date as covariate, and Treatments 

as nominal factors, in SPSS ver. 17.0. As above, host responses included ejections and 

acceptances, only. Generalized linear mixed effect models (Bates & Maechler, 2009) 

were also used to estimate the effect of individual colours and treatments on the 

acceptance rates of an egg. The models have been fitted using the Laplace 

approximation criterion. Two-tailed tests were used with alpha = 0.05.  

 

Results 

 

In Treatment (a), when only one egg was dyed in the clutch, rejection rates toward the 

five different colours increased in the following order: blue < green < red < yellow < 

orange (Fig. 1.3).  
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Figure 1.3. The proportion of nests where at least one painted egg was ejected by 

hosts in response to experimental parasitism with dyed own eggs. Note that number of 

colours was five in treatments (a: 1-egg) and (c: 5-eggs), with only one colour used at 

a time in (a), while three colours (blue: B, yellow: Y, and orange: O) were used 

concurrently in treatment b: 3-eggs, and did not include green (G) and red (R). 
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Nominal logistic regression revealed that both laying date and colour significantly 

affected egg ejection rates of hosts. Responses to green eggs did not vary from those 

to the other egg colours, but responses to yellow, red and orange eggs differed from 

responses to blue eggs (Table 1.1). Acceptance rates of the same egg phenotypes in 

Treatment (c), showed a consistent pattern relative to acceptance rates detected in 

Treatments (a) and (b) (restricted to blue, yellow, and orange dyed eggs, of the 

colours present in all three treatments, Fig. 1.3; Friedman test: χ2 = 6.00, P = 0.0498). 

 

 

Table 1.1. Parameter estimates for host responses to dyed egg(s) in experimental 

parasitism with one parasitic egg per clutch. Five differently coloured host eggs were 

used as parasitic eggs: blue, green, yellow, red and orange ejections were compared to 

blue colouring. Only egg ejections were considered. 

Parameter Estimates 

ejections1 B 

Std. 

Error Wald χ2 df Sig. (P) Exp(B) 

Intercept -0.583 1.202 0.235 1 0.628  

laying -0.207 0.074 7.939 1 0.005 0.813 

green 0.791 1.341 0.348 1 0.556 2.205 

yellow 2.590 1.246 4.319 1 0.038 13.331 

red 2.669 1.225 4.748 1 0.029 14.430 

orange 4.071 1.336 9.287 1 0.002 58.608 

1reference category: acceptance of blue egg 
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Hosts’ reactions  in the two treatments of multiple parasitism (Treatments b and c) 

proved to be statistically similar when ejections per nest were considered on a binary 

basis (yes/no), but in Treatment c host ejected proportionally more dyed eggs than in 

Treatment b (Generalized Linear Model: treatment: Wald χ2 = 4.260, df = 1, P = 

0.039, laying date: Wald χ2 = 0.152, df = 1, P = 0.696, category * laying: Wald χ2 = 

2.743, df = 1, P = 0.098).  Parameter estimates were significant for the Treatment 

effect, only (B = 10.135, S.E. = 4.911, Wald χ2 = 4.260, df = 1, P = 0.039). 

 

The probability of ejection of differently dyed eggs was also quantified as the 

transformed estimates of the fitted model (Table 2). The orange eggs had a higher 

probability to be rejected than yellow eggs which in turn had higher probability of 

rejection than the blue eggs across all treatments. When there were 3 dyed eggs 

(Treatment b), the probability of rejection was less than when there was only one 

dyed egg (Treatment a). When there were 5 dyed eggs (Treatment b), the probability 

of rejection was not significantly different than when there were single dyed eggs 

(Treatment a) (Table 1.2). 
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Table 1.2. Estimates of rejection rates for the different colours and treatments. 

Generalized linear mixed models were fit by the Laplace approximation: Formula: 

ejections ~ (1 | id) + colour + dyed eggs. 

 GLMM logistic 

parameter 

estimates 

Std. Error z P 

Blue -2.542 0.790 -3.220 0.001* 

Green 0.165 1.039 0.159 0.874 

Yellow 1.983 0.858 2.312 0.021 

Red 2.272 0.889 2.555 0.011 

Orange 3.447 0.854 4.036 <0.001 

Painted 3 eggs -2.430 0.906 -2.684 0.007 

Painted 5 eggs -1.217 0.743 -1.638 0.101 

 

  

Discussion 

 

Regarding the sensory basis of egg rejection in great reed warblers, these experiments 

provide support for a relative perceptual order of acceptable-to-unacceptable artificial 

egg colours, irrespective of the presence or relative number of hosts’ own eggs in the 

clutch. Specifically, the comparison of the three artificial egg colours used in all three 

experimental treatments confirmed that blue eggs are accepted the most, relative to 

yellow, and orange eggs are accepted the least often by this host species (Fig. 1.3. and 
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the respective Friedman test’s output). The statistically consistent relative order of the 

hosts’ behavioural responses to these egg colours, even when additional colours 

(green and red) were included in the clutch and even when no own eggs were 

available for inspection, is in support of the perceptual consistency hypothesis.  

 

Regarding the cognitive basis of egg rejection decisions, great reed warblers are likely 

to use multiple cognitive rules to discriminate own and foreign eggs, as was 

previously demonstrated (Moskát et al., 2010). Here, strongest rejection responses 

against the experimentally dyed eggs were recorded when host nests contained one 

(Treatment a) over three or five experimental, ‘parasitic’ eggs (Treatments b and c). 

