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Abstract

As an emerging computer networking paradigm, Software-Defined Net-
working (SDN) empowers network operators with simplified network
configuration and centralized network management. Recently, distributed
controller architectures have become a notable invention where multiple
controllers are jointly deployed in the network for request processing. One
major research challenge for distributed controller architectures is to effec-
tively manage the controller resources including allocating sufficient con-
trollers to the suitable network locations and making the best use of the
given controller resources.

In general, existing approaches for managing the controller resources
in the literature can be classified into three main directions. Designing
new controller architectures belongs to the first direction, where the focus
is on enabling workload shifting among controllers using switch migra-
tion. Designing controller placement algorithms to identify the number
and locations of controllers is the second direction. Given the controller
placement solution, the third direction is controller scheduling which aims
to make the best use of the shared controllers by properly distributing re-
quests among them.

However, existing approaches have three major limitations. First, ex-
isting controller architectures feature a switch-controller binding which re-
stricts the requests generated by a switch to only be processed by a prede-
fined controller. Since each switch comes with different workload and the
workload can be time-variant, the binding renders the bound controller
susceptible to either being overloaded or underloaded. Second, existing
placement algorithms have consistently underestimated the importance



of controller scheduling. Due to the NP-hardness of the placement prob-
lem, Genetic Algorithm (GA) is a promising candidate. However, as a
population-based approach, GA can be computationally expensive. Es-
pecially in a large network, the corresponding search space becomes too
large for GA to handle effectively. Third, existing approaches for con-
troller scheduling are mostly designed under the switch-controller bind-
ing constraint. When the scheduling is performed at a per-request level,
the scheduling complexity increases significantly, rendering the efficiency
and effectiveness of existing algorithms questionable. Apart from that,
existing studies mainly focus on manually designing request dispatching
policy which strongly relies on domain knowledge and involves a time-

consuming fine-tuning process.

The overall goal of this thesis is to effectively manage the controller re-
sources in distributed SDN controller architectures. To address the three
major limitations, three research objectives are established. First, this the-
sis aims to propose a new controller architecture to enable flexible con-
troller placement and scheduling. Second, the thesis focuses on effectively
and scalably identifying suitable controller placement while jointly tak-
ing the controller scheduling problem into consideration. Third, the thesis
seeks to incorporate machine learning techniques in the request dispatch-

ing policy design to automatically learn adaptive and effective policies.

To achieve the first objective, this thesis proposes a new BindingLess
Architecture for distributed Controllers (BLAC) which features bindin-
gless association between switches and controllers. With the newly in-
troduced scheduling layer, requests can be transparently and flexibly dis-
patched among multiple controllers without invoking the time-consuming
and complicated switch migration. Experiments conducted in this thesis
show that BLAC significantly reduces the average response time and im-
proves the throughput compared to existing SDN architectures.

To achieve the second objective, this thesis proposes a Clustering-
based Genetic Algorithm with Cooperative Clusters (CGA-CC) to tackle



the controller placement problem. Particularly, CGA-CC partitions a large
network into non-overlapping sub-networks to substantially reduce the
search space of GA. Within each sub-network, GA is applied to identify-
ing the placement solution. The quality of any given placement solution
is evaluated by a gradient-descent-based scheduling algorithm which is
developed to optimize the probability distribution of requests among all
controllers. Moreover, a greedy load re-distribution mechanism is devel-
oped to handle unexpected demand variations by dynamically forward-
ing indigestible requests to adjacent sub-networks. Extensive simulations
show that our algorithms can significantly outperform several existing
and state-of-the-art algorithms and is more robust in handling unexpected
traffic bursts.

To achieve the third objective, this thesis proposes a Multi-Agent (MA)
deep-reinforcement-learning-based approach with the aim to automati-
cally learn adaptive, effective, and efficient policies used by each switch.
In particular, a new adaptive policy representation is proposed to support
networks with a changing number of controllers. To enable the training
of an adaptive policy, a new policy gradient calculation technique is de-
veloped. Then the policy design problem is formulated as an MA Markov
Decision Processing and a new MA training algorithm is proposed. The
results show that the policy designed by our algorithm can easily adapt to
networks with a changing number of controllers. Moreover, our policy can
achieve significantly better performance compared with existing policies
including the man-made policy (e.g., weighted round-robin), the model-
based policy (e.g., the gradient-descent-based scheduling algorithm), and
policies designed by other reinforcement learning algorithms (e.g., the
proximal policy optimization algorithm).
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Chapter 1
Introduction

This chapter provides a general introduction to the thesis. Specifically,
it starts with describing the controller resource management problem in
Software-Defined Networking and outlines the motivations. Aiming at
addressing the controller resource management problem, the research
goals and objectives are proposed, followed by a summary of the major
contributions. A brief discussion of the thesis organization concludes this

chapter.

1.1 Problem Statement

According to recent statistics in 2019 [7, 23], more than half of the global
population uses computer networks and the number of users is still grow-
ing steadily [3]. Undoubtedly, computer networks have become indis-
pensable to people in their daily lives.

In computer networks, network devices (e.g., routers and switches) are
connected to each other and perform packet forwarding based on routing
decisions made by routing algorithms. Everything that network devices
do can be classified as being in a particular plane. Generally, there are
two planes: the control plane and the data plane. The control plane is

in charge of making packet forwarding decisions which guide the packet

1
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Figure 1.1: Traditional network VS SDN.

forwarding in the data plane. Given the decision, the data plane transfers
the received packet from an input link interface to the appropriate output
link interface within the network device.

In traditional networks, the control plane and the data plane are highly
integrated and embedded in individual network devices as shown in Fig-
ure 1.1(a). Each network device is designed with vendor-specific interfaces
and predefined protocols, which makes network configuration heavily
human-centered with minor autonomous behavior [156]. In some extreme
cases, network operators may need to manually and individually config-
ure each device using a limited set of low-level device configuration com-
mands in a command line interface environment. Thus, managing tradi-

tional networks is a time-consuming and error-prone task [16, 18, 93, 214].

Software-Defined Networking (SDN) revolutionized computer net-
working by introducing a new paradigm that decouples the control plane
from the data plane, as shown in Figure 1.1(b) [90]. The control plane,
which is equipped with one or multiple controllers, serves as the network
brain and controls the behaviors of the data plane. As a result, the data
plane is “brainless” but highly efficient. Because SDN supports central-
ized network management and rapid deployment of new network poli-
cies, it has been widely applied to many real-world networks (e.g., Google
B4 [140] and NTT Com’s SD-WAN [9]).



1.1. PROBLEM STATEMENT 3

Traditionally, the control plane is equipped with one single controller
(e.g., Beacon [84] and Floodlight [5]), which may suffer from responsive-
ness, resilience, and scalability issues [127, 148, 161, 214]. The contflict be-
tween relatively poor controller performance and high network demands
has motivated researchers to design distributed controller architectures
(e.g., ONOS [45] and Onix [158]) where multiple controllers are physi-
cally spread across the control plane to manage different sub-regions of
switches. However, these controllers still logically form a centralized con-
trol plane.

Regardless of the benefits provided, the introduction of distributed
controller architectures also gives rise to new research problems, such as
consistency, reliability, and scalability [127, 148, 161, 214]. In particular,
since SDN features a logically centralized control plane, it requires each
physically distributed controller to maintain a consistent global network
view by constantly sharing their local network information. As the net-
work scales up, more controllers will be deployed with more information
exchanges, which increases the synchronization overhead [281]. Apart
from that, the information shared across the network can be easily in-
tercepted by the attackers, inevitably posing a privacy threat to network
management [161, 216].

Among all the research problems, scalability is one of the most critical
challenges in distributed controller architectures [129, 148]. As a widely in-
vestigated topic in system architecture designs [105, 113, 199], scalability
is generally defined as the capability of the system to maintain its func-
tionality and performance in the event of growing demand/workload.
Similarly, in the SDN context, scalability is widely understood as the
ability of a distributed controller architecture to handle more requests
with the increased network scale while simultaneously satisfying network
performance requirements (e.g., network response time and through-
put) [128, 148].

According to the scalability definition, it is clear that effectively and
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efficiently managing the control plane resources' is the key to enhanc-
ing the scalability. Resource Management (or allocation, scheduling) is
a popular topic in various systems. Although the basic notion is intuitive,
the term Resource Management (RM) has different definitions in differ-
ent areas. For example, RM in cloud computing refers to the procedure
of distributing the cloud resources (e.g., computing, network, and stor-
age resources) to a set of applications so as to satisfy both consumers” and
providers” demand as well as adapting to changes in the availability of
resources [52, 190]. In operating systems, RM considers the allocation of
system resources (e.g., memory, CPU, and network bandwidth) to differ-
ent threads, processes, and applications to achieve certain objectives, such
as high system throughput, fairness, and quality of service [110].
Similarly, from the perspective of distributed controller architectures,
RM is the process of allocating control plane resources to the network as
well as performing request dispatching to available shared resources. In
other words, it involves decision making with respect to three questions:

(Q1) How many controllers should be allocated to a given network with
given controller capacity settings?

(Q2) Where should the controllers be placed in the network?

(Q3) How to schedule the given controller resources? In other words, how

to perform request dispatching from switches to shared controllers?

Particularly, identifying a suitable number of controllers (Q1) and their
locations (Q2) in accordance with the dynamic fluctuations of traffic work-
load is defined as the CPP [118]. On the other hand, deciding how requests
are distributed from all switches among controllers (Q3) so as to make
the best use of the given controller resource is defined as the Controller
Scheduling Problem (CSP).

'Due to the fact that the main and basic functionality of SDN control plane is to pro-
cess the requests initiated from switches by running the routing algorithms [128], the
control plane resources we consider in this thesis are measured by the control plane’s
capacity in terms of the number of requests it can process in each time unit.
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Figure 1.2: Examples of switch-controller binding.

1.2 Motivation

Solving the RM problem in distributed SDN controller architectures is
challenging [128, 148, 295]. In general, existing studies can be classified
into two main categories: (1) introducing new system architecture designs
and (2) proposing new RM algorithms. Following the two categories, the
challenging issues of the RM problem are discussed from both the archi-
tectural and algorithm design aspects respectively.

1.2.1 Architectural Challenges

Since RM is performed on top of a distributed controller architecture, a
well-designed architecture that enables transparent, efficient, and fine-
grained RM operations is critical. In SDN, establishing a network con-
nection (e.g., a TCP/IP connection) between a switch and a controller is
required before any communication can take place [14], e.g., the red dash-
dotted lines in Figure 1.2.

Existing controller architectures feature a switch-controller binding.
Specifically, each switch is bound to a controller, which restricts the re-
quests generated by a switch to only be processed by its bound con-
troller [14, 138]. As shown in Figure 1.2(b), requests from Switch 3 can
only be sent to Controller 2. Thus, when performing Controller Schedul-
ing (CS), instead of partially scheduling/distributing the requests from a
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heavily loaded controller to an underloaded controller, all requests gener-
ated by the same switch must be forwarded to a new controller. In other
words, CS is limited to a coarse switch level, which restricts the capability
of properly distributing workload across all controllers and increases the
risk of overloading some controllers if the newly bound switch accumu-
lates lots of pending requests.

Moreover, since a switch is bound to a controller, whenever the Con-
troller Placement (CP) is changed (regardless of the number of controllers
or their locations), switch-controller bindings need to be re-established.
For example, in Figure 1.2, 3 switches (i.e., Switch 3, 4, and 5) are re-
bound from their original controller (Controller 1 in Figure 1.2(a)) to the
newly added controller (Controller 2 in Figure 1.2(b)). During the rebind-
ing process, requests arriving at the switches cannot be processed by the
controllers, which inevitably causes increased response time or even intro-
duces network interruption.

In view of the above limitations, designing a new distributed controller
architecture to enable effective and efficient RM becomes necessary. How-
ever, designing a distributed controller architecture for RM is challenging

since it has to satisfy the following design principles:

e Scalability: The new architecture should not introduce any potential
bottlenecks when it scales up. Also, it should support flexible con-

troller number changes to meet various network demands.

o Transparency: Both CP and CS should be performed in a transparent
manner without interruption of switch-controller re-binding.

o Compatibility: The new architecture should be compatible with ex-
isting SDN designs without violating the control-data plane separa-
tion. Also, the new architecture should not introduce any hardware

or special software modification to existing switches.

o Extensibility: To enable continued development, the new architecture
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should be designed to easily and flexibly integrate any new function-
ality. For example, new RM algorithms can be easily implemented
and deployed on the new architecture using provided interfaces.

o Separation of Concerns: The architecture should be separated into dif-
ferent modules and each module is responsible for a dedicated func-
tion. For example, interactions with switches (e.g., connection es-
tablishment and statistics collection) should be handled in a module
that is separated/independent from modules related to controller
operations. With separation of concerns, the architecture can be eas-
ily maintained and quickly adapt to changes (e.g., new network pro-

tocols).

1.2.2 Algorithm Design Challenges

Even without the switch-controller binding constraint, managing the con-
troller resources is still difficult due to the following reasons:

1.2.2.1 Challenges for the CPP

NP-hardness of the CPP: According to existing literature [50, 118, 291],
solely finding the locations of a given number of controllers without con-
sidering their capacity constraint is a vertex k-center problem [122] or a
k-median problem [81], subject to the optimization goal. Both k-center
and k-median problems are already NP-hard. The CPP we considered in
this thesis needs to identify not only the number of controllers with differ-
ent capacities but also their locations, which is clearly also NP-hard since
the k-center or k-median problem can be considered as a special case of
our problem.

Problem Formulation: When deciding the CP, many studies [118, 143,
153, 165, 303] completely ignore the impact of the CSP. However, even with
an appropriate CP, we may still run into the risk of poor network perfor-

mance if the requests cannot be properly distributed among all controllers.
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In such a situation, the controller processing time can dominate the total
request response time [269, 291]. Although follow-up studies explicitly
recognized the importance of the CSP when dealing with the CPD, they
tend to oversimplify the CSP, e.g., by assuming each switch contributes an
equal amount of workload to the control plane [123, 180]. Thus, how to
explicitly and precisely quantify the impact of the CSP on the CPP needs

to be further investigated.

Algorithm Design: Different algorithms were proposed to solve the
CPP. Specifically, exact methods were adopted in [118, 123, 206, 258] which
guarantee the optimality of the solution. However, their optimality guar-
antee comes at the price of high computational costs. As an alternative,
heuristic methods have been widely used to address the CPP [66, 297]
to balance the trade-off between computation time and solution qual-
ity [92, 139, 141, 151, 152, 165, 180, 235].

In literature [212, 213, 233], Evolutionary Computation (EC) is often ex-
ploited to find near-optimal solutions to NP-hard problems. The promis-
ing results reported previously inspired us to tackle the CPP through an
EC method. However, as a population-based approach, EC requires a
large number of performance evaluations of randomly generated CP can-
didates until a satisfying solution is obtained, which can be computation-
ally expensive. Especially in a large network, the corresponding search
space becomes too large for an EC method to handle effectively. Although
network clustering has been widely used to reduce the search space in
the CPP by dividing the network into independent clusters, existing re-
search treated each clustered sub-network as being completely indepen-
dent. When a cluster encounters traffic bursts that cannot be handled by
existing controllers, the control plane will be significantly slowed down.
Therefore, further research must be performed to tackle both the CPP and
the CSP simultaneously in a coherent framework and to effectively handle
the traffic bursts.
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1.2.2.2 Challenges for the CSP

NP-hardness of the CSP: Generally speaking, the CSP can be solved at
two granularity levels: switch level and request level. Let us consider
a network with M switches and N controllers. R requests generated
by M switches within a specific period need to be dispatched to N con-
trollers. When CS is performed at the switch level (i.e., with the switch-
controller binding constraint), solving the CSP means finding the switch-
controller mapping which has a complexity of O(N*). On the contrary,
when performing CS at the request level, requests from one switch are no
longer restricted to be handled by only one controller. Instead, they can
be flexibly distributed and processed among multiple controllers. How-
ever, this flexibility comes at a cost of increasing the CSP complexity from
O(NM) to O(N%) given M < R. Although solving the CSP at the switch
level seems more feasible, it is still NP-hard according to existing stud-
ies [56, 278, 280, 281].

Algorithm Design: To address the CSP, different algorithms have been
proposed, ranging from exact methods [206, 258] to heuristics [38, 56,
66, 74, 80, 278, 307, 308]. However, these algorithms were mostly de-
signed for switch level CS, i.e., the CS decision is made for each switch.
In comparison, when CS is performed at a per-request level, its com-
plexity increases significantly, rendering the efficiency and effectiveness
of existing algorithms questionable (e.g., dynamic programming in [206]
and simulated annealing in [38]). Recently, Deep Reinforcement Learning
(DRL) has demonstrated its potential on tackling challenging scheduling
tasks [67, 135, 185, 194]. However, the scheduling policies trained by ex-
isting DRL approaches only target networks with a fixed number of con-
trollers. In reality, the number of controllers can change in order to meet
the varying traffic demand, which renders the trained policies inapplica-
ble. In line with the fixed policy design, existing DRL algorithms were
developed to train policies with a fixed number of controllers. Therefore,

they cannot cope with the training of an adaptive policy.
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Problem Formulation: When applying DRL, existing studies typically
designed a policy to be used by a centralized agent with access to up-to-
date global information. Such a centralized approach suffers from several
limitations. First of all, this approach is prone to scalability issues [300]
and a single point of failure. Secondly, the use of global information may
not be practical since obtaining timely global information over the entire
SDN network can cause substantial communication overhead and some-
times may not even be available. Thirdly, even though the previous two
issues can be alleviated by deploying multiple agents in the network using
the same policy, the trained policy cannot cope with inter-agent interfer-
ence and outdated/local network information. This results in poor and
unpredictable network performance [188].

1.3 Goals

The ultimate goal of this thesis is to effectively manage the controller re-
sources in distributed SDN controller architectures by developing a com-
prehensive solution to address the challenges from both the architectural
and algorithm design aspects. To achieve this overall goal, the following

three research objectives have been established to guide this research.

(1) Designing a new bindingless distributed controller architecture to enable
flexible CP and CS.

Given the limitations of switch-controller binding, this thesis will
design a new controller architecture featuring bindingless switch-
controller association. With the help of the new architecture, CP and
CS should be performed flexibly and transparently without intro-
ducing any modification to existing SDN switches. In particular, the
bindingless design aims to avoid switch-controller rebinding when-
ever the CP is changed. For the CSP, the new architecture should

enable flexible and fine-grained CS, e.g., a per-request level. More-
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()

(3)

over, it should also allow newly designed RM algorithms to be easily
implemented and deployed.

Developing a new EC-based approach armed with Gradient Descent (GD)
optimization for effective and scalable controller placement.

Existing studies tackled the CPP without explicitly considering the
impact of request distribution among controllers. Particularly, the
request distribution among all controllers is usually oversimplified
to be identical or even completely ignored in some extreme cases.
The influence of request distribution on the CPP performance will
be investigated in this thesis. Considering the NP-hardness of the
CPP, a new EC-based algorithm will be proposed. In addition, to
cope with the large search space, network clustering will be adopted
to solve the CPP in a scalable manner. However, instead of isolating
each cluster, cluster cooperation mechanisms will be investigated to
handle traffic bursts.

Developing a new DRL-based method to automatically design effective, ef-

ficient and adaptive policies to guide request dispatching for all switches.

It is typical to represent a policy as a Deep Neural Network
(DNN) [240, 242]. However, this policy representation fails to func-
tion well in a network with changing numbers of controllers. To
address this issue, a new adaptive policy representation will be de-
signed for efficient request dispatching over an arbitrary number of
controllers. In line with the new policy representation, new training
algorithms will be proposed to enable effective and efficient train-
ing of an adaptive policy. Moreover, considering that the global net-
work information may not be always available to the policy, the CSP
will be investigated in a Multi-Agent Deep Reinforcement Learning
(MA-DRL) manner where the dispatching decision is made with lo-
cal information.
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Major Contributions

This thesis makes the following major contributions:

1)

()

The thesis develops a new BindingLess Architecture for distributed Con-
trollers (BLAC), enabling flexible controller resource management.

By introducing a scheduling layer into existing SDN architectures,
CP and CS can be performed in a flexible and transparent way with-
out imposing the switch-controller binding constraint. New schedul-
ing algorithms can be designed and utilized by the scheduling layer
to cope with the change of communication demand in the network,

making our architecture more flexible and adaptive.

With all the benefits provided, our new architecture is compatible
with existing SDN designs without introducing any hardware or
special software modification to existing switches. To demonstrate
its real-world applicability, a prototype of BLAC is implemented
based on ONOS, a widely-used real-world open source SDN con-
troller architecture. Experiments have been carried out to demon-
strate its efficacy. The results show that our design outperforms
the binding-based controller architectures in terms of both system

throughput and response time.
Part of this contribution has been published in:

VICTORIA HUANG, QIANG FU, GANG CHEN, ELLIOTT WEN, AND
JONATHAN HART. BLAC: A BindingLess Architecture for Dis-
tributed SDN Controllers. In Proceedings of the 42nd IEEE Conference
on Local Computer Networks (LCN 2017), October 09-12, 2017, Singa-
pore. IEEE Press. Pages 146-154.

This thesis proposes a new algorithm called Clustering-based Genetic Algo-
rithm with Cooperative Clusters (CGA-CC) to tackle the CPP.

In particular, we present a new problem definition named the Con-
troller Placement and Scheduling Problem (CPSP) that explicitly cap-
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tures the strong inter-dependencies between the CPP and the CSP.
The CPSP highlights the necessity and importance of simultane-
ously addressing both the CPP and the CSP within the same problem
framework. A full solution to the CPSP is hence obtained as a com-
bination of solutions to both the CPP and the CSP.

To address the CSP, a GD-based scheduling algorithm is developed
to reduce the average response time of request processing to a rea-
sonably low level. Driven by our GD-based scheduling algorithm,
CGA-CC is proposed to utilize a general purpose clustering algo-
rithm to split the network into non-overlapping sub-networks. Sub-
sequently, GA is applied to address the CPP in each sub-network.
Moreover, to enable close cooperation among sub-networks, we fur-
ther introduce a greedy algorithm to strategically forward bursting
requests in one sub-network to selected controllers in neighboring
sub-networks. In this way, we can effectively cope with unexpected
demand variations and ensure good workload balance across all sub-

networks.

Simulation studies conducted in this thesis show that GD-based
scheduling algorithm can effectively reduce the response time while
maintaining high control plane throughput. On the other hand,
CGA-CC effectively improved the resource utilization of the con-
trol plane without sacrificing response time, in comparison to the

widely-used K-center approach and the state-of-the-art algorithm.
Parts of this contribution have been published in:

VICTORIA HUANG, GANG CHEN, QIANG Fu, AND ELLIOTT WEN.
Optimizing Controller Placement for Software-Defined Networks.
In Proceedings of 2019 IFIP/IEEE Symposium on Integrated Network and
Service Management (IM), April 08-12, 2019, Washington DC, USA.
IEEE Press. Pages 224-232.

VICTORIA HUANG, GANG CHEN, PENG ZHANG, HAO Lj,
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CHENGCHEN HU, TIAN PAN AND QIANG FU. A Scalable Approach
to SDN Control Plane Management: High Utilization Comes with
Low Latency. In IEEE Transactions on Network and Service Management
(TNSM), Volumn 17, Issue 2, June, 2020, Pages 682-695.

To effectively utilize the multi-controller resources in SDN, a new DRL-
based approach called Multi-Agent Proximal Policy Optimization (MA-
PPO), together with a new adaptive policy representation, is proposed.

Specifically, we first propose a new DNN-based policy representa-
tion that can be applied to networks with changing numbers of con-
trollers. To demonstrate the effectiveness of the new policy design,
the policy design problem is formulated under the Single-Agent
Deep Reinforcement Learning (SA-DRL) setting. Specifically, the
policy is trained and used by a centralized agent with access to up-
to-date global network information. In line with the new policy, a
new Single-Agent (SA) training approach is developed armed with
the new policy gradient calculation technique.

Considering that the SA-DRL formulation is prone to scalability is-
sues as we discuss in Subsection 1.2.2.2, an MA-DRL approach is
proposed which reformulates the problem as a Multi-Agent Markov
Decision Process (MA-MDP) where each switch makes request dis-
patching decisions solely based on its local network information.
With the new formulation, a new training algorithm called MA-PPO
is proposed, enabling multiple agents to simultaneously learn their

local policies.

Our simulation results show that the policies trained using our
SA-DRL and MA-DRL approaches can achieve significantly better
performance compared with man-made policies as well as policies
learned via other RL algorithms and can adapt to networks with a

changing number of controllers.

Parts of this contribution have been published in:
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VICTORIA HUANG, GANG CHEN, AND QIANG Fu. Effective
Scheduling Function Design in SDN Through Deep Reinforcement
Learning. In Proceedings of 2019 IEEE International Conference on Com-
munications (ICC), May 20-24, 2019, Shanghai, China. IEEE Press.
Pages 1-7.

VICTORIA HUANG, GANG CHEN, QIANG Fu. Multi-Agent Deep
Reinforcement Learning for Request Dispatching in Multi-Controller
Software-Defined Networking. In IEEE Transactions on Parallel and
Distributed Systems (TPDS). (Under review)

1.5 Organization of the Thesis

The remainder of the thesis is structured as follows. Chapter 2 provides
the background knowledge and surveys related work. The main contribu-
tions of the thesis are presented in Chapters 3 to 5. Each chapter addresses
one research objective. Chapter 6 concludes the thesis.

Chapter 2 provides basic concepts and related work that form the back-
ground and motivate our research. It starts with introducing basic con-
cepts of SDN and optimization techniques. Guided by our research goal,
related work on SDN controller architectures, CP methods, and CS algo-
rithms are also reviewed in this chapter.

Chapter 3 tackles the RM problem from an architectural perspective.
In particular, it proposes a new distributed controller architecture featur-
ing switch-controller bindingless association by introducing a scheduling
layer. A prototype is built and experiments are conducted to demonstrate
its effectiveness.

With the flexibility provided by the new architecture proposed in
Chapter 3, Chapter 4 addresses the RM problem, particularly the CPP,
from an algorithm design perspective. A queuing model and a new prob-
lem formulation are introduced to explicitly quantify and strengthen the
importance of solving both the CPP and the CSP coherently within the
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same problem framework. New algorithms (e.g., CGA, CGA-CC) are in-
troduced and extensive simulations are conducted to compare the pro-
posed algorithms with the widely-used and state-of-the-art algorithms.

Given the controllers selected by CGA-CC which is developed in Chap-
ter 4, Chapter 5 solves the CSP by proposing new DRL-based approaches
to automatically learn policies. Specifically, a new policy representation
is designed to adapt to a changing number of controllers. To enable the
training of the adaptive policy, new training algorithms are investigated.
An extensive comparison between the proposed approaches and a range
of widely used CS methods is performed.

Chapter 6 summarizes the thesis and outlines our major contributions.
Different potential research directions for future work are also highlighted

and discussed in this chapter.



Chapter 2
Literature Review

This chapter provides basic concepts and related work that form the back-
ground and motivate our research. This chapter starts with introducing
basic concepts and terminologies in SDN. Then we provide a brief intro-
duction to different techniques for solving optimization problems, ranging
from exact methods to machine learning algorithms. Details about rein-
forcement learning concepts and algorithms are also provided. Guided
by the motivations in Section 1.2, SDN controller architectures, controller
placement methods, and controller scheduling algorithms are three main
approaches to solve the RM problem in distributed SDN. Literature re-
views on these three approaches are presented respectively.

2.1 Software-Defined Networking

With the rapidly growing number of mobile devices (e.g., cell phones,
tablets, and laptops) and the increasing popularity of cloud computing,
computer networks are undoubtedly playing a key role in communica-
tion [225].

17
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Figure 2.1: Traditional network.

2.1.1 Traditional Networks vs. SDN

In general, a computer network consists of two layers of functionality:
the control plane and the data plane (also called the infrastructure layer).
Specifically, the control plane is responsible for the configuration of net-
work devices and making packet forwarding decisions. Guided by the
decisions, the data plane, which corresponds to the physical network in-
frastructure (e.g., switches and links), performs network data forwarding
at the hardware level [246].

In traditional networks, as shown in Figure 2.1, the control plane and
data plane are tightly coupled and resided in the same network device.
Although this integrated design is widely adopted, there are several limi-

tations in traditional networks:
e Complicated and time-consuming network configuration:

— Distributed control plane: In traditional networks, network con-
figuration update is heavily human-centered with minor au-
tonomous behavior [156]. In some extreme cases, network oper-
ators may need to manually and individually configure each de-
vice using a limited set of low-level device configuration com-
mands in a command line interface environment, which is a

time-consuming and error-prone process [155].
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— An increasing number of network devices: A network can be huge
in size. Even a network hosted by medium-size organizations
(e.g., a campus network) can consist of hundreds and up to
thousands of devices [155]. Moreover, to accommodate the
rapid growth of communications, more network devices will
be added over time. The growing number of network devices
will inevitably exacerbate the configuration complexity and po-

tentially introduce higher chances of human errors [35].

— Heterogeneous network devices: Computer networks are made of a
large number of heterogeneous network devices (e.g., switches,
routers, and middle-boxes). Managing and configuring these
proprietary and dedicated hardware requires the use of a lim-
ited set of commands, vendor-specific languages, and config-
uration tools through specific interfaces and protocols. Obvi-
ously, the heterogeneity of network devices increases the con-
tiguration difficulty and requires a high level of domain exper-
tise [35].

e Time-consuming deployment of new ideas: Even though new net-
work technologies or new protocols are developed, it takes years
from design to standardization before the deployment, making it dif-
ficult to implement innovative concepts [288].

In view of the aforementioned problems, a new network solution is
required. Software-Defined Networking (SDN), an emerging networking
paradigm, is currently attracting substantial attention from both academia
and industry. SDN is notable for its separation from the data plane and
the control plane. Specifically, SDN decouples the control plane from the
network devices and forms an external entity called the SDN controller
which is the “network brain”. The controller is a software platform that
manages network resources and provides high-level abstractions and APIs

for network applications to manage, monitor, interact with, and program
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network devices [45, 161]. With its decoupling nature, SDN is gaining
increasing popularity due to the following benefits it provided:

o Easy configuration: With the centralized control plane, network con-
tiguration can be done in a centralized manner. Moreover, the net-
work can be easily programmed using the high-level vendor-neutral
abstractions and APIs provided by the controllers instead of using

the low-level vendor-specific commands.

e Fast Innovation: Since the control plane is separated from the data
plane in SDN, network administrators and researchers could imple-
ment their innovative solutions in a form of software applications
without accessing low-level commands. Apart from that, new proto-
cols and network services could be deployed easily without chang-
ing /upgrading the underlying hardware, speeding up network in-

novation and new network designs.

e Low Cost: SDN could reduce the cost of network devices since the
switches in SDN only perform packet forwarding operations, which
is relatively simple compared with dedicated hardware (e.g., Cisco
ASA 5545-X and A10 Thunder 1040 [24]) in traditional networks with
embedded control function [127, 161]. Besides, it also lowers the
network operational and management expenses without depending
heavily on highly skilled administrators who are adept at configura-
tion and management of vendor-specific network devices [246].

2.1.2 SDN Framework

As shown in Figure 2.2, an SDN architecture comprises an infrastructure
layer and a control layer. These two layers communicate with each other

via predefined interfaces.

o Infrastructure layer: The infrastructure layer in SDN consists of a

set of hardware-based (e.g., switches and routers) or software-based
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Figure 2.2: Three-layer framework of a SDN architecture, adapted from
Figure 1 in [289].

(e.g., Open vSwitch [222]) devices interconnected via wired cables
or wireless channels. Different from traditional networks, network
devices in SDN only perform data forwarding based on a set of well-

defined instructions (e.g., flow rules).

Specifically, an OpenFlow-based switch, as depicted in Figure 2.3,
contains two major components: a secure OpenFlow channel and
flow tables with multiple flow rules/entries stored in Ternary Con-
tent Addressable Memory (TCAM). As shown in Figure 2.3, each
flow rule consists of three parts: (1) a match field used to match in-
coming packets based on information found in the packet header
(e.g., ip address and MAC address); (2) a set of actions to be exe-
cuted on matching packets (e.g., drop or forward to certain ports);
and (3) counters for collecting network statistics.

When a new packet arrives, the switch compares the packet header
fields with the matching fields in the flow table. If a matching rule
is found, the packet will be handled with the action provided by the
matching rule. Otherwise, the packet will be processed based on the
table-miss flow rule, which may include dropping the packet, passing
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Figure 2.3: OpenFlow-enabled SDN devices, adapted from Figure 7 in

[161].

it to a subsequent table or forwarding it to the controller over the
OpenFlow channel.

Southbound interfaces: Southbound interfaces are open interfaces
used as the connection between the infrastructure layer and the con-
trol layer, which is a crucial part of separating the data forwarding
and network control. Nowadays, different southbound interfaces are
proposed, such as OVSDB [11] and OpenFlow [13].

So far, OpenFlow is the most widely deployed open southbound
communication protocol for SDN [161]. OpenFlow offers three in-
formation sources sent from switches to controllers: (1) event-based
messages to notify controllers with network state changes (e.g., a link
or port changes its status) (2) packet-in messages when packets do not
match the flow rules. (3) network statistics collected by the switches.
These information sources are crucial to provide flow-level informa-

tion to the controllers.

Control layer: The control plane in SDN is commonly referred to
as the controllers, which provides abstractions and management of
the underlying devices (i.e., switches) through well-defined south-
bound interfaces (e.g., OpenFlow). Various design and architectural
choices for the control plane have been proposed, which will be dis-
cussed in Section 2.3. The control plane provides an ideal platform
to run network applications. These applications implement the con-
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Figure 2.4: Reactive mode.

trol logic to control the behaviors of the network devices. In partic-
ular, these applications take the input (e.g., network topology and
network states) provided by the controllers to perform various func-
tionalities, such as traffic engineering, security enhancement, mea-

surement, and monitoring.

The main function of an SDN controller is to process Packet-
in requests generated from switches and setup flow rules for
switches [128, 295] either reactively or proactively [91]. In the re-
active mode, as shown in Figure 2.4, a Packet-in request is sent from
the switch to a controller whenever a table miss occurs. Upon re-
ceiving the request, the controller calculates a forwarding path for
the new packet and sends either a Packet-out message to the switch
or flow rules to be installed in related switches. The timespan from
when a Packet-in request is sent by the switch to when the corre-
sponding Packet-out response is received by the switch is defined as
the response time. In comparison, controllers in the proactive mode in-
stall flow rules beforehand, which reduces the chance of new packets

triggering a table miss. Therefore, packets can be processed immedi-
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ately using the matched rules without waiting for the response from
the controller, completely avoiding the switch-controller communi-
cation and flow setup time. Similar to existing works [47, 48], this
thesis focuses on reactive mode due to several reasons. First, reactive
mode provides an upper bound for the amount of controller work-
load compared to the fully proactive mode and the hybrid proac-
tive and reactive mode. Thus, it helps the network administrator to
understand the maximum capacity of the control plane [48]. Sec-
ond, compared to the proactive mode, the reactive mode allows
controllers to react to unexpected network events in a timely man-
ner [91]. Third, the reactive mode provides a more efficient way of
using the TCAM memory.

With these decoupling layers and open interfaces, network devices are

highly efficient in packet forwarding and can be dynamically programmed

via well-defined southbound interfaces; a global network view can be ab-

stracted and maintained by the control plane; the network logic can be

easily implemented by the applications and deployed by the control plane.

2.1.3 Challenges in SDN

Given the promises of improved performance and simplified manage-

ment, SDN is still in its infancy. Many challenging issues about SDN have

not been well addressed:

o Security: Cyber-attacks are gaining increasing global concerns due to

their extensive damage. As an emerging network paradigm, SDN
can be utilized to enhance network security by simultaneously ex-
ploiting its programmability and the centralized network view [244].

