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Abstract

We consider probabilistic modelling for accomplishing record linkage across
two large scale publicly available data sources: New Zealand Births Deaths and
Marriages (BDM), and Māori Land Online (MLO). We undertake this project in
the context of te ao Māori, integrating mātauranga Māori principles into the
work. We present several methods for record linkage and several novel ways
to reject false linkages.
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Rere ki uta
Rere ki tai

Tau mai te manu
Pitakataka ki to pae e -

Fly inland
Fly coastward
The bird settles

And flits about its perch

Waiata [Author Unknown]
Translation by Mitchell Ritai. Paraninihi ki Waitotara
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Figure 1: Te Ika a Maui |North Island, New Zealand
([1]).

Ko Ruapehu te māunga
Nō Te Whanganui a Tara ahau
Haere mai toku tupuna i Haina

Ko Valerie tōku ingoa
Tēnā koutou, tēnā koutou, tēnā koutou katoa.

-
The mountain that I affiliate to is Mt Ruapehu

I am from Wellington
My family is from China

My name is Valerie
Greetings, greetings, greetings (to all of you).
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Chapter 1

Introduction and Motivations

The impact of nineteenth-century Māori land confiscations continues to be felt in modern
day New Zealand. Despite partial restitution and treaty settlements, the task of reconnecting
with the descendants of the Māori who originally lived on the land is almost impossible. The
task of identifying, contacting and engaging with these missing descendants constitutes an
enormous challenge for Māori incorporations, iwi and hapū. There is a multitude of issues
with this process, starting with the lack of accurate data, lack of existing tools and difficulty
of land succession. The follow on effects are huge and have meant that many opportunities
for social and economic improvement have been missed.

This thesis sits within a wider multidisciplinary research project Kimihia te Matangaro
- Finding the Missing created in response to a Science For Technological Innovation Na-
tional Science Challenge grant (SFTI)[2]. The purpose of this challenge is to tackle New
Zealand’s technological challenges with a “focus on building enduring partnerships be-
tween researchers, business, and Māori organisations”. This project is a collaborative project
between Parininihi ki Waitotara (PKW) [3], Victoria University of Wellington and Auckland Uni-
versity. Māori-owned business PKW was set up in 1976 to manage the assets on behalf of the
5396 original owners[3].PKW has built a thriving operation in Taranaki investing in many
diverse operations from forestry and farming to commercial property. These investments
return dividends and should be shared with the (now) 10,000 plus shareholders of the in-
corporation. However, over time the connection with many of these owners has been lost.
This means that there is a large volume of unclaimed dividends that needs to be distributed
to the missing PKW whānau. The National Science Challenge project was to work with PKW
to provide technological solutions to help with the identification process.

From the very beginning, this project it has been grounded in understanding the problem
in the context of te ao Māori (i.e. with a Māori worldview). The interrelationship between
whānau, whenua, and te reo frames all of the engagements with the project members and
the project data. Research in this thesis has been undertaken within the social and cultural
realities of mātauranga Māori and traditional western science frameworks.

1.1 Whānau and Whenua

The land and the People

Before the European land ownership models we use today were introduced, Māori land
was held collectively by the iwi or hapū, and rights to occupy land was determined by
group. A person’s whakapapa (genealogy) ties them to the original occupiers of the land so
they were provided with the rights that go with the land. When the British began colonising

5



New Zealand the treatment of the Māori indigenous people and their land was not always
(or often) fair. Despite The Treaty of Waitangi being signed between the Crown and a num-
ber of Māori chiefs across the country beginning on 6 February 1840, the mid 1800s in New
Zealand was characterised by bloody skirmishes between Imperial Britain and Māori. The
British wanted to acquire more land and the Māori did not want to give up what was theirs.
This is commonly referred to as the New Zealand land wars [4]. By the end of this time, mil-
lions of hectares of Māori land had been confiscated by the Crown. Although the fighting
had largely come to an end, the period of the late 1800s to the early 1900s marked even more
significant land confiscation and alienation for Māori. Instead of through fighting, this was
achieved through forms of legislative and bureaucratic means [17].

The Native Land Court Act was established in 1862 in order to allow European settlers
to purchase Māori land. This caused considerable land loss and alienation of Māori from
their land because they often had to use sections of their land as down payments for food
and travel costs to get to court hearings across the country[46]. An example of land loss
can be seen in Figure 1.1 which shows how significant the area of confiscated land was.
Since the certificate of title could not be issued to more than 10 people, there were many
land disputes where land had belonged to larger groups that persist still to this day, and
absentee ownership is common [17].

Each Māori incorporation maintains its own separate share register which is a list of
Māori who are shareholders of various land blocks in the domain of the incorporation. The
lists contain names of Māori collected by the incorporation over the last 50 years. These
lists were not always compiled accurately, and (more seriously) in some cases only contain
names and no other identifying information about the individual. Some of the lists are
handwritten with inconsistent formats and the listed names may not even be an individual’s
official name. There are often duplicates and omissions. Many of the lists have not been
updated to reflect transfer of ownership from original shareholders to their descendants. A
cumulative effect of all these imperfections is that there is now a significant proportion of
eligible people who are not aware of their shareholder status or their connection to the land
who cannot be contacted. Māori Land organisations (like PKW) allocate the dividends from
the land that they manage to their shareholders. The task of allocating this money to the
right people relies on a combination of data sets, as well as local knowledge to find their
shareholders.

The main data set is Māori Land Online (MLO) which holds the results of Māori Land
court hearings. Māori Land Online [36] and Land Information New Zealand (LINZ) [37]
have geographic data which shows which shareholders are eligible for which blocks and
where the blocks are located. The problem with the Māori Land Online data set is that the
data is typically out of date. This is for several reasons, the first is the complex inheritance
process and the second is the typically low financial pay off. Inheriting shares has an ap-
plication process and requires going to the Māori Land Court. This must be done for each
block of land that the descendant is inheriting. There is often very little monetary incen-
tive for someone to complete the application, as the original shares have been divided into
smaller values as they are passed down through the generations. For example a land block
may return as little as five dollars per year.

Part of the identification process involves finding ’missing’ individuals from a land block
in another official database so that contact might be made. However many of the names that
are listed in MLO/Māori Land Court records are not easily found in traditionally used ge-
nealogy data sources such as the New Zealand Births Deaths and Marriages records (BDM).
In principle, BDM would make a good data source for identifying individuals, as it is well
indexed and can be assumed to be complete. However it is an expensive data set (payment
being required per query) which may limit its use in practice for high volumes of data. The
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Figure 1.1: Taranaki confiscation line. This map of the Taranaki is from the late 1860s. The
boundaries (in blue), which were added later, show the main area of land confiscated by the
Crown after the New Zealand wars of 1860. Smaller parcels of land outside this main area
were also confiscated.

([5]).
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freely available subset of this data source, Births Deaths and Marriages historic (BDM-H)
does not have any data from the last 50-100 years in order to protect the privacy of living
people. It does not seem therefore, to be a useful resource. However the individuals from
the original lists and other historic shareholders are likely to have birth records inside of the
time period that is not available on the historic site [33]. One of the aims of this project is to
understand how useful this data is by itself. The wider project may be able to gain access
to the full data set given that this project is of cultural and social importance. Part of this
project will be to assess the potential value of having this data.

In addition several of the iwi groups have their own whakapapa (genealogy information).
In the past ”whakapapa was the way Māori proved they had links to a piece of land when
they went to the Native Land Court to try to gain title to the land.” [6]. PKW have access to
(some of) these through their local community, however the project is not allowed to view
these records. While Māori whakapapa is often known and performed as a waiata (song),
the written form is considered tapu (prohibited)[6]. These are concerns data management,
ownership and digitalisation.

The cumulative effect of the idiosyncrasies of the data sources available means that find-
ing descendants of original shareholders may be very difficult. The task of manually search-
ing for hundreds or thousands of names from the original lists is potentially fruitless. Given
the significant length of time and potential impossibilities of manually searching for these
people this problem presents well as a candidate for machine learning or inference. While
there are many potential data sources, the majority of these are private (whakapapa) or
prohibitively expensive to access (BDM), and none of them contains “ground truth” - the
actual mapping between names and identities. Because of the low data quality a share-
holder’s name alone is not a unique identifier: a single shareholder may have been entered
in the data set with more than one identifier or name (think maiden names, married names,
spelling mistakes), and conversely the same name may be in use by multiple identities. Toy
data sets were used in initial stages of the project in order to focus on the inference/machine
learning problems as opposed to the data acquisition problem. As the larger project inves-
tigates a wider net of real data sources, these were shared between project members. It is
also important to ensure solutions are flexible and applicable to different groups, as other
incorporations within New Zealand are facing similar problems.

1.2 Goals

The task of identifying and contacting likely present-day shareholders, based on lists of
names that contain ambiguities and may be several decades old, admits a variety of ap-
proaches. The aim of this project is to explore options for an approach that leverages hith-
erto unused large-scale data sources, such as BDM, Māori Land Court records, MLO, LINZ
[37] and whakapapa, (where available) in service of the overall task.

1.2.1 Objectives

The objective of this Masters was to investigate solutions to identify the missing sharehold-
ers. This will be done by identifying the key inference step or steps, and then developing
culturally appropriate methods. This will allow us to apply probabilistic inference where
appropriate to find missing shareholders.

Specifically this project aimed to:

• Analyse the key inference processes that are required when using a range of data
sources to identify potential shareholders.
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• Analyse the key inference processes that are required when generating new informa-
tion that is likely to be of value to someone searching for present-day shareholders.