These results confirm the hypothesis that hosts’ egg rejection responses are reduced in 

multiple parasitism with increasingly more variable egg phenotypes (Moskát et al., 

2008b). Nonetheless, in Treatment (c) when all the eggs were parasitic, hosts could no 

longer use online comparison of own and foreign eggs, either through self-referencing 

own eggs or through discordancy based decisions between the relative numbers of 

own and foreign eggs. In these contexts, then, the conclusion is that host used an 

internal recognition template to decide whether to eject or not an egg. Whether this 

internal template was formed at the time of laying each egg (but before we 

manipulated its appearance) or during earlier nesting attempts (Hauber et al., 2004; 

Petrie et al., 2009), remains to be tested empirically. 

 

Nevertheless, hosts rejected the fewest proportion of eggs overall, and did not reject 

all the eggs in Treatment c, but in the case of orange eggs, they did so more often than 

when some natural own eggs were in the nest (Treatment b). One explanation is that 

in the three parasitic eggs and two own eggs case (Treatment b), along with the 
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recognition template-based discrimination mechanism, a special discordancy-based 

mechanism also acts: discordancy means that hosts reject the egg phenotype in the 

minority in a clutch. When there is only one parasitic (or dyed) egg in a 5-egg clutch, 

this is a clear case (Treatment a). Similarly, when all the eggs are parasitic except one, 

which is an own egg, some of the great reed warblers ejected their own eggs (Moskát 

et al., 2010). In some of the experiments described here (Treatment b), the parasitic 

eggs are still in the majority of the clutch (3 eggs; 60%), but the frequency of own 

eggs appeared to be also relevant (2 out of 5 eggs; 40%), which may reduce the 

accuracy of the discordancy effect relative to own eggs. This would result in lower 

rejection rates in multiple parasitism, which explains the prior discovery of a higher 

tolerance against cuckoo eggs in multiple than in single cuckoo parasitism (Moskát et 

al., 2009).  

 

In contrast to great reed warbler hosts, in the brambling (Fringilla montifringilla) and 

chaffinch (F. coelebs) a separate study revealed similar rejection rates in single and 

multiple parasitism with two parasitic eggs (Vikan et al., 2009). These two species 

can be regarded as abandoned hosts by the cuckoo, and hence the winners of the 

evolutionary arms race with the parasite, probably because they possess highly-

evolved and fine-tuned visual perception and, hence, egg discrimination abilities 

(Vikan et al., 2009). In the absence of ongoing brood parasitism, it is also likely that 

bramblings and chaffinches detect parasitic eggs by template recognition only, and do 

not rely on discordancy based discrimination, as do great reed warblers (Moskát et al. 

2010). In support of these alternative evolutionary histories, theoretical models 

confirm that hosts which tolerate more cuckoo eggs in multiple than in single 
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parasitism, may have had longer coevolutionary interactions through more stable 

host-brood parasite population dynamics (Takasu & Moskát, 2011).  

 

When there were more parasitic than hosts’ own eggs in the nest, the predicted 

outcome of discordancy per se was to reject the hosts’ own eggs, and that of the 

template-recognition mechanism is to reject the foreign egg. The reason is that the 

outcome of these alternative or complimentary mechanisms may be the cancellation 

of discrimination decisions or the rejection of all eggs in the nest, perhaps through 

nest desertion. In the experiments here, however, regardless of whether nests were 

singly or multiply parasitized, hosts rejected the parasitic eggs almost only by ejection 

(see Results; also see Chapter 2).  

 

Svennungsen and Holen (2010) analyzed the importance of external cues, like the 

sight of the brood parasite at the nest, indicating brood parasitism for hosts and 

suggested a scenario in which a repertoire consisting of a variety of host responses, 

evolved as a consequence of individual differences in hosts’ egg discrimination 

ability, parasite egg mimicry, and external cues, is maintained. Pozgayová et al. 

(2009) demonstrated sex difference in antiparasite defence in the great reed warbler: 

males guard nests from intruders, while females check clutches through closer nest 

inspection. However, females also may have information about the laying attempt of 

the cuckoo, as in many cases they help the males to attack the parasitic intruder 

(Davies, 2000). The relative clutch completion state at the time of parasitism during 

the egg-laying stage of the breeding cycle also has an importance, because hosts tend 

to desert their clutches when parasitism occurred during the earlier phase of egg 

laying, when the number of eggs in the clutch is low (Moskát & Hauber, 2007; 
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Moskát et al., 2011). These experiments were carried out near or upon the completion 

of the full clutches, and probably this explains the lack of desertion responses detected 

here following experimental parasitism (again, see Chapter 2).     

