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Abstract

This research investigates the breakout of security prices from periods of sideways drift
known as Triangles. Contributions are made to the existing literature by considering
returns conditionally based on Triangles in particular terms of how momentum traders
time positions, and by then using alternative statistical methods to more clearly show
results. Returns are constructed by scanning for Triangle events, and determining
simulated trader returns from predetermined price levels. These are compared with a
Naive model consisting of randomly sampled events of comparable measure. Modelling
of momentum results is achieved using a marked point Poisson process based approach,
used to compare arrival times and profit/losses. These results are confirmed using a set
of 10 day return heuristics using bootstrapping to define confidence intervals.

Using these methods applied to CRSP US equity data inclusive from years 1960 to 2017,
US equities show a consistent but weak predictable return contribution after Triangle
events occur; however, the effect has decreased over time, presumably as the market
becomes more efficient. While these observed short term momentum changes in price
have likely been compensated to a degree by risk, they do show that such patterns have
contained forecastable information about US equities. This shows that prices have likely
weakly been affected by past prices, but that currently the effect has reduced to the point
that it is of negligible size as of 2017.





Acknowledgements

While this thesis took considerable effort, this still seems like depositing an invisibly thin
hair on a vast mountain of other people’s knowledge. I am grateful for contributions
from the various teachers who have taught me over the years, and in no particular order:

Credit goes to Budhi Surya upon whose mathematical skill and guidance much of this
work is based.

Thanks to Leigh Roberts, whose contribution of longer term guidance has enabled the
pursuit of this subject and without whom this thesis would never have been completed. It
has been an innovative learning experience to discuss ways of viewing financial markets
from new perspectives and I am grateful for someone to not only take the chance on an
obscure idea but to push it forward.

I am grateful to be taught by Professor Estate Khmaladze. By being caught up in Estate’s
deep probabilistic insights, a window opened into another world that I did not know
existed.





Contents

1 Introduction 1
1.1 Triangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Literature 7
2.1 Financial Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Market Efficiency and Random Walk . . . . . . . . . . . . . . . . . 8
2.1.2 Behavioural Finance . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Security Trading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1 Back-testing Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Technical Pattern Trading . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Research Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Method 20
3.1 Triangle Trades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 TTop Up (Triangle Top Break Up) . . . . . . . . . . . . . . . . . . . 23
3.1.2 TTop Down (Triangle Top Break Down) . . . . . . . . . . . . . . . . 23
3.1.3 TBot Up (Triangle Bottom Break Up) . . . . . . . . . . . . . . . . . . 23
3.1.4 TBot Down (Triangle Bottom Break Down) . . . . . . . . . . . . . . 24
3.1.5 Returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Triangle Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.1 Improvements on Literature . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.2 Grid Map-Reduce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.3 Rolling Window Scan . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.4 Detection Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Naive Trades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4 Results Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Structural Model 42

v



vi CONTENTS

4.1 Brownian Motion First Passage Derivation . . . . . . . . . . . . . . . . . . 44
4.2 Brownian Motion First Passage Estimation . . . . . . . . . . . . . . . . . . 49
4.3 Surface Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4 Euler Estimation Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Intensity Model 57
5.1 Base Intensity Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2 Estimation Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.3 Generalized Extreme Value Base Model . . . . . . . . . . . . . . . . . . . . 62

5.3.1 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.4 Goodness of Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.4.1 Cumulative Deviations Test Construction . . . . . . . . . . . . . . . 66
5.4.2 Goodness of Fit Test Strategy . . . . . . . . . . . . . . . . . . . . . . 67

5.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6 Effect Size Heuristics 70

7 US Equity Results 73
7.1 A Tail of TTop Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.2 Intensity Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.3 Effect Size Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8 Discussion 100
8.1 Alternative Result Evaluation Models . . . . . . . . . . . . . . . . . . . . . 102

8.1.1 Intensity Cox Sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
8.2 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8.2.1 General Pattern Framework . . . . . . . . . . . . . . . . . . . . . . . 106
8.2.2 Portfolio Profit and Loss Analysis . . . . . . . . . . . . . . . . . . . 107

9 Conclusion 109

A Terms and Abbreviations 110

B US Equity Data 112
B.1 Exploratory Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

C GBPUSD Trial 116
C.1 Spot Price Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
C.2 Exploratory Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
C.3 Structural Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

C.3.1 Surface Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121



CONTENTS vii

C.4 Intensity Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
C.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

D ES Futures Trial 134

E Effect Size Heuristics Bootstrap Code 136



List of Figures

1.1 Triangle Wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Candlesticks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 ES Triangle bottom with prior trend and break down . . . . . . . . . . . . 3
1.4 Triangle with apparent surrounding noise . . . . . . . . . . . . . . . . . . . 4

2.1 Resistance Breakout Example . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 TTop Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 TTop Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 TBot Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 TBot Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5 XYZ Equity TBot Down Trade Example . . . . . . . . . . . . . . . . . . . . 26
3.6 Triangle Class Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.7 TBot Smoothness and Alignment Detection Example . . . . . . . . . . . . 33

4.1 Brownian Motion First Passage Example . . . . . . . . . . . . . . . . . . . . 43
4.2 Typical GBPUSD Brownian Motion First Passage Time h = 12 (pips) . . . 49
4.3 TBot Up Constrained Brownian Motion 2D First Passage Distribution µ =

0, σ = 0.173 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.4 TBot Up Constrained Smoothed Naive (Heat) vs Brownian Motion

(Terrain) σ = 0.173 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.5 Constrained Smoothed Naive (Terrain) vs Triangle (Heat) . . . . . . . . . . 55

5.1 TBot Up Intensity Distribution Profile hσ ∈ [0.0035, 007) . . . . . . . . . . . 65

7.1 TTop Up 2D Distribution Over hσ ∈ (0, 10], τ ∈ (0, 60] . . . . . . . . . . . . 74
7.2 TTop Up In Sample 1988-1998 Triangle GEV Intensity vs Empirical Triangle

Profile hσ ∈ [0, 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.3 TTop Up In Sample 1988-1998 Triangle GEV Intensity vs Empirical Triangle

Profile hσ ∈ [0, 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.4 TTop Up 1988-1998 Triangle GEV Intensity vs 1998-2008 Forward

Empirical Triangle Profile hσ ∈ [0, 3) . . . . . . . . . . . . . . . . . . . . . . 77
7.5 Triangle Intensity vs Naive Empirical TTop Up Profile hσ ∈ [0, 3) . . . . . 86

viii



LIST OF FIGURES ix

7.6 Triangle Intensity vs Naive Empirical TTop Up Profile hσ ∈ [3, 6) . . . . . 87
7.7 Triangle Intensity vs Naive Empirical TTop Down Profile hσ ∈ [0, 3) . . . . 88
7.8 Triangle Intensity vs Naive Empirical TTop Down Profile hσ ∈ [3, 6) . . . . 89
7.9 Triangle Intensity vs Naive Empirical TBot Up Profile hσ ∈ [0, 3) . . . . . . 90
7.10 Triangle Intensity vs Naive Empirical TBot Up Profile hσ ∈ [3, 6) . . . . . . 91
7.11 Triangle Intensity vs Naive Empirical TBot Down Profile hσ ∈ [0, 3) . . . . 92
7.12 Triangle Intensity vs Naive Empirical TBot Down Profile hσ ∈ [3, 6) . . . . 93

8.1 Intensity Cox Sum Step Function . . . . . . . . . . . . . . . . . . . . . . . . 105

C.1 TBot Up Constrained Brownian Motion 2D First Passage Distribution σ =

0.173 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
C.2 TBot Up Constrained Naive 2D First Passage Distribution . . . . . . . . . 123
C.3 TBot Up Constrained Triangle 2D First Passage Distribution . . . . . . . . 124
C.4 Contained Smoothed Naive(Terrain) vs Triangle (Heat) . . . . . . . . . . . 124
C.5 TBot Up Constrained Smoothed Naive(Heat) vs Brownian Motion

(Terrain) σ = 0.173 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
C.6 TBot Up Intensity Distribution Profile hσ = [0, 0.0035) . . . . . . . . . . . . 127
C.7 TBot Up Intensity Distribution Profile hσ = [0.0035, 007) . . . . . . . . . . 128



List of Tables

4.1 GBPUSD Triangle Brownian Motion First Passage Estimates . . . . . . . . 50
4.2 GBPUSD Naive Brownian Motion First Passage Estimates . . . . . . . . . 51

5.1 GBPUSD hσ Intensity Model Parameter Estimates . . . . . . . . . . . . . . 65
5.2 GBPUSD hσ Triangle Intensity Model In Sample Tests . . . . . . . . . . . . 68

7.1 US Equity GEV Model Parameter Estimates . . . . . . . . . . . . . . . . . . 79
7.2 US Equity In-Sample Triangle Cumulative Deviations Tests . . . . . . . . . 80
7.3 US Equity In Sample Naive Event Cumulative Deviations Tests . . . . . . 82
7.4 US Equity Triangle Forward Cumulative Deviations Tests . . . . . . . . . . 83
7.5 Effect Size Heuristics Symbol Key . . . . . . . . . . . . . . . . . . . . . . . . 94
7.6 US Stock Triangle Momentum Heuristics . . . . . . . . . . . . . . . . . . . 94
7.7 US Equity Naive Event Heuristics . . . . . . . . . . . . . . . . . . . . . . . 97

A.1 General Terms and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . 110
A.2 Return Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

B.1 US Equity Triangle Summary Statistics . . . . . . . . . . . . . . . . . . . . . 112
B.2 US Equity Naive Summary Statistics . . . . . . . . . . . . . . . . . . . . . . 114

C.1 GBPUSD Triangle Counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
C.2 GBPUSD Naive Event Counts . . . . . . . . . . . . . . . . . . . . . . . . . . 118
C.3 GBPUSD Triangle Stopping Times . . . . . . . . . . . . . . . . . . . . . . . 119
C.4 GBPUSD Naive Event Stopping Times . . . . . . . . . . . . . . . . . . . . . 119
C.5 GBPUSD Triangle Mean Returns . . . . . . . . . . . . . . . . . . . . . . . . 120
C.6 GBPUSD Naive Event Mean Returns . . . . . . . . . . . . . . . . . . . . . . 120
C.7 GBPUSD Mean Return P-Values . . . . . . . . . . . . . . . . . . . . . . . . 120
C.8 GBPUSD Triangle Brownian Motion First Passage Estimates . . . . . . . . 121
C.9 GBPUSD Naive Brownian Motion First Passage Estimates . . . . . . . . . 121
C.10 GBPUSD h Intensity Section Counts . . . . . . . . . . . . . . . . . . . . . . 128
C.11 GBPUSD h Intensity Model Parameter Estimates . . . . . . . . . . . . . . . 129
C.12 GBPUSD h Triangle Intensity Model In Sample Tests . . . . . . . . . . . . . 129
C.13 GBPUSD hσ Intensity Section Counts . . . . . . . . . . . . . . . . . . . . . . 129

x



LIST OF TABLES xi

C.14 GBPUSD hσ Intensity Model Parameter Estimates . . . . . . . . . . . . . . 130
C.15 GBPUSD hσ Triangle Intensity Model In Sample Tests . . . . . . . . . . . . 130

D.1 ES Triangle Counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
D.2 ES Triangle Mean Returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
D.3 ES Triangle Mean Return T-test P-Values . . . . . . . . . . . . . . . . . . . . 135



xii LIST OF TABLES



Chapter 1

Introduction

This research is concerned with testing, understanding and forecasting changes in
security prices after a form of price congestion called a Triangle has occurred, where
prices form a triangular shape as illustrated in Figure 1.1. The principle is to compare
security prices following a Triangle with unconditional prices to determine the impact
of Triangles on returns. More specifically the research goal is to determine if there are
predictable changes in trading returns after Triangle patterns.

Figure 1.1: Triangle Wave

There is contention both within the trading
industry and academic finance as to whether
such pattern based trading methods are profitable.
While there is a small amount of related research,
there seems no significant evidence to say that
such methods generate abnormal profits; and the
emphasis is on detecting differences in returns
using p-value based testing without aiming for
deeper understanding. Typically academic finance
insists that such methods do not produce abnormal returns; however the evidence is far
from overwhelming. There is a reproducibility problem where some of the literature
states that there is a significant effect of such patterns and some states otherwise. To
delve further, this study takes an exploratory approach where I build an understanding
of the mechanisms involved, based on an insider’s view of how traders view the market,
then objectively test the significance of results based on this. This approach has required
developing methods to evaluate stock returns which are specifically suited to pattern
based momentum trading.

The surprisingly sparse literature has utilised statistical methodology such that I am not
able to make clear conclusions. So I spend considerable effort in what I hope provides
a deeper understanding of the phenomena, which in conjunction with adjusted research
methods should provide more convincing statistical results. I am able to do this with

1



2 CHAPTER 1. INTRODUCTION

the advantage of proprietary trading industry knowledge and by restricting the study to
Triangles, where other studies attempt to cover a larger range of patterns.

Security market regimes can be roughly divided into three: trending up, trending down
or sideways. Generally the sideways movement is referred to as congestion or range
bound, and it is a particular transition from this to a forecasted price that I am interested
in. In order to narrow this to a defined range of detail, this study is based on periods
where the prices of securities converge toward a particular focal region, which in the
trading industry are commonly called Triangles, though there are a plethora of other
variations and terms.

This simplifies the approach by narrowing the research to a very particular pattern of
market congestion. The challenge is then to identify these regions in price
algorithmically, measure the conditional price changes afterwards and explore their
nature using stochastic models. I use trading industry terminology to refer to security
price convergence and breakout in a market that is either trending up or trending down.
Traders seeking to profit from Triangles use the notion that markets trend, then pause in
a region of congestion, out of which some short term momentum can be forecast. This is
the simplistic frame of reference used to understand changes in short term momentum.

As an overview, I attempt to model momentum by Structural and Intensity based
methods; the Structural approach proves to have limitations and I choose to pursue the
Intensity based approach more fully. To confirm the Intensity results I use a 10 day
return heuristic with various bootstrapped confidence intervals. I later conclude that
there is likely to be a small but significant predictable short term momentum effect after
Triangles for US equities, but presumably as markets have become more efficient this
effect has progressively diminished over the years 1960 to 2017.

1.1 Triangles

Often traders place huge emphasis on price, generally academics less so. When I
worked on a trading floor as a software developer practically every single trader had
numerous price charts tracking securities on up to eight screens each, yet when studying
finance I did not once witness a single price chart on an academic computer. This is part
of the reason I believe markets are affected by past prices, since traders use these in their
decision making process to generate profits; it stands to reason that there may be some
future trading significance based on these past prices. Possibly this is artificially
induced by traders’ behaviour, or traders are aware of repetitive market behaviour and
are able to take advantage - there is some circularity. Although there are numerous ways
in which traders derive meaning from plotting the price, in my experience usually these
are simplistic, the chart being used simply as a reference to price levels of interest.

Clearly prices are not smooth on such charts as shown in Figure 1.1 for an ideal Triangle
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and additionally traders use high and low prices (not just closing prices), which this
research takes into account. Price movements are then measured in terms of open, high,
low and close prices of each measurement period (OHLC prices) and I display these price
movements as candlestick charts. Candlestick charts in this study are displayed where
white candles represent rising prices and red candles represent falling prices as displayed
in 1.2. The bars represent the open to close price change, the vertical lines on either end
of the bar represent the high and low price extremes within the period as displayed.

Figure 1.2: Candlesticks

With this in mind consider Figure 1.3 where
ES (E-mini S&P 500 Futures) appear to trend
downwards to relative low point E1 marked
in blue, where price then converges to form a
triangular shape including points E1 to E4 similar
to the dampened wave example. Price then moves
sharply downwards. Consider that at the blue X
mark the trader identifies the triangle pattern and
waits for a move of price further downwards. The
trader then sells short at the first green X entry
mark and buys at the next green X to settle for a

profit. This example represents the common idea behind how pattern based momentum
traders trade breakout strategies. The idea is that traders can profit by being able to
predict the short term changes in price after the triangle is formed, as the triangular
shaped area marked in blue is escaped by price moving either downward or upward.
I evaluate returns in this study based on similar simulated trading conditions.

Figure 1.3: ES Triangle bottom with prior trend and break down

However this triangular shape is often not clear. In Figure 1.4 it is not so obvious that
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there is any pattern and the eye can pick out various triangular shapes such that it is
not clear which is the correct one or more to pick. If we consider the one marked using
points E1 to E4 it is also arguable whether there is a previous trend, or after the Triangle
if there is any particular predictable future direction. Capturing what is and is not a
valid Triangle is subjective, and it is consequently difficult to build an algorithm to detect
patterns. These patterns are also easily reproduced using various stochastic processes,
in a sense implying price congestion may be purely random or at least not due to any
underlying fundamental events which might be ascribed to them. Further, Mandelbrot
and Hudson (2004) makes the strong point that such repetitive patterns can be found
commonly in purely random data that represents typical features of financial markets,
yet which clearly have no underlying fundamental cause.

Figure 1.4: Triangle with apparent surrounding noise

Triangles are a well known phenomenon, and are frequently discussed in the news,
captured by technical analysis concepts and anecdotally used by momentum traders to
capture returns. However, despite being commonly discussed in the finance industry,
this does not seem to be as widely researched as would be expected. Partly this is due to
the need for programming skills; a second reason is the almost religious fervour with
which finance academics refute such ideas, exacerbated by a misunderstanding as to
how such methods are traded. While all manner of statistical measurements have been
used to test for financial market inefficiencies, these often use simple mathematical tools
to detect potential trading strategies rather than utilising custom built algorithms.
Custom built algorithms are, I would argue, more adaptable to solving pattern based
price movements.

Despite there being a few pattern based technical analysis papers referenced, for the
most part I have chosen a different methodology. Much of this study draws on Lo et al.
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(2000), who shows how some pattern based returns deviate from classic Efficient Market
Hypothesis theory. However it is difficult to draw clear conclusions as tests appear
inconsistent and later research disputes his claims. Lo’s technical patterns of Triangles,
Wedges and Pendants are all some variation of a triangular shape. Curiously none of the
literature regarding technical analysis investigates the specifics behind the practical
trading of these patterns; rather they focus solely on conditioning on the patterns and
statistically testing future standard periodic returns against the null hypothesis of
market efficiency. These tests often appear inconclusive and generally lack a depth of an
understanding of trading. I partly build off Lo et al. (2000) but I simulate how traders
trade Triangles and develop alternative methods to understand the nature of price
changes.

1.2 Motivation

For a period I worked on a trading desk for a London based bank as a software
developer. Having worked alongside traders I had noticed some aspects of institutional
trading which seemed common, but which were not well understood. One such
common occurrence is the reference to past price highs and lows; and reference to
periods of market stagnation.

Although references cannot be provided for such behaviour and these are not scientific
observations, they provide some initial insight with which to explore ideas for more
objective work; and it seems pragmatic to use these to tailor my research methods.
Strictly speaking I have observed broader phenomena than Triangles; but Triangles
seemed an easily identifiable subset, and as it happens there is some related research to
draw on.

In contrast after this trading work, wanting to know more I studied finance where I was
told repeatedly that what I had observed on the trading desk did not exist, that markets
are efficient and excess profits cannot be generated from observing past prices. This
seemed ironic since I had developed tools for traders who had long standing careers
making excess returns. Observing this contrast and reading further academic studies
warranted considering that there may be a misunderstanding and that common
methods used to trade could be revisited with improved and more specific statistical
research methods, but based on how institutional traders consider the markets.

So instead of analysing price as standard periodic returns, I use the movement from one
price to another to create a more realistic return, using reasoning that it seems a trader
would consider. Returns are then produced by simulating traders taking directional
momentum positions after Triangle patterns based on reasoned entry and exit levels,
and these are compared with returns generated without this potential timing advantage
as a comparison. This is a relatively crude approach where I put aside many core
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financial beliefs, in order to freshly statistically test the validity of trading under what I
believe are more realistic and rigorously considered research methods. The difficulty of
taking this approach is that is requires the invention of a range of simple new
approaches.

1.3 Roadmap

The research is organized as an empirical study of security prices with the view to both
testing and understanding the nature of how prices change conditioned on Triangles. The
literature survey includes the fundamentals of finance related to testing returns. This
covers related trading concerns from a more industry related context and reviews the
literature of pattern based technical analysis papers, discussing techniques that can be
reused and where improvements can be made. I further comment on contributions or
extensions to these under the Method chapter.

Price compression detection algorithms and methodology are detailed in the Method
chapter and later chapters explore and develop stochastic process theory for comparison
with price distributions. Incrementally using trial data, stochastic models are explored
to understand the later changes in price with relevant tests used to validate the
significance of returns. To validate the modelling a 10 day return heuristic is
bootstrapped. The results for US equities are then summarized and conclusions
discussed. Under this structure stochastic models are used not to model the time series
as a whole but rather to understand the later changes in price after conditioning on
triangles, but only on a short term basis. Numerous methods have been considered but
discussion of relevant alternative methods is deferred to the Discussion section.



Chapter 2

Literature

In this section, I review the current literature by firstly giving an outline of the relevant
fundamentals of market based financial theory; secondly I outline industry practices of
trading, particularly related to momentum trading; then I analyse trading pattern
recognition, and give an overview of relevant research methods. Briefly justified under
the financial theory section, stochastic models are explored more deeply in the later
momentum analysis chapter where they are discussed in relation to trial data.

There is little in the way of direct research related to pattern based trading which would
include Triangles, or at least could provide some relevant material, and where there is
indirectly related work the research methods used are of questionable value. Lo et al.
(2000) is an exception, with a creative exploration of pattern based technical analysis;
this paper is particularly well thought out and does not seem to have been significantly
extended by later literature. Partly because of the lack of literature, I draw on professional
trading floor experience, conversations with traders, and trading books. This is done
to gain some depth of insight into how real trading is done to simulate trading more
realistically.

In order to compensate for the lack of directly relevant literature and to improve the
depth of understanding, various research methodologies and statistical testing avenues
are explored. Depending on whose view is expressed, research in social sciences has
faced various reproducibility and research methodology issues. The finance literature
appears to suffer from the same problems, and so I explore approaches taken in other
disciplines to develop sound research methods.

7
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2.1 Financial Theory

2.1.1 Market Efficiency and Random Walk

Arguably a core area of research in market based finance is Efficient Markets Hypothesis
(EMH). Efficient markets theory from Fama (1970, 1965) and others argue that security
prices reflect all available information, and further work also implies that prices vary as
random walk based processes (Fama, 1991). There has been various research validating
and refuting EMH over time; those against often look for counterarguments to the Weak
form of EMH based on finding market anomalies. For example a commonly used
argument against EMH is that market prices (typically stocks) show long term trend
momentum where there is significant evidence to suggest over a period of weeks or
months that trending stocks tend to outperform non-trending stocks: Lo et al. (2000);
Jegadeesh and Titman (1993); Lo and MacKinlay (1999). It is now well accepted, even by
Fama, that trend momentum is a consistent market anomaly that should not exist
according to the EMH (Fama and French, 1996). Another common anomaly is that of
mean reversion (Fama and French, 1988), the theory being that autocorrelations of
returns show predictable positive or negative components. These anomalies tend to
show long horizon results that contradict EMH; so there is considerable counter
argument that markets are not efficient. As Thorp (2017) points out it is not possible to
prove a negative, so it seems of negligible value to argue the absolute truth of the EMH.
Perhaps a more pragmatic view as presented by Lo (2017) is the Adaptive Markets
Hypothesis (AMH), which suggests a less extreme version of EMH modified by more
modern behavioural concepts that accepts a degree of efficiency based on principles of
evolutionary competition. Lo’s AMH provides a more reasonable context under which
to construct hypothesis tests through selective advantage.

Fama makes several compelling arguments for EMH, arguing that the majority of the
anomaly literature is probably due to randomness and the bad model effect over long
term horizons (Fama and French, 1988). According to Fama, long term market anomalies,
often coming from the Behavioural Finance literature, can be reduced to insignificance
by improving the models of market efficiency tested against. He argues that there is a
‘bad model’ effect under which testing with long term data is common. However with
the data used in this study I alleviate this by using granular data over very short term
horizons, for example a number of days as opposed to months or years. Over a short term
horizon there is little chance of significant differences in return distribution due to model
issues. This simplification can be used to avoid the difficulties of constructing complex
multi-factor models to account for more long term effects such as drift.

Partly driven by AMH, a more pragmatic view of EMH is that markets are ‘fractionally’
efficient, there being certain situations over the short term where market participants’
may not be rational or abnormal returns can be obtained over short periods. However it
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is reasonable to assume that, given the considerable weight of literature, most of the time
financial markets are efficient. Taking this more relaxed view seems reasonable in the
light of the numerous trading businesses and literature demonstrating abnormal returns,
but perhaps only under unusual circumstances.

It is the fractionally efficient view that I investigate, assuming that abnormal returns
cannot usually be made. This more relaxed view means I cannot assume markets are
absolutely efficient, which motivates carefully constructing an alternative research
methodology based on competitive advantage. This has prompted a carefully tuned
comparison of Triangle and Naive model returns, as discussed further in Sections 2.3
and 3.3.

2.1.2 Behavioural Finance

Though EMH arguably dominates the lens of financial market theory, behavioural
finance has been challenging this role. Behavioural economics pioneered by Kahneman
(2011) has taken a financial slant and provides a useful framework from which to
evaluate some trading anomalies by challenging the role of standard utility based
approaches. Papers such as Frankfurter and McGoun (2002) argue supporting these
ideas while Fama (1998) and associates argue against. An overview of the various
arguments can be found in Thaler (2005).

The difficulty with such research is that while providing useful motivations for anomaly
exploration, behavioural finance theories are hard to validate without deep financial
empirical data. It is hard to know the reasons for market participants behaviour without
having specifically detailed information about their trading, and this is generally not
available. Nonetheless concepts such as anchoring and herding from this literature
provide useful motivations for designing research methods for short term momentum
effects. While many traders may not know the relevant theory they purportedly make
good use of behavioural concepts to make profits as seen in Brant (2011), and so these
theories provide an attractive framework to discuss short term momentum trading.

Again Lo (2017) provides a comprehensive context for behavioural vs EMH arguments,
motivating a fractionally efficient market for statistically testing models. Behaviourally
it makes sense to consider competing survival based innovation to compare Triangle
models with so called Naive models constructed as an alternative test case which does
not require markets to be efficient (see Section3.3 for Naive model construction details).

2.1.3 Returns

There are some stylised facts for financial returns that are relevant as background, which
are explained in detail by Taylor (2011) and are relevant to this study. These stylised
facts are (paraphrased from Taylor): the distribution of equity returns are approximately
symmetric but have high kurtosis relative to the normal distribution, indicating fat tails;
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the autocorrelations of returns are all close to zero; and that the autocorrelations of both
absolute returns and squared returns are often positive for many lags (volatility
clustering). Though these are often referenced with regard to daily stock returns, a
similar rationale applies to currency markets.

For this particular study the symmetry of returns and volatility clustering are of interest,
in that our simulated returns are not symmetric and there is some anecdotal possibility
of predictable volatility. However in reviewing these stylised facts there seems a drastic
reliance on periodic return distributions, where from experience and reviewing trading
books it appears that in the discretionary trading industry few use such methods.
Periodic returns refer to single period returns (often daily returns) where each period
has return

ri =
pi − pi−1

pi−1
, (2.1)

where pi is the final price at time i. Since it is commonly assumed prices are log normally
distributed then ln(1 + ri) is normally distributed since

1 + ri =
pi
pi−1

= e
ln(

pi
pi−1

)
. (2.2)

Comparatively, returns can be represented in continuous time as dt→ 0 where

St+dt − St
St

=
dSt
St

= µdt+ σdBt. (2.3)

Periodic returns are computed and analysed in terms of their distribution, often
modelled log normally, to gain insight into the nature of security markets. This is
usually moved into continuous time and Itô processes are used to represent the
structure of price changes as seen in (2.3) for Geometric Brownian motion. These forms
of return represent mathematical conveniences, providing an assortment of well
understood tools: see Duffie (2010) for a deeper assessment of these. This is the standard
approach but there are various issues with this, as seen for example in Hudson and
Gregoriou (2015). While the majority of these points are obvious to state, the main one is
that actual returns do not consist of conceptualising price in these terms and so from a
very raw perspective this paradigm may not be as useful as it initially appears.

In contrast, the trading industry back-tests simulating returns and measures actual
returns based on particular entry and exit points to form return distributions which
represent real gains and losses. In academic finance there seems an overwhelmingly
strong herd perspective based on periodic returns that I would suggest clearly does not
represent actual returns well as used in industry, and which may blind researchers to be
over reliant on mathematics that is too abstracted from reality. This matter is
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complicated by issues of leveraged trading where short term momentum traders borrow
to make leveraged bets for short holding periods, and this does not fit well within either
the periodic return or the longer term investor holding period return as represented by

rh =
income + ph+s − ps

ps
, (2.4)

where ps is the value at the start of the holding period and income +ph+s is received the
end of holding period value.

To avoid these issues and to more appropriately tailor my methods to leveraged short
term momentum trading, I explore the use of stochastic processes to model raw price
movements to fixed price levels, using very large sample sizes to make short horizon
based conclusions, exploring the testing for abnormal returns in some depth without
using periodic returns. Also I consider how to modify the holding period return to use
standardised short term risk adjusted returns using R based modification as seen in
Tharp (2008). This avoids the ‘bad model’ effect issues and allows simplified testing as
longer term factors will have less effect, and so the incremental process of model
selection is considerably less complex. The caveat is a potential lack of the ability to
measure long term effects of Triangles; but momentum traders consider only short
horizons and so this is of less interest. For a wide ranging discussion on the use of
random walk and stochastic processes in the testing of abnormal returns see Malkiel
(2003).

For reference and to clarify the use of alternative measures, a summary of returns
terminology used in this study is seen in Table A.2.

2.2 Security Trading

Trading the secondary security markets is generally considered a short term affair
consisting of a holding period intra-day or perhaps of a few days, whereas investing is
generally considered a long term buy and hold scenario where usually analysis of
fundamentals is given considerable attention or alternatively index tracking is done.
Trading generalisations for this section can be found in books by Chan (2013, 2009, 2016)
and Carver (2015) who actively trade institutionally and provide transparent insights
into their methods; while these are relatively well known, Section 2.2.2 contains more
specific Triangle information and references. Using these books as context, short term
trading generally falls under two types: mean reversion trading and momentum
trading. Mean reversion trading is generally where pairs or more commonly baskets of
securities are held, some long and some short, with the expectation of reversion to a
mean. Trading is further generalised by traders either being quantitative (usually
automated) or discretionary. The focus of this study is on momentum based
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discretionary traders, in particular focusing on level based Triangle trading.

Momentum trading uses the idea that certain market effects cause prices to continue in a
predictable direction for a period of time or to a fixed level. Momentum trading broadly
falls under the following types as characterised by Chan (2013):

• the persistence of futures roll return,
• slow diffusion of new information,
• forced security transactions of funds causing price pressure effects.
• high frequency trading.
• support and resistance.

Support and resistance is the category of momentum trading relevant to this research,
which is where common local extrema are deemed significant to future price momentum.
In this context momentum trading uses the notion of breakouts, where after the price
moves beyond some preassigned level, there is a rapid change in price for a period of
time or to another price level. This is part of the general category under which pattern
based technical analysis falls.

Resistance refers to a level of price at which prices have reached a set of extremum from
below, where sellers or buyers are willing to trade, potentially affecting the price. Support
is defined as a set of price extrema from above where similarly it is expected there is a
change in trading activity. Though there are various arguments as to which why and
which way price will move that often contradict, the idea is that momentum traders who
understand these effects are able to predict and profit in either direction. A price pushing
through the resistance or support is called a ‘break out’. Brant (2011) has published a
diary of his professional trading which shows how pattern based support and resistance
trading is done in practice using real audited trades to profit.

There is some evidence to suggest that returns generated by support and resistance have
valuable information; for example (Raj and Thurston, 1996) gives a simple example of
profitable trading range break out strategies being successful on the Hong Kong futures
markets. A typical example of this method is visually demonstrated in Figure 2.1 where
resistance forms a temporary barrier which once broken though seems to show sharp
momentum to a higher price at the right edge of the orange line. Price momentum in
this case refers to a large price move within a short amount of time. Statistical evidence
as to how effective these are, however, seems arguable: Osler (2000) shows that
significance of momentum from such levels is at best sporadic and so may be spurious.
However support and resistance based methods are of interest because discretionary
traders state they use such price levels to trade profitably, and so both literature and
trading experience prompts further investigation which I detail in Section 2.2.2.

In the next few subsections I summarise various attributes of trading system testing and
techniques which are useful best practices for researching trading strategies. These are
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Figure 2.1: Resistance Breakout Example

often omitted from some trading based academic research, where their effects could lead
to spurious conclusions. Lo and MacKinlay (1999) and Malkiel (2003) show that a large
proportion of the literature to do with market anomalies are of questionable value,
arguably due to inadequate research methods.

2.2.1 Back-testing Issues

In this thesis I simulate traders taking positions, which requires back-testing break out
trading considerations. Back-testing involves running the trading strategy forward on
historical data to capture and evaluate returns. For the purposes of this study this
involves the following equity based back-testing considerations:

• look ahead bias,
• survivorship bias,
• data-snooping bias,
• transaction costs,
• short sale constraints.

2.2.1.1 Look Ahead Bias

A bias created by testing with forward knowledge which would not have been available
during the period when forecasting; encountered where a researcher back-tests a trading
strategy using future information to make predictions. This is avoided by only using data
before the currently observed period in time and placing trades based on this prediction
in the current time period or future time periods.
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2.2.1.2 Survivorship Bias

Survivorship bias is where data is used from surviving securities to predict past
performance (type of look ahead bias). Take the case of the S&P500 for example: if a
researcher tested all current S&P500 constituents for past returns, this testing inherently
includes a knowledge that the stocks survived up to this point and which become large
enough to be selected as part of the index. The test does not for example include
bankrupt companies and so will report superior returns to a survivorship bias free
dataset, and hence tests done will not be representative. This is generally avoided by
using a survivorship bias free dataset such that past stocks are not chosen from later
selected subsets of stocks.

2.2.1.3 Data-Snooping Bias

This is where inference or forecasting is done after having already viewed the data and
hence having pre-existing insight which can be used to gain more significant results
(further explored under research methods 2.3). Typically this is done where in-sample
data is used iteratively with multiple models, which misleadingly can ‘improve’ model
results . This is often done by a researcher who has previously modelled using the same
data. Carver (2015) makes a detailed analysis of this, suggesting that data-snooping is
virtually unavoidable but can be reduced significantly by only testing against real data
as a last resort. I discuss avoidance of this problem in Chapter 3.

2.2.1.4 Transaction Costs

Trading transaction costs include the sum of commissions, transaction spread and
slippage for each full trade consisting of the buy and sell. If the trade is taken using
margin lending and held past the overnight cut-off time the cost of carry will also be
included. Transaction spread is the difference between the Bid and Ask price, the
calculation of which depends on the order types used (typically market, limit or stop
orders with either a buy or sell). In general it is assumed that at the very least the
difference between the Ask and Bid is effectively paid as part of the round trip trade
costs. Slippage is the difference between the price the order is sent at compared with the
price paid on the exchange (or broker internal cross match); again this depends on the
order type, but may be significant if liquidity is absent.

2.2.1.5 Short Sale constraints

Many securities have time periods which restrict short sales or have difficulties with
short selling due to a lack of liquidity or broker constraints. During financial crises
governments may outright ban short selling and often rules are applied such as
requiring an up-tick rule such as the one applied by the SEC from 1938 to 2007. Short
selling also assumes the broker can locate a quantity of stocks that other customers
have, to enable the short sell, and this may not be the case. Testing short selling needs to
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be considered on a case by case basis, and this is beyond the scope of this thesis.

