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Abstract

Decentralised technology backed by blockchain has gained popularity in
recent years, as it secures autonomous ecosystems without the need for a
central authority. The blockchain concept originated in the financial do-
main using cryptocurrency but has been applied to a variety of indus-
tries over the last few years. In the era of Industry 4.0, most enterprises
leverage automation by using Internet of Things (IoT) technology. De-
spite the numerous applications of blockchain across industries, signifi-
cant latency in the consensus algorithm in blockchain hinders its adoption
among businesses using IoT technology. A number of studies have ad-
dressed the obstacles of transaction processing performance and system
scalability, mostly based on a public blockchain. However, the approaches
still involve centralised components and thus fail to fully utilise decentral-
isation. Here, a private blockchain-based IoT data integration platform
is proposed to achieve data integrity and system scalability. Along with
a lightweight IoT gateway, instead of any other additional middleware,
the process and the system configuration are streamlined. By using Hy-
perledger Fabric, the design is validated, and the proposed architecture
outperforms other conventional models in IoT data processing. Thus, de-
centralisation in IoT environments is achieved.
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Chapter 1

Introduction

In the era of Industry 4.0, automation prevails significantly in manufac-
turing. In particular, big data, Internet of Things (IoT), blockchain, and
artificial intelligence (AI) technologies in the smart factory garner much
attention.

With regard to IoT environments, data volume, fault tolerance, and
generation frequency are key considerations. Full automation can only
be achieved when each process is seamlessly integrated and any single
component does not affect service downtime.

Blockchain is appropriate for process automation along with high avail-
ability (HA). However, because of certain drawbacks, such as significant
latency in transaction processing, the application of blockchain to IoT envi-
ronments lags behind its use in other domains. A number of groups have
been working towards performance improvements, but their approaches
do not fully utilise blockchain as they include additional centralised com-
ponents.

Therefore, this thesis aims at developing a blockchain network plat-
form to integrate IoT data effectively. Among a variety of IoT environ-
ments, facility management in manufacturing based on IoT sensor data is
selected as a model. To facilitate application of the platform to generic IoT
environments, scalability and flexibility in system configuration are taken
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2 CHAPTER 1. INTRODUCTION

into account.

1.1 Research Motivation

Various forms of process automation in manufacturing are accelerated by
IoT technology. The core of this technology is the processing of a large vol-
ume of data gathered from IoT sensors. As it is the foundation for the au-
tonomous operation of production equipment, data integrity is paramount
in IoT.

IoT data are ubiquitous in diverse environments. Communication is
established between instruments ranging from small devices to back-end
legacy systems in manufacturing. Cloud computing and distributed com-
puting architectures are most commonly used for better performance and
efficiency with regard to IoT data [1].

Both architectures are based on centralisation and have inherent draw-
backs such as security issues and a single point of failure (SPOF). To over-
come such shortcomings, the blockchain [2], a decentralised architecture,
has been introduced. Decentralisation is based on autonomous computing
without any authority or intermediary. Accordingly, a blockchain-based
system is free from a SPOF and agile in operational decisions. It is also
more robust than distributed computing with a central node, as all the
processing data are shared with each node.

Despite its strengths, blockchain has weaknesses in performance and
scalability, mainly caused by the consensus algorithm. These weaknesses
hinder blockchain adoption in IoT environments, as large volumes of data
are generated continuously by IoT devices. However, not all IoT data are
necessarily meaningful. IoT sensors can seamlessly detect anomalies in the
environment, and only those occasional anomalies need further attention.
Selective data processing on time is critical. In this regard, blockchain-
based IoT data processing needs to be tailored while guaranteeing data
integrity [3].



1.2. RESEARCH PROBLEM 3

Many studies have focused on solving these problems to promote bloc-
kchain adoption in IoT environments [4]. Although these approaches are
effective, they employ additional centralised components, imposing a po-
tential SPOF. Therefore, this thesis intends to tackle the challenges facing
blockchain adoption in IoT environments and to propose a new data inte-
gration model to ensure flexibility and reconfigurability with full decen-
tralisation.

1.2 Research Problem

For operation automation in manufacturing, data generated by IoT sen-
sors are sent to the actuators of the facility management system, which are
switched to be enabled or disabled based on the data they receive.

The integrity of the sensed data must be preserved to ensure accurate
control. So that the actuators’ action history can be tracked, the data must
be immutable and traceable. In addition, the architecture must accommo-
date endlessly generated data without performance degradation.

Based on these requirements, the problem statement is defined as fol-
lows:

Problem Statement

Given that control of actuators for smart factory production lines in man-
ufacturing involves:

1. IoT-based sensor data acquisition, and

2. adjustment of actuators in accordance with these data,

determine a blockchain-based IoT data integration platform model, while:

1. ensuring data reliability, immutability, and traceability;

2. minimising latency in data processing; and
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3. streamlining data processing,

subject to constraints in IoT environments on:

1. computational hardware resources,

2. heterogeneous components, and

3. sensor networks.

1.3 Research Objectives

This research aims to propose a blockchain-based network platform for
an IoT-based facility management system in the smart factory with the
following objectives:

1. reinforce data integrity and guarantee seamless processing under
IoT-specific environmental constraints,

2. assure high transaction processing performance,

3. secure the interface in between IoT devices and blockchain network,
and

4. configure the system without any additional centralised system com-
ponents.

1.4 Research Contributions

The ultimate goal of this research is to explore an effective data process-
ing platform in IoT environments that can be utilised in many potential
business areas. The thesis addresses technologies to build the foundation
for this purpose. As a base for the big picture, the methods to guaran-
tee IoT data integrity and system scalability are discussed along with the
following aspects:
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• For the operation automation using IoT in manufacturing, to which
blockchain application is regarded not to be the best solution, a pri-
vate blockchain network model is presented. A private model se-
cures data privacy for an organisation, and mitigate performance
degradation caused by an anonymous consensus in conventional
blockchain.

• To overcome the downside of blockchain, an enhanced system con-
figuration is introduced while decentralisation is fully achieved. All
the processing data are stored in distributed file systems and only
anomalous data are processed further. Without any additional cen-
tralised components, the system is fault-tolerant.

• The proposed system architecture constitutes the core part for the to-
kenized economy that integrates autonomous supply chain manage-
ment (SCM) system for hardware parts. Blockchain has been orig-
inally developed for cryptocurrency, and the token implementation
on the blockchain enables the integration.

1.5 Outline of Thesis

This thesis is composed of six chapters.

Chapter 1. Introduction

The problems facing blockchain adoption in IoT environments are dis-
cussed, and the aim of the research is presented.

Chapter 2. Background and Related Work

General blockchain features are described, and the limitations of the con-
ventional blockchain architecture are analysed. Then, recent studies on
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the existing issues are reviewed, and their advantages and disadvantages
are compared.

Chapter 3. Blockchain-based Network Design

The design of the proposed architecture to overcome the restrictions is pre-
sented. First, factors to be considered in the design approach are enumer-
ated. Then, conceptual design and application scenarios are described.
Lastly, the proposed architecture is presented with a model system design.

Chapter 4. Validation

Validation of the proposed architecture is discussed, and a test system is
elaborated in more detail for the evaluation of the IoT data integration.

Chapter 5. Experimental Results

Functional and non-functional test methods are highlighted, and accord-
ing to each test scenario, experimental results are shown and analysed. In
addition, data interface methods are investigated further.

Chapter 6. Conclusion and Future Work

The thesis is concluded and future work for continuous improvements is
suggested.



Chapter 2

Background and Related Work

This chapter explores IoT and blockchain technologies. The weaknesses of
blockchain and limitations to its adoption, especially with regard to IoT-
specific features, are introduced.

First, major characteristics of both IoT and blockchain are presented in
Sections 2.1 and 2.2, respectively. Since this thesis focuses on blockchain
application to IoT environments rather than the technological aspects of
IoT, more in-depth studies of blockchain are discussed.

Next, Section 2.3 depicts general blockchain classification and Section
2.4 deals with the necessities of blockchain adoption. These two sections
establish which type of blockchain is needed is various scenarios and why.

Then, in Section 2.5, the limitations of conventional blockchains in re-
lation to IoT environments are covered in a practical way.

Lastly, existing related works are reviewed and compared with the
main approach of this research.

2.1 Characteristics of IoT Networks

The IoT network is an interaction system in which communication is per-
formed machine-to-machine (M2M) without human interventions. In this
section, IoT characteristics are discussed with regard to the manufacturing

7
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context.

Constrained Resources

The main difference between IoT networks and traditional networks is the
constrained resources of IoT devices. IoT devices typically have low mem-
ory capacity, low computational power, and low battery life and hence lack
the hardware resources necessary to ensure security, making them vul-
nerable to external attacks. To defend against various attacks, traditional
networks have secure infrastructure such as firewalls, intrusion preven-
tion systems (IPS) and intrusion detection systems (IDS), all of which are
host-based and cannot be applied to resource-constrained IoT devices.

Lack of Standardisation and Compatibility

In addition to hardware resource constraints, IoT devices are lacking in
software updates, external access control, and other self-protection mech-
anisms. Furthermore, the heterogeneity of devices produced by a variety
of manufacturers presents challenges in terms of standardisation and com-
patibility.

For these reasons, IoT environments entail additional system compo-
nents: middleware, brokers, and gateways. IoT gateways based on an
open-source hardware have been highlighted in recent years [5][6]. These
gateways are so versatile and lightweight that they can be utilised in vari-
ous cases with low costs.

Large Data Volume

IoT devices produce a huge amount of data. Moreover, with the advent of
5G networks [7], transmission will be accelerated, data packet size will be
increased, and computational nodes will facilitate various manipulations
of the data.
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Therefore, optimising the configuration of the whole system to accom-
modate the extended capacity towards 5G networks without any hot spots
will be significant. All the IoT components should be harmonised and
streamlined according to the business requirements.

Frequent Transaction Occurrences

Compared with human interactions, IoT networks have much more fre-
quent transactions because a number of devices generate data continu-
ously. Once IoT devices have been deployed, they produce data both pe-
riodically and whenever certain events occur. Mostly the packet size is
small and the transmission is one way from devices to legacy systems.

Operational Transaction Usage

The payloads can be explicitly defined depending on business require-
ments. Most transactions intend to trigger relevant actions rather than to
represent a decisive status. For example, in financial transactions, each
transaction is likely to declare a certain change of the current situation to
be recorded. By contrast, IoT sensor data are used to control other con-
nected devices.

2.2 Characteristics of Blockchain

This section provides an overview of blockchain technology, well-known
common attributes, and collaborative features with other technologies.

2.2.1 Introduction to Blockchain

Blockchain Overview

Blockchain is not a new invention but rather embraces and orchestrates
existing technologies such as distributed ledger technology (DLT), decen-
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Figure 2.1: Blockchain structure

tralisation, peer-to-peer (P2P) technology, cryptography, hash functions,
RESTful API [8], and digital consensus algorithms. It explicitly includes
those technologies so as to connect all the participants and to process
transactions in the network based on the decentralised architecture.

Decentralised Technology

Decentralisation means that no one rules over or controls everything in the
whole system, and there is no SPOF. Once the need for trusted third parties
or intermediaries is removed, efficiency, scalability, and potential values
emerge due to the independence of processes. In addition, distributing
the computation to each node in the network increases sustainability and
efficient resource utilisation [1]. This idea of autonomous decentralisation
is entirely underpinned by blockchain technology.

Structure of Blockchain

Blockchain is a cryptographically secured chain of blocks based on anony-
mous consensus using a distributed P2P network.

As shown in Figure 2.1, a block consists of a series of transactions. Ev-
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ery transaction is published to its own hash value, and then the hash val-
ues are aggregated to a hash again in a block. The block header includes
this aggregated hash, current block hash, and the previous block’s hash.
Thus, all the blocks in a blockchain are tightly coupled, so that modifica-
tion of any block requires changing all the blocks, which is impossible. In
this way, data consistency in a blockchain is guaranteed.

The first block is called a genesis block and is generated by the cre-
ator of the blockchain. It has a zero hash value for the previous block’s
hash. After the creation of the blockchain, new blocks that reach consen-
sus among participants are added to the existing blockchain serially.

History of Blockchain

The blockchain concept was introduced by a person with the pseudonym
Satoshi Nakamoto [2]. Blockchain was initially aimed at solving problems,
such as ‘double spending’ and ‘Byzantine Fault Tolerance’, underlying the
cryptocurrency Bitcoin. Since then, it has been applied to various altcoins,
or alternative cryptocurrencies.

The architecture of the consensus-based verification and the shared
ledger was the focus for cryptocurrency or contract-based interactive busi-
nesses. Subsequently, for further applications, Ethereum emerged as a
‘turing complete’ blockchain platform powered by smart contract tech-
nology [9]. Since then, other blockchain platforms that are analogous to
Ethereum or structured with different consensus algorithms have been de-
veloped [10, 11, 12].

Smart Contract

The smart contract is closely associated with blockchain. In fact, it has
transformed blockchain innovatively from the level of a simple distributed
ledger to a platform for numerous application services with the broad con-
cept of decentralised applications (DApps) [13].



12 CHAPTER 2. BACKGROUND AND RELATED WORK

The smart contract was introduced with Ethereum but is commonly
used to refer to a self-executing contract on most blockchains. It is a com-
puter program code that can be written in various programming languages.
The rules of transaction processing in relation to a business are imple-
mented in the smart contract.

The smart contract is based on a trigger for further processing that is
set on or off when a certain requirement is met. The smart contract liter-
ally infers the adherence of an agreement in some cases by defining the
regulations in the program logic. In addition, it facilitates the automation
of the entire process. All the operational processing logic is aggregated in
the smart contract, and each decisive procedure can be dealt with by the
predefined rules.

2.2.2 Attributes of Blockchain

The most representative features of blockchain are as follows: transparency,
immutability, traceability, and autonomy [14, 15, 16].

Transparency

All the transactions and data are open to each participant on the blockchain:
all information except for a participant’s identity is shared. The transac-
tion or data owner remains anonymous. This sharing creates transparency
that brings about trust between trustless entities.

Some types of blockchain have data privacy capabilities to limit partic-
ipants’ access to certain information by using private network channels.
These network channels use a subnet or different layer of the blockchain
network. All participants join the blockchain network, but only permitted
members can access a specific channel. The channel becomes exclusive for
those who need to keep data private from others. In this case, transparency
is still guaranteed within the channel.
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Immutability

As shown in Figure 2.1, all the blocks on the blockchain are connected
sequentially. Accordingly, once the blocks are connected after validation,
the contents in each block are nearly impossible to modify or delete. This
is because when a new block is created, the hash of the previous block is
included in the new block. In order to modify or delete transactions in a
block, or even a block itself, all the blocks must be changed at once.

One can imagine that this could be accomplished by using power-
ful computational hardware, but during the modification, a new block is
added again and again. As a result, the modification becomes impossible,
and immutability is achieved.

Therefore, data on blockchain are secure.

Traceability

As data on blockchain are immutable and all blocks are connected, any
data can be tracked down. All the transactions are serialised on blockchain,
so that any transaction can be easily traced by following the hash of the
previous block.

This feature is particularly useful in audit and SCM systems. If a trans-
action can be traced, it becomes easier to identify the cause of problems.
In SCM, particularly, traceability can find the provenance of products and
reinforce the visibility of distribution. This engenders trust in customers
and eventually increases sales.

Autonomy

Blockchain, fundamentally, aims for autonomy without any central au-
thority. This can be translated into availability and autonomous process-
ing.

Since blockchain is deployed with a distributed shared ledger on all
the participating nodes, data can be preserved in some nodes, regardless
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of other nodes’ state. Consequently, when a node crashes, the system con-
tinues to operate without service downtime and is never affected by the
crashed node. Blockchain can stand independent of individual nodes.

For many system operations, autonomous processing is necessary be-
cause manual activities are error-prone and difficult to maintain within a
complex enterprise application system.

Autonomy by blockchain is distinguishable from automated opera-
tions. Database procedure scripts and batch processing can be used for au-
tomation, but they can only manage simple events in each programmable
step using binary decisions. Such automated procedures dealing with sim-
ple events are inadequate for intricate circumstances. When a more com-
plex decision must be made based on the result of a predecessor, the need
for self-regulation increases. Blockchain accommodates autonomy by im-
plementing smart contracts. Moreover, it is applicable system-wide.

As presented in the introduction to the smart contract in the previous
section, the smart contract includes a series of all the processing logic. All
the operations are governed by the predefined logic, which represents a
pipeline of a whole process lifecycle. Every step in which a decision is
based on the preceding result goes through validation from the majority
of nodes or additional check logic. The smart contract controls all the data
processing and is commonly used by all the nodes. Thus, autonomy is
achieved.

2.3 Blockchain Taxonomy

Blockchains are classified based on how they control participation, how
they control data, and what participants can do. Public (or permissionless)
blockchains can be differentiated from private (or permissioned) ones. Pub-
lic or permissionless blockchains are regarded as the same thing, as are
private or permissioned blockchains, in the case of networks mainly used
for cryptocurrencies.
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However, in the case of IoT, they should be distinguished. Authentica-
tion is the criterion for classifying public versus private networks, whereas
authorisation is the criterion for classifying permissionless versus permis-
sioned. Detailed classification enables more appropriate usage of blockcha-
in technology for each business requirement.

Figure 2.2: Blockchain taxonomy towards proper usages based on authen-
tication and authorisation (reproduced from [4])

Based on the above conditions, existing popular blockchains can be
generally classified into four categories, as shown in Figure 2.2:

1. public permissionless,

2. public permissioned,

3. private permissionless, and

4. private permissioned.



16 CHAPTER 2. BACKGROUND AND RELATED WORK

The well-known blockchains Bitcoin and Ethereum fall into category 1,
and the representative private blockchain in the recent spotlight, Hyper-
ledger [12], belongs to category 4, to name a few examples.

2.4 Blockchain Adoption Decision Tree

Blockchain is gaining popularity and adoption in many enterprises, as the
state-of-the-art technology is often regarded as a method of strengthen-
ing competitiveness, but there is no one-size-fits-all solution to meet every
requirement. In addition, in order to adopt a new technology, specific
environments and business purposes should be taken into consideration
first.

The most common business requirements that can be met in IoT envi-
ronments are the following:

• The data generated by IoT devices should be transferred both to in-
ternal systems of individual departments in an organisation and to
external business partners.

• While data are transferred to each system, data integrity should be
guaranteed.

• For compliance and audit purposes, the data or transaction history
should be tracked and should not be manipulated.

• Every organisation should agree on how to do business beforehand,
so that a workflow should be defined and assured.

• The distributed location of each business partner or system should
be taken into consideration.

• Human labour should be minimised in terms of costs and errors,
although administrative work is still needed for hardware deploy-
ment.
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Given the above business requirements, each case can be assessed by
the corresponding decision criteria, as shown in Figure 2.3, based on the
blockchain taxonomy described in Figure 2.2. By following the decision
tree, the necessity of blockchain adoption in IoT environments can be eval-
uated.