 

Overall, the relative proportions of differently dyed eggs rejected in each treatment 

showed a consistent pattern across all three Treatments, with blue eggs consistently 

accepted and orange eggs consistently rejected the most often. This finding is in 

support of a consistent role, or perceptual constancy, of hosts’ sensory inputs about 

the identity of foreign versus own eggs. Regarding the cognitive mechanisms 

involved in egg rejection decisions, great reed warblers’ ejection rates of dyed eggs 

decreased with increasing proportions of experimental eggs per clutch, from the 

highest rates in Treatment (a) to lower rates in Treatments (b) and then (c). Given that 

both the presence/absence and also the relative numbers of great reed warblers’ own 

eggs over dyed eggs varied globally across these experiments, these results are most 

consistent with an internal, recognition based rejection mechanism operating in these 

hosts in response to particular colours of foreign eggs. 
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Chapter 2: 

Life-history theory predicts alternative rejection responses to foreign eggs of 

introduced Turdus thrushes in New Zealand  

 

Avian brood parasites vary in the extent to which they reduce the reproductive 

success of hosts (Hauber, 2003). For example, obligately interspecific Cuculus 

cuckoos and other virulent parasite chicks typically eliminate all of the host’s 

breeding success by evicting nestmates soon after hatching (Hauber & Moskát, 2008). 

In contrast, less virulent Molothrus cowbirds and intraspecific brood parasite chicks, 

often tolerate host nestmates to grow up together (Kilner et al., 2004). As an 

evolutionary response, to reduce or to eliminate the costs of avian brood parasitism, 

hosts may reject parasitism by ejecting foreign eggs and chicks from nests and/or by 

abandoning (deserting) parasitized broods and initiate a new breeding attempt 

(Davies, 2000; Hauber, 2003; Hosoi & Rothstein, 2000; Rutila et al., 2006).  

 

From a recognition systems perspective, experimental research on egg rejection in 

hosts of brood parasites requires the assessment of the hosts’ behavioural responses as 

either egg ejection or nest desertion, or the relative frequencies of these displays. This 

is necessary to identify whether egg ejection and/or nest desertion is the evolutionarily 

evolved adaptation of hosts in response to coevolutionary histories with brood 

parasitism (Moskát et al., 2011). Alternatively, ejection/desertion may be a 

generalized response  to cease costly investment into reduced clutch and brood sizes 

following partial clutch predation-like egg removal by female brood parasites and 
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hosts (Kosciuch et al., 2006), or  they represent an experimental artefact following the 

disturbance of manipulating host egg content by researchers (Rutila et al., 2006). 

 

Furthermore, it remains to be addressed empirically what proximate and ultimate 

factors determine which mechanisms of rejection behaviours hosts display? Egg 

ejection, for example, eliminates the immediate the costs of incubating and hatching 

genetically unrelated eggs, providing parental care for parasitic nestlings, and 

experiencing loss of fitness due to competition of own chicks with the parasite or the 

elimination of reproductive success altogether as the parasitic chick evicts all host 

eggs and nestmates (Grim et al. 2009; Hauber & Moskát, 2008; Kilner et al., 2004). 

Still, egg ejection is not necessarily cost free for the potential foster parents, as it does 

not emancipate the host from its nest already having been discovered by the parasite, 

from the parasitic female typically removing a host egg when laying her own egg, or 

the return of the parasite to lay additional eggs in the clutch (Hauber et al., 2006; 

Moskát et al. 2009). In contrast, nest desertion and renesting elsewhere frees the host 

from providing costly incubation and provisioning to unrelated progeny, but renesting 

also incurs the costs of locating new nest sites, the time and energy required to build a 

new nest, and the resources required to laying a new clutch (Servedio & Hauber, 

2006). Accordingly, previous theoretical work, based on the extent of phenotypic 

similarity between host and parasite eggs, the cost of host reproductive investment per 

breeding bout, the fitness reduction in relative breeding success owing to parasitism, 

and the rate of parasitism, predicted that hosts may evolve consistently different 

mechanisms and displays of rejection behaviours to reduce the cost of caring for 

foreign eggs following in response to brood parasitism (Davies et al., 1996; Reeve, 

1989; Servedio & Lande, 2003; Takasu et al., 1993). The critical factor in these 
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models was the absolute and relative clutch size of egg ejector versus nest deserter 

host species: in response to moderately costly (less virulent) parasitism, species with 

larger clutch sizes were predicted to eject eggs and species with smaller clutch sizes 

were predicted to abandon nests, whereas in response to severely costly parasitism, all 

species are predicted to respond with egg ejection (Servedio & Hauber, 2006). 

Comparative data are largely consistent with these predictions of egg rejection 

methods (of egg ejection/nest desertion) across hosts of several avian brood parasitic 

lineages (Hauber, 2003; Hosoi & Rothstein, 2000; Langmore et al., 2005; Servedio & 

Hauber, 2006). The central aim of this study is to provide a critical empirical test of 

this theoretical model, as applied to two sympatric species of egg rejecter thrush 

species in New Zealand. The predictions of the model, as applied to these species are 

summarized in Table 2.1.     

 

 

Table 2.1. Predictions of predominant rejection behaviour methods by Turdus spp. 

from life history theory modelling (Servedio & Hauber, 2006). 

 

Virulence  

(cost of parasitism) 

Clutch size: lower 

blackbird 

Clutch size: higher 

song thrush 

 

Lower Desert nest Eject egg 

Higher Eject egg Eject egg 

 

 

 



  36 

Throughout the global distribution of the thrush genus Turdus, individual species have 

been reported to be variably impacted by brood parasites, including both highly 

virulent, nestmate evictor interspecific parasites (Grim et al., 2011; Honza et al., 

2005) and less virulent nestmate-tolerant inter- (Friedman, 1929; Lichtenstein, 1998) 

or intraspecific parasites (Grim and Honza, 2001; Moskát et al., 2003). Specifically, 

previous work on European blackbirds (T. merula) and song thrush (T. philomelos) 

documented variation in rejection rates in response to foreign (natural or 

experimental) eggs of heterospecifics or conspecifics, when studied in the context of 

evaluating the evolved responses of these species to virulent brood parasitism by the 

common cuckoo Cuculus canorus (Hale & Briskie, 2007; Honza et al., 2007). 

