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Abstract

We investigate the geometry of effective Banach spaces, namely a sequence
of approximation properties that lies in between a Banach space having a ba-
sis and the approximation property. We establish some upper bounds on such
properties, as well as proving some arithmetical lower bounds. Unfortunately,
the upper bounds obtained in some cases are far away from the lower bound.
However, we will show that much tighter bounds will require genuinely new
constructions, and resolve long-standing open problems in Banach space theory.
We also investigate the effectivisations of certain classical theorems in Banach
spaces.
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Chapter 1

Introduction

1.1 Banach spaces

Banach spaces are fundamental to the field of functional analysis, with diverse applications
in areas such as differential and integral equations, analysis, optimisation theory and many
others [Kal07, Bot14, XGLS14]. Despite the complex and rich theory that comes from Banach
spaces, the notion of a Banach space is sufficiently simple to be understood by beginners. We
remind the reader that a normed vector space is simply a vector space V over a field F (usually
R or C, we will exclusively work with R in this thesis) endowed with a norm operator
∥·∥ : V × V → R such that it satisfies the following axioms for all x, y ∈ V, λ ∈ R:

• ∥x + y∥ ≤ ∥x∥+ ∥y∥

• ∥λx∥ = |λ| ∥x∥

• ∥x∥ ≥ 0, ∥x∥ = 0 ⇐⇒ x = 0.

Normed vector spaces can be naturally viewed as metric spaces with the metric defined by
d(x, y) = ∥x − y∥. A Banach space is simply a normed vector space such that when viewed
as a metric space, the space is complete. Some well known examples of Banach spaces
include Lp spaces, which are important in analysis and statistics. Sobolev spaces, which are
fundamental in the theory of differential equations. Numerous other important examples of
Banach spaces can be found in standard references such as [JL01, AK06].

Although the definition of a Banach space is simple to understand, the theory of Banach
spaces is undoubtedly an integral part of mathematics. With fundamental results such as
the Hahn-Banach theorem, the open mapping theorem, the Banach-Steinhaus theorem, and
the Riesz theory of compact operators. The aforementioned theorems are fundamental and
powerful as they apply to all Banach spaces, resulting in fruitful applications to many ar-
eas of classical analysis. This naturally motivates the study of Banach spaces for its own
sake, analysing what results and properties can be concluded from general abstract Banach
spaces, “pure” Banach space theory if one will.

As remarked by Lindenstrauss [Lin70], the general theory of Banach spaces, like the case
for finite groups, is itself interesting and important for an independent study. Much like
the situation for finite groups, classification, or the structure theory of Banach spaces has
been a major theme of research. Investigations in this area has led to many well known
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open problems, some of which are even still open today. As we will later see, an important
example of this is the “basis problem”, which asks if every separable Banach space has a
basis1. This question was first posed by Banach, and was later solved by [Enf73] in the
negative after remaining open for nearly 40 years. Our goal in this thesis is to carry out a
study regarding the structure theory of Banach spaces, through the lenses of computability
theory. This gives a finer analysis of the algorithmic content of some of the classical results,
and might even be useful in questions where computability theory is not concerned at all.

1.2 Effective Banach spaces

Effective Banach space theory, as opposed to the general theory of Banach spaces, attempts
to analyse the algorithmic content of Banach space theory by dealing with computable Banach
spaces. After all, much of the real-life applications are carried out using computers, it is
therefore natural to wonder which “processes” are computable, and which ones are not. In
order to rigorously discuss computability on Banach spaces, we must first agree on some
form of “computability structure” on Banach spaces. This is not entirely straightforward,
as Banach spaces are generally uncountable in nature, so we cannot naively carry over the
definitions used in classical computable algebra.

One of the possible definitions is known as the axiomatic approach, pioneered in [PER87]. To
motivate this definition, recall that our motivating question was to classify the “processes”
that arise in functional analysis in terms of their computability. Before we could even dis-
cuss computability, we need to first decide on what “processes” we are considering. In this
setting, it is natural to take the “processes” to be linear operators between Banach spaces, as
regular processes such as Fourier transform, Laplace transform, etc. are all forms of linear
operators.

Once we have decided that we are primarily interested in the computability of operators, it
is natural to proceed and axiomatise the notion of computable points in Banach spaces, as they
act as the inputs to operators. However, this definition fails to take into account the topology
of Banach spaces, which is fundamental to the theory of Banach spaces. This leads to the ax-
iomatisation of computable sequences of points in Banach spaces, capturing the topology of the
space, while also being consistent with previous works such as [Grz57]. Indeed, this is the
essence of the axiomatic approach, the computability structure on a Banach space is deter-
mined by its computable sequences, and a point x is computable if (x, x, . . .) is computable
as a sequence. It was under this framework that the study of effective Banach spaces took
off, leading to many remarkable results. For example, the First Main Theorem in [PER87]
proved a link between the continuity and computability of operators on separable Banach
spaces.

Theorem 1.2.1 (First Main Theorem, [PER83]). Let X, Y be computable Banach spaces, and {ei}i
be a computable sequence in X whose linear span is dense. Let T : X → Y be a closed2 linear operator
whose domain contains {ei}i and such that the sequence {T(ei)}i is computable in Y. Then T maps
every computable element of its domain onto a computable element of Y if and only if T is bounded.

This result, in some sense, gives a complete characterisation of the operators that preserves
computability structures, leading to numerous applications. For example, this theorem
shows that certain integrals are computable.

1Basis here refers to Schauder basis.
2As in the graph of T is closed.
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Example 1.2.2. As an application of the First Main Theorem, we show that the indefinite in-
tegral of a computable function f ∈ C[a, b] is computable. This argument is due to [PER83].
To prove this, take X = Y = C[a, b] in the First Main Theorem, {ei}i as the sequence of
monomials {xi}i and T as the indefinite integral operator. The boundedness of indefinite
integrals imply that T is a closed operator, and the computability of {T(xi)}i is easy to ver-
ify. Applying the First Main Theorem then shows that T maps computable functions to
computable functions.

We also give an application of the First Main Theorem in the negative direction.

Example 1.2.3. In the negative direction, we give a description of a result in [PER83] that
there exists computable functions in C[a, b] which have continuous derivatives, but whose
derivatives are not computable (This result was originally proved in [Myh71] by an explicit
construction). Let X = Y = C[a, b] and {ei}i = {xi}i as in the other example, and denote
T = d

dx where the domain of T is C1[a, b]. In this case, the operator T is unbounded, and an
application of the First Main Theorem shows that T must map some computable f ∈ C1[a, b]
to a non-computable element in C[a, b].

Although much of the theory of effective Banach spaces was pioneered under the axiomatic
framework, there are other alternate approaches. One of the more notable and conventional
approach is known as the representation-based approach. [Hau78, Hau80] were some of the
first works to study the notion of representations in its own right, building on works such as
[Kla61]. This approach was eventually adopted and popularised by Weihrauch’s school of
computable analysis [Wei00], which also incorporates works on the computability of func-
tionals, such as [Grz55, Kle59, Ko91]. In the context of Banach spaces, the representation
based approach fixes a dense sequence for each separable Banach space, and treats each
separable Banach space as a space of Cauchy sequences3. This provides us with a natural
computability framework on the separable Banach spaces, where an element is computable
if it has a Cauchy sequence that is computable as a sequence of naturals. Note that this
approach only works for separable Banach spaces.

For this thesis, we will be solely interested in separable Banach spaces, in which case the
two approaches described above are equivalent. In fact, despite the fact that one can tech-
nically impose a computability structure on non-separable Banach spaces via the axiomatic
approach, there are “bad” spaces where no natural computability structure exists [PER87].
Furthermore, it was shown in [Bra01a, Proposition 15.3] that there is no representation of
l∞ (a non-separable space) such that both {∥·∥ ,+} are computable operations. In some
sense, separable Banach spaces is the natural arena where computability can be discussed,
and central results such as the First Main Theorem are also proved under this setting. This
also highlights a difficulty in the realm of effective Banach spaces, being that most classi-
cal results rely on the dual space, which might not be separable. To add on to this problem,
some of the canonical theorems used in classical Banach space theory also fail in the effective
case. For example, it was shown in [MNS85] that the Hahn-Banach theorem is not effective.4

However, as we will see, these problems can be circumvented in some cases.

3We technically use Cauchy sequences where the rate of convergence is known, this will be expanded in
Chapter 2.

4Although it is effective for the finite-dimensional case.
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1.3 Complexity of effective Banach spaces

Our goal in this thesis is to analyse the algorithmic content of the classical structure theory
of Banach spaces. To achieve this, we will be utilising results from the theory of effective
Banach spaces and classical computability theory. Such investigations are fairly common in
the case for countable structures, but are not as common for analytical objects.

There have been previous works to classify the complexity of natural analytical constructs.
For example, [MN13] analysed the complexity of (locally) compact metric spaces, [BMM20]
analysed the complexity of Lebesgue spaces and [CR99] analysed the complexity of some
natural index sets occurring in analysis. Results in the general area of computable analysis
are much more abundant in comparison. [Bra01b] examined the computability of Baire’s
Category Theorem, [Bra08] generalises the classical graph theorem in computability theory,
[LW07] proves a computable version of the Riesz representation theorem, and [WZ07] anal-
ysed the computability of Cauchy’s problem, just to name a few of the results.

Much like the theory of effective Banach spaces, the interaction between descriptive set the-
ory and the theory of Banach spaces also has a long and rich history. Arguably the funda-
mental result due to [Szl68] proving that no separable reflexive Banach space can be uni-
versal for all separable reflexive Banach spaces, through the use of coanalytic ranks known
as Szlenk indices can be viewed as a result in this area. Other results include works such
as [Bos02], which proved a variety of complexity results regarding Banach spaces, as well
as showing that the isomorphism relation between separable Banach spaces is non-Borel.
[FLR06], which later showed that in fact the isomorphism relation is analytic complete.
[God10] provides a list of some of the open problems in this area.

There have also been previous works to classify the complexity of the structural properties
through the perspective of descriptive set theory. In this setting, we classify the complexity
of sets using the Borel Hierarchy , which consists of classes Σ0

αΣ0
αΣ0
α, Π0

αΠ0
αΠ0
α, ∆0

α∆0
α∆0
α for every countable

ordinal α. In this hierarchy, Σ0
1Σ0
1Σ0
1 corresponds to the open sets, Π0

αΠ0
αΠ0
α sets are the complements of

the Σ0
αΣ0
αΣ0
α sets, Σ0

αΣ0
αΣ0
α consists of countable union of elements from Π0

βΠ0
βΠ0
β for β < α, and finally ∆0

α∆0
α∆0
α is

the intersection of Σ0
αΣ0
αΣ0
α and Π0

αΠ0
αΠ0
α. This gives a classification of the Borel sets in a Polish space.

For example, [Gha19] showed that the bounded approximation property and the π-property5

are both Σ0
6Σ0
6Σ0
6, and [CDDK21, Theorem 7.13] showed that local basis structure is Σ0

4Σ0
4Σ0
4 and local

Π basis structure is Σ0
6Σ0
6Σ0
6. We are, however, to the best of our knowledge, the first to look at

the complexity of such structural properties from the computability point of view . To be
precise, we will be classifying the complexity of structural properties using the arithmetical
hierarchy6. This is also known as the lightface hierarchy, as it corresponds to the effectivised
version of boldface hierarchy. For example, a set is Σ0

1Σ0
1Σ0
1 if and only if it is open, whereas a set

is Σ0
1 if and only if it is effectively open. In fact, the lightface hierarchy gives a more refined

analysis. For example, all continuous functions are ∆0
1∆0
1∆0
1 functions but not all of them are ∆0

1,
which corresponds to being computable. In the lightface setting, we obtained improved up-
per bounds for the results mentioned in the descriptive set theory case. In particular, we
have the following7 as part of our results:

• Bounded approximation property and π-property are both in Σ0
4.

5These will be defined in Chapter 3.
6To be defined later.
7See Section 3.9 for a complete overview.
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• Local basis structure is in Σ0
3.8

• Local Π basis structure is in Σ0
4.

In addition to the classical structural properties of Banach spaces, we also look at the com-
plexity of the corresponding effective analogues. For example, we show that having a com-
putable basis is Σ0

3-complete, and so is having a computable finite dimensional Schauder
decomposition.

8This was implicit in [Puj71] and [Bos08].
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Chapter 2

Preliminaries

This chapter will provide the necessary background knowledge on computable analysis that
is needed for this thesis. We will mostly follow standard notations and definitions. For a
more detailed treatment of the materials introduced in this chapter, we refer the readers to
[Soa16] for classical computability, [Ped89] for classical analysis and [Wei00] for computable
analysis.

2.1 Computability theory

2.1.1 Basics

Computability theory, as the name suggests, is the study of how “computable” an object is,
such as a set of natural numbers. To make this formal, we must have a rigorous definition
of what it means for something to be computable. One way to achieve this is through the
use of Turing machines. We omit the technicalities of defining what a Turing machine is,
and rather invoke the widely accepted Church-Turing thesis. Which states that ”a function
would naturally be regarded as computable if and only if it can be computed by a Turing
machine”. Intuitively, Turing machines can be viewed as programs written in some modern
programming language. In fact, this will be the default model used when Turing machines
are referred to in this thesis.

Thus, we now have a notion of what it means for a function to be computable. However
there is a key difference between the “functions” that can be computed by Turing machines
and the ordinary functions one might be used to. A function that can be computed by a
Turing machine does not necessarily have to be defined on all inputs. For example, if we
view the Turing machines as computer programs, it is possible for a program to get stuck
in some infinite loop on some inputs. To handle this, we will need the notion of partial
functions.

Definition 2.1.1. f : N → N is a partial function if it is a function with a domain X ⊆ N.

For a partial function φ, we write φ(x) ↓ to mean that φ halts (i.e. is defined) on in-
put x, and φ(x) ↑ to mean that it does not halt. For two partial functions φ, ψ, we write
φ = ψ to mean that the functions are equivalent whenever either one of them halts, i.e.
∀x[(φ(x) ↓= ψ(x) ↓) ∨ (φ(x) ↑ ∧ψ(x) ↑)].
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We can now view the computation modeled by a Turing machine as a partial function from
N to N, and define φ to be a partial computable function if and only if it is computed by
some Turing machine.

Definition 2.1.2. A partial function φ : N → N is partially computable if it corresponds
the computation modeled by some Turing machine. It is computable if it is both partially
computable and total (i.e. halts on all inputs, dom(φ) = N).

From now onwards, Turing machines are also identified by the partial computable functions
they compute.

There is also another bit of terminology that needs to be introduced. In computer programs,
although a computation might get stuck in an infinite loop and never halt, one can always
run the loop for a finite number of steps and “force” the program to halt afterwards. In light
of this, we define φ(x)[s] to mean that s-steps have been computed on input x. φ(x)[s] might
be defined, in which case the result φ(x) was computed in no more than s-many steps. Or it
might be undefined, in which case either it takes more than s-steps to compute the result, or
φ(x) ↑. The importance of φ(x)[s] is that it is always computable, and if φ(x) ↓, then φ(x)
must halt after some finite number of steps.

Note that each Turing machine has a finite description, so we can effectively list all the par-
tial computable functions through some coding. For example, we can treat each computer
program as a sequence of bits, and code this into the natural numbers. Such that for each
index, we can obtain the corresponding partial computable function and vice versa. We fix
some such listing as φ0, . . .. The listing being effective gives the following.

Theorem 2.1.3 (Universal Turing machine). There is a partial computable function φ(n, x) such
that φ(n, x) = φn(x) for every n, x ∈ N. Any Turing machine that computes such a function is
called an universal Turing machine.

Intuitively, this machine can be thought of as a compiler, a program that can simulate all
other programs. We omit the proof to avoid unnecessary details for this thesis, but the
main idea is as follows. On input (n, x), the Turing machine can decode n and obtain the
corresponding Turing machine for φn, and then run it on the input x.

The computability of classes of functions will also be of importance; we give a definition
here.

Definition 2.1.4. Given a family of functions f0, f1, . . . that are (partial) computable, we say
that they are uniformly (partial) computable if there exists a (partial) computable function
g(x, y) such that for all n, x ∈ N, g(n, x) = fn(x).

With the above definitions, we can now define the halting problem.

Definition 2.1.5. The halting problem ∅′, is defined as:

∅′ = {e|φe(e) ↓}

Intuitively, the halting problem represents the information needed to determine if an arbi-
trary Turing machine will halt on any given input. It is a fundamental result that the halting
problem is not computable.

Theorem 2.1.6. ∅′ is not computable.
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2.1.2 Relativisation

An important aspect of computability is relativisation, which is when computations are car-
ried out relative to oracles. Oracles can be thought of as external information that can be
queried a finite number of times during computations. Intuitively, when a computation is
relativised to a set A, it just means that the information contained in A can be used dur-
ing the computation. We can extend the notion of partial computable functions to partial
computable functions relativised to A, meaning that the set A is used as an oracle. These
functions are denoted as φA

e . Similarly, whenever the phrase “relativised to A” is used, it
just means that A is used as an oracle. All results discussed within this thesis hold when
relativised to oracles. With the above definitions, we define Turing reducibilities.

Definition 2.1.7 (Turing reducibility). A partial function f is Turing computable in a set A if
there is an index e such that φA

e = f . A set A is Turing reducible to a set B (also written as
A ≤T B) if the characteristic function of A is computable from B.

For sets A, B, A ≤T B intuitively means that A can be computed using B, or B contains more
information than A. If A ≤T B and B ≤T A, we say that the sets are Turing equivalent and
write A ≡T B.

The Turing jump of sets is another important operator. It is defined as follows.

Definition 2.1.8. For a set A, the (Turing) jump of A is defined:

A′ = {e|φA
e (e) ↓}

It is the halting problem relativised to A. The n-th jump of A, denoted as An, is obtained by
iterating the jump n times starting with A.

We now give an example of what it means for a result to be relativised, and provide some
intuition as to why any result in this thesis will still hold when relativised to an oracle.

Theorem 2.1.9 (Theorem 2.1.6 relativised). For any set A ⊆ N. We have:

A′ ≰T A

i.e. A′ is not computable relative to A.