Examining whether blockchain is necessary and which type of blockch-
ain is appropriate can be done in the following way.

In the decision tree, an entity refers to a system node that has com-
putational capability in an IoT environment, such as IoT devices, systems
for each department, and external systems for business partners, which
interface with each other.

1. As data gathered from IoT devices are processed and interfaced with
multiple stakeholder entities, the answer to questions 1) and 2) is
YES.

2. IoT entities include not only internal systems in the same organisa-
tion and amicable business partners, but also competitive stakehold-
ers. In addition, they are independent from others. For this reason,
the answer to question 3) is YES.

3. For operations, the predefined rules control the whole process. Once
the rules have been set up, they remain in effect for quite a long time.
Accordingly, the answer to questions 4) and 5) is YES.

4. Every transaction should be traceable to find the causes of problems,
so transaction logging is essential, and the answer to question 6) is
YES.

5. IoT devices are usually used for certain purposes in an organisation,
so that they are deployed on the private network and system admin-
istrators control and manage the devices. Consequently, the final
solution is a permissioned private blockchain.
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Figure 2.3: Decision tree for blockchain adoption in IoT environments (re-
produced from [4])
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2.5 Conventional Blockchain Limitation

This section addresses the limitations of conventional blockchains: public
permissionless networks such as Bitcoin and Ethereum, which have longer
histories than other blockchain types.

Although various efforts to overcome drawbacks of conventional bloc-
kchains have been made over the past several years, it is still complicated
to apply new functions or upgrade the core network.

First, the performance problem is introduced in terms of transaction
processing.

Second, the main cause of latency, the consensus algorithm, is address-
ed. In addition, hurdles in application of the conventional consensus algo-
rithm to other types of blockchain and to IoT environments are described.

Third, data privacy issues that are inevitable due to blockchain’s trans-
parency are discussed.

Last, hard fork is described. The hard fork is rare in usage, but it even-
tually happens when the blockchain needs to be upgraded or modified for
any particular reason.

2.5.1 Transactions Per Second (TPS)

To measure the performance of a system, the number of transactions per
second (TPS) is mostly used. Although it is considerably dependent upon
test scenarios and customised applications, it can be a basic scaling method
to check the performance to some extent.

Generally, distributed computing accelerates processing, as it can be
facilitated by parallel processing. Blockchain is based on decentralised
architecture involving distributed technology. Nevertheless, blockchain
has lower performance than centralised database systems [17].

It is slightly different for each measurement report, but the benchmark
TPS results for different networks are as follows [18, 19, 20]:
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• Bitcoin: 7 TPS

• Ethereum: 15 TPS

• VISA Card: 2,000 TPS (up to 24,000 TPS claimed)

The current TPS of the conventional blockchain is not suitable for real-
time interactive transactions. In the case of IoT data processing, it becomes
unacceptable.

Although various factors can affect performance, the low performance
of the conventional blockchain is mainly caused by the consensus algo-
rithm.

2.5.2 Consensus Algorithm

Proof-of-Work (PoW)

Consensus is a mechanism to achieve agreement among participants in a
blockchain network in order to add or modify data. With the popularity
of blockchain, it is now referred to as a consensus algorithm. It secures the
integrity of data throughout the distributed ledger for all participants and
protects against manipulation by malicious attackers.

As a consensus algorithm for Bitcoin and Ethereum, Proof-of-Work
(PoW) is used [2][9]. PoW is based on a mechanism called ‘mining’. The
nodes engaged in the mining are called ‘miners’. Mining is a challenging
process to find a nonce value with relation to transaction validation. Suc-
cessful mining proves that the miner is authenticated, and the new block
created by the miner is allowed to connect to the previous block.

Therefore, the PoW consumes a huge amount of computational power
and time, which is inefficient and adds latency in transaction processing.

Since blockchain was introduced, a number of different consensus al-
gorithms have been developed. However, each algorithm has its own in-
herent defects [21][22]. This thesis deals with the generic concepts under-
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lying most commonly used consensus algorithms rather than the detailed
architecture of each algorithm.

Application of the Consensus Algorithm to Private Blockchain

Bitcoin and Ethereum are permissionless blockchains. Any entity can par-
ticipate in the network without permission of any authority, and the entity
is anonymous in the network. Each entity does not trust any other entity
but regards them as adversaries.

On the contrary, in a private blockchain, participation of a new entity is
selective, and the entity is mostly known to other participants. The system
is operated under a shared governance. Consequently, trust can be easily
attained in the private blockchain.

In the permissionless public blockchain, malicious entities can join and
act in the network at any time, so there are risks, which are reduced in the
permissioned private blockchain.

However, since permission and access control are needed in the per-
missioned private blockchain, the conventional consensus algorithm can-
not be applied in the same way. Functionalities such as identity and au-
thority management should compensate for the algorithm.

Application of the Algorithm to Enterprise IoT

In enterprise, privacy and compliance, which relate to identity and au-
thority management, are so critical that many businesses turn to the per-
missioned private blockchain, while generic applications of blockchain in
public are mostly permissionless. Industries operating in IoT environ-
ments demand the permissioned private blockchain.

The permissioned private blockchain does not need to rely on the min-
ing process. The decision of using or not using the mining process is im-
portant in blockchain network development, because it affects almost ev-
ery mechanism, including adding a new block, authentication, and the
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consensus algorithm.
Due to the sequential process of mining, the performance of the whole

blockchain system is inevitably very low. Consequently, if the mining pro-
cess is eliminated, although other similar mechanisms might be needed,
performance is improved considerably. In addition, ‘51% attack’ [9] or
‘double spending problems’ caused by malicious miners in a public block-
chain no longer occur in the absence of the mining process. Another ad-
vantage in eliminating the mining process is that it reduces computation
intensiveness, which reduces workload on each resource-constrained IoT
device.

2.5.3 Data Privacy

Blockchain is transparent and shares all data with all participants, so that
data confidentiality cannot be guaranteed. Although participants are ano-
nymous, every participant can view all the data and transactions, which
might cause serious problems.

For example, especially in enterprise, data including sensitive informa-
tion, such as bidding prices, often need to be hidden against other business
competitors while they are all participating in the same blockchain-based
network. When organisations form consortia to serve common purposes
and the total amount of the project is very large, data privacy becomes
even more significant.

Since the conventional blockchain does not support data privacy for
this purpose, it is not appropriate for enterprise use cases, particularly
those that entail the needs of a consortium.

2.5.4 Hard Fork

Integrity and security are basically guaranteed by the consensus algorithm
of all nodes joining the network, so that once the blockchain-based net-
work is configured in a system, an upgrade or modification is nearly im-
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possible as it can only be facilitated by the consensus. So-called hard fork
is needed in this case, eventually resulting in a split from the legacy net-
work and creation of a new one. Furthermore, the conventional blockchain
architecture does not fit in IoT environments in terms of scalability and
performance.

In enterprise applications, each company has its own platform and ap-
plications, which may be different from each other; even if the platform
is the same, the versions of the binaries in the software library can be di-
verse. The bigger the business area is, the more gaps in computing en-
vironments exist. Under these distributed circumstances with great het-
erogeneity, software compatibility is a significant challenge in performing
transactions among different organisations.

For the integrity of application services, manual labour cannot coordi-
nate all the requests. Instead, compatibility management functions should
be included in the integral parts of interfaces to support the use of different
platforms and various versions of binaries. Compatibility management
will eventually mitigate the need for the hard fork, but the conventional
blockchain does not have such functionalities yet.

2.6 Related Work

In relation to blockchain, there are a number of studies, but very few of
them address blockchain with IoT, owing to the limitations described in
the previous section. For IoT data processing, cloud computing is often
applied due to the large amount of data. However, in cloud computing,
data ownership eventually relies on the cloud service providers. In addi-
tion, it still has defects caused by the centralised architecture, and the cost
of maintenance is very high.

Research on blockchain is also focused more on the public blockchain,
but the private blockchain is preferred in IoT environments as reviewed
in the previous section. As a result, not all novel ideas proposed for the
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public blockchain can be applied to IoT environments.

In addition, numerous efforts have applied blockchain as a part of the
whole system, which eventually introduces centralisation and increases
susceptibility to a SPOF.

This section summarises the current studies focused on the above is-
sues and analyses their strengths and weaknesses.

Public Blockchain Adoption and Enhancement

Since the public blockchain has a longer history than the private blockchain,
most of the existing studies adopted the public blockchain to process IoT
data and then sought to enhance its architecture.

Dorri et al. [23] proposed a layered network platform with blockchain.
They introduced a new type of blockchain architecture for IoT that re-
duces both traffic and processing overheads, especially in validation of
a new block, while guaranteeing security and privacy. They suggested a
three-tier framework: smart home with a private immutable ledger, over-
lay network for higher resource devices, and cloud storage for groups of
users’ data. By eliminating the process of consensus and validation, PoW
in conventional blockchain technology, they accelerated processing speed.
Instead, they used a so-called distributed trust method, which is not de-
scribed in detail.

The concept of separate processing divided into three tiers is novel but
somewhat theoretical, and the model needs to be validated in more di-
verse IoT environments. The simulation in the paper was performed in a
limited range of smart home environments. In many cases of smart home
services, a service provider controls the whole system and stores the data
in a remote place, which means it includes a centralised component.

Huh et al. [24] showed how the blockchain can be implemented into
IoT environments. They instantiated controlling IoT devices by Ethereum
smart contracts. Ethereum smart contracts were developed for a smart
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controller of IoT devices on Raspberry PI platform. They simulated au-
tomatic electricity supply and relevant control in an air conditioner and
a light bulb model device according to a certain threshold set by a smart
phone beforehand. Ethereum was used because it is turing-complete, such
that it contributed to regulatory processing in the simulation as well as
device authentication. Their simulation performed well enough to show
the deployment of blockchain-combined IoT process. However, they paid
very little attention to blockchain’s defects, such as poor performance, so
that Proof-of-Concept (PoC) may not be directly applicable to real enter-
prise environments. Moreover, the data synchronisation of IoT devices
was not dealt with, even though they pointed out its importance.

Chakraborty et al. [25] proposed a novel concept of allocating com-
putational tasks to a secondary node and configuring a multi-layered IoT
network. However, they did not propose the conditions for segmentation
of each layer or describe which node is located in which layer and why. In
addition, the correlation between a layer and the immediate higher layer
is not certain. Basically, a higher layer is derived from an existing one,
and in IoT environments, gateways or routers mostly contribute to group-
ing of a set of nodes. Consequently, if segmentation is merely a group of
nodes, the layering has no special effects. Otherwise, the purpose of the
suggested one-to-many relationship is still obscure. Moreover, the limited
computational power of each existing node was assumed while the vali-
dation of a new node connection was based on the blockchain consensus.
Concerning high power consumption in the consensus mechanism, this
validation process is inappropriate.

Cho et al. [26] described obstacles to blockchain adoption in caused
by limited hardware resources while they tried to solve IoT security is-
sues. In order to reduce overhead on IoT devices, they suggested com-
bining cloud computing and fog computing, but without any further de-
tails. They emphasised the importance of lightweight IoT networks using
the blockchain, but their analysis and proposition are vague, because a
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feasible blueprint is not presented. However, their proposals about fog
computing and a lightweight network system for IoT with the blockchain
warrant further research.

Different IoT environments, especially with the current ‘smart things’
technology, are well categorised and overall features of the blockchain are
brief but precise in [27]. However, the proposed hypotheses of security
threats are not suitable or practicable for the blockchain. For example,
Denial-of-Service (DoS) attack and flooding blockchain with invalid ob-
jects are not feasible, as the blockchain is basically safe from those attacks.
In addition, their architecture includes national cybersecurity agencies and
companies, but these are third parties, which contradicts the decentralised
concept of blockchain. In general, the description for the proposed solu-
tion falls short of explaining the procedures and the concept of the update
process. The prototyping seems far from reality, since blockchain nodes
are on the virtual machine and there is no differentiation in IoT devices.

Non-blockchain IoT Computing

with Alternative System Components

For more efficient IoT computing environments, many studies applied ad-
ditional system components apart from the blockchain platform. These
works provide other perspectives on enhancing IoT data processing. How-
ever, compared with blockchain-based architecture, the alternatives are re-
dundant and have inherent defects of centralisation.

Tayeb et al. [28] proposed a fog computing layer in an IoT comput-
ing environment. They introduced that the proposed fog computing layer
has various tasks, such as aggregation of different protocols and of packet
types from heterogeneous IoT devices, and security services, rather than
just running as edge computing components aloof from the cloud. While
these tasks are performed on an edge layer as proposed in the paper, many
of them can also be implemented on a blockchain network with smart con-
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tracts, so that workloads both on edge layer and on the cloud may be re-
duced.

Ko et al. [29] proposed a middleware architecture for smart objects
in ubiquitous computing environments. For the architecture, they used
metadata of sensor devices for communication between sensors and mid-
dleware. Based on using the metadata, they suggested interoperability
with sensor providers, sensor management, service management, and kn-
owledge repository, all of which can be implemented on a blockchain net-
work.

While the versatility of fog computing and middleware systems is taken
into consideration in IoT environments, the simplicity and deployment
readiness of IoT gateways with similar functionalities can be prioritised
to streamline the whole system configuration when it comes to efficiency
and cost. Ryu [6] presented an open-source hardware-based IoT gateway
using Raspberry. The author intended to develop the architecture for an
IoT open service platform, but the IoT gateway retains much of the work-
load, such as a local database aside from the database in the server, and
the IoT data broker is segregated, which needs to be enhanced in terms of
redundancy.

As for distributed computing, which is a superset concept of decen-
tralisation, Yannuzzi et al. [30] assert that fog computing is an essential
component in IoT environments, especially with cloud computing and
long-distance localisation. They suggest that fog computing will enhance
the adaptable and scalable platform for IoT in terms of four factors: large
geographical footprint, large scale, large amount of data, and real-time an-
alytics. With regard to this idea, blockchain and smart contracts can take
many of the roles of fog computing, because a blockchain network can
be located between edges and other analytic systems, and smart contracts
can be utilised for localised decision-making and other operations for au-
tomation.

They also presented resource virtualisation techniques for IoT service
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migration. While an IoT platform shares hardware resources, it needs to
maintain quality of service (QoS). For this QoS, Dusia et al. [31] proposed
a job priority scheduler. Batch processing and job scheduling are ways to
improve performance and can be considered in blockchain transactions as
well.

As the usage of IoT devices increases, more studies have been dealing
with big IoT data processing methods on cloud computing. Wang and
Ranjan [32] mainly focused on IoT data-intensive workflow using big data
solutions in distributed data centres. However, when data centre coverage
in a wide area is concerned, one is likely to question why IoT data should
be processed over the distributed data centre. In other words, in such
cases, system designers should look into the business requirements first
and adopt local processing in immediate data centres to reduce latency
in data integration. In addition, when big data solutions are adopted, it
would be closely related to data analytics, but data from IoT devices needs
to be filtered out rather than aggregated for data warehousing. Whereas
the approach for big IoT data processing is essential when huge amounts
of IoT data are concerned, data integration in between data centres goes
beyond the points. For distributed computing, blockchain based on P2P
decentralisation is more appropriate.

IoT Data Integration with Blockchain

In terms of IoT data integrity on blockchain, existing studies mostly ad-
dress the practical integration methods rather than focus on how to guar-
antee integrity.

Liu et al. [33] addressed IoT data integrity verification in cloud envi-
ronments. They proposed decentralised data integrity, emphasising trust
availability and auditability by using a public blockchain, Ethereum. Ac-
cordingly, the transaction fee, gas, paid in Ethereum’s cryptocurrency, eth-
er, was used to update the ledger by data owners, and the cost would deter
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data owners from making updates. Furthermore, processing time would
be increased in IoT environments because of the large volume of data to be
processed, so that data consistency in real time might not be guaranteed.
It was assumed that blockchain would reach a consensus within a short
time, but this would not be easy in a public blockchain.

Liang et al. [34] proposed an IoT data integration method using block-
chain for communication with drones. Their experiment is a good exam-
ple of data assurance and resilience in wireless IoT devices with a control
system. They used cloud computing for storing and auditing data interac-
tions between drones and the control system and a blockchain network for
addressing data integrity. The data are transmitted to blockchain using a
hashing algorithm, and the receipt is sent back as a response to the cloud.
This ensures data integrity, but the purpose of deploying both blockchain
and the cloud is ambiguous, because it may bring unnecessary replication
of data, which will also cause latency in data processing. In addition, since
they use a public blockchain involving a consensus algorithm for drone
control, the business applications are obscure. Moreover, despite using
blockchain, the proposed architecture is not able to fully facilitate decen-
tralisation as the cloud system and the control system are vulnerable to a
SPOF.

Hang et al. [35] designed an IoT blockchain platform to preserve in-
tegrity of IoT sensing data. They used the permissioned private blockchain
to prove their concept, which is effective and resilient in IoT environments.
Nevertheless, they deployed an additional server to control IoT devices
and to send transactions, which compromised the decentralised architec-
ture. While they applied all the functions of the private blockchain, hierar-
chical layer architecture and analytics module were also suggested in their
architecture. However, blockchain adopts DLT, so that it is not supposed
to provide big data services as it only stores the current status. Moreover,
the blockchain service layer was described as though it was on the IoT
physical layer. Above all, they did not consider any IoT constraints or
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discuss detailed methods to ensure data integrity.

Summary of the Literature Review

Table 2.1 summarises the literature review. The summary focuses on how
to address IoT data integration and which technologies to use.

As can be seen in the Table, many works are dedicated to facilitate
public blockchain regardless of the target application services. They con-
centrate on the utilisation of blockchain itself along with the paradigm of
decentralisation. In order to solve insufficiency of their architecture, they
use supplementary components, such as layered network, cloud comput-
ing and middleware. Some of the works are even implemented with third-
party authority. These usages violate the concept of decentralisation, so
that the benefits of blockchain adoption are diminished significantly.

A few works deal with IoT data processing with additional system
components. When it comes to the volume of IoT data, each idea is fairly
useful. Nonetheless, they do not suggest ways to maintain data integrity.
Moreover, defects of centralised architecture have not been addressed.

Private blockchain has been researched actively in recent years, espe-
cially with the emergence of Hyperledger [12]. However, those works
mostly deal with the core architecture of private blockchain. The cases
of private blockchain application to IoT environments are still very rare.

2.7 Summary of the Chapter

This chapter presented the technological background for the proposed pri-
vate blockchain-based IoT data integration platform and reviews of re-
lated work.