Accordingly, within their European range, in a specific comparison of rural versus 

urban blackbirds, this species was reported to have rejected non-mimetic (cuckoo-

like) eggs at higher rates in rural areas where they bred in sympatry with the cuckoo, 

compared to nearby urban areas where blackbirds bred in allopatry from the cuckoo 

(Moskát et al., 2003). These covarying differences in rejection rates between areas of 

sympatry versus allopatry with the cuckoo imply an evolutionary history and selection 

pressure on blackbirds to recognize and reject interspecific brood parasitism. In 

contrast to these conclusions, other reports of blackbirds and song thrush in areas of 

both in sympatry with the cuckoo, including Britain (Davies & Brooke, 1989a,b), the 

Czech Republic (Grim & Honza, 2001), and Hungary (Moskát et al., 2003), and also 

in allopatry in New Zealand (breeding stock introduced from Britain; Hale & Briskie, 

2007), recorded consistently high rejection rates of non-mimetic, model cuckoo eggs. 

These latter reports on the lack of covariation in rejection rates between areas of 

sympatry or allopatry, in turn, support an evolutionary scenario whereby egg rejection 
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in blackbirds has evolved in a context other than interspecific brood parasitism (Grim 

et al., 2011). 

 

With respect to highly mimetic (natural conspecific or artificially painted) eggs, 

rejection rates of experimental intraspecific brood parasitism by blackbirds and song 

thrush were low in Europe (Davies & Brooke, 1989; Honza et al., 2007; Moskát et al., 

2003) but high in New Zealand (Hale & Briskie, 2007). However, natural parasitism 

on various Turdus species in Europe by common cuckoos is extremely rare (Møller, 

1976), these thrushes are generally unsuitable cuckoo hosts, as the parasitic chicks 

survive poorly in their nests (Grim et al., 2011), and intraspecific brood parasitism has 

been reported repeatedly for both blackbirds (Moskát et al., 2003) and song thrush 

(Grim & Honza, 2001) within their European range (Grim et al., 2011). Thus, another 

possible interpretation of these combined findings from the literature is that egg 

rejection behaviours blackbirds and song thrush are owing to an evolutionary 

selection pressure from intraspecific, rather than interspecific, brood parasitism on 

these species (Grim et al., 2011).  

 

 

Critically, for the purposes of this study, both nest desertion and egg ejection are part 

of the behavioural repertoires of these species in response to experimental parasitism 

(Grim & Honza 2001; Moskát et al., 2003). Within the context of life history theory, 

interspecific brood parasitism by common cuckoos in general represents a high cost, 

high virulence trait, because cuckoo chicks evict host eggs and nestmates (Hauber, 

2003). In contrast, intraspecific brood parasitism represents a low cost, low virulence 

trait because host and foreign chicks grow up together in parasitized broods (Kilner et 
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al. 2004; Servedio & Hauber, 2006). Specifically, modelling work, using egg 

recognition mechanisms based on host-parasite egg phenotype discrimination, 

predicted that hosts of more virulent parasites would reject parasitism by the method 

of ejecting foreign eggs from clutches, while hosts of less virulent parasites with 

smaller clutch sizes would desert (or abandon) parasitized clutches (Servedio & 

Hauber, 2006) (Table 2.1).  

 

Given that clutch size of blackbirds is consistently smaller than that of song thrush, 

and that clutch sizes are even smaller in these Turdus species in their introduced range 

of New Zealand than in their native European range (Evans et al., 2005; Cassey et al., 

2006), life history theory specifically predicts that less virulent parasitism would 

select for more frequent nest desertion in blackbirds compared to more frequent egg 

ejection in song thrush (Servedio & Hauber; 2006). Alternatively, more virulent 

interspecific brood parasitism would select for egg ejection in both species, 

irrespective of clutch size (Hauber, 2003). These predictions were tested using 

experimentally manipulated egg phenotypes in New Zealand, where interspecific 

parasitism is absent on Turdus spp. (Hale & Briskie, 2007).  

 

Methods 

 

General procedures: To document behavioural tactics of egg rejection in response to 

experimentally manipulated coloration, Turdus nests were located during the laying 

and incubation stages to alter the appearance of one of the eggs already laid in a 

clutch. For this thesis chapter, I present a novel contextual framework and analyses of 

unpublished experimental data collected during the 2005-8 austral breeding seasons 
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(September – January) for both species while I was in residence in New Zealand. 

Introduced European blackbirds and song thrush are widespread across New Zealand 

and occur sympatrically in both urban and rural habitats at high densities. The study 

sites included urban and rural parkland within a 50 km radius of Auckland and 

Hamilton cities, North Island, New Zealand. Turdus nests are conspicuously bulky 

structures that can be easily noticed when searching wooded vegetation near open 

grasslands and lawns. Each nest was included in a single experimental procedure. 

Although breeding birds were not colour marked in this study, pseudoreplication was 

considered to be minimised by conducting experiments typically within periods of 1-2 

weeks at each site, followed by a move to another study site 7+ km away, thus 

reducing the chance of using two nests of the same parents.  

