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Abstract 

 

Mutations in either the Niemann-Pick type C1 or C2 (NPC1/NPC2) gene result in a 

fatal lysosomal storage disorder, Niemann-Pick type C (NP-C) disease, for which there is no 

effective cure. The disease is characterized by systemic and neurodegenerative symptoms 

arising from toxic accumulation of unesterified cholesterol within the late endosome and 

lysosome, with a common cause of death for patients being respiratory failure or recurrent 

infection of pulmonary tissue.  Interestingly, the disease symptoms are heterogeneous, with 

age of onset and severity varied, even among siblings with the same mutations in the NPC1 

or NPC2 gene causing this monogenic disease. To date there is no clear explanation for 

disease severity in siblings with the same mutation. As siblings are raised in the same 

environment, the major hypothesis of this thesis is that there are genetic modifiers that 

explain variation in disease severity within siblings.  To determine if there are genetic 

variants associated with disease severity, exomes were sequenced from five sibling pairs 

exhibiting divergent onset and progression of NPC disease. Out of 23,105 genes, 26 variants 

were identified that were predicted to have functional consequences in NP-C patients, of 

which homozygous MUC5B and MARCH8 variants segregated across siblings that exhibited 

increased and decreased severity of disease, respectively. A cluster of variants was 

discovered on chromosome 11 belonging to the matrix metalloproteinase (MMP) family. 

Further investigation of one of these variants, a frameshift insertion in MMP-12, confirmed 

that this locus regulates the accumulation of unesterified cholesterol in primary neurons 

derived from a murine model of NPC disease. However, this region on chromosome 11 did 

not have any statistically significant copy number alteration detectable through a depth of 

coverage analysis. Overall, these results provide groundwork into the sequence variants 

mediating disease severity, which with further investigations, may be novel pharmacological 

targets to treat NPC disease.  
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1 LITERATURE REVIEW 

1.1 Lysosomes 

Lysosomes were first biochemically characterized in 1955 after Christian de Duve 

noted that enzymes such as acid phosphatase of rat liver were latent in their activity as well as 

particle bound. This discovery led to the recognition of lysosomal roles within autophagy, such 

as the degradation of macromolecules, as well insights into the structural organization of the 

cell (de Duve, 2005). It is now recognized that the lysosome is a catabolically active organelle, 

due to an acidic pH maintained around 4-5 via a vacuolar proton-ATPase pump. This pH is 

maintained in a steady-state via secondary ion movement through counter-ion channels 

preventing a membrane potential difference (Ishida et al., 2013). Lysosomes contain high 

concentrations of calcium as well as highly glycosylated lysosomal-associated membrane 

proteins (LAMPs), both of which are involved in fusion and docking events (Appelqvist et al., 

2013; Luzio et al., 2007; Saftig and Klumperman, 2009).  

Cargo from the cellular membrane can be internalized through a network of endocytic 

vesicles, early endosome and late endosome compartments to the lysosomal organelle. This 

internalization of cargo from the plasma membrane to early/late endosomes is known as the 

endocytic pathway, which results in the degradation of the cargo by the acid hydrolase enzymes 

contained within the lysosomal compartment. In brief, the endosome can i) directly fuse with 

the lysosome, ii) hand-off vesicles the lysosome via buds, iii) transfer cargo via transient 

contact, and iv) form hybrid organelles to accomplish complex fusion (Luzio et al., 2007). 

Late endosomes contain a greater number of vesicles than early endosomes and are 

sometimes referred to as multi-vesicular bodies (Luzio et al., 2007). The creation of lumenal 

vesicles within the endosomal components (both early and late) and their uptake of 

ubiquitinated proteins involves endosomal sorting complexes required for transport (ESCRT) 



complexes. After uptake, the protein to be degraded is deubiquitinated and sorted into a 

budding vesicle for transport to the lysosome (Bowers et al., 2006). 

As well as lysosomal fusion with late endosomes, the lysosome can also interact with 

phagosomes, autophagosomes and the plasma membrane. These interactions can facilitate 

recycling of macromolecular components within the cell, or even membrane repair (Luzio et 

al., 2007). Taken together, it is clear the lysosome is a complex organelle capable of fusing 

with a myriad of other intracellular components with a diverse range of functions.   

The simplest take on the function of the lysosome is the degradation and recycling of 

cellular components, which can occur via several different pathways. The late 

endosomal/lysosomal complex results in the degradation of the endosomal cargo via lysosomal 

acid hydrolase, which is released from the TGN and accepted via the mannose-6-phosphate 

receptor (Smith, 2014). Specifically, the lysosome plays a key role in several forms of 

autophagy (Platt et al., 2012; Saftig and Klumperman, 2009), including macroautophagy, 

microautophagy and chaperone-mediated autophagy. Macroautophagy begins with the creation 

of an autophagosome, a vesicle that encapsulates cellular debris, which fuses with the lysosome 

to form an autolysosome, facilitating degradation (Luzio et al., 2007; Mellman, 1996). 

Microautophagy, however, involves the invagination of the lysosomal membrane to allow the 

endocytosis of the surrounding cytosol (Platt et al., 2012). Chaperone-mediated autophagy is a 



direct, selective process for proteins that is regulated by LAMP receptors. 

 

Figure 1.1 – Three key forms of autophagy. A) Macroautophagy involves the encapsulation 

of cellular material into autophagosomes. B) Microautophagy utilizes pinocytosis to 

capture cytosolic proteins. C) Chaperone-mediated autophagy uses lysosome 

associated membrane proteins as a receptor for chaperone proteins for selective delivery 

to lysosomes. Figure adapted from Platt et al., 2012. 

  

The lysosome is involved in processes beyond degradation and recycling. The 

previously mentioned calcium reserves within the lysosome, along with the diverse range of 

acid hydrolases (including the cathepsin proteases), have roles in plasma membrane repair, 

remodelling, homeostasis and apoptosis (Kirkegaard and Jäättelä, 2009). Exocytosis of 

lysosomal enzymes can result in effects as wide ranging as extracellular matrix remodelling or 

initiating the lysosomal cell death pathway (Kirkegaard and Jäättelä, 2009; Luzio et al., 2007). 

1.2 Lysosomal storage disorders 

Defects in lysosomal function result in defects in cellular homeostasis and diseases in 

the case of humans (Appelqvist et al., 2013; Platt et al., 2012; Saftig and Klumperman, 2009; 

Vanier, 2014; Vitner et al., 2010). Genetic disorders of metabolism specifically relating to the 

Lysosome 

Autophagosome 

Autolysosome 

Microautophagy Chaperone-mediated 

autophagy  

A 

B C 



family of lysosomal storage diseases (LSDs) are inheritable diseases that, despite their 

individual rarity, are nonetheless clinically devastating to those affected and have a collective 

incidence of 1 in 5,000 live births (Fuller et al., 2006). As such, LSDs illustrate the vital 

functions of lysosomal proteins and hydrolases within the larger endosomal-lysosomal system. 

LSDs are commonly characterised by a lack of a functional lysosomal enzyme or protein, 

thereby disrupting lysosomal homeostasis and resulting in the accumulation of carbohydrates, 

lipids or proteins. As an inheritable genetic disease, a LSD usually presents clinically at a young 

age, however late-onset pathology is also possible (Platt et al., 2012; Vanier, 2014). As a family 

of 50 diseases, LSDs can be split into two broad categories based on whether the mutation 

affects a lysosomal enzyme or lysosomal membrane protein.  

A genetic mutation resulting in deficiency of a functional lysosomal enzyme or 

insufficient enzymatic activity can lead to macromolecular accumulation and metabolic 

dysregulation arising from impaired endolysosomal efflux (Platt et al., 2012).  A classic 

example of this is Gaucher disease (GD), the most common LSD with an estimated incidence 

of 5% of total LSD cases (Pinto et al., 2003). GD is the result of a defect in the lysosomal 

enzyme spell it out (GBA) with the major tissues affected being the bone marrow, liver and 

spleen (Platt et al., 2012). This is due to defective macrophage (Gaucher cells) infiltration into 

these organs (Gülhan et al., 2012; Lo et al., 2012). Another example of enzymatic deficiency 

is Niemann-Pick disease Type B (NP-B), where sphingomyelinase defects result in 

accumulation of sphingomyelin within the liver of sufferers (Brady et al., 1966). 

For the second category of LSD, recall that lysosomes are of acidic pH and carry 

vesicles that contain hydrolytic enzymes, with a membrane that includes proton ATP-

dependent pumps, along with other transport systems (Vellodi, 2005) - these play a significant 

role in the sorting, recycling and digestion of endocytosed material within the cellular body. 

These include lysosomal membrane proteins that are glycosylated (Appelqvist et al., 2013) and 



have functions as diverse as trafficking of substrates, distribution of cargo, and exocytosis. 

Niemann-Pick disease Type C1 (NP-C1) is an example where a non-specific defect in NPC1, 

a membrane-bound protein involved in cholesterol transport, results in aggregates of 

cholesterol and other sphingolipids (Li et al., 2015; Park et al., 2003). 

1.2.1 Clinical phenotypes 

 

Despite the family of LSDs being relatively diverse with accumulation of glycogen, 

mucopolysaccharides or lipofuscins due to a defective enzyme or membrane protein, there is a 

classical description of LSDs as a family of paediatric neurodegenerative diseases (Wraith, 

2002). Few LSDs lack some form of CNS pathology, as storage defects of metabolites affect 

various brain regions vulnerable to storage defects (Vitner et al., 2010). Furthermore, 

dysregulation of these storage pathways can lead to neuro-inflammation and activation of 

astrocytes from oxidative stress, altered calcium homeostasis and trafficking defects in the 

brain, capitulating LSDs as a neurodegenerative disorder. Notably, there is some overlap 

among the pathways defective in multiple LSDs such as conserved pathways that regulate 

lysosomal exocytosis, SL storage and available acidic calcium (Platt et al., 2012, 2014). 

1.3 Niemann-Pick Disease 

 

Niemann-Pick is a lysosomal storage disorder grouped into three main types: NP-A, 

NP-B, NP-C and NP-D (Crocker, 1961). The cause of dysfunction differs between the major 

types of Niemann-Pick (i.e., mutations in separate genes resulting in different downstream 

effects). However, two phenotypes are shared between all four types: toxic intracellular 

accumulation of lipids and disrupted sphingomyelin homeostasis. NP-A disease is caused by a 

mutation in a sphingomyelinase enzyme responsible for ceramide biosynthesis, while NP-B 

disease is caused by a mutation in the acid sphingomyelinase gene. NP-C disease is caused by 

mutations in the lysosomal membrane NPC1 protein or the soluble NPC2 in the lysosomal 

lumen. NP-D disease is caused from a specific transversion in the NPC1 gene causing NP-C 



disease (Greer et al., 1998). As the focus of this thesis is NP-C disease, additional background 

is now provided for NP-C. 

1.3.1 Niemann-Pick Disease Type C 

 

The defective NPC1 or NPC2 protein confers 95% and 5% of NP-C cases, respectively. 

There are more than 300 mutations in these genes to date (Li et al., 2016; Millat et al., 1999), 

of which any will result in disrupted trafficking of cholesterol and sphingolipids leading to 

pathological accumulation of these lipids in the lysosome (Platt et al., 2012; Vanier, 2014), 

although there is no genotype-phenotype correlation for these mutations (Runz et al., 2008).  

This is largely due to the interacting roles of NPC1 and NPC2 whereby NPC2 binds cholesterol 

in the lumen and effluxes it out of the lysosome by “handing it off” to NPC1 in the membrane 

(Kwon et al., 2009).  

The cholesterol accumulation is better characterized than the sphingolipid 

accumulation. During normal cholesterol metabolism, cholesterol is produced in the 

endoplasmic reticulum (ER) when the cell recognizes cholesterol levels are low. One of the 

destinations for cholesterol is the late endosome/lysosome where it is degraded as well as 

recycled back to the ER. Cholesterol transport from the late endosome/lysosome to the ER 

relies upon the action of the NPC2-NPC1 hand-off of cholesterol, which results in the down-

regulation of NPC1 expression via negative feedback from the sterol regulatory element 

binding protein pathway (SREBP) (Garver et al., 2008). In NP-C disease, failure of the 

cholesterol transport (facilitated by the NP-C1 protein) to reach the sterol reserves of the cell 

results in the failure to inhibit the SREBP pathway (causing a ‘false impression’ that cellular 

levels are low), leading to pathological accumulation of macromolecules within the cell. 

Sphingosine, sphingomyelin, lactosylceramide, glucosylceramide, and gangliosides 

(GM1, GM2 and GM3) are all sphingolipids known to accumulate in NPC disease; however 

the pathways underlying the accumulation are not fully understood. It is well characterized that 



sphingolipids have multiple roles within the cell and that their accumulation alters cell function 

(Kacher and Futerman, 2006). For example,  glucosylceramide accumulation in GD results in 

the accumulation of additional sphingolipids such as ceramide, a major regulator of transport 

and signalling in eukaryotic cells (Hein et al., 2007). Interestingly, it is currently debated 

whether cholesterol or sphingolipids are the primary offending metabolite causing NP-C 

disease (Lloyd-Evans and Platt, 2010). 

The resulting lysosomal dysfunction and lipid accumulation have cascading effects on 

other cellular pathways, potentially including innate immune system activation (Csepeggi et 

al., 2011; Platt et al., 2012). This activation arises from the detrimental effects of cellular 

aggregation, such as increased reactive oxygen species (ROS) and inflammatory or apoptotic 

signals arising from the macromolecule build up (Kacher and Futerman, 2006). Furthermore, 

altered calcium homeostasis has been implicated in classical neurological diseases such as 

Alzheimer’s disease as well as LSDs (Bodennec et al., 2002; Mattson and Chan, 2003), 

although the mechanism of altered homeostasis is distinct across diseases. Finally, pro-

inflammatory mediators have been shown to be elevated in LSDs, although the link between 

sphingolipids and pro-inflammatory mediators is unclear (Kacher and Futerman, 2006). 

1.3.2  Neurovisceral aspects of NP-C 

The primary organs affected in NP-C disease are the liver and brain, the organs most 

sensitive to changes in cholesterol homeostasis. Cholesterol is made in the liver, while the brain 

contains a separate pool of cholesterol that represents 20-30% of all lipids in the brain (Pfrieger, 

2003). Moreover, initial onset of symptoms occurs across a wide range of ages, such that the 

disease is best viewed as different clinical forms categorised by age (Table 1.1, Vanier, 2010). 

The neonatal (or perinatal) form of disease is characterized by prolonged jaundice and/or 

hepatosplenomegaly that precedes neurological symptoms. Early infantile (roughly two 

months to two years old) involves missing developmental marks or reversion of learnt motor 



skills. Late infantile (three to six years) onset consists of gait difficulties and usually symptoms 

include VGSP, although at an early stage. The juvenile category of six to fifteen years is also 

regarded as the ‘classical’ presentation of NP-C, for this is the most common form of the 

disease across most countries. VGSP is often an initial symptom, and difficulties in learning 

along with cataplexy (often caused by laughter) are also common symptoms. Finally, the adult 

presentation of NP-C is heterogeneous in presentation, however psychiatric symptoms 

followed by cognitive and motor decline is a common set of symptoms. 

 

Table 1.1 – Major types of NP-C disease as defined by Vanier, 2010. 