Theorem 2.1.6 says that ∅′ ≰T ∅. So when relativised to A, we simply replace ∅ by A, and
obtain the claim above.

By definition of the Turing jump, we get that A ≤T A′ for any set A. Theorem 2.1.9 shows
that this inequality is strict, meaning A <T A′. As the Turing jumps can be iterated, we
actually obtain a hierarchy of the form A <T A′ <T A′′ <T . . .. This gives rise to the
Arithmetical hierarchy, introduced in the next section.

2.1.3 Arithmetical hierarchy and Post’s theorem

The domains of the partial computable functions are of particular importance, they are
known as the computably enumerable sets.

Definition 2.1.10 (Computably enumerable sets). A set A ⊆ N is a computably enumerable
set (c.e. set) if it is the domain of some partial computable function.

9



As hinted by the name, computably enumerable sets are called so because a set is c.e. if
and only if it is the range of some computable function. In other words, each computably
enumerable set can be enumerated by some computable function.

Theorem 2.1.11. A set A is c.e. if and only if A = ∅ or A is the range of a computable function f .

So, each c.e. set A can be computably enumerated by approximating the range of some com-
putable function. Therefore whenever we say that a set A is c.e., we implicitly assume that
there is a computable enumeration {As}s∈ω of it. {As}s∈ω being a computable enumeration
means that it is uniformly computable,

⋃
s As = A. And for all s, As+1 ⊇ As, As is finite.

The computably enumerable sets are part of what is called the arithmetical hierarchy. In
fact, they are equivalent to the Σ0

1 sets, which are defined below:

Definition 2.1.12. A Σ0
1 set is a set S such that:

S = {x|∃yR(x, y)}

where R ⊆ N × N is some computable relation.

Theorem 2.1.13. A set S is computably enumerable if and only if it is Σ0
1.

Following on from the definition of Σ0
1 sets, we will now define the arithmetical hierarchy.

Definition 2.1.14 (Arithmetical hierarchy). Analogous to a Σ0
1 set being characterised by

an existential quantifier before a computable relation, a Σ0
n set is a set with n alternating

existential-universal quantifiers before a computable relation, with the first quantifier being
an existential one (i.e. ∃x1∀x2 . . . ∃xnR(x, x1, . . . , xn)). A Π0

n set is the complement of a Σ0
n set.

A ∆0
n set is a set that is both Σ0

n and Π0
n. The Σ0

n, Π0
n, ∆0

n sets together form the arithmetical
hierarchy.

It follows from the definition that the complement of a Σ0
n set is a Π0

n set, so Π0
n sets are

of the form {x|∀x1∃x2 . . . ∀xnR(x, x1, . . . , xn)}. The arithmetical hierarchy is probably best
described by the following picture.

Figure 2.1: Arithmetical hierarchy

Associated to the arithmetical hierarchy is the notion of m-reducibility.

Definition 2.1.15 (m-reducibility). Let A, B be subsets of N, A is many-one reducible (m-
reducible) to B (written A ≤m B) if there is a computable function f such that

(∀a ∈ N)(a ∈ A ⇐⇒ f (a) ∈ B)

10



We also write
(
Σ0

n, Π0
n
)
≤m (A, B) if for any C ∈ Σ0

n, there exists a computable function f
such that for all c ∈ N

c ∈ C ⇐⇒ f (c) ∈ A

c /∈ C ⇐⇒ f (c) ∈ B

Finally, a set A is Σ0
n (likewise for Π0

n) complete if (Σ0
n, Π0

n) ≤m (A, AC), where AC denotes
the complement.

The importance of ≤m is that it respects the arithmetical hierarchy. If A ∈ Σ0
n and B ≤m A,

then B ∈ Σ0
n, which is not true for ≤T (E.g. ∅′ ∈ Σ0

1, (∅′)C ≤T ∅′, but (∅′)C /∈ Σ0
1). Therefore,

the type of reducibility used is quite important. Throughout this thesis, we will implicitly
assume that the reduction is a m-reduction unless otherwise specified.

2.2 Analysis

We will be primarily working with Banach spaces, so let us define what they are. All results
in this thesis hold for vector spaces over C as well, but we will only work with vector spaces
over R for the sake of simplicity.

Definition 2.2.1 (Banach space). A Banach space is a normed vector space that is complete
in its norm.

More specifically, we will be working with separable Banach spaces.

Definition 2.2.2. A Banach space X is separable if there is a sequence (ei)i∈ω ∈ Xω that is
dense in X.

Example 2.2.3. The following are some examples of the separability of some well-known
Banach spaces.

• lp spaces for 1 ≤ p < ∞ are indeed separable Banach spaces. By taking the dense set
as {(r0, . . . , rn, 0, 0, . . .)|(r0, . . . , rn) ∈ Q<ω}. c0 is also separable via this dense set.

• C[0, 1], the Banach space of continuous functions on the unit interval under the sup
norm, is also separable. One possible dense set is the set of polynomials with rational
coefficients by the Stone-Weierstrass theorem.

• The Banach space l∞ is not separable. To see this, suppose for the sake of contradiction
that (ei)i∈ω is a dense sequence in l∞, where ei = (ei,0, ei,1, . . .). We can then carry out
a direct diagonalisation and construct an element x = (x0, . . .) ∈ l∞ by setting xi = 0
if |ei,i| > 1 and xi = ei,i + 1 if |ei,i| ≤ 1. The resulting element satisfies ∥x − ei∥ ≥ 1 for
all i, therefore a contradiction, and l∞ is indeed not separable.

We remark here that there is the equally important notion of Hilbert spaces in functional
analysis, which are Banach spaces where the norm is induced by an inner product. Not all
separable Banach spaces are Hilbert spaces, and Hilbert spaces are very “nice” with respect
to the properties that will be considered in this thesis, as they inherently contain the impor-
tant notion of angles. For example, all separable Hilbert spaces will automatically have a
basis, but as we will see later on, this is not always the case for Banach spaces.

Operators in this report will always be linear unless stated otherwise. Those operators that
are bounded are of particular importance.

11



Definition 2.2.4. Let T : X → Y be an operator where X, Y are Banach spaces. The operator
is bounded if there exists some M ∈ R such that

(∀x ∈ X) ∥T(x)∥ ≤ M ∥x∥

Furthermore, if the operator is bounded, then the infimum of all such bounds is known as
the norm of the operator.

Example 2.2.5. One of the more familiar examples of linear operators is that of matrices.
Each matrix M = (aij)i≤n,j≤m induces a linear operator from Rm to Rn, where each basis
vector ej ∈ Rm is mapped to the vector ∑n

i=1 aijei ∈ Rn. It is a classical result that such
operators are always bounded.

It is in fact a fundamental result that linear operators are continuous if and only if they are
bounded.

Lemma 2.2.6. Let T : X → Y be a linear operator. Then T is bounded if and only if it is continuous.

Proof. For the forward implication, we get that ∥Tx − Ty∥ = ∥T(x − y)∥ ≤ ∥T∥ ∥x − y∥,
which implies continuity.

For the converse, as T is continuous, it is therefore continuous at 0, and there will be some
δ > 0 such that for all v ∈ X with ∥v∥ ≤ δ, ∥T(v)∥ = ∥T(v)− T(0)∥ ≤ 1. Now let x ∈ X be
some arbitrary element, we have

∥T(x)∥ =
∥x∥

δ

∥∥∥∥T
(

δx
∥x∥

)∥∥∥∥ ≤ 1
δ
∥x∥

So the norm of T is bounded by 1
δ .

Operators that have a finite dimensional range are also of special importance, we will define
them explicitly.

Definition 2.2.7. Let X, Y be normed vector spaces. An operator T : X → Y has finite rank if
its range is finite-dimensional, in which case it is also called a finite rank operator.

The following is a central theorem that gives a criterion for open operators.1

Theorem 2.2.8 (Open mapping theorem). If X and Y are Banach spaces, and T : X → Y is a
surjective continuous operator, then T is an open operator.

An important corollary of the open mapping theorem is the following.

Corollary 2.2.9. If X, Y are Banach spaces and T is a continuous linear operator that is bijective,
then T−1 : Y → X is a continuous linear operator.

Definition 2.2.10. A bounded linear operator P : X → X is a projection if P2 = P. A
subspace Y of X is complemented if there exists a projection P : X → Y, P(X) = Y.

Alternatively, we can actually show that this is equivalent to the existence of some other
subspace Z of X such that X = Y ⊕ Z.

1An operator is open if it maps open sets to open sets.
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Lemma 2.2.11. A subspace Y of a Banach space X is complemented if and only if there exists a
subspace Z of X such that X = Y ⊕ Z. (i.e. Y is algebraically complemented)

Definition 2.2.12. Let X, Y normed spaces. Then the set of all bounded linear operators
from X to Y is denoted as L(X, Y). It is well-known that if Y is a Banach space, then so is
L(X, Y). We will also denote the set of projections from X to Y as P(X, Y). It is clear that
P(X, Y) ⊆ L(X, Y). Finally, LK(X, Y) denotes the set of all operators with norm bounded by
K, and likewise for PK(X, Y).

The following results regarding finite dimensional spaces are also well known.

Theorem 2.2.13. Let X be a normed space. Then the unit ball BX = {x ∈ X : ∥X∥ ≤ 1} is compact
if and only if X is finite dimensional.

Theorem 2.2.14. Let S = {x0, . . . , xn} be a set of linearly independent vectors in a normed space
X. Then there is a constant C depending only on S such that for all (αi)i≤N ∈ RN , we have

C

∥∥∥∥∥ N

∑
i=0

αixi

∥∥∥∥∥ ≥
N

∑
i=0

|αi|

We will also need to introduce some technical terminologies.

Definition 2.2.15. Let (Xi)i∈ω be a sequence of Banach spaces. Then their c0 sum, denoted
as

Y = (⊕iXi)c0

is defined as the space of sequences (xi)i∈ω ∈ ∏i Xi such that (∥xi∥)i → 0. The norm of the
element ∥(xi)i∈ω∥ is defined as

∥(xi)i∈ω∥ = sup
i

∥xi∥

and the vector space operations are carried out term-wise. It can be verified that Y is indeed
a Banach space as well.

Definition 2.2.16. Let X be a Banach space, and (xi)i∈ω be a sequence of elements in X.
[x0, x1, . . .] is defined to be the closure of the finite linear span of (xi)i∈ω.

2.3 Computable analysis

Computability theory studies the algorithmic content of mathematics, and has many sub
areas. For example, the subfield of computable algebra studies the effective content of alge-
braic structures, such as groups. In this setting, we endow a computability structure on a
group (G, ·) by coding G as a computable subset of N, and require the group operation
to be computable. In contrast, the subfield of computable analysis studies the effective con-
tent of analytic objects, such as functions on R, Banach spaces, etc. Distinct to the case for
computable algebra, analytical objects are often uncountable in nature (e.g. R, C), and thus
cannot be coded as a subset of N.

There are many approaches to endow computability structures on analytical objects. In fact,
Turing’s original paper [Tur36] was actually motivated by trying to classify the computable
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real numbers, rather than computability on N. Turing’s original approach classified com-
putable numbers as those that have a computable decimal expansion2, Banach and Mazur
had a notion of Banach-Mazur computability [Maz63] for functions f : Rc → Rc

3, [Grz57]
had a notion of computability for functions f : [0, 1] → R, the “Russian school” of con-
structive mathematics led by Markov developed a notion of Markov computable for functions
f : Rc → Rc, and there are many other notions not mentioned here. Unsurprisingly, most
of these notions are not equivalent, as shown by works such as [Her05, Abe84]. We refer the
reader to [AB14] for a more comprehensive survey. In this thesis, we will be adopting the
conventional and more modular approach, giving a general framework (not limited to R) to
work with sets of size continuum.

We will introduce computability on analytical objects through representations. This approach
is known as “Type-two theory of effectivity” (TTE), which we introduce below. A more
detailed treatment can be found in [Wei00].

2.3.1 Representation based approach

To motivate a representation based approach to computable analysis, we first re-examine
the approach taken in computable algebra. Countable structures are treated as subsets of
N, formalised through the notion of coding. To be more precise, let S denote some countable
structure. Then a notation for S is a surjective partial function µ : N → S, where n ∈ dom(µ)
is said to be a µ-name for µ(n). The usual computability-theoretic operations are then carried
out on dom(µ), the names of S, instead of the actual elements of S. This approach has
worked well for countable structures, but will clearly fail for larger structures such as R and
C, which all have a cardinality of the continuum, hence there cannot be a surjection from N

to them.

To circumvent this problem, we will work with the theory of representations. As mentioned
in the introduction, the theory of representations has its roots in [Kla61, Hau80, Hau78]. It
was popularised by Weihrauch’s school of computable analysis, originating in works such
as [KW85, WK87]. As we will see, the theory of representations provides us with a power-
ful and modular framework to systematically deal with computability on sets that have a
cardinality of the continuum.

Definition 2.3.1. Let S be a set, a representation of X is a surjective partial function ν : NN →
S. For any s ∈ S and n ∈ NN such that ν(n) = s, we say that n is a ν-name of x.

Example 2.3.2. The following are some examples of representations that the reader might
be familiar with.

• The usual decimal representation for [0, 1] is in fact a representation in the sense de-
fined. Where

ν ((x0, x1, . . .)) = 0.x0x1x2 . . .

• We could also easily obtain a similar representation for R by defining ν ((x0, x1, . . .)) =
x0.x1x2x3 . . .. Note that under this representation, the names are not unique. Since we
have ν ((1, 0, 0, . . .)) = 1 = ν ((0, 9, 9, . . .)).

2This notion was later corrected in [Tur37].
3Rc is the field of computable numbers.
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• By using the standard notation from N to Q, we can regard elements of NN as se-
quences of rationals. Then the representation ν ((x0, . . .)) = limi→∞ xi is a representa-
tion of R when defined on the set of convergent sequences.

We will now define a notion of computability on NN.

Definition 2.3.3. A partial function F : NN → NN is computable if there is an oracle Turing
machine ψ such that F(x) = y ⇐⇒ (ψx(i))i∈ω = y. As a result, we require ψx to not
produce an infinite sequence for x ∈ NN \ dom(F).

Example 2.3.4. Let y ∈ NN, consider the constant function Iy : NN → NN defined by
Iy(x) = y for all x ∈ NN. Then Iy is computable if and only if y is computable as a function
from N to N.

Remark 2.3.5. We stress that in Definition 2.3.3, we are working with oracle machines, with
its domain being NN. (This can also be thought of as { f | f : N → N}). Whereas classical
computability works with regular Turing machines, with its domain being N. This is why
this approach is called “Type-two theory of Effectivity”.

This leads to a natural notion of computability on sets with representations.

Definition 2.3.6. Let X, Y be sets and δX, δY be representations for them. A partial function
f : X → Y is (δX, δY) computable if there is a computable (possibly partial) F : NN → NN

such that
δY ◦ F(x) = f ◦ δX(x)

for all x ∈ dom( f ◦ δX). Note that this does not impose any requirement on F(x) for x /∈
dom( f ◦ δX).

Example 2.3.7. The following are some examples of Definition 2.3.6 in action.

• Let ρ denote the representation that treats NN as sequences of rationals and maps
them to their limits (if they exist) in R. One can check that the usual functions such
as sin(), |·|, etc, are all (ρ, ρ) computable. But the ordering relation of R is not (ρ, ρ)
computable. In fact, it is not even Σ0

1.

• Let ρ10 denote the representation corresponding to the base-10 decimal expansion of
R. i.e.

ρ10 ((x0, x1, . . .)) = x0.x1x2x3 . . .

Under this representation, the innocent looking function f (x) = 3x is in fact not
(ρ10, ρ10) computable. To see this, suppose that there is some computable F : NN →
NN that witnesses the computability of f as per Definition 2.3.6. Consider the value of
F ((0, 3, 3, . . .)). The correct output should be (1, 0, 0, . . .) or (0, 9, 9, . . .) as f (0.333 . . .) =
1. However, as F is computable, it must have finite use for producing the first digit
of its output. In other words, suppose that the output of F ((0, 3, 3, . . .)) is (1, 0, . . .).
Then the “1” in the output (1, 0, . . .) must have been produced by only using a fi-
nite prefix of (0, 3, . . .). We can then find a string of the form (0, 3, . . . , 3, 0, . . .) such
that F ((0, 3, . . . , 3, 0, . . .)) has 1 as the first digit of its output. But this is incorrect as
f (0.3 . . . 30 . . .) < 1. Using a similar argument for F ((0, 3, 3, . . .)) = (0, 9, 9 . . .) com-
pletes the argument.
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These definitions provide us with a general framework to define computability structures on
sets such as R, while only dependent on the representation chosen. This naturally leads to
the question: “Which representation should we use?”. As shown in the examples, represen-
tations such as ρ10 on R are certainly not desirable, since simple functions such as f (x) = 3x
should certainly be computable. As it turns out, there is in fact a natural representation to
use if we require the regular operations we are familiar with to be computable ([Her99]).

Definition 2.3.8 (Cauchy representation of R). Fix g : N → Q as some coding of the ratio-
nals. Define the representation ρCauchy : NN → R by

ρCauchy ((x0, . . .)) = x ⇐⇒ (∀i)
(
|x − g(xi)| < 2−i

)
As shown in [Her99], this is indeed the “only” representation for R if we require the usual
operations to be computable. Thus, Cauchy representation has been regarded as the stan-
dard representation to use, and we will be adopting this convention in this thesis.

While TTE is very powerful and the theory of representation provides a modular approach
for imposing computability structures on general sets, we will be using more direct defini-
tions for the sake of simplicity on notations. Note that this is only a matter of preference as
the definitions are in fact equivalent.

2.3.2 Computable reals

We will first introduce what it means for a real number to be computable. In the language
of representations, a real y ∈ R is computable if and only if the constant function f (x) = y
is (ρCauchy, ρCauchy) computable.

Definition 2.3.9 ([Tur37]). A real number α ∈ R is computable if there is a computable
sequence of rationals q0 < q1 < . . . → α (converging to α) such that |qn − α| < 2−n for all n.