Nevertheless, these advantages offered by SDN can also result in se-
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curity vulnerabilities. For example, DoS? attacks can be launched
by flooding the switches with large amounts of spoofed flow ar-
rivals with non-repetitive random header patterns. This may even-
tually overwhelm the control plane with the generated flow re-
quests [62, 89]. One solution is to improve the control plane’s scala-
bility to avoid resource exhaustion [62].

o Global network view maintenance: Distributed controller architectures
enhance the scalability and reliability of the control plane by deploy-
ing multiple controllers in the control plane. To maintain a consis-
tent global network view, the physically distributed controllers need
to exchange their network information and update their individual
network view based on the exchanged information. As the network
scales up, more controllers will be deployed with more information
exchanges, which increases the synchronization overhead. Thus, it
is important to determine a suitable number of controllers to be de-
ployed in the network so as to balance the trade-off between syn-
chronization overhead and the network performance improvement

(e.g., increase the throughput and reduce the response time).

o Control plane scalability: Though there exist numbers of studies about
the scalability of control plane by enhancing the capacity of one con-
troller or adding more controllers into the control plane, the scala-
bility problem has not been well addressed. For example, even with
enough control plane resources, long request response time can still
occur due to (1) long controller processing time (e.g., controllers are
overloaded due to the unbalanced workload distribution) and (2)
long propagation latency (e.g., controllers are deployed in remote

locations because of the inappropriate controller placement).

2A denial-of-service (DoS) attack is a cyber-attack in which attackers prevent legiti-
mate users from using a network service or resources by overloading the systems with
superfluous requests.
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In this thesis, we will focus on the scalability issue of the SDN control
plane. In the SDN context, scalability is widely understood as the control
plane’s ability to handle more requests with the increased number of net-
work nodes and geographic coverage while simultaneously satisfying net-
work performance requirements (e.g., network response time) [128, 148].
To improve the control plane scalability, it is critical to effectively and effi-
ciently manage the control plane resources. That is, the available controller
resources should be effectively utilized to optimize the network perfor-
mance and controllers should be flexibly added or removed in a timely

manner.

Note that the control plane resources are mainly consumed by four
components: (1) Local view construction by collecting network information
from switches; (2) Global view maintenance through communicating with
other controllers; (3) Packet-in requests processing; (4) Flow rule installation.
According to existing studies [128, 291, 295], processing Packet-in requests
contributes the most significant part of a controller’s workload. Therefore,
this thesis focuses on the control plane’s ability in requests processing.

2.2 Optimization Techniques

In the perspective of SDN distributed controller architectures, RM is the
process of allocating control plane resources to the network as well as
scheduling existing shared resources so as to optimize the network per-
formance (e.g., response time and energy efficiency) under a number of
constraints. Therefore, RM can be naturally formulated as an optimiza-
tion problem and potentially solved by optimization techniques. In this
section, a wide range of optimization techniques which have been used to

solved RM problems are reviewed.
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2.2.1 Exact Methods

Exact methods guarantee the optimality of the solutions. Two classical
exact methods are dynamic programming [42, 43] and branch and bound
algorithms [261].

Dynamic programming was first proposed to solve multistage decision
processes [42, 43]. In particular, dynamic programming recursively di-
vides the problem into a number of sequential stages. Then it starts with
making a decision for the last stage and to work backwards to the earlier
ones until it reaches the end. The sequence of decisions made at each stage
forms the optimal solution for the underlying problem. Dynamic pro-
gramming can also be applied to solve other problems (e.g., Integer Lin-
ear Problems (ILP)) if they can be formulated as a multistage process [229].
Dynamic programming is an exhaustive search method which avoids enu-
merating all possible solutions in the search space by pruning partial de-
cision sequences that cannot lead to the optimal solution [229, 261].

Branch and bound algorithm is another popular enumerative ap-
proach [229, 261]. It explores the search space by dynamically building
a tree with the full search space at its root node. The algorithm recursively
splits/branches the search space into smaller subspaces/nodes. In each
iteration, if candidate solutions in a node cannot improve the current best
performance bound (e.g., lower bound for minimization and upper bound
for maximization), the node will be completely discarded (i.e., it will not
be searched again), which is called pruning. Otherwise, the current per-
formance bound is updated and the associated node will be split. The
algorithm terminates when there are no more nodes to branch or all nodes
are eliminated.

An example is provided to illustrate the idea of using branch and
bound algorithm to solve a two-dimensional maximization ILP f(x1,z).
First of all, an upper bound z{! for the optimal solution can be obtained by
solving a relaxed ILP (e.g., dropping the integer constraint). At the same

time, the lower bound z;, of the original problem is set to —oco. Then we
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create two mutually exclusive subproblems (e.g., f1 and f;) by introducing
additional constraints on one of the two variables (e.g., z1), which splits up
the original search space. f; will be removed if it cannot be solved or its
upper bound z{* is smaller than z{'. If the optimal solution of f; are integral
and zf' > z;,, z;, will be replaced with 2 and f; will be removed. Other-
wise, another constraint will be introduced to create two subproblems f; ;
and fi, under f;. The algorithm continues until all nodes are removed
and the current z;, is the optimal solution.

Apart from dynamic program and branch and bound, there are other
exact methods, e.g., A* search [229], branch and cut [32], constraint pro-
gramming [29]. Despite the optimality guarantee, the main drawback of
these methods is their effort to solve NP-hard problems grows exponen-
tially with the problem size [229]. Therefore, all exact methods currently
applied to NP-hard problems are limited to small-scale problems [229].

2.2.2 Model-driven Methods

Apart from exact methods, there are model-driven methods which have
been widely used especially in operations research. In general, model-
driven methods solve an optimization problem by constructing mathe-
matical models to describe and analyze the underlying system, which gen-
erally provide optimal solutions or at least performance bounds. Model-
driven methods can be classified based on the mathematical models that
they use. Existing widely used model-driven methods are mostly based
on queuing theory, Lyapunov optimization, and game theory.

Queuing theory was first proposed in [85], which is applied to model
and analyze the behavior of processes that involve waiting lines/queues.
To apply queuing theory, modeling the underlying system as a queuing
model is critical. A queuing model is generally characterized by four ba-
sic elements: the arrival process of customers (e.g., inter-arrival times of

customers), service mechanism (e.g., the number of servers, the duration,
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and mode of service), queue discipline (e.g., first come first served or last
come first served), and system capacity (i.e., the number of customers that
can wait at a time in the queues). Once we manage to formulate the sys-
tem as a queuing model, queuing theory can be applied to determine the
system utilization and the average waiting time of each customer.

Another example is Lyapunov optimization which applies Lyapunov
function® to queuing networks (e.g., wireless networks) with the aim to
stabilize all network queues while simultaneously optimizing the time
average of certain performance objectives (e.g., network throughput and
energy cost) [195, 205, 211]. In Lyapunov optimization, Lyapunov drift*
measures the changes of the queue states. Given a defined penalty func-
tion related to the performance objective, Lyapunov optimization can be
used to calculate a performance bound on the sum of Lyapunov drift and
the weighted penalty function. Typically, the weight parameter is used
to balance the trade-off between the average queue size (i.e., the system
stability) and the penalty function (i.e., performance objective).

Game theory has been widely used to study the interaction among de-
cision makers/players. In general, game theory consists of two branches:
cooperative game theory and non-cooperative game theory. Cooperative
game theory analyzes what groups/coalitions agents form, the joint ac-
tions taken as coalitions and their corresponding payoffs. On the other
hand, non-cooperative game theory focuses on predicting each player’s
individual strategy and payoff and find Nash equilibrium. Game theory
has been successfully applied to various fields (e.g., supply chain manage-
ment [169], transportation [25, 41], and computer networks [58]).

$Lyapunov function has been extensively used in control theory to prove system sta-
bility. In a queuing system, Lyapunov function is a non-negative function which defines
a scalar measure of the state of all queues at a time slot. A typical Lyapunov function is

defined as the sum of the squares of all queue sizes at a time slot.
*Lyapunov drift is defined as the difference between the Lyapunov function at two

consecutive time slots.
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2.2.3 Heuristic Optimization Methods

Due to the fact that computing optimal solutions is intractable for many
optimization problems, heuristic optimization methods have been devel-
oped to search for acceptable solutions in a reasonable time. In general,
heuristic optimization methods can be classified into heuristics, approxima-
tion algorithms, meta-heuristics, and hype-heuristics.

Heuristics are regarded as experience-based techniques which are de-
signed to solve a specific problem [261]. In general, there are two types of
heuristics: construction heuristics and improvement heuristics [49, 229].
Construction heuristics (e.g., greedy heuristic) generate solutions from
scratch by iteratively adding components to an initially empty partial so-
lution until a complete solution is obtained. In comparison, improvement
heuristics (e.g., hill climbing), also called local search, start with a complete
solution and iteratively try to improve the current solution by searching
through its neighborhood. In terms of performance, construction heuris-
tics are typically fast but the constructed solutions are usually inferior to
the ones obtained by improvement heuristics. On the other hand, im-
provement heuristics can easily get trapped in local optima [229] and its
performance highly depends on the initial solution.

Compared to heuristics, approximation algorithms aim to provide solu-
tions with guaranteed quality within provable running time [229]. Thus,
approximation algorithms are considered as an attempt to formalize
heuristics by deriving a guarantee on the bound of the obtained solution
from the global optimum [121]. For example, e-Approximation algorithms
guarantee that the maximal error between the generated solution and the
optimum is e [276]. Note that approximation algorithms are problem de-
pendent which limits their applicability [261].

The term “meta-heuristics” was introduced by [103] and meta-heuristics
define a high-level general methodology to guide the design of the under-
lying heuristics [49]. Different from heuristics and approximation algo-

rithms, meta-heuristics usually make no or very few assumptions about
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Figure 2.5: Meta-heuristics versus hyper-heuristics, adapted from Figure
3.3 in [40].

the problems being solved [229]. Due to their flexibility and intuitive-
ness, they have been applied to solve a wide range of complex real-
life optimization problems in different domains, e.g., logistics [119], net-
working [137], transportation [34], and finance [198]. Meta-heuristics can
be classified into single-point and population-based search based on the
number of solutions searched at the same time. Single-point methods in-
clude local search-based meta-heuristics (e.g., tabu search [104] and simu-
lated annealing [274]), which focus on modifying and improving a single
solution. On the contrary, population-based methods (e.g., genetic algo-
rithms [124] and ant colony [82]) maintain and improve a population of
candidate solutions in every iteration of the algorithm. More details of
specific meta-heuristics, particularly evolutionary computation, are pro-
vided in Subsection 2.2.4.

Recently, hyper-heuristics have emerged as a powerful approach for
selecting or generating (combining, adapting) heuristics (or components
of heuristics). Different from heuristics and meta-heuristics that di-
rectly search within the problem solution space, hyper-heuristics explore
a heuristic search space to discover effective and adaptive heuristics,
as shown in Figure 2.5 [40]. Note that different heuristics have differ-
ent strengths and weaknesses. Therefore, a fundamental idea of hyper-

heuristics is to use a set of known heuristics to either (1) find the com-
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bination of existing heuristics or (2) generate new heuristics by combin-
ing basic components of existing heuristics to solve the problem. Such
hyper-heuristics have been successfully applied to production schedul-
ing [287], vehicle routing [251], and educational timetabling [253]. Most
of the hyper-heuristic approaches involve a learning mechanism or meta-
heuristics to assist the heuristic selection. Several learning methods
such as Reinforcement Learning (RL) and Learning Classifier Systems
(LCSs) [125] have been studied. Besides, evolutionary computation tech-
niques such as genetic algorithms [124] and genetic programming [299]

have been applied as meta-heuristics to direct the search process.

2.2.4 Evolutionary Computation

As a subfield of artificial intelligence and soft computing, EC is a family of
global optimization algorithms inspired by nature. Under the EC frame-
work, algorithms can be classified into two main streams: Evolutionary
Algorithm (EA) and Swarm Intelligence (SI).

Generate initial
population

|
Variation
A
@ No = Selection
Generate new population
Return the best
solution

Figure 2.6: The principal diagram of evolutionary algorithms, adapted

from Figure 1 in [83].
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2.24.1 Evolutionary Algorithm

EAs are optimization methods derived from Darwin’s theory of evolution
by natural selection. They simulate the process of natural selection to find
highly fit solutions to any given problems, as shown in Figure 2.6. Specif-
ically, an initial population of potential solutions is randomly generated,
which are often encoded in structures called chromosomes. During each it-
eration, called a generation, each individual of the population is evaluated
by a predefined fitness function. After evaluation, the best performing
individuals are selected as the basis for the next new generation that is
produced via genetic operators such as mutation and crossover. This whole
process repeats over many iterations until a sufficiently fit solution has
been found [284]. The following are some popular EAs.

Genetic algorithms (GAs) are one of the earliest and most popular EAs
which follow the EA diagram (i.e., Figure 2.6). In GA, each chromosome
is usually represented as a fixed-length array of bits, integers, or real num-
bers and each chromosome is an encoded potential solution for the prob-
lem being solved. Despite its simplicity, GA has been successfully applied
to solving many NP-hard problems [98, 111, 119, 198].

Genetic Programming (GP) is a variant of GA for symbolic regression
where chromosomes are computer programs traditionally represented as
tree structures with variable lengths. Due to its flexibility, GP is particu-
larly suitable for problems in which the optimal underlying form of the
solution is unknown [299].

Evolutionary Strategies (ES) was originally designed for numerical op-
timization [243]. An ES individual not only contains the solution of an
optimization problem, but also the strategy parameters, especially in self-
adaptive ESs [46]. The strategy parameters are used to control the statis-
tical properties of the genetic operators (e.g., the mutation operator). In
self-adaptive ES, the strategy parameters are evolved along with the solu-
tion during the evolution process.
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2.2.4.2 Swarm Intelligence

SI algorithms are inspired by the collective behavior of natural and arti-
ticial systems where individual coordination is performed in a decentral-
ized and self-organized manner. Typically, an SI system is composed of a
population of simple and relatively homogeneous individuals that locally
interact with each other and their environment following simple rules.
Although no centralized/global coordinators are presented to guide the
population’s behaviors, the interaction enables the system to act in a co-
ordinated way, e.g., converge to an optimum [149]. Two widely used SI
algorithms are Particle Swarm Optimization (PSO) [150] and Ant Colony
Optimization (ACO) [82].

2.2.5 Machine Learning

There has been a surge of interest in Machine Learning (ML) in recent
years from both academia and industries. An ML algorithm generally in-
cludes a learning phase when the algorithm builds models (e.g., DNNs or
decision trees) from the training data. In many ML algorithms, they also
include a decision making phase when the well-trained model is used to
make predictions on new data. Existing ML algorithms are widely classi-
tied into five categories: supervised, unsupervised, semi-supervised, rein-

forcement learning, and transfer learning.

2.2.5.1 Supervised Learning

Given a labeled training dataset (i.e., inputs and target outputs), a super-
vised learning algorithm is required to find the best mapping function
from inputs to desired outputs so that the function can be used later to cor-
rectly predict the output for new/unseen inputs [160]. Supervised learn-
ing algorithms can be further divided into regression and classification.
In particular, regression maps the inputs to a continuous output which is

generally a quantity prediction (e.g., price or size). Well-known regression
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algorithms include linear regression and logistic regression. On the con-
trary, classification generates discrete outputs called categories or labels
(e.g., cat or dog). Some of the well-known classification algorithms are
decision tree [234], support vector machines [275], and k-Nearest Neigh-
bor [72].

2.2.,5.2 Unsupervised Learning

Different from supervised learning, an unsupervised learning algorithm
is given a set of unlabeled training dataset (i.e., inputs without target out-
puts). The algorithm aims to extract the patterns, structures among the
training data by grouping training data with shared attributes. A central
application of unsupervised learning is clustering and popular clustering
algorithms include hierarchical clustering [145], k-Means clustering [147],
and DBSCAN [86].

2.2.5.3 Semi-supervised Learning

Semi-supervised learning takes advantage of both supervised learning
and unsupervised learning by learning from both labeled and unlabeled
training data [57]. Semi-supervised learning can be classified as either in-
ductive or transductive. Given both labeled and unlabeled training data,
inductive learning learns a function that can predict the outputs for fu-
ture unseen inputs (similar to supervised learning). On the other hand,
transductive learning trains a good predictor on the unlabeled training
data (similar to unsupervised learning). Typical semi-supervised learn-
ing algorithms are transductive support vector machine [144], expectation
maximization [309], and pseudo labeling [168].

2.2.5.4 Reinforcement Learning

Instead of learning from a given training dataset, RL learns a mapping

function during the interaction between an agent and the environment in
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a trial and error process. In particular, an RL agent interacts with the un-
known environment by performing a sequence of actions generated by the
mapping function based on its observations. Depending on the actions,
the environment generates a sequence of rewards to the agent. The goal of
the agent is to learn the mapping function that can maximize the long-term
cumulated reward. A detailed discussion is provided in Subsection 2.2.6.

2.2.,5.5 Transfer Learning

One common assumption in many ML algorithms is that both training
and testing data are sampled from the same distribution and same fea-
ture space [218]. When this assumption does not hold, most of the learned
models exhibit unsatisfactory performance and need to be retrained from
scratch with the newly collected training data. However, both data collec-
tion and model retraining can be expensive in many real-world applica-
tions. To address this issue, Transfer Learning (TL) was introduced which
aims to extract the knowledge learned from source tasks in the source do-
main and apply it to improve the learning of the target task in the target
domain [218]. Depending on different relationships between the source
and target tasks and domains, existing TL can be widely classified into
three categories: inductive TL, transductive TL, and unsupervised TL. In
inductive TL, the target task is different from the source task regardless of
the similarity between the target and source domains. Also, some labeled
data in the target domain are provided. On the other hand, transductive
TL tackles the same source and target tasks but in different domains. In
unsupervised TL, the target task is different but related to the source task
and no labeled data is available. Currently, TL has received increasing
interests and has been widely applied to many domains, e.g., computer

vision [99] and natural language processing [230].
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2.2.6 Reinforcement Learning

RL is defined as a sequential decision making process where deci-
sions/actions are made by an agent which is also a learner during its iter-
ative interactions with an unknown environment [28]. Such a sequential
decision making problem can be formulated as a Markov Decision Process
(MDP).

2.2.6.1 MDP Formulation

Depending on the number of agents in the environment, there are Single-
Agent Markov Decision Process (SA-MDP) where only one agent is in-
volved during the training and MA-MDP with more than one agent.

An SA-MDP is usually described by a 6-tuple (S, A, P,r, Z,0). Ateach
time step ¢, the overall environment is captured by a global state s, € S.
While interacting with the unknown environment, the agent receives a lo-
cal observation z; € Z. The relationship between z; and s, is determined
by the observation function z; = O(s;). Based on its local observation,
the agent issues an action a; € A chosen from its policy = which maps
Z to a probability distribution over A. After performing a;, the agent re-
ceives a reward r, given by the reward function R(s;, a;) and the environ-
ment enters the next state s, ; decided by the state transition probabilities
P(st+1]5t, ar). The agent’s goal is to learn a policy 7 so as to maximize the

expected long-term cumulative rewards:

‘](ﬂ-) = ESt,azNW {Z *ytT‘t(St, at)} (21)
t=0

where v € [0, 1] is a discount factor that balances the trade-off between
immediate and future rewards.

Similarly, an MA-MDP with N learning agents {A;})Y, can be de-
scribed by (S, {A}Y |, P, {r}N {2}, {O}X,). At each time step ¢,

every agent A; receives its local observation z; = O(s;) € Z' and the



38 CHAPTER 2. LITERATURE REVIEW

multi-agent action a; = {a{}}¥, is jointly formed from each agent’s action
ai € A" chosen from its respective policy 7. Apart from that, each agent
also receives its own reward r; = R'(s;, a;). In a fully cooperative setting, all
agents share the same goal which is to learn the policies {7}, so as to
maximize (2.1) where g = {mg,}, and r, = SN | 7.

Based on whether the global state s, is accessible to all agents, an MDP
can be either fully observable or partially observable. For a fully observable
MA-MDP, z} = s, for all i = 1,..., N while in a partially observable envi-
ronment, z; # s, for any i = 1,..., N. The same definition also holds for
SA-MDP.

It should also be noted that to model a problem as an MDP, one essen-
tial requirement is that the environment needs to satisfy the Markov prop-
erty [259]. In other words, the environment state s; at time step ¢ should
compactly summarize the past without degrading the ability to predict the
future [259]. Mathematically speaking, the probability of the environment
giving the response {s,.1, 7,11} at time step ¢ + 1 conditioned on both the
past and present responses depends only on the present response

P(sgy1 =811 =7|sy = s,as = a)

/ !
= P(St+1 =85,Tty1 = 7“|807a0,7”17 ceey St—1, Qt—1, T, St,at)7 Vr, s, s,a

(2.2)

where s, ag, 1, ..., S—1, @—1, ¢, St, a; are observed during the pastt+1 time

steps.

2.2.6.2 Basic Concepts

To provide a better understanding of RL, basic concepts in RL are intro-
duced which includes value function and policy.

Value function: A value function is a function that maps any specific
state s or state-action pair (s, a) to the expected long-term cumulative re-

wards when a particular policy 7 is followed. In general, there are state
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value function V7 (s) (i.e., V-function), action value function Q" (s,a) (i.e., Q-
function), and advantage function A (s, a) (i.e., A-function).

V-function measures the expected long-term cumulative rewards that
can be received if agents start from any state s and follow policy 7, which

can be defined as below,

T
V7(s) = Es, qor {Z V'rilso = s} (2.3)
t=0

Similarly, Q-function measures the expected long-term cumulative re-

wards when agents initiate from any state s and take an action a:

t=0

T
Q" (s,a) = Eq, q,on {nytrtlso = s,a9 = a} (2.4)
The relation between V™ and Q™ (s, a) is

Vr(s) = / - al)Q7s.a) 2.5)

Given V™ and Q7 (s, a), A-function measures how good an action a is com-
)

pared to the average action for a specific state s:
AW(Sv a) = Qﬂ—(sv CL) - VW(S) (26)

Policy: Two types of policies are considered in RL, i.e., deterministic
and stochastic. A deterministic policy maps the observations to actions,
which is represented as

m:S—A (2.7)

In comparison, a stochastic policy outputs the distribution over all possi-
ble actions for a given state:

7:SxA—|0,1] (2.8)

where 7(als) <0Oand [ _7(a|s) = 1.
A policy can be represented in different ways, e.g., dynamic movement
primitives or parametric functions [78]. Owing to the expressiveness and
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trainability of neural networks, we mainly focus on policies approximated
by neural network based parametric functions in this thesis. Specifically, a
parametric policy is represented as 79 where 8 denotes the policy param-
eters.

2.2.6.3 Reinforcement Learning Algorithms

RL has been successfully applied to solving challenging problems, rang-
ing from game playing [202, 250] to robotics [171]. The success achieved by
RL has led to a significant increase in the number of RL algorithms. Exist-
ing RL algorithms can be generally classified into Value function Indirect
Search (VIS) and Policy Direct Search (PDS).

Value Function Indirect Search: VIS learns the optimal value function
which is used to extract the optimal policy by greedily selecting the action
that maximizes the long-term rewards:

7(s;) = arg max Q(s,a) (2.9

One of the most well-known VIS is Q-learning [283] which learns Q-
function using the following update rule at any time step ¢:

Q(s¢,ar) = Q(s¢,a¢) + lryyr + ’Yf;lgi( Q(St41,a) — Q(s¢, )]

where « is a hyper-parameter for learning rate.

In problems with small state and action spaces, value function can be
easily represented as tables, which guarantees convergence to the opti-
mal policy for finite MDPs [283]. Obviously, the tabular value function
methods cannot scale in high-dimensional state and action spaces [78]. To
address this issue, value function approximation approaches have been
proposed which approximates the value function using a linear or nonlin-
ear function. Existing popular VIS algorithms include Deep Q Network
(DQN) [202] and Double Deep Q Network (DDQN) [273].

To tackle the high-dimensional state space problem in traditional Q-

learning, DQN learns the Q-function approximated by a neural network
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with parameters 6 via iteratively minimizing a loss function. Specifically,
the loss function £;(0;) at the ith iteration is defined as:

Ez(ez) - Est7atNP(') [(yz - Q(St7 Qy; 01)>2]

where y; = 741 + ymaxgea Q(s141,0;60,-1) and p(s;, a;) is a probability
distribution over s, and «,. To alleviate the issues of strongly correlated
data® and non-stationary data distributions®, DQN introduces an experi-
ence replay mechanism where data are randomly sampled from the expe-
rience repository to smooth the training distribution as well as breaking
the strong correlations [202].

The maximization of the action space, i.e., (2.9), in both traditional Q-
learning and DQN can easily lead to the overestimation of Q values [266].
To cope with this problem, DDQN [273] is proposed with the use of double
Q-learning estimators [114]. In particular, a target Q network is used to es-
timate Q values. On the other hand, an online Q network is used for action
selection and its parameters are updated through temporal difference.

Although literature has demonstrated the effectiveness of VIS [114, 202,
250, 283], there are several open research questions, e.g., many VIS algo-
rithms suffer from the unstable learning process [208, 259]. The instability
of the learning process in value function approximation approaches can
result in value function divergence [33, 63, 114]. Although many tech-
niques have been proposed to address the stability issue (e.g., experience
replay [202] and dueling networks [282]), the learning stability still cannot
be guaranteed. The policy learned by VIS is only implicitly represented
and recreating the policy to achieve the learned long-term rewards can be

challenging [221]. For example, when the action space is large, searching

A common assumption in most deep learning algorithms is that the sampled data
are independent. However, the sequence of observed data (e.g., states and actions) are

typically strongly correlated.
%Deep learning algorithms generally assume the data are sampled from a fixed dis-

tribution. However, the data distribution in RL changes when the algorithm learns new
behaviors.
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for the action with maximum value function requires the time-consuming
enumeration over all possible actions. The situation becomes even worse
with a continuous action space.

Policy Direct Search: To address the limitations of VIS as discussed
above, PDS is proposed which directly learns the optimal policy by search-
ing the policy space. Existing PDS algorithms can be classified into model-
based and model-free depending on whether an environmental model
(i.e., the state transition probabilities P and the reward function R in Sub-
section 2.2.6.1) is learned. In model-based PDS, since the optimal policy
is directly derived from the learned environment model, an inaccurate
model can easily lead to catastrophic failure [262]. Moreover, learning an
environmental model can be impractical due to the environment uncer-
tainties and high computational complexity.

On the other hand, model-free PDS optimizes the policy 7y directly
using the samples obtained during the interaction with the environment
without relying on an environmental model. In model-free PDS, a widely-
used framework is Policy Gradient Search (PGS) which updates the pol-
icy parameters 6 to maximize the expected long-term cumulative rewards
J(0) defined in (2.1) following the direction of V4.J(0).

According to the policy gradient theorem [260], policy gradient can be
calculated as:

V@J(H) = Est,atwﬂ'e [Ve 10g 79<at‘3t)Qﬂ<Sta at)] (210)

Based on (2.10), different PGS algorithms are proposed which differ in the
estimation of ™. One representative PGS algorithm is REINFORCE [285]
in which QT is estimated using sampled rewards R* = S.._, 4*~r;. Other
algorithms learns an approximation of the true Q-function, value func-
tion, or advantage function. These approaches belong to actor-critic algo-
rithms where the policy 7 is the actor. Depending on different algorithms,
the critic can be the Q-function, value function, or advantage function,

which is used for policy evaluation. In the following, we will introduce



2.2. OPTIMIZATION TECHNIQUES 43

two representative actor-critic algorithms Trust Region Policy Optimiza-
tion (TRPO) [240] and Proximal Policy Optimisation (PPO) [242].

TRPO is designed to improve the policy by iteratively optimizing a
performance lower bound. Specifically, the expected long-term cumula-
tive rewards of a new policy 7 can be calculated as the cumulated advan-
tages (2.6) over an old policy 7 with respect to actions sampled from 7 (i.e.,

ay ~ 7(+|s¢)):

J(7) = J(7) + By a,n {Z LA™ (s, at)}

t=0

=J(m)+ > Y P(s=s|7) ) _#(als)y'A"(s,a)
=0 s o (2.11)

=J(m)+ > Y A'P(s; = s|7) Y _ #(als)A™(s, a)

s t

=J(m)+> pa(s) > #(als)A"(s,a)

a

where p; is the discounted frequencies of visiting any state s following
policy 7 [260]:

px(s) = P(sg = s) +yP(s1 = s) + v*P(sy = 5) + ...

(2.11) implies that the performance .J(7) of the new policy 7 is guaran-
teed to be improved as long as the policy update satisfies:

> #(als)A(s,a) > 0

a

i.e., a nonnegative expected advantage at every state s.

However, (2.11) is hard to directly optimized due to the complex de-
pendency of pz on 7. TRPO introduced an approximation to J(7) by re-
placing pz with p, (i.e., ignoring the changes of state visitation density

P(s; = s) introduced by policy changes):
L(7) = J(m)+ Y pals) Y 7(als)A™(s,a)

a
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Provided that © and 7 are relatively close, the following performance

bound can be guaranteed:

J(7) = L(7) = 7= . (2.12)
where € > 0 is a constant and
a = max Dpy(m(s, ), 7(s, = max g Z|7rs a) —7(s,-)]

Dry is the total variation divergence.

(2.12) shows that we can improve the policy performance J(7) by max-
imizing its lower bound. Given that D7, < Dy (w,7) where D/, is the
KL divergence [224], policy updates can be performed by solving:

max L(7)

0 (2.13)
st. Dy, (m,7)<§

where @ are the parameters of the new policy 7 and D, is the average KL
divergence over all states visited following policy 7.
With the help of importance sampling, we can derive

5 (el 47 (50 0) = B { 7510}

a

for a single s;.
Thus, (2.13) can be simplified as:
max Eg,or { r(a 83 A" (s a)}

|
F (als

(2.14)
st.  Eg{Dgr(m,m)} <6

PPO was proposed to reduce the computation complexity of TRPO
caused by the KL divergence constraint. Instead of using a KL constraint
to limit a large policy update PPO penalizes large changes to the policy

7T(a s

changes r;(s, a) = 7555 through a clipping function:

mggx Es oor {min(ry(s,a)A™(s,a), g(e, A™(s,a))} (2.15)
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where

) {(1+6)A, A>0
(1-9A,  A<0

With (2.15), the change of the new policy 7 from the old one 7 is clipped

at 1 + e with a positive advantage and 1 — ¢ with a negative advantage.

2.3 Related Work on Controller Architectures

To improve the control plane’s ability in request handling, different con-
troller architectures are proposed. Based on the physical deployment of
the controller plane, existing architectures can be divided into physically
centralized and physically distributed architectures, while the distributed
architectures can be further classified into flat and hierarchical architec-
tures based on their physical organization. Table 2.1 summarizes the ex-

isting controllers with their respective architectures and characteristics.

2.3.1 Physically Centralized Controller Architecture

Initially, SDN was designed with a physically centralized controller archi-
tecture where only one controller was deployed to manage all forward-
ing devices within an SDN network. Obviously, the centralized controller
can be easily overwhelmed by massive requests as the network scales
up [289] and fails to meet the performance requirements. For example,
the throughput of the first OpenFlow controller NOX [107] is 30k requests
per second which is far from sufficient for a data center network [35, 269].

To solve this problem while maintaining the simplicity of the single
controller design, one way is to enhance the capacity of the single con-
troller by exploiting optimization techniques such as buffering, pipelin-
ing and parallelism to increase the controller throughput. For example,
Maestro [53] utilizes parallelism to effectively leverage the capability of

multi-core systems, together with input and output batching to reduce the
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Figure 2.7: DIFANE, adapted from Figure 1 in [296]. (Dashed lines are
control messages. Straight lines are data traffic.)

operation overhead [53]. Similar techniques are also adopted in multi-
threaded controllers such as NOX-MT [269], Beacon [84], Ryu [15] and
Floodlight [5].

On the other hand, other centralized controllers such as DIFANE [296],
DevoFlow [75], and LazyCtrl [305] reduce the controller workload by de-
volving partial workloads of request processing to switches. As shown in
Figure 2.7, DIFANE [296] generates and proactively distributes the flow
rules across a subset of switches called authority switches. Upon receiv-
ing packets that do not match the rules, the ingress switch redirects the
packets to the authority switches instead of the controller for further in-
quiry. Based on the received packets, the authority switch forwards the
matching rules to the egress switch to direct the packet handling. There-
fore, the traffic is kept among the switches in the data plane (e.g., TCAM
and DRAM) instead of directing to the controller, providing lower delay
and better scalability. However, these architectures require switch modifi-
cations and potentially break the general principles of SDNs [112].

Though the centralized controller provides the simplicity in the net-

work design, it may not be feasible in a large scale network for several
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Figure 2.8: A hierarchical distributed controller architecture.

reasons. First, the workload of the controller grows with the number of
switches. Second, if the network covers a large area, some switches may
encounter long network latencies wherever the controller is placed. Third,
since the system performance is bounded by the controller capacity, flow
response time may grow significantly as demand increases with the size of
the network. Finally, the single controller architecture is prone to a single
point of failure.

2.3.2 Physically Distributed Controller Architecture

To mitigate the issues in physically centralized controller architectures
(e.g., poor scalability and single point of failure), distributed controller
architectures (e.g., Onix [158], ONOS [45], and DISCO [223]) have been
introduced. In distributed controller architectures, multiple controllers
are deployed in the control plane to collaboratively manage the network.
Based on the control plane structure, distributed controller architectures
can be further divided into hierarchical and flat architectures.
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2.3.2.1 Hierarchical Controller Architecture

As shown in Figure 2.8, hierarchical architectures vertically partition the
control plane into different levels. Controllers at the low level maintain
the local view of their individually managed sub-networks and handle
frequently generated local requests. On the other hand, the centralized
controller at the top level abstracts each low-level controller and its man-
aged sub-network as a logical node. Based on a global topology of these
logical nodes [128], the centralized controller is capable of processing re-
quests that required global information (e.g., requests triggered by inter-
sub-network packets).

Inspired by DevoFlow and DIFANE, Kandoo [112] improves the con-
trol plane scalability by reducing its workload from frequent events with-
out introducing switch modification or sacrificing the visibility of the con-
trol plane. Specifically, Kandoo distinguished local control applications’
from non-local ones®. The workload from local events is offloaded from
the logically centralized controller to a group of inter-dependent local con-
trollers running local applications close to switches. Instead of managing
switches, the logically centralized controller with a global network view
controls all local controllers and handle non-local events.

B4, a software-defined Wide Area Network (WAN) connecting
Google’s data centers across the planet, is another example of hierarchi-
cal controller architectures. B4 operates at two levels. The lower/site level
consists of multiple data-center sites/server clusters and each data-center
site is managed by an SDN site controller running local control applica-
tions. All site controllers are managed by the top/global level which is
equipped with an SDN Gateway and a central Traffic Engineering (TE)
server. In particular, the SDN Gateway aggregates network information
from the sites and provides an abstract network topology to the TE server

where each site is represented as one node. Based on the global network

7 Applications that process events locally using only the states from one switch.
8 Applications that require access to the global network view.
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information, the TE server optimizes the bandwidth allocation among
competing applications across different sites by generating high-level TE
policies that instruct site controllers on traffic forwarding.

Although hierarchical controller architectures alleviate the scalability
issue, they suffer from the visibility loss of the local networks. This is
mainly due to the abstracted hierarchical network view maintained by the
centralized controller, which leads to path stretch problems’ [73, 96, 148].

2.3.2.2 Flat Controller Architecture

As shown in Figure 2.9, flat architectures horizontally partition the net-
work into different subsets and each subset of the network is managed by
one controller. In terms of controllers’ network view, flat architectures can
be further classified into logically centralized and logically distributed ar-
chitectures. Controllers in the centralized architectures maintain a global
network view while the controllers in the latter one only maintain the lo-
cal information of their managed sub-network while other sub-networks
are abstracted as a logical node. In this thesis, we mainly focus on the
centralized ones. Regardless of logically centralized or distributed archi-
tectures, inter-controller communication is required for state information
(e.g., reachability information) exchanges [148].

Onix [158] and ONOS [45] are typical examples of logically centralized
controller architectures. To provide a logically centralized control plane,
Onix maintains a Network Information Base (NIB) which stores all net-
work states (e.g., network topology, switch states) and is used by network
applications. To enhance its scalability, Onix introduces a NIB distribution
framework through partitioning, aggregation, consistency, and durability
strategies to tackle the memory requirement and complexity of the NIB.
First, it allows control applications to partition the NIB so that each con-

troller can keep only a part of the NIB. Second, Onix allows a sub-network

A stretch from node u to node v is defined as the ratio between the length of the
actual path the traffic takes and the shortest length of the path from u to v.
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Figure 2.9: A flat distributed controller architecture.

managed by one controller to be aggregated as a single node in other con-
trollers” NIBs. Third, since different applications may have different con-
sistency requirements, Onix provides two data stores for durability and
consistency.