 

Egg manipulation protocols: At each nest, all eggs already in the nest were marked 

for individual identification with a black felt pen at the blunt end (to control for 

scent). In addition, one egg was manipulated by either (1) dyeing it with 20 black 

spots of approximately 4 mm in diameter, leaving the background colour visible (Fig. 

2.1), or (2) dyeing it all black, covering the background colour entirely. After 

manipulation, the egg was returned to the clutch. This procedure avoided the use of 

artificial egg materials (Martin-Vivaldi et al., 2002; Moskát & Honza, 2008) by 

manipulating the phenotype of the hosts’ own eggs (Honza et al., 2007; Moskát et al., 

2008), therefore varying only the single parameter of egg coloration (Hauber et al., 

2006). However, as cuckoos typically remove a host egg when laying their own egg 

(Davies, 2000), and so this protocol did not alter the clutch size for these experiments.  
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Figure 2.1. Clutches with manipulated eggs of European blackbirds (a,b) and song 

thrush (c,d), with representative avian-visible reflectance spectra (taken following 

Cassey et al., 2009) of black marker covered shell, natural blackbird egg background, 

and natural song thrush egg background (e). Photo credits: Mark E. Hauber. 

 



  41 

 

The nest contents were then checked up to 5 days after manipulation to assess whether 

the manipulated egg was present or missing. Clutches in which new egg(s) appeared 

were considered to be during the laying stage for the experiment while all other 

clutches were considered to be during the incubation stage.  

 

No unmanipulated but handled eggs disappeared. Dyed eggs that disappeared in < 5 

days (experiment = day 0) were considered ejected (Hale & Briskie, 2007) and 

clutches with cold or wet eggs within this period were considered deserted. 

Confirmed nest desertions were recorded during at least one subsequent visit to the 

nest. Nests with evidence of predation (i.e., broken eggs, shell remains within a cold 

clutch, and entirely missing clutch contents) were excluded from the analysis. 

 

Statistical analyses: I first used nominal logistic mixed models to examine potential 

differences between years, study sites, and breeding stages with respect to the 

outcome of these experiments with either Turdus species. In the absence of an overall 

statistical effect of these predictors (see below), all data were combined into 

contingency analyses for each species separately.  

 

The combined data sets were based on sample sizes which varied between 27 – 34 per 

taxon and per treatment, comprising some of the most extensive datasets using the 

same experimental methodology for egg rejection studies in any passerine bird (Grim, 

2007). I then specifically examined (i) what the effects of treatment were on either 

bivariate and or detailed rejection responses and (ii) whether there were species-

specific differences in the detailed rejection responses. 
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Results 

 

Multivariate analysis: Whether hosts accepted or rejected any of the two types of 

dyed eggs was not related to year of experimentation, different study sites, and the 

breeding stage at the time of the experimentation (nominal logistic fit model: all Wald 

χ2 < 0.51, P > 0.91). There was also no relationship of the same predictor variables 

when examining the hosts’ rejection responses within the black dyed egg treatment 

only (all Wald χ2 < 1.6, P > 0.44). Therefore, univariate analyses are presented below 

for each species separately. 

 

Rejection rates: European blackbirds rejected black eggs (67%) more often than 20 

spotted eggs (13%) (Fisher’s exact test [Fet]: P < 0.001, n = 57). Song thrushes also 

rejected black eggs (50%) more often than 20 spotted eggs (6%) (Fet: P = 0.001, n = 

64). There were no species differences in either the higher rejection rates of black 

eggs (Fet: P = 0.21) or the lower rejection rates of 20 spotted eggs (Fet: P = 0.42) 

(Fig. 2.2). 
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Methods of rejection: Regarding the detailed methods of egg rejection, blackbirds 

ejected all (n = 4) and song thrush either ejected (1) or deserted (1) those eggs that 

were rejected following the 20 spotted manipulation (sample sizes too small for a 

Figure 2.2. Bivariate outcomes of experiments of European blackbird and song thrush 

clutches in response to manipulation of single eggs 
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statistical test). Blackbirds most often deserted nests with black eggs (14 of 18 

rejections), whereas song thrush most often ejected black eggs (14 of 17 rejections) 

(Fet: P = 0.0006) (Fig. 2.3.). 

 

 

 

Discussion 

Fig. 2.3. Detailed behavioural responses of European blackbirds and song thrush in 

response to colour manipulations of single own eggs per clutch. 



  45 

 

These data (Fig. 2.2) support previous work on European blackbirds, song thrush, and 

several other hosts of brood parasites by demonstrating that eggs whose background 

coloration matches that of host eggs are more likely to be accepted than eggs whose 

background coloration is altered dramatically (Rothstein, 1975; Davies & Brooke, 

1989; Hauber et al., 2006; Rutila et al., 2006; Moskát et al., 2008). Yet, in contrast to 

previous work on Turdus spp. in both their native (Grim & Honza, 2001; Grim et al., 

2011; Honza et al., 2007; Moskát et al., 2003) and introduced ranges (Hale & Briskie, 