This means that the computable real numbers are the reals that have computable rational
approximations and the rate at which the approximations converge is known. Almost all
of the familiar mathematical constants fall under this category. For example, π, e and all
rationals are computable. However, we note that there are only countably many computable
numbers, so almost all real numbers are not computable.

In the definition for a computable real, the sequence of rationals converging to it is required
to converge at a given rate. It is natural consider a relaxation of this condition, where there
is not an a priori bound on the rate of convergence. This leads to the notion of c.e. reals.

Definition 2.3.10. A real number α ∈ R is left-c.e if there is a computable sequence of ratio-
nals q0 < q1 < . . . → α.

It is important to note that the above definition requires the sequence of rationals to be in-
creasing. If we simply require (qi)i → α, then α is something known as a ∆0

2 real, rather than
being left-c.e. Intuitively, the left-c.e. reals are the reals that have computable approxima-
tions, but the rate of convergence is not known.

Example 2.3.11. Let A be any c.e set that is not computable, and {as}s∈ω be some computable
enumeration of it. Construct the sequence (qi)i∈ω by setting

qi =
n

∑
i=0

2−ai−1
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By construction, (qi)i∈ω is monotonically increasing and bounded from above by 1. There-
fore, it converges to some real number α, and since {as}s is a computable enumeration, the
sequence (qi)i∈ω is computable as well, making α a left-c.e real. However, note that if α
was computable, we could compute its binary expansion and therefore compute A. Since A
was chosen to be non-computable, α must be non-computable as well. The sequence (qi)i∈ω

is known as a Specker sequence, an important example that proves the existence of strictly
left-c.e reals.

We say that a sequence of reals (xi)i∈ω is uniformly left-c.e if there is a computable function
f (n, i) such that for each n ∈ N, ( f (n, i))i∈ω gives a computable rational approximation to
xn as per Definition 2.3.10. Likewise, a sequence of reals (xi)i∈ω is uniformly computable
if there is a computable function g(n, i) such that (g(n, i))i∈ω is an approximation to xn as
per Definition 2.3.9. This is distinct to the notion of a sequence of computable reals (xi)i∈ω,
which only requires xi to be computable for each i, but lacks the uniformity requirement.

The reader should beware that computability in the Type Two case is a bit different from the
usual (also known as Type One) notion of computability on N. In the Type Two case, we
almost exclusively only deal with approximations, rather than exact relations. For example,
the equality relation a = b between computable numbers a, b is Π0

1 rather than decidable,
and we instead work with the value |a− b|, which can be accurately approximated. Another
notable example of this is the computability of sequences, let (ri)i∈ω be a sequence of ratio-
nals. Then (ri)i∈ω being uniformly computable in the Type One sense means that there is a
Turing machine that outputs the exact codes of the rationals in the sequence. In the Type Two
case, however, (ri)i∈ω being uniformly computable only guarantees uniformly computable
approximates to the rationals of arbitrary precision.

2.3.3 Computable Banach spaces

We will now define what it means for a Banach space to be computable. Conceptually, this is
very similar to the computability structure on R. We will enforce the existence of “rationals”,
and impose computability conditions on the “rationals”.

This is essentially why separable spaces provide natural computability structures. Intu-
itively, a dense sequence allows us to “fix” the elements on which computability features
will be enforced upon.

Example 2.3.12. Q is a dense sequence for (R, |·|), where |·| is the usual absolute value
function.

This leads to the definition of computable normed spaces. The following is equivalent to the
usual computability structure obtained by using the Cauchy representation on normed vec-
tor spaces.

Definition 2.3.13 (Computable spaces). Let (X,+, ·, ∥·∥) be a normed vector space with
(ei)i∈ω as a dense sequence. An element x ∈ X is said to be computable with respect to
(ei)i∈ω if there is a computable function d : N → N such that

(∀i)
(∥∥∥ed(i) − x

∥∥∥ < 2−i
)

We then define:
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• A dense sequence (ei)i∈ω is a presentation if the operators {+, ·} are uniformly com-
putable on it with respect to itself, and ∥·∥ is uniformly computable on (ei)i∈ω as a
real-valued function.

• A computable normed space is a normed space with a presentation. A computable
Banach space is a computable normed space that is complete.

Example 2.3.14. The set of all rational polynomials on [0, 1] is a presentation for C[0, 1] by
Stone-Weierstrass.

Remark 2.3.15. As a result of the preceding definition, normed spaces that are not separable
cannot be considered as computable spaces. An example of this is the space l∞, which cannot
be given a presentation as it is not separable.

The observation above again highlights one of the main difficulties when dealing with com-
putable Banach spaces, which is that the dual of a computable Banach space need not be
separable, and therefore might not be computable. This problem occurs even for standard
spaces such as C[0, 1]. As most classical results in Banach space theory uses the dual, this
drawback causes the effectivisation of most classical theorems to be non-trivial. There have
been attempts to endow a computability structure on a non-separable normed space. For ex-
ample, [Bra01a] defined the notion of a general computable space, which does not assume the
space to be separable. But as remarked in the introduction, there are non-separable spaces
where no “natural” computability structure can be imposed, so it is hard find a general way
to circumvent this problem.

Let us stress that as per the preceding definition, a computable space inherently assumes
some presentation, and is dependent on the presentation chosen. There are in fact Banach
spaces where different presentations yield different computable Banach spaces ([PER87]).
This is again distinct from the case for Hilbert spaces, where every presentation will yield
the same4 computable space [Mel13].

Definition 2.3.16. Let X, Y be computable finite dimensional Banach spaces. L(X, Y) will
always be assumed to be presented as a set of matrices of dimensions dim(Y) × dim(X)
with rational coefficients unless stated otherwise.

We will also be discussing operators from one space to another. In view of this, we will also
need to define what it means for elements of computable spaces to be computable, much
like the case in R.

Definition 2.3.17 (Cauchy names). Fix X to be any computable Banach space and denote its
presentation as S = (ei)i∈ω. A Cauchy name for an element x ∈ X is some sequence (αi)i∈ω

where αi ∈ S for all i, and furthermore

∥αi − x∥ < 2−i

We say that x ∈ X is computable if it has a computable Cauchy name (The Cauchy name is
viewed as a sequence of naturals here).

The above definition is a generalisation of Definition 2.3.9, and is indeed equivalent to Defi-
nition 2.3.9 when we take R to be a computable normed space with Q as its representation.

With the definitions above, we can finally define what it means for an operator to be com-
putable.

4Up to a computable isometry.
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Definition 2.3.18. Let X, Y be computable normed spaces. Let T : X → Y be some function.
T is computable if there is some Turing functional ψ such that for all x ∈ X, for all Cauchy
names c of X, (ψc(i))i∈ω is a Cauchy name for T(x).

Remark 2.3.19. It is well known that computable functions are necessarily continuous, The-
orem 2.3.24 gives a proof of this fact, and proves the stronger statement that the modulus of
continuity at computable points will also be computable. In the case where T : X → Y is
a linear operator, the modulus of continuity at 0 guarantees the operator T to be bounded.
This can be viewed as a weak version of the First Main Theorem in [PER83].

We will also need an effectivised version of compactness.

Definition 2.3.20. Let X be a computable normed space. A compact subset K ⊆ X is effec-
tively compact if there is an effective procedure and a computable function f both uniform in
n ∈ N such that for all n ∈ N the procedure

• Gives a computable enumeration of a finite set of points {x0, . . . , xs} ⊆ K such that⋃
i≤ f (n)

B
(
xi, 2−n) ⊇ K

where B(a, r) is the open ball of radius r centered around a.

Example 2.3.21. An example of an effectively compact set is the unit interval [0, 1] in the
computable normed space (R, |·|). For a given n, we can approximate [0, 1] through a list of
dyadic rationals.

We obtain that the notion of effective compactness is preserved by computable functions.
This result is an easy consequence of Theorem 2.3.25.

Theorem 2.3.22. Let X be a computable normed space, with K ⊆ X an effectively compact subset.
Further let Y be some computable normed space, and f : X → Y be some computable function. Then
f (K) ⊆ Y is also effectively compact.

Definition 2.3.23 (Modulus of continuity). Let X, Y be normed spaces, and f : X → Y be
some continuous function. Let x ∈ X be some arbitrary point, we say that d : N → N is a
modulus of continuity at x if

(∀n) (∀y ∈ X)
(
∥x − y∥ < 2−d(n) =⇒ ∥ f (x)− f (y)∥ < 2−n

)
Analogously, if f : X → Y is uniformly continuous, we say that d : N → N is a modulus of
uniform continuity if

(∀n) (∀x, y ∈ X)
(
∥x − y∥ < 2−d(n) =⇒ ∥ f (x)− f (y)∥ < 2−n

)
It is well-known that all computable functions are continuous, we can in fact say something
stronger.

Theorem 2.3.24. Let X, Y be a computable normed spaces with S = (ei)i∈ω as X’s computable
presentation, let f : X → Y be some computable function. The modulus of continuity of f is
uniformly computable on points in S.
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Proof. We describe an effective procedure uniform in x ∈ S and n ∈ N. Since S consists of
elements from the dense sequence, q = (x)i∈ω is indeed a computable Cauchy name for x.
Let ψ be the underlying Turing functional for f , then its use function5 φq(n) is computable.
We can now declare d(n) to be φq(n + 1) + 1. If ∥x − y∥ < 2−φq(n+1)−1, q ↾ d(n) is a prefix of
some Cauchy name for y. Furthermore, since this prefix was constructed to be long enough,
we get that ψq↾d(n)(n + 1) ↓. Hence by definition of ψ, we obtain∥∥∥ψq↾d(n)(n + 1)− f (x)

∥∥∥ < 2−n−1

and ∥∥∥ψq↾d(n)(n + 1)− f (y)
∥∥∥ < 2−n−1

therefore, ∥ f (x)− f (y)∥ < 2−n. Since the described procedure is effective, we are done.

We will now show that computable functions on effectively compact subsets of its domain
will have a computable modulus of uniform continuity on that set. This result can also be
found in [Wei00, Theorem 6.2.7].

Theorem 2.3.25. Let X, Y be computable normed spaces, and f : X → Y be some computable
function. Let K ⊆ X be an effectively compact set, then there is a computable d : N → N such that
d is a modulus of uniform continuity for f over K.

Proof sketch. The main idea is to just effectivise the classical proof of the result that contin-
uous functions over compact sets are uniformly continuous. By Theorem 2.3.24, for each ϵ,
we can effectively find a corresponding δ-ball centered around each point. Then utilising
effective compactness gives us an effective finite sub-cover, and we can just proceed as per
the classical argument.

Finally, the upshot of the above results is the following theorem (see [Wei00] for a TTE ver-
sion).

Theorem 2.3.26. Let X be a computable normed space, further let K be some effectively compact
subset of X. Let T : X → R be any computable function. Then maxK( f ) is computable. (Therefore
minK( f ) is also computable)

Proof. First note that it is sufficient to show the relations maxK( f ) < r and maxK( f ) > r
are Σ0

1 for all r ∈ Q, as we can carry out a binary-search style algorithm to compute the
maximum if this was true. Without loss of generality, it is in fact sufficient to show that
maxK( f ) < r is Σ0

1 uniformly in r. Fix some r ∈ Q, denote {Ki}i∈ω as some computable
approximation of finite covers to the effectively compact set K, further denote d : N → N as
the computable modulus of uniform continuity obtained via Theorem 2.3.25. We claim that

max
K

( f ) < r ⇐⇒ (∃n) (∃i > d(n)) (∀x ∈ Ki)
(

f (x) < r − 2−n)
The forward implication follows directly. For the converse, let x ∈ K be some arbitrary
element. Since points in Ki generate an open cover for K, there is some y ∈ Ki such that
∥x − y∥ < 2−d(n). By definition of d(n), this implies that ∥ f (x)− f (y)∥ < 2−n. And since
f (y) < r − 2−n, we get that f (x) < r, which completes the proof.

5Number of bits of q that was used to compute the n-th output.
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Example 2.3.27 (Effective independence). As an application of Theorem 2.3.26, we prove
the effective independence lemma ([PER87]) from it. The effective independence lemma
essentially states that in a computable normed space, linear independence is a Σ0

1 relation.
To prove this, let {x0, . . . , xn} be our input. We then have

{x0, . . . , xn} is independent ⇐⇒ min
(α0,...,αn)∈Rn+1\0

∥∥∥∥∥ n

∑
i=0

αixi

∥∥∥∥∥ > 0

It is sufficient to note that instead of quantifying (α0, . . . , αn) over Rn+1 \ 0, we can normalise
and only quantify over the set

S =

{
(α0, . . . , αn) ∈ Rn+1∣∣ n

∑
i=0

|αi| = 1

}

which is an effectively compact set. Therefore, the value min(α0,...,αn)∈S ∥y∥ is computable,
which implies that the relation miny∈S ∥∑n

i=0 αixi∥ > 0 is Σ0
1, and we are done.

Remark 2.3.28. The example above illustrates another point of difference between com-
putable normed spaces and countable computable vector spaces. For countable vector spaces,
the corresponding notion of independence has been studied using computability through
the notion of a dependence algorithm. Where a computable vector space V is said to have the
dependence algorithm if

{(v0, . . . , vk) is linearly dependent |k ∈ N, vi ∈ V}

is computable as a set of natural numbers. It was proven in [MN77] that any effective vector
space has a dependence algorithm if and only if it has a c.e basis.6 Whereas as shown in
the example above, deciding if a finite set of vectors is linearly dependent is always Π0

1 in a
computable normed space.

It is also known that the unit balls of finite dimensional metric spaces are compact, we show
that the effectivised version of the statement is also true.

Theorem 2.3.29. Let X = [e0, . . . , eN ] be a computable normed space. The set

{x ∈ X : ∥x∥ ≤ 1}

is effectively compact.

Proof. Without loss of generality, we may assume that ∥ei∥ = 1 for all i. Then the claim
follows from the fact that {(λ0, . . . , λN) : λi ∈ R, ∑i|λi| ≤ 1} is effectively compact.

6Note that this refers to a Hamel basis.
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Chapter 3

Complexity of effective Banach spaces

We are primarily interested in the algorithmic content of the various classical mathematical
constructs that arise in Banach space theory. In contrast to the situation for countable vector
spaces, the case for Banach spaces is much more complex and mysterious. We begin this
chapter with some results regarding bases in Banach spaces that highlights this distinction.

A central notion in the theory of finite, or even countable dimensional vector spaces is the
notion of a Hamel basis. Where (vi)i is a Hamel basis for a vector space X if every x ∈ X
can be written uniquely as a finite linear combination of (vi)i. (i.e. x = ∑M

i=0 αivi for an
unique sequence of scalars {αi}i≤M). Unfortunately, in the case of Banach spaces, it is a
consequence of the Baire category theorem that all Hamel bases will be uncountable. This
highlights the major drawback of using Hamel bases for Banach spaces, namely that Hamel
bases are purely algebraic, and do not take into account the topology of the spaces.

The core idea in generalising Hamel basis to topological vector spaces such as Banach spaces
is to consider infinite sums, as this inherently relies on the topology of the space. Applying
this to Banach spaces leads to the fundamental notion of Schauder basis.

Definition 3.0.1 (Schauder). Let X be a Banach space. A sequence (xi)i∈ω ∈ Xω is a Schauder
basis of X if for all x ∈ X, there is an unique sequence of coefficients (ai)i∈ω ∈ Rω such that

∞

∑
i=1

aixi = x

A sequence that is the Schauder basis of the closure of its linear span is called a basic se-
quence.

Example 3.0.2 ([Haa10]). Define a sequence of functions {xn(t)}n≥1 by x1(t) ≡ 11 and, for
k = 0, 1, 2, . . . , l = 1, 2, . . . , 2k,

x2k+l(t) =


1 t ∈ [(2l − 2)2−k−1, (2l − 1)2−k−1]

−1 t ∈ ((2l − 1)2−k−1, 2l · 2−k−1]

0 otherwise

this is known as the Haar system, which forms a basis of Lp(0, 1) for every 1 ≤ p < ∞.

Remark 3.0.3. Not only is the existence of Schauder bases important classically, it also places
a role in the theory of effective Banach spaces. For example, [BD07] analysed the computable

1(∀t)(x1(t) = 1).
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analogues of certain classical theorems regarding compact operators, under the assumption
that the space possesses a computable Schauder basis. Another example is [BGM+21] where
certain theorems relied on the existence of a computable basis.

Throughout this thesis, basis will always refer to Schauder basis unless otherwise stated.
It can be observed from the definition that a Banach space with a basis will necessarily be
separable, as the finite linear span of the basis forms a countable dense set. However, the
converse was known as the basis problem, originally posed by Banach and remained open
for nearly 40 years, until Per Enflo [Enf73] came up with a negative example.

There was a huge effort towards solving the basis problem. As a part of the effort, many
important properties regarding the geometry of Banach spaces were identified. Several of
them will be examined in this thesis, and some of them are consequences of having a basis.
One them is called the approximation property2, and Enflo’s example in fact lacks the approx-
imation property. We will later expand on this important property as it enables us to prove
lower bounds on certain index sets.

We note that the situation is vastly different from the case for countable vector spaces. In the
arena of countable vector spaces, we are always guaranteed the existence of a Hamel basis.
Whereas the existence of Schauder basis is not implied by the separability of a Banach space.

Interestingly, in the effective setting, a countable computable vector space need not have
computable non-trivial independent sets. A computable infinite dimensional vector space
was constructed in [MN77], where all computable independent sets are necessarily finite.
This result was further generalised in [FSS83], where a computable infinite dimensional
vector space was constructed such that every infinite independent set computed the halting
problem. On the other hand, computable Banach spaces always have an infinite computable
independent set.3

We will now show that in any computable infinite dimensional Banach space, there is a
computable basic sequence. Unsurprisingly, a basic sequence is computable if it is uniformly
computable as a sequence of points.

Definition 3.0.4. Let X be a computable Banach space. (xi)i∈ω is a computable basic se-
quence if it is a basic sequence and is uniformly computable as a sequence of points. A
computable basis is a computable basic sequence that is also a basis.