Similarly, ONOS also maintains a database managing the global net-
work view and shard network states across controllers. However, the re-
mote database can potentially limit ONOS'’s scalability because the control
applications need to frequently visit the remote database. To reduce the
number of database operations, each ONOS controller caches the topology
information in memory and updates it using a notification-based replica-
tion scheme. Apart from that, an inter-controller communication system
is built to directly update controllers with any network state changes to
avoid periodical database polling.

With a global network view, flat controller architectures can avoid the
path stretch problem in hierarchical controller architectures. However,
they may face the super-linear computation complexity growth' in large
networks [96, 164].

Apart from that, though both hierarchical and flat architectures alle-
viate the scalability and reliability of the control plane, they are prone to

19For example, when the number of nodes increases by X in the network, the compu-
tation complexity of the control plane increases by X 2.
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Figure 2.10: The four phase switch-migration protocol, adopted from Fig-
ure 2 in [80].

the load-imbalance issue stemming from the Static Binding between con-
trollers and switches. As shown in Figures 2.8 and 2.9, each switch is
pre-configured to statically bound to one controller and only sends its re-
quests to that controller. For example, two switches (Switch 1 and Switch
2) are bound to Controller 1 and four switches are bound to Controller
2. Although this static-binding switch-controller association is simple, it
results in unbalanced load distribution among controllers. For example,
Controller 2 with 4 switches is likely to be overloaded because it is bound
to more switches. Controller 1 is also possible to be overloaded if large
amount of network traffic is generated in the sub-network due to popular
public events.

To alleviate the load imbalance issue caused by static binding,
distributed controller architectures [56, 65, 80, 280] featuring switch-
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controller Dynamic Binding have been proposed where switches are no
longer statically bound to a fixed controller. Instead, the switch-controller
association is dynamically configured to enable controller load balance. In
particular, these architectures periodically monitor the workload of each
controller. When the load imbalance occurs, a switch will be unbound
from the overloaded controller and rebound to another controller [80]. To
guarantee the correctness of request processing and avoid packet loss dur-
ing the switch-controller rebinding process, a four phase switch-migration
protocol is used [80] as shown in Figure 2.10.

Though the load imbalance issue caused by static binding can be al-
leviated by dynamically rebinding switches, these dynamic-binding con-
trollers still suffer from a few major limitations. Specifically, multiple mes-
sages need to be exchanged during the migration, which adds a consider-
able amount of communication complexity to the controller system. More-
over, the communication complexity results in a time-consuming migra-
tion process (ranging from millisecond level to second level depending on
the original controller’s workload [252] while the request response time
is at the millisecond level). Thus, the migration may prolong network
latency. More importantly, although the switch could be migrated, the re-
quests from one switch can still be processed by only one controller, which
still limits the scalability of the control plane. For example, the workload
of the new controller will increase dramatically if the migrated switch is
accumulating a large number of pending requests, increasing its risk of
being overloaded. In other words, the controller resources are still not
utilized effectively.

2.4 Related Work on Controller Placement

As we discussed in Section 1.1, RM in SDN must address the CPP. In
general, existing studies on the CPP can be classified into two categories:
the Uncapacitated Controller Placement Problem (UCPP) and the Capac-
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itated Controller Placement Problem (CCPP), depending on whether the
controller workload distribution (i.e., the CSP) is considered.

2.4.1 Uncapacitated Controller Placement Problem

The UCPP tackles the CPP without considering the CSP. For example,
when the CPP was first proposed in [118], the distance between controllers
and switches was adopted as the performance metric and several well-
known network topologies were evaluated through simulations to find the
optimal placement. Specifically, the CPP was considered within WANs
and was formulated as a Mixed Integer Linear Program (MILP) that fo-
cuses on minimizing the propagation latency. To ensure the optimality of
the solution, brute force was used in [118] to solve the CPP.

Similarly, [143] was proposed to design a scalable distributed SDN con-
trol plane from the perspective of the CPP. They claimed that a scalable
distributed control plane should (1) restrict propagation delay between
controllers and switches to avoid long controller response time and (2)
restrict communication delay among controllers to guarantee timely net-
work consistency update. Thus, they formulated the CPP by minimizing
the number of controllers required to cover the whole network and select-
ing the locations of controllers that satisfy the propagation delay require-
ments. In terms of controller workload distribution, they simply assumed
that controllers were not a bottleneck. More works on the UCPP can be
found in Table 2.2.

Note that even with appropriate controller placement, we may still run
into the risk of poor network performance if the requests cannot be prop-
erly distributed among controllers. Specifically, without solving the CSP
properly, controllers can easily experience high workload. In such a sit-
uation, the controller processing time can dominate the total request re-
sponse time [269, 291]. As reported in [74], the response time of a con-
troller can increase significantly to 15 times of its normal value under light
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workload.

2.4.2 Capacitated Controller Placement Problem

In contrast to the UCPP, the CCPP explicitly recognized the importance of
managing the workload distribution among controllers when dealing with
the CPP. Therefore, studies shown in Tables 2.3 to 2.5 have been proposed
to jointly determine the controller placement and the controller-switch as-
signment. Depending on how the CSP is handled, the CCPP can be fur-
ther classified into three subcategories: (1) treating controller capacity as a
constraint, (2) balancing controllers” workload, and (3) modeling the pro-
cessing latency of a controller. These three subcategories have been sum-
marized respectively in the three tables: Table 2.3, Table 2.4, and Table 2.5.

24.21 Controller Capacity as a Constraint

Studies in Table 2.3 explicitly treat the controller capacity as a placement
constraint to prevent requests from any switches to overwhelm their asso-
ciated controllers.

For example, the CCPP was first introduced in [291] by extending the
original the CPP in [118]. This paper aimed to minimize the propagation
latency subject to the constraint that the workload of all controllers should
not exceed their respective capacities.

Similarly, a management framework for dynamically deploying multi-
ple controllers within a WAN was proposed in [38] where both the number
and locations of controllers were adjusted with changing network condi-
tions. In this paper, the authors aimed to minimize the amount of com-
munication overhead within the control plane in terms of controller state
synchronization and switch statistics collection. Although flow setup time
was also minimized in their objective, the flow setup time was purely mea-
sured as the propagation latency between switches and controllers while

completely neglecting the controller processing time.
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Clearly, the CSP is only handled in a simple manner using a capac-
ity constraint in studies summarized in Table 2.3. With the capacity con-
straint, overloading controllers may not happen. However, some con-
trollers can still experience high workload and the response time of a
highly loaded controller can be very sensitive to workload changes. In
this case, even though a relatively small amount of burst requests can se-

riously worsen the average response time [74].

2.4.2.2 Balancing Controller Workload

Follow-up studies as shown in Table 2.4 argued that the workload among
controllers should be evenly balanced. For example, LiDy+ [272] calcu-
lated the number of controllers based on the network traffic and then as-
signed an equal amount of workload to each controller. [180] explicitly
minimized the load imbalance among controllers while [162] ensured that
the maximal workload difference among controllers should not exceed a
predefined threshold to guarantee controller load balance. [123] proposed
a Pareto-based Optimal COntroller-placement (POCO) framework to pro-
vide the selection flexibility to network operators depending on their spe-
cific requirements (e.g., minimize network latency or balance controller
workload).

Compared to taking the controller capacity as a constraint, balanc-
ing the controller workload offers a better placement solution since it can
avoid the response time growth resulting from controller load imbalance.
However, these methods still face certain limitations. For example, bal-
ancing the controller workload can achieve good performance when all
controllers are evenly distributed in the network with identical capac-
ity. In a network where controllers with different capacities are located
unevenly, dispatching more requests to nearby low-capacity controllers
without overloading them obviously presents a better option. Apart from
that, some studies [123, 180] oversimplified the measurement of controller

workload by assuming each switch contributed the same amount of work-
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load, which clearly does not hold in real networks.

2.4.2.3 Modeling the Controller Processing Latency

In order to accurately quantify the impact of the CSP on the CPP, stud-
ies have been proposed to explicitly measure the performance of the CSP
while considering controller processing latency, as shown in Table 2.5.

For example, [281] considered the CPP as a dynamic controller provi-
sioning and assignment problem. Specifically, the authors decomposed
the dynamic problem into a series of one-time-slot switch-controller as-
signment problem. Within each time slot, the switch-controller associa-
tions are adjusted to accommodate traffic variance with the goal of mini-
mizing the request response time and system costs in terms of state syn-
chronization overhead and switch reassignment cost. The impact of the
CSP was captured by the average request response time. In particular,
given a CS solution, each controller was modeled as an independent queue
and the response time was calculated using queuing theory.

Apart from that, a Multi-controller Selection and Placement Algorithm
(MSPA) [279] was proposed to address the CSP together with the CPP. First
of all, to reduce the maximum propagation latency between controllers
and switches, MSPA partitioned the full network into a given number
of sub-networks. Secondly, MSPA measured the impact of the CSP on
the CPP as the queuing latency in controllers using an M/M/c queuing
model.

However, in their work [279], the queuing model assumed that all
requests within a sub-network must go through a centralized scheduler
before reaching any controllers. Apparently, the scheduler can be easily
overwhelmed by the enormous traffic and is prone to a single point of fail-
ure. In addition, the location of the scheduler must be carefully selected,
which presents another challenge for the CPP. Furthermore, only one sin-
gle queue is maintained by the scheduler and the scheduler makes dis-

patching decisions solely based on the controller workload without con-
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sidering propagation latency, potentially increasing the response time if
the request is forwarded to a remote controller. Experimental studies of
MSPA will be conducted in Subsection 4.5.6.

In addition, although the impact of the CSP was explicitly quantified in
these studies, they were mostly designed for binding-based controller ar-
chitectures. In other words, each switch is connected to only one controller
and all of its requests are sent to that controller. This limitation restricts the
granularity of the CSP and may cause poor network performance (e.g., in-
creased response time) since incoming requests from switches can be af-

fected during the switch-controller reassignment process [255, 294].

2.4.3 Placement Algorithm

Apart from the problem formulation, different algorithms were proposed
to find the optimal CP.

Exact methods are always a popular choice since they can guarantee
optimality. In particular, when the CPP was first introduced, Heller et
al. [118] adopted brute force to enumerate all possible CP solutions. Simi-
larly, POCO [123] also conducted an exhaustive search to evaluate the en-
tire solution space to find the optimal CP solution. Although these studies
demonstrated that finding an optimal solution is computationally feasi-
ble in certain networks, they also pointed out that the optimality guar-
antee comes at the cost of high computational cost (e.g., weeks of CPU
time) [118]. Moreover, current exact CP methods can only be applied to
small-scale networks. With an increasing number of controllers, the com-
putation cost grows exponentially, rendering the exact methods inapplica-
ble.

Another category of widely-used approaches is based on game theory.
For example, [162] formulated the CPP as an optimization problem with
two contradictory objectives. One objective was to minimize the propa-

gation latency between switches and controllers by deploying more con-
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trollers to the network. To limit the number of controllers, an additional
objective was adopted to minimize the communication overhead among
controllers measured by the sum of their propagation latencies. Then a
bargaining game was used to find the CP solution to balance the trade-
off between two objectives. Similarly, [281] used game theory to calculate
the switch-controller assignment to minimize the average response time in
data centers. In [227], a non-zero-sum game-based distributed approach
was presented to optimally deploy controllers. Despite the promising re-
sults, game-theory-based approaches have certain limitations. For exam-
ple, game theory based approaches aimed to find the Nash equilibrium
which is not necessarily the optimal solution [159, 249]. A well-known
example is that the socially optimal solution in the prisoner’s dilemma is

cooperation which is not a Nash equilibrium.

As an alternative, heuristic methods have been widely used to address
the CPP [66, 297] to balance the trade-off between computation time and
solution quality, ranging from simple greedy strategies [92, 139, 151] to
meta-heuristics (e.g., Simulated Annealing and EC) [141, 152, 165, 180,
235]. For example, simulated annealing was used in [152] to minimize the
controller failure impact when deciding the CP solution. In [165], Pareto
simulated annealing was adopted to solve the multi-objective CPP. Simi-
larly, to search for the Pareto optimal CP placements, multi-objective GA
has been adopted in both [141] and [180]. The promising results inspired
us to tackle the CPP through an EC method. However, as a population-
based approach, EC requires a large number of performance evaluations of
randomly generated CP candidates until a satisfying solution is obtained,
which can be computationally expensive. Especially in a large network,
the corresponding search space becomes too large for an EC method to
handle effectively.

To reduce the complexity of the search space in the CPP, network clus-
tering has also been widely used [66, 279]. However, existing research

treated each clustered sub-network as being completely independent. In
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other words, workload sharing across different sub-networks is forbid-
den. Thus, when the traffic within a sub-network substantially increases
and cannot be handled by existing controllers in the sub-network, the con-
trol plane will be significantly slowed down. This might even lead to a
breakdown of the whole network.

2.5 Related Work on Controller Scheduling

Another important aspect of RM in SDN is how to schedule the use of con-
troller resources. In other words, we need to consider how to distribute the
requests from switches among all controllers to optimize network perfor-
mance. Generally, the CSP is formulated on a discrete-time model where
the time is split into multiple time slots [281]. CS is performed at the
beginning of each time slot. Depending on how many controllers can a
switch send its requests to, existing approaches can be widely divided into
two categories: single-mapping-based CS and multiple-mapping-based
CS [129, 254, 255].

2.5.1 Single-mapping-based Controller Scheduling

We refer the first category as single-mapping-based CS since each switch is
assigned /mapped to only one controller which is in charge of processing
all the requests generated from that switch. In this category, different ap-
proaches were proposed, e.g., approximation algorithms [65, 66, 100, 294],
heuristics [38, 66, 74, 80, 278, 307, 308], and game theory [61, 64, 280].

e Exact Methods: Mohanasundaram et al. [206] formulated the switch-
controller mapping problem as an MDP. At each time step, the state
is represented as the current switch-controller mapping and the ac-
tion is defined by all per-unit prices proposed by each controller. The
reward of a controller is calculated as the product of the number

of processed requests and its proposed per-unit price. In line with
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these definitions, controllers compete with each other to serve more
switches within their processing capacity so as to reduce the num-
ber of switch remapping/migrations and maximize their long-term
reward. The optimal policy was found using the dynamic program-
ming approach. Other exact methods such as brute-force search can
be found in [258].

Although exact methods guarantee the optimality of the solution,
their optimality guarantee comes at the price of high computational
costs. Note that CS decisions need to be made periodically at each
time slot to accommodate the traffic variation. In a network with
high traffic fluctuation, the length of a time slot can be short. There-

fore, computational expensive exact methods may not be applicable.

Approximation Algorithms: Gao et al. [100] formulated the CSP as an
integer programming problem with the goal of balancing the work-
load among controllers. The problem was transferred into linear
programming using relaxation and solved by an approximation al-
gorithm called deterministic rounding. Related approximation ap-
proaches on the CSP can be found in [65, 66, 294].

Heuristics: As pointed out by existing studies [56, 278, 280, 281],
the switch-controller assignment is NP-hard. It is computation-
ally expensive to find the optimal solution in a large network.
Thus, heuristic methods have been widely used in existing stud-
ies [38, 56, 66, 74, 80, 278, 307, 308].

In [178], whenever the load difference between the heaviest-load
controller and the lightest-load controller is greater than a prede-
fined threshold, a switch will be migrated from the heaviest-load
controller to the lightest-load one. Note that the selection of a suit-
able threshold that triggers the migration plays an important role in
network performance. A small threshold may trigger frequent mi-
grations which introduce huge communication overhead due to the
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migration message exchanges and disruption to ongoing traffic. On
the other hand, a large threshold leads to constant load imbalance
because some controllers are undergoing high workload while oth-
ers are still relatively idle [74]. However, how to select the threshold

is not mentioned in their paper.

Note that request response time is the most intuitive and critical fac-
tor in measuring the network performance. Cui et al. [74] suggested
that the changes in response time can be used as the threshold to
trigger switch migration. Based on the proposed threshold, a greedy
heuristic approach was proposed to first select the controller with the
largest response time and the most heavily loaded switch. To reduce
the controller’s response time, the selected switch is then migrated
to the controller under the lightest workload.

In [38], the CSP was also formulated as an integer programming
problem to minimize the communication cost as well as switch re-
assignment cost to avoid frequent switch reassignments. To address
this problem, two heuristic approaches were proposed including
greedy knapsack and simulated annealing.

Similarly, note that migrating switches among controllers can im-
prove the control plane resource utilization but also introduce ad-
ditional migration costs’. A greedy approach was proposed in [278]
to balance the trade-off between load balancing variation and migra-
tion costs. Similar ideas can also be found in EASM [130].

Motivated by the observation that the switch migration should be
performed at the granularity of switch cluster instead of a single
switch, BalCon [56] and BalConPlus [290] used a heuristic approach

to cluster and migrate heavily connected switches based on their

The migration costs are measured by the number of messages exchanging during
the migration and the potential longer propagation latency between the switch and the
new controller.
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communication patterns.

Compared to exact methods, these heuristic approaches can solve
the CSP within a reasonable time. However, they cannot guarantee
the solution quality.

Game Theory: Wang et al. [280] considered the CSP as dynamically
deciding the switch-controller assignment to accommodate the traf-
fic changes and minimize the request response time. The CSP was
formulated as a stable matching problem with transfers. In particu-
lar, the CSP was first transformed into a classical college admissions
problem and solved using matching theory to guarantee the worst-
case performance. Then the obtained switch-controller assignment
was fed into the coalitional game where switches were transferred
between coalitions (i.e., controllers) to achieve a Nash stable solu-

tion.

On the other hand, Chen et al. [61] proposed a zero-sum game-based
approach to dynamically migrate switches from heavily loaded con-
trollers to balance the control plane resources. Specifically, a game
was initialized with a randomly selected switch (i.e., a commod-
ity) managed by an overloaded controller. All neighboring avail-
able controllers were invited as game players for competition from
which a new destination controller was selected with maximal util-
ity changes. However, since every time only one switch is mi-
grated which may not be able to alleviate the overloaded issue in the
controller, multiple games need to be executed, reducing the load-
balancing efficiency.

In [64], the CSP was formulated as a resource utilization maxi-
mization problem with constraints on multiple resources (e.g., CPU,
bandwidth, and memory), which was solved using non-cooperative

game theory.

By modeling the CSP as a game and solving it using game the-
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ory, these approaches can provide solutions with guaranteed perfor-
mance. However, selecting a suitable game model and formulating
the problem using the model requires a high level of domain exper-
tise. Also, as we mentioned in Subsection 2.4.3, these approaches
aimed to find the Nash equilibrium which is not necessarily the op-
timal solution [159, 249].

Note that all algorithms in the single-mapping-based category are
based on one-to-one switch-controller mapping, which inevitably inher-
its the limitations of binding-based controller architectures. First, CS is
achieved by migrating the workload generated by one switch from one
controller to another. Thus, CS can only be performed at a coarse switch
level, restricting the opportunity of properly distributing workload across
all controllers and reducing resource utilization. Second, identifying the
suitable switch to be migrated is challenging. For example, if a switch
with low workload is selected, additional switch migrations may need
to be done to alleviate the controller overloading issue, resulting in low
balancing efficiency. On the other hand, if a switch with high workload
is selected, it may potentially overload the new controller, causing load
oscillation among controllers. Third, single-mapping-based CS can eas-
ily cause frequent switch reassignment with burst traffic. For example, a
traffic burst can overload a local controller and trigger switch migration
from the local controller to its neighboring controllers. However, when
the burst traffic passes, the migrated switches may be assigned back to the
local controller to minimize the load imbalance. The repetitive migration

inevitably introduces high migration overhead.

2.5.2 Multiple-mapping-based Controller Scheduling

In multiple-mapping based CS, the requests from one switch are no longer
restricted to be handled by only one controller. Instead, they can be dis-

tributed and processed among multiple controllers.
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To improve the efficiency of CS, Flow Stealer [252] was proposed to
combine a lightweight flow-stealing approach with switch migration. Par-
ticularly, idle controllers share workloads with overloaded controllers
temporarily by partially stealing requests from them. Switch migration
will only be executed in the case when long-term traffic changes happen
(e.g., a controller is undergoing a long period of overloading). With the
help of flow stealing, Flow Stealer can significantly reduce the migration

overhead in traffic-fluctuation or burst-traffic situations.

Both BalanceFlow [132] and COLBAS [245] are typical multiple-
mapping based CS approaches which divided the workload among con-
trollers in a centralized manner. In particular, a super controller was se-
lected which periodically collected the network traffic information from
all controllers (i.e., the number of requests generated by the switches man-
aged by the controller) in the network. Based on the global traffic informa-
tion, the super controller ran a greedy heuristic algorithm to partition the
workload among all controllers. The partition decision was enforced by a
switch extension which transformed the traffic redirection decision as flow
rules installed in the switches. Thus, packets arriving at the switch which
match these rules will be directly redirected to corresponding (different)
controllers, reducing the workload of the original controller without in-
troducing any additional propagation latency.

Considering that both BalanceFlow and COLBAS completely relied on
the super controller to perform CS which can be easily overloaded, Hy-
bridFlow [292] and the controller load-balancing scheme in [257] were
proposed with the aim to reduce the super controller’s workload by in-
troducing local CS. Particularly, they all considered a controller plane con-
sisted of a super controller and multiple controller clusters. Different from
BalanceFlow and COLBAS, they performed CS at two different levels.
Whenever a controller was overloaded, it would first seek help from con-
trollers within the cluster. To simplify the cluster level CS without the in-

volvement of the super controller, a cluster vector was introduced in [257]
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which was maintained by each controller. The vector contained the list of
controllers within the same cluster, which can be used to make CS deci-
sions directly by the overloaded controller. When the workload exceeded
the processing capacity of the overall cluster, the super controller was in-
volved to perform CS at a global level, i.e., distributing workload among
controller clusters.

Sridharan et al. [255] formulated the CS as an optimization problem to
minimize the total response time under the network resilience constraint'?
with the help of queuing theory. Numerical analysis was conducted to
compare the multiple-mapping based CS with the single-mapping based
CS. The results demonstrated that the multiple-mapping-based CS out-
performed the single-mapping based CS in terms of request response time
and resilience in the event of controller failure. It also showed that the
multiple-mapping-based CS was more robust against dynamic traffic fluc-

tuations regarding the probability of controller overloading.

Although a fine-grained multiple-mapping-based CS was proposed
in [255] where CS was performed at the individual flow level, this paper
only provided numerical analysis without developing algorithms to effec-
tively find the CS solution. To address this issue, the same authors later
proposed a Multi-Controller Traffic Engineering (MCTE) scheme [254]
which developed an improved round-robin based heuristic algorithm to
determine the switch-controller mapping as well as the request distribu-
tion among switches and controllers. The complexity of their proposed
algorithm is O(M?N) where M and N are the numbers of switches and
controllers respectively.

Despite the benefits offered by the multiple-mapping-based CS, exist-
ing works have certain limitations. For example, to support the load re-

distribution from one switch to multiple controllers, an additional switch

2The network resilience constraint restricts the maximum fraction of requests sent
from a switch to one controller, thus guaranteeing that at least a certain minimum fraction
of traffic is not disrupted in the event of a controller failure.



70 CHAPTER 2. LITERATURE REVIEW

extension was required in BalanceFlow. Apart from that, the request dis-
tribution in both BalanceFlow and COLBAS was performed at a coarse
level based on source-destination switch pairs of the flows [255]. The in-
troduction of a centralized super controller still limits the scalability of the
control plane [255, 292]. Especially in BalanceFlow and COLBAS, the su-
per controller is responsible for making all CS decisions, which can be eas-
ily overloaded. Although both HybridFlow and Sufiev et al.’s work [257]
reduced the super controller’s workload by introducing intra-controller-
cluster CS, the CS decisions were made based on local information which
may not be optimal [257]. Moreover, the cluster-level CS also introduces
a considerable amount of communication overhead due to the frequent
controller workload information exchanges within each cluster.

Compared to single-mapping-based CS, multiple-mapping-based CS
enables CS to be performed at a fined-grained level (e.g., in a per-request
manner [254, 255]). This flexibility comes at a cost of increasing the CSP
complexity from O(N™) to O(N*) where N is the number of switches,
M is the number of controllers, and R is the number of requests with
R > M. Although a heuristic approach was proposed in [254] with com-
plexity O(M?*N), it cannot guarantee the optimality of the obtained so-
lution. Moreover, their algorithm was derived to minimize the network
response time modeled with queuing theory while the effectiveness of the
queuing model relies on several assumptions (e.g., the requests arriving
at the switches follow a Poisson distribution, the system is stable and the
model only reflects the long-term average performance in a stationary sys-
tem).

2.5.3 Reinforcement-learning-based Controller Schedul-
ing

Recently, machine learning has been used to solve RM problems in com-
puter networks. For example, Barbancho et al. [36] proposed Sensor In-
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telligence Routing (SIR), a routing algorithm based on Self-Organizing
Maps (SOM) for wireless sensor networks with Quality of Service (QoS)
guarantee. In particular, the QoS of a network link was represented as a
weight which was calculated by SOM given the link latency, error rate,
duty cycle, and throughput. Based on the calculated weights of different
links, the path with the shortest weighted distance was calculated using
Dijkstra’s algorithm and was selected as the routing path from the source
node to the base station. Similarly, Mao et al. [192] tackled the routing
problems in dynamic traffic environments by constructing routing tables
using a supervised deep learning approach. Liu et al. [184] exploited a
deep belief net to evaluate the network link criticalness under different
network traffic and removed the links that were not likely to be scheduled
without affecting the optimality of the solutions. With the help of link
removal, the search space of the optimization problem can be reduced,
which can effectively reduce the computation cost. Other applications of
machine learning algorithms can also be found in [51, 54, 183].

Among all machine learning algorithms, DRL has received an increas-
ing amount of interest since RM can be naturally mapped to a sequential
decision making process. In this thesis, we also consider DRL to be a pow-
erful paradigm for solving the CSP for several reasons. First, an explicit
model of the underlying complex environment is not required. DRL can
automatically learn the optimal solution while interacting with the un-
known dynamic environment through a trial-and-error process. Second,
DRL can improve the current policy mainly based on experiences/data
obtained from an old policy through a technique known as experience re-
play [201]. In comparison, the samples from previous generations can-
not be reused in the next generation in EC methods where candidate so-
lutions need to be extensively reevaluated in each generation in either
simulated or real-world environments. Thus, compared to EC methods,
the sample cost of training any new policies in DRL can be greatly re-

duced. Third, performing CS under a specific network setting can be



72 CHAPTER 2. LITERATURE REVIEW

naturally formulated as an MDP (see Subsection 2.2.6.1 for detailed MDP
discussion). Due to these reasons, DRL has been successfully utilized to
design scheduling policies in many related resource management prob-
lems [67, 193, 194, 210, 265].

For example, Liu et al. [185] proposed a hierarchical framework com-
prising global and local tiers to respectively address the resource allocation
and power management problem in cloud computing systems. In particu-
lar, the global tier was in charge of Virtual Machine (VM) allocation among
a cluster of servers using a centralized agent trained by DQN. Whenever
a job (VM) arrives, the agent observes the environment state (i.e., servers’
states and the new job description) and selects a server from the cluster for
VM allocation. Thus, the size of the action space equals the total number
of servers. On the other hand, the local tier used a power manager trained
by Q-learning to adaptively turn on or off the servers to reduce power
consumption while maintaining performance degradation to an accept-
able level based on the workload predicted by a long short-term memory
network.

Li et al. [174] applied DRL to address the network slicing'® problem
in 5G. Specifically, given a fixed number of existing slices with the shared
aggregated bandwidth and the demands of each slice, the agent trained
by DON dynamically adjusts the bandwidth sharing so as to maximize
the resource utilization while maintaining high user experience satisfac-
tion. Similarly, Hua et al. [135] proposed a generative adversarial network-
powered deep distributional Q-network to allocate network resources for
diversified services in 5G networks.

Moreover, Tesauro et al. [265] proposed an RL-based approach to au-
tomatically allocate the server resources in data centers. DeepRM [193]
was proposed to address the multi-resource cluster scheduling problem

BNetwork slicing is a concept proposed to slice the physical and computational re-
sources of the network into different network slice instances and each instance is config-

ured to meet the specific service requirements of the slice tenant.
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using a DNN policy trained by TRPO [240] to optimize various objectives,
e.g., average job completion time and resource utilization. Similarly, Dec-
ima combined DRL and graph neural networks to learn workload-specific
scheduling policies for data processing clusters [194]. Chinchali et al. [67]
leveraged the delay-tolerant feature of IoT traffic and developed an RL-
based scheduler to handle traffic variation so that the network utilization

can be constantly optimized.

Different from heuristics, DRL fully automates the policy design pro-
cess and noticeably improves the adaptability and performance of de-
signed policies [194]. However, existing DRL-based approaches for re-

quest dispatching policy design suffer from several limitations:

1. Impractical problem formulation: It is typical to design a policy by a sin-
gle learning agent supported by global network information (i.e., a fully
observable environment). For example, in [193], a centrally trained agent
must learn to dispatch jobs among a large cluster of computers. Such a
central approach is prone to scalability issues [300]. Particularly, the use
of a single agent inevitably introduces extra communication delay. Mean-
while, obtaining timely global information over the entire SDN network
can cause substantial communication overhead [287]. Even though these
issues can be alleviated by employing multiple co-learning agents, the
single-agent DRL algorithm they use cannot cope with inter-agent inter-
ference and localized network information, resulting in poor and unpre-

dictable network performance.

2. Non-adaptive and inefficient policy design: Many existing approaches
directly train a DNN as their policy with a fixed number of output
nodes [240, 242]. Each output node corresponds to a separate SDN con-
troller. Unfortunately, the trained policies may fail to function well when-
ever the number of controllers is changed in order to meet the varying
traffic demand in the network.

3. Ineffective policy training: Existing single-agent DRL algorithms can-

not allow multiple learning agents to train an adaptive policy reliably and
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effectively. In particular, new techniques must be developed to compute
the policy gradient with respect to an adaptive policy that supports a dy-
namically changing number of controllers. Moreover, inter-agent inter-
action must be carefully controlled and inter-agent collaboration must be
explicitly encouraged through effective information sharing at the policy

training (or design) stage.

2.6 Summary

This chapter first introduced the basic concepts of SDN and optimization
techniques. Guided by the research goal of tackling the RM problem in
SDN, related work on SDN controller architectures, controller placement
methods, and controller scheduling algorithms have also been reviewed
in this chapter.

The limitations of the existing work highlighted in this chapter form
the background and motivate this research. Enhancing the scalability of
the SDN control plane is challenging which requires effective management
of the controller resources. The main goal of this research is to solve the
SDN RM problem from the architectural and algorithm design perspec-
tives. The literature showed that various distributed controller architec-
tures have been developed to tackle the RM problem. Moreover, many
algorithms have been proposed to tackle the CPP and the CSP. However,
there are still a number of open questions that need to be further investi-
gated.

In particular, the limitations of existing work can be summarized be-

low.

e Distributed SDN Controller Architecture: Distributed controller archi-
tectures have been widely used to enhance the scalability of the SDN
control plane. However, existing controller architectures feature a

binding-based switch-controller association which restricts the re-
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quests from a switch to be only processed by one controller. This as-
sociation results in unbalanced load distribution among controllers
since each switch comes with different workload and the workload
can be time-variant. Realizing the limitations stem from the switch-
controller binding, research must be conducted to propose a new dis-
tributed controller architecture.

o Controller Placement: A majority of exiting studies on the CPP aimed
to improve network performance without explicitly quantifying the
impact of the CSP. Particularly, the CSP is usually handled in a sim-
ple manner, e.g., treating the controller capacity as a placement con-
straint to prevent controllers from being overwhelmed by requests
from associated controllers or assuming all switches have the same
workload. This simplification may not always apply to real network
situations. Although a few studies have explicitly quantified the im-
pact of the CSP using queuing theory, they were designed for the
binding-based controller architectures, which restricted the granu-
larity of the CSP. Due to the large search space in the CPP, network
clustering has been widely used to divide the network into indepen-
dent clusters. However, when a cluster encountered traffic bursts
that cannot be handled by existing controllers, the control plane will
be significantly slowed down. Therefore, further research must be
performed to tackle both the CPP and the CSP simultaneously in a
coherent framework and to effectively handle the traffic bursts.

o Controller Scheduling: Effectively scheduling the given controller re-
sources by dispatching requests from switches to controllers is a
challenging task. This task will be even more difficult without
the switch-controller binding constraint. Specifically, existing al-
gorithms were mostly designed for the binding-based association.
Thus, the CS decision is made for each switch. In comparison,

when CS is performed at a per-request level, each request demands
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a separate CS decision. Note that requests obviously outnumber
the switches, leading to a significant increase in the complexity of
the CSP. Although DRL has demonstrated its potential in tackling
challenging scheduling tasks, existing DRL applications were mainly
designed for centralized scheduling. Request dispatching decisions
were made using timely global information that is not always avail-
able. Apart from that, current fixed DNN policy designs fail to func-
tion well whenever the number of controllers is changed in order to
meet the changing network traffic demand. Moreover, existing pol-
icy training algorithms were designed for training policies directly
represented as a DNN that targets networks with a fixed number of
controllers. They did not support adaptive policy training since they
cannot calculate the gradient of an adaptive policy. Therefore, re-
search must be performed to design an adaptive policy and develop

new training algorithms.

Based on the limitations of existing work discussed in this chapter, the

following chapters will address the limitations by developing a new ar-

chitecture and new algorithms. Chapter 3 will develop a new distributed

controller architecture featuring a bindingless switch-controller associa-

tion. Chapter 4 will formulate a new problem which captures the strong
inter-dependencies between the CPP and the CSP. In line with the new

formulation, a new algorithm will be proposed. Chapter 5 will propose

a DRL-based approach to automatically learn an effective and generally

applicable policy that dispatches requests from switches to appropriate

controllers.



Chapter 3

BLAC: A Bindingless Architecture
for Distributed SDN Controllers

3.1 Introduction

Distributed controller architectures (e.g., ONOS [45] and Onix [158]) have
been proposed for Software-Defined Networking (SDN) to ensure scal-
ability and reliability. As we discussed in Subsection 2.3.2, one major
drawback of the existing distributed architectures is the uneven load dis-
tribution among controllers stemming from the Static Binding between
controllers and switches [80]. In particular, it restricts the requests from
a switch to be only processed by one controller [14]. Since each switch
comes with different workload and the workload can be time-variant, the
static-binding association renders the bound controller susceptible to ei-
ther being overloaded or underloaded.

To address this issue, several existing studies [80, 280] introduce Dy-
namic Binding by adopting a switch migration mechanism [80] that re-
binds switches from overloaded controllers to underutilized controllers.
However, as we mentioned in Subsection 2.3.2, the migration process adds
a considerable amount of complexity to the system and incurs significant

network latency due to the use of a four phrase switch migration proto-
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col [80]. Furthermore, the performance of switch migration is limited as
it works at the switch level. In view of the limitations stemming from
switch-controller binding, designing a new architecture is necessary.
However, designing a new architecture is challenging since it has to
satisfy several design principles as we mentioned in Subsection 1.2.1. In
particular, the new architecture should guarantee its scalability and com-
patibility without introducing any potential bottlenecks of network per-
formance or extensions to the switches. In addition, the new architecture
should provide flexible and transparent CP and CS without the interrup-
tion of switch-controller re-binding. Moreover, it should be extensible

with easy support for new functionalities.

3.1.1 Chapter Goals

In fulfillment of Objective 1 stated in Section 1.3, a new Bindingless Archi-
tecture for Distributed SDN Controllers (BLAC) is developed in this chap-
ter. In view of the limitations caused by the switch-controller binding,
BLAC features bindingless association between switches and controllers
where a switch does not have to be bound to a controller. In other words,
the requests from a switch can be processed by any controllers, provid-
ing more flexibility and finer granularity in distributing workload among
controllers (i.e., CS). Moreover, since the switches are no longer bound to
any particular controllers, the bindingless association minimizes the net-
work interruption caused by the change of CP. Precisely, this chapter aims

to address the following objectives:

e Design a new architecture that achieves bindingless association be-
tween switches and controllers;

e Implement a prototype of the new architecture based on real-world

controllers;

e Compare the performance of BLAC with both static and dynamic
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binding-based distributed controller architectures (e.g., ONOS [45]
and ElastiCon [80]) in terms of response time and throughput.

3.1.2 Chapter Organization

The rest of this chapter is organized as follows. Section 3.2 presents the
system architecture by demonstrating the architecture components and
highlighting the architecture features. Section 3.3 describes several sup-
ported scheduling algorithms in BLAC. Implementation details of BLAC
are discussed in Section 3.4 and the evaluation results are reported in Sec-
tion 3.5. Section 3.6 concludes this chapter.