Neonatal Early infantile Late infantile Juvenile Adolescent/Adult 

Foetal ascites, icterus, 

cholestasis, 

hepatosplenomegaly, 

pulmonary alveolar 

lipoproteinosis 

Delay in motor 

development, 

hypotonia 

Ambulation 

issues, 

cataplexy, 

speech 

delays, 

VGSP 

Seizures, 

ataxia, 

cataplexy, 

VGSP 

Psychiatric 

problems, ataxia, 

dementia 

 

NP-C disease, like most members of the family of LSDs, has neurological components 

that all patients will develop over the course of disease progression. However, NP-C also 

includes systemic visceral involvement of liver, spleen and pulmonary tissues (Patterson et al., 

2012; Vanier, 2010). This systemic component of disease occurs prior to neurologic symptoms, 

and is considered in classifying disease forms categorized by age of onset of neurological 

involvement (Wraith and Imrie, 2009). In brief, 85% of NP-C patients experience a systemic 

component of disease prior to development of neurological symptoms (Vanier, 2010). The 

onset of neurological symptoms consist of impaired motor functions, gait issues, cataplexy, 

ataxia, vertical supranuclear gaze palsy (VGSP) (Solomon et al., 2005) and eventually 

psychiatric disturbances. Overall, it has been reported that the age of onset of neurological 



symptoms is correlated with progression of the aforementioned neurological forms of the 

disease, and acts as a general predictor of disease progression and patient lifespan (Wraith and 

Imrie, 2009). 

1.3.3 Pulmonary consequences of NP-C 

Pursuant to the gastrointestinal and neurodegenerative symptoms, pulmonary 

consequences have also been reported (Gülhan et al., 2012; Sheth et al., 2017). In fact, these 

pulmonary consequences are also critical as a common cause of death for NP-C patients is 

respiratory failure (e.g., pneumonia). Foam cell accumulation in the lungs has been reported in 

the feline model of NP-C disease. (Lowenthal et al., 1990) Furthermore, this pulmonary feature 

of NP-C felines is observed in both NPC1-deficient and NPC2-deficient mice (Roszell et al., 

2013). Both NP-C1 and NP-C2 are clinically heterogeneous with pulmonary involvement, with 

the potential for recurrent pulmonary infection. This is hypothesised to be due to impaired 

macrophage NP-C2 protein expression resulting in inert surfactant within the lung (Griese et 

al., 2010; Sheth et al., 2017).  

1.3.4 Laboratory diagnosis of NP-C using the filipin test 

Given symptoms such as jaundice, splenomegaly and ataxia that are presented in many 

diseases, NP-C disease is undoubtedly challenging to diagnose. In addition, the clinical 

presentation of NP-C disease is highly heterogeneous regarding presentation of symptoms as 

well as  the age of when the patient is first diagnosed with NP-C is highly variable (Vanier, 

2010). As such, diagnosis must be conducted in the clinic as well as the laboratory.  

A robust laboratory test for the archetypical NP-C phenotype is direct evaluation of the 

lysosomal accumulation of unesterified cholesterol in NP-C patient fibroblasts. This is 

accomplished via the filipin stain test (Vanier and Latour, 2015a). Filipin is a polyene 

antifungal secreted by Streptomyces filipinensis that binds to the ergosterol found in fungal cell 

walls. Because filipin is selective for unesterified cholesterol and not sterol esters, it can be 



used to visualize accumulation of unesterified cholesterol within cells using fluorescent 

microscopy. This test accurately demonstrates impaired cholesterol transport along the 

endocytic pathway of the cell, and is considered the gold-standard diagnostic tool for 

diagnosing a suspected NP-C patient (Vanier, 2010). If the filipin test is found to be positive, 

targeted sequencing of the NPC1 and NPC2 genes can occur to fully confirm the diagnosis 

(i.e., a mutation in NPC1 or NPC2). 

1.3.5 Clinical diagnosis of NP-C using severity scoring 

Clinical diagnosis of NP-C makes use of a disease severity scoring scale (Iturriaga et 

al., 2006; Yanjanin et al., 2010). This scale considers an evaluation of the patient’s motor skills, 

strength of muscle and movement, swallowing testing and eye movement. Eye movement is 

examined in particular because saccadic eye movements are an early neurological symptom in 

NP-C (Abel et al., 2012). As neurological symptoms are progressive and predictive of disease 

outcomes, it is possible to generate a pathological model for NP-C disease (Yanjanin et al., 

2010). This clinical severity scale examines eye movement, speech, motor skills, ambulation, 

swallowing, cognition, hearing, memory, seizure history on a 0-5 point scale and additive 

modifiers to the model (e.g., hyperreflexia, cataplexy, psychiatric). This scale has proven to be 

a valuable tool for increasing diagnostic capability and monitoring disease progression (Shin 

et al., 2011; Vanier, 2010). Relative to this thesis, this scale also serves as a reminder that the 

clinical presentation of NP-C is heterogeneous and varied.  

1.3.6 Potential treatments for NP-C 

1.3.6.1 Miglustat 

 

One perspective on treating lysosomal glycolipid accumulation is via partial inhibition 

of glycolipid biosynthesis pathways. Miglustat, originally used to treat GD, is a compound that 

inhibits glucosylceramide synthase and reduces the catabolic burden on the cell in a LSD 

context (Platt et al., 1994). An important feature of miglustat treatment is the capability to 



cross-over the blood-brain barrier (Patterson et al., 2007), unlike direct lysosomal enzyme 

replacement therapy (Platt et al., 2012). However, miglustat is not therapeutic in the liver. 

Miglustat is approved to treat NP-C disease in many but not all countries (e.g., it was not 

approved by the FDA in the USA). 

1.3.6.2 Cyclodextrin 

 

Cyclodextrins are oligosaccharides with structure and chemistry that complexes with 

many compounds including cholesterol (Del Valle, 2004), hence cyclodextrins are commonly 

used as vehicles for other drugs in treatment trials. This was actually a factor in the 

development of cyclodextrin as a promising therapy to treat NP-C disease, whereby the 

cyclodextrin vehicle was equally therapeutic in Npc1-/- mice compared the cyclodextrin vehicle 

with the candidate allopregnanolone therapy (Davidson et al., 2009) that was previously 

identified (Griffin et al., 2004). Cyclodextrin has repeatedly been shown to increase the lifespan 

and delay the onset of NP-C disease in the Npc1-/- mouse model as well as the feline model 

(Liu et al., 2009; Vite et al., 2015). A fully enrolled clinical trial (Phase 2/3) in humans is 

ongoing (ClinicalTrials.gov identifier NCT02534844) with 2-hydroxypropyl-β-cyclodextrin 

(HPBCD). However, one drawback to this approach is the complex structure of cyclodextrin 

family prevents crossing of the blood-brain barrier, thus requiring sedation and intrathecal 

(spinal tap) administration of the drug. Sucampo Pharmaceuticals, Inc. recently acquired 

Vtesse, Inc., the company responsible for advancing this clinical trial, for $200 million 

(http://www.cydanco.com/). Considering the prevalence of NP-C worldwide, this acquisition 

implies Sucampo perceives value in this cyclodextrin vehicle within a broader scope, especially 

considering the shared mechanisms NP-C has with other diseases (Platt et al., 2014).    

1.3.6.3 Arimoclomol 

 

Arimoclomol is a hydroxylamine drug that induces a heat shock protein response (Pratt 

et al., 2012) by interacting with heat shock protein 70 (Hsp70). This activity alleviates NP-C 

http://www.cydanco.com/


disease symptoms by the stabilization of lysosomes via the interaction between Hsp70 and 

bis(monoacylglycero)phosphate (BMP) (Kirkegaard et al., 2010). Hence, defective lysosomal 

stability in NP disease is theorised to be corrected via this mode of action. Clinical trials (Phase 

2) involving arimoclomol and human NP-C patients are currently underway (ClinicalTrials.gov 

identifier NCT02612129). Orphazyme is the pharmaceutical company heading this drug trial 

(http://nnpdf.org/research/clinical-trials/orphazyme-clinical-trial/, 

https://www.orphazyme.com/clinical-trials-aidnpc).  

1.3.6.4 Vorinostat 

 

Vorinostat is a histone deacetylase inhibitor that is already approved to treat cutaneous 

T-cell lymphoma, and has completed a clinical trial (Phase 1/2, ClinicalTrials.gov identifier 

NCT02124083) after being initially identified as a candidate therapy in the yeast model of 

NP-C disease, a result that was further confirmed when vorinostat reduced filipin accumulation 

in NP-C patient fibroblasts  (Munkacsi et al., 2011; Pipalia et al 2011).) The rationale behind 

this treatment arises from the reported upregulation of NPC1 in NP-C patient fibroblasts 

(Pipalia et al., 2011, 2017), and the concept that epigenetic consequences of reduced histone 

deacetylation would partially rescue the NP-C phenotype (Munkacsi et al., 2016). Promising 

future developments will likely involve combined treatments to increase efficacy, such as the 

triple combination of vorinostat complexed with HPBCD in polyethylene glycol as 

demonstrated by Alam et al., 2016. 

1.4 Exome sequencing as a tool for genetic modifier discovery 

Whole genome sequencing of entire patient cohorts remains, at least for the short future, 

cost-prohibitive for identifying disease-causing genes and disease-modifying genes (Park and 

Kim, 2016). An alternative approach is to consider an enriched-subset of the human genome 

that is likely to impact the disease of interest, or allow identification of potentially relevant 

regions that can then be selectively sequenced. The human exome is a proven subset of the 



human genome with specific relevance to disease (Bamshad et al., 2010, 2011). While it is true 

that the exome covers only a tiny fraction of the whole genome, roughly 2% (Bamshad et al., 

2011), this 2% corresponds to the protein-coding sequences of the human genome and as such 

includes 85% of DNA sequence variants known to cause human diseases. For example, it is 

well established that DNA sequence variants in the exome alter the structure and function of 

proteins underlying Mendelian diseases (Bamshad et al., 2010, 2011; Gilissen et al., 2011; 

McInerney-Leo et al., 2013). 

A simple definition of a disease-causing gene is a mutation that results in the 

presentation of the disease (Genin et al., 2008). In contrast, a genetic modifier of a disease is a 

mutation outside of the disease-causing gene that contributes to a disease phenotype but does 

not on its own confer the disease diagnosis (Cutting, 2010). The discovery of genetic modifiers 

to disease by exome sequencing is an extension to the methods described above (Cirulli et al., 

2010; Cooper and Shendure, 2011; Alazami et al., 2015; Esslinger et al., 2017). In the case of 

NP-C disease, a genetic modifier would be a mutation outside of the NPC1 or NPC2 disease-

causing genes. 

Therefore, discovering a genetic modifier to a disease requires a more nuanced 

approach than the usual comparison of a healthy population (unaffected) and a patient cohort 

(affected) routinely used to identify a disease-causing gene. In contrast, the identification of 

genetic modifiers requires that the candidate modifier is associated with clinical severity or 

variability. Moreover, a genetic modifier of a disease does not necessarily have to be unique 

from the healthy population (i.e., there is no longer an obvious segregation between the affected 

and the unaffected populations). This applies even in the cases of ‘simple’ monogenic diseases 

where there may be more than one modifier to said disease that interact in a multi-factorial 

fashion. Furthermore, variations within the genomic structure itself can contribute to inherited 



disease and their clinical presentation (Beckmann et al., 2007), such as copy number variation 

(CNV). 

1.4.1 Identifying causal variants using sibling pairs 

 

Identification of variants that are causal agents of rare monogenic disorders is 

traditionally difficult due to factors such as low sample size and heterogeneous clinical 

presentations that result in decreased statistical power for older, more traditional genetic 

screens such as positional cloning. An effective compromise arises in the study of whole-

exome sequencing of rare patient cohorts, precisely because the exome acts as an enriched 

subset of the genome when it comes to predicting effects on protein function. As a markedly 

simplified example, examining the whole-exome sequences of a sibling pair with a disease and 

comparing it to a database of healthy variants found within the healthy population enables the 

filtration of a candidate list of disease-causing genes down to potential causal variants 

(Bamshad et al., 2011; Cooper and Shendure, 2011). 

This approach can be improved upon further by considering familial sets, and especially 

sibling pairs. Sibling pairs are a useful approach to study design with regards to sequence data, 

as they can improve statistical power to detect rare variants in an association test. This arises 

from the fact that disease-associated variants are likely to segregate within familial pairs (Zhu 

et al., 2010), with affected siblings sharing the causal variant. Such an approach requires that 

your affected/unaffected or discordant sibling pairs are sequenced with the same targeted 

genomic region, with collective testing of rare variants (Feng et al., 2011). 

1.4.2 Sibling-pair analyses to identify genetic modifiers 

One must carefully consider their approach when analysing whole exome sequence data 

for putative disease modifiers. An initial constraint that aids inquiry is to consider the familial 

or pedigree history of a patient cohort, where possible. This enables, with appropriate clinical 

co-variates, to segregate modifiers along your trait(s) in question. Without familial data, one 



can identify putative modifiers (such as those reported in mevalonate kinase deficiency) 

(Marcuzzi et al., 2016), however statistical power and low sample numbers will prevent a clear 

correlation with disease phenotype. For example, the loci modifying the onset of cancer in 

patients with Gaucher disease was examined in sibling pairs (Lo et al., 2012). Whole exomes 

were sequenced from two affected siblings, sequences were compared against control 

databases, and homozygosity mapping was used to identify a novel mutation associated with 

increased cancer risk. These examples, and others (Luzon-Toro et al., 2015; Reddy et al., 2017; 

Schil et al., 2016; Tucci et al., 2014), demonstrate the suitability and potential for whole exome 

sequence analysis in the discovery of genetic modifiers to disease. 

The clinical phenotype and study design must be clearly defined in order to allow valid 

assumptions to facilitate the discovery of genetic modifiers. One can quantitate the onset of the 

clinical phenotype by metrics such as age at diagnosis, or quantitate the severity of disease 

progression. The population to be studied must also be clearly defined – a good first choice is 

fraternal twins (identical twins would not be useful to identify modifiers if they have divergent 

severity, for obvious reasons) or sibling-based pairs, as this enables the comparison of the 

clinical phenotype chosen above with related patients with minimal environmental variation 

(i.e., siblings are raised in the same house) and the unrelated control population. This also 

facilitates comparisons of variation between and within familial pairs (e.g., determining the 

inheritance of the genetic modifier). 

1.4.3 Intricacies to identifying genetic modifiers 

 

An immediate distinction to make clear when searching for associations of rare genetic 

modifiers to disease severity is the expectation that disease severity will not be explained by 

one statistically significant genetic modifier. This is simply because within phenotypically-

discordant sibling pairs, there will be a single modifier variant in one and not the other. Instead, 

one must examine the variants not on a per variant basis, but a per gene basis. To elucidate 



this, even if each case sample has a different rare variant present from one another that is not 

present within their control, but this different variant is within the same gene – that can form 

an argument for significant association. This argument follows from the idea that even different 

variants within the same gene or genetic pathway can result in a similar functional change, 

resulting in the same phenotype (or disease modification). 

Grouping variants together is also a means to increase statistical power. For 

example,Morris and Zeggini (Morris and Zeggini, 2010) coined a “functional unit” where the 

functional unit is the gene or pathway in question. With this notion, it is possible to discover 

genetic modifiers of disease severity in a small-sample cohort. For example, variants in 

APOE*E2 were associated with a delayed age of onset in PSEN1 Alzheimer’s disease (Vélez 

et al., 2016).  

1.5 Aims and hypotheses 

The extensive variation in the onset and progression of NPC disease implies the presence 

of disease-modifying variants. While NP-C disease has a monogenic cause, there is still much 

to be elucidated regarding its broad clinical spectrum and the variation in quality of life among 

patients, including within sibling-pairs that share the same disease-causing NPC mutation. The 

overall hypothesis of this thesis is that there are genetic modifiers of NP-C disease severity. 

