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Abstract

Eruptions through crater lakes or shallow sea water, known as Subaqueous or
Surtseyan eruptions, are some of the most dangerous eruptions in the world.
These eruptions can cause tsunamis, lahars and base surges, but the phenomenon
of interest to this research is that of the Surtseyan ejecta. Surtseyan ejecta are
balls of highly viscous magma containing entrained material. They occur when a
slurry of previously erupted material and water washes back into the volcanic
vent. This slurry is incorporated into the magma and ejected from the volcano
inside a ball of lava. The large variation in temperature between the slurry and
the lava causes the water in the slurry to vaporise. This results in a pressure
build-up which is released by vapour either escaping through the pores of the
lava or the ejectum exploding. The volcanological question of interest is under
what conditions these ejecta rupture.

During this thesis the aim is to improve on the existing highly simplified model
of partial differential equations that describe the transient changes in temperature
and pressure in Surtseyan ejecta. This is achieved by returning to the basics and
developing a model that is more soundly based on the physics and mathematics
of Surtseyan ejecta behaviour. This model is developed through the systemic
reduction of the coupled nonlinear partial differential equations that arise from
the mass, momentum and energy conservation equations to form a fully coupled
model for the behaviour of Surtseyan ejecta.

The fully coupled model has been solved numerically as well as reduced further
to produce analytical solutions for temperature and pressure. The numerical
solutions show a boundary layer of rapidly varying temperatures and pressures
around the steam generation boundary. This allows for a boundary layer analysis
to be used in both the magma and the inclusion to estimate the temperature
profile at early times. The numerical solution also showed a rapid increase in
pressure at the flash front that allowed for a quasi steady state approximation in



pressure to be used to form a reduced model that could be analytically solved.
This produced an updated criterion for rupture and a criterion for the lower limit
of permeability. The analytical and numerical results were then compared to the
data from existing intact ejecta for verification.
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Chapter 1

Introduction

1.1 Background

The volcanic eruption that created the island of Surtsey, off the coast of Iceland,
on the 14th of November 1963 is to this day the archetype for this style of marine
shallow to emergent explosive volcanic eruption. This type of eruption is now
more commonly known as a Surtseyan eruption. They occur when a volcanic
vent is situated near the surface of a body of water. The magma and water mixing
produces its characteristically violent and explosive behaviour. There are many
examples of this type of eruption, including the 16th of January 2015 eruption in
Tonga (which produced an island), Krakatoa in Indonesia, Taal in the Philippines
and features of this eruption style can also be seen in various eruptions of
Ruapehu (NZ).

During a Surtseyan eruption water containing previously erupted material can be
washed back into the volcanic vent. Once inside the vent this slurry can be
entrained into the magma and ejected inside balls of magma, known as Surtseyan
ejecta. These ejecta contain a slurry inclusion that is significantly cooler than the
surrounding magma, and as the water in the slurry boils there are competing
processes occurring in the ejectum. The first is the temperature difference driving
the evaporation of the water, which increases the pressure inside the ejectum.
The second is the diffusion of water vapour through the pores in the magma.
Whether or not an ejectum ruptures depends on the relationship between these
two processes. There are plenty of examples of intact ejecta of various size

1
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Figure 1.1: Photos of a Surtseyan ejectum taken by Mark McGuinness. In the
right-hand photo an inclusion can be seen with a void space around it

classified as: ash (less than 2 mm in diameter); lapilli (between 2 - 64 mm); and
bombs (greater than 64 mm).

The purpose of this thesis has been to construct a mathematical model to expand
and improve upon the existing model [[20],[31]]. The aim of this research is to
use a systematic reduction of the resulting coupled nonlinear partial differential
equations that arise from mass, momentum and energy conservation. Then to
numerically solve the resulting equations to form a better understanding of ejecta
behaviour. Further aims are to validate the model with the aid of analytical
solutions and to produce an updated criterion for rupture.

1.2 Literature Review

The mathematical modelling of Surtseyan ejecta is a new area of study. Most of
the available literature details mechanisms of Surtseyan volcanism and
magma-slurry interaction in Surtseyan eruptions. More generally, there are also
existing mathematical models for magma fragmentation, as well as the behaviour
of fluids in a porous medium.

The only previous model for the behaviour of Surtseyan ejecta was developed
during my masters [20]. Research to date has found no other mathematical
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models for this phenomena. Interest in the modelling of Surtseyan ejecta
originated from Dr Ian Schipper, a volcanologist at the Victoria University. He
was studying intact ejecta and wanted to understand how it was possible that they
could survive an eruption without exploding.

1.2.1 Surtseyan Eruptions

Volcanic eruptions that include water often produce hazards that are not normally
seen in equivalent dry land volcanoes. Mastin and Witter [28] show that
subaqueous eruptions make up 8% of the world’s eruptions, causing 20% of the
fatalities associated with volcanic eruptions. This is because these eruptions have
the ability to cause lahars, tsunamis and base surges, all of which have the
potential to create devastation to people and property significant distances away
from the eruption site.

There are two mechanisms, described by Mastin et al. [27], that can drive the
explosive mixing of magma and water in a single vent eruption. The first is the
lowering of the magma channel through the water table, which is followed by a
sudden influx of water. An example of this is in the Ukinrek Maars eruption in
Alaska in 1977. The second mechanism is a volcano erupting magma through a
surface of water such as seawater or a crater lake. This mechanism also includes
craters with water seeping through their porous walls. It is this second
mechanism that describes Surtsey, where the eruption occurred through shallow
sea water.

Surtseyan volcanism is characterised by intermittent, almost silent, jets or a
continuous up-rush of tephra along with a large amount of steam. This behaviour
has been observed by Thorarinsson [46], at Surtsey:

‘‘After each explosion a tephra-laden mass rushes up,

and out of it shoot numerous lumps of liquid or plastic lava,

called bombs, each with a black tail of tephra.

Within a few seconds these black tails turn greyish white

and furry as the superheated vapour ... cools and condenses."
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He also added that this behaviour continued for as long as the water had access to
the vent. Water can gain access to the vent by either flooding across the top or
seeping through the volcanic pile.

Kokelaar’s model for Surtseyan eruption processes is an explanation for the
observed characteristics ([23] [24]). He proposes that there is a funnel-shaped
vent filled with a mixture of water and previously erupted material. This vent is
surrounded by a ring of previous erupted material which, as the eruption
continues, will slip back into the vent. As the volcano erupts the slurry is
continuously incorporated into the magma and then is replenished as more slurry
is washed from the pile into the vent. Pockets of relatively cool liquid water
enclosed in the magma cause violent and continuous expansion, producing the
characteristic jets seen in Surtseyan eruptions and described by Thorarinsson. If
there is a higher rate of magma supply, a continuous up-rush of tephra is the
result, instead of the intermittent jets. When the water can no longer be
replenished, the slurry in the vent, gradually dries and the eruptive style changes
to Hawaiian fountaining of incandescent magma.

The fragmentation and magma mixing processes described by Kokelaar are
difficult to observe directly. In order to quantitatively determine the mechanisms
causing magma mixing and fragmentation, a textural study of the pyroclasts is
needed. Zimanowski et al. [50] study the differences in the pyroclasts between
those produced by decompression and by a molten fuel-coolant interaction.

A textural study of scoria bombs conducted by Schipper et al. [39] shows that
entrained material has a crystalline structure when magnified, which is not seen
in the surrounding rock. This structure is caused by the reheating of the inclusion
inside the bomb. The slurry inclusions are also surrounded by a void space,
which is consistent with the presence of water at the time of entrainment. The
postulated presence of wet slurry can explain Thorarinsson’s observation that
ejecta tails turn from black to white in mid-flight. This phenomenon can be
attributed to the escaping water vapour. This textual study supports Kokelaar’s
model of Surtseyan jets and columns being driven by a magma-slurry mingling
in a flooded vent.
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1.2.2 Previous Modelling

A previous mathematical model for the behaviour of Surtseyan ejecta [[20], [31]]
considers the transient heating of a single inclusion placed at the centre of a
spherical ball of magma. Both the magma and the inclusion are treated as porous
media and the inclusion is assumed to be solely heated by conduction of heat
from the surrounding magma. The model considers small inclusions where the
temperature in the surrounding magma does not reduce significantly. The water
in the inclusion vaporises to form a flashing front that propagates inwards at a
rate determined by a heat balance. Pressure build up forces the resulting vapour
through the pores, thus reducing pressure. The pressure model is inspired by the
modelling of the injection of geothermal waste seen in Pruess [34], although
Pruess’s work relies in part on relatively small pressure changes, whereas large
pressure changes are anticipated here.

The temperature equation in this model [[20], [31]] is determined by considering
an estimate for the rate of heat flow into the inclusion and matching this to the
rate of change of internal energy of the inclusion:

4
3

πR3
1ρcp

∂T
∂ t

= 4πKR2
1

∂Tm

∂ r
(1.1)

where R1 is the size of the inclusion, ρ is the effective density of the inclusion, cp

is the effective heat capacity of the inclusion, K is the thermal conductivity of the
hot magma and Tm is the temperature of the magma (Please refer to the Glossary
of terms in Appendix H). Then, using a crude approximation of ∂Tm

∂ r =
(

Tm−T
0.3R1

)
where the length-scale for the radial distance was estimated by considering the
amount of heat energy required to vapourise the water in the inclusion and the
amount of magma surrounding the inclusion required to provide this heat,
equation 1.1 can be solved to give the temperature (T ) at the surface of the
inclusion with T0 as the initial inclusion temperature:

T = Tm− (Tm−T0)e−αt (1.2)

α =
10K

ρcpR2
1

(1.3)

The temperature equation is completely decoupled from the pressure model (p).
The pressure model arises from the conservation of vapour mass in the
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surrounding hot magma along with Darcy’s law for fluid flow in a porous
medium, giving:

∂ (φmρv)

∂ t
=−∇ ·Fv (1.4)

Fv =−k
ρv

µv
∇p (1.5)

where φm is the magma porosity, ρv is the vapour density, Fv is the mass flux, k is
the permeability of the magma and µv is the dynamic viscosity which is taken to
be constant. Then, using the ideal gas law and neglecting changes in magma
temperature, the density of the vapour can be converted to pressure to obtain

∂ p
∂ t

=
k

µvφm
∇ · (p∇p). (1.6)

Using the ideal gas law is a common assumption for water vapour in geothermal
modelling however this assumption can become invalid at very high pressures
because of the interactions between the water molecules that have been forced
closer together. Neglecting the changes in magma temperature is a valid
assumption because, in this model, it is assumed that there is a small inclusion
inside a large magma ball. With this assumption it can be assumed that the
temperature drop will not propagate a significant distance into the magma,
leaving the majority of the magma at a constant temperature.

In models for the injection of geothermal waste, equation 1.6 would be linearised
by using an average pressure in the magma. However in the Surtseyan ejecta
model there are large pressure variations and an average pressure cannot be
assumed. At the time of entrainment and at the outermost boundary of the
ejectum the partial pressure of water in the vesicular magma is considered
negligible.

Another boundary starts at the surface of the inclusion: the flashing front. This
front is propagating into the inclusion at a rate governed by a heat balance
between the conducted heat into the inclusion and the latent heat required to
move the flashing front some distance into the inclusion. The amount of heat
provided by conduction when the flash front is located at s(t) after some time ∆t
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is:
4πs2K

dT
dr

∆t, (1.7)

where dT
dr ≈

(Tm−T0)e−αt

0.3R1
with the length scale estimated by calculating the amount

of magma needed to vaporise that amount of water assuming that in the time ∆t

the flashing front moves ∆s towards the centre of the inclusion. The heat required
to vaporise this thin spherical shell of water is:

4πs2
∆sρlφhvl, (1.8)

where hvl is the latent heat of vaporisation of water. Then, using equations 1.7
and 1.8 and taking the limit as ∆t tends to zero, noting that ṡ = lim∆t→0

∆s
∆t , an

expression for the speed of the flash front is obtained:

ṡ =−K(Tm−T0)e−αt

0.3ρlφhvlR1
. (1.9)

If the flash front at the time of entrainment is at distance R1 from the centre of the
ejecta, this gives an equation for s and the critical time (t0), i.e., the time it takes
for the water to be depleted and the distance of the steam generation boundary
from the centre of the ejecta to equal zero:

s(t) = B(e−αt−1)+R1 (1.10)

B =
(Tm−T0)ρcpR1

3ρlφhvl
(1.11)

t0 =−
1
α

ln
(

1− R1

B

)
. (1.12)

The boundary condition is set by the vapour mass flux across this flash front. To
calculate this the mass of vapour produced per second over the entire flash front
is equated with the total flow rate of vapour that is flowing away from the
flashing front in to the magma:

−φρl4πs2ṡ =−4πs2 kρv

µv
∇p. (1.13)

Then by applying the ideal gas law (with R as the gas constant and M the molar
mass of water) to convert the density to pressure and considering the flux to be
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zero after the water is depleted (i.e., when the critical time t0 is reached) gives:

(
k

φmµv

)
p∇p =

{
RTmφρl ṡ

Mφm
: t < tc

0 : t > tc
, r = s(t) (1.14)

The system is re-scaled on the time it takes for the water to be depleted (tc), the
pressure when the magma ruptures (pc), the temperature of the magma (Tm) and
the radius of the magma (R2) to form the following equations:

∂ p̃
∂ t̃

=
1
r̃2

∂

∂ r̃

[
D̃r̃2 ∂ p̃2

∂ r̃

]
(1.15)

p̃(r̃,0) = 0, p̃(1, t̃) = 0 (1.16)

D̃
∂ p̃2

∂ r̃
=

{
Cṡ : t̃ < 1
0 : t̃ > 1

, r̃ =
s(t)
R2

(1.17)

ṡ = −K(Tm−T0)e−αtct̃

ρlφhvl×0.28R1
(1.18)

C =
tcRTmφρl

R2 pcMφm
(1.19)

D̃ =
tc pck

2φmµvR2
2 . (1.20)

This system of equations can be solved numerically using the PDEPE command
in Matlab (which solves initial-boundary value problems for systems of parabolic
and elliptic partial differential equations with a single space dimension and time).
At first, the flashing front was fixed at the surface of the inclusion and delivered
vapour at this point for the time t0 (the time it would have taken for the boundary
to reach the centre of the inclusion). This results in a larger amount of vapour
than the moving boundary model would, as it does not take into account the
reducing area of the flashing surface.

By fixing the boundary and setting the vapour flux to the maximum possible
value (seen at initial times as it has largest flashing surface and therefore the most
liquid flashed to vapour at the boundary at one time), for the time t0 this will
produce an upper limit on the maximum pressure that can be obtained with a
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moving boundary model. It is an upper limit because the pressure is only affected
by two processes: the production of vapour and the time it takes for this vapour
to escape through the pores of the magma. If the vapour production is maximal
then this will produce an upper limit on the pressure, as the time it takes for the
vapour to escape the pores of the magma is not affected by fixing the boundary.
These moving boundary pressures can be simulated by updating the fixed
boundary positions at regular time intervals.

Figure 1.2: Numerical solution for a
1mm inclusion with a fixed boundary

Figure 1.3: Numerical solution for
a 1mm inclusion with a moving
boundary

The rapid stabilisation of pressure at the surface of the inclusion indicates that the
maximum pressure can be approximated by a steady-state solution for pressure
with a constant and persistent flow of vapour at the surface of the inclusion.
Using this steady-state approximation, a formula for the criterion for rupture of a
spherical ejectum containing a small centred spherical inclusion can be derived:

pmax =

√
7RTmK(Tm−T0)µv

Mp2
chvlk

(
1− R1

R2

)
. (1.21)

This approximation produces results that are consistent with the numerical
simulations from the model. From equation 1.21 a critical permeability is found
for typical values of other parameters for ejected rock, kc = 3×10−14. Intact
ejecta permeability measured by Schipper et al. [38] ranges from 10−10 to 10−13

m2. This suggests the true critical permeability is lower that these values and this
is consistent with the critical permeability calculated from the fragmentation
criterion.
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1.2.3 Magma Fragmentation

Magma fragmentation in high energy eruptions, such as Vulcanian, Plinian and
Ultra-Plinian, is caused by rapid decompression of the volcanic vent. This
decompression can be the result of either the dislodging of a blockage in the
volcanic vent or the collapsing of the dome [[18], [1], [41]]. This fragmentation
may be able to provide insight into how pressure build-up will effect the magma
in Surtseyan ejecta.

Magma fragmentation occurs inside the volcanic vent and various analogue
materials have been studied to shed light on this process. Alidibirov [1] used
porous volcanic rock for this analogue, which he justified by considering that the
magma, at the time-scale of the experiment, would act like a brittle solid.
Alidibirov also designed a vertical shock tube to simulate the depressurisation
process. The apparatus had rock glued into a sample holder and then this was
placed inside an autoclave. The autoclave is attached to a large chamber, held at
atmospheric pressure, with a diaphragm to separate it. It is slowly pressurised
and rapid decompression is triggered and a high speed camera is used to capture
the results. This experiment has since been modified to investigate a variety of
different problems, such as Spieler’s [44] research on the fragmentation
threshold of pyroclastic rocks.

There are many different proposed fragmentation mechanisms and they can be
categorised into groups depending on the viscosity or temperature of the magma.
A proposed low magma viscosity mechanism is bubble formation. This was first
suggested by Verhoogen [48] and later modified by McBirney and Murase [30].
The mechanism proposes that decompression causes bubbles to be formed by the
enclosed gases in the porous magma. The enclosed gas, after decompression, is
at a higher pressure than the surface. The pressure difference causes deformation
in the low viscosity magma and expands the pores to form bubbles. If the volume
ratio of bubbles to magma becomes too large then fragmentation of the magma
occurs. Sparks proposed that explosive fragmentation is the result of these
bubbles bursting [42].

If the magma has a higher viscosity, then a larger force will be required to
deform it. The trapped gases cannot expand the pores to release the pressure
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resulting in an over-pressure. There is some debate over the cause of
fragmentation in this case. Bennet [8] proposed that the mechanism relies on
expansion waves and that it can be studied using one dimensional shock tube
experiments. Another theory (Sparks [42]) argues that the bubbles in the magma
would create their own expansion and compression waves and every bubble
would act as its own diaphragm.

Explosive fragmentation of vesicular magma was mathematically modelled by
Fowler et al. [18]. The fragmentation mechanism in this model is controlled by
the gas pore pressure exceeding the yield stress, the lowest stress needed for the
rock to rupture, of the porous rock. At the time of rapid decompression the
decreasing pressure at the surface causes an over-pressure in the pores of the
rock. This creates a pressure difference between the pores and the surface that
will cause fragmentation if it exceeds the yield stress. The Surtseyan ejecta
problem can also be considered as an over-pressure between the entrained slurry
and the magma surface, which may cause the ejectum to fragment. Therefore,
some of the methods used in this model, particularly the momentum and stress
equations, could be used to inform the Surtseyan ejecta model. However, unlike
the explosive fragmentation model, the pressure build-up inside Surtseyan ejecta
is driven by a temperature difference, not a rapid decompression, and therefore
the temperature analysis also needs to be considered.

1.2.3.1 Fluid flow in a porous medium

Porous rock can be used as an analogue for vesicular magma hence fluid flow
through a uniformly constant porous media is of interest. The equations
describing fluid flow in a porous medium were developed in the petroleum,
groundwater and soil science literature and were applied to geothermal reservoirs
by Grant et al. [19]. If the porous medium is not uniform then averaging is
needed to determine the fraction of liquid, vapour or a mixture of both states in
the pores of the medium. This averaging is detailed by both Drew and Wood [15]
and Fowler [17].

Conservation equations for mass, momentum and energy apply separately to
each phase, but they can be combined to obtain a single equation for the two
phase flow. The mass conservation equation for a single phase fluid flow through
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a medium with uniform porosity (φ ) is:

φ
∂ρx

∂ t
+∇ · (ux) = 0, (1.22)

where ux is the mass flux density and ρx is the density of the fluid.