The following is a classical lemma going back to Banach.

Lemma 3.0.5 (Banach). Let X be a Banach space and (xi)i∈ω ⊆ X a sequence of elements. Then
(xi)i∈ω is a basis of X if and only if:

1. xi ̸= 0 for all i ∈ N.

2. There is a constant K ∈ R such that for all n, m ∈ N with m < n, for all sequences of scalars
(ai)i∈N, we have ∥∥∥∥∥ m

∑
i=1

aixi

∥∥∥∥∥ ⩽ K

∥∥∥∥∥ n

∑
i=1

aixi

∥∥∥∥∥
3. The finite linear span of (xi)i∈N is dense in X.
2To be defined in Section 3.1.
3Essentially a consequence of Example 2.3.27.
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The proof presented here is due to [LT77, Proposition 1.a.3].

Proof. For the forward implication, note that if (xi)iω is a basis, then it trivially satisfies (1)
and (3). Now consider the sequence of natural projections {Si}i∈ω associated with the basis,
defined by

Sk

(
∞

∑
i=0

αixi

)
=

k

∑
i=0

αixi

(2) is equivalent to requiring the value supi ∥Si∥ to be finite. To show this, define the alter-
nate norm ∥·∥b on X by ∥∥∥∥∥ ∞

∑
i=0

αixi

∥∥∥∥∥
b

= sup
n

∥∥∥∥∥ n

∑
i=0

αixi

∥∥∥∥∥
Note that this is well-defined as (∑n

i=0 αixi)n → ∑∞
i=0 αixi, so ∥·∥b is finite on any v ∈ X.

Furthermore, ∥·∥b is indeed a norm on X, and ∥v∥ ≤ ∥v∥b for all v ∈ X. In fact, it is not hard
to show that (X, ∥·∥b) is complete as well. An application of the open mapping theorem
then proves that the norms ∥·∥ , ∥·∥b are equivalent, and we are done.

We now deal with the converse. If ∑∞
i=0 αixi = 0, then (1) and (2) forces αi = 0 for all i, so the

representations are unique, and it remains to show that every v ∈ X has an expansion of this
form. In view of (3), it is sufficient to show that the space of elements of the form ∑∞

i=0 αixi is
closed. Let (∑∞

i=0 αi,nxi)n → v, (2) implies that each sequence (αi,n)n will converge to some
βi ∈ R. It then follows that v = ∑∞

i=0 βixi, and we are done.

The proof of Lemma 3.0.5 leads to the very important notion of basis constants, which will be
central to this thesis.

Definition 3.0.6. Let X be a Banach space and (xi)i∈ω be a basis of X, and {Si}i∈ω as its
associated sequence of projections. The basis constant of (xi)i∈ω, denoted as bc ((xi)i∈ω), is
the value supi ∥Si∥. Note that bc ((xi)i∈ω) is equivalent to the infimum of all K that satisfies
the requirements of Lemma 3.0.5. The basis constant of the space X, denoted bc(X), is the
infimum of basis constants across all of its bases. Lemma 3.0.5 shows that this notion is
well-defined. Finally, if (xi)i∈ω is not a basis we define bc ((xi)i∈ω) to be bc ((xi)i∈ω) = ∞.

Remark 3.0.7. In simpler spaces such as Rn, or for Hilbert spaces, the natural bases in fact
have basis constant 1. In the theory of bases for Banach spaces, bases with basis constant 1
are of special importance as well, and are called monotone basis. Example 3.0.2 gives mono-
tone bases for Lp(0, 1) spaces. Motivated by the situation for Rn and the fact that all finite
dimensional Banach spaces have a basis, one might wonder whether all finite dimensional
Banach spaces have a monotone basis. Unfortunately, this is not the case. In fact, it was
shown in [Sza83] that there does not exist any universal bound on the basis constant of all
finite dimensional Banach spaces. (This was also known as the finite dimensional basis prob-
lem.)

We note that it is a direct consequence of effective compactness that basis constants of finite
computable sequences are themselves computable as well. This lemma can also be found in
[Bos08] under the TTE framework.

Lemma 3.0.8. Let X be a computable Banach space, and {x0, . . . , xn} be a computable sequence of
independent points. Then bc(x0, . . . , xn) is computable, uniform in {x0, . . . , xn}.
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Proof. For the sake of simplicity, let [x0, . . . , xi] denote the space spanned by the points. Note
that the basis constant is simply the maximum of the norms of the natural projection opera-
tors {Pi}i≤n, Pi : [x0, . . . , xn] → [x0, . . . , xi]. Since the projections are uniformly computable,
the norms will also be uniformly computable by Lemma 3.3.1, which implies the uniform
computability of the basis constant.

For finite dimensional spaces, we can actually say that the basis constant of the overall space
will be computable as well. This was shown to be right-c.e. in [Bos08].

Corollary 3.0.9. Let X be a computable Banach space, and {x0, . . . , xn} be a computable sequence
of linearly independent points. Then bc([x0, . . . , xn]) is computable. Furthermore, this is uniform in
{x0, . . . , xn}.

Proof. Denote D = [x0, . . . , xn], and let (vi)i≤n be an arbitrary sequence of elements in D. By
definition, we may write vi = ∑n

j=0 αi,jxj, so the sequence (vi)i≤n is uniquely characterised
by the sequences of coefficients

α0,0, α0,1, . . . , α0,n, α1,0, . . . , αn,0, . . . , αn,n

Furthermore, as scalar scaling preserves the basis constant of (vi)i≤n, we can assume without
loss of generality that ∑n

i=0 ∑n
j=0|αi,j| = 1. Consider the natural mapping f : (Rn×n, ∥·∥1) →

Dn given by

f
(
(αi,j)i,j≤n

)
=

(
n

∑
j=0

αi,jxj

)
i

under this mapping, we can naturally regard each basis of D as an element in the image.
Therefore, the basis constant of D is equivalent to the minimum of basis constants on f ’s
image. Now note that ∑n

i=0 ∑n
j=0|αi,j| = 1 is an effectively compact subset of (Rn×n, ∥·∥1), f

is a computable mapping, and basis constants are also computable on computable points.
We can therefore conclude that the basis constant of D is computable by Theorem 2.3.26.
Note that there is a subtlety here, as certain sequences in the image of f might not be lin-
early independent. But this is not hard to fix as linearly-dependent sequences have a basis
constant of ∞, and we can just halt the computation once it exceeds bc(x0, . . . , xn).

Question 3.0.10. Let X be a computable Banach space with basis. What is the complexity
of bc(X)? What if X has a computable basis? Corollary 3.0.9 shows that if X is a finite
dimensional space with a computable basis, then bc(X) is computable.

We are now ready to prove the following theorem.

Theorem 3.0.11. Let X be an infinite dimensional computable Banach space, then there is a com-
putable basic sequence in X.

Which is an effectivised version of a classical lemma already known by Banach.

Lemma 3.0.12 (Banach). Every infinite dimensional Banach space contains an infinite basic se-
quence.

To prove Theorem 3.0.11, we will first need the following classical lemma, which is really
the proof for Theorem 3.0.12.
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Lemma 3.0.13 (Mazur). Let X be an infinite dimensional Banach space, B ⊂ X be a finite-
dimensional subspace, and ϵ > 0. Then there is an x ∈ X with ∥x∥ = 1 so that

∥y∥ ≤ (1 + ϵ) ∥y + λx∥

for all y ∈ B, λ ∈ R. In fact, x can be chosen so that this inequality is strict whenever ∥y∥ , λ ̸= 0.

When working with separable Banach spaces, this lemma can be slightly strengthened so
that we only have to deal with the dense elements.

Lemma 3.0.14. In Lemma 3.0.13, further suppose that X is a separable Banach space with a dense
sequence (ei)i∈ω. We can require the desired x ∈ X to be some element from (ei)i∈ω.

Proof. Let X be some separable Banach space with a dense sequence (ei)i∈ω, B ⊂ X be some
finite-dimensional subspace and ϵ > 0 be some pre-determined constant. Further denote
x ∈ X to be some element that satisfies the requirements as given by Lemma 3.0.13 with
∥x∥ = 1. Note that by homogeneity (y ∈ B ⇐⇒ y

λ ∈ B) it is sufficient to find some
z ∈ (ei)i∈ω which satisfies

∥y∥ ≤ (1 + ϵ) ∥y + z∥

for all y ∈ B. As x /∈ B, we have that δx = miny∈B ∥x + y∥ is both well-defined and positive.
Let z ∈ X be any element where ∥z∥ = 1, since ∥y + x∥ ≤ ∥y + z∥+ ∥x − z∥, we have

δx = min
y∈B

∥y + x∥ ≤ δz + ∥x − z∥

From the inequality above, we can choose some z sufficiently close to x with ∥z∥ = 1 so that
∥x − z∥ ≤ ϵ(1 + ϵ)−1δz, we show that this choice works

∥y∥ ≤ (1 + ϵ) ∥y + x∥ = (1 + ϵ) ∥y + x − z + z∥

≤ (1 + ϵ) (∥y + z∥+ ∥x − z∥) ≤ (1 + ϵ)
(
∥y + z∥+ ϵ(1 + ϵ)−1δz

)
And by definition of δz, we get that

(1 + ϵ)
(
∥y + z∥+ ϵ(1 + ϵ)−1δz

)
≤ (1 + ϵ) ∥y + z∥+ ϵ ∥y + z∥

= (1 + 2ϵ) ∥y + z∥

Since Lemma 3.0.13 works for all values of ϵ, the conclusion follows. In fact, the exact same
argument shows that we can always choose the desired x ∈ X to be some computable point
when X is a computable Banach space.

We are now ready to prove Theorem 3.0.11.

Proof of Theorem 3.0.11. In light of Lemmas 3.0.14 and 3.0.8, we can simply carry out the clas-
sical construction. Fix some sequence of computable reals (ϵi)i∈ω such that ∏∞

i=0(1 + ϵi) <
∞. We will construct a basic sequence (ui)i∈ω inductively. Having constructed u0, . . . , un,
find some x in the effective dense sequence for X such that bc(u0, . . . , un, x) ≤ ∏n+1

i=0 (1 + ϵi).
The existence of such an element is guaranteed by Lemma 3.0.14. Furthermore, this process
is computable as the basis constants are computable.
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The proof above is perfectly valid, but we also provide an alternate and perhaps more direct
proof, which is more in the style of how the classical Effective Independence lemma was
proved in [PER87]. This may be of interest for a more fine-grained analysis of this result
(e.g. a complexity-theoretic analysis). To begin, we will define a notion of orthogonality.

Definition 3.0.15. For x, y ∈ X, we say that x is K-orthogonal to y if

∥y∥ ≤ K ∥y + λx∥

for all λ ∈ R, and the inequality is strict unless ∥y∥ = λ = 0. For a subspace Y ⊆ X, we say
that x is K-orthogonal to Y if it is K-orthogonal to all elements in Y.

We can now proceed to the proof of the effectivised statement. Similar to the proof for
effective independence given in [PER87], we will first prove an orthogonality criterion.

Lemma 3.0.16 (Orthogonality Criterion). For m, k ∈ N, denote Sm,k as the set of all k-tuples
{β0, β1, . . . , βk} of rationals whose denominators are 2m and satisfy

1 ≤ |β0|2 + |β1|2 + . . . + |βk|2 ≤ 4

Given a finite sequence of linearly independent elements y0, y1, . . . , yn ∈ X, we give a criterion for
any x ∈ X to be K-orthogonal to B. For the sake of simplicity, denote yn+1 = x. Further define a
function f : Rn+1 → R by

f (⃗v) = K

∥∥∥∥∥n+1

∑
i=0

viyi

∥∥∥∥∥−
∥∥∥∥∥ n

∑
i=0

viyi

∥∥∥∥∥
Then x is K-orthogonal to B if and only if there is some m such that

min
{

f (β⃗) : β⃗ ∈ Sm,n+1

}
> K2−m

(
∥yn+1∥+ 2

n+1

∑
i=0

∥yi∥
)

Proof. We first show the forward implication. Suppose that x is indeed K-orthogonal to B,
this implies that f is always positive over the domain D =

{
β⃗ : 1 ≤ ∥β⃗∥ ≤ 2

}
. As D is com-

pact and f is continuous, f is therefore bounded from below by some positive value over D.
Finally, since the right hand side of the inequality tends to 0 as m increases, any sufficiently
large m will satisfy the property.

We prove the reverse by contrapositive. Suppose that x is not K-orthogonal to B, this implies
that there is some non-zero vector γ⃗ such that f (γ⃗) ≤ 0. Dividing through by a constant,
we can assume that ∥γ⃗∥ = 3

2 , thus for each m ∈ N there is some β⃗ ∈ Sm,n+1 such that
∥βi − γi∥ ≤ 2−m for all i. Now a direct computation yields

f (β⃗) = K

∥∥∥∥∥n+1

∑
i=0

βiyi

∥∥∥∥∥−
∥∥∥∥∥ n

∑
i=0

βiyi

∥∥∥∥∥
≤ K

∥∥∥∥∥n+1

∑
i=0

γiyi

∥∥∥∥∥−
∥∥∥∥∥ n

∑
i=0

βiyi

∥∥∥∥∥+ K2−m

(
n+1

∑
i=0

∥yi∥
)

≤ K

∥∥∥∥∥n+1

∑
i=0

γiyi

∥∥∥∥∥−
∥∥∥∥∥ n

∑
i=0

γiyi

∥∥∥∥∥+ K2−m

(
n+1

∑
i=0

∥yi∥
)
+ K2−m

(
n

∑
i=0

∥yi∥
)
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= f (γ⃗) + K2−m

(
∥yn+1∥+ 2

n+1

∑
i=0

∥yi∥
)

≤ K2−m

(
∥yn+1∥+ 2

n+1

∑
i=0

∥yi∥
)

Therefore, for all m, minβ⃗∈Sm,n+1
{ f (β⃗)} is no greater than the right hand side of the inequality,

completing the proof.

Proof of Theorem 3.0.11. In light of Lemma 3.0.16, we can simply carry out the classical con-
struction. Fix some sequence of computable reals (ϵi)i∈ω such that ∏∞

i=0(1 + ϵi) < ∞. We
will construct a basic sequence (ui)i∈ω inductively. Having constructed u0, . . . , un, find some
computable x in the effective dense sequence for X such that x is (1 + ϵn+1)-orthogonal to
[u0, . . . , un]. The existence of such an element is guarenteed by Lemma 3.0.14. Furthermore,
utilising the criterion from Lemma 3.0.16 gives an effective procedure to search for x, as at
each stage m, the uniformly computable function f is only evaluated on Sm,n+1, a set con-
sisting of finitely many vectors. Therefore, the construction is both valid and effective, and
the proof is complete.

Theorem 3.0.11 shows that every computable Banach space has a computable basic se-
quence, a natural generalisation is to ask for which Turing degrees does there exist corre-
sponding basic sequences. We now show that all Turing degrees can be realised.

Theorem 3.0.17. Let X be a computable Banach space of infinite dimension. For any Turing degree
aaa, there exists a basic sequence (vi)i∈ω in X such that (vi)i∈ω ≡T aaa.

To prove this theorem, we will need the following classical lemma.

Lemma 3.0.18 ([KMR40]). Let X be a Banach space, and (xi)i∈ω a normalised basic sequence with
basis constant K. Then any sequence (yi)i∈ω such that ∑∞

i=0 ∥xi − yi∥ < 1
2K is also a basic sequence.4

Proof. Without loss of generality, we may assume that (xi)i∈ω is a basis for X. For x =

∑∞
i=0 αixi ∈ X, define T(x) = ∑∞

i=0 αiyi. The latter series converges and

∥x − T(x)∥ ≤
∞

∑
i=0

|αi| ∥xi − yi∥ ≤ max
i

|αi|
∞

∑
i=0

∥xi − yi∥

≤ 2K ∥x∥
∞

∑
i=0

∥xi − yi∥

under the assumptions stated in the lemma, the above calculation shows that ∥I − T∥ < 1,
thus T is an automorphism of X and we are done.

We are now ready to prove Theorem 3.0.17.

Proof of Theorem 3.0.17. By Theorem 3.0.11, we obtain a normalised computable basic se-
quence (xi)i∈ω in X. Let U ∈ Q be an upper bound on the basis constant of (xi)i∈ω, and
A ∈ 2ω such that A ≡T aaa. For each i, let p(xi) = {yi,0, yi,1} denote the first two distinct el-
ements witnessed to have ∥xi − yi,0/1∥ < 2−i

4U under some fixed computable enumeration of

4The original claim is actually stronger, these two sequences will in fact be equivalent.
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(ei)i∈ω, the presentation of X. Now consider the sequence (yi,A(i))i∈ω, clearly (yi,A(i))i∈ω ≤T
aaa ⊕ (xi)i∈ω ⊕ U ≡T aaa. On the other hand, we also have aaa ≤T (yi,A(i))i∈ω ⊕ (xi)i∈ω ⊕ U ≡T
(yi,A(i))i∈ω. As any Cauchy name of (yi,A(i))i∈ω will allow us to determine which of {yi,0, yi,1}
is in the sequence uniformly for each i. Since the sequence (yi,A(i))i∈ω is basic by Lemma
3.0.18, the proof is complete.

Remark 3.0.19. Theorem 3.0.17 shows that in a computable Banach space with basis, the
Turing degrees of bases will be closed upwards. We ask if anything can be said about the
other direction.

Question 3.0.20. In a computable Banach space with basis, what can be said about the Tur-
ing degrees of its bases in addition to Theorem 3.0.17? Note that this is also related to the
complexity of BASISI .5

As shown in Theorem 3.0.11, every infinite dimensional Banach space has a computable
infinite basic sequence. In the proof, we utilised the fact that the basis constants (really
the projection norms) of a computable finite sequence will be computable. A finer analysis
of this technique shows that the basis constants of infinite computable bases are left-c.e, in
contrast to the finite-dimensional case as mentioned in Corollary 3.0.9.