Specifically, the thesis aims are the following: 

1. To sequence the exomes of five/six sibling pairs affected with NP-C disease. 

2. To identify genetic modifiers common to all NP-C patients. 

3. To identify genetic modifiers of disease severity that are unique within sibling 

pairs and segregating with disease severity. 

 

 

 



2 EXOME SEQUENCE ANALYSIS OF SIBLING PAIRS WITH NP-C 

 

2.1 Introduction 

 

NP-C disease is an autosomal recessive, monogenic disease with an estimated 

prevalence of roughly 1:104,000 live births (Jahnova et al., 2014; Wassif et al., 2016). NP-C 

disease is caused by mutations in the NPC1 (95% of the cases) or NPC2 (5% of the cases) gene 

(Vanier, 2010). However, the actual population prevalence is probably higher, due to the lack 

of clinical awareness, difficulty in testing for the condition and heterogeneous presentation of 

the disorder (Wassif et al., 2016). There are four major types of NP-C disease based on the age 

of onset (define four types), with the classical presentation being the juvenile category of 6 to 

15 years, development of gastrointestinal problems followed by dementia and ataxia, and loss 

of life before adolescence (Vanier 2010). This heterogeneity of NP-C disease is such that even 

siblings with the same causative mutation can have varied ages of onset and severity of 

symptoms (Imrie et al., 2007; Iturriaga et al., 2006; Patterson et al., 2012; Vanier, 2010). It is 

still not well-described how individuals with the same causal monogenic mutation can have 

such different clinical outcomes. 

The onset and progression of any disease, NP-C disease included, is a combination of 

genetic and environmental factors. Environmental factors can include drug treatments or a 

specific diet to ameliorate disease, while genetic factors can be the disease-causing gene and 

any genetic modifiers extrinsic to the disease-causing genes. A genetic modifier of a disease is 

a mutation outside of the disease-causing gene that contributes to a disease phenotype but does 

not on its own confer the disease (Genin et al., 2008). As there are siblings affected with NP-

C disease exhibiting divergent disease severity and these siblings were raised in the same 

households with similar diets and attempted treatments were either consistently applied to both 

siblings or none at all, we hypothesize that NP-C disease severity is a consequence of genetic 



modifiers. Genetic modifiers have previously been identified in model systems to study NP-C 

disease such as the EAF1 and YAF9 histone acetylase genes in the yeast model (Munkacsi et 

al., 2011), the transmembrane protein TMEM97 in cholesterol-manipulated HeLa cells (Bartz 

et al., 2009), the small heat shock protein HSPB1 in NP-C mice Purkinje cells (Chung et al., 

2016) and in human cohorts, with ApoE polymorphisms in fifteen NP-C patient cell lines (Fu 

et al., 2012). A systematic and unbiased genomic screen for genetic modifiers of NP-C has not 

yet been conducted directly in human patients. 

Sequencing of only the protein-coding portion of the genome (the exome) has 

previously been used to identify modifiers of disease, such as in cystic fibrosis, Alzheimer’s 

disease and Limb-Girdle muscular dystrophy (Emond et al., 2015; Fu et al., 2012; Reddy et al., 

2017). When combined with kindred pairs, it is possible to detect variants that segregate with 

the clinical phenotype in question, given appropriate scoring and statistical measures (Amin et 

al., 2017; Hu et al., 2017). A genetic modifier does not have to be removed from the unaffected 

or control population, for the variant could be modifying the disease-causing gene/pathway. 

To further strengthen the power of your sib-pair analysis, functional groups of variants 

belonging to a ‘unit’ (gene, pathway etc.) with individual variants assigned weights are then 

tested for associations between phenotype and these variants per group (Morris and Zeggini, 

2010; Zhu et al., 2010). 

In this chapter, to identify putative genetic modifiers of NP-C disease severity we 

performed whole exome sequencing of an NP-C patient cohort (n = 10) consisting of five 

sibling pairs exhibiting divergent disease severity. The raw sequence reads were processed, 

variants were then annotated and filtered to determine those that segregated within sibling pairs 

and throughout the NP-C cohort.  

 



2.2 Materials and Methods 

 

2.2.1 Patients 

 

NP-C patients with verified NPC1 gene mutations and positive filipin stain tests were 

sequenced with consent according to the Institutional Review Board of Columbia University 

Medical Center, in collaboration with Dr. Stephen Sturley. Patients had one other sibling in the 

cohort with the additional feature that every sibling-pair showed divergent disease severity. 

The clinical characteristics were provided by physicians as part of the study. 

2.2.2 Exome sequencing 

 

Exome sequences were selectively sequenced from genomic DNA (Figure 2.1). First, 

genomic DNA was extracted from each NP-C patient (peripheral lymphocytes or immortalized 

fibroblasts), sheared via sonication into fragments of random lengths and adaptors were linked 

to the fragments to form a library of potentially overlapping reads as described previously for 

a paired-end cluster generation kit (PE-401-1001) on an Illumina HiSeq2000. To specifically 

target exonic regions, biotin is hybridized to these fragments within a sea of complimentary 

sequences to the adaptors. Following a wash, the exonic fragments are recovered via a biotin-

based pulldown, whereupon standard amplification and massively parallel sequencing follows. 

The creation of a library, enriched for protein-coding regions, enables the mapping and calling 

of potential genetic modifiers to disease.   

 

 

 

 

 Figure 2.1 – Exome sequencing pipeline. Exons are shown in dark blue, biotinylated DNA baits are shown 

in orange. Figure adapted from Bamshad et al. 



2.2.2.1 Read mapping and variant calling overview 

 

Interleaved raw sequence reads in FASTQ format (Cock et al., 2010) were mapped to 

the GRCh38 Genome Reference Consortium Human Reference 38 (GCA_000001405.2) 

assembly of the human genome 

(https://www.ncbi.nlm.nih.gov/genome/?term=txid9606[orgn]) using the BWA-MEM 

alignment algorithm (Li and Durbin, 2010). Sequence calls were filtered with ≥10x coverage 

and integrated parameters as described below. Sequence calls were compared to HapMap and 

other resources as described by the Broad Institute (McKenna et al., 2010). Annotation of 

variants was performed using SnpEff based on NCBI and UCSC databases, such as dbSNP. 

2.2.2.2 Trimming adapter sequences 

 

Adapter sequences were removed from FASTQ sequence data using Trimmomatic 

(Bolger et al., 2014) based on Phred scores (Illumina) in the paired-end mode to conserve read 

pairs and find PCR primer fragments. Adapter sequences were trimmed using the following 

small script:

#!/bin/bash 

IF=PATH TO INPUT FORWARD FILE (R1) 

IR=PATH TO INPUT REVERSE FILE (R2) 

OFP=PATH TO OUTPUT FORWARD PAIRED FILE 

OFU=PATH TO OUTPUT FORWARD UNPAIRED FILE 

ORP=PATH TO OUTPUT REVERSE PAIRED FILE 

ORU=PATH TO OUTPUT REVERSE UNPAIRED FILE 

java -jar trimmomatic-0.36.jar PE -phred33 $IF $IR $OFP $OFU $ORP $ORU 

ILLUMINACLIP:EXOME_PIPE/Trimmomatic-0.36/adapters/TruSeq3-PE.fa:2:30:10 

LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36  

Script 2.1 – Trimmomatic removal of adapter sequences. 

https://www.ncbi.nlm.nih.gov/genome/?term=txid9606%5borgn


2.2.2.3 Interleaving 

 

Forward and reverse reads within the same FASTQ file were interleaved together via 

the following Python script: 

#!/usr/bin/env python 

# encoding: utf-8 

 

import sys 

import argparse 

 

def interface(): 

    parser = argparse.ArgumentParser() 

 

    parser.add_argument('--rm-short-reads', 

                      type=int, 

                      help='Minimum number of base pairs \ 

                      either R1 or R2 read must be.')  

 

 

    parser.add_argument('LEFT_INPUT', 

                        type=argparse.FileType('r'), 

                        default=sys.stdin, 

                        nargs='?', 

                        help='R1 reads.') 

 

    parser.add_argument('RIGHT_INPUT', 

                        type=argparse.FileType('r'), 

                        default=sys.stdin, 

                        nargs='?', 

                        help='R2 reads.') 

 

    parser.add_argument('INTERLEAVED_OUTPUT', 

                        type=argparse.FileType('w'), 

                        default=sys.stdout, 

                        nargs='?', 

                        help='Alignment file.') 

 

    args = parser.parse_args() 

    return args 

 

 

def process_reads(args): 

     

    left = args.LEFT_INPUT 

    right = args.RIGHT_INPUT 

    fout = args.INTERLEAVED_OUTPUT 

     

    while 1:  

 

        # process the first file 

        left_id = left.readline() 

        if not left_id: break 

        left_seq = left.readline() 

        left_plus = left.readline() 

        left_quals = left.readline() 

 

        # process the second file 

        right_id = right.readline() 

        right_seq = right.readline() 

        right_plus = right.readline() 

        right_quals = right.readline()  

Script 2.2 – Interleaving paired-end reads. Takes two FASQ files as input and outputs a 

single, interleaved FASTQ file. Script adapted from https://gist.github.com/ngcrawford. 

https://gist.github.com/ngcrawford


As each sample was run on separate lanes, an additional step was required to handle 

multiple libraries separately. This was accomplished using Script 2.2, taking the form “python 

interleave_fastq.py FWD.fastq REV.fastq OUT.fastq”: 

#!/bin/bash 
CURRENT_FILE=1 
WRK_DIR=/media/chemgen/Elements1/DMF/L1 
OUT_DIR=/media/chemgen/Elements1/DMF 
pstr="[==================================================================]" 
 

cd $WRK_DIR 
 

# count total number of files in dir 
t=$(ls -1 | wc -l) 
 

# divide by two for true file count of fwd and rev reads 
tc=$(($t/2)) 
 

while [ $CURRENT_FILE -le 9 ]; do 
 z=$(echo *_00*$CURRENT_FILE*) # both R1 and R2 reads as arguments 

here 
 python /media/chemgen/Elements1/scripts/interleave_fastq.py $z 

$OUT_DIR/DMF_L1_CAGATC_Lib$CURRENT_FILE.fastq # interleave_fastq.py R1 R2 

OUTPUT 
 CURRENT_FILE=$((CURRENT_FILE=CURRENT_FILE+1)) 
 count=$(($CURRENT_FILE-1)) 
 pd=$(( $count * 73 / $tc )) 
 printf "\r%3d.%1d%% %.${pd}s" $(( $count * 100 / $tc )) $(( ($count * 

1000 / $tc) % 10 )) $pstr 
 if [ "$CURRENT_FILE" -eq "$tc" ]; then 
  break 
 fi 
done 
 

while [ $CURRENT_FILE -le $tc ]; do 
 z=$(echo *_0*$CURRENT_FILE*) # both R1 and R2 reads as arguments here 
 python /media/chemgen/Elements1/scripts/interleave_fastq.py $z 

$OUT_DIR/DMF_L1_CAGATC_Lib$CURRENT_FILE.fastq # interleave_fastq.py R1 R2 

OUTPUT 
 CURRENT_FILE=$((CURRENT_FILE=CURRENT_FILE+1)) 
 count=$(($CURRENT_FILE-1)) 
 pd=$(( $count * 73 / $tc )) 
 printf "\r%3d.%1d%% %.${pd}s" $(( $count * 100 / $tc )) $(( ($count * 

1000 / $tc) % 10 )) $pstr 
done 

 

Script 2.3 – Interleaving individual lanes. This example demonstrates taking the paired-end 

reads from lane 1 of a single sample, DMF, and interleaving them. This process is repeated 

for each lane (L1, L2, …, LN).  

 



2.2.2.4 Mapping 

 

Mapping was performed via the Burrows-Wheeler Alignment Tool using the BWA-

MEM alignment algorithm (Li and Durbin, 2010) run in paired-end mode for Picard 

compatibility: 

 
WRK_DIR=$GLOBAL_SCRATCH/AAA.TRIM 
cd $WRK_DIR 
module load bwa-kit 

for f in *.fastq; do 
STEM=$(basename "${f}" .fastq); 
bwa mem -Mp $GLOBAL_SCRATCH/hg38.fa $f > ${STEM}.sam 
done 
 

 

Script 2.4 – Mapping read data to GRCh38. This script converted the reads from FASTQ 

format to SAM format. The ‘mem’ argument specifies that alignments will be initiated via 

maximal exact matches, and then extended according to the Smith-Waterman method (Smith 

and Waterman, 1981). The ‘-M’ parameter (short for Mark) is used to ensure Picard 

compatibility further on in the pipeline, as Picard requires shorter split hits to be specifically 

marked as such. As our input FASTQ files have been interleaved (see Script 2.2), we know 

that the 2n and 2n+1 reads form a read pair and can tell BWA to operate in paired end mode 

via the ‘-p’ parameter.   

 

2.2.2.5 Sorting and realignment 

 

Sequence alignment/map (SAM) files were sorted by coordinate and converted to 

binary alignment/map (BAM) format (Li et al., 2009a). Realignment around regions with 

insertions and deletions was not performed, as downstream variant calling was performed via 

HaplotypeCaller (McKenna et al., 2010), which works through de novo assembly, rendering 



this realignment requirement of older, locus-based variant callers obsolete.

module load picard-tools 

PICARD=/srv/global/scratch/groups/sbs/picard-tools-2.1.0/picard.jar 

for dir in $GLOBAL_SCRATCH/AAA.TRIM/*sam;do # ALL .sam FILES IN DIR 

RECURSIVELY 

name=${dir%.*} 

 

java -jar $PICARD SortSam \ 

      I=$dir \ 

      O=$name.bam \ 

      SORT_ORDER=coordinate 

java -jar $PICARD BuildBamIndex \ 

      I=$name.bam 

done 
 

 

Script 2.5 – Sorting SAM files via coordinate. We build a BAM file with an index (.bai) for 

use later in the pipeline. A .bam file is the aligned sequence data, whereas the .bai file is the 

index file which allows quick navigation of a .bam file. 

  

2.2.2.6 Add read group headers 

 

Read groups (unique identifiers for a collection of reads) were defined in the header of 

BAM files in order to be processed within the GATK pipeline (McKenna et al., 2010):

module load picard-tools 

PICARD=/srv/global/scratch/groups/sbs/picard-tools-2.1.0/picard.jar 

shopt -s globstar 

for dir in $GLOBAL_SCRATCH/AAA.TRIM/14/MERGE/*bam;do # dir == full path to 

ALL files in AAA.TRIM 

# e.g. 

/srv/global/scratch/carsweshau/AAA.TRIM/9/L8.ACTGAT/Andy9_L8_ACTGAT_Lib9.ba

m 

[[ -d $dir ]] && continue # if directory then skip 

if [ ${dir: -4} == ".bam" ]; then 

name=${dir%.*} # removes extension 

filename=${dir##*/} # removes path prefix 

filenoext=${name##*/} 

sep=$(echo $filenoext | tr "_" "\n") 

infor=( $sep ) # ${infor[2]} corresponds to ACTGAT in the above example 

sample=${infor[0]} 

unit=${infor[1]} 

library=${infor[3]} 

 

java -jar $PICARD AddOrReplaceReadGroups INPUT=${dir} OUTPUT=${name}_RG.bam 

RGID=$filenoext RGLB=$library RGPL=illumina RGPU=$unit RGSM=$sample   

fi 

done  

Script 2.6 – Add or replace read groups.  