The conservation of mass equation for a two-phase flow is a combination of the
single phase vapour and liquid flows. If the porous media is saturated with a
mixture of liquid and vapour, a fraction of the pore space is filled with each
phase. The fraction of the pore space containing liquid is denoted Sl and as the
pore space is saturated with fluid the fraction containing vapour is 1−Sl = Sv.
The conservation of mass equation for a two phase flow is:

φ
∂ (ρlSl +ρvSv)

∂ t
+∇ · (uv +ul) = 0. (1.23)

The pore space in the momentum and energy conservation equations can be split
between liquid and vapour sections in the same way.

Jacob Bear in his book ‘Modeling Phenomena of Flow and Transport in Porous
Media’ [5], details in a similar manner to Drew and Wood [15] and Fowler [17]
the continuum approach to porous media and the use of relative elementary
volume (REV). By definition these REV are of a size such that wherever they are
placed in the porous media they contain both solid and fluid material, in
averaging over the porous media. Bear’s book also contains details of the
Non-Darcy flux laws, like the Forchheimer equation, and also describes under
what conditions Darcy’s laws can be used. In order to use Darcy’s law the
Reynolds number of a system must not exceed one. The Reynolds number is
defined as:

Re =
qd
γ
,

where q is the flow speed, d is the pore size and γ is the kinematic viscosity.

Bear [5] also details four different mechanisms for thermal energy transport in a
porous medium (assuming that radiation plays no rule in the energy transport).
These mechanisms are:

• Advection: the movement of fluid(s) in the pore space
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• Conduction in both the solid and the fluid

• Mass diffusion in the fluid

• Thermal dispersion in the fluid.

He notes that due to the advection, the movement of fluid in the pore space
carrying thermal energy, any complete heat transport model must by made up of
a coupled heat and mass transport model. The fluid mass transport models in
non-porous media assume that the solid is impervious to mass or heat transport.
Bear states that in a porous medium this is not the case and the condition
between the fluid in the pore space and the surrounding solid will cause their
temperatures to equalise over time.

The text [5] also details the use of advective and diffusive fluxes to produce the
total energy flux need in the conservation of mass equation. He notes that the
total energy flux is made up of total advective energy flux and three diffusive
energy fluxes:

• Diffusive flux of internal energy, expressed by Fourier’s law

• Diffusive flux of kinetic energy, which is calculated using the stress and the
velocity vectors and represents the work done by surface forces

• Diffusive flux of potential energy, which is calculated considering the work
done by the diffusive mass fluxes against the conservative forces, for
example gravity.

The advective and diffusive fluxes are used in Bear’s book to derive the
point-wise energy equation that is averaged over to find the energy in the solid
and fluid regions.

1.2.4 Summary

In summary, this thesis expands upon the previous model for the behaviour of
Surtseyan ejecta [[20], [31]]. To achieve this, ideas from the magma
fragmentation literature are used to provide an understanding of how changes in
pressure can cause the fragmentation of magma. Of particular interest is the
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explosive fragmentation of vesicular magma mathematical model by Fowler et
al. [18]. The rapid decompression in this model creates an over-pressure in the
pores of the rock. This pressure difference between the pores and the surface will
cause fragmentation if it exceeds the yield stress. This information is highly
relevant in the modelling of Surtseyan ejecta as it is similar to the pressure
build-up in the ejectum at the flash front, which in the ejecta model is driven by a
temperature difference instead of a rapid decompression. In both cases the
over-pressure may cause the ejectum or the magma to fragment if the yield stress
is exceeded. Therefore, some of the methods used in this model, particularly the
momentum and stress equations, are useful to inform the Surtseyan ejecta model.

The other area of interest in the literature review is fluid and heat flow in porous
media. The averaging techniques using a relative elementary volume over a
porous media are required to simplify the mass, momentum and energy
conservation equations for a fluid in a porous media. The derivation of the
pointwise energy conservation equation [[5],[16]] also helps with the
construction of the energy conservation equation in the Surtseyan ejecta model.
The derivation and the explanation covering the purpose of each term helped
with the simplification of the Surtseyan model as both Bear’s and Fowler’s books
[[5],[16]] contained information which helped with the discussion concerning
neglecting the diffusive flux of potential energy, viscous dissipation and the
deviatoric stress tensor.

Lastly, the literature review provides general background about Surteyan ejecta
and eruptions. This includes Kokelaar’s model of the eruption at Surtsey [[23],
[24]]. The information in this section of the literature review along with
conversations with Ian Schipper [40] helped with keeping the assumptions and
typical parameters in the Surtseyan ejecta model realistic. Also, the observations
of Thorarinsson [46] detailing magma bombs with black tails that turn white in
mid-flight is evidence that in reality water vapour is escaping the Surtseyan
ejecta and the approach of modelling the water vapour escaping through the
magma in flight is valid.
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1.3 Overview of thesis

This thesis focuses on developing a rigorous numerical model for the
temperature and pressure behaviour in Surtseyan ejecta. The new model uses the
conservation of mass, momentum and energy equations to describe the fluid flow
through the porous magma of the Surtseyan ejecta. Porous rock is used as a
analogue for the magma in the ejecta. The resulting equations are solved
numerically using the method of lines for typical parameter values.

In chapter 5 the consequences of the infinite gradients at the flash front on the
maximum pressure are considered. This includes a study on the convergence of
the numerical solutions for the maximum pressure and the time it takes for this
maximum pressure to be reached.

The temperature diffusion equations, derived in chapter 2, have thermal
diffusivities that when compared to the pressure diffusivity suggest a thermal
boundary layer near the flash front. In chapter 3 asympototic methods from
Bender and Orszag [7] are used to form temperature profiles in the inclusion and
the magma. These temperature profiles apply for early times before the
movement of the steam generation boundary can significantly affect the
temperatures.

In chapter 6, a theoretical upper-bound on the maximum pressure at the flash
front in a Surtseyan ejectum is produced. This chapter also produces a theoretical
lower-bound for the time it takes for this pressure to be reached. This is achieved
by estimating the early time pressure behaviour and equating it to the pressure
null surface. This theoretical upper-bound on the maximum pressure at the flash
front can be directly compared with the criterion for rupture from the previous
model. It is clear that the theoretical upper-bound on the maximum pressure at
the flash front and the criterion for rupture from the previous model are close to
identical except for a factor comprised of some constants and the ramp distance
used over the step function.

The numerical simulations are compared with the temperature profiles calculated
in chapter 3 and the theoretical upper-bound on the maximum pressure at the
flash front from chapter 5. The temperature profiles provide a close match to the
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numerical simulations for typical parameter values in both the inclusion and the
magma regions. The theoretical upper-bound on the maximum pressure at the
flash front is about 5 times that of the simulated value for the typical parameter
values.

Finally, the maximum pressure from the numerical simulations and the
upper-bound on the maximum pressure at the steam generation boundary are
compared with the permeability and porosity data for existing intact Surtseyan
ejecta.



Chapter 2

Fully Coupled Model

Previous work modelling Surtseyan ejecta [[20],[31]] contained many
shortcomings. Firstly, in the model it was assumed that the temperature and the
pressure were uncoupled and the inclusion heated in a uniform manner. This is
an issue as one of the justifications for the ejectum remaining intact is that the
liquid in the inclusion evaporates gradually and this can only occur if the boiling
point of the liquid is affected by the pressure. The second shortcoming is the
treatment of the steam generation boundary and the assumed temperature
gradient at that point in the magma. This temperature gradient was estimated
using a length scale determined by the amount of magma needed to vaporise the
liquid in the inclusion. This length scale is likely to be larger than the true length
scale and thus produces a lower temperature gradient in the magma at the steam
generation boundary.

In order to combat the shortcomings found in the previous model this work will
return to basics and develop a model that is more soundly based on the physics
and mathematics of the Surtseyan ejecta behaviour. This will include a
systematic reduction of the coupled nonlinear partial differential equations that
arise from the mass, momentum and energy conservation equations to form a
fully-coupled model for the behaviour of Surtseyan ejecta.

17
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2.1 Dimensional Model

This model considers the boiling of water within a single slurry inclusion,
enclosed by a ball of vesicular magma, and how the generated vapour diffuses
through the magma. The ejectum is taken to consist of two concentric spheres of
slurry and magma 1 .

The centre sphere is the slurry, which is comprised of previously erupted and
cooled vesicular magma that has been washed back into the volcanic vent. As the
vesicular magma cools it forms a porous rock and therefore it can be assumed
that the slurry is made up of porous rock with liquid water in the pores. After the
water has evaporated the slurry centre becomes a rock-like material, with a
similar make up to the surrounding cooled magma, that is typically fused into
one piece and surrounded by a void space.

Figure 2.1: Diagram showing a slurry inclusion, of radius R1, entrained in a
magma ejectum, of radius R2. The diagram (left to right) shows the motion of
the steam generation boundary, s, as it moves towards the centre of the slurry
inclusion.

For the outer sphere a common analogue for magma, at the timescales in this
model, is to treat it as a porous medium 2. The medium will only contain water in
vapour form within its pores. This model is concerned with the first few seconds
of existence for this ejecta. In this time period they erupt from the volcanic vent

1 The validity of using two concentric spheres of slurry and magma in this model is discussed
in section 7.3.1

2 This is a common assumption first made by Alidibirov [1]; see section 1.2.3
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and travel though the air in free fall. Initially the temperature of the magma is
about 1200 K. At this temperature all the magma components are completely
molten. The starting temperature of the slurry is taken to be 300 K, which is
approximately the temperature of sea water. This model set-up allows spherical
symmetry to be applied in order to simplify the problem to one dimension.

The model derivation begins with the pointwise conservation of energy equation
for fluid, in liquid or vapour phase. In terms of pressure and temperature this is:

ρcp

(
∂T
∂ t

+v ·∇T
)
−βT

(
∂ p
∂ t

+v ·∇p
)
= ∇ · (K∇T ). (2.1)

This equation is derived using the pointwise enthalpy conservation equation, as
detailed in appendix A.

2.1.1 The Magma Region

The magma region is that which is situated between the steam generation
boundary, at distance s from the centre of the inclusion, and surface of the
ejectum, at distance R2 from the inclusion centre. For the conservation of energy
within the porous rock analogue (denoted with subscript m) it is assumed that the
rock is competent (rock that is able to sustain openings/pores without structural
support), stationary (in the ejecta’s reference frame) and has negligible
compressibility 3. The porosity of the analogue in the magma region is also taken
to be constant. It is assumed that the representative elementary volume, used in
the averaging detailed in [22] and [17], is small with no local temperature
variation at the interfaces between the rock and vapour. After averaging over a
volume with porosity φ , the conservation of energy equation for the rock is:

(1−φ)ρmcpm
∂T
∂ t

= (1−φ)∇ · (Km∇T ), (2.2)

where cpm is the specific heat of the magma. This equation contains only the
energy transfer due to conduction, and this is a consequence of the stationary and
compressibility assumptions.

3 These assumptions are made to aid in the averaging of the energy conservation equation. The
assumption that the rock is competent is also standard when used as a magma analogue.
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Now consider the conservation of energy in the water vapour (denoted with
subscript v) in the pores of the magma region. It is assumed that the water vapour
is the sole presence in the pores and that it can be approximated as an ideal gas.
With Batchelor’s [4] approximation βT ≈ 1, equation 2.1 can be written as:

ρvcpv

(
∂T
∂ t

+v ·∇T
)
−
(

∂ p
∂ t

+v ·∇p
)
= ∇ · (Kv∇T ). (2.3)

However, this is still a pointwise equation and averaging [[22],[17]] over a
representative elementary volume of porous magma containing flowing vapour
gives the energy conservation equation for this moving pore fluid as:

φρvcpv

(
∂T
∂ t

+v ·∇T
)
−φ

(
∂ p
∂ t

+v ·∇p
)
= φ∇ · (Kv∇T ), (2.4)

where φ is the fraction of the magma volume occupied by the escaping steam
(which in this case is equivalent to the porosity). Also, like the magma energy
conservation equation, the temperature variation at the interfaces has been
neglected.

The combined averaged conservation of energy equation for the magma and the
vapour is, using equations 2.2 and 2.4:

cpeρe
∂T
∂ t

+ρvcpvu ·∇T −φ
∂ p
∂ t
−u ·∇p = Ke∇

2T, (2.5)

where u = φv represents the Darcy velocity of the vapour,
cpeρe = (1−φ)ρmcpm +φρvcpv is the combined heat capacity for the rock and
vapour and Ke = (1−φ)Km +φKv is the effective thermal conductivity of the
pore space. The variation in the cpeρe term (in the range of temperatures, 300K
to 1300K, and pressure, from atmospheric to that of fragmentation at about 2
MPa) is less than 0.5%, see figure 2.2, and is dominated by the thermal capacity
of the rock and this will therefore be taken to be constant.

In this magma region, the conservation of vapour mass and momentum need to
be considered. The conservation of vapour mass equation is:

φ
∂ρv

∂ t
+∇ · (ρvu) = 0, (2.6)
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Figure 2.2: A graph showing the variation in cpeρe
(1−φ)ρmcpm

of water vapour in the
temperature’s and pressure’s of interest.

and conservation of vapour momentum is given by Darcy’s Law, which describes
a fluid flow in a porous medium,

u =− k
µv

∇p, (2.7)

where k is the permeability of the magma and µv is the viscosity of the vapour.

Assuming that the vapour in this region is an ideal gas 4 this allows for the
temperature, pressure and density when r > s(t) to be related by:

ρv =
pM
RgT

, (2.8)

where M is the molar mass of water and Rg is the universal gas constant.

4 Water vapour is not an ideal gas because it is a polar molecule. However, at lower pressures
this is a common assumption, and it is not expected to significantly alter the modelling results.
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2.1.2 The Inclusion Region

In the inclusion region between the origin at the centre of the ejectum and the
steam front at distance s, conservation of energy, mass and momentum equations
are used in a similar manner to the magma region. Starting with the pointwise
conservation of energy equation 2.1 consider the rock (denoted with subscript
m), and liquid (denoted with subscript l) in a similar way to how the magma and
vapour were treated. After averaging, the combined rock and liquid water energy
conservation equation is:

cpiρi
∂T
∂ t

+ρlcplul ·∇T −φβT
∂ p
∂ t
−βT ul ·∇p = Ki∇

2T (2.9)

where cpiρi = (1−φ)ρmcpm +φρlcpl , ul = φvl is the Darcy velocity for liquid
water and the combined thermal conductivity is Ki = (1−φ)Km +φKl (note the
subscript i to denote the inclusion). As the slurry is made up of previously
erupted material from the volcano it is assumed that the slurry and the magma
will have similar properties. This allows for the porosity in both regions to be
considered to be equal.

In the inclusion region conservation of liquid water mass,

φ
∂ρl

∂ t
+∇ · (ρlul) = 0, (2.10)

and conservation of the liquid water momentum given by Darcy’s law,

ul =−
k
µl

∇p, (2.11)

must be applied. In addition, as the liquid water is considered to be a
compressible fluid in this model (due to the large fluctuations in pressure and
temperature), an expression for water density is required. By fitting specific
volume data from [37] between the pressures of 1 and 100 bar and temperatures
between saturation and the critical point an expression for density is deduced:

ρl = ρ0l +βe(p− p0)−α(T −TR). (2.12)

In equation 2.12 the reference parameters ρ0l , p0 and TR are set to 1000 kg/m3 ,
atmospheric pressure and 300 K respectively (these are the initial temperature,
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pressure and density values in the inclusion). The compressiblity factor of liquid
water is βe = 4.6×10−10 kg/m3/Pa and the thermal expansion is α = 0.5
kg/m3/K. This equation gives a fit that is within 10% of 5 the specific volume
data within the ranges stated [37].

2.1.3 The Steam Generation Boundary

The final region considered is the steam generation boundary located at r = s(t),
separating the vapour and the liquid regions. The evaporating liquid in this
region causes an increase in inclusion pressure and this results in the inclusion
temperatures staying at or below boiling point. This leaves a small two-phase or
a boiling region at the edge of the inclusion that can increase or decrease in size
depending on the pressure behaviour. This boiling region is the steam generation
boundary. In section 2.2 this is shown to be a thin region.

Using the conservation of enthalpy and mass equations, averaged over a small
representative volume for both the inclusion and magma regions, the boundary
behaviour can be found by integrating over the steam generation boundary as
detailed in appendix B. This results in:

φρvhvl(vv− ṡ) = φρlhvl(vl− ṡ) = [K∇T ]+−+φ(vv− vl)p, (2.13)

where the subscript v denotes the water vapour.

In this region it is assumed that the temperature and the pressure are at saturation
6 and are therefore related by the Clausius-Clapeyron equation:

p = pRe
Mhvl
RgTR

[
T−TR

T

]
(2.14)

where pR and TR are reference pressure and temperature.

5 This linear model is sufficient for the current model. Water is normally treated as an
incompressible liquid and this model is an improvement on that assumption.

6 This is a reasonable assumption if the temperature at the boundary remains below the critical
temperature, as is assumed in this model. However in a later model it would be interesting to
take a look at this.



24 CHAPTER 2. FULLY COUPLED MODEL

Equations 2.5 to 2.14 form the equations for the dimensional model. The
boundary conditions are that the pressure at the surface of the ejectum is at
atmospheric pressure, p(R2) = pa, and there is no flow of fluid or heat at the
centre of the inclusion:

∂ p
∂ r

∣∣∣∣
r=0

= 0

∂T
∂ r

∣∣∣∣
r=0

= 0

The temperature and pressure are assumed to be continuous across the steam
generation boundary. The initial conditions are that at time t = 0 the magma
temperature is Tm, the inclusion temperature is at boiling for atmospheric
pressure and the pressure is taken to be atmospheric pressure throughout the
ejectum7.

2.2 Non-Dimensional Model

To reduce the complexity of the coupled equations, rescalings are chosen to
non-dimensionalise the model. After rescaling, the small terms determined by
the parameters in table 2.1, are neglected in the model. The rescalings used in
this model are:

r = r̃R2, s = s̃R2, T = T̃ Tm, p = p̃pa, t = t̃t0,

vl = v0l ṽl, vv = v0vṽv, ρl = ρ0lρ̃l, ρv = ρ0vρ̃v.

In this chapter the rescalings are applied to Equations 2.5 to 2.14 (details in
Appendix C) and then the tildes are dropped.

The time rescaling (t0) is the time taken for the liquid in the inclusion to flash to
steam. This process is the driving force behind the build-up of pressure. Another
possible choice of scaling is the time taken for the vapour to escape through the

7 The pressures inside a volcanic vent would be significant higher than this. However, this
mixing occurs at the surface of the vent, which is at atmospheric pressure.
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pores of the ejectum. However as the maximum pressures occur at early times,
this scaling misses important behaviour. The t0 rescaling can be estimated by
balancing the energy required to flash the liquid in the inclusion to vapour and
the conduction of heat across the surface of the slurry (using the variables in
table 2.2), giving:

t0 =
φρ0lhvlR2

1
3Ke(Tm−Ti)

≈ 17. (2.15)

Using the ideal gas law we can choose

ρ0v =
paM
RgTm

(2.16)

and since the vapour is produced at the steam generation boundary, balancing the
amount of liquid flashing to steam with the amount of vapour crossing the
boundary gives

vv0 =
R2ρl0

t0ρs0
. (2.17)

2.2.1 The Steam Generation Boundary

Dropping the tildes on the dimensionless variables on equation 2.13 gives the
mass balance:

ṡ(ρl− f1ρs) = f2ρlvl−ρsvv, (2.18)

where the parameters f1 and f2 are defined in table 2.1. As Ke ≈ Ki the
difference is neglected. The energy balance, equation 2.13, across the steam
generation boundary is given by:

ρs(vv− f1ṡ) =
1
f3
[∇T ]+−+ f4(vv− f5vl)p, (2.19)

with the ratios f4, f3 and f5 defined in table 2.1. The full details of this derivation
and those of the inclusion and magma equations can be found in appendix C.

The Clausius Clapeyron equation in dimensionless terms is:

p = eH[ T−Tn
T ], (2.20)

where the reference pressure is set to atmospheric pressure and the reference
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temperature to the boiling point of water at atmospheric pressure.