Relevant characteristics both of IoT and blockchain were summarised
as the basis for approaching the proposed design.
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Table 2.1: Summary of related works : primary research area and applied
technologies

Reference (a) (b) (c) (d) (e) (f) (g) (h) (i)

Dorri et el. [23] V V V V
Huh et el. [24] V V
Chakraborty et el. [25] V V V
Cho et el. [26] V V V
Boudguiga et el. [27] V V
Tayeb et el. [28] V V V
Ko et el. [29] V V
Ryu [6] V V
Yannuzzi et el. [30] V V
Dusia et el. [31] V V
Ranjan [32] V V
Liu et. el. [33] V V V
Liang et. el. [34] V V V V V
Hang et. el. [35] V V V V

(a) Public Blockchain
(b) Private Blockchain
(c) Focus on IoT Data Integrity
(d) Focus on Scalability
(e) Use of Middleware
(f) Use of IoT Gateway
(g) Use of Additional Layer
(h) Use of Cloud Computing
(i) Use of 3rd Party
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The types of blockchain that exist and their application in IoT data pro-
cessing were covered.

Then, the limitations of the conventional blockchain were described.
This investigation was performed from the point of view of challenges
facing blockchain adoption in IoT environments.

Finally, other studies of IoT data integration were reviewed with a
practical lens.

The design of the proposed architecture (presented in the next chapter)
is based on the knowledge summarised in this chapter.



Chapter 3

Blockchain-based Network
Design

This chapter discusses the architectural design for blockchain-based IoT
data integration.

First, problems and promising solutions are defined for the architecture
design. The design is focused on implementation of these solutions. Then,
several kinds of categorised factors are taken into consideration.

Next, the conceptual design is presented, which includes descriptions
of the workflow and necessary system components.

Finally, the design specifications are proposed with a model use case.
The model system is designed to validate the proposed architecture

and is used for the experiments in the following chapter.

3.1 Design Approach

This section describes issues and considerations that were taken into ac-
count before beginning to design the architecture.

Based on the problems presented in Chapter 1, issues are listed, and
solutions for each issue are proposed with relevant attributes. These solu-
tions are the key points informing design of the architecture.

33
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Then, the design considerations are summarised into the following cat-
egories:

• blockchain and decentralised technologies,

• data processing issues, and

• IoT-specific constraints.

The proposed architecture is customised and enhanced for these as-
pects.

3.1.1 Problems and Solutions Declaration

Problems that should be overcome to achieve autonomous machine con-
trol in the manufacturing industry using IoT devices can be grouped into
three categories, as shown in Table 3.1.

1. Autonomy is the foremost necessity in the manufacturing indus-
try. All the machinery, facility management systems, and IoT de-
vices communicate with each other using the data that each compo-
nent produces. The complexity in configuration, the cost-ineffective
labour hours, and the possibility of human errors make automatic
control essential in the production line. Amongst other things, data
integrity should be secured first in order to achieve autonomy.

Blockchain, featuring data immutability, transparency, and traceabil-
ity, ensures data integrity. Smart contracts can adapt the business re-
quirements into blockchain and handle data processing autonomou-
sly under predefined conditions.

2. Despite the secure data integration on blockchain, blockchain itself
has inherent drawbacks mostly related to system performance. In
IoT environments, performance problems are exacerbated as huge
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Table 3.1: Problem and solution elements to be reflected in design

No.
Issue Solution

Attributes

1
Autonomous control for machine

and equipment in manufacturing

based on IoT sensor data while

data integrity is guaranteed

Configure blockchain network

and leverage the smart contract

Data integrity / Immutability / Transparency / Traceability

2
Hindrance to the blockchain adop-

tion in IoT environments

Apply permissioned private mod-

ular blockchain model

Transaction performance / Consensus algorithm /

IoT constraints (Delay, Reliability, Ordering)

3

Drawbacks of the permissioned

private blockchain and hurdles of

client integration

Streamline the configuration and

develop API

Transaction verification policy / State Database update /

Concurrency control / Gateway Connection

volumes of data are continuously generated. The performance prob-
lem is typically caused by the consensus algorithm.

Blockchain is a decentralised technology, and the consensus process
by all the participants is the most significant task. In contrast to
public blockchains, private blockchains can be based on a transac-
tion verification consensus algorithm, which can alleviate the per-
formance problem. Furthermore, the modular architecture of the pri-
vate blockchain enables the system configuration to be more flexible
and scalable.

3. In spite of many advantages, private blockchain has some draw-
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backs. It is more difficult to implement than public blockchain. Two
main reasons can explain the difficulties.

One reason is that since private blockchain is a ‘private’ network,
membership management is needed. Subsequently, cryptographic
credentials to access blockchain should be managed.

The other reason is that the consensus algorithm itself used in private
blockchain involves much more interdependent configurations.

Moreover, there are discriminations between peer nodes joined in the
blockchain and external client nodes. In principle, blockchain does
not allow external nodes. Every node that shares data and trans-
actions should participate in the network. However, many kinds
of blockchain provide various interfacing methods to communicate
with external nodes that do not join the network.

In IoT environments, IoT devices become the external nodes. Be-
cause so many devices are deployed, they cannot all join the net-
work. Given their roles and computing resources, they are supposed
to remain as external clients while they interface with blockchain.

This usage of IoT devices, instead, makes the whole system configu-
ration complex. Additional system components are often deployed
to complement the interfaces and relevant controls. Therefore, it is
important to streamline the process and the configuration to maxi-
mize the effects of blockchain adoption.

3.1.2 Blockchain-specific Considerations

Enterprise-grade Private Blockchain Type

Amongst well-known permissioned private blockchains, Hyperledger Fab-
ric [12][36] is the most commonly used, especially in enterprise.

Hyperledger Fabric is one of the open source-based collaborative Hy-
perledger projects hosted by Linux Foundation. Hyperledger Fabric boasts
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modularity and scalability and is especially suitable for IoT environments.
Since its first version 1.0 was released in 2017, several hundred developers
have been working on Fabric blockchain core; versions 1.4 LTS and 2.0 are
currently supported. It features the following main services:

• membership service provider for privacy and permission,

• channel service for private data process,

• ordering service for block aggregation,

• endorsement for transaction verification, and

• pluggable consensus algorithm.

Chaincode Usage

There are two types of chaincodes in Hyperledger: One is a system chain-
code for the interaction with the given blockchain, and the other is a user
chaincode that users or developers create for the business logic. By devel-
oping this user chaincode, which is referred to as a smart contract in other
blockchain types, the data processing algorithm can be implemented on
blockchain.

Decentralised Configuration

To overcome the challenges facing blockchain adoption, a variety of meth-
ods have been used. However, most of them involved additional com-
puting resources, such as middleware, controllers, brokers or cloud com-
puting [33, 34, 35, 37]. In such cases, although advantages of blockchain
have been exploited, the architecture introduces disadvantages of the cen-
tralised system, such as a SPOF.

In addition, while additional resources are deployed to improve ef-
fectiveness, they increase complexity of system configuration, requiring
more administrative costs. In terms of flexibility and maintenance, such
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architecture requires much operational labour and even service downtime
when reconfiguration is needed. Therefore, streamlined system configura-
tion is required, while additional resource deployment is minimised and
decentralisation is reinforced.

3.1.3 Data-centric Considerations

Transaction Data Processing on Blockchain

Blockchain is essentially aimed at both transaction validation and logging
by distributed participants, so that all the transaction data might not be
stored in blockchain even though it can be. However, when it comes to the
huge amounts of IoT data that are generated continuously, the necessity of
an effective way of processing the data arises. Hence, the following aspect
should be considered.

All the data gathered by IoT sensors should not go through the ver-
ification process conducted by participating nodes on blockchain, which
would cause significant performance degradation. To reduce the amount
of processed data, only selective data filtered by predefined threshold or
criteria should be transmitted into the blockchain via the IoT gateway.
Among the huge volume of sensor data, very little has special meaning
to operations.

Data Preservation for Compliance and Audit

While efficient IoT data integration into blockchain is an area of focus in
enterprise applications, some businesses are under strict regulations and
require compliance in terms of data preservation. In those cases, IoT sen-
sor data should be not discarded, but should be stored somewhere, either
in the IoT gateway or the blockchain. However, both are not appropriate
as far as storage capability and performance are concerned. In most cases,
cloud storage is used, which costs extremely high only for that purpose.
In addition, cloud computing might create a bottleneck or a SPOF, which
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goes against the concept of decentralisation. To solve these problems, In-
terPlanetary File System (IPFS) [38] is a promising alternative with lower
cost and decentralised features.

Distributed and Clustered File Storage

IPFS is a P2P distributed file system in the form of a single BitTorrent
swarm using content-address and Merkle tree-based directed acyclic graph
(DAG) [39] access method; it is fast (due to proximity in file storage) and
resilient. It is a versioned file system similar to Git [40]. In terms of file
distribution and user experience, it is better than the current HTTP, which
relies largely on web browsers [41] and location-based file search. In this
regard, IPFS is a so-called ‘permanent’ web based on decentralisation.

Sensor data are transmitted continuously and periodically from IoT
sensors to IoT gateways, and according to predefined criteria, can be pro-
cessed further or discarded. However, when there are compliance require-
ments, all data should be forwarded to IPFS.

3.1.4 IoT Constraints

Latency in Data Transmission

IoT data are generated and sent in real time, but a variety of factors can
delay data transmission. If the latency is caused by an IoT device, most of
the other devices are alive to send the data on time, and the whole process
is unaffected. Otherwise, in case of network problems, all the sensed data
are likely to be delayed. To compensate for this, network routing can be
separated. In blockchain, this separation can be facilitated by P2P connec-
tion.

The most important thing in this regard is that indispensable informa-
tion must be processed. How to deal with the delayed data is the question.
The network path from IoT sensors to the main systems is also crucial.
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Sensed Data Congestion

IoT sensors far outnumber device management or control systems for a
number of reasons. Above all, IoT sensors are cheap and lightweight so
they are deployed as needed to gather sufficient environmental informa-
tion accurately. When sensed data generated by each sensor are trans-
mitted simultaneously, the massive volume of data causes congestion that
becomes a significant overhead to the system.

However, thorough congestion control may cause data overload to the
network, which also decreases performance [42]. Therefore, more efficient
and streamlined data processing logic should be involved. The system
should be able to guarantee high performance to a certain degree depend-
ing on the business requirements, and concurrency control is essential.

Vulnerability to Attack

Due to their hardware resource constraints, most IoT devices are not equi-
pped with security mechanisms and are therefore vulnerable to attack.
Trustworthiness and authentication of IoT devices should be considered
to allow the devices to access blockchain. For security and efficiency in the
whole system configuration, IoT devices should remain as external clients
interfacing with the blockchain. In addition, data integrity checks should
be required.

IoT sensors, in particular, send data via a certain medium. Because
they do not receive the transaction result, but only send data one way,
IoT sensors do not demand computational resources except for the data
transmission. They have only to be coupled with the medium in a secure
way.
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3.2 Conceptual Design

Based on the considerations that should be taken into account before de-
signing, this section describes the conceptual architecture.

In a bid to propose the architecture, applicable objects are defined and
then the design is illustrated.

The objects are extracted from a high-level view of a system landscape
in a manufacturing production line, and the whole landscape is presented
first. Later in this section, the essential system components for the pro-
posed architecture are introduced.

3.2.1 Enterprise System Landscape

To create a high-level perspective of the architecture design, the whole
system landscape must be considered. Figure 3.1 shows a conceptual
enterprise blockchain system landscape for an IoT-based production line
in a manufacturing industry. As pointed out in Section 3.1.1, a private
blockchain is selected for this use case.

It includes IoT devices to detect environmental state information and
external stakeholders such as hardware parts suppliers, logistics compa-
nies, and outsourced technical support teams. All the entities interact with
each other and share information on the blockchain.

• The blockchain network is initiated with several discrete channels.
Each channel represents different purposes, and entities are connect-
ed with one or more channels.

• A peer is a basic entity that participates in the blockchain. Among
peers, there exist special nodes: anchor peers, endorsers and order-
ers. Anchor peers are representatives that propagate information of
each peer, such that at least one anchor peer exists in every organisa-
tion. Endorsers verify transactions, whereas orderers adjust transac-
tions sequentially.
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Figure 3.1: Conceptual enterprise blockchain system landscape

• Except for orderers, all the peers on the blockchain share the ledger
database and the blockchain. They replicate the transaction and con-
figuration data locally.

• The entity is identified as a client if it interfaces on transactions with
the network but does not join the network. Clients are IoT devices
such as IoT sensors, IoT gateways, actuators, and other devices with
mobility to send data frequently. IoT sensors notice environmen-
tal states and send them to IoT gateways. Then, the IoT gateways
submit transactions to the blockchain, the results of which invoke
actuators’ action.
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• Since it is a private blockchain, administrative tasks are inevitably
involved. However, those tasks are limited to such things as ini-
tial network configuration, membership management, and network
channel update.

• Given data on the blockchain, hardware parts delivery and manage-
ment processes are autonomously invoked. Electronic payments are
realised using digital coins, which reinforces utility computing and
automated settlement.

• Immutable digital records provision business insights into manufac-
turing operations, one of which enables proactive maintenance ser-
vices.

3.2.2 Data Flow

Under the conceptual circumstances seen in Figure 3.1, the data flow in the
blockchain core operational part is depicted in Figure 3.2. The proposed
workflow focuses on sensor data processing to control corresponding ac-
tuators.

1. IoT sensors gather environmental data such as temperature, humid-
ity, power supply, water supply, vibration, and dust density, which
they continuously transmit to the geographically nearest IoT gate-
ways or tightly coupled IoT gateways in signal.

2. IoT gateways collect and filter the data from sensors and forward
appropriate information to control facilities for machinery. IoT gate-
ways are authenticated by Certificate Authority (CA) using X.509
certificates, which are issued when they are enrolled to the network,
so that transactions from gateways with certificates can be autho-
rised.
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Figure 3.2: Conceptual workflow of the proposed architecture

3. IoT gateways upload all the data to distributed and clustered P2P
storage systems to support compliance and the audit trail of an or-
ganisation.

4. IoT gateways also transmit sensed data to the blockchain at the same
time. The gateways send the data periodically to assure seamless
communication with the blockchain. The data are filtered by gate-
ways according to the predefined thresholds to ease the workload
on the blockchain. Only anomalous data are processed further. The
selection criteria, however, are not strict, as more sophisticated pro-
cedures are applied on blockchain. The loose condition reduces the
need to reconfigure the IoT gateways, which effectively reduces main-
tenance costs.

5. Once a transaction from the gateway has successfully completed,
the operational status of an associated actuator is updated on the
blockchain and the result is sent to the actuator application.

6. Finally, facility management systems take proper actions to cope with
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environmental variation, based on results from the blockchain. The
facilities are operated by actuators, which are also IoT devices. Ap-
plications on the actuators listen to the transaction results from the
blockchain at all times so as to respond swiftly.

7. Data from gateways are processed and integrated on the blockchain,
so that the transaction history may be tracked and immutability and
transparency are ensured.

3.2.3 Major Components

Based on the workflow scenario seen in Figure 3.2, the system configu-
ration is elaborated as shown in Figure 3.3. In this architecture, the sys-
tem essentially consists of the blockchain, distributed and clustered file
storage, IoT sensors, IoT gateways, CA server, peer nodes, actuators, and
manufacturing machinery.

Blockchain and file storage are described in detail in Section 3.1 and
Section 3.3.

IoT Sensor

IoT sensors can collect information about their surroundings, including
temperature, humidity, fire conditions, and so on. They transmit sensor
data through wired and wireless communication to IoT gateways. The
wireless coupling of IoT sensors with IoT gateways depends upon the
strength of the signal. Thus, IoT sensors and gateways are grouped ge-
ographically for better management. Coupling is established to ensure
seamless availability.

To address the previously described security issues inherent to IoT sen-
sors, interactions between IoT sensors and gateways are restricted. IoT
sensors cannot access the blockchain, because they are not issued certifi-
cates, but transmit data only to IoT gateways. IoT sensors lack the autho-
risation to access the blockchain.
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Figure 3.3: Major system components of conceptual architecture

IoT Gateway

In practice, the IoT gateway plays an important role.
First, it filters the data from IoT sensors, reducing the network over-

head.
Second, it enables interoperability among diverse communication pro-

tocols from heterogeneous devices in different environments, such as 6Lo-
WPAN, ZigBee, RFID, Bluetooth LE, NFC, SigFox, Cellular, Z-Wave [43]
and Ethernet.

Third, it manages IoT sensor devices for predictive maintenance by
firmware updates and health checks and to authenticate the devices.

Lastly, but most importantly in the proposed architecture, as a client,
the IoT gateway processes and integrates IoT sensor data onto the bloc-
kchain using a client application Software Development Kit (SDK).
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In order to promote adoption of blockchain in IoT environments, all
the IoT gateway capabilities should be utilised. Then, the streamlined con-
figuration can accelerate essential processes effectively and mitigate many
known hurdles by eliminating the need for additional system components,
such as middleware or other intermediary servers.

If malicious attacks or compromised data occur in the IoT sensors, only
the immediate gateway connection needs to be pruned on the blockchain.
Accordingly, the security of the whole system can be guaranteed.

If an IoT gateway itself is contaminated, interaction with it is denied by
the blockchain because IoT gateways use encrypted authentic public and
private keys to access the network.

CA Server

A CA server can be implemented by the organisation or can be used with a
third-party solution. When a new IoT gateway needs to join the network,
it is registered by a technical operations team on the CA server. Then, the
CA server provides an X.509 certificate to the IoT gateway, which is stored
on the local file system or other secured hardware medium for authentica-
tion when a transaction is invoked.

Peer

Peers are the core components of the blockchain. They host smart con-
tracts and the blockchain network. Replicas of the current data state and
transaction history are distributed to each peer in the form of state database
and blockchain file, respectively. Endorsement, transaction ordering, and
other interactions, such as gateway services, among each component of
the whole system are run on one or more peer separately or on the same
peer.

In enterprise applications, each organisation can have one or more an-
chor peers to gather the information of other peers by using the Gossip
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protocol [36], so that any peer has only to request information from an-
chor peers if it needs another peer’s identity. Endorsers and orderers are
on multiple peers in order to improve transaction processing performance
by using parallel processing and to ensure fault-tolerant processing.

In practice, peers can be implemented mostly on Docker containers
[44], which reduces deployment and operational costs. Furthermore, us-
ing Docker containers eliminates the need to consider the binary compat-
ibility of heterogeneous environments.

Actuator

In the production line, there exist manufacturing machinery and control
systems. Control systems involve a number of peripheral systems, such as
a console, a monitoring dashboard, and a facility management system. Fa-
cility management systems are operated with actuators. The autonomous
operation of these actuators based on IoT sensor data is the aim of the
proposed architecture.

As in the case of IoT gateways, actuators are clients in the blockchain’s
view, so that they should be authenticated and authorised by CA servers.

Manufacturing Machinery

The above components enable stable production and autonomous opera-
tion in the manufacturing machinery. The machinery does not necessarily
connect to the blockchain network, as sensed environmental data have no
direct interfaces with the machinery.

Accordingly, the machinery can run independently of the blockchain,
which lessens the complexity of system configuration in the factory.
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3.3 Model System Design

This section presents a model system design as a PoC based on the concept
discussed in Section 3.2. Compared to the design in the previous section,
this section takes a more practical approach.

First, the transaction flow describes more specifically which compo-
nent conducts which tasks in sequence. In the proposed flow, essential
system components for the PoC are illustrated.