2.2.2.7 Marking duplicates 

 

Duplicate reads that arose from the sequencing process per read group were marked, 

removing these molecular duplicates from downstream analysis. This step was also used to 

merge multiple BAM files per sample into a single BAM file per sample, with each collection 

of reads from a single library run per lane defined as a read group. This step results in our 

multiple libraries being correctly merged into a single BAM file per sample, while preserving 

pertinent information like lane number and read group.

module load picard-tools 

PICARD=/srv/global/scratch/groups/sbs/picard-tools-2.1.0/picard.jar 

shopt -s globstar 

dir=$(echo "$GLOBAL_SCRATCH/AAA.TRIM/**") 

name=${dir%.*} 

java -jar $PICARD MarkDuplicates \ 

      I="$dir" \ 

      O=${name}_dedup.bam \ 

      METRICS_FILE=metrics.txt  

Script 2.7 – Mark molecular duplicates.  

 

2.2.2.8 Base quality recalibration 

 

The final step in pre-processing was completed by recalibrating the individual base 

quality score assigned during each sequence read. This base quality score recalibration 

(BQSR) adjusted the base error reported by the sequencing platform. This was based on cycle 

quality, dinucleotide quality and global differences between the empirical and the reported 

score as well as bin specific shift quality. This recalibration resulted in reported read quality 

scores that better matched empirical quality, reduced error by dinucleotide and machine 



cycling, and improved the accuracy of downstream variant calls (DePristo et al., 2011).

module load gatk 

GATK=/srv/global/scratch/groups/sbs/GATK/3.5.0/GenomeAnalysisTK.jar 

ANDY_COUNT=1 

while [ $ANDY_COUNT -le 10 ]; do 

for f in $GLOBAL_SCRATCH/AAA.TRIM/$ANDY_COUNT/*dedup.bam; do 

java -jar $GATK \ 

   -T BaseRecalibrator \ 

   -R $GLOBAL_SCRATCH/hg38.fa \ 

   -I $f \ 

   -knownSites $GLOBAL_SCRATCH/dbsnp_148_sorted.vcf \ 

   -o 

$GLOBAL_SCRATCH/AAA.TRIM/$ANDY_COUNT/Andy${ANDY_COUNT}_recal_data.table 

java -jar $GATK \ 

   -T PrintReads \ 

   -R $GLOBAL_SCRATCH/hg38.fa \ 

   -I $f \ 

   -BQSR 

$GLOBAL_SCRATCH/AAA.TRIM/$ANDY_COUNT/Andy${ANDY_COUNT}_recal_data.table \ 

   -o 

$GLOBAL_SCRATCH/AAA.TRIM/$ANDY_COUNT/ANDY_${ANDY_COUNT}.merged.dedup.recal.

bam 

done 

ANDY_COUNT=$((ANDY_COUNT=ANDY_COUNT+1)) 

done  

Script 2.8 – Base recalibration. Known sites SNP database obtained from 

ftp://ftp.ncbi.nih.gov/snp/. 

 

 

 

 

 

 

 

 

 

ftp://ftp.ncbi.nih.gov/snp/


2.2.2.9 Generating callable loci 

 

As sequencing of our subjects was completed in 2011, the target BED regions (the 

targeted capture co-ordinates) were not provided for this HiSeq2000 exome project. As such, 

the CallableLoci module was used to generate a target list of intervals empirically:

module load gatk 

GATK=/srv/global/scratch/groups/sbs/GATK/3.5.0/GenomeAnalysisTK.jar 
ANDY_COUNT=1 
while [ $ANDY_COUNT -le 13 ]; do 
for f in $GLOBAL_SCRATCH/AAA.TRIM/$ANDY_COUNT/*.recal.bam; do 
java -jar $GATK \ 
     -T CallableLoci \ 
     -R $GLOBAL_SCRATCH/hg38.fa \ 
     -I $f \ 
     -summary table.txt \ 
     -o $GLOBAL_SCRATCH/AAA.TRIM/$ANDY_COUNT/call_sites.bed 
done 
ANDY_COUNT=$((ANDY_COUNT=ANDY_COUNT+1)) 
done  

Script 2.9 – Callable loci. This module provides estimates for the coverage at each locus of 

interest, returning summary intervals tagged with certain states (PASS, NO_COVERAGE, 

LOW_COVERAGE, EXCESSIVE_COVERAGE, POOR_MAPPING_QUALITY). 

 

The list of callable regions within the BED file format was then converted to an 

interval list via the following script:

java –jar $PICARD BedToIntervalList I=call_sites.bed 

SD=$GLOBAL_SCRATCH/hg38.dict 

O=$GLOBAL_SCRATCH/AAA.TRIM/call_sites.interval_list 
 

 

Script 2.10 – Bed to interval list. A simple file format conversion to ensure compatibility 

with the GATK interval parameter. From this, we can determine the sequence intervals to 

operate over, even without the original target regions. 

  



2.2.2.10 Re-ordering contigs 

 

An important constraint when using the GATK is ensuring the BAM file contig order 

matches the coordinate order of the reference, along with any other database files. To ensure 

this, the following custom perl script was employed to sort a supplied VCF file by reference 

genome: 

#!/usr/bin/perl 
open(DICT,$dict_file) or die "Can't open $dict_file!\n"; 
my @contig_order; 
my $c=0; 
while(<DICT>) 
{ 
if($_=~ /\@SQ/) 
 { 
 my ($contig) = $_ =~ /SN:(\S+)/; 
 $contig_order[$c]=$contig; 
 ++$c;  

 #print $contig,"\n"; 
 } 
} 
close(DICT); 
open(VCF,$vcf_file) or die "Can't open $vcf_file!\n"; 

 

my %vcf_hash; 
my $header; 

 

while(<VCF>) 
{ 
if($_=~/^#/){ $header .= $_; } 
chomp($_); 

 

my @data = split(/\t/,$_); 
my $contig = $data[0]; 
my $start = $data[1]; 
my $variant = $data[4]."to".$data[5]; 
my $line = $_; 

 

$vcf_hash{$contig}{$start}{$variant}=$line; 

 

} 
close(VCF); 
print $header; 

 

foreach my $contig (@contig_order) # sort by contig order 
 { 

 #print $contig,"\n"; 
 foreach my $start (sort {$a <=> $b} keys 

%{$vcf_hash{$contig}}) # sort numerically by coordinates 
  { 

  #print $start,"\n"; 
  foreach my $variant (keys 

%{$vcf_hash{$contig}{$start}}) 
   { 
   print 

$vcf_hash{$contig}{$start}{$variant},"\n"; 
   }  
  } }  

Script 2.11 – Sort VCF.  

Custom perl script for sorting VCFs, copyright German Gaston Leparc. 



Operating over intervals 

 

By default, the GATK operates over the genomic intervals defined by the reference 

contigs. For exome sequencing projects, iterating over the entire genome is redundant, so we 

specified the intervals to process via the ‘-L’ parameter. This intervals parameter can accept a 

list of intervals defined within a file (see Script 2.10). 

2.2.2.11 Genotyping 

 

The processed BAM files from 2.2.2.8 were examined for sites that vary in relation to 

the reference genome. HaplotypeCaller (McKenna et al., 2010) was use to target regions likely 

to be sites of significant variation, determining the allelic likelihood for those sites. Then using 

probabilistic methods, a genotype was supplied for that sample (including an estimate for how 

homozygous the sites were to the supplied reference) and presented in a genomic variant call 

format file (gVCF): 



module load gatk 

module load samtools 

GATK=/srv/global/scratch/groups/sbs/GATK/3.5.0/GenomeAnalysisTK.jar 
ANDY_COUNT=1 
while [ $ANDY_COUNT -le 13 ]; do 
for f in $GLOBAL_SCRATCH/AAA.TRIM/$ANDY_COUNT/*.recal.bam; do 
SAMPLE=Andy${ANDY_COUNT} 
if [ $ANDY_COUNT -eq 10 ]; then 
 SAMPLE="DHK" 
fi 
if [ $ANDY_COUNT -eq 11 ]; then 
 SAMPLE="SAK" 
fi 
if [ $ANDY_COUNT -eq 12 ]; then 
 SAMPLE="TAF" 
fi 
if [ $ANDY_COUNT -eq 13 ]; then 
 SAMPLE="TEF" 
fi 
#SAMPLE_NAME=$(samtools view -H $f | grep '@RG') 
java -jar $GATK \ 
 -T HaplotypeCaller \ 
 -R $GLOBAL_SCRATCH/hg38.fa \ 
 -I $f \ 
 -o 

$GLOBAL_SCRATCH/AAA.TRIM/$ANDY_COUNT/ANDY_${ANDY_COUNT}.raw.snps.indels.g.v

cf \ 
 --sample_name $SAMPLE \ 
 --emitRefConfidence GVCF \ 
 --dbsnp $GLOBAL_SCRATCH/1000G_phase1.snps.high_confidence.hg38.pl.vcf 

\ 
 -L $GLOBAL_SCRATCH/AAA.TRIM/$ANDY_COUNT/call_sites.interval_list 
done 
ANDY_COUNT=$((ANDY_COUNT=ANDY_COUNT+1)) 
done 

 

Script 2.12 – Haplotype caller. Estimates likely regions of variation within the provided 

sequence using the SW algorithm. Our dbsnp file has been sorted via coordinate to ensure 

contig compatibility with reference. 

 

 

 

 

 



The produced collection of gVCFs were then loaded into GenotypeVCF (Van der 

Auwera et al., 2013) to generate a list of raw SNPs and indels. By combining our sample gVCFs 

into a cohort gVCF, we increased sensitivity to detect variation in individually difficult sites: 

module load gatk 

GATK=/srv/global/scratch/groups/sbs/GATK/3.5.0/GenomeAnalysisTK.jar 

java -jar $GATK \ 

   -T GenotypeGVCFs \ 

   -R $GLOBAL_SCRATCH/hg38.fa \ 

   --variant $GLOBAL_SCRATCH/AAA.TRIM/1/ANDY_1.raw.snps.indels.g.vcf \ 

   --variant $GLOBAL_SCRATCH/AAA.TRIM/2/ANDY_2.raw.snps.indels.g.vcf \ 

   --variant $GLOBAL_SCRATCH/AAA.TRIM/3/ANDY_3.raw.snps.indels.g.vcf \ 

   --variant $GLOBAL_SCRATCH/AAA.TRIM/4/ANDY_4.raw.snps.indels.g.vcf \ 

   --variant $GLOBAL_SCRATCH/AAA.TRIM/5/ANDY_5.raw.snps.indels.g.vcf \ 

   --variant $GLOBAL_SCRATCH/AAA.TRIM/6/ANDY_6.raw.snps.indels.g.vcf \ 

   --variant $GLOBAL_SCRATCH/AAA.TRIM/7/ANDY_7.raw.snps.indels.g.vcf \ 

   --variant $GLOBAL_SCRATCH/AAA.TRIM/8/ANDY_8.raw.snps.indels.g.vcf \ 

   --variant $GLOBAL_SCRATCH/AAA.TRIM/8/ANDY_9.raw.snps.indels.g.vcf \ 

   --variant $GLOBAL_SCRATCH/AAA.TRIM/10/ANDY_10.raw.snps.indels.g.vcf \ 

   --variant $GLOBAL_SCRATCH/AAA.TRIM/11/ANDY_11.raw.snps.indels.g.vcf \ 

   --variant $GLOBAL_SCRATCH/AAA.TRIM/12/ANDY_12.raw.snps.indels.g.vcf \ 

   --variant $GLOBAL_SCRATCH/AAA.TRIM/13/ANDY_13.raw.snps.indels.g.vcf \ 

   -o $GLOBAL_SCRATCH/raw_pooled_GVCF.vcf 

 

Script 2.13 – Genotype GVCFs. This tool intelligently handles multiple samples with a joint 

aggregation step, merging each position of the selected –variants and re-estimating the 

genotype likelihoods. 

 

2.2.3 Variant discovery 

 

Variants were identified from our collection of raw variants using a multi-step process. 

To attempt to mitigate the inherent weaknesses of manual filtration, we adopted an integrative 

and selective manual filtration approach. Custom call sites for each sample were generated via 

CallableLoci (Van der Auwera et al., 2013) and used to exclude any regions outside this 

interval list. Furthermore, the normal distribution of variants was quantified for individual 

samples using a custom filter thresholds set. Annotation values were plotted against each other 

to generate clusters of variants, and from that a facsimile of multi-dimensional annotation 



information was generated. This was used to inform which hard filter thresholds were 

ultimately used in variant filtration. 

2.2.3.1 Transition/Transversion ratio 

 

The Ti/Tv ratio was calculated as described previously (Kristina Strandberg and Salter, 

2004). In brief, raw SNP calls were partitioned into tranches, and transitions and transversions 

were identified using VariantEval (McKenna et al., 2010). 

2.2.3.2 Filtration of variants using SnpEff/SnpSift 

 

Variants were annotated and filtered using the joint SnpEff/SnpSift package (Cingolani 

et al., 2012). Filtration was accomplished via user-designed boolean expressions of arbitrary 

complexity. Filtration in particular focused on excluding non-coding/synonymous variants, 

excluding common variants (defined as > 0.5% AF, see 2.2.5 for reasoning behind this 

threshold) and prioritising nonsense, missense and splice-site mutations of high or moderate 

predicted impact. 

cat raw_pooled_GVCF.vcf \ 

  | java -jar SnpSift.jar filter \ 

    "((ANN[*].IMPACT = 'HIGH') | (ANN[*].IMPACT = 'MODERATE'))" \ 

  > filtered_pooled_GVCF.vcf 
 

 

Script 2.14 – SnpSift filtration of variants based off predicted impact. This simple 

expression filters the annotated variants based off a user defined expression, in this case 

whether the predicted impact of the variant has a predicted impact score (PHRED, etc) of 

high or moderate. More complicated filter expressions can be constructed as required. 

 

 

 

 



2.2.3.3 Exome wide association using PLINK 

 

Association between genotypic and phenotypic data was investigated using PLINK 

(Purcell et al., 2007). Required inputs were pedigree and genotype information in .ped format, 

paired with a variant information file (.map). This information enabled the generation of a 

binary bi-allelic genotype table (confusingly given the same file extension as the browser 

extensible data format, .bed), an extended variant information file (.bim) and an information 

file containing patient sample family data (.fam). In our case, the .fam file included the 

discordant sibling phenotype values (see 2.2.3.4) of disease severity. Given this phenotype, a 

one degree of freedom chi-square allelic test for association of variants to disease severity was 

performed. 

2.2.3.4 Discordant sibling pair analysis 

 

Sibling pairs were considered to be discordant if they could be segregated along the 

binary trait of disease severity. This was categorized as being either high functioning NP-C1 

or severely affected NP-C1. This clinical information along with genotype information was 

encoded in PED format, for use in down-stream analysis.  

2.2.3.5 Copy number variation 

 

CNV was detected using the copy-number caller Conifer (Krumm et al., 2012). Conifer 

uses the FASTQ files with raw sequencing data to quickly align 36bp fragments to your 

targeted regions, calculating read depth from the aligned reads. From this, singular value 

decomposition is applied to allow the calculation of a 15-exon average to determine sources of 

variation to the exons per sample. This allows the calculation of the relative copy number of 

an exon in a sample through the calculation of a dot product (Krumm et al., 2012). 

 



2.2.4 Cell culture 

 

Primary neurons were isolated by Remy Schneider (PhD student, VUW) from 

(Npc1nmf164) as previously described (Hilgenberg and Smith, 2007), and these cells were 

maintained in neuronal conditioned media (Neurobasal Medium, Gibco 21103-049). 