2.2.2 In the Inclusion

In the inclusion, the equation of state ,equation 2.12, non-dimensionalises to:

ρl = 1+ f6(p−1)− f7(T −Tn), (2.21)

where the parameter values can be found in table 2.1. The only mechanisms that
can cause the liquid in the inclusion to move are expansion and contraction. This
is due to the spherical assumption and that the ejectum is in free fall and, so
gravitational effects do not apply. Also in this model rotations are not considered.
If the ejecta was rotating, this would push the water vapour towards the edge of
the bomb, decreasing the pressure at the steam generation boundary. Therefore
this model will still provide an upper limit for the maximum pressure produced.
In table 2.1 it is clear that f6 is relatively small and can therefore be ignored. The
implication of this is that thermal expansion dominates changes in density in the
inclusion.

An estimate for the rescaling of the liquid velocity is obtained by calculating the
change in dimensional radius due to the density decrease when the inclusion is
heated to near-critical temperature. The time taken for the inclusion to heat to
critical temperature is also required to estimate the liquid velocity (details in
appendix C.2). The resulting over-estimate for the liquid velocity is:

vl0 ≈
αKi(Tcrit−T0)

3R1((1−φ)ρmcpm +φρvcpv)(ρl−α(Tcrit−T0))
. (2.22)

The conservation of mass in the inclusion becomes:

φ
∂ρl

∂ t
+ f2∇ · (ρlul) = 0. (2.23)

As f2 is very small (table 2.1), the density of the liquid can be considered as a
constant and therefore the velocity of the liquid (vl0) which is caused buy the
expansion or contraction of the liquid is considered negligible. This is consistent
with the estimate for the velocity of the liquid in Appendix C, which also
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indicated that there was very little change in the radius of the inclusion. It
follows that the pressures in the inclusion do not vary appreciably with the radius
and therefore can be taken to be equal to the time-varying pressure at the flash
front. Another consequence of the liquid density being treated as a constant is
that ciρi can be treated as a parameter. Lastly, the boundary condition can also be
reduced due to the small sizes of f1 and f5 (see table 2.1) to:

ρvvv =−ṡ =
1
f3
[∇T ]+−+ f4vv p. (2.24)

The energy equation in the inclusion can also be reduced by neglecting the liquid
velocity and removing the small pressure work term (details in appendix C.2):

∂T
∂ t

=
f9

r2
∂

∂ r

(
r2 ∂T

∂ r

)
. (2.25)

The small term f9 is retained so that the thermal boundary layer that forms near
the flash front can be resolved.

2.2.3 In the Magma

The ideal gas law and Darcy’s law become, respectively, (see derivation in
appendix C.3):

p = ρvT (2.26)

vv =− f10∇p. (2.27)

When these are substituted into the boundary equations the pressure work term
can be neglected, due to a very small coefficient, resulting in the equations being
reduced to:

ρvvv =−ṡ =
1
f3
[∇T ]+−. (2.28)

The mass conservation equation is re-scaled to:

∂ρv

∂ t
=

f11

r2
∂

∂ r

(
ρvr2 ∂ p

∂ r

)
(2.29)
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and the energy conservation equation takes the form:

∂T
∂ t
− f12ρv

∂ p
∂ r

∂T
∂ r
− f13

∂ p
∂ t

+ f14

(
∂ p
∂ r

)
=

f15

r2
∂

∂ r

(
r2 ∂T

∂ r

)
. (2.30)

The smallest terms f12, f13 and f14 in equation 2.30 are neglected (see table 2.2).
f15 is retained so that it can be used to analysis the thermal boundary layer at the
flash front. With these simplifications equation 2.30 is reduced to:

∂T
∂ t

=
f15

r2
∂

∂ r

(
r2 ∂T

∂ r

)
. (2.31)

2.2.4 Summary and Table of Parameters

To summarise, the non-dimensional equations that describe the reduced model
are:

∂T
∂ t

=
f9

r2
∂

∂ r

(
r2 ∂T

∂ r

)
, r < s(t) (2.32)

ρsvv =−ṡ =
1
f3
[∇T ]+− , r = s(t) (2.33)

p = eH[ T−Tn
T ], r = s(t) (2.34)

vv =− f10∇p, r ≥ s(t) (2.35)

∂T
∂ t

=
f15

r2
∂

∂ r

(
r2 ∂T

∂ r

)
, r > s(t) (2.36)

p = ρvT, r > s(t) (2.37)

∂ρv

∂ t
=

f11

r2
∂

∂ r

(
ρvr2 ∂ p

∂ r

)
, r > s(t). (2.38)

The outer boundary of the ejecta at r = 1 is fixed at the non-dimensional initial
temperature of the fluid, T = T0, and at non-dimensional atmospheric pressure,
p = 1. Symmetry applies such that there is no temperature flux at the centre of
the inclusion, ∂T

∂ r = 0. The initial temperature inside the inclusion is
non-dimensional giving T = T0 and inside the magma to give T = 1 with an
initial pressure of non-dimensional atmospheric pressure, p = 1. Lastly, the
initial position of the steam generation boundary is at the non-dimensional
distance R1

R2
. The pressures in the slurry are assumed to be equal to those at the

steam generation boundary. A further reduction of this model, assuming that the



2.2. NON-DIMENSIONAL MODEL 29

temperature diffusion in the inclusion is relatively slow, and taking the
temperatures in the inclusion to be equal to T0, will recover the temperature
equations seen in the model described in section 1.2 [20].

8 We will be taking 373K as the initial temperature, which is the boiling temperature of water.
This value is taken instead of 300 for the ease of calculation as 373K is the boiling point of
water at one atmosphere. Due to the large temperature difference between the magma and
the inclusion (about 1000K) a difference of 73K in the initial temperature will not change the
result significantly.
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Physical Constants
Constant Name Typical Value Units
cpl specific heat of liquid water 4200 J.kg−1.K−1

cm specific heat of magma 840 J.kg−1.K−1

cpv specific heat of water vapour 2000 J.kg−1.K−1

hvl specific heat of vaporisation 2.3×106 J.kg−1

k permeability 10−14 m2

Ke thermal conductivity 2 W.m−1.K−1

Ki thermal conductivity 3 W.m−1.K−1

M molar mass of water 18×10−3 kg.mol−1

pa atmospheric pressure 105 Pa
Rg universal gas constant 8.314 J.K−1.mol−1

R1 inclusion radius 0.01 m
R2 magma radius 0.1 m
Ti initial inclusion temperature 8 373 K
Tm initial magma temperature 1300 K
Tcrit critical temperature of water 647 K
TR reference temp, Ti
α thermal expansion coefficient of water 0.5 kg.m−3.K−1

βe isothermal compressibility of water 4.6×10−10 kg.m−3.Pa−1

µv dynamic viscosity 3×10−5 Pa.s
φ porosity 0.4
ρm density of basalt 2750 kg.m−3

ρecpe (1−φ)ρmcm +φρvcpv 1.4 ×106 J.m−3.K−1

ρicpi (1−φ)ρmcm +φρlcpl 3×106 J.m−3.K−1

T0
Ti
Tm

0.29
ρv0

paM
RgTm

0.17 kgm−3

vv0
R2ρl0
t0ρv0

34.6 ms−1

Table 2.1: This table contains of typical physical constants that are used in the
dimensional and reduced models. These constants are taken from the steam tables
[6], the previous model [20] and through conversations with Ian Schipper [40]
.
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Typical Values
Parameter Value Typical Value
f1

ρv0
ρl0

1.7×10−4

f2
vl0t0
R2

2×10−3

f3
vv0R2φρv0hvl

KeTm
212

f4
pa

ρv0hvl
0.26

f5
vl0
vv0

4×10−7

f6
βe pa
ρl0

4.6×10−8

f7
αTm
ρl0

0.6

f8
φβ pa
ρici

6×10−12

f9
Kit0

R2
2ρici

0.002

f10
kp0

µvR2φvv0
7×10−5

f11
t0kp0
φ µvR2

2
0.14

f12
t0ρv0cpvkp0

ρeceµvR2
2

4.2×10−5

f13
φ p0

ρeceTm
2.3×10−5

f14
kt0 p2

0
ρeceTmR2

2µv
9.1×10−6

f15
Ket0

R2
2ρece

0.0025

t0
φρl0hvlR2

1
3Ke(Tm−Ti)

17

H Mhvl
RgT0

13

Table 2.2: This table contains typical dimensionless parameter values for the
reduced model using the typical values of the physical constants in table 2.1
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Chapter 3

Asymptotic Temperature Solutions

The non-dimensional model described in equations 2.32 to 2.38 in chapter 2.2.4
contains small parameter values for the thermal diffusivity in both the inclusion
and magma diffusion equations. The thermal diffusivity is of order 10−3 for
typical parameter values (table 2.1). This is much smaller than the pressure
diffusivity, which is given by f11 p

T , which is of order 10−1. The differences in the
thermal and pressure diffusivity suggests that the temperature changes will
propagate at a much slower rate than the pressure changes. This slow
propagation implies the existence of thermal boundary layers in both the magma
and inclusion sides of the steam generation boundary. This boundary layer is
driven by the infinite temperature gradients at the flash front and consists of an
area of rapidly varying temperature.

The temperature boundary layers in the magma and the inclusion are areas of
rapid temperature variation. Outside of these boundary layers the temperature
variation is on a significantly slower time scale. The temperature equation
representing the region of slow temperature variation can be approximated by
setting the temperature variation to zero.

In order to model the behaviour of the temperature in the boundary layer a
coordinate rescaling is required. The rescaling is chosen so that all terms in the
temperature diffusion equations have the same order. As temperature is
continuous across the magma and inclusion regions the approximate temperature
equation in the boundary layer must tend towards the temperature in the outer
region. Using asymptotic methods from Bender and Orszag’s book on
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Asymptotic Methods and Perturbution ([7]) asymptotic solutions for the
temperature equations in the magma and inclusion regions as well as an
asymptotic equation for temperature gradients at the flash front can be
determined.

3.1 Asymptotic temperature solution in the magma
region

The diffusion equation for temperature in the magma region is:

∂T
∂ t

=
f15

r2
∂

∂ r

(
r2 ∂T

∂ r

)
. (3.1)

This contains a small parameter f15. Therefore the first derivative with respect to
time of temperature is the dominant term in the equation when the radius r is
greater that 2× f15. If only the dominant terms in the thermal diffusion equation
are considered the equation can be simplified to:

∂T
∂ t

= 0. (3.2)

This equation is an approximation for the behaviour of the temperature in the
outer region at times that are early enough that the magma has not been
significantly cooled near the outer boundary (at the surface of the ejecta), nor
been affected by the movement of the flashing front. Using the initial condition
for the magma temperature, T = 1, the asymptotic solution in the outer magma
region can be taken as constant, set to 1, at these early times.

The thermal boundary layer is driven by the infinite temperature gradients at the
boundary of the magma and inclusion. In the magma region close to the infinite
temperature gradients (at the flashing front) the rate of change of temperature
with time is no longer dominant. The region can be described using the radial
coordinate σ given by r = ε +δmσ , where δm =

√
f15. This radial coordinate σ

describes the region close to the steam generation boundary s(t = 0) = ε and is
the area of rapid temperature variation in the magma at times early enough that
the movement of the steam generation boundary can be reasonably be ignored.
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The temperature equation for the areas of rapid variation in the magma becomes:

∂T
∂ t

=
1

(ε +δmσ)2
∂

∂σ

(
(ε +δmσ)2 ∂T

∂σ

)
. (3.3)

Then, by considering the limit as δm tends to zero, thus taking the solution for the
rapidly varying region to only be valid when ε >> δmσ , the thermal equation
describing the rapidly varying temperature behaviour becomes:

∂T
∂ t

=
∂

∂σ

(
∂T
∂σ

)
(3.4)

with the boundary conditions T (0, t) = Tf and T tending to 1, the temperature in
the outer region, as σ → ∞. Tf represents the temperature at the flash front. This
temperature is coupled, through the Clausius Clapeyron equation, to the pressure
at the flash front. As the pressure at the flash front fluctuates so will the
temperature at the flash front. The temperature at the flash front can be estimated
using the Clausius Clapeyron equation. If the non-dimensional pressures at the
boundary range between 1 and 100 the non-dimensional flash temperatures
would vary between 0.29 and 0.45 , see figure 3.1. Therefore 0.4 can be taken as
an approximation for the temperature at the flash front. The variation in the
temperature at the flash front can be ignored because it is small compared to the
temperature variation between the approximate flash front temperature and the
outer solution, T = 1.

0 20 40 60 80 100p

0.3

0.35

0.4

0.45

T

Tf

Figure 3.1: Temperature values at the flash front compared with possible pressure
values
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Using the similarity solution η = t
σ2 , detailed in Appendix D.1, the behaviour in

the rapidly varying region in the magma can be modelled as:

T = (Tf −1)
(

1− erf(
σ

2
√

t
)

)
+1. (3.5)

This inner solution provides the following temperature gradient in the inner
magma region:

∂T
∂ r

=
1

δm

∂T
∂σ

=
(1−Tf )e(

σ2
4t )

δm
√

πt
. (3.6)

The magma temperature profile, equation 3.5, derived in this chapter will be
compared with the numerical simulations for the temperature in the magma in
chapter 7.

3.2 Asymptotic Temperature Solution in the
Inclusion

The asymptotic temperature equation in the inclusion is calculated using the
same method as the asymptotic temperature equation in the magma. The
diffusion equation for temperature in the inclusion:

∂T
∂ t

=
f9

r2
∂

∂ r

(
r2 ∂T

∂ r

)
(3.7)

is used and this contains a small parameter f9. In the outer region the limit of f9

tending to zero is taken to produce:

∂T
∂ t

= 0. (3.8)

By considering the initial non-dimensional temperature in the inclusion, T = T0,
the asymptotic solution in the slowly varying region can be taken as constant, T0.

The rapidly varying region in the slurry is driven by the large temperature
gradients at the boundary of the inclusion. Therefore the outer region (the region
with slow temperature variation) is at the centre of the inclusion.
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The rapidly varying region is a thermal boundary layer described by the radial
coordinate ψ given by r = ε−δiψ , where δi =

√
f9. This region, like the thermal

boundary layer in the magma, is a region near to the steam generation boundary
s(t = 0) = ε at times early enough that the movement of the steam generation
boundary can be reasonably be ignored. The temperature equation for the areas
of rapid variation in the inclusion becomes:

∂T
∂ t

=
1

(ε−δiψ)2
∂

∂ψ

(
(ε−δiψ)2 ∂T

∂ψ

)
. (3.9)

Then by considering the limit as δi tends to zero and taking the solution for the
rapidly varying region to only be valid when ε >> δiψ the thermal equation
describing the rapidly varying temperature behaviour becomes:

∂T
∂ t

=
∂

∂ψ

(
∂T
∂ψ

)
(3.10)

with the boundary conditions T (0, t) = Tf and T tending to the T0, the
temperature solution in the region of slow variation, as ψ → ∞.

Using the similarity solution η = t
ψ2 , detailed in Appendix D.2, the behaviour in

the rapidly varying region in the inclusion can be modelled as:

T = (Tf −T0)(1− erf(
ψ

2
√

t
))+T0. (3.11)

The temperature gradient in the thermal boundary layer in the inclusion can be
estimated, using equation 3.11, to be:

∂T
∂ r

=
1
δi

∂T
∂ψ

=
(Tf −T0)e(

ψ2
4t )

δi
√

πt
. (3.12)

As with the magma temperature, the inclusion temperature profile (equation
3.11) will be compared with the numerical simulations for the temperature in the
inclusion in chapter 7.
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3.3 Estimates for the gradients at the flashing front

Estimates for the temperature gradients at the flash front in the magma and in the
inclusion can be found using equations 3.6 and 3.12 and setting σ and ψ to zero.
This gives a temperature gradient of:

∂T
∂ r

∣∣∣∣
σ=0

=
(1−Tf )

δm
√

πt
. (3.13)

in the magma at the flash front and:

∂T
∂ r

∣∣∣∣
ψ=0

=
(Tf −T0)

δi
√

πt
. (3.14)

in the inclusion.

Noting that δi ≈ δm the contributions for the temperature gradients in the magma
and the inclusion can be compared. If the temperature at the flashing front is
taken to be 0.4 the magma temperature gradient at the steam generation
boundary is approximately:

∂T
∂ r

∣∣∣∣
σ=0
≈ 0.6

δm
√

πt
(3.15)

with a temperature gradient in the inclusion and also at the steam generation
boundary being approximately:

∂T
∂ r

∣∣∣∣
ψ=0
≈ 0.04

δi
√

πt
. (3.16)

This shows that the contribution to the temperature gradient from the inclusion is
about a fifteenth of the contribution from the magma. This is due to the similar
thermal diffusivities and the larger temperature difference between the flash front
and the magma when compared to the flash front and the inclusion. The
temperature difference between the flash front and the magma is approximately
0.6, using the non-dimensional temperatures, and the difference between the
flash front and the inclusions is approximately 0.2.
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In the upper bound on the maximum pressure calculations in chapter 6 these
approximations are used to justify ignoring the contribution of the heat flow into
the inclusion in the boundary equation at the flash front.
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Chapter 4

Numerical Method

In this chapter the focus is on numerically solving the reduced model (equations
2.32 to 2.38). This model consists of a set of coupled partial differential
equations with a moving front, the steam generation boundary, travelling towards
the centre of the inclusion over time.

4.1 Freezing the moving boundary

To aid in numerically solving the model, a coordinate transformation is used to
freeze the steam generation boundary between the magma and the inclusion. To
freeze the moving boundary, two Landau transformations [[26],[13]] are
required, one in the inclusion and the other in the magma.

In the inclusion a new radial coordinate ζ is defined, where:

ζ =
εr

s(t)
, (4.1)

freezing the moving boundary at ε , which is the initial position at time zero of
the steam generation boundary. The new coordinate system ζ , ranges from 0 to ε

and the chain rule gives:

∂ f (r, t)
∂ t

=
∂ f (ζ , t)

∂ t
+

(
−ζ

s
ṡ
)

∂ f (ζ , t)
∂ζ

41
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while the radial derivatives become:

∂ f (r, t)
∂ r

=
(

ε

s

)
∂ f (ζ , t)

∂ζ

∂ 2 f (r, t)
∂ r2 =

(
ε2

s2

)
∂ 2 f (ζ , t)

∂ζ 2 .

In the magma section of the model we define a new radial coordinate, ξ , where:

ξ =

(
1− ε

1− s(t)

)
r+
(

ε− s(t)
1− s(t)

)
(4.2)

and ranges from ε to 1. The chain rule gives the new temporal derivative:

∂ f (r, t)
∂ t

=
∂ f (ξ , t)

∂ t
+

∂ f (ξ , t)
∂ξ

(
ξ −1
1− s

)
ṡ

and the radial derivatives as:

∂ f (r, t)
∂ r

=

(
1− ε

1− s

)
∂ f (ξ , t)

∂ξ

∂ 2 f (r, t)
∂ r2 =

(
1− ε

1− s

)2
∂ 2 f (ξ , t)

∂ξ 2 .

The model in the new coordinate system becomes:

∂T
∂ t

=

[
2 f9ε2

s2ζ
+

ζ ṡ
s

]
∂T
∂ζ

+
f9ε2

s2
∂ 2T
∂ζ 2 , ζ = [0,ε] (4.3)

ρvvv =−ṡ =
1
f3

[(
1− ε

1− s

)
∂T
∂ξ
− ε

s
∂T
∂ζ

]
, ζ = ξ = ε (4.4)

vv =− f10

(
1− ε

1− s

)
∂ p
∂ξ

, ξ ≥ ε (4.5)

p = eH[ T−Tn
T ], ζ = ξ = ε (4.6)

∂T
∂ t

=

[
2 f15

g(ξ , t)

(
1− ε

1− s

)
− ξ −1

1− s
ṡ
]

∂T
∂ξ

+ f15

(
1− ε

1− s

)2
∂ 2T
∂ξ 2 , ξ = [ε,1] (4.7)

p = ρvT, ξ = [ε,1] (4.8)

∂ρv

∂ t
=

[
f11

(
1− ε

1− s

)2
∂ p
∂ξ
− ξ −1

1− s
ṡ

]
∂ρv

∂ξ
+

2ρv f11

g(ξ , t)

(
1− ε

1− s

)
∂ p
∂ξ
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+ f11ρv

(
1− ε

1− s

)2
∂ 2 p
∂ξ 2 ξ = [ε,1] (4.9)

g(ξ , t) =
(1− s)ξ +(s− ε)

1− ε
(4.10)

with the boundary conditions:

p = 1, ξ = 1;
∂T
∂ r

= 0, ζ = 0; T = T0, ξ = 1;

and the initial conditions:

T = T0, ζ = [0,ε]; T = 1, ξ = [ε,1]; p = 1.