• Identify key sub problems that could be solved using machine learning or inference
that are in line with the project’s goal.

• Develop a sandbox for testing possible solutions for a variety of inference processes
and data sets.

• Generate or source toy data sets to be used initially. Assess how well the inference
model performs on the data sets.

• Document use of the sandbox.

• Evaluate potential techniques for establishing matches.

• Evaluate potential data and feature sets (MLO BDM, LINZ, whakapapa).

A stretch goal for the project was to explore how the developed process handles real
data. This would be dependent on access to data and sufficient success on toy data.

1.3 An outline of the thesis

First the use and inclusion of the Māori world view in scientific research projects is dis-
cussed. This provides a cultural understanding of how important it is to be respectful, es-
pecially when operating as part of a kaupapa led research group. We also look at existing
research in the field of Record Linkage. With the ultimate goal of being able to identify
and find missing PKW shareholders we are focusing on linking groups of individuals from
MLO and BDM. These groups can be thought of as sibling groups. We are trying to find a
family of shareholders from MLO in BDM as we believe that this will provide a legal name.
We introduce two novel methods for doing this: group-to-group and alignment specific.
Group-to-group linkage looks at each group of shareholders as a whole, we look at how
good the BDM group is at generating the MLO group. Whereas the alignment specific ap-
proach matches each individual with another individual and using dynamic programming
creates an alignment between the two groups. We introduce various methods to reject link-
ages that we do not believe contain a real link. We have applied these linkage methods to
test data, MLO and Cenotaph records.
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Chapter 2

Background

2.1 Respecting the Māori worldview when undertaking research
involving Māori

mātauranga Māori - Māori knowledge - the body of knowledge originating from Māori an-
cestors, including the Māori world view and perspectives, Māori creativity and cultural
practices. [8]

It is only right when researching in the Māori domain to understand the systemic and
widespread effect that colonialism has had on our indigenous people. As part of this re-
search we must understand the Māori world and the legitimacy Māori traditions and re-
alities. We must take into account, and understand, the history of Māori experiences with
non-Māori researchers.

Western science is frequently applied to Māori people and Māori data with little or only
token efforts to understand the belief systems and values of the Māori community. There
are some key Māori concepts that can act as a guide to researchers. Fiona Cram (2001) in her
work on the validity and integrity of Māori research outlined some key Māori values that
are important when entering into a research process in a respectful way [7]. This framework
was developed specifically from a Māori perspective. It provides researchers with a set of
values that inform research practices and ethical processes.

• Whanaungatanga - relationship, kinship, sense of family connection [9]. In a research
project this means establishing meaningful, reciprocal and familial relationships in
culturally appropriate ways. Being more engaged creates a deeper commitment to
other people.

• Aroha ki te tangata-To love / a respect for people. Within a research context this value is
about allowing people to define the research context and allowing them to define the
terms of the interactions [13]. It is also about maintaining this respect when dealing
with research data [11].

• Manaaki ki te tangata - hospitality, kindness, generosity, support - the process of show-
ing respect, generosity and care for others [10]. In a research context this means involv-
ing the people who you are studying right throughout the process and sharing the
results with them. The research should be for them, and they should receive closure
when it is done [13].
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• Mahaki - Mahaki relates to humility. Working to find ways to share and to be gen-
erous with knowledge. ”Sharing knowledge is about empowering a process, but the
community has to empower itself”[7]. Importantly Mahaki means sharing and em-
powering each other without being a show-off or being arrogant.

• Mana - prestige, authority, control, power, influence, status, spiritual power, charisma
- mana is a supernatural force in a person, place or object [12]. In particular the Māori
saying: Kaua e takahia te mana o te tangata which translates to Do not trample on the mana
or dignity of a person is an explanation of how to handle oneself in research. This is
about informing people and guarding against being patronising or impatient because
people do not know what you know [7].

• Titiro, whakarongo, korero - To look, and listen first and then maybe speaking [13] .
This value emphasizes to researchers the importance of understanding the context of
a situation in order to develop understandings and find a place from which to speak
[7].

• Kia Tupato - Be cautious [13]. Researchers need to understand the importance of being
politically astute, culturally safe and reflective about their status as an insider/outsider.
This is also a caution to others in the community to be frank with the researcher as the
researcher will not know or be aware of everything [7].

Western science involving research on, with, and/or for people often involves the gath-
ering of information. This may be done for its own sake but has historically been done
with a view to informing resource allocation and facilitating control. ”Research is therefore
about power and power commands resources” (Te Awekotuku, 1991). ”Māori research, by,
with and for Māori, is about regaining control over Māori knowledge and Māori resources.
However such research is not done in a vacuum – in the past non-Māori researchers have
committed many transgressions against Māori. This has led to suspicion and a lack of trust
of research within Māori communities” [11].

Māori have historically been denied sovereignty within colonial and western processes.
An example of this can be seen in the 2018 New Zealand census which was taken online.
Previously paper forms had been handed out and collected in person by thousands of census
workers across the country. The online census has disadvantaged Māori participation and
the response rate was as low as 80%. There were even lower response rates in the areas such
as Northland and the East coast where responses are typically poor even in a normal year.
The effect of poor response may have significant long term impact on Māori in New Zealand
and create bias if the census results do not statistically reflect the New Zealand population.
”If Māori descendants are missing in large numbers from Census 2018, this will reduce the
size of the Māori electoral population and, potentially, the number of electorates. The census
count of the Māori descent population is part of a statutory formula used to determine the
boundaries and number of Māori electorates.” [47]. The census is the primary way of getting
data about Māori. The census is used by iwi and other government agencies for policy and
planning purposes and also for Treaty settlements. There was low engagement with Māori
in the change in census format. This is an important reminder to establish who will be
affected by systematic changes such as this one.

Some studies have been done investigating appropriate methods for studying in a Māori
context. In their work on ethical guidelines on health and disability research in relation
to Indigenous People, Kennedy and Wehipeihana (2006) use Social Network Analysis in
the context of indigenous and minority groups within New Zealand [16] . Social Network
Analysis (SNA) is the study of the structure and composition of networks and is useful
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for understanding the implications of relationships and patterns within social entities. The
structure of the social ties, systematic data, graphic representation and mathematical or com-
putational models are four key features of the SNA proposed by Kennedy and Wehipeihana
[16]. SNA focuses on social context among all of the participants rather than on the rational
choices made by each person.

Kennedy and Wehipeihana presented the following ideas for working respectfully with
indigenous peoples to alleviate or eliminate barriers. Interestingly these are much in line
with the work done by Cram [7] mentioned above.

• Self determination (the right to make decisions about all aspects of ones life);

• Clear benefits in participation;

• Acknowledgements and awareness of cultural values, customs, beliefs. That a world-
view other than a western one exists.

• Cultural integrity- knowing that cultural knowledge must be protected from misuse
and misappropriation and preserved for future generations.

• Capacity building, enabling indigenous people to participate actively in research with
the aim for them to ultimately drive it themselves.

There are some examples of positive blending of western science and mātauranga Māori.
In the 52nd edition of the New Zealand Journal of Marine and Freshwater Research, the ed-
itorial team Clapcott et al (supported by kaumātua Rauru Kirikiri who provided a cultural
safety to the process), incorporated and adopted kaupapa Māori principles to the standard
journal peer review process. This is very appropriate as the relationship to the marine and
freshwater environment is highly significant to Māori. This special issue was collated with
the Māori world view in mind and closely aligns with mātauranga Māori principles [14].
The journal selected papers using the guiding principle of Tino Rangatiratanga “sovereignty,
autonomy, control, self-determination and independence and allowing Māori to control
their own culture, aspirations and destiny”. The hope of this special issue was to initiate
further discussions on science using Māori priorities. The editors also reflect that there is
still an ongoing need to build and nurture cross-cultural understandings between Māori
and western science. This is particularly in regards to the rights, interests, and values of
Māori across institutions, agencies and researchers from a wide range of disciplines.

Another area where mātauranga Māori was used in conjunction with western science
was by Moller in his 2009 paper on New Zealand Seabirds [15]. The paper utilised many
of the same principals of mātauranga Māori that were used by Clapcott et al [14]. Moller
notes the preferred use of Māori words in place of the English/Latin as would be normal
western scientific convention. Researchers were able to talk to kaitiaki and understand their
views on the environmental management of titi (sooty shearwater) breeding colonies in their
domain. The study of titi is culturally important as well as being important ecologically. This
is because the harvesting of the titi is the last remaining widespread customary bird harvest
which remains almost entirely within the control of Māori. The purpose of the research
and relationship with Māori was to “ensure that the tı̄tı̄ remained plentiful enough for the
mokopuna (grandchildren) to be able to continue mutton birding” [15].

2.2 Record linkage

Record Linkage is the problem of identifying and linking multiple records that relate to the
same latent entity. These records could be within the same data set, or across multiple data
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sets. Duplicate data entries often occur when large administrative programs create records
for individuals or objects and then the system is not maintained, for example when a new
system is implemented and records are duplicated or mis-entered during the migration.
This type of problem is not uncommon in records about people. Examples of well known
systems that have been used in record linkage studies in the past are: hospital records,
medical records, census data, social security data and taxation data [32].

It appears that there has been more research in recent years into the record linkage prob-
lem. It is not unsurprising that interest in the record linkage has become more significant
over time. Increased digitisation would create more applications.