2.2.2 Technical Pattern Trading

Previous research covering short term trading has paid some attention to technical
analysis; but the focus has mainly been on simple quantitative measures such as moving
averages, with little attention paid to support and resistance based strategies which are
often referred to as pattern based technical trading. In this context pattern trading
consists of price time charts forming certain geometric patterns which are said to
forecast future price changes. The general area I had wanted to research consists of
market price compression, where price forms periods of low volatility converging
toward a focal price and traders are able to take advantage of predicting future
volatility; typically this is not seen as technical analysis, but this is the only area of
research relevant to the subject. To conform with other research I use the Triangle based
idea and naming conventions. This results in some loss of generality but allows use of
the limited research available. I avoid using many standard technical analyst ideas and
language as they seem unnecessarily esoteric: see Murphy and Murphy (1999) for an
overview of pattern based technical analysis methods. Generally under technical
analysis, security financial information and news are considered embedded in the price,
and so to simplify this study I will also use this convention and only consider price in
order to constrain the scope of the research.

From an overall review of technical analyst literature, arguably the academic consensus
is that quantitative technical analysis does not provide any information towards
providing abnormal returns (Malkiel, 2003). While there is limited literature available
on pattern based trading, which gives arguably interesting results, overall work in these
fields appears inconclusive. Lo et al. (2000) is arguably one of the first papers to widely
explore pattern based technical analysis systematically using algorithms. While there
had been sporadic previous literature to validate patterns, particularly ‘head and
shoulders’ in Osler et al. (1995), Lo raised the debate to a higher level. Later research
however disputes Lo’s findings. After this spate of work, further research appears to
have generally been halted.

Lo makes the point that the language used by technical analysts is often unrecognisable
to quantitative researchers and yet the underlying points are often quite similar. He and
his coworkers argue that by converting the language of technical analysts into a common
format and using algorithms, these visual patterns can be well tested. This language for
Triangles is shown in (2.5) for a Triangle Top which is further elaborated for this study in
Section 1.1.
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TTOP =


E1 is a maximum

E1 > E3 > E5

E2 < E4

TBOT =


E1 is a minimum

E1 < E3 < E5

E2 > E4.

(2.5)

In Lo’s study patterns are detected within daily US equity price CRSP data using a
kernel smoothing technique to help detect the pattern extrema. The statistical Tests used
are Kolmogonov-Smirnov and a particular form of Chi-squared test using return
quantiles; however, even these tests within the same paper often disagree as to which
patterns display significant abnormal returns and which do not. Though the findings
are mixed the use of standardised language and simple rules clarifies the approach; and
the kernel smoothing methodology is sensible to detect pattern extrema. Both of these
ideas I reuse after significant modification of the methodology in order to correct issues
and produce more transparent results.

Several papers follow from Lo et al. (2000), usually using the same language constructs
and similar style of rules to understand the patterns, but using other detection methods
and statistical testing techniques. These include the use of fuzzy logic, neural networks,
genetic algorithms and various hybrid approaches.

Ahlawat (2015) uses an interesting probabilistic neural network idea applying
techniques used for developing character recognition software, where these algorithms
are trained to recognise chart patterns. I considered using similar techniques but the
problem with training neural networks is that the pattern selection reasoning is opaque -
we do not know how or why the pattern was selected and additionally cannot fine tune
it. While Ahlawat (2015) does not find significant abnormal returns, the method used to
statistically test returns is not clear, so no conclusion can be drawn.

Escobar et al. (2013) uses fuzzy logic and decision trees to identify patterns, finding
significant abnormal pattern returns for some cases where this depends on specific rules
applied. In the paper a CAR (Cumulative Abnormal Return) based F-test and
Kruskal-Wallis test are used, which do appear to have merit in determining the period of
significant abnormal returns. Yu et al. (2011) uses a series of simple filter rules based on
relative percentage price movements which, while easily understood, are inconclusive
as to which filtering rules produce the correct set of patterns. This produces a large set
of test results for various rules, some of which show patterns having significantly
abnormal returns, and some of which do not. From these two papers it seems clear that
an algorithmic approach is easily applicable to detection of patterns. It seems odd
however, that the authors used fairly common algorithmic approaches rather than
writing bespoke algorithms that can be more directly tailored to exact detection. In
response I wrote a bespoke detection algorithm in combination with using the kernel
smoothing approach to identify price extremum as shown in the method chapter.
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Unfortunately from this pattern based research it is not clear from the statistical testing
procedures displayed in these papers what the best approach is to take; and often the
testing logic is not clear and so no conclusions can be reliably drawn. None of the papers
take account of transaction costs and short sale restrictions. Often the papers disagree as
to which forms of the patterns have significant abnormal returns and which do not. All
studies take a mechanical approach to identifying verbatim chartist patterns and attempt
to test standard daily returns with no trade execution considerations of how real traders
would place positions. The methodology and p-value testing based procedures used are
not convincing and yet a brief review of other finance papers shows that the methods
used seem reasonably standard.

It appears little or even no effort may have been put into digging more deeply into what
traders are identifying and how they are seeking to profit. From my experience working
on a trading desk I question whether the authors have an understanding of how the
strategies are used for trading and how these are to be executed for profit. This seems
surprising since this information is widely available, for example see Brant (2011) which
shows the reasoning used with a well audited track record.

I would suggest that recording daily returns from end of day close to close, after the
pattern event occurs, does not represent actual returns well; rather it gives an indication
of how price develops after the pattern ignoring real trade position execution
considerations, and this is unrealistic. An actual trading return consists of an entry
price, with a risk controlled approach and an exit price with round trip transaction costs
subtracted. These are considerations before any trade is placed and are well known and
often reasonably standard. I consider Lo et al. (2000) to be of substantial quality and
other research to have such a numerous array of problems that it is better to focus on
Lo’s work which provides reasonably well grounded research methods and several
usable creative ideas. More detail is given in the Method Chapter 3.

2.3 Research Methods

Despite there being some interesting results, the knowledge that can be derived from
much of the literature on pattern trading seems limited, largely because the research
methods are not robust. This is disappointing and prompts a review of research
methods to determine how best to proceed. While such problems of methodology as
exemplified by the reproducibility problem in social sciences are well known and
attempts have been made to combat this, such concerns seem not to have been
addressed in the finance literature to the same extent. The pattern based trading
literature has used statistical testing techniques that would not be acceptable in many
other disciplines.

The sparse finance research available in this area includes work by Harvey et al. (2016)
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which concludes ‘most claimed research findings in financial economics are likely false’
and Bailey et al. (2014) which show how easily over-fitting can misreport results. In
finance and economics I have repeatedly observed PhD students persistently searching
for significant effects in the same data set, then writing papers using ’apparent
significance’ that has clearly involved data mining. The pressure to publish forces
unseen ethical problems of a potentially large but immeasurable size. From the trading
industry which demands profitable results Carver (2015) poignantly points out that
even using apparently perfect methods it is often impossible to not data-snoop by
having prior tacit intuitive knowledge gained from elsewhere. For example based on Lo
et al. (2000) I could easily make simple data-snooped improvements using the same
dataset and report apparently more significant but spurious findings. While it seems
unwise to be overly pessimistic, it is prudent to take precautions and other fields have a
variety of useful best practices to consider.

The breadth of methods used in other fields is well summarised by literature from
psychology, biology, medicine and physics where there are a variety of suggestions
often hinging on alternatives to p values. Schwab et al. (2011) summarises these well
from the wider literature as follows:

1. tailor assessment to research context;
2. report uncertainty associated with effect size;
3. explain and illustrate assessment indicators;
4. compare new data with naive models rather than null hypotheses;
5. to support generalization and reproducibility, frame hypotheses within very simple

models;
6. use robust statistics to make estimates, especially robust regression.

To correct the pattern trading research approach I follow all of these recommendations
tailored specifically to Triangles. In particular I make use of a similar method devised by
Connor and Simberloff (1986) to evaluate non-experimental evidence regarding
Galapagos Island finch evolution where a Naive model is used as a comparison. I make
use of effect size based statistics and recommendations as per Cumming (2012) to
comply with new statistical research guidelines being adopted to combat reproducibility
problems. To avoid an inordinately wide description of these corrections I comment
further in the Method chapter.

2.4 Summary

• The Efficient Markets Hypothesis is generally used in finance as the null hypothesis
for evaluating trading returns, where returns are often modelled using stochastic
processes. In effect the null hypothesis taken from this to test trading methods with
the view that price cannot be predicted; and so conditioning on trading events will
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produce no abnormal returns.
• There are a variety of stylised facts for returns, and there is some contention about

common EMH theoretical return arguments based around Behavioural Finance.
The Adaptive Markets approach seems sensible as a means to justify a fractional
market inefficiency.
• Overall the use of models assuming efficient markets and periodic returns is

overly prescriptive and some thought needs to be given to create both more
realistic returns and a meaningful comparative model, which motivates the use of
naive models.
• Pattern based trading literature shows some significant abnormal returns,

particularly by Lo et al. (2000); however later literature disputes this. A core
problem with this trading literature is that the research methods used are not
particularly robust.
• For pattern trading it seems better to consider trading from a traders point of view,

applying best practices from the trading industry and stronger research techniques
designed to correct the issues found in pattern based trading literature.



Chapter 3

Method

This chapter describes the method of results capture based on price level Triangle
trading. I focus on interpreting Triangle trades as real short term momentum traders do,
where I consider taking positions to capture profit based on short term leverage. To this
end, the Triangle event is defined and arguments are made as to how returns are
captured using price levels and risk management. Then a trading model called a Naive
trade is defined with which to compare the value of Triangle trade timing based returns.
Overall this directs the research results towards effect size based statistics, such that
differences in returns can be evaluated more clearly. This is done to concur with more
improved research best practices. Once events are defined, algorithms are described to
capture Triangle and Naive model trade events. To clarify the information value of
Triangles results, these are captured in terms of raw price change, and trade holding
period. The idea is to then capture a measure of momentum that is closely aligned to a
short term trader’s perspective, such that realistic measurements can be statistically
modelled. Finally, at a conceptual level I introduce the modelling approaches, which I
detail in later chapters.

The finance literature often uses standardised periodic returns to evaluate market
efficiency, often without considering trade entry or exit timing; and while this is not
always the case, this has certainly been true with the pattern trading literature reviewed
in this study. In contrast, and in the knowledge of how traders operate in practice, I take
into account how real traders take positions in the market, and use raw price levels to
evaluate returns. Their methods are market timing tools based on price levels, which are
ideally used to take short term profits. Brant (2011) shows a detailed and audited
account in a diary format of real trades taken using these ideas which I use as a
reference for pattern technical trading. While there are numerous other references, the
advantage of using Brant’s ideas are that these are fairly standard, he has a long well
audited trading record of consistent abnormal profits, and that he describes his trading
methodology is considerable detail.

20
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Drawing on this knowledge I construct an informed framework to interpret Triangle
events; and construct a return interpretation based on price levels and first passage
times. In this context, the goal of the interpretation is to identify the short term
momentum effect to evaluate the possibility of abnormal returns. In doing so, a set of
returns in terms of changes in price to fixed levels and first passage times are captured
to uncover the effect size.

Triangle capture is done using risk/reward based position sizing with algorithms
written to capture Triangle events and return data by simulating level based trading.
While machine learning was an attractive means to this end, given some of the difficulty
with opaque methods this was avoided, such that the rules of data capture are
transparent. It was also more desirable to capture trades exactly using a defined
mathematical formula, but this proved elusive.

3.1 Triangle Trades

The Triangle definitions in this section are based on price levels, where the Triangle is
defined in terms of relative extrema, and leverage is used to capture short term
momentum. Returns are calibrated to the height of the Triangle, such that trades are
designed to have comparable returns. Focusing solely on Triangles facilitates specific
well developed definitions and evaluation, which would be more difficult if more
general trading methods and patterns were allowed.

Two main techniques used to trade Triangles are level based and trend continuation; the
latter is similar to a buy and hold strategy. While there are a plethora of ideas as to how
to trade such patterns, the level based method is particularly common; also this method
is quite directly measurable and hence more feasible to capture than other more
subjective methods. Adding trend interpretation and variable holding period is
additional work which is more ambitious and better left till later research. Level based
execution requires a specific set of opinionated choices about the price and time at
which trades are executed, and these are relatively easily constructed. ‘Opinionated’ in
this context refers to industry software engineering based approaches to creating a
repeatable style of product development: see Bedell (2006) for a description.

My definition of a Triangle is specific; while various definitions could be used I have
restricted Triangles in this thesis to be of a smooth type which appears in the shape of a
dampened converging wave, where I take into account exactly four relative extrema, as
previously shown in 1.1 and 1.3. This strategy selects a very clear type which can show
the effect size easily by defining entry and exit points based on levels; and also being
simple enough such that a large sample size can be obtained. While other types with
more extrema and other features could have been captured, focusing on a very simple
case makes detection and evaluation more transparent.
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Hence in this study Triangles consist of four types defined by whether they are a top
or bottom as seen in prior work done by Lo, and whether they break up or down as
defined by how traders take positions based on support and resistance levels. These
are individually described in the following subsections and shown in Figures 3.1 to 3.4
as straight lines from each subsequent significant point. The variables and geometry
defined from these are used later to model short term momentum. Section 2.1.3 provides
insight into how these Triangles are traded and how this is formulated in an algorithm.

The four types of Triangles are described in terms of time and price based points, which
is illustrated in Figures 3.1 to 3.4:

• A: point above or below the Triangle that price arrives from,
• E1 to E4: Extrema representing the Triangle shape,
• B: point at which price breaks out of the Triangle shape and simulated traders enter

their position,
• C: point at which simulated traders close their position (either C+ at +h for a win

or C− at −h for a loss).

In this way the Triangle measurements are defined in two parts, consisting of segments
A to B and B to C. Segment AB defines the triangular shape and segment BC captures
the return. Within AB each Triangle is defined by four extrema E1 to E4, with the height
defined by h = |E1−E2|

2 . Measurements of h and volatility σ are considered defined at
point B and then fixed until point C. The trading results are then defined from the time
taken for the trade to move from point B to C by one unit h in time τ . To summarise,
results for each Triangle consist of:

• h representing the height of the Triangle as h = |E1−E2|
2 ,

• σ as defined by volatility for that security,
• τ for time taken for the trading position to open and close over BC, resulting in

either a win at time τ+ or a loss to time τ−

• r for the Bet Return as further defined in Section 2.1.3 as a proportion of h defined as
r = C−B

h for long trades and r = B−C
h for short trades (generally r = 1 for wins and

r = −1 for losses, but in certain cases the series is cut short so can be r ∈ [1,−1]).

The four types of Triangle are described using a similar pattern based trading language
as seen in Lo et al. (2000) with an initial lock-in arrival point A, and using OHLC prices
to measure extrema E1 to E4. This is followed by the addition of level based trading
execution from B to C defined by change in price h. Triangles are identified by a noun
verb phrase ‘type’ followed by ‘direction’. There are two types, ‘TTop’ for Triangle Top
and ‘TBot’ for Triangle Bottom; and two directions, ‘Up’ for a price move upwards and
‘Down’ for a price move downwards. These are described without price smoothing and
spacing concerns which are later addressed by the algorithm in Section 3.2.4. In the
following definitions the points A,E1, E2, E3, E4, B,C occur sequentially in time to form
the significant defining Triangle points. Over segment BC, green lines are placed on the
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figures to indicate profitable trades ending at C+, red lines to indicate losses at C−. For
TTop E1 is defined to be a maximum extremum over segment AE4; for TBot E1 is
defined to be a minimum over segment AE4.

3.1.1 TTop Up (Triangle Top Break Up)

Price rises from below the Triangle formation, starting at A moving to maximum E1,
forming the Triangle of E1 to E4, and breaks out of the pattern by starting at E4 and
going to level B without going below E4. The trader then buys at the break point B,
intending to sell either where price rises by h to close point C+ for a win or where price
falls by h to close point C− for a loss. This can be seen in Figure 3.1 and (3.1).

A

E1

E2

E3

E4

B

C−

C+

+h

−h

τ+

τ−

Figure 3.1: TTop Up

TTop Up =


∃A < E2 : A < Pt < E1, tA < t < tE1

E1is a maximum
E1 > E3 > E4 > E2

∃B ≥ E3 : E3 < Pt < B, tE4 < t < tB
(3.1)

3.1.2 TTop Down (Triangle Top Break Down)

Price rises from below the Triangle formation, starting at A moving to maximum E1,
forming the Triangle of E1 to E4, and breaks out of the pattern by starting at E4, moving
toward the centre of E4 − E3 and going to level B, without going above E3. The trader
then sells short at the break pointB intending to buy either where price rises by h to close
point C− for a loss, or where price falls by h to close point C+ for a win. This can be seen
in Figure 3.2 and (3.2).
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E1

E2

E3

E4 B

C+

C−

−h

+h

τ−

τ+

Figure 3.2: TTop Down

TTop Down =


∃A < E2 : A < Pt < E1, tA < t < tE1

E1 is a maximum
E1 > E3 > E4 > E2

∃B ≤ E4 : B < Pt < E3, tE4 < t < tB
(3.2)

3.1.3 TBot Up (Triangle Bottom Break Up)

Price falls from above the Triangle formation, starting at A moving to minimum E1,
forming the Triangle of E1to E4 and then breaks out of the Triangle pattern by starting at
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E4, moving down toward the centre of E4 − E3 and going up to level B, without going
below E3. The trader then buys at the break point B intending to sell either where price
rises by h to close point C+ for a win or where price falls h to close point C− for a loss.
This can be seen in Figure 3.3 and (3.3).

A

E1

E2

E3

E4 B

C−

C+

+h

−h

τ+

τ−

Figure 3.3: TBot Up

TBot Up =


∃A > E2 : A > Pt > E1, tA < t < tE1

E1 is a minimum
E1 < E3 < E4 < E2

∃B ≥ E4 : B < Pt < E3, tE4 < t < tB
(3.3)

3.1.4 TBot Down (Triangle Bottom Break Down)

Price falls from above the Triangle formation, starting at A moving to minimum E1,
forming the Triangle of E1 to E4 and then breaks out of the Triangle pattern by starting
at E4, and going down to level B, without going above E4. The trader then sells at the
break point B intending to buy either where price rises by h to close point C− for a loss
or where price falls h to close point C+ for a win. This can be seen in Figure 3.4 and (3.4).

A

E1
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Figure 3.4: TBot Down

TBot Down =


∃A > E2 : A > Pt > E1, tA < t < tE1

E1 is a minimum
E1 < E3 < E4 < E2

∃B ≤ E3 : B < Pt < E4, tE4 < t < tB
(3.4)

3.1.5 Returns

Triangle returns are evaluated in terms of entry and exit points based on changes to fixed
price levels. The trader’s perspective is that once price breaks a significant level (in this
case one of the last two extrema E3 or E4), price is expected to move quickly outside the
Triangle range. Then price at some point is believed to return to a more unpredictable
state, at which point or before this the trader exits the position. While trade entries are
usually taken where the price breaks through a significant price level, in this case at point
B, the exit policy is often less clear. So to standardise, I enter the trade at the first broken
extremum and exit at half the total height of the Triangle, measured as h for a win or loss.
Beyond the change in price h it seems more likely that the Triangle will have less effect.
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This standard ideally captures any informational value of the Triangle, by capturing at
the very least the start of a tradable price move after the relevant Triangle extremum level
has been broken. This exit level at change in price h is not exactly tailored to each Triangle
as is the entry price, but this enables the creation of a standard measurement based on
leverage of trade returns across all Triangles.

Traders seek to enter short term positions using leverage, moving capital between
positions to quickly maximise gains and reduce draw down by spreading risk across
multiple trades. This spread of risk is often done by allocating trade equity using
potential risk/reward measures across multiple positions through time, rather than
managing risk using portfolio balancing as is done with buy and hold strategies. With
Triangles the traders seek to gain advantage through timing of entry and exit points, by
predicting short term momentum over that period. Raw risk is measured as the
maximum amount able to be lost for that trade, and the trade is leveraged through
either debt or excess cash reserves - though I do not model this to retain simplicity.

To model this proportionate risk, R is used as defined in Tharp (2008) to model
risk/reward, which creates a simple framework to standardise position sizing using
leverage. Using this method aR value is assigned to the trade as

R =
expected win amount
expected loss amount

standardR

=
n|Pwin − Pi|
n|Ploss − Pi|

=
|Pwin − Pi|
|Ploss − Pi|

=
|h|
|h|

= 1 normalised to 1 ,
(3.5)

where n is the number of shares and P in price. This is done as a way to measure the
risk/reward and appropriately allocate trade position size. For this study I standardise
R = 1 by making the win and loss values equal to h, where transaction costs are added
after theR calculation. So one unit ofR is then measured in h. This is done so that every
trade is leveraged to produce the same unit of standard risk/reward, such that profit or
loss from each trade is denoted r = ±1.

This produces a leveraged return and expected profit as given by

rl =
pR
τ

=
p

τ

Expected Profit = E(X) = phn = pk,

(3.6)

where p is the probability of winning, rl is level based return and k = hn which is the
amount risked on trade close.

This in a sense nearly inverts the problem from a periodic return defined on an interval
of time and variable price, to a return based on on a standardised level based on h using
R = 1 to produce an expected profit of pk and a variable close time τ . For k = 1 results
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can be formulated as a Bernoulli random variable with expectation

E(X) =
∑
{1,−1}

xf(x) = p− 1(1− p) = 2p− 1 (3.7)

and variance

E(X2) =
∑
{1,−1}

x2f(x) = p− (−1)2(1− p) = 1

V ar(X) = E[(X − E(X))2] = 1− (2p− 1)2 = 4p(1− p).
(3.8)

Figure 3.5: XYZ Equity TBot Down Trade Example

This is best illustrated with a practical example: A trader recognises a TTop Down
Triangle with stock XYZ as seen in Figure 3.1.5 with h = 0.215, which is the expected
change in price. The Trader wishes to risk $10,000 of capital by selling short at point B
where the price of XYZ is 1.35. He does so with an expectation that he has a 60% chance
of success, so on balance thinks the trade is worth [2p − 1]k or
(2 × .6 − 1) × 10000 = $2000. So he must sell 10000×PB

h or 10000×1.35
0.215 = $62790.7 worth of

stock or roughly short 46512 shares, in order to setup the proportionate amount of
defined risk to gain or lose $10,000 on trade close. The price moves to point C+ where
the position is then bought for a win of $10,000 less transaction costs in approximately
11 days. If the trader had lost at point C− (not shown) he would have then lost $10,000.

The Trader will have many such positions and will borrow to support a portfolio of such
trades with a set amount of overall risk as defined cumulatively by R calculations.
Realistically this would involve more complex considerations of transaction costs, trade
correlation and slippage across the trade book and be subject to corporation risk
management rules, not to mention using various values of R 6= 1; however my
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approach provides a useful simplified comparative basis.

Two measurement types concerning these are information content and profitability. The
first, information content, emphasises testing that the distribution of returns, usually
without transaction costs, are significantly different from what would be expected under
the null hypothesis that markets are efficient. The second focuses on the profitability of
a trading strategy. Focusing purely on profitability can result in ignoring the underlying
cause of excess return. Excess return could be due to the behaviour of investors being
willing to accept higher returns at the cost of more risk or volatility, so profitability may
not indicate significant deviation from efficient markets in that returns are risk adjusted.

Lo et al. (2000) uses the informational approach to establish whether pattern based
technical analysis is informative by comparing the returns of stocks conditioned on
patterns with the Unconditional case. Lo finds that there is a difference with some
patterns, in particular finding some Triangle patterns do have a different distribution of
returns, including some Triangular tops; but he does not investigate further. However
because of the lack of effect size based comparison, where return amounts are not
reported clearly, it is not clear what the difference is between EMH based returns and
Triangle returns.

By standardising using R = 1 and simulating real discretionary traders I create a
measurement which can be used to evaluate both the information content in terms of
Wins of r = 1 and Losses of r = −1, and the profitability by subtracting transaction
costs. I refer to E(X) = rb as Bet Return where there is no time component to
differentiate from time based returns. Through leverage this approach simplifies later
analysis of price changes by normalising to a Bernoulli random variable, such that the
amount gained from each trade is consistently measured. Return and variability can
now be measured purely in terms of probability, with the later addition of time. Hence
raw returns are measured in change in h and τ standardised to amounts gained of
r = ±1 with the aim to create a clear and standardised measurement of effect as distinct
from periodic returns, as is traditionally done in finance. Thus simplified, what remains
to be understood is the time τ expected to close the trade.

3.2 Triangle Detection

As in Lo et al. (2000) I use kernel smoothing; however in addition I make use of
algorithmic methods to develop a more accurate Triangle detection method for wider
time windows across significantly larger datasets. This is done by using a simple
map-reduce method, to make use of multi-core computational power, using a forward
rolling window scan. The definitions of Triangles given in Section 1.1 provide the
framework for determining the geometry of points for each Triangle type; these are used
with a recursive search of kernel bandwidths to determine valid extrema spacing and
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smoothness. The end result is a computational method which can scan any large OHLC
time series in a timely manner on a grid network to produce a set of unique Triangles.
Triangles are captured in an object orientated form which can be manipulated for later
analysis and are stored in a hybrid hashmap/list.

The core starting difference between prior literature and this approach is that the
Triangle pattern is detected based on trading events defined in terms of price levels
rather than periodic returns. I have used an exact walk back algorithm to detect
alternating price extrema which are compressing toward a focal point. The approach
consists of evaluating the time series sequentially backward from the current time for
geometric triangular shapes, which may not be adequately spaced or smooth; these
shapes are then validated using the recursive kernel smoothing approach. This is done
via a binary search over kernel bandwidths to find the most appropriately smoothed
extrema. If a well formed Triangle is found the algorithm walks forward to determine
the trade holding time and profit/loss at the appropriate stopping time. The walk
forward is done sequentially from point B to C to determine each of the pattern results.
I note that point B is the crossing time and level as described, and that the walk
backward requires a separation of one period from point B to avoid data snooping
within that period. I describe the process in pseudo code as a series of function calls
nested within detectTriangle() in algorithm 3.1.

The data series used are large; for US Equities for instance data consists of more than
27000 time series of OHLC prices. To deal with this the processing has been distributed
across a grid computing environment using a simple map-reduce method. Each time
series or overlapping section of long time series are submitted (mapped) as jobs to the
grid, and Triangles are detected and saved using identification by time series detection
time, type and security. Once all processing has been done for all time series, duplicates
are removed, overlapping Triangles of the same type are removed, and various
calculations are carried out. Each grid job runs a separate detection algorithm instance
run from bash using R based on Linux.

3.2.1 Improvements on Literature

Lo et al. (2000) uses kernel smoothing over a fixed period of 38 days for US stocks to detect
extrema, where extrema must occur within the first 35 day period of this window. This 38
day window scan is rolled forward through the time series to detect patterns, and where
patterns are found, a one day gross return is calculated after the pattern (using a day of
price lag to separate detection from returns to avoid single period data snooping). To
detect these patterns Lo uses his pattern trading language to define extrema geometry as
seen in (3.9) for Triangles. Spacing and smoothness are detected using kernel smoothing
with a fixed bandwidth of 0.3l where l minimises CV (l) given by
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CV (l) =
1

T

T∑
t=1

(Pt − m̂l,t)
2

m̂l,t ≡
1

T

T∑
τ 6=t

ωτ,lTτ .

(3.9)

This is a less than fully successful attempt to produce a kernel bandwidth appropriate to
each Triangle. The results of this algorithm are validated by Technical Analyst
specialists on that same US equity data. It appears that a cross-validation based
bandwidth is chosen by looking ahead using human analysts to validate the pattern
shapes until the best bandwidth is chosen. This has likely resulted in the use of
in-sample data to check results which forms a not so obvious look ahead bias. Also
using a semi-fixed bandwidth approach does not seem optimal as the smoothing will
work better in some instances and much worse in others, a point Lo admits. It would
seem better to select bandwidth on a case by case basis, which is probably the idea
behind using the cross validation method. When I tried this on GBPUSD data the results
were very rough, since the detected Triangles often were not well formed, though this
conclusion is rather subjective.

Also Lo does not consider overlapping detection of Triangles, which occurs frequently,
such that Triangles often share the same set of extrema, or have similar extrema. This
occurs where rolling the window forwards often detects the same or similar Triangles,
and neglecting this seems a surprising oversight in the literature, since this becomes
immediately obvious when implementing these techniques. Lo’s method was applied
using closing prices, but typically OHLC prices are almost always used with pattern
based trading, where the high and low prices are generally included to help define the
significant levels which are traded against. Once patterns have been found, data is
normalised using return drift and volatility from the entire data-series, which is direct
data snooping. Overall, this is a good first exploratory effort, but can be greatly
improved.

For data Lo uses the Centre for Research in Securities Prices (CRSP) NYSE/AMEX and
NASDAQ stocks from 1962 to 1996. The total time period is divided into seven 5 year
blocks and a quintile by market capitalisation to select 50 stocks in each sub-period, all
of which must have 75% of their prices available within that 5 year sub period. This
involves look ahead bias and survivorship bias, since it dictates a knowledge of prices
ahead of time and its subdivision into quintiles.

To fix the issues with Lo’s approach I do the following for US Equities:

1. use the entire US equity dataset rather than selecting 50 stocks for each historical
section quintile;

2. selection based on 75% of prices being available within the scan walk back period
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rather than looking ahead in time (see Appendix B for more detail on the
management of data);

3. change the nature of the Triangle by reducing the number of extrema from 5 to 4 in
order to increase the sample size, to maximise the power of statistical testing while
retaining the triangular shape;

4. include an initial ‘lock in’ point A, signifying the Triangle arrival which confirms
that E1 is an extremum within a defined range and signifies the start of the
triangular shape (this more accurately forms a Triangle as a break out strategy);

5. use the break point B and close point C to define timing such that returns more
realistically represent actual returns;

6. use trial GBPUSD data as opposed to the main data of interest, viz. equities, to
develop the approach - to avoid look ahead or data snooping problems;

7. use a wider period of 200 days for walk back to find Triangles;
8. use a widening backward search algorithm on raw price to find alternating extrema

that form the Triangle type as per the definition given in this chapter;
9. on a case by case basis set the kernel bandwidth to best reflect the extrema found

using a binary search such that the smoothness used is relative to the size of the
Triangle;

10. normalise each Triangle individually based on the previous 100 days of volatility
before point B to avoid data snooping;

11. remove all duplicates using hashing based on security symbol, Triangle type and
extrema time to uniquely identify each Triangle;

12. avoid the overlap problem by requiring all Triangles of the same type to not have
any of the same extrema by declaring the first pattern with the same extrema which
breaks, to be the one counted, where others with the same extrema are removed
(filtered iteratively forward in time);

13. use OHLC prices to reflect extreme highs and lows that discretionary traders
normally take into account.

For the trials using ES futures and GBPUSD data I modify this approach by using a 500
minute look back window, with volatility measured over the entire time series, whereas
for US equities I measure volatility separately for every Triangle. This is done since for
exploratory purposes it is less important to be exact. I also trial a range of different
methods using the ES futures and GBPUSD data which help inform the final approach
without compromising the integrity of US equity data usage.

3.2.2 Grid Map-Reduce

An unpublished R package called ‘triag’ was written to handle Triangle detection and
manage data manipulation. This includes producing various graphics and tabular data,
some of which are generated and placed in this thesis. Using the triag package Triangle
scans are run on Victoria University’s Sun Grid Engine which distributes jobs across
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hundreds of client Linux machines within the School of Engineering and School of
Mathematics and Statistics. The algorithm selects high quality Triangular patterns but is
a relatively unoptimised, exhaustive search across a large dataset. To complete this work
the processing time is large but by distributing the load this can be processed within two
weeks (including Naive trade processing).

The search task is split using a map-reduce strategy to distribute jobs on the grid and
later aggregate results. For long single time series (GBPUSD and ES) the time series
is split into 50000 minute blocks and the tail 1000 OHLC prices are concatenated onto
the head of the previous block of prices to produce blocks of 51000 minutes including
the overlap, followed by the odd numbered tail block of prices which does not have
the overlap. These are distributed as jobs to the Sun Grid Engine where the R package
scans for triangles. Once the grid jobs have completed, all Triangles are aggregated and
duplicates are discarded. For the stock time series these are split for large time series but
otherwise are scanned as they are. Overlaps of the same type of Triangle are dealt with
by accepting the Triangle that breaks first and rejecting other overlaps iteratively forward
in time. All four types of Triangle are detected and saved using this method in one scan
pass over the grid. This reduces the processing time taken for scanning to days, where
this would potentially have taken several months.

3.2.3 Rolling Window Scan

For US equities a backward window scan size of w = 200 days is used, considerably
larger than the 35 days Lo uses. Once a pattern is found Lo calculates the forward one day
gross return; however, my method is to walk forward until the±h level is hit or the series
ends, and so the forward window is both often longer and of variable length. I consider
a year to have roughly 250 days, and so 200 days captures a significant proportion of the
year; and the majority of results is ideally caught within the remaining 50 days to roughly
represent a year under consideration. Traders are interested in short term trading and so
the window is limited to 200 days for equities to exclude longer term Triangles of less
interest; in fact most Triangles are probably considerably shorter but it seems useful to
capture a relativity complete set of results without rerunning the data and succumbing
to data snooping.

For US equities, the walk backward algorithm scans 200 days backward to find potential
triangular patterns which are checked for smoothness. When a pattern is found, the
detection point D is marked. From this point the algorithm walks forward to determine
where it breaks at point B, which must be at least 1 day later. The period taken to reach
B from D labelled is b and the walk back window of 200 is labelled w. Over segment
BC the amount won or lost and time taken τ is then determined. So the total window
size consists of time series segments (D − 200)D, DB and BC which results in a total
window size of w+b+∆τ ≥ 201. Triangles are uniquely identified by their type, security
and break time where no extrema overlaps of the same security and Triangle type are
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allowed. The 200 period window scan effectively scans step by step, from the start of
each time series plus 200 to the end of each time series minus 1 (to allow for the break
out).

This is done such that Triangles are captured in time blocks generally of 10 years (except
for the first), where Triangles belong to their time block as determined by their break date
at point B, allowing the forward window to overlap into the next time block. This means
each time block’s results are representative of Triangles that break within that historical
period, where some longer time frame returns overlap.

During the scanning multiple duplicates and overlaps are found. Using hashing to
uniquely identify the each Triangle, only the first duplicate is stored and the others are
discarded. To solve the overlap problem, only the first Triangle of its specific type (as
detailed in 1.1) that breaks first is kept, while all others of the same type with any of the
same extrema are removed. This is done as a simple way to achieve a degree of Triangle
independence and avoid potential issues of double counting.

3.2.4 Detection Algorithm

Algorithm 3.1 detectTriangle(): detection algorithm root method starting point which
finds the attempts to find a Triangle. This is called on each step forward in the scan
through the time series.