2007), here it was found that blackbirds and song thrush at the New Zealand study 

sites responded to non-mimetic eggs by different egg rejection methods: blackbirds 

typically deserted experimental clutches with black eggs while song thrush ejected 

black eggs and continued to incubate (Fig. 2.3). In the absence of repeated 

observations on the same individuals, however, we cannot conclude whether egg 

ejection and nest desertion are alternative strategies or tactics (sensu Gross, 1996) 

within individuals’ antiparasitic behavioural repertoires of these species. We can, 

however, reject the hypothesis that differences in details of egg rejection methods 

were owing to experimental or observational variation in reproductive stage or 

seasonality, as neither of these predictors explained significant proportions of 

behavioural variability in these data. Critically, for the recognition system analysis of 

host-parasite coevolution in this thesis, it can also be concluded that the behavioural 

response of these two Turdus thrushes do and must include nest desertion as an 

alternative parasitically induced response behaviour to egg ejection in future 

experimental and observational studies. 
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These results are consistent with several scenarios for the evolution of blackbird and 

song thrush egg rejection behaviours. First, these data are consistent with a 

moderately virulent level of parasitism selecting for the species-specific egg rejection 

strategies of blackbirds and song thrush. Given that blackbirds have a smaller clutch 

size than do song thrush in New Zealand (Evans et al., 2005), life history theory 

predicts that in response to moderately costly nest parasitism blackbirds should be 

more likely to reject parasitism by nest desertion rather than egg ejection (Table 2.1, 

Servedio & Hauber, 2006). In fact, life history theory would also predict that any 

moderately costly circumstance which reduces the breeding success of nesting birds 

(i.e. the presence of detritus, broken shells, foreign objects, etc.) should select for nest 

abandonment by blackbirds compared to song thrush with their relative differences in 

clutch sizes (Hoover et al. 2006; Servedio & Hauber, 2006), and so behaviours 

unrelated to parasitism and connected with, for example, nest hygiene of broken 

eggshells (Hauber, 2003) and nest cleaning of non-egg materials, too, could explain 

the observed species-specific differences in responses to black eggs from these 

experiments (Moskát et al., 2002). 

 

An alternative is that egg rejection in blackbirds evolved in response to less virulent 

brood parasitism compared to more virulent parasitism on song thrush. For example, 

intraspecific brood parasitism in blackbirds versus common cuckoo parasitism in song 

thrush would too predict the same alternative pattern of egg rejection behaviours that 

was observed in this study. That successful common cuckoo parasitism has only been 

recorded on song thrush and not in blackbirds in museum collections is consistent 

with this scenario (Grim et al., 2011). 
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Finally, it is possible that interspecific parasitism has less costly consequences for 

blackbirds than for song thrush, even when caused by virulent brood parasites. For 

example, cuckoo chicks do not always succeed in host nests, owing to nest 

architecture, host foraging regimes, and discrimination (Grim et al., 2009). 

Accordingly, experimental work (Grim, 2006; Grim et al., 2011) recently 

demonstrated that common cuckoo chicks do not survive in broods of blackbirds, thus 

imposing time-limited costs on the foster parents. In contrast, cuckoo chicks grow 

rapidly and can fledge successfully from experimental broods of song thrush, thus 

potentially imposing high and longer-lasting costs on the fosterers. Once again, these 

relative levels of virulence would predict more nest desertion by blackbirds and more 

egg ejection by song thrush, as documented by this study (Table 2.1). Given these 

parallel predictions of the alternative evolutionary scenarios, future experimental and 

comparative work should focus on predicting additional differences in the egg 

rejection behaviours of Turdus spp. in response to more or less virulent parasitism.  

 

Irrespective of the evolutionary history, these data confirm that the use of birds’ own 

eggs, together with experimental manipulation of egg appearance, can be used to 

effectively test alternative predictions of sensory mechanisms (Honza et al., 2007; 

Moskát et al., 2008) as well as life history (Servedio & Hauber, 2006) and optimal 

acceptance threshold theory (Hauber et al., 2006). Specifically, future work should 

address the range of behavioural responses and rejection repertoires of individuals and 

populations, following natural or experimental intraspecific brood parasitism within 

and outside the native ranges of blackbirds and song thrush. In addition, these data 

also call for further experimental work, using matched methodologies, to compare and 
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contrast the egg rejection behaviours of potential hosts within and outside areas of 

sympatry with avian brood parasites.  
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Discussion and Implications 

 

The overarching aim of this thesis is the use of a unified recognition systems based 

approach, to explore, study, and understand the processes involved in the evolutionary 

responses of hosts of avian brood parasites to foreign eggs in their nests. Here, the 

classic tripartite recognition system definition (Sherman et al., 1997) was modified by 

forgoing the analysis of the recognition cue itself, because that is the property of the 

egg of the parasite, not of the host, and instead the focus was placed on the 

SENSORY PROCESSES of the hosts involved in detecting the foreign egg, the 

COGNITIVE DECISION RULES involved in assessing and determining the response 

(if any) to these cues, and, finally, the BEHAVIOURAL DISPLAYS involved in 

responding to the foreign egg’s cues (Fig. D.1). 

 

 

Figure D.1. Alternative constructions of a recognition systems based approach, 

applicable to understanding hosts’ behavioural responses to foreign eggs. 