Immortalized fibroblasts derived from NPC patients (GMO3123 and GMO9503) were 

obtained from the Coriell Institute. GMO3123 carries missense mutations in exons 6 and 21 of 

the NPC1 gene resulting in impaired cholesterol esterification and 62% impaired 

sphingomyelinase activity compared to normal fibroblasts. GMO9503 was the control 

fibroblast since this cell line was derived from a healthy, age- and ethnically-matched person. 

Fibroblasts were maintained in media comprised of DMEM (ThermoFisher), 10% FCS, 

GlutaMax (ThermoFisher) and penicillin streptomycin (ThermoFisher). All cell lines were 

incubated at 37ºC with 5% CO2. 

Cells were passaged with removal of media followed by replacement with the cell-

dissociation enzyme reagent TrypLE™ (ThermoFisher). After cell dissociation, these cells 

were centrifuged in fresh media at 1500 rpm to allow pellet formation. Following resuspension 

in media, 10 µL of cells were mixed with 10 µL of trypan blue, to allow an estimation of cell 

density through use of a haemocytometer. From this, cell passage followed in a 96-well plate 

at a density of 1x103 cells/100 µL of media for treatment experiments. 

2.2.4.1 Filipin staining in fibroblasts 

 

Filipin (Sigma F9765) was prepared at 25 mg/mL in DMSO. In a 96 well plate, cells 

were washed twice with 3x PBS, 100 µl 1% PFA was added, incubated for 20 min, and washed 

twice with 3x PBS. Then 100 µL of 50 µg/mL filipin in PBS was added to each well in the 

dark, incubated for 2 h in the dark on a moving platform, washed twice with 3x PBS, and 

imaged using fluorescent microscopy. 



2.2.4.2 Filipin staining in primary neurons 

 

Primary neurons were fixed with 3% sucrose, 4% PFA in PBS for enhanced structural 

preservation of neurons. In 96 well plates, half of the media was replaced with with an equal 

amount of fixative, incubated at room temperature for 20 min with orbital rotation at 50 rpm, 

and washed three times with ice cold PBS. Then glycine (1.5 mg/mL in PBS) was added to to 

quench aldehyde groups and remove auto-fluorescence, and incubated at room temperature for 

10 min. Next 100 µL of 50 µg/mL filipin in PBS was added to each well in the dark, incubated 

for 2 h in the dark on a moving platform, washed twice with 3x PBS, permeabilization buffer 

(1.5 mL donkey serum, 9 µg saponin and 13.5 mL 1x PBS) was added, washed twice with 3x 

PBS, and imaged using fluorescent microscopy. 

2.2.4.3 Fluorescent microscopy 

 

For primary neurons, VECTASHIELD Antifade Mounting Medium (Vector 

Laboratories) (4 µL) was applied to protect against photobleaching. Cells in contact with a wet 

coverslip (optimised via contact with a Kim-Wipe orthogonally) were interfaced with coverslip 

facing up. Nail polish was used to seal the cover slip to a microscope slide. Imaging of both 

fibroblasts and neurons was performed with the Olympus BX63 fluorescence upright 

microscope. Image pre-processing was performed using cellSens Standard software (Olympus 

Life Science Solutions). Filipin fluorescent images were taken with neutral density filters 

ND25, ND6 and a fluorometer DAPI filter (excitation wavelength 350 nm, emission 

wavelength 470 nm). Cell fluorescence was quantified using FIJI (ImageJ), using the reported 

integrated density to calculate corrected total cell fluorescence. 

2.2.5 Association testing 

 

Testing for significant association between genomic regions including variants and the 

clinical trait of disease severity was performed with the R software package PODKAT. In 



particular, we outline the specific assumptions chosen to increase statistical power for this 

small sample association test. Where possible, neutral variants were filtered out, as this can 

decrease statistical power, even if damaging or protective variants are present. Furthermore, 

the binary trait of disease severity was selected as the clinical phenotype with the strongest 

signal for association to our genomic information. 

2.2.6 Structural modelling 

 

Structural modelling of proteins was performed via BALLView 1.4 (Moll et al., 2005), 

a molecular modelling framework that utilizes the biochemical algorithms library (Hildebrandt 

et al., 2010). Protein structures were downloaded from the RCSB Protein Data Bank 

(http://www.rcsb.org) e.g. MARCH8 PDB ID: 2d8s.    

http://www.rcsb.org/


2.3 RESULTS 

 

2.3.1 Exome sequence annotation 

 

The onset and progression of NP-C is highly heterogeneous (Vanier, 2010).  Since there 

is heterogeneity between siblings with the same disease-causing mutation, we hypothesized 

that there are genetic variants modifying disease severity.  Genetic modifiers have previously 

been identified (Deutsch et al., 2016; Fu et al., 2012; Liao et al., 2015; Malnar et al., 2014), but 

only in the limits of the laboratory (i.e., the genetic modifiers were defined by ability to reduce 

filipin accumulation in cell culture). To identify modifiers and associate these modifiers with 

clinical symptoms, we sequenced the exomes of five sib-pairs wherein each the disease-causing 

NPC1 mutation was shared yet the disease severity was divergent (Table 2.1). 

 

 

 

 

 

 

 

 

 



Table 2.1 – NP-C sibling-pair patient cohort with clinical covariates. 

Patient 

number

/ 

Gender 

Sibship Disease 

Severity 

at 15 

years old 

Age at 

neuro. 

symptoms 

Seizures 

score† 

Ambulation 

score† 

Speech 

score† 

Swallowing 

score† 

NPC1 

var.‡ 

1/M A Functional 17 0 2 3 3 p.I1061T/ 

p.P1007A 

2/M  RIP 8 5 5 3 5  

3/M B High func. 25 0 0 0 0 p.G922X/ 

p.V378A 

4/F  RIP 18 0 5 5 5  

5/F C RIP 8 3 - - - p.I1061T 

6/M  High func. 5 3 - - -  

7/F D Func. 27 - 4 - 4 p.I1061T/ 

p.A108H 

8/F  Severe 5 0 5 5 5  

9/F E Severe 12 5 4 3 3 p.I1061T/ 

p.P1007A 

10/M  High func. 15 0 0 0 0  

†: Incomplete availability for diagnostic severity scores, if completely unavailable value was 

denoted with ‘-‘. Scores range from 1-5, i.e. an ambulation score of 1 would mean 

clumsiness, whereas a 5 would translate to wheelchair bound. 

‡: Genomic coordinates prior to cross-mapping. 

 

The discovery of high quality variants called from high-throughput sequencing data is 

well established, with several frameworks previously described (DePristo et al., 2011; 

McKenna et al., 2010). To accomplish variant calling, raw reads were mapped, aligned, 

deduped and recalibrated via a calculated per base error model. Between 60-80 Mb of raw 



sequence was generated for each NPC patient. Multiple libraries of raw sequence reads 

(forward and reverse) per patient sample in FASTQ format were interleaved and individually 

pre-processed before merging into one BAM file per sample (Figure 2.2A). Each sample was 

then genotyped and underwent variant discovery (Figure 2.2B). Raw variants were filtered via 

quality metrics and integrative steps (Figure 2.2C). This error model and subsequent processing 

steps were performed through the best practises pipeline of the GATK (McKenna et al., 2010).



 

 

 

Figure 2.2 – Overview for generation of variants from WES data. 

 



 

 

2.3.1.1 Base quality scores 

 

Raw sequence reads were examined using the FastQC tool (Andrews, 2010), a quality 

control tool for high-throughput sequence data 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Of the quality metrics assessed, 

all samples passed per base/per tile sequence quality, sequence content, duplication levels, 

length distribution and adapter content, while approximately half of the samples threw a 

warning for per sequence GC content and failed the Kmer content check. For the first 99 bp of 

every 100 bp, the quality scores were between 28-40 (Figure 2.3), a range that is acceptable for 

further analysis (Van der Auwera et al., 2013), as a decrease in mean base quality as more bases 

are read is to be expected. 

   

 

Figure 2.3 – Representative quality score across all bases for raw sequence reads from 

Patient 1. 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/


2.3.1.2 GC content warning 

 

Those sequence reads that generated a warning all had profiles where a warning 

constitutes that greater than 15% of the reads deviated from the normal distribution (Figure 

2.4). An immediate feature is the shifted distribution, which represents a systemic bias 

independent of base position – this was not a dire problem as FastQC builds the reference 

distribution from the observed data, independent of the true GC content of the exome. Of more 

concern is the sharp peak around 59% mean GC content that disrupts an otherwise smooth 

distribution (Figure 2.4), suggesting a specific contaminant, either adapter dimers or some other 

over-represented sequence. 

However, these metrics passed quality control,  

suggesting that this peak is not caused by an over-represented sequence (Figure 2.6) or the 

adapter dimers tested (Figure 2.5). To assess this, we utilized trimmomatic (Bolger et al., 2014) 

to remove other potential adapter sequences, although this did not remove the peak in those 

sequence reads affected. The absence of Illumina adapters (Figure 2.5) removed the possibility 

that this is the cause of the deviation from the expected distribution of GC content. An 

additional feature of the over-represented sequence quality check is the fact that the first 5 bp 

of the read are noiser than the subsequent calls, a phenomenon that was taken into consideration 

when using tools that only use the start of the read (such as the Kmer content module). 



 

Figure 2.4 – Sharp GC peak away from theoretical normal distribution of GC content. 

 

 
Figure 2.5 – Absence of adapter dimers. 



 
Figure 2.6 – Per base sequence content is not overrepresented. 

 

2.3.1.3 Kmer content 

 

The Kmer content module of FastQC makes a number of assumptions about the 

provided sequence data, the first of which is that any small sequence fragment does not have a 

positional bias (Schwartz et al., 2011). The Kmer module reasons that even if there is a 

biologically sound reason for Kmer enrichment or depletion, then that biological bias should 

affect all read positions within a sequence equally, and reports any Kmers with positional 

enrichment. However, this means that even if on a per base sequence content or 

overrepresented sequence metric there is not an issue, Kmers from those sequences can still be 

flagged by this module. This would appear as sharp peaks at single points in the sequence, 

which is what we observed for six different 6-mer sequences (Error! Reference source not 

ound.). The most prominent peak for all 6-mer sequences was identified between 40-47 bp in 

each read. As only 2% of the total sequence library was run using this module with the rest 



extrapolated, Kmer bias may also be triggered from sequence libraries with random priming 

due to incomplete sampling. 

2.3.1.4 Raw read quality control 

 

Given the above outputs, the given sample libraries are high in per base sequence 

quality scores (Figure 2.3), with per base sequence content smooth and overlapping (Figure 

2.6), a single shifted normal distribution with a sharp GC peak (Figure 2.4) and no present 

adapter dimers (Figure 2.5). In the context of the whole quality control, the Kmer module result 

can be safely disregarded. Of more concern is the GC content peak that is not explained by 

adapter sequences or overrepresented sequences (Figure 2.5, Figure 2.6). A potential 

explanation is viewing the read distribution as a bimodal distribution with the shallow peak 

Figure 2.7 – Deviations from even Kmer coverage. 



corresponding to intronic content and the sharp peak exonic content (Figure 2.4), suggesting 

that there were still some reads mapped to introns while our library was targeted to exons. 

2.3.1.5 Processed data quality control 

 

To quantify the processed reads of our patient exomes, density plots against the exome 

annotation values were generated. In these plots, area under the curve corresponds to the 

probability of the annotation containing that value (Figure 2.8; Figure 2.9; Figure 2.10; Figure 

2.11; Figure 2.12; Figure 2.13; Figure 2.14). The proportion of variants were lost when filtered 

via this annotation value (grey vertical line(s) in Figure 2.8; Figure 2.9; Figure 2.10; Figure 

2.11; Figure 2.12; Figure 2.13; Figure 2.14). This style of plot can produce pleasing 

concordance with the biological underpinnings of the data set – for example, the bi-modal 

distribution of variant quality (when normalized to depth) corresponds to heterozygote and 

homozygote variants (McKenna et al., 2010). We normalized via depth to avoid accidental 

inflation of annotation values caused by deeper than average coverage. Each of the listed 

figures, when taken alone, visualized the likelihood of finding an annotation at that value. Our 

variant quality, when normalized by depth, resulted in a bimodal distribution corresponding to 

the zygosity of the called variants (Figure 2.8) – if we did not observe this, then that would be 

a red-flag. The density plot revealed that a significant portion of the called variants were below 

a depth of 10 (Figure 2.9), indicating we can then attempt to find parameters that target those 

variants that are both low in quality and low in depth. The strands odd ratio (Figure 2.10) had 

a long tail of failing variants above a SOR of 5 and fisher strand bias (Figure 2.11) showed 

failing variants with FSB beyond 100. These plots indicated that our called reads were not 

biased in terms of allelic count in forward and reverse reads. Figure 2.12) and quality score 

(Figure 2.13) is centred on zero, thus variant alleles were not different from reference alleles 

in terms of position of quality in some spurious way. Finally, the root mean square mapping 

quality was a sharp peak around 60, verifying that the majority of variants were of good quality.  



 

 

 

Figure 2.8 – Density plot of exome variant quality normalized by depth. The two large peaks around QD 15 and QD 28 correspond to 

heterozygote and homozygote variants, respectively. Any variant below the cut-off shown (QD < 2) would be filtered from the call set. 



 

Figure 2.9 – Density plot of exome depth. Compare the plot of exome depth, DP, with that of quality normalized by depth, QD. Despite Carson 

et al. demonstrating that DP can be used to improve data quality in WES studies (Carson et al., 2014), it is not recommended to filter off DP 

alone in WES as the number of reads given an average coverage is not well-defined.  



 

Figure 2.10 – Density plot of exome strands odd ratio. Strands odd ratio is a metric that considers the ratio between alleles of covering reads. 

In this example, a cut-off threshold of SOR > 5 will filter the long tail of likely failing variants. 

 



 

Figure 2.11 – Density plot of exome Fisher Strand bias. Fisher strand bias is the probability of a non-reference allele being observed greater or 

less than expected than the reference allele on the forward or reverse strand. In short, with no strand bias, FS will equal zero. FS is derived from 

the raw counts of allelic reads on both the forward and reverse strand, where those counts are then used as nominal variables in Fisher’s Exact 

Test. An issue with filtering via a FS threshold is that variants that occur at the termination of exons are unfairly penalized, as they tend to 

having coverage in only a single direction.  



 

Figure 2.12 – Density plot of exome read position rank score. The read position rank sum test is a metric used to assay site position within 

reads, testing whether alleles alternative to the reference are only found at the ends of exons. If so, these are assumed to be the product of a 

sequencing error. The test metric is centred on zero – negative values represent alternative alleles at terminal positions more often than reference, 

positive values the opposite. Clearly, zero is preferred as it means no significant difference between the positions of alt and ref alleles. 



 

Figure 2.13 – Density plot of exome mean quality rank score. The mapping quality rank sum test compares the reported quality scores of the 

reads for the alternative and the reference allele. A value of zero means there is no difference between mapping quality scores for reference and 

alternative alleles. These plots with a narrow distribution around zero highlight the difficulties faced in using hard filters across a single 

dimension of data – it is difficult to exclude poor variants without excluding valid ones as well, and vice versa. If MQALT > MQREF, then the 

reported MQRankSum score will be positive. If MQREF > MQALT, then the score will be negative. 