3.2 System Architecture

This section demonstrates the key components of BLAC and highlights its
unique features. At the end, we discuss how BLAC satisfies the design

principles we presented in Subsection 1.2.1.

3.2.1 Architecture Components

In view of the limitations of switch-controller binding, BLAC features a
novel bindingless switch-controller association in SDN controller. This
is achieved by introducing a new scheduling layer which is logically lo-
cated in between the data plane (i.e., switches) and the control plane (i.e.,
controllers). Within the scheduling layer, multiple scheduling instances
called schedulers can be flexibly deployed'*. Specifically, each scheduler
consists of three components including the Switch Adapter, the Controller
Adapter, and the Scheduling Module as shown in Figure 3.1. The details
of each component are provided as follows.

“4During the implementation, the schedulers can be placed in the data plane or the

control plane
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Figure 3.1: The design of a scheduler in BLAC.

e Switch Adapter: The switch adapter serves as an interface that con-
nects the data plane (switches) and the scheduling layer. Through
the switch adapter, the scheduling layer can receive requests from
the switches and/or send responses back to the switches. Specifi-
cally, the adapter listens on a pre-configured anycast IP address for
requests coming from neighboring connected switches. Detailed dis-
cussion on the use of anycast will be provided in Subsection 3.2.2.1.

o Controller Adapter: Similarly, the controller adapter manages the in-
teractions between the scheduling layer and the control plane (con-
trollers), such as connection establishment and packet transmis-
sion. Apart from that, controller-related statistics (e.g., number of
responses received from each controller) is also collected via the con-
troller adapter, which can be used to address the CSP.

o Scheduling Module: The scheduling module plays a critical role in ad-
justing controller workload distribution. In particular, whenever a
new request is received from a switch, the new request will be routed
to a controller chosen according to the deployed request dispatching
policy. The output of a policy can be the probabilities of dispatching
any new requests to available controllers. Alternatively, it can also
be a selected controller for the new request. Note that a policy can

be a manually designed scheduling heuristic (e.g., round-robin) or in
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a form of a neural network trained by machine learning algorithms
(e.g., reinforcement learning). Depending on the network setting and
performance requirement, different policies can be designed and ap-
plied in the scheduling module. For example, in a network where all
controllers have identical capacities and are located close to switches,
round-robin can be a good option due to its simplicity. On the other
hand, a neural network based policy may be more preferable in a
complicated network environment (e.g., uneven propagation latency
and hierarchical controller settings).

3.2.2 Architecture Features

With the new scheduling layer, BLAC enables bindingless switch-controller
association. BLAC also takes advantage of anycast technology to minimize
the switch-scheduler propagation latency as well as simplifying switch
configuration without introducing any hardware or special software mod-
ification. Moreover, BLAC also enables directly use of existing consistency
maintenance mechanisms supported by many distributed controller sys-

tems [45, 158] to maintain a consistent and centralized network view.

3.2.2.1 Anycast Switch-Scheduler Association

In our architecture, a unique anycast controller IP address which is lis-
tened to by schedulers is assigned to all switches. The use of anycast has

two essential advantages:

e Easy Configuration: The use of anycast technique simplifies and uni-
fies BLAC deployment by assigning a unique anycast controller IP
address to all switches.

o Low Propagation Latency: With the help of anycast technique, switches
could automatically connect to a scheduler that has the least distance

to them. Thereby, the propagation latency could be minimized.
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3.2.2.2 Bindingless Switch-Controller Association

In BLAC, each switch connects to the scheduling layer instead of directly
connecting to a controller. With the help of the scheduling layer, requests
from the switches can be transparently and flexibly distributed among
controllers, providing request-level CS granularity as we discussed in Sub-
section 1.2.2.2. The logical flow of request dispatching, as shown in Fig-

ure 3.1, can be described as follows.

1) The switch forwards its requests to the closest scheduler using any-

cast.

2) Inside the scheduler, the switch adapter forwards the new requests

to the scheduling module.

3) With the help of the policy, the scheduling module generates a re-
quest dispatching decision instructing the controller adapter to for-

ward the new request to a specific controller.

4) The controller sends a response back to the scheduler after it finishes

processing the request.

5) The controller adapter intercepts the response from the controller
and feeds it into the scheduling module.

6) The scheduling module then identifies the corresponding switch that

receives the response and sends it back through the switch adapter.

3.2.2.3 Preserving Consistency among Controllers

To guarantee the logically centralized control in distributed controller ar-
chitectures, all controllers must maintain a consistent global network view.
To achieve this goal, sharing and distributing the network state informa-
tion among all controllers is inevitable.

BLAC performs request dispatching without violating the information
consistency among controllers. BLAC utilizes the network topology con-
sistency maintenance mechanism widely and efficiently supported by the
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distributed controller systems [45, 158]. Taking ONOS as an example, each
controller caches a consistent global network view in memory which is
maintained by a notification-based replication scheme [45]. This mecha-
nism allows us to dispatch requests to different controllers which have a
consistent network view and obtain the correct results.

3.2.2.4 Addressing Architectural Challenges

In this subsection, we will discuss how BLAC satisfies the design princi-
ples we presented in Subsection 1.2.1.

e Scalability: The new scheduling layer introduced by BLAC is unlikely

to become a performance bottleneck due to the following reasons:

— The schedulers are lightweight. As mentioned in Section 3.2,
the schedulers are solely responsible for dispatching requests
to controllers according to pre-calculated probabilities, which
incurs negligible computation overhead (simply toss a coin for
every request to be dispatched).

— The schedulers barely incur communication cost since they
make request dispatching decisions completely independently

and in a fully decentralized manner.

— Schedulers can be easily created and flexibly deployed in the
scheduling layer to avoid the scheduling layer being over-
whelmed. Since the schedulers are neither computationally ex-
pensive nor communication intensive, they can be easily imple-
mented as light-weight Virtual Network Function (VNF)!® com-
ponents. When the number of requests grows suddenly and
substantially within the network, more schedulers can be easily

deployed.

1Virtual network function (VNF) refers to network functions (e.g., firewall and load-
balancer) that can be deployed on commercial off-the-shelf hardware (e.g., virtual ma-
chines) instead of proprietary, dedicated hardware [176]
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o Transparency: With the newly-introduced scheduling layer, BLAC
achieves bindingless switch-controller association. A switch does
not have to be bound with a controller, that is, the requests from
the switch can be processed by different controllers, enabling trans-
parent and request-level request dispatching. In terms of CP, con-
nections between the scheduling layer and any newly deployed
controllers need to be established. However, any ongoing traffic
between the data plane and the control plane will not experience
network interruption because when new controllers are being con-
nected, the scheduling layer can continue to send upcoming requests

to whatever available controllers.

o Compatibility: From an architectural perspective, the scheduling
layer is transparent between control and data planes. Thus, the
scheduling layer is compatible with existing SDN design which can
be justified from two aspects:

— From controllers” point of view, the scheduling layer is part
of the data plane since the scheduling layer is responsible for
dispatching requests among controllers. Existing distributed
controller architectures (e.g., ONOS [45] and Onix [158]) can
be easily integrated with BLAC without introducing any major
changes. Implementation details on integrating BLAC with ex-
isting distributed controller architectures can be found in Sub-

section 3.4.2.

— Similarly, switches barely notice the existence of the schedul-
ing layer since no hardware changes or software extensions are
needed for existing SDN switches. In particular, all switches
connect to the scheduling layer using an assigned anycast IP
address as we discussed in Subsection 3.2.2.1.

o Extensibility: The introduced scheduling layer provides the oppor-

tunities of integrating new functionalities. For example, flexible re-
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quest dispatching is enabled by employing different policies in the
scheduling layer, such as random heuristic [110, 146] and weighted
round robin [88] which will be discussed in Section 3.3. Moreover,
since every request travels through the scheduling layer to the con-
trol plane, it allows additional flow rules to be cached in the schedul-
ing plane so that the number of requests sending to the controllers

can be reduced.

e Separation of Concerns: Guided by this principle, each scheduler con-
sists of three components (i.e., the Switch Adapter, the Scheduling
Module, and the Controller Adapter) as we mentioned in Subsec-
tion 3.2.1. Each component communicates with each other using
well-defined interfaces while detailed implementation is encapsu-
lated inside. For instance, with the help of the switch adapter, the
scheduling module only concerns about how to dispatch requests
regardless of what SDN southbound interface (e.g., OpenFlow [14]
or OVSDB [11]) is used by the switches.

3.3 Request Dispatching Policies

The main objective of the scheduling module is to dispatch requests to
suitable controllers to minimize the request response time and maximize
the throughput. In this chapter, we mainly focus on examining the ef-
fectiveness of BLAC in CS. For simplicity, the policies we investigated in
this chapter are mostly heuristics, e.g., random scheduling. Even with
simple heuristics (e.g., random scheduling), BLAC can still significantly
outperform the binding-based architectures in terms of response time and
throughput as demonstrated in Subsection 3.5.2. We also simplify the net-
work setting by considering a small-scale network, e.g., local data centers
hosted by universities or private enterprises on the premises of the orga-

nizations to serve local users. Designing and evaluating policies in large-
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scale networks (e.g., WAN) with heterogeneous controllers will be further
investigated in Section 4.3 and chapter 5.

To start with, we consider a network composed of a cluster of SDN
controllers and schedulers. Each scheduler assigns a received request to
a controller. Each controller maintains a request queue and executes re-
quests in a FIFO manner. We here assume that all controllers have similar
capacities and each request requires similar controller workload, which
are fairly common in a data center [37].

According to existing studies [80], CPU is typically the throughput bot-
tleneck of a controller and the CPU load is roughly proportional to the re-
quest arrival rate at the controller. Thus, we define the load on a controller
as its CPU utilization. Since the network we considered is deployed lo-
cally, the propagation latency can be safely ignored (below 1ms) [108].
Based on the above assumptions, to optimize the network performance
in terms of response time and throughput, requests should be dispatched

in a way that all controllers” workload is balanced.

3.3.1 Omniscient Scheduling

The omniscient scheduler uses a greedy policy based on real-time global
information about the workload of each controller. Specifically, whenever
a request arrives, the scheduler forwards it to the least loaded controller,
which clearly is a suitable decision to achieve controller load balancing.
However, obtaining real-time global network information requires
each controller to frequently update its workload to all schedulers, which
inevitably introduce communication overhead. Particularly, in a network
with M schedulers and N controllers, the total number of messages to be
sent from the control plane to all schedulers per update is M*, which can
cause substantial communication overhead especially with a high update
frequency or in a network with a considerable number of controllers and

schedulers. Thus, this method may not be practical.
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Moreover, it is unnecessary to achieve the best possible balance which
may not always be essential for the purpose of improving system perfor-
mance. For example, 20% and 25% CPU utilization results in almost the
same response time [80].

Therefore, we argue that a light-weight policy that does not incur
heavy communication overhead is more suitable.

3.3.2 Random and Round-robin Scheduling

BLAC supports two widely-used simple-yet-effective approaches for dis-
tributing workload including RANDom (RAND) scheduling and Round-
Robin (RR) scheduling. RAND simply distributes a request to a controller
chosen independently and uniformly at random. On the other hand, RR
passes a received request to a specific controller by circling through all
available controllers.

Since both RAND and RR require minimum controller status informa-
tion, they can easily scale to a large-scale network with many distributed
controllers and schedulers. Due to their simplicity, they are widely used in
real-world networks [146, 177]. Note that the effectiveness of both RAND
and RR relies on the assumption that all controllers have identical pro-
cessing capacities, propagation latencies, and initial workload, which is
fairly common in data centers. However, in the presence of exceptions or
if the assumption is not satisfied, their performance would degrade. For
instance, even though a controller is heavily loaded, it still receives the
same number of requests as an underloaded controllers, which can easily
overload the controller. Therefore, it is natural to raise a question: is it pos-
sible to solely utilize limited controller information (e.g., CPU utilization)
to improve the scheduling performance?

In this chapter, we will study the usefulness of two different ap-
proaches: one is the Improved RANDom (IRAND) scheduling, which re-

lies on instantaneous information obtained from a small number of con-



3
o
o
)
|

|

|
v

(W] Controller 1 _ _ »T— Controller 1
Scheduler 1 X~ - [ Req. 1 Req. }—>[Scheduler 1)(\: -———
\ 1 Controller 2 \: ~. I m ] Controller 2
\
Scheduler 2 \ Scheduler 2 N Na

- N, = Controller 3 : \\\ —m— Controller 3

N . .

-Scheduler n \ : Scheduler n Y :
—— Controller n — Controller n

(a) Per request probing selects Con- (b) Batch assignment selects Controller 2 and
troller 1 Controller 3

Figure 3.2: Improved randomized scheduling. In comparison to per re-
quest probing, batch assignment is more likely to find the least loaded
controllers for the requests.

trollers; the other is the Weighted Round-Robin (WRR) scheduling which
periodically updates controller information to reduce the communication
overhead.

3.3.3 Improved Random Scheduling

BLAC adopts an improved version of RAND taking inspiration from the
power of two choices technique [200] as shown in Figure 3.2(a). Intu-
itively, the approach probes a small number of randomly selected con-
trollers for their workload and assigns a request to the least loaded one.
The scheduler repeats this process for each request received. With the
small amount of communication overhead between the schedulers and
controllers, the approach can improve the response time significantly com-
pared with RAND [200]. In our implementation, we probe 2 controllers for
each request as further explained in Section 3.5.

One problem with this approach is that the performance gradually de-
teriorates as the overall workload increases, since it is difficult for sched-
ulers to find less loaded controllers on which to place requests. To ad-

dress this problem, we further improve the approach by allowing batch
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assignment of consecutive requests. Without batch assignment, one pair
of probes may have easily sampled two heavily loaded controllers, result-
ing in no benefits to load balance. Batch assignment aggregates load infor-
mation from the probes sent for consecutive requests and assigns them to
the less loaded of all the controllers probed. Specifically, upon receiving
d requests, the schedulers send probes to 2 x d controllers. Clearly, there
exists a trade-off between the load balance performance and the response
time; with a large d value, it is more likely to assign the request to a less
loaded controller while sacrificing the response time as more requests are
buffered. In our implementation, we let d = 2 based on our experiment in
Section 3.5, which yields desirable compromise between performance and
communication cost.

3.3.4 Weighted Round-robin Scheduling

Instead of sending probes for each received request, BLAC also allows
controllers to periodically push their workload information to the sched-
ulers. Based on the information, a set of scheduling algorithms such as
greedy scheduling and Weighted Round-Robin (WRR) scheduling can be
adopted. Similar to omniscient scheduling, greedy scheduling simply
dispatches requests to the least loaded controllers. However, since the
workload information from controllers are updated periodically, greedy
scheduling can easily overload the least loaded controller with a long up-
dating period since all requests will be sent to it until the next workload
update.

In comparison, WRR assigns requests to controllers in a cycling order,
which is similar to RR. But instead of distributing requests evenly, the
number of requests sent to a controller is proportional to the reciprocal
of its workload. Thus, a heavily loaded controller receives less requests
compared to an underloaded controller, which ensures load balance in the
control plane.
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Figure 3.3: System component of BLAC.

3.4 Implementation

In this section, we provide the detailed implementation of BLAC. As
shown in Figure 3.3, BLAC can support a range of protocols such as Open-
Flow [14] and OVSDB [11]. Since currently OpenFlow is the most widely
accepted and deployed SDN protocol [161], our discussion will mainly fo-
cus on OpenFlow.

Based on the OpenFlow protocol, we discuss the details on how to
manage the switch connections using anycast and NAT. After establish-
ing the switch connection, BLAC dispatches requests to controllers as de-
termined by selected algorithms from the scheduling algorithm library.
Finally, we present how to measure controller workload using REST APIs
and RPC.

3.4.1 Anycast

As we mentioned in Subsection 3.2.2.1, to simplify switch configuration
and reduce propagation latency, switches connect to the scheduling layer
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using an anycast IP address. Specifically, anycast [220] is a network ad-
dressing and routing method in which packets from a single sender are
routed to the topologically nearest node in a group of potential receivers.
The deployment of anycast can be divided into two steps. First, multi-
ple schedulers listen on the same IP address. Second, modify the routing

tables and direct packets to the topologically nearest instance.

Although the idea of using anycast is simple, the practical implemen-
tation entails a technical hitch. Anycast was originally designed for con-
nectionless protocols (such as UDP), rather than connection-oriented pro-
tocols such as TCP used by OpenFlow. To ensure OpenFlow to work with
anycast, one has to assume a deterministic destination for all requests orig-
inated from a switch. The assumption holds true when the network topol-
ogy remains unchanged, which is the general case [163, 217]. However,
there are still cases where the scheduler receiving the requests may change
from time to time due to topology changes, silently breaking any ongoing
conversations [220]. Therefore, anycast is not completely compatible with
existing OpenFlow networks.

To enable anycast for OpenFlow, a solution that features two-round

connection establishment has been implemented in our prototype.

First-Round: A switch connects to a scheduler using an anycast ad-
dress such that it will be directed to the nearest scheduler instance. Af-
ter the connection is established, the scheduler alters the controller IP set-
ting on the switch to the unicast address of the scheduler. To achieve this,
we could leverage switch configuration protocols, such as the OpenFlow
Management and Configuration Protocol (OFConfig) [13] and the Open
vSwitch Database Management Protocol (OVSDB) [11], which are widely
supported by the switches [12].

Second-Round: Upon receiving the unicast address of the scheduler in-
stance, the switch establishes another connection with the instance using
its unicast address.

As an alternative solution, BLAC also supports the Network Address
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Translation (NAT) technique which preserves the advantages of anycast.
Specifically, we still configure all the switches with the same virtual con-
troller IP address. The virtual IP address is then mapped to a real sched-
uler IP address at runtime based on the NAT table, which is configured
according to the scheduler workload and the distance between schedulers
switches. And packets could be transparently directed to the appropriate
scheduler. As the NAT technique inherently supports the TCP connec-
tions, the NAT-based method could avoid the reconnection problem of

anycast while preserving its convenience.

3.4.2 Integrating BLAC with ONOS

BLAC is designed to provide universal support for distributed controller
systems. In this section, we implement our architecture based on ONOS.
However, it should be noted that minor modifications might be needed
during the implementation due to the mechanisms for maintaining net-
work consistency varied from different controller systems.

In ONOS, multiple controllers cooperate with each other and behave
as one logical entity. In other words, each controller has a synchronized
global view of the entire network which is maintained by a notification-
based replication scheme as we discussed in Subsection 3.2.2.3. Therefore,
regardless whichever controller a request is sent to, the response is ex-
pected to be the same. This characteristic greatly facilitates the implemen-
tation of BLAC as it can easily dispatch requests to different controllers
according to the policy.

However, during the implementation of BLAC, we notice that dis-
patching requests to different controllers experienced failures on ONOS.
We investigate the cause and find that ONOS assumes that only the master
controller could process the Link Layer Discovery Protocol (LLDP) pack-
ets received from the switch, for the purpose of discovering and updating

the underlying network topology. Since our policy indiscriminately dis-



3.4. IMPLEMENTATION 93

patches the LLDP packets to any controller in the cluster, ONOS fails to
build up the network topology.

To tackle this problem, two solutions are proposed. The first one re-
quires the schedulers to detect the LLDP packets and dispatch them to a
switch’s master. As a result, the schedulers have to maintain the master
controller record for every switch. The information can be obtained by in-
quiring the switches about a controller’s role with OpenFlow Role-Request
messages. Specifically, the scheduler can send a Role-Request message on
behalf of a controller to a switch. According to OpenFlow [14], a Role-
Reply message with the controller’s current role will be replied from the
switch. By examining the Role-Reply message, the scheduler could cor-
rectly associate a switch with its master controller. Another alternative
approach works directly on ONOS controller system. We patch the ONOS
system such that each controller, upon receiving an LLDP packet belong-
ing to others, the controller forwards the packet internally to the master

controller.

3.4.3 Querying Controller Information

In BLAC, schedulers could gather the workload information from con-
trollers in either an active or a passive mode. In an active mode, the sched-
uler issues a Remote Procedure Call (RPC)' to pull the current workload
from the controllers. Comparatively, in a passive mode, the workload in-
formation is periodically pushed to schedulers by controllers.

The active mode can be easily implemented for some controller sys-
tems that provide monitoring interfaces. For instance, ONOS implements
a set of REST APIs that enable the schedulers to retrieve the workload in-

formation via HTTP requests. For the controller systems that do not pro-

16RPC is a protocol that one program invokes another program in a different address
space. In particular, an RPC is initiated by a sender or client, which sends a request
message to a remote server. After processing the request, the server returns the response
to the client.
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vide such interfaces, we can implement and deploy our own load mea-
surement module on each controller, which provides the similar REST
APIs for the schedulers.

In the passive mode, the load measurement module periodically de-
livers the workload information via UDP packets. This is mainly because
duplicated data need to be transmitted when multiple schedulers are de-
ployed. Using a unicast TCP connection is not an optimal option since it
could result in the waste of network bandwidth and limited system scal-
ability. Instead, we take advantage of the multicast capability of UDD,
which allows a stream of data to be sent to multiple destinations with a

single transmission operation to reduce network traffic.

3.5 Evaluation

Generally, it is preferable to compare BLAC with dynamic binding based
controller architectures, e.g., ElastiCon [80]. However, their implementa-
tions are not publicly available. Apart from that, the performance of dy-
namic binding based architectures rely on switch migrations which is sen-
sitive to a balancing threshold [74]. Generally, to trigger a switch migration
process, a balancing threshold is required to identify highly loaded con-
trollers or imbalanced workload distribution in the control plane. How-
ever, selecting a suitable threshold can be challenging. For example, if the
threshold is too small, it may lead to frequent migration. On the other
hand, if the margin is too big, the highly loaded controller can easily get
overloaded before the migration takes place. Due to their sensitiveness
to parameters, it would be difficult to replicate the best results of these
architectures.

Nevertheless, we can still conceptually compare BLAC with ElastiCon.
Specifically, ElastiCon can be compared with WRR, as both of them sample
controller workload at the cost of extra communication overhead. In fact,

ElastiCon incurs a lot more overhead and adds a large amount of complex-
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ity. In particular, the switch migration mechanism [80] used in ElastiCon is
a complex and time-consuming procedure (above 25 ms [80]), requiring 4
phases and multiple message changes as we discussed in Subsection 2.3.2.
To make the switch migration decision, ElastiCon also needs load infor-
mation that each switch imposes on a controller, which easily multiplies
the amount of communication overhead.

In this section, we present the detailed performance evaluation on
BLAC. We first illustrate the experimental testbed which is used to mea-
sure the response time and throughput of BLAC. Then we compare and
analyze the results between BLAC and the static binding controller system
supported by ONOS to demonstrate the effectiveness of our architecture.

3.5.1 Experiment Setup

The experimental testbed is built on top of Mininet [167], which is a net-
work emulator that creates an SDN network by emulating links, hosts
and switches. It has been widely used for examining the functionalities
of newly designed SDN components or systems.

However, Mininet is generally not considered for performance evalu-
ation mainly due to the emulation overhead from packet exchanges and
context switch. Specifically, to emulate data plane traffic, actual pack-
ets are exchanged across a collection of software switches (e.g. Open
vSwitch [222]), which introduces a great amount of traffic in the emula-
tor. Apart from that, Mininet runs the data plane in kernel space while
the control plane is executed as a user space process. Whenever a request
is sent from switches to controllers, kernel to user space context switch is
triggered. Moreover, Mininet is designed to run on a single Linux kernel
where the CPU, memory, and bandwidth resources are shared among all
the virtual hosts and switches [166]. With limited resources, these over-
heads significantly limits the maximum flow arrival rate that Mininet can

emulate in the data plane. This in turn slows down the number of re-
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quests that can be sent to the control plane. Thus, it is necessary to enhance

Mininet for performance evaluation.

Inspired by [80], three approaches have been adopted to reduce the em-
ulation overhead. First of all, we modify Open vSwitches to directly inject
requests to controllers without actually transmitting packets through the
data plane so as to reduce the data plane traffic. This is mainly because
our evaluation focuses on controller workload. Emulating data plane traf-
fic with high overhead is unnecessary. Secondly, we disable the trans-
mission of the Flow-Mod messages from controllers to switches so as to
reduce the overhead of modifying switches” flow tables. It can be simply
achieved by dropping the messages in the schedulers. Thirdly, to isolate
the switch-controller traffic from the data plane traffic, the controllers and
Open vSwitches are running on separate machines. After applying these
modifications, the performance evaluation running on top of Mininet be-

comes reasonable reflection of the real network [80].

All of our experiments are conducted on a testbed running on 5 physi-
cal machines with quad-core 3.4 GHz Intel Core i7 3770 processors and 16
GB DDR3. The machines are installed with the latest 1.6 stable version of
ONOS. To show the feasibility and efficiency of BLAC, we test a number of
applications such as ACL, reactive routing, and reactive forwarding [10].
All of them exhibit similar trend in the results. It is clear that the evalua-
tion results are dependent on the selected application and the specification
of the hardware used in our testbed. Nevertheless, since we are interested
in the performance gain instead of the absolute values, we only present

the results with reactive forwarding for demonstration purposes.

We also measured and compared the system performance with differ-
ent numbers of schedulers. The results show that there is no significant
performance difference regardless of the numbers of schedulers used in
BLAC. This finding confirms our belief that schedulers are not the bottle-
necks for scalability and network performance.

In the experiments, two performance metrics including Response Time
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and Throughput are evaluated. We measure the response time of a request
as the timespan from when a Packet-In request is sent by the switch to
when the corresponding Packet-Out response is received by the switch. It
reflects how fast a controller can handle one request. Besides, we define
the throughput of a system as the maximum number of packets the system
can process within one second. In other words, it measures the controller

system’s ability to handle a large amount of traffic.

3.5.2 [Experimental Results

Response time: We generate requests at different arrival rates and measure
the response time with and without the support of BLAC respectively.
Specifically, the response time is recorded in a network with seven ONOS
controllers at different request arrival rates. When BLAC is used, we test
different scheduling algorithms including RANDom (RAND) scheduling,
Round-Robin (RR) scheduling, Improved RANDom (IRAND) scheduling,
and Weighted Round-Robin (WRR) scheduling. We also measure the re-
sponse time without BLAC for comparison purpose. In this case, ONOS’s
default role selection mechanism will decide each controller’s role (e.g.,
master or slave) for switches. Once the master controller is selected, the
connection/binding between the switch and the master controller remain
fixed.

The results are illustrated in Figure 3.4. They show that without the
support of BLAC, the response time for ONOS remains almost constant
(around 1 ms) when the arrival rate is less than 25000 pkt/s. It is mainly
attributed to the low utilization rate of all controllers. After that, the re-
sponse time shoots up rapidly in accordance with increasing incoming
traffic. In the case of RAND and RR, their performance is indistinguish-
able. In particular, their response time remains below 5 ms as long as the
arrival rate is below 39000 pkt/s. The response time becomes substantially
large when the arrival rate is higher than 43000 pkt/s. In comparison, the
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Figure 3.4: System response time comparison. In this figure, ONOS
represents ONOS controllers without the support of BLAC. RAND, RR,
IRAND, and WRR are results of BLAC equipped with different schedul-
ing algorithms.

response time of IRAND and WRR could still remain around 5 ms even
the arrival rate is greater than 40000 pkt/s.

To provide a simple intuition, we could roughly regard each controller
as an M/M/1 queue. So long as the service rate of the queue is greater
than the arrival rate, the service time (i.e., the response time) could remain
at a relatively low value. Once the arrival rate significantly outweighs the
service rate, the length of the queue starts growing rapidly, resulting in the
increase of the response time. That is the reason why a sharp increase of
response time can be spotted in Figure 3.4 when the arrival rate exceeds a

certain value no matter which architecture or algorithm we use.

Meanwhile, the response time varies with different architectures and
scheduling algorithms due to the way requests are distributed to con-
trollers. In the ONOS case, the inherent nature of static connections could
easily lead to uneven workload distribution among the controllers. Thus,

some controllers are overloaded while the others remain underutilized,
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Figure 3.5: Controller workload comparison.

which leads to longer response time, even though the workload for the
whole system is relatively low. In comparison, BLAC features binding-
less switch-controller association and requests can be evenly distributed
among controllers with the help of the introduced scheduling layer. Thus,
the workload imbalance issue among controllers can be effectively allevi-
ated, which correspondingly lowers the response time of the whole sys-
tem.

To verify this, we compare the controller CPU utilization and response
time of different approaches at a request arrival rate of 40000 pkt/s. Fig-
ure 3.5 shows the system performance benefits from balancing the con-
troller workload. Specifically, load imbalance is severe when ONOS is
used alone with fixed switch-controller binding; three controllers are over-
loaded (i.e., over 90% CPU utilization) while two controllers remains un-
derutilized (i.e., less than 40% CPU utilization), rendering the response
time to be over 20 milliseconds. Compared with ONOS, the response time
of BLAC is relatively low (approximately 5 ms) for different scheduling
algorithms.

In addition, we also notice in Figure 3.4 that IRNAD outperforms
RAND. The same trend is also observed between WRR and RR. This is
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Figure 3.6: System throughput comparison.

mainly because both IRAND and WRR make packet-forwarding decisions
considering the workload of the controllers. Another interesting phe-
nomenon is that WRR outperforms IRAND when the Packet-In arrival rate
is greater than 42000 pkt/s. This observation may be due to the probing
overhead which negatively impacts the system performance. Specifically,
the number of probes sent to controllers is proportional to the number of
packets received from the switches. Therefore, when more packets are re-
ceived by the scheduler, more probes are sent to the controllers, which
introduces communication overhead and may degrade the system perfor-
mance.

Throughput: We measure the number of requests that ONOS can pro-
cess without using BLAC within one second and plot it in Figure 3.6. It
should be noted that during the experiment, we deployed an odd number
of controllers in the cluster due to the cluster management mechanism of
ONOSY.

In general, the throughput of the whole system increases linearly along

7ONOS uses the Atomix framework [94] to manage its cluster. Because Atomix is
based on the RAFT consensus algorithm, it requires the cluster to be composed by an
odd number of controllers [1].
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Figure 3.7: System response time with different probe numbers.

with the controller number, as evidenced in Figure 3.6. With the help of
BLAC, the whole system achieves a much higher throughput compared
with ONOS. Additionally, among different scheduling algorithms, two
trends can be observed from Figure 3.6. First of all, as expected, the
throughput of RAND and RR has a similar trend, so do IRAND and WRR.
Secondly, in terms of the throughput, both IRAND and WRR outperform
RAND and RR.

Probe number: Normally, when the request demand is low, changing
the number of probes for each request seldom affects the system perfor-
mance since the network resources are mostly underutilized. However,
as the request arrival rate increases, the choice of the probe number starts
to show its impact on the response time. To demonstrate the impact of
the probe number on network performance, we investigate how the re-
sponse time changes with the arrival rate when different probe numbers
are used. The result is shown in Figure 3.7. We can see that using probes
could significantly reduce the response time compared with dispatching
requests randomly (i.e., RAND/no probe); Specifically, using probes re-

duces response time by more than 50% compared with random dispatch-



102 CHAPTER 3. BLAC

N
o

—&— No batch assignment
= d =2
| —— d = 3

=
w1

6]
L

0 . , , , ,
20 25 30 35 40 45 50
Packet-in arrival rate (x1000 pkts/s)

95th percentile response time (ms)
=
o
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bers.

ing when the Packet-In arrival rate is 42000 pkt/s. Figure 3.7 also demon-
strates a sweet spot in the probe number; the system performance barely
benefits from more than 2 probes at low request demand. Moreover, ex-
cessive probes could negatively impact the system performance with high
request demand (e.g., when the Packet-In arrival rate is greater than 45000
pkt/s) due to communication overhead introduced by the probing mes-
sages. Therefore, we use 2 probes for IRAND throughout our experiments.

Request-buffering number: Figure 3.8 demonstrates that IRAND can fur-
ther reduce the response time by utilizing batch assignment. The red line
represents the power of two choices technique, which dispatches requests
without buffering. In the seven-controller network, algorithms with batch
assignment outperform the power of two choices technique since the
schedulers are more likely to find less loaded controllers by aggregating
load information from the probes sent for consecutive requests. However,
the response time seldom reduces while buffering over two requests. Fur-
thermore, the system performance even deteriorates when more requests

are buffered with high request demand. This can be explained by the fact
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that when the number of requests received by the schedulers increases, it
is less likely to sample a lightly loaded controller. Meanwhile the response
time will be sacrificed when more requests are buffered. In the meanwhile,
high request demand is likely to result in traffic congestion, further lead-
ing to longer buffering time. Thus, we adopt the request-buffering number

d = 2 in our implementation throughout our experiments.

3.6 Chapter Summary

The overall goal of this chapter is to tackle the RM problem from the archi-
tectural perspective. This goal was fulfilled by developing a novel Bindin-
gLess Architecture for distributed Controllers called BLAC which features
bindingless switch-controller association.

In particular, BLAC introduces a scheduling layer located between the
switches and controllers where multiple lightweight schedulers can be
flexibly deployed. The scheduler schedules each individual request to dif-
ferent controllers according to the chosen scheduling algorithm, perform-
ing CS in a transparent manner. Without the switch-controller binding
constraint, controllers can be flexibly added or removed from the control
plane, minimizing the interruption of ongoing traffic. Moreover, BLAC is
highly compatible with existing SDN controllers and can be deployed in
the network by simply assigning a unique anycast controller IP address to
all switches. A prototype of BLAC has been built and experiments have
been performed on the prototype. The results showed that BLAC could
significantly reduce the response time and improve the system through-
put compared with the static binding controller system. With the support
of BLAC, the CPP is addressed through the algorithm design perspective
in the next chapter.
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Chapter 4

A Scalable SDN Control Plane:
High Utilization Comes with Low
Latency

41 Introduction

With the wide adoption of distributed controller architectures, the Con-
troller Placement Problem (CPP) becomes a critical research issue. Al-
though over-provisioning controllers for an expected peak traffic load can
be considered as a possible strategy to solve the CPP, solely applying over-
provisioning is not economical and effective for the day-to-day operation
of many real networks due to the network traffic dynamics'®. As defined
by Heller et al. [118], CPP has the goal to identify both the number and
locations of controllers in any given network so as to achieve some im-
portant objectives, such as minimizing propagation latency [118, 277, 279]
and improving resource utilization [271]. For instance, a suitable number

of controllers must be placed in proximity to demanding switches in ac-

18 According to network traffic measurements [44], the peak-to-median ratio of request
arrival rate can be up to 2 orders of magnitude.

105
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cordance with the dynamic fluctuations of traffic workload. This is critical
to the overall network reliability and performance, especially for wide-area
networks [165, 272, 279].

However, even with appropriate placement of controllers, we may
still run into the risk of poor network performance if the requests cannot
be properly distributed among controllers. In this thesis, the Controller
Scheduling Problem (CSP) is defined as the problem of optimizing the
distribution of requests from all switches among all controllers so as to
achieve certain objectives, such as load balancing and minimizing request
response time. Without solving the CSP properly, controllers can easily
experience high workload and, as a result, the response time of a con-
troller can increase significantly to 15 times of its normal value under light
workload, as reported in [74] and our simulation study in Subsection 4.5.1.
Such a controller will become sensitive to its workload changes. A slight
increase in request arrival rate can easily overload the controller, resulting

in high variation in response time.

Motivated by the above understanding, Yao et al. [291] introduced the
capacitated K-center problem where the controller workload is treated ex-
plicitly as a controller placement constraint. Several research works fol-
lowing similar ideas can also be found in the literature [271, 272, 279].

More details are provided in Section 2.4.

Although considerable efforts have been made to address the CPP, the
importance of the CSP has always been underestimated and sometimes
ignored [118, 215]. Only a few recent works have explicitly quantified the
impact of the CSP on the performance of the control plane [279]. Moreover,
most of the existing approaches for the CPP are designed for binding-
based controller architectures (e.g., ONOS [45] and Onix [158]) that re-
quire every switch to always contact its bound controller [138], restricting
the opportunity to properly distribute workload across all controllers. Al-
though it can be alleviated by the switch migration mechanism [80] to re-
associate switches from overloaded controllers to under-utilized ones, the
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migration itself is complex and time-consuming. Furthermore, its balanc-
ing granularity only limits to the switch level.

To enable fine-grained workload distribution, we investigate the CPP
based on BLAC which we introduced in Chapter 3. BLAC introduces bind-
ingless switch-controller association so that requests from one switch can
be flexibly processed by different controllers. Key reasons for choosing
BLAC will be elaborated in Subsection 4.2.1.