The field of record linkage is relatively small - with only a few key researchers working
on the problem. Felligi and Sunteb were the first to propose a mathematical model for ”one
to one entity mapping” in 1973[18]. They completed a case study on 1973 census data of
record linkage. The case study attempted to match an individual’s social security number to
the same individual’s census record. This was difficult as over 22000 people had not submit-
ted their census form with the social security number filled out correctly. A manual search
would have produced high quality results but would not have been feasible due to the size
of the database. Felligi and Sunteb developed a mathematical model to determine whether
or not two records refer to the same individual [18]. Their model generated a probability
of a match and then classified the two records into one of three states: a link, a non link or
a possible link. The two records were compared, and categorised to one of the following
states; ”name is the same”, ”name is the same and it is example”, ”Name disagrees”, ”Name
missing on one”, ”Agreement of address”. These states were used to generate a comparison
vector as a vector function of both records, then the linkage was classified.

The work of Felligi and Sunteb was not seriously extended until 2013 with Sadinle and
Feinbergs’ work to link records across more than two databases [26]. Sadinle and Feinberg
consider the problem of obtaining non-transitive linkages across these multiple datasets. A
transitive link would mean that when an individual in dataset A was linked to an individual
in set B, anyone else that was subsequently linked to B, would also be linked to A. Steorts is
the most recent contributor to the field of record linkage, publishing papers in 2014, 2015 and
2019 [19] [20] [21]. In 2014, Steorts considered the idea of using a clustering of records to an
”unobserved latent entity” with a hierarchical Bayesian model [19]. In this approach, records
from different databases are clustered together around the ”real” person who is actually
unobserved. The work from 2014 was limited as it could only be applied to categorical
data, which means that data features such as names and addresses were considered to be
categorical rather than continuous which they tend to be.

Steorts adapted the work done in her previous paper in 2014, to use an Empirical Bayesian
model instead of a hierarchical model. This Empirical Bayesian method uses a prior gener-
ated from the empirical distribution of the data values in that field. This is actually a sim-
plification of the hierarchical model as it removes the need to specify a prior for the latent
entity which is quite difficult. Because there was no labelled data it would have been very
difficult to set a prior on the latent entity.

Steorts (2015) [20] in her paper Entity Resolution with empirically motivated priors intro-
duced a novel (at the time) method for performing record linkage. This predominantly
focused on the application of record linkage across multiple databases (more than two).
Previous approaches to linkage problems used pairwise comparisons which is ”computa-
tionally infeasible” on most databases of even moderate size. Steorts viewed linking records
as an ”unsupervised problem of determining the edges of a bipartite graph that links the ob-
served records to unobserved latent entities”. She used statistical inference techniques from
the Markov Chain Monte Carlo family to determine these links.

Records are compared by using matching functions. These matching functions often take
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variation, typographical and numerical errors into account as well as making more complex
distance or time comparisons using look-up tables ( Christen 2006) [22].

Steorts and Tancredi in their 2019 paper A unified framework for de-duplication and popu-
lation size estimate [21] they build upon Steorts’ earlier work. The paper does not take into
account the terrible quality of most datasets that applications of deduplication usually con-
tain. An example of this is that the paper assumes that unique identifiers are correct. In
our application with Māori land data we know this is not true as we have many examples
of individuals who have multiple identifiers. Another assumption that this paper makes is
that there is no missing or patchy data. This is a simplification that cannot be made in the
Māori Land Online dataset. An extension would need to be made for realistic applications
of this method.

The use case for this method is joining two datasets that have the same parameters or
dimensions - which is applicable to comparing two versions of the same dataset but not
useful to complete record linkage across multiple different databases with different fields.
The paper’s novel element is that the population size is an unknown parameter, which it was
not in the original work by Steorts in 2015 [20]. This paper also found a ’more adequate prior
distribution for linkage structure’. They mention a paper by Chen (2018) that investigates
applications of these methods.

Most recently, Stringham (2020) [27] apply many of the previous Bayesian methods when
linking US Census data from 1900 with Union Army recruitment data. A refinement of the
work of Sadinle (2017) [26] ”relaxes the assumption of a fixed comparison data model and
allows for record-specific disagreement parameters conditional on non-match status”.

Another method for increasing the accuracy in string matching is to use the phonetic
encoding of words. This allows records with spelling mistakes, typographical errors or
alternative spellings to be linked regardless [42].

2.2.1 Blocking

Blocking is a method of reducing the number of candidate records that are involved in a
comparison to a feasible number [40], by involves indexing or filtering the records [39].
Blocking is an important technique because of the massive computational cost of comparing
all of the records against each other. When taking two databases A and B, and trying to find
the links or duplicates, every record from A must be compared to every record in B. This
means that the number of comparisons between records is the product of the number of
records in each database. If there are duplicates in the databases then for example each
record in A needs to compared to all of the other records in A:

searches =
|A| × (|A| − 1)

2
(2.1)

Brute force comparison creates a significant bottleneck in the performance of linking
solutions [28]. This becomes unfeasible when databases are large, linking datasets with
millions of records can take hours or days of compute. Record linkage problems become
infeasible to solve through a brute force approach when databases are large. The extension
of record linkage to extend across more than two databases was unfortunately computation-
ally infeasible as it required the estimation of 2(N−1) conditional probabilities in a database
with N records [40].

The benefit of using blocking can be easily displayed. Suppose in our dataset A from
earlier, where there are |A| records and x blocks (each of which is the same size). The number
of comparisons in theory [39] becomes:
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searches =
|A|2

x
(2.2)

The number of comparisons in 2.2, is significantly fewer searches than 2.1, because we
are able to reduce the size of the search space.

In blocking there is a single attribute or feature, or a combination of attributes or features
that is called the blocking key. An example of a blocking key is to use the first four char-
acters of each record’s surname attribute. This is used to split the full data set into blocks.
Narrowing the search space - candidate pairs are generated from only other records in the
same block. It is important to consider block size when selecting a blocking key as block
size can affect both the speed and the accuracy of the linkage problem. If the block sizes are
too large then searching becomes inefficient as many more candidate pairs are generated,
leading to an increased number of comparisons. If the number of candidate records is too
small the accuracy of the linkage decreases as the true candidate pairs may be missed.[41].
However in order to achieve good a high linkage accuracy it is best to use the least error
prone record attributes available. A way to increase the accuracy of the blocking key is to
create composite blocking keys, these are keys made up from more than one attribute such
as name and age.

2.2.2 Supervised Record Linkage

In supervised learning, labeled data is used to train a model. Data is said to be Labeled
when it is tagged. In the case of record linkage each labeled record is tagged with the cor-
responding record that it is linked to. This allows the researcher to know if their model’s
predictions are correctly identifying linkages.

It is (relatively) easy to classify identical records and obvious non matches but it is very
hard to differentiate those on the border where the two records share some attributes. Super-
vised machine learning tactics have been used more recently to do identify linkages however
the downside of this is that it requires training data. Training data is not always present in
real scenarios.

2.2.3 Unsupervised Learning in Record Linkage

In unsupervised learning, unlabeled data is used to train a model. Data is said to be un-
labeled when it is not tagged. In the case of record linkage, unlabeled data means that the
researcher can never truly know if their model’s predictions are correctly identifying link-
ages.

In his paper on unsupervised Record linkage, Christen [22] presents a method of gen-
erating data and then carrying out supervised learning. This relies on two assumptions:
First, that when the weight vectors generated in the comparison of two records have high
similar or exactly the same values in all their vector elements the two records refer to the
same entity, as it is very unlikely that two different entities have high similarities in all their
attributes. Second, that when the weight vectors generated in the comparison of two records
have mostly low similarity values the two records are different as it is highly unlikely that
two records that refer to the same object would have low similarity values.

Christen investigated whether it is possible to use initial weights of highly likely matches
and non matches as training examples [22]. Several methods for selecting which weight
vectors/record matches and non matches to use were evaluated. A threshold was used to
select appropriately likely weights (usually with a value of 100% or 0%). Another approach
was to select based upon the nearest vectors using the Manhattan distance between two
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vector weights. (The Manhattan distance is : ”The distance between two points measured along
axes at right angles. In a plane with p1 at (x1, y1) and p2 at (x2, y2), it is |x1− x2|+ |y1− y2|.”[23].
A problem that the paper did not answer but did address was that the data in the two data
sets is linearly separable (which real data is likely not). They suggest that adding some
more randomised data would help this and be more like real data. 10 fold cross validation
was used. A support vector machine (SVM) classifier was used, due to its ability to handle
high-dimensional data and be robust to noisy data. They also tried a K-means clustering
algorithm. They also tried an ’optimal threshold algorithm’ which has access to all of the
other match options and assigns matches based on the highest probability overall. SVM
worked better than the optimal threshold model.The paper mentions Febrl which is a free
open source record linking software developed in 2004 (also by Christen[22]) using python
[24].

2.2.4 Semi Supervised Learning in Record Linkage

Semi-supervised learning is used in classification problems where some but not all of the
records have corresponding class labels. The number of labeled data points is less than the
number of unlabeled data points. Obtaining class labels is often expensive and difficult.
A solution to this is to use bootstrapping. In bootstrapping the model is fed by its own
predictions using the labels that are present. Bootstrapping can produce results far superior
to unsupervised methods [45].

Kingma et al (2014) looked at using probabilistic semi-supervised techniques to generate
models trained on small labeled data sets. They then generalised these models to work on
larger unlabelled data sets [43]. They designed a successful classification model made up
of two parts. First they used a deep generative model on the labelled data. This generative
model provided an embedding of the data. By creating an embedding (and representing
that data as lower dimensional vectors), they could improve the ability of the network to
learn from text data. The second part was a generative semi-supervised model that used
the embedding from the first generative model. A limitation of the algorithm was that the
models scaled linearly to the number of classes in the data set [43].