 

Figure 2.14 – Density plot of root mean square mapping quality. The Broad Institute recommends a hard filter threshold of MQ = 40. An 

alternative filter could be applied at MQ = 50 or higher. Because this statistic includes the standard deviation of the read mapping qualities, it 

includes the variation within the dataset. As such, the desired MQ value for analysis appropriate reads is around 60. 



 

 

2.3.1.6 Integrative and selective filtration 

 

The recommended approach to variant filtration after calling using the GATK pipeline 

is re-adjustment of variant call score via variant quality score recalibration (VQSR) (McKenna 

et al., 2010). This approach is desired because it offloads the difficult task of finding the optimal 

balance between tranche sensitivity (obtaining true positives) and tranche specificity (limiting 

false positives) from the researcher to an algorithmic approach. VQSR uses machine learning, 

where gold-standard datasets with extremely clear profiles (e.g., 1000 Genomes, HapMap) are 

used as inputs to the algorithm, such that strong variant annotation sets and weak variant 

annotation sets are used to train the algorithm. This approach is powerful because the data can 

be considered from multiple-dimensions, an approach that is traditionally difficult. 

Dimensional analysis of data enables clusters of variants and ultimately results in more 

informed filtration of variants. Even if an individual annotation value for a variant is low, it 

might still be a true variant when considered in light of other annotation factors. 

Unfortunately, due to the large number of variant sites required for the VQSR approach, 

it requires a sample size of at least 30 exomes (McKenna et al., 2010). As our cohort of 10 

exomes fails this requirement, we were unable to employ the VQSR method and instead used 

manual filtration setting hard thresholds for various attributes of the calling set. If the value 

fails this threshold, it is culled from the putative variant VCF. It is easiest to demonstrate the 

reason this approach is flawed with a graphic showing randomly generated data that is filtered 

when using the (superior) VQSR method and those filtered using manual filtration (Figure 

2.15); the area under the curve represents probability of observing an annotation at that 

particular value.  



 

 

 

 

 

 

 

 

 

 

 

 

After applying the VQSR method to all variants in our simulated cohort (uncoloured 

curve), we segregated variant calls that pass and fail (Figure 2.15). While it is true that a large 

number of variants that fail (red curve) have a QD value < 5, there was a significant tail of 

failing variants that had high QD values > 10. This simultaneously demonstrates the strength 

of observing data multi-dimensionally and the weaknesses of relying on a hard filter. If the 

threshold filter were culling any variant with a QD value < 5, then we were still passing a 

significant number of variants that ought to fail (for reasons found in the other annotation 

dimensions). Furthermore, we were failing some true variants (green curve) with QD values < 

5. For these reasons, rather than ‘selecting’ a single manual threshold, we integrated these 

parameters together to filter our variants. While still inferior to the unavailable VQSR method, 

this approach attempts to recapitulate the clustered nature of traits with reliable variants. 

Hence, by visualizing the annotation values of our called variants in density plots 

(Figure 2.8; Figure 2.9; Figure 2.10; Figure 2.11; Figure 2.12; Figure 2.13; Figure 2.14) and 

investigating the shortfalls of hard filtering a calling-set (Figure 2.15), we were able to optimize 

Figure 2.15 – VQSR filtration density plot. Red AUC represents failing 

‘variants’, green AUC represents ‘variants’ that pass the VQSR filter. Curve with 

no fill is the ‘pre-filtered set of variants’ (i.e. the set of all hypothetical variants 

before VQSR). The y-axis represents proportion of variants. 



the filter parameters for our individual patients (Table 2.2). All patients had a depth threshold 

set at >10, while GQ had a range between 92-98 as the hard filtration cutoff 

Table 2.2 – Summary of integrative filtration parameters. These parameters were 

selected to be sensitive to variant discovery. 

          

 Patient ID 

Filter parameters 1 2 3 4 5 6 7 8 9 10 ALL 

Depth (DP)           10 

Genome Quality (GQ) 93 92 93 98 92 92 94 94 92 92 - 

Quality normalized by depth (QD)  10 

Fisher Strand Bias (FS)  40 

Root Mean Square Mapping Quality (MQ)  59 

Strand Odds Ratio (SOR)  2 

Mean Quality Rank Score (MQRS)  -4 

Read Position Rank Sum (RPRS)  -3 
 

Table 2.2 – Summary of integrative filtration parameters. 

 

2.3.1.7 Ti/Tv ratio 

 

The ratio of transitions (mutations from either a purine or pyrimidine nucleotide to the 

same kind of nucleotide) to transversions (mutations from one type of nucleotide to the other) 

in humans is a useful descriptive statistic to quickly check the quality of called variants 

(Kristina Strandberg and Salter, 2004). As there are twice as many possible transversions than 

there are transitions possible (Ebersberger et al., 2002), the transition:transversion (Ti/Tv) ratio 

has been consistently identified at  2.1 for whole genome sequencing and 2.8 for whole exome 

sequencing. A Ti/Tv ratio that deviates from the expected value is suggestive of false positives 

that were not filtered out. 

The Ti/Tv ratio for our raw sequences was 2.16 (Table 2.3). Using an integrative 

approach, we improved the Ti/Tv ratio via the removal of confounding variants that distorted 

the ratio away from the expected ratio. As we refined parameters, the Ti/Tv ratio was altered 



to the expected exome-wide level of 2.75 (Table 2.3; Figure 2.16). To visualize this, we utilized 

GATK to estimate the probability that each filtered variant was true and represented this as a 

continuous (non-discrete) measure. We then partitioned the SNP calls into tranches (or 

brackets) as determined by the Ti/Tv ratio of the SNPs in that tranche. This allowed us to pick 

the desired levels of specificity and sensitivity; the number of true variants increased as the 

number of false/poor variants increased. These results show that our called variants after 

integrative filtration were concordant with the biologically relevant, descriptive statistic of 

Ti/Tv. Furthermore, this approach enabled an empirical approach to selecting the desired level 

of specificity for true variant calls, while allowing a sensitivity threshold capable of facilitating 

discovery of putative genetic modifiers to NP-C disease. These results also enabled an 

estimation of the degree of improvement gained from integrative filtration: 10.89% increase in 

false positives removed and 58.98% increase in false negatives removed. 

 

Filtration parameter 

 

Ti/Tv 

Raw 2.16 

UCSC1 2.56 

1000G2+dbSNP3 2.6 

dbSNP 2.59 

refseq.interval_list 2.62 

DP104 2.61 

DP50 2.62 

1000G+DP&&GQ5 2.696 

1000G+DP&&GQ||DP||GQ 2.7 

dbsnp148+above 2.72 

1000G+DP&&GQ@300&94 2.74 

1000G+DP&&GQ@400&97 2.75 
 

Table 2.3 – Effect of filtration parameters on Ti/Tv ratio. Ti/Tv ratio is a statistic that is 

expected to be around 2.8 – 3.0 for whole exome sequences in humans. However, the exact 

value obtained depends on a large range of factors with respect to depth of coverage, quality 

of sequencing and technical errors. 1: University of California Santa Cruz; 2: 1000 Genomes; 

3: Database SNP; 4: Depth of coverage; 5: Genome quality. 

 



  

 

2.3.2 Identified putative modifiers within multiple functional categories 

 

We next determined the genes of interest containing non-synonymous variants with 

predicted functional consequences (based on SIFT, MAPP, PolyPhen, etc.) within our whole 

exome data set, and whether these segregate across sibling-pair severity, or whether variants in 

genes of interest exist in the pooled subject cohort. We removed synonymous variants as well 

as variants that were predicted to be functionally benign while prioritizing stop gain/loss, 

missense and splicing variants. We anticipated that to modify disease severity, the genetic 

modifier should segregate cleanly between twins, so in this model a candidate variant would 

have to be present in one sibling and not the other, with greater weight given to variants that 

segregate in this manner across multiple kindreds. A homozygous variant against a 

heterozygous variant was considered to segregate cleanly in this manner, but only with a strict 

cutoff of 4-5 homozygous variants. We also considered an aggregation model, where each 

Figure 2.16 – Tranche plot of NP-C exome SNP calls. Each subsequent tranche is less 

specific, but increases sensitivity for novel variants, at the cost of introducing more false 

positives (FPs). 

TPs: True 

positives 

FPs: False 

positives 



patient’s variants were filtered through frequency of incidence in our cohort and minor allele 

frequency (MAF) on a population level, with priority given to homozygous variants. 

Table 2.4 – Aggregate filtering of 10 exomes identifies candidate modifier genes 

Filter Aggregate 

Well-characterized alleles 22,367 

MAF < 0.05% 2,922 

PolyPhen/SIFT functional modelling in 

population 26 

 

2.3.2.1 Twenty-six genes recovered across seven functional categories in the aggregate 

model 

 

Figure 2.17 – Functional categories of recovered genes. Genes of potential interest were 

found to belong to seven broad, functional groups. Of greatest number of variants per 

functional group recovered to least: Lipid associated (5 genes), glycosylation of proteins (5 

genes), fatty acid synthesis (4 genes), matrix metalloproteinase family (4 genes), ubiquitin 

related (4 genes), acetylcholine related (2 genes), calcium ion binding (2 genes). 



2.3.2.2 Lipid associated 

 

NP-C disease is by definition a disease caused by the defective transport of cholesterol 

and sphingolipids (Patterson et al., 2012). We identified variants in 5 lipid genes (APOBR, 

PCTP, XYLB, MROH8, PLEKHA2) in NP-C patients that were not identified in control 

populations (Table 2.5). These variants were identified as homozygous and heterozygous 

variants. APOBR is an apolipoprotein B48 receptor associated with macrophages and foam cell 

formation with lipoprotein uptake (Brown et al., 2000). Phosphatidylcholine transfer protein 

(PCTP) knockout mice have demonstrated defective lipid homeostasis (Kanno et al., 2007). D-

Xylulokinase (XYLB) is an enzyme active in the liver and kidneys and is upstream of a key 

regulator of lipogenesis (Bunker et al., 2013). Obtaining a variant in MROH8 within a majority 

of our cohort is noteworthy, as this maestro heat like repeat family member has been previously 

identified as a susceptibility gene for Alzheimer’s disease when hippocampal atrophy is used 

as the quantitative trait in a GWAS (Potkin et al., 2009). The splice donor variant in the 

pleckstrin homology domain containing A2 protein (PLEKHA2) present in 5 of 10 patients is 

of interest in the context of the other major functional groups, namely the MMP family, as it is 

fibronectin binding. Sphingolipid metabolism is clearly implicated in lysosomal storage 

disorders, with secondary sphingolipid accumulation a major feature of diseases like Gaucher, 

NP-C and Batten’s diseases. Lipids regulate movement of late endocytic vesicles and in NP-C 

cholesterol-laden endocytic compartments have impaired motility (Lebrand et al., 2002). The 

SnpEff annotation predicts that the reported APOBR missense variant identified in NP-C 

patients (residue change valine to alanine) would modify the CLN3 gene, a transmembrane 

neuronal ceroid-lipofuscinosis gene involved in lysosomal function that is the causative gene 

for Batten disease (Cotman and Staropoli, 2012). The fact that a homozygous variant in an 

apolipoprotein receptor with association to foam cell formation and another LSD occurs in 

every NP-C patient in our cohort is an intriguing finding.  



 

 

 

 

 

Table 2.5 – Lipid associated. 

Gene ID dbSNP ID Variant type 
Zygosity in 

functional 

Zygosity in 

severe 
Description of encoded protein function 

APOBR rs40832 missense_variant 5 Hom 5 Hom Apolipoprotein B48 receptor is a macrophage receptor that binds 

to the apolipoprotein B48 of TG-rich lipoproteins. If 

overwhelmed with elevated plasma triglyceride, this receptor 

may contribute to foam cell formation. This variant is predicted 

to act as a modifier for CLN3 (Batten’s disease). 

PCTP rs2960062 structural_interaction_variant 5 Hom 5 Hom Phosphatidylcholine Transfer Protein / StAR-Related Lipid 

Transfer Protein 2. Lipid binding and phosphatidylcholine 

transporter activity. 

XYLB rs818850 structural_interaction_variant 5 Hom 5 Hom Member of a family of enzymes responsible for 

phosphotransferase activity, glucose metabolism and 

lipogenesis. 

MROH8 rs11467214 frameshift_variant 

& 

stop_gained 

5 Hom 3 Hom 

1 Bi-allelic 

Maestro heat-like repeat family member, function unknown but 

a genome-wide association study using hippocampal atrophy as 

the quantitative trait associated this gene with Alzheimer’s 

disease (PMID:19668339). 

PLEKHA2 rs76319743 splice_donor_variant 3 Hom 2 Hom Pleckstrin Homology Domain with related pathways to IL-2 and 

Icos-IcoL Pathway in T-Helper Cell. Fibronectin binding and 

lipid binding. 



 

 

2.3.2.3 Glycosylation of proteins 

 

Lysosomes have a protective glycocalyx (glycoconjugate coating) to guard the 

membrane against the acidic enzymes within the lysosome. NPC1 is a glycoprotein required 

for cholesterol export from lysosomes (Maxfield and van Meer, 2010). Also, the major 

lysosomal membrane LAMP proteins are N- and O-linked glycosylated, which contribute to 

this protective lysosomal glycocalyx (Wilke et al., 2012). It has been shown that decreased 

levels of protein glycosylation lower the requirement for NPC1-mediated cholesterol export, 

and that inhibition of glycosylation reduces cholesterol accumulation in cases of NPC1 

deficiency (Li et al., 2015). 

We identified a variant in glycosylation genes that segregated within siblings (MUC5B) 

and 4 variants in glycosylation genes that were abundant in NP-C patients compared to control 

populations (FDFT1, SSPO, UCK1, RFT1) (Table 2.6). These variants are in genes that are 

functionally related to glycosylation and glycosylation pathways. Several of the affected genes 

have also been previously associated with neurological disorders, or pulmonary diseases such 

as chronic obstructive pulmonary disease. Notably, a homozygous structural interaction variant 

in FDFT1, a squalene synthetase in cholesterol biosynthesis, was identified across all patients. 

The major gel-forming mucin protein, MUC5B that is known to be up-regulated in COPD as 

the major contributor to lung mucus, is an especially noteworthy hit as the homozygous 

missense variant (residue change from leucine to proline) was found only in the more affected 

sibling in each sib-pair. 

 

 



 

 

 

 

  

Gene ID dbSNP ID Variant type Zygosity in 

functional 

Zygosity 

in severe 

Description of encoded protein function 

FDFT1 rs904011 structural_interaction_variant 5 Hom 5 Hom Squalene synthetase, first specific enzyme in cholesterol 

biosynthesis. Diseases include disorders of glycosylation. Regulation 

of cholesterol biosynthesis by SREBP. 

SSPO rs397815440 

& 

rs71194663 

splice_acceptor_variant 

& 

splice_donor_variant 

5 Hom 5 Hom Sco-Spondin has related pathways with diseases associated with O-

glycosylation and modulation of neuronal aggregation. 

MUC5B rs4963031 missense_variant 4 Het 5 Hom Major gel-forming mucin protein, highly glycosylated 

macromolecular component of mucus. Major contributor to normal 

lung mucus. Up-regulated in COPD. Diseases associated with O-

glycosylation of proteins. 

UCK1 rs2296957 missense_variant 2 Het 

2 Hom 

1 Bi-allelic 

1 Het 

4 Hom 

Uridine-Cytidine Kinase 1, involved in purine metabolism. Diseases 

associated include Kabuki syndrome. Downstream gene variant 

POMT1, an ER O-mannosyltransferase where defects in POMT1 

result in Walker-Warburg syndrome. Related pathways are O-linked 

glycosylation. 