 



  50 

 

The results of the experiments presented in this thesis lend strong support for the 

benefits of such a recognition systems based approach. Accordingly, Chapter 1 

described the presence of a sensory consistency with which different egg colour 

manipulations played a role in perceiving foreign eggs as potentially acceptable in the 

nest. Importantly, the relative order of these colours eliciting rejection behaviour was 

irrespective of the presence of hosts’ own eggs in the nest, implying that self-

referencing the hosts’ own eggs was not critical for the cognitive bases of these 

decisions. In turn, Chapter 2 clearly identified that both egg ejection and nest 

desertion can be experimentally induced as behavioural responses to the presence of 

foreign eggs in the nest. In these studies, by identifying and distinguishing the roles 

that sensory, cognitive, and behavioural processes play in recognizing foreign eggs, it 

became possible and feasible to separate potential confounds of abilities to perceive 

differences and evolved behavioural repertoires which in turn generated the recorded 

outcomes of rejection behaviours.  

 

To illustrate the benefits of this approach, let us consider the example that, at the 

interspecific level, there is a long standing conundrum in that hosts of brown-headed 

cowbirds (Molothrus ater) do not reject foreign eggs even though this parasite lays a 

highly non-mimetic egg (Hauber, 2003). In turn, common cuckoos lay highly mimetic 

eggs, many of which are ejected by hosts (Moskát & Hauber, 2007) (Figure D.2). 
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Figure D.2. Eastern phoebes (Sayornis phoebe) do not reject distinctive parasitic 

cowbird eggs (speckled egg, left image), whereas great reed warblers reject over 30% 

of naturally laid mimetic cuckoo eggs (top left, right image). Photo credits: Mark E. 

Hauber, C. Moskát. 

 

In my own experience, I have found that simply talking about and presenting the 

findings and images from Figure D.2. often elicited statements and questions from 

students, colleagues, and the general public in reference to severe cognitive 

limitations of host birds of avian brood parasites. However, the recognition systems 

approach allows us to dissect this apparent sensory, cognitive, and behavioural 

dissonance. Accordingly, from the perspective of the sensation of the cues of hosts 

versus parasites, it is no surprise that visual models of the avian sensory system 

repeatedly confirm that differences in the background coloration and the maculation 

of host versus parasite eggs can be generally detected both by hosts of interspecific 

avian brood parasites (Stoddard & Stevens, 2010, 2011), and even by 
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phylogenetically related, non-host bird species and humans (Cassey et al., 2008b, 

2009, 2010). Therefore, the lack of sensory discrimination does not appear to be 

answer the resolve the puzzle of Fig. D.2. That said, a focus on sensory processes 

alone results in a novel alternative proposal: instead of being moderately mimetic 

(Klippenstein & Sealy, 2008), perhaps cowbird eggs are simply cryptic (B. 

Strausberger, personal communication). This hypothesis predicts that cowbird eggs 

are accepted, not because they cannot be identified in comparison with the hosts’ own 

eggs, but because they cannot be delineated and detected against the background 

pattern of the host nest’s illumination; this hypothesis thus far remains untested in 

cowbirds but received support for the non-mimetic, dark eggs of Chalcites cuckoos in 

Australia (Langmore et al., 2009).  

 

The experimental design and the results of Chapter 1 provide further support for this 

approach. Despite the scenario depicted in Fig. D.2., extensive previous work on the 

sensory basis of host-parasite egg rejection, conducted using subjects within the same 

species, consistently supported the pattern that increasing mimicry leads to reduced 

rejection (Hauber et al., 2006; Rutila et al., 2006). However, in most of these studies 

only a single foreign egg was introduced into experimental nests, thereby confounding 

the sensory mechanisms of concurrent contrast of own versus foreign eggs and 

sensory filters assessing the sensory inputs from the foreign egg alone. Therefore, to 

disentangle these confounding factors, experimental tests of the sensory mechanisms 

of rejecter hosts require nest manipulations where the entire clutch has been altered. 

Recently, Moskát et al. (2010) conducted such a set of experiments, where all eggs in 

great reed warblers’ nests were manipulated and found that egg rejection rates 

increased above background/control levels. Still, even in that experiment, all host 
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eggs were manipulated in the same way, so that the sensory threshold of acceptance 

versus rejection could not be tested. Therefore, in Chapter 1 the experimental 

paradigm included an all-clutch manipulation where each of the hosts’ five eggs was 

dyed with different colours. The results of the absolute rejection rates showed 

consistent decreases from single-egg to the five-egg treatments. In contrast, the 

relative rejection rates of the specific colours remained consistent between the single-

egg and the five-egg experiments in that blue eggs were accepted the most and orange 

eggs were accepted the least often. The conclusion is that these hosts possess a 

consistent ordinal acceptance thresholds to detect foreign egg colours, but whether 

those foreign eggs elicit responses, and are behaviourally rejected, may be modified 

by context, including the proportion of hosts’ own eggs present in the nest.  

 

The critical conclusion from Chapter 1 is, thus, that hosts recognize more eggs than 

they actually reject. This conclusion also has implications for the second component 

of the recognition systems approach, the cognitive decision rules involved in 

mediating behavioural responses through sensation and perception. Specifically, in 

contrast to the opinion of those sceptic audience members in response to my 

presentation about complex avian cognition (Fig. D.2., see above), the new results 

reveal that the lack of behavioural responses to foreign eggs cannot be considered as 

necessarily being due to cognitive limitations of host birds (Antonov et al., 2009; 

Moskát & Hauber, 2007).  