4.2 Numerical Method

The equations 4.3 to 4.9 are solved using the method of lines. The method of
lines, appendix F, is used to discretise the spatial terms leaving a system of
temporal ordinary differential equations. Matlab can solve differential equations
in the form of y′ = f (t,y) where y and f are vector-valued functions. The Matlab
program must be provided with a function that will return a vector value for f ,
given t and y. From this, Matlab can find a solution numerically within specified
tolerances. In this model the y variables are made up of the spatially discretised
temperatures in both the inclusion and magma, the spatially discretised magma
density, and the location of the steam generation boundary.

The temperature at the steam generation boundary is calculated using the
nonlinear solver fsolve. This is only possible if there is a unique solution in the
ranges of temperatures being considered. Appendix E shows that there is a
unique solution in this range and the use of fsolve is valid. At the steam
generation boundary there is a step function and the model initially produces
infinite temperature gradients. These infinite temperature gradients result in the
temperature at the steam generation boundary varying substantially when the
step size adjacent to the flash front in the spatial discretisation is refined. This in
turn results in maximum pressure being dependent on this step size. At the steam
generation boundary the smallest length scale for the discretisation is the pore
size of the magma. Below this size the porous medium approximation breaks
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down. As pore size is the maximum refinement that can be used in this model
this step size will be used at the steam generation boundary.
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Figure 4.1: The circles represent the maximum pressure produced when using
different tolerances in the numerical solutions. These numerical solutions use the
typical parameters from table 2.1 and a minimum step size of 10 microns. The
mesh used is the log-based mesh with 200 mesh points in the inclusion and 800 in
the magma.

The method of lines requires spatial discretisation of magma and inclusion
regions. The area of interest, the flashing front, in the Surtseyan ejecta model has
rapidly varying temperatures and pressure that require a fine mesh to prevent
averaging effects lowering the maximum pressure. A uniform mesh is not as
efficient as the flashing front requires a fine mesh with a dimensional spacing of
10 microns, which is the approximate pore size of the magma, but the outer
region of the magma does not require this precision. Furthermore, the use of a
uniform mesh with 10 micron spacing is computationally expensive and takes a
very long time to conduct on a single computer.

To improve the computational workload involved in numerically solving this
model two different meshes were originally considered; the first was a log-based
mesh focusing on the flashing front. In this mesh the first step in both the
inclusion and magma regions are set to be equal; the second mesh used is a
coordinate transform, this transformation is chosen such that the required spacing
at the steam generation boundary is achieved while also producing a mesh that is
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a uniform mesh of this new coordinate system. The coordinate transform we
used is an arc tan transformation, as detailed in Appendix F.3.

The log-based mesh is an example of an uneven mesh. Uneven meshes require
the use of Taylor expansion methods to determine the second and first order
derivatives. The Taylor expansion methods in this case are first-order accurate.
This is most apparent in the magma density equation which, when using this
method, relies on a first-order derivative to determine the second-order derivative
in pressure. However, with the co-ordinate transformed mesh, a uniform mesh is
used after transforming co-ordinates, and this allows for a more accurate
treatment of the second-order derivatives, making the result more accurate than
the uneven log-based mesh. Therefore, as the co-ordinate transformed mesh has
more refined approximations, it is used to find the numerical solutions for this
model.

The arc tan transformed mesh is set up for each variable. In the magma there are
two variables, temperature and pressure, this region also has two boundary points
and contains n mesh points. In the inclusion the number of mesh points is set to
m. The numbers m and n are the number of spatial variables to be solved for each
variable. The total number of coupled differential equations to be solved
simultaneously is 2n+m+1. This includes n equations for each of the
temperature and pressure variables in the magma, m for the temperature variable
in the model plus an equation at the location of the steam generation boundary.

The initial conditions in the model have a step change in temperature and
pressure at the steam generation boundary. When solving this numerically the
maximum pressure is therefore expected to be sensitive to the mesh size adjacent
to the infinite gradients at the steam generation boundary. The initial temperature
gradients at the flash front are unbounded as the mesh size decreases, due to the
numerical value of the gradient being calculated by taking the change in
temperature divided by the mesh size. The pressure at the flash front depends on
the amount of water vapour produced and this is driven by the temperature
gradients. In the computer code this step function is replaced by a ramp function.
The steepness of this ramp function is dependent on the smallest mesh size. In
the limit as the mesh size reduces to zero the temperature gradient tends towards
the theoretical step function. The dimensional value of a typical pore size is
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approximately 10 microns, which will be taken as the smallest possible
computational mesh step. If the computational step size was smaller that the
typical pore size this would break the porous media assumptions.

In Matlab there are multiple solvers for ordinary differential equations. A Runge
Kutta solver of order 4-5 (ODE45) is the most commonly-used solver. However,
in this case due to the complex nature of the multiple timescales in the system it
was extremely computationally expensive. The method of lines is known to
typically produce stiff systems of equations. The boundary layers in temperature
and pressure have variables that fluctuate much more rapidly than the outer
region, thus producing a stiff system. Therefore using a variable step solver,
ODE15s, allows for the step size to be reduced in the boundary layer to increase
accuracy, but to remain broad in the outer region, thus decreasing the
computation time compared to the 4-5 Runge Kutta solver.

Matlab requires specified tolerances to calculate y. The tighter the tolerance used
the more computationally expensive the solver is. Figure 4.1 shows that in this
model when using tolerances below 10−8 there is no change in the maximum
pressure value. This maximum pressure is the value of interest for this research
and decreasing the tolerance below 10−8 does not affect the value. This allows
for all further results to use 10−8 as the specified tolerance ensuring a quicker
running time than using the tighter tolerances.

A sample of code can be found in appendix G.



Chapter 5

Numerical Results

The numerical solutions using the parameter values listed in table 2.1 indicate
that the pressure rises rapidly to a global maximum at the steam generation
boundary when compared to the time it takes for the inclusion to boil off the
water vapour. The vapour producing the pressures at the steam generation
boundary diffuses into the magma region, reducing the high initial pressures at
the flash front. The typical solutions, figure 5.1, also indicate that the amount of
vapour produced decreases over time as the liquid in the inclusion boils away.
This can be understood physically: as the steam generation boundary moves
towards the centre of the inclusion, the surface area over which the heating
occurs decreases. The parameter values listed in table 2.1 indicate a maximum
dimensionless pressure of approximately 50 which is 5Mpa when reverted to
dimensional units. This suggests that for the typical parameters being used, an
ejectum would explode as the pressure exceeds the 2Mpa tensile strength limit.
This is consistent with the data from Ian Schipper, shown in figure 5.6, which
indicates that the surviving ejecta have a higher permeability than the value
10−14 m2 that has been taken as typical.

The typical numerical solutions also reveal that the dominant temperature
gradient is on the magma side of the steam generation boundary. The numerical
model has been set up so that the mesh steps on either side of the steam
generation boundary are of equivalent size. The dominant temperature gradient is
therefore determined by the change in temperature on either side of that front.
The temperature at the flash front is closer to that of the initial temperature of the
inclusion than the temperature of the magma, and so the magma region has a
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a) Temperature in the inclusion b) Temperature in the magma region
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e) Pressure at the flashing front
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f) Temperature at the flashing front

Figure 5.1: Numerical results using the typical parameters in table 2.1. With the
smallest mesh size fixed at 10 microns and 400 mesh points in the magma and 200
in the inclusion. Figures (a), (b), (c) are 3 dimensional plots of non-dimensional
temperature or dimensional pressure versus log base 10 of non-dimensional time
versus non-dimensional radius r. Figures (d), (e) and (f) are all plotted against
non-dimensional time.
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larger temperature difference and therefore a larger temperature gradient. This is
consistent with the approximate temperature gradients at the flash front
calculated in chapter 3.3.
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Figure 5.2: This graph shows the velocity of the steam generation boundary
for numerical solutions using typical parameters (table 2.1). With the smallest
mesh size fixed at 10 microns and 800 mesh points in the magma and 200 in the
inclusion. This graph details the initial change in non-dimensional velocity versus
non-dimensional time and shows an initial spike that decelerates and plateaus with
time. Velocity in the negative direction shows the flash front moving towards the
centre of the inclusion.

In figure 5.1 the temperature in both the magma and the inclusion remain
predominately at their initial values. In both regions there is a rapidly varying
boundary layer. In the magma region there is also evidence of a thermal
boundary layer at the outer surface of the ejectum. This boundary layer has been
ignored in the analysis in chapter 3. The numerical results, figure 5.1, also show
that the vapour at the flash front diffuses into the magma at a relatively fast rate
compared to the temperature.

If the temperature at the flash front drops it is possible for liquid in the inclusion
to exceed its boiling temperature, as the boiling temperature is by definition the
temperature at the steam generation boundary. This results in a widening of the
two-phase region at the steam generation boundary, which is assumed in the
numerics to have no size. The widening of the boundary is represented by a
change in direction of the temperature gradient in the inclusion at the flash front.
This would, through the boundary equation 2.33, reduce the speed of the steam
generation boundary. The numerical simulations for typical parameters, in table
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2.1, show that the temperature in the inclusion never exceeds that of the
boundary. The velocity of the steam generation boundary for typical numerical
solutions shows an initial rapid change in the velocity of the steam generation
boundary towards the centre of the inclusion. This is driven by a large difference
in temperature at the steam generation boundary at initial times. The velocity of
the steam generation boundary plateaus after this initial change. This plateau
observed in the numerical results for typical parameters is likely due to the
dominant temperature gradient at the flash front in the magma decreasing.

5.1 Numerical Convergence

The maximum pressure at the flashing front is expected to be sensitive to the
mesh size, due to the unbounded initial temperature and pressure gradients
created as the mesh size decreases. Figure 5.3 shows that maximum pressure
converges as the smallest mesh size decreases. However, the time taken for
maximum pressure to be reached does not converge as the smallest mesh size is
decreased, see figure 5.3. This suggests that the time it takes for maximum
pressure to be recorded depends on the initial temperature gradient, which is set
using in the smallest computational mesh size in the numerical simulations in
figure 5.3.

The results in figure 5.3 suggest that for the typical parameter values with 800
and 200 mesh points in the magma and the inclusion respectively, a smallest
mesh size in dimensionless r of 10−5 (one micron when converted back to
dimensional units) will give a dimensional maximum pressure which is accurate
within one atmosphere. The ramp size of 10 microns that has been used in many
of the calculations for the typical parameters will produce a maximum pressure
that, when converted back to dimensional units, is accurate to within four
atmospheres.

Figure 5.3 shows that the time taken to produce the maximum pressure at the
steam generation boundary depends on the smallest computational mesh size
(which in this numerical simulation is the same as the ramp size). Both the
temperature and pressure gradients also depend on this computational mesh size.
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The relationship between the time taken to produce maximum pressure and the
temperature and pressure gradients can be explored by fixing an initial
temperature gradient. This is achieved by varying the distance that the ramp is
operating over, but having this independent of the small computation mesh size.
The results of this show that the time it takes to reach maximum pressure is
approximately constant for mesh sizes 10−5 and smaller and is therefore
independent of it. However, the maximum pressure does vary with the ramp size
and this shows that the initial temperature gradient controls the time it takes for
maximum pressure to be reached. The pressures developed in figure 5.4 are
smaller that those in 5.3. This is due to the initial temperature gradients observed
in 5.3 being larger.

Figure 5.4 also shows that the time taken for this maximum pressure to be
reached is approximately constant with smallest mesh size below 10−5. This
suggests that the time it takes to reach maximum pressure is independent on
mesh size. It, like the maximum pressure, depends on the ramp distance from the
temperature gradient. The maximum pressure in figure 5.4 also shows
convergence, seen in figure 5.3, as the ramping distance of the temperature initial
gradient is decreased. The time it takes for the maximum pressure to be reached
does not show signs of convergence in figure 5.4, which is consistent with figure
5.3.

5.2 Sensitivity Analysis

The model and the typical solutions depend on the parameters detailed in table
2.1. However, these physical properties may vary. Some of these properties are
the permeability, porosity and the ratio of the inclusion to the ejectum radii.

Figure 5.5 shows a sensitivity analysis that demonstrates how the maximum
pressure at the flash front is affected by permeability, porosity and the ratio of the
inclusion to the ejectum radii. As expected, as the permeability decreases the
predicted maximum pressure increases sharply; increased porosity means an
increase in the number of pores for the vapour to escape, lowering the maximum
pressure; a smaller ratio of inclusion to magma results in less water being
available in the inclusion, less vapour, and therefore producing a lower maximum
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Figure 5.3: Graphs (a) shows the convergence of the maximum non-dimensional
pressure as the smallest ramp (smallest mesh size) decreases. The smallest mesh
size is initially set at 10−4 and it is then divided by the values 4, 16, 64, 256,
1024 and 4096. Graph (b) plots the time is takes for this maximum pressure to
be reached versus log base 10 of the smallest ramp size. (a) and (b) both use the
typical parameters in table 2.1 and have 800 mesh points in the magma and 400
in the inclusion.

-8 -7 -6 -5 -4

log10 of smallest mesh

50

51

52

53

54

55

56

M
a

x
im

u
m

 P
re

s
s
u

re

1.00E-04

2.50E-05

6.25E-06

1.56E-06

a) Maximum pressure at the flash front
versus smallest step size and ramp size

-8 -7 -6 -5 -4

log10 of smallest mesh

0

1

2

3

4

T
im

e
 t

o
 M

a
x
im

u
m

 P
re

s
s
u

re

10
-5

b) Time it takes for maximum pressure
to be reached versus smallest step size
and ramp size

Figure 5.4: Graph (a) details the maximum pressure at the flash front and graph (b)
the time at which this maximum pressure is achieved plotted against the smallest
computational step size at various initial ramping distances from the flash to
magma or inclusion regions (shown in the legend as non-dimensional r values).
Please note that the larger the ramping distance the shallower the initial gradient
(therefore lowering the pressure). (a) and (b) both use the typical parameters in
table 2.1 and have 1600 mesh points in the magma.
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pressure than for larger inclusion to ejecta ratios. However, inclusion to ejecta
ratios of above approximately 0.4 cause an error in the computation of the
model’s boundary temperature. This is due to a lack of magma available to heat
the inclusion and results in excess water in the inclusion, which is not
evaporated. The computation of this model assumes all the water in the inclusion
is evaporated.
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c) Maximum non-dimensional pressure
at the flash front versus ratio of
inclusion size with ejecta radii, ranging
from 0.008 and 0.4

Figure 5.5: The numerical simulations in figures (a), (b) and (c) all use the typical
parameters, from table 2.1, for all parameters apart from permeability in (a),
porosity in (b) and radius of the inclusion and the ejecta in (c). The smallest
mesh size is fixed at 10 microns and 400 mesh points in the magma and 200 in the
inclusion are used.

In the sensitivity analysis it has been assumed that the permeability, porosity and
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Figure 5.6: In figure (a) the maximum pressure is simulated using log10 k =
6.33φ−14.1 and porosity ranging from 0.2 to 0.6. The smallest mesh size used in
figure (a) was 10 microns 400 mesh points in the magma and 200 in the inclusion
are used. Figure (b) plots the log of permeability versus porosity of measured
samples of Surtseyan ejecta (data provided by Ian Schipper [40]). This includes
the best linear fit of log10 k = 6.33φ −14.1.

the ratios between the inclusion and the ejecta radii can change independently of
each other. However porosity and permeability values are usually highly
correlated. Figure 5.6 showing the permeability and porosity measurements of a
of Surtseyan ejecta indicate a relationship between porosity and permeability that
can be approximated by:

log10 k = 6.33φ −14.1. (5.1)

This approximation is used in figure 5.6 to relate the porosity and permeability in
the numerical simulations. The maximum pressures produced are comparable
with those of the varying permeability but fixed porosity, simulations in figure
5.5. The numerical simulations in figure 5.6, along with the non-dimensional
tensile strength of magma, pc = 20, suggest that ejecta with permeability less
than approximately 10−12.5 will rupture.
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5.3 Alternate initial profile

As previously discussed, the step function at the steam generation boundary
produces unbounded pressure and temperature gradients as the mesh size is
reduced. This was handled by using a ramp function. The maximum pressure at
the flash front is shown to converge.
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Figure 5.7: Non-dimension pressure
at the flash front vs log of the
non-dimensional time. This numerical
simulation uses the typical parameters,
table 2.1 and 400 mesh points in the
magma with 200 in the inclusion.
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Figure 5.8: The initial non-dimensional
temperature profile calculated using the
work for chapter 3. The radius is
given by the coordinate transformation
in chapter 3.

As an alternative to the ramp function, the temperature profiles for chapter 3 can
be used to give the initial temperatures in the numerical simulations. This
method uses the temperature profiles evaluated at some time, te, determined by
the time it takes for the 10 micron section of magma to change from its initial
temperature. This temperature profile at te, figure 5.8, allows for the mesh to be
refined and, like the ramp solution, leads to convergence in maximum pressure.
The use of the adjusted initial conditions produces results consistent with the
ramp function initial conditions. Figure 5.7 shows the results using the
alternative initial conditions.
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Chapter 6

Approximation for the upper-bound
on the maximum pressure

An approximation for the early time behaviour of pressure at the flashing front
provides an upper bound for the maximum pressure developed. In this
approximation the non-dimensional equation derived from the conservation of
vapour mass is considered, equation 2.29. This equation describes the change in
vapour density in the magma region. This is driven predominantly by the
temperature differences between the magma and the flash front. The temperature
gradient between the steam generation boundary and the inclusion also makes a
contribution to the change in vapour density. This contribution is ignored in this
analysis because, as shown in chapter 3.3, the temperature gradient in the magma
is dominant. Likewise, the movement of the steam generation boundary is also
neglected. Ignoring the movement of the steam generation boundary is supported
by the numerics, for typical parameters, which shows the flash front moving less
than 5 microns before maximum pressure is reached. This is less than typical
pore size in the magma.

The boundary condition, equation 2.33, relates the temperature and pressure at
the flash front. The early time pressure behaviour can be approximated as:

p
∂ p
∂ r
≈− T

f10 f3

∂T
∂ r

∣∣∣∣
r=ε

(6.1)

where ∂T
∂ r

∣∣∣
r=ε

is the temperature gradient between the magma region and the
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steam generation boundary. This equation neglects the heat flow into the
inclusion.