RFT1 rs891368 3_prime_UTR_variant 1 Het 

4 Hom 

1 Het 

3 Hom 

Encodes an enzyme responsible for the translocation of intermediates 

in the N-glycosylation of proteins. N-glycan biosynthesis. 

Table 2.6 – Glycosylation of proteins. 



 

 

2.3.2.4 Matrix metalloproteinase family 

 

The matrix metalloproteinase (MMP) family (calcium-dependent proteases, comprised 

of 25 genes) have functions in degradation of cartilage and bone, fibronectin binding, tissue 

repair/remodeling and inflammatory response (Page-McCaw et al., 2007). The MMP genes 

have been implicated in COPD (Li et al., 2009b), atherosclerosis (Williams et al., 2010) and 

multiple sclerosis (Škuljec et al., 2011). We identified a cluster of MMP-family variants on 

chromosome 11 and one variant in MMP-12 was abundant in NP-C patients compared to 

control populations (Table 2.7). These variants were mostly ‘singletons’ (i.e., a unique variant 

found only in one sample, however all samples had variants within the genes of MMP1, 

MMP17 and MMP10). MMP10 and MMP17 degrade fibronectin, which is interesting given 

the context of the observed PLEKHA2 splice donor variant (Table 2.5). The exception to this 

was MMP12 with a homozygous frameshift insertion occurring in all 10 subjects. MMP12 has 

been previously associated with neurological diseases and pulmonary diseases including NP-

C disease (Griese et al., 2010; Li et al., 2009b; Liao et al., 2015).  

 

 

 

 

 



 

 

 

  

Gene 

ID 

dbSNP ID Variant type Zygosity in 

functional 

Zygosity 

in severe 

Description of encoded protein function 

MMP10 multiple varies NA NA Breaks down fibronectin. Cluster of MMP genes on Chr11. Calcium 

ion binding. 

MMP12 rs5794199 frameshift_insertion 5 Hom 5 Hom Aneurysm formation, lung function and COPD. Cluster of MMP 

genes on Chr11. Calcium ion binding. 

MMP1 multiple varies NA NA Diseases associated with this gene include COPD. Cluster of MMP 

genes on Chr11. Calcium ion binding. 

MMP17 multiple varies NA NA This protein is unique among the membrane-type matrix 

metalloproteinases as it is anchored to the cell membrane via a 

glycosylphosphatidylinositol anchor. Degrades fibrin. Calcium ion 

binding. 

Table 2.7 – Matrix metalloproteinase family. 



 

 

2.3.2.5 Fatty acid synthesis 

 

Dysregulation of fatty acids in LSDs can result in metabolic stress from insufficient 

catabolic intermediates (Platt et al., 2012). The broad range of enzymes and their intermediates 

within these pathways can result in cascade of cellular failures, ultimately resulting in the 

pathology of the LSD. We identified four variants in fatty acid-related genes (ACACB, LPIN2, 

ECHDC3, ACADS) that were abundant in NP-C patients compared to control populations 

(Table 2.8). Two rate-limiting genes in fatty acid uptake and fatty acid β-oxidation (ACACB 

and ACADS, respectively) had homozygous variants present in the cohort. In addition, LPIN2 

and ECHDC3 function in fatty acid biosynthesis (Reue, 2009). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

  

Gene ID dbSNP ID Variant type Zygosity in 

functional 

Zygosity 

in severe 

Description of encoded protein function 

ACACB rs11065772 structural_interaction_variant 5 Hom 5 Hom Acetyl-CoA carboxylase-beta controls fatty acid 

oxidation via malonyl-CoA inhibition of carnitine-

palmitoyl-CoA transferase I, the rate limiting step in fatty 

acid uptake and oxidation by mitochondria. 

LPIN2 rs7980 downstream_gene_variant 1 Het 

3 Hom 

2 Het 

2 Hom 

Potential role in triglyceride metabolism and 

lipodystrophy. Fatty Acy-CoA biosynthesis. 

 

ECHDC3 

 

rs7899215 structural_interaction_variant 5 Hom 5 Hom Enoyl-CoA Hydratase Domain Containing 3, related 

pathways include fatty acid biosynthesis. 

ACADS rs3914 

& 

rs1799958 

structural_interaction_variant 1 Hom 

2 Het 

1 Hom Member of the acyl-CoA dehydrogenase family. This 

enzyme catalyzes the initial step of the mitochondrial 

fatty acid beta-oxidation pathway. Associated with 

SCAD deficiency (lipid storage myopathy), resulting in 

short-chain fatty acids not metabolizing properly. 

Table 2.8 – Fatty acid synthesis. 



 

 

2.3.2.6 Ubiquitin related 

 

Depletion of cellular cholesterol has been shown to facilitate ubiquitylation of NPC1, 

while inhibition of the disassembly of the ESCRT complex resulted in aggregation of 

ubiquitylated NPC1 protein (Ohsaki et al., 2006). We identified the ubiquitin ligase MARCH8 

gene with homozygous and heterozygous missense variants (residue change tyrosine to 

histidine) segregating in  4 of 5 sib-pairs, and variants in three genes that were abundant in NP-

C patients compared to control populations (RAD23B, UHRF1, USP29). The family of 

membrane-bound E3 ubiquitin ligases includes MARCH8, a gene that has been shown to 

ubiquitinate the transferrin receptor (TfR) resulting in the subsequent lysosomal degradation 

of TfR (Fujita et al., 2013). Also potentially related to NP-C disease for which the HDAC 

inhibitor Vorinostat is a candidate therapy (Munkacsi et al., 2016), it is curious to see a 

structural interaction variant present in the RING-finger type E3 ubiquitin ligase UHRF1 

involved in the recruitment of histone deacetylases.  

 

 

 

 



 

 

 

  

Gene ID dbSNP ID Variant type Zygosity in 

functional 

Zygosity 

in severe 

Description of encoded protein function 

RAD23B rs3056494 

& 

rs539541320 

& 

rs5899731 

frameshift_variant Multiple 

Bi-allelic 

Multiple 

Bi-allelic 

Human orthologue of S.cerevisiae Rad23. Encoded 

protein elevates nucleotide excision activity of 3-

methyladenine-DNA glycolase, and interacts with 26S 

proteasome, with possible role in ubiquitin mediated 

proteolytic pathway. 

UHRF1 rs2123731 structural_interaction_variant 5 Hom 5 Hom Recruits histone deacetylase to regulate gene 

expression. RING-finger type E3 ubiquitin ligase. 

USP29 rs9973206 stop_gained 4 Hom 1 Het 

4 Hom 

USP29 has related pathways in Ubiquitin-Proteasome 

2Dependent Proteolysis. 

MARCH8 rs7908745 missense 5 Hom 4 Het 

1 Hom 

MARCH family of membrane-bound E3 ubiquitin 

ligases. 

Table 2.9 – Ubiquitin related. 



 

 

2.3.2.7 Calcium ion binding 

 

Calcium, as an important signalling molecule for eukaryotic cells and it specifically has 

been shown to play an important role in the pathogenesis of neurological disorders including 

NP-C disease (Lloyd-Evans et al., 2008; Mattson and Chan, 2003). In neuronal models of 

Gaucher disease, accumulation of the sphingolipid glucosylceramide resulted in cultured 

neurons exhibiting altered calcium release, as well as elevated phosphatidylcholine (Bodennec 

et al., 2002). We identified variants in two calcium-related genes that were abundant in NP-C 

patients compared to control populations (Table 2.10). DPYSL2 is a member of the collapsin 

response mediator family involved in synaptic signalling via interaction with calcium, for 

which SNP variants have been associated with Alzheimer’s disease (Lambert et al., 2013). 

PKD1L2 encodes a polycystin glycoprotein with a lipoxygenase, alpha-toxin domain involved 

in intracellular calcium homeostasis, where all 10 of our NP-C patients had a stop lost variant 

in this gene that results in a non-coding transcript variant. 

 

 



 

 

 
 

Table 2.10 – Calcium ion binding. 

 

Gene ID dbSNP ID Variant type Zygosity in 

functional 

Zygosity 

in severe 

Description of encoded protein function 

DPYSL2 rs327222 structural_interaction_variant 5 Hom 5 Hom Member of collapsin response mediator family. Plays a 

role in synaptic signalling through interactions with 

calcium channels. Diseases associated with DPYSL2 

include Alzheimer’s disease and schizophrenia. 

PKD1L2 rs8054182 stop_lost 5 Hom 5 Hom Polycystin protein. Includes a polycystin-1, lipoxygenase, 

alpha-toxin domain. Calcium ion binding. 

 



 

 

2.3.2.8 Acetylcholine related 

 

Acetylcholine is a neurotransmitter of interest to many neurodegenerative diseases 

(Holzgrabe et al., 2007; Tata et al., 2014). We identified 2 variants in acetylcholine-related 

genes (SLC18A3, CHAT). All patients in our cohort had two homozygous variants in 

SLC18A3, one missense variant and another 5’ UTR variant. SLC18A3 is a member of the 

vesicular amine transporter family that transports acetylcholine into transport vesicles. Of 

particular note is that the 5’ UTR variant was predicted by SnpEff to result in an upstream 

variant of the CHAT (Choline O-Acetyltransferase) gene, which also had a structural 

interaction variant in 9 of 10 patients. CHAT initiates the biosynthesis of acetylcholine for 

which genetic variation in this gene has previously been associated with increased Alzheimer’s 

disease risk (Grünblatt et al., 2011; Ozturk et al., 2006). 

 

 

 

 

 

 

 

 

 

 



 

 

 

  

Gene ID dbSNP ID Variant type Zygosity in 

functional 

Zygosity 

in severe 

Description of encoded protein function 

SLC18A3 

 

 

 

 

rs1880675 

& 

rs8187730 

5_prime_UTR_variant 

& 

missense_variant 

5 Hom 5 Hom Member of the vesicular amine transporter family. 

Encoded protein transports acetylcholine into secretory 

vesicles. Results in upstream gene variant of CHAT (see 

below). 

CHAT rs8178992 structural_interaction_variant 5 Hom 4 Hom Choline O-Acetyltransferase catalyzes the biosynthesis 

of the neurotransmitter acetylcholine. Polymorphisms in 

this gene have been associated with Alzheimer’s disease 

and cognitive impairment. 

Table 2.11 – Acetylcholine related. 



 

 

2.3.3 MMP12 inhibitor reduces cholesterol accumulation in primary neurons of Npc1-

/- mice 

 

Given the association between MMP12 and lung disease (Li et al., 2009b) as well as 

the upregulation of MMP12 in NP-C astrocytes (Liao et al., 2015), we examined whether 

chemical inhibition of MMP12 would affect the cholesterol aggregation that is the hallmark of 

NP-C disease. These results would further test our identification of the rs5794199 variant in 

MMP12 on chromosome 11. As the de-facto method for diagnosing the classical NP-C 

phenotype, fluorescence arising from UV excitation of filipin staining unesterified cholesterol 

was used as a biological marker for NP-C disease. If unesterified cholesterol is aggregated 

within the neuronal cells, fluorescence will be greater than that observed in control cells.   

To examine any potential effects of a loss of function arising from the frameshift 

insertion rs5794199 in MMP12 (Table 2.7), we treated primary murine neuronal cells with 500 

nM MMP408, a selective MMP inhibitor for MMP12 (Li et al., 2009b). If treatment rescues 

the cholesterol accumulation that is the hallmark phenotype of NP-C, as measured by 

fluorescence levels of the filipin stain, we would expect a decrease in fluorescence. To quantify 

the relative levels of fluorescence, we normalized each category to the highest integrated 

density value as reported by FIJI (Schindelin et al., 2012), divided by cell number. These 

arbitrary fluorescent units (y-axis) were obtained from the average of 14 view-fields with 

biological triplicates. A ~40% reduction (p < 0.001) in relative fluorescence was observed in 

Npc1-/- murine neuronal cells after MMP408 treatment for 24 hours (Figure 2.19). A similar 

reduction in fluorescence (~50%, p < 0.001) was observed in the U18666A treatment of control 

neurons (Figure 2.20), which is an established pharmacological mimic of NP-C disease (Lu et 



al., 2015).  These results suggest that NPC1 deficiency results in a pathological over-abundance 

or activity of MMP12, such that selective inhibition ameliorates cellular cholesterol levels.  

Figure 2.18 - Flipin staining for un-esterifed cholesterol of murine primary 

neurons. WT, NP-C1 disease and U18-treatment groups, treated and untreated 

with a general MMP inhibitor. The MMPi groups showed decreased fluorescence 

compared with controls. 
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Figure 2.19 – Quantification filipin (unesterified 

cholesterol) in Npc1-/- and Npc1-/- in the presence and 

absence of MMP408 treated fluorescence. 
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2.3.3.1 Copy number variation at the MMP cluster on chromosome 11 

 

As a preliminary investigation into our observation of the decreased fluorescence after 

treatment with MMP408, Control-FREEC, a program with the potential to detect copy number 

variation through depth of coverage analysis (Krumm et al., 2012), was used to calculate a B 

allele profile and estimate copy number alterations within the MMP12 region on chromosome 

11. Given that we observed a rescue with MMP12 inhibition, we hypothesised that MMP12 

was upregulated. Unfortunately, the signal to noise ratio precluded any conclusion from our 

copy number variation analysis (Figure 2.21). 
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Figure 2.20 – Quantification filipin (unesterified 

cholesterol) in U18 and U18 in the presence and absence of 

MMP408 treated fluorescence.  
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Figure 2.21 – Conifer depth of coverage copy number profile around MMP cluster on chromosome 11. Conifer returns discrete values – the 

red vertical lines are the actual values that represent the normalized and relative CNV of the exon in focus. The red curve is a loose fitting to the 

discrete values, while the grey curves are the other libraries. The black bar purportedly shows significance, but the signal to noise ratio is too 

weak to conclusively determine if there is CNV present at that location.



 

 

2.3.3.2 MARCH8 T95P SNP is conserved across multiple vertebrae taxa 

 

We next examined sequence conservation on the rationale that conserved sequences 

have a higher probability of being deleterious if disrupted by a non-synonymous variant (Chun 

and Fay, 2009). In the aggregate model of NP-C patients, we identified a T95P variant in 

MARCH8, which is located within a highly conserved region of the RING-CH structure across 

multiple vertebrates (Figure 2.22). This region has been shown to be essential for the 

downregulation of transferrin receptor (TfR) via ubiquitination (Fujita et al., 2013), further 

strengthening the connection with NP-C disease for which TfR recycling is perturbed  

(Choudhury et al., 2004; McCaffrey et al., 2001). Taken together, we would predict that the 

T95P MARCH8 variant is likely to affect the functional activity of the MARCH8 protein and 

possibly modify the progression of NP-C disease. 

  

Figure 2.22 – SNP within conserved C-terminal membrane of MARCH8, that interacts with TfR. 



2.3.3.3 T95P mutation is in the conserved RING domain of MARCH8 

 

To examine the potential for functional changes to the protein structure of MARCH8, 

the biochemical algorithms library (Hildebrandt et al., 2010) and visualization suite 

BALLView (Moll et al., 2005) were employed on the purified MARCH8 protein (PDB ID 

2D8S). Cursory modelling of electrostatic forces showed that the orientations of the hydrogen 

bonds are not altered after introduction of the T95P mutation (Figure 2.23). Near the region of 

interest, T95P, the H-bonds were directed outwards from the conserved RING-CH structure 

(represented as the white backbone). This finding suggests that the overall function of the 

MARCH8 protein is unchanged as the binding pocket is unchanged, however there is still the 

potential for altered protein-protein or protein-cargo interactions along with the potential for 

additional intramolecular interactions. In addition to the T95P mutation, we also identified an 

Y226H mutation in MARCH8, but were not able to model structural changes arising from this 

mutation as the collection of solutions to the NMR structure had poor resolution outside the 

core protein and the Y226H mutation is outside this region (Figure 2.24). It is of note that the 

T95P mutation is upstream of a variant in the MARCH8-ALOX5 locus (rs970548) that has 

been associated with cholesterol regulation (Global Lipids Genetics Consortium et al., 2013). 