1: Input
2: timeseries, D (index within timeseries)
3: Output
4: Triangle or NULL (no Triangle found)
5:
6: triangle← detectTriangleExtrema(timeseries, D) . see algorithm 3.2
7: if triangle not NULL then
8: if isSmooth(triangle) then . see algorithm 3.3
9: walk forward and find break point B

10: walk forward and find trade close point C at ±h or end of timeseries
11: store points B and C in triangle
12: determine triangle type by extremum and point B
13: return triangle
14: else
15: return NULL
16: else
17: return NULL

The detection code revolves around scanning for Triangle objects and determining the
return results, since in this study Triangles are defined not only in terms of their smooth
shape, but also their definition depends on how price breaks outside of the price range
towards ±h. To achieve this I use a mixture of objection orientation and recursive
functional programming, which keeps the code terse and happens to provide a level of
abstraction that can be mapped reasonably well to pseudo code, without using more
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Triangle
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Figure 3.6: Triangle Class Diagram
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Figure 3.7: TBot Smoothness and Alignment Detection Example

esoteric software development terminology. Within this Section, detail is shown at a
high level in English like pseudo code; the real code is considerably more complex,
partly to increase computational speed, but it is not feasible to explain this in great
detail within the thesis and most of this detail is less relevant to a conceptual
understanding. This is a trade-off between high level conceptual understanding and
precision, where the former takes precedence to communicate the ideas. The scanning
algorithm is introduced in the following paragraphs and the relevant details are
explained in pseudo code function based Algorithm listings 3.1 to 3.4. The core
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Algorithm 3.2 detectTriangleExtrema(): detect Triangle extrema (returns potentially non-
smooth Triangle consisting of these), if four of these extrema are not present returns
NULL. This pseudo code essentially picks out four alternating extrema and fits them
into a Triangle object for later validation. If only closing prices are provided in the series,
all (O,H,L,C) tuple values are taken to be the closing price value.

1: Input
2: timeseries, D
3: Output
4: Triangle (potentially non-smooth), or NULL
5:
6: seriesW← timeseries[D-w-1:D-1]
7: highs[1]← lows[1]← last(seriesW) . set first extremum to last seriesW value
8: len← length(seriesW)
9: for all i in (len-5):1 do . searching backward from end of seriesW with min 5 tuples

10: window← seriesW[i:len]
11: max← isMax(window, seriesW[i]) . is maximum in series window
12: min← isMin(window, seriesW[i]) . is minimum in series window
13: if min and max is True then
14: skip to next iteration . avoid initial long bars and tie issue
15: else if max then . if current position is the maximum
16: if last low was before last high then
17: replace last high in highs
18: else
19: add a new last high in highs
20: else . current position is the minimum
21: if last high was before the last low then
22: replace last low in lows
23: else
24: add a new last low in lows
25: if length(highs)≥5 or length(lows)≥5 then . determine if point A reached
26: remove starting dummy high and low
27: construct Triangle from extrema using last extrema to create point A
28: return triangle
29: return NULL . could not find Triangle

detection method starts from function call detectTriangle() in Algorithm 3.1 which calls
the other functions to find a single Triangle pattern, if available, for each scan step. For
the smaller functions used by this pseudo code, these are defined in English as:

• length(): determines the length of a time series, returned as an integer;
• isMax(): whether the value given is the maximum in a time series, returned as a

boolean;
• isMin(): whether the value given is the minimum in a time series, returned as a

boolean;
• last(): gets the last OHLC time series price, returned as a (O,H,L,C) tuple;
• diff(): vector absolute difference between integer values, returned as a vector of
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Algorithm 3.3 isSmooth(): recursively determine if given potentially unsmooth Triangle
has smooth extrema which align with raw extrema value found. Overall validates
whether the extrema smoothly represents a triangular wave form. Sets default value
to NULL for parameters bandwidth and lastBandwidth if none are provided which are
then set to starting Triangle relative values.

1: Input
2: Triangle, bandwidth=NULL, lastBandwidth=NULL
3: Output
4: True or False
5:
6: if bandwidth is NULL then
7: bandwidth← (number of periods between E1 and E4)/4 . starting bandwidth
8: lastBandwidth← bandwidth*2
9: else if |bandwidth-lastBandwidth| <1 then

10: return False . not smooth
11: smoothedTimeSeries← kernel smooth time series closing prices using bandwidth
12: smoothedTriangle← detectExtrema(smoothedTimeSeries)
13: if extremaAlignment(triangle, smoothedTriangle) == 1 then . see algorithm 3.4
14: isSmooth(triangle,bandwidth+(|lastBandwidth-bandwidth|)/2,bandwidth)
15: else if alignment == −1 then
16: isSmooth(Triangle,bandwidth-(|lastBandwidth-bandwidth|)/2,bandwidth)
17: else . alignment is 0, meaning extrema are aligned
18: return True . Found smooth Triangle

Algorithm 3.4 extremaAlignment(): determine whether a Triangle and SmoothedTriangle
have sets of extrema which are aligned. This returns 0 if they are considered aligned, 1 if
the smooth triangle extrema are aligned off to the right, -1 if the smooth triangle extrema
are aligned off to the left. Currently this only uses E1 to align which is rather rough but
sufficient to overall help pick a kernel bandwidth.

1: Input
2: Triangle, SmoothedTriangle
3: Output
4: 0 if extrema aligned,1 if right skewed, -1 if left skewed
5:
6: if SmoothedTriangle == NULL then
7: return -1 . Assume there is too much smoothing
8: ti← Triangle extrema period series indices
9: si← SmoothedTriangle extrema period series indices

10: m←
∑

diff(ti)
2n . half the mean difference between triangle extrema

11: if ∀ pairwise |ti − si| < m then
12: return 0 . extrema are close together such that they are aligned
13: else
14: if si1 − ti1 > 0 then . first extrema difference
15: return 1 . first smoothed extrema index is too large
16: else
17: return -1 . first smoothed extrema index is too small
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integers.

The Triangles found are stored in a TriangleMap object which is a hashmap hashed by
tuple (type,B,E1,E2,E3,E4) to keep a unique store of Triangles. An interface of this class
is also presented as a flat list which can be sliced by (type, B) tuple for results processing.
This is used to manage the generation and processing of various results where views
of the data can be accessed which can be processed using common R functions (several
other more sophisticated data views and methods are used, but are not shown). Class
diagram Figure 3.6 shows the structure of classes used to manipulate this data, showing
only the core functionality relevant to the pseudo code. Triangle classes consist of three
implemented types which extend the Abstract Triangle type and allow the use of various
abstractions:

• RealTriangle which represents final captured Triangles used in data analysis, but
may initially be Triangles which are not well formed due to not being smooth;
• SmoothTriangle used to determine spacing and extrema smoothness which

contains the original RealTriangle and a smoothed time series (SmoothTriangle
objects are discarded once RealTriangle objects are identified correctly);
• NaiveTriangle which represents randomly selected points in the original time

series chosen to represent Triangles without a timing advantage; one RealTriangle
generates 10 NaiveTriangles which refer back to the original RealTriangle from
which they are derived.

The detection code scans a set time series window of size w backwards from point D
searching for a single Triangle; this window scan is iteratively rolled forward one time
series period at a time, repeating the process until the end of the series is reached to find
all Triangles. A single detection step which scans one window is started by calling the
detectTriangle() function on the given time series as described in algorithm 3.1. This
function either finds a Triangle which is then stored in a TriangleMap or returns NULL
to indicate that nothing has been found. The pseudo code explaining this process
separates the SmoothedTriangle and RealTriangle for clarity, though in the real code
there is a composite relationship as shown in Figure 3.6. In the pseudo code
‘SmoothedTriangle’ and ‘RealTriangle’, words starting with capitals, represent classes;
whereas ‘smoothedTriangle’ and ‘realTriangle’ are camel case words representing class
instances. Both types, capital case and camel case, are used to capture object based
concepts in pseudo code.

The window scan algorithm contained within detectTriangle(), uses the function
detectTriangleExtrema() in algorithm 3.2 to scan backward from point D to determine
alternating high and low points until four extrema are found to lock in point A. If an
alternating set of extrema is found, a potentially unsmooth Triangle object is created
from these, from which the algorithm determines if the extrema are smooth enough to
be considered a tradable dampened wave type as illustrated in Figure1.1. If the Triangle
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is considered smooth, the algorithm then determines the break point B (Up or Down
type verbs) and subsequent trade close C. The smoothness evaluation can accommodate
the Triangle size by determining the best kernel bandwidth, which it does by
dynamically adapting the bandwidth size using a recursive binary search.

The binary search on each recursive search iteration smooths the window of time series
closing prices from A to D, then reuses the detectTriangleExtrema() function seen in 3.2 to
determine whether a smooth Triangle can be found in the series window; each time the
search is narrowed, trying to match the smooth and unsmoothed triangles until a match
is found or the kernel bandwidth becomes too small.

The algorithm determines whether the extrema of the unsmooth realTriangle and
smoothed smoothTriangle extrema are aligned such that they represent the same
triangular shape as expressed in algorithm extremaAlignment 3.4 and as demonstrated
pictorially in Figure 3.7. The alignment comparison is done by comparing the extrema
of the RealTriangle and SmoothTriangles types, evaluating whether all of E1, E2, E3 and
E4 extrema pairs are aligned between each type. The measure used for extrema
alignment is whether the extrema of the realTriangle and smoothTriangle are within half
the mean time period difference between realTriangle extrema. Overall this is done
recursively by adjusting the kernel bandwidth until either a smooth Triangle is matched
or it is determined that this cannot be done.

Again, overall this can be seen in Figure 3.7 where the orange line shows the smoothed
closing price time series as compared with the black line of closing prices, showing that
the last four extrema of the smoothed prices approximately match with the four extrema
E1toE4 (the extrema markedE1toE4 on Figure 3.7 are not on the black closing price line,
as these represent the highs or lows from OHLC prices). Overall this is not meant to be
absolutely exact, but rather to roughly filter out various converging extrema, such that
that only the reasonably smooth Triangles remain which would be considered tradable.
Though this works well, the method could be vastly improved; but further improvement
in identifying overlapping Triangles lies beyond the scope of this thesis. The smoothness
determination can be seen in function isSmooth() as seen in algorithm 3.3.

3.3 Naive Trades

Having defined standardised Triangle returns in terms of h and τ under R = 1, a
comparative Naive model is useful from which to understand effect size differences. A
short term trader is attempting to time trade position entry and exit while managing
risk. The trader wishes to optimise these entry and exit times to maximise the use of his
perceived Triangle advantage and minimise losses. A good comparative model then is
one without the timing provided by Triangles, which forms the basis for the Naive
model idea. The principle is to create a comparative model which uses the same
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information but does not provide timing information about where to enter and exit the
security. This is initially conceptualised under the idea of AMH (2.1), where I consider
that there are a variety of competing methodologies under which market participants
trade; through aspects of natural selection certain strategies are able to dominate
(though these may not necessarily provide superior returns, there being a range of
factors determining strategy survival). Considering these ideas, I artificially create the
Naive strategy to compete with the Triangle strategy to measure the competitive
advantage. Assumptions are minimal, in the end not even requiring an assumption of
any type of market efficiency (2.1).

As background, Lo et al. (2000) constructs what he calls an Unconditional model under
which various pattern based trading methods are tested for information value, and the
other related literature generally copies this concept closely. However this
Unconditional model has an embedded assumption that once returns are normalised
using drift and volatility all equities have the same daily return distribution. This
assumes that returns can be normalised such that they are identically distributed, and
this represents returns under the efficient markets hypothesis. This construction is then
used to create various statistical tests. While this is a standard accepted approach, I do
not believe stocks can be normalised to create a comparable distribution, and I further
consider that a null hypothesis of EMH as a starting position is too strong. Also the
normalisation process uses the entire time period of each stock to calculate drift and
volatility to produce standardised returns for each stock, and this again is direct data
snooping.

However the central idea of a distribution of normalised comparative returns is useful,
and I attempt to improve on this idea by eliminating data snooping and removing
assumptions where possible, though this is a difficult problem to solve well. Instead I
create a Naive model using ideas of competitive advantage from AMH in which it is
irrelevant whether the Naive model produces abnormal returns or not. I then drop
AMH entirely, since I only need to compare a single competitive advantage, and a wider
theory of market efficiency is no longer required.

To form the Naive model I assume individual stocks cannot be normalised universally
and compared with an underlying knowledge of how their return is distributed. I assume
such generated returns are not reliably comparable and so irrelevant (they are also not
actual returns: see Table A.2). The objective is instead to measure the effect size difference
that may exist due to trade timing by using a sampling method. However this is done
differently for GBPUSD trial data and US equities. In general a comparison is made of
Triangle h values with the time taken for the same security to reach ±h for random entry
points, for the trial data and equities.

Naive based procedure makes few assumptions about how the security price evolves,
though to account for changing security structure across time the volatility for each
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Algorithm 3.5 GBUSD Trial Naive Trade Generation
Input

All GBPUSD Triangles
Output

NaiveTriangle trades based on (h, σ, r, τ) tuples for each GBPUSD Triangle

σ ← ξ̂√
∆t

. calculate σ using Euler estimation given in (4.26)
for all triangles do

h← |E1−E2

2 |
randomly select point in time series with a later exit at ±h
τ ← τ+ ∧ τ−
r ← 1τ=τ+ − 1τ=τ− . determine return 1 for win, -1 for loss as per exit time
save Naive trade tuple (h, σ, r, τ) in a NaiveTriangle

Triangle is used to normalise returns. For comparison I use the underlying null
hypothesis that the Naive model first passage returns normalised by volatility are
comparable to those for the Triangles for the same security. Overall I also assume that by
combining the set of Naive returns with Triangle returns that their overall distributions
are comparable. This is perhaps rather weak; but I argue it provides a stronger and more
realistic alternative comparison to standard EMH return comparisons by being specific
in using the same stock and the same standardisation. It does require trust in the
abstraction of only looking for a comparative advantage without a strong overarching
market theory. But the alternative of comparing with a logically unprovable theoretical
model, though well researched and an interesting theory, is not a better solution. I make
no assumptions as to whether Naive trades produce abnormal returns or not: the point
is irrelevant, only the differences being important for this study.

For the trial using GBPUSD data, for each Triangle the following is done: a measurement
of h is taken from the Triangle and the direction of BUY or SELL is recorded. Then a
random entry point is selected from the time series, at which point the same BUY or
SELL is made with appropriate leverage such thatR = 1 using k = 1 for the Naive trade
to standardise the return amount to±1. The time series is then walked forward from this
point simulating a trade until either the +h price level is hit for a Win or the −h price
level is hit for a Loss. The time taken τ for the first passage, h and prior volatility at the
entry point are recorded for the Naive trade similarly to Triangle trades. This is done 10
times for all Triangles, where each iteration is described by algorithm 3.5.

For US Equities the process is adjusted for multiple time series. A similar process is
applied but within each stock time series individually. However with stocks the time
series is often shorter, and where the ±h price level change is not met a fraction of r is
recorded. Also volatility is calculated as in (3.10) for the previous 100 days as for
Triangles. This process is detailed in algorithm 3.6 which is done 10 times for each
Triangle.
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σ =

√√√√ 1

n− 1

n∑
i=1

(ri − r̄) where ri = ln(
Pi
Pi−1

) and r̄ =
r1 + r2 + ..+ rn

n

n = 100 day lookback period.

(3.10)

Algorithm 3.6 US Equity Naive Trade Generation
1: Input
2: US Equities Triangles in time section
3: Output
4: Native trade (h, σ, r, τ) tuples for each US Equity Triangle in time section
5:
6: for all triangles do
7: randomly select point in time series

8: σ ←
√

1
n−1

∑n
i=1(ri − r̄) . as defined in (3.10)

9: h← |E1−E2|
2

10: τ ← τ+ ∧ τ− or last period if time series ends
11: r ← 1τ=τ+ − 1τ=τ− or ∆Pτ

h if time series ends early . 1, -1 or proportion
12: save Naive trade tuple (h, σ, r, τ) in a NaiveTriangle

3.4 Results Modelling

Using these methods results are captured for ES (E-mini futures Appendix D), GBPUSD
(spot currency Appendix C) and US equities (Appendix B). This generates Triangle and
Naive results for each type of security which can then be analysed for differences to
evaluate potential competitive timing advantages. Specially these include (h, σ),
considered determined prior to point B before the trade starts; and (τ, r) which occur
over segment BC during the trade holding period. The aim is that this produces
realistic results under which to evaluate trading. Given the evaluation as price level
based trading, this has required development of modelling methods covered by the
following chapters to explore the nature of the results.

Data snooping and various biases are rife in the trading literature and yet some realistic
data is required for iterative development, which runs the risk of repeating such mistakes.
Often the literature develops models from the data, then uses that same data to validate
the model, which is clearly is not a sound research methodology. It seems more ethical
to carefully think through how data is used and report this, so as to be clear that the
selection of model has not involved data mining.

Carver (2015) discusses this and recommends the use of fake data, set up to contain the
conditions required, then only test against real data when models are fully developed.
To an extent, this avoids various data mining issues. Using this as a cue, I firstly use
Brownian motion data to develop and test the algorithm, then use ES and GBPUSD trial
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time series data to develop realistic models to evaluate these returns. Real datasets are
required to flush out realistic issues with models that may not be uncovered using fake
data, particularly as the ideas are relatively new. The full models are then run on US
Equities which maximises the avoidance of biases to obtain clean results. Additionally
using single time series data for trials is significantly simpler to develop models against,
rather than the thousands of time series that the US Equity data contains.

Using this trial approach, Structural and Intensity based methods are iteratively
developed to evaluate the response of the conditional Triangle strategies compared to
the Naive strategy. The objective of the modelling is to determine better ways to
evaluate returns for this particular case. In the Structural and Intensity based chapters
the trial data is referred to briefly, but a fuller description of trial development is given
in Appendix C. This provides direct examples within the modelling chapters while
avoiding saturation with excessive trial information.

The Structural method uses Brownian motion to estimate conditional changes in price
structure; however, this was not pursued in depth due to difficulty in modelling short
term price changes. The Intensity approach, as used with credit risk models, is a clear
break with the finance literature tradition which uses predominantly continuous time
stochastic processes.

For the Intensity approach, instead of trying to infer a structure of price changes when the
trade breaks, the method interprets the results of changes as non-homogeneous marked
Poisson process arrival times. However, though this modelling approach can be used to
fit the results well, a difficulty is that interpreting results using this model is not clear,
partly as the goodness of fit testing is somewhat unclear.

So a third approach was developed which uses bootstrapping to provide a 10 day
constrained return based confidence interval. This method I call ‘Effect Size Heuristics’
which has the advantage of making virtually no modelling assumptions and providing
a clear intuitive interpretation. No Trial data was used to develop this heuristic method
due to its simplicity.

The following three chapters describe these modelling methods in detail, though only
the Intensity and Effect Size Heuristic methods are applied to the US Equity data. Each
method applies constraints and reasoning in order to measure the evidence for short
term momentum, as opposed to longer term returns which are more exposed to wider
systematic effects.



Chapter 4

Structural Model

The aim of this chapter is to estimate structural parameters so as to consider the nature
of prices after conditioning on Triangles where these are considered to behave as
continuous time stochastic process. The intention is to estimate these parameters based
on the development of price representing Triangle trading events over time series
segments BC as seen in Figure 4.1. This is in contrast to the usual use of such processes
to model the entire time series. If a Triangle event has an effect on future price, then
price conditional on these events will presumably show a different underlying structure
to the Naive case. Ideally a stochastic process can be estimated from the distribution of
first passage times which can be fitted and compared to facilitate this. Using the ideas of
periodic returns extrapolated to continuous time motivates the use of Geometric
Brownian Motion or Brownian Motion as suggested in Section 2.1.3.

To simplify the entry point to this analysis, rather than using the combined first passage
above and below, I start by exploring only the first passage above using Brownian
motion. Towards this, I derive the first passage above stopping time distribution, and
apply this to short term results using maximum likelihood to estimate scale and drift
parameters. The attraction of a structural approach is that it comes with a plethora of
well understood financial methods and established mathematical frameworks to further
understand results. See appendix C for more detailed information on the GBPUSD data
and trial of these methods.

Ideally the Structural approach would have gravitated towards estimating parameters
using first passage distribution times above and below with Geometric Brownian motion
or other more sophisticated models. The general estimation method was however not
particularly successful; within this failure, some exploratory work shows features of the
underlying data, which motivates the use of alternative comparative models.

Consider then price to evolve as an Itô process as given by the stochastic differential
equation

42
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dXt = µ(Xt, t)dt+ σ(Xt, t)dBt (4.1)

where dBt ∼ N (0, dt),Bt being a standard Wiener process. In relation to securities, µ and
σ represent drift and volatility respectively. See Kloeden and Platen (1992) for further
detail of numerical approaches to stochastic differential equations.

With GBPUSD, for a simple starting model we assume over the short term trade holding
period that price structure does not vary with time; and so we assume constant µ and σ,
such that prices evolve according to scaled Brownian Motion with drift as seen in (4.2).
We can then estimate the parameters of drift given by µ and volatility given by σ to define
our process from the trade break B to close C.

dXt = µdt+ σdBt (4.2)

However security prices are more commonly modelled as Geometric Brownian Motion
with drift and scale as seen in (2.3), typically expressed as

dSt = µStdt+ σStdBt. (4.3)

Geometric Brownian Motion is generally a more palatable model for securities because
prices are positive. However use of Brownian Motion over a very short term period is
appropriate since over this period (in the GBPUSD trial 60 minutes) the modelled
Brownian Motion is highly unlikely to go below zero, and so negative prices are not an
issue. Additionally, in the trial for GBPUSD partly due to efficient markets and for
comparison/testing purposes I assume that drift is zero. Bearing in mind this is an
initial exploration of the structural concept, these simplifications are acceptable as a
starting point which allow exploration of the ideas with minimal complexity.

B

C

h = a

Figure 4.1: Brownian Motion First Passage Example

Relating this theory back to Triangles, Brownian Motion can be used to approximate the
security price path over segments of BC, for example the sample path for the security
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may display the price plotted against time as seen in Figure 4.1. It is then possible that
this can be represented as a continuous time random process and parameters can be
estimated to simulate a sample path with similar characteristics that represents the effects
of price conditional on Triangles.

Hence, once the structural model is chosen, in this case Brownian Motion, a model for the
first passage distribution can be derived from the sample of BC segments via Maximum
likelihood to estimate the drift and scale parameters using (r, h, τ) sample values. To
empirically compare results, I employ both a constrained Naive case and a Brownian
Motion Euler based estimation of the full time series.

In the following sections I derive the Brownian Motion first passage above distribution,
estimate the parameters and devise a method to explore the fit visually over a constrained
surface. I then evaluate these results toward the development of alternative methods.

4.1 Brownian Motion First Passage Derivation

Consider the equations derived from a standard normal distribution as

Y = µ+ σZ, Z ∼ N (0, 1), =⇒ Y ∼ N (µ, σ2) (4.4)

for which the Moment Generating Function is MY (θ) = E(eθY ) = eµθ+
1
2
σ2θ2 .

Similarly for Brownian Motion with drift and scale

Xt = µt+ σBt Xt ∼ N (µt, σ2t)

MX(θ) = E(eθXt) = et(µθ+
1
2
σ2θ2).

(4.5)

Following this, consider the Laplace exponent of Brownian Motion with drift µ and
scaling factor σ as ψ(θ) = µθ + σ2

2 θ
2 to form expected value

Ex(eθ(Xt−x)) = etψ(θ) where x is the starting point of Xt

e−tψ(θ)Ex(eθ(Xt−x)) = 1

Ex(e−tψ(θ)eθ(Xt−x)) = 1.

(4.6)

Since (4.6) holds for all t ≥ 0, then by Doob’s optional stopping theorem the following
holds where Xt hits at stopping level above a; such that we can replace Xt by Xτa and
time t with τa as
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Ex(e−ψ(θ)τaeθ(Xτa−x)) = 1 where τa = inf{t > 0 : Xt ≥ a}

Ex(e−ψ(θ)τaeθ(a−x)) = 1 replaceXτawith non-random stopping level a

eθ(a−x)Ex(e−ψ(θ)τa) = 1

Ex(e−ψ(θ)τa) = e−θ(a−x)

(4.7)

noting that a > x since a is the stopping level above.

In order to solve this, define

Φ(λ) = sup(θ : ψ(θ) = λ) such that θ is the largest root

⇒ ψ(Φ(λ)) = λ.
(4.8)

Replace θ with Φ(λ)

Ex(e−ψ(θ))τa) = e−θ(a−x)

Ex(e−ψ(Φ(λ))τa) = e−Φ(λ)(a−x)

Ex(e−λτa) = e−Φ(λ)(a−x)∫ ∞
0

e−λtP(τa ∈ dt) = e−Φ(λ)(a−x),

(4.9)

where P is the probability of crossing at τa within dt.

Using the Laplace exponent find the roots in order to find Φ(λ)

ψ(θ) = µθ +
σ2

2
θ2 = λ

0 = µθ +
σ2

2
θ2 − λ

=⇒ Φ(λ) =
−µ+

√
µ2 + 2λσ2

σ2
.

(4.10)

Then substitute Φ(λ) into (4.9) to form∫ ∞
0

e−λtP(τa ∈ dt) = e−(a−x)(−µ+
√
µ2+2λσ2

σ2
). (4.11)

So that for standard Brownian Motion where µ = 0 and σ = 1 starting at x = 0 we have
by stationarity of sample paths
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∫ ∞
0

e−λtP(τa ∈ dt) = e−a
√

2λ

p(t) = L−1(e−a
√

2λ) where L−1 is the inverse laplace transform

=
1√

2πt3
e

−a2
2t .

(4.12)

This gives the first passage distribution for standard Brownian Motion as seen in Karatzas
and Shreve (1988).

However the distribution given in (4.12) is for standard Brownian Motion, lacking drift
and scale. I now add drift term µ where Xt = µt + Bt and apply a change of measure.
Using the ratio

EP

(
dPv

dP
|Ft
)

= 1, (4.13)

where Ft is the filtration at time t, it is clear that the following satisfies (4.13)

dPv
dP
|Ft = evXt−ψ(v)t

EP

(
dPv
dP
|Ft
)

= EP(evXt−ψ(v)t)

= e−ψ(v)tEP(evXt)

= e−ψ(v)teψ(v)t = 1,

(4.14)

∴ dPv
dP |Ft = evXt−ψ(v)t is a valid change of measure. Hence under the new measure

EPv(e
θXt) = eψv(θ)t where ψv(θ) = 1

2θ
2 is the Laplace exponent of standard Brownian

Motion under the new measure Pv. Indeed under Pv

EPv(e
θXt) = EP

(
eθXt

dPv
dP
|Ft
)

= EP(eθXtevXt−ψ(v)t)

= e−ψ(v)tEP(eXt(θ+v))

= e−ψ(v)teψ(θ+v)t

= e[ψ(θ+v)−ψ(v)]t

(4.15)
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Since EPv(e
θXt) = eψv(θ)t = e[ψ(θ+v)−ψ(v)]t = e

1
2
θ2

=⇒ ψ(θ + v)− ψ(v) =
1

2
θ2

µ(θ + v) +
1

2
(θ + v)2 − (µv +

1

2
v2) =

1

2
θ2

µθ + θv = 0

−µ = v.

(4.16)

Hence the drift component has been accounted for under the new measure where

Xt = µt+Bt under P

Xt = Bt under Pv.
(4.17)

Noting the following

dPv
dP
|Ft = evXt−ψ(v)t,

dP
dPv
|Ft = e−vXt+ψ(v)t (4.18)

EPv(e
−λτa) = EP(e−λτa

dPv
dP
|Ft)

EP(e−λτa) = EPv(e
−λτa dP

dPv
|Ft)

= EPv(EPv
(
e−λτa

dP
dPv
|Fτa

)
) Law of Iterated Expectation

= EPv(e
−λτae−vXτa+ψ(v)τa)

= e−vaEPv(e
−λτa+ψ(v)τa)

= e−vaEPv(e
−pτa) where p = λ− ψ(v).

(4.19)

Following from 4.9 we have

EPv(e
−pτa) = e−Φv(p)a

Φv(λ) = sup(p : ψv(p) = λ) =⇒ ψv(Φv(λ)) = λ

λ = ψ−1
v (p) = Φv(p).

(4.20)
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Find the solution under the new measure as

p = ψv(λ) = ψ(λ+ v)− ψ(v)

p = µ(λ+ v) +
1

2
(λ+ v)2 − µv − 1

2
v2

p = µλ+ µv +
1

2
λ2 +

1

2
v2 + λv − µv − 1

2
v2

p =
1

2
λ2

=⇒ λ =
√

2p =
√

2(λ− ψ(v))

=

√
2(λ+

1

2
µ2) = Φv(p) as seen in (4.20).

(4.21)

This result can be used to solve the expectation under P seen in (4.19) using the inverse
Laplace transform to extract the first passage time distribution as

EP(e−λτa) = e−vaEPv(e
−pTa)

= e−vae−Φv(p)a

p(t) = L−1
λv

(
e−vae

−a
√

2(λ+ 1
2
µ2))

= eµaL−1
λv

(
e
−a

√
2(λ+ 1

2
µ2))

= eµa
(ae−a2

2t
− 1

2
µ2

√
2πt3

)
=
ae

−(a−µt)2
2t

√
2πt3

.

(4.22)

Which is the solution for the Brownian Motion first passage density above with scale µ
and σ = 1 as seen in Borodin and Salminen (2002) .

Consider then the first passage time for Brownian motion with scale σ ∈ R>0 and drift µ
where we effectively divide by σ to normalise then solve for Xtσ,

as previously τa = inf{t > 0 : Xt = µt+Bt ≥ a} where σ = 1

so τ̂a = inf{t > 0 : Xt = µt+ σBt ≥ a} where σ ∈ R>0

=⇒ τ̂a = inf{t > 0 :
Xt

σ
=
µt

σ
+Bt ≥

a

σ
}.

(4.23)

Hence substitute drift µσ and first passage level aσ into the first passage distribution given

by (4.22) where τ̂a
d
= τ , resulting in

p(t) =

a
σexp

(
−( a

σ
−µt
σ
t)2

2t

)
√

2πt3
=
a exp

(
− (a−µt)2

2σ2t

)
σ
√

2πt3
. (4.24)
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Figure 4.2: Typical GBPUSD Brownian Motion First Passage Time h = 12 (pips)

Visually this produces a distribution of first passage times for segment BC as seen in
Figure 4.1, where it can be seen that this is highly skewed to the right. This provides two
potential uses: an intuitive understanding of the distribution of how long trades take
to reach price level h over segment BC, and a way to estimate distribution parameters
using the product of likelihoods.

The derivation of the first passage below is analogous to the first passage above, but is not
shown for brevity. The combined single sided first passage distribution above or below
from point B to C, to change in price a, is then

p(t) =
|a| exp

(
− (a−µt)2

2σ2t

)
σ
√

2πt3
. (4.25)

4.2 Brownian Motion First Passage Estimation

The derivation of the probability density given in equation (4.24) does so for infinite
time. This is not practical as we only want first passage times for a constrained interval
of time after which it is likely that the Triangle no longer has an effect. There are also
practical computational limits of searching very large time series for tens of thousands
of crossing times, as this turns out to be extremely time consuming. Also under this trial
some Triangles never reach the first passage time so some constraint is forced on the
estimation. Instead I constrain the time interval using conditional probability to obtain
events which occur conditionally within time tc. This is clearly not ideal but it is a
starting practical estimation method for initial analysis. This results in a time
constrained truncated distribution with only events where t < tc of
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fc(t) =

|a| exp
(
− (a−µt)2

2σ2t

)
σ
√

2πt3∫ tc

0

|a| exp
(
− (a−µt)2

2σ2t

)
σ
√

2πt3
dt

=
f(t)

F (tc)

where
∫ tc

0
fc(t)dt =

∫ tc
0 f(t)dt

F (tc)
=
F (tc)

F (tc)
= 1.

(4.26)

Assuming independence, the same underlying structural model, and denoting the
likelihood by L and its logarithm by `, the maximum likelihood can be used to estimate
µ and σ by

L(µ, σ|t, h) =

n∏
i=1

fc(ti, hi|µ, σ)

=

n∏
i=1

fc(ti|hi, µ, σ)fc(hi|µ, σ)

`(µ, σ|t, h) =
n∑
i=1

ln [fc(ti|hi, µ, σ)fc(hi|µ, σ)] .

(4.27)

In the expression fc(ti|hi, µ, σ) is the truncated stopping time density for one fixed height
given by (4.26) and fc(hi|µ, σ) is the marginal empirical density of heights where t ≤ tc.
Density f(hi|µ, σ) does not have an exact solution available but can be estimated using a
kernel density over the observed empirical values, where true parameter values of µ and
σ are considered embedded within the marginal distribution given by the kernel.

The likelihood given by (4.27) must then be solved numerically, as opposed to using a
differential extremum approach, by using optimisation to search the space of all possible
values of µ and σ for the value that maximises the log likelihood using the kernel estimate
of f(hi|µ, σ). Standard R code is used to generate this kernel to produce a smooth density
with only one maximum, to prevent optimisation finding a local maximum point. This
is later checked by plotting the manifold and making sure the optimisation of µ by σ

converges the correct maximum.

Table 4.1: GBPUSD Triangle Brownian Motion First Passage Estimates

TTop Up TTop Down TBot Down TBot Up

σ 0.206 0.327 0.211 0.261
µ 0.000 0.000 0.000 0.000

The results of estimation for Triangles and Naive trades are shown in tables 4.1 and 4.2



4.3. SURFACE EXPLORATION 51

Table 4.2: GBPUSD Naive Brownian Motion First Passage Estimates

TTop Up TTop Down TBot Down TBot Up

σ 0.167 0.158 0.178 0.167
µ 0.000 0.000 0.000 0.000

respectively. The estimates for µ are close to zero, which does not appear realistic. This
seems likely due to the nature of equation (4.24), as the negative exponential term may
bias the estimation due to a large number of results occurring with t ≈ 0 such that the
estimation is unrealistically dominated by these values (potential wrong model problem).
Curiously the estimates for σ seem to be reflective of the magnitude of empirical returns
as seen in Appendix C.5. This is intuitively unclear and so it was decided to investigate
the data itself to understand the nature of the empirical results, which is explained below.

4.3 Surface Exploration

To explore the nature of my results, a surface is plotted of various empirical and
theoretical representations of Triangle and Naive results along with a surface of a
Brownian Motion estimation for the entire GBPUSD time series. This helps clarify the
nature of (r, τ) results, but requires some manipulation to create comparative density
magnitudes. Results are shown for TTop Up, and further detail is shown in Appendix C.

4.4 Euler Estimation Baseline

It is useful to establish a baseline of comparison over the entire time series to
approximately check the estimation and to more intuitively understand how closely the
structure assumed over the trading period holds. The estimation uses the entire time
series and it is not realistic that this model would hold over this period; rather this is
used to comparatively gauge how reasonable estimations are from the first passage
based estimation of trading events. This is done to compare the Brownian Motion
estimate over the whole period with the maximum likelihood piece-wise estimate over
trade holding periods. The estimation process can be seen as

Stochastic Equation→ Estimate Regression Coefficients→ Derive Equation Parameters
(4.28)

For Brownian Motion as seen in 4.2 this results in estimation of parameters as
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Xt+s −Xt ∼ N (µs, σ2s), ∀s > 0

where s = ∆t, t = tn for t = {0, 1, 2...}

Xt+s −Xt = d+ v, v ∼ N (0, σ2∆t)

d = µ∆t, ξ2 = σ2∆t

µ̂ =
d̂

∆t
, σ̂ =

ξ̂√
∆t

.

(4.29)

This results in an estimation of µ̂ = 0.000 and σ = 0.173, µ being extremely small and so
virtually zero; µ ≈ 0 corroborates with the trial results seen in Tables 4.1 and 4.2.

In trialling these ideas it became apparent that it was not clear from estimation how
close the assumed structure was to the underlying data distribution. Additionally the
particularly long tails in both h and stopping time t make this hard to conceptualise.
Since short term momentum is of principal interest, and the sample size of sections with
large h is too low to model well. Hence I plot a constrained surface to each view of the
stopping time distribution for each of Brownian Motions, Triangles and Naive.