Second, a physical system architecture for the PoC is outlined, showing
how to deploy each component physically, inclusive of applied technolo-
gies.

Third, processes that take place in the smart contract on blockchain for
the PoC is explained. This subsection deals with the algorithm in the smart
contract.

Last, the client application and its integration with blockchain are de-
scribed. There exist two types of clients for the PoC: the IoT gateway and
the actuator. These clients are not participants in the blockchain, and they
must interface with blockchain in a certain way.

3.3.1 Transaction Flow

Figure 3.4 depicts the workflow in detail, describing each task on each
component with the executing orders.

It is assumed that every IoT gateway is enrolled to CA servers (i). For
this, an internal CA server is used. For the enrolment, the CA server pro-
vides an X.509 certificate (ii) that is stored in the file system on each gate-
way in the forms of cryptographic public and private keys (in this archi-
tecture, a digital wallet).

1. IoT sensors transmit data periodically to IoT gateways.

2. IoT gateways upload the sensed data to IPFS to preserve it for com-
pliance and audit.
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Figure 3.4: Transaction flow

3. When abnormal environmental data are detected by an IoT gateway
(for instance, when the temperature goes over the predefined thresh-
old upper limit), the IoT gateway triggers the relevant transaction,
which is defined in a smart contract on the blockchain. First, to in-
voke the transaction, it retrieves the certificate from its digital wallet
to be authorised by the blockchain.

4. The IoT gateway, as a client on the blockchain, then submits the
transaction using the deployed application SDK.

5. The application SDK sends a propose message for the transaction to
endorsing peers defined in the blockchain gateway API’s connection
profile through the gateway.

6. The endorsing peers execute the transaction using already deployed
smart contracts on the blockchain. At this time, the data do not up-
date on the state database or the blockchain.

7. The endorsing peers send back the results of the transaction, includ-
ing their signature if the transaction is validated, to the application
SDK.
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8. The application SDK forwards the results from the endorsing peers
to the IoT gateway. In case of data query rather than update in gen-
eral usage of the blockchain, the process ends at this step.

9. Once the application SDK receives the results and the signature, it
broadcasts the transaction to be ordered.

10. After the transaction is ordered and a block is assembled by the or-
dering service, the block is sent to committing peers.

11. The committing peers update the state database and append the new
block to the blockchain.

12. Finally, the committing peers emit the event to the application SDK
to notify that the transaction has been processed.

3.3.2 Physical System Architecture

Figure 3.5 depicts the physical architecture of the PoC.
Linux is installed on a server machine as the operating system. This

Linux server represents the whole blockchain-based system of an organ-
isation based on the proposed architecture. The whole system is stream-
lined with only essential components.

IoT sensor data generation is simulated, as the design focuses on data
integration on the blockchain rather than on gathering sensed data from
sensors. It is assumed that all the data from IoT sensors are transferred to
IoT gateways.

The IoT gateway uploads all the sensed data to a public decentralised
P2P file system, IPFS. With minimum criteria, the IoT gateway separates
data that need to be processed further from ordinary data, which are dis-
carded. All the sensor data are stored in IPFS, even though the normal
data with the usual state are discarded in the IoT gateway.

The most popular enterprise-grade private blockchain, Hyperledger
Fabric, is implemented to verify the proposed design. As Hyperledger
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Figure 3.5: Proof-of-Concept (PoC) system configuration

Fabric is available as Docker [44] images, Docker containers host each sys-
tem component with relevant software libraries. Docker is a set of running
software that includes application codes and all the dependencies, so that
developed applications can be deployed quickly and reliably to other plat-
form regardless of the environments in which they run. It is regarded to be
an enhanced and lightweight virtualisation concept. The set of packages
is distributed in the form of Docker images.

On top of the Docker container images, platform-dependent executable
binaries from a Hyperledger Git repository generate initial materials, such
as channel artifacts for blockchain network credentials and the genesis
block to which blocks are appended. The Hyperledger Fabric software li-
brary is available both for native code and for Docker containers. Regard-
ing readiness of installation on diverse environments in practice, Docker
container-based installation is preferred. This enables each component to
be deployed faster and configured more easily.
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In addition to the conveniences, each Docker container represents each
physical machine virtually, such that real environments, where each node
operates independently, can be simulated easily. The nodes on each con-
tainer organise a Hyperledger blockchain network channel and communi-
cate on it.

For the consensus for transactions, there must be an ordering service.
When it comes to decentralisation, there should be multiple orderers. This
concept is fairly intrinsic as it is based on the consensus of participants.
Although there will be multiple orderers in practice, the PoC places one
orderer only to confirm its ordering operation. In the case of peer nodes,
however, multiple nodes run on discrete Docker containers. The peer node
represents a medium on blockchain processing IoT sensor data that are
transmitted from IoT gateways. In order to receive data from a consider-
able number of IoT gateways located in each sector, multiple peer nodes
exist. These peer nodes are participants in the blockchain, while IoT de-
vices are not. Peers elected as endorsers verify transactions and decide
whether or not to acknowledge them. The multiple peers also enable load
balancing and fault-tolerant processing.

Each peer hosts a ledger replica and smart contracts. As the state
database, a NoSQL key-value store structure database is dedicated to each
peer node. The block of the network is stored on the local file system of
each peer node, which is a disk volume of each container.

A CA system provided by Hyperledger provides the certificates to au-
thenticate each IoT gateway on the network. It runs on an independent
container.

Administrative tasks on the system console are done through the com-
mand line interface container. These tasks involve network configuration,
system operations such as manual update, and tracing logs. Hyperledger
binaries can be run on these containers.
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3.3.3 Transaction Processing on the Blockchain

Figure 3.6 shows the actuator control procedure in the smart contract for
the PoC by using a state update function with IoT sensor data as an input.

1. The IoT gateway transmits sensor data to the blockchain by a client
application through the blockchain gateway. Then, the data are pro-
cessed by a smart contract. The smart contract basically checks input
variables.

2. Input data integrity is validated by a hash function, SHA256. In-
put data accompany the hash value in its tail, generated by its data
combination composed of IoT gateway ID, actuator ID, sensed times-
tamp, and sensed data signal. In the smart contract, the hash value
is calculated again with only the data part. Then, the input hash
value and the calculated hash value are compared, so that data in-
tegrity is guaranteed during transmission under harsh network en-
vironments. If both values are equal, the next step is executed; oth-
erwise, the transaction is revoked, returning an error message.

3. Next, sensed time is compared with the current system time as a
latency check. Data that are delayed beyond a permissible interval
are discarded. This returns an error and the transaction ends. The
data do not require further processing since they are out-dated and
no longer valid for actuator control. The actuator should react to the
current environment.

4. After data validation, the smart contract decides whether the actua-
tor should be enabled or disabled. First, it retrieves the current actu-
ator status. Based on the prescribed threshold minimum and maxi-
mum values, it compares the retrieved state with sensed data signal.
When the actuator should be enabled but is currently disabled, the
smart contract updates the actuator status to ‘enabled’ in the state
database. Since the smart contract can only return the transaction ID
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Figure 3.6: IoT sensor data processing algorithm flow chart
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as a successful result of a transaction, it emits an event to associated
application clients or actuators for further processing. Inversely, the
actuator status can also be updated to ‘disabled’ based on the com-
parison of the retrieved state with the sensed data signal.

(a) Suppose that several IoT gateways, which handle the same ac-
tuator, send data regarding the same action of the actuator. If
one single gateway sends the wrong signal and the signal is
processed, it may cause a false operation. However, in this
case, IoT sensors will detect the current environment state and
send the correct signal immediately and operation will be cor-
rected automatically. Since multiple IoT sensors and gateways
are deployed in practice for accurate measurement and fault tol-
erance, and most devices are likely to send the same signal, it
will be processed regardless of any faulty signal.

(b) If a signal is sent but the actuator status does not need to be
changed by the condition, the smart contract only returns a suc-
cess code message. This also ensures that the duplicated data
signal does not affect the actuator control, so that the state data-
base update does not happen, which reduces unnecessary up-
dates.

(c) Regarding the update process in blockchain, every update trans-
action changes the state at every time, because the blockchain
records all transactions. There is no duplicate update check.
Consequently, if the same signals are continuously sent, the ac-
tuator status is updated repeatedly. Eventually, only the last
update is the decisive one. Many conventional smart contracts
follow this update method. However, such algorithms require
high computing resources, since there are frequent updates. The
update transaction goes through endorsement along with or-
dering, so the cost may be enormous. The duplicated data pro-
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cessing method proposed in (b) offers better performance and
less possibility of transaction failure than the conventional up-
date method.

3.3.4 Client Application Integration

Clients

Clients in the PoC are IoT gateways and actuators. IoT gateways transmit
sensed environmental data to both IPFS and blockchain. Actuators are the
controllers in a factory for the facilities, acting appropriately according to
the result of blockchain processing.

They are not participating peer nodes on the blockchain, so there should
be an interface method in order to process transactions to and from blockc-
hain.

Digital Wallet

Once a client node is registered and enrolled in the CA system, it receives
credentials to access the blockchain and to submit transactions with an
authorised signature. These credentials consist of a certificate, a pair of
public and private keys in a cryptographic form. They are stored in a so-
called digital wallet.

The digital wallet can be implemented selectively using several meth-
ods, such as local file system, in-memory, hardware security module (HSM),
and local database system. The local file system is used for the PoC as it is
easy and can be mounted anywhere on the network.

Client Application SDK and Blockchain Gateway

Hyperledger Fabric provides the SDK that allows clients to interact with
the blockchain [45]. The client application SDK leverages APIs to access
the blockchain and to submit transactions.
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The blockchain gateway provided by Hyperledger Fabric is an API
module that enables client applications to interact with the blockchain.
Once the client applications have been connected with the gateway, the
gateway manages all the subsequent interactions on behalf of the client
applications based on the pre-defined configuration.

Thus, the client application initiates transactions with the following
procedure:

1. create a wallet class and retrieve credentials,

2. create a gateway class and identify an access point (peers) with cre-
dentials,

3. connect to the network,

4. access the smart contract, and

5. submit the transaction.

3.4 Summary of the Chapter

In this chapter, a number of relevant considerations for the design were
first presented. Then, based on these considerations, both conceptual and
physical designs were proposed.

For the proposal, IoT sensor data integration for control of an autonom-
ous facility management system was suggested, and a brief workflow was
described.

With this scenario, the specific model architecture was depicted.
The design proposed in this chapter is validated through various ex-

periments in the following chapter.



Chapter 4

Validation

This chapter describes validation environment and evaluation methods
used in the experiments. A model system for a manufacturing automation
use case is presented. The model includes both blockchain and the client
application in IoT gateways.

Since the most popular public blockchain platform, Ethereum has been
applied in many use cases in the industry, the differentiations with it from
the practical perspective are additionally addressed in the last part of this
chapter.

4.1 Validation Environment

In this section, the validation environment is presented. Firstly, the devel-
opment environment for blockchain and client applications is specified.
Secondly, the test system configuration is presented. Lastly, evaluation
methods are explained.

59
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4.1.1 Development Environment

Blockchain Platform

Table 4.1 presents the technical specifications of the development envi-
ronment for the proposed architecture. The server is comprised of Intel
i7-6700 @ 3.40Ghz CPU and 8GB main memory. The operating system
is Ubuntu 18.04.3 LTS. For the private blockchain package, Hyperledger
Fabric 1.4.4 LTS is used. Hyperledger Fabric uses Docker technology to
deploy peer nodes and to configure the network. Docker engine is based
on 19.03.5 along with Docker Compose 1.25.0 and Docker Machine 0.16.0.

Table 4.1: Blockchain development environment

Component Specification

CPU Intel i7-6700 @3.40GHz
Main Memory 8GB
OS Ubuntu 18.04.3 LTS
curl 7.58.0
docker engine 19.03.5
docker compose 1.25.0
docker machine 0.16.0
node 10.19.0
npm 6.13.4
Hyperledger Fabric 1.4.4
go 1.13.5
IDE MS VS Code 1.44.2
VS Code Ext #1 MS Go 0.14.1
VS Code Ext #2 MS Remote SSH 0.51.0
VS Code Ext #3 IBM Blockchain Platform 1.0.28

The local client applications such as actuator control functions are writ-
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ten in Node 10.19.0. The command line tool for the data transfer, cURL
7.58.0 downloads installation binary files. The chaincode is written in Go
programming language 1.13.5. Microsoft Visual Studio Code 1.44.2 is used
as the integrated development environment (IDE). On the VS code, the
following extensions are added : Microsoft Go 0.14.1 for the basic syntax
check, Microsoft Remote SSH 0.51.0 for the remote access to blockchain
system, and IBM Blockchain Platform 1.0.28 for the unit test of developed
chaincode functions.

All the software and packages are the latest at the beginning of the
validation. Some of them are released with higher version later, but those
used in the validation were the most recent stable versions with the long-
term support.

IoT Gateway Client Application

The client is an IoT gateway. For the IoT gateway, Raspberry Pi 3 is used.
Raspberry Pi is an open source based small computer with a single board.
It is widely used as an IoT device since it is lightweight and versatile [6].
The development and evaluation environments are as shown in Table 4.2
and 4.3 respectively.

The CPU is equipped with Broadcom BCM2837 Quad Core @ 1.2GHz
and the capacity of main memory is 1GB. The OS is Raspbian GNU/Linux
10. The OS and other relevant software are installed on external SD card.
In order to develop client applications, Node 10.19.0 is used along with
the client software development kit (SDK) for Node.js 1.4.8 provided by
Hyperledger.

To avoid unnecessary installation of an IDE on the host, which is the
IoT device, ATOM 1.45.0 is used as an IDE with the FTP remote access
package 0.18.0. The developed objects are transferred from the local edi-
tor to the host. In the case of MS VS code, software libraries for the IDE
configuration and extensions should be installed locally on the host. In
practice, it is necessary to consider the software distribution. The above
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development method can be applied as well. For the client application
development, Node.js is used, and it does not need the software build
process, so that the developed applications can be deployed by FTP. All
the developed source codes are available at Appendix A.

Table 4.2: Client application development environment

Component Specification

Model Raspberry Pi 3 Model B
CPU Broadcom BCM2837 @1.2GHz
Main Memory 1GB
Wireless LAN BCM43438 2.4GHz and 5GHz
Ethernet 100 Base
OS Raspbian GNU/Linux 10
curl 7.58.0
node 10.19.0
npm 6.13.4
Hyperledger Fabric SDK for node.js 1.4.8
IDE ATOM 1.45.0
ATOM package ftp-remote-edit 0.18.0

The client applications are developed on the IoT device to make it as
close as possible to the real environment, but for the simulation of hun-
dreds of devices, the experiments are performed on a different worksta-
tion as shown in Table 4.3 which is capable of parallelised load tests.

The installed software for the test is the same as in the development
environment. This simulation host is connected to the blockchain network
via ethernet. The simulation host and the blockchain host are located in
adjacent but different buildings using the same backbone network.
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Table 4.3: Client application simulation environment

Component Specification

CPU Intel i7-6700 @3.40GHz
Main Memory 8GB
OS Ubuntu 18.04.3 LTS
node 10.19.0
npm 6.13.4
Hyperledger Fabric SDK for node.js 1.4.8
IDE ATOM 1.45.0
ATOM package ftp-remote-edit 0.18.0

4.1.2 Test System Configuration

Blockchain Configuration

The test private blockchain system has been constructed using Hyper-
ledger Fabric on the development server as can be seen in Figure 4.1.

Hyperledger Fabric is basically targeted for enterprise applications,
so that when a group of participants on the network needs data privacy
against other participants, Hyperledger provides a private data channel
for the group. Though multiple channels can be configured in Hyper-
ledger for the business requirements, only one channel was configured
as the scenario under consideration does not organise the consortium in
the proposed architecture. Four peer nodes were deployed using Docker
container with one organisation scenario.

Hyperledger Caliper Installation

Hyperledger Caliper [46] is a benchmarking test tool that measures the
performance of blockchain core. It is installed and run on the blockchain
development server.
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Figure 4.1: Test blockchain system configuration

By using Hyperledger Caliper, the latency of a transaction can be mea-
sured. The simulation was performed by increasing client numbers and
controlling the loads at a certain time interval in the Hyperledger Caliper
workload configuration. The latency and system utilisation are reported
as shown in Figure B.1 in Appendix B.3.

Client Simulation Configuration

As for the client application experiments, two steps were taken. Firstly,
the client applications were developed on the IoT device as shown in Fig-
ure 4.2, and tested all the functions on the device including blockchain
communication. Secondly, all the developed materials were migrated to a
different workstation as in Table 4.3 for the simulation.
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Figure 4.2: Test client system configuration

Each IoT gateway merely submits one single transaction at a time with
the sensed data only from the sensors that are attached to the gateway.
Accordingly, IoT gateways are unconstrained from hardware resources,
so that the simulation for the multiple IoT gateways was conducted on the
different hardware with enough capacity.

Because tasks for the data processing on the IoT gateway are not con-
gested, all the transactions in each client can be covered in the device with
the specifications as shown in Table 4.2. Moreover, the computational pro-
cessing is performed not in the client but in blockchain. The client only
submits transactions and receive the results. There is no difference in us-
ing other hardware only for the simulation.

Hyperledger Explorer Installation

Since blockchain is a sort of network system, transactions and operational
processes are not visible. There are no graphic user interfaces, no access
via web browsers and no client application software. For the better inter-
faces with users, additional user applications should be installed. In terms
of monitoring the operation, Hyperledger project supports a dashboard
called Hyperledger Explorer [47].
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Hyperledger Explorer provides web-based access to browse activities
and status of blockchain. The network configuration, block and transac-
tion information, and other relevant information can be viewed with this
user-friendly tool.

The proposed system is deployed as shown in Figure 4.3 and 4.4 by
Hyperledger Explorer. Through this web-based tool, it can be seen that
884 blocks were created by the test and 7,699 transactions were involved
in the blocks. Each block listed in the dashboard includes its own hash
and the previous block’s hash as it is a blockchain.

4.1.3 Evaluation Methods

Through both functional and non-functional tests, the proposed architec-
ture was evaluated. Based on the test scenarios, each functionality and the
performance were examined, step by step.

The evaluation of blockchain, the core part of the proposed architec-
ture, was facilitated by Hyperledger Caliper, whereas the entire transac-
tion flow was tested by developed Node.js scripts.

In the architecture, the clients transmit sensor data to blockchain to
process. According to the condition, it can be stored or discarded on the
blockchain, and then the result is sent back to the client which is an IoT
gateway. In this transaction flow, the total response time will be mea-
sured with workload simulation. However, the most popular performance
testing tools, such as Apache JMeter [48] by Apache Software Founda-
tion and Hyperledger Caliper, are not appropriate to be applied to the
blockchain system where the total latency time between external clients
and blockchain should be evaluated. Because JMeter is mainly used for
HTTP request and response measurements, it is unable to measure the
latency in between clients and blockchain. Likewise, Caliper is only for
blockchain side. Therefore, Caliper is used for blockchain and the devel-
oped script is used for the measurement of the latency between external



4.1. VALIDATION ENVIRONMENT 67

Figure 4.3: Hyperledger deployment monitor - Dashboard

Figure 4.4: Hyperledger deployment monitor - Block
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IoT clients and blockchain.