Figure 2.24B also reinforces the strong evolutionary conservation within this sequence region 

which is further denoted with a comparison of MARCH8 and MARCH1 (Figure 2.24), albeit 

we did not identify any variants in MARCH1 in any of our NP-C patients. 



 

 

Figure 2.23 – Predicted MARCH8 structure after introduction of T95P mutation. 

Predicted structure from Biochemical Algorithms Library 1.4. Visualization from 

BALLView. Green cylinders represent hydrogen bonds, grey sphere is a zinc ion within 

binding pocket. Yellow backbone represents location of T95P SNP. Y226H not shown as it is 

within an unresolvable section of the protein structure data.  



 

 

 

 

 

 

 

Figure 2.24 – Single nucleotide variants and their predicted amino acid changes within MARCH8. A) Location of SNV within MARCH8 

found from WES analysis (rs7908745) compared with location of MARCH8-ALOX5 marker (rs970548) (Global Lipids Genetics Consortium et 

al., 2013). Non-synonymous variant early on in sequence is more likely to cause a non-functional protein. B) Amino acid sequence of MARCH8. 

Red text denotes homologous regions between MARCH8 and MARCH1 terminal domains. Blue text indicates transmembrane domains. 

Underlined regions are reported as responsible for association with TfR, while italicized residues are implicated in formation of protein structure 

(Fujita et al., 2013). Our reported variants are signified between <<>>, with reference amino acid, location and then amino acid change. C) 

Sequence comparison betweenMARCH8 and MARCH1.

C 
MARCH8 P S S Q D I C R I C H C E G D D E S P L I T P C H C T G S L H F V H Q A C L Q Q W I K S S D T 

MARCH1 P S T Q D I C R I C H C E G D E E S P L I T P C R C T G  T L R F V H Q  S C L H Q W I K S S D T 



 

 

2.3.4 MUC5B is significantly associated to disease severity 

 

Given the clear segregation found in the aggregate model between severe and functional 

sib-pairs for the MUC5B variant rs4963031, we used PLINK to perform an exome-wide 

association test between the discordant sib-pairs with clinical severity scores for NP-C disease 

as statistical covariates. We found a significant association between disease severity and two 

variants (Figure 2.25). One gene was MUC5B, which we previously identified in the prior 

analysis (Table 2.6). The other gene was the Sialic Acid-Binding Immunoglobulin-Like Lectin 

1 (SIGLEC1), a member of the immunoglobulin superfamily expressed by tissue macrophages 

(York et al., 2007). The results are highly suggestive that MUC5B is indeed a potential modifier 

of NP-C disease severity, as two separate forms of analysis (association testing with disease 

severity and segregation within sib-pairs) resolved MUC5B as a potential modifier out of a 

pool of 22,000. 



 

Figure 2.25 – Manhattan plot of weakly associated genes to disease severity. 
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2.4 Discussion 

 

NP-C is a deadly neurological and systemic disorder lacking an FDA approved 

treatment. Being a paediatric disease, it is devastating to the families involved and a timely 

cure is required to alleviate the suffering caused by this disease. Progress in this area has been 

made (Davidson et al., 2009; Helquist et al., 2013; Munkacsi et al., 2016; Pipalia et al., 2011), 

however there is still much to be elucidated with respect to the mechanisms of rescue. In this 

context, discovery of genetic modifiers to NP-C by exome sequencing is an extension to the 

methods described previously (Cirulli et al., 2010; Cooper and Shendure, 2011; Alazami et al., 

2015; Esslinger et al., 2017). Sib-pairs with divergent disease severity were sequenced with an 

Illumina HiSeq2000 with an average of ~30 Mb per patient. Filtering the aggregated patient 

cohort resulted in 26 variants, while homozygous variants that segregated across sib-pairs 

resulted in 2 variants.  

2.4.1 Multifactorial model of modifiers in NP-C 

 

Throughout our filtering processes, there was no set of criteria that reduced our pool of 

variants down to one modifier for all 10 NP-C patients, as in the case with discovery of 

causative genes (e.g., Bamshad et al., 2010). However, this is to be expected, given the 

differences in discovery between causative genes and modifiers of genes (Cutting, 2010). 

Complex disease phenotypes are unlikely to be explained by a single genetic modifier because 

within a cohort of sibling pairs, the potential modifier variant in one sib-pair is likely to be 

unique and not found in the others. 

One of these applied filters was minor allele frequency set at a threshold of 5%, or only 

looking at rare variants found in 5% or less of the population. This decision to look purely at 

rare variants was for several reasons. Firstly, there is some biological reasoning behind the 

assumption that common variants are less likely to associate with disease severity, decreasing 



our statistical power (Morris and Zeggini, 2010). Furthermore, in order to correctly identify a 

common causal variant modifier as such, we would need either a large sample size (out of the 

question for rare disease research) or a very clear effect size arising from distinct segregation 

of the variant in question between sibling pairs, which is diminished with inclusion of common 

variants (Bansal et al., 2010).  

An alternative approach to the filtering of variants would involve assuming the 

modifiers are common (i.e. MAF > 0.05) but only modifiers in NP-C patients due to an 

interaction with NPC1. This alternative approach of not excluding variants based off allele 

frequency would be challenging from a statistical perspective (grouping un-related SNPs can 

underpower your study), but approaches have been previously described (Bansal et al., 2010; 

Stitziel et al., 2011). 

The collection of variants identified suggest that it is likely that disease severity in NP-

C arises from a multifactorial cause based on variant burden, as opposed to a single genetic 

modifier. We can see this in the recovery of seven clear functional categories, with variants 

within having overlapping pathways or sites of interest. For example, MUC5B having 

association with pulmonary fibrosis (Peljto et al., 2013; Seibold et al., 2011) or ubiquitin-

related MMP cellular invasion (Eisenach et al., 2012). The burden of each variant and its 

interaction with NP-C could explain the heterogeneous presentation of clinical symptoms. 

Precedence of interacting modifiers has been described previously with the discovery of 

interacting modifiers CAV2 and TMC6 variants that were significantly associated with risk for 

age of onset of chronic airway infection in cystic fibrosis (Emond et al., 2015). Emond et al. 

demonstrates the importance of using publically available exome sequence datasets (such as 

ExAC, (Lek et al., 2016)) as population controls to enable sufficient statistical power. 

 



2.4.2 MMP-12 as a potential confounder in NP-C 

 

Given the reported dysregulation within pulmonary tissue throughout NP-C disease 

progression (Griese et al., 2010; Roszell et al., 2013; Sheth et al., 2017), we then examined 

variants with a potential role in pulmonary tissue and NP-C. To begin, MMP12 protein has 

fibronectin as a substrate and is associated with tissue remodelling (Arikan et al., 2005). More 

pertinently, MMP12 has been shown to be essential for the development of emphysema in 

murine models (Hautamaki et al., 1997), as well as having an association with COPD (Li et al., 

2009b). Specifically related to NP-C disease, microarray expression analysis with validation 

by qPCR confirmed increased expression of MMP12 in Npc1-/- mice liver tissue compared with 

controls (Cluzeau et al., 2012). Over-expression of immunity genes in Npc-/- mice has also been 

reported (with expression changes as high as ~80 fold), including MMP12 (Alam et al., 2012). 

This abundance of expressed MMP12 has been linked to axonal degeneration within a murine 

model of NP-C disease (Liao et al., 2015). 

As 10 of 10 patients had a homozygous variant in MMP12, it cannot be the sole 

modifier of NP-C disease severity, as it did not segregate across the discordant sibling pairs. 

Furthermore, the association study did not detect MMP12 as potentially associated with disease 

severity, although this could have been a result from the study being underpowered (Bansal et 

al., 2010; Morris and Zeggini, 2010). These results suggest a potential role for members of the 

matrix metalloproteinase family, especially MMP12, in the outcomes for disease in relevant 

disease tissue of NP-C1 patients. Given the previous findings that MMP12 is upregulated in 

NP-C disease (Alam et al., 2012; Cluzeau et al., 2012; Liao et al., 2015) and our demonstration 

that MMP12 inhibition reduced the cholesterol accumulation in NP-C neurons (Figure 2.18), 

future work should examine the potential role the MMPs have on fibrotic remodelling of the 

diseased lung. 



2.4.3 Role of pulmonary tissue related genes in NP-C 

 

The recurring identification of genes with potential roles in pulmonary tissue (in 

particular, MMP12 and MUC5B) leads to the question – are these suitable targets for 

treatment? MMP12 deficiency has been shown to ameliorate the clinical outcome of COPD 

(Li et al., 2009b) in pulmonary tissue, however it has also been used as a target to treat 

demyelination within multiple sclerosis (Hansmann et al., 2012) and axonal degeneration 

caused by NPC1 deficiency (Liao et al., 2015). MUC5B has a common polymorphism 

associated with both idiopathic pulmonary fibrosis and pneumonia (Jiang et al., 2015; Seibold 

et al., 2011) that affects susceptibility and severity.  

It is likely that treatment that targets one or both of these genes would aid in preventing 

death and/or severity in NP-C, but would not resolve the underlying issues arising from 

sphingolipid and secondary metabolite accumulation. It would be particularly informative to 

identify modifiers of the pulmonary aspects of NP-C disease since NP-C patients often die 

from pulmonary complications (e.g., pneumonia). Our result showing reduced cholesterol 

accumulation in primary neurons suggests that MMP12 inhibition would be therapeutic in the 

brain and likely also in the lungs. 

2.4.4 MARCH8 variants may mediate TfR defects in NP-C 

 

MARCH8 is a gene of interest from our whole exome sequencing sibling pair analysis. 

Candidate genes from five pairs of siblings (n=10) were compared, and variants unique to each 

sibling were isolated. These unique variants were then compared against the unique variants of 

the individual in the whole sample pool. From this, five of five sibling pairs were found to have 

the MARCH8 variant, four of five of which were segregated between disease severities. In 

particular is that for those patients whose clinical outcome was known, all less clinically severe 

siblings had the MARCH8 variant. 



The discovered T95P mutation in NP-C patients, while an interesting finding to report, 

requires a wealth of follow-up work to validate and confirm any potential role this variant in 

MARCH8 could have within clinical outcomes of NP-C disease. From an informatics 

perspective, much could be done to take a highly resolved MARCH8 protein structure and 

assess the possible influence the T95P variant could have on MARCH8 structure via detailed 

in-silico folding experiments. Furthermore, biological validation via immunohistochemistry to 

confirm the presence of the variation, or assessing the effect that recapitulating the SNP would 

have on ferritin levels within a cellular model of either NP-C1 or GD (Blendy, 2011). 

What role could the transferrin receptor and associated pathways have with respect to 

the clinical outcomes in NP-C disease? To begin with, high levels of endosomal cholesterol in 

NP-C1 have been shown to disturb rab4-mediated recycling, drastically increasing transferrin 

recycling rates (Choudhury et al., 2004; Devlin et al., 2010; McCaffrey et al., 2001). 

Transferrin is necessary for iron delivery (Aisen, 2004) and plays a role in the production of 

ferritin. From this, one would expect a reduction in ferritin levels within tissue most affected 

by NP-C pathology and this is indeed the case (Christomanou et al., 2000). 

Furthermore, it is known that diseases of cholesterol metabolism are similar in 

sometimes surprising ways (Platt et al., 2014). With this in mind, Gaucher disease (GD), 

another LSD that displays diverse clinical phenotypes between sibling pairs, shows aberrant 

ferritin (hyperferritinemia) levels (Lo et al., 2012). Intracellular iron concentration controls TfR 

expression levels via TfR mRNA stability (Fujita et al., 2013), resulting in a biological pathway 

where both ferritin and transferrin are important in the context of cholesterol accumulation in 

NP-C1 (Figure 2.26, also (Argüello et al., 2014)). 

It would be most interesting to elucidate the potential role this MARCH8 variant could 

play within the clinical outcome of NP-C1, within the context of TfR mediated iron recycling. 



In light of our results and the reported literature, we propose a preliminary model for the 

potential role of MARCH8 within the TfR defects found in NP-C disease (Figure 2.26). What 

role could MARCH8 have in the interaction between TfR, iron homeostasis and NP-C1 disease 

outcomes? MARCH8 can ubiquitinate TfR, leading to the reduction of TfR protein via 

degradation within the lysosome (Fujita et al., 2013). However, a genome-wide association 

study indicated an association between MARCH8-ALOX5 (marker rs970548) and cholesterol 

regulation (Global Lipids Genetics Consortium et al., 2013). Given this, the finding of a SNV 

causing a significant hydrophobic change within the conserved region of the terminal CT 

domain (proline often functions as a helix disruptor), suggests an effect on the neighbouring 

residues implicated in the RING-CH structure, with potential effects on protein/cargo 

interactions. Furthermore, another SNV downstream of the region associated with TfR (Figure 

2.24), suggests the possibility for the clinical relevance of these MARCH8 variants for NP-C. 

 



 

 

Figure 2.26 – Proposed interaction of MARCH8 NP-C variants on TfR related pathways. Cholesterol accumulation from NPC 

interfering with Rab4-mediated TfR/Tfn recycling rates potentially counter balanced by MARCH8 loss of function, increasing availability of 

TfR. 



 

 

2.4.5 Future directions 

 

In this thesis, only MMP12 had follow-up experiments performed in an attempt to 

validate the in silico findings from the exome sequences. Additional work is required to further 

assess the biological impact these reported sequence changes have on the NP-C disease 

phenotype. An approach for this would be utilizing the recent advances in CRISPR-Cas9 

genome editing to recapitulate the identified SNPs in tissues of interest (neuronal, pulmonary, 

etc.) (Hsu et al., 2014; Konermann et al., 2015; Wang et al., 2014) and initially test for 

alterations in cholesterol accumulation in NP-C mutant cells (Vanier and Latour, 2015b). In 

addition to the NPC1-GeneX interactions that can be investigated using CRISPR-Cas9, this 

methodology can also be used to investigate more complicated interactions, such as interactions 

between more than two genes. 

Another result that requires improvement is the findings from the Conifer CNV calling 

profile, with low signal to noise ratio in the calculation of copy number alteration via depth of 

coverage. However, this approach to accurately determine CNV is typically confounded by 

alterations to targeted exome capture efficiency or other factors that affect read distribution. 

Another copy-number caller, CopywriteR (Kuilman et al., 2015), resolves issues based on 

depth of coverage of captured exons by using the fact that off-target reads are uniform across 

the genome and using this to infer DOC and hence CNVs (Kuilman et al., 2015). Another 

approach is on target DOC calculations, such as Control-FREEC (Boeva et al., 2012). In brief, 

FREEC detects copy number alterations by construction of a B-allele frequency profile (here 

the B allele is defined as the alternative within the SNP database). This BAF profile can provide 

evidence for CNV either through loss of heterozygosity (indicating a loss event) or via allelic 

imbalance (indicating a copy number gain). This genomic information is then used to predict 

the copy number variation within each segment of the associated copy number profile. Using 



other CNV/CNA callers with different approaches and combining their findings could resolve 

the structural variation in this region more accurately. 
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