 

The final component of the recognition systems approach is the analysis of the 

behavioural responses to foreign eggs by potential hosts of brood parasites. Although 

focusing on a different set of egg rejecter species, Chapter 2 also represents a novel 



  54 

contribution of the analyses of the variation in the repertoire of behavioural responses 

to foreign egg colours. This is because the experimental outcomes of this study 

established nest desertion behaviours in response to egg manipulation as specifically 

induced behavioural outcomes, relative to control manipulations. This is in sharp 

contrast with the analytical approaches of many other studies, in which nest desertion 

was not seen as an evolved response to brood parasitism (Chapter 1). The conclusion 

is that nest desertion must be examined in detail and taken into consideration when 

analyzing the outcomes of new experiments with Turdus thrushes, as well as when 

interpreting the results of published studies with congeneric thrush species (Grim et 

al., 2011; Hale & Briskie, 2004; Moskát et al. 2003). 

 

The broader implication of the range of experimental methods presented in this thesis, 

including the critical uses of parallel and concurrent manipulations, is that these 

experimental manipulations can provide the basis of several parallel experiments 

using photographic/image presentation approaches in an odd-one-out paradigm. 

Below is a schematic (Fig. D.3) and a set of representative test-images of just such an 

experimental design. In this experiment, a set of reference images would be provided 

to the subjects to familiarize them with the range of acceptable eggs (images with 

clutches of host eggs only), thereby providing a range and variation of acceptable 

phenotypic traits present in the population.  
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Figure D.3. The schematic of an experimental paradigm and the predicted responses 

to detect foreign eggs based on concurrent alternative manipulations of clutch content. 

 

 

Following the familiarization step (top row), a novel set of images would then be 

provided (ideally, standardized for egg size and clutch size: number of eggs) and the 

subjects would be asked (people) or trained (non-human animals) to detect and point 

to the foreign egg. By using a suite of different clutch images, with natural or 

artificially manipulated foreign egg(s) placed in the nest, including either single 
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foreign eggs or multiple (including all) foreign eggs in the clutch, the concurrent 

experimental approach advocated here, modified from Moskát et al. (2010) and 

Chapter 1, could be applied into this paradigm. The representative study illustrated 

above, for example, could focus on cognitive mechanisms based on discordancy (i.e. 

the detection of the odd-egg, relative to the majority egg type present in the nest) 

versus conspecific familiarity (i.e. the detection of eggs with an unfamiliar phenotypic 

trait, which would fall outside the range presented during the familiarization stage of 

the experiment using acceptable, conspecific eggs only). Because these cognitive 

mechanisms make different predictions about the eggs identified as foreign during the 

experiment (Fig. D.3., right hand two columns), it will be possible to identify which 

algorithm is used the subjects to recognize foreign eggs.  

 

Critically, a second conclusion associated with the schematic and the predictions of 

this experimental design, is that experiments with natural or artificial cuckoo eggs, 

which are based on the presence or the introduction of a single parasitic egg in the 

nest, cannot be used to discriminate between the specific alternative cognitive 

decision rules whose predictions are illustrated in Fig. D.3 and make the same 

predictions for the middle-two row of experiments. Instead, to contrast the predictions 

of these alternatives, it is required that additional manipulations of several eggs in 

each clutch take place (bottom two rows, contrasting predictions). Furthermore, by 

altering the relative proportion of host versus foreign eggs, or changing the absolute 

number of host and foreign eggs in the nest, this experimental schematic will also be 

feasible to identify and test specific predictions of alternative, hypothesized or novel 

cognitive mechanisms, not previously identified in rejection decisions hosts of 

obligate avian brood parasites (e.g., numerosity of host versus parasite eggs: Low et 
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al., 2009; Lyon, 2003; White et al. 2009). For example, some host species are poorer 

at identifying foreign eggs in the nest with increasing number of their own eggs, 

because more eggs represent greater phenotypic variability against which foreign eggs 

are compared, as predicted by each or a combination of the discordancy-, familiarity-, 

and internal template-based mechanisms (Moskat & Hauber, 2007; Moskát et al., 

2008c, 2009). To discriminate between these alternatives again requires a concurrent 

experimental design suitable for the schematics presented in Fig. D.3. 

 

The main conclusion of this thesis is that future work should incorporate both the 

conceptual and the practical details developed in the studies here in order to better 

understand the evolutionary parallels and innovations required to detect parasitic 

eggs. In addition, it is essential to examine concurrently whether multiple cognitive 

processes are involved in the behavioural discrimination of own and foreign eggs, for 

instance discordancy and self-referenced familiarity. Yet, in the absence of the 

availability of either of these mechanisms, an internal threshold-based discrimination 

decisions may also be available to hosts detect foreign eggs; the combination of these 

non-mutually exclusive alternative cognitive processes can clearly produce efficient 

and beneficial rejection decisions. That cognitive mechanisms do not act mutually 

exclusively, but instead supplement and combine with each other, is consistent with 

the scenario that increasingly fail-safe mechanisms of accurate parasite-egg detection 

function in these hosts (Hauber & Sherman, 2001; Moskát et al., 2010). Future work, 

therefore, should also examine the novel prediction whether the evolutionary response 

to arms-races with increasingly mimetic hosts may be the concurrent reliance on 

multiple cognitive decision rules to converge on the detection of and the behavioural 

decision to reject the foreign egg(s) from the nest.  
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