Consider for a single fixed h the stopping time density of τ under time constraint tc where
all t ≤ tc as

P(τ ∈ dt|τ ≤ tc, h) =
P(τ ∈ dt, τ ≤ tc|h)

P(τ ≤ tc|h)

=
P(τ ∈ dt|h)

P(τ ≤ tc|h)
since all t ≤ tc

=
f(t|h)∫ tc

0 f(x|h)dx
where f is the density derived in 4.24

P(τ ≤ tc|τ ≤ tc, h) =

∫ tc
0 f(x|h)dx∫ tc
0 f(x|h)dx

= 1 so forms constrained PDF within tc conditional on h.

(4.30)

Then divide constrained PDF into sections and calculate probability within each section,
where l and u represent lower and upper bounds respectively

P(tl < τ ≤ tu|τ ≤ tc, h) =
P(tl < τ ≤ tu, τ ≤ tc|h)

P(τ ≤ tc|h)

=
P(tl < τ ≤ tu|h)

P(τ ≤ tc|h)
since all tu ≤ tc

P(τ ≤ tc|τ ≤ tc, h) =

∫ tu
tl
f(x|h)dx∫ tc

0 f(x|h)dx
= 1 forming constrained probability section.

(4.31)

Similarly for all h values in grid squares h ∈ (a, b] and τ ∈ (l, u] find the mean probability
in that grid square as
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∑n
i=1 P(tl < τ ≤ tu|τ ≤ tc, hi)

count(h ∈ (a, b]))
, ∀hi ∈ (a, b]. (4.32)

I do this iteratively for all a, b and l, u grid sections to form a grid of probability that sum
to 1. This creates an approximate joint probability mass function over these sections for
comparative purposes.

For Triangle and Naive cases we can find constrained sums for each of the grid squares
and divide by the total count to convert into an approximate probability mass function.
In the Triangle case we select all Triangles that occur within upper bounds tc and hc. In
the Naive case we take each event from the bounded Triangles and randomly forward
select from within the time series events which occur within (0, tc], this being all Naive
events crossing above or below during the time interval (0, tc].

This creates a grid of comparable probability mass values which approximate a
constrained joint probability grid square by grid square, which can be plotted against
one another. This is approximate as it assumes an equal mass within each constrained ht
section which is a poor assumption and will be more inaccurate the smaller the time
constraint. Hence the time constraint needs to be large enough to capture the majority of
the probability mass for the distribution grids to be comparable. This is sufficient for an
intuitive comparison to check for structural fit visually, as seen more fully in the
GBPUSD trial discussed in Appendix C.

As a demonstration results of Brownian Motion can be seen in Figure 4.3 which shows
the contained distribution of stopping times for TTop Up h values if the distribution of
first passage times was from Brownian Motion with µ = 0 and σ = 0.173. The idea is
to gauge how relevant the estimation of such parameters are by plotting and comparing
with the empirical findings, as can be seen in Figures 4.5 and 4.4 where 2D distributions
are kernel smoothed and plotted on top of one another.

4.5 Evaluation

Fitting the Brownian Motion based exploration of returns does not appear to be
particularly successful, although this may merely be a matter of adjusting the model.
Transforming the idea into a visual exploration and considering how best to move
forward does however uncover some useful ideas. The Brownian Motion based
estimation of parameters from first passage times does seem to be somewhat indicative
of the first passage times; while this is difficult to test, this can be visually explored by
comparing overlapping constrained distributions within τ ≤ 60 and h ≤ 25 pips (1 pip
price change for GBPUSD equals 0.0001).

Firstly, comparing the Naive trade distribution with the Euler estimation for Brownian
Motion shows that to a great extent the empirical observations match closely with the
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Figure 4.3: TBot Up Constrained Brownian Motion 2D First Passage Distribution µ = 0,
σ = 0.173

Figure 4.4: TBot Up Constrained Smoothed Naive (Heat) vs Brownian Motion (Terrain)
σ = 0.173

theoretical estimation as seen in Figure 4.4. This is awkward to see on the 2D
distribution plot where the overlapping surfaces are reasonably close, but if this is
considered carefully it can be seen that there is a slight difference in distribution with
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changes in h which shows as the large green zone of colour. This slight difference in first
passage time distribution seems quite reasonable, seemingly indicating some potential
small structural difference which depends on the h based change in price measured
against.

These surfaces are sufficiently close that this corroborates well with the estimations as
seen in Table 4.2 (when Brownian Motion parameters are used in the 2D plot, the surfaces
of all types of Naive trades appear reasonably close). In the absence of more definitive
testing, this shows that the estimation methods reasonably match with empirical results,
enough so to roughly validate that these results are comparable.

Figure 4.5: Constrained Smoothed Naive (Terrain) vs Triangle (Heat)

However the Triangle results are not similar, as can be seen with Naive and Triangle
cases in Figure 4.5. (The comparison with Brownian Motion is not shown as this is very
close to the Naive case.) This shows a disparity between low and high h values where
the low h distribution section curves show Naive trade arrival times are comparatively
shorter; and high h distribution section curves show that Triangle base arrival times are
comparatively shorter - noting that the h sections are comparable since the masses in each
h based Triangle and Naive sections have been chosen to be the same. The higher h values
happen to correspond to price changes that would be more worthwhile trades, since there
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is a higher possibility on average that winning trades will overcome transaction costs. By
trialling various Brownian Motion parameter values individually by h section it seems
unlikely that a raw Brownian Motion based model will fit well, and there seems a strong
possibility the structure of the price changes is time varying.

Deriving and testing Itô processes to fit based on first passage times is complex, time
consuming and in this case problematic. The possibility that the structural model is both
time and h varying presents an extremely difficult scenario to derive solutions for.
Additionally, the structure of each of the Naive and Triangle cases is likely different and
hence hard to compare. Comparing these using a realistic test is also not clear at all;
although if the structures are the same, bootstrapping parameter confidence intervals
may work and there is the possibility of making further good use of effect size based
statistics. Starting with a continuous time based model of returns requires the
assumption of a structure, and this likely involves too strong a set of assumptions to
initially apply well. Without realising, I may have been heavily influenced to
extrapolate periodic returns to continuous time, as is commonly done in the literature.

However the fact that there appears a change in structure across h and potentially across
τ presents an interesting possibility that a model can be produced with changes in
intensity based on various more statistically based arrival time models. Through an
ordering of arrival times the intensity can be comparatively measured and the
corresponding ‘difficult to model’ left edge of the arrival time distribution more easily
accounted for. Ideally once better understood it may then be possible to move back to a
structural model. Though in the end I do not apply any structural approach to the US
Equity results due to the complexities involved applying such an approach across
multiple time series.



Chapter 5

Intensity Model

For the Intensity approach, results of events are in terms of wins or losses of δ = 1 or 0
and arrival time τ ; where they are ordered by arrival time to form a non-homogeneous
marked point Poisson process. The idea is to split the stopping time probabilities across
wins and losses to create a mixture distribution, and model this using survival analysis.
General information on survival analysis can be found in Kalbfleisch and Prentice
(2002), though the approach used here is developed specifically to solve this mixture
level based returns problem. On this basis, a mixed proportional survival model is
derived into which any convenient base distribution for arrival intensity can be inserted.
The Intensity model is represented in either a general form, without a base distribution;
or specifically using the Generalized Extreme Value (GEV) distribution. With a specific
model, maximum likelihood can be used to estimate the chosen distribution parameters
to model short term momentum. Other alternative models are discussed in Section 8.1.

Estimation is obtained from data which consists of h, δ and τ , where h is predefined
by the event height as described and (δ, τ) pairs are results of those events in terms of
win/loss and time taken to reach h respectively. These are defined as

• h half the absolute difference of the triangle price between extrema E1 and E2,
generally referred to as height,
• τ Arrival times at the win τ+ or loss τ−points where τ = τ+ ∧ τ−, where τ is the

time difference between points B to C,
• δ win or loss: with win δ = 1 when r = 1 and loss δ = 0 when r = −1, which

depends on the Triangle type as defined in Section 1.1.

The parameter h is modified by dividing by volatility hσ = h
σ to normalise the data such

that estimation is done over (hσ, δ, τ) result tuples. Generally h may refer to h or hσ, as
the precise definition of h is immaterial in the derivations below.

In this case h or hσ is contained in the filtration Ft; however, Ft could incorporate
covariates so is left in a general form until estimation. Maximum likelihood estimation

57
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requires several assumptions to be satisfied and practical adjustments as discussed in
Section 5.2.

The estimation is done in slices of h or hσ sections such that parameters are constant over
certain h based ranges. Originally the intention had been to fit the intensity model over
the entire surface of (h, δ, τ); but due to non-linearities it turned out to be impractical to
obtain a good fit.

This Intensity model is inspired from credit risk models as found in McNeil et al. (2015),
which often use extreme value theorem to deal with credit risk. The realisation was that
by partly inverting the problem using price levels, rather than using periodic returns, the
previous modelling of security risk is now a case modelling long term variation of price
within the long right tail. The original risk of typical periodic return based models in the
trails of the modelling distribution, are converted such that they are now contained in the
left body of the Intensity distributions which are now able to be modelled by the events
contained in right tail. This now becomes a problem of modelling the risk of nothing
happening for longer periods of time (no large move in price) as opposed to modelling
the risk of large changes in price.

5.1 Base Intensity Model

Consider the combined arrival time of wins and losses τ at close point C, starting at
their break point B where t = 0; then order by arrival time such that they form a non-
homogeneous Poisson process defined on the real line as given by (5.1)

P(X(t+ s)−X(t) = n|Ft) =
(Λ(t+ s)− Λ(t))ne−(Λ(t+s)−Λ(t))

n!

where Λ(t) =

∫ t

0
λ(u)du and Λ(t+ s) =

∫ t+s

0
λ(u)du

with intensity given by λ(t)dt = dΛ(t) = P(τ < t+ dt|τ ≥ t,Ft))

=
P(t ≤ τ < t+ dt|Ft)

P(τ ≥ t|Ft)

=
f(t)dt

1− F (t)
∈ (0,∞).

(5.1)

I split the combined intensity of joint arrival time and win/loss probabilities under the
Law of Total probability where
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Λ(t) = Λ(+)(t) + Λ(−)(t)

dΛ(+)(t) = P(τ < t+ dt, δ = 1|τ ≥ t,Ft)

dΛ(−)(t) = P(τ < t+ dt, δ = 0|τ ≥ t,Ft)

=⇒ dΛ(t) = P(τ < t+ dt|τ ≥ t,Ft)

=
P(t ≤ τ < t+ dt|Ft)

P(τ ≥ t|Ft)
.

(5.2)

Intensity can be expressed in terms of survival time as

S(t) = P(τ ≥ t|Ft)

dΛ(t) =
−(S(t+ dt)− S(t))

S(t)

=
−dS(t)

S(t)

define Λ(0) = 0; S(0) = 1

such that dΛ(t) = −d ln(S(t)).

(5.3)

Survival time can then be expressed as

∫ t

0
dΛ(t) =

∫ t

0
−d ln(S(t))

Λ(t)− Λ(0) = −(ln(S(t))− ln(S(0))

Λ(t) = − ln(S(t))

S(t) = e−Λ(t).

(5.4)

The first passage crossing time probabilities are pseudo independent since

P(τ > t|Ft) = e−Λ(t)

where {τ > t} = {τ+ > t} ∩ {τ− > t}

so e−Λ(t) = P(τ+ > t, τ− > t|Ft)

= e−Λ(+)(t)e−Λ(−)(t).

(5.5)

It is assumed then that (τ, δ) pairs are independent where Ft measurements are set at
point B and are constants from the perspective of waiting until point C. Therefore the
likelihood contribution of (τ, δ) conditional on Ft can be expressed as
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L(tk, tk + dt) = P(tk ≤ τ < tk + dt, δ|Ft)

= P(τ ≥ tk, δ|Ftk)P(τ < tk + dt, δ|τ ≥ tk,Ftk)

= S(tk)[dΛ(+)(tk)]
δk [dΛ(−)(tk)]

1−δk∏
k

L(tk, tk + dt) =
∏
k

S(tk)[dΛ(+)(tk)]
δk [dΛ(−)(tk)]

1−δk

=
∏
k

S(tk)
[f (+)(tk)dt

S(tk)

]δk[f (−)(tk)dt

S(tk)

]1−δk

=
∏
k

[f (+)(tk)dt]
δk [f (−)(tk)dt]

1−δk

=
∏
k

[f (+)(tk)]
δk [f (−)(tk)]

1−δk ,

(5.6)

where dt may be ignored since it does not affect the estimation of the likelihood
parameters. Under numerical estimation the equalities expressed in (5.6) are
approximate, but for ease of expression I use the equals sign throughout the document.

Assuming that the measures P(t ≤ τ < t + dt, δ = 1|Ft) and P(t ≤ τ < t + dt, δ = 0|Ft)
are absolutely continuous with respect to Lebesgue measure, then

dΛ(+)(t) =
f (+)(t)dt

S(t)
, dΛ(−)(t) =

f (−)(t)dt

S(t)
. (5.7)

However the densities consisting of f (+)(t) and f (−)(t) under the Law of Total probability
must form a correct probability density such that distribution functions integrate to one
where

f (+)(t)dt = P(t ≤ τ < t+ dt, δ = 1|Ft))

f (−)(t)dt = P(t ≤ τ < t+ dt, δ = 0|Ft))

f(t)dt = (f (+)(t) + f (−)(t))dt∫ ∞
0

f(t)dt = 1,

∫ ∞
0

f (+)(t)dt ≤ 1,

∫ ∞
0

f (−)(t)dt ≤ 1.

(5.8)

Hence f(t) forms a mixture density consisting of f (+) and f (−) components, where
functions can be inserted to model corresponding wins and losses. As an example
consider the initial base motivating case where the functions f (±) evolve exponentially
to from a Poisson process such that
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f (+)(t) = p1f1(t) = p1λ1e
−λ1t

f (−)(t) = p2f2(t) = p2λ2e
−λ2t∫ ∞

0
p1λ1e

−λ1tdt = p1∫ ∞
0

p2λ2e
−λ2tdt = p2

under restriction p1 + p2 = 1

where F (+) + F (−) = F.

(5.9)

To differentiate between these functions I refer to f (+) and f (−) components of the
mixture distribution as sub-densities; and F (+) and F (−) components as
sub-distributions; where summed they form a density f or distribution F respectively. I
use numerical subscripts to refer to proportionate component densities and
distributions. Using this notation, for the Intensity model any inserted distributions
must conform to (5.8) such that the density functions can be split by proportion as
demonstrated in (5.9).

5.2 Estimation Considerations

Originally estimation had been over the (h, τ) surface but this had various convergence
problems, and after some experimentation a fit using three hσ slices was used, as
demonstrated in the trial discussed in Appendix C. These three slices represent three
zones of high to low volatility relative to change in price h.

Actual estimation of these slices results in a formula which is closer to (5.10), but this is
awkward to express every time maximum likelihood is mentioned. Expressed without
indices this can be seen as

∏
L(t1/2, t1/2 + 1) =

∏
[f (+)(t1/2)]δ[f (−)(t1/2)]1−δ estimated at

1

2
t points

=
∏

[p1f1(t1/2)]δ[p2f2(t1/2)]1−δ proportionate densities

=
∏

[pf1(t1/2)]δ[(1− p)f2(t1/2)]1−δ constrained proportion p.

(5.10)

This is adjusted by measuring the arrival histogram at the mid point within measuring
periods along the x axis form a more accurate estimate. This is done because
measurements are not done on a continuous basis but are over single units measured at
the right edge of the period. For example if one simulated trade stops on the 4th day’s
measurement then that trade has ’stopped’ at some point within that day, say at for
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example 3.6 days. To offset this I subtract 1/2 from each day for estimation purposes,
which is a rough but serviceable approximation. In essence the data is in a discrete form
but it is pragmatic to estimate using the continuous form by making small adjustments
(ironically converting back to a binomial form to test the goodness of fit). As it happens
this is an important consideration since a large part of the mass of the sub-distribution
usually occurs within the first few periods and so this results in better approximation.

Since 1 = p1 + p2, only the variable p1 is required in estimation, as seen in the last line of
(5.10). For simplicity all results only report p1 = p, which is the probability of winning a
trade in the direction indicated by the triangle.

For many trial distributions of f (+) and f (−), including the Generalized Extreme Value
distribution, taking the log and subsequent derivatives is unsolvable. So generally a
numerical approach is taken using the R optim function to find the maximum likelihood.
Due to numerous exponentials this requires some manipulation and often constraints
to find a solution. In some cases this requires a choice of an approximate best fit since
toward an edge of the manifold optimisation results in an error or has an undefined
value. Thus this is often time consuming to visually check that the fit is correct and
occasionally requires some manual selection.

5.3 Generalized Extreme Value Base Model

Primarily I use Generalized Extreme Value distribution (GEV) as the base model by
truncating and fitting proportionate mixed distributions representing win and loss
arrival times. Truncated GEV allows a good fit as it allows adjustment of the
distribution mode (head peak position), head thickness and fatness of the right tail. This
gives the flexibility to fit against various long tailed waiting times such that goodness of
fit is generally high against in-sample fitted data.

The GEV distribution is characterized by location µ, scale σ and shape ξ for density f and
distribution function G as

s =
t− µ
σ

such that

g(s;σ, ξ) =

 1
σ (1 + ξs)

−1
ξ
−1
e−(1+ξs)

−1
ξ
, ξ 6= 0

1
σe
−se−e

−s
, ξ = 0

G(s; ξ) =

e−(1+ξs)
−1
ξ
, ξ 6= 0

e−e
−s
, ξ = 0.

(5.11)

However, support for GEV may include negative values, depending on values of ξ: when
ξ > 0, t ∈ [µ − σ

ξ ,+∞). So the distribution must be truncated to produce support
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[0,+∞) for truncated density gT and distribution GT

gT (t) =
g(t)

1−G(a)

GT (t) =
G(t)−G(a)

1−G(a)
,

(5.12)

where a = 0 as the point of left truncation. I mix distributions similarly to example 5.9
and multiply the above by p obtain the Intensity model

f (+)(t) = p1gT1(t)

f (−)(t) = p2gT2(t)∫ ∞
0

p1gT1(t)dt = p1∫ ∞
0

p2gT2(t)dt = p2

under the restriction p1 + p2 = 1

such that F (+) + F (−) = F,

(5.13)

where under truncation the lower bound of the integrals are 0. As indicated earlier, sub-
densities f (+) and f (−) together form density f ; and sub-distributions F (+) and F (−)

together form distribution F . The likelihood function for Intensity GEV densities given
in (5.13) is then

L(t, t+ dt) = P(t ≤ τ < t+ dt, δ|Ft)

= [f (+)(t)]δ[f (−)(t)]1−δ from (5.6)

=

[
p1
σ1

(1 + ξ1s1)
−1
ξ1
−1
e−(1+ξ1s1)

−1
ξ1

1− e−(1+ξ1s1)
−1
ξ1

]δ[ p2
σ2

(1 + ξ2s2)
−1
ξ2
−1
e−(1+ξ2s2)

−1
ξ2

1− e−(1+ξ2s2)
−1
ξ2

]1−δ

,

(5.14)

where ξ1 6= 0, ξ2 6= 0. Cumulative probabilities in terms of GEV for sub and full
distributions are then
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P(τ < t, δ = 1|Ft) = p1GT1(t) = F (+)(t)

Since p1 = P(δ = 1|Ft)

P(τ < t|δ = 1,Ft) = GT1(t)

=
e
−(1+ξ1

t−µ1
σ1

)
−1
ξ1 − e−(1− ξ1µ1

σ1
)
−1
ξ1

1− e−(1− ξ1µ1
σ1

)
−1
ξ1

; ξ1 6= 0

similarly for F (−)

P(τ < t, δ = 0|Ft) = p2GT2(t) = F (−)(t)

since p2 = P(δ = 0|Ft)

P(τ < t|δ = 0,Ft) = GT2(t)

=
e
−(1+ξ2

t−µ2
σ2

)
−1
ξ2 − e−(1− ξ2µ2

σ2
)
−1
ξ2

1− e−(1− ξ2µ2
σ2

)
−1
ξ2

; ξ2 6= 0.

(5.15)

For brevity results are expressed using these distribution and parameter symbols as
given above. The following goodness of fit tests use these cumulative probabilities. Also
these are used to express results in terms of probability of arrival within time t towards
expressing short term momentum. Note: at no point are estimated ξ1 = 0 or ξ2 = 0 so
reference to conditions for ξ for GEV distributions are now dropped.

5.3.1 Parameter Estimation

Using the considerations for estimation as demonstrated in (5.10), the full likelihood
estimation equation can be seen as (5.16). Table 5.1 then shows the corresponding
parameter estimates using hσ sections, where t is measured in minutes and hσ are in
units of h GBPUSD price

minutes . An example of this can be seen visually in Figure 5.1 which
shows PDF and CDF comparisons for the model versus the empirical data for the
particular range hσ ∈ [0.0035, 007); such plots I refer to as ‘profile plots’. This shows
what appears to be a good fit of the model to the data for all cases.

L(t, t+ dt) =

[
p
σ1

(1 + ξ1
t−µ1
σ1

)
−1
ξ1
−1
e
−(1+ξ1

t−µ1
σ1

)
−1
ξ1

1− e−(1+ξ1
t−µ1
σ1

)
−1
ξ1

]δ[ (1−p)
σ2

(1 + ξ2
t−µ2
σ2

)
−1
ξ2
−1
e
−(1+ξ2

t−µ2
σ2

)
−1
ξ2

1− e−(1+ξ2
t−µ2
σ2

)
−1
ξ2

]1−δ

(5.16)
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Table 5.1: GBPUSD hσ Intensity Model Parameter Estimates

Win Distribution Loss Distribution

Type hσ µ1 σ1 ξ1 µ2 σ2 ξ2 p

TTop Up [0 .0035) 2.52 6.45 0.519 5.3 7.48 0.489 0.513
TTop Up [.0035 .007) 8.6 10.1 0.786 13.1 13.9 0.661 0.51
TTop Up [.007∞) 15 26.7 0.99 20 39.1 0.836 0.507
TTop Down [0 .0035) 0.5 6.52 0.49 3 7.72 0.491 0.534
TTop Down [.0035 .007) 9.57 11.2 0.764 10 14.8 0.6 0.523

TTop Down [.007∞) 10 28.4 0.849 28.4 34 0.99 0.539
TBot Down [0 .0035) 3.29 5.76 0.527 5.65 7.45 0.536 0.517
TBot Down [.0035 .007) 7.9 10.4 0.793 10 14.4 0.596 0.514
TBot Down [.007∞) 15 26.9 0.99 30.2 35.7 0.933 0.505
TBot Up [0 .0035) 2.57 6.19 0.628 0.5 8.25 0.4 0.523

TBot Up [.0035 .007) 9.15 12.1 0.732 11.7 13.2 0.701 0.519
TBot Up [.007∞) 15 27.4 0.967 16.8 38.9 0.835 0.527
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Figure 5.1: TBot Up Intensity Distribution Profile hσ ∈ [0.0035, 007)

5.4 Goodness of Fit

Goodness of fit testing for the model requires checks across: in-sample conditional
triangle fit returns; Naive in-sample simulated returns and forward out-of-sample
triangle returns. In-sample returns are done to confirm that the model shows the hybrid
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arrival time and win distribution fits well; however, of greater importance is the
out-of-sample forward tests which evaluate how the model holds towards prediction of
short term momentum. The fitted model is tested against the Naive data to check if
there is a difference. The test used is the Cumulated Deviations test from actuarial
science which supposes that the distribution of arrival times is Poisson or Binomial.

The reported p-value evaluates under the null hypothesis whether first passage times
given by the data are equivalent to the distribution (or sub-distributions) given by the
estimated intensity model. The p-value is often high as it is a confirmatory test, the
measure of which is being used to evaluate the goodness of fit. The intention of this is to
evaluate in-sample results and then measure predictability of short term momentum.

5.4.1 Cumulative Deviations Test Construction

For testing purposes since the data is recorded in discrete time and modelling is done
in continuous time, it is necessary to assume a non-homogeneous Binomial process to
approximate the data. This is done by assuming that for large sample size the continuous
Poisson arrival times are approximated by discrete binomial intensity λbtdt = P(τ ≤ t +

dt|τ > t) ∈ [0, 1], where in each individual period λbt remains constant, though it may
differ from period to period.

The Cumulative Deviations Test is a direct extension of Pearson’s Chi squared test
specific to Poisson and Binomial processes. Treating the results as Binomial arrival times
the two test statistics Zt for wins and losses can be formed by considering cumulative
probabilities of single units of time as

Zt =
dst − qstNt√
qst (1− qst )Nt

∼ N (0, 1) for sub-densities denoted s

qst = F (±)(t)− F (±)(t− 1)

t ∈ [1, n]; n := max(arrival time)

Nt := count of all win and loss arrivals

dst := count of only win or loss arrivals in (t− 1, t],

(5.17)

Zt =
dt − qtNt√

qtNt
∼ N (0, 1) for complete densities

qt = F (t)− F (t− 1)

t ∈ [1, n] n := max(arrival time)

Nt := count of all arrivals that pertain to that density

dt := count of arrivals in (t− 1, t],

(5.18)

under assumption
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∑
t∈I

Zt ∼ N (0, |I|)

∼ N (0, 1),

(5.19)

where I is the range of individual groups whose size is defined by |I|, which in this
study this is 1 in all cases (1 minute or 1 day for US equities). Normality follows from the
linearity of the Normal distribution.

Hence we can then construct the Cumulative Deviations test for these two cases as

∑
t∈I(d

s
t − qstNt)√∑

t∈I q
s
t (1− qst )Nt

∼ N (0, 1) for sub-densities denoted s (5.20)

∑
t∈I(dt − qtNt)√∑

t∈I qtNt

∼ N (0, 1) for complete densities. (5.21)

These use survival analysis models where q is usually the mortality rate and d is the
observed number of deaths.

5.4.2 Goodness of Fit Test Strategy

Goodness of fit testing is applied using the sub-densities with and without their
proportionate component across three dimensions for a total combination of 12 test
types for each triangle type. The overall method is described here and the results given
in their relevant section along with diagrams to explain further.

The Cumulative Deviations test uses the following conversions from the Poisson case
with dt = 1 for each period to test the following:

a. P(t ≤ τ < t+ dt, δ = 1|Ft) joint probability fit of winning and arriving within each
period (sub-distribution).

b. P(t ≤ τ < t+ dt|δ = 1,Ft) probability fit of arriving within each period conditional
on winning (full distribution).

c. P(t ≤ τ < t + dt < t, δ = 0|Ft) joint probability of losing and arriving within each
period (sub-distribution).

d. P(t ≤ τ < t + dt < t|δ = 0,Ft) probability fit of arriving within each period
conditional on losing (full distribution).

Each of these tests is done across

1. In-sample conditional triangle fit returns: test fit of in-sample data used to train
maximum likelihood estimation (generally the p-value is close to 1 indicating a
good fit).

2. Naive in-sample simulated returns: test the Naive data in the same category as
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the ’in-sample conditional Triangle fitted returns’ case. This tests whether returns
come from the same distribution as that fitted to the Triangle data.

3. Forward out-of-sample Triangle returns: tests the fit of the current period Triangle
GEV model to ascertain whether the distribution of results remains valid forward
in time.

Using the trial GBPUSD data for the in-sample sub-distribution tests the results can be
seen in Table 5.2. This shows that the data fits the model well and that relevant
distribution on the profile plot corroborates that this is clearly the case as seen in Figure
5.1 for TBot Up hσ ∈ [0.0035, 0.007) with p-values ≈ 0.6.

Table 5.2: GBPUSD hσ Triangle Intensity Model In Sample Tests

Win Distribution Loss Distribution

Type hσ pGT1(t) (1− p)GT2(t)

TTop Up [0 .0035) 0.667 0.658
TTop Up [.0035 .007) 0.98 0.966
TTop Up [.007∞) 0.39 0.984
TTop Down [0 .0035) 0.775 0.76
TTop Down [.0035 .007) 0.26 0.263

TTop Down [.007∞) 0.5 0.125
TBot Down [0 .0035) 0.493 0.478
TBot Down [.0035 .007) 0.764 0.71
TBot Down [.007∞) 0.151 0.597
TBot Up [0 .0035) 0.951 0.946

TBot Up [.0035 .007) 0.565 0.591
TBot Up [.007∞) 0.779 0.296

5.5 Evaluation

The Intensity GEV model fits well across hσ sections, provides indication of the win and
loss effect size and is straight forward to estimate. Also, a visually intuitive
representation of arrival density can be produced which gives a comparative indication
of the return distribution. The issues are that the parameters are unintuitive and the
tests involve the use of p-values.

The p-value issue can be mitigated by repeatedly confirming tests on separate data
sections and testing how the model holds on forward out-of-sample data. Also the
p-value based fit is confirmatory and the model fit particularly strong such that there is
no marginal rejection of a null hypothesis. I considered providing bootstrapped
confidence intervals for model parameters but since there is a dependence between
them they are not comparable to other fitted GEV models; model estimation can also be
unstable. Overall providing effect size based depth is problematic using this model.

The six parameters for the GEV based sub CDFs are difficult to intuitively understand.
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In contrast µ and σ for the normal distribution show clear central tendency and spread
characteristics - an advantage of using log normal periodic returns. Additionally the
Intensity Model compromises by excluding Triangles which do not reach ±h, though
there are a very small number of these, fewer than 0.1% of the total. The Intensity Model
based on GEV is a particularly flexible distribution.

Typically statisticians will state that it is assumed the data is generated by the model, but
I do not do this as this as this is an unreasonably strong statement for the model fit. The
Intensity GEV model is exceptionally flexible and happens to fit the data well; however
the first few periods of the left tail are unpredictable and difficult to model. Instead I
use the fact that the model fits well over the right tail; and the left tail can be predicted
by subtraction since pleft = 1 − pright. This can be seen in Figure 5.1 where the first five
minutes do not fit well for the win distribution. It turns out to be extremely difficult to
fit these first few periods; however by ordering and modelling the entire distribution of
stopping times, by inversion the first few periods are roughly able to be modelled. This
method partly overcomes the left tail modelling problems of the Structural model, but is
certainly not perfect.

Also it is worth being careful to note statistical testing involving p-values can be
sensitive to large sample size causing misleading test results, especially with
measurement inaccuracies (Schwab et al., 2011). So, I consider the p-values as purely a
measure of fit and not a strict hypothesis test, since I do not strictly know how reliable
the measure is, see Section 2.3. I then repeat these goodness of test fits to cumulatively
infer understanding, rather than rely on an unknown level of accuracy.

Considering these issues of the Intensity model motivates using a non model based
measure of momentum within a fixed time period as a confirmatory approach. This is
covered by the Effect Size Heuristics Chapter 6. I discuss these issues further in the
Discussion Chapter 8 amongst other related material and results which help to provide
more insights into the issues.



Chapter 6

Effect Size Heuristics

Effect size heuristics are an increasingly accepted core statistical method used to
validate scientific claims, often used to replace statistical methods based on p-values. It
seems reasonable to apply these methods to financial returns. This chapter develops
effect size heuristics to explore the difference between Triangle and Naive models, based
on bootstrapped empirical confidence intervals. The idea is that if the confidence
intervals of return based measurements for Triangles and Naive trades are far apart then
there may be a significant effect. No trial data is used to develop these methods, as they
can be directly applied without iterative development.

For the effect size heuristics, a lock-in time of 10 days is set, such that any trade which
has not reached ±h is closed at the closing price on day 10; otherwise the trade will have
exited before this. This is done for all Triangle and Naive trades. For Triangle trades
the existing discovered Triangles are used and returns re-calculated based on the 10 day
limit. For Naive trades, first passage sampling is redone with the 10 day limit.

To recap the Naive method in this context, for each Triangle the value of h is recorded and
10 sample points are chosen at random from the original stock time series, each denoted
point B. For each of these randomly chosen points, the change in time τ is recoded by
walking forward over segment BC to ±h; however in this chapter the change in time
is limited to a maximum of 10 days. This is done such that if ±h is not reached by day
10, partial ±h values are recorded to reflect the change in price reached on day 10. The
objective is to create a comparative strategy without the potential timing advantage of
Triangles as discussed in detail within Section 3.3.

Using standard effect size statistics recommendations, a 95% confidence interval is used
for all measurements to identify the significance of Triangle and Naive return differences.
One issue is how to compare leveraged returns given differing mean µrl and standard
deviation σrl values (as defined in (4.1)). Conveniently Cohen’s d as seen in Cumming
(2012) provides a standard difference in mean effect size normalised by pooled variance
as
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d =
µ1 − µ2

s

s =

√
(n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2

s2
j =

1

nj − 1

nj∑
i=1

(xj,i − µj)2 for j = 1, 2;

(6.1)

where µ1, s1 and µ2, s2 refer to Triangle and Naive trade leveraged return and standard
deviations respectively. Cohen’s d can then be used to provide a single standardised
numerical value to measure the leveraged return difference. Since the distribution of
Cohen’s d is non-Gaussian and unknown I leave it in this form.

Due to the asymmetric nature of the measurements and unknown empirical
distributions, percentile bootstrapped confidence intervals for the parameters of interest
are produced. These are calculated on the leveraged return based measurements as
given by R code listings in Appendix E. Using a bootstrapped percentile based
confidence interval has the advantage of making very few assumptions about how the
data is distributed and thereby avoids modelling error.

Bootstrapping is where sampling with replacement is used to estimate population
parameters. Sampling is done repeatedly from the original sample with replacement to
produce N samples of size n, producing estimates of the parameter θ̂1..θ̂N with mean
estimate θ̂B . Denoting the α

2 and 1− α
2 percentiles by εL and εH respectively I have

P(εL < θ̂B − θ̂ < εH) = 1− α; (6.2)

so that the probability of an error less than εL is α
2 , and the probability of an error greater

than εH is α
2 . Assuming the distribution of θ̂ about the population parameter θ from

sampling the original sample is the same as would be obtained from the bootstrapped
population, the following holds

P(εL < θ̂ − θ < εH) = 1− α. (6.3)

In practice this procedure is simply a case of calculating the percentiles of the sampled
bootstrap estimates. This theory is justified and detailed further in Manly (2007).

While the empirical percentile confidence interval is less accurate than the standard
bootstrap, Buckland (1984) suggests 10,000 samples will produce a confidence interval
of 95% ± .1% with probability 0.95. This is easily accurate enough for these
measurements. So for the results N = 10000 samples of size n are taken, where n is the
size of the original sample.
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I calculate confidence intervals using this method for mean and standard deviation
across: stopping time, bet return and leveraged return. For leveraged return Cohen’s d
is also bootstrapped to give a Z based normalised return. These results can be seen in
Table 7.6 for Triangles and Table 7.7 for Naive trades. As stated the implementation for
each of these can be seen in Appendix E.



Chapter 7

US Equity Results

The US equity based results for the Intensity model and Effect Size Heuristics are
contained within this chapter in a series of tables and plots of the distributions of
leveraged returns and arrival times. The complete results are given in tables, but are
illustrated in a more easily understandable form for TTop Up in Section 7.1.

The most important results are summarised in Figures 7.5 to 7.12 which compare the
proportion p based Intensity Triangle sub-distributions with the Naive empirical results;
and Cohen’s d which shows the normalised effect size difference between Triangles and
Naive results. The same Cohen’s d values are shown in the right column of Tables 7.6
and 7.7, so as to compare with the underlying raw results in each table. While there
are numerous other results reported these mostly report background validation details,
whereas the two sets of results described above show the main measures which I use in
the Conclusion.