4.1.1 Chapter Goals

In fulfillment of Objective 2 stated in Section 1.3, a new Controller Place-
ment and Scheduling Problem (CPSP) is defined and solved in this chap-
ter, emphasizing on the necessity and importance of tackling both the CPP
and the CSP simultaneously in a coherent framework. Precisely, this chap-

ter aims to address the following objectives:

e Design a model to precisely measure the influence of the CSP on

network performance in a realistic manner;

e Propose a new problem formulation to jointly tackle both the CPP
and the CSP within a coherent framework, aiming to optimize net-

work performance;

e Develop a CS algorithm to achieve a good balance between schedul-

ing performance and problem scalability;
e Develop a CP algorithm to effectively solve the CPP;
e Improve the CP algorithm so that it can scale to large networks;

e Develop a mechanism to enhance the robustness of the CP algorithm

in terms of handling unexpected traffic surges;

e Compare the performance of our proposed CS algorithm with exist-
ing popular approaches, e.g., weighted round-robin [88, 101].
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e Compare the performance of our proposed CP algorithms with exist-
ing popular approaches (e.g., k-center [118]) and the state-of-the-art
approaches (e.g., MSPA [279]).

4.1.2 Chapter Organization

The rest of this chapter is organized as follows. We formulate the CPSP in
Section 4.2. Since the CPSP is comprised of the CSP and the CPP, we first
study several solutions for the CSP in Section 4.3. Given the CSP solution,
several effective approaches are developed in Section 4.4 for addressing
the CPP. Section 4.5 demonstrates the simulation results. Section 4.6 con-
cludes this chapter.

4.2 Problem Formulation

In this section, we will present a model of the network environment and
formulate the CPSP. The key notations have been summarized in Table 4.1
for the ease of reference.

4.2.1 Using BLAC for the Controller Placement Problem

In this research, we evaluate the CPP using BLAC for two main reasons:
First, BLAC enables dynamic and transparent controller placement
without incurring time-consuming switch migration. Other distributed
controller architectures such as ONOS [45] and ElastiCon [80] support ei-
ther static or dynamic switch-controller binding. Therefore, when the con-
trollers are relocated, switches need to migrate from previous controllers
to new ones. This process can be time-consuming and even introduce net-
work disruption. On the contrary, BLAC introduces bindingless switch-
controller association. In BLAC, switches are connected directly to the
scheduling plane. Thus, controllers can be flexibly and transparently relo-

cated without interrupting the switch connections.
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Table 4.1: Mathematical notations for the CPSP

Notation | Definition

Vv A finite set of network nodes

Ao Request generated rate from node v

Qy Controller processing capacity of node v

B Decay factor of a controller node

Ty Whether a controller is allocated at node v

x A binary vector representing a CPP solution
D(v,v") | One-way propagation latency between v and v’

Py Probability of node v sending requests to v’

M Total number of network nodes

N Total number of selected controllers (N = ||z||,)

o Synchronization factor

w Clustering factor

tin Response time threshold

€ the sum of transmission latency, switch processing

latency, and scheduler processing latency

Second, BLAC enables fine-grained controller load control. Due to the
switch-controller binding constraint, the majority of distributed controller
architectures can only manipulate the controller workload at switch level.
In other words, requests from one switch can only be processed by one
controller. However, BLAC can dispatch requests from one switch to dif-
ferent controllers, achieving flow-level load control. Thus, the architecture

improves the flexibility of distributing the workload among controllers.

Apart from providing flexible and explicit control over the controller
workload distribution, the complete separation between the control plane
and the data plane also enables us to formulate the CPP without the
switch-controller binding constraint. With the help of BLAC, the CPP is
effectively formulated in Subsection 4.2.3.
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4.2.2 Network Environment

Note that in a small-scale network (e.g., a local data center hosted by uni-
versities on the premises of the organizations to serve local users), the
propagation latency can be safely ignored (below 1ms) [108]. Therefore,
the network response time mainly depends on the processing time of the
controller. Thus, optimizing the CP barely affects the network perfor-
mance. In comparison, for a large-scale network which may span large
geographic areas, the propagation latency becomes significant. According
to existing studies, the propagation latency can vary from 10 ms to 200
ms [68, 115, 172]. Obviously, inappropriate placing controllers in remote
locations will inevitably increase the network response time. Thus, as we
mentioned in Section 4.1, CP is critical to the overall network performance,
especially for wide-area networks.

Based on the above understanding, we considered a large enterprise
global communication backbone network G = (V, E, D) where V' is a set of
M nodes and E is a set of bidirectional physical links between nodes. The
distance function D : V x V' — IR defines the one-way propagation latency
between any pair of nodes. Each v € V is a switching node (one switch
or a switch group) and is responsible for handling all backbone related
communication requests generated by local switches. Requests generated
by v follow a Poisson distribution at the rate of \,".

With the help of BLAC, controllers in the control plane can be flexibly
deployed at any node in the network. Depending on where a controller is
deployed, the controller can have varied capacities. This is because con-
trollers are not always supported by the same type of server machines at
different locations [270, 301]. We hence use «, to measure the maximum
number of requests processable by the controller located at node v within

YWe assume that requests generated by every local switch follow Poisson distribu-
tions. Mathematically, when requests from multiple independent Poisson sources are
combined, the aggregated requests to be handled by each node in the backbone network
still follow Poisson distribution.
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one second. A full solution to the CPP can subsequently be represented as
a binary vector z where each element of z is denoted as

1, if v is selected

0, otherwise

therefore the number of deployed controllers is N = ||z||,. Given z, the set
of N selected nodes where controllers are deployed can be easily identified
and denoted as V.

Unlike [118, 165, 291], we assume that each switch can flexibly dispatch
requests to any deployed controllers with the help of a locally installed
scheduler as shown in Figure 4.1. This assumption can be easily fulfilled
by our proposed controller architecture A BindingLess Architecture for
Distributed SDN Controllers (BLAC). For instance, a scheduler can be in-
stalled on each switch as a light-weight Network Function Virtualization
(NFV) component [204] to dispatch requests as shown in Figure 4.1. Al-
though we assume that the schedulers are deployed on the data plane, we
did not rule out the possibility of placing them in other network locations.
In fact, the use of VNF gives Internet Service Provider (ISP) the flexibility
about where the schedulers can/should be placed based on their under-
standing of the network dynamics.

In BLAC, since a switch in theory can ask multiple distributed con-
trollers to handle its requests, maintaining consistency across all con-
trollers is critical for controllers to correctly handle the requests. In gen-
eral, there are two types of consistency mechanisms: strong consistency
and eventual consistency. Strong consistency guarantees that each con-
troller always has the up-to-date network view. On the other hand, even-
tual consistency provides a weak form of consistency. Data modifications
on one controller will be eventually propagated to all controllers. Thus,
a controller may read outdated network view at some point. It should
be noted that the degree of staleness actually depends on the location of

the controller. In particular, a controller always has up-to-date informa-
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Figure 4.1: Request processing procedure.

tion about its nearby network, i.e., a network cluster (or a sub-network)
where the controller belongs to. For the part of network that is far from
the controller, more time is required for synchronization to take effect. But
the topology information held by the controller about the remote network
remains usable to a large extent. Due to the slow change of the network
topology, we consider weak/eventual consistency is sufficient for our ap-
proach. In particular, since the network we considered is a large enterprise
global communication backbone, frequent changes in network topology
are unlikely to happen [163, 217]. Apart from that, since traffic generated
by each node is aggregated from local networking devices, the traffic vari-
ation is supposed to be smooth [2]. Moreover, our algorithm design in
Section 4.4 also encourages switches to send requests to nearby controllers
for processing while carefully preventing any switch to frequently contact
long-distant controllers. Thus, similar to many existing studies [170, 236],

weak/eventual consistency is sufficient.

After processing a request, a response will be sent from the controller
back to the switch. The time interval measured by the switch between
sending a request and receiving a response is defined as the request re-

sponse time.



4.2. PROBLEM FORMULATION 113

To measure the performance of any solution z to the CPP, we must find
the corresponding solution to the CSP as well. Given the job of schedul-
ing R requests within a specific time period, the complexity of the CSP is
O(N%) and is intractable in practice. To solve the problem scalably and ef-
ficiently, we decide to distribute requests to every controller according to
some pre-calculated probabilities. In this way, we can dramatically reduce
the problem complexity from O(N¥) to O(MN).

Let P be an M x N matrix which is always guaranteed to exist. P,/ is
the probability for switch v to dispatch any new requests to controller at
node v’ for processing. As illustrated in Figure 4.1, guided by P, we can
highly efficiently distribute requests from any switches to any controllers,
achieving real-time requirements for fast request processing. To ensure P

is well-defined, the sum of each row of P must equal 1:

ZPU’UI = 1,V'U eV

%

4.2.3 Problem Formulation

As showed in Figure 4.1, we can model each controller as an independent
M/M/1 queue [191, 280]. According to Little’s Law, the long-term average
number of customers in a stationary system can be calculated as the prod-
uct of the customer arrival rate and the average customer waiting time.
On the other hand, the mean queue length in a stationary system equals
to the arrival rate divided by the difference between the system process-
ing rate and the customer arrival rate. Then the average customer waiting
time can be calculated as the inverse of the difference between the system
processing rate and the customer arrival rate [106]. Similarly, considering
each request as a customer, the average processing latency of the controller
at node v’ can be calculated

1
Ay — Z /\UPU,U’

veV

Ty —
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To maintain a consistent network view, controllers need to synchro-
nize network events with each others. Note that in an SDN network, net-
work events can be divided into topology-altered and topology-unaltered
events. To maintain a global synchronized view of the full network topol-
ogy, only topology-altered events (e.g., switches go up and down) should
be synchronized among controllers. As we mentioned in Subsection 4.2.2,
frequent changes in network topology are unlikely to happen [163, 217].
Thus, the number of topology-related events is limited. Nevertheless, to
measure the synchronization impact on the network, the worst case sce-
nario is considered here, i.e., each controller directly communicates with
all other controllers regularly for synchronization and each time it takes
up to N rounds of communications for all controllers to synchronize their
local views. Thus, the synchronization cost for the worst case is O(N?).
Specifically, we model the synchronization cost F,, for each controller as
the product of N? and the synchronization factor v that captures the num-
ber of topology-altered events generated within every simulated second.

Fyyn = yN? (4.1)

Note that the synchronization cost can be considered as part of the con-
troller’s workload. Hence the controller processing latency can be refined

to become:
1

Qyr — Z Avpv,v/ - Fsyn

veV

Ty =

Generally speaking, the response time consists of five components:
transmission latency, propagation latency, switch processing latency,
scheduler processing latency, and controller processing latency. In a high-
bandwidth network (e.g., Sprint Network [19], a backbone network con-
sidered in this chapter), the transmission latency is trivial. Apart from
that, with recent advancement of hardware technology, high-performance
switches have become prevalent (e.g., NoviSwitch [8] and EZchip [4]), re-
sulting in negligible switch processing latency [77]. Note that schedulers
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are solely responsible for request dispatching according to the predeter-
mined probability distribution P, incurring negligible computation over-
head (simply toss a coin for every request to be dispatched). Thus, the
scheduler processing latency can be safely ignored. Nonetheless, to make
the model accurate and realistic, we use € to jointly capture the transmis-
sion latency, switch processing latency, and scheduler processing latency.

Thus, the average request response time of the controller at node v’ is
calculated by averaging the request response time over all requests sent by
all switches to the controller. The response time of each request includes
the controller processing latency, the round-trip propagation latency, and
€

> D(v, V" )\ Py

veV

Z )\UPU,U’

veV

tU/:TU/—f-Q'

+ €

The average response time of the network is calculated by averaging
the response time of all requests processed by all controllers:

> tu( ZV%P@,@/)
/ ve
bang = 2¥ (4.2)
Ay

Meanwhile, given a solution z to the CPP, the control plane utilization
is calculated as the proportion of controller capacities used for request pro-
cessing in the control plane:

> A
u = ”ZG:VOW (4.3)

VeV

In consideration of realistic requirements from network operators
[87, 272, 294, 302], we formulate our problem with the main goal of min-
imizing the network operation cost, which is realized through maximiz-
ing the control plane utilization. Accordingly, the CPSP aims to find the
controller placement x and workload distribution P so as to maximize u

without deteriorating the network performance measured by the average
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response time t,,, in (4.2). This requirement gives rise to the constrained
optimization problem below:

max u(z) (4.4)
s.t. tavg(z, P) < Ly, (4.5)
> APy < Blow — Fyn), Vo' €V (4.6)
veV
Y Py=1YeV 4.7)
VeV
0<P,<1,YoeV,W eV (4.8)

Since the improvement of control plane utilization should not come at the
expense of network performance, (4.5) guarantees that average response
time should remain below a certain threshold ¢;,. In particular, the latency
value for a network depends on several factors, such as the network geo-
graphic coverage, access speeds, and the class of service associated with
the data [196]. According to [20], Sprint’s committed network round trip
backbone delay is 55ms within North America while the delay increases
up to 105 ms within Asia. (4.6) ensures that the workload of each con-
troller never exceeds its capacity. Moreover, a proportion of capacity must
be reserved for each controller, as determined by a decay factor 3, in order
to withstand unexpected traffic bursts. For example, in a network where
controller workload varies significantly and quickly, 5 should be set to a
relatively high level. Thus, 5 enables network operators to impose high-
level control over the long-term network operation, as required by most
production networks [281]. Finally, both (4.7) and (4.8) guarantee that P
is well-defined. Note that no assumptions about the type of networks are
made in the problem formulation to ensure its generality.

Our formulation of the CPSP (4.4)-(4.8) produces two sub-problems.
The first one is to identify the number and locations of controllers (i.e., the
CPP) while the second one requires us to determine the workload distribu-

tion among deployed controllers (i.e., the CSP). Accordingly, our solution
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to the CPSP is made up of two inter-dependent parts: one for the CPP and
the other one for the CSP. In consideration of the fact that the quality of
a solution to the CPP depends on the corresponding solution to the CSP,
we will first investigate different approaches for solving the CSP in Sec-
tion 4.3. A study on various methods for solving the CPP will be carried
out subsequently in Section 4.4.

4.3 Controller Scheduling Algorithms

In this section, we assume that a solution x to the CPP is given in advance.
In other words, the CSP is solved based on all deployed controllers. Our
task for the CSP is to effectively schedule the requests generated by all
switches over the deployed controllers to reduce the response time so as
to satisfy (4.5). Accordingly, the CSP can be formulated as:

solve t,,y(P) < tu,
P 4.9)
s.t. (4.6),(4.7),(4.8)

In order to achieve low average request response time, a switch will
send a large portion of its requests to nearest controllers rather than re-
mote controllers as verified by our simulation studies in Subsection 4.5.2.
To solve (4.9), several approaches will be studied, ranging from simple
heuristics to a newly proposed approach that periodically calculates the
suitable distribution probability P over all controllers through a GD based
technique. We will also analyze the pros and cons of adopting each ap-

proach.

4.3.1 Weighted Round-robin Scheduling

Speaking of heuristics, random and round-robin are two widely used
scheduling methods [146, 226]. However, they are expected to only per-

form well when all controllers have identical capacities and are located
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close to each other, which may not always be true in reality. Thus,
weighted round-robin (WRR) scheduling is considered to be more flexi-
ble, since it can handle imbalanced controller workload and different con-
troller capacities more effectively.

Similar to many existing research works [88, 101], P, , can be made
proportional to the controller capacity, as shown below:

Py o (a — Fuy), Yo €V (4.10)

Such a capacity-based WRR (CWRR) can effectively handle the situ-
ation when controllers differ in capacities but have similar propagation
latencies. However, scheduling requests solely based on capacity informa-
tion may not be sufficient, especially in a large-scale network where propa-
gation latency contributes significantly to response time. This understand-
ing is further verified by our simulation studies in Subsection 4.5.2.

Motivated by this, P, can also be determined as:
oy — Foyn

D(v,v")
This technique is utilized by the capacity-delay-based WRR (CDWRR).
With CDWRR, the preference of choosing a controller depends not only on

(4.11)

PU,U’ X

its processing capacity but also on its propagation latency with a switch.
Thus, a switch has the tendency to send its requests to powerful and close
controllers so as to reduce the response time.

It should be noted that P, can be calculated independently by each
switch. Since the propagation latency varies for different pairs of con-
trollers and switches, each switch may follow different probabilities of
dispatching its requests to the same controller.

4.3.2 Gradient-descent-based Scheduling

According to (4.9), t,.,, can be reduced through adjusting P. Note that
for any possible solution P, it must satisfy constraints (4.6)-(4.8). To han-

dle the constraints, we adopt the most commonly used penalty function
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Algorithm 1 Gradient-descent-based Algorithm for the CSP

1: Initialize the distribution matrix P
2: while t,,,(P) > ty, do

3:  Update P using (4.14)

4: end while

5: return P

method [69, 232] due to its simplicity, ease of implementation, and its
general applicability to constrained problems with equality and inequal-
ity constraints [31]. Specifically, (4.9) is transformed into a constraint-free
optimization problem by introducing the term in (4.12) to penalize any

constraint violation [232].

Fcon(P> = 1 Zm1n<07 6(0%’ - Fsyn) - Z)\UPU,U,>

VeV veV

(4.12)
+ MQZ‘:[ - ZPU,U’ + N3zzm1n<07 Pv,v’)
veV VeV VeV eV
where (11, 115, and pi3 are penalty parameters.
Consequently, (4.9) becomes:
min F,,,(P) = min <tavg(P) n Fm(P)) (4.13)

To solve this optimization problem, we develop a GD-based schedul-
ing algorithm as described in Algorithm 1.

In each iteration, the gradient of F,,(P) with respect to P is calculated
to guide the search of P. Instead of updating P using a constant learning
rate [, [ is gradually reduced from a high value [; to alow value [}, based on
the following equation for the algorithm to converge reliably. Simulation
evaluation on the convergence of our GD-based approach is reported in

Subsection 4.5.2.
(g —1lr) ;

l=1ly— N
I
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where N is the maximum number of iterations and i represents the cur-

rent number of iterations. We can update P as:

OF.s)p
oP

so that the optimization process can gradually shift from constraint satis-

Py =P, —

g (4.14)

faction to t,,,(P) minimization.

The whole process repeats until the stopping criterion is reached (i.e.,
tavg(P) < ty, or the maximum number of iterations is reached). It is impor-
tant to note that Algorithm 1 can be executed efficiently in practice with
the help of advanced learning/optimization tools such as Theano [22] or
TensorFlow [21]. Particularly, Theano is used in our implementation. Dur-
ing our simulation in Subsection 4.5.2, we noticed that our algorithm con-
verges quickly within 10 iterations (i.e., around one second®’). With the
support of high-performance computers in industry, the convergence time
can be further reduced. Moreover, one second of GD running time is only
required when all the controllers currently being used by a switch become
unavailable at the same time, which is unlikely to happen. Even such a
rare situation happens, any delay caused by rerunning GD will only affect
new flows. Any ongoing flows will not experience the delay. Hence, in
terms of user experience, end users may not even experience the one sec-
ond of delay at all, in addition to being acceptably short. Thus, the GD
running time can be safely ignored in practice.

Once P in (4.9) is optimized, it will guide request distribution for all
switches.

4.4 Controller Placement Algorithms

Facilitated by a method for solving the CSP, we can now address the CPP
for the purpose of improving controller utilization. As we explained previ-

2The algorithm is run on a physical machine with quad-core 3.4 GHz Intel Core i7
3770 processors and 16 GB DDR3
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ously, it is unfeasible to find the optimal solution to the CPP in a large net-
work. Existing approaches attempted to simplify the CPP [118, 134, 291]
by assuming that either the number of required controllers is predeter-
mined or all controllers have identical capacities so that the required con-
troller number can be easily calculated. In this thesis, we instead study
a more realistic scenario where the number of controllers is unknown in
advance and controllers with varying capacities can be deployed in the
network. To address this CPP, different approaches will be explored.

4.4.1 K-center

K-center is currently one of the most well-known CPP strategies [118]
which aims to find the k locations of k£ controllers so as to minimize the
worst-case propagation latency from any switch to its closest controller.
However, determining a suitable value for £ is a challenging task. In this
work, we introduce an extra constraint to guarantee that the product of 3
and the total capacity of selected controllers must be larger than the total
request arrival rate. Therefore, the modified K-center can be formulated

as follows:
min max {D(v,v")} (4.15)
T veV,x, /=1
s.t. > Blow = Fapn)ry > Y A (4.16)
veV veV
]l = K (4.17)

This modified K-center approach will be further compared with other
methods in Subsections 4.5.3 and 4.5.4. Obviously K-center does not ex-
plicitly handle the CSP since it purely selects the closer controllers without
considering the request assignment among them. Given two controllers
with similar propagation latencies but significantly different capacities, K-
center will choose the controller with lower propagation latency despite
its low capacity, resulting in increased average network response time.
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Furthermore, K-center overlooks the control plane utilization and may se-
lect more controllers, potentially incurring additional network operation
costs/expenses as evidenced by our simulation results in Subsection 4.5.3.

4.4.2 Genetic Algorithm

Recently, evolutionary computation (EC) techniques have been widely
exploited to effectively solve various NP-hard problems [30, 102, 120].
The promising results reported in the literature inspire us to tackle the
CPP (4.4) through an EC method. Among all EC techniques, we pre-
fer Genetic Algorithm (GA) for two main reasons. (1) The solution x
to the CPP in the form of a fixed-length binary array can be easily im-
plemented by standard chromosomes in GA. (2) Many previous research
clearly demonstrated that GA is particularly suitable for solving highly
constrained problems [30, 102, 120, 197].

In this study, we follow the GA framework introduced in [256]. We first
transform the CPP objective (4.4)-(4.8) into a constraint-free optimization
problem:

max Fop(x) = max <u(:zc) — Foon(z, P)) (4.18)

where
Fcon(xv P) - Fcon(-P) + Ha min(oatth - tavg(-P))

In line with the CPP objective in (4.18), the fitness value of any solu-
tion = can be calculated as Fi,,(z). Given a candidate solution z to the
CPP, the control plane utilization u(z) can be directly obtained via (4.3).
Additionally, the solution P to (4.9) will be optimized through the GD-
based approach developed in Subsection 4.3.2. Consequently, F.,,(z) can
be easily calculated.

Although the combined use of GA and GD has been proposed to devel-

oped memetic algorithms in previous studies [30, 102, 120], our proposed
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Algorithm 2 Genetic Algorithm with Gradient Descent

: Initialize the population
: Evaluate the population via (4.18) and Algorithm 1
: for generation = 1,2, ... do

Generate individuals via Crossover and Mutation

Select individuals to form a new population

1
2
3
4
5. Evaluate new individuals via (4.18) and Algorithm 1
6
7: end for

8

: return The best individual x and its corresponding probability P

algorithm is different. In particular, memetic algorithms combine evolu-
tionary algorithm (e.g., GA) for new solution exploration and local search
(e.g., greedy strategy) for existing solution improvement. In comparison,
GD in our algorithm is purely for fitness evaluation instead of improving
any existing solutions.

After evaluating the fitness of all solutions in the current population, a
new population is created by performing genetic operators (e.g., crossover,
mutation, and selection) on the current population. The whole process
repeats over multiple generations until the maximum number of genera-
tions is reached, as summarized in Algorithm 2. In terms of scalability,
the fitness evaluation of all candidate solutions in a GA population can be

performed in parallel.

4.4.3 Clustering-based Genetic Algorithm

In order to effectively solve the CPP in large networks, both the popula-
tion size and the generation number in GA need to be extremely large,
significantly prolonging the algorithm running time. Moreover, with the
exponential expansion of the search space, GA takes extremely long time
to discover good solutions to the CPP [256].

To reduce the complexity of the search space in the CPP, we adopt
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the famous divide-and-conquer strategy [71] and develop the Clustering-
based Genetic Algorithm (CGA). In particular, network partitioning is first
applied to group network nodes (switches) into k£ sub-networks according
to their mutual distance. Afterwards, GA is utilized to solve the CPP in
each sub-network. This approach allows us to effectively control the max-
imum propagation latency within each sub-network. Furthermore, the
search space complexity of GA can be significantly reduced. For example,
in a network with M nodes, the complexity of the search space is O(2M).
After network partitioning, each sub-network has on average 2 nodes. In
this case, the complexity of the search space is reduced to O(k2'%). With
network partitioning, schedulers are unlikely to be overwhelmed by re-
quests generated within their respective sub-networks.

Following this idea, the goal of network partitioning is to divide a net-
work G = (V, E, D) into k non-overlapping sub-networks G; = (V;, £;, D)

(i = 1,..., k) so that the intra-sub-network latency can be minimized:

min > ) "D(v, ;) (4.19)
L ey
k
st. (Jvi=Wvi (4.20)
i=1
Vi(\Vi=o,¥i #j (4.21)

where ¢; € C'is the center of sub-network G;. (4.20) ensures that all nodes
are divided into sub-networks. (4.21) guarantees that every node belongs
to only one sub-network. After partitioning, the requests generated within
a sub-network will be processed most of the time by controllers deployed
in the same sub-network.

Although the network partitioning problem is essentially a clustering
problem and K-means is undoubtedly the most widely used clustering al-
gorithm, it may not be suitable for the network partitioning task since the
algorithm is highly sensitive to the selection of initial center points [55]. In-
spired by the previous research [279], the Clustering-Based Network Par-
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Algorithm 3 Clustering-Based Network Partition Algorithm (CNPA)

: Initialize the center set C' = @
: Find the initial center ¢, via (4.22) and add ¢, to C, i.e., C' = {1 }.
: while |C| # k do

Find a new center ¢; via (4.23) and add ¢; to C.

Update C via (4.22).

1
2
3
4
5:  Assign each network node v € V' to its closest center in C.
6
7: end while

8

. return k sub-networks and their centers C.

tition Algorithm (CNPA) is adopted in this section to tackle the network
partitioning problem. Compared to K-means, CNPA does not introduce
the randomness in its algorithm since no randomly selected centers are re-
quired. As demonstrated in Algorithm 3, CNPA first initializes an empty
center set denoted by C. In other words, CNPA considers the whole net-
work as a sub-network and starts by choosing a node with minimal total

propagation latency given in (4.22) as the initial center ¢ which will be
added into C:

¢ = argmin Z D(v,v") (4.22)

veV; v EV;

Afterwards, the node that has the highest propagation latency with ex-
isting centers C' is chosen from remaining nodes as a new center ¢ and

subsequently added into C.

¢ = argmax Z D(v,c) (4.23)

veV oo
After determining the first two centers according to (4.22) and (4.23) re-
spectively, other network nodes will be grouped into two sub-networks
based on their respective propagation latency from the two centers. Note
that after all nodes are assigned, the centers will be recalculated based on
(4.22) and updated in C. After that, if the number of sub-networks is less
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than %k, a new center will be selected using (4.23). The whole process re-
peats until £ sub-networks have been obtained.

In order to apply CNPA, we should first of all decide the desired value
for k. Intuitively, increasing k will significantly reduce the search space for
GA. However, more sub-networks demand for more controllers since at
least one controller needs to be allocated within each sub-network. This
will affect the overall control plane utilization and introduce high network
operation costs/expenses especially when the request arrival rate is low.

To strike a balance between computation complexity and control plane
utilization, a heuristic based on our preliminary studies will be utilized to
decide the £ value according to the current network condition. Specifically,
given the request arrival rate, we roughly estimate the required number of

controllers using the following formula:

2 Ay

2%
N,=~2

Then & can be decided as follows:

2w, if Y < 0.5
k= (4.24)

4 w, otherwise
where w is the clustering factor, a hyper-parameter that can be flexibly
adjusted based on the network size.

The whole process of CGA is summarized in Algorithm 4. Specifically,
CGA uses CNPA to partition the network into k£ sub-networks. For each
sub-network G;, GA will be utilized to find the CPP solution z;. Because z;
for each sub-network is independent, multiple GA runs can be performed
in parallel, ensuring the overall scalability of CGA.

Note that a controller may miss the most up-to-date global network in-
formation because of weak consistency. However, it does not mean that
the local information maintained by each controller is not useful. Espe-

cially with the help of network partitioning, a controller can easily obtain
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Algorithm 4 Clustering-based Genetic Algorithm (CGA)
1: Calculate the number of sub-networks &
2: Run CNPA (Algorithm 3) to obtain k sub-networks G4, ..., Gy,
3: fori=1,....k do
4:  Run GA (Algorithm 2) within sub-network G; to obtain the con-
troller placement solution z; and the probability P,

5: end for
6: return (zq, Py), ..., (xy, Px)

the latest information about its sub-network which is sufficient to make

routing decisions within its sub-network.

4.4.4 Clustering-based Genetic Algorithm with Coopera-

tive Clusters

Although CGA can effectively reduce the search space of GA and pre-
vent long-distance switch-controller communication, it also forbids work-
load sharing across different sub-networks. When the traffic within a sub-
network suddenly and substantially increases, existing controllers in the
sub-network cannot handle the extra workload. This may significantly
slow down the control plane or even lead to breakdown of the whole net-
work [286]. Hence, in the event of high workload in a sub-network, it
is a common practice to seek help from controllers in neighboring sub-
networks.

Specifically to cope with the traffic burst, we can adopt either a proac-
tive or reactive approach. For the proactive approach, a fine-tuned traffic
prediction model is required to accurately predict the future traffic trend
based on historical data, posing significant difficulties of using this ap-
proach in practice. In particular, the successful use of a proactive ap-
proach depends on multiple factors, including the selection of a suitable

predictor, the predictor training, and the use of the predictor in a separate
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planning loop. Apart from that, the proactive approach requires us to de-
velop complicated techniques for planing and uncertainty handling. Since
the real world environment is complex, even the “best” prediction model
cannot guarantee 100% accurate prediction. Thus, when unpredictable
events happen, e.g., unexpected traffic surge, how to handle uncertainties
to guarantee the network performance needs to be considered. Obviously,
this is beyond the scope of the CPP in this thesis. Instead, a simple-yet-
effective reactive offloading scheme is developed here.

CGA with Cooperative Clusters (CGA-CC), an extension of CGA, is
proposed to improve the flexibility and robustness of CGA by facilitat-
ing workload sharing between adjacent sub-networks. For this purpose,
we must decide which adjacent controllers should process these requests.
Driven by this requirement, a greedy but efficient approach with two steps
have been developed. The first step is to identify the controller candi-
dates to handle the extra requests. In this section, we take advantage of
the simple-yet-effective piggybacking mechanism. Inspired by [95], a no-
forward flag plus extra bits for workload information can be piggybacked
in the type of service (ToS) field (or option field) in the IP header of ev-
ery controller response packet. In this way, candidate controllers can be
identified effortlessly.

The second step of our greedy approach is controller selection. We first
rank the candidate controllers based on their latency to the overloaded
sub-network G, which is defined as the total propagation latency between
the controller node and all nodes in GG;. Controllers with low latency will
be added into the deployed controller set of GG; until the total controller
capacity matches the processing demand of bursting requests.

Upon obtaining the controller set, we proceed to distribute the requests
among chosen controllers by solving the corresponding CSP through the
GD-based scheduling algorithm described in Algorithm 1. To avoid poten-
tially overloading any controllers, we only use the remaining capacities of

these controllers as the input to the scheduling algorithm. The full process
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Algorithm 5 Clustering-based Genetic Algorithm with Cooperative Clus-
ters (CGA-CQ)
1: Run CGA to obtain the controller sets xi,...,z; of k sub-networks
Gi,...,Gg
2: forj=1,...,kdo
3:  if Traffic > 90%x total capacity in G, then

4: Identity neighboring candidate controllers using the piggyback-
ing mechanism
5: while Traffic > 90%x total capacity in G; do
6: Find the closest controller within the remaining candidate con-
trollers
7: Add the controller into the deployed controller set of G
8: end while

9: Run GD (Algorithm 1) to calculate P based on the deployed con-
troller set of G
10:  end if
11: end for

of CGA-CC is summarized in Algorithm 5.

Compared to a proactive approach, our approach does not rely on any
prediction models and the overall workload-offloading process is simple
yet effective. Apart from that, it can effectively avoid the network per-
formance deterioration caused by controller overloading through a sim-
ple threshold mechanism. Specifically, with the threshold mechanism, we
can react quickly by offloading traffic to neighboring networks before the
controllers become overloaded. It also provides operational flexibility by
allowing the network operators to control the threshold for kicking start
the workload-offloading process.

Note that in rare cases when controllers in neighboring sub-networks
must lend a helping hand to the overloaded sub-network, those help-

ing controllers can receive network updates from the sub-network under
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question more frequently than usual. The frequent network updates help
the controller maintain the latest network view about its neighboring sub-
network, guaranteeing the correctness of routing decisions made for pack-
ets from neighboring sub-networks. Due to this reason, CGA-CC elim-
inates the necessity for strong network-wide controller consistency and

incurs no extra synchronization cost.

4.5 Evaluation

Given that no physical WAN (the central focus of this chapter) testbed is
currently accessible to us, simulation is adopted as the main evaluation
tool due to its flexibility and feasibility. From the flexibility point of view,
simulation enables us to study the behavior of our algorithm under differ-
ent network settings in terms of network sizes, controller capacities, and
request demands. From the feasibility perspective, real-world evaluation
requires not only substantial system implementations but also hardware
devices which are usually not accessible to many researchers.

With the help of simulation, this section presents the performance
evaluation of our proposed algorithms. In particular, we first introduce
the simulation setting. The effectiveness of the GD-based scheduling ap-
proach is demonstrated in Subsection 4.5.2 under two network topologies
that cover different geographical areas. After that, we compare the perfor-
mance of GA, CGA and CGA-CC with the K-center approach (mentioned
in Subsection 4.4.1) in Subsections 4.5.3 to 4.5.5. We also compare CGA-
CC with MSPA (introduced and discussed in Subsection 2.4.2.3) in Sub-
section 4.5.6. The simulation setup?! and our algorithm implementation®
have been uploaded to Github.

Note that many K-center algorithms (e.g., the original K-center [118],
the capacitated K-center [291], and the improved K-center [143]) have been

Zhttps:/ / github.com/VictoriaWong /sdn-simulator
Zhttps:/ / github.com/ VictoriaWong /SDN-Controller-Placement
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proposed previously. Our empirical studies show that the K-center algo-
rithm described in Subsection 4.4.1 outperforms the original K-center, the
capacitated K-center and the improved K-center. Therefore we will only
report comparison results regarding our K-center algorithm, GA, CGA
and CGA-CC.

4.5.1 Evaluation Setup

To provide the evaluation setup, we start with describing how the sim-
ulator simulates the network behaviors (e.g., requests generated from
switches and processed by the controllers) and verifying the traffic gen-
erator with real-world traffic traces. After that, topology information used
during our evaluation and detailed parameter settings are provided.

Simulator: The simulation starts with an idle network (all controllers
are idle and no packets are transmitted in the network). Immediately af-
ter the simulation starts, the requests are generated randomly based on a
predetermined fixed request arrival rate for each network node. The sim-
ulation runs for 240 seconds. We observed in our simulation study that
after 10 seconds of simulation, the throughput of the network reaches a
stable level. Thus, 240 seconds is considered to be sufficiently long for the
network to enter and stay in a stationary condition. Whenever a packet is
received at the data plane, the following packet dispatching flow is simu-
lated:

(1) The switch forwards the requests to its scheduler. Each request is
associated with a timestamp T}, indicating its generation time from
the switch.

(2) Upon receiving requests, the scheduler dispatches them to con-
trollers chosen by the scheduling algorithm.

(3) The controller sends a response back to the scheduler after it finishes

processing a request.

(4) The scheduler directs the responses back to the switch.
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Figure 4.2: Performance comparison with real-world traffic and traffic
generated by Poisson distribution.

(5) At time 7)., when a response is received by the switch, the response

time of the request under question will be calculated as 7., — T},
The whole simulation keeps running until the simulation time reaches 240
seconds. More details can be found in our simulation code?'.

Trace: Note that using traffic trace datasets is not flexible because they
were captured at a certain arrival rate while different arrival rates are re-
quired to evaluate the performance of our algorithms. To address this is-
sue, a network traffic generator was implemented in this work to simulate
the real world traffic as described in Section 4.2. To justify the performance
of our traffic generator, we compared the network performances obtained
by using the traffic it generated and the real-world network traces [44].