Later in 2017, Lee et al performed inference tasks on Korean genealogy data. The re-
searchers attempted to infer political power structures based on the human network. They
tried to classify individuals by which one of the two political forces they supported. Semi
supervised learning was used to label the network. They took labeled individuals and in-
ferred similar political views onto their blood relatives. A similarity matrix was constructed
to show edges (relationships) between people. The weights of similarity between nodes
are calculated by Gaussian functions. They also suggest additional measure that any two
connected nodes should not have a ”high similarity difference” [44].

In 2018 Malmi et al in their paper Computationally Inferred Genealogical Networks Uncover
Long-Term Trends in Assortative Mating matched genealogy data to church collected Births
Deaths and Marrige records from mid 17th to the late 19th century Finland. They were
doing genealogical network inference problem (population reconstruction) by linking the
birth records of an individual to the birth records of the parents, creating a family tree with
up to millions of individuals. They used the inferred network to look at assortative mating
(marrying others within the same socioeconomic group).

Similarly to Lee et al [44] they had access to a genealogical network consisting of over
100,000 individuals. This was constructed by an single genealogist over a long period of
time. They used this network as ground truth. An individual was considered matched be-
tween the genealogy and the birth records if they found exactly one birth record with the
same normalized first and last names and the same birth date. They used this information
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as training and testing data for their algorithm. Naive Bayes, Random forests and two varia-
tions of Binary classification were used to reconstruct the network. The binary Classification
methods outperformed the other methods. Accuracy is in the mid 60s which is not ideal.

Since the data that was used as ’ground truth’ in the work by Malmi et al [25] and Lee et
al [44] is based upon human generated data there may be a mistakes or inaccuracies. Malmi
et al accept the fact that this human error will then affect the performance of the algorithms
and the conclusions drawn from any results. They also mention that generalisability of such
a problem would be useful as many ethnic and historical groups have this type of problem.

2.3 What is missing?

The work done by Feligi and Sunteb, Steorts and Tancredi, and Stringham share two com-
mon weaknesses. The first is that they all focus on record linkage on high quality datasets.
There is a reliance on having either good labelling of the data or high quality features for
each record. This is a drawback to their research, as this makes it not applicable to many
scenarios. Record linkage on low quality data has not been covered before.

The second weakness that previous researchers have in common is that they are trying
to link individuals. There is no consideration of using natural groupings within the data to
enrich their models. In a linkage scenario where there are many individuals with the same
name it is hard to know which records can be linked.

An example of using natural groupings can be seen in the work done by Lee et al where
they use the natural grouping created by blood relations to infer political opinions [44].
Had they not done this their task would have been almost impossible. The company that
a person keeps can be used to infer linkages as there is evidence in the records around the
individual.
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Chapter 3

Finding the missing

We want to find people, but names are not a very good identifier. We instead aim to link
together groups in MLO and BDM as we believe that natural groupings and connections
between families might be better at identifying real individuals.

Names in isolation are only of limited utility. We do not know the real person behind the
name or how to contact them. Names do not by themselves convey enough reliable mean-
ing to be able to identify a ’real’ individual. Māori names and English names were used
interchangeably. Shep et al in their paper Indigenous frameworks for data-intensive humani-
ties: recalibrating the past through knowledge engineering and generative modelling [46] provide
an example of a fictitious individual Erana, ”who also goes by Ellen, but appears in the
birth records as Sarah. Sarah is not used by the family, when transliterated from the te reo
Māori corpus is Hera, again unused. To complicate matters, Sarah Ellen appears twice in
the official birth records with different registration numbers. Similarly, her brother Himi is
also known as Jimmy, but according to the Crown, is legally James. While the linguistic
distance from Himi to James can be quantified, Himi is aurally closer to Jimmy, whereas the
more common Hēmi is closer to James, thus reflecting the mutability of oral and written ex-
changes between te reo and English” [46]. Currently PKW uses a combination of MLO data
and their own records to identify shareholders who have money to collect. This process
is expensive and often fruitless as necessitates working out who a person really is (finding
their real identity) and then trying to contact them. Inferring such identities at scale across
the whole of New Zealand is the challenge. This is made even more difficult through immi-
gration to other countries - there are individuals born overseas who have no records in New
Zealand who could be eligible to receive dividends.

Let us return to the idea of natural groupings that were introduced in the previous chap-
ter. We know a lot about a person from the company that they keep. In a Māori context
the concept of whānau, hapū and iwi (family, community and tribe) provide a basis for nat-
ural groupings within our data. In general we expect individuals to be on the same blocks
as other individuals within their whānau and hapū. Since iwi groups are a lot larger it is
perhaps less likely that we could use iwi as a method of filtering. We will be focusing specif-
ically on an individuals close whānau with the natural grouping of interest being them and
their siblings. Knowing who a person’s siblings are is important. Siblings (in most cases) all
inherit from the parents. This means that in a group of siblings, using the most basic rule of
equal inheritance, in a family with N children, each child inherits 1/N of the land interests.

MLO provides us with more than just a name, we also have minute book references,
share values, gender, alternative names and whether the owner has a trustee or not. This can
be seen in Figure 3.1 as the different rows for each owner. Both the Minute Book reference
and the share value provide us with a natural grouping. The minute book reference is a
reference to the Māori Land Court hearing where the inheritance was processed. We are
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able to see who else inherited ownership at the same time, by looking for other individuals
with the same minute book reference on the block. This helps to identify who are likely to
be siblings of an individual.

We can see an example of this in Figure 3.1 where the red dotted line outlines four indi-
viduals with the same share value from the same minute book court event.

We have access to the corresponding Minute Book reference (414 Aotea MB 282-283
dated 17 March 2020) and a copy has been included in the Appendix ??. The shares came to
Andrew Clayton Robinson, Daniel Shayne Robinson, Joval Margaret Tamou and Taina

Shaun Tamou from Robert Tamou. The order is a determination of a life interest. The or-
der shows that the shares came to Robert Tamou from his wife May Bishop (also known as
May Tamou). Because it is a determination of life interest it indicates that Andrew, Daniel,

Joval and Taina are children of May Bishop. PKW have historic evidence on file that con-
firms that Daniel and Andrew are May Bishop’s children and that May and Robert Tamou

legally adopted Taina Shaun Tamou and Joval Margaret Tamou. So we have data to sup-
port the inference that these people are a familial group.

While there are many complicated examples where incorrect inheritance can occur, such
as a claim never being made at all or a person not being correctly reported as dead or the
wrong type of inheritance being applied (there are 43 different types). This is a minimal
example of a complex inheritance system.

Let us look at a fictitious example: suppose we want to find a person with the name
Sarah Wiki. Lacking an immediate contact, one approach would be to try to find the nearest
relative for which we do have contact information. A search in MLO for Sarah Wiki yields 11
ID’s and 3 names, and MLO on its own can’t tell us who is who. If we only have a person’s
name then we cannot tell if Sarah Wiki is the same person as Sarah Wiki or Sarah Wiki.
We cannot tell if there are one, two or three individuals called Sarah Wiki. However if we
know that the real Sarah Wiki has a brother called Bob Wiki then we can use this natural
grouping to compare all of the Sarah Wiki records to see if either of them have a brother
called Bob Wiki.

By filtering/blocking [39] our data, we can decrease the number of comparisons that
need to be made. The complex relationships and inheritance rules in this problem may help
rather than hinder as they allow us to create smaller units of interest. We can use minute
book references from the MLO data set to infer sibling relationships on a block. If one could
form a correspondence between the information in MLO and that in BDM, we could then
say how many entities are at play, given their immediate family, and relate this back to the
other names on the same land block back in MLO.

3.1 Data

3.1.1 Two sets of data

3.1.1.1 Māori Land Online

As the largest freely accessible rich data source connecting Māori people to their land, MLO
is a unique repository of information about New Zealand’s past and present. Its immediate
value is as a legal repository (it is a list of who is an owner of which land block). But it is
also, potentially at least, an enabler of social connection and holder of personal histories.
This second value goes largely unrealised.

MLO can be considered reasonably accurate when it comes to blocks of land, yet reason-
ably inaccurate when concerning individual people. It is not meant to be about relationships
between people but instead between a person and their land. In the data that is publicly ac-
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Figure 3.1: BLOCK : Ngatitara 26B. This is an example of a MLO block, it is pub-
licly available data from accessed from the MLO website on 10/07/2020 (https :
//www.maorilandonline.govt.nz/gis/title/17156.html). This block is located in the
Taranaki area, just north of Opunake. (1 - blue) Shows an example of two individuals on
the same block. This, if we just looked at the name would seem to be a duplicate. However
when looking at the number of shares that the two entries for Ratahi Whiro has, one has
16.16 and the other has 698.28. This is a huge disparity. In addition the Ratahi Whiro who
has 16.16 shares also has an associated minute book reference, while the other one does not.
This suggests that it is a coincidence that both men share the same name (although it is likely
they are related), but that one is much older and perhaps even one of the original owners
on this block. 698.28 is a large number of shares for one individual to own, much more than
anyone else on this block. (2- red) Shows four individuals with the same share value (15.46)
and the same minute book reference (414 AOT 282-283). In the classification adopted by the
wider project, these individuals are all put into a single natural grouping [46]. The fact that
they have different last names is not paramount, as we know that they have kept the same
company. The data that we have available suggests that they all inherited their shares from
the same person at the same court event.
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cessible, time is latent variable, but it has been obscured: MLO conveys current ownership.
We cannot see who a person inherited from or under what form of inheritance. There are
many different types of inheritance through the Māori Land court. Inheritance is applied for
through the Māori Land Court, but it is a complex process and not everyone who is eligible
completes the process. In effect we are not able to see the real truth or what it should look
like, only the current state of the system.