Amongst related literature, Lo’s paper is considered to use a large amount of data, where
he studies time series sections of sample size 50, for a total of 250 stocks in 5 quintiles over
years 1962 to 1996. I use far more data, studying time series sections of approximately
5000 stocks from 1960 to 2017. The number of stocks depends on how many are listed on
the stock exchanges during that period, where many do not have enough liquidity to be
used in the study. See Appendix 7 for more details of the data used. I deliberately make
use of the maximum available data from CRSP as additional means to produce stronger
evidence than the related literature to help produce more compelling evidence.

All non-discrete result measurements are accurate to three significant figures. Time t
or τ are measured in discrete trading days over time segment BC and hσ sections are
expressed in h price

days units.

The hσ ∈ [6,∞) results are included for completeness, but the hσ ∈ [0, 3) and hσ ∈ [3, 6)

based results are considered more important. The hσ ∈ [6,∞) results I consider less
comparable due to the large variation of hσ and lower sample size, but it seems sensible
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to not discard this edge of the data and report fully.

7.1 A Tail of TTop Up

Z

hσ
τ

Figure 7.1: TTop Up 2D Distribution Over hσ ∈ (0, 10], τ ∈ (0, 60]

The US equity results require some thought to understand and this section provides more
detail, mainly focusing on results for time period 1988 to 1998 and TTop Up where hσ ∈
[0, 3). Where possible I generalise to the wider set of results to provide greater insight.

An overview of the first passage time surface for 1988 to 1998 Triangles can be seen in
Figure 7.1, which shows the arrival density decay across hσ slices as a histogram based
surface of first passage densities in terms of (hσ, τ), where the win and loss distributions
are combined. From this surface it can be seen that there is a decay in arrival time density
as τ increases and that the majority of the results are contained within the lower value
(hσ, τ) corner of the surface. All Triangle type distributions show similar distribution
surfaces.

The two sets of results, from the Intensity model and Effect Size Heuristics, mainly differ
in their inclusion of the right tail of τ or not. The Intensity model includes the right tail
in order to model the whole arrival time τ distribution to gain contextual understanding
(since the GEV is basically an extreme value distribution), while the Effect Heuristics
cut off this tail at 10 days in order to solely evaluate the short term effects. The Effect
Heuristics provide a far more transparent set of numerical results best summarised by
Cohen’s d but the Intensity model provides greater intuitive depth in the form of the
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Figure 7.2: TTop Up In Sample 1988-1998 Triangle GEV Intensity vs Empirical Triangle
Profile hσ ∈ [0, 3)

visual distribution comparison of Figures 7.5 to 7.12.

The Intensity GEV model provides an explorative model of the win and loss first passage
distribution, generally showing a very good fit for in-sample data, where the Triangle
empirical stopping times cumulatively match the fitted model. For example Figure 7.2
shows this close distribution fit where the confirmation p-value is 0.998 for wins and
0.997 for losses; meaning the fit is exceptionally close. However this data is in-sample
and proves little. Over the same period p = 0.631, indicating larger mass in the win sub-
distribution. Consistently the model fits the in-sample data well for all Triangle cases as
seen in Table 7.2, both for the sub-distributions and full distributions.

Because the Intensity GEV model cumulative fit is consistently nearly identical to the
empirical Triangle data I compare the Triangle model fitted directly with Naive empirical
in-sample data (in Figure 7.3) and Triangle forward out-of-sample data (in Figure 7.2). It
is more concise to solely report the model based comparisons as the model fits the typical
results closely.

Comparing the 1988-1998 Triangle model fit with the Naive data as seen in the profile
plot of Figure 7.3 shows a curious result where the win distribution does not fit with a p-
value of 0.000, and the loss distribution at least partly does fit with a p-value of 0.162. To
a strong degree, this difference is quite consistent across all of the patterns, except where
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Figure 7.3: TTop Up In Sample 1988-1998 Triangle GEV Intensity vs Empirical Triangle
Profile hσ ∈ [0, 3)

hσ ∈ [6,∞). However the corresponding tests for the sub-distributions have p-values
close to 0; with most of these sub-distribution tests little insight can be gained due to
proportion p skewing the tests. What can be seen from the GEV Intensity fits is that there
is a clear difference in the distribution of Win arrival times and less so for the loss arrival
times. This is reasonably consistent across most cases except for hσ ∈ [0,∞) as seen in
Table 7.3. I suspect this probably means that winning trades are somehow fundamentally
different between Triangle and Naive trades, and the losing trades are less so; however,
it is hard to be more precise without further research.

The Intensity GEV Triangle modelling as compared with the Naive trades are best
understood by reviewing Figures 7.5 to 7.12, in which these clearly show the gradually
reducing effect of Triangles over time by showing the split cumulative probability of
wins and losses. For 7.5 it can be seen that the period of 1988-1997 has a significantly
higher green win CDF curve than the black line of Naive empirical trades indicating
higher probability wins for Triangles; and the red loss curve is lower than the black line
of the Naive empirical trades indicating lower probability losses for Triangles. This is
useful as these plots give an indication of the variation in cumulative arrival time
differences. The period of 1978-1987 shows a larger difference. The period of 1998-2008
shows a smaller difference. In general most Triangle types show that the effect has
gradually decreased in each subsequent time section.
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Figure 7.4: TTop Up 1988-1998 Triangle GEV Intensity vs 1998-2008 Forward Empirical
Triangle Profile hσ ∈ [0, 3)

The difference in wins and losses can also be seen numerically as indicated by Bet return
rb in Appendices B.1 and B.2. However the effect is much clearer when seen visually, also
with the added insight of the time component. However the numerical measurement rb
of pure winning and losing is of limited use due to the longer term systematic market
effects likely hiding differences where the Triangles are of less effect.

Using the effect size heuristics which show the confidence intervals, the bet returns rb
are 0.371[0.349,0.393] in 1988 to 1997 and 0.261[0.238,0.283] in 1998 to 2008 respectively.
Taking into account arrival time and volatility for risk Cohen’s d decreases from
0.304[0.282,0.327] to 0.221[0.202,0.241] over corresponding time periods. Overall
Cohen’s d decreases similarly across most results in subsequent time periods, showing
that the competitive advantages of Triangles have decreased with time and that when
normalised by volatility, most Triangle types are now probably of negligible information
value. This confirms the reducing effect seen in Figures 7.5 to 7.12.

When the model is fitted over 1988 to 1998 Triangles, then tested against forward 1998
2008 empirical Triangle data the fit p-values are 0.974 for wins and 0.973 for losses
respectively. These are lower than in-sample fits but still surprisingly high. Visually this
good fit is confirmed in Figure 7.4. It seems the fitted distribution of first passage times
predicts the future distribution quite well, and this is generally the case across most
results.
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There is an issue with the proportional distribution tests of sub-distributions denoted by
pGT1(t) and (1 − p)GT2(t) in the results tables. Neither of these are true distributions
and so cumulatively over (0,∞] these sum to a value of p or 1 − p, which are both less
than one. Consequently when tested cumulatively against empirical distributions,
where the proportionate value p differs between the model and empirical results, the
test will often quickly converge toward 0 . While these cumulative deviations test
results are correct for these sub-distributions, the common close to zero result conveys
little information about how the sub-distributions differ. It would be better to devise a
measure which communicates how these results differ over time and for the most part
the sub-distribution plots display this difference well in Figures 7.5 to 7.12..

7.2 Intensity Model

For reference, the GEV Intensity distribution likelihood function is characterized by
location µ1, µ2 scale σ1, σ2 and shape ξ1, ξ2 as

L(t, t+ dt) = [f (+)(t)]δ[f (−)(t)]1−δ

= [pgT1(t)]δ[(1− p)gT2(t)]1−δ

=

[
p
σ1

(1 + ξ1
t−µ1
σ1

)
−1
ξ1
−1
e
−(1+ξ1

t−µ1
σ1

)
−1
ξ1

1− e−(1+ξ1
t−µ1
σ1

)
−1
ξ1

]δ[ (1−p)
σ2

(1 + ξ2
t−µ2
σ2

)
−1
ξ2
−1
e
−(1+ξ2

t−µ2
σ2

)
−1
ξ2

1− e−(1+ξ2
t−µ2
σ2

)
−1
ξ2

]1−δ

,

(7.1)

has parameter values which correspond to the estimates found in Table 7.1.

Distributions are denoted by pGT1(t), GT1(t), (1 − p)GT2(t) and GT2(t), as indicated by
(5.13), (5.14) and (7.1) which show the likelihood equation relationship; corresponding
tests based on cumulative deviation are found in Tables 7.2 to 7.4.

For the forward testing, Table 7.4 shows the p-values in yearly time periods which
represent the period that the model was fitted over (the test being against the next time
period section). To make this clear where there is no fitted model tested in the last time
period of 2008 to 2018 NA is reported, since the model was fitted in 1998 to 2008 and
tested against the 2008 to 2018 Triangle data, showing the p-values in the 1998 to 2008
table cell.

These results generally show Triangles with a positive probability of winning but this
decreases over the measured periods from 1960 to 2018 as compared with the Naive
case. Testing the model fit against Triangle in-sample data shows exceptionally good fit.
Testing against Naive data generally shows a poor fit for wins, and a good fit for losses;
indicating that the winning Triangle trades have a different arrival time distribution.

Curiously despite not discounting systematic market effects, forward goodness of fit



7.2. INTENSITY MODEL 79

testing shows that the first passage times have a predictive capacity in first passage
times, though this is less clear with the sub-distribution tests due to skewed testing
issues.

Table 7.1: US Equity GEV Model Parameter Estimates

Intensity GEV Model Parameters

Win Distribution Loss Distribution

Type hσ Period µ1 σ1 ξ1 µ2 σ2 ξ2 p

TTop Up [0 3) 1960-01-01 1978-01-01 3.09 3.67 0.886 6.9 9.35 0.434 0.647
TTop Up [0 3) 1978-01-01 1988-01-01 3.47 4.36 0.803 5.59 9.31 0.383 0.664
TTop Up [0 3) 1988-01-01 1998-01-01 0 3.91 0.666 0 8.11 0.396 0.631
TTop Up [0 3) 1998-01-01 2008-01-01 2.98 4.73 0.678 1 7.16 0.465 0.592
TTop Up [0 3) 2008-01-01 2018-01-01 2.89 6.3 0.521 4.48 6.53 0.517 0.571

TTop Up [3 6) 1960-01-01 1978-01-01 5.4 5.94 0.801 11 10.5 0.45 0.611
TTop Up [3 6) 1978-01-01 1988-01-01 2.32 8.06 0.479 10.3 10.2 0.484 0.627
TTop Up [3 6) 1988-01-01 1998-01-01 5.83 7.55 0.596 9.21 10.5 0.454 0.611
TTop Up [3 6) 1998-01-01 2008-01-01 6.03 8.51 0.542 7.89 8.81 0.522 0.567
TTop Up [3 6) 2008-01-01 2018-01-01 7.75 9.3 0.506 7.4 7.77 0.566 0.539

TTop Up [6∞) 1960-01-01 1978-01-01 7.66 9.33 0.636 17.2 14.9 0.48 0.559
TTop Up [6∞) 1978-01-01 1988-01-01 1 12.3 0.416 15.1 14.2 0.52 0.605
TTop Up [6∞) 1988-01-01 1998-01-01 1.7 12.9 0.413 12.5 13.7 0.417 0.587
TTop Up [6∞) 1998-01-01 2008-01-01 9.67 12.4 0.5 10.8 11.4 0.57 0.529
TTop Up [6∞) 2008-01-01 2018-01-01 10.5 11.9 0.471 9.22 10 0.535 0.547

TTop Down [0 3) 1960-01-01 1978-01-01 5.71 7.66 0.561 7.98 9.23 0.578 0.558
TTop Down [0 3) 1978-01-01 1988-01-01 5.24 6.77 0.654 7.24 9.57 0.499 0.547
TTop Down [0 3) 1988-01-01 1998-01-01 0.5 7.01 0.543 2.58 8.96 0.508 0.539
TTop Down [0 3) 1998-01-01 2008-01-01 4.5 7.71 0.597 0.974 7.67 0.579 0.493
TTop Down [0 3) 2008-01-01 2018-01-01 5.66 6.55 0.796 3.67 7.42 0.614 0.478

TTop Down [3 6) 1960-01-01 1978-01-01 8.12 8.81 0.645 10.8 10.6 0.569 0.556
TTop Down [3 6) 1978-01-01 1988-01-01 7.81 9.21 0.606 11.6 11.7 0.562 0.54
TTop Down [3 6) 1988-01-01 1998-01-01 6.05 9.01 0.578 10.1 10.6 0.583 0.521
TTop Down [3 6) 1998-01-01 2008-01-01 7.1 8.66 0.598 8.74 9.9 0.611 0.495
TTop Down [3 6) 2008-01-01 2018-01-01 6.89 7.53 0.703 7.56 8.88 0.659 0.488

TTop Down [6∞) 1960-01-01 1978-01-01 3.52 15.6 0.359 14.2 12.9 0.547 0.585
TTop Down [6∞) 1978-01-01 1988-01-01 10.4 11.3 0.582 14.5 15 0.471 0.567
TTop Down [6∞) 1988-01-01 1998-01-01 9.9 10.8 0.756 12.7 14.7 0.583 0.522
TTop Down [6∞) 1998-01-01 2008-01-01 9.7 11.4 0.659 11.8 12.8 0.586 0.52
TTop Down [6∞) 2008-01-01 2018-01-01 8.21 8.89 0.718 9.54 10.9 0.583 0.479

TBot Up [0 3) 1960-01-01 1978-01-01 0 4.31 0.603 5.55 9.71 0.407 0.618
TBot Up [0 3) 1978-01-01 1988-01-01 0 4.65 0.6 3.62 10.2 0.387 0.658
TBot Up [0 3) 1988-01-01 1998-01-01 0 3.95 0.696 0 8.93 0.427 0.619
TBot Up [0 3) 1998-01-01 2008-01-01 0 5.21 0.579 0 8.3 0.44 0.575
TBot Up [0 3) 2008-01-01 2018-01-01 0.5 6.48 0.526 3.1 8.12 0.432 0.546

TBot Up [3 6) 1960-01-01 1978-01-01 5.61 6.99 0.652 11.3 11.4 0.383 0.574
TBot Up [3 6) 1978-01-01 1988-01-01 1 9.08 0.421 12 11.8 0.417 0.618
TBot Up [3 6) 1988-01-01 1998-01-01 5.96 8.36 0.551 10.2 11 0.479 0.606



80 CHAPTER 7. US EQUITY RESULTS

Table 7.1: US Equity GEV Model Parameter Estimates (continued)

Type hσ Period µ1 σ1 ξ1 µ2 σ2 ξ2 p

TBot Up [3 6) 1998-01-01 2008-01-01 5.93 9.36 0.516 7.73 10.9 0.428 0.56
TBot Up [3 6) 2008-01-01 2018-01-01 8.2 9.88 0.572 7.84 8.81 0.536 0.525

TBot Up [6∞) 1960-01-01 1978-01-01 7.56 8.62 0.726 14.4 12.6 0.458 0.561
TBot Up [6∞) 1978-01-01 1988-01-01 0.683 12 0.359 14.6 13 0.388 0.591
TBot Up [6∞) 1988-01-01 1998-01-01 6.74 10.6 0.521 12.2 13.6 0.438 0.584
TBot Up [6∞) 1998-01-01 2008-01-01 8.02 11.6 0.501 12.4 13.6 0.495 0.517
TBot Up [6∞) 2008-01-01 2018-01-01 10.7 11.9 0.639 9.59 9.68 0.655 0.526

TBot Down [0 3) 1960-01-01 1978-01-01 0 8.65 0.408 7.43 9 0.547 0.57
TBot Down [0 3) 1978-01-01 1988-01-01 0 7.44 0.53 6.9 9.59 0.538 0.538
TBot Down [0 3) 1988-01-01 1998-01-01 0 7.02 0.589 0 8.35 0.537 0.538
TBot Down [0 3) 1998-01-01 2008-01-01 1 8.37 0.55 2.28 8.41 0.598 0.523
TBot Down [0 3) 2008-01-01 2018-01-01 5.63 6.97 0.695 4.5 8.44 0.566 0.485

TBot Down [3 6) 1960-01-01 1978-01-01 8.39 9.66 0.531 10.9 10.8 0.532 0.577
TBot Down [3 6) 1978-01-01 1988-01-01 1 11.9 0.377 11.9 11.8 0.564 0.547
TBot Down [3 6) 1988-01-01 1998-01-01 6.26 9.55 0.516 10.4 10.7 0.56 0.528
TBot Down [3 6) 1998-01-01 2008-01-01 7.46 8.96 0.68 8.8 9.95 0.627 0.519
TBot Down [3 6) 2008-01-01 2018-01-01 6.75 7 0.725 7.97 10.4 0.524 0.489

TBot Down [6∞) 1960-01-01 1978-01-01 10.4 10.6 0.586 13.6 12.5 0.531 0.59
TBot Down [6∞) 1978-01-01 1988-01-01 6.79 13.5 0.429 13.7 13.1 0.561 0.572
TBot Down [6∞) 1988-01-01 1998-01-01 1.68 15 0.427 11.9 12.8 0.574 0.524
TBot Down [6∞) 1998-01-01 2008-01-01 10.4 12.9 0.613 12 12.6 0.628 0.531
TBot Down [6∞) 2008-01-01 2018-01-01 7.77 8.04 0.703 10.2 10.5 0.605 0.489

Table 7.2: US Equity In-Sample Triangle Cumulative Deviations Tests

p-value

Win Distribution Loss Distribution

Type hσ Period pGT1(t) GT1(t) (1− p)GT2(t) GT2(t)

TTop Up [0 3) 1960-01-01 1978-01-01 0.926 0.930 0.969 0.965
TTop Up [0 3) 1978-01-01 1988-01-01 0.871 0.872 0.971 0.972
TTop Up [0 3) 1988-01-01 1998-01-01 0.998 0.997 0.992 0.994
TTop Up [0 3) 1998-01-01 2008-01-01 0.953 0.954 0.996 0.996
TTop Up [0 3) 2008-01-01 2018-01-01 0.993 0.992 0.968 0.968

TTop Up [3 6) 1960-01-01 1978-01-01 0.889 0.889 0.897 0.899
TTop Up [3 6) 1978-01-01 1988-01-01 0.914 0.915 0.996 0.995
TTop Up [3 6) 1988-01-01 1998-01-01 0.897 0.897 0.934 0.936
TTop Up [3 6) 1998-01-01 2008-01-01 0.978 0.976 0.948 0.952
TTop Up [3 6) 2008-01-01 2018-01-01 0.962 0.963 0.988 0.988

TTop Up [6∞) 1960-01-01 1978-01-01 0.970 0.855 0.740 0.868
TTop Up [6∞) 1978-01-01 1988-01-01 0.985 0.980 0.967 0.973
TTop Up [6∞) 1988-01-01 1998-01-01 0.977 0.977 0.921 0.921
TTop Up [6∞) 1998-01-01 2008-01-01 0.905 0.873 0.976 0.978



7.2. INTENSITY MODEL 81

Table 7.2: US Equity In-Sample Triangle Cumulative Deviations Tests
(continued)

Type hσ Period pGT1(t) GT1(t) (1− p)GT2(t) GT2(t)

TTop Up [6∞) 2008-01-01 2018-01-01 0.928 0.860 0.912 0.920

TTop Down [0 3) 1960-01-01 1978-01-01 0.854 0.853 0.981 0.983
TTop Down [0 3) 1978-01-01 1988-01-01 0.975 0.978 0.995 0.992
TTop Down [0 3) 1988-01-01 1998-01-01 0.971 0.976 0.984 0.984
TTop Down [0 3) 1998-01-01 2008-01-01 0.974 0.974 0.986 0.888
TTop Down [0 3) 2008-01-01 2018-01-01 0.926 0.927 0.973 0.973

TTop Down [3 6) 1960-01-01 1978-01-01 0.905 0.906 0.903 0.903
TTop Down [3 6) 1978-01-01 1988-01-01 0.859 0.859 0.959 0.960
TTop Down [3 6) 1988-01-01 1998-01-01 0.898 0.898 0.945 0.946
TTop Down [3 6) 1998-01-01 2008-01-01 0.957 0.958 0.872 0.871
TTop Down [3 6) 2008-01-01 2018-01-01 0.843 0.844 0.953 0.954

TTop Down [6∞) 1960-01-01 1978-01-01 0.945 0.947 0.999 1.000
TTop Down [6∞) 1978-01-01 1988-01-01 0.914 0.915 0.996 0.996
TTop Down [6∞) 1988-01-01 1998-01-01 0.838 0.913 0.950 0.971
TTop Down [6∞) 1998-01-01 2008-01-01 0.982 0.948 0.990 0.753
TTop Down [6∞) 2008-01-01 2018-01-01 0.933 0.933 0.968 0.993

TBot Up [0 3) 1960-01-01 1978-01-01 0.953 0.959 0.996 0.999
TBot Up [0 3) 1978-01-01 1988-01-01 0.956 0.958 0.990 0.988
TBot Up [0 3) 1988-01-01 1998-01-01 0.905 0.907 0.981 0.981
TBot Up [0 3) 1998-01-01 2008-01-01 0.996 0.995 0.965 0.965
TBot Up [0 3) 2008-01-01 2018-01-01 0.951 0.952 0.998 0.998

TBot Up [3 6) 1960-01-01 1978-01-01 0.973 0.973 0.894 0.896
TBot Up [3 6) 1978-01-01 1988-01-01 0.965 0.965 0.983 0.984
TBot Up [3 6) 1988-01-01 1998-01-01 0.936 0.918 0.915 0.939
TBot Up [3 6) 1998-01-01 2008-01-01 0.819 0.834 0.998 0.987
TBot Up [3 6) 2008-01-01 2018-01-01 0.947 0.953 0.940 0.935

TBot Up [6∞) 1960-01-01 1978-01-01 0.880 0.880 0.990 0.991
TBot Up [6∞) 1978-01-01 1988-01-01 0.975 0.974 0.956 0.957
TBot Up [6∞) 1988-01-01 1998-01-01 0.917 0.885 0.869 0.907
TBot Up [6∞) 1998-01-01 2008-01-01 0.879 0.881 0.904 0.903
TBot Up [6∞) 2008-01-01 2018-01-01 0.900 0.977 0.940 0.942

TBot Down [0 3) 1960-01-01 1978-01-01 0.995 0.996 0.999 0.998
TBot Down [0 3) 1978-01-01 1988-01-01 0.952 0.949 0.982 0.985
TBot Down [0 3) 1988-01-01 1998-01-01 0.904 0.678 0.998 0.899
TBot Down [0 3) 1998-01-01 2008-01-01 0.951 0.704 0.985 0.958
TBot Down [0 3) 2008-01-01 2018-01-01 0.818 0.821 0.937 0.866

TBot Down [3 6) 1960-01-01 1978-01-01 0.841 0.834 0.929 0.939
TBot Down [3 6) 1978-01-01 1988-01-01 0.968 0.967 0.738 0.741
TBot Down [3 6) 1988-01-01 1998-01-01 0.942 0.943 0.911 0.911
TBot Down [3 6) 1998-01-01 2008-01-01 0.952 0.952 0.963 0.963
TBot Down [3 6) 2008-01-01 2018-01-01 0.971 0.970 0.971 0.972

TBot Down [6∞) 1960-01-01 1978-01-01 0.980 0.980 0.893 0.893
TBot Down [6∞) 1978-01-01 1988-01-01 0.981 0.980 0.983 0.984
TBot Down [6∞) 1988-01-01 1998-01-01 0.986 0.986 0.943 0.944
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Table 7.2: US Equity In-Sample Triangle Cumulative Deviations Tests
(continued)

Type hσ Period pGT1(t) GT1(t) (1− p)GT2(t) GT2(t)

TBot Down [6∞) 1998-01-01 2008-01-01 0.990 0.634 0.970 0.920
TBot Down [6∞) 2008-01-01 2018-01-01 0.955 0.959 0.956 0.952

Table 7.3: US Equity In Sample Naive Event Cumulative Deviations Tests

p-value

Win Distribution Loss Distribution

Type hσ Period pGT1(t) GT1(t) (1− p)GT2(t) GT2(t)

TTop Up [0 3) 1960-01-01 1978-01-01 0.000 0.000 0.000 0.353
TTop Up [0 3) 1978-01-01 1988-01-01 0.000 0.000 0.000 0.255
TTop Up [0 3) 1988-01-01 1998-01-01 0.000 0.000 0.000 0.162
TTop Up [0 3) 1998-01-01 2008-01-01 0.000 0.000 0.000 0.445
TTop Up [0 3) 2008-01-01 2018-01-01 0.000 0.024 0.000 0.654

TTop Up [3 6) 1960-01-01 1978-01-01 0.000 0.000 0.000 0.159
TTop Up [3 6) 1978-01-01 1988-01-01 0.000 0.000 0.000 0.187
TTop Up [3 6) 1988-01-01 1998-01-01 0.009 0.000 0.001 0.122
TTop Up [3 6) 1998-01-01 2008-01-01 0.000 0.000 0.000 0.217
TTop Up [3 6) 2008-01-01 2018-01-01 0.002 0.007 0.001 0.643

TTop Up [6∞) 1960-01-01 1978-01-01 0.000 0.000 0.000 0.010
TTop Up [6∞) 1978-01-01 1988-01-01 0.000 0.000 0.000 0.001
TTop Up [6∞) 1988-01-01 1998-01-01 0.000 0.000 0.000 0.003
TTop Up [6∞) 1998-01-01 2008-01-01 0.000 0.000 0.000 0.000
TTop Up [6∞) 2008-01-01 2018-01-01 0.000 0.000 0.000 0.000

TTop Down [0 3) 1960-01-01 1978-01-01 0.000 0.000 0.000 0.638
TTop Down [0 3) 1978-01-01 1988-01-01 0.000 0.000 0.000 0.492
TTop Down [0 3) 1988-01-01 1998-01-01 0.000 0.000 0.000 0.262
TTop Down [0 3) 1998-01-01 2008-01-01 0.000 0.000 0.000 0.854
TTop Down [0 3) 2008-01-01 2018-01-01 0.004 0.067 0.009 0.121

TTop Down [3 6) 1960-01-01 1978-01-01 0.000 0.000 0.000 0.105
TTop Down [3 6) 1978-01-01 1988-01-01 0.000 0.000 0.000 0.182
TTop Down [3 6) 1988-01-01 1998-01-01 0.000 0.000 0.000 0.159
TTop Down [3 6) 1998-01-01 2008-01-01 0.000 0.000 0.000 0.289
TTop Down [3 6) 2008-01-01 2018-01-01 0.000 0.042 0.000 0.974

TTop Down [6∞) 1960-01-01 1978-01-01 0.000 0.000 0.000 0.000
TTop Down [6∞) 1978-01-01 1988-01-01 0.000 0.000 0.000 0.001
TTop Down [6∞) 1988-01-01 1998-01-01 0.000 0.000 0.000 0.052
TTop Down [6∞) 1998-01-01 2008-01-01 0.000 0.000 0.000 0.000
TTop Down [6∞) 2008-01-01 2018-01-01 0.000 0.000 0.000 0.005

TBot Up [0 3) 1960-01-01 1978-01-01 0.000 0.000 0.000 0.534
TBot Up [0 3) 1978-01-01 1988-01-01 0.000 0.000 0.000 0.422
TBot Up [0 3) 1988-01-01 1998-01-01 0.000 0.000 0.000 0.431
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Table 7.3: US Equity In Sample Naive Event Cumulative Deviations Tests
(continued)

Type hσ Period pGT1(t) GT1(t) (1− p)GT2(t) GT2(t)

TBot Up [0 3) 1998-01-01 2008-01-01 0.000 0.000 0.000 0.774
TBot Up [0 3) 2008-01-01 2018-01-01 0.000 0.042 0.000 0.400

TBot Up [3 6) 1960-01-01 1978-01-01 0.000 0.000 0.000 0.206
TBot Up [3 6) 1978-01-01 1988-01-01 0.000 0.000 0.000 0.270
TBot Up [3 6) 1988-01-01 1998-01-01 0.000 0.000 0.000 0.178
TBot Up [3 6) 1998-01-01 2008-01-01 0.000 0.000 0.000 0.138
TBot Up [3 6) 2008-01-01 2018-01-01 0.000 0.073 0.000 0.376

TBot Up [6∞) 1960-01-01 1978-01-01 0.089 0.000 0.062 0.023
TBot Up [6∞) 1978-01-01 1988-01-01 0.081 0.000 0.037 0.003
TBot Up [6∞) 1988-01-01 1998-01-01 0.611 0.000 0.537 0.057
TBot Up [6∞) 1998-01-01 2008-01-01 0.000 0.000 0.000 0.000
TBot Up [6∞) 2008-01-01 2018-01-01 0.000 0.000 0.000 0.000

TBot Down [0 3) 1960-01-01 1978-01-01 0.000 0.000 0.000 0.111
TBot Down [0 3) 1978-01-01 1988-01-01 0.000 0.000 0.000 0.330
TBot Down [0 3) 1988-01-01 1998-01-01 0.000 0.000 0.000 0.993
TBot Down [0 3) 1998-01-01 2008-01-01 0.000 0.000 0.000 0.617
TBot Down [0 3) 2008-01-01 2018-01-01 0.367 0.049 0.472 0.502

TBot Down [3 6) 1960-01-01 1978-01-01 0.000 0.000 0.000 0.036
TBot Down [3 6) 1978-01-01 1988-01-01 0.000 0.000 0.000 0.045
TBot Down [3 6) 1988-01-01 1998-01-01 0.000 0.000 0.000 0.104
TBot Down [3 6) 1998-01-01 2008-01-01 0.000 0.000 0.000 0.637
TBot Down [3 6) 2008-01-01 2018-01-01 0.000 0.001 0.000 0.608

TBot Down [6∞) 1960-01-01 1978-01-01 0.000 0.000 0.000 0.000
TBot Down [6∞) 1978-01-01 1988-01-01 0.000 0.000 0.000 0.003
TBot Down [6∞) 1988-01-01 1998-01-01 0.000 0.000 0.000 0.010
TBot Down [6∞) 1998-01-01 2008-01-01 0.000 0.000 0.000 0.000
TBot Down [6∞) 2008-01-01 2018-01-01 0.000 0.000 0.000 0.000

Table 7.4: US Equity Triangle Forward Cumulative Deviations Tests

p-value

Win Distribution Loss Distribution

Type hσ Period pGT1(t) GT1(t) (1− p)GT2(t) GT2(t)

TTop Up [0 3) 1960-01-01 1978-01-01 0.026 0.836 0.009 0.951
TTop Up [0 3) 1978-01-01 1988-01-01 0.000 0.988 0.000 0.995
TTop Up [0 3) 1988-01-01 1998-01-01 0.000 0.956 0.000 0.999
TTop Up [0 3) 1998-01-01 2008-01-01 0.007 0.974 0.001 0.973
TTop Up [0 3) 2008-01-01 2018-01-01 NA NA NA NA

TTop Up [3 6) 1960-01-01 1978-01-01 0.127 0.709 0.156 0.997
TTop Up [3 6) 1978-01-01 1988-01-01 0.202 0.948 0.068 0.922
TTop Up [3 6) 1988-01-01 1998-01-01 0.000 0.967 0.000 0.966
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Table 7.4: US Equity Triangle Forward Cumulative Deviations Tests
(continued)

Type hσ Period pGT1(t) GT1(t) (1− p)GT2(t) GT2(t)

TTop Up [3 6) 1998-01-01 2008-01-01 0.003 0.954 0.001 0.991
TTop Up [3 6) 2008-01-01 2018-01-01 NA NA NA NA

TTop Up [6∞) 1960-01-01 1978-01-01 0.006 0.933 0.003 0.980
TTop Up [6∞) 1978-01-01 1988-01-01 0.207 0.978 0.069 0.821
TTop Up [6∞) 1988-01-01 1998-01-01 0.000 0.938 0.000 0.996
TTop Up [6∞) 1998-01-01 2008-01-01 0.013 0.766 0.021 0.868
TTop Up [6∞) 2008-01-01 2018-01-01 NA NA NA NA

TTop Down [0 3) 1960-01-01 1978-01-01 0.150 0.990 0.099 0.981
TTop Down [0 3) 1978-01-01 1988-01-01 0.317 0.944 0.235 0.987
TTop Down [0 3) 1988-01-01 1998-01-01 0.000 0.984 0.000 0.992
TTop Down [0 3) 1998-01-01 2008-01-01 0.044 0.980 0.042 0.976
TTop Down [0 3) 2008-01-01 2018-01-01 NA NA NA NA

TTop Down [3 6) 1960-01-01 1978-01-01 0.336 0.838 0.177 0.964
TTop Down [3 6) 1978-01-01 1988-01-01 0.163 0.878 0.082 0.947
TTop Down [3 6) 1988-01-01 1998-01-01 0.007 0.961 0.003 0.882
TTop Down [3 6) 1998-01-01 2008-01-01 0.556 0.900 0.451 0.963
TTop Down [3 6) 2008-01-01 2018-01-01 NA NA NA NA

TTop Down [6∞) 1960-01-01 1978-01-01 0.370 0.973 0.266 0.992
TTop Down [6∞) 1978-01-01 1988-01-01 0.004 0.974 0.001 0.991
TTop Down [6∞) 1988-01-01 1998-01-01 0.916 0.775 0.862 0.655
TTop Down [6∞) 1998-01-01 2008-01-01 0.000 0.936 0.000 0.978
TTop Down [6∞) 2008-01-01 2018-01-01 NA NA NA NA

TBot Up [0 3) 1960-01-01 1978-01-01 0.000 0.962 0.000 0.987
TBot Up [0 3) 1978-01-01 1988-01-01 0.000 0.949 0.000 0.988
TBot Up [0 3) 1988-01-01 1998-01-01 0.000 0.987 0.000 0.965
TBot Up [0 3) 1998-01-01 2008-01-01 0.000 0.941 0.000 0.997
TBot Up [0 3) 2008-01-01 2018-01-01 NA NA NA NA

TBot Up [3 6) 1960-01-01 1978-01-01 0.004 0.888 0.002 0.990
TBot Up [3 6) 1978-01-01 1988-01-01 0.404 0.964 0.245 0.960
TBot Up [3 6) 1988-01-01 1998-01-01 0.000 0.830 0.000 0.976
TBot Up [3 6) 1998-01-01 2008-01-01 0.001 0.974 0.000 0.964
TBot Up [3 6) 2008-01-01 2018-01-01 NA NA NA NA

TBot Up [6∞) 1960-01-01 1978-01-01 0.102 0.834 0.130 0.927
TBot Up [6∞) 1978-01-01 1988-01-01 0.699 0.956 0.550 0.946
TBot Up [6∞) 1988-01-01 1998-01-01 0.000 0.880 0.000 0.942
TBot Up [6∞) 1998-01-01 2008-01-01 0.291 0.736 0.308 0.976
TBot Up [6∞) 2008-01-01 2018-01-01 NA NA NA NA

TBot Down [0 3) 1960-01-01 1978-01-01 0.000 0.985 0.000 0.986
TBot Down [0 3) 1978-01-01 1988-01-01 0.920 0.802 0.980 0.927
TBot Down [0 3) 1988-01-01 1998-01-01 0.019 0.694 0.009 0.889
TBot Down [0 3) 1998-01-01 2008-01-01 0.000 0.886 0.000 0.786
TBot Down [0 3) 2008-01-01 2018-01-01 NA NA NA NA

TBot Down [3 6) 1960-01-01 1978-01-01 0.047 0.928 0.008 0.814
TBot Down [3 6) 1978-01-01 1988-01-01 0.113 0.974 0.056 0.892
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Table 7.4: US Equity Triangle Forward Cumulative Deviations Tests
(continued)

Type hσ Period pGT1(t) GT1(t) (1− p)GT2(t) GT2(t)

TBot Down [3 6) 1988-01-01 1998-01-01 0.359 0.989 0.312 0.978
TBot Down [3 6) 1998-01-01 2008-01-01 0.002 0.970 0.001 0.935
TBot Down [3 6) 2008-01-01 2018-01-01 NA NA NA NA

TBot Down [6∞) 1960-01-01 1978-01-01 0.358 0.951 0.236 0.989
TBot Down [6∞) 1978-01-01 1988-01-01 0.002 0.991 0.000 0.947
TBot Down [6∞) 1988-01-01 1998-01-01 0.423 0.896 0.413 0.950
TBot Down [6∞) 1998-01-01 2008-01-01 0.000 0.960 0.000 0.922
TBot Down [6∞) 2008-01-01 2018-01-01 NA NA NA NA
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Figure 7.5: Triangle Intensity vs Naive Empirical TTop Up Profile hσ ∈ [0, 3)
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Figure 7.6: Triangle Intensity vs Naive Empirical TTop Up Profile hσ ∈ [3, 6)
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Figure 7.7: Triangle Intensity vs Naive Empirical TTop Down Profile hσ ∈ [0, 3)
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Figure 7.8: Triangle Intensity vs Naive Empirical TTop Down Profile hσ ∈ [3, 6)
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Figure 7.9: Triangle Intensity vs Naive Empirical TBot Up Profile hσ ∈ [0, 3)
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Figure 7.10: Triangle Intensity vs Naive Empirical TBot Up Profile hσ ∈ [3, 6)
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Figure 7.11: Triangle Intensity vs Naive Empirical TBot Down Profile hσ ∈ [0, 3)
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Figure 7.12: Triangle Intensity vs Naive Empirical TBot Down Profile hσ ∈ [3, 6)
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7.3 Effect Size Heuristics

Table 7.5: Effect Size Heuristics Symbol Key
Category Measure Symbol

Stopping Time Mean Stopping Time µτ
Standard Deviation Stopping time στ

Bet Return Mean bet return µrb
Standard deviation of bet return σrb

Leveraged Return
Mean leveraged return µrl
Standard deviation leveraged return σrl
Cohen’s d NA

Using the percentile bootstrap method, I calculate confidence intervals
for mean and standard deviation across: stopping time, bet return and
leveraged return. These results can be seen in Table 7.6 for Triangles
and 7.7 for Naive trades where they are reported in parameter[0.025
percentile, 0.975 percentile] confidence interval form. The same Cohen’s
d is reported on both tables for convenience.