As demonstrated in Figure 4.2, the corresponding throughput achieved
is indistinguishable regardless of whether real-world traffic or artificial
traffic is used in the simulation. In addition, their response time is in-
distinguishable when the control plane utilization is below 96%. Beyond
that, significant difference can be spotted. In particular, when the ar-

rival rate reaches 270k pkt/s, the response time of real-world traffic shows
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larger fluctuation (400 ms - 600 ms) compared to simulated traffic (100 ms
- 150 ms). Note that our problem formulation (4.6) presented in Subsec-
tion 4.2.3 carefully preserves a small portion of capacity on each controller
as determined by 3. Thus, as long as a controller’s workload does not ex-
ceed a certain threshold, we can confirm that any performance deviation
introduced by the use of our traffic generator in the simulation studies is

marginal.

Topology: All simulations will be conducted using the topology infor-
mation provided by Sprint [19] including the propagation latency, net-
work links, and the numbers of switch nodes. The propagation latency
between any two nodes is calculated by Dijkstra’s algorithm [79]. The
sizes of the networks are 14 nodes with 23 links (Asia Sprint network),
15 nodes with 22 links (Europe Sprint network), and 82 nodes with 1056
links (i.e., global Sprint network) respectively, which are comparable to
the widely adopted Internet2 OS3E topology (34 nodes with 42 links) in
the existing literature [118].

Each node is responsible for handling all backbone related communica-
tion requests generated by local switches. Furthermore, a broad spectrum
of request arrival rates has been considered in our simulation study. For
example, to demonstrate the performance of different CPP approaches,
the request arrival rate ranges from 220k pkt/s to 620k pkt/s in the Asia
Sprint Network, see Figure 4.5. The propagation latency between any two
nodes is calculated by Dijkstra’s algorithm [79]. A set of heterogeneous
controllers with capacities ranging from 60k to 120k pkt/s is considered.

Apart from that, the control plane traffic consists of (C1) the inter-
controller traffic and (C2) the switch-controller traffic. As pointed out by
existing studies [291], C2 is generally regarded as the most significant part
of the control plane workload. Following our problem formulation in Sec-
tion 4.2 , the impact of C2 is taken care of by the synchronization cost
in (4.1).

Parameter setting: During our simulation, we tried different parameter
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settings for both GA and GD. For example, a range of different population
sizes for GA have been tested, ranging from 10 times to 50 times of the total
number of nodes in the network. The maximum generation number for
GA is tested from 100 to 500. The number of iterations run by GD is tested
from 10 to 50. We did not notice significant performance differences. The
results reported in this section are based on the following setting: GA uses
a population size of 10 times of the total number of network nodes and
evolves for up to 100 generations. For each generation, the mutation and
crossover rates are 0.1 and 1 respectively. Roulette wheel selection with
elitism is used for selection. For the CSP, GD is performed for 10 iterations
for a good balance between the algorithm performance and efficiency as
evidenced in Subsection 4.5.2. The decay factor (5 is set to 0.85 and the
synchronization factor v is set to 0.1 following existing studies [280, 281].

4.5.2 Effectiveness of the GD-based Scheduling Approach
for the CSP

We first measure the convergent rate of our proposed GD-based approach.
Then we compare the performance of the GD-based approach with CWRR
and CDWRR. The simulations are conducted on two networks (i.e., Eu-
rope and Asia Sprint Networks) with different geographic coverage. In
particular, the largest one-way propagation latency in Europe is 59 ms
while it is 202 ms in Asia. Thus, the advantage of using GD is expected to
be more significant in Asia. For both networks, 3 controllers with capaci-
ties 60k, 90k, and 120k pkt/s respectively are deployed using K-center.

4.5.2.1 The convergence of GD

In order to measure the convergent performance, we run the GD-based
scheduling algorithm for 20 iterations on a physical machine with quad-
core 3.4 GHz Intel Core i7 3770 processors and 16 GB DDR3 using differ-

ent network settings (e.g., network topologies, request arrival rates and so
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Figure 4.3: The convergence rate of the GD-based approach for controller
scheduling problem.

on). Figure 4.3 depicts the change of F,, in (4.13) across iterations. It was
measured in the Asia Sprint Network topology with a request arrival rate
at 110 k pkt/t. We can clearly observe from Figure 4.3 that our algorithm
can quickly converge within 10 iterations of gradient-based improvement
to P and spend around 1 second. Furthermore, with the support of high-

performance computers, the convergence time can be further reduced.

4.5.2.2 Overall Network Performance

From Figure 4.4 and Table 4.2, we can clearly notice that on all tested
network topologies, GD achieved the lowest response time and highest
throughput among all algorithms.

Specifically, Table 4.2 shows that in Europe network, the response time
of both GD and CDWRR slightly increases from 25 ms to 26 ms in accor-
dance with increasing incoming traffic when the request arrival rate is less
than 190k pkt/s. It is mainly attributed to the low utilization of all con-
trollers. We also notice that at this stage, the response time of both GD and
CDWRR is 26% lower than CWRR, which agrees well with our expecta-
tion that distributing requests solely relying on the controller capacities is
inappropriate.
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Figure 4.4: Performance comparison of different scheduling algorithms for
solving the controller scheduling problem in two different networks. (a)
and (c) show the overall network performance in Europe and Asia Sprint
Network respectively. (b) and (d) are the network performance of one
controller in Europe and Asia Sprint Network respectively.

Meanwhile, the response time of CDWRR soars up as the request ar-
rival rate reaches 230k pkt/s. In comparison, the sharp increase in the
response time of both GD and CWRR does not occur until the arrival rate
exceeds 270k pkt/s. Obviously, the sudden growth in response time of all
algorithms is due to the heavily loaded controllers. Note that the amount

of requests sent to a controller in CWRR is only proportional to its capac-
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Table 4.2: Average response time (ms) in Europe and Asia Sprint Network.

Arrival rate (x10k pkt/s) 15 19 23 27
Fi 14(a) CWRR |34.47 +0.05|34.60 £ 0.06 | 34.96 +0.04 |147.28 4+ 33.52
igure 4.4(a
8 CDWRR |25.30 4= 0.03 | 26.14 4 0.02 | 4654.18 + 105.02 \
GD 25.18 4+ 0.02 | 25.76 £ 0.03 | 28.48 4= 0.07 |144.78 4+ 28.12
) CWRR |28.37 £0.05(2855+0.04| 29.124+0.05 |149.26 & 34.05
Figure 4.4(b)
CDWRR |20.46 £ 0.03 | 21.25 £ 0.05 | 6936.75 + 190.05 \
GD 20.354 0.02 | 20.96+ 0.05 21.79-+ 0.06 145.26+ 35.05
. CWRR |87.12 +0.05|87.17 £0.02| 87.38 £ 0.01 138.37 4 31.48
Figure 4.4(c)
CDWRR | 52.86 4= 0.03 | 54.30 4 0.35 | 2704.84 4+ 18.46 \
GD 53.96 + 0.02 | 53.54+0.01 57.66+0.03 138.37+ 31.73
) CWRR |55.02 +0.07|55.14 £ 0.06 [ 55.41 +£0.04 |115.90 4 17.12
Figure 4.4(d)
CDWRR | 37.78 4- 0.03 | 42.38 4= 1.12 | 9686.49 4= 65.38 \
GD 39.21 4+ 0.04 | 39.24 + 0.05 38.53+ 0.05 108.9 + 15.15

ity, which effectively prevents overloading any controller at an early stage.
GD guarantees that all controllers are not overloaded by fulfilling the con-
straint in (4.6) when solving the optimization problem. Thus, the response
time of both GD and CWRR remains low until the arrival rate increases to
270k pkt/s. On the other hand, when CDWRR is used, more requests will
be sent to nearby controllers, quickly overloading them.

4.5.2.3 Individual Controller Performance

To verify whether the sharp increase in the response time of CDWRR
comes from overloading a controller, we measure the average response
time and throughput of the controller with low capacity of 60k pkt/s. It
can be seen from Figure 4.4(b) that at the arrival rate of 230k pkt/s, the
throughput of CDWRR almost reaches 60k pkt/s, implying that the con-
troller is fully-loaded. Simultaneously, a dramatical growth in response
time of CDWRR can also be noticed from Table 4.2. Comparatively, only
moderate increase in response time has been witnessed for both GD and
CWRR in Table 4.2. Similar results have also been obtained in the Asia
Sprint Network as depicted in Figure 4.4(c) and 4.4(d).
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4.5.2.4 Asia vs. Europe Sprint Network

It is important to note that the gap in response time between GD and
CWRR in Asia (30 ms in Figure 4.4(c)) is significantly larger than the gap in
Europe (7 ms in Figure 4.4(a)) as we expected. Particularly, with the help
of GD, the response time in Asia is successfully reduced from 85 ms to less
than 60 ms (37.5% lower). In comparison, only 20% reduction in response
time is achieved by GD in Europe. This is because the weights (4.10) used
in CWRR only consider the controller capacity. Thus, CWRR is more suit-
able in a network with similar or negligible propagation latency. However,
in a large-scale network (e.g., Asia), the disadvantage of only considering
controller capacity becomes significant. Alternatively, GD can jointly and
systematically consider multiple factors including response time, propa-
gation latency, and controller capacity. This explains why GD can solve
the CSP with the highest effectiveness. Due to GD’s clear performance
advantage over other scheduling methods, for the remaining simulation
studies, we will consistently use GD to schedule request processing in the
control plane.

4.5.3 Effectiveness of GA for the CPP

To demonstrate the effectiveness of GA?*, we conduct a set of simulations
on Asia Sprint Network using 4 different controller settings as shown in
Table 4.3. The controller capacities are set to either 60k or 90k pkt/s in
each setting. To ease the discussion, we start with all controllers with the
same capacities of 60k pkt/s as shown in setting 1 in Table 4.3. Then we
gradually upgrade some controllers to larger capacities (90k pkt/s). In
order to evenly allocate controllers with different capacities, the network
is divided into 4 regions enclosed in every red circle drawn in Figure 4.6.

One controller within each region has the upgraded capacity of 90k pkt/s

BGA in the following discussion refers to Algorithm 2 introduced in Subsection 4.4.2
which combines the use of GA and GD without network partitioning
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Table 4.3: Controller settings used in Asia Sprint Network.

Number of Controllers

Region Total Setting 1 | Setting 2 | Setting 3 | Setting 4

90K | 60K | 90K | 60K | 90K | 60K | 90K | 60K
India region 5 0 5 1 4 2 3 5 0
Singapore region 3 0 3 1 2 2 1 3 0
Hong Kong region | 3 0 3 1 2 2 1 3 0
Japan region 3 0 3 1 2 2 1 3 0
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Table 4.4: Control plane throughput (x10k pkt/s) with different controller

settings and request arrival rates in Asia network.

Arrival rate (x10k pkt/s) | 22 30 38 46 54 62
Setting 1 K-center 21.905 | 29.995 | 37.835 | 45.993 | 53.767 | 61.732
GA 21.906 | 29.997 | 37.837 | 45.994 | 53.768 | 61.733
Setting 2 K-center 21.905 | 29.995 | 37.836 | 45.993 | 53.767 | 61.732
GA 21.906 | 29.996 | 37.837 | 45.994 | 53.768 | 61.733
Setting 3 K-center 21.904 | 29.995 | 37.835 | 45.993 | 53.766 | 61.732
GA 21.906 | 29.996 | 37.837 | 45.994 | 53.768 | 61.733
Setting 4 K-center 21.904 | 29.995 | 37.836 | 45.993 | 53.767 | 61.732
GA 21.906 | 29.996 | 37.837 | 45.994 | 53.768 | 61.734

in setting 2. Sequentially, two controllers within each region are chosen

and upgraded in setting 3. Finally all controllers are upgraded in setting 4.

4.53.1 Throughput Comparison

We measure and compare the throughput achieved by K-center and GA,

as summarized in Table 4.4. The results show that there is no significant

difference regardless of the controller settings and arrival rates, which is

easily understandable for the following reasons. First, under all settings

and request rates, the network is not fully loaded since 15% capacity is

reserved at each controller according to (4.6). Second, GD-based schedul-

ing approach ensures that no controller will be overloaded if total control
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Table 4.5: Control plane average response time (ms) with different con-

CHAPTER 4. A SCALABLE SDN CONTROL PLANE

troller settings and request arrival rates in Asia Sprint Network.

Arrival rate (x10k pkt/s) 22 38 54
Settine 1 K-center 79.03 £+ 3.99 | 76.52 4 0.65 | 73.46 + 0.27
ettin:
& GA 56.55 + 0.27 | 61.48 &= 0.12 | 65.32+ 0.35
. K-center 78.94 4+ 4.06 | 76.39 £ 0.83 | 72.54 £+ 0.22
Setting 2
GA 57.66 £+ 0.11 | 59.42+ 0.25 | 63.01+ 0.43
. K-center 83.72 +4.55|78.85 + 1.88 | 76.34 £ 3.12
Setting 3
GA 58.65 + 0.33 | 61.54 4 0.36 | 64.0+ 0.25
) K-center 85.39 4+ 5.77 | 79.12 4 4.00 | 76.18 &+ 0.67
Setting 4
GA 55.79 + 0.22 | 56.92 4 0.17 | 61.01+ 0.15

plane capacity is sufficient. For the remaining simulation studies, if the
throughputs achieved by different placement algorithms are identical, the
corresponding results will be omitted.

4.5.3.2 GA under Settings with Identical Controllers

We measure the control plane utilization and response time in network set-
tings where all controllers have identical capacities (setting 1 and setting
4 in Table 4.3). In Figure 4.5(a) and Figure 4.5(d), both GA and K-center
achieve the same control plane utilization. Nevertheless, GA outperforms
K-center in terms of response time as shown in Table 4.5. Detailed discus-
sion can be found below.

In general, given the same traffic demand (i.e., request arrival rate),
the minimal required control plane capacities will be the same. Since all
controllers have identical capacities in setting 1 and setting 4, given the
same traffic demand, both GA and K-center decided to deploy the same
number of controllers, according to expectations. In other words, their
control plane utilization will be identical.

Although the utilization is indistinguishable, GA outperforms K-center
in response time. To investigate the cause, we visualize the placement re-
sults of both GA and K-center in setting 4 at the arrival rate of 420k pkt/s,
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Figure 4.5: Performance comparison between K-center and GA for solving
the CPP using different controller settings in Asia Sprint Network. (a)-(d)

are the network performance with controller setting 1 to 4 in Table 4.3

respectively.

which is shown in Figure 4.6(b). We find that K-center tends to select
controllers scattered on the periphery of the network while GA prefers
controllers located in the centers with multiple links connected to other
nodes. This is mainly because K-center allocates controllers to minimize

the worst case propagation latency and controllers at the network bound-
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Figure 4.6: Controller placement in Asia Sprint Network with different
controller settings at the arrival rate of 420k pkt/s. (a) shows the con-
trollers selected by K-center and GA in Table 4.3 setting 2 where controllers
are with different capacities. Similarly, (b) shows the placement solution

in Table 4.3 setting 4 where all controllers are with identical capacities.
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ary are likely to have longer propagation latency. However, due to their
remote locations, requests sent to these controllers have to travel a long
distance, which inevitably increases the response time. On the other hand,
GA strategically deploys controllers to intersection locations where multi-
ple links join together in the network. As a result, most of the requests can
be sent directly to the controllers without traveling through other network
nodes. Thus, even though the same number of controllers is deployed by

GA and K-center, GA can effectively lower the response time by up to 25%.

Another interesting phenomenon in Table 4.5 is that the average re-
sponse time of GA rises slowly despite the large increase in arrival rate.
This is because GA can adaptively allocate more controllers to cope with
the increasing demand. On the other hand, when available locations for
deploying new controllers become limited, the response time of GA will

be slowly approaching the response time of K-center.

4.5.3.3 GA under Settings with Different Controllers

As shown in Figure 4.5(b) and Figure 4.5(c), when controllers have varied
capacities (i.e., setting 2 and setting 3 in Table 4.3), GA can handle the CPP
more effectively than K-center in terms of both utilization and response

time as we expected.

We also visualize the placement results of both GA and K-center un-
der setting 2 at the combined arrival rate of 420k pkt/s, as shown in Fig-
ure 4.6(a). Consistent with previous analysis, the gap between K-center
and GA in response time comes from their choice of controller locations.
In terms of utilization, GA strategically selects controllers with both high
and low capacities so as to maximize the utilization. On the other hand,
controllers with different capacities are oblivious to K-center. That is why
the controllers chosen by K-center in Figure 4.6(a) are mostly with capacity
60k pkt/s. Such overlooking of controller capacity in K-center is also re-
flected by high fluctuation of utilization in Figure 4.5(b) and Figure 4.5(c).
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Figure 4.7: The changes of the number of selected controllers with different

arrival rates using different controller settings in Asia Sprint Network.

Table 4.6: Controller settings used in Global Sprint Network.

Number of Controllers
Total Setting 1 Setting 2 Setting 3
90K 60K 90K 60K 90K 60K
82 0 82 18 64 42 40

4.5.3.4 Number of controllers

We also compare the numbers of controllers chosen by GA and K-center
under different controller settings. As demonstrated in Figure 4.7, regard-
less of placement algorithms, more controllers are selected when the traf-
tic increases. Furthermore, as for setting 2, K-center deployed more con-
trollers than GA did, which results in the lower control plane utilization
in Figure 4.5(b). For example, at the arrival rate of 500k pkt/s, the number
of controllers chosen by GA is 8, which is 20% less compared to K-center.
As for setting 4, we can notice that both K-center and GA select identical
number of controllers, which further gives evidence of the same utilization
in Figure 4.5(d).
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Table 4.7: Control plane average response time (ms) with different con-
troller settings and request arrival rates in Global Sprint Network.

Arrival rate (x10k pkt/s) 100 200 300
Setting 1 K-center 174.05 &+ 5.45 | 153.36 & 3.93 | 140.87 4= 2.57
J GA 1209 £ 0.37 | 119.13 4= 0.44 | 114.51 £+ 0.28
CGA 90.02+ 0.16 | 75.92 + 0.34 | 35.83 £ 0.22
Setting 2 K-center 175.26 + 8.03 | 158.18 4= 3.05 | 145.43 4+ 4.83
GA 119.63 4 0.21 | 120.02 4 0.59 | 109.92 + 0.33
CGA 84.59+ 0.29 | 79.81+ 0.30 | 37.73 £0.31
Setting 3 K-center 174.09 £ 2.97 | 160.92 £ 1.52 | 145.26 £ 2.76
GA 115.8 £ 0.21 |121.56 £ 0.40 | 110.31 £ 0.37
CGA 85.16 + 0.17 | 83.37+0.21 38.1240.35

4.5.4 Effectiveness of CGA for the CPP

To further increase the difficulty of the CPP, a larger network (i.e., the
global Sprint Network [19]) is adopted. Similar to Subsection 4.5.3, two
optional controller capacities (60k and 90k pkt/s) are adopted during the
simulation. According to our heuristic (4.24), the network will be divided
into 2 sub-networks when the arrival rate remains below 2000k pkt/s.
With further increase in arrival rate, the number of sub-networks will be
doubled to 4.

Figure 4.8 and Table 4.7 show the results of all competing placement al-
gorithms with three different controller settings summarized in Table 4.6.
From Figure 4.8 and Table 4.7, we can clearly see that CGA can achieve
much lower response time than GA and K-center without substantially
lowering the control plane utilization. In the rest of this subsection, we
will examine the performance with respect to every network setting in de-
tail.

4.5.4.1 CGA under Settings with Identical Controllers

Similar to Figure 4.5(a) and Figure 4.5(d), we notice that in Figure 4.8(a),

both K-center and GA achieved the same utilization since all controllers
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Figure 4.8: Performance comparison between K-center, GA, and
Clustering-based GA for solving the CPP using different controller set-

tings in Global Sprint Network. (a)-(c) are the network performance with
controller setting 1 to 3 in Table 4.3 respectively.

have identical capacities in setting 1. Apart from that, GA can reduce the
response time by up to 30% compared with K-center. Meanwhile, the uti-
lization of CGA is slightly lower than GA when the request arrival rate is
at 250k pkt/s. This is because the whole network is now divided into 4
rather than 2 sub-networks. Apparently, more sub-networks demand for

more controllers. Nevertheless, we can clearly notice that CGA managed
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to drastically reduce the response time by 50% (from 80 ms to 40 ms).

4.54.2 CGA under Settings with Different Controllers

When controllers have different capacities (i.e., setting 2 and 3 in Table 4.6),
CGA becomes more competitive in terms of both utilization and response
time. For example, compared to GA, the response time of CGA is sig-
nificantly reduced by up to 66%. Meanwhile, the gap in utilization be-
tween GA and CGA is narrowed down to 1% in Figure 4.8(b), which is al-
most negligible. Another interesting phenomenon is that in Figure 4.8(c),
the utilization of CGA keeps increasing and even outperforms GA at the
request arrival rate of 3,500k pkt/s. Our results show that CGA enjoys
higher chance of identifying better solutions in large search spaces.

4.5.5 Effectiveness of CGA-CC for the CPP

In the simulations discussed previously, we focus mainly on CGA because
no bursting requests occur in the simulated networks. In this situation,
it is not necessary to share workload across different sub-networks. In
this subsection, however, we want to evaluate when it is useful to support
collaborative sub-networks through CGA-CC.

To demonstrate the effectiveness of CGA-CC on coping with unex-
pected traffic burst, we deploy a fixed collection of controllers in the Eu-
rope network with setting 3 in Table 4.6 and constantly increase the request
arrival rate. When the arrival rate reaches the control plane capacity, we
expect that some requests will be forwarded to controllers in neighboring
sub-networks to avoid overloading the control plane.

As depicted in Figure 4.9(a), the response time of CGA stays below
32 ms and its throughput shows a steady growth before the arrival rate
reaches 680k pkt/s. After that, a notable jump can be observed in CGA
response time.

On the contrary, the response time of CGA-CC is consistent with CGA
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Figure 4.9: Performance comparison with burst traffic. (a) and (b) are the
response time and throughput using CGA and CGA-CC respectively. (c)
shows when a new controller is “borrowed” from other sub-networks.

when the arrival rate is less than 680k pkt/s since the workload is still be-
low the control plane capacity. After that, the gap in both response time
(Figure 4.9(a)) and throughput (Figure 4.9(b)) between CGA and CGA-CC
widens in accordance with the increasing arrival rate. It is mainly because
CGA-CC strategically offloads the requests to nearby controllers to avoid
overloading the control plane. Although CGA-CC selects controllers with
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the lowest propagation latency, the controllers are still located outside the
sub-network, which introduces a considerable propagation latency in re-
sponse time. Thus, an upward trend (but substantially less severe than in
CGA) in CGA-CC response time can be spotted from Figure 4.9(a). Corre-
spondingly, we also demonstrate the changes of additional capacity of the
sub-network control plane in Figure 4.9(c). We can see that CGA-CC can
effectively borrow more controllers from other clusters as the arrival rate

grows, preventing the control plane being overloaded.

4.5.6 Comparison with MSPA

To further demonstrate the effectiveness of CGA-CC, we compare it with
MSPA [279]. Similar to CGA-CC, MSPA first partitions the full network
into a given number of sub-networks using the same partitioning algo-
rithm CNPA (i.e., Algorithm 3) as we did. Given the partitioning result,
MSPA calculates the number of controllers needed in each sub-network
based on a given threshold #;, on controller processing time and deploys
the controllers using CNPA. We evaluated a range of ty, from 0.01 ms to 5
ms and the results reported in this section are based on the t,, value with
the best performance (0.5 ms).

Apart from this, MSPA requires to establish a central scheduler in each
sub-network, as we explained in Subsection 2.4.2.3. However, the authors
in MSPA [279] did not explain their method of selecting the location for the
scheduler. To find the “best” scheduler location, we tried all possible lo-
cations within each sub-network and only the best performance achieved

will be reported.

4.5.6.1 CGA-CC vs. MSPA without Burst Traffic

Figure 4.10 demonstrates the performance comparison between CGA-CC
and MSPA. From Figure 4.10, we can clearly see that CGA-CC outperforms

MSPA in terms of response time and controller utilization.
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Figure 4.10: Performance comparison without burst traffic. (a) shows the
performance comparison without burst traffic using controller setting 3 in
Table 4.6 with different request arrival rates. (b) shows the controller uti-
lization among all selected controllers in Europe network and their nor-
malized propagation latency with the scheduler in MSPA.

As shown in Figure 4.10(a), in comparison to MSPA, CGA-CC can sig-
nificantly reduce the average request response time. For example, when
the request arrival rate is 1000k pkt/s, the response time of MSPA is
around 180 ms while CGA-CC is significantly smaller at 80 ms. This is
mainly for two reasons. First, within each sub-network, MSPA sends all
requests generated from the switches to a single scheduler first instead
of controllers directly, which inevitably increases the propagation latency.
Second, the M/M/c queuing model adopted in MSPA considers neither
the capacity differences between controllers nor the distance between the
scheduler and controllers. Thus, requests can be sent to controllers with
low capacity and long propagation latency. This can be verified in Fig-
ure 4.11 by showing the relationship between controller utilization and
propagation latency between the scheduler and the controllers in MSPA.
It can be clearly seen that controllers (e.g., C4) close to the scheduler re-
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Figure 4.11: Controller utilization among all selected controllers in Europe

network and their normalized propagation latency with the scheduler in
MSPA.

ceive similar workload as the remote controller (e.g., C7), resulting in the
higher response time compared with CGA-CC.

Although CGA-CC outperforms MSPA in terms of average response
time, we can see from Figure 4.10(b) that MSPA achieves higher control
plane utilization when the arrival rate is higher than 1500k pkt/s. In com-
parison, CGA-CC maintains a stable control plane utilization at around
84%. This is mainly because of the controller capacity constraint in our
problem formulation (4.6) which ensures that a proportion of capacity
must be reserved for the control plane to withstand unexpected traffic
bursts.

4.5.6.2 CGA-CC vs. MSPA with Burst Traffic

We also evaluate the performance of MSPA with burst traffic. Similar to
Subsection 4.5.5, two sets of controllers selected by CGA-CC and MSPA
in the Europe network are deployed. Since we aim to demonstrate the
performance of CGA-CC and MSPA under burst traffic when there is no

enough time to recalculate/deploy new controller placement, we fix the
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Figure 4.12: Performance comparison with burst traffic using the fixed

controller placement from Europe network.

two sets of controllers and observe the network performance with increas-

ing request arrival rate.

We can clearly notice that the performance of MSPA in Figure 4.12 fol-
lows a similar trend as CGA in Figure 4.9 which is easily understandable
since both MSPA and CGA do not share workload across different sub-
networks. In particular, the throughput of MSPA keeps growing steadily
before the arrival rate reaches 680k pkt/s. After that, the throughput re-
mains at 680k pkt/s regardless of any further increase in incoming traffic.
In terms of the response time, we can see that MSPA manages to keep it
at around 60 ms before the request arrival rate reaches 680k pkt/s. When
increasing the arrival rate further, the response time soars up to above 90

ms since the control plane is overloaded.

In contrast, as we explained in Subsection 4.5.5, by sharing workload
across sub-networks, CGA-CC can effectively cope with bursting traffic.
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4.6 Chapter Summary

The overall goal of this chapter is to tackle the RM problem, particularly
the CPP, from an algorithm design perspective. This goal has been success-
fully fulfilled by developing a Clustering-based Genetic Algorithm with
Cooperative Clusters (CGA-CC) to solve both the CPP and the CSP simul-
taneously. In particular, the objectives identified in Subsection 4.1.1 have
been addressed:

A new controller placement and scheduling problem (CPSP) has been
introduced, which explicitly strengthens the importance of solving both
the CPP and the CSP coherently within the same framework. The CPSP
has been mathematically described as a constrained optimization problem
with the goal of optimizing control plane utilization while simultaneously

guaranteeing low network response time.

To address the CSP scalably and effectively, we have focused on opti-
mizing the probabilities for request distribution over all controllers. A GD-
based scheduling algorithm has been subsequently developed to balance
the trade-off between scheduling performance and problem scalability.

In line with the solution of the CSP, CGA-CC has been proposed to
address the CPP. In particular, to reduce the search space of GA, CGA-
CC splits the network into non-overlapping sub-networks so that GA can
effectively deploy controllers within each sub-network. Moreover, to al-
leviate the impact of unexpected bursting requests in any sub-network, a
greedy algorithm has been developed to strategically offload indigestible
requests to adjacent sub-networks.

Extensive simulations have been conducted based on real-world
topologies and traffic. The results have showed that GD-based schedul-
ing algorithm can effectively reduce the response time while maintaining
high control plane throughput. On the other hand, CGA-CC has effec-
tively improved the resource utilization of the control plane without sacri-

ficing response time, in comparison to the widely-used K-center approach
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and the state-of-the-art algorithm.

Note that Internet traffic is complex and can be affected by many fac-
tors (e.g., topology and applications), which makes the theoretical analysis
very difficult. Thus, similar to existing studies, in this chapter, we mod-
elled the requests following a Poisson distribution [281]. This is clearly
a simplification. To understand the limitations of our Poisson model, we
compared the network performance obtained by using the Poisson traffic
and the real-world network traces. In general, their performance was sim-
ilar. Significant difference can be spotted only when the controllers were
experiencing high workload. In other words, when a controller was un-
der high workload, the results generated using the Poisson model were
more optimistic compared to real-world traffic. To address this issue, our
problem formulation presented in CPP carefully preserves a small portion
of capacity on each controller as determined by a decay factor. Thus, as
long as the workload of a controller does not exceed a certain threshold,
we can confirm that the deviation introduced by the Poisson traffic in our
problem formulation can be safely ignored.

Note that CGA-CC has simultaneously addressed both the CPP and
the CSP. However, there are certain limitations of our existing solution to
the CSP. In particular, the queuing model (4.2.3) assumes that each con-
troller queue is a stationary process and calculates the average response
time for a given request arrival rate. Therefore, the performance of GD re-
lies on the accuracy of the provided network information. Apart from that,
whenever the request arrival rate changes, GD needs to rerun to solve (4.9)
which can introduce additional computation overhead. Since the network
we considered in this chapter is a large global communication backbone
where frequent network changes are unlikely to happen, our GD-based
scheduling is applicable. However, new CS solutions are needed which
will be addressed in the next chapter.



Chapter 5

Deep Reinforcement Learning for

Request Dispatching in SDN

5.1 Introduction

The architecture BLAC proposed in Chapter 3 enables switches dispatch

requests to any controllers without the switch-controller binding con-
straint, effectively alleviating the workload imbalance issues. With the
request dispatching flexibility provided by BLAC, designing a policy to
properly dispatch requests originated from every switch to suitable con-
trollers is of paramount importance to the overall functioning of multi-
controller SDNs [136, 138]. Motivated by this understanding, we aim to
address the Request Dispatching Policy Design (RDPD) problem in this
chapter.

Particularly, the designed policy must satisfy three requirements:

(Ry) Time efficiency: Since request dispatching must be performed in real
time with minimum delay, the designed policy needs to be suffi-
ciently efficient in practice. Therefore, policies with long processing
time or frequent execution (e.g., in a per-request manner) should be

avoided.

155
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(Rs) Adaptiveness: Note that the number of controllers in an SDN network
can change in order to meet the varying traffic demand. Thus, the de-
signed policy should perform consistently well over different num-
bers of controllers.

(R3) Performance effectiveness: The designed policy should guide switches
to properly dispatch requests to suitable controllers to minimize the

average request response time.

To achieve Rj3, existing studies [100, 254, 255, 280] constructed mathe-
matical models to capture the correlation between the policy and the per-
formance objective (e.g., average request response time). Although these
model-driven methods can generally provide solutions with guaranteed
performance, modeling the highly complicated network requires substan-
tial domain knowledge. Moreover, in a highly complicated distributed com-
puting environment (such as a distributed controller architecture), the re-
sponse time can be caused by many factors that may not be fully captured
using the proposed model.

Alternatively, the literature has considered either manually or auto-
matically designing policies for resource allocation [138, 212, 219]. Specif-
ically, two widely-used manually designed policies in operating sys-
tems and cloud computing are weighted round-robin and first-come-first-
serve [239]. Obviously, they cannot achieve R; due to the lack of consider-
ing propagation latency. On the other hand, EC methods have been pro-
posed to automatically design policies for standard job shop scheduling
problems [212, 219]. However, EC methods have high sampling costs since
data collected from previous generations cannot be reused in the next gen-
eration. Therefore, all candidate solutions in each generation need to be
reevaluated in either simulated or real-world environments.

Recently, machine learning has been successfully applied to various
RM problems [54, 184, 192, 193, 265]. Among all machine learning algo-
rithms, we consider DRL to be a powerful paradigm for solving our RDPD
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problem for several reasons. First, no explicit mathematical model of the un-
derlying complex environment is required. DRL can automatically learn the
optimal solution while interacting with the unknown dynamic environ-
ment through a trial-and-error process. Second, DRL can improve current
policies mainly based on experiences/data obtained from an old policy through
a technique known as experience replay [201]. Thus, in comparison to an
EC approach, the sampling cost of training any new policies can be greatly
reduced. Third, the scheduling problem under a specific network setting
can be naturally formulated as an MDP (see Subsections 5.2.1 and 5.3.1 for
a detailed discussion).

Despite the clear advantages offered by DRL, the direct application of
existing value function indirect search techniques®, e.g., DQN [202], may
not be suitable for solving the RDPD problem. This is mainly because the
policies learned by these techniques are only implicitly represented. Mak-
ing a decision requires extensively enumerating the entire action space to
find the action with maximum reward, which is time-consuming and vi-
olates R;. Thus, policy direct search® which directly learns the optimal
policy by searching the policy space is more appropriate. However, there
are still several major issues must be addressed.

(1) Non-adaptive and inefficient policy design: Typically, many existing
approaches [174, 175, 185] on RM were DQN-based policy direct search.
These approaches were designed to handle problems with a discrete action
space. In the SDN request dispatching context, an action can be defined
as assigning a set of R requests to IV available controllers. In this case, the
size of the action space is R"Y. With a large action space, the complexity

of DNN architectures inevitably increases, resulting in longer computa-

#Value function indirect search learns the optimal value function which is used to ex-
tract the optimal policy by greedily selecting the action that maximizes the long-term
rewards. More details about value function indirect search can be found in Subsec-

tion 2.2.6.3
PPolicy direct search directly learns the optimal policy by searching the policy space.

More details about policy direct search can be found in Subsection 2.2.6.3
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tional time to make a request dispatching decision. To reduce the action
space, an action can also be defined as assigning one request to a controller
every time where the size of the action space is N. However, this action
definition requires the policy to be processed repeatedly with respect to
every new request, incurring non-negligible policy processing overhead.
Therefore, both action definitions cannot satisfy R;.

Moreover, existing DRL approaches directly represent their policy as a
DNN with a fixed number of output nodes. The number of output nodes
is the size of the action space. Such a representation apparently violates
R, since the same policy may fail to function well whenever the number

of controllers NV is changed to meet the varying traffic demand.

(2) Inapplicable adaptive policy training: This thesis aims to design an
adaptive policy that can support a dynamically changing number of con-
trollers. However, the requirement to train an adaptive policy cannot be
satistfied by directly following any existing DRL-based approaches [193,
265]. This is because the policy training requires the calculation of the
policy gradient. In standard DRL, e.g., Trust Region Policy Optimization
(TRPO) [240] and Proximal Policy Optimisation (PPO) [242], a policy is di-
rectly represented as a DNN targeting at a fixed number of output nodes
where the policy gradient can be easily calculated. However, when a pol-
icy that can support a changing number of controllers, how to compute its
gradient needs to be addressed.

(3) Impractical problem formulation: Designing a policy by a single learn-
ing agent requires the support of global network information (i.e., fully
observable environment). Such a centralized approach is prone to scal-
ability issues [300]. For example, the single agent can be overwhelmed
by the enormous traffic and becomes the performance bottleneck. Mean-
while, obtaining timely global information over the entire SDN network

can cause extra communication overhead [287].