Lemma 3.0.21. Let X be a computable Banach space and (xi)i∈ω a computable basis of it, then
bc ((xi)i∈ω) is a left-c.e. real.

Proof. Let {Si}i∈ω be the sequence of projections associated to the basis. By Definition 3.0.6,
the basis constant is supi ∥Si∥, where Sk (∑∞

i=0 αixi) = ∑k
i=0 αixi. Now note that for each i,

∥Si∥ is a left-c.e. real as it can be approximated by Si’s norm limited to the spaces

span{x0}, span{x0, x1}, span{x0, x1, x2}, . . .

and clearly this is a left-c.e approximation for ∥Si∥, since the norm of operators with finite
dimensional domain are computable as per Lemma 3.3.1. As the basis constant is then the
supremum of a sequence of left-c.e reals, it is itself left-c.e as well.

It is therefore natural to ask if every left-c.e real can be realised as the basis constant of some
basic sequence. We show that this is indeed the case in the following theorem.

Theorem 3.0.22. For any α ∈ R that is left-c.e and α ≥ 1, there is Banach space X with basis
(ei)i∈ω such that bc ((ei)i∈ω) = α.

Proof. In fact, we will show that it is sufficient to have X = c0. Let (ei)i∈ω denote the stan-
dard basis, the idea is to replace blocks of {ei, ei+1} by {ei + ei+1, ei + βiei+1}, where βi is some
parameter in Q. Since bc(ei + ei+1, ei + βiei+1) is simply a computable function continuous
in βi with range [1, ∞), we can computably find βi so that 0 < αi − bc(ei + ei+1, ei + βiei+1) <
2−i. Finally, since the blocks are disjoint, the basis constants of the prefixes of the modified
basis will form the sequence {α0 − ε0, α1 − ε1, . . .} where 0 < ε i < 2−i, thus the supremum
of the sequence clearly converges to α.

Since Theorem 3.0.22 shows that the basis constants can potentially be strictly left-c.e, it
is natural to consider computability of the coordinate functionals. More formally, given a
basis (ei)i in a Banach space X, let f (i, x) denote the i-th coefficient in the expansion of x ∈ X

5See Section 3.1.
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under this chosen basis. Is this function always computable? Or can it be strictly left-c.e as
well? As the following theorem shows, the coordinate functionals are in fact computable,
although non-uniformly.

Theorem 3.0.23. Let (ei)i∈ω be a fixed computable basis in a Banach space X. Let f : N × X → R

be its corresponding coordinate functional (i.e. f (i, x) is the i-th coordinate of x in its expansion
under the chosen basis), then f is computable, although non-uniformly.

Proof. Let U ∈ Q be some upper bound on the basis constant of the chosen basis. We show
that f is computable relative to U. Let z some arbitrary element in X, we will compute
{ f (i, z)}i inductively via a sequence of computable estimates {β⃗0, . . .}, β⃗k = (βk0 , βk1 , . . .)

such that
∥∥∥β⃗s+1 − β⃗s

∥∥∥
∞
≤ 2−s and ∥z − ∑i βsi ei∥ ≤ 4−s

U . Assume that {β⃗0, . . . , β⃗s} has been

constructed, we will effectively search for some (αi)i≤M ∈ Q<ω such that the following hold∥∥∥∥∥z −
M

∑
i

αiei

∥∥∥∥∥ ≤ εs+1

where εs+1 is some value such that εs+1 ≤ 4−s−1

U and

2U
(

4−s

U
+ εs+1

)
≤ 2−s−1

Assuming some such εs+1 is chosen, then (αi)i≤M clearly satistifes the requirements for βs+1,
as we have

•
∥∥∥z − ∑M

i αiei

∥∥∥ ≤ 4−s−1

U .

• Let {Pi}i denote the corresponding projections for the basis, then

∥∥∥β⃗s+1 − β⃗s

∥∥∥
∞
≤ max

k

∥∥∥∥∥Pk(∑
i

βsi ei)− Pk(∑
i

αiei)

∥∥∥∥∥
≤ max

k
∥Pk∥

(
4−s

U
+ εs+1

)
≤ 2−s−1

Where the final inequality follows from the fact that ∥Pk∥ ≤ 2U for all k.

Since z lies within the closure of the span of the chosen basis, εs+1 can be made as small as
possible, so such a value always exists for sufficiently large s. Furthermore, this process is
effective. Thus, we can always find some desired (αi)i≤M effectively, and the construction
of the approximates {β⃗0, . . .} is therefore effective by taking βs+1 = (αi)i≤M, and the proof
is complete.

Bases with a computable coordinate functional were introduced [BGM+21], where they
were called strongly computable. Theorem 3.0.23 shows that this notion is in fact equivalent
to the basis being computable.
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3.1 Geometry of effective Banach spaces

As noted earlier, there are a number of important classical notions regarding the geometry
of Banach spaces. We will now define the properties that we are interested in.

Definition 3.1.1 (Schauder decomposition). Let X be a Banach space. A Schauder decompo-
sition of X is an infinite sequence (Zi)i∈ω of closed subspaces of X such that for all x ∈ X,
there exists an unique sequence (zi)i∈ω, zi ∈ Zi such that

x =
∞

∑
i=1

zi

A Schauder decomposition where the spaces Zi are all finite dimensional is called a finite
dimensional Schauder decomposition (FDD).

One should view Schauder decompositions as a natural variation of Schauder bases. Intu-
itively, if a Banach space X has a basis (ei)i∈ω, we can think of X being decomposed into
one-dimensional spaces of the form X = span(e0)⊕ span(e1)⊕ . . .. Schauder decomposi-
tions are then equivalent to requiring X to be decomposed into closed subspaces in the form
X = M1 ⊕ M2 ⊕ M3 ⊕ . . ., where the spaces Mi are no longer required to be one-dimensional.
Finite dimensional Schauder decompositions simply enforces the spaces {Mi} to be finite di-
mensional. As proven in [Sza87], these properties are indeed strictly weaker than having a
basis.

Definition 3.1.2 (Local basis structure, [Puj71]). Let X be a Banach space. X is said to have
the local basis structure if there is some universal constant K ∈ R such that for any finite
dimensional subspace B ⊂ X, there exists a finite dimensional space L ⊂ X such that B ⊆ L
and bc(L) ≤ K.

Remark 3.1.3. An interesting feature of LBS is that any computable Banach space has LBS if
and only if it has the computable analogue of LBS. This further elaborated in Lemma 3.5.3.

Intuitively, a Banach space X having the local basis structure is one where it can be approxi-
mated by a sequence of finite dimensional subspaces, where each one of them have a “nice”
basis of low basis constant. This should be thought of as the “local” version of having a
Schauder basis.

It is not unreasonable to wonder if LBS in fact equivalent to having a basis. Since it might
seem that we can always build a basis using LBS by inductively extending the current “basis
elements” {b0, . . . , bn} to a bigger space E ⊇ span{b0, . . . , bn} which still has a bounded basis
constant. However, the problem with this line of reasoning is that while we are guaranteed
bc(E) ≤ K for some universal constant K, this only means that some basis of E has a low
basis constant. It might be the case that no basis of E which extends the current “candidate
basis” {b0, . . . , bn} has its basis constant bounded by K. As it turns out, this is indeed the
case as shown by the original construction by Enflo in [Enf73], which has LBS yet lacks any
basis.

The remaining properties are more technical in nature.

Definition 3.1.4 (π property). Let X be a Banach space. X is said to have the π property if
there is some universal constant K such that for any finite dimensional subspace B ⊂ X,
there exists a projection P : X → L such that L is finite dimensional, B ⊆ L and ∥P∥ ≤ λ.
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Definition 3.1.5 (Local Π basis structure, [Sza87]). Let X be a Banach space. X is said to
have the Local Π basis structure if there is some universal constant λ such that for any finite
dimensional subspace B ⊂ X, there exists a projection P : X → L such that B ⊆ L, bc(L) ≤ λ
and ∥P∥ ≤ λ.

Remark 3.1.6. We note that the definition introduced in [Sza87] for LΠBS is a bit different
from the definition we are using. The definition as stated is due to [Puj71], where such spaces
are called Bν spaces. However, as noted in [Sza87], both definitions are in fact equivalent,
and stating it this way is simply a matter of preference.

Definition 3.1.7 (Approximation property). Let X be a Banach space. X is said to have the
approximation property if on all compact sets K, for all ε > 0, there is a finite rank operator T
such that (∀x ∈ K) (∥Tx − x∥ < ε).

Definition 3.1.8 (Bounded approximation property, [JRZ71]). Let X be a Banach space. X is
said to have the bounded approximation property if there is a λ ≥ 1 such that for every finite
dimensional E ⊆ X there is a finite rank operator T : X → M. Where E ⊆ M, T(e) = e for
all e ∈ E, and ∥T∥ ≤ λ.

Remark 3.1.9. The definition of BAP used here is due to [JRZ71, Proposition 1.1], which is
of a different form to the original definition (e.g. [LT77, Definition 1.e.11]). But as shown in
[JRZ71], the definitions are indeed equivalent.

To define the final property, we will first need the following notion.

Definition 3.1.10 ([JL01, Page 288]). Let X be a separable Banach space. An approximating
sequence is a sequence {Ti}i∈ω of finite rank operators on X converging strongly to the
identity such that TmTn = Tn for all n < m. Finally, the sequence is a λ-approximating
sequence if supi ∥Ti∥ ≤ λ, and the sequence commutes if TmTn = Tmin(m,n) for all m, n.

Which leads us to the following.

Definition 3.1.11 (Commuting bounded approximation property). Let X be a separable Ba-
nach space. X has the commuting bounded approximation property (CBAP) if and only if it has
a λ-approximating sequence for some λ such that the operators commute.

As we are interested in the complexities of these properties, we will introduce the following
notations for the sake of simplicity.

Definition 3.1.12. In the following definitions, X is only quantified over all separable Banach
spaces.

BASIS = {X : X has a Schauder basis}
SD = {X : X has a Schauder decomposition}

FDD = {X : X has a finite dimensional Schauder decomposition}
LBS = {X : X has the local basis structure}

π = {X : X has the π property}
LΠBS = {X : X has the local Π basis structure}
AP = {X : X has the approximation property}

We use an overline to denote the complement within the space of Banach spaces. E.g.

AP = {X : X does not have the approximation property}
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As alluded to in the introduction, we are primarily interested in classifying the complexi-
ties of such properties. One way to rigorously define the complexity of such properties is
through the use of index sets. To be precise, let P be some mathematical property. The index
set PI corresponding to P is defined as

PI = {e : Me has property P}

where Me is the e-th computable structure in some acceptable listing, and the complexity of
P is defined to be the complexity of the index set PI in terms of the arithmetical hierarchy. In
view of this, we use a subscript of I to denote the corresponding index set for properties in
Definition 3.1.12, and a subscript of C to denote the index set for the computable analogue

PC = {e : Me has computable P}

where “computable P” is to be defined later.

The obvious implications of the classical properties are as follows (the arrows are directed
by inclusion).

BASIS

LΠBS FDD

LBS π SD

CBAP

BAP

AP

It has been shown through a cumulation of results that most of the reversals fail, we provide
a summary here.

• FDD ≠⇒ LBS: This was proven in [Sza87], where a Banach space with (uncon-
ditional) FDD but lacks local basis structure was constructed. This also shows that
FDD ≠⇒ Q where Q is any property stronger than LBS, and that P ≠⇒ LBS where
P is any property weaker than FDD.

• LBS ≠⇒ AP: This was proven by the original construction due to Enflo [Enf73].
The constructed Banach space is seperable and has LBS, yet lacks the approximation
property, which is weaker than having a basis. In fact, this also shows that LBS ≠⇒ P
where P is any property that implies AP. To the best of our knowledge, it is currently
unknown as to whether LBS ≠⇒ SD or not.
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• AP ≠⇒ BAP: This was proven by [FJ73].

• CBAP ≠⇒ π: This was claimed to be proved in [Rea86], but the paper was never
published.

To the best of our knowledge, the following implications are currently open.

• BAP =⇒ CBAP: This was noted to be an open problem in [JL01, Problem 4.2].

• π =⇒ CBAP: This was also noted to be open in [JL01, Problem 5.3].

• π =⇒ FDD: Finally, this was also noted to be open in [JL01, Problem 6.2].

• At last, we remark that SD =⇒ FDD also appears to be open, but we could not find
this being explicitly stated in the literature.

3.2 Complexity of basis

As Enflo has shown, there exists separable Banach spaces with no basis at all. This naturally
leads one to wonder what is the complexity of such constructions, and the complexity of
Banach spaces that have a basis.

In this section, we first examine the complexity of computable bases. Bosserhoff [Bos08] was
the first to show that there exists a computable Banach space with a basis, but does not have
any computable basis. This construction was built on Davie’s classical construction [Dav73],
which Bosserhoff has shown to be computable. We utilise this construction to further show
that the complexity of having a computable basis is exactly Σ0

3. Carrying on, we then prove
that the computability of Davie’s space is strong enough to show a lower-bound of Π0

3 on
the computable Banach spaces that have a basis, and this is in some sense about the “best”
one could do with the current constructions.

3.2.1 Complexity of computable basis

We will now show that having a computable basis is Σ0
3 complete. The argument builds on

a diagonalisation argument by [Bos08].

Theorem 3.2.1. BASISC is Σ0
3 complete.

We first introduce the construction used in [Bos08]. Let Z denote the Banach space con-
structed in [Dav73] that lacks the approximation property. It was proven in [Bos08] that this
space is computable and also exhibits the local basis property.

Theorem 3.2.2 ([Bos08]). There exists a computable Banach space without AP but has LBS.

In particular, this implies that Z can be approximated by a sequence of “nice” subspaces.

Theorem 3.2.3 ([Bos08]). There is a computable linearly independent sequence (xi)i∈ω ⊆ Z, a
computable increasing function σ : N → N and an universal constant C such that [x0, . . .] = Z
and

(∀n ∈ N)(bc([x0, . . . , xσ(n)]) < C)
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We first need the following definitions.

Definition 3.2.4 ([Bos08]). For any n ∈ N, Zn is defined as:

Zn = [x0, . . . , xσ(n)]

where (xi)i∈ω is given by Theorem 3.2.3. For any τ : N → N, the Banach space Yτ is defined
as:

Yτ =
(
⊕iZτ(i)

)
c0

which is the sequence space where norms of elements within each sequence tends to 0, and
the norm on the sequence is the supremum norm on the elements.

An important feature of this space is that it has a basis. Intuitively, as the columns have
universally bounded basis constants, we can simply “join up” the bases of the columns in
the larger space, and the resulting sequence will be a basis. This is also a consequence of
Lemma 3.2.23.

Lemma 3.2.5 ([Bos08]). The space Yτ as defined in Definition 3.2.4 has a basis for any τ : N → N.

The key idea is that Yτ is a Banach space with basis, however each of its components can
be made arbitrarily “large” such that no computable sequence can span it. For the sake of
simplicity, also denote Y = (⊕iZ)c0

. The following lemma is crucial.

Lemma 3.2.6 ([Bos08]). For any basic sequence (yi)i∈N ∈ Yω and n ∈ N, we have

embn(Z) ⊈ [y0, y1, . . .]

Where embn : Z → Y is the map defined by

embn(x) = (0, . . . , 0, x, 0, . . .) ∈ Y

mapping x ∈ Z to n-th position of a sequence that is otherwise entirely zero.

There is also a natural computability structure on the space Yτ for certain classes of τ.

Definition 3.2.7. A function τ : N → N is lower semicomputable if there is a c.e set A ⊆ N

such that
τ(n) = sup{k ∈ N : ⟨n, k⟩ ∈ A}

for all n ∈ N.

Lemma 3.2.8 ([Bos08]). For any τ : N → N that is lower semicomputable, the constructed space
Yτ equipped with the dense set {embj(xi)}i≤σ(τ(j)),j∈N is a computable Banach space.

Finally, to construct a computable Banach space without any computable basis, it is sufficient
to construct some lower semicomputable τ such that Yτ does not contain any computable
basis. Furthmore, by Lemma 3.2.6 and Theorem 3.2.3, we can construct τ by directly diago-
nalising against all computable basic sequences. The following is due to [Bos08], although
presented in a slightly different fashion.

Lemma 3.2.9 ([Bos08]). There is a lower semicomputable function ψ : N3 → N such that for all
n, k, i ∈ N, if φn computes a basic sequence (yi)i∈N ∈ Yω with basis constant smaller than k, we
have

embi(Zψ(n,k,i)) ⊈ [y0, . . .]
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Corollary 3.2.10 ([Bos08]). There exists a computable Banach space without computable basis.

Proof. By Lemmas 3.2.8 and 3.2.9, define τ : N → N by

τ(⟨n, k⟩) = ψ(n, k, ⟨n, k⟩)

The resulting space Yτ is a computable Banach space where τ(⟨n, k⟩) is large enough so
that emb⟨n,k⟩(Zτ(⟨n,k⟩)) is not spanned by φn (if it is a basic sequence with basis constant
smaller than k). This implies that the space Yτ cannot be spanned by any computable basic
sequence6, and therefore lacks basis.

It is worth noting that although the space constructed in Corollary 3.2.10 has no computable
basis, it is unclear how uncomputable the bases are.

Question 3.2.11. Let Yτ be the space used in the proof of Corollary 3.2.10 that was con-
structed by [Bos08]. What are the corresponding Turing degrees for the bases in this space?

We are now ready to prove Theorem 3.2.1, and begin with membership.

Proposition 3.2.12. BASISC ∈ Σ0
3.

Proof. Let Xe be a computable Banach space. Then Xe has a computable basis if and only if
there exists i such that:

φi computes some computable sequence (xn)n∈N ⊆ X
∧ (∀n)(xn ̸= 0)

∧ (∃K ∈ Q) (∀m < n) (∀(ak)k≤n ⊆ Q)

∥∥∥∥∥ m

∑
k=1

akxk

∥∥∥∥∥ ⩽ K

∥∥∥∥∥ n

∑
k=1

akxk

∥∥∥∥∥
∧ the finite span of (xn)n∈N is dense in X

The validity of this equivalence follows from Lemma 3.0.5. Furthermore, each individual
condition is in Σ0

3. Since Xe being a computable Banach space is also a Π0
2 condition (see

[BMM20]), the overall set S is therefore within Σ0
3.