In order to accelerate the performance, parallel processing is normally
used. In Node.js, asynchronous functions are used to achieve this. If a sin-
gle transaction is submitted, it will be easier to check the latency. However,
in case of multiple requests simulations, the accuracy of the measurement
is related to Node.js asynchronous function mechanism, the specification
of which is not defined formally [49], although some performance evalua-
tion tools might still use the function.

Client applications written in Javascript language basically run a single
thread processing, so that parallel processing by multiple asynchronous
functions may produce delay or waiting time in sequential load of each
thread. This latency can be comparable to the delay in the job queue in
the server side. Overhead due to the simultaneous requests from clients
incurs delay in the server side.

However, the latency caused by multi-threading in a client node should
be differentiated rigorously from the one in job queue in a server node in
terms of performance measurement. In the job queue, the mechanism,
First-In, First-Out (FIFO) is generally applied. When a transaction round
trip time in a server is evaluated, it just includes the delay in processing.

In contrast, when the execution time for each transaction that is in-
voked by the asynchronous function of Javascript in a client node is mea-
sured, each transaction has different latency which shows an uneven pat-
tern. It is because a transaction that is submitted earlier is not guaranteed
to be processed by priority under the mechanism of asynchronous func-
tions in parallel. The execution of transactions is not sequential. Each
response time is affected by the system state at the very moment when the
transaction is submitted. Therefore, the measurement by simulation in the
client node needs to be supplemented for the accuracy.

To be more specific, the Async function in Javascript operates identi-
cally to an object, Promise, so that when an application proposes a trans-
action, the function is promised to get a success result unless it receives
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an error. This does not ensure the exact measurement of the response
time when the function has received the result. In other words, once the
Promise object is declared, the transaction has been already proposed and
then the application will handle the result later whether it is a success or
not.

The response time for the proposed transaction is affected most by the
network configuration. If multiple IoT gateways send the request simul-
taneously, each gateway only processes a single request on itself, so that
the latency in network traffic can be ignored in each gateway. However, in
case of the simulation in one client node producing multiple parallel trans-
action requests, network congestion will arise in the client node, which
accordingly effects the response time significantly. Therefore, it is more
worthwhile to evaluate the latency in blockchain with connected peers
aside from clients.

In blockchain, more important factors of the performance are transac-
tion verification on blockchain rather than the interface. Therefore, the
evaluation is conducted in this regard.

4.2 Manufacturing Automation Use Case

Based on the proposed architecture, the design concept is applied to a
manufacturing automation process that involves IoT sensors, data trans-
mission gateways, and data integration on blockchain. This use case is
an implementation of the design presented in Chapter 3, such that more
technical matters are covered in this section.

4.2.1 State Database on Blockchain

First of all, the NoSQL ledger database document structure is defined on
blockchain as shown in Tables 4.4, 4.5, and 4.6.

Device information and sensed data can be all included in one record
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with the composite key consisting of gateway ID, actuator ID and times-
tamp, for instance, but this is highly inefficient as each attribute has differ-
ent characteristics. Device information is rarely changed whereas sensed
data are generated frequently. Subsequently, they may as well be sepa-
rated in different documents.

State Database : IoT devices

For the device information document, IoT gateways and actuators are in-
volved. Each IoT gateway Si of a group of gateways maps its correspond-
ing actuator Aj as in the subset relation expression 4.1, where i and j are
indexes. The mapping between gateways and actuators is many-to-one
relationship. Each actuator is controlled by the sensed data that at least
one or more gateways transmit. Each gateway sends the data towards
only one actuator. The limited number of actuators for the facility man-
agement are deployed in a production line in manufacturing. Compared
with actuators, relatively far more IoT gateways are installed to gather en-
vironmental data accurately. IoT gateways are small and cheap.

For each Si ∈ {S1, ..., Sx} (i, x ∈ Natural Number, N),

∃ j, k, ... ∈ N and j < k, ... ≤ x,

∀ Si (1 ≤ i ≤ j) 7−→ Aj,

∀ Si (j + 1 ≤ i ≤ k) 7−→ Ak,

· · ·

(4.1)

Each IoT gateway has its own hardware serial number and installation
location information, so that in case of hardware failure, the device can be
identified easily. Each IoT gateway ID is unique, such that the gateway ID
is the key in the document.

The corresponding actuator can appear with its own ID and the current
operational status. However, if so, when all the input data with the same
sensed value but from different gateways are going to update the same
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Table 4.4: State database document structure [IoT devices]

Attribute Type Description

IoT gateway ID string Unique ID for IoT gateway

IoT gateway location string Sector No. where IoT gateway attached

IoT gateway S/N string Serial No. of IoT gateway

Actuator ID string Unique ID for actuator

Table 4.5: State database document structure [Actuator status]

Attribute Type Description

Actuator ID string Unique ID for actuator

Actuator status string Current actuator status

actuator’s status, the status is just updated to the same value over and
over at all times.

For example, suppose that three different gateways S1, S2 and S3 are in
the same group mapped onto one actuator A10 as described in expression
4.1. After the gateway S1 updates A10’s status, if the gateway S2 checks
the status to try to update it, the status is still shown not to be updated as
shown in Figure 4.5. It is because two different keys for S1 and S2 have
independent records. When a value for S1 is updated, it does not affect
the value for S2 as they are discrete records. However, once the status has
been updated, it should not be updated in the predefined time slot as it is
redundant.

This repeated update occurs because actuator ID is not a key but a
value. Therefore, the status of the actuator should be separated from the
device registration information document. Consequently, the document
structures is defined as in Table 4.4 and 4.5 respectively.

Thus, the same sensed data from different gateways for the same actu-
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Figure 4.5: Repeated status update case by all-in-one document structure

ator do not update the status repeatedly as can be seen in Figure 4.6.

State Database : IoT sensor data

Sensor data structure is defined as in Table 4.6.
The sensed data are for the actuator control decision, and the data hash

is for the data integrity check. Since in the architecture all the sensed data
are uploaded to the IPFS, the input data carry its address in IPFS, for the
data audit in the future.

As this format, input data are transmitted to blockchain. If the update
succeeds on the blockchain, this document is stored in the ledger database.
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Figure 4.6: Single status update case by separated document structure

IoT data volume is huge, so that only those data which make changes
to the system are preserved on blockchain for further check later when
needed. Although not defined in the structure, internal version manage-
ment for each transaction is activated in the ledger database, so that all the
records can be identified.

4.2.2 Sensor Data Processing on Blockchain

Once the input data have been transmitted to blockchain from IoT gate-
ways, it is processed by the chaincode already instantiated on blockchain.

The transmitted IoT sensor data should go through several verifica-
tions for processing on the blockchain. Above all, IoT data integrity is
validated as shown in Algorithm 1. Sensor data can be corrupted during
the transmission, so that the integrity check is the first step to process sen-
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Table 4.6: State database document structure [IoT sensor data]

Attribute Type Description

IoT gateway ID string Unique ID for IoT gateway

Actuator ID string Unique ID for actuator

Sensed timestamp string Timestamp when sensed

Sensed data string Sensed environmental data

Data hash string Hash value of sensed data

IPFS data address string Content addr. where IoT data is uploaded

sor data. Since the IoT gateway communicates with blockchain in a secure
way using the digital signature and the transport layer security (TLS) pro-
tocol, to check the data integrity is focused rather than to detect malicious
manipulation.

The hash function is used for this check. The IoT gateway calculates
the hash value for the sensed data from an IoT sensor, appends the hash
value to the tail of the data, and then sends the data to blockchain. On
blockchain, the chaincode takes the integrity check by calculating the hash
value again using sensed data part in the packet and compares the calcu-
lated value with the hash value included in the data.

Algorithm 1: IoT sensor data integrity check
input : {IoT Gateway ID, ActuatorID, Sensed Timestamp, Sensed

Data, Data Hash Hdata}
output: {Return Success or Exit}

1 Calculate Hash Hcal based on Input data;

2 if Hcal == Hdata then
3 return Success;
4 else
5 exit;
6 end



4.2. MANUFACTURING AUTOMATION USE CASE 75

After the integrity check, the input data itself are regarded to have no
fault in terms of technical aspect. Then, the delay check is performed as in
Algorithm 2.

Algorithm 2: IoT sensor data delay check
input : {Sensed Timestamp TSsense}
output: {Return Success or Exit}

1 Retrieve the current system time Tsys;
2 Convert Tsys to timestamp TScurr in calculated seconds;

3 if (TScurr - TSsense) ≤ allowed time threshold duration then
4 return Success;
5 else
6 exit ;
7 end

The delay allowance is defined in the chaincode. This allowance is
set based on the business requirements in practice. The timestamp of the
input data, which is the time of sensing, is compared with the current
system when the data are processed. If the gap is beyond the predefined
time threshold, the input data are not processed. Such data are considered
to be invalid for the actuator’s action.

Among a number of data from IoT gateways, one specific data may
still have a significant effect even though it is delayed. Nonetheless, there
are multiple other sensors and gateways in the vicinity in the proposed
architecture, so that the operation can rely on the signal from the major-
ity. Unless either parts of the network system or devices are down, the
delayed data itself should be disregarded since the information it carries
is outdated.

Finally, for the state database update, the sensed data are evaluated as
in Algorithm 3. After the state is updated successfully, the relevant action
is taken by the actuator corresponding to the gateway in the input data.
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Algorithm 3: IoT actuator status update
input : {IoT Gateway ID, ActuatorID Aid, Sensed Data Sdata }
output: {New Status, Event (Payload), Return Pass or Exit}

1 Retrieve current actuator status Astatus of Aid;

2 switch do
3 case Sdata > upper threshold & Astatus == enabled do
4 return
5 end
6 case Sdata > upper threshold & Astatus == disabled do
7 set Astatus enabled & emit Event
8 end
9 case Sdata < lower threshold & Astatus == enabled do

10 set Astatus disabled & emit Event
11 end
12 case Sdata < lower threshold & Astatus == disabled do
13 return
14 end
15 otherwise do
16 return
17 end

18 end

The current actuator status is retrieved from the ledger database, and
sensed data are compared with the predefined threshold for the actuator
bootstrap in the chaincode.

If the actuator is enabled and it needs to be disabled by another sensed
data in the future, the chaincode iterates the process as defined in the algo-
rithm and vice versa. As a result, the status of the actuator switches based
on the input data.

To be precise, the chaincode updates the state database, emits an event
with payloads, and stores the transaction on blockchain at the same time.
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The payloads contain the signal for the actuator’s action. Upon receiving
the emission in the application process that is listening for it all the time,
the application invokes the actuator’s activity.

4.2.3 Sensor Data Processing on IoT Gateway

Sensed data are transmitted from sensors to gateways, and the gateways
will determine if the data are preserved or not dependent upon the regu-
lations in the organisations in practice. The compliance with data preser-
vation for auditing is assumed in the proposed architecture, so that if it is
unnecessary in practice, the preservation process can be eliminated from
the architecture without compromising its function.

Muralidharan et. el. [50] introduced IPFS for IoT sensors’ peer-to-peer
network. They configured a private IPFS cluster overlay network on the
IoT sensor network to prove their concept, but in that case, the idea does
not work well in the resource constrained IoT environments as each IoT
node in their system was supposed to store distributed data in its local
storage. Given a huge volume of IoT sensor data generated, this idea is not
capable of processing data. In the proposed architecture, instead, the real
public IPFS network is used to store the IoT data, regarding the storage
capacity of IoT devices. In most cases, hard disks are not attached to IoT
devices, so that IoT devices should rely on their cache or SD card for the
data storage whether it is temporary or not, which is volatile and fragile.

In a bid to reduce the data traffic on blockchain effectively, sensed
data that are beyond predefined criteria should be filtered in IoT gateway.
However, if the threshold needs to be changed frequently, the threshold
set in the gateways should cover a wide range of allowances in order to
offset the frequent policy changes. It is because the number of deployed
gateways will be large, so such maintenance costs a lot in terms of labour
and may cause inconsistency by any chance. Therefore, the threshold in
IoT gateways should be a bit insensitive range inclusive. Instead, the ac-
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curate threshold for each operation is set on the chaincode in blockchain.

With regard to this scheme, IoT gateways will forward sensed data that
beyond their own threshold to blockchain, and the rest of data transmitted
from sensors will be sent to IPFS.

4.3 Comparison with Ethereum

Although Bitcoin introduced the concept of blockchain for the first time,
blockchain was only used as an underlying technology for cryptocurrency.
It was Ethereum that extended blockchain to many other applications. Ba-
sically, Bitcoin is a platform for digital money transactions, while Ethereum
is a “turing complete” platform [9] as it has versatile extensions with the
smart contract. Therefore, in this thesis, Ethereum is compared with the
proposed architecture.

Since Ethereum is based on the public blockchain and permissionless
processing, it may not suitable for enterprise in terms of data privacy.
Moreover, it is based on anonymous consensus, which increases latency
in validation of a transaction dramatically and is known to process 15
transactions per second. Therefore, in terms of performance, the public
blockchain cannot be comparable to the private blockchain fundamentally.

Technically, the consensus algorithm and the membership management
are two main differences between public and private blockchain as both
blockchains are distinguished by the participation of the network. The
public blockchain is normally permissionless, which means it does not
need to manage the participants whereas in the private blockchain, as it
is private, the management of membership is one of the foremost func-
tionalities. On the other hand, participants to the public blockchain are
anonymous, so trust really matters among trustless participants. This
trustworthiness can be achieved by various consensus algorithms in pub-
lic blockchains, although this procedure causes significant degradation in
performance.
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Subsequently, the first thing to do to operate the blockchain network
is that the membership management should be set by using Hyperledger
membership service provider (MSP) and client applications should use
credentials created by a certificate authority system to access blockchain
and smart contracts.

Even though consensus mechanism can be regarded relatively with
lower priority than in the public blockchain, the private blockchain also
has the mechanism. However, since the design architecture aims at IoT
domain and high priority is put in autonomous operations, the endorse-
ment policy is set to at least one endorser’s agreement which is an ‘OR’
condition, rather than all the agreement from all endorsers.

As a matter of fact, because of the latency and the costs to submit trans-
actions on Ethereum, experiments in relation to Ethereum shall be per-
formed on an Ethereum test network, but the private blockchain can be
provided with its own private network, which is one of conveniences.

4.4 Summary of the Chapter

This chapter presented the validation environment based on the proposed
architecture in Chapter 3.

The implementation of PoC model system on a Linux machine was
described with the following proposed algorithms.

• IoT data integrity check

• IoT data delay check

• State database update

The data structure designs for the ledge database were declared by us-
ing a use case.

It is checked that the system is running up in the Hyperledger Explorer,
the blockchain monitoring tool provided by Linux Foundation.
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The differentiations and comparisons with Ethereum that has a num-
ber of use cases were additionally explained from the practical point of
view.

General limitations of simulation methods in application stress and
load tests were addressed in this chapter. Taken the limitations into ac-
count, the experiments on the simulation environments are proceeded as
in the following chapter.



Chapter 5

Experimental Results

Though blockchain has been adopted in many industries for the past few
years, most adoptions have been struggling to improve performance and
scalability in many ways, because some have inherent drawbacks such as
high latency while others have high configuration complexity. The strug-
gles are mostly caused by the fact that the technology is immature.

The peer’s role in blockchain is important as it is based on decentralisa-
tion. In decentralised systems, all the participants are supposed to process
transactions, whereas in centralised systems, the central authority controls
the process. As other distributed systems do, the more computing re-
sources in blockchain are deployed, the better the performance becomes.
However, in blockchain, there is a consensus procedure to process transac-
tions without the central authority and more resources do not necessarily
guarantee the better performance. It is because the total transaction exe-
cution time is related to the size of blockchain, the number of participants
in the blockchain. If the number of participants grows, the latency for the
consensus will increase proportionally. The resource expansion by a scale-
up will accelerate the processing in a peer node, but adding peers by a
scale-out in a blockchain deteriorates the performance.

In IoT environments, hundreds or thousands of devices are connected
to the network, and so the peer nodes should have enough capability to

81
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handle as many devices as possible. Otherwise, the alternative is to de-
ploy more peer nodes on the network. However, the more IoT devices
a node embraces, the higher the risk of failure in that group of devices
becomes. On the other hand, adding more peer nodes cause the perfor-
mance problem as mentioned above. Therefore, it is crucial to balance the
workload distribution. Focusing on the adjustment, the experiments were
performed in a more qualitative approach and analyse the results exten-
sively in this chapter.

The overall experimental results both of functional and non-functional
tests are reviewed. The functional tests focus on the verification of the pro-
posed architecture, whereas the non-functional tests mainly deal with the
performance and the stability. In order to check the performance, the vir-
tual clients are simulated and the experiments are repeated by increasing
the load. Then, the results are compared with other works to examine that
the proposed architecture produces a prominent enhancement.

Based on the proposed concept, it is shown how the architecture main-
tains the data integrity in IoT data processing on blockchain. In the last
part of this chapter, further additional issues that occurred in the non-
functional tests are discussed.

5.1 Test Methods

The test methods are classified into functional and non-functional testing.

5.1.1 Functional Test

Generally, the functional tests are performed by developers and end-users
in the case of enterprise application developments. Thus, in order for the
experiments to be more objective, each of the functional test is defined
as in Table 5.1 referring to generally accepted usages [51]. Then, the test
scenarios are listed up in detail as in Appendix B.1.
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Table 5.1: Functional test type

Test Type Description

Unit required parameters and return value check
Smoke build verification
Sanity major and vital functionalities working as intended
Regression code change has not adversely affected existing features
Integration multiple functional modules working together
Usability for production usage by users (similar to UAT)

The result for each criterion is examined step by step. Firstly, the ba-
sic functionalities of blockchain including start-up and shut-down were
checked. Then, the algorithm was verified, which corresponds to the user
acceptance test (UAT) in practice. By the Usability Test, it was identified
that data integrity was preserved with the proposed architecture.

Data Integrity Check

Above all, data that do not follow the declared data format should not be
processed, so that faulty input data were created to check whether the
smart contract filters it out. Only if each task returns an error in this
scenario, the input data turn out to be well integrated and processed on
blockchain. In this way, it is inferred that the data integrity is guaranteed.

The below input data fields were manipulated in several ways.

• Value of one or two arguments

• Hash value

• Argument type (string vs integer)

• Using unregistered device ID
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When any input arguments other than the hash value of the input data
was manipulated, the smart contract returned error. Likewise, when the
hash value was changed, an error is asserted. The check for the data in-
tegrity is performed by Algorithm 1 in Section 4.2.

In particular, all the IoT gateways were registered in the state database,
so that when an unregistered IoT gateway ID is submitted, the smart con-
tract returns an error. This also shows that data from an unauthorised
device cannot submit a transaction.