As far as we know, none of the existing studies have considered and

solved the above issues.
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5.1.1 Chapter Goals

In fulfillment of Objective 3, new DRL-based methods are proposed with
the aim to automatically learn effective, efficient and adaptive policies. In
particular, we first propose a new DNN-based policy representation that
can be applied to networks with a changing number of controllers. In
line with the new policy representation, a new mathematical technique
is developed to calculate its gradient. To demonstrate the effectiveness
of the new policy design, the evaluation is conducted under the SA-DRL
setting where the RDPD problem is formulated as an SA-MDDP. In line with
the new policy representation, an MA-DRL approach is proposed with a
Multi-Agent (MA) training algorithm. This chapter aims to address the
following objectives:

e Formulate the RDPD problem as an MDP in both SA and MA set-
tings;

e Design an adaptive policy representation that can apply to a network

with a changing number of controllers;

e Develop a new mathematical technique to calculate the policy gradi-

ent with respect to the new adaptive policy design;

e Design SA-DRL and MA-DRL algorithms that can effectively train

an adaptive policy;

e Compare the performance of the new adaptive policy representation
with the existing DRL policy design;

e Compare the performance of our policies designed by our SA-DRL
and MA-DRL algorithms with man-made, model-based, and DRL-

trained policies.
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5.1.2 Chapter Organization

The rest of this chapter is organized as follows. Section 5.2 formulates the
RDPD problem as an SA-MDP and presents the new policy design. With
the new policy design, we consider a more general and practical scenario
where multiple agents are involved in Section 5.3. In particular, the RDPD
problem is reformulated as an MA-MDP and a new DRL algorithm called
Multi-Agent Proximal Policy Optimisation (MA-PPO) is proposed. Exten-
sive evaluations are presented in Subsections 5.2.5 and 5.3.3. Section 5.4

concludes this chapter.

5.2 An Adaptive Policy Design for Request Dis-
patching

This section mainly focuses on designing a policy that satisfies 12;, R,, and
R3. To demonstrate the effectiveness of the new policy design, evaluating
it under an SA-DRL framework is more preferable compared to MA-DRL.
This is mainly because the performance of MA-DRL depends not only on
the policy design but also other factors, such as inter-agent cooperation
and non-stationary environment handling. In view of this, it is easier and
more straightforward to verify the effectiveness of the new policy design
with SA-DRL. In line with the proposed objectives of this chapter, this sec-
tion first demonstrates the mapping from the RDPD problem to an MDP
in Subsection 5.2.1. After that, the designs of an adaptive policy and a
dispatching system are presented in Subsection 5.2.2 and Subsection 5.2.3
respectively. Along with the new dispatching system, a new training algo-
rithm called Single-Agent Proximal Policy Optimisation (SA-PPO) is de-
veloped in Subsection 5.2.4 based on PPO [242] with a new gradient calcu-
lation technique in Subsection 5.2.4.1. The effectiveness of the new policy

design is demonstrated in Subsection 5.2.5.
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5.2.1 Modeling the RDPD Problem as an MDP

In this section, we consider a similar network environment introduced in
Subsection 4.2.2 adopting the same notations. The difference is that since
we consider the RDPD problem under the SA-DRL framework, a central-
ized scheduler/agent is deployed in the network that is responsible for
dispatching requests generated by all switches. Specifically, in the data
plane, once a request is generated at a switch, it will be immediately sent
to the centralized agent. Upon receiving a request, the agent forwards it to
a controller selected by our policy. After the controller finishes processing
the request, the response originated from the controller is sent back to the
corresponding switch through the agent.

In line with the MDP framework provided in Subsection 2.2.6.1, the
RDPD problem can be naturally formulated as a fully observable SA-MDP
with one agent that controls the request dispatching of M SDN switches.
The SA-MDP can be described by a 4-tuple (S, A, P, R). The overall net-
work operating status, which is accessible to the centralized agent, is cap-
tured by a set of global states S including all current and historical net-
work information, such as the request arrival rate A. The use of historical
information can help the agent to better predict the future network status.
More importantly, with the historical information, the global states S can
better fulfill the Markov property (see Subsection 2.2.6.1).

At each time step ¢, the agent observes its current state s, € S and takes
an action a; € A chosen from a policy mg. More details of 7y will be intro-
duced in Subsection 5.2.2. The action a; = {a! },sev specifies the priority
a?’ of controller C,, during time ¢ and ¢ + 1. The priorities {a} },.cy are
then used in the dispatching system to calculate the request dispatching
probabilities {p}'},cv. Each element p! specifies the probability of dis-
patching new requests to controller C,,. More details on how {a!'},.cy are
utilized by the dispatching system are provided in Subsection 5.2.3. After
performing a;, the network keeps operating until it enters the next state

St41-
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Table 5.1: Reward v.s. Average response time

Request Set v, Individ'ual response | o o4 " (5.2) Averag? response
time 7, time
Xt 0.1,0.5,0.5 14 0.36
X7 0.3,0.3,0.3 10 0.3

In order to train g towards minimizing the average request response

time, we initially define the reward as

ry = Z — Ty (5.1)

TEXt

where 7, is the response time of a particular request. x; stands for the
set of requests, for which the corresponding responses from controllers
have been received by the respective switches in between time steps ¢ and
t+1. However, in our simulation studies, we notice that the reward cannot
effectively lead to the improvement of network performance. This is be-
cause the reward r; defined in (5.1) depends not only on response time 7,
but also on the number of requests || x.||. Apparently reducing ||x.|| can ac-
tually increase r;. Thus, the policy will learn to send requests to controllers
with low capacities so as to reduce |||
During our preliminary work, we also experiment with the below re-
ward definition:
ry = — (5.2)

where each request contributes % to the total reward. However, we notice
that a higher reward does not necessary lead to lower average response
time and higher throughput due to the nonlinearity of the reward func-
tion. An example is provided in Table 5.1 where x; achieves a higher re-
ward and has a higher average response time compared to x?.

In consideration of the above reasons, the reward is redefined as:

r=slll= > 7 (5.3)

TEXt
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where < is a weight factor that controls the importance of the through-
put x; relative to the response time. In our simulation, ¢ is estimated as
the average response time of CWRR in Subsection 4.3.1 which serves as
a baseline for the policy. Guided by this reward, the policy is strongly
motivated to receive more responses from controllers and to reduce the
average response time. By maximizing the cumulative reward in (5.4), we
can therefore fulfill our goal of reducing the request response time and

improving the network performance.

T
J(ﬂ—e) = Esz,atNTFB {Z fytrt(sh a’t)} (54)
t=0

where v € [0,1) is a discount factor. Evaluation with different v values
will be reported in Subsection 5.2.5.3.

5.2.2 DNN-based Adaptive Policy Design

By modeling the RDPD problem as an MDP, DRL algorithms can be uti-
lized for policy design. However, as we mentioned in Section 5.1, existing
policy representation fails to meet both R, and R,. One possible strategy
to solve R, is to train multiple policies while each policy targeting at a
particular number of controllers. However, the cost of evaluation or train-
ing a policy in a production network can be high. This is mainly because
production networks should always guarantee reasonable good perfor-
mance while the policy can perform badly (e.g., overloading some con-
trollers which leads to long response time) especially at the early training
stage. Furthermore, policies for each particular number of controllers need
to be individually evaluated or trained in advance before being deployed,
which leads to high sampling costs. Thus, instead of training multiple
policies, we should design and train an adaptive policy that can support
different numbers of controllers.
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Inspired by the successful use of dispatching rules® for supporting di-
verse job shop scheduling tasks [212, 219], we decide to employ a priority
function fj to determine the priority for each controller to process every
incoming packet. Consequently, the same f; can be used to prioritize an
arbitrary number of controllers. In particular, we adopt Neural Network
(NN) in this chapter to represent f; which can be justified as follows:

(1) Expressiveness: According to the universal approximation theorem,
a depth-2 NN with suitable activation functions and a sufficient
size®” can approximate any continuous function [39, 76, 97, 126, 189].
However, existing studies [187, 189, 247] also pointed out that the ex-
pressiveness of such a depth-2 NN comes at the price of the network
size. In particular, the size of such a neural network can be expo-
nential in the input dimension, which means that the width of the
NN can be large. To address this issue, DNN is adopted which was
demonstrated that increasing the depth of the NN can exponentially
reduce its width without sacrificing its expressiveness [70, 264].

(2) Trainability: An NN can be trained to improve its performance by it-
eratively updating/adjusting its weights using gradient descent op-
timization algorithms, e.g., Adam [157] and RMSprop [267].

(3) Efficiency: Note that with a properly designed policy, we expect to
reduce the average request response time. To achieve this, short
function execution time (i.e., R;) is crucial to avoid potential net-
work performance degradation. We consider that the NN can meet
R, for the following reasons. First of all, small feed-forward NNs can
be quickly processed by a commodity-level computer, supported by
efficient and performance-optimized software such as TensorFlow

[21]. Secondly, hardware technology advancement enables lightning

26 A dispatching rule is used to prioritize all the jobs in the queue such that the job with

the highest priority can be processed next.
2’The size of an NN is the total number of neurons [187].
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Figure 5.1: The DNN-based adaptive policy design.

fast processing of NNs in dedicated processing chips that have be-
come widely available, even for mobile devices [6]. Thirdly, our pol-
icy is executed once in every given time interval. In comparison to
the interval duration, the NN processing time is negligible (See Sub-

section 5.2.1 for the interval duration setting).

It is important to note that in job shop scheduling problems, the job
with the highest priority will always be processed first according to the
dispatching rule, which requires repeated use of dispatching rules with
respect to each job. In comparison, the policy generates priorities for all
controllers. The priorities are mapped into request dispatching probabil-
ities to guide request dispatching in every given time interval, effectively
avoiding the frequent policy calculation. Apart from that, the mapping
from priorities to probabilities gives more controllers non-negligible op-
portunity of processing a request, thereby encouraging exploration during
DRL in hope of achieving higher performance.

In line with this idea, we propose a new policy design, as shown in
Figure 5.1. In particular, the policy 7y takes the state s, as inputs and out-
puts an action a,. In our previous work [136], the action corresponds to
the chosen controller for request processing. This design requires repeated
processing of the policy with respect to every new request, preventing ef-
ficient use of the policy in large traffic-intensive networks. This issue is

addressed by defining a; = {a!' },.cy as the controller priorities to guide
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request dispatching, which are updated once in every given time interval
as discussed earlier.

Priority mapping: As we discussed in Section 5.1, existing policies are
generally represented as a DNN (e.g., policies trained using PPO [242]).
These policies generate the request dispatching probabilities {p!}., ey
through one run of the DNN, which cannot adapt to a changing num-
ber of controllers. In our new policy design, the specific state information
zt”/ with respect to each controller C), is first extracted from s;. Then zg"
is fed one-by-one to the DNN in Figure 5.1 for all controllers. For each
input state information 2", the DNN assigns a priority value o' to C,. In
particular, the DNN is the priority function f; with trainable parameters
0, which is different from the policy my with additional components for
normalization and exploration®, as explained below.

Normalization and exploration: The softmax function is used to nor-
malize all controllers’ priorities {0V },.cy into a probability distribution
{6¥'} ey, as indicated in Figure 5.1. Rather than using {6 },/cy in a de-
terministic manner, the agent must continue to explore different request
dispatching distributions and determine their impact on network perfor-
mance during policy training. This is achieved by adding small Gaussian

noises

!

e ~ N(0,07) Vo' e V7.
to {6! }vcvr, as shown below:
a’t = 6t + €t7 (5.5)

where a; = {af/}v/ev/, 575 = {6;/}1)/6\/’/ and €; — {Ggl}vlevl.

In association with the discussion above, the whole action generation

2The exploration component in a policy is only activated during policy training for
stochastic exploration of different request dispatching distributions. While testing the
trained policy on a SDN network, this component is deactivated.
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Figure 5.2: The design of the dispatching system.

process based on our new policy design can be formulated as:

a} 2} Softmax(f5(z})) + €
a;= | | =g : = : (5.6)

al¥ 2y Softmax(f5(z")) + €Y

! . .
Because of €, (5.6) produces a; = {a} }, ey as the continuous action out-

put in a stochastic manner.

5.2.3 The Dispatching System Design

When performing request dispatching, the switch should avoid sending
requests to unsuitable controllers, e.g., overloaded or remotely located
controllers. Driven by this motivation, a controller filtering mechanism is
designed and used before probability mapping. In particular, the agent
keeps track of the operating status of all controllers® and maintains a can-
didate controller list L, = {L¥"},cy~. Preference is given to controllers with
relatively small propagation latency from the agent as well as controllers
under moderate or low workload®. Accordingly, up to x controllers can

P Controller status update is realized through regular beacon messages send by ev-
ery controller to the agent in the network. Due to the communication overhead, beacon
messages are not communicated at high frequencies. Hence, the status information ac-
cessible to the agent can be slightly outdated. Despite this, we will show experimentally

in Subsection 5.2.5.3 that the agent can achieve high network performance via DRL.
The average queue length of a controller must fall below a predefined threshold for

the controller to be considered for request processing.
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be considered as candidates by the agent where y can be flexibly set to con-
trol the level of exploration. For example, when x = N, all controllers are
considered for request dispatching. Similarly, the agent can only explore
at most y controllers when y < N.

Armed with the adaptive policy and the controller filtering mecha-
nism, a dispatching system is designed as shown in Figure 5.2. The dis-
patching system takes the state observations as inputs and outputs the re-
quest dispatching probabilities. In particular, given the state observations
{27"}evr, the policy generates the priorities {a¥ },.cy as we discussed in
Subsection 5.2.2. After that, overloaded or remotely located controllers are
filtered by assigning 0 to their priorities with the help of {L!'},/cy+. The
filtered priorities {! },/cy- are then mapped to {p! },/cy+ through function
T. Mathematically, L; is presented as a binary vector that covers all the
N controllers, with the corresponding elements of L, for candidate con-

trollers taking the value 1.

5.2.4 SA-PPO for Policy Learning

In line with the new policy design, a training system is proposed to opti-
mize the policy as shown in Figure 5.3. As we discussed in Section 5.1, ex-
isting DRL algorithms cannot train policies following our adaptive design
proposed in Subsection 5.2.2. To train my effectively, Single-Agent Proxi-
mal Policy Optimisation (SA-PPO) is developed in this section. SA-PPO
is an extension of the PPO algorithm [242] for DRL, armed with a newly
developed mathematical technique (see Subsection 5.2.4.1) to compute the
policy gradient.

Among existing DRL algorithms, we select PPO for policy training for

several reasons.

(1) PPO can update the current policy using experiences/data sampled
from an old policy, greatly improving sample efficiency.
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(2) PPO employs only first-order optimization which is more computa-
tionally efficient compared to TRPO [240].

(3) In comparison to other actor-critic algorithms [117, 181] that train
a Q-function with large function input including the action space,
the policy training in PPO only relies on the V-function. Compared
to the Q-function, the input dimensions in the V-function are sub-
stantially reduced, especially in an MA setting with a large MA joint
action space. Therefore, learning the V-function is easier than the
Q-function.

(4) PPO has been widely and successfully used in many problem do-
mains. Studies [242] have shown that PPO can outperform many
state-of-the-art algorithms such as TRPO [240] and A2C [201] on
many difficult DRL problems. Therefore, we consider PPO to be a
promising algorithm to tackle our RDPD problem.

While we only use PPO in this thesis, our research does not rule out the
possibilities of using other DRL algorithms.

SA-PPO uses a DNN to approximate a parametric value function V,,
with the global state input s, € S. Following PPO, V,, will be learned in an
on-policy fashion by maintaining a collection of network state-transition
samples obtained from using the current policy my. Each state-transition

sample u is recorded in the following form:
u = (S, St11, Bt, Tt) (5.7)

Then several mini-batches of samples, i.e., 3, can be retrieved from the

collection to repeatedly train V,, to minimize the Bellman loss below:
1
HOVw) = g 2 Vels) = 11 = Wha(s110))° (5.8)
B

Guided by the trained V., the actor in SA-PPO continues to use the
sampled mini-batches to update 7y along the direction of estimated policy
gradient in Subsection 5.2.4.1.
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5.2.4.1 Policy Gradient Calculation in SA-PPO

Given the value function V,,, SA-PPO optimizes the policy g by maximiz-
ing the following clipping function:

L(mg) = Esainm,, [min (Mlst))fh(st, at),clip(Ml‘”)y 1—e,1+¢)A(st, at))}

Weold(at|5t Weold(at|5t

where ¢ is a hyper-parameter that is set to 0.2 following PPO. € and 8,
refer to the policy parameters after and before policy update in a Training
Iteration (TI) respectively. A;(s;, a:) is the advantage function obtained
through V,, by using the Generalized Advantage Estimation (GAE) tech-
nique developed in [241].
In particular, Vg L(mg) can be estimated as shown below:
1 Ai(s, ay)

Vollmo) ™ g7 22 7, fay VT

provided that % falls in the range (—oo, 1 + 0.1) if A;(s;,a;) > 0 or (1 —
0.1, +00) if Ai(st, @) < 0, with respect to any a; and s;. Otherwise, the
policy gradient of the corresponding a; and s, is 0.

According to (5.6),

al" — Softmax(f5(z/")) = €' ~ N (0,0?)
Therefore, each element af' in a, follows a Gaussian distribution:
@ ~ N (Softmax( £22), 0—2>

Note that the Gaussian noise €/ for each a! is independently sampled.
Therefore,
1 a”,— 1/)/
mo(ay|s,) = H e 2™ 7o)

v'eV’ ov2m

where ;10" = Softmax(f5 (")) and 2/ = O(s;,v') is the specific state infor-

mation with respect to each controller C,, extracted from s;.



5.2. AN ADAPTIVE POLICY DESIGN 171

For each sample u; = (s¢, S¢4+1, ar, 11) € B, Vgmg(ay|s;) can be calculated

by using a, and s; recorded in sample u as shown below:

Vomg(aysi) = mo(ar|s:)Velog We(at|8t)

— (a’t’St)ve log( H efé(at ;Nt7)2)

vy OV 2T
1 Lol =y s
= 7o(a|s:) Ve (Z (log( ) + log (6_5( e ) )))
e oV 2T
1 a
= a’t|8t (Z V0< t ILLt ) >>
v'eVv’
_Te at|3t
T 202 ( 'ezv' Veola; — Mt )
mo(a|st) o o o
- o2 (U;/,(at — 1 )V, >
(5.9)
Given . . ofB)
pi = Softmax(fg(z/)) = SSPIET
eV’
we have

Voul = VgSoftmax(fg(zf/))
_ <€f" V@f()(zt )) ( Dicv 6f5(2§)) el (Z iV efo e )ngé’(ZZ))
(Soev, HD)?
NACS!

(Z efe(zt < Bfe Z o) Zefé’(zz)vgfg(zj))
ev’

eV’ eV’

efg(zt i b/ i
- (3, » efg(zt ;efe ! (vf’fe( ) vae(Zt))

(5.10)

where Vg f5(2") is the gradient of the priority function (i.e., the DNN) in
Figure 5.1.
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Figure 5.3: Training system design.

Summarizing the above discussions, with respect to a mini-batch B, the

policy gradient VgL(my) is estimated by SA-PPO according to

]_ At(st,at) Wg(at|3t) ’ ’
VoL(m . a; — ;)
oklo) = ||B||Z Touu(ails) o Z( & s
efg(z .

(e €/8GD)? Zefe g (Vefenzt) %f;;’@;)))

According to PPO [242], the policy 7y can be improved by repeatedly
updating the policy parameters 6 along the direction of VoL (7g). Note
that this technique for calculating the policy gradient can be easily ex-
tended to the case with an arbitrary number of controllers. With the help
of TensorFlow [21], the gradient calculation can also be fully automated
in our training system, regardless of how many controllers are involved.
The computational complexity is linear with respect to the number of con-
trollers.
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Algorithm 6 SA-PPO for Policy Training

1: Initialize value function V,

“0,Nepo

2: for Each training iteration t7 = 1 : I;,,x do

and policy e, . .

3: Initialize replay buffer= @

4:  for Each episode epi = 1: N,,; do
5 Network warm-up
6: Observe initial state s
7 fort=1,...,t. do
8 Select an action a; = 7e,, , ,(s:) as shown in Figure 5.1
9 Execute action a;
10: Receive reward 7, and observe new state s,
11: Store state transition u = (s, si41, @, ) in replay buffer
12: end for
13:  end for

14:  Estimate advantages A using GAE

15:  for Each epoch epo =1, ..., N, do

16: Sample random minibatch of transitions B from replay buffer

17 Update the value function: wy; epo+1 = Wi epo + 0w Vo H(V.) Where
H(V,,) is defined in (5.8)

18: Update the policy: 0y; cpot1 = Otiepo + 9 VoL(mg) Where Vo L(mg)

is provided in (5.11)
19:  end for
20: end for

5.2.4.2 Training System Design

Along with the new gradient calculation technique, a training system is
developed which simultaneously trains both the policy 7y and the value
function V,, as shown in Figure 5.3.

During the simulation, the network starts from an initial state where no
packets have started to flow through the network. Then it enters a warm-

up period when requests are dispatched using predefined policies (e.g.,
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weighted round-robin). After the warm-up period, the DRL-designed pol-
icy takes over until the simulation time reaches a predefined value ¢,,.
An episode is further defined as one network simulation which starts af-
ter the warm-up period until the end of the simulation. Simulation setting
details are provided in Subsection 5.2.5.

As shown in Algorithm 6, the training is performed for /.« TIs. In
each TI, the policy 7, , ,  that is updated from the last TI is used to
guide request dispatching in a network for N, episodes (see line 8). For
each episode, the network is simulated for ¢,,.x time steps. For each time
step, the state-transition sample u defined in (5.7) is recorded in a memory
replay buffer (see line 11). Given the replay buffer, SA-PPO is activated
to train the policy 7y (see line 14-19). The updated policy is then applied
in the next TI to generate state transition samples. This training process

continues until the maximum number of TI I, is reached.

5.2.5 Simulation

In this subsection, we first introduce the simulation setting which includes
the algorithm implementation and the network simulation setting. After
that, similar to [142], we investigate the influence of historical information
and the discount factor v on the performance of our policy respectively.
To demonstrate the effectiveness of the new policy design (denoted as SA-
PPO), we first present its training performance. After that, the new pol-
icy design is compared with the non-adaptive policy®® (denoted as PPO).
Specifically, NN configurations for SA-PPO and PPO are summarized in
Table 5.2. For PPO, each output node corresponds to a separate SDN con-
troller while SA-PPO has only one output node for a priority value. For
the input layer, the state observation 2" with respect to Controller C,, is
fed to the NN in SA-PPO (More details on selecting 2! will be discussed

in Subsection 5.2.5.2). In comparison, observations from all controllers are

1A traditional policy design where the policy is directly represented as a DNN.
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Table 5.2: NN architecture comparison between SA-PPO and PPO

NN layers | Input | Hidden Output
SA-PPO 2 One priority a!’
Same —
PPO 24, ..., 2] N probabilities [p}, ..., pl¥]

concatenated as inputs (i.e., [2/, ..., 2)"]) for the NN used in PPO.

5.2.5.1 Algorithm Implementation

We implement SA-PPO based on the high-quality implementation of the
training algorithm PPO [242] provided by OpenAl baselines®. In our sim-
ulation, we adopt the same NN architecture given in PPO for both the
priority function f; and value function V,,. Each NN is a fully connected
multilayer feed forward neural network.

To investigate the impact of the NN architecture on the algorithm per-
formance, NN settings with different numbers of hidden layers (ranging
from 1 to 3) and nodes (32 and 64) are evaluated. As demonstrated in Fig-
ure 5.4(a) and 5.4(c), the behavior of an NN with one hidden layer changes
with different random seeds, which implies that the single-hidden-layer
NN is sensitive to the initial parameter settings. Apart from that, an NN
with one hidden layer or a small number of hidden neurons (e.g., Fig-
ure 5.4(b)) may not be powerful/precise enough to capture the underly-
ing relationship between the input and output [248]. On the other hand,
NNs with too many nodes require more training data and may result in
over-fitting. Figure 5.4(d) showed that an NN with two hidden layers of
64 units can achieve similar performance (in terms of response time and
convergence speed) as an NN with a larger size (e.g., Figure 5.4(f)). Com-
pared to Figure 5.4(e) where an NN with a similar size was evaluated,
the NN used in Figure 5.4(d) can achieve lower response time after a same

number of TIs with different seeds. Thus, to strike a good balance between

3Zhttps:/ / github.com/openai/baselines
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Figure 5.4: Performance comparison of different NN architectures. (a) - (f)
show the average request response time changes as the training proceeds
with respect to a specific NN architecture (number of nodes in each layer
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the architecture complexity and the convergence speed, an NN with two
hidden layers of 64 units is used in our simulation.

Meanwhile, our RDPD problem can be considered as a continuous con-
trol task that is similar to MuJoCo benchmarks in PPO [242]. Therefore, we
closely follow its hyper-parameter settings. However, there are a few ex-
ceptions. Specifically, the Gaussian noises ¢, in (5.5) have their standard
deviations set to 0.01. During every algorithm run, the policy is trained
for 900 TIs. Both 6 and w in Figure 5.3 are trained using data sampled
from the current TI. The NN parameters 6 and w are updated using Adam

optimizer with 3 x 10~ learning rate, 40 minibatch size, and 8 epochs.

5.2.5.2 Network Simulation Setting

Simulations are conducted under the real network topologies provided by
Sprint [19]: South America and Asia Sprint networks equipped with 8 and
14 switch centers respectively, as shown in Figure 5.5.

A set of heterogeneous controllers with capacities ranging from 6000
pkt/s to 9000 pkt/s have been deployed into the network with the help
of our CPP algorithm in Chapter 4. Unless we explicitly specity, the num-
bers of controllers deployed in the South America and Asia networks are
3 and 4 respectively during the simulation. The location of the central-
ized request dispatching agent is selected so that the average propagation
latency between the agent and all controllers is minimized.

Each episode is initialized with 0% utilization for all controllers and
0 packets in the network. Then the requests are generated following the
Poisson distributions with a predefined arrival rate and sent to the sched-
uler/agent. Note that our MDP model in Subsection 5.2.1 does not as-
sume that requests are generated following a specific distribution. The use
of Poisson distribution in the simulation is to enable the comparison be-
tween GD-based scheduling algorithm proposed in Subsection 4.3.2 and
MA-PPO as demonstrated in Subsection 5.3.3. Weighted round robin is

used to make request dispatching decisions during the warm-up period.
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Figure 5.5: Network topologies used in simulation studies, obtained from
Sprint [19].

The warm-up period lasts for 30 simulated seconds which is assumed to
be sufficiently long for the network to enter and stay in a stationary con-
dition.

Each simulation episode runs for 30 simulated minutes which is di-
vided into a series of time steps. Every time step lasts for 30 consecutive

simulated seconds. At the beginning of each time step, the agent executes
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the policy to calculate the priority of dispatching any new requests to each
controller in the network for the next time step, i.e., 30 simulated seconds.

To enable the agent to learn how to dispatch requests under different
workloads, two episodes with two request arrival rates are simulated in
each TI. In particular, for the low workload setting, the combined request
arrival rate from all switches is set to be 50% of the total control plane
capacity while the arrival rate under high workload is 80%.

For the policy to work properly, the centralized agent must provide
its state observations 2" with respect to each controller C,, one-by-one to
the priority function f§ in Figure 5.1. In consideration of the importance of
controllers’ capacities, their distance and current availability, as well as the
communication demand experienced by the agent, the local observation

2" with respect to C, consists of the following network statistics:

(1) Request arrival rate history from the whole data plane: ) _,, A;
(2) The processing capacity of Cy: ay;

(3) The propagation latency between the agent deployed at node v
and C,: D(v,v");

(4) The queue length of C;

(56) The number of requests sent from the agent to C,; during the previ-

ous time step;

(6) The total number of requests that C, receives from the data plane

during the previous time step.

In practice, the request arrival history is made up of a list of request ar-
rival rates measured in the past few time steps by the agent. Intuitively,
the longer the list, the easier it is for the agent to detect traffic change pat-
terns and adjusts its request dispatching in consideration of future com-
munication demand. Moreover, a state signal with a longer historical list

provides more information of the past, which can better fulfill the Markov
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Figure 5.6: Influence of historical information.

property. The impact of the history length will be investigated in the next
subsection.

Similar to z;’/, the global state s, contains the arrival rate history from
the data plane, all controllers” processing capacity, all controllers” queue
length, and the propagation latency measured in D.

5.2.5.3 Simulation Result

The performance impact of history length: Similar to [142], we inves-
tigate the influence of historical information on the performance of our
policy. As shown in Figure 5.6, regarding the list of historical request ar-
rival rates contained in the agent’s observation, its length needs to be set
properly. With a larger history length, more information of the past is in-
cluded in the agent’s observation, which provides a better approximation
of a Markov state. However, if the length is too large (e.g., 4), more learn-
ing samples are required for the network to improve its performance. On
the other hand, when the length is too small (e.g., 1), the response time
stops reducing after 400 TI. It appears that the most suitable length is 3 in
our simulations for a good trade-off between sampling costs and perfor-
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mance.

The performance impact of y: We also investigate the influence of ~
on the performance of our policy. Figure 5.7 demonstrates the evaluation
of the trained policies with different v under a broad range of request ar-
rival rates in two topologies. From Figure 5.7, we can see that the policy

with v = 0.9 consistently achieves the lowest response time compared to
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policies with v = 0.5 and v = 0.7 in both topologies. It confirms our the-
ory that the agent should consider the influence of its actions on future
network performance, which is vital to prevent any controllers from being
overloaded due to accumulated requests over a long run. Thus, unless we
explicitly point out, for the remaining simulation studies, v is fixed to 0.9.
Apart from that, we also observe that as the request arrival rate exceeds a
certain value, the response time of all policies increases sharply regardless

of the v values. This is mainly due to the highly loaded control plane.

Training effectiveness: Figure 5.8 demonstrates how the network
performance of our policy improves during the training process in two
topologies. In general, we can see that the response time in both topolo-
gies quickly drops at the initial training stage and then converges. Specif-
ically, a sharp decrease in the response time from around 0.6 s to less than
0.1 s within 300 TIs can be observed from Figure 5.8(a). Similar patterns

can also be observed in Figure 5.8(b).

We also evaluate the policies obtained at different TIs as shown in Fig-
ure 5.9. In general, we can observe from Figure 5.9(a) and Figure 5.9(c) that
in both topologies, all policies achieve low response time when the request
arrival rate remains low, which is understandable because controllers are
not likely to be overloaded. Nevertheless, in the enlarged figures (i.e., Fig-
ure 5.9(b) and Figure 5.9(d)), we can still spot the performance improve-
ment in terms of the reduced response time as the training proceeds (i.e.,

the number of TIs increases).

Moreover, as the arrival rate grows (e.g., when the arrival rate is up
to 20k pkt/s in Figure 5.9(a)), a sharp jump can be observed for the poli-
cies obtained at the earlier TIs while the latter policies can still maintain
a low response time. Similar patterns can also be found in the Asia net-
work (i.e., Figure 5.9(c)), which together with Figure 5.8 demonstrates the
effectiveness of our policy training.

Policy design comparison: As shown in Figure 5.10(b) and Fig-
ure 5.10(d), our adaptive policy design SA-PPO achieves similar per-
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Figure 5.9: Testing performance comparison during the learning process
under different request arrival rates in different network topologies.

formance as PPO under low request arrival rates. However, from Fig-
ure 5.10(a), we can spot a sudden growth in response time for PPO as the
request arrival rate increases while the response time of SA-PPO remains
low. This is mainly because in the traditional policy representation, the
NN is designed to directly output the request dispatching probabilities
over all controllers given all controllers” state information as listed in Ta-
ble 5.2. On the other hand, the NN used in SA-PPO is designed to estimate
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Figure 5.10: Performance comparison of different algorithms in different
network topologies.

a priority value with respect to one controller using the controller’s state
information. Given the larger dimensions of both inputs and outputs, the
mapping learned in PPO is more complicated than in SA-PPO. Therefore,
an NN with the same hidden layer configuration as SA-PPO may not be
powerful enough to capture the mapping. This can be further evidenced
in Asia topology with more network nodes (Figure 5.10(d)) where the per-

formance difference at high request arrival rates is more significant than in
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Figure 5.11: Performance comparison of policies on networks with differ-
ent numbers of controllers. XCTL refers to a network with X controllers
and “SA-PPO-XCTL"” represents the policy trained by SA-PPO in XCTL.

the South America topology. Therefore, our new policy design can reduce

the NN complexity without performance compromise.

Policy adaptiveness: Although our policy was only trained under two
different workloads (50% and 80%), it can perform consistently well un-
der different workloads, ranging from 30% up to 90% as demonstrated in
Figure 5.10.

To demonstrate the adaptiveness of our trained policy with respect to
different numbers of controllers, the policy trained in a network with 4
controllers (SA-PPO-4CTL) is evaluated in a network with 6 controllers.
Its performance is compared with the policy trained with 6 controllers
(SA-PPO-6CTL). From Figure 5.11(a), we can see that SA-PPO-4CTL can
achieve similar performance compared to SA-PPO-6CTL. Similar conclu-
sions can also be drawn from Figure 5.11(b) where SA-PPO-6CTL is com-
pared with SA-PPO-4CTL in a network with 4 controllers. Our simulation
results confirm that the policy can perform consistently well in networks
with changing numbers of controllers.
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Summary: From our simulation results, we can learn that:

(1) The performance of SA-PPO was affected by the amount of historical
information provided in the agent’s observation. The more histori-
cal information is given, the better the Markov state can be approx-
imated, which further improves the network performance but also

requires more training samples.

(2) The investigation of the discount factor v showed that it is important
to consider the influence of the agent’s actions on future network

performance.

(3) Compared with the traditional RL policy representation, our new
policy design can reduce the NN architecture complexity while
maintaining good performance and being adaptive to different num-
bers of controllers.

5.3 Multi-Agent Deep Reinforcement Learning
for Request Dispatching

Although the policy design process can be modeled as SA-DRL, such a
central approach may not be scalable [300]. This is mainly because the
centralized agent can be a performance bottleneck and overwhelmed by
the enormous traffic. Apart from that, it also introduces additional prop-
agation latencies as all requests need to go through the centralized agent
as we discussed in Section 5.1. Furthermore, the use of global information
over the entire network in SA-DRL can cause substantial communication
overhead and sometimes may not even be available. Thus, the SA-DRL
approach is more suitable for small networks with relatively small geo-
graphic coverage.

To address the issues in SA-DRL, a new MA-DRL approach for learn-
ing adaptive policies for SDN switches is proposed in this section where

multiple agents are involved. Rather than using a centralized agent, we
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Figure 5.12: Modeling the RDPD problem as an MA-MDP.

equip each switch with a co-located agent and each agent makes request
dispatching decisions for one switch. Without assuming fully observable
agents supported by global network knowledge, a partially observable
network is considered where each agent executes its policy based only on
its local network observation.

Following the structures in Section 5.2, this section starts with demon-
strating the mapping from the RDPD problem to a fully cooperative and
partially observable MA-MDP in Subsection 5.3.1. Then a training algo-
rithm called MA-PPO is proposed in Subsection 5.3.2. Subsection 5.3.3

presents the simulation results.

5.3.1 Modeling the RDPD Problem as an MA-MDP

In this subsection, the RDPD problem is modeled as a fully cooperative
and partially observable MA-MDP with M agents that control the M/ SDN
switches respectively. As shown in Figure 5.12, the overall network oper-
ating status is captured by a set of global states S. At each time step ¢,
every agent Agt, receives a local observation z; v with respect to each
controller C,. The relationship between z; " and s; is determined by the

agent’s observation function z; v O%(st,v"). Based on their local obser-
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vations, every agent Agt, issues an action a; € A" chosen from its policy
v to jointly form the multi-agent action {a’},cy. Here a¥ = {a"” }yers
specifies the priority /" for Agt, to dispatch its new requests to any con-
troller Cy during time ¢t and ¢ + 1. As a result of following the joint action,
each agent obtains a reward r} based on the responses it received from
all controllers during time ¢ and ¢ + 1. In line with the reward defined in
SA-MDP, the reward r} received by Agt, is defined as below:

ry =¢X; — TV (5.12)
=1

where X/ is the total number of responses received between ¢ and ¢ + 1 by
agent Agt, and 7, is the response time of a particular request. < is a weight
factor. Clearly, all agents prefer to receive more responses with less request
response time according to (5.12). For this purpose, each agent Agt, learns
one policy mgv parameterized by 6" with the adaptive design shown in
Figure 5.1 that maps observation z; to its action a;. The goal of MA-MDP
is hence to identify the optimal policies {n}.},cv so as to maximize the

expected joint cumulative rewards:

T
T{mo Yoev) = Efapmmgotocr D7 D 11 ({2 Yoevr ap) (5.13)

t=0 veV

5.3.2 MA-PPO for Adaptive Policy Training

Aiming at training a policy for each SDN switch in a network, one straight-
forward approach is to directly adopt the SA-DRL algorithm (e.g., SA-PPO
in Subsection 5.2.4) for policy training. One DRL agent is placed on ev-
ery SDN switch to continuously and independently learn its policy using
SA-PPO while the other agents are treated as part of the environment. De-
spite its simplicity, the training process is vulnerable to the non-stationary
environment problem [188]. In particular, the reward received by each
agent and the global state transition do not depend solely on one agent’s
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individual actions. Instead, they are affected by the joint actions from all
agents. Moreover, each agent’s policy keeps being updated independently
during the training process. Therefore, the environment observed by each
agent becomes non-stationary (i.e., violating the Markov property in Sub-
section 2.2.6), affecting the convergence of SA-DRL algorithms [188]. Eval-
uation of the SA learning approach (denoted by SA-PPO-MA) will be re-
ported in Subsection 5.3.3.2.