The results generally show that all types of Triangles over most hσ
sections have historically had a significant contribution to positive
returns, but that these have decreased over time, in some cases
becoming slightly negative in later years. This is well summarised by Cohen’s d showing over subsequent time sections a decreasing effect
size difference normalised by volatility, up to time section 2008 to 2018 where all types can be considered to have a negligible leveraged
return effect size. (Though some Triangle types become of negligible difference earlier and in later subsequent time periods this measure
wavers only slightly.)

Table 7.6: US Stock Triangle Momentum Heuristics

Stopping Time Bet Return Leveraged Return

Type hσ Period µτ στ µrb σrb µrl σrl Cohen’s d

TTop Up [0 3) 1960-01-01 1978-01-01 4.46[4.38,4.53] 2.73[2.69,2.77] 0.472[0.448,0.496] 0.881[0.868,0.894] 0.217[0.206,0.228] 0.408[0.399,0.418] 0.398[0.375,0.422]

TTop Up [0 3) 1978-01-01 1988-01-01 4.54[4.46,4.61] 2.74[2.7,2.78] 0.477[0.452,0.501] 0.879[0.865,0.892] 0.199[0.188,0.21] 0.406[0.396,0.416] 0.346[0.324,0.368]

TTop Up [0 3) 1988-01-01 1998-01-01 4.21[4.14,4.28] 2.79[2.75,2.82] 0.371[0.349,0.393] 0.928[0.919,0.937] 0.176[0.164,0.188] 0.49[0.481,0.499] 0.304[0.282,0.327]

TTop Up [0 3) 1998-01-01 2008-01-01 4.47[4.41,4.54] 2.74[2.71,2.78] 0.261[0.238,0.283] 0.965[0.959,0.971] 0.109[0.0989,0.12] 0.457[0.448,0.465] 0.221[0.202,0.241]

TTop Up [0 3) 2008-01-01 2018-01-01 4.82[4.74,4.89] 2.74[2.71,2.78] 0.147[0.121,0.172] 0.989[0.985,0.992] 0.0611[0.05,0.0722] 0.426[0.417,0.435] 0.139[0.117,0.161]

TTop Up [3 6) 1960-01-01 1978-01-01 5.18[5.03,5.32] 2.66[2.59,2.73] 0.443[0.393,0.491] 0.896[0.87,0.919] 0.154[0.138,0.172] 0.308[0.291,0.325] 0.376[0.326,0.426]

TTop Up [3 6) 1978-01-01 1988-01-01 5.17[5.02,5.32] 2.72[2.65,2.79] 0.429[0.379,0.478] 0.903[0.877,0.925] 0.152[0.134,0.17] 0.328[0.31,0.346] 0.337[0.286,0.39]

TTop Up [3 6) 1988-01-01 1998-01-01 5.26[5.15,5.38] 2.69[2.63,2.75] 0.359[0.317,0.399] 0.933[0.916,0.948] 0.119[0.104,0.134] 0.331[0.317,0.345] 0.267[0.224,0.31]
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Table 7.6: US Stock Triangle Momentum Heuristics (continued)

Type hσ Period µτ στ µrb σrb µrl σrl Cohen’s d

TTop Up [3 6) 1998-01-01 2008-01-01 5.33[5.23,5.43] 2.73[2.68,2.77] 0.17[0.135,0.204] 0.985[0.978,0.99] 0.0627[0.0504,0.0747] 0.35[0.338,0.361] 0.166[0.135,0.198]

TTop Up [3 6) 2008-01-01 2018-01-01 5.6[5.51,5.7] 2.7[2.66,2.75] 0.025[-0.011,0.061] 0.999[0.997,1] 0.0118[-0.0000801,0.0239] 0.335[0.322,0.346] 0.0584[0.0273,0.0892]

TTop Up [6∞) 1960-01-01 1978-01-01 5.72[5.51,5.93] 2.65[2.55,2.74] 0.469[0.399,0.539] 0.882[0.841,0.917] 0.149[0.128,0.169] 0.256[0.236,0.277] 0.405[0.334,0.478]

TTop Up [6∞) 1978-01-01 1988-01-01 5.67[5.46,5.89] 2.76[2.65,2.85] 0.467[0.395,0.537] 0.884[0.843,0.918] 0.147[0.124,0.171] 0.295[0.269,0.321] 0.368[0.298,0.44]

TTop Up [6∞) 1988-01-01 1998-01-01 5.6[5.44,5.78] 2.73[2.64,2.8] 0.32[0.258,0.378] 0.947[0.925,0.965] 0.0974[0.0769,0.118] 0.332[0.309,0.354] 0.225[0.162,0.289]

TTop Up [6∞) 1998-01-01 2008-01-01 5.76[5.65,5.86] 2.64[2.59,2.69] 0.059[0.019,0.099] 0.998[0.995,0.999] 0.0259[0.0134,0.0385] 0.317[0.304,0.33] 0.0833[0.0462,0.12]

TTop Up [6∞) 2008-01-01 2018-01-01 5.78[5.69,5.86] 2.62[2.58,2.66] 0.019[-0.014,0.052] 0.999[0.998,0.999] 0.00413[-0.0065,0.0146] 0.308[0.297,0.319] 0.0515[0.0199,0.0826]

TTop Down [0 3) 1960-01-01 1978-01-01 5.3[5.22,5.38] 2.69[2.65,2.73] 0.203[0.173,0.231] 0.979[0.972,0.984] 0.0704[0.0599,0.0806] 0.354[0.344,0.364] 0.147[0.126,0.169]

TTop Down [0 3) 1978-01-01 1988-01-01 5.14[5.05,5.22] 2.74[2.7,2.77] 0.2[0.172,0.23] 0.979[0.973,0.985] 0.075[0.0635,0.0858] 0.375[0.364,0.385] 0.144[0.121,0.167]

TTop Down [0 3) 1988-01-01 1998-01-01 4.8[4.73,4.87] 2.79[2.76,2.83] 0.142[0.116,0.167] 0.99[0.986,0.993] 0.0549[0.0434,0.0663] 0.443[0.434,0.452] 0.0925[0.0713,0.114]

TTop Down [0 3) 1998-01-01 2008-01-01 4.86[4.78,4.92] 2.76[2.72,2.79] -0.01[-0.035,0.016] 1[0.999,1] -0.0186[-0.0295,-0.00806] 0.428[0.419,0.437] -0.0809[-0.101,-0.0612]

TTop Down [0 3) 2008-01-01 2018-01-01 4.94[4.86,5.01] 2.72[2.68,2.76] -0.035[-0.064,-0.007] 0.999[0.998,1] -0.0288[-0.0403,-0.0173] 0.408[0.398,0.418] -0.0884[-0.111,-0.0655]

TTop Down [3 6) 1960-01-01 1978-01-01 5.78[5.63,5.94] 2.61[2.53,2.68] 0.242[0.184,0.3] 0.97[0.953,0.983] 0.0722[0.0556,0.0896] 0.287[0.269,0.305] 0.24[0.191,0.29]

TTop Down [3 6) 1978-01-01 1988-01-01 5.69[5.53,5.85] 2.66[2.58,2.73] 0.223[0.161,0.282] 0.975[0.959,0.987] 0.0722[0.0542,0.0903] 0.296[0.277,0.314] 0.233[0.182,0.285]

TTop Down [3 6) 1988-01-01 1998-01-01 5.51[5.37,5.64] 2.72[2.65,2.78] 0.161[0.112,0.211] 0.986[0.977,0.993] 0.068[0.0506,0.0855] 0.346[0.328,0.362] 0.198[0.15,0.245]

TTop Down [3 6) 1998-01-01 2008-01-01 5.42[5.31,5.52] 2.64[2.59,2.69] 0.055[0.015,0.094] 0.998[0.995,0.999] 0.021[0.00807,0.0338] 0.334[0.321,0.346] 0.0238[-0.00973,0.0569]

TTop Down [3 6) 2008-01-01 2018-01-01 5.32[5.22,5.43] 2.64[2.59,2.7] 0.019[-0.022,0.06] 0.999[0.998,1] 0.00292[-0.0107,0.0167] 0.34[0.327,0.353] -0.0231[-0.0589,0.0121]

TTop Down [6∞) 1960-01-01 1978-01-01 6.1[5.88,6.32] 2.59[2.48,2.69] 0.292[0.212,0.37] 0.955[0.927,0.976] 0.0871[0.0646,0.11] 0.268[0.242,0.293] 0.312[0.237,0.388]

TTop Down [6∞) 1978-01-01 1988-01-01 5.93[5.7,6.16] 2.65[2.53,2.75] 0.31[0.228,0.393] 0.95[0.919,0.974] 0.0763[0.0522,0.1] 0.276[0.248,0.302] 0.262[0.189,0.336]

TTop Down [6∞) 1988-01-01 1998-01-01 5.87[5.68,6.05] 2.65[2.57,2.73] 0.151[0.082,0.216] 0.988[0.975,0.996] 0.0368[0.0162,0.0574] 0.3[0.278,0.323] 0.0875[0.0291,0.144]

TTop Down [6∞) 1998-01-01 2008-01-01 5.76[5.64,5.87] 2.62[2.57,2.68] 0.114[0.071,0.157] 0.993[0.987,0.997] 0.0396[0.0267,0.0527] 0.305[0.292,0.319] 0.0701[0.0323,0.108]

TTop Down [6∞) 2008-01-01 2018-01-01 5.53[5.44,5.62] 2.61[2.56,2.66] 0.04[0.003,0.077] 0.999[0.996,0.999] 0.00736[-0.00453,0.0193] 0.321[0.309,0.333] -0.0145[-0.0493,0.0202]

TBot Up [0 3) 1960-01-01 1978-01-01 4.45[4.37,4.53] 2.78[2.74,2.82] 0.406[0.38,0.431] 0.914[0.902,0.924] 0.2[0.188,0.213] 0.434[0.424,0.444] 0.352[0.329,0.375]

TBot Up [0 3) 1978-01-01 1988-01-01 4.41[4.34,4.49] 2.75[2.7,2.79] 0.484[0.459,0.508] 0.875[0.861,0.889] 0.207[0.195,0.219] 0.43[0.419,0.441] 0.374[0.35,0.397]

TBot Up [0 3) 1988-01-01 1998-01-01 4.13[4.07,4.2] 2.84[2.8,2.88] 0.377[0.355,0.398] 0.926[0.917,0.935] 0.182[0.169,0.194] 0.516[0.507,0.525] 0.318[0.296,0.34]

TBot Up [0 3) 1998-01-01 2008-01-01 4.53[4.46,4.59] 2.8[2.77,2.84] 0.24[0.217,0.263] 0.97[0.964,0.976] 0.103[0.0925,0.114] 0.469[0.46,0.478] 0.22[0.2,0.24]

TBot Up [0 3) 2008-01-01 2018-01-01 4.82[4.74,4.89] 2.79[2.75,2.83] 0.134[0.107,0.16] 0.991[0.987,0.994] 0.0621[0.0505,0.0739] 0.438[0.428,0.448] 0.152[0.13,0.175]

TBot Up [3 6) 1960-01-01 1978-01-01 5.44[5.26,5.61] 2.8[2.72,2.87] 0.374[0.318,0.432] 0.927[0.902,0.948] 0.134[0.113,0.154] 0.331[0.31,0.352] 0.297[0.239,0.355]

TBot Up [3 6) 1978-01-01 1988-01-01 5.32[5.14,5.49] 2.74[2.65,2.82] 0.443[0.384,0.501] 0.896[0.866,0.923] 0.153[0.133,0.173] 0.321[0.299,0.343] 0.353[0.294,0.413]

TBot Up [3 6) 1988-01-01 1998-01-01 5.42[5.27,5.56] 2.7[2.64,2.77] 0.347[0.296,0.397] 0.938[0.918,0.955] 0.112[0.0939,0.129] 0.326[0.308,0.344] 0.273[0.224,0.321]
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Table 7.6: US Stock Triangle Momentum Heuristics (continued)

Type hσ Period µτ στ µrb σrb µrl σrl Cohen’s d

TBot Up [3 6) 1998-01-01 2008-01-01 5.39[5.28,5.49] 2.71[2.66,2.76] 0.202[0.163,0.242] 0.979[0.97,0.986] 0.0583[0.0439,0.0726] 0.355[0.341,0.369] 0.16[0.124,0.197]

TBot Up [3 6) 2008-01-01 2018-01-01 5.59[5.47,5.71] 2.7[2.64,2.76] 0.02[-0.023,0.063] 0.999[0.997,0.999] 0.00529[-0.00858,0.0197] 0.337[0.322,0.351] 0.0399[0.0034,0.0765]

TBot Up [6∞) 1960-01-01 1978-01-01 5.72[5.48,5.95] 2.69[2.58,2.79] 0.403[0.322,0.483] 0.915[0.876,0.946] 0.128[0.104,0.152] 0.284[0.256,0.311] 0.327[0.251,0.405]

TBot Up [6∞) 1978-01-01 1988-01-01 5.71[5.44,5.97] 2.81[2.68,2.93] 0.457[0.37,0.543] 0.888[0.839,0.927] 0.139[0.108,0.169] 0.32[0.285,0.354] 0.359[0.266,0.449]

TBot Up [6∞) 1988-01-01 1998-01-01 5.56[5.35,5.78] 2.79[2.68,2.88] 0.328[0.255,0.399] 0.944[0.916,0.966] 0.108[0.0813,0.134] 0.344[0.316,0.37] 0.301[0.23,0.373]

TBot Up [6∞) 1998-01-01 2008-01-01 5.77[5.64,5.9] 2.68[2.62,2.74] 0.153[0.106,0.201] 0.987[0.979,0.994] 0.0569[0.0418,0.0717] 0.316[0.3,0.331] 0.184[0.143,0.227]

TBot Up [6∞) 2008-01-01 2018-01-01 5.9[5.79,6.02] 2.65[2.6,2.7] -0.017[-0.058,0.025] 0.999[0.997,0.999] 0.00385[-0.00836,0.0163] 0.291[0.278,0.303] 0.0365[0.000313,0.0728]

TBot Down [0 3) 1960-01-01 1978-01-01 5.22[5.15,5.29] 2.81[2.77,2.84] 0.191[0.166,0.216] 0.981[0.976,0.985] 0.0796[0.0698,0.0893] 0.383[0.374,0.392] 0.157[0.137,0.176]

TBot Down [0 3) 1978-01-01 1988-01-01 5.05[4.98,5.13] 2.78[2.74,2.81] 0.154[0.126,0.182] 0.988[0.983,0.991] 0.0737[0.0626,0.0848] 0.404[0.394,0.414] 0.125[0.103,0.148]

TBot Down [0 3) 1988-01-01 1998-01-01 4.6[4.53,4.66] 2.85[2.82,2.88] 0.116[0.093,0.138] 0.993[0.99,0.995] 0.0439[0.0327,0.055] 0.488[0.479,0.496] 0.0516[0.0308,0.0723]

TBot Down [0 3) 1998-01-01 2008-01-01 4.86[4.79,4.92] 2.79[2.76,2.82] 0.053[0.03,0.076] 0.998[0.997,0.999] 0.0173[0.00732,0.0271] 0.439[0.43,0.447] -0.0309[-0.0491,-0.0127]

TBot Down [0 3) 2008-01-01 2018-01-01 5[4.93,5.07] 2.71[2.68,2.74] 0.002[-0.024,0.029] 1[0.999,1] -0.00363[-0.0145,0.00681] 0.399[0.389,0.408] -0.0556[-0.0757,-0.0351]

TBot Down [3 6) 1960-01-01 1978-01-01 5.83[5.69,5.97] 2.62[2.55,2.68] 0.249[0.197,0.303] 0.968[0.953,0.98] 0.071[0.0557,0.0861] 0.282[0.266,0.298] 0.228[0.182,0.273]

TBot Down [3 6) 1978-01-01 1988-01-01 5.69[5.53,5.85] 2.64[2.57,2.71] 0.235[0.177,0.294] 0.972[0.956,0.984] 0.0805[0.0626,0.0983] 0.3[0.281,0.318] 0.257[0.205,0.309]

TBot Down [3 6) 1988-01-01 1998-01-01 5.61[5.47,5.75] 2.72[2.66,2.79] 0.16[0.11,0.209] 0.986[0.977,0.993] 0.0679[0.0513,0.0849] 0.329[0.312,0.346] 0.191[0.145,0.239]

TBot Down [3 6) 1998-01-01 2008-01-01 5.39[5.29,5.49] 2.62[2.57,2.67] 0.077[0.039,0.115] 0.997[0.993,0.999] 0.0294[0.0166,0.0426] 0.342[0.329,0.354] 0.0523[0.0194,0.0854]

TBot Down [3 6) 2008-01-01 2018-01-01 5.33[5.22,5.43] 2.6[2.55,2.65] 0.081[0.042,0.12] 0.996[0.992,0.999] 0.0158[0.00286,0.0292] 0.336[0.323,0.349] 0.0049[-0.0295,0.0385]

TBot Down [6∞) 1960-01-01 1978-01-01 6.18[5.99,6.37] 2.54[2.45,2.63] 0.318[0.25,0.386] 0.948[0.922,0.968] 0.0796[0.0621,0.097] 0.238[0.221,0.256] 0.264[0.206,0.325]

TBot Down [6∞) 1978-01-01 1988-01-01 5.9[5.67,6.12] 2.62[2.51,2.72] 0.269[0.19,0.349] 0.963[0.937,0.982] 0.0862[0.0624,0.11] 0.287[0.261,0.312] 0.258[0.187,0.329]

TBot Down [6∞) 1988-01-01 1998-01-01 5.78[5.6,5.98] 2.71[2.62,2.8] 0.105[0.035,0.175] 0.994[0.984,0.999] 0.0371[0.0138,0.0594] 0.328[0.303,0.352] 0.0385[-0.022,0.1]

TBot Down [6∞) 1998-01-01 2008-01-01 5.85[5.73,5.96] 2.59[2.54,2.64] 0.087[0.043,0.132] 0.995[0.991,0.998] 0.0318[0.0187,0.0448] 0.291[0.277,0.305] 0.027[-0.00753,0.062]

TBot Down [6∞) 2008-01-01 2018-01-01 5.7[5.6,5.8] 2.57[2.53,2.62] 0.092[0.056,0.129] 0.995[0.991,0.998] 0.0289[0.0183,0.0398] 0.293[0.282,0.304] 0.0313[-0.000181,0.0634]
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Table 7.7: US Equity Naive Event Heuristics

Stopping Time Bet Return Leveraged Return

Type hσ Period µτ στ µrb σrb µrl σrl Cohen’s d

TTop Up [0 3) 1960-01-01 1978-01-01 4.05[4.02,4.07] 2.73[2.72,2.75] 0.007[-0.002,0.016] 0.999[0.999,0.999] 0.00641[0.00151,0.0114] 0.54[0.537,0.543] 0.398[0.375,0.422]

TTop Up [0 3) 1978-01-01 1988-01-01 3.91[3.89,3.94] 2.72[2.71,2.74] 0.033[0.024,0.042] 0.999[0.998,0.999] 0.00895[0.00392,0.0139] 0.563[0.56,0.567] 0.346[0.324,0.368]

TTop Up [0 3) 1988-01-01 1998-01-01 3.82[3.8,3.84] 2.69[2.67,2.7] 0.03[0.022,0.037] 0.999[0.999,0.999] 0.00434[-0.000102,0.0088] 0.571[0.569,0.574] 0.304[0.282,0.327]

TTop Up [0 3) 1998-01-01 2008-01-01 3.68[3.66,3.69] 2.64[2.63,2.65] -0.003[-0.01,0.004] 0.999[0.999,1] -0.0184[-0.0224,-0.0143] 0.587[0.585,0.589] 0.221[0.202,0.241]

TTop Up [0 3) 2008-01-01 2018-01-01 3.81[3.79,3.83] 2.63[2.62,2.65] 0.001[-0.007,0.009] 0.999[0.999,0.999] -0.0154[-0.0199,-0.0111] 0.558[0.556,0.561] 0.139[0.117,0.161]

TTop Up [3 6) 1960-01-01 1978-01-01 5.13[5.07,5.18] 2.7[2.67,2.72] 0.035[0.016,0.055] 0.998[0.997,0.999] 0.0139[0.00617,0.0215] 0.382[0.375,0.389] 0.376[0.326,0.426]

TTop Up [3 6) 1978-01-01 1988-01-01 5.12[5.07,5.18] 2.71[2.68,2.74] 0.073[0.053,0.093] 0.996[0.994,0.997] 0.0226[0.0148,0.0304] 0.39[0.383,0.397] 0.337[0.286,0.39]

TTop Up [3 6) 1988-01-01 1998-01-01 5.1[5.06,5.14] 2.7[2.68,2.72] 0.075[0.059,0.091] 0.996[0.994,0.997] 0.0182[0.012,0.0243] 0.383[0.377,0.388] 0.267[0.224,0.31]

TTop Up [3 6) 1998-01-01 2008-01-01 4.83[4.8,4.86] 2.69[2.68,2.71] 0.011[0,0.023] 0.999[0.999,0.999] -0.00561[-0.0101,-0.000987] 0.416[0.412,0.42] 0.166[0.135,0.198]

TTop Up [3 6) 2008-01-01 2018-01-01 4.74[4.71,4.77] 2.69[2.67,2.7] -0.006[-0.017,0.006] 0.999[0.999,0.999] -0.0126[-0.0175,-0.0077] 0.425[0.421,0.429] 0.0584[0.0273,0.0892]

TTop Up [6∞) 1960-01-01 1978-01-01 5.74[5.66,5.82] 2.7[2.66,2.73] 0.063[0.034,0.092] 0.996[0.993,0.997] 0.0204[0.011,0.0297] 0.323[0.314,0.333] 0.405[0.334,0.478]

TTop Up [6∞) 1978-01-01 1988-01-01 5.5[5.42,5.58] 2.76[2.72,2.8] 0.078[0.048,0.108] 0.995[0.992,0.997] 0.014[0.00288,0.0254] 0.37[0.359,0.381] 0.368[0.298,0.44]

TTop Up [6∞) 1988-01-01 1998-01-01 5.49[5.43,5.56] 2.72[2.7,2.75] 0.081[0.059,0.104] 0.995[0.993,0.997] 0.0174[0.00905,0.0258] 0.359[0.351,0.367] 0.225[0.162,0.289]

TTop Up [6∞) 1998-01-01 2008-01-01 5.34[5.3,5.37] 2.72[2.7,2.74] 0.001[-0.012,0.014] 0.998[0.998,0.998] -0.00458[-0.00937,0.000231] 0.37[0.366,0.375] 0.0833[0.0462,0.12]

TTop Up [6∞) 2008-01-01 2018-01-01 5.3[5.27,5.33] 2.68[2.67,2.7] -0.016[-0.026,-0.005] 0.998[0.998,0.998] -0.0141[-0.018,-0.0103] 0.359[0.356,0.363] 0.0515[0.0199,0.0826]

TTop Down [0 3) 1960-01-01 1978-01-01 4.09[4.07,4.11] 2.74[2.73,2.75] -0.005[-0.014,0.004] 0.999[0.999,0.999] -0.00687[-0.0115,-0.00217] 0.536[0.533,0.539] 0.147[0.126,0.169]

TTop Down [0 3) 1978-01-01 1988-01-01 4[3.97,4.02] 2.73[2.71,2.74] -0.02[-0.029,-0.011] 0.999[0.999,0.999] -0.00241[-0.00756,0.00262] 0.552[0.549,0.555] 0.144[0.121,0.167]

TTop Down [0 3) 1988-01-01 1998-01-01 3.86[3.84,3.88] 2.71[2.7,2.72] -0.012[-0.019,-0.004] 0.999[0.999,0.999] 0.00312[-0.00136,0.00758] 0.57[0.567,0.573] 0.0925[0.0713,0.114]

TTop Down [0 3) 1998-01-01 2008-01-01 3.66[3.64,3.68] 2.65[2.64,2.66] 0.027[0.02,0.034] 0.999[0.999,0.999] 0.0284[0.0242,0.0325] 0.591[0.589,0.594] -0.0809[-0.101,-0.0612]

TTop Down [0 3) 2008-01-01 2018-01-01 3.77[3.75,3.8] 2.65[2.64,2.66] 0.01[0.001,0.018] 0.999[0.999,0.999] 0.0206[0.0157,0.0255] 0.571[0.568,0.574] -0.0884[-0.111,-0.0655]

TTop Down [3 6) 1960-01-01 1978-01-01 5.15[5.1,5.21] 2.71[2.69,2.74] -0.024[-0.044,-0.004] 0.998[0.998,0.999] -0.0179[-0.0257,-0.0102] 0.384[0.377,0.391] 0.24[0.191,0.29]

TTop Down [3 6) 1978-01-01 1988-01-01 5.12[5.06,5.17] 2.72[2.69,2.75] -0.057[-0.078,-0.036] 0.997[0.996,0.998] -0.0169[-0.0252,-0.00859] 0.391[0.384,0.399] 0.233[0.182,0.285]

TTop Down [3 6) 1988-01-01 1998-01-01 5.05[5.01,5.1] 2.71[2.68,2.73] -0.046[-0.063,-0.029] 0.998[0.997,0.998] -0.00887[-0.0155,-0.0022] 0.394[0.388,0.4] 0.198[0.15,0.245]

TTop Down [3 6) 1998-01-01 2008-01-01 4.8[4.76,4.83] 2.71[2.69,2.72] 0.009[-0.003,0.021] 0.999[0.999,0.999] 0.0111[0.00597,0.0163] 0.423[0.419,0.428] 0.0238[-0.00973,0.0569]

TTop Down [3 6) 2008-01-01 2018-01-01 4.73[4.69,4.76] 2.7[2.68,2.72] 0.014[0.001,0.028] 0.999[0.998,0.999] 0.0126[0.00703,0.0184] 0.428[0.423,0.432] -0.0231[-0.0589,0.0121]

TTop Down [6∞) 1960-01-01 1978-01-01 5.56[5.48,5.64] 2.68[2.64,2.72] -0.042[-0.071,-0.012] 0.997[0.996,0.998] -0.0177[-0.0281,-0.00735] 0.343[0.333,0.353] 0.312[0.237,0.388]

TTop Down [6∞) 1978-01-01 1988-01-01 5.36[5.28,5.45] 2.77[2.73,2.81] -0.087[-0.117,-0.055] 0.995[0.991,0.997] -0.0217[-0.0333,-0.00988] 0.384[0.372,0.395] 0.262[0.189,0.336]

TTop Down [6∞) 1988-01-01 1998-01-01 5.26[5.19,5.33] 2.8[2.77,2.83] -0.033[-0.058,-0.009] 0.998[0.997,0.999] 0.00276[-0.00695,0.0124] 0.4[0.391,0.408] 0.0875[0.0291,0.144]
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Table 7.7: US Equity Naive Event Heuristics (continued)

Type hσ Period µτ στ µrb σrb µrl σrl Cohen’s d

TTop Down [6∞) 1998-01-01 2008-01-01 5.19[5.15,5.23] 2.76[2.74,2.78] 0.02[0.006,0.034] 0.998[0.998,0.998] 0.0124[0.00671,0.0179] 0.396[0.391,0.401] 0.0701[0.0323,0.108]

TTop Down [6∞) 2008-01-01 2018-01-01 5.23[5.19,5.26] 2.69[2.68,2.71] 0.013[0,0.026] 0.998[0.998,0.998] 0.0126[0.00784,0.0174] 0.37[0.365,0.374] -0.0145[-0.0493,0.0202]

TBot Up [0 3) 1960-01-01 1978-01-01 3.91[3.88,3.93] 2.72[2.7,2.73] 0.002[-0.007,0.011] 0.999[0.999,0.999] 0.0059[0.000968,0.0108] 0.563[0.56,0.566] 0.352[0.329,0.375]

TBot Up [0 3) 1978-01-01 1988-01-01 3.83[3.8,3.85] 2.71[2.7,2.73] 0.008[-0.001,0.017] 0.999[0.999,1] -0.00463[-0.00989,0.000663] 0.578[0.574,0.581] 0.374[0.35,0.397]

TBot Up [0 3) 1988-01-01 1998-01-01 3.64[3.62,3.66] 2.67[2.66,2.68] 0.011[0.004,0.019] 0.999[0.999,1] -0.00813[-0.0127,-0.0036] 0.603[0.601,0.606] 0.318[0.296,0.34]

TBot Up [0 3) 1998-01-01 2008-01-01 3.59[3.57,3.61] 2.64[2.63,2.66] -0.026[-0.032,-0.019] 0.999[0.999,0.999] -0.0279[-0.032,-0.0237] 0.605[0.603,0.607] 0.22[0.2,0.24]

TBot Up [0 3) 2008-01-01 2018-01-01 3.67[3.65,3.69] 2.63[2.62,2.65] -0.012[-0.02,-0.004] 0.999[0.999,1] -0.0255[-0.0303,-0.0207] 0.586[0.583,0.589] 0.152[0.13,0.175]

TBot Up [3 6) 1960-01-01 1978-01-01 5.08[5.02,5.14] 2.72[2.7,2.75] 0.037[0.016,0.058] 0.998[0.997,0.999] 0.0201[0.0118,0.0283] 0.387[0.38,0.395] 0.297[0.239,0.355]

TBot Up [3 6) 1978-01-01 1988-01-01 5.12[5.06,5.18] 2.71[2.68,2.74] 0.067[0.044,0.089] 0.997[0.995,0.998] 0.0175[0.0088,0.0261] 0.39[0.382,0.398] 0.353[0.294,0.413]

TBot Up [3 6) 1988-01-01 1998-01-01 5.05[5,5.1] 2.71[2.68,2.73] 0.031[0.014,0.049] 0.998[0.998,0.999] 0.00517[-0.00183,0.0121] 0.396[0.39,0.402] 0.273[0.224,0.321]

TBot Up [3 6) 1998-01-01 2008-01-01 4.82[4.79,4.86] 2.72[2.7,2.74] -0.007[-0.02,0.006] 0.999[0.999,0.999] -0.00875[-0.0142,-0.00338] 0.425[0.42,0.429] 0.16[0.124,0.197]

TBot Up [3 6) 2008-01-01 2018-01-01 4.72[4.68,4.75] 2.7[2.68,2.71] -0.013[-0.026,0.001] 0.999[0.999,0.999] -0.0115[-0.0174,-0.00547] 0.429[0.424,0.434] 0.0399[0.0034,0.0765]

TBot Up [6∞) 1960-01-01 1978-01-01 5.62[5.54,5.71] 2.76[2.72,2.8] 0.04[0.009,0.071] 0.997[0.996,0.998] 0.0145[0.00366,0.0256] 0.354[0.343,0.365] 0.327[0.251,0.405]

TBot Up [6∞) 1978-01-01 1988-01-01 5.39[5.3,5.48] 2.78[2.74,2.82] 0.041[0.008,0.074] 0.997[0.996,0.998] 0.00627[-0.00602,0.0187] 0.374[0.362,0.386] 0.359[0.266,0.449]

TBot Up [6∞) 1988-01-01 1998-01-01 5.23[5.15,5.3] 2.8[2.76,2.83] 0.019[-0.006,0.045] 0.998[0.997,0.999] -0.0124[-0.0229,-0.00164] 0.404[0.395,0.413] 0.301[0.23,0.373]

TBot Up [6∞) 1998-01-01 2008-01-01 5.2[5.16,5.25] 2.77[2.75,2.79] -0.021[-0.036,-0.006] 0.998[0.998,0.998] -0.015[-0.0208,-0.00921] 0.397[0.391,0.402] 0.184[0.143,0.227]

TBot Up [6∞) 2008-01-01 2018-01-01 5.32[5.28,5.36] 2.71[2.7,2.73] -0.007[-0.02,0.007] 0.998[0.998,0.999] -0.00937[-0.0143,-0.00419] 0.369[0.365,0.374] 0.0365[0.000313,0.0728]

TBot Down [0 3) 1960-01-01 1978-01-01 3.97[3.95,3.99] 2.74[2.72,2.75] 0[-0.008,0.008] 0.999[0.999,0.999] -0.00525[-0.00941,-0.00108] 0.554[0.551,0.556] 0.157[0.137,0.176]

TBot Down [0 3) 1978-01-01 1988-01-01 3.98[3.96,4] 2.73[2.72,2.74] -0.003[-0.011,0.006] 0.999[0.999,0.999] 0.00528[0.000635,0.01] 0.557[0.554,0.56] 0.125[0.103,0.148]

TBot Down [0 3) 1988-01-01 1998-01-01 3.73[3.71,3.75] 2.7[2.69,2.71] 0.006[-0.001,0.014] 0.999[0.999,1] 0.0137[0.00947,0.018] 0.593[0.591,0.596] 0.0516[0.0308,0.0723]

TBot Down [0 3) 1998-01-01 2008-01-01 3.59[3.57,3.61] 2.65[2.64,2.66] 0.04[0.034,0.046] 0.999[0.998,0.999] 0.0357[0.0319,0.0396] 0.606[0.604,0.608] -0.0309[-0.0491,-0.0127]

TBot Down [0 3) 2008-01-01 2018-01-01 3.71[3.69,3.73] 2.65[2.63,2.66] 0.023[0.016,0.031] 0.999[0.999,0.999] 0.028[0.0235,0.0326] 0.582[0.58,0.585] -0.0556[-0.0757,-0.0351]

TBot Down [3 6) 1960-01-01 1978-01-01 5.12[5.07,5.17] 2.71[2.69,2.74] -0.044[-0.063,-0.026] 0.998[0.997,0.998] -0.014[-0.0209,-0.00699] 0.382[0.376,0.388] 0.228[0.182,0.273]

TBot Down [3 6) 1978-01-01 1988-01-01 5.17[5.12,5.23] 2.71[2.69,2.74] -0.051[-0.07,-0.031] 0.997[0.996,0.998] -0.0161[-0.0235,-0.00844] 0.383[0.376,0.389] 0.257[0.205,0.309]

TBot Down [3 6) 1988-01-01 1998-01-01 5.07[5.03,5.12] 2.71[2.69,2.74] -0.04[-0.057,-0.023] 0.998[0.997,0.998] -0.00627[-0.0128,0.000345] 0.394[0.388,0.4] 0.191[0.145,0.239]

TBot Down [3 6) 1998-01-01 2008-01-01 4.79[4.75,4.82] 2.71[2.7,2.73] -0.001[-0.013,0.011] 0.999[0.999,0.999] 0.00732[0.00221,0.0125] 0.429[0.425,0.433] 0.0523[0.0194,0.0854]

TBot Down [3 6) 2008-01-01 2018-01-01 4.72[4.68,4.76] 2.7[2.68,2.72] 0.017[0.003,0.03] 0.999[0.998,0.999] 0.0137[0.00797,0.0194] 0.434[0.429,0.439] 0.0049[-0.0295,0.0385]

TBot Down [6∞) 1960-01-01 1978-01-01 5.63[5.56,5.7] 2.7[2.67,2.73] 0.002[-0.025,0.028] 0.998[0.997,0.998] -0.00738[-0.0164,0.00169] 0.339[0.33,0.348] 0.264[0.206,0.325]

TBot Down [6∞) 1978-01-01 1988-01-01 5.29[5.22,5.37] 2.75[2.71,2.78] -0.052[-0.08,-0.025] 0.997[0.995,0.998] -0.0107[-0.0213,0.0000137] 0.384[0.374,0.394] 0.258[0.187,0.329]

TBot Down [6∞) 1988-01-01 1998-01-01 5.12[5.05,5.18] 2.81[2.78,2.84] 0.022[-0.001,0.045] 0.998[0.997,0.999] 0.0213[0.0117,0.0309] 0.418[0.41,0.427] 0.0385[-0.022,0.1]
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Table 7.7: US Equity Naive Event Heuristics (continued)

Type hσ Period µτ στ µrb σrb µrl σrl Cohen’s d

TBot Down [6∞) 1998-01-01 2008-01-01 5.09[5.06,5.13] 2.78[2.77,2.8] 0.034[0.02,0.048] 0.998[0.997,0.998] 0.0209[0.0153,0.0266] 0.415[0.41,0.42] 0.027[-0.00753,0.062]

TBot Down [6∞) 2008-01-01 2018-01-01 5.2[5.16,5.23] 2.72[2.7,2.73] 0.034[0.021,0.048] 0.998[0.997,0.998] 0.0172[0.0122,0.0222] 0.384[0.38,0.389] 0.0313[-0.000181,0.0634]



Chapter 8

Discussion

This research has aimed to produce a complete end-to end study of how returns are
evaluated for trades initiated from Triangles, while also gaining a deeper exploratory
understanding of the phenomenon than other studies. Had this thesis been more focused
on one aspect, for example a sole focus on modelling the arrival time results, it would
have been easier to gain greater depth. Also, due to background literature using weak
research methodology, a significant amount of work needed to be done to develop ideas
from scratch, and so numerous procedures had to be invented, then simplified to produce
robust results. Much of this discussion covers aspects which were considered but which I
have not been able to pursue or show in previous chapters; however, I start by discussing
how well the results cover the research goals.