Transmission Delay Check

The delayed transmission cases were tested through Algorithm 2 in Sec-
tion 4.2.

The timestamp value in the input data was manipulated in two ways.
One was conducted by using arbitrary values, and the other was by times-
tamps beyond pre-defined time gap threshold. The former is to check the
processing of the timestamp data format in the smart contract and the lat-
ter is to check how the smart contract deals with the delayed data.

In both cases, transactions were stopped with an error, which means
a success. The time gap threshold was set in seconds in the smart con-
tract, and the simulated data with timestamp over this threshold were not
processed.

Thus, the delayed data processing based on the design was ruled out
and the manipulation of the input data was checked, which eventually
reinforces the data integrity.

State Update Check

Next, the evaluation was conducted with the test data that would update
the status of an actuator in the ledger database. The update is processed
based on Algorithm 3 in Section 4.2.

A query to the current state of the ledger found the status of an actua-
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tor. Then, the environmental data that would change the status was gen-
erated. The data should not be within the predefined threshold in order to
change the status. When the update transaction with the generated data is
submitted by the client application, the ledger was updated as expected.
When the ledger is updated successfully, the result with the transaction
ID was returned to the client application and an event was emitted to an-
other client application which is the actuator controller in the architecture.
Upon receiving the event with a payload defined in the smart contract, it
is deemed that the actuator took a relevant action.

For the above evaluation, when the status of the actuator was enabled,
the data that could disable the status was generated. It is assumed that
an air conditioner existed as an actuator and the generated temperature
was an input data. The submission of the transaction with the data was
simulated by a developed client application. The action in the actuator
was regarded to be taken properly when another client application for the
actuator received the event payload successfully.

When the air conditioner was being turned on, the temperature data
over the upper limit threshold to turn off the air conditioner were gener-
ated. During this test, it was also checked whether the status remained
unchanged when the temperature data did not meet the criteria, which
was successful.

By this update check, it is identified that the proposed architecture pro-
cesses IoT sensor data and controls the actuators properly, which shows
the autonomy.

5.1.2 Non-Functional Test

The non-functional tests are mainly focused on such aspects as perfor-
mance and stability independent of business applications. Though the
user acceptance is dependent upon Usability Test in the functional tests,
system performance has a decisive effect on the user experience. Hence,
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Table 5.2: Non-Functional test type

Test Type Description

Performance evaluate the overall performance of the system
Stress / Load validates the system performs as expected under stress
Volume verify when a large volume of data is involved
Compatibility evaluates the application is compatible with others
Recovery verify against HW and SW failures
Failover verify in case of a system failure
Security ensure that the application has no loopholes
Scalability verify the application is capable of increased requests
Localisation verify the application in different languages
Benchmark use a base for any new application

the performance test is separated from other non-functional tests and per-
formed it intensively.

As in the functional tests, each type of the non-functional tests is enu-
merated as Table 5.2. The non-functional tests are based on the general
classification [52]. According to the test types, detailed test scenarios are
elaborated in Appendix B.2. With the test scenarios, each activity was
tested.

Differences in recovery from centralised systems

In enterprise applications, it is critical that data should be preserved when
hardware failure occurs and the service continuity should be guaranteed.
In many centralised system environments, high availability is mostly im-
plemented by replication and distribution with multiple resources. Data
are backed up to different medium.

However, blockchain runs on the distributed nodes and the shared
ledger database, hence it is fundamentally more robust than the centralised
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system. Accordingly, the tests against hardware failure are a bit different,
although the aim of recovery tests will be the same.

The differences lie in backup medium, restore process, and role of a
node. In the centralised system, which node has a fault is the main con-
cern. If it is the central node, the recovery is also complicated. However,
in blockchain, every node is identical in terms of authorisation. Among
all the participating nodes, it is distinguished that a node is either an end-
point distributed resource or a process leading anchor. In spite of the dif-
ferences in roles, the recovery process is not affected by a hardware failure
in any node as the role can be switched automatically by its status.

In a blockchain, the recovery of a node does not request system admin-
istrators’ commitment, as all the data on blockchain can be shared again
by other alive nodes when the crashed node is restarted.

Recovery Test

It would be nearly impossible that all the nodes are altogether down at
once in most popular public blockchains. In private blockchains, it would
be rare as well, but be possible depending on the size of blockchain. This
extreme case in private blockchain was tested by Recovery Test.

In Recovery Test, blockchain managed to be restored given that a few
essential objects are backed up in a safe condition. The essential objects
are such things as:

• Crypto materials

• Channel artifacts

• Peer data: Chaincodes, Ledger database file, Blockchain file

• Orderer data: Configuration file
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Failover Test

In centralised systems, the failover can be achieved by taking over the
role of the crashed node by another node. The node that takes over can
be either in a stand-by mode as a redundant hardware resource or in an
active mode in which it provides its own service at normal times and is
changed in case of the failure.

In blockchain, a node does not take over other node for the hardware
resources. Therefore, the failover was tested in a different way only to
guarantee the service continuity by other nodes.

One peer node was stopped and then two nodes was stopped. While
peer nodes were stopped, transactions were submitted and it was found
that they were processed successfully.

This experiment, however, depends on the endorsement policy. If the
endorsement policy is set to ‘AND’ and the crashed node is an endorser,
the transaction is not verified. For this reason, in practice, sufficient num-
bers of endorsing peers should exist in blockchain.

Thus, through Recovery test and Failover test, it was identified that the
data were secured with more resiliency than the centralised systems even
when some nodes were crashed.

Scalability Test

For the scalability test, nodes were incrementally added to the blockchain.
Compared with the centralised systems, a blockchain only needs the

following tasks in adding a new node.

• Generate credentials for a new peer to be authorised in the blockchain

• Fetch the existing blockchain configuration to a new peer

• Update the existing blockchain configuration

• Submit the update to the blockchain
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Figure 5.1: Latency measurement in components

• Join the blockchain

The changes due to adding nodes are processed on blockchain as a
transaction. Then, the information is distributed among all the participat-
ing peer nodes. Thus, it achieves the scalability.

Several peer nodes were successfully added on the blockchain online.
Moreover, hardware resource consumptions in each case with different
numbers of peer nodes were measured to check its operability. The results
of the resource utilisation are discussed in Section 5.5.

Performance Test

As aforementioned, considering the importance of Performance Test, it
was conducted intensively in a variety of ways.

In overall, the latency can be measured by each interval as shows in
Figure 5.1. The sensing time Lsensor is entirely dependent upon the compu-
tational resources of the sensor, so that it is not considered in the experi-
ment.
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Each latency LsensorNW, LgatewayNW, and LpeerNW passing through the phy-
sical network section between each node is not taken into consideration ei-
ther as it completely depends on the network bandwidth and the routing
configuration.

The total response time Lclient is composed of the latency from a client
application through blockchain processing and back to the application as
shown in Equation 5.1.

Lclient = (Lgateway + LgatewayNW + Lpeer + LpeerNW + Lblockchain)

+ (Lblockchain + LpeerNW + Lpeer + LgatewayNW + Lgateway) (5.1)

The latency in blockchain core section LBlockchain Core is determined as
Equation 5.2.

LBlockchain Core = (Lpeer + LpeerNW + Lblockchain)

+ (Lblockchain + LpeerNW + Lpeer) (5.2)

Special attention is paid to Lgateway and LBlockchain Core in the experiments
as they are affected by the proposed architecture.

In Figure 5.1, the actuator, another client in the whole system land-
scape, is not depicted. The actuators access blockchain in the same way as
IoT gateways do as they are all external clients of blockchain.

The actuator application retrieves locally stored private key to call the
blockchain client gateway API to access blockchain. Then, it waits for the
event which is emitted from blockchain whenever the ledger update trans-
action is successfully processed.

Since the actuator is supposed to take immediate action based on the
messages from blockchain, an event listening daemon process of the actu-
ator should be constantly run. Otherwise, the actuator is triggered after
the event arrives at every time, which causes a significant delay in the
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processing. Therefore, when the application receives the response from
blockchain, it can be regarded that the client in other side, the actuator,
has already been given the result, so that it does not need to measure the
latency in the actuator.

The results from Performance Test is evaluated and analysed in the rest
of this chapter.

5.2 State Database Analysis

In Hyperledger, the current status of all data on blockchain is stored in so-
called world state database [53] using NoSQL database while transaction
history and their blocks are recorded and stored in the blockchain as files
on the file system. For the world state database, the latest long-term sup-
port (LTS) Hyperledger release supports CouchDB [54] by default. Prior
to the current release of Hyperledger, it was associated with LevelDB [55].
One of the reasons why the strategy has been changed is because CouchDB
provides various forms of rich queries due to its indexing functionality.
However, as in selection of other applications or tools, the purpose of the
usages should be looked into in the first place. In the proposed architec-
ture, rich queries are not certainly needed because the application is in the
IoT domain rather than the financial business which involves queries with
diverse search conditions to monitor the current status changes in between
stakeholders.

Meanwhile, LevelDB is known to outperform CouchDB in performance
in case of simple query and update as it does not need to consume compu-
tational resources to build the index to be used for rich queries. Therefore,
it is intended to use LevelDB instead of CouchDB despite the current co-
ordination with the Hyperledger release. However, before experimenting
the evaluation, the performance between the two NoSQL Database was
compared carefully so as to be confirmed for the proposed system.

The experimental environment consists of the same conditions as the



92 CHAPTER 5. EXPERIMENTAL RESULTS

Table 5.3: Workload configuration for state DB performance test

Object Property Value

clients
type local
number 1

rounds
tx number 250
send rate control type fixed-rate
send rate control options (tps) 250

performance test of the proposed system. The same application transac-
tions were also used. The only difference is that the Docker image for
Hyperledger peer includes LevelDB, so that containers for state database
do not run separately in the case of LevelDB whereas CouchDB runs on
a discrete container. Since Docker containers represent each physical ma-
chine and the containers for CouchDB run on the same machine in the
experiment, the utilisation of hardware resources is not comparable.

In the test, each client proposes a transaction 250 times at a speed of
250 transactions per second by using Hyperledger Caliper as described
in Table 5.3. The total executed transaction number is one of the experi-
mental cases for the comparison with other study in the performance test,
and the sending transaction frequency is sufficiently large to evaluate the
performance per second according to the executed transaction number.
This comparison test was performed 50 times repeatedly and the aver-
age results are shown in the graphs in this section. The error bars in the
graphs convey margins of 10%. The transaction was executed sufficiently
to obtain more accurate results and the outcomes from each test round
converged within 5% of differences, so that the error allowance is set to
10%.

Figure 5.2 shows the latency comparison when IoT gateways and actu-
ators are being registered on blockchain initially. All the latencies evalu-
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Figure 5.2: Latency comparison in device registration transaction

ated are doubled when CouchDB was used. Maximum latency reaches up
to 0.48 seconds in the case of CouchDB, whereas 0.21 seconds in LevelDB.
In the case of LevelDB, the difference between maximum and minimum la-
tency is much less than that of CouchDB, the gap of which is 0.36 seconds.
The average latency is 0.25 seconds in CouchDB, whereas 0.12 seconds in
LevelDB.

In the case of simple query transaction as shown in Figure 5.3, the min-
imum and average latencies were the same, although there was a slight
difference in the maximum latency. Because this test case is for simple
query without using complex index, they show no big differences. How-
ever, if complex index or pagination function had been applied, the result
must have been obviously different.

As shown in Figure 5.2, Figure 5.4 presents the similar results as it is for
the status update test. Each latency in Figure 5.4 is slightly lower than each
one in Figure 5.2. There are two reasons. One is that the device registration
transaction is similar to the insert function as in relational database, which
is to create a new record in the database rather than to update a value for
an existing key, so that the size of I/O is bigger. The other reason is that
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Figure 5.3: Latency comparison in simple query transaction

Figure 5.4: Latency comparison in data update transaction
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Figure 5.5: TPS comparison in device registration transaction

the update occurs only when all the criteria defined in the chaincode are
satisfied with the input data. Subsequently, such transactions exit without
database I/O during the process, which eventually caused lower latency.

Next, transaction success ratio and throughput per second are analysed
as shown in Figure 5.5. Since the device registration transaction only cre-
ates a new record in the database, there is no failure. However, the result
shows there are long delays. When 250 transactions per second were sub-
mitted, only about 160 transactions in the case of LevelDB were success-
fully sent in effect. The remainder just waited for their turn while the 160
transactions were being processed. Among the 160 transactions, 153 trans-
actions were processed completely. The sending rate and the throughput
are much less in the case of CouchDB than LevelDB, by 33 and 37 transac-
tions per second respectively.

In contrast, the simple query simulation produced the same perfor-
mance both in the case of CouchDB and LevelDB as shown in Figure 5.6.
The sending rate and the throughput were also the same as the intended
submission rate as the simple query transaction simply evaluates the data
in the ledger without any lock.
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Figure 5.6: TPS comparison in simple query transaction

Figure 5.7: TPS comparison in data update transaction
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In the data update simulation as shown in Figure 5.7, the trend is anal-
ogous to the device registration simulation. The difference is that in this
case there are failed transactions because if transactions try to update the
same key simultaneously, they collide and only one succeeds. The key se-
lection is arbitrary as this is an automated test. In addition, the chaincode
in the simulation checks the appropriateness of the update based on the
predefined conditions. Because there are failures in the update process-
ing, the sending rate is better than the one of the device registration sim-
ulation. The failed transactions promptly yield for the next submission.
However, the number of transactions that have been processed completely
in a second shows the same as the device registration, which is related to
the performance of the proposed blockchain.

5.3 Transaction Processing Performance

For the performance test, latency in client transaction process including
request and response was measured by a physically remote client through
blockchain network. The client node and blockchain node are located in
different buildings and connected by 1000Base-T.

5.3.1 Data Query Transaction

Figure 5.8 shows the performance test for the data query transaction. Each
load was given by 50, 100, 150, 200, and 250 concurrent clients per second
made by Node.js script and repeated 50 times. As the experiments in Sec-
tion 5.2 showed latency at 250 clients, fewer than 250 clients submitted for
the performance test. The scalability was chosen in increments of small,
medium and large loads by 50 clients.

In general, latency grows slightly linearly as the numbers of concurrent
clients increase. All the average latencies are stable and acceptable below
0.3 seconds when IoT actuator operation is concerned, but there are several
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Figure 5.8: Data query transaction latency

spikes that contribute to the anomalous maximum value. The maximum
latency soared up to nearly 2.4 seconds in case of 250 clients load. The
increase of the average and maximum latencies is gradual when the load is
given by up to 200 clients, but with over 200 clients, the maximum latency,
in particular, shows the spikes a few times.

Because the load was created in the single client node, the simulation
has gone through network congestion in outbound and inbound traffic.
The latency was measured in the client node from the start of a transac-
tion till the receipt of the result. In practice, the request is submitted by
different IoT gateways, so the network congestion in the client side rarely
occurs. Moreover, closer inspection of the latency shows that all transac-
tions longer than 2 seconds occupy merely 0.05% of the total execution in
250 client case, which can be neglected. However, the causes of the spikes
will be discussed more in Section 5.6.
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Figure 5.9: Data update transaction latency

5.3.2 Data Update Transaction

As shown in Figure 5.9, the results of update transaction test are similar to
the query transaction test in terms of the increasing latency trend. In case
of average latency, the gaps between update and query transaction are just
below 0.05 seconds for each case. The spikes also appear in 250 client case.
The linear increase pattern is caused by the contention as the simulated
clients increase. The approximate value of latencies between update and
query transaction test has two noteworthy reasons.

Firstly, the similarity is caused by the processing logic in the smart con-
tract and the mechanism of the multi-version concurrency control (MVCC)
in database management. Hyperledger Fabric basically adopts the non-
blocking algorithm to avoid the ledger MVCC collisions, which makes
each thread lock-free and wait-free [53]. Subsequently, when the load test
is performed by using concurrent async functions in the test script written
by Node.js in parallel, Hyperledger returns the avoidance of the update
transaction without update of data in the state database if the dirty read
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occurs. This MVCC collision is inevitably prompted in the load test as it
uses the simulation method with limited number of artificial data and re-
quests. Meanwhile, this mechanism prevents the transaction from invok-
ing database I/O, which will reduce the response time, as the transaction
is only processed by the smart contract.

Secondly, because of the transaction handling logic in the smart con-
tract, some of the requests are discarded based on sensed data associated
with the update conditions, which also means they do not access the state
database likewise. In the proposed architecture, the smart contract decides
whether the transaction should be processed further to the state database
or not.

Therefore, the differences in latency between update and query trans-
actions are somewhat dependent upon case-by-case, so that latencies of
update eventually turned out to be close to figures of query in the simu-
lation. This can be another good demonstration for the proposed architec-
ture as the logic functions well.

5.4 Comparative Evaluation

This section presents two kinds of comparative evaluation. One is the
performance analysis by interval and the other is the performance com-
parison with other work.

The former analyses the performance measurements by section based
on Figure 5.1. This analysis enables the accurate measurement of the la-
tency in each section, which helps to find a bottleneck in a transaction flow
pipeline.

The latter compares the performance results based on the proposed
architecture with other work. In order to judge the results objectively, the
comparison is necessary.
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Figure 5.10: Update transaction latency only in the blockchain segment

5.4.1 Comparative Analysis by Interval

LBlockchain Core, latency in transaction processing in blockchain was mea-
sured as depicted in Figure 5.1, and then compared with the total round-
trip processing time Lclient from the client node. This enables the measure-
ment of the latency LGatewwayNW which is highly variable depending on
the real environments. This approach is quite significant as the latency of
each interval can be analysed respectively. Subsequently, the hot-spot can
be easily found, and based on the analysis, fine-grained reconfiguration
can be achieved. The data update transaction with from 50 to 250 con-
current application processes was simulated by 50 processes increase, and
used Hyperledger Caliper to evaluate the latency in blockchain.

The results are presented as Figure 5.10 for each simulation with dif-
ferent number of clients. The average latencies for each case are around
0.1 seconds with a slight margin, whereas the maximum latencies grow
as the client number increases. As the number of concurrent transactions
mounts, the possibility of contention naturally increases, so does the max-
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Figure 5.11: Average update transaction latency comparison by interval

imum latency grows. However, the transactions that have long latency are
still few, such that they have little effect on the average calculation.

Figure 5.11 compares LBlockchain Core and Lclient as shown in Figure 5.1.
For the comparison, the average latency in the ledger data update trans-
action was used. Each latency was extracted from Figure 5.9 and 5.10.

Each gap between the left bar LBlockchain Core and the right bar Lclient in
each pair becomes the processing time in the client node including the
network latency LgatewayNW between the client node and the blockchain.
Since LgatewayNW is less than 1 millisecond in the simulation environment
connected by ethernet, it can be negligible, but in practice if the network
has very low bandwidth or if WAN is used, the latency in this interval
should be examined carefully so as to avoid undesirable delay.