Because of the size of the MLO database, it is difficult for those who manage the land
(like PKW) to know who should inherit. They make an attempt to follow up all the links that
they have, however it is a hugely time intensive process. So it remains the responsibility
of the individuals or the families to follow up and correct the land court data. This is an
arduous process meaning that the MLO database becomes more and more out of date.

Other members of the Wai-te-ata Press team were able to extract natural groupings from
MLO data [46]. These were based purely on the share block, the minute book reference
and the share value. When individuals on a block share a the same minute book reference
and share value we infer that they were at the same court hearing in regards to the piece of
land. We group these individuals together as we know that they have been in each others
company (at least once) and are likely to be siblings because of their same share value. This
means that we have access to what can be thought of as sibling groups from MLO and that
we can filter/block these records based on family surname. An example of how this might
be applied can be seen in Figure 3.1.

3.1.1.2 Births, Deaths and Marriages

Births Deaths Marriages has natural groupings (families). BDM in contrast to MLO can
be considered to be crisp and accurate when it comes to individuals (but does not contain
anything to do with land blocks). It is a well maintained up to date database of all New
Zealanders. Births Deaths and Marriages is maintained by the Department of Internal Af-
fairs.

The individuals available in BDM records can be considered to be an almost perfect
reflection of the truth in the eyes of the government. We know that an individual’s legal
name/identity does not always equate to a person’s ”real” identity but it is key piece of
data for PKW to have in order to find someone. Dates are specific and correct, but there are
no current locations. BDM captures events and moments where an individual changes.

For the purposes of this study we only have access to the Historic data (BDM-H), where
the birth is more than 100 years ago. In our case we are interested in Births. The idea is that
we can prove that the full data set would be of use to the project.

Other members of the Wai-te-ata Press team were able to identify sibling groups in BDM-
H data ”based on birth entries which shared the same surname and exact same parents’
names” [46]. This means that we have access to ’natural groups’ from BDM and that we can
filter/block these records based on family surname.

3.1.2 Cenotaph records

Although MLO and BDM are the main focus of this research, a third data source was iden-
tified as potentially valuable by the Wai-te-ata Press team. There is a collection of Cenotaph
records that has been maintained by the Auckland War Museum. This contains the de-
tails of New Zealanders that have served the country on active service since the time of the
Māori land wars until the present day [69]. Individuals present in the Cenotaph records can
(like BDM) be considered fairly crisp as these records have been actively maintained. They
have also been updated by family members so that they accurately reflect ground truth. We
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include the cenotaph data as an alternative data set, which is from around the same time
period as the Historic BDM data. The raw cenotaph data was processed by other members
of the Wai-te-ata Press team into a data set of brothers. Women were removed from this
data set as last names were thought to be unreliable. This gives us reasonably crisp sibling
groups that mimic the natural groupings we have in MLO. The major downside of this data
set is that it does not contain any females.

3.1.3 So what?

Because we are able to generate sibling groups in both BDM and MLO, in theory we can
use these groupings to find records for a person in MLO in BDM. Being able to identify an
individual from MLO in BDM is allows us to deduce what happened to that person. We
can tell if they are still alive, whether they got married or changed their name or who that
person’s living descendants are. In finding their BDM record we know their legal name and
hopefully have a good chance at finding them. BDM is a rich source of leads for a PKW
person to find shareholders. Because these sources are so different in what they provide,
they provide complementary and potentially very valuable information to each other. The
question is how to realise this value.

3.2 Problem set up

Having defined roughly the scientific and cultural landscape in which this project sits it is
now important to introduce the particular problem that this thesis has focused on. It is a
non trivial problem that cannot be solved by human eye at the scale of the real data.

An individual has:

• A first name. Generally all individuals have a first/given name however in some cases
an individual may have no first name recorded in MLO.

• A last name. In some cases an individual and their siblings do not share the same
last name - this may be through marriage or by choice. The concept of last names are a
western introduction so not all individuals have one. We use last names as a method to
filter and group individuals records. However once they are grouped we are actually
not interested in the last names anymore as they provide no additional information.
We know that the family groups we are comparing keep the same company. We are
now most interested in first names as these (especially in a traditional Māori context)
and so will focus on using first names to identify and link individuals.

It is worth noting that individuals also have ID numbers in the MLO data set however
they have been shown to be untrustworthy so they are not used in the analysis.

First, some notation:

• m = [m1, m2, . . . mM] is a set of names (M in number, given names only), selected by
a filtering process crafted to generate groups of plausible siblings in MLO data as per
Section 3.1.1.1.

• mij is a character from an individual/name in m.

• b = [b1, b2, . . . bB] is a set of elements (B in number, given names only) that corresponds
to identities in BDM. By harvesting and filtering by surname we can be virtually cer-
tain that those in a given b are all siblings. This process is described in Section 3.1.1.2.

• bij is a character from an individual/name in b.

23



• Puzzle. We define a puzzle to be a comparison of all of the b and m sets that contain
individuals with a surname of interest. For example the Lemon puzzle contains b and m
groups where all of the groups have at least one individual with the surname Lemon.

• BA = [b1, b2, . . . bB], B in number. All the BDM groups for a surname. This is the BDM
part of the puzzle, where all bj in B relate to the same surname, in this example A.

• MA = [m1, m2, . . . mB], M in number.All the MLO groups for a surname. This is the
MLO part of the puzzle, where all mi inM relate to the same surname, in this example
A.

• Linkages. A linkage is an association between an m and a b set. We evaluate each
linkage to determine its plausibility.

• Alignment. An alignment is an matching of individuals in b to individuals in m.

3.2.1 Test Data

We have access to both BDM-H and MLO data sets. However this is unlabeled data (i.e. we
do not know if one group truely represents another). So instead we have to come up with
our own test data.

To evaluate the ideas in the later chapters we need some notion of ground truth, which
in general we don’t have. We will use BDM-H data compared against itself to test if we are
able to correctly link families and individuals, this allows us to imitate a ”ground truth”.
We can take actual BDM-H b-groups from some set BA (with last name A), add ’noise’ to
them in the form of new / omitted names and mis-spellings, and use them as proxy m-
groups in a test. From these ‘pretend’ m-groups we can then try to distinguish between the
(known) b-groups that led to them (b ∈ BA), or a different set of b-groups, corresponding to
a (randomly chosen) other surname (b ∈ BA′). We can evaluate whether our methods can
distinguish between the two cases.

We therefore used a segment of the real BDM-H as a test set. This was duplicated used to
represent both the BDM and the MLO set. This means that we created a situation where we
know which m sets were created by which b sets. This allows us to assess how accurately
the method is performing. Before being used in the test, some pre-processing was done
and duplicates were removed. Each family group was processed so that stop words were
removed and capital letters were changed to lower case. We shall call this the ground truth
data set because it allows us to test our algorithms and methods as if we knew ground truth.

A data set of 80 family names were used. These puzzles were selected from MLO be-
cause they appeared between 10 and 20 times and they are large enough to be interesting to
compare. There are 892 m sets from those 80 names and 3568 individuals in this test set.

These are all of the last names from the following data set.

["Amundsen", "Armishaw", "Baron", "Begley", "Benbow", "Bracken",

"Bretherton", "Bruning", "Byford", "Castles", "Clendon", "Conaghan",

"Coogan", "Cording", "Crabbe", "Deadman", "Dowie", "Faithfull", "Flintoff",

"Grayson", "Greeks", "Guildford","Gutsell", "Hardcastle", "Harkins",

"Hasler", "Heaven", "Hennessey", "Hoey", "Hollamby","Hornby", "Jepsen",

"Kilkelly", "Loughlin", "MacKey", "McGlone", "Meager", "Nissen", "Nunn",

"Pook", "Rendell", "Saxton", "Scrivener", "Sharples", "Shepard", "Singer",

"Skipworth", "Smillie", "Snowdon", "Stainton", "Steen", "Symon", "Triggs",

"Trow", "Twist", "Wallbank", "Wards", "Wesley", "Woon", "Wylde"]
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Interestingly there are no obviously Māori surnames in this set. There are Māori first
names associated with these last names. It is worth noting that prior to Pakeha arrival in
New Zealand many Māori did not use last names. In colonial times and since, many Māori
adopted a last name. Often these were a transliteration of part of their Māori name. An
example of a transliteration is using Wilson in place of Wirihana [53].

3.2.2 Noise

In order to simulate the poor data quality of MLO, noise was added to the fake m set de-
scribed above. This section describes the noise model that is used to ”rough up” the test
data. There are a series of parameters which can be changed to turn up and down the prob-
ability that a family member is left out entirely, a name is left out or that a word is miss-spelt.
It is difficult to pinpoint the exact values that these parameters should be set to as we have
no ground truth to start with. We use a first order Markov model trained on a reasonable
subset of BDM-H to generate the misspellings.

We set the noise value later in the thesis. The noise value is used to set the following
things:

• The probability that an individual in a family is completely removed from the data set.

• The probability that a new individual is added to a family.

• The probability that an individual letter in a person’s name is changed (mis-spelled).