The following lemma is needed to show completeness.

Lemma 3.2.13. Recall the construction carried out in Lemma 3.2.4. If τ is a computable function,
then Yτ contains a computable basis.

Proof. As the basis constant of Zτ(i) is uniformly bounded by some constant C, there is some
basis (ai,j)j≤σ(τ(i)) with basis constant smaller than C for each Zτ(i). It was proved in [Bos08]
that the natural embedding of these bases into Yτ (i.e. {embi(ai,j)|i ∈ N, j ≤ σ(τ(i))}) forms
a basis for Yτ. We will show that this is actually computable when τ is computable. If τ is
computable, the sequence

x0, x1, . . . , xσ(τ(i))

will be computable as well since (xi)i∈N and σ are both computable. Therefore, the rational
span of the sequence will be computable as well. By continuity, we can therefore effectively
find some basis that lies in the rational span of (xi)i≤σ(τ(i)) with basis constant smaller than
C. As this procedure is uniform, it gives a computable basis in Yτ.

6Note that any computable sequence in Yτ is also a computable sequence in Y, so it is sufficient to diagonalise
against computable sequences in Y.
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We are now ready to prove Theorem 3.2.1.

Proof of Theorem 3.2.1. Due to Proposition 3.2.12, it remains to show that S is Σ0
3 hard. It is a

well known fact that for any set A ∈ Σ0
3, there is a computable function g : N2 → N such

that
x ∈ A ⇐⇒ (∃y)(Wg(x,y) is infinite )

For all x ∈ N, we construct a lower semicomputable function h : N → N in stages. Let
{ψs} be some computable enumeration of the function ψ constructed in Lemma 3.2.9. We
also define the function C : N → N, initially C0(n) = n for all n ∈ N. C(n) indicates the
computable sequence that is diagonalised against at n. Initialise the construction by setting
hs = 0. At stage s, the following is carried out for each n ≤ s.

• If C(n) = −1, do nothing. Otherwise:

• Enumerate Wg(x,C(n)),s. If a new element is enumerated, set C(k) to C(k − 1) for all
k > n + |Wg(x,C(n)),s| and C(n + |Wg(x,C(n)),s|) to −1.

• View C(n) as a pair ⟨a, b⟩ and set hs(n) to max(hs−1(n), ψs(a, b, n)).

Finally we define h as h = lims→∞ hs. This is the end of the construction, we now verify its
validity.

Lemma 3.2.14. The function h constructed is indeed a lower semicomputable function.

Proof. The constructed sequence {hs} is clearly a computable enumeration of h. So it re-
mains to verify that {hs} converges. For any n ∈ N, we have C(n) ≤ n. Therefore
hs(n) ≤ max⟨a,b⟩≤n ψ(a, b, n) for all s, and since (hs(n))s is monotone, this implies conver-
gence.

We now show that the constructed h has the desired properties.

Lemma 3.2.15. In addition to h being lower semicomputable, it also exihibit the following properties

• If x ∈ A, h is computable (although this might be non-uniform).

• If x /∈ A, Yh contains no computable basis.

Proof. Suppose x ∈ A, thus there is some y such that Wg(x,C(y)) is infinite. By the construc-
tion, this means that

−1 = C(y + 1) = C(y + 2) = C(y + 3) = . . .

Therefore, to compute h(k) for any k > y, we just have to run the computable construction
for finitely many steps until C(k) = −1, in which case the current value of h(k) will be its
final value. And since there are only finite many values h(k) for k ≤ y, this can be computed
non-uniformly. Hence, h is a computable function.

Now suppose x /∈ A, in which case Wg(x,y) is finite for all y ∈ N. We will show that for
all ⟨a, b⟩ ∈ N, there is some n ∈ N where C(n) = ⟨a, b⟩, implying that h(n) ≥ ψ(a, b, n)
and therefore Yh cannot contain any computable basis. At each stage s of the construction,
there will be some index is where Cs(is) = ⟨a, b⟩. So it suffices to show that (is)s eventually
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stabilises. But by the construction, is can only increase when some new element has been
enumerated in Wg(x,C(k)) for some C(k) < ⟨a, b⟩. And since {k : C(k) < ⟨a, b⟩} is finite, and
each set of the form Wg(x,y) is finite as well, is can only increase for a finite number of steps
until it eventually converges, and the proof is complete.

Therefore, as the construction of h is uniform in x, we have established a reduction from an
arbitrary Σ0

3 set to BASISC, proving that BASISC is indeed Σ0
3 hard.

Remark 3.2.16. It was asked in [Bos08] as to whether there exists a computable Banach space
with a {monotone, unconditional}7 basis that does not have the corresponding computable
analogue. In view of this, it would also be interesting to determine the complexity of the
corresponding index sets.

Question 3.2.17. What is the complexity of MBASISC, the index set of Banach spaces that
have a computable monotone basis?

Question 3.2.18. What is the complexity of UBASISC, the index set of Banach spaces that
have a computable unconditional basis?

Finally, the construction in [Bos08] gives a computable Banach space without basis, but this
is only for the chosen presentation. This naturally leads to the following questions.

Question 3.2.19. Is there a presentation for the space constructed in [Bos08] that has a com-
putable basis?

Question 3.2.20. Is the existence of a computable basis dependent on the presentation cho-
sen? That is, is there a computable Banach space with a computable basis, but does not have
a computable basis in some other presentation?

Remark 3.2.21. As a specific case of the question above, it would be interesting to know
if C[0, 1] has a presentation that lacks any computable basis, since C[0, 1] is known to be
universal for separable Banach spaces.8

3.2.2 Complexity of BASISI

After showing that BASISC is Σ0
3 complete, it is natural to ask whats the complexity of

BASISI . By Lemma 3.0.5, it follows that BASISI ∈ Σ1
1, but it is unknown if this bound is

tight. In this section, we establish the lower bound of Π0
3. We first need the following.

Definition 3.2.22. Define the sets

BASISk = {X : X has a basis with basis constant no greater than k}

for all k ≥ 1. Analogously, we obtain the corresponding definitions for BASISIk , BASISCk .

Before we proceed, we also need a technical lemma.

Lemma 3.2.23. Let (Xi)i∈ω be a sequence of Banach spaces that have uniformly bounded basis
constant, then

Y = (X0 ⊕ X1 ⊕ . . .)c0 ∈ BASIS
7An unconditional basis is one where the basis remains a basis under any permutation of its elements.
8Every separable Banach space can be isometrically embedded into it.

39



Proof. Denote M as the uniform bound on the basis constants, and let (bk,i)i∈ω denote some
basis in Xk that has a basis constant no greater than M. Fix some canonical enumeration of
this collection of bases across all spaces (viewing them as elements of Y under the natural
embedding), denote it as {βi}i∈ω, we show that this sequence is a basis for Y. It is clear from
the definition that if y ∈ Y has an expansion y = ∑i λiβi, λi ∈ R, then this expansion must
be unique as each Xi is a complemented subspace of Y. Thus, it suffices to show that each
y ∈ Y has an expansion using {βi}i∈ω. Let (zi)i∈ω = y ∈ Y be some arbitrary element in Y,
and (λi)i∈ω be the its natural coordinates by viewing βi as bases in the spaces Xk and zk as
elements in Xk. Then we have the following partial sums

SU =

∥∥∥∥∥y −
U

∑
i

λiβi

∥∥∥∥∥
As each βi is an element of some space Xi, denote LU as the maximum index on the spaces
encountered for SU . Then we have the following

SU = max

(
max
i≤LU

(∥∥∥∥∥zi −
ki

∑
j

λj β̂ j

∥∥∥∥∥
)

, sup
i>LU

∥zi∥
)

where β̂ j denotes the natural projection onto the corresponding column. Finally, as the se-
quence (βi)i was taken to a basis, we get that for all i:∥∥∥∥∥zi −

ki

∑
j

λj β̂ j

∥∥∥∥∥ ≤ ∥zi∥+
∥∥∥∥∥ ki

∑
j

λj β̂ j

∥∥∥∥∥ ≤ ∥zi∥+ M ∥zi∥

Finally, we get that

SU ≤ max

(
∥zi∥+ M ∥zi∥ , sup

i>LU

∥zi∥
)

And since ∥zi∥ → 0 as i → ∞, we get that (SU)U → 0, as desired.

Remark 3.2.24. In fact, the result above can be easily effectivised. If we have a computable
sequence of Banach spaces (Xi)i∈ω such that each of them has a computable basis and the
basis constant is uniformly bounded, then the resulting space Y = (⊕iXi)c0

is also a com-
putable Banach space with a computable basis.

Lemma 3.2.25. The following implication holds for all n ∈ N, for all k ∈ Q.(
Σ0

n, Π0
n
)
≤m

(
BASISIk , API

)
=⇒

(
Π0

n+1, Σ0
n+1
)
≤m

(
BASISI , API

)
Proof. We carry out a similar construction to [Bos08]. Suppose that we have

(
Σ0

n, Π0
n
)
≤m(

BASISIk , API
)
, denote g as some function that witnesses this reduction. Then define f :

N → N such that
Yf (x) = (Xg(x,0) ⊕ Xg(x,1) ⊕ . . .)c0

We then have:

• x ∈ Π0
n+1 =⇒ (∀i)

(
(x, i) ∈ Σ0

n
)
=⇒ (∀i)(Xg(x,i) ∈ BASISIk).

• x ̸∈ Π0
n+1 =⇒ (∃i)

(
(x, i) ∈ Π0

n
)
=⇒ (∃i)(Xg(x,i) ∈ API).
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In the case where x ∈ Π0
n, the conclusion follows by Lemma 3.2.23. For the case where

x ̸∈ Π0
n, we get that a complemented subspace of Y fails the to have the approximation

property. And since approximation properties are preserved by complemented subspaces,
this implies that Y ∈ API , and the proof is complete.

Finally, we have the following lower bound.

Theorem 3.2.26. (
Π0

3, Σ0
3
)
≤
(
BASISI , API

)
Proof. In view of Lemma 3.2.25, it is sufficient to show that

(
Σ0

2, Π0
2
)
≤
(
BASISIk , API

)
for

some k ∈ R. We will utilise Davie’s construction in [Dav73]. As Σ0
2 is equivalent to the set

of Σ0
1 indices of finite sets, we can directly enumerate Davie’s space. More formally, denote

Z as Davie’s space, it was shown that Z exhibits LBS in Theorem 3.2.3. Denote Zn as was
done in Definition 3.2.4. We will now reduce (FIN, INF) to

(
BASISIk , API

)
, where k is the

constant C in Theorem 3.2.3. For any e ∈ N, we construct the space Z|We|. Since We is c.e,
this construction is effective and uniform in e. Furthermore, the constructed space will have
basis constant no more than k if e ∈ FIN, and it will be Z if e ∈ INF, which lacks the
approximation property by definition.

As a corollary, we obtain that any property that is stronger than AP yet weaker than BASIS is
also Π0

3 hard. This will be discussed more in the sections corresponding to those properties.

3.3 π-space

It was proven in [Gha15] that the class of seperable Banach spaces with the π property is
Borel, and it was implicit that this class is in fact Σ0

6 (explicitly stated in [Gha19] in the Borel
sense). We present this result here in a more modular fashion, and prove an improved
bound of Σ0

4 in the computable case. We first show that norms of finite rank operators are
computable relative to its domain.

Lemma 3.3.1. Given a computable finite rank operator T on a computable domain D = [x0, . . . , xn]
to a computable Banach space Y, its norm is also computable.

Proof. The norm of T is equivalent to the maximum of T over the unit ball of D. As D is
finite dimensional, its unit ball is therefore compact. The claim then follows from Theorems
2.3.26 and 2.3.29.

We will now prove a technical lemma that allows us to solely work in the subspaces gener-
ated by a given dense sequence. We first need the following result due to [JRZ71].

Lemma 3.3.2 ([JRZ71]). Let T be an operator from a Banach space X onto an n-dimensional sub-
space E ⊂ X. Let k ≤ n and let F be a k-dimensional subspace of X such that ∥T|F − IF∥ < ε < 1,
where (1 − ε)−1εk < 1. Then

1. there is an operator S from X onto an n-dimensional subspace of X such that S|F = I|F,
∥S − T∥ < (1 − ε)−1εk ∥T∥.
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2. If, in addition, T is a projection then S can be chosen to be a projection and
∥∥∥S|T(X) − I|T(X)

∥∥∥ <

(1 − ε)−1εk.

We can now show that projections “carry over” to sufficiently close spaces.

Lemma 3.3.3. Let X be a separable Banach space with a dense sequence (ei)i∈ω. Let L be a finite
dimensional subspace of the form L = [x0, . . . , xM]. Further assume that there is a projection T :
X → L. Then for all ϵ > 0, there exists a δ > 0 such that for all N = [y0, . . . , yM] where
∥yi − xi∥ < δ for all i ≤ M, there exists a projection S : X → N where ∥S∥ ≤ ∥T∥+ ϵ.

Proof. By Lemma 3.3.2, it is sufficient to show that for all projections T : X → L, for all ε > 0,
all spaces Nε where the yi’s are chosen to be sufficiently close to xi satisfies ∥T|Nε − I|Nε∥ < ε.
Let ∑M

i=0 λiyi be some arbitrary element from Nε, where the basis elements {yi}i≤M are to be
determined later. We then have∥∥∥∥∥T

(
M

∑
i=0

λiyi

)
−
(

M

∑
i=0

λiyi

)∥∥∥∥∥
=

∥∥∥∥∥ M

∑
i=0

λi (T(yi)− yi)

∥∥∥∥∥
≤

M

∑
i=0

|λi| ∥T(xi)− xi + T(yi − xi)− (yi − xi)∥

≤
M

∑
i=0

|λi| (∥T∥+ 1) ∥xi − yi∥

As yi could be chosen arbitrarily close to xi for each i, we can without loss of generality
assume that ∥xi − yi∥ = ε1 for all i. Applying Theorem 2.2.14 to L gives a constant C only
dependent on L such that ∑M

i=0|λi| ≤ C
∥∥∥∑M

i=0 λixi

∥∥∥. Hence,

M

∑
i=0

|λi| (∥T∥+ 1) ∥xi − yi∥

≤ C (∥T∥+ 1) ε1

∥∥∥∥∥ M

∑
i=0

λixi

∥∥∥∥∥
Now note that

∥∥∥∑M
i=0 λi(xi − yi)

∥∥∥ ≤ ε1C
∥∥∥∑M

i=0 λixi

∥∥∥ =⇒ (1− ε1C)
∥∥∥∑M

i=0 λixi

∥∥∥ ≤
∥∥∥∑M

i=0 λiyi

∥∥∥.
Chaining this together with the previous inequality gives

C (∥T∥+ 1) ε1

∥∥∥∥∥ M

∑
i=0

λixi

∥∥∥∥∥ ≤ ε1C (∥T∥+ 1)
1 − ε1C

∥∥∥∥∥ M

∑
i=0

λiyi

∥∥∥∥∥
and since ε1 can be made arbitrarily small, ∥T|Nε − I|Nε∥ is smaller than ε for all sufficiently
close (yi)i≤M, and the proof is complete.

We immediately obtain the following corollary.
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Corollary 3.3.4. Let X be a separable Banach space with a dense sequence (ei)i∈ω. Then X has
the πππ property if and only if there exists λ such that for all e⃗ ∈ {ei : i ∈ ω}<ω, there exists
v⃗ ∈ {ei : i ∈ ω}<ω such that span{⃗e} ⊆ span{v⃗} and there exists a projection T : X → span{v⃗}
where ∥T∥ ≤ λ.

Proof. The forward implication follows from Lemma 3.3.3. For the converse, note that X has
the πππ property if there exists a sequence of finite dimensional subspaces {Ei}i∈ω directed
under inclusion such that X =

⋃
i Ei and for each i, there is an associated projection T : X →

Ei where ∥T∥ ≤ λ. Such a sequence can be built inductively using elements from the dense
sequence, and we are done.

Next, we need to show that projections between effective finite dimensional subspaces are
contained in effectively compact sets.

Lemma 3.3.5. Let X be a computable Banach space with (ei)i∈ω as its presentation. Let M =
[en0 , . . . , enk ] be a finite dimensional subspace (with (eni)i≤k being linearly independent), E = [e0, . . . , ei]
be some arbitrary subspace such that i > nk (i.e. M ⊂ E), and U ∈ Q be some arbitrary constant.
Consider L(E, M) as a computable Banach space under its standard presentation as in Definition
2.3.16. Then there is an effectively compact set K ⊆ L(E, M) such that PU(E, M) ⊆ K ⊆ P(E, M).
Furthermore, such a set K can be produced uniformly in M, E and U.

Proof. Intuitively, since matrices/operators in PU(E, M) have their norm bounded by U, this
induces a bound on each of its entries. This shows that the coefficients lie in an effectively
compact subset of (Rnk×i, ∥·∥∞) under its standard representation. Furthermore, there is a
natural mapping from (Rnk×i, ∥·∥∞) to L(E, M), and we will show that taking K to be the
image of this natural mapping is sufficient.

Recall that an operator T ∈ L(E, M) is uniquely determined by its values on T(e0), . . . , T(ei),
which are in turn uniquely determined by their coefficients of the basis en0 , . . . , enk in M. Let
σl

j ∈ R denote the coefficient of enj for T(el), and V as twice the basis constant of (eni)i≤k,
which is uniformly computable by Theorem 3.0.8. Let l ≤ i be some arbitrary index, we then
have

V ∥T (el)∥ = V

∥∥∥∥∥ k

∑
j=0

σl
j enj

∥∥∥∥∥
Since V is a bound on the norms of the projection operators, this implies that

V

∥∥∥∥∥ k

∑
j=0

σl
j enj

∥∥∥∥∥ ≥
∥∥∥σl

j enj

∥∥∥
for each j ∈ {0, . . . , k}. But recall that we are only interested in the case where ∥T∥ ≤ U, so
we have the following inequality.∥∥∥σl

j enj

∥∥∥ ≤ UV ∥el∥ =⇒ |σl
j | ≤

∥∥∥enj

∥∥∥−1
UV ∥el∥

In conclusion, we get that

(∀l ≤ i) (∀j ≤ k)
(
|σl

j | ≤
∥∥∥enj

∥∥∥−1
UV ∥el∥

)
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Since V, ∥el∥ ,
∥∥ej
∥∥−1 are all uniformly computable, we have shown that all entries σl

j have
effective bounds uniform in M, E and U.