In those less than 150 clients, the margin between LBlockchain Core and
Lclient is trivial, but in the case of 150 and 200 clients, the gap mounts
slightly by up to 0.043 seconds. In the case of 250 clients, the difference
is evident. As the number of clients increases, so does the average la-
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tency in Lclient. The inclination in Lclient is bigger than in LBlockchain Core as
the network sessions should be established in the client node. Because
the latency, Lclient in less clients are less affected by the delay in network
connection, the gap between LBlockchain Core and Lclient is small. On the con-
trary, the larger number of clients makes a big difference in latency caused
by the network interface contention. However, the latency LBlockchain Core in
blockchain is stable. With more than 250 clients, Lclient soared drastically
and with 350 clients the system went panic, but LBlockchain Core just showed
a little increase in both cases.

5.4.2 Comparison with Other Study

Figure 5.12: Average update transaction latency comparison

Among related works as shown in summarised Table 2.1 in Chapter
2, the work in [35] is closest to this research. It is based on the private
blockchain. The differences are it is equipped with an IoT server for device
management and a REST API server for interfaces.
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For the comparison, the evaluation of the service execution time on
storing sensing data in [35] is set as a benchmark, and the data update
transaction latency in Figure 5.9 is used. Because query performance can
be accelerated by indexing and has no latency caused by locks for updates,
query transaction has less discrimination, so that update performance is
compared.

In comparison with the work, the proposed architecture shows that it
is faster up to 26 times in 50 clients and 9.8 times in 250 clients as shown
in Figure 5.12.

The big difference of latency is mainly caused by the streamlined ar-
chitecture. The proposed architecture excludes any additional manage-
ment servers for IoT devices and middleware to relay IoT data. Instead,
it only involves IoT gateways, on which client application SDK and con-
nection API are implemented. Multiple IoT sensors are coupled with the
dedicated IoT gateways by either wired or wireless connection, and IoT
gateways transmit the sensed data directly to blockchain.

The interface with blockchain is based on gRPC. gRPC has better per-
formance than any other data interface methods. Despite many advan-
tages of gRPC, due to the limited TCP session, the simulation with over
300 clients was impossible. The analysis with regard to the interface meth-
ods is further discussed in Section 5.6.

In the proposed architecture, there is no centralised system component,
so that no single point of failure exists. Therefore, the proposed archi-
tecture outperforms the existing study [35] in terms of latency as well as
robustness.

5.5 System Resource Utilisation

In the experiments, Docker containers for each blockchain node on a sin-
gle machine have been implemented as they represent virtually indepen-
dent servers with many advantages such as ready to deployment without
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Table 5.4: Hardware resource consumption per each node container (two
peers)

COMPONENT MEM MEM CPU CPU
(Max. MB) (Avg. MB) (Max. %) (Avg. %)

ORDERER 17.70 14.09 15.03 6.98
PEER-1 135.30 108.64 27.14 14.95
PEER-2 136.50 119.86 27.39 15.23

SUM 289.50 242.59 69.56 37.16

adjustment of computational environments. In practice, those containers
can be distributed to multiple servers or each container can be placed on
a dedicated server separately. Containers also can be replaced by the na-
tive installation without using virtualisation techniques. The deployment
method and the resource assignment rely on business requirements and
transaction volume in enterprise. Regarding the performed experiments,
as mentioned in the comparative work [35], there are limitations in hard-
ware size, which can be easily removed in practice. Nonetheless, as a
benchmark model that can be extended, a base measurement of the re-
source consumption in the blockchain is still needed to size appropriate
hardware for blockchain configurations.

Table 5.4, 5.5, and 5.6 show CPU and main memory consumption per a
Docker container which hosts each blockchain component node. The tests
with two, four, and six peer nodes with LevelDB were experimented, each
of which used one ordering service and one CA host using state database
update transaction. The host machine is equipped with i7-6700 CPU @
3.40GHz and 8GB main memory.

When a chaincode is instantiated on a blockchain, it is launched by a
new container for normally one endorsing peer node, and then if a trans-
action defined in the chaincode is submitted, new containers are created
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Table 5.5: Hardware resource consumption per each node container (four
peers)

COMPONENT MEM MEM CPU CPU
(Max. MB) (Avg. MB) (Max. %) (Avg. %)

ORDERER 18.60 14.46 14.33 6.67
PEER-1 129.00 113.21 22.00 12.88
PEER-2 127.00 103.47 22.13 12.88
PEER-3 139.00 109.67 21.82 12.73
PEER-4 128.90 121.09 22.15 12.96

SUM 542.50 461.90 102.43 58.11

Table 5.6: Hardware resource consumption per each node container (six
peers)

COMPONENT MEM MEM CPU CPU
(Max. MB) (Avg. MB) (Max. %) (Avg. %)

ORDERER 19.60 15.58 15.41 7.24
PEER-1 148.30 111.82 19.60 11.85
PEER-2 145.40 109.56 20.32 11.99
PEER-3 145.60 111.67 19.05 11.82
PEER-4 148.10 115.94 18.74 10.63
PEER-5 143.50 122.92 19.09 10.79
PEER-6 139.30 122.06 19.31 10.43

SUM 889.80 709.55 131.52 74.74



5.5. SYSTEM RESOURCE UTILISATION 107

dedicated to each endorsing peer node. These containers for chaincode in-
stantiation consume very little system resources, and can be ignored in the
light of main components. The CA node which controls membership and
command line interaction node for administrators can also be neglected in
terms of resource consumption as they are used only for a certain purpose
occasionally. Therefore, only the usages of each peer node and ordering
service node are investigated.

However, in practice, there are a few things more to be considered. If
CouchDB is used, it runs on a discrete container, so that additional re-
sources should be taken into account for the ledger DB implementation.
The role of each peer node is also influential to the total resource consump-
tion. Whether a peer is an endorser or not, or which endorsement policy is
applied to the network affects the total performance, as it determines the
utilisation of the peer node.

Each case of different peer numbers showed average 115 Mbytes mem-
ory consumption and around 15% CPU utilisation. The number of peers
in the evaluation is just for the distinction of each container and the en-
dorsement policy is set to ‘OR’, so that every container approximates in
terms of the system utilisation.

Memory usage is related the application, which is a container in the
experiment. When the application starts, it reserves memory area to some
extent. Accordingly, the amount of memory usage is similar across all the
cases.

In the case of CPU usages, however, the smaller number of peers shows
a bit higher. It is associated with the endorsement policy. It is set to
‘OR’ among endorsers in the experiment based on the scenario, so that
the transaction will be processed in one peer node while all the peer nodes
interact with each other for the service discovery. Thus, all the submitted
transactions are eventually spread out evenly to all peer nodes.

In contrast, in the case of ‘AND’ policy, since all the endorsing peer
nodes should process the proposed transaction and verify it, the CPU us-
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ages in each peer node mount higher. Hence, in this case, it is evident
that the more peers exist the worse the whole performance becomes as an
inherent downside of decentralisation.

The orderer node relatively consumes less resources as it only inter-
venes the ordering of each transaction irrespective of the transaction vali-
dation or processing. In practice, the production systems adopt other con-
sensus algorithms than ‘Solo’ that was used. The Solo implementation is
mainly used for development purposes as it is not fault-tolerant. Other
algorithms should configure multiple orderers and clusters, so that addi-
tional resources should be assigned.

In the case of six peers as shown in Table 5.6, each peer node consumes
up to 150 Mbytes memory at its maximum usage, which sums up nearly 1
GBytes in total, whereas around 700 Mbytes in total is used on average. In
the case of CPU utilisation, the total usage in italics is greater than 100%
if the maximum usages of each peer node are accumulated. However, the
utilisation expressed as a percentage cannot exceed 100%. Besides, since
each peer node may discretely reach its own maximum CPU usage apart
from others’ behaviour, the accumulation might not be reasonable.

Nevertheless, during the peak time of a certain peer node, it may utilise
CPU resource intensively, so that others are vulnerable to the shortage
of the resources under multi-threading environments. This increases the
CPU wait time, which in turn raises the likelihood of the contention for
CPU. Therefore, it is still needed to consider each node’s maximum us-
age for the predictive monitoring. Furthermore, if every node happens to
utilise CPU at its maximum at the same time by any chance, the system
must undergo serious delay in processing any transactions. In particular,
the maximum CPU usage will be an important factor in hardware sizing.
It should also be noted that the average CPU utilisation, more than 10%,
is, in fact, quite high. Many systems in production are likely to maintain
below 40% on average CPU usage in practice.

On the other hand, in the case of memory usage, the accumulated value
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is correct compared with CPU usage. It is simply because the resource
utilisation methods are different. In terms of memory usage, applications
allocate physical memory addresses when they start to run. In the ex-
periment, the applications are the peer node containers. The applications
are always up and running, so that regardless of user transactions, the
reserved memory areas remain exclusively.

Thus, under the similar environments with such hardware resources as
the experiment, it is recommended that fewer than six peers are to be im-
plemented on a single host. Otherwise, an additional hardware resource
should be deployed.

5.6 Further Analysis

Through the experiments, it has been found a system panic status that
occurs when the number of simulated clients exceeded a certain limit, 300
clients. From the simulation with concurrent 250 clients upwards, one or
two data streaming failure messages have been rarely returned and the
occurrences became a bit more frequent with 300 clients. Then, with 350
clients, they soared. Subsequently, almost every transaction was timed out
and could not run properly, which eventually caused the client node panic
and any further processes were disabled.

The phenomenon was found both in data query and update simula-
tion. Specifically, the streaming failure messages were very rarely returned
both with 250 and 300 clients, while they were not found at all in less than
250 clients. Despite the messages, all the transactions were successfully
processed in those simulations, but with 350 clients, the whole processes
in the client node seemed to be hanged by the panic status. This phe-
nomenon is mainly caused by the interface connection between the sys-
tems. The spikes in maximum latency in Figure 5.8 and 5.9 are closely
related to the streaming failure. Therefore, the interface messaging proto-
col and causes of the panic state are analysed in this section.
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5.6.1 Interface Messaging Protocols

General Classification

In distributed computing environments, each system should communi-
cate with each other while they host diverse applications written in var-
ious kinds of programming languages and APIs, so that data integration
is a huge workload to developers. There are a number of communica-
tion methods. Historically, Socket Programming [56], Remote Procedure
Call (RPC) [57], Representational State Transfer (REST API) [8], and gRPC
known as Google RPC [58] have been introduced in order and used widely
up to the present.

Conventional RPC

RPC involves diverse applications such as Java Remote Method Invoca-
tion (RMI) [59], Common Object Request Broker Architecture (CORBA)
[60], and Simple Object Access Protocol (SOAP) [61], which are a bit faded
these days because they are not either collaborated by public communities
or they are somewhat complicated to implement.

REST API

REST API defines web resources and uses HTTP/1.1 methods. It has been
commonly used on the ground that the resources are defined intuitively
and it can be implemented without any additional work due to the inheri-
tance of HTTP. Despite the advantages, it has its limitations because it only
declares the exchange format but has no standardised specifications, so
that the parameters and response values are not explicit. Moreover, since
it uses HTTP server modules, operational costs and risks on each compu-
tational node are enlarged as the modules should be deployed mostly by
an additional server.
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gRPC

However, gRPC uses protocol buffer, which is faster in data serialisation
and more convenient to design API as the syntax is more readable com-
pared with the descriptive JSON, so that it makes easier to develop APIs
both in server and client side. In particular, it is based on HTTP/2 which
enables many kinds of advantages than REST API based on HTTP/1.1.
As a result, gRPC has lower system resource utilisation and higher perfor-
mance than REST API. This is the reason why gRPC has been adopted to
interface with each other in Hyperledger.

Although gRPC is used due to the above advantages, gRPC’s transac-
tion resubmission mechanism and TCP configuration in OS kernel bring
about the aforementioned errors in the experiment.

5.6.2 Experiment Interface Limits

Linux kernel has several TCP configuration parameters. Among them,
two parameters set the TCP connection limit on a single server.

• NET.IPV4.IP LOCAL PORT RANGE (default 32768 – 61000 ports)

• NET.IPV4.TCP FIN TIMEOUT (default 60 seconds)

The former is for the maximum number of outbound sockets a host can
create, and the latter is for the minimum time the sockets will stay.

By the above configuration with the default values, the number of TCP
session that can be established in a second is 470 rounded-off by

( 61000 − 32768 ) / 60 = 470.5

Thus, all the applications on a single server can establish up to less than
470 TCP connections concurrently in a second by OS default configuration.

The panic state occurred with 350 clients in the simulation. With 300
clients, 5.35% of the total query transactions and 5.39% of the total up-
date transactions showed longer latency than 1 second, which were the
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cause of the spike in maximum latency. Hence, it is assumed that approxi-
mately 5% of the total transactions from 300 client simulation upwards are
delayed, which means that those transactions in the 5% are to be resub-
mitted. The retry in gRPC is executed eight times concurrently by default
until the session is connected.

Then, under the assumption of 95% throughput in a second, the total
number of concurrently submitted transactions in 350 client simulation
can be calculated as follows.

350 ∗ 95% = 332.5 (5.3)

350 ∗ 5% ∗ 8times = 140 (5.4)

332.5 + 140 = 472.5 (5.5)

The Equation 5.3 calculates the number of sessions that were success-
ful in the first-try. The Equation 5.4 is for the number of sessions that
were created by delayed and resubmitted transactions. The Equation 5.5
produces the total concurrent number of sessions. Therefore, in the 350
client simulation, up to 472 sessions may be opened, which is greater than
470 sessions by OS default. This caused the timeout and consequently the
panic state.

For the case of 300 clients,

300 ∗ 95% = 285

300 ∗ 5% ∗ 8times = 120

285 + 120 = 405

which is much less than the limit of 470.
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5.6.3 Interface Method Implementation Comparison

In gRPC lifecycle, four different types of implementation methods exist.
They are classified into unary RPC, Server streaming RPC, Client stream-
ing RPC, and Bidirectional streaming RPC, based on the numbers of re-
quests or responses and the message sending direction. The unary and
the client streaming RPC are compared, as the client application sends a
request to blockchain and then blockchain only responds to each request
in the scenario.

Figure 5.13: Transaction flow using unary RPC

Figure 5.13 depicts the usage of the experiment based on the unary
RPC, which is a default implementation in the client SDK provided by
Hyperledger.

In order to process IoT sensor data, the client application retrieves cre-
dentials from the digital wallet that holds public and private keys to access
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Figure 5.14: Transaction flow using client streaming RPC

blockchain in the first place. With the identity, the application requests the
connection to blockchain via blockchain gateway API. The API then calls
a gRPC stub to establish the connection. Once the connection is success-
ful, the request flows as blockchain workflow. Based on the type of the
request, blockchain can evaluate the query or submit the update on its
channel via chaincode. In both cases, blockchain returns the result to the
application. In this workflow, the unary RPC is used, and every transac-
tion follows this lifecycle. Therefore, when each transaction is processed, a
discrete connection between client and blockchain should be established.
The more simulated clients are created, the more TCP sessions are needed,
which is the cause of the problem discussed in the previous section.

In contrast, the client streaming RPC as shown in Figure 5.14 presents
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different way of session connection. It sends a stream of requests rather
than a single request once the connection has been established. The server
side, which is the blockchain in the architecture, does not necessarily re-
spond after all the requests are transmitted. Since a client application uses
an existing connection, there is no new connection set-up time incurred on
the client side.

When the first transaction is invoked, the client application initially
calls a gRPC stub with the identity, and then each transaction is processed
onto the existing gRPC stub. The call for the stub does not occur at every
time a transaction is submitted. The workflow in blockchain is the same
as the unary RPC case. After all the transactions are processed, the client
application completes. The limitation of TCP session in a single host does
not apply. This implementation is efficient in terms of performance when
the transaction is streaming input data to the server side regularly.

However, despite a number of strengths of gRPC, there exist weak-
nesses. The microservice implemented onto the gRPC stub tends to utilise
the dedicated connection, so that load balancing is not guaranteed unless
any appropriate configuration is set. In addition, gRPC itself does not typ-
ically support the browser, so that it cannot be called from the browser.

The unary RPC implementation was used as it was supposed to simu-
late multiple clients which in practice run on discrete machine. However,
through the analysis of gRPC implementation methods, it is noted that
client applications’ interaction with blockchain can be far accelerated by
using streaming RPC. Batch processing that iterates the same workflow
with different input data corresponds to this streaming method.

5.7 Summary of the Chapter

Based on the proposed architecture, the model system has been tested in
various ways in this chapter.

The test scenarios were highly refined by the structured methods both
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of functional and non-functional cases.
First, state database performance was compared between LevelDB and

CouchDB. Second, the transaction processing performance for data query
and update respectively was measured. Third, comparative evaluation
in two ways, measurement by section and comparison with other work,
was conducted. By the comparison, it has been proved that the proposed
architecture outperforms other existing study.

Additionally, during the experiments, system resource utilisation was
checked and critical problems in client interfaces were further analysed.
These additional works will be considerably helpful especially when plan-
ning required hardware resources and designing the interfaces with exter-
nal clients.



Chapter 6

Conclusion and Future Work

This chapter summarises and highlights the work performed in this thesis.
Then, for further research and application of the proposed architecture, the
associated future works are presented.

6.1 Conclusion of the Thesis

This thesis has shown how the blockchain platform can be utilised to inte-
grate IoT data while high system performance is guaranteed. In order to
demonstrate the concept, facility management system based on IoT sen-
sor data in manufacturing was selected as a use case model. Both through
functional and non-functional tests, the design was validated.

For the proposed architecture, a private blockchain platform, which
can be applied to enterprise applications in IoT environments, has been
developed. For the autonomous operation with the sensed data, the IoT
gateway filters input data first and then the smart contract on blockchain
processes the data as described in Section 3.3. The smart contract secures
the IoT data integrity by hash functions and deals with delayed data by
the timestamp check as described in Section 4.2. Finally, the input data
update the ledger according to the selection criteria and invokes the actu-
ator. Especially, both IoT gateway and private blockchain facilitated IoT

117



118 CHAPTER 6. CONCLUSION AND FUTURE WORK

data processing with more agility. Compliance issues with regard to data
preservation was handled by using IPFS.

Interface methods for external entities and the limitations were intro-
duced and analysed further in detail in Section 5.6. Blockchain is basically
a network platform where all the participants share information, but for
IoT environments, IoT devices were separated as clients from the network
in the proposed architecture. This configuration reduces the burden of
data volume, so that it makes the data process on blockchain faster. How-
ever, it needs authentication of each client and data interfaces. The au-
thentication issue was solved by using digital credentials provided by a
private blockchain. While other studies have deployed additional system
components, such as a broker server or a REST API server, this research
has employed direct streaming by gRPC through IoT gateways. This im-
plies that the proposed architecture is more streamlined, so that it is more
flexible and scalable. In addition, without any centralised components, it
ensures the strengths of the decentralisation.

The approach written in this thesis surely enables the practitioners in
the industry, who are going to develop blockchain to their businesses, to
set up their initiatives and to make a progress while reducing the time of
trial and error.

6.2 Future Work

In relation to the work done in this thesis, two different types of next steps
are presented in this section.