For example when noise level is set to 0.2, this means that each letter of each name has
a 0.2 chance of getting changed to another letter and each word has a 0.2 chance of being
removed or joined with another word. There is also a 0.2 chance of having an additional
word added. Here are a few examples of names before and after going through the noise
model:

Ralph Morton→ Razph Moqtoo

Arnold James→ Armol Jam-s

Harold Oscar→ Osceht

Frank Hector→ FganubHectdr

Mervyn→ Merhyn

Laurie Howard→ Laxrie Hoosrd

Reginald→ Regiotld William

The names become much harder to decipher when the noise model is applied. We can
observe various misspellings, additions and removals in the example. It no longer looks
like the original, and whilst it looks pretty bad we want our models to be robust to really
corrupted data.
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3.2.3 Finding the missing

Consider the question of the origin of a particular family/set m derived from MLO. The
question “Who are they, really?” becomes “Which b sets are most likely to contain the true
identities of people in m?”. Notice we are approaching this as an inference problem over
groups as opposed to individual identities. Obviously the identities of individuals will play a
role in this. One of the interesting questions is to what extent the best alignment will suffice
in inferring the best b ∈ Bm.

A task then: given a particular m, and a set Bm, we would like to assess the relative
plausibility of each b ∈ Bm as being the group of people behind the names in m. From a
Bayesian perspective, this is the posterior probability P(b | m). So what does that calcula-
tion involve?

By Bayes’ theorem,

P(b | m) =
P(m | b) P(b)

P(m)
(3.1)

Where the denominator is not important

∝ P(m | b) P(b) (3.2)

One could argue that the prior over b in absence of any other information is flat, and so

P(b | m) ∝ P(m | b) (3.3)

That is, to evaluate beliefs about b given m, we should look to the ”forward” probability of
m given b, which is something we can build a concrete model of, it seems.

3.2.4 How do we best calculate P(b | m)?

It is tempting to think about matching one group with another group by aligning each in-
dividual and assessing the number of acceptable matches. If we were confident that the
data was perfect and complete, meaning that every individual in the group b was in m then
this is a good strategy because we are able to assess the group as a result of assessing the
individuals. Note that was are not taking into consideration any natural groupings or struc-
ture within the groups. However with messy data (like MLO) we do not believe that every
individual in group b is is m. This means that we must rely more on the structure and the
natural groupings within our data.

In Chapters 4, 5 and 6 we focus on linking groups together using natural grouping tech-
niques. In Chapter 4 we discuss methods of linking groups together (linkage methods) using
an aggregation of names and the text analysis method of Ngrams. We also introduce sev-
eral ways to reject linkages in Chapter 5, it is important to note that some of these apply in
Chapters 7 and 8 as well.

In Chapters 7 and 8 we discuss the alternative approach where groups are linked to-
gether using specific individuals. This is done by assessing name similarity using edit dis-
tance or Ngrams and calculating an alignment between groups.
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Chapter 4

Group to group linkage methods

We are looking for a family in b that is likely to match a family in m because they have sim-
ilar names and similar structures. This chapter investigates methods of assessing linkages
between b groups and m groups without addressing the question of any specific alignment.
We propose several methods that link b sets to m sets.

4.1 The simplest model possible - MATCH

The simplest model finds names in b that exactly match names in m. Let us call this exact
matching algorithm MATCH. We calculate a score from counts of exact matches which when
normalised gives us P(m|b). The proposed model aims to strengthen linkages where there
is an identical name match, i.e. the same name appears in both the b and the m group. This
is a simple approach and we accept that failures will occur when we introduce any kind of
noise, be that spelling mistakes or nicknames. However we use this as a straw man in order
to propose more robust models.

In this method we normalise the number of exact name matches between m and b.

Score = ∑
x∈M,y∈B

(1− δx,y)

We allow duplicates in both B and M. We simply check for each name in M if the string
appears in B. This means that if there are two instances of the same string in M, the score is
the same. We are only interested in first names as last names are used to identify the group.

4.1.1 A specific example of exact string matching

Let us look specifically at how the MATCH model works on a real family. We are using our
test ground truth data set described in 3.2.1, here displaying just the results from the family
with the surname Lemon. We can see the results of this on the left in Figure 4.1. Since we are
comparing two Lemon family sets that are exactly the same, we know the ’true’ result and
can measure success by the strength of the diagonal. There is a very distinct diagonal of the
heat map.

We then also look at the true Lemon family’s MLO data to see what the performance is
like. This is displayed on the right in Figure 4.1. It is, as previously discussed, it is impossible
to tell the true accuracy of the comparison with real a real MLO to BDM-H data because we
do not have labelled data and do not have access to the actual ground truth. However
when the ”winning” results were inspected there was very little evidence that the matches
were anything but an example of names appearing in the same sets at random. This was
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Figure 4.1: Heat maps showing comparisons between Lemon b and m groups. Each row
corresponds to a b group (essentially, a family) identified in the BDM data. Columns corre-
spond to m groups, i.e. lists of possible siblings, these are from different land blocks (there
could be overlap as a person can be an owner of more than one block). These two heat maps
show the un-normalised counts i.e. raw counts of identical matches between the two fam-
ilies. The colour of each square, indicates the number of identical name matches between
the b and m families. Darker colours represent higher counts. Left: The Lemon family, with
no last names. This is using our ground truth test data where BDM is compared against
BDM. A strong diagonal band in this figure indicates that on clean test data we can (as we
would expect) identify the true source of each family. Right: The same test but on real MLO-
BDM data, on the Lemons family. There is no strong diagonal and we cannot know without
checking every square which ones are real links.

especially evident in the larger families where there was a higher likelihood that they contain
a common name. An example of one such family is the one at index 0 on the x axis in 4.1
where many green squares are present.

Problems with the MATCH model:

• It does not include alignment in any way. This means that we are not able to specifi-
cally say which person is which, only that we suspect the two natural groupings con-
tain the same individuals.

• It is not robust to noise. This means that partial matches such as spelling mistakes or
nicknames are not counted.

4.2 Markov models for text - NGRAMS

An alternative way of assessing similarity between natural groupings without looking for
exact matches is to use a Markov model for text to identify the likelihood of b creating m.
Let us call this method NGRAMS going forward.

By the product rule we can write the probability of a string by the product of each char-
acter in the sequence conditioned on those that come before it as follows (where letters in tt

type indicate characters rather than variable names):

P(cat) = P(c) P(a|c) P(t|ca)

and so on. This cannot go on indefinitely as we do not have any good model of P(y|catter).
Markov models built on Ngrams truncate the prefix to some integer n which we set.

The simplest of these is a bag-of-words generative model in which we truncate the whole
string and set n to be zero. We can approximate the probability of a string S by the product
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of each character:

P(S) = ∏
i

P(si) (4.1)

where si is the ith character in S and P(S) is the overall probability of the character s in
some background corpus of text (like MLO), so that

P(cat) = Pr(c)Pr(a)Pr(t)

In log space this becomes additive:

log P(S) =
L

∑
i=1

log P(si) (4.2)

Graphically, for the name harata:

h a r a t a

Pr(h) Pr(a) Pr(r) etc

In a first-order Markov model we truncate to a prefix of a single character, so that we choose
our next letter based on the previous one:

h a r a t a

Pr(a|r)

The log likelihood is:

log P(S) = log Pr(s1) +
L

∑
i=2

log Pr(si | si−1) (4.3)

This bigrams model captures text structure at the pairs-of-letters level, but is blind to longer
range dependencies.

One can easily extend to a model based on trigrams (i.e. a 2nd order Markov model):

h a r a t a

For which the log likelihood is:

log P(S) = log Pr(s1) + log Pr(s2 | s1) +
L

∑
i=3

log Pr(si | si−2, si−1) (4.4)

and so on. The higher the order, the more long-range structure is able to play a role, but also
the higher the complexity of the model, with the attendant risk of over-fitting. We want a
model that generalises, but is simple to explain. Later on in this chapter we will experiment
over different values of n to set the size of the truncation.

As a general form,

log P(S) =
L

∑
i=1

log Pr(si | sprei) (4.5)
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where pre is the previous k characters for a kth order Markov model .
Regardless of the order of Markov model chosen, if the background corpus on which it

is based is D we could denote the per-character probability as PD(s|pre).
And if you were to build it based on a single string, say str, denote that Pstr(s|pre).
The strengths of this is that the model can calculate the probability of strings of any

length, and the approximation it makes is simple and explicit. Note P(m) is automatically
normalised:

∑
all m

P(m) = 1

A model for names that change

Our score is the log likelihood for string b to give rise to string m. To be plausible as a
model of name change, we want this to be strongly tied to b itself of course, but to also
admit the possibility of substantial additions or deletions: we want P(m) to be a long tailed
distribution.

We proposed a mixture of two distributions, the NGRAM distribution made from ele-
ments in b and the NGRAM distribution made from elements in BDM. For each character si
in S:

P(S) = β Pb(si) + (1− β) PD(s) (4.6)

with β a value that needs to be tuned/set. The model is that with β% chance the next
letter is based on the statistics of the key name (which is b), and (1-β)% chance that it is from
the background distribution of m-names in general. We will test for appropriate values of β
later in this chapter.

NGRAMS gives us a model for how a name (or several names) in b might give rise to a
single name m. This lets us find a natural way to evaluate a linkage between a b-set and
an m-set: a score log P(m|b) for a particular pairing. This allows us to evaluate log P(m|b),
either by averaging or optimizing the alignment, and hence let us compare different b-sets
as hypotheses for an m-set.