∂T
∂ r

∣∣∣
r=ε

can be approximated using the asymptotic temperature equations from
chapter 3, and by adapting the magma temperature gradient equation, equation
3.14. Equation 3.14 is undefined at initial time, but it provides a ramped
temperature if the time origin is shifted by replacing time with t + te, where te ≥ 0
is an initial time (time elapsed after the theoretical step change in temperature
between the magma and the inclusion). This is one way to acknowledge that the
processes of emplacement of the inclusion is unlikely to give a step change in the
temperature at the surface of the inclusion. This initial time can be considered an
emplacement time and this may be more faithful to the physical situation.
Including the time of emplacement time, te, in equation 3.14 gives:

∂T
∂ r

∣∣∣∣
r=ε

=
(1−Tf )

δm
√

π(t + te)
. (6.2)

Thus, the equation describes the temperature flux from the initial temperature
profile. This initial temperature profile is ramped, but the initial step function can
be recovered as the emplacement time reduces to zero. The use of an
emplacement time helps to avoid issues arising from the step function at the
steam generation boundary and the singular point it creates. The emplacement
time relates, through the similarity solution, to the distance, rramp, over which the
temperature at the flash front ramps to that of the magma. This distance
rramp ≈ 4δm

√
te is derived in appendix D.3.1. Equations 6.2 and 6.1 can be

combined to create the following approximation for early time pressure
behaviour at the flash front:

p
∂ p
∂ r
≈− T (1−T )

f10 f3δm
√

π(t + te)
. (6.3)

The pressure in this system is driven by the conservation of vapour mass
equation 2.29. This equation can be rewritten using the ideal gas law as follows:

∂

∂ t

( p
T

)
=

f11

r2
∂

∂ r

(
r2 p

T
∂ p
∂ r

)
, r > s(t). (6.4)

Then by considering only r values close to the flash front, equation 6.4 can be
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reduced further to:

∂

∂ t

( p
T

)
= f11

∂

∂ r

(
p
T

∂ p
∂ r

)
, r > s(t), r− ε << 1. (6.5)

By taking advantage of the relatively slow rate of change of temperature,
equation 6.5 can be simplified by treating the temperature as constant. This
simplification allows the density equation to be simplified to the follow pressure
equation:

∂ p
∂ t

= f11
∂

∂ r

(
p

∂ p
∂ r

)
, r > s(t), r− ε << 1. (6.6)

The pressure change at early times in this system is driven by the influx of
vapour at the steam generation boundary. This vapour propagates into the magma
from the steam generation boundary. Using the diffusivity in the vapour pressure
equation as a rough estimate ∆r ≈

√
f11t for distance the vapour propagates from

the flash front can be taken. This estimate, along with the spatially constant
initial pressures, suggest the following approximation at the steam generation
boundary can be made to equation 6.6:

∂ p
∂ t
≈− f11

∆r

(
p

∂ p
∂ r

)
, r > s(t), r− ε << 1 (6.7)

≈−
√

f11

t

(
p

∂ p
∂ r

)
, r > s(t), r− ε << 1. (6.8)

By substituting equation 6.3 into equation 6.7 the following equation:

∂ p
∂ t
≈
√

f11

t

(
T (1−T )

f10 f3δm
√

π(t + te)

)
, r = s(t), (6.9)

describes the approximate early time pressure behaviour at the steam generation
boundary. Following the derivation in appendix D.3.2, the early time pressure
behaviour can be approximated as:

pe ≈ A
(

ln
(

2t + te +2
√

t2 + tte
)
− ln te

)
+1, (6.10)

where A = T (1−T )
√

f11
f3 f10δm

√
π

with the temperature at the flash front T taken to be
approximately 0.4.
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The times required to reach maximum pressure at the steam generation boundary,
tm, is estimated by calculating when pe intersects with the pressure null surface at
the flash front. The pressure null surface occurs when ∂ p

∂ t = 0. This can be
approximated using the density null surface if the temperatures remain of order
one. The density null surface provides a quasi-steady state equation:

∂

∂ r

(
p

Tr2
∂ p
∂ r

)
= 0, r > s(t), (6.11)

with a solution for the upper bound on the quasi-steady state pressure, pu,

p2
u =−

2C1

r
+2C1 +1, (6.12)

where

C1 =−
ε2(1−T )

f3 f10δm
√

π(t + te)

derived in appendix D.3.3. At r = ε this upper bound for the maximum pressure
is:

pu =

√
B1√
t + te

+1 (6.13)

B1 =
2ε(1− ε)(1−T )

f3 f10δm
√

π
, (6.14)

which can be closely approximated at early times by:

pu =
B2

(t + te)
1
4

(6.15)

B2 =

√
2ε(1− ε)(1−T )

f3 f10δm
√

π
. (6.16)

A lower bound for tm can be provided by dropping the initial pressure term from
equation 6.10 and equating the resulting equation with equation 6.15. The lower
bound on tm is given by:

B2

(tm + te)
1
4
≈ A

(
ln
(

2tm + te +2
√

t2
m + tte

)
− ln te

)
. (6.17)
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The right-hand side of equation 6.17 is approximated in appendix D.3.4 to be:

2A
√

tm
te
≈ A

(
ln
(

2tm + te +2
√

t2
m + tte

)
− ln te

)
(6.18)

using the Taylor series expansions of the square root and log as well as
considering that t is approaching zero at time tm.

Using the tm approaching zero approximation the left-hand side of equation 6.17
can be reduced to:

B2

(te)
1
4

(6.19)

which can be equated to the approximation in equation 6.18 to form:

B2

(te)
1
4
= 2A

√
tm
te
. (6.20)

Equation 6.20 can then be solved to find the lower bound on tm:

tm =

(
B2

2A

)2√
te. (6.21)

This lower bound for the time taken to reach maximum pressure depends on the
emplacement time, which is given by the ramping distance. This dependence is
also seen in the numerical simulations in chapter 5.

The maximum pressure (pmax) at the flash front has an upper bound estimate of

pmax =
B2

(te)
1
4
. (6.22)

Using the equivalent length scale, rramp ≈ 4δm
√

te, to replace te, the
dimensionless maximum pressure at the flash front has an upper bound at:

p2
max =

4B2
2δm

rramp
(6.23)

=
8ε(1− ε)(1−Tf )

f3 f10
√

πrramp
(6.24)

=
8KeTmµvε(1− ε)(1−Tf )

ρv0hvlkp0
√

πrramp
(6.25)
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where Tf ≈ 0.4. Equation 6.25 can be used as a criterion for rupture by
considering that the pressure can not exceed the typical tensile strength of
magma, 2MPa or pmax = 20 in dimensionless units. Comparisons between the
upper bound of the maximum pressure and the simulations are discussed in
chapter 7. Together with comparisons with the criterion for rupture from the
previous model.



Chapter 7

Comparisons

7.1 Asymptotic temperature profiles vs Numerical
simulations

The asymptotic temperature profile from chapter 3 can be used to help verify the
numerical results. Figure 7.1 shows the numerical simulations and theoretical
temperature profiles plotted against the similarity variable, η , derived in chapter
3. The numerical simulations in the inclusion and the asymptotic temperature
profile show close agreement for the parameters used. The numerical simulations
and theoretical temperature profile in the magma between 0.5 < η < 2 show the
numerical simulations produce temperatures that are consistently less than the
theoretical temperature profile. However for the majority of the graph there is a
close agreement between the theoretical and numerical results.

The magma temperature result from figure 7.1 shows that the numerical
temperatures produced are lower than the theoretical temperature profile. The
asymptotic temperature profile was calculated by fixing the steam generation
boundary, but the numerical simulations include the movement of the steam
generation boundary in the calculation. In figure 7.2 the advection terms have
been removed from the differential equations and the resulting numerical
simulations show a much closer agreement between the numerics and the
asymptotic profile in the magma region. These advection terms in the equation
originate from the Landau transformations, which freeze the boundary in the
numerics. Removing them means that the movement of the boundary is
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neglected.

7.2 Upper-bound on maximum pressure vs
numerical results

The upper-bound for the maximum pressure developed at the flash front is given
by the non-dimensional equation:

p2
max =

8KeTmµvε(1− ε)(1−Tf )

ρv0hvlkp0
√

πrramp
. (7.1)

Figure 7.3 shows that the upper-bound on the maximum pressure is not a tight
upper-bound. However the shape of the upper-bound of the maximum pressure at
the flash front is similar to that of the simulated numerical results with
permeability set by the porosity and the porosity ranging from 0.2 to 0.6. This
similarity is clearer if the maximum pressure is presented on a log scale, as in
figure 7.3.

This similarity allows for a closer theoretical estimate to the maximum pressures
to be considered. This is achieved by taking the average of the ratio between the
upper-bound and the simulated maximum pressure, and using this value to obtain
a fit of the upper-bound on the maximum pressure to the simulations, thus
producing a closer theoretical estimate of the maximum pressure (Pest):

Pest = 0.43

√
8KeTmµvε(1− ε)(1−Tf )

ρv0hvlkp0
√

πrramp
. (7.2)

Figure 7.2 compares the theoretical estimate of the maximum pressure, produced
from fitting to the simulated results, to those simulated results and it shows it to
be a reasonable fit with in the ranges of Ian Schipper’s data. This allows for the
theoretical estimate of the maximum pressure to be used to give a prediction
from the maximum pressures developed at the flash front in an ejecta, instead of
running the simulation.
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Figure 7.1: The graphs above contain the simulated numerical non-dimensional
temperatures (blue circles) in the inclusion and the magma plotted against the
similarity variable from chapter 3. These numerical simulations use the typical
parameters for table 2.1 and a smallest mesh size of 10 microns. They also show
the theoretical similarity solutions (black line) using 0.4 as the initial temperature
of the flash front.
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Figure 7.2: The graphs above contain the simulated numerical non-dimensional
temperatures when advection is not considered (blue circles) in the inclusion and
the magma plotted against the similarity variable from chapter 3. These numerical
simulations use the typical parameters for table 2.1 and a smallest mesh size of 10
microns. They also show the theoretical similarity solutions (black line) using 0.4
as the initial temperature of the flash front.
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Figure 7.3: These graphs show the the simulated maximum pressure (blue circles)
and the calculated upper-bound pressures at the flash front (purple line) plotted
against log10 of permeability (the graph on the right has log10 pressures), for
various permeabilities and porosities matching Ian Schipper’s data. The green
line indicates the tensile strength of magma at dimensional 2 MPa.
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Figure 7.4: This graph shows the simulated maximum pressure (purple circles)
and theoretical estimate of the maximum pressure (blue line), from equation 7.2,
plotted against log10 of permeability, for various permeabilities matching Ian
Schipper’s data.
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7.3 The previous model vs the upper-bound on
maximum pressure and the numerical
simulations

The upper-bound on the maximum pressure, equation 6.25, is compared to the
previous criterion for rupture published by McGuinness et al. [[31]]:

p2
max =

7RTmK(Tm−T0)(1− ε)µv

Mhvlk
, (7.3)

by converting both criteria back to dimensional units and expanding some of the
typical dimensionless parameters in equation 6.25 giving:

p2
max =

8KeTmµv(1− ε)(1−Tf )

hvlk
RgTm

M
ε√

πrramp
. (7.4)

Equation 7.3 can be rewritten using the parameters from table 2.1 to give:

p2
max =

7KeTmµv(1− ε)(1− Ti
Tm
)

hvlk
RgTm

M
(7.5)

=
7KeTmµv(1− ε)(1−T0)

hvlk
RgTm

M
. (7.6)

It is clear that equation 7.6 and equation 7.4 are close to identical. The most
pronounced difference is the factor ε√

πrramp
in the upper-bound on the maximum

pressure at the steam generation boundary in chapter 6. This new factor
originated from the temperature gradient in the magma calculated in chapter 3,
using an analysis of the thermal boundary layer in the magma. In the previous
model the temperature gradient

(
Tm−T0
0.28ε

)
was estimated using a length scale

approximated by the amount of magma required to vaporise the water in the
inclusion as well as a temperature equation that is decoupled from the pressure.
The upper-bound for the maximum pressure at the flash front will produce a
higher temperature gradient when compared to the previous model due to the
much smaller and more accurate length scale used in the calculation.

Other minor differences between equations 7.6 and 7.4 include the coefficient 8
in place of 7 and the use of the approximate flash front temperature, Tf , instead
of the non-dimensional inclusion temperature, T0, used in the previous model.
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The dimensional pressures seen in the previous model, [[20],[31]] , differ from
the numerical simulations seen in chapter 5, with the previous pressures reaching
approximately 2 MPa and the numerical simulations reaching about 5 MPa at the
same typical parameter values. This is partly due to the temperature gradient at
the boundary calculation using a much smaller length scale (ramping distance),
thus driving up the temperatures and pressures in the new model. This increase in
pressure affects the lower limit of the permeability for intact ejecta (at tensile
strength 2 MPa using the typical values from Table 2.1). In the previous model
this was of order 10−14m; and in the numerical simulations this criterion for
rupture was much higher at 10−12.5m.

A noticeable difference between the numerical solutions in this thesis and the
previous model is the temperature diffusion in the inclusion. The previous model
had an assumption that the inclusion would heat in a uniform manner. The
numerical solutions from the new model show clearly that this is not the case and
there is a small layer of varying temperature at early times, while the remainder
of the inclusion stays at a constant initial temperature.

It was also assumed in the previous model that the velocity of the steam
generation boundary is constant. In the new model the velocity of steam
generation boundary initially shows a rapid change in magnitude due to the
infinite gradients at the boundary, then the magnitude decreases and plateaus.
The assumption of a constant velocity outside the early time behaviour is
consistent with the numerical simulations. The maximum pressure at the flash
front occurs at early times and has been shown in the numerical convergence
work to depend on the infinite temperature gradients at the boundary. Therefore
the early time behaviour of the velocity and the infinite temperature gradients at
the boundary are important when producing a value for the maximum pressure in
the simulations.
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7.3.1 Discussion

The numerical solutions, using the typical parameter values in table 2.1, suggest
a maximum pressure of approximately 5 MPa using the minimum step size of 10
microns and 400 mesh points in the magma and 200 in the inclusion. This
pressure exceeds the tensile strength of the magma and under these conditions
ejecta should explode when permeabilities are about 10−14m2. This is consistent
with the data provided by Ian Schipper.

The numerical convergence study in chapter 5 shows the maximum pressure
depends on the initial temperature gradient at the flash front, but will converge to
5.6 Mpa for the typical parameter values in table 2.1. However, the time it takes
for this maximum pressure to be reached also depends on the initial temperature
gradient at the flash front and this does not show signs of convergence. This
suggests that the maximum pressure is produced instantaneously in the limit of
the smallest ramp distance tending to zero.

Unpublished data (provided by Ian Schipper [40]) details the porosities and
permeabilities of various ejecta. This data has been collected through the
examination of the vesicle textures in lapilli using an X-ray microtomograph.
The permeability is calculated by simulating a single-phase gas using Lattice
Boltzmann simulations. Lattice Boltzmann simulations are constructed using a
fluid density across a lattice; this fluid density is simulated using streaming and
collision processes. The unpublished data contains no information concerning
the sizes of the ejecta and the inclusion. However, the sensitivity analysis, figure
5.5, shows that a change in permeability will have a far greater affect on the
maximum pressure than a varying ratio of inclusion size to ejecta radii. This data
of intact ejecta, shown in figure 5.6, shows surviving ejecta with permeability of
10−12.5 or greater and this is consistent with the numerical simulations. This data
also suggests a range of typical permeabilities between 10−12.5m2 and
10−10.5m2, which affects the values of the physical constants in table 2.2.

The typical dimensionless parameter values calculated at a permeability of
10−12.5m2 still show that the f15 parameters values dominate f12, f13 and f14,
which justifies the simplification of the energy conservation equation by
neglecting these terms. However, at a permeability of 10−10.5m2 this is not the
case and the dominant parameters are f12 and f14. Therefore, the parameter size
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Typical values with permeabilities ranging 10−12.5m2 and 10−10.5m2

Parameter Value Typical Value at k = 10−12.5 Typical Value at k = 10−10.5

f10
kp0

µvR2φvv0
2×10−3 0.22

f11
t0kp0
φ µvR2

2
4.4 443

f12
t0ρv0cpvkp0

ρeceµvR2
2

1.3×10−3 0.13

f13
φ p0

ρeceTm
2.3×10−5 2.3×10−5

f14
kt0 p2

0
ρeceTmR2

2µv
2.9×10−4 0.028

f15
Ket0

R2
2ρece

0.0025 0.0025

Table 7.1: This table contains typical dimensionless parameter values for the
reduced model using the typical values of the physical constants in table 2.1 and
the range of permeabilites set by the data [40]

.

cannot be used as a justification at this permeability for these terms in the energy
conservation equation to be ignored. However, at a larger permeability the
magma would allow the vapour in the magma to escape at a much faster rate.
This is apparent in parameter f11, which can be used to estimate the nonlinear
diffusivity of pressure. It follows that the change of pressure with radius (r)
would be much lower because the pressure is not building up at the flash front as
the vapour can flow more readily through the magma. Therefore the temperature
diffusion term in the energy conservation equation would be expected to be
dominant.

The results show that upstream differencing has little affect on the solutions as
diffusion terms dominate the advection terms. However, at early times in the
inclusion, if the differencing is reversed then this causes a temperature drop
below the initial inclusion temperature. This is caused by the diffusion error
introduced by the reversed upstream differencing. As the diffusion terms
dominate this suggests a more efficient central difference scheme could be used
instead of the upstream differencing scheme in further modelling. This method
was not originally used as it was not previously clear if the advection terms
would dominate (due to the vapour flow or the moving boundary at the flash
front). If the advection terms dominate it would be necessary to consider the
directions of the flow in finite differencing methods.
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In previous modelling and in this thesis the fragmentation pressure has been
considered to be 2 MPa, the tensile strength of the magma. It is also assumed that
the fragmentation pressure did not depend on the porosity of the magma.
However, studies by Spieler et. al [45] have empirically shown that the
fragmentation threshold of pyroclastic rocks increases as the porosity decreases.
If the critical pressure is taken to be 6 MPa, which is consistent with the
fragmentation pressure for porosity between 0.2 and 0.3 seen in Spieler et. al
[45], the calculated permeability lower limit from the numerical simulations
would be approximately 10−14. The upper-bound for the maximum pressure at
the flash front is not a tight upper-bound. However the theoretical estimate of the
maximum pressures found by fitting it to the simulated data gives a reasonably
close prediction of the values for the maximum pressure that may be produced at
the flash front. Using this estimate the relationship between the tensile strength
and the lower bound on the permeability can be estimated, see figure 7.5.
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Figure 7.5: This graph plots the theoretical estimate of the maximum pressure
(purple line), from equation 7.2, plotted against log10 of permeability, for various
permeabilities and porosities matching Ian Schipper’s data [40]. The green line
represents the tensile strength of magma and all permeabilities that produce
pressures above this line are expected to lead to rupture.



Chapter 8

Conclusion

The purpose of this thesis has been to construct a mathematical model to expand
and improve upon an existing model of Surtseyan ejecta behaviour [[20],[31]].
The existing model firstly assumed that the pressure and the temperature were
not coupled and that the inclusion heated in a uniform manner. The aim of this
research was to use a systematic reduction of the resulting coupled nonlinear
partial differential equations that arise from mass, momentum and energy
conservation to more closely represent the physical nature of Surtseyan ejecta.
Further aims were to retain a criterion for rupture of the ejectum and to help
validate the model with the aid of analytical solutions.

The numerical solutions can be split into two separate categories, depending on
the mesh used in the spatial discretisation. The first mesh is a log-based mesh
centred around the steam generation boundary. This mesh is non-uniform and
leads to the use of the Taylor expansion methods to calculate derivatives, which
are only first-order accurate. The second mesh is a uniform mesh achieved by
using an arctan co-ordinate transformation. This mesh does not require the
Taylor expansion methods for the second-order derivatives in the density
equation and is, as a result, second-order accurate. This arctan co-ordinate
transformation allowed for the smallest mesh size and the number of mesh points
to be easily varied compared to the log mesh. Due to the uniform nature of the
arctan mesh it was more straightforward to construct the derivatives using finite
differencing methods.

The numerical simulations for the maximum pressure at the flash front show
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convergence, but the time it takes to reach this maximum pressure does not. This
is due to the initial infinite temperature gradient at the flash front. In the
numerics a ramp function was used to set the initial gradient and both the
maximum pressure at the flash front and the time it takes for it to be reached
depend on this ramping distance. This can also be seen in the asymptotic
temperature profiles at initial times. As the asymptotic temperature gradients at
the flash front are proportional to 1√

t this is not defined at initial times. Therefore
an emplacement time needs to be considered and like the numerical solutions this
time can be related to a length through the similarity solution. It would be
interesting to consider in further modelling the process of how the inclusion is
entrained in the magma because this will affect the maximum pressures reached.

The results also show that if the limit is taken as te tends to zero, this corresponds
to the limit as the ramping initial temperature profile approaches the step change
in temperature, the theoretical maximum temperature obtained is unbounded.
This indicates that the model is mathematically ill-posed for step function initial
temperatures. This is another reason why further study into how the inclusions
are entrained in the magma would be helpful.

The numerical simulations show a boundary layer of rapid heating or cooling on
either side of the steam generating boundary. At the chosen typical parameter
values in table 2.1 the maximum dimensional pressure was calculated to be 5
MPa. A pressure of 5 MPa exceeds the tensile strength of the magma (2 MPa).
At this pressure it is expected that the ejecta would rupture. This is consistent
with the data provided by Ian Schipper, figure 5.6, which shows no surviving
ejecta with permeabilities less than 10−12.5 m2. The numerical simulations also
suggest a lower bound on the permeability of 10−12.5 m2, which is consistent.