Without pursuing a learning system with SA-DRL any further, Multi-
Agent Proximal Policy Optimisation (MA-PPO) is developed to fulfill the
general principle of centralized training and decentralized execution [188],
which is essential for reliable MA-DRL. MA-PPO is a multi-agent exten-
sion of SA-PPO. Its design follows the same idea as MADDPG [188], which
extends DDPG [181] to the multi-agent context. MADDPG needs to learn
a centralized Q-function with large function input that contains the multi-
agent joint action space. In comparison to MADDPG, MA-PPO is more
suitable for training policies since policy training relies only on the V-
function with substantially reduced input dimensions. The V-function in
MA-PPO is much easier to model as a DNN than the centrally trained Q-
function in MADDPG. In view of this, we decide to use MA-PPO to train
policies.

Similar to SA-PPO, experience replay is adopted where each state-
transition sample u records both global states and agents’ local observa-

tions:
U = <St7 St+1, {Z;)}’UGV7 {z;}+1}UEV7 {a’g}UEV7 {Tf}vev> (514)
where 27 = {2/ }yevr, zZy, = {szll Yoevr, and a¥ = {a’ Vv
Given the experience replay buffer, V,, is trained using the mini-batches

of samples to minimize the Bellman loss:

H(Vw> = ﬁ ; (Vw(st) - er - ’YVw(StJrl)) (5.15)

veV

In SA-PPO-MA, each agent simultaneously and independently learns its
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own value function using local observation, which brings about the non-
stationary environment issue. To mitigate this issue, MA-PPO learns a
centrally maintained parametric value function V,, with global state input
s; € S. The value function V,,, is then shared by all agents.

Guided by the trained V,,, each agent in MA-PPO continues to use the
sampled mini-batches to update its policy mg» parameterized by 6" along
the direction of estimated policy gradient Vg»L(mgv). Similar to SA-PPO,

Vv L(mgv) can be calculated as:

At (st {a’t}ze\/>
(af]2})

Voo L(mgr) ~ ||BH Z Vermov(a|21) (5.16)

old
provided that ¢ falls in the range (—oo,1 + 0.1) if A;(s;, {a;}icv)) > 0
or (1—-0.1 +oo) 1f Ai(s,{at}icv)) < 0, with respect to any {a.},cy and s;.
Otherwise, VgvL(mgv) = 0. In particular, Vgvmg»(a}|z}) can be calculated
using (5.9) and (5.10) given a; and z} from sample ;.

The overall training process is summarized in Algorithm 7.

5.3.3 Simulation

To examine the performance of MA-PPO for automatic training of adap-
tive policies, network simulations have been carried out.

The policy trained by MA-PPO is compared with the policy obtained
by each agent independently training its policy with SA-PPO in an MA
setting (denoted by SA-PPO-MA) as we discussed in Subsection 5.3.2.

Apart from that, the policy trained by MA-PPO is also compared with
a widely used man-made policy (denoted by CWRR which is introduced
in Subsection 4.3.1), a GD-based policy (denoted by GD which is intro-
duced in Subsection 4.3.2), and the centralized policy trained by SA-PPO
(denoted by SA-PPO which is introduced in Subsection 5.2.4). All the algo-
rithms that are evaluated in this subsection and their defining properties

are summarized in Table 5.3.
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Algorithm 7 MA-PPO for Policy Training

1: Initialize value function V,

wOVNepo

2: Initialize M policies {mgs = },cv for M switches
s INepo

3: for Each training iteration t7 = 1 : I;;,,x do

4:
5
6
7
8
9
10:

11:
12:
13:
14:

15:
16:
17:
18:
19:
20:

21:

22:

Initialize replay buffer= @
for Each episode epi =1 : N,,; do

Network warm-up

Network enters initial state s

Each agent Agt, observes its local observation 2z}, Vv € V

fort =1,... tnh. do
Each agent Agt, selects an action a} = 0L N (z}) to jointly
form the multi-agent action {a} } ,cv
Execute the joint action {a} },cv
Network enters new state s,
Each agent Agt, receives a reward r; and new observation 2z},
Store state transition v = (s;, 5111, {2} boev, {2111 oev, {@F oev,
{r{ }vev) in replay buffer

end for

end for
Estimate advantages A} using GAE
for Each epoch epo =1, ..., N, do

Sample random minibatch of transitions B from replay buffer
Update the centralized value function: wycpor1 = Wiiepo +
@, VoH(V.,,) where H(V,,) is defined in (5.15)

Each agent updates its policy: 0}, .,,.1 = 0} ., + @evVerL(Tgv)
where VgvL(mgv) is provided in (5.16)

end for

23: end for
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Table 5.3: An overview of the evaluated algorithms. Training refers to
whether the DRL policy is trained using SA-DRL or MA-DRL. Decision
making refers to whether the CS decision is made in a centralized or dis-
tributed way. Scheduling Implementation refers to how the CS decisions
are enforced.

Required
. . Decision Scheduling eqnre .
Algorithm | Training : ; Global Section
Making Implementation .
Information
CWRR N/A Distributed® | Distributed>* X Subsection 4.3.1
GD N/A Centralized® Distributed v Subsection 4.3.2
SA-PPO SA Centralized Centralized>° v Subsection 5.2.4
SA-PPO-MA SA Distributed Distributed X Subsection 5.3.2
MA-PPO MA Distributed Distributed X Subsection 5.3.2

In terms of comparisons with other MA-DRL algorithms, MA-DDPG is
closely related to MA-PPO. However, deterministic policy gradient used
in MA-DDPG cannot be calculated with respect to our adaptive policy net-
work design, rendering MA-DDPG inapplicable. Apart from that, the new
technique developed in Subsection 5.2.4.1 to compute the gradient of our
policy network can be utilized by any AC algorithms designed for train-
ing stochastic policies such as TRPO [240] and Asynchronous Advantage
Actor-Critic (A3C) [201].

However, investigating the performance of different AC algorithms is
not the main focus of this thesis. Furthermore, compared to PPO, TRPO
has high computation complexity due to its use of both linear approxi-
mation of the learning objective and quadratic approximation of the con-
straint for policy update [59, 240]. On the other hand, A3C asynchronously
executes multiple actors where each actor interacts with its own copy of

3Each decision making instance calculates the scheduling strategy for one switch.

3The CS decisions are enforced by multiple schedulers.

%A centralized decision making instance calculates the scheduling strategy for the
entire data plane.

%The CS decisions are enforced by a centralized scheduler.
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the environment. The rewards collected from all actors are used to up-
date the shared policy and value function. However, due to the use of
multiple actors, A3C requires more computation resources. Apart from
that, the policy updates in A3C rely on the latest data collected from mul-
tiple actors without using memory replay, which results in high sampling
costs. Therefore, both TRPO and A3C are not as suitable as PPO. More-
over, as a representative algorithm among all AC algorithms, studying the
performance of PPO gives us an overall good understanding of other AC
algorithms. In the future, combining our new policy design with different
AC algorithms in an MA setting will be investigated when enough com-

putation resources and time are provided.

5.3.3.1 Simulation Setting

We follow closely the algorithm implementation and network simulation
setting in Subsection 5.2.5.1 and Subsection 5.2.5.2. However, there are
a few exceptions for SA-PPO-MA and MA-PPO. Specifically, unlike SA-
PPO where a centralized agent is selected for the whole network, both
SA-PPO-MA and MA-PPO deploy a separate agent for each switch center
in the network. At the beginning of any time step, all agents run their
policies individually to calculate their respective priorities of dispatching
any new requests to each controller in the network for the next time step.
Apart from that, instead of providing the global state information to the
policy, only local observation 2" with respect to the switch center Sw,
where agent Agt, is placed on and controller C, is available. For example,
instead of the request arrival rate history of the whole data plane, only the
arrival rate history of the switch center Sw, is provided. Similarly, only
the number of requests sent from Sw, to C,y during the previous time step
is available in 2.
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Figure 5.13: Training performance of MA-DRL.

5.3.3.2 Simulation Result

Training effectiveness: Following the evaluation of SA-PPO, we study the
training performance of MA-PPO in two topologies. The learning curves
showing the average response time across Tls are demonstrated in Fig-
ure 5.13. Similar to SA-PPO, the response time can rapidly converge in
both topologies.

We also investigate how the performance improves as the training pro-
ceeds at different TIs, as shown in Figure 5.14. It can be observed that the
policies obtained at the later TIs achieve lower response time compared
to those at the earlier TIs, which implies that MA-PPO can effectively im-
prove the performance with continued training of the policy. For example,
in Figure 5.14(a) and Figure 5.14(b), the response time of the initialized
policies (i.e., TI=0) jumps from 90 ms to 2 s when the arrival rate reaches
19k pkt/s. This is mainly because when the policy is randomly initialized,
its behaviors are similar to a random policy which equally distributes re-
quests among all controllers. Therefore, controllers with lower capacities
are easily overloaded, resulting in high response time. In comparison, the
policies obtained after 320 TIs keep the response time below 1 s under the
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Figure 5.14: Testing performance comparison during the learning pro-

cess under different request arrival rates in two topologies. In particular,
“LWL” and “HWL" indicate the two request arrival rates (50% and 80% of
the total control plane capacity) used during the training.

same arrival rate. Apart from avoiding overloading controllers, the train-

ing also consistently reduces the response time when the request arrival

rate is low. Similar patterns can also be observed from Figure 5.14(c) and
Figure 5.14(d).

SA vs. MA training in MA-DRL: To demonstrate the necessity of
MA training, we compared training performance between MA-PPO and
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Figure 5.16: Performance comparison between MA-PPO and SA-PPO-

MA.

SA-PPO-MA. As discussed in Subsection 5.3.2, SA-PPO-MA trains a pol-
icy and a value function on each agent independently using SA-PPO.

The training and testing performance of SA-PPO-MA are shown in Fig-
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ure 5.15(a) and Figure 5.15(b) respectively.

We can observe a high variance in response time at the later TIs from
Figure 5.15(a) which implies that the learning fails to converge. This ob-
servation confirms the non-stationary environment issue when SA-DRL
algorithms are used in an MA environment as we discussed in Subsec-
tion 5.3.2. Correspondingly, we can also see from Figure 5.15(b) that as the
number of iterations increases, SA-PPO-MA can keep the response time
at a low level when the training arrival rate is low (i.e., the left dotted
line LWL). However, it fails to avoid overloading controllers at the high
training arrival rate (i.e., the right dotted line HWL). This is mainly be-
cause SA-PPO-MA ignores the impact of other agents during the training.
As the request arrival rate increases, the importance of agent cooperation
becomes significant and the deficiency of SA-PPO-MA becomes obvious.

We also compare the performance of the trained policies via MA-PPO
and SA-PPO-MA respectively on two network topologies. Figure 5.16 con-
firms that polices trained by MA-PPO can effectively cope with increasing
requests through better agent cooperation.

Performance comparison with existing policies: We compare MA-
PPO with several policies as summarized in Table 5.3: (1) a widely used
man-made policy (CWRR), a GD-based policy, and the centralized single-
agent policy SA-PPO. The results are shown in Figure 5.17.

In particular, we can see that in both topologies (Figure 5.17(b) and
Figure 5.17(d)), the response time of CWRR remains stable because the
number of requests dispatched to each controller is proportional to its ca-
pacity, which effectively prevents overloading any controller at an early
stage. However, solely sending requests based on the controller capacity
may not achieve the optimal network performance. Especially, when the
workload of the control plane is low, dispatching more requests to a closer
controller without overloading it is a better option. In DRL, the relation-
ship is learned during the interaction between the agents and the environ-
ment. Therefore, we can see from both Figure 5.17(b) and Figure 5.17(d)
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Figure 5.17: Performance comparison among CWRR, SA-PPO, and MA-
PPO.

that MA-PPO achieves a lower response time compared to CWRR. Apart
from that, we also notice that MA-PPO achieves a lower response time
than SA-PPO, which confirms that using a centralized agent can introduce
additional propagation latencies.

MA-PPO is also compared with a model-based optimization approach
denoted by GD. As shown in Figure 5.18, MA-PPO can achieve slightly

lower response time. This is mainly because GD optimizes the response
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Figure 5.18: Performance comparison between MA-PPO and GD.

time for given network information. However, in general, network infor-
mation such as request arrival rates can only be estimated. The inaccurate

network information hinders GD achieving its optimal performance.

Even though both GD and MA-PPO achieve similar performance, MA-
PPO has the advantage of low computation and communication over-
heads. During our simulation, we notice that the execution time of GD
is 10 times longer than running the MA-PPO policy. The reason is that
to obtain the request dispatching probabilities for the entire data plane
(i.e., all switch centers), GD needs to iteratively perform gradient calcu-
lation. This can be computational intensive especially for a network with
a large number of switch centers. In comparison, each agent in MA-PPO
runs its policy individually (a forward pass from NN input layer to output
layer) to calculate its request dispatching probability used by the switch
center where the agent is placed on. Apart from that, for communication
overheads, GD requires the information collected from the entire network
while MA-PPO uses only local observation. Therefore, MA-PPO is more
suitable for large-scale networks.

Summary: The simulation results of SA-PPO-MA confirmed that the
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direct application of SA-DRL algorithms in an MA setting cannot train
the policy effectively due to the non-stationarity issue. Also, compar-
ing with existing policies (including man-made, optimization-based, and
DRL-trained policies), the MA-PPO trained policy can effectively reduce
the average request response time using local network information with-

out introducing additional computation and communication overhead.

5.4 Chapter Summary

The overall goal of this chapter is to tackle the RM problem, particularly
the CSP. This goal has been successfully achieved by developing two al-
gorithms called SA-PPO and MA-PPO respectively, together with a new
adaptive policy representation.

First, the RDPD problem has been formulated as an MDP under both
SA-DRL and MA-DRL frameworks. Specifically, our SA-MDP formulated
in Subsection 5.2.1 assumes a centralized agent in charge of request dis-
patching for all switches with the support of global network information
(i.e., a fully observable environment). This assumption can be easily sup-
ported in a small-scale network with small geographic coverage (e.g., a lo-
cal data center hosted by universities). On the other hand, for large-scale
networks (e.g., WAN), the long propagation latency becomes inevitable
which makes obtaining timely global information impractical. To address
this issue, MA-DRL has been adopted in Subsection 5.3.1. In particular,
the RDPD problem has been formulated as an MA-MDP where multiple
agents have been involved to assist in making request dispatching deci-
sions based on their local network information.

Second, a new adaptive DNN-based policy representation has been
proposed in Subsection 5.2.2 to allow any switch to distribute its requests
among all available controllers that may vary with time. In particular, a
DNN serves as a priority function to calculate the priority of each con-

troller given its state information. Based on the controller priorities, the
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dispatching probabilities are calculated for any request arriving at a switch
within a specific time period to be distributed to every eligible controller.
Meanwhile, a controller filtering mechanism has been embedded into the
probability calculation to prevent controller overloading as well as unde-
sirable use of remote controllers.

Third, in line with the new policy representation, a new mathematical
technique has been developed to calculate the gradient of the new policy.
Armed with the new technique, DRL algorithms called SA-PPO and MA-
PPO have been proposed in Subsections 5.2.4 and 5.3.2 to perform policy
training under SA-DRL and MA-DRL settings respectively. In particular,
to address the non-stationarity issue in an MA setting, MA-PPO follows
the general principle of centralized training and decentralized execution.

Extensive simulations have been conducted in Subsections 5.2.5
and 5.3.3. Particularly, the effectiveness of the new policy representation
has been evaluated under the SA-DRL setting in Subsection 5.2.5. This is
mainly because the performance of MA-DRL not only relies on the pol-
icy design but also other factors, e.g., non-stationarity handling. Thus, it
is easier to demonstrate the effectiveness of the new policy design using
SA-DRL. The results have shown that compared to the policy designed in
the traditional style, our new policy design can reduce the NN complex-
ity without performance degradation. Apart from that, the new policy
design can maintain good network performance with a changing number
of controllers and different request arrival rates, which has demonstrated
its good adaptiveness. Moreover, our simulation results on MA-DRL in
Subsection 5.3.3 have shown that the policy trained via MA-PPO signif-
icantly outperformed man-made policy (weighted round robin) and the
policy learned via SA-PPO in terms of response time. In comparison to
the model-based policy (GD), MA-PPO policy can significantly reduce the

computation and communication overheads.

With the help of our new policy design, the policies trained by MA-

PPO can effectively adapt to networks with a changing number of con-
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trollers. However, it may not apply directly to a network with a changing
number of switches (or switch centers). This is mainly because in MA-
PPO, each agent trains its policy with respect to a particular switch. There-
fore, the policy trained on one switch may not perform consistently well
when it is used by a different switch. To tackle this issue, additional pol-
icy training is required for any newly added switch. The policy trained
by other switches can serve as the initialized policy to accelerate the train-
ing process. Since the network we considered in this chapter is a regional
communication backbone, network topology changes are unlikely to hap-
pen. Therefore, policies trained by MA-PPO can perform consistently
well. Nevertheless, multi-agent training of a shared adaptive policy will
be investigated in the future where the policy is trained using inter-agent
experience and shared by all switches.



Chapter 6
Conclusions and Future Work

This chapter summaries the thesis, outlines our major contributions, and
points out the directions for our future work.

The goal of this thesis is to effectively manage the controller resources
in distributed SDN controller architectures. This goal has been success-
fully achieved from both the architectural and algorithm design perspec-
tives. From the architectural aspect, a new distributed controller architec-
ture has been proposed to enable flexible CP and CS. Based on the new ar-
chitecture, new EC-based algorithms have been designed to scalably solve
the CPP. Apart from that, a new GD-based approach and new DRL-based
approaches have been proposed to design effective policies to address the
CSP. Both the proposed architecture and algorithms have been evaluated
on a range of network topologies and compared with widely-used and
state-of-the-art methods. The results showed that both the architecture
and algorithms proposed in this thesis outperformed existing approaches
and effectively improved the resource utilization of the control plane and
network performance in terms of both response time and throughput.

The rest of this chapter is organized as follows. Section 6.1 provides
the conclusions of each individual objective proposed in this thesis. Main
findings are summarized in Section 6.2. Potential research directions for

future work are pointed out in Section 6.3.

203
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6.1 Achieved Objectives

The overall goal of this thesis is to effectively manage the controller re-
sources in distributed SDN architectures. This goal has been successfully
achieved by developing a comprehesive solution to address the challenges
from both the architectural and algorithm design aspects. Specifically, the
following research objectives have been fulfilled:

e This thesis has achieved the first research objective by proposing
a new BindingLess Architecture for distributed SDN Controllers,
namely BLAC (Chapter 3). BLAC aims to enable flexible and trans-
parent CP and CS by removing the switch-controller binding con-
straint. Instead of directly connecting to controllers, switches send
their requests to a newly introduced scheduling layer which is in
charge of distributing requests among controllers so as to optimize
network performance. A prototype of BLAC was implemented
based on ONOS, a widely-used open source SDN controller archi-
tecture. The experimental results showed that BLAC outperformed
existing SDN architectures in terms of average response time and
throughput. Furthermore, BLAC eliminates the necessity of switch-
controller re-association whenever the CP is changed. In addition,
the newly introduced scheduling layer enables fine-grained work-
load distribution among controllers where a CS decision can be made

on each request.

e The second research objective has been achieved by developing a
new algorithm named CGA-CC (Chapter 4) to simultaneously ad-
dress both the CPP and the CSP. Specifically, it should be noted that
the network performance is not only related to CP but also CS. How-
ever, existing studies tend to oversimplify or completely ignore the
CSP when addressing the CPP. This thesis introduced a new prob-
lem formulation to jointly tackle both the CPP and the CSP within

a coherent framework. Based on the new formulation, CGA-CC
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(Chapter 4) was developed to simultaneously address both the CPP
and the CSP. Instead of directly applying GA in a large search space,
network partitioning was adopted in CGA-CC to split the network
into non-overlapping sub-networks so that GA can effectively iden-
tify CP within each sub-network. Moreover, to alleviate the impact
of unexpected bursting requests, a new greedy mechanism was de-
veloped to strategically offload indigestible requests to adjacent sub-
networks. Given CP, a GD-based scheduling algorithm was devel-
oped to optimize the probabilities of request distribution across mul-
tiple controllers. Extensive simulations have made it evident that
CGA-CC significantly outperformed the widely-used and state-of-
the-art algorithms (e.g., K-center [118] and MSPA [279]), and can ef-
fectively handle unexpected bursting traffic.

e This thesis developed a new MA-DRL approach (Chapter 5) to auto-
matically design policies and successfully achieved the third objec-
tive. Compared to the GD-based optimization algorithm developed
in Chapter 4, our MA-DRL approach does not require an explicit
mathematical model of the underlying network environment. Apart
from that, whenever the network condition changes (e.g., the request
arrival rate, the number of controllers), GD needs to be rerun to cal-
culate the request dispatching probabilities for all switches which
can introduce additional computation overhead. By contrast, once
the policy is trained by MA-DRL, it can perform consistently well
without any retraining /modification under a changing network con-
dition. Specifically, in order to accommodate the changes of numbers
of controllers, a new policy representation was designed. In line with
the new policy, a new training algorithm named MA-PPO was pro-
posed armed with a new gradient calculation technique, enabling
multiple agents to simultaneously learn their adaptive local policies.
The simulation results showed that the policy trained using our ap-

proach can achieve significantly better performance compared with



206 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

man-made policies (e.g., weighted round robin scheduling) as well

as policies learned via other RL algorithms.

6.2 Main Conclusions

In general, this thesis found that the RM problem in distributed SDN con-
troller architectures can be effectively addressed from two aspects: the
architectural design aspect and the algorithm design aspect. The newly
proposed architecture and algorithms in this thesis have successfully out-
performed the prior widely-used and state-of-the-art algorithms in terms
of resource utilization and network performance.

The main conclusions for the three research objectives (Section 1.3)
drawn from the three contribution chapters (Chapter 3 through Chapter 5)

are summarized and discussed in this section.

6.2.1 Distributed SDN Controller Architectures

This thesis proposed a new distributed controller architecture for con-
troller resource management (Chapter 3). To avoid the switch-controller
binding constraint in existing architectures, the proposed architecture
features a bindingless switch-controller association with a newly intro-
duced scheduling layer, enabling requests from a switch to be processed
by different controllers. The performance of our proposed architecture
has been compared with the conventional static-binding and state-of-the-
art dynamic-binding controller architectures, i.e., ONOS [45] and Elas-
tiCon [80]. The results show that our architecture significantly outper-

formed the competitive architectures.

6.2.1.1 Bindingless Switch-controller Association

Compared to existing switch-controller binding based architectures, we
found that without the switch-controller binding constraint, the network
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performance can be significantly improved in terms of the average re-
quest response time and the overall throughput even though the requests
are dispatched to controllers chosen independently and uniformly at ran-
dom (Subsection 3.5.2).

Specifically, switch-controller binding restricts the requests from a
switch to be processed by a predefined controller regardless of the con-
troller’s workload. Since each switch comes with different workload and
its workload can be time-variant, the switch-controller binding renders
the bound controller susceptible to either being overloaded or under-
loaded. Therefore, the existing controller resources cannot be effectively
exploited. Motivated by this understanding, we proposed a bindingless
design which provides the flexibility of request dispatching. In our de-
sign, a switch can flexibly select different controllers to process different
requests based on the controllers’ current status (e.g., workload and prop-
agation latency). Therefore, compared to the switch-controller binding
architectures, our bindingless design can more efficiently utilize the con-

troller resources to improve the network performance.

6.2.2 Controller Placement

This thesis proposed a new algorithm called CGA-CC which simultane-
ously addressed both the CPP and the CSP (Chapter 4). Compared to
the majority of existing methods, CGA-CC has three unique strengths
including network partitioning, joint consideration of the CSP and the
CPP, and a greedy load re-distribution mechanism which are discussed
below. Simulations on multiple topologies and controller settings show
that compared to the competitive methods (e.g., K-center [118]), CGA-CC
can lower the response time by up to 70% and maintain high control plane
utilization.
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6.2.2.1 Network Partitioning

We observed (Subsection 4.5.4) that with the help of network partition-
ing, CGA-CC can effectively reduce the average response time by up to
60% compared to GA without partitioning and 75% compared to K-center.
The performance improvement demonstrated that network partitioning
can reduce the response time by effectively preventing long-distance com-
munication. Furthermore, by partitioning the whole network into several
sub-networks, the search space of GA is reduced, resulting in faster identi-
fication of high-quality solutions compared to the exploration of the whole
search space in standard GA.

6.2.2.2 The Impact of the CSP on the CPP

This thesis verified the importance and influence of the CSP on the CPP.
It has been observed (Subsections 4.5.3 and 4.5.4) that selecting controllers
simply based on propagation latency without considering the CSP have
performed poorly (e.g., K-center). This selection criteria is insufficient
mainly because it overlooks the influence of the CSP on network perfor-
mance. To address this issue, the proposed CGA-CC simultaneously ad-
dresses both the CPP and the CSP within a coherent framework by explic-
itly measuring the impact of the CSP on the response time. The simulation
results in Subsections 4.5.3 and 4.5.4 have shown the effectiveness of quan-
tifying the impact of the CSP for improving network performance.

6.2.2.3 Handling Unexpected Traffic Bursts

In general, enough controller resources should be provided for each sub-
network using CP algorithms. However, there are special cases when
a sub-network encounters unexpected traffic surge. Existing algorithms
(e.g., MSPA [279]) treat each clustered sub-network as being completely
independent. Therefore, for these algorithms, a dramatical growth in the

average response time can be spotted in Subsections 4.5.5 and 4.5.6 before
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deploying more controllers. On the contrary, a greedy mechanism was
developed in this thesis to strategically offload indigestible requests to ad-
jacent sub-networks. The simulation results reported in Subsections 4.5.5
and 4.5.6 have shown that our greedy offloading mechanism can effec-
tively cope with the unexpected demand variations and keep the average
response time low. Therefore, sub-network collaboration by sharing their
controller resources has been found to be vital for handling unexpected

traffic bursts.

6.2.3 Controller Scheduling

The bindingless switch-controller association provides the opportunity of
distributing requests among controllers. However, how to distributing
the requests depends on the scheduling approach. This thesis investi-
gates and compares the performance of different scheduling approaches
(Chapter 3 through Chapter 5) including heuristics (e.g., weighted round
robin), mathematical optimization methods (e.g., GD-based scheduling
approach), and learning-based approaches (e.g., policies designed by
DRL). The main findings can be summarized as follows:

6.2.3.1 Input Information for the Policy

For policy design, the thesis showed the impact of input network infor-
mation on the scheduling performance. In Chapter 3, with limited con-
troller information (i.e., CPU utilization), weighted round-robin and im-
proved random policies achieved significantly better performance com-
pared to the purely random policy. However, scheduling requests solely
based on CPU utilization information may not be sufficient, especially in a
large-scale network where propagation latency contributes significantly to
response time. This understanding was verified by our simulation stud-
ies in Subsections 4.5.2 and 5.2.5.3. Motivated by this, GD in Chapter 4

and the RL policies in Chapter 5 which take multiple network information
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(including controller capacities, request arrival rate and switch-controller
propagation latency) achieve lower average response time compared to
weighted round-robin which distributes requests solely relying on the

controller capacities.

6.2.3.2 Centralized vs. Distributed Scheduling

In general, CS can be performed in a centralized manner where the CS
decision is made for the entire data plane (i.e., all switches) using the in-
formation collected from the entire networks. Depending on different im-
plementations, the CS decisions can be enforced by a centralized scheduler
(e.g., MSPA in Subsection 2.4.2.3 and SA-DRL in Section 5.2) or multiple
schedulers (e.g., GD-based scheduling in Subsection 4.3.2). Alternatively,
the CS decisions can also be made in a distributed way (i.e., MA-DRL in
Section 5.3). In particular, each decision making instance/learning agent
calculates the scheduling strategy for one or multiple switches using its
limited local network information. The scheduling strategies obtained
from all instances jointly form the CS decision for the whole data plane.

Clearly, centralized scheduling is more straightforward since it avoids
the complexity caused by multiple instances (e.g., handling instance in-
teraction). However, it also tends to present scalability problems due to
the limited capacity of the centralized decision making instance. Apart
from that, the use of global information in centralized scheduling may not
be practical since obtaining timely global information over the entire net-
work can introduce substantial communication overhead.

On the other hand, distributed scheduling can alleviate the scalabil-
ity problems and does not require expensive global information. How-
ever, since the scheduling strategy is independently made by each decision
making instance, instance cooperation or interference needs to be consid-
ered. For example, without considering cooperation, multiple instances
may simultaneously schedule a large number of requests to a same con-

troller, which can easily overload the controller and cause high request
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response time. The cooperation is supported in our MA-DRL approach
(Section 5.3) in two ways. First, each agent shares the same goal of min-
imizing the response time and increasing the control plane throughput.
Second, we follow the framework of centralized training and decentral-
ized execution where a centralized value function that explicitly considers
the inter-agent interactions is trained. The trained centralized value func-

tion is shared among all agents and is used to improve their policy.

6.2.3.3 Adaptive Policy Representation

Instead of targeting at specific networks with fixed controllers, this the-
sis proposed a new policy representation that allows the trained policy to
function and consistently perform well over different network settings. In
terms of performance effectiveness, our approach can achieve compara-
ble performance compared to existing policy representations that directly
adopt an NN with fixed number of output nodes, as demonstrated in the
results from Chapter 5. Apart from that, our method also provides an
alternative way for DRL action generation. In terms of adaptiveness, it
has been shown in Chapter 5 that the trained policy can perform consis-
tently well without any modification or retraining when the number of
controllers changes. This is mainly because the policy is not trained for
a specific controller. Instead, the training data aggregating from all con-

trollers helps the policy to generalize well.

6.2.3.4 DRL for Policy Design

This thesis proposed DRL approaches (Chapter 5) to automatically learn
a policy for CS. Unlike the GD-based scheduling approach proposed in
Chapter 4, no explicit model of the complex network system is required in
our DRL approaches. Instead, the relationship between the input data and
the request dispatching decisions are learned during the interaction be-
tween the agent(s) and the environment. Therefore, our DRL approaches
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lower the requirement of domain expertise. Apart from that, whenever
the value of the input variables changes (e.g., request arrival rates and
the number of controllers), model-based algorithms (e.g., our GD-based
scheduling approach) needs to be rerun which introduces additional com-
putation costs. On the other hand, our DRL approach can remain to per-
form consistently well without being retrained. The results in Chapter 5
have also demonstrated the capability, effectiveness and adaptiveness of

our DRL approaches on addressing the CSP.

6.3 Future Work

Several potential research directions for future work motivated by our
studies are highlighted in this section, including real-world system inte-
gration, reliable controller placement, and online MA-DRL training.

6.3.1 System Integration and Deployment

This thesis developed an SDN controller resource management system
that consists of three key components: a bindingless controller architec-
ture, controller placement algorithms (e.g., GA, CGA, CGA-CC) and con-
troller scheduling algorithms (e.g., GD and policies trained using DRL).
The whole system can be naturally integrated and deployed to existing
SDN networks (e.g., data centers and WANs run by the same organi-
zation). Due to hardware limitations, we followed a common practice
among a majority of related research works [272, 279, 280] to evaluate our
system in a simulated network environment. Apart from that, the con-
troller capacity can be affected by many factors (e.g., the hardware device
that it is running on and the network bandwidth). In this thesis, the con-
troller capacity was set based on the measurement result reported in [17].
To ensure that our simulation results are accurate and reliable, a network

simulator has been built to closely simulate the network behaviors. Real-
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world network topologies and traffic traces have been utilized in our sim-
ulation runs. Furthermore, we also compared the results generated by
our simulator with existing works using the same algorithm to ensure the
correctness of our simulator. We are hence confident that our evaluation
should closely reflect the real-world performance of the system. Never-
theless, to encourage the widespread use of our system, it is an important
direction for our future research to further examine the practical useful-
ness and the commercial value of the our resource management system
in large-scale production networks. To achieve this goal, comprehensive
network system knowledge, substantial software implementation and re-

liable hardware support are critical.

6.3.2 Reliable Controller Placement

As demonstrated in this thesis (Chapter 4), the proposed CGA-CC algo-
rithm on tackling the CPP is very promising. However, CGA-CC mainly
focuses on maximizing the control plane utilization and simultaneously
maintaining low network response time. Network failures (e.g., link fail-
ures and node failures) are not considered. However, a link failure can
result in increasing propagation latency for related nodes. Moreover, the
overall processing capacity of the control plane is reduced when the net-
work node that a controller is deployed at encounters failures, which can
significantly increase the request processing time and potentially overload
the entire control plane. Therefore, it is important to consider network fail-
ures when tackling the CPP. In particular, a prediction model can be built
for predicting future network failures which can be incorporated into our
formulation. This can proactively avoid future failures or minimize the
failure impact on network performance. Apart from that, how to improve
our existing algorithm to reactively handle the failure when it happens

also needs to be investigated.
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6.3.3 Online vs. Offline Training

This thesis investigated the use of MA-DRL in addressing the CSP using
the trained policies (Chapter 5). In general, existing DRL training methods
can be widely divided into two categories: (1) Offline training: the model
or policy is trained in advance, which remains fixed during real-world
evaluation/execution; or, (2) Online training: the training is performed
online where the model or policy is adjusted based on the interactions with
the real-world environment. In this thesis, offline training is adopted due
to the following two reasons: (1) During the training process, a policy can
perform badly (e.g., overloading some controllers) especially at the begin-
ning. However, a production network should always guarantee reason-
able good performance. (2) To avoid convergence to a suboptimal policy,
agents are encouraged to sufficiently explore the environment/network
which can introduce high exploration cost during online training. There-
fore, to ensure the performance of the production network and reduce the
training cost, offline training is preferable where the policy is trained in a

network simulator with real-world network topologies and traffic traces.

However, due to the fact that it is impractical to train a policy to accom-
modate all situations the agent may see in the real world, any unexpected
perturbations or unseen situations can potentially deteriorate the perfor-
mance of the trained policy [209]. To address this issue, adapting the pre-
trained policy to the changes in the real world using online training can be
a potential solution. Although online training sounds promising, its ap-
plication to real-world networks entails several challenges. For example,
how to balance the exploration and exploitation given the high online ex-
ploration risk. Apart from that, how to further improve sample efficiency
and enable quick adaptation given limited data samples is still an open

research question.
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6.3.4 Proactive vs. Reactive Mode

This thesis mainly focused on the use of reactive flow setup mode. Note
that in reactive mode, controllers act after receiving the requests from
switches, which enables controllers to flexibly handle network events in
a timely manner [91]. In comparison, controllers in proactive mode popu-
late flow rules in switches in advance, which potentially avoids the switch-
controller communication time and reduces controller workload incurred
by processing Packet-in requests. To take the advantages of both reactive
and the proactive modes, it is important to investigate the use of the hy-
brid mode where certain flow rules are proactively installed in the con-
trollers while maintaining the controllers’ flexibility of reactively handling
incoming traffic.

Although hybrid mode sounds promising, its implementation entails
several challenges. For example, it is important to decide the granularity
of the proactively installed flow rules. On one hand, wildcard rules can
be installed in switches which can effectively avoid invoking controllers
on new flow arrivals. However, the use of wildcard rules can easily lead
to imbalanced network link utilization since all matching flows are routed
over the same path. Apart from that, the statistics of all flows matching
the same rule are aggregated into a single set of counters, hindering con-
trollers’ visibility of the flows in the network [75]. On the other hand, if
fine-grained rules are preinstalled, the number of rules will significantly
increase compared to wildcard rules, which requires large TCAM space
consumption. Moreover, the large number of flow rules also results in long
flow rule look-up and insertion time [60] as well as high TCAM power
consumption [27]. Thus, identifying the suitable granularity of the prein-
stalled flow rules needs to be investigated.
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