However it also suggests a very direct way to evaluate log P(m|b) without the need to
look find any alignments: We use substrings from b to generate substrings in m.

mi = name ∈ m (4.7)

PB denotes the NGRAMS model made from names in b

PD denotes the NGRAMS model made from names in BDM

We can find the log probability under the same β mixture above :

log P(mi | bi) =
|m|

∑
i=1

log P(si | sprei) (4.8)

where si are the characters in mi, with probabilities given by the mixture model:

P(si | sprei) = β PB(si |sprei )
+ (1− β) PD(si | sprei) (4.9)
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Note that PB is built from the strings of the b set. This means that there is no alignment-
specific content in this probability. The advantage of this is that it is a direct and highly
accessible way to score many sets of names. And the calculation is highly tractable. The
disadvantage is that there is no alignment information built into the score and two families
that are different but have the same n-grams distribution will score the same. For example
the b-set of [Wiremu, Piri, Atareta] is destined to get the same score as [Reta, Wiri,

Pemu, Ata]. And that equivalence will be true regardless of m.

How to calculate scores, log P(m|b)

We can think of feeding an automaton the string m̂ as a stream of characters, with the output
being a float: the log probability of that string.

• For each b, build the ngram distribution for b. It computes and stores a dictionary
for log P(si | sprei), as per Equation 4.9. It is able to ingest a string of characters and
output a float (as per Equation 4.8, Which is simple as it is just a sum of the appropriate
values).

• For each m, attempt to make mi given the Markov model PB , giving score S.

So for each m-set we’ve now got the top scoring b-sets and their scores. At the moment
each of the scores is in log space so to find P(m|b), we have to take the exponential of what
we have. We also need to normalise the scores to get the posterior probability under this
model.

4.3 Smoothing

The problem is that many of our m family NGRAM distributions contain combinations that
the b family distribution (and the base distribution) do not have. If, for example the m set
has a sub string zzql that it has simply never seen before in our base distribution or in the b
dictionary we have to be able to handle it as we cannot return zero for P(l|zzq). Returning
zero is bad as the probability of the ngram zzql occurring is obviously very low but it is
not actually never going to occur. Since we multiply the probabilities of all of the NGRAM

events together, one zero would lead to failure of the whole process. Adding some form of
smoothing protects us from this [57].

4.3.1 Additive smoothing

In additive smoothing a small parameter is added to all categories (even ones we have not
seen yet). This is so that when an unseen combination is found in m, we do not have to
return zero. The most common versions of additive smoothing are Laplace and Jefferies
[57]. In Laplace a count of 1 is added to the frequencies of each category respectively, for
Jefferies the same principal is used except a count of 1/2 is used. We are using a very low
smoothing coefficient in place of this count, where ε = 0.001. This returned instead of zero
when the probability of a string/sequence is not known. We are aiming to find families
where the distributions are very similar between the m and b sets.

The problem with this approximation is that in cases where there is a lot of unknown
values the P(b|m) is driven right down to pretty much zero.
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4.3.2 Backoff

Backoff smoothing is a more sophisticated alternative to additive smoothing. Murphy [59]
suggests that the solution to the problem with additive smoothing to use backoff smoothing.
This is where instead of using a fixed n, n is varied to find a distribution where we have
higher confidence in having seen that combination before [58].

Stupid Backoff first implemented by Google in 2007 [62] was chosen because it performs
almost as well as traditional backoff smoothing methods such as Katz [60] or Kneser-Ney
smoothing [61] but is much faster and simpler. In Stupid Backoff you check for the occur-
rence of your n-length string, if it has been seen before you return the probability of that
even occurring. If there has never been an occurrence of that substring before then n is tem-
porarily reduced by 1. The search is then undertaken at the new value of n, n being reduced
until an occurrence is found. Each time the n value is reduced a penalty term α is multiplied
to the final event probability, this represents the fact that we are less and less sure about the
word overall as n decreases.

For example: if we have the name Ssarha and n = 4, we would first look for Ssar, If we
have never seen Ssar before then we reduce to n = 3 look sar, then n = 2 ar and finally
n = 1 r.

S(wi|wi−1
i−k+1) =


f (wi|wi

i−k+1)

(wi|wi−1
i−k+1)

if f (wi|wi
i−k+1) > 0

αS(wi|wi−1
i−k+2) otherwise

This is slightly different from traditional backoff methods in which frequency tables are
used. In these other methods [61] [60] if the string has been seen before but frequency of
the event is too low, backoff occurs anyway. Stupid Backoff is slightly faster because the
frequency tables are not kept and backoff occurs only when the string has never been seen
before. The creators of Stupid Backoff Brants et al, commented that ”The name originated
at a time when we thought that such a simple scheme cannot possibly be good. Our view of
the scheme changed, but the name stuck”[62].

To compare Stupid Backoff against approximated additive smoothing we compared the
log likelihoods of the two methods on a representative sample of MLO. If the log likelihood
is higher this means that the method is performing better.

method n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8
Additive −6 571.732 −450.507 −187.922 −115.842 −83.733 −69.203 −59.893 −53.207
Backoff −6 571.732 −319.701 −53.800 −24.051 −17.503 −15.706 −15.161 −15.120

Table 4.1: Log likelihoods of (Stupid) Backoff and Additive (approximation) smoothing.
This table shows the differences between Stupid Backoff and an approximation comparison.
There is a clear divergence in the log likelihoods as the n value increases, larger values are
better as they are produced when the model is a better predictor.

Table 4.1 shows the Stupid backoff outperforming the additive smoothing method show-
ing a higher value. As n increases, the log likelihood of stupid back off is higher than the log
likelihood of the approximated additive smoothing at the same value of n. When n equals
1, there is no difference between the two methods. This is because both are effectively doing
the same thing, as the backoff model has no smaller n to backoff to. Both methods use the
same first order Markov model to produce the same result and have the same log likelihood.
At larger values of n, the stupid backoff model backs off when it cannot find the substring
it is looking for, and looks at a smaller n value. The additive model instead returns a very
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small constant. As n increases the more likely the additive model is to return only the small
constant and not a real probability. Therefore performance of the additive model decreases
as n increases, because it returns a value further and further from the truth.

4.4 Finding β and n

A series of tests and experiments were carried out to test the performance of this simpli-
fied ngrams model. The group-to-group method uses the MATCH and NGRAMS methods as
described earlier to evaluate P(m|b) and compare different b-sets as hypotheses for an m-
set. It is important to set a few of the threshold variables. The following experiments were
designed to test the performance of several different variables as well as the model itself.

We need to find an appropriate value of β, this is the mixing coefficient described in
Section 4.2. β sets the mixture of the distribution of the ngram frequencies from the b distri-
bution and the NGRAM frequencies base distribution made from a large partion of BDM-H
(PB and PD). A range of different β values were tested, from 0.0 to 1.0 at intervals of 0.1. We
also want to know how the different values of n perform, where n is the length of the sub-
string used by the NGRAMS method. n values from 1 to 8 were used. Base distributions of n
larger than 8 were too slow to calculate, store and load. We want to simulate a real scenario,
where siblings are not listed in MLO in the same order as they are in BDM. We tested the
algorithm against a data set where the family members within a subgroup are reordered, to
make sure that the order was not important.

These are aggregated results over the 446 families and 60 surnames from the test data
described in Section 3.2.1. A True Positive result is considered to have occurred when the
real family has the highest score. The performance of the methods on noisy data is most
important as we believe this to be the most like a realistic scenario. We cannot assess the
True Negatives without rejection. This is added in the next chapter.

4.4.1 MATCH performance

Noise True + False - True - False + Precision Accuracy f1
0.000 0.857 0.143 0.571 0.429 0.667 0.714 0.750
0.11 0.571 0.429 0.571 0.429 0.571 0.571 0.571
0.2 0.571 0.429 0.286 0.714 0.444 0.429 0.500
0.3 0.286 0.714 0.429 0.571 0.333 0.357 0.308
0.4 0.143 0.857 0.143 0.857 0.143 0.143 0.143
0.5 0.143 0.857 0.143 0.857 0.143 0.143 0.143
0.6 0.143 0.857 0.143 0.857 0.143 0.143 0.143
0.7 0.143 0.857 0.143 0.857 0.143 0.143 0.143
0.8 0.000 1.000 0.000 1.000 0.000 0.000 0.000
0.9 0.000 1.000 0.000 1.000 0.000 0.000 0.000
1.000 0.000 1.000 0.000 1.000 0.000 0.000 0.000

Table 4.2: Accuracy of the MATCH linkage method on test data. The accuracy of the algo-
rithm significantly decreases when the noise is increased. At zero noise the true positive rate
was high, correctly linking the right b set to the m set in 85.7% of m sets. When the level of
noise increased to even 0.1 the true positive performance decreased to just 57.1%. When the
noise rate was increased to more than 0.7, there were no true positive results recorded.

Table 4.2 shows the linkage accuracy of the very simple MATCH algorithm at a variety of
noise levels. Noise is applied using the noise model is discussed in section 3.2.2. This is the
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expected behaviour of the MATCH model, when noise is not present it is a simple and trivial
task to do exact name matches. Because we know that MLO is a noisy data set the poor
performance on noisy data shows precisely why more complex models and algorithms are
needed. This means that we would expect a high volume of noise and a simple name match
would not be sufficient.

4.4.2 NGRAMS model

β n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8
0 0.137 0.137 0.137 0.137 0.137 0.137 0.137 0.137
0.1 1.000 1.000 1.000 1.000 1.000 0.995 0.986 0.974
0.2 1.000 1.000 1.000 1.000 1.000 0.997 0.991 0.985
0.3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.996
0.4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.7 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.9 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 4.3: NGRAMS linkage performance with no noise. This table shows that the accuracy
across all n values is very good even at low values of β.