An upper-bound for the maximum pressure at the flash front was produced by
considering the early time behaviour of pressure at the flashing front. This was
achieved by reducing the density equation 2.38 using a modified initial
temperature gradient in the magma, equation 6.2, and the flux condition at the
boundary, equation 2.33. In this approximation the heat flux from the inclusion is
neglected and it is assumed that ‘early time’ is defined by the time before the
steam generation boundary can significantly affect the pressures. The early time
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pressure behaviour at the boundary:

pe ≈ A
(

ln
(

2t + te +2
√

t2 + tte
)
− ln te

)
+1, (8.1)

is equated with the pressure null surface to provide an estimate for the lower
bound on the time it takes to reach maximum pressure:

tm =

(
B2

2A

)2√
te. (8.2)

The quasi-steady state equation derived from the pressure null surface is used to
find an upper bound of the maximum pressure at the flash front:

p2
max =

8KeTmµv(1− ε)(1−Tf )

hvlk
RgTm

M
ε√

πrramp
,

although this is not a tight upper limit, but was fitted to the numerical solutions.
The resulting equation for maximum pressure is more consistent with the
simulations and the data. This theoretical estimate of the maximum pressure
could be used for ejecta with porosity between 0.2 and 0.6 to predict whether or
not we expect the maximum pressure to exceed the critical pressure determined
buy the tensile strength.

Improvements to this numerical model can be made by considering some of the
underlying assumptions. In all current models describing the behaviour of
Surtseyan ejecta it is assumed that a single spherical inclusion is entrained in a
spherical magma bomb. This is not physically accurate as ejecta often contain
more than one inclusion distributed around the ejecta. There is also evidence that
some of the larger Surtseyan ejecta contain previously erupted ejecta inside as
inclusions. In further modelling of ejecta behaviour consideration needs to be
given to the effect that multiple random distributed inclusions, of varying sizes,
would have on the maximum pressure. This is a challenging problem as this
model relies on the spherical symmetry to reduce it to one dimensional problem.

It is also assumed that the inclusion is not compressible. There is evidence in
Schipper’s 2016 paper [39] that the inclusion does undergo compression and
crystallisation due to the pressure build-up and this process of relieving pressure
was not included in the mathematical model. Evidence of compression is also
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seen in the void space surrounding the inclusions in ejecta. The compression and
crystallisation process can greatly affect the maximum pressure, especially if it is
over a small-time frame. The numerical simulations show high pressures acting
over a small area, approximately 10 microns, for a short period of time before the
pressure drops below breaking pressure. Therefore a small deformation in the
inclusion (or the magma) could relieve the strain long enough for the ejectum to
survive pressures higher than breaking pressure (2Mpa) . The numerical
simulations could therefore be significantly affected by compression and
crystallisation processes. An improvement needed in this model is to include
these effects to more accurately match what is happening physically in Surtseyan
ejecta.

Another area in the model that could use further work is the initial entrainment of
the inclusion into the magma. How the inclusions are entrained in the magma
inside the volcano is not well understood. The leading theory mentioned in the
literature review, section 1.2, assumes this entrainment is caused by magma
turbulence and mixing. A model for the magma and water slurry mix in the
volcanic vent could provide answers as to how this mixing occurs and also
improve the initial boundary considerations in the current model and provide a
initial temperature gradient that is not infinite at the steam generation boundary.

In the future it would be helpful to more rigorously test the numerical
simulations and the theoretical estimate of the maximum pressure against a larger
data set of porosities, permeabilites and ratios of inclusion and ejecta radius from
intact Surtseyan ejecta.

To conclude, this thesis has developed a more rigorous mathematical model for
the behaviour of Surtseyan ejecta. This model has been solved numerically,
producing maximum pressures that are consistent with data from intact Surtseyan
ejecta. Also, fitting the upper bound of the maximum pressure to the simulations
produces a reasonably close prediction for the maximum pressure expected to
develop at the flash front in the Surtseyan ejecta. This theoretical estimate of the
maximum pressure can be used to replace the previous criterion for rupture and
produces results for the lower bound on the permeability that is consistent with
the data provided by Ian Schipper [40].



Appendix A

Energy Conservation for a moving
fluid

The energy conservation for a moving fluid equation, equation 2.1, in terms of
pressure and temperature can be derived from the pointwise conservation of
enthalpy equation for a moving fluid with no sources or sinks [22]. The enthalpy
equation:

∂

∂ t
(ρh)+∇ · (ρhv) =−∇ ·q+

∂ p
∂ t

+v ·∇p+ τ : ∇v (A.1)

where ρ is the fluid density of some liquid or gas, h is the specific enthalpy, v is
the local fluid velocity vector and q is the heat flux. The viscous dissipation term,
τ : ∇v, involves taking the double dot product of the deviatoric stress tensor, τ ,
and the gradient of the local fluid velocity vector to form a scalar. This viscous
dissipation term is generally small, so can dropped from the energy equations.
Also, as the ejectum is in free fall during the time of interest, and all gravity
terms will be small, they can reasonably be neglected.

In order to derive equation 2.1 first consider a mass conservation equation in
terms of enthalpy [4] [17]:

∂ρ

∂ t
+∇ · (ρv) = 0, (A.2)

which allows the left hand-side of equation A.1 to be rewritten as:

ρ

(
∂h
∂ t

+v ·∇h
)
, (A.3)
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The enthalpy in a thermodynamic system equation is:

h =U +
p
ρ
, (A.4)

where U is the specific internal energy and the differential relationship between
enthalpy, specific entropy, S, and pressure in homogeneous systems is:

dh = T dS+
d p
ρ
. (A.5)

Change of entropy can be described as:

dS =

(
∂S
∂T

)
p

dT +

(
∂S
∂ p

)
T

d p. (A.6)

Noting that the specific heat at constant pressure, cp, is equivalent to:

cp = T
(

∂S
∂T

)
p

(A.7)

and using Maxwell’s relations:

(
∂S
∂ p

)
T
=

(
∂ ( 1

ρ
)

∂ p

)
T

(A.8)

which relates to the coefficient of isothermal compressibility:

β =−ρ

(
∂ ( 1

ρ
)

∂ p

)
T

(A.9)

equation A.6 can now be rewritten as:

T dS = cpdT − βT
ρ

d p. (A.10)

Hence:
dh = cpdT +

(
1−βT

ρ

)
d p, (A.11)

and by using Fourier’s law for heat conduction q =−K∇T , where K is the
thermal conductivity of the fluid, the pointwise conservation equation for energy
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can be written as:

ρ

(
∂h
∂ t

+v ·∇h
)
=−∇ ·q (A.12)

ρcp

(
∂T
∂ t

+v ·∇T
)
−βT

(
∂ p
∂ t

+v ·∇p
)
= ∇ · (K∇T ). (A.13)

These equations are also seen in [4] and [17] for stationary fluids with the total
derivatives ∂

∂ t +v ·∇ replaced by partial derivatives.
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Appendix B

The Steam Generation Boundary
equations

In order to consider the behaviour of the steam generation boundary it is
necessary to integrate across the moving boundary in the energy conservation
equations in averaged enthalpy form. These equations are an averaging across a
representative elementary volume of porous medium of equation A.1. In the
inclusion this is:

∂

∂ t
[φρlhl +(1−φ)ρmhm]+∇ · (φρlhlvl) = Ki∇

2T +φ

[
∂ p
∂ t

+vl ·∇p
]

(B.1)

and in the magma:

∂

∂ t
[φρvhv +(1−φ)ρmhm]+∇ · (φρvhvvv) = Ke∇

2T +φ

[
∂ p
∂ t

+vv ·∇p
]
. (B.2)

By assuming spherical symmetry, equations B.1 and B.2 can be reduced to a
single spatial variable: radial distance to front, r. Thus reducing the equation to
two variables r and t. Only the radial components of motion are considered,
producing:

∂

∂ t
[φρlhl +(1−φ)ρmhm]+

∂

∂ r
(φρlhlvl) = Ki∇

2T +

[
φ

∂ p
∂ t

+φvl
∂ p
∂ r

]
(B.3)

∂

∂ t
[φρvhv +(1−φ)ρmhm]+

∂

∂ r
(φρvhvvv) = Ke∇

2T +

[
φ

∂ p
∂ t

+φvv
∂ p
∂ r

]
(B.4)
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where u = φvv and ul = φvl .

A coordinate transform, R = r− s(t), to make R = 0 the position of the steam
generation boundary requires a change in the spatial and temporal derivatives:

∂ f (R(r, t), t)
∂ t

∣∣∣∣
r
=

∂ f
∂R

∂R
∂ t

+
∂ f
∂ t

∣∣∣∣
R
=−ṡ

∂ f
∂R

+
∂ f
∂ t

∣∣∣∣
R

(B.5)

∂

∂ r

∣∣∣∣
t
=

∂

∂R

∣∣∣∣
t

(B.6)

in equations B.3 and B.4, producing:

∂

∂ t
[φρlhl +(1−φ)ρmhm]− ṡ

∂

∂R
[φρlhl +(1−φ)ρmhm]+

∂

∂R
(φρlhlvl)

= Ki∇
2T +

[
φ

∂ p
∂ t

∣∣∣∣
R
+φ(vl− ṡ)

∂ p
∂R

]
(B.7)

∂

∂ t
[φρvhv +(1−φ)ρmhm]− ṡ

∂

∂R
[φρvhv +(1−φ)ρmhm]+

∂

∂R
(φρvhvvv)

= Ke∇
2T +

[
φ

∂ p
∂ t

∣∣∣∣
R
+φ(vv− ṡ)

∂ p
∂R

]
. (B.8)

This is then integrated with respect to the volume of a spherical shell with
R = 0− to R = 0+ in order to capture the energy jump condition across the
boundary. In the limit, this removes all terms apart from those containing radial
derivatives. The jump condition is:

− ṡφ(ρvhv−ρlhl)+φ(ρvhvvv−ρlhlvl) = [K∇T ]+−+φ(vv− vl)p (B.9)

where [K∇T ]+− = [Ke∇T (0+)−Ki∇T (0−)] ensures that energy is conserved
across the boundary.

The same process can be used to create a jump condition for the conservation of
mass equations. Using the same coordinate transform, the conservation of liquid
mass in the inclusion is:

∂ρl

∂ t

∣∣∣∣
R
− ṡ

∂ρl

∂R
+

∂

∂R
(ρlvl) = 0, (B.10)
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and for the vapour in the magma is:

∂ρv

∂ t

∣∣∣∣
R
− ṡ

∂ρv

∂R
+

∂

∂R
(ρvv) = 0. (B.11)

Integrating across the steam generation boundary in a similar way to the
conservation of energy jump condition gives the mass condition:

ṡ(ρl−ρv)−ρlvl +ρvvv = 0. (B.12)

Using both the energy and mass jump conditions and considering that the latent
heat of vaporisation is hv−hl = hvl gives the boundary condition:

φρvhvl(v− ṡ) = φρlhvl(vl− ṡ) = [K∇T ]+−+φ(vv− vl)p. (B.13)
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Appendix C

Details on Model Rescaling

C.1 Steam Generation Boundary

In Surtseyan ejecta all the vapour is generated at the steam generation boundary.
As vapour is produced from the boiling liquid at the surface of the inclusion,
balancing the amount of liquid swept by the steam generation boundary, ṡρl , and
the amount of steam crossing the front, vsρs, will give the following equation
describing the velocity of the steam generation boundary:

R2

t0
˙̃sρl0ρ̃l = vv0ρs0ṽvρv.

Then by taking the rescaling for the velocity of the vapour as vv0 =
R2ρl0
t0ρv0

the
equation can be further simplified to produce:

˙̃sρ̃l = ṽvρv.

Using the rescalings in section 2.2, the conservation of mass equation across the
steam generation boundary can be reduced to:

R2

t0
˙̃s(ρl0ρ̃l−ρv0ρ̃v)−ρl0vl0ρ̃l ṽl +ρv0ρ̃vvv0ṽv = 0.
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Then by combining parameters f1 =
ρv0
ρl0

and f2 =
vl0t0
R2

to form:

˙̃s(ρ̃l− f1ρ̃v) = f2ρ̃l ṽl− ρ̃vṽv,

the various sizes of the terms can be considered and the smaller terms neglected.

The energy conservation equation across the boundary is rescaled in the same
manner as the mass conservation equation across the boundary to form:

φρv0ρ̃vhvl(vv0ṽv−
R2

t0
˙̃s) =

[
KTm

R2
∇̃T̃
]+
−
+φ(vv0ṽv− vl0ṽl)pa p̃.

The parameters can be grouped together and the coefficient of the temperature
gradient in the magma and the inclusion considered. The only difference
between these two coefficients is the effective thermal conductivities. These
effective thermal conductivities are taken from Robertson’s report [35], which
contains fits of data taken from both wet and dry igneous rock at various
porosity. The representative values chosen in this model are φ = 0.4, Ke = 2
W/m/K for air/vapour filled rock and Ki = 3 W/m/K for wet rock. As the values
chosen for Ke and Ki are approximately equal, in the model Ki will be
approximated by Ke. This allows for the coefficients of the temperature gradients
to be further simplified to:

ρ̃v(ṽv− f1 ˙̃s) =
KeTm

vv0R2φρv0hvl

[
∇̃T̃
]+
−+

pa

ρv0hvl
(ṽv−

vl0

vv0
ṽl)p̃.

By setting f4 =
pa

ρv0hvl
, f5 =

vl0
vv0

and the Stefan number to f3 =
vv0R2φρv0hvl

KeTm
the

equation becomes:

ρ̃v(ṽv− f1 ˙̃s) =
1
f3

[
∇̃T̃
]+
−+ f4(ṽv− f5ṽl)p̃.
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C.2 The Inclusion Rescaling

The dimensional equation 2.12, the equation of state, is scaled as follows:

ρ̃l = 1+ f6(p̃−1)− f7(T̃ −Tn) (C.1)

where Tn =
TR
Tm

, f6 =
βe pa
ρl0

and f7 =
αTm
ρl0

. As f6 is shown to be small in table 2.2 it
can be assumed that the effects of thermal expansion will dominate the density
variations in the inclusion.

The parameters f2, present in the mass conservation equation, and f5 , in the
energy conservation equation, both contain the velocity scaling in the inclusion
(vl0). An estimate for this value can be made by taking the change in the
inclusion size over the time it takes for the inclusion to heat the water to its
critical temperature (Tcrit).

To estimate the change in the inclusion size it is firstly assumed that there are no
losses in liquid mass in the inclusion. This inclusion mass can then be described
as the volume multiplied by the density and then, assuming all the expansion is
due to thermal expansion, this gives:

(R1 +∆R1)
3[ρl−α(Tcrit−TR)] = R3

1ρl0,

when the inclusion starts at a radius R1, with a density ρl0 and temperature T0

and expands to a new radius R1 +∆R1. This change in radius in the inclusion is
assumed to be small, allowing the cubic (R1 +∆R1)

3 to be approximated as
(R3

1 +3∆R1R2
1). This allows for the change in radius in the inclusion to be

estimated as:
∆R1 ≈ R1

(
α(Tcrit−TR)

3(ρl−α(Tcrit−TR))

)
.

The time it takes for the inclusion to be heated using only conduction to the
critical temperature of water can be estimated from the conduction equation as:

ts ≈
R2

1((1−φ)ρmcpm +φρvcpv)

Ki
.

By assuming that the change in radius occurred in the time it took for the
inclusion to heat to the critical temperature of water we obtain the following
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estimate for the velocity scaling in the inclusion:

vl0 ≈
αKi(Tcrit−TR)

3R1((1−φ)ρmcpm +φρvcpv)(ρl−α(Tcrit−TR))
. (C.2)

The velocity scaling in the inclusion is estimated to be of the order 10−5 using
equation C.2 and the typical parameters in table 2.1. The relatively small velocity
scaling in the inclusion results in the small sizes of f2 and f5 in table 2.2
allowing them to be neglected for the mass and energy conservation equations
across the steam generation boundary.

The mass conservation in the inclusion is rescaled to:

φ
∂ ρ̃l

∂ t̃
+ f2∇̃ · (ρ̃lũl) = 0.

This contains the parameter f2, which can be neglected, which allows the density
of the liquid in the inclusion to be considered constant. Physically this means
that the liquid in the inclusion does not move until the boundary reaches it and it
flashes to steam.

The energy conservation equation in the inclusion, noting that ul is negligible,
reduces to:

∂ T̃
∂ t̃
− f8T̃

∂ p̃
∂ t̃

=
f9

r̃2
∂

∂ r̃

(
r̃2 ∂ T̃

∂ r̃

)
,

with the parameters f8 =
φβ pa
ρici

and f9 =
Kit0

R2
2ρici

. f8 is determined in table 2.2 to be
small, allowing the advective term to be neglected.

C.3 Rescaling the Magma equations

The ideal gas law allows setting ρv0 =
Mp0
RgTm

, which can be rescaled to:

ρ̃v =
p̃
T̃
.

As the model only assumes radial velocity (u = φv), due to the spherical
symmetry assumption, Darcy’s law can by reduced to

ṽv =− f10∇̃ p̃
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where f10 =
kp0

µvR2φvv0
.

As it is possible to have turbulent flow, the Forcheimer equation, which combines
Darcy flow with the Ergun equation [5], is considered:

∇p =−µv

k
u−

ρvC f√
k

u|u|,

where C f is an order one coefficient. The non-dimensional equation is produced
as follows:

p0

R2
∇̃ p̃ =−µvφvv0

k
ṽv−

ρv0ρ̃vC f φ 2
√

k
ṽv|ṽv|

=⇒ kp0

R2µvvv0φ
∇̃ p̃ =−ṽv−

ρv0ρ̃vC f φ
√

k
µvvv0

ṽv|ṽv|

=⇒ f10∇̃ p̃ =−ṽv−δ f ρ̃vṽv|ṽv|

=⇒ δ f =
ρv0C f φ

√
k

µvvv0
.

The constant δ f ≈ 0.08 using the the typical parameters in table 2.1. As δ f << 1
the Ergun term is not required. This can also be confirmed using the pore
Reynolds number:

Rep =
ρl
√

kφ |u|
µv

≈ 0.01,

which confirms laminar flow and the use of Darcy’s Law in this model.

Apply Darcy’s law and rescaling the conservation of mass equation produces:

∂ ρ̃v

∂ t̃
= f11∇̃ · (ρ̃v(∇̃ p̃)),

where f11 =
t0kp0
φ µvR2

2
. This can be simplified further, as the assumed spherical

symmetry allows only for variations in the radius, reducing the equation further
to:

∂ ρ̃v

∂ t̃
=

f11

r̃2
∂

∂ r̃

(
ρ̃vr̃2 ∂ p̃

∂ r̃

)
.

The rescaling of the energy conservation equation, remembering that ρece in the
ranges of temperature and pressures in this model is dominated by the thermal
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capacity of the rock material (allowing it be treated as a constant), produces:

∂ T̃
∂ t̃
− f12ρ̃v

∂ p̃
∂ r̃

∂ T̃
∂ r̃
− f13

∂ p̃
∂ t̃

+ f14

(
∂ p̃
∂ r̃

)2

=
f15

r̃2
∂

∂ r

(
r̃2 ∂ T̃

∂ r̃

)
,

where f12 =
t0ρv0cpvkp0

ρeceµvR2
2

, f13 =
φ p0

ρeceTm
, f14 =

kt0 p2
0

ρeceTmR2
2µv

and f15 =
Ket0

R2
2ρece

. Then this
is reduced further when f12, f13 and f14 are neglected due to their small size
leaving the energy conservation equation in the magma as:

∂ T̃
∂ t̃

=
f15

r̃2
∂

∂ r

(
r̃2 ∂ T̃

∂ r̃

)
. (C.3)



Appendix D

Calculation details for the
Asymptotic Temperature Solutions
and the Upper-bound on the
Maximum Pressure

D.1 Region of rapidly varying temperature in the
magma

Equation 3.4 describes the rapidly varying temperature behaviour in the
boundary layer surrounding the steam generation boundary assuming that times
are early enough that the steam generation boundaries movement can be
reasonable ignored. Equation 3.4, with the boundary conditions T (0, t) = Tf and
T tends to 1 as σ → ∞, can be solved using the similarity solution η = t

σ2 .