The results are transparent, significantly more so than other related studies partly
because other studies focus on p-value tests and do not report effect size, for example
absolute return amounts. Using the Intensity GEV sub-distribution comparison and
Cohen’s d it is clear that there has been an impact of Triangles on returns and that this
has decreased over time. This clarifies the often confusing results of the previous
literature from which I could draw no definitive conclusions. The previous literature
discussed in Section 2.2.2 had been conflicting, sometimes stating that such patterns
have had an effect and sometimes not, often using tests which despite being fairly
standard were not clear in their implementation. So despite having to make numerous
simplifications to cover the material, this study has overall managed to show the effect
in a way that is transparent and fix issues with previous work.

However while the Intensity model fits well and certainly shows interesting differences
between the Triangle and Naive cases, this method requires more thought to fully
uncover these results. The test results of the Intensity model against the Naive case
show that the win τ distributions are consistently different and yet the loss distributions
are not. These results are consistent, but they do not measure clearly how different the
sub-distributions are since these tests usually quickly converge to zero. I tried numerous
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methods to measure this concluding that the differences were best understood visually
as sub-distribution plots as seen in Figures 7.5 to 7.12. The sub-distribution plots show
the variation of arrival time and probability in a clearly understandable way, simply as
thes y show the difference between plotted CDF lines. While I could have displayed
various other statistics and tests, none of these seemed to provide significant additional
useful information over the clarity of these plots, and in many cases the numbers they
produce are obscure and difficult to interpret. It may require considerable work to
develop a new goodness of fit measure or a measure that indicates how advantageous
the Intensity model is for trading.

Also, unfortunately the Cumulative Deviations p-value based testing is of an unknown
accuracy. I suspect that measurement differences and the large sample size will cause
there to be inaccuracies with the testing (a well known problem) of Triangle and Naive
models, but I do not know by how much. The way I use the Cumulative Deviations
Test p-values is as a confirmatory measure of goodness fit, rather than a strict discrete
null hypothesis test. By repeatedly confirming the results, this should help to overcome
testing inaccuracy or consistency issues, since this alleviates issues with a single test and
requirements of absolute accuracy to a defined level of significance (often considered a
poor research technique and commonly criticized in the statistics literature). Fortunately
the Effect Heuristics are not affected adversely by sample size and the effect difference
that these results show is quite clear, which confirms the Intensity GEV results.

It would be interesting to use a more data science based methodology to understand
what affects the change in probability of winning and arrival times, potentially using
varied exploratory methods and multiple investigations of what affects the Triangle
results. Breiman (2001a) comments well on this, relating how focusing less on
distribution theory and more on predictability and newer methods, creates an entirely
different culture of research. For example, in an initial first effort at taking into account
more information, news events should be taken into account. It is likely that with
certain news announcements prices will show some congestion, perhaps as market
participants avoid trading to wait for the news announcement; then when the news
announcement is made the price of the security will likely show larger moves than
normal. However in keeping with research methodology advice, I decided to very
carefully focus on relative height changes and the competitive advantage of timing
without considering numerous details, this within the context of two clearly defined
statistical frameworks. This makes the results very clear and leaves little room for error,
but lacks the wider understanding that the use of multiple variables or more widely
creative methods could provide. It seems better at this early exploratory stage of
research to carefully confirm the results within a focused framework.

Very little effort has been put into more exact forward testing and creation of prediction
measurement aspects, and it would be interesting to understand how well the predictive
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capacity has held over time. The Intensity GEV model fits surprisingly well and with
some effort it is likely possible to account for covariates within the model to more
carefully create a forward comparable model, for example taking into account
systematic market effects, which should sharpen the test for forward prediction.

It is partly disappointing to not make more use of the fitted Intensity GEV model
formula, perhaps to show how well this can be used to predict the distribution of
returns, but such manipulations seem superfluous without further effort spent on
modelling. The model fits are good and what these do show is that alternative models
can be used to model returns particularly effectively, as compared with assumptions of
the log normality of periodic returns, since typically log normal returns do not fit stock
returns well. A problem with typical log normal distribution fits of periodic stock
returns are that the empirical tails are fat, and hence usually do not match the
distribution. The solution to invert the problem using price levels means that the
previous periodic return distribution fat tails are perhaps now able to be modelled.
However further work would need to be done to make the approach more accessible, as
currently it is in a fairly raw form that requires more development.

8.1 Alternative Result Evaluation Models

The failure of the Structural approach had been a surprise, which fortunately spurred
more practical alternative methods, mainly converging on the Intensity GEV and Effect
Heuristics; other ideas were considered, some of which have potential for better results.

The Structural approach gives a more detailed understanding of the nature of how price
develops, but is focused on periodic returns in continuous time, where the complexity
and time consuming nature of attempting to fit results may be unrealistically difficult
to do within a short time frame. By exploring more statistical approaches, such as the
Intensity model, the empirical nature of the data can be uncovered and it seems worth
re-exploring Structural models from this stronger position. Once the data is thoroughly
understood using such statistical approaches it is probably easier and more worthwhile
to explore the Structural approaches. A concern is that the returns may be time varying
(the effect of Triangles probably decreasing with time) and require the modelling of jumps
which will be extremely difficult to estimate using a first passage distribution approach.

Fitting the Intensity GEV model across the entire (h, τ) surface would have been
preferable, but due to numerical estimation instability and non-linearities this proved
unrealistic. Originally other models had been tried within the base Intensity model
using the trial data; for example Gumbel had been a contender which had easily
converged across the surface numerically but usually when tested had poor goodness of
fit. Only the GEV Intensity model across hσ based slices fitted consistently. It may be
that there is another Intensity based distribution, either an alternative model or a slight
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improvement, which fixes these issues.

The Gumbel density is given by

f(x) =
1

β
e
x−µ
β e−e

x−µ
β
. (8.1)

Although GEV is a particularly flexible distribution, its parameters are unintuitive. For
comparison the Gumbel density as seen in (8.1) is simpler and uses parameters location µ
which is equivalent to the median and scale β which denotes the spread, which provides
a more intuitive framework; this is analogous to the normal distribution’s use of mean
and standard deviation. In comparison the GEV parameters of location, scale and shape
are only clearly understood with experience of extreme value distributions and without
this are not easily interpreted. The simple way to deal with this issue was to plot the
CDFs to clearly communicate the distribution and goodness of fit.

However, even though the GEV Intensity model fits well and can be used to explore the
arrival time data usefully using the split of win and loss arrival time, the tools I expected
to be useful from survival analysis were only marginally effective. The cumulative
deviations based test is too sensitive to be used as a good measure of fit. Yet it proved to
be a far better measure than the other tests available. Additionally, though I have used
the test as a repeated confirmation to avoid p-value issues, it would be preferable to use
effect size statistics which I view as more reliable.

I had considered various testing or goodness of fit alternatives, one of these being to
bootstrap the GEV Intensity model to give confidence intervals for the parameters and
give some indication of the overlap between Triangles and Naive. This would have also
provided an excellent visual confidence interval about the CDF curves. Unfortunately
estimation under GEV is too unstable and error prone to do this. However it is quite
possible to create new models which do not suffer from these problems, and the
following Section 8.1.1 details one possible example. During the study it was decided
that to develop more comprehensive models and customised goodness of fit measures
would take considerable time, and so these ideas were not pursued further.

8.1.1 Intensity Cox Sum

Using the Intensity based method with the Gumbel distribution could also facilitate
insertion of covariates where we replace X by vector X . This proved to be difficult with
Intensity based GEV and the extra complexity was not absolutely needed. Originally
through the use of vectors was how I attempted to fit the Intensity GEV model across
the set of data; however, this was not a simple case of a βTX linear relationship as it was
highly unstable to fit due to the exponential terms. To solve this I normalised by using
hσ rather than h and fitted across slices of h. To create a better fit and to solve some of
the issues of fitting across a surface and use covariates, it is possible to use a Cox model
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with a sum of intensities within the base Intensity model, as shown below.

First consider the likelihood function as seen in (5.6) and modify to use a vector of
covariates

L(tk, tk + dt) = P(tk ≤ τ < tk + dt, δ|Ftk)

= P(τ ≥ tk, δ|Ftk)P(τ < tk + dt, δ|τ ≥ tk, Ftk)

= e−Λ(tk,X)[dΛ(+)(tk, X)]δk [dΛ(−)(tk, X)]1−δk∏
k

L(tk, tk + dt) =
∏
k

e−Λ(tk,X)[dΛ(+)(tk, X)]δk [dΛ(−)(tk, X)]1−δk .

(8.2)

Then inject a Cox model based on a sum of intensities into the Likelihood function as

Λ(±)(t,X) =

∫ t

0
eβ

TXudΛ
(±)
0 (u)

where Λ
(±)
0 (t) =

∑
k

λ
(±)
k 1(tk≤t)

=⇒ Λ(±)(t,X) =
∑
k

λ
(±)
k eβ

TXk1(tk≤t)

dΛ(±)(t,X)
∆
= Λ(±)(t,X)− Λ(±)(t− dt,X)

=
∑
k

λ
(±)
k eβ

TXk(1(tk≤t) − 1(tk≤t−dt))

=
∑
k

λ
(±)
k eβ

TXk1(t−dt<tk≤t)

dΛ(±)(τi, X) =
∑
k

λ
(±)
k eβ

TXk1(tk≤τi<tk+dt).

(8.3)

This is defined over a set of λk intensities, where over each λ there is a Dirac delta
function, but in between the density mass is zero. This is best visualised as seen in
Figure 8.1 where it can be seen that the Λ contribution consists of the sum of stepwise λk
contributions from intensities from each τk arrival (this diagram is the same for each +
or - intensity sum).

Each λk contribution can be estimated numerically using maximum likelihood. This
avoids the need to conform to fit to a distribution which may not map to the underlying
data well, ideally fitting fairly exactly to the data and allowing a more specific use for
covariates to be mapped. Also this ideally avoids instability issues of nested exponential
terms. Additionally arrival times are binomial, so a continuous time approximation is
not needed.

Though I have assumed the contributions of covariates to be linear as βX , this may not be
the case; and there may be a functional relationship of some nature g(β,X) to account for
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Figure 8.1: Intensity Cox Sum Step Function

non-linearities, as was found with the GEV distribution, but which could not be resolved
across the h based surface.

This formulation effectively requires some numerical optimisation rather than standard
maximum likelihood derivative methods, and due to additional complexity transparency
of understanding is lost; considering this, machine learning should be considered for
predictive value and this seems a natural transition from the Cox based model. The
current modelling uses full transitions to ±h without limiting the time constraints, as is
done with the effect size heuristics data; it seems more feasible with machine learning to
account for partial h values within time constrained bounds.

I suspect with more comprehensive models such as the Intensity Cox Sum it is possible
to fit across the entire h dimension of the (τ, h) surface, then include other covariates.
However there are issues to resolve with goodness of fit and with the ability to more
intuitively check the results, which dealing with the data in h based slices allows. Some
of these methods also add complexity, but I consider that these are best explored after
effects have been well established using simpler and more direct methods; although it
is certainly possible that an elegant solution can be found, this could take considerable
effort to find.
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8.2 Extensions

8.2.1 General Pattern Framework

The literature ideologically evaluates Technical analysis in a lock step way: done by
identifying a technical pattern as seen in text books, calculating periodic returns
(without considering how the patterns are traded), and then does some form of null
hypothesis p-value test as compared with efficient markets. Every single paper I can
find on pattern trading does the same routine with only slight changes. None of the
pattern based trading literature I read identified the support and resistance concepts
and how this is used to time the market. This study has deliberately gone to some effort
to understand how trading is done using such ideas, and from this simple techniques
have been developed to statistically evaluate how these patterns are traded. This has
been relatively successful as is shown in the transparency of the results.

The temptation in generalising further is to identify more patterns and blindly apply a
method as was done by the pattern trading literature, but it is worth again carefully
considering the nature of how these patterns are used. I believe the general idea is not
about identifying textbook patterns but rather humans trying to make sense of market
congestion and attempting to time the market in an attempt to take advantage of
forecastability of momentum. This seems the better avenue to explore in more detail,
though in a more general way. Towards this, some empirical work should ideally be
done interviewing traders; and on the understanding gained, work on methods to
capture general congestion and momentum effects. There is however a danger in such
an approach of data snooping and spurious results obtained from repeatedly trialling
patterns.

Due to pattern detection being rather subjective the method used in this study uses
numerous simplifications to capture patterns; for example I deal with results in a
simplified manner, and focus on a certain type of Triangle. This is probably the correct
approach in order to develop a complete study in a short time frame. Ideally the scope
should be widened to both detect other patterns and use a more general selection
process, and in doing so unwind many of these simplifications in order to develop a
wider understanding. The R = 1 approach should be relaxed to take into account
asymmetric selectable levels and deal with time limited returns rather than only price
level returns. This could then take into account trend continuation. Then instead of
using a heuristic like ‘half the height’, specific times and/or price levels can be used.
Also, instead of specific points, as in four relative extrema for Triangles, the number of
extrema points should be flexible. In short I would redevelop the entire framework to be
more general; however likely in Python rather than R. Using R code is good for
processing statistics and simple prototyping but such a framework would require a
more fully fledged language which contains more conventional computational
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abstractions.

This is daunting and may require a new mathematical way to deal with prices, but I
can see that this is quite possible. It would be interesting to consider a vector based
model which evaluates the effect of relative extrema related to a later price in terms of
effect vectors. So instead of viewing pattern strategies in books and robotically trying
to implement them, consider each relative extremum as having a directional momentum
effect on a later price level. Each vector could then be ascribed weightings. This could fit
well within a machine learning context.

8.2.2 Portfolio Profit and Loss Analysis

I had considered using direct investment amounts to implement a holding period based
return rather than the leveraged±1 return approach, but had rejected this as being too far
from how real traders would trade. The caveat is that leveraged returns are not directly
comparable to periodic returns or holding period returns, though they could certainly be
extracted from the leveraged returns. A better solution is to consider trading as a long
term portfolio management scenario; where a portfolio of short term trades is managed
and this is compared with a benchmark such as the S&P 500, using measures such as the
Sharp or Sortino ratio. Due to leverage, liquidity and transaction costs this is complex.
Additionally US equity markets have regulations, such as variable short sell restrictions
which must be adhered to under simulation.

Leverage considerations should take into account systematic market risk and leverage
constraints. So the leverage R based risk model would need to be extended to take into
account both a time and positional based risk, which would likely be based on
downside volatility portfolio measures similar to the Sortino ratio. Leverage makes use
of larger equity positions over shorter periods than buy and hold strategies; and so
generally requires greater security liquidity to ensure that trade entries do not adversely
affect transaction prices. This is easily done by only simulating trades for which the
stock has a liquidity level high enough to ensure that trades do not affect prices. This
avoids transaction cost slippage inaccuracies. Consideration of liquidity levels also
implies restricted capacity for the trading strategy since trade size will be limited.

Transaction costs can be partly calculated by Bid/Ask spread but also requires taking into
account brokerage fees, and I do not have access to accurate historical data for this. This
could probably be estimated but would require access to more detailed historical costs.

Finally, using leverage increases risk and this must be accounted for as well. If the
market has a sudden move or crashes it is likely stocks will be highly correlated, and
exiting positions will also incur large slippage costs. This could result in large losses.
Under simulation it would then be sensible to limit the equity or leverage used to
realistically avoid excessive losses. Also the equity used for the portfolio of trades
should be comparable with a buy and hold strategy to create a reasonable comparison.



108 CHAPTER 8. DISCUSSION

Some fair, comparative way to do this would need to be created which does not mine
the data.



Chapter 9

Conclusion

The results indicate that there have historically been market timing advantages of
Triangles which show a positive contribution to the returns of US equities as compared
with the Naive random sampling case; however, this advantage has been decreasing
over time from years 1960 to 2017.

In the cases involving long trades, if the raw profit and loss information is considered
then this effect appears significant potentially to 2017; however, when this is adjusted to
take into account volatility then this conclusion may be considerably less valid.

Across all cases, using 10 day leveraged constrained return heuristics, and using Cohen’s
d to standardise over volatility, historically Triangles have had a weak return effect size
but all types measured as of time period 2008 to 2017 show a negligible effect. These
results are confirmed by the sub-distributions of the Intensity GEV model. As of this last
time period there appears to be little or no difference between Triangle and Naive trades
when returns are normalised by volatility. It does appear that there has been a predictable
historical timing value of Triangles; however it is likely that this trading method has
weakened considerably and is now of negligible value. Also, this effect has probably
been less valuable than results may indicate, since measurements have not taken into
account transaction costs.
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Appendix A

Terms and Abbreviations

Table A.1: General Terms and Abbreviations

Term Description
EMH Efficient Markets Hypothesis
AMH Adaptive Markets Hypothesis
OHLC Prices Open High Low Close prices
CRSP Center for Research in Security Prices
Naive Trade Trade meant to represent Triangle trades without timing advantage
GBPUSD Pound US Dollar spot currency prices
ES E-mini futures prices
CDF Cumulative Distribution Function
ECDF Empirical Cumulative Distribution Function
PDF Probability Density Function
EPDF Empirical Probability Distribution Function
ES S&P 500 CME Group Futures
OTC Over the Counter
pip Unit of measure to express the change in value of a spot currency pair

Table A.2: Return Terms

Term Description
Periodic return Uses standardised periods ri =

pi−pj
pj

, e.g. daily returns

Real return Adjusted using inflation
Leveraged return Defined by how much is gained or lost from the trade
Bet return Excludes time to give amount gained or lost
Holding period return Calculated over a holding period including income
Actual return Produced by a real buy and sell round trip
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Abnormal returns Return which is not explained under EMH
Cumulative abnormal return (CAR) Sum of all abnormal returns



Appendix B

US Equity Data

Daily OHLC equity Center for Research in Security Prices (CRSP) data is used from 1960
to 2017 inclusive. This data is adjusted for dividends such that prices reflect proceeds
inclusive of dividend gains. Hence with stocks the wins and losses include gains from
dividends, admittedly this makes the accuracy of gains slightly inaccurate; however in
building the model I ignore this, similarly to many back-tests. All model estimates are
done or reported on the basis of discrete wins (+1) and losses (-1), and all Effect Size
Heuristics and back-testing are done on the complete dataset including partial wins and
losses.

The data is cut into contiguous segments of about 10 years, though with the initial
starting segment longer, resulting in forward time intervals starting and ending at the
following successive points: 1960-01-01, 1978-01-01, 1988-01-01, 1998-01-01, 2008-01-01
and 2018-01-01. The date division is done at the Triangle break point such that there is
some overlap between segments over segment BC, in that the actual simulated trade
will often fall into the next yearly time segment.

B.1 Exploratory Statistics

Table B.1: US Equity Triangle Summary Statistics

Type hσ Period Count rb Mean τ Median τ Median τ+ Median τ−

TTop Up [0 3) 1960-01-01 1978-01-01 8574 0.293 15.9 8 5 12

TTop Up [0 3) 1978-01-01 1988-01-01 8532 0.328 16.1 8 6 12

TTop Up [0 3) 1988-01-01 1998-01-01 10791 0.261 16.0 7 6 10

TTop Up [0 3) 1998-01-01 2008-01-01 11530 0.184 15.9 7 6 9

TTop Up [0 3) 2008-01-01 2018-01-01 9839 0.142 16.5 8 8 8

TTop Up [3 6) 1960-01-01 1978-01-01 2682 0.221 21.4 12 9 16

TTop Up [3 6) 1978-01-01 1988-01-01 2805 0.255 22.1 12 10 15

TTop Up [3 6) 1988-01-01 1998-01-01 4203 0.222 21.6 12 10 15

TTop Up [3 6) 1998-01-01 2008-01-01 6785 0.133 21.9 12 12 12

TTop Up [3 6) 2008-01-01 2018-01-01 6533 0.077 21.8 12 13 11
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Table B.1: US Equity Triangle Summary Statistics (continued)

Type hσ Period Count rb Mean τ Median τ Median τ+ Median τ−

TTop Up [6∞) 1960-01-01 1978-01-01 1831 0.112 30.0 18 13 24

TTop Up [6∞) 1978-01-01 1988-01-01 1751 0.211 31.3 18 15 21

TTop Up [6∞) 1988-01-01 1998-01-01 2829 0.174 29.5 17 15 19

TTop Up [6∞) 1998-01-01 2008-01-01 7188 0.058 30.3 17 17 17

TTop Up [6∞) 2008-01-01 2018-01-01 9377 0.093 26.8 16 17 15

TTop Down [0 3) 1960-01-01 1978-01-01 9414 0.117 21.8 11 10 13

TTop Down [0 3) 1978-01-01 1988-01-01 8640 0.094 21.5 11 9 13

TTop Down [0 3) 1988-01-01 1998-01-01 11287 0.079 21.4 10 9 11

TTop Down [0 3) 1998-01-01 2008-01-01 11573 -0.014 22.3 10 10 10

TTop Down [0 3) 2008-01-01 2018-01-01 8704 -0.044 21.8 9 9 9

TTop Down [3 6) 1960-01-01 1978-01-01 2658 0.113 25.7 14 13 16

TTop Down [3 6) 1978-01-01 1988-01-01 2692 0.079 27.4 15 13 18

TTop Down [3 6) 1988-01-01 1998-01-01 3652 0.042 26.1 13 12 15

TTop Down [3 6) 1998-01-01 2008-01-01 5838 -0.010 24.9 13 12 14

TTop Down [3 6) 2008-01-01 2018-01-01 5011 -0.024 23.8 12 11 12

TTop Down [6∞) 1960-01-01 1978-01-01 1786 0.169 37.1 19 18 20

TTop Down [6∞) 1978-01-01 1988-01-01 1654 0.134 33.3 19 16 22

TTop Down [6∞) 1988-01-01 1998-01-01 2495 0.046 36.7 18 17 20

TTop Down [6∞) 1998-01-01 2008-01-01 5872 0.041 34.6 17 16 18

TTop Down [6∞) 2008-01-01 2018-01-01 7074 -0.041 28.4 14 13 15

TBot Up [0 3) 1960-01-01 1978-01-01 8734 0.236 16.7 8 6 12

TBot Up [0 3) 1978-01-01 1988-01-01 8028 0.317 17.1 8 6 13

TBot Up [0 3) 1988-01-01 1998-01-01 11733 0.238 16.8 8 6 11

TBot Up [0 3) 1998-01-01 2008-01-01 12080 0.149 17.7 8 7 10

TBot Up [0 3) 2008-01-01 2018-01-01 9500 0.091 18.2 9 8 10

TBot Up [3 6) 1960-01-01 1978-01-01 2218 0.148 22.2 12 10 16

TBot Up [3 6) 1978-01-01 1988-01-01 2188 0.236 23.0 13 11 18

TBot Up [3 6) 1988-01-01 1998-01-01 3145 0.211 23.3 13 11 16

TBot Up [3 6) 1998-01-01 2008-01-01 5404 0.120 23.4 13 12 15

TBot Up [3 6) 2008-01-01 2018-01-01 4893 0.049 24.2 13 14 13

TBot Up [6∞) 1960-01-01 1978-01-01 1437 0.122 28.7 16 13 20

TBot Up [6∞) 1978-01-01 1988-01-01 1216 0.183 27.0 16 14 21

TBot Up [6∞) 1988-01-01 1998-01-01 1834 0.167 28.3 16 14 19

TBot Up [6∞) 1998-01-01 2008-01-01 4739 0.034 29.9 17 15 19

TBot Up [6∞) 2008-01-01 2018-01-01 6123 0.052 31.3 16 17 14

TBot Down [0 3) 1960-01-01 1978-01-01 12016 0.141 21.8 11 11 12

TBot Down [0 3) 1978-01-01 1988-01-01 10170 0.075 22.3 11 10 12

TBot Down [0 3) 1988-01-01 1998-01-01 13988 0.075 23.4 10 10 11

TBot Down [0 3) 1998-01-01 2008-01-01 14810 0.047 24.7 11 11 11

TBot Down [0 3) 2008-01-01 2018-01-01 10699 -0.030 21.4 10 10 11

TBot Down [3 6) 1960-01-01 1978-01-01 3352 0.153 25.2 15 13 17

TBot Down [3 6) 1978-01-01 1988-01-01 2872 0.095 27.4 16 14 17

TBot Down [3 6) 1988-01-01 1998-01-01 3579 0.055 25.6 14 13 15

TBot Down [3 6) 1998-01-01 2008-01-01 6279 0.038 27.1 13 13 14

TBot Down [3 6) 2008-01-01 2018-01-01 5498 -0.023 24.2 13 11 14

TBot Down [6∞) 1960-01-01 1978-01-01 2183 0.179 30.0 17 16 20

TBot Down [6∞) 1978-01-01 1988-01-01 1732 0.143 32.6 18 17 20

TBot Down [6∞) 1988-01-01 1998-01-01 2357 0.047 34.2 18 18 18

TBot Down [6∞) 1998-01-01 2008-01-01 5932 0.062 35.0 18 17 18
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Table B.1: US Equity Triangle Summary Statistics (continued)

Type hσ Period Count rb Mean τ Median τ Median τ+ Median τ−

TBot Down [6∞) 2008-01-01 2018-01-01 6760 -0.022 27.6 14 12 15

Table B.2: US Equity Naive Summary Statistics

Type hσ Period Count rb Mean τ Median τ Median τ+ Median τ−

TTop Up [0 3) 1960-01-01 1978-01-01 85740 0.069 33.2 8 10 7

TTop Up [0 3) 1978-01-01 1988-01-01 85320 0.119 29.6 8 10 7

TTop Up [0 3) 1988-01-01 1998-01-01 107910 0.112 30.0 8 9 6

TTop Up [0 3) 1998-01-01 2008-01-01 115300 0.060 24.8 6 7 5

TTop Up [0 3) 2008-01-01 2018-01-01 98390 0.071 19.3 6 7 5

TTop Up [3 6) 1960-01-01 1978-01-01 26820 0.119 52.5 16 18 14

TTop Up [3 6) 1978-01-01 1988-01-01 28050 0.188 49.3 17 20 14

TTop Up [3 6) 1988-01-01 1998-01-01 42030 0.202 46.7 16 18 13

TTop Up [3 6) 1998-01-01 2008-01-01 67850 0.109 36.6 12 14 11

TTop Up [3 6) 2008-01-01 2018-01-01 65330 0.096 28.1 11 12 9

TTop Up [6∞) 1960-01-01 1978-01-01 18310 0.175 89.4 29 35 24

TTop Up [6∞) 1978-01-01 1988-01-01 17510 0.264 91.3 32 37 24

TTop Up [6∞) 1988-01-01 1998-01-01 28290 0.254 73.1 26 31 20

TTop Up [6∞) 1998-01-01 2008-01-01 71880 0.163 69.6 23 27 19

TTop Up [6∞) 2008-01-01 2018-01-01 93770 0.132 45.2 18 21 15

TTop Down [0 3) 1960-01-01 1978-01-01 94140 -0.060 34.9 9 8 10

TTop Down [0 3) 1978-01-01 1988-01-01 86400 -0.094 32.7 9 8 10

TTop Down [0 3) 1988-01-01 1998-01-01 112870 -0.084 33.6 8 7 10

TTop Down [0 3) 1998-01-01 2008-01-01 115730 -0.029 27.0 7 6 7

TTop Down [0 3) 2008-01-01 2018-01-01 87040 -0.058 22.9 7 6 8

TTop Down [3 6) 1960-01-01 1978-01-01 26580 -0.116 57.0 17 14 19

TTop Down [3 6) 1978-01-01 1988-01-01 26920 -0.189 52.5 19 15 22

TTop Down [3 6) 1988-01-01 1998-01-01 36520 -0.172 48.3 16 14 19

TTop Down [3 6) 1998-01-01 2008-01-01 58380 -0.090 39.7 13 11 15

TTop Down [3 6) 2008-01-01 2018-01-01 50110 -0.092 31.8 12 10 14

TTop Down [6∞) 1960-01-01 1978-01-01 17860 -0.165 96.6 31 24 37

TTop Down [6∞) 1978-01-01 1988-01-01 16540 -0.259 89.3 32 24 39

TTop Down [6∞) 1988-01-01 1998-01-01 24950 -0.218 81.2 27 21 33

TTop Down [6∞) 1998-01-01 2008-01-01 58720 -0.130 78.0 24 20 28

TTop Down [6∞) 2008-01-01 2018-01-01 70740 -0.129 50.2 19 16 22

TBot Up [0 3) 1960-01-01 1978-01-01 87340 0.052 30.6 8 8 7

TBot Up [0 3) 1978-01-01 1988-01-01 80280 0.076 26.6 7 8 6

TBot Up [0 3) 1988-01-01 1998-01-01 117330 0.061 26.9 7 8 6

TBot Up [0 3) 1998-01-01 2008-01-01 120800 0.025 22.8 6 7 5

TBot Up [0 3) 2008-01-01 2018-01-01 95000 0.046 20.5 6 7 5

TBot Up [3 6) 1960-01-01 1978-01-01 22180 0.106 48.9 16 18 14

TBot Up [3 6) 1978-01-01 1988-01-01 21880 0.170 48.2 17 19 14

TBot Up [3 6) 1988-01-01 1998-01-01 31450 0.146 43.9 15 17 13

TBot Up [3 6) 1998-01-01 2008-01-01 54040 0.077 35.5 13 14 12

TBot Up [3 6) 2008-01-01 2018-01-01 48930 0.085 30.9 12 14 10

TBot Up [6∞) 1960-01-01 1978-01-01 14370 0.141 79.3 28 33 23

TBot Up [6∞) 1978-01-01 1988-01-01 12160 0.205 74.8 27 32 21
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Table B.2: US Equity Naive Summary Statistics (continued)

Type hσ Period Count rb Mean τ Median τ Median τ+ Median τ−

TBot Up [6∞) 1988-01-01 1998-01-01 18340 0.163 61.5 23 27 19

TBot Up [6∞) 1998-01-01 2008-01-01 47390 0.090 66.5 23 26 20

TBot Up [6∞) 2008-01-01 2018-01-01 61230 0.121 52.9 21 24 18

TBot Down [0 3) 1960-01-01 1978-01-01 120160 -0.050 34.7 8 8 9

TBot Down [0 3) 1978-01-01 1988-01-01 101700 -0.061 31.4 9 8 10

TBot Down [0 3) 1988-01-01 1998-01-01 139880 -0.040 31.3 8 7 9

TBot Down [0 3) 1998-01-01 2008-01-01 148100 0.004 26.3 6 6 7

TBot Down [0 3) 2008-01-01 2018-01-01 106990 -0.034 22.8 7 6 8

TBot Down [3 6) 1960-01-01 1978-01-01 33520 -0.106 57.1 17 15 20

TBot Down [3 6) 1978-01-01 1988-01-01 28720 -0.146 52.1 18 15 20

TBot Down [3 6) 1988-01-01 1998-01-01 35790 -0.126 46.4 16 14 18

TBot Down [3 6) 1998-01-01 2008-01-01 62790 -0.064 39.9 14 12 15

TBot Down [3 6) 2008-01-01 2018-01-01 54980 -0.071 34.1 13 11 15

TBot Down [6∞) 1960-01-01 1978-01-01 21830 -0.125 90.3 29 24 35

TBot Down [6∞) 1978-01-01 1988-01-01 17320 -0.201 78.4 28 22 33

TBot Down [6∞) 1988-01-01 1998-01-01 23570 -0.140 67.0 23 19 27

TBot Down [6∞) 1998-01-01 2008-01-01 59320 -0.068 75.9 25 22 28

TBot Down [6∞) 2008-01-01 2018-01-01 67600 -0.098 56.5 22 18 25



Appendix C

GBPUSD Trial

GBPUSD is used to trial and develop models seen in Chapters 4 and 5. The issue is that
the topic is virtually unexplored and requires a grounded evaluation of which
techniques are the most applicable to transparently evaluate the data, this requires an
iterative approach and it seems better to report the methods in this context of the use of
trial data. This is partly motivated by seeing the lack in clarity of related research and
realising the need for alternative approaches to improve this. The point of using trial
data is to develop models against realistic results without gaining insight into the US
Equity data which could bias the analysis (though from having read the literature, some
degree of tacit knowledge is unavoidable).