One is a technological aspect, which is the extension of the applicable
geographic location. The proposed architecture is simulated and exam-
ined in LAN environment. So as to facilitate the feature of the distributed
computing, the system should run on WAN environment with a certain
degree of performance guaranteed.

The other is a business application aspect, which is the extension of the
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proposed architecture to wider business area. Since the proposed design
is the core part of blockchain network platform for IoT data processing,
it can be applied in various environments using IoT data communication.
Hardware parts SCM system is proposed as an immediate case of the ap-
plication.

6.2.1 Verification in WAN

The proposed concept has been deployed in a LAN environment. If a
multinational enterprise, for instance, intends to apply blockchain net-
work to its offshore branches or geographically far away located business
partners, the proposed architecture is quite effective in terms of decentral-
isation and simplicity in configuration. Nevertheless, the latency in en-
dorsement and propagation of transaction requests should be taken into
consideration. Therefore, further experiments are needed in WAN envi-
ronments, where, if necessary, third-party solutions, such as network ac-
celeration and other security appliances, may have to be collaborated to
guarantee the compatibility and seamless transaction flow.

6.2.2 Extended Business Application

From business applications’ perspective, the proposed architecture can be
extended to machinery parts SCM system using blockchain for the whole
machinery control and hardware parts life-cycle management.

Blockchain has been applied in many SCM use cases due to its features
such as traceability and strengths in contract-based transactions [16][62].
These use cases are mostly reported in business-to-consumer (B2C) sales
with an emphasis on P2P interactions. However, blockchain can demon-
strate its strengths more in business-to-business (B2B) trades. In addition,
the integration of applications among related different departments in an
organisation demands blockchain platforms aside from B2B. Enterprise
application interface (EAI) solutions have the role of such integration, but
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Figure 6.1: Data flow in hardware parts supply chain

they are based on centralisation with the same drawbacks.

In a B2B SCM, the processes such as purchasing, procurement, and
vendor management are involved. These processes can be integrated on
a private blockchain. Each stakeholder can communicate with each other
while independent private communications among a certain group of par-
ticipants are guaranteed by a channel. The privacy management on a pri-
vate blockchain is efficient especially when a consortium should be set up.

Based on the proposed architecture, the health status of each hard-
ware part in the machinery can be retrieved and utilised by capturing the
health signal. Given data, smart contracts can determine the precautionary
parts replacement, which is proactive maintenance and can reduce the un-
planned service downtime. The procedures are integrated onto blockchain
autonomously among related organisations or departments.

Figure 6.1 illustrates the data flow of the hardware parts supply chain
management system. In brief, in this scenario, there are three stakehold-
ers: owner of machinery, supplier of hardware parts, and logistics. The
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Enterprise Resource Planning (ERP) system and the procurement system
interact with other stakeholders for the purchase of hardware parts. All
the stakeholders are integrated on the blockchain, but based on the char-
acteristics of consortium, different network channels can be configured for
data privacy.

The detailed data flow descriptions are as follows:

1. Sensing devices for circumstances and machinery transmit sensed
data whenever they detect unusual symptoms based on pre-defined
thresholds. Besides the IoT sensors, the machines can be equipped
with their own embedded alert functions, so that they can send the
system health data to production line management system.

2. Sensors monitoring environments can send the data through the fa-
cility management system to the production line management sys-
tem. The first flow and the second flow are to be combined and pro-
cessed by IoT gateways based on the proposed architecture. The pro-
duction line management system can be simplified by IoT actuators
and smart contracts on blockchain.

3. Every decision affecting the production is processed in the ERP sys-
tem, and the parts are assets of a company, so that the properties
are also stored and maintained in the ERP system. The transactions
related to the changes in properties are processed on blockchain.

4. If a new part is to be deployed based on the decision in the ERP
system, the purchasing task is processed in the procurement system,
which interfaces with external partners on blockchain.

5. Purchased item list will be advertised to the parts suppliers via smart
contracts on blockchain. When a notice of tender is placed, suppliers
can build the consortium on a blockchain channel. When several
projects need to be set up, the company can use a discreate channel
for each project as well.
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6. The parts supplier will check the requested items in their stock, if
necessary, with the distributors. The parts supplier can configure
its own blockchain with distributors and logistics. Otherwise, all
of them can join the same blockchain with their sensitive interests
reserved by private data functions on blockchain.

7. The supplier or the distributor orders the delivery to the logistics
through a smart contract. Then, the requested parts are delivered to
the production site.

8. The requested parts are placed to the production lines. Then, the
delivery and installation information are recognised in the procure-
ment system using a smart contract.

9. The procurement system updates the ERP system for a new part via
a smart contract. Meanwhile, the completed delivery information
will be sent to the parts distributor from the logistics via blockchain.

10. The parts distributor updates the supplier’s database using the sys-
tem that is used for the order. On the site, the ERP updates the status
of the production line management system.

In this thesis, the autonomous control of machinery by using IoT de-
vices on blockchain platform has been presented, and this workflow cor-
responds to the machine control stage. Likewise, the lifecycle of hard-
ware parts involved in the production line can be self-maintained by using
blockchain and smart contracts.

By applying blockchain and smart contracts, the hardware parts SCM
system can be facilitated autonomously including parts ordering, deliv-
ery status tracking, purchase contracts, and payment. The provenance of
the parts can be also traced. In addition, preservative maintenance is rein-
forced, which will minimise the unexpected service downtime.
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mirovsky, “Key ingredients in an IoT recipe: Fog Computing, Cloud
computing, and more Fog Computing,” in 2014 IEEE 19th Interna-
tional Workshop on Computer Aided Modeling and Design of Communica-
tion Links and Networks (CAMAD), pp. 325–329, Dec 2014.

[31] A. Dusia, Y. Yang, and M. Taufer, “Network quality of service in
docker containers,” in 2015 IEEE International Conference on Cluster
Computing, pp. 527–528, IEEE, 2015.



BIBLIOGRAPHY 127

[32] L. Wang and R. Ranjan, “Processing Distributed Internet of Things
Data in Clouds,” IEEE Cloud Computing, vol. 2, no. 1, pp. 76–80, 2015.

[33] B. Liu, X. L. Yu, S. Chen, X. Xu, and L. Zhu, “Blockchain Based Data
Integrity Service Framework for IoT Data,” in 2017 IEEE International
Conference on Web Services (ICWS), pp. 468–475, June 2017.

[34] X. Liang, J. Zhao, S. Shetty, and D. Li, “Towards data assurance and
resilience in IoT using blockchain,” in MILCOM 2017 - 2017 IEEE Mil-
itary Communications Conference (MILCOM), pp. 261–266, Oct 2017.

[35] L. Hang and D.-H. Kim, “Design and implementation of an inte-
grated IoT blockchain platform for sensing data integrity,” Sensors,
vol. 19, no. 10, p. 2228, 2019.

[36] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich, and
et al., “Hyperledger fabric: A distributed operating system for per-
missioned blockchains,” in Proceedings of the Thirteenth EuroSys Con-
ference, EuroSys ’18, (New York, NY, USA), Association for Comput-
ing Machinery, 2018.

[37] J. Wan, J. Li, M. Imran, and D. Li, “A blockchain-based solution for
enhancing security and privacy in smart factory,” IEEE Transactions
on Industrial Informatics, vol. 15, no. 6, pp. 3652–3660, 2019.

[38] “IPFS – Powers the Distributed Web.” Available at https://ipfs.
io (Accessed on 01/06/2020).

[39] J. Benet, “IPFS – content addressed, versioned, p2p file system,” arXiv
preprint arXiv:1407.3561, 2014.

[40] “Git.” Available at https://git-scm.com (Accessed on
01/06/2020).

https://ipfs.io
https://ipfs.io
https://git-scm.com


128 BIBLIOGRAPHY

[41] Y. Chen, H. Li, K. Li, and J. Zhang, “An improved p2p file system
scheme based on ipfs and blockchain,” in 2017 IEEE International Con-
ference on Big Data (Big Data), pp. 2652–2657, IEEE, 2017.

[42] A. Haroon, M. A. Shah, Y. Asim, W. Naeem, M. Kamran, and
Q. Javaid, “Constraints in the IoT: the world in 2020 and beyond,”
(IJACSA) International Journal of Advanced Computer Science and Appli-
cations, vol. 7, no. 11, pp. 252–271, 2016.

[43] S. Al-Sarawi, M. Anbar, K. Alieyan, and M. Alzubaidi, “Internet of
Things (IoT) communication protocols: Review,” in 2017 8th Inter-
national Conference on Information Technology (ICIT), pp. 685–690, May
2017.

[44] “Docker.” Available at https://www.docker.com (Accessed on
01/06/2020).

[45] “Hyperledger Fabric SDK for node.js Module.” Available at
https://hyperledger.github.io/fabric-sdk-node/

release-1.4/module-fabric-network.html (Accessed on
01/06/2020).

[46] “Hyperledger Caliper.” Available at https://hyperledger.

github.io/caliper (Accessed on 01/06/2020).

[47] “Hyperledger Explorer.” Available at https://www.

hyperledger.org/projects/explorer (Accessed on
01/06/2020).

[48] “Apache JMeter - Apache JMeter™.” Available at https://

jmeter.apache.org (Accessed on 01/06/2020).

[49] M. C. Loring, M. Marron, and D. Leijen, “Semantics of Asynchronous
JavaScript,” in Proceedings of the 13th ACM SIGPLAN International

https://www.docker.com
https://hyperledger.github.io/fabric-sdk-node/release-1.4/module-fabric-network.html
https://hyperledger.github.io/fabric-sdk-node/release-1.4/module-fabric-network.html
https://hyperledger.github.io/caliper
https://hyperledger.github.io/caliper
https://www.hyperledger.org/projects/explorer
https://www.hyperledger.org/projects/explorer
https://jmeter.apache.org
https://jmeter.apache.org


BIBLIOGRAPHY 129

Symposium on on Dynamic Languages, DLS 2017, (New York, NY, USA),
p. 51–62, Association for Computing Machinery, 2017.

[50] S. Muralidharan and H. Ko, “An InterPlanetary File System (IPFS)
based IoT framework,” in 2019 IEEE International Conference on Con-
sumer Electronics (ICCE), pp. 1–2, Jan 2019.

[51] “Functional Testing: A Complete Guide with Types and Exam-
ple.” Available at https://www.softwaretestinghelp.com/

guide-to-functional-testing (Accessed on 01/06/2020).

[52] “A Complete Non-Functional Testing Guide for Beginners.”
Available at https://www.softwaretestinghelp.com/

what-is-non-functional-testing (Accessed on 01/06/2020).

[53] “Hyperledger-fabricdocs master documentation.” Available at
https://hyperledger-fabric.readthedocs.io/en/

release-1.4 (Accessed on 01/06/2020).

[54] “Apache CouchDB.” Available at https://couchdb.apache.org
(Accessed on 01/06/2020).

[55] “Google LevelDB.” Available at https://github.com/google/
leveldb (Accessed on 01/06/2020).

[56] W. R. Stevens and T. Narten, “Unix network programming,” ACM
SIGCOMM Computer Communication Review, vol. 20, no. 2, pp. 8–9,
1990.

[57] A. D. Birrell and B. J. Nelson, “Implementing remote procedure calls,”
ACM Transactions on Computer Systems (TOCS), vol. 2, no. 1, pp. 39–59,
1984.

[58] “gRPC – A high-performance, open source universal RPC frame-
work.” Available at https://grpc.io (Accessed on 01/06/2020).

https://www.softwaretestinghelp.com/guide-to-functional-testing
https://www.softwaretestinghelp.com/guide-to-functional-testing
https://www.softwaretestinghelp.com/what-is-non-functional-testing
https://www.softwaretestinghelp.com/what-is-non-functional-testing
https://hyperledger-fabric.readthedocs.io/en/release-1.4
https://hyperledger-fabric.readthedocs.io/en/release-1.4
https://couchdb.apache.org
https://github.com/google/leveldb
https://github.com/google/leveldb
https://grpc.io


130 BIBLIOGRAPHY

[59] “RMI – Remote Method Invocation.” Available at https:

//www.oracle.com/technetwork/java/javase/tech/

index-jsp-136424.html (Accessed on 01/06/2020).

[60] “CORBA – Welcome To CORBA Web Site.” Available at https://
www.corba.org (Accessed on 01/06/2020).

[61] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn,
H. F. Nielsen, S. Thatte, and D. Winer, “Simple object access proto-
col (SOAP) 1.1,” 2000.

[62] F. Tian, “An agri-food supply chain traceability system for China
based on RFID & blockchain technology,” in 2016 13th international
conference on service systems and service management (ICSSSM), pp. 1–6,
IEEE, 2016.

https://www.oracle.com/technetwork/java/javase/tech/index-jsp-136424.html
https://www.oracle.com/technetwork/java/javase/tech/index-jsp-136424.html
https://www.oracle.com/technetwork/java/javase/tech/index-jsp-136424.html
https://www.corba.org
https://www.corba.org


Appendices

131





Appendix A

Usage of PoC Library

A.1 Git Repository for PoC Software Library

Clone the Git repository
https://gitlab.ecs.vuw.ac.nz/yup/mepoc1.git

A.2 Prerequisites for the Deployment

1. Ubuntu 18.04.3 LTS

2. Docker Docker version 17.06.2-ce or greater

3. Node.js version 10.x is recommended

4. The Fabric Node.js SDK requires Python 2.7 instead of Python 3.5

5. Go Programming Language version 1.12.x or greater

6. Export GOPATH

export GOPATH=$PoC HOME/go

7. Hyperledger Fabric platform-specific binaries for the specified Fab-
ric version under $PoC HOME/bin (included in the Git repository)
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configtxgen, configtxlator, cryptogen, discover,
idemixgen, orderer, peer, fabric-ca-client

A.3 Deployment Procedure

1. Generate certificates and keys

$PoC HOME/basic-network/generate.sh

2. Modify certificate file path in

$PoC HOME/basic-network/connection.json

3. Modify certificate file path in

$PoC HOME/basic-network/docker-compose.yml

A.4 Start & Stop Blockchain

1. Start

$PoC HOME/basic-network/start-p4-level.sh

2. Stop

$PoC HOME/basic-network/teardown-p4.sh



Appendix B

Test Scenarios and Report

B.1 Functional Test

1. Unit Test : check for required parameters and return value

1.1. Evaluate / submit each function with incorrect number of argu-
ments

1.2. Input string type of integer type as an argument

1.3. Input an argument with long characters (up to 32-bit words)

1.4. Read the message from evaluate / submit function

1.5. Read the return values from evaluate / submit function

2. Smoke Test : build verification

2.1. Execute blockchain start script

2.2. Execute cryptographic certificate file generation script

2.3. Find the public and private keys in the file system

2.4. Execute blockchain teardown script

2.5. Find the source codes of chaincode in the mounted volume

2.6. Execute ”go build” command
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2.7. Find the executables in the file system

2.8. Install the chaincode

3. Sanity Test : major and vital functionalities working

3.1. Initialise a chaincode on a channel

3.2. Execute query function on blockchain

3.3. Execute query application using client SDK to access blockchain

3.4. Execute listening application using client SDK to receive Event
messages

4. Regression Test : code change having not adversely affected existing
features

4.1. Insert a simple text message in the chaincode and read the con-
sole

4.2. Upgrade the above 4-1 chaincode and then execute it

4.3. With the instantiated 4-2 chaincode, iterate the unit test

5. Integration Test : multiple functional modules working together

5.1. Using generated key, access blockchain (execute query func-
tion) in client

5.2. Execute query function to check the current actuator status

5.3. Execute update function as a client and check the console of
listening client

6. Usability Test : for production usage by users (similar to UAT)

6.1. Input modified value for at least one argument using update
function

6.2. Input modified hash value using update function
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6.3. Input string type argument for signal data using update func-
tion

6.4. Input unregistered sensor ID using update function

6.5. Input modified value for time argument using update function

6.6. Input normal data using update function

6.7. Input modified value (bigger than time threshold) for time ar-
gument using update

6.8. Execute query function on blockchain with a specific sensor ID

6.9. When actuator disabled, input signal data over threshold, and
check status change

6.10. When actuator enabled, input signal data over threshold, and
check status change

6.11. When actuator enabled, input signal data below threshold, and
check status change

6.12. When actuator disabled, input signal data below threshold, and
check status change

B.2 Non-Functional Test

1. Performance Test : evaluate the overall performance of the system

1.1. Run Caliper benchmark performance test tool (250 devices) –
Query / Update

1.2. Run Caliper benchmark performance test tool (250 devices) –
Query / Update 50 times

2. Stress / Load Test : validate that the system performs as expected
under stress
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2.1. Run Caliper benchmark performance test tool (50 devices) – De-
vice Register

2.2. Run Caliper benchmark performance test tool (100 devices) –
Device Register

2.3. Run Caliper benchmark performance test tool (150 devices) –
Device Register

2.4. Run Caliper benchmark performance test tool (200 devices) –
Device Register

2.5. Run Caliper benchmark performance test tool (250 devices) –
Device Register

2.6. Run Caliper benchmark performance test tool (50 devices) –
Data update

2.7. Run Caliper benchmark performance test tool (100 devices) –
Data update

2.8. Run Caliper benchmark performance test tool (150 devices) –
Data update

2.9. Run Caliper benchmark performance test tool (200 devices) –
Data update

2.10. Run Caliper benchmark performance test tool (250 devices) –
Data update

3. Volume Test : verify when a large volume of data are involved

3.1. Run Caliper benchmark performance test tool (100 records) –
Data Query

3.2. Run Caliper benchmark performance test tool (300 records) –
Data Query

3.3. Run Caliper benchmark performance test tool (500 records) –
Data Query
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4. Compatibility Test : evaluate that the application is compatible with
others

4.1. Upgrade chaincode to different version and check the unit test

4.2. Check if the channel capability is set

5. Recovery Test : verify against Hardware and Software failures

5.1. Check the existence of necessary initial files

5.2. Delete all the configuration and source files except initial files,
and restore the system

6. Failover Test : verify in case of a system failure

6.1. Stop running one peer container and check query function

6.2. Stop running two peer containers and check query function

7. Security Test : ensure that the application has no loopholes

7.1. Execute client application by ID with public and private keys

7.2. Execute client application by ID without keys

7.3. Execute client application by ID with manipulated keys

8. Scalability Test : verify the application is capable of increased re-
quests

8.1. Add a peer node and check it is running on blockchain

8.2. Add an orderer node and check it is running on blockchain

8.3. Add an organisation and check it is interaction on blockchain

8.4. Add a channel and attach peers, then check it works

9. Localisation Test : verify the application in different languages

9.1. Insert data that use 2-byte form character set to blockchain
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9.2. Query data that use 2-byte form character set to blockchain

10. benchmark Test : use a base for any new application

10.1. Set up a baseline for performance latency compared with other
use cases

B.3 Test Report Template

Hyperledger Caliper Test Report Sample (Figure B.1)

Figure B.1: Hyperledger Caliper Report
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