It now follows that the coefficients {σl
j}l,j lie within an uniformly effectively compact subset

of (Rk×i, ∥·∥∞). Note that we have not limited ourselves to projections in the calculations
above, rather the bounds calculated will hold for any operator in L(E, M). However, limit-
ing ourselves to P(E, M) is just equivalent to requiring σl

j = δlnj (where δpq is the Kronecker
delta) for l ∈ {n0, n1, . . . , nk}, and this is still an uniformly effectively compact subset of
(Rk×i, ∥·∥∞), denote this subset as J.

It now remains to show that the natural mapping (the “identity” map that takes each matrix
to its corresponding operator) f : (Rk×i, ∥·∥∞) → L(E, M) is indeed a computable mapping,
as it follows by construction that PU(E, M) ⊆ f (J) ⊆ P(E, M). Furthermore, this function
is in fact effectively uniformly continuous, and therefore it must be a computable mapping.
This concludes the proof.

We now show that the existence of projections of a bounded norm onto finite dimensional
subspaces generated from the dense sequence in Π0

1.

Lemma 3.3.6. Let X be a computable Banach space with (ei)i∈ω as its computable presentation. Let
M be a finite dimensional subspace of the form M = [en0 , . . . , enM ]. Then the formula

JM,K = (∃P : X → M)(P is a projection ∧ ∥P∥ ≤ K)

is uniformly Π0
1 for K ∈ Q.

Proof. We first claim that

JM,K ⇐⇒ (∀i > nM)(∃T : [e0, . . . , ei] → M)(T is a projection ∧ ∥T∥ ≤ K)

The forward implication clearly holds. For the converse, let {Ti}i denote a seqeunce of
projections where ∥Ti∥ ≤ K and Ti : [e0, . . . , ei] → M, we will define a projection T : X → M
from this sequence. Let y ∈ (ei)i∈ω be any element from the dense sequence, then the
sequence {Ti(y)}i lies within {x ∈ M : ∥x∥ ≤ K ∥y∥}, which is a compact set as M is finite
dimensional. Therefore, by a diagonal argument, we can define a linear operator T such
that T(y) is the limit of some subsequence of {Ti(y)}i for all y ∈ (ei)i∈ω. It follows from the
construction that this operator will be a projection with norm bounded by K. Furthermore,
since the domain on which T is defined is dense in X, there is an unique extension of T onto
X. Finally, the constructed operator T will be a projection from X to M as well, as it is a
projection on the dense sequence.

We now know that JM,K is a Π0
2 statement uniform in K ∈ Q. However, note that the exis-

tential statement

(∃T : [e0, . . . , ei] → M)(T is a projection ∧ ∥T∥ ≤ K)

is equivalent to evaluating the minimum value of the computable operator f (T) = ∥T∥ on
the effectively compact subset obtained in Lemma 3.3.5. Since Lemma 3.3.5 shows that this
space is uniformly effectively compact, this statement is in fact also Π0

1 by Theorem 2.3.26,
and we are done.

Chaining the previous results together, we obtain the following.

Theorem 3.3.7. The set of computable Banach spaces with the π-property is Σ0
4.

Proof. This follows by combining Corollary 3.3.4 and Lemma 3.3.6.
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3.4 Local Π basis structure

After Enflo’s example of a separable Banach space that lacks the approximation property,
people naturally wondered if there is some separable Banach space without basis that has
the approximation property (i.e. is the approximation property strictly weaker than having
a basis?). This was first solved by [FJ73], where a space with the approximation property
but lacked the bounded approximation property (therefore lacks a basis) was constructed.
Extending the previous question, it is then natural to ask if there is some separable Banach
space without a basis that has the bounded approximation property. This question was
solved in [Sza87], where a separable Banach space without basis but exhibits the bounded
approximation property was constructed. In [Sza87], LΠBS was introduced, and it has been
open since as to whether LΠBS is equivalent to having a basis.

We are mostly interested in the complexity of effective Banach spaces that exhibit this prop-
erty. For the Borel hierarchy, it has been proven in [CDDK21] that its complexity is Σ0

6Σ0
6Σ0
6.

We show that similar to the π-property, the property of local Π basis structure is Σ0
4 in the

effective case.

The overall structure of the proof is very similar to the π-property case. We will first show
that it is sufficient to consider solely the subspaces generated from a dense sequence.

Lemma 3.4.1. Let X be a separable Banach space with (ei)i∈ω as a dense sequence. Then X has
the LΠBS property if and only if there exists λ such that for all e⃗ ∈ {ei : i ∈ ω}<ω, there exists
v⃗ ∈ {ei : i ∈ ω}<ω such that span{⃗e} ⊆ span{v⃗} and a projection T : X → span{v⃗} where
∥T∥ ≤ λ and bc(span{v⃗}) ≤ λ.

Proof. The results on the projection operators follow directly from Lemma 3.3.3, and it re-
mains to prove that subspaces where with close basis elements have close basis constants.
But this follows directly as the basis constant is continuous in its basis elements (see e.g.
[Puj71]), and we are done.

This yields the following result.

Theorem 3.4.2. LΠBSI ∈ Σ0
4.

Proof. Define JM,λ as the statement

JM,λ = (∃P : X → M)(P is a projection ∧ ∥P∥ ≤ λ)

By Lemma 3.4.1, we obtain the following characterisation of LΠBSI for a Banach space X
with (ei)i∈ω as its presentation.

X ∈ LΠBSI ⇐⇒ (∃λ ∈ Q) (∀⃗e) (∃v⃗)
(

Jspan{v⃗},λ ∧ bc (span{v⃗}) ≤ λ
)

Where e⃗, v⃗ here refers to finite strings generated by elements from (ei)i∈ω. Since the basis
constant of a computable finite dimensional subspace is computable ([Bos08]), and Jspan{v⃗},λ

is Π0
1 by Lemma 3.3.6, it follows that the above characterisation is Σ0

4.

Although we do not have a completeness result, it follows from Theorem 3.2.26 that LΠBSI
is at least Π0

3 hard, so the upperbound is not too far off. Despite its simplicity, we also
explicitly state the following corollary, which might be viewed as a possible reason as to
why showing high lowerbounds for BASISI is non-trivial.
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Corollary 3.4.3. Showing Π0
4 ≤ BASISI would also show a separation between BASISI and LΠBSI ,

thereby answering the question posed in [Sza87].

3.5 Local basis structure

For completeness, we note that it has been implicitly shown in both [Puj71] and [Bos08] that
local basis structure is equivalent to its effectivised version, making it arithmetical and even
Σ0

3. We have the following.

Lemma 3.5.1 ([Puj71], [Bos08]). A Banach space X has LBS if and only if there exists a constant
K ∈ R, a sequence (xi)i∈ω ∈ Xω and a function σ : N → N such that

(∀i)bc(span{x0, . . . , xσ(i)}) < K

and the sequence (xi)i∈ω is dense in X.

This gives rise to a natural definition for computable LBS.

Definition 3.5.2. A computable Banach space X has computable LBS if there exists a com-
putable sequence (xi)i∈ω and a computable σ : N → N that witnesses X ∈ LBS.

The following was implicit in both [Puj71] and [Bos08].

Lemma 3.5.3 ([Puj71], [Bos08]). A computable Banach space X has LBS if and only if it has com-
putable LBS.

Thus, we have the following

Corollary 3.5.4.
LBSI = LBSC ∈ Σ0

3

LBSI will also trivially have a lower bound of Π0
2, as the set of all computable Banach spaces

is Π0
2 complete. Part of the difficulty in proving better lower bounds for LBSI is due to

the lack of classical constructions that lack LBS. In fact, to the best of our knowledge, the
only space that achieves this is the construction in [Sza87], and it is not even clear if this
construction can be made effective.

Question 3.5.5. Can space constructed in [Sza87] be made computable? In a similar vein, is
there a computable Banach space without LBS?

Question 3.5.6. Determine the exact complexity of LBSI .

3.6 Finite dimensional Schauder decomposition

The complexity of FDDI by itself is quite mysterious, much similar to the case for BASISI .
Theorem 3.2.26 does give us a Π0

3 lower bound, and it is not hard to see that FDDI ≤ Σ1
1.

But proving anything much finer appears difficult. Much similar to the case for BASISI , it
is also natural to consider the effectivised version of FDDI . We show that under reasonable
assumptions, the complexity of having a computable FDD is also Σ0

3 complete. We begin by
showing that FDDI is indeed Σ1

1.
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Recall that a Banach space X has a FDD if there exists a sequence of finite dimensional
subspaces {Mi}i∈ω such that for all x ∈ X, there exists an unique sequence {yi}i∈ω such that
x = ∑∞

i=0 yi and yi ∈ Mi for all i. Like the case for BASISI , this can be shown to be Σ1
1 via an

characterisation using “decomposition constants”.

Lemma 3.6.1 ([Mar69, Page 93]). Let {Mi}i∈ω be a sequence of closed subspaces of X, then
{Mi}i∈ω forms a Schauder decomposition if and only if:

• {Mi}i∈ω is dense. i.e. The closure of span (
⋃

i Mi) is X.

• There exists a constant K ∈ R such that∥∥∥∥∥∑
i≤n

xi

∥∥∥∥∥ ≤ K

∥∥∥∥∥∑
i≤m

xi

∥∥∥∥∥
for all n, m with n ≤ m and for all seqeunces {xi}i with xi ∈ Mi.

With the Lemma above, it is not hard to obtain the following corollary.

Corollary 3.6.2. FDDI ∈ Σ1
1.

We now turn to the question of effectivisation, but the “natural” definition is not immedi-
ately obvious. We will first work with the following definition of a computable FDD.

Definition 3.6.3 (Computable FDD). Let X be a computable Banach space, a sequence of
finite dimensional subspaces {Mi}i∈ω is a computable FDD for X if their basis elements and
the sequence {dim(Mi)}i∈ω are uniformly computable.

Note that a basis (xi)i∈ω forms a one-dimensional FDD for the space, so any computable
basis forms a computable FDD. We will now show that similar to Theorem 3.2.1, the index
set for computable FDD is Σ0

3 complete.

Theorem 3.6.4. FDDC is Σ0
3 complete.

Proof. Utilising Lemma 3.6.1, it follows that FDDC ≤ Σ0
3. We will now show hardness, in a

similar fashion to the proof for hardness of Theorem 3.2.1. Recall the space Yτ as constructed
in Definition 3.2.4, defined as Yτ =

(
⊕iZτ(i)

)
c0

. Where Zn = [x0, . . . , xσ(n)] are approximates

to Davie’s space such that (∀n) (bc(Zn) ≤ K) for some constant K. For any lower semicom-
putable τ : N → N, the space Yτ is a computable Banach space with a basis, thus with a
FDD as well. We will now show that similar to Lemma 3.2.9, we can diagonalise against
all computable FDD via a lower semicomputable function. Given a triple (φn, K, i), where
{span(φn(i, 0), φn(i, 1), . . . , φn(i, dim(Mi)))}i is the computable FDD that we are trying to
diagonalise, we carry out the following computation at stage s:

• If we witness φn,s not outputting a Cauchy name for any of its basis elements at stage
s, we terminate the computation.

• If we witness φn,s outputting a sequence of finite dimensional spaces that have decom-
position constant greater than k, we terminate the computation.

• Otherwise, search for a sufficiently large p such that embi(Zp) is not contained in the
linear span of φn,s.
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As defined, this construction will diagonalise against all potential computable FDDs. It
therefore remains for us to show that this construction is actually valid, and can be carried
out uniformly in stages s = 0, 1, . . .. To see this, we have the following:

• Let α = {αi}i be a sequence from the dense set, then saying α is not a Cauchy name is
equivalent to the statement (∃k)(∥αk − αk+1∥ > 2−k + 2−k−1), which we can approxi-
mate in stages.

• Again, let {Mi}i≤l be a sequence of computable finite dimensional subspaces, to say
that the decomposition constant is greater than K, it is equivalent to the statement

(∃p, q)(∃(yi)i≤q)(yi ∈ Mi)

(∥∥∥∥∥ p

∑
i=0

yi

∥∥∥∥∥ > K

∥∥∥∥∥ q

∑
i=0

yi

∥∥∥∥∥
)

which is a Σ0
1 statement, and we can therefore approximate to s stages.

• To show that the final requirement can be carried out effectively, it is sufficient to show
that for all i ∈ N, for all sequences {Mi}i that forms a FDD for its span, we have

embi(Z) ⊈ [M0, M1, . . .]

This follows for much of the same reason of Lemma 3.2.9, if embi(Z) ⊆ [M0, M1, . . .],
then embi(Z) is a complemented subspace of a space with FDD. But FDD implies the
approximation property, and approximation property is preserved by complemented
subspaces, so this implies that embi(Z) has the approximation property, a contradic-
tion.

Therefore, the construction is valid and we have proven an analogous result for Lemma
3.2.9, from which the same arguments in the proof of Theorem 3.2.1 follow, completing the
proof.

Remark 3.6.5. In the proof above, we actually did not use the requirement that the dimen-
sions of a computable FDD should also be uniformly computable. So if we were to only
require the basis elements of a computable FDD to be given in a Σ0

1 way, we would still
obtain the corresponding Σ0

3 completeness result.

Finally, we show that similar to the case for Theorem 3.0.23, the natural projections associ-
ated to a computable FDD is also computable.

Theorem 3.6.6. Let {Mi}i∈ω be a computable FDD for a computable Banach space X. Since each
x ∈ X can be uniquely expressed as a sequence (yi)i∈ω where yi ∈ Mi, there is a natural sequence of
associated projections {Pi}i∈ω where Pi : X → Mi, Pi ((yk)k∈ω) = yi. This sequence of projections
is in fact uniformly computable relative to an upper bound on the decomposition constant of {Mi}i∈ω.

Proof. The proof of this is very similar to the proof for Theorem 3.0.23, so we avoid stating
the explicit details. Let U ∈ Q denote some upper bound on the decomposition constant
of {Mi}i∈ω. To compute Pk for some k on y = ∑∞

i=0 yi, we simply enumerate finite linear
combinations of the form ŷ = ∑l

i=0 ŷi until ∥y − ŷ∥ < ε1, where ε1 > 0 is to be chosen later.
As ∥Pk∥ ≤ 2U, we get that

∥Pk(y)− Pk(ŷ)∥ ≤ ∥Pk∥ ∥y − ŷ∥ < 2ε1U
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Since ε1 can be made arbitrarily small, and Pk(ŷ) can be computed exactly, this shows that
Pk(y) can be computed uniformly, completing the proof.

Remark 3.6.7. Again, we did not need the fact that dim(Mi) is computable in the proof
above either. So the same result still holds true if we only require the spaces {Mi}i to be
given in a Σ0

1 fashion.

3.7 Bounded approximation property

Recall the definition of the approximation property, which says that for any given compact
sets, there is a sequence of finite rank operators that converges in norm over that compact
set to the identity operator. However, there is no limitation on the norms of such operators.
One possible generalisation is to require the existence of some universal constant such that
the norms of the operators are bounded by it. This notion is known as the bounded approxi-
mation property. It was proven by [Gha19] that BAP is in Σ0

6Σ0
6Σ0
6 in the Borel hierarchy. We show

in this section that like the π-property, BAPI is in fact in Σ0
4. Furthermore, as BAP implies

AP, it follows that BAPI is Π0
3 hard. So despite the fact that we do not have a completeness

result, the bounds are rather tight.

To start off, recall Definition 3.1.8 for BAP, we re-write it in the following form.

Definition 3.7.1. Let X be Banach space, then X has the bounded approximation property if
and only if the hold.

(∃λ) (∀E ⊂ X that is finite dimensional) (∃ finite dimensional M ⊂ X ∧ E ⊆ M)

(∃T : X → M) (∥T∥ ≤ λ ∧ T(x) = x∀x ∈ E)

The plan of attack is now clear. Similar to the π-property, we will first argue that it is suffi-
cient to quantify E, M over finite dimensional spaces generated from a dense sequence. And
then argue that the existence of the operator T is in fact a Π0

1 statement by compactness. We
begin by giving the analog of Lemma 3.3.3.

Lemma 3.7.2. Let X be a separable Banach space with a dense sequence (ei)i∈ω. Let L be a finite
dimensional subspace of the form L = [x0, . . . , xM], and let I ⊆ {0, . . . , M} be an index set such
that xk ∈ (ei)i∈ω for all k ∈ I. Further assume that there is an operator T : X → L such that
T (xi) = xi∀i ∈ I. Then for all ϵ > 0, there is a space N = [y0, . . . , yM] where yi ∈ (ei)i∈ω, and an
operator S : X → N where ∥S∥ ≤ ∥T∥+ ϵ and yk = xk for all k ∈ I.

Proof. Choosing yi sufficiently close to xi induces an isomorphism Q : M → N such that 1 ≤
∥Q∥ ≤ ϵ by mapping each xi to yi, and this ϵ ≥ 1 can be made arbitrarily close to 1. Thus,
the composition QT : X → N has ∥QT∥ ≤ ∥Q∥ ∥T∥ ≤ ∥T∥+ ϵ where ϵ > 0 can be made
arbitrarily small. Furthermore, it satisfies the property QT(yi) = QT(xi) = Q(xi) = xi = yi
for all i ∈ I.

We arrive at the following analogue for Corollary 3.3.4.