Table 4.3 shows the performance of the NGRAMS model over different values of β and
n. By varying β we are using different mixtures of the two distributions PB and PD. This
is the mix between the NGRAM probabilities that are drawn from the base distribution and
the NGRAM probabilities that are drawn from the names in the target b set. In this test the
performance of the model is poorer at the larger values of n. The accuracy was high until
n=6, where the accuracy drops off. The β value did not affect the results of the algorithm
much, except for when β was set to zero - i.e. when the mixture is mostly/entirely drawn
from the base distribution. That is as expected because all of the linkages contain exact
matches in our test data and we have applied no noise to this experiment.

If the parameters are set to have n = 1 and β = 0.0 (top row). This is because the model
has no information about the letters in each family and the results are drawn entirely from
the base distribution.

Figure 4.2 shows the behaviour of the model when the parameters are set to have n=3
and β=0.1. The brighter coloured squares represent an linkage that the model predicts to be
likely. Here you can see a diagonal forming, from bottom left to top right. Figure 4.3 shows
the results with increased β and introduced noise. There is a diagonal but it is not as clear
as in Figure 4.2. There is now sprinkling of incorrect predictions outside the diagonal.

4.4.2.1 NGRAMS model with noise introduced

By introducing noise in our test data we are able to test if our NGRAMS model are fragile or
robust. We will use the same settings as before and assess the accuracy of the

Table 4.4 shows that the accuracy across all n values is very good even at low values of β.
The introduced noise does lower the performance this suggests that the NGRAMS is robust
to noise.
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Figure 4.2: Scores for each family,
where n=4 and β = 0.2, noise = 0

Figure 4.3: Results for each family,
where n=6, β = 0.9, noise = 0.2

β n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8
0.000 0.137 0.137 0.137 0.137 0.137 0.137 0.137 0.137
0.1 0.997 0.985 0.979 0.957 0.944 0.910 0.876 0.903
0.2 1.000 0.977 0.972 0.975 0.958 0.928 0.936 0.924
0.3 0.995 0.996 0.978 0.978 0.973 0.944 0.941 0.927
0.4 0.997 0.985 0.977 0.969 0.966 0.947 0.944 0.935
0.5 0.997 0.997 0.989 0.984 0.986 0.959 0.959 0.939
0.6 0.992 0.994 0.986 0.984 0.976 0.958 0.963 0.939
0.7 0.998 0.992 0.987 0.981 0.966 0.935 0.942 0.908
0.8 0.994 0.981 0.977 0.973 0.951 0.947 0.918 0.923
0.9 0.996 0.985 0.985 0.966 0.951 0.935 0.917 0.929
1.0 0.985 0.980 0.966 0.945 0.905 0.893 0.882 0.830

Table 4.4: True positive accuracy on test data using the NGRAMS linkage method with
noise = 0.2. Accuracy was very high across all values of βandnandbestatn=1andβ = 0.6. This
is a change from when there was no miss-spellings where the performance was fairly even
across all of the values of n but a high β was important (likely due to the lack of introduced
spelling errors). Accuracy’s at the larger β values is also poor, this can be explained by the
fact that at β = 1 the distribution is solely drawn from the b set distribution.

4.4.3 Values for β and n

Because True Positive linkage accuracy was very good across all β and n values (except for
β = 0) we have chosen to use β = 0.5 and n = 4 for further experiments. Whilst all values
of β show good performance, having an even mixture of PB and PD will prevent over fitting
to the b set.
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Chapter 5

Rejection Methods

In order to asses the performance of the group-to-group linkage algorithms from Chapter 4
we developed several rejection methods which accept or reject the candidate linkage found
in Sections 4.1 and 4.2. We need to determine if any of the chosen families are likely to be a
real match or just the best performing comparison from a set of low probability families. The
following methods evaluate the results distributions for each family and determine which
linkages we should reject.

Three methods are assessed are:

• A threshold defined by the worst result, when the names in a family are compared
against itself (AL1).

• An entropy assessment which uses the property of surprise or uncertainty to distin-
guish real matches from poor ones (ENTROPY).

• A threshold defined by the ability of PD to generate m compared to PB (BTN).

5.1 Rejection setup

5.1.1 Assessing Classifications and Correctness

After the linkage methods have been applied to the data set, and records have been linked or
not linked to other records, an assessment needs to be done on the correctness of these links.
In principle this is only possible to calculate on labeled data. In a traditional classification
problem there are four different possible classifications that could be made.

• True Positive - this is defined as two groups of records correctly matched by the algo-
rithm, i.e. two groups that relate to the same ground truth family.

• False Positive - This is defined as two groups of records that are matched by the algo-
rithm but actually refer to two different ground truth families.

• True Negative - this is defined as two groups of records that were correctly not matched
by the algorithm and relate to two separate ground truth families.

• False Negative - this is defined as two groups of records that are incorrectly not matched
by the algorithm and actually do relate to the same ground truth family.
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Figure 5.1: Confusion Matrix. This figure shows the different confusion values depending
on the predicted outcome and actual value.

These four classifications can be seen in Figure 5.1.1 which shows a visual definition
comparing actual value to predicted value.

The number of true linkages (P) is the sum of the correctly linked records and the false
negatives: P = TP + FN. The number of linkages that the algorithm estimates (E) is the
sum of the correctly linked records and the incorrectly linked records: E = TP + FP

These can be looked as a rate of correctness: the False positive rate and the False negative
rate are usually used in assessment of classification models or algorithms.

FNR =
FN

TP + FN

FPR =
FP

FP + TN

We have used the additional measures of accuracy, precision and the F1 score to assess
the performance at various threshold levels. Accuracy is a measure of truth and answers the
question of ”how good a predictor is the algorithm”. Low accuracy occurs when real links
are not found and when false links are wrongly thought to be real.

Accuracy =
TP + TN

TP + FP + TN + FN

Precision is a measure of variability.

Precision =
TP

TP + FP

The results of a set of data can be said to be accurate if the average result is close to the
true value of the quantity being measured. In our case accuracy occurs when true linkages
are classified as being true and false linkages are classified as being false. Results can be said
to be precise if the values being measured are close to each other.

F1 is a the harmonic mean of the precision and recall (recall being the fraction of true
links correctly classified), which is a commonly used measure for natural language process-
ing applications [65].

F1 =
2 · TP

2 · TP + FP + FN
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5.1.2 Rejection Data

In order to test the effectiveness of our methods we need to add suitable negative cases to
our existing test data set (described in section 3.2.1). The rejection test data needs to be
very similar to the real set, but without the true family. We took the true test data from
Section 3.2.1 and for each family comparison, replaced the ”true” family with a random
family. The new random family is generated randomly from names in the BDM-H test
set. First, by selecting a random number of family members between 2 and 10 and then
randomly selecting this number of first names from BDM-H names. For example in this
fictional comparison:

b = [alice, jane, wiremu], [james, john, kate], [henry, mathew, valerie]

The family of interest [alice, jane, wiremu], is replaced by [ariana, geoff, tama]. So b be-
comes

b* = [ariana, geoff, tama], [james, john, kate], [henry, mathew, valerie]

.
It is important to have good test rejection data so that we have evidence our rejection

methods can reject real looking negative linkages as well as obvious mistakes. This is why
the replacement families must be generated by BDM training data. A poor choice of re-
placement in the example above would be [zzzzz, mmmm, 3tgs2] because it would never ever
appear in the training data. This gives us confidence that our results are reasonable and our
methods could be used on real data.

5.2 At-Least-1 - AL1

When an employee of PKW looks at two lists of shareholders they assess similarity by check-
ing for individuals who appear in both lists . As humans we can identify matches even when
there are partial matches i.e. spelling mistakes or nicknames. We would not think that two
groups of people had any chance of being linked unless there was at least one match. Lets
look at a ”test case” in which b = [Thomas, Steve, Bob] and m = [Stephen, Thomas, Jerry]. If
you simply count the exact matches, you get a score of 1 for the theory that b made m:

[Thomas, Steve, Bob]→ [Stephen, Thomas, Jerry]

This linkage is at least a candidate, and as it’s got a perfect match between Thomas and
Thomas. It seems like it should be more convincing than, say, an empty list making m:

[]→ [Stephen, Thomas, Jerry]

But the test case also has a second, but partial, match (Steve). Maybe one match is
suspicious, but intuitively two starts to get quite convincing. So instead of only counting
exact matches, we would rather allow partial matches (like Steve - Stephen) to play a role
too. So if we were to use the naive approach where

P(M|B) = ∏
i

P(mi|B)

(with i counting the elements of m) means we get

P(m|b)
P(m|φ) ≈

∼ 1× 1× 0
ε3
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where ε is the rough probability of a name under the background distribution (which will
typically be pretty small, but not microscopic).

The almost-zero on the numerator (probability of Jerry under the Thomas and Steve

counts) acts like a ”veto”, killing that probability. This model does not favour b over φ: so
this linkage is not a candidate.

This is where the property of the NGRAMS method becomes useful, with the Steve -

Stephen match, there is a 3 letter overlap. So where n < 4 there should be ”points awarded”
to this match.

We propose the use of a probabilistic threshold value of P(m|b) that is set to be as good as
a single perfect match. This makes use of the benefits of the NGRAMS methods, that allow for
partial word matches and misspellings. We want this method to keep family comparisons
who do at least as well as a match with one name exactly correct. This could be in the form
of two partial matches or six tiny partial matches where n=2 , but we want there to be some
resemblance.

5.2.1 How to reject with AL1

For a linkage between an m = [m1, m2, . . . mM] and a b = [b1, b2, . . . bM], calculate

O = {s|s is theP(m|b), there b = [mi]}

Each element in O is the P(m|b) where b = [mi] for each mi ∈ m. We will reject a linkage
if the minimum of the :

Classi f ication =

{
accept if P(m | b) ≥ min O
reject otherwise

(5.1