So the results of this trial using GBPUSD data are not intended to be definitive or
complete but rather show the development of ideas which required some data driven
insight. This trial then bridges the development of ideas of how best to interpret short
term momentum towards the analysis of US Equity based results. In this trial I only
report a minimal subset of exploratory data and the ideas which are most useful for
explaining the model design. Only surfaces for TTop Up are plotted to save space, since
visually the results for each Triangle type are quite similar. Some of these results a
repeated in the main thesis for ease of reference.

The end result has been that the Structural based model was not easily applicable, so
the Intensity model was instead developed and selected with an adjusted approach to
fit US equities. Currency minute period data is sufficiently different to US equity data
while having enough similarities to facilitate this. Aside from spot GBPUSD data E-mini
futures are explored briefly to check that the ideas map well to time series data more
similar to stocks having aspects such as drift, these fairly limited results are reported in
Appendix D. The ES results mainly form an alternative baseline to check against the more
comprehensive GBPUSD results, and I mention these results only occasionally within the
thesis due to this.

Spot currency is reputedly traded using momentum strategies such as Triangles,

116
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GBPUSD is chosen as a test case being one of several available candidates due to high
liquidity and low transaction costs. Here both price changes without transaction costs
are examined to establish if Triangles are informative of future price changes, and price
changes with transaction costs are examined to establish potential for profitability. Once
these raw results are established I investigate momentum further, comparing and
contrasting modelling approaches towards a more well developed analytical approach.

C.1 Spot Price Data

Minute period GBPUSD OHLC spot currency time series data are used from Dukascopy
bank from midnight 2003-08-04 to midnight 2017-01-12. The Bid price is used unless
otherwise stated. Transaction costs are assumed to be the Bid/Ask spread as we assume
the simulated trader trades the interbank rates at high liquidity, so I assume slippage
averages to zero and there are no brokerage costs. This is done as we assume traders
have a seat on an interbank trading desk with direct OTC access without the need of
an intermediary broker. The assumption then is that there are no charges for trading
and slippage does not favour either party or involve an intermediary offsetting risk with
re-quoting or by slipping prices.

Though I assume returns are leveraged bets, I do not cap leverage or account for cost
of carry under the paradigm of analysing for potential information for profit over the
’short term’ as opposed to determining longer term out-of-sample profitability (forward
testing) where I would take these into account. Short term in this case being a period in
which a trader would select to maximize profitability and minimize systematic risk from
other factors, this term then is dependent on the Section of probability which would
maximize this trade-off from whichever model is chosen to model this. This is one aspect
exploration of models are data helps to clarify since the term of trade carry requires some
thought to select.

When considering the profitability of transactions before the potential trade I do an initial
calculation of the proportional cost due to spread, done to determine if the trade would
be viable. If the expected cost of the trade is greater than the expected profit it does not
represent a realistic bet that a trader would take, and so this trade is excluded. To simplify
this all trades where the transaction cost is greater than 1/20 of the total expected price
movement are removed, realistically this is coarse but only a simple heuristic is needed
to explore the data and consequences of translation costs is required. For GBPUSD we
assume that the average spread is about 1 pip from Dukascopy data (though this is a
slightly high estimate taken from rounding up Dukascopy broker bid/ask mean spread)
to give a minimum triangle h heuristic of 0.002.

I represent summary statistics for each case to highlight the effect of transaction costs.
The total counts of triangles found in these unrestricted and transaction cost restricted
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cases are given by Table C.1 with Monte Carlo counts following which are 10 times the
size. 10 times though a small increase gives an arguably large sample size while both
allowing practical estimation of models through optimisation and providing an ability to
practically evaluate the context of individual data points, where a sample size might not.

C.2 Exploratory Statistics

When considered from the perspective of trade measurements (h, τ) the stopping time
distribution to the close point of trades result in data that in general forms a large head
on the left and a long right tail. Understanding this data requires some general
exploration of Bet returns, stopping times in terms of (h, τ) and a rough idea of the
distribution of such events which is initially best explored visually until a model is
developed. Visual representations are shown in Section C.3.1 with various 3D surfaces.
Only a few exploratory measures are used to show some fundamental aspects; later
modelling estimations and visualisation adds where appropriate to build on this
information - the measurement types are deliberately sparse so as not to confuse the
issue.

Table C.1: GBPUSD Triangle Counts

TTop Up TBot Down TTop Down TBot Up

Count 10609 7944 10252 10088
Count, h > 0.002 1399 1005 1410 1160

Table C.2: GBPUSD Naive Event Counts

TTop Up TBot Down TTop Down TBot Up

Count 106090 79440 102520 100880
Count, h > 0.002 13990 10050 14100 11600

The counts of various Triangle cases are seen in Table C.1, the simple observation being
that there is a reasonably large sample size, but when considered in terms of the trades
worth taking at the h > 0.002 level there are only a small number of order 30 viable trades
per year for each Triangle type. Considered in context with the Bet Return profitability
potential as seen in Table C.5, there does seem to be some small anomaly amount of
information present when using the t-test, but when considered after transaction costs
only TBot Up appears to show reasonable potential for profit and only minimally so.
Sample size and the potential for profit need to be high enough such that realistic results
can be evaluated; this is not the case and similarly with ES futures as seen in Appendix
D. Effectively transaction costs appear to quickly eliminate most or all of the anomaly
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effect. There is however enough of an informational value in terms of price movement to
make an exploration of models worthwhile.

The other obvious difference between the Triangle and Naive cases is in terms of stopping
times, this is seen here rather coarsely as the difference in median stopping times between
Triangles and the Naive cases, where mostly Triangles show shorter stopping times than
their Naive cases, though TTop Up is much the same (ES futures show larger differences).

Table C.3: GBPUSD Triangle Stopping Times

TTop Up TTop Down TBot Down TBot Up

Mean 88.1 78.7 81.3 80.2
Median ST 19.0 18.0 18.0 18.0
Median ST Win 20.0 16.0 16.0 15.0
Median ST Loss 19.0 20.0 20.0 21.0

Table C.4: GBPUSD Naive Event Stopping Times

TTop Up TTop Down TBot Down TBot Up

Mean 88.1 85.4 83.8 92.3
Median ST 19.0 19.0 18.0 20.0
Median ST Win 20.0 18.0 18.0 20.0
Median ST Loss 19.0 19.0 18.0 20.0

For testing GBPUSD Bet returns I assume the sample mean return is normally
distributed about the population mean under the Central Limit Theorem. Under the
assumption of zero drift the Null hypothesis is that the mean return of any trade is zero,
and since in this case the market is assumed to be efficient any predictive bias from
acquired information is both zero and result of random walk. Under this scenario the
following return cases are tested using t-tests in Table C.7. As stated this is not intended
to be rigorous but rather indicative. In this case p-value based testing is not particularly
useful for exploring trading returns due to reasons alluded to in Chapter 2, but this idea
seemed worth exploring under EMH reasoning. I later dropped using this type of direct
p-value based return testing as not providing enough value to be of use; however the
concept was worth exploring and in this simple case is useful.

For the sample where h > 0.002, returns are explored for information content as ‘Raw
Bet Returns’ and profit potential tested as ‘Real Bet Returns’(raw bet returns minus
transaction costs). This is to show potential information content verses potential profits,
which is strongly affected by transaction costs (also seen with ES futures).
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Table C.5: GBPUSD Triangle Mean Returns

TTop Up TTop Down TBot Down TBot Up

Raw Bet Return 0.0217 0.0617 0.0234 0.0449
Raw Bet Return, h > 0.002 0.0207 0.0896 -0.0277 0.0588
Real Bet Return, h > 0.002 -0.0160 0.0524 -0.0642 0.0217

Table C.6: GBPUSD Naive Event Mean Returns

TTop Up TTop Down TBot Down TBot Up

Raw Bet Return -0.000251 0.000315 -0.000684 0.0000533
Raw Bet Return, h > 0.002 0.001990 -0.003390 0.000632 -0.0011500

Table C.7: GBPUSD Mean Return P-Values

TTop Up TTop Down TBot Down TBot Up

Raw Bet Return = 0 0.022 0.000 0.015 0.000
Raw Bet Return > 0, h > 0.002 0.011 0.000 0.007 0.000
Real Bet Return > 0, h > 0.002 0.750 0.032 0.997 0.204

C.3 Structural Approach

Table C.8 shows the Structural model parameter estimates for Brownian Motion first
passage times. TTop Up and TBot Up types use the first passage above price level; TBot
Down and TTop Down use the first passage times bellow in accordance with the
direction that the simulated traders expect. Immediately apparent is that estimates of
drift appear to be zero but this is more-so that these show small values around 6 decimal
places. Having carefully checked both the mathematics and code this seems correct;
visually checking the manifold clearly shows the numerical estimation is probably
correct but that the gradient of the µ estimates is so shallow that it requires a
significantly small numerical step size to be sure that the µ estimate is accurate. In
contrast to µ, σ estimates show volatility whose magnitude is indicative of the
profitability magnitude seen in Section C.2. For example TTop Down shows the highest
σ estimate and also appears to be the most likely to be profitable, other estimates follow
suit. Overall this is may be due to the negative exponential term of the distribution
equation biasing the results and seems to imply that the model does not represent the
data well. This is no surprise, the raw Brownian Motion model is an initial starting point
and is a very process unlikely to magically fit without some modification.

Comparison of Triangle parameter estimates with corresponding Naive cases show
differences as seen in tables C.8 and C.9. At the very least, the estimates for Naive cases
are similar to what would be expected, since as a baseline the Euler sigma estimate is
0.173 which is very close to the Naive estimates for each type. In summary the σ Naive
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cases are reasonably close the Euler estimates and far away from their corresponding
Triangle estimates to show some potential, but the model may not fit the data since I
would perhaps expect the Triangle estimates to show more drift due to the exploratory
data. A question then is how to test these estimates for size of effect or/and significance
or how to add effect bounds so as to define how realistic the estimate differences are,
how to do this is not clear especially since this requires ‘shaky’ assumptions about the
structure of the model. However before discussing this I explore the results visually to
further understand the idea, since this exposes features of the data which are not
obvious.

Table C.8: GBPUSD Triangle Brownian Motion First Passage Estimates

TTop Up TTop Down TBot Down TBot Up

σ 0.206 0.327 0.211 0.261
µ 0.000 0.000 0.000 0.000

Table C.9: GBPUSD Naive Brownian Motion First Passage Estimates

TTop Up TTop Down TBot Down TBot Up

σ 0.167 0.158 0.178 0.167
µ 0.000 0.000 0.000 0.000

C.3.1 Surface Exploration

As an initial exploration I plot a 2 dimensional joint distribution of Triangle heights verses
first passage times as seen in Figure C.3, the intuition being that this shows a surface
representation of price movements in terms of joint arrival time and h density which can
help understand momentum based returns by exploring the change in price to a fixed
proportionate level (again this is not a true distribution only an approximation). Overall
for comparison I do this for 3 cases: Triangles, Naive sampling (where the sampling is
redone to take into account new bounds and only one first passage level as opposed to
duel) and first passage times given by theory from the derived Brownian Motion first
passage distribution.

Due to the surface shape having particularly long tails and to gain useful insights I restrict
the results to stopping times within the range of 1-60 minutes inclusive, and heights from
0 to 0.0025, then scale the results to have a total combined mass of 1 such that results are
comparable (note: this is an approximate comparison). Without these adjustments it is
impractical to see the results as most of the mass visually appears in a tiny spike in the
corner of the plot - the distributions have a very long left tail which is of less interest,
since the concern is short term momentum.
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Figure C.1: TBot Up Constrained Brownian Motion 2D First Passage Distribution σ =
0.173

Sample heights are generated by taking all triangle heights within this region and
generating Naive stopping times which occur in 60 minutes or less. For each height the
time series has a point selected and from that point forward it is determined how long it
takes for the change in price to go to or above that height price. This is done 10 times for
each triangle height to produce a distribution of stopping times that represents Naive
stopping times not conditional on Triangles occurring. This is a new sample of Naive
heights conditional on first passage in one direction and stopping in 60 minutes or less.
This representation is artificial and deliberately data-snoops which a knowledge of the
future, which is clearly a bad method but is a useful constrained comparative tool.

Stopping times given by theory are calculated by calculating theoretical densities for each
histogram height by time/cell, using the empirical heights from the triangles as a basis.
Each height division is given a density contribution weight equal to 1 divided by the total
number of heights. The probability of that height stopping within a particular cell is then
calculated according to the conditional probability of the first passage time. Each cell’s
cumulative density is then the sum of each heights cumulative density contribution from
times the probability of being in that cell. The mathematics for this is explained in Section
4.2.

Various plots are shown for TBot Up triangles, other types are not shown as they display
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Figure C.2: TBot Up Constrained Naive 2D First Passage Distribution

the same characteristics, though to a greater or lesser degree. I use the TBot Up as an
example as it displays something of a middle ground between the different type, enough
to display the characteristics without favourably picking the more extreme cases. Figure
4.1 shows the stopping time distribution for one height to gain an insight into how the
curve fits within the 2D distribution. Figure C.1 then shows the 2D height vs stopping
time distribution as a histogram with comparable sections to the Naive Figure C.2 and
Triangle Figure C.3 cases. These are difficult to compare so the Naive verses Brownian
Motion in Figure C.5 and Naive verses Triangles in Figure C.4 are compared on the same
plot using a kernel smoothed version (Brownian Motion verses Triangles are not shown
as this is similar to the Naive verses Triangles case).

From the visualisation there are two main observations that can be seen which show how
the Brownian Motion fit is not ideal. Firstly the curve fit comparison changes across the
height dimension such that it is not comparable with either the Naive or Triangle cases
consistently across h, though the Naive case does come much closer to the Brownian
Motion fit as is expected. Secondly for higher h values and early stopping times it appears
not possible to fit a curve which accounts for distribution changes, this is the region that is
most interesting for momentum since it denotes the area where profitable trades would
potentially take place such that transaction costs are overcome. Curiously, no matter
what the Brownian Motion parameters are it is not possible to get a fit inside the section
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Figure C.3: TBot Up Constrained Triangle 2D First Passage Distribution

Figure C.4: Contained Smoothed Naive(Terrain) vs Triangle (Heat)
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Figure C.5: TBot Up Constrained Smoothed Naive(Heat) vs Brownian Motion (Terrain)
σ = 0.173

of the h and τ values that are of most interest. This is not easily identifiable in print as
opposed to a 3D plot navigated on a computer screen, experimenting with numerous
parameter values shows the raw Brownian Motion model is unlikely to fit well.

On some thought and considering other derivations of continuous time stochastic
processes first passage times, it seems unlikely and certainly quite difficult to try and
establish a structural process which will model the data well. Overwhelmingly the
literature implies that continuous time process which are extrapolated from periodic
returns boiled down to continuous time provides a potential fit. At a coarse intuitive
level the Naive trades do seem to visually match the Brownian Motion fit as can be seen
by comparing with the Euler estimation, but the Triangle trades certainly do not. It
appears the intensity of arrival time is different between the Naive and Triangle cases,
this may mean that the underling processes are not the same and hence difficult to
compare. It is hard to conclude from this but given the complexity of the first passage
time distribution objects it seems wise to investigate other methods using a more
statistical approach first.

There is a curious effect that may be embedded in the data that relates to fat tails often
observed in periodic returns. In a sense the returns modelled are inverted in that the time
component varies but the observed return is a fixed quantity of 1 and -1. This means that
the previous fat tails will now be embedded in the distribution head. This is a pivotal
point of reasoning which helps to fit the Intensity based model.
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C.4 Intensity Approach

The difficulties of the Structural approach motivated using simpler modelling
alternatives and the result of this is the Intensity approach. The Intensity approach is to
simply consider the wins and losses as binary 1 or -1 values and model the intensity of
arrival times as exponential terms using the idea that arrival times can be viewed as a
non-homogeneous Poisson process. At first this seems an overly simplistic comparison,
but it enables a contrast between Triangle and Naive approaches that is quite clear
without complex first passage distribution derivations. Also an intensity approach
provides access to a variety of statistical tests and visual comparisons that are of direct
practical use.

With the Intensity based approach several distributions, for example Gumbel, were
initially injected with the intention of fitting across each win and loss surface of
stopping times; however, it was not possible to fit these across the entire 2D surface and
eventually the method settled on was the GEV fit described here across section of h
values. Alternative methods are discussed in 8.1 and only the final GEV method
comparison of the decision points going forward are covered in this trial. The wider trial
consisted of a more varied approach but I only mention many of these briefly in
discussion due to their lack of value. Unfortunately with GEV, partly to do with the
exponentials in the distribution, fitting over the entire surface invariably either produces
a particularly poor fit or results in errors or a lack of convergence. With simple
distributions it is generally less likely to get errors or a lack of convergence, but it is
particularly difficult to fit the long right tail - this often involving several years with US
equities. One choice would have been to not include the long tails but this discounts a
reasonably large proportion of the sample, likely resulting in biased estimates and
implying an ability to see into the future.

The intuition break in developing this model came in realising that the traditional
problem of periodic return fat tails being difficult to model had been inverted and that
the previous tails were instead within the head of the distribution which now primarily
resided on the left of the distribution. The answer then seemed obvious in that the need
was to predict the possibility of the extreme event of no events occurring for a long time
to which there are a range of extreme value theorem solutions from which GEV was
selected.

Using GEV as a sub-distribution is flexible such that it allows a close fit of the tail such
that the Cumulative Differences test produces acceptably high p-values for in-sample
data. It is worth stating that many other Intensity based tests do not give such high p-
values, the Cumulative Differences is chosen for convenience but this does highlight the
precariousness of selective testing. This test is useful in that it reflects the closeness of fit
that can be seen visually enough to present a numerical value for goodness of fit. The
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fit is much closer than Brownian Motion due to the degree of flexibility embedded in the
GEV distribution. No other distribution fitted remotely as close.
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Figure C.6: TBot Up Intensity Distribution Profile hσ = [0, 0.0035)

Due to difficulty fitting across the entire surface, h sections were trialled where slices of
h intervals are fitted using the GEV intensity model. Too many intervals being
unmanageable, intervals are chosen to represent high, medium and low height sections.
However the fit is not always particularly good so this was further normalised by
dividing by σ to create hσ = h

σ sections, this also being later useful to normalise
comparison of stocks. In this trial volatility is set to σ = 0.173, though this is
data-snooping this is only meant as test the usefulness of the model. hσ sections show
better GEV Intensity model fits as seen in Table C.14 as compared with Table C.11.

In considering the experimentation with various surface plots and the difficulty
interpreting them, particularly in document form, I instead utilise the hσ slices to
produce a ’distribution profile’ plot across wins and losses to compare model and
empirical results as seen in Figures C.6 and C.7. These can be either proportional to
show the effect of probability of winning and stopping time distribution or full to only
show the stopping time distributions. As a simplification since the model fit is generally
exceptionally close to the in-sample empirical data, when comparing out-of-sample
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Figure C.7: TBot Up Intensity Distribution Profile hσ = [0.0035, 007)

empirical distributions or against the Naive case the model fit is used as the base
comparison to represent the in-sample data - this default considerably lessens the
number of diagrams and tests.

Table C.10: GBPUSD h Intensity Section Counts

Type h Count

TTop Up [0 .00075) 4301
TTop Up [.00075 .0015) 3844
TTop Up [.0015∞) 2464
TTop Down [0 .00075) 3304
TTop Down [.00075 .0015) 2877

TTop Down [.0015∞) 1763
TBot Down [0 .00075) 4034
TBot Down [.00075 .0015) 3779
TBot Down [.0015∞) 2439
TBot Up [0 .00075) 4268

TBot Up [.00075 .0015) 3691
TBot Up [.0015∞) 2129
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Table C.11: GBPUSD h Intensity Model Parameter Estimates

Win Distribution Loss Distribution

Type h µ1 σ1 ξ1 µ2 σ2 ξ2 p

TTop Up [0 .00075) 4.17 6.9 0.584 5.96 8.43 0.509 0.514
TTop Up [.00075 .0015) 10.3 12.4 0.902 16.2 16.7 0.763 0.511
TTop Up [.0015∞) 12.7 31.1 0.963 20 47.3 0.848 0.5
TTop Down [0 .00075) 4.25 6.96 0.628 4.45 9.14 0.502 0.526
TTop Down [.00075 .0015) 11.5 13.8 0.794 15.3 16.5 0.845 0.53

TTop Down [.0015∞) 15 31.5 0.848 30.7 36.1 0.99 0.55
TBot Down [0 .00075) 4.37 6.15 0.637 6.62 8.17 0.614 0.513
TBot Down [.00075 .0015) 9.66 12.8 0.87 15.7 16.3 0.721 0.518
TBot Down [.0015∞) 3.1 27.4 0.954 0.713 41.7 0.75 0.501
TBot Up [0 .00075) 3.18 7.1 0.627 3.82 8.82 0.496 0.518

TBot Up [.00075 .0015) 10.9 14.2 0.799 14.4 16.1 0.744 0.525
TBot Up [.0015∞) 3.95 27.5 0.957 1.74 40.6 0.834 0.53

Table C.12: GBPUSD h Triangle Intensity Model In Sample Tests

Win Distribution Loss Distribution

Type h pGT1(t) (1− p)GT2(t)

TTop Up [0 .00075) 0.495 0.48
TTop Up [.00075 .0015) 1 0.843
TTop Up [.0015∞) 0.0509 0.362
TTop Down [0 .00075) 0.539 0.523
TTop Down [.00075 .0015) 0.854 0.99

TTop Down [.0015∞) 0.0492 0.00247
TBot Down [0 .00075) 0.87 0.858
TBot Down [.00075 .0015) 0.452 0.35
TBot Down [.0015∞) 0.0335 0.208
TBot Up [0 .00075) 0.488 0.477

TBot Up [.00075 .0015) 0.839 0.74
TBot Up [.0015∞) 0.59 0.126

Table C.13: GBPUSD hσ Intensity Section Counts

Type hσ Count

TTop Up [0 .0035) 3181
TTop Up [.0035 .007) 3873
TTop Up [.007∞) 3555
TTop Down [0 .0035) 2436
TTop Down [.0035 .007) 2943

TTop Down [.007∞) 2565
TBot Down [0 .0035) 2966
TBot Down [.0035 .007) 3814
TBot Down [.007∞) 3472
TBot Up [0 .0035) 3173

TBot Up [.0035 .007) 3808
TBot Up [.007∞) 3107
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Table C.14: GBPUSD hσ Intensity Model Parameter Estimates

Win Distribution Loss Distribution

Type hσ µ1 σ1 ξ1 µ2 σ2 ξ2 p

TTop Up [0 .0035) 2.52 6.45 0.519 5.3 7.48 0.489 0.513
TTop Up [.0035 .007) 8.6 10.1 0.786 13.1 13.9 0.661 0.51
TTop Up [.007∞) 15 26.7 0.99 20 39.1 0.836 0.507
TTop Down [0 .0035) 0.5 6.52 0.49 3 7.72 0.491 0.534
TTop Down [.0035 .007) 9.57 11.2 0.764 10 14.8 0.6 0.523

TTop Down [.007∞) 10 28.4 0.849 28.4 34 0.99 0.539
TBot Down [0 .0035) 3.29 5.76 0.527 5.65 7.45 0.536 0.517
TBot Down [.0035 .007) 7.9 10.4 0.793 10 14.4 0.596 0.514
TBot Down [.007∞) 15 26.9 0.99 30.2 35.7 0.933 0.505
TBot Up [0 .0035) 2.57 6.19 0.628 0.5 8.25 0.4 0.523

TBot Up [.0035 .007) 9.15 12.1 0.732 11.7 13.2 0.701 0.519
TBot Up [.007∞) 15 27.4 0.967 16.8 38.9 0.835 0.527

Table C.15: GBPUSD hσ Triangle Intensity Model In Sample Tests

Win Distribution Loss Distribution

Type hσ pGT1(t) (1− p)GT2(t)

TTop Up [0 .0035) 0.667 0.658
TTop Up [.0035 .007) 0.98 0.966
TTop Up [.007∞) 0.39 0.984
TTop Down [0 .0035) 0.775 0.76
TTop Down [.0035 .007) 0.26 0.263

TTop Down [.007∞) 0.5 0.125
TBot Down [0 .0035) 0.493 0.478
TBot Down [.0035 .007) 0.764 0.71
TBot Down [.007∞) 0.151 0.597
TBot Up [0 .0035) 0.951 0.946

TBot Up [.0035 .007) 0.565 0.591
TBot Up [.007∞) 0.779 0.296

C.5 Discussion

For the Brownian Motion first passage approach, there are various problems with this
and while many of these certainly could be resolved, my eventual conclusion is that this
methodology is overly complex for the potential gains in information. Instead from
observing both the first passage surfaces it seemed the binary returns nature of the data
presented a simple alternative, it seemed better to at least start by not assuming a
structure but rather create a model into which various distributions can be injected.
Under this more exploratory view, very little needs to be assumed and the fit can be
adjusted until the a distribution is found. This is how the Intensity model was
developed as shown.

Critically I view much of the financial literature as being overly confident in their
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mathematical models with suspiciously derived empirical validation; Breiman (2001b)
has some interesting discussion points on the over-reliance of data models, my response
is to very carefully explore potential fits on similar data (GBPUSD), then clearly
knowing I can analysis momentum well, apply the knowledge to Equity prices, while
not data-snooping. By abstracting prediction cleanly to an algorithm I avoid unrealistic
model prediction assumptions and only need to rely on comparative models to show
differences, thus reducing over reliance on mathematical models. In the end the
intensity model was used and eventually the GEV distribution was chosen to model the
underlying momentum within this. The model being realistically developed to make
this comparison it can now be adjusted and applied to US Equities confidently.

Exploration of Brownian Motion based first passage times is somewhat opaque since it
requires considerable derivation to explore various approaches properly without a clear
initial idea of how the model may fit. This makes exploring such methods time
consuming and problematic to find well fitted parameters to for even simple Itô
processes. Also, I see no comparative research extracting information from such a
method for comparing price momentum, none in terms of short term momentum using
first passage times. Despite first passage times being thoroughly investigated it is the
absence of information generated by highly skilled mathematicians in this area that
concerns me. The case of no barking dog in the night, where there are many capable a
bark is a concern, providing clue that this is rather difficult. Colloquially if the general
population of highly skilled mathematicians have not found valuable information in
such an area to publish, then I strongly question my ability to do this within the time
frame required of a Masters thesis.

For the structural parameter estimations, the results show that the volatility parameters
give indicative changes but that the drift parameters are very close to zero. The drift
values of zero look suspicious and yet it is likely that the drift is close to zero over the
short term. The question then is how to validate the accuracy of these values and how
to test for significance. Categorical Chi squared testing can be used to test grid sections
of probability but on trialling this, it was apparent that the results are entirely dependent
on the size of the h by τ grid squares, making this an unreliable comparative test since
it can be adjusted to give whatever p-values seem desirable! Overall the approach to
testing structural models is unclear in this situation, and given other problems this was
not investigated further.

Estimates of volatility for Brownian Motion first passage times give some idea of
changes potentially due to Triangle events and these seem to corroborate with measured
bet returns. This is interesting especially since these are quite different from the Naive
case which shows similar volatility to the Euler estimation, but it is not clear how
significant this change is. To explore the meaning of parameters I plot the constrained
surfaces of first passage responses for Triangles, Naive and the Euler estimation with no
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drift (though for clarity and space only TBot Up is shown, since all cases are similar).
Arguably the most interesting result of this is that there seems to be a much greater
number of early first passage times toward the greater h values, than there are with the
Naive or Euler estimation cases. This can be seen clearly in Figure C.4 where the orange
rise shows a larger number of early stopping times in this region. There are two
potential aspects to explore within this: there may be some more immediate change due
to Triangle events and that this may be time dependant, in that the effect could be
stronger closer to the Triangle than further away. This is a concern since using time
varying functions as given in 4.1 could be exceptionally complex to derive first passage
times. It is also worth noting that by substituting estimated parameters into the
Brownian Motion based surface it is very clear that the estimated parameters while
indicatively higher do not represent the underlying empirical data well. This is likely
ideally dealt with by using a time varying Itô process or a Levy process with jumps,
either of which would be particularly difficult to derive the first passage distribution for,
since in moving towards equities this would also likely require a Geometric approach.
So the Itô based first passage time method would probably require considerably more
work to obtain a model that fitted.

Though the structural first passage is an entry point trial, its main weakness is that it
discards roughly half the sample of Triangle events and this sample may misrepresent
the real effect. The sample captured represents only those that have crossed within 60
minutes or less. To some extent this can be mitigate with crossing times above and below.

For the Itô Stochastic process general case, the issues going forward are:

• complex to the point where if for example the modelling requires a time varying
function there may not be a solution,
• by definition implies a very specific structure which may be impractical,
• the intricate nature of derivation makes adding covariates convoluted,
• may be difficult to test for significance of effect,
• unclear how to validate if estimates are correct (aside from visually).

The alternative is to not assume structure and consider the bet returns as simple
exponential stopping times based on the intensity method from survival analysis.
Mathematically this is shown in Section 5.1 where the exponential stopping time based
motivation is shown. This allows the ability to trial various distributions to model the
stopping time while also allowing the flexibility to add covariates. End the end this has
resulted in the GEV distribution, but the point is the overall solution is particularly
malleable.

Using GBPUSD some preliminary results are shown, while it would have been
conceptually better to fit across the entire surface of stopping times, fitting across three
sections considerably simplifies assessment of the results. The fit assessed using the
Cumulative Deviations test is generally good, but somewhat unstable if only done using



C.5. DISCUSSION 133

h, this is also not usable for Equities. Instead I use hσ = h
σ to normalise the data and this

produces more consistent goodness of fit tests in the trial.

To intuitively view Intensity fit I create a ’Profile Plot’ which contains the win PDF and
CDF as a green line vs win EPDF and ECDF in the top half; and loss PDF and CDF as
a red line vs loss EPDF ECDF. PDF vs EPDF densities are normalised by frequency for
comparison purposes such that histogram bars are comparable with the model line fit.
As can be seen by the profile plots and goodness of fit tests the the fits are surprisingly
good (even better with Equities when volatility is calculated on a case by case basis).

Originally this intensity model had not worked as intended, as none of the distributions
I tried fitted and it seemed a dead end. This was blind; however upon reading McNeil
et al. (2015) regarding risk management I realised my strategy was entirely flawed in
that in trying to predict the head on the left of profile plots was highly unlikely to be
achieved in that it was unstable and potentially unpredictable. However in reading the
risk management literature I realised that the heavy tail that risk managers complain as
being unpredictable was now constrained on the left of my plots, and though this was
still apparently difficult to model the tail on the right was now quite predictable or at
least easily modelable. Through the process of taking changing risk to use fixed price
levels the nature of the problem had changed. It was apparent that trying to predict the
head was of no use but that by predicting the tail the head was predictable by inversion:
phead = 1 − ptail. Thus the original tail problem was solvable, if only for a narrow case.
From Extreme Value Theory I originally trialled Gumbel but found GEV provided a more
flexible fit.

As can be seen in Figures C.7 and C.6 the left of the PDF vs EPDF plots generally do not
fit well but the tails do. This may be because the effect of the Triangles is more extreme
immediately after the Triangle, whereas the tail is less affected by the Triangle and so
is more predictable. Or perhaps more obviously in that the GEV fit is not able to take
into account the frequent more immediate change as seen on the left of the plot. This is
explored more for US Equities where I discuss the GEV intensity model predictive value.
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ES Futures Trial

S&P 500 CME Group Futures (ES) data from Thompson Reuters over the period of 2004-
2017 inclusive is used as secondary trial data. This data uses the standard first monthly
aggregated continuous contract reflective of the 3 month ES contracts contracts rolled
over, which is the common standard for back-testing futures. The Bid price is used as the
quoted price. Transaction costs only take into Account the Bid Ask spread and estimate
brokerage costs as an additional fixed spread.

Originally this data had intended to be used with Geometric Brownian motion or other
continuous time structural stochastic processes. The ES data has a geometric drift
component which would have been a useful trial transition to stocks for such models.
However in the end this data was not used for this purpose, and so little emphasis has
been placed on this trial.

What is interesting is that data shows a strong predictive return component after
Triangles however this drastically reduces once transaction costs are applied.

Table D.1: ES Triangle Counts

TTop Up TBot Down TTop Down TBot Up

Count 7500 6862 5466 6543
Count, h > 5 427 455 302 399

Table D.2: ES Triangle Mean Returns

TTop Up TBot Down TTop Down TBot Up

Raw Return (no costs) 0.1490 0.108000 0.1720 0.1870
Raw Return (no costs), h > 5 0.0804 0.054800 0.1420 0.1010
Real Return (with costs), h > 5 0.0256 0.000105 0.0878 0.0461
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Table D.3: ES Triangle Mean Return T-test P-Values

TTop Up TBot Down TTop Down TBot Up

Raw Return = 0 0.000 0.000 0.0000 0.0000
Raw Return > 0 0.000 0.000 0.0000 0.0000
Real Return > 0 0.218 0.499 0.0110 0.0776
Real Return >.01 0.318 0.617 0.0211 0.1330
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Effect Size Heuristics Bootstrap Code

1 mean i n t e r v a l<−func t ion ( x , n=10000) {
2 r es<−r e p l i c a t e ( n , mean( sample ( x , length ( x ) , r e p l a c e = T ) ) )
3 r es<−s o r t ( res , decreas ing = F )
4 c (mean( x ) , q u a n t i l e ( res , c ( . 0 2 5 , . 9 7 5 ) ) )
5 }
6 sd i n t e r v a l<−func t ion ( x , n=10000) {
7 r es<−r e p l i c a t e ( n , sd ( sample ( x , length ( x ) , r e p l a c e = T ) ) )
8 r es<−s o r t ( res , decreas ing = F )
9 c ( sd ( x ) , q u a n t i l e ( res , c ( . 0 2 5 , . 9 7 5 ) ) )

10 }

Listing E.1: Mean and Standard Deviation Confidence Interval Bootstrap

1 cohens d <− func t ion ( x , y ) {
2 n x<−length ( x )−1
3 n y<−length ( y )−1
4 s<−s q r t ( ( n x∗var ( x ) + n y∗var ( y ) ) / ( n x+n y ) )
5 (mean( x )−mean( y ) ) /s
6 }
7 cohens d i n t e r v a l<−func t ion ( x , y , n=10000) {
8 r es<−r e p l i c a t e ( n , func t ion ( ) {
9 cohens d (

10 sample ( x , length ( x ) , r e p l a c e = T ) ,
11 sample ( y , length ( y ) , r e p l a c e = T ) )
12 } )
13 r es<−s o r t ( res , decreas ing = F )
14 c ( cohens d ( x , y ) , q u a n t i l e ( res , c ( . 0 2 5 , . 9 7 5 ) ) )
15 }

Listing E.2: Cohen’s d Confidence Interval Bootstrap
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