Corollary 3.7.3. Let X be a separable Banach space with a dense sequence (ei)i∈ω. Then X has BAP
if and only if there exists λ such that for all e⃗ ∈ {ei : i ∈ ω}<ω, there exists v⃗ ∈ {ei : i ∈ ω}<ω and
an operator T : X → span{v⃗} such that span{⃗e} ⊆ span{v⃗}, ∥T∥ ≤ λ and T|span{⃗e} = I|span{⃗e}.
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Proof. The forward direction follows by Lemma 3.7.2. For the converse, note that X has BAP
if and only if there is a sequence {Ti}i∈ω of finite rank operators with universally bounded
norm that converges to the identity operator. And this can be built solely with subspaces
from a given dense sequence.

With the above results, we obtain a Σ0
4 upperbound for BAPI .

Theorem 3.7.4.
BAPI ∈ Σ0

4

Proof. The proof is almost identical to that of Theorem 3.3.7. By first noting that Lemma 3.3.6
carries over as the analogue of Lemma 3.3.5 still hold. This then induces a Σ0

4 characterisa-
tion of BAP via Corollary 3.7.3.

As remarked earlier, we also have Π0
3 ≤ BAPI .

We note here that there is some similarity in the properties BAP, π, FDD, CBAP, which might
be of interest. All of these properties essentially involve the existence of some form of ap-
proximating sequence. We remind the reader that the notion of an approximating sequence
was defined in Definition 3.1.10.

The following is a direct characterisation of BAP, π, FDD, CBAP via approximating sequences.

Theorem 3.7.5 ([JRZ71]). Fix X as some separable Banach space.

• X has BAP if and only if it has a λ-approximating sequence for some λ.

• X has π if and only if it has a λ-approximating sequence for some λ such that the operators are
all projections.

• X has CBAP if and only if it has a λ-approximating sequence for some λ such that the operators
commute.

• X has FDD if and only if it has a λ-approximating sequence for some λ such that the operators
are projections and they commute.

As shown, the four properties BAP, π, FDD, CBAP are just combinations of the properties
{commuting, projections} on the approximating sequences. What is perhaps interesting is
that arithmetical characterisations are known for precisely those properties where the oper-
ators are not required to commute. So perhaps the inherent difficulty is in the commuting
aspect of the approximating sequences.

3.8 Approximation property

The natural definition for AP is quite complicated, as it quantifies over all compact subsets
of a Banach space. We note here that API ∈ Π1

1 by invoking a classical lemma regarding the
structure of compact subsets in Banach spaces.
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Lemma 3.8.1. A closed subset K of a Banach space X is compact if and only if there is a sequence
{xn}n∈ω in X such that ∥xn∥ → 0 and K ⊆ conv{xn}n∈ω. Furthermore, in the case where ∥xn∥ →
0, conv{xn}n∈ω can be written as

conv{xn}n∈ω =

{
∞

∑
n=1

λnxn : λn ≥ 0,
∞

∑
n=1

λn ≤ 1

}

In fact, we can show something slightly stronger. In separable Banach spaces, it is sufficient
to only consider the convex hulls generated by a particular dense sequence.

Lemma 3.8.2. Let X be a separable Banach space with (ei)i∈ω as a dense sequence. Then X has the
approximation property if and only if:

(∀(eni)i∈ω) (∀ϵ > 0) (∃T) (T is a finite rank operator ∧ (∀x ∈ conv(eni)i∈ω))(∥T(x)− x∥ < ϵ)

Proof. The forward direction follows directly via Lemma 3.8.1. The converse is a conseqe-
unce of the fact that (T − I)(x), (T − I)(y) must be close in norm if x, y are close in norm.

The characterisation given in Lemma 3.8.2 is almost Π1
1, except for the existential quantifier

on T. We now show that we only need to look at the behaviour of T on a sufficiently long
prefix of a given sequence.

Lemma 3.8.3. Let X be a Banach space and (yi)i∈ω a sequence in X such that ∥yi∥ → 0, denote
conv((yi)i∈ω) as K. Then the condition

(∀ϵ > 0) (∃T) (∀x ∈ K) (∥T(x)− x∥ ≤ ϵ)

is equivalent to

(∀ϵ > 0) (∃m ∈ N) (∃T) ((∀x ∈ conv((yi)i≤m)) (∥T(x)− x∥ ≤ ϵ) ∧ (∀i > m) ((∥T∥+ 1) ∥yi∥ ≤ ϵ))

Proof. The forward implication follows from the fact that ((∥T∥+ 1) supi>m ∥yi∥)m → 0 as
m → ∞.
For the converse, recall that any x ∈ K can be written in the form x = ∑∞

i=0 λiyi where
λi ≥ 0, ∑∞

i=0 λi ≤ 1. So for all x ∈ K, we can obtain the following bound for ∥T(x)− x∥

∥T(x)− x∥ =

∥∥∥∥∥T

(
∞

∑
i=0

λiyi

)
−

∞

∑
i=0

λiyi

∥∥∥∥∥
≤
∥∥∥∥∥T

(
m

∑
i=0

λiyi

)
−

m

∑
i=0

λiyi

∥∥∥∥∥+
∥∥∥∥∥T

(
∞

∑
i=m+1

λiyi

)
−

∞

∑
i=m+1

λiyi

∥∥∥∥∥
≤
∥∥∥∥∥T

(
m

∑
i=0

λiyi

)
−

m

∑
i=0

λiyi

∥∥∥∥∥+ (∥T∥+ 1) sup
i>m

∥yi∥

Thus, if ∥T(x)− x∥ ≤ ϵ for all x ∈ conv ((yi)i≤m)) and (∥T∥+ 1) ∥yi∥ ≤ ϵ for all i > m, we
get that ∥∥∥∥∥T

(
m

∑
i=0

λiyi

)
−

m

∑
i=0

λiyi

∥∥∥∥∥+ (∥T∥+ 1) sup
i>m

∥yi∥ ≤ 2ϵ

Since this holds for all ϵ > 0, we are done.
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Finally, since the desired property of the finite rank operator T only depends on a fixed finite
dimensional subspace, we can apply the same trick as in Lemma 3.3.6, to only require finite
rank operators of the form Ti : Ei → M where

⋃
i Ei = X. This gives a Π1

1 characterisation of
API .

Theorem 3.8.4.
API ≤ Π1

1

Proof. This follows by Lemmas 3.8.2 and 3.8.3, and the technique used in Lemma 3.3.6 which
only requires a sequence of finite rank operators Ti : Ei → M, where {Ei}i is a dense se-
quence of finite dimensional subspaces.

Question 3.8.5. There is a natural definition for APC by requiring computable operators and
only quantifying over effectively compact sets, what is the complexity of it?

3.9 Summary of results on complexities

The following diagram gives a summary of the complexities of the various properties con-
sidered.

Π0
3 ≤ BASISI ≤ Σ1

1

Π0
3 ≤ LΠBSI ≤ Σ0

4 Π0
3 ≤ FDDI ≤ Σ1

1

LBSI ≤ Σ0
3 Π0

3 ≤ π I ≤ Σ0
4 SDI ≤ Σ1

1

Π0
3 ≤ CBAPI ≤ Σ1

1

Π0
3 ≤ BAPI ≤ Σ0

4

Π0
3 ≤ API ≤ Π1

1

Remark 3.9.1. Figure 3.9 is mostly a summary of the previous results, other than the bounds
CBAPI ≤ Σ1

1 and SDI ≤ Σ1
1. However, these upper bounds follow directly from Theorem

3.7.5 and Lemma 3.6.1, so we avoid giving explicit proofs.

As shown, all of the lower bounds follow from Theorem 3.2.26. In some cases, this lower
bound is not too far away from the upper bound. But in cases such as BASISI , API , the
bounds are not very tight.
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We note that in general, showing a lower bound of Π0
4 or greater is going to be non-trivial

due to the lack of ”classical” constructions. For example, suppose that we would like to
show BASISI ≥ Π0

4. To the best of our knowledge, the only Banach spaces that lack Schauder
basis lack one of {π I , LBSI}, but both of them have an upper bound of Σ0

4, so they cannot be
used to show Π0

4 hardness. Furthermore, this is further supported by the fact that LΠBSI ≤
Σ0

4, so showing Π0
4 ≤ BASISI would give a proof that LΠBS ̸= BASIS, answering a problem

posed by [Sza87]. Similar arguments also hold for FDDI , as (to the best of our knowledge)
it is open whether π implies FDD. The situation on API is less clear, and we are not too sure
if there exist similar arguments.

Finally, we remark that we did not obtain any completeness result. We strongly suspect
that {LΠBSI , π I , BAPI} should all be Σ0

4 complete. However the trick used to prove Π0
3

hardness does not quite work for the Σ0
4 case, and perhaps more complicated constructions

are needed.

3.10 Computable implications

Recall Figure 3.1, which detailed the classical implications. We will now give natural ef-
fective analogues for some of these properties, and show that the obvious implications still
hold in the effective case.

Recall that we have already defined the computable analogues of BASIS and FDD in Defini-
tions 3.0.4 and 3.6.3. As a natural extension from Theorem 3.7.5, we will define computable
versions of π, BAP, CBAP. The definitions below are just effectivisations of Theorem 3.7.5.

Definition 3.10.1 (Computable bounded approximation property). A computable Banach
space X has the computable bounded approximation property if it has a sequence of uniformly
computable finite rank operators {Ti}i that forms a λ-approximating sequence for some
λ ∈ R.

Definition 3.10.2 (Computable π-property). A computable Banach space X has the com-
putable π-property if it has a sequence of uniformly computable finite rank projections {Ti}i
that forms a λ-approximating sequence for some λ ∈ R.

Definition 3.10.3 (Computable commuting bounded approximation property). A computable
Banach space X has the computable commuting bounded approximation property if it has a se-
quence of uniformly computable commuting finite rank operators {Ti}i that forms a λ-
approximating sequence for some λ ∈ R.

Remark 3.10.4. The reader might wonder why we did not define FDDC in this way, where
a computable Banach space X has computable FDD if it has an uniformly computable se-
quence of commuting projections of bounded norm. By Theorem 3.6.6, this notion is weaker
than our current definition, and is in fact equivalent to requiring the basis elements of the
FDD to be given in a Σ0

1 fashion. We opted for the stronger definition as the weaker def-
inition fails to capture the finiteness part of the decomposition, hence fails to differentiate
between a FDD and a general SD. However, we do not know if these two notions are indeed
different.

Question 3.10.5. Define a FDD to be weakly computable if the corresponding basis elements
are given in a Σ0

1 fashion. Is there a computable Banach space X /∈ FDDC that has a weakly
computable FDD?
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With these definitions, we obtain the following implication diagram for these computable
properties.

BASISC

LBSC FDDC

πC CBAPC

BAPC

Most of the implications above follow directly from definitions, as justified below.

Theorem 3.10.6. The implications in Figure 3.10 hold.

Proof. As mentioned, this is mostly unraveling the definitions.

• BASISC =⇒ FDDC follows from Definitions 3.0.4 and 3.6.3.

• BASISC =⇒ LBSC also follows directly from definitions, as any prefix of a basis will
have bounded basis constant.

• FDDC =⇒ πC, FDDC =⇒ CBAPC both follows from Theorem 3.6.6, as the associ-
ated projections have bounded norm and commute.

• πC =⇒ BAPC, CBAPC =⇒ πC both follow directly from the definitions.

The implications above are all fairly easy to show due to the way they are defined, and triv-
ial in some sense. The perhaps more interesting question is whether boolean combinations
of effective properties with classical properties give rise to stronger properties. For exam-
ple, does having computable BAP and knowing that the space has π classically show that
the space has computable π? We show that comp.FDD + BASIS ≠⇒ comp.BASIS on the
assumption that a specific Banach space exists.

Definition 3.10.7. A Banach space X is said to have the strong local basis property (SLBS) if
there exists a sequence (xi)i∈ω ∈ Xω, a constant K ∈ R and a function σ : N → N such that:

(∀i)bc([x0, . . . , xσ(i)]) < K

and (
[xσ(i)+1, . . . , xσ(i)]

)
i∈ω

forms a FDD for X.

Theorem 3.10.8 (comp.FDD + BASIS ≠⇒ comp.BASIS). Assuming that there exists a com-
putable Banach space X with computable SLBS but does not have a basis, we have

comp.FDD + BASIS ≠⇒ comp.BASIS
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Proof. Let X be a computable Banach space without basis but has SLBS. We carry out the
same diagonalisation as in Corollary 3.2.10 and obtain the space Yτ. We now claim that
this space witnesses the statement comp.FDD + BASIS ≠⇒ comp.BASIS. By construction,
Yτ does indeed have a basis but not a computable one. Furthermore, as τ is lower semi-
computable, it can be approximated in stages computably. In otherwords, for each i, Xτ(i) =
[x0, . . . , xσ(τ(i))] can be approximated by the sequence of spaces:

[x0, . . . , xσ(τ0(i))]⊕ [xσ(τ0(i))+1, . . . , xσ(τ1(i))]⊕ . . .

Where each space is computable. Furthermore, as X has SLBS, the union of this computable
sequence of spaces across all Xτ(i) indeed form a computable FDD for Yτ. Therefore, Yτ has
a computable FDD and a basis but lacks a computable basis, completing the proof.

We note here that this only partially answers one of the many such questions, and it would
interesting to investigate the other questions.

Question 3.10.9. Completely determine the relationships in Figure 3.10, allowing combina-
tions of classical properties.

3.11 Complexity of reflexivity

It was implicitly proven in [Bos02] that the set of reflexive Banach spaces is coanalytic com-
plete. We note here that the reduction is in fact computable, thus implying that the set of
reflexive Banach spaces is Π1

1 hard. Together with a classical characterisation for reflexive
Banach spaces, this shows that the set of reflexive Banach spaces is indeed Π1

1 complete.

Theorem 3.11.1. Sr = {e : Xe is a computable reflexive Banach space} is Π1
1 complete.

We use the following definition of reflexive Banach spaces.

Definition 3.11.2. Let X be a Banach space. A basic sequence (xi)i∈ω of X is boundedly
complete if whenever (ai)i∈ω is a sequence of reals such that

sup
n

n

∑
i=0

aixi < ∞

then the series ∑∞
i=0 aixi converges.

Definition 3.11.3 ([Sin62]). Let X be a Banach space. Then X is reflexive if and only if every
basic sequence in X is boundedly-complete.

Before introducing the reduction, we need to first introduce the universal Banach space for
Schauder basis, this is a classical fact.

Theorem 3.11.4 ([Peł69]). There exists a Banach space U with basis (ui)i∈ω such that for any basic
sequence (xi)i∈ω in any Banach space, there is some complemented subsequence of (ui)i∈ω that is
equivalent9 to it. Furthermore, this space is unique up to isomorphism.

9Two basic sequences (xi)i, (yi)i are equivalent if for all (ai)i scalars, ∑i aixi converges if and only if ∑i aiyi
converges.
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For our purposes, we would need to further show that the universal space is computable
with respect to its natural presentation. The following is an easy consequence from the
classical constructions.

Lemma 3.11.5. There is a universal space U such that the norm function is uniformly computable
on the rational span of one of its basis.

Proof. The classical construction shown in [LT77] works. Denote T = N<N as the complete
tree. Let (xi)i∈ω be some dense sequence in C[0, 1], and V be the vector space spanned by
the Hamel basis (et)t∈T. The elements of V are simply vectors with finitely many non-zero
entries, we define a norm on V as follows. Recall that y ∈ V can be written as y = ∑σ∈T yσeσ

where the coefficients yσ are all 0 except for finitely many exceptions.

∥y∥ = sup
S∈N<N

∥∥∑
σ⪯S

yσxσ′
∥∥

where for σ ∈ N<N, σ′ is its final element. Denote U as the completion of V under this
norm, the obvious vectors (et)t∈T form a computable basis for U. It was shown in [LT77]
that this space is universal for Schauder basis. As each element of V has only finitely many
non-zero entries, the norm introduced is computable on V. This implies that the norm is
uniformly computable on the rational spans of (et)t∈T, as desired.

We will now introduce the construction used in [Bos02], which is actually very similar to the
previous construction.

Definition 3.11.6 ([Bos02]). Let T, V be as defined in the proof of Lemma 3.11.5, and (ui)i∈ω

be the computable basis for U. An interval I is a set such that there exists s, τ ∈ N<N and
I = {w|s ⪯ w ⪯ τ}. An admissible choice of intervals is a finite set {Ij; 0 ≤ j ≤ k} of
intervals such that each branch (i.e. element of NN) intersects at most one of these intervals.
The Banach space U2(T) is defined as the completion of V under the following norm

∥y∥ = sup


 k

∑
j=0

∥∥∥∥∥∥∑
s∈Ij

ysu|s|

∥∥∥∥∥∥
2


1/2


and the supremum is taken over all k ∈ N and all admissible choice of intervals {Ij; 0 ≤
j ≤ k}. Again, as the elements of V only have finitely many non-zero entries, this norm is
uniformly computable on its natural presentation. For any subtree A of T, U2(A) is defined
as the closed subspace of U2(T) generated by (et)t∈A.

Theorem 3.11.7 ([Bos02]). The mapping U2 satisfies the following properties on a tree A:

• If A is not well-founded, then U2(A) is isomorphic to U, the universal space, which is not
reflexive.

• If A is well-founded, then U2(A) is reflexive.

Corollary 3.11.8. As the mapping U2 in Definition 3.11.6 is computable, the properties listed in
Theorem 3.11.7 show that U2 is a computable reduction from the set of computable well-founded trees
to the set of computable reflexive Banach spaces.

Corollary 3.11.9. Sr is Π1
1 hard.
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Sr ∈ Π1
1 then follows from Definition 3.11.3.

Corollary 3.11.10. Sr ∈ Π1
1.

Proof. By Definition 3.11.3, we obtain the following:

e ∈ Sr ⇐⇒ Every basic sequence in Xe is boundedly complete

⇐⇒ (∀ ((ai)i∈ω ∈ Xω
e )) ((ai)i∈ω is basic =⇒ (ai)i∈ω is boundedly-complete)

It is clear that describing a sequence to be boundedly complete is Π1
1, and describing a

sequence to be basic is arithmetical via Lemma 3.0.5. Thus, the proof is complete

This completes the proof of Theorem 3.11.1.
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