The chosen similarity solution substituted into equation 3.4 gives:

∂T
∂η

∂η

∂ t
=

∂

∂σ

(
∂T
∂η

∂η

∂σ

)
=⇒ ∂T

∂η

1
σ2 =

∂

∂σ

([
−2η

σ

]
∂T
∂η

)
=

(
−2
σ

∂η

∂σ

∂T
∂η

)
+

(
2η

σ2
∂T
∂η

)
+

(
−2η

σ

∂ 2T
∂η2

∂η

∂σ

)
91
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=

(
4η

σ2
∂T
∂η

)
+

(
2η

σ2
∂T
∂η

)
+

(
4η2

σ2
∂ 2T
∂η2

)
=⇒ ∂T

∂η
= 6η

∂T
∂η

+4η
2 ∂ 2T

∂η2 . (D.1)

Then, by using the substitution w = ∂T
∂η

, a solution for the temperature gradient in
terms of η can be found:

1−6η

4η2 =
w′

w

=⇒ ln [w] =
−1
4η
− 3

2
ln [η ]+ c

=⇒ w = Ae−
1

4η η
−3
2

An equation for T can be found using the substitution x = 1
2η

this gives:

−1

4η
3
2

∂T
∂x

= Ae−x2
η
−3
2

=⇒ ∂T
∂x

=−4Ae−x2
(D.2)

and then integrating from infinity to 1
2
√

η
produces:

T = 2A
√

π(1− erf(
σ

2
√

t
))+T ∗. (D.3)

Furthermore, by applying the boundary conditions T (0, t) = Tf and with T

tending to 1 as ψ → ∞, this gives:

T = (Tf −1)
(

1− erf(
σ

2
√

t
)

)
+1. (D.4)
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D.2 Region of rapidly varying temperature in the
Inclusion

Equation 3.10 describes the rapidly varying temperature behaviour in the
boundary layer surrounding the steam generation boundary, in the inclusion,
assuming that times are early enough that the steam generation boundaries
movement can be reasonably ignored. Equation 3.10 with the boundary
conditions T (0, t) = Tf and T tending to T0 as ψ → ∞ can be solved using the
similarity solution η = t

ψ2 .

The chosen similarity solution substituted into equation 3.10 follows a similar
derivation to that for the magma region:

∂T
∂η

∂η

∂ t
=

∂

∂ψ

(
∂T
∂η

∂η

∂ψ

)
=⇒ ∂T

∂η
= 6η

∂T
∂η

+4η
2 ∂ 2T

∂η2 . (D.5)

Like in the magma region, the substitution w = ∂T
∂η

followed by x = 1
2η

is used to
form the following equation:

∂T
∂x

=−4Ae−x2
, (D.6)

which is integrated from infinity to 1
2
√

η
producing:

T = 2A
√

π(1− erf(
ψ

2
√

t
))+T ∗. (D.7)

This is similar to the equation produced in the magma region and by applying the
boundary conditions T (0, t) = Tf and T tending to T0 as ψ → ∞ this gives:

T = (Tf −T0)(1− erf(
ψ

2
√

t
))+T0. (D.8)
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D.3 Maximum Pressure Analysis Details

D.3.1 Deriving the ramping distance at te

The initial temperature profile for magma, equation 3.14, was derived using a
similarity solution which included the variable η = t

σ
. For early time pressure

calculations and emplacement time is added to create a ramp function. This ramp
function allows the singularity at the flash front to be avoided. The step function
in the initial temperature profile is retained by setting the emplacement time to
zero. For the emplacement time te to be considered in this calculation the
previous variable for time t is equivalent to tnew + te. From this point on tnew will
be referred to as t. The initial temperature profile for magma is therefore
rewritten as:

T = (Tf −1)
(

1− erf(
σ

2
√

t + te
)

)
+1. (D.9)

The ramping distance rramp can be estimated using the error function by noting
that when the argument of the error function equals two the result is
approximately one, erf(2) = 0.995 (3sf). The argument of the error function at
initial time

σ(t=0)
2
√

te
written in terms of r is

r(t=0)−ε

δm
√

te
. The ramping distance

rramp = r(t=0)− ε . Therefore the ramping distance can be estimated as:

rramp

2δm
√

te
≈ 2

=⇒ rramp ≈ 4δm
√

te.

D.3.2 Deriving the approximate early time pressure
behaviour equation at the flash front

The approximate early time pressure behaviour equation at the flash front is:

∂ p
∂ t
≈ A√

(t2 + tet)
, r = s(t),

=⇒ A =
T (1−T )

√
f11

f3δm
√

π

where the temperature at the flash front T is approximated to be 0.4, which is
justified in chapter 3. By completing the square and using the substitutions
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u = t + te
2 and w = 2u

te
the following equations are formed:

∂ p
∂ t
≈ A√

(t + te
2 )

2− t2
e
4

=⇒
∫

∂ p≈
∫ A√

u2− t2
e
4

∂u

≈
∫ A√

w2−1
∂w,

then by applying the trigonometric substitution w = sec(x) and using the
sec2 (x)−1 = tan2 (x) identity to form equation:

∫
∂ p≈

∫ Asec(x) tan(x)√
(sec(x))2−1

∂x

≈
∫

Asec(x)∂x,

which can be integrated to form the following equation for approximate early
time pressure behaviour, pe:

pe ≈ A ln |sec(x)+ tan(x)|+ c

≈ A ln
∣∣∣∣ 1te
(

2t + te +2
√

t2 + tte
)∣∣∣∣+ c

≈ A(ln
(

2t + te +2
√

t2 + tte
)
− ln te)+ c.

Note that the absolute values have been dropped due to t and te being positive
time values. The constant c can now be determined by considering the initial
pressure at the time of emplacement, t = 0, to be atmospheric pressure. The
approximate early time pressure behaviour equation is:

pe ≈ A(ln
(

2t + te +2
√

t2 + tte
)
− ln te)+1. (D.10)
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D.3.3 Quasi-steady state pressure

The quasi-steady state pressure equation:

∂

∂ r

(
p

Tr2
∂ p
∂ r

)
= 0, r > s(t)

produces the following solution:

p
∂ p
∂ r

=
C1T
r2 (D.11)

=⇒ p2
q =

∫ 2C1T
r2 ∂ r, (D.12)

where pq is the quasi-steady state pressure. Since the temperatures in this system
are less than or equal to one (the non-dimensional initial temperature in the
magma), an upper bound for the quasi-steady state pressure can be given by
setting the temperature T to equal 1. This produces the following equation for
the upper bound of the quasi-steady state pressure, pu:

p2
u =−

2C1

r
+C2. (D.13)

C1 can be derived by equating the flux condition at the flash front, approximated
by equation 6.3, to equation D.11 giving:

C1T
ε2 =− T (1−T )

f3 f10δm
√

π(t + te)
(D.14)

=⇒C1 =−
ε2(1−T )

f3 f10δm
√

π(t + te)
. (D.15)

This calculation only applies if it is accepted that the temperature varies on a
slower timescale than the pressure. This allows for the time in the pressure
equation to be treated independently of the time in the temperature gradient
equation. This dependence on time from the temperature gradient in C1 and C2 is
what makes this a quasi-steady state equation instead of a steady-state equation,
where C1 and C2 would both be constant. C2 = 1+2C1 is determined by
considering the boundary at the surface of the ejecta is fixed at atmospheric
pressure.
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D.3.4 Leading term approximation of equation 6.10

The leading term approximation for equation 6.10 after the initial pressure is
dropped is:

2A
√

tm
te
≈ A

(
ln
(

2tm + te +2
√

t2
m + tmte

)
− ln te

)
. (D.16)

Equation D.16 is derived by considering the Taylor expansions for the square
root and log equations The derivation also considers tm to be approaching zero.
First the equation needs to be in a form such that the square root expansion
√

1+ x = 1+ 1
2x... where |x|< 1 can be used. In this derivation only the leading

terms in the Taylor expansion will be considered. The derivation to remove the
root is as follows:

A
(

ln
(

2tm + te +2
√

t2
m + tmte

)
− ln te

)
= A

(
ln
(

2tm + te +2
√

tm
te

√
tmte + t2

e

)
− ln te

)
= A

(
ln
(

2tm + te +2te

√
tm
te

√
tm
te
+1
)
− ln te

)
= A ln

(
2

tm
te
+1+2

√
tm
te

√
tm
te
+1
)

≈ A ln
(

2
tm
te
+1+2

√
tm
te
×1
)
. (D.17)

The Taylor expansion of the square root can be considered in equation D.17
because tm is tending to zero and therefore tm

te
<< 1.

The next step in the derivation is to expand the natural log using
ln |1+ x| ≈ x− x2

2 ... where |x|< 1. This requires some further rearrangement of
equation D.17 as follows:

A ln
(

2
tm
te
+1+2

√
tm
te
×1
)
≈ A ln

(
2
√

tm
te

(
1+
√

tm
te

)
+1
)

and then by considering
(

1+
√

tm
te

)
≈ 1 the equation can be reduced to:

A ln
(

2
tm
te
+1+2

√
tm
te
×1
)
≈ A ln

(
2
√

tm
te
+1
)
. (D.18)
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Finally equation D.18 is reduced using the log Taylor expansion considering only
the leading term to:

A ln
(

2
√

tm
te
+1
)
≈ 2A

√
tm
te

(D.19)

which gives the leading term approximation for equation 6.10.



Appendix E

Boundary Condition at the flash
front

The non-linear solver (fsolve) in MATLAB stops at the first solution it finds to
the non-linear equation on the interval. Therefore the interval of temperatures
used in the numerics needs to contain a single solution. The boundary condition,
equation 4.4, can be rewritten in terms of temperature using equations 4.5 and
4.6. This produces:

f10(1− ε)

T (1− s)
eH
[
1− T0

TmTb

]
∂

∂ξ

[
eH
[
1− T0

TmTb

]]
=
−1
f3

[(
1− ε

1− s

)
∂T
∂ξ
− ε

s
∂T
∂ζ

]
, (E.1)

this equation is discretised to form a quadratic in temperature (on the right-hand
side) and a quadratic of an exponential (on the left-hand side). This equation is
not guaranteed to have a single solution on the temperature interval.

The right-hand side of the discretised equation E.1 is:

1
f3 f10

[(
Tb+1 +

ε(1− ε)∆ξ Tb−1

s(1− s)∆ζ

)
Tb−T 2

b

(
1+

ε(1− ε)∆ξ

s(1− s)∆ζ

)]
where Tb is the temperature at the boundary, Tb−1 is the temperature one step into
the inclusion and Tb+1 is the temperature one step into the magma. This equation
describes a positive parabola with intercepts at Tb = 0 and

Tb =

(
Tb+1+

ε(1−ε)∆ξ Tb−1
s(1−s)∆ζ

)
(

1+ ε(1−ε)∆ξ

s(1−s)∆ζ

) which is approximately Tb = 0.6 at initial time if the

change in mesh in the inclusion is equal to that in the magma.
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Figure E.1: Left: Left-hand side of the boundary equation at initial time.
Right: Right-hand side of the boundary equation at initial time.

The left-hand side of the discretised equation E.1 is:(
expH

[
1− T0

TmTb

])2

− pb+1 expH
[
1− T0

TmTb

]
.

It has a local extremum at:

Tb =
HT0

Tm
(
H− ln pb+1

2

)
at initial times is at Tb ≈ 0.20 and at a non-dimensional pressure of about 20 the
extremum is at Tb ≈ 0.25. This extremum can be categorised as a local maximum
because:

d2LHS
dTb

2 (Tb) =

(
pb+1HT0√

2TmT 2
b

)2

and both the high and low pressure cases this maximum is below the initial
inclusion temperature. It will therefore not cause multiple solutions to the
boundary equation in the interval used in the numerics.



Appendix F

The Method of Lines

F.1 Method of Lines Background

The method of lines, [13], is used to numerically solve partial differential
equations by discritising spatial terms to leave a system of ordinary temporal
equations. The finite difference method is used to discretise the range which is
split into N intervals of size h. The range is now represented by
r = {r1,r2,r3...,rN ,rN+1}. If a point n is considered, it has a temperature Tn and a
Taylor expansion can be used to estimate the temperature at neighbouring points:

Tn+1 = Tn +h
(

∂T
∂ r

)
n
+

1
2

h2
(

∂ 2T
∂ r2

)
n
+ ... (F.1)

Tn−1 = Tn−h
(

∂T
∂ r

)
n
+

1
2

h2
(

∂ 2T
∂ r2

)
n
− ... (F.2)

From the Taylor expansions approximations for the first-order partial derivatives
can be made. There are three different first-order approximations:(

∂T
∂ r

)
n
=

Tn+1−Tn

∆rn
(F.3)(

∂T
∂ r

)
n
=

Tn−Tn−1

∆rn−1
(F.4)(

∂T
∂ r

)
n
=

Tn+1−Tn−1

∆rn +∆rn−1
. (F.5)

101



102 APPENDIX F. THE METHOD OF LINES

Equation F.3 is the forward, Equation F.4 is the backward and Equation F.5 is the
central first-order approximations.

When solving models numerically, the advective terms need to use a derivative
that matches the direction of the flow (see Appendix F.2). The second derivative
is also approximated using the Taylor expansion by eliminating the first
derivative term to give:(

∂ 2T
∂ r2

)
n
=

2Tn+1

∆rn(∆rn−1 +∆rn)
− 2Tn

∆rn∆rn−1
+

2Tn−1

∆rn−1(∆rn−1 +∆rn)
. (F.6)

F.2 Upstream Difference Background

When solving a differential equation using the method of lines the advective term
needs to be considered to determine whether the right, left or a central difference
is appropriate in each case. This will ensure that if there is a positive velocity in
the advective term the finite difference calculations will only consider
coordinates already covered by the flow, and similarly for a negative velocity.
Using vT as the advective term, dT+ and dT− as the positive and negative
difference respectively you can describe the equation for upstream differencing:

vT dT = v+T dT++ v−T dT−, (F.7)

where v+T = MAX(vT ,0) and v−T = MIN(vT ,0).

F.3 Uniform mesh coordinate transformation

One way to obtain the required mesh size at the boundary is to transform from ζ

and ξ to a new coordinate system, χ and ς . This transformation is chosen so that
in ζ and ξ there is a finer mesh near the flashing front, but retains a uniform
mesh in the χ and ς coordinate system. This is important as this uniform mesh
will allow for the use of the second-order accurate spatial derivative formula.
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The transformation used to achieve this is:

ζ =
ε arctan(aiχ)

arctan(ai(m+1))
=

ε arctan(aiχ)

Bm

ξ = 1+
(1− ε)arctan(am(ς −n−1))

arctan(am(n+1))
= 1+

(1− ε)arctan(am(ς −n−1))
Bn

where χ and ς are both unit-spaced meshes varying from 0 to m+1 and 0 to
n+1 respectively. The parameters ai, am, m and n can be varied to study the
convergence of the model at the steam generation boundary.

Transforming the first-order spatial derivatives requires the use of the chain rule
giving:

∂ f
∂ζ

=
∂ χ

∂ζ

∂ f
∂ χ

=Cm
∂ f
∂ χ

∂ f
∂ξ

=
∂ς

∂ξ

∂ f
∂ς

=Cn
∂ f
∂ς

with the parameters:

Cm =
Bm[1+(aiχ)

2]

εai

Cn =
Bn[1+(am(ς −n−1))2]

(1− ε)am
.

The second derivative transformation will also require the chain rule and this will
create a first-order derivative that will need to be considered in the upstream
differencing. This is calculated to be:

∂ 2 f
∂ζ 2 =Cm

∂

∂ χ

[
Cm

∂ f
∂ χ

]
=

2CmBmaiχ

ε

∂ f
∂ χ

+C2
m

∂ 2 f
∂ χ2

in the inclusion region and:

∂ 2 f
∂ξ 2 =Cn

∂

∂ς

[
Cn

∂ f
∂ς

]
=

2CnBnam(ς −n−1)
(1− ε)

∂ f
∂ς

+C2
n

∂ 2 f
∂ς2 .
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in the magma region.

Applying the transformation to the model in Chapter 4 gives:

∂T
∂ t

= wTi
∂T
∂ χ

+
f9C2

mε2

s2
∂ 2T
∂ χ2 , χ = 0,1,2...m+1 (F.8)

∂T
∂ t

= wT m
∂T
∂ς

+C2
n f15

(
1− ε

1− s

)2
∂ 2T
∂ς2 ς = 0,1,2...n+1 (F.9)

∂ρv

∂ t
=Wρv

∂ρv

∂ς
+Wp

∂ p
∂ς

+C2
n f11

(
1− ε

1− s

)2
∂

∂ς

[
ρv

∂ p
∂ς

]
ς = 0,1,2...n+1 (F.10)

ṡ = ρs f10Cn

(
1− ε

1− s

)
∂ p
∂ς

=− 1
f3

[
Cn

(
1− ε

1− s

)
∂T
∂ς
−Cm

ε

s
∂T
∂ χ

]
χ = m+1,ς = 0 (F.11)

p = eH[ T−Tn
T ], χ = m+1,ς = 0 (F.12)

p = ρvT, ς = 0,1,2...n+1 (F.13)

with parameters:

wTi =

[
2 f9ε2

s2ζ
+

ζ ṡ
s

]
Cm +

2CmBmaiχ f9ε

s2

wT m =

[
2 f15

g(ξ , t)

(
1− ε

1− s

)
− ξ −1

1− s
ṡ
]

Cn +
2CnBnam f15(ς −n−1)(1− ε)

(1− s)2

Wp =
2Cnρv f11

g(ξ , t)

(
1− ε

1− s

)
+

2ρv f11CnBnam(ς −n−1)(1− ε)

(1− s)2

Wρv =
(1−ξ )Cn

1− s
ṡ

g(ξ , t) =
(1− s)ξ +(s− ε)

1− ε
.

The boundary conditions at the surface of the ejecta ς = n+1 are p = 1 and
T = T0 with the flux condition ∂T

∂ χ
= 0, χ = 0; at the centre of the inclusion.

The initial conditions in the inclusion χ = [0,m+1] are T = T0 and in the
magma, where ς = [0,n+1], both the temperature and the pressure have an
initial condition of 1.
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Numerical Code

A sample of some of the code used in the numerical simulations of this thesis is
included below. This code is also available at
https://github.com/greenbem/Modelling_Surtseyan_Ejecta_PhD_

Code/blob/main/SursteyEjectaModel.m.

function SursteyEjectaModel

% Considering a spherical ejecta with a centred inclusion

% and the model determined in the notes with a coordinate

% transformation to fix the moving boundary and using

% method of lines on the spacial terms to solve.

% The space is split into two sections the inclusion and

% the magma and each section has a different coordinate

% spacing that meet at the boundary between the two. Also

% in each section has an arctan coordinate transform applied

% to it in order to retain the uniformity of the steps but

% allow for small step sizes at the boundary.This allow for

% smooth movement from the smallest to largest mesh sizes

%% Typical Values

format long

M = 18*10^(-3);% Molecular mass of water
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hsl = 2300000 ;% the latent heat of vaporisation

Rg= 8.314 ;% Gas Constant

Tm= 1275 ;% Original magma temperature

T0=373 ;% Original inclusion temperature

R1=0.01 ;% Radius of the inclusion

R2=0.1; % Radius of the magma ball

k=10^(-14); % permeability of magma

muv=3*10^(-5); % viscosity

p0=10^(5); % atmospheric pressure

rhom=2750; % Basalt density Range: 2650-2800

cpm=840; % specific heat Basalt

cps=2000; % specific heat of water vapour

rhol=1000; % Density of water

cpl=4200; % specific heat water

phi=0.4 ; % Porosity

rhol0=rhol; % Water Density ND

rhos0=(p0*M)/(Rg*Tm); % Vapour Density ND

Ke= 2; %thermal conductivity magma and vapour

Kel=3; % Effective thermal conductivity in the inclusion

pc=((1-phi)*rhom*cpm+phi*rhos0*cps); % specific heat and

% density comb magma vapour

pci=((1-phi)*rhom*cpm+phi*rhol*cpl);% specific heat and

% density comb inclusion

t0=(phi*rhol0*hsl*R1^2)/(3*Ke*(Tm-T0));% time scaling

vs0=(R2*rhol0)/(t0*rhos0); % velocity of vapour

epsilon= R1/R2;% Original boundary position(does not move)

p0m=10^(5); % Initial magma pressure

pre=10^(-5); %Size of the pore space;

%% Creating the mesh

% Using an arctan transformation mesh set up

% Setting m and n to give correct spacing

% In the inclusion and magma

n=200;
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m=800;

smallestMesh=pre/R2;

% the smallest desired mesh size is set to twice the

% typical diameter of pores, taken to be 10 microns = 1E-05

% now set aa, given n=m, so that the smallest mesh size

% is roughly smallestMesh:

aa = 2*(1+smallestMesh*n)/( n*(n+1)*smallestMesh*pi);

%constants needed later

Bm = atan(aa*(m+1));

Bn = atan(aa*(n+1));

chi=linspace(0,m+1,m+2); % 0,1,2,3, ... n+1 in value

psi=linspace(0,n+1,n+2); % 0,1,2,3, ... m+1 in value

zeta=epsilon*atan(aa*chi)/atan(aa*(m+1));

% zeta in slurry goes from 0 to epsilon, tightens on epsilon

xi= 1 + (1-epsilon)*atan(aa*(psi-n-1))/atan(aa*(n+1));

% xi in hot magma goes from epsilon to 1,

% and tightens mesh on epsilon

Cn = (Bn./(aa.*(1-epsilon))).*(1+(aa.*(psi-n-1)).^2);

% vector term that arises from chain rule

Cm = (Bm./(aa.*epsilon))*(1+(aa.*chi).^2);

% vector term that arises from chain rule

if (xi(2)-xi(1)) < smallestMesh/2

% possibly n is too large, smallest spacing is too small

disp(’bailing out, smallest mesh size is too small...

maybe n is too large?’)

display((xi(2)-xi(1)))

display((zeta(m+2)-zeta(m+1)))

disp(’Magma Step Size Error’)

end



108 APPENDIX G. NUMERICAL CODE

if (zeta(m+2)-zeta(m+1)) < smallestMesh/2

% possibly m is too large, smallest spacing is too small

disp(’bailing out, smallest mesh size is too small,...

maybe m is too large?’)

display((xi(2)-xi(1)))

display((zeta(m+2)-zeta(m+1)))

disp(’Slurry Step Size Error’)

end

%% Parameters from the ND Model

H=(M*hsl)/(Rg*T0);

f9=(Kel*t0)/(R2^2*pci);

f11=(t0*k*p0)/(phi*muv*R2^2);

f15=(Ke*t0)/(R2^2*pc);

f3=(vs0*R2*phi*rhos0*hsl)/(Ke*Tm);

f10=(k*p0)/(muv*R2*phi*vs0);

%% Setting up a time mesh

ts=0 ;% start time

te=0.1; % end time

tsteps=500;% Number of time steps

tspan= [0 logspace(-7, -1,tsteps-1)];

%% Initial Values of y set up

y0= zeros(1,2*n+m+1);

y0(1:m)=375/1275; % Initial Temp in Inclusion

y0(m+1:n+m)=1; % Initial Temp in Magma

y0(n+m+1:2*n+m)=1; % Initial density in magma

y0(2*n+m+1)=R1/R2;% position of flash front
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% Setting up the different temp, density and

% position of the boundary matrices

Tinc=zeros(1,m+2);

Tmagma= zeros(1,n+2);

rhomagma=zeros(1,n+2);

Pmagma=zeros(1,n+2);

%% boundary condition at the surface of the

% magma from fixed end point

Tmagma(n+2)=375/1275;

Pmagma(n+2)=p0m/p0;

rhomagma(n+2)= Pmagma(n+2)/Tmagma(n+2);

%% Setting up to solve

options=odeset(’RelTol’, 10^(-8), ’AbsTol’, 10^(-8), ...

’events’, @functionevents, ’OutputFcn’, @odeprint);

sol=ode15s(@SurtseyModelODE,[ts te],y0,options);

tspread=tspan;

%provides the solutions for the wanted times

Y=deval(sol,tspread);

% %Splitting Y into different parts

sval= Y(end,:);

% svalR=transpose(sval);

%display(sval)

Tincvals= Y(1:m,:);

%display(Tincvals)

Tmagmavals= Y(m+1:n+m, :);

%display(Tmagmavals)
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%rhomagmavals=Y(j+m+1:2*j+m, :);

%display(rhomagmavals)

Pmagmavals=Y(n+m+1:2*n+m, :).*Y(m+1:n+m, :);

%display(Pmagmavals)

%% Boundary

TBvals=zeros(1,tsteps);

PBvals=zeros(1,tsteps);

for i=1:tsteps

TBvals(i)=functionboundary(Tmagmavals(1,i), ...

Tincvals(m,i),Pmagmavals(1,i),sval(i));

PBvals(i)=exp(H*((TBvals(i)-(T0/Tm))/TBvals(i)));

end

%% Function

function f=SurtseyModelODE(~,y)

% This function generates the right-hand sides of the

% ODEs using the method of lines. This is discretised

% into two sections the inclusion and the magma sections.

% The input is the column vector y and t with is a scalar

% y is a input column vector of solutions. Note f should

% therefore also be a column vector. There are m

% temperature values from inside the inclusion not

% including a boundary condition at either end (as they

% are not calculated with the right hand sides they

% are imputed and n temperature values from the magma

% which also do not include the boundaries. Then there

% are a further n density values from inside the magma,

% boundary not included. So y is a column vector with

% the size m+2n+1
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% Input values

%Values of Tinc not including boundary at ends

Tinc(2:m+1)=y(1:m);

%Values of Tmagma not including boundary at ends

Tmagma(2:n+1)=y((m+1):(n+m));

%Values of density not including boundary at ends

rhomagma(2:n+1)=y(((n+m)+1):(2*n+m));

% position of the flash front

s=y(2*n+m+1);

%Pressure Ideal Gas Law

Pmagma(2:(n+1))=rhomagma(2:(n+1)).*Tmagma(2:(n+1));

%set up the boundary conditions

% the interior boundary at the centre of the

% inclusion Tinc(1)=y(1) has a temperature flux of zero.

Tinc(1)= Tinc(2);

%boundary condition between inclusion and magma

tau = functionboundary(Tmagma(2),Tinc(m+1),Pmagma(2),s);

Tinc(m+2)=tau;

Tmagma(1)=tau;

% The boundary condition of the density between

% the inclusion and magma

Pmagma(1)= exp(H*(1-T0/(Tm*Tmagma(1))));

rhomagma(1)= Pmagma(1)/Tmagma(1);

%setting up diff

% from 1 to m+1 is a a upstream difference at Tinc(2)

% with the first term of Tinc(2)-Tinc(1) taking 2 to m+2

% this gives a downstream difference of Tinc(3)-Tinc(2)
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% same idea with the others

DTinc=diff(Tinc);

DPmagma= diff(Pmagma);

DTmagma=diff(Tmagma);

Drhomagma=diff(rhomagma);

%derivatives used in right hand sides of equations note

%the differences in chi and psi are all 1

% pressure in magma 1st derivative with i-1 &i

DPN=DPmagma(2:n+1);

DPP=DPmagma(1:n);

% Temp in Inc 1st derivative with i & i-1

DTiP=DTinc(1:m);

DTiN=DTinc(2:m+1);

% Temp in Magma 1st derivative with i & i-1

DTmP=DTmagma(1:n);

DTmN=DTmagma(2:n+1);

% Density in Magma 1st derivative with i &i-1

DrhoP=Drhomagma(1:n);

DrhoN=Drhomagma(2:n+1);

%second derivatives

%Tinc second derivative

DDTi=zeros(1,m);

for i1=2:m+1

DDTi(i1-1)=(Tinc(i1+1)-2.*Tinc(i1)+Tinc(i1-1));

end

%Tmag second derivative

DDTm=zeros(1,n);

for i2=2:n+1

DDTm(i2-1)=(Tmagma(i2+1)-2.*Tmagma(i2)+Tmagma(i2-1));

end
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%Pmag second derivative

DDP=zeros(1,n);

for i3=2:n+1

DDP(i3-1)=(Pmagma(i3+1)-2.*Pmagma(i3)+Pmagma(i3-1));

end

%% Calculating sdot

sdot=functionvelocity(Tmagma(2),Tmagma(1),s, ...

Tinc(m+2),Tinc(m+1));

%Now to calculate the f function for the Tinc

fTinc=functioninctemp(s,DTiP,DTiN,sdot,DDTi);

%Now calculate the f function for the Tmagma

fTmagma=functionmagma(s,DTmP,DTmN,sdot,DDTm,xi(2:n+1));

%Now Calculate the f function of rhomagma

frhomagma=functionrhomagma(s,rhomagma(1:n+1),DPN, ...

DrhoN,DrhoP,sdot,DPP,xi(2:n+1),n, DPmagma);

% Now to form the right hand side f

fr=[fTinc,fTmagma,frhomagma,sdot];

f=transpose(fr);

end

%% stop function

function [value,isterminal,direction]= functionevents(~,y)

szero=y(end)-10^(-4)*R1; %value that equals zero
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stop=1; %halt the integration

side=0; % when coming from either direction, +1

% increasing function -1 decreasing

value=szero;

isterminal=stop;

direction=side;

end

%% boundary function

function [tau]=functionboundary(Th,Ti,Pm,sb)

function [result]=bfun(tau)

epsfrac= (1-epsilon)/(1-sb);

esfrac=epsilon/sb;

Pb=exp(H*((tau-(T0/Tm))/tau));

LHS=f10*f3*Pb*Cn(1)*epsfrac*(Pm-Pb);

RHS=-tau*(epsfrac*Cn(1)*(Th-tau)-Cm(m+1)*esfrac*(tau-Ti));

result= LHS-RHS;

end

Min=0.1;

r1=bfun(Min); r2=bfun(0.5);

%T=0.5 is approximately critical temperature

if r1*r2 > 0 % same sign, not straddling!!

disp(’not straddling zero’)

disp(sb)

disp(Th)

disp(Pm)

disp(Ti)

% LookAtFlash

Tflash= fzero(@bfun,Ti);

% look for a solution near the slurry T

else % we do have straddle:

Tflash= fzero(@bfun,[Min 0.5]);

% solve BC at flash for temperature there
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end

tau=Tflash;

end

%% s dot function

function [sdot]=functionvelocity(Tm2,Tm1,sp,Tie,Tin)

%Parameters that are needed in the function

epsfrac1= (1-epsilon)./(1-sp);

esfrac1=epsilon./sp;

%Calculate sdot

fluxmagma=(Tm2-Tm1);

fluxinc=(Tie-Tin);

sdot=-(1/f3).*(Cn(1)*epsfrac1.*fluxmagma-Cm(m+1)*esfrac1.*fluxinc);

end

%% T Inc Function

function [fTinc]=functioninctemp(s,DTiP,DTiN,sdot,DDTi)

esfrac=epsilon/s;

VT=(((esfrac.^2)*.2.*f9)./zeta(2:m+1))+((zeta(2:m+1).*sdot)./s);

a43=((esfrac^2)*f9);

A1=VT.*Cm(2:m+1)+a43.*((2.*Cm(2:m+1).*Bm.*aa.*chi(2:m+1))./epsilon);

a44P=min(A1,0);

a44N=max(A1,0);

WDTi=a44P.*DTiP+a44N.*DTiN; %Winding

fTinc= (a43.*Cm(2:m+1).^2).*DDTi+WDTi;

end

%% T magma Function

function [fTmagma]=functionmagma(s,DTmP,DTmN,sdot,DDTm,xi)

epsfrac= (1-epsilon)/(1-s);

gfrac=((1-s).*xi+(s-epsilon))./(1-epsilon);

WT=(((epsfrac)*2*f15)./(gfrac))-(((xi-1).*sdot)./(1-s));

a53=((epsfrac^2)*f15);

A2=WT.*Cn(2:n+1)+a53.*((2.*aa.*Cn(2:n+1).*Bn.*(psi(2:n+1)-n-1)) ...

./(1-epsilon));
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a54P=min(A2,0);

a54N=max(A2,0);

WDTm=a54P.*DTmP+a54N.*DTmN; %Winding

fTmagma= (Cn(2:n+1).^2).*a53.*DDTm+WDTm;

end

%% rho magma function

function [frhomagma]=functionrhomagma(s,rhomagma,DPN,DrhoN, ...

DrhoP,sdot,DPP,xi,n,DPmagma)

epsfrac= (1-epsilon)/(1-s);

gfrac=((1-s).*xi+(s-epsilon))./(1-epsilon);

Xp=(f11.*2.*rhomagma(2:n+1).*epsfrac./gfrac);

Xrho=-((xi-1)./(1-s))*sdot;

a61=((f11.*(epsfrac).^2));

A3=Xrho.*Cn(2:n+1);

A4=Xp.*Cn(2:n+1)+((a61.*rhomagma(2:n+1).*Cn(2:n+1).*2.*aa.* ...

Bn.*(psi(2:n+1)-n-1))/(1-epsilon));

a62P=min(A3,0);

a62N=max(A3,0);

WDrhoZ=a62P.*DrhoP+a62N.*DrhoN;

a64P=min(A4,0);

a64N=max(A4,0);

A4WD=a64P.*DPP+a64N.*DPN;

DD=diff(rhomagma.*DPmagma);

frhomagma= (Cn(2:n+1).^2).*a61.*DD+WDrhoZ+A4WD;

end

end
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Glossary of Terms

Symbol Glossary
Terms in Chapter 1.2.2

R1 Radius of inclusion m
R2 Radius of ejecta m
r Radius m
s Position of the steam generation boundary m
ρ effective density kg m−3

ρl liquid density kg m−3

ρv vapour density kg m−3

cp effective heat capacity J kg−1 K−1

T Temperature K
Tm Initial magma temperature K
T0 Initial Inclusion temperature K
t time s
K Thermal Conductivity of Magma J m−1 K−1 s−1

p Pressure Pa
Fv Vapour Density kg m−3 s−1

k Permeability of magma m
µv Dynamic Viscosity Pa s
φ Porosity of Inclusion
φm Porosity of Magma
pc Critical pressure Pa
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hvl Latent heat of Vaporisation k J Kg−1

M Molar mass of water Kg
R Gas Constant J Kg−1 K−1
tc Critical time s

Terms in Chapter 1.2.3.1
Symbol Meaning Units
φ Porosity
ρl liquid density kg m−3

ρv vapour density kg m−3

uv Mass flux of vapour kg s −1

ul Mass flux of liquid kg s −1

Sl Pore space fraction containing liquid
Sv Pore space fraction containing vapour
Re Reynolds Number
q flow speed m s −1

d pore size m
γ kinematic viscosity m2 s −1

Terms in Chapter 2
Symbol Meaning Units
ρ Density kg m−3

cp Specific heat J kg−1 K−1

T Temperature K
t time s
v Local fluid velocity vector m s −1

β Coefficient of isothermal compressibility Pa−1

p Pressure Pa
K Thermal Conductivity J m−3 K−1 s−1

φ Porosity
k Permeability of magma m
µv Dynamic Viscosity Pa s
u Mass flux kg s−1

TR Reference Temperature K
hvl Latent heat of Vaporisation k J Kg−1

M Molar mass of water Kg
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Rg Gas Constant J Kg−1 K−1

R1 Radius of inclusion m
R2 Radius of ejecta m
r Radius m
s Position of the steam generation boundary m

Terms in Chapter 3
Symbol Meaning Units
T Non-dimensional Temperature
Tf Scaled temperature at flash
T0 Scaled initial inclusion temperature
t Non-dimensional time
r Non-dimensional radius
η Similarity solution
ε

R1
R2

σ Co-ordinate transformed r near the boundary
ψ Co-ordinate transformed r near the boundary
p Non dimensional Pressure

Terms in Chapter 4
Symbol Meaning Units
ζ Frozen boundary inclusion radial coordinate
ε

R1
R2

r Non-dimensional radius
s Non-dimensional steam generation boundary
t Non-dimensional time
ξ Frozen boundary magma radial coordinate
T Non-dimensional temperature
ρv Non-dimensional vapour density
p Non-dimensional pressure

Terms in Chapter 5
Symbol Meaning Units
k permeability of ejecta m
φ porosity of ejecta
pc critical pressure Pa
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Terms in Chapter 6
Symbol Meaning Units
t Non-dimensional time
r Non-dimensional radius
p Non-dimensional pressure
ε

R1
R2

T Non-dimensional Temperature
Tf Scaled temperature at flash
T0 Scaled initial inclusion temperature
Tm Initial temperature in magma K
rramp Ramping distance m
te emplacement time s
pe Non-dimensional early time pressure
pu Non-dimensional upper bound on pressure
pmax Non-dimensional maximum pressure

Terms in Appendix A
Symbol Meaning Units
ρx Density of substance x kg m−3

h specific enthalpy kJ kg−1

v Local fluid velocity vector m s −1

q heat flux J s−1

τ Deviatoric stress tensor N m2

t time s
p Pressure Pa
U Specific internal energy J
S Specific entropy J K−1

cpx Specific heat of x J kg−1 K−1

T Temperature K
βe Coefficient of isothermal compressibility Pa−1

Kx Thermal Conductivity of x J m−1 K−1 s−1

Terms in Appendix B
Symbol Meaning Units
ρx Density of substance x kg m−3

cpx Specific heat of x J kg−1 K−1



121

T Temperature K
t time s
v Local fluid velocity vector m s −1

p Pressure Pa
Kx Thermal Conductivity of x J m−1 K−1 s−1

φx Porosity of x
hx specific enthalpy of x kJ kg−1

Terms in Appendix C
Symbol Meaning Units
ρx Density of substance x kg m−3

cpx Specific heat of x J kg−1 K−1

T Temperature K
t time s
t0 Initial time s
v Local fluid velocity vector m s −1

β Coefficient of isothermal compressibility Pa−1

p Pressure Pa
Kx Thermal Conductivity of x J m−1 K−1 s−1

φx Porosity of x
k Permeability of magma m
µv Dynamic Viscosity Pa s
ux Mass flux of x kg s−1

TR Reference Temperature K
hvl Latent heat of Vaporisation k J Kg−1

M Molar mass of water Kg
Rg Gas Constant J Kg−1 K−1

R1 Radius of inclusion m
R2 Radius of ejecta m
r Radius m
s Position of the steam generation boundary m
r̃ Non-dimensional radius
T̃ Non-dimensional temperature
t̃ Non-dimensional time
p̃ Non-dimensional pressure
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s̃ Non-dimensional s

ρ̃x Non-dimensional density of substance x

ṽv Non-dimensional vapour velocity
ρx0 Initial density of substance x kg m−3

vx0 Initial velocity of x m s−1

ts Estimate time taken to heat inclusion s
α Thermal linear expansion coefficient K−1

p0 Initial pressure Pa

Terms in Appendix D
Symbol Meaning Units
r Non-dimensional radius
T Non-dimensional Temperature
Tf Scaled temperature at flash
T0 Scaled initial inclusion temperature
t Non dimensional time
ε

R1
R2

σ Co-ordinate transformed r near the boundary
ψ Co-ordinate transformed r near the boundary
η Similarity solution t

σ2

T ∗ Constant set by outer solution
A Constant set by temperature gradients
T ∗i Constant set by outer solution
Ai Constant set by temperature gradients
ρv Non-dimensional vapour density
p Non-dimensional pressure
rramp Ramping distance
te emplacement time
pe Non-dimensional early time pressure
pq Non-dimensional quasi steady state pressure
pu Non-dimensional upper bound on pressure
pmax Non-dimensional maximum pressure
tm Non-dimensional time taken to reach maximum pressure
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Terms in Appendix E
Symbol Meaning Units
Tx Non-dimensional temperature at x

ε
R1
R2

s Non-dimensional steam generation boundary m
px Non-dimensional pressure at x

Tm Initial magma temperature K
T0 Initial Inclusion temperature K

Terms in Appendix F
Symbol Meaning Units
Tx Non-dimensional temperature at x

∆rx Change in r at x

h Size of interval
ζ Frozen boundary inclusion radial coordinate
ε

R1
R2

r Non-dimensional radius
s Non-dimensional steam generation boundary
t Non-dimensional time
ξ Frozen boundary magma radial coordinate
T Non-dimensional temperature
ρv Non-dimensional vapour density
p Non-dimensional pressure
χ arctan transformed ζ

ς arctan transformed ξ

n number of intervals in magma
m number of intervals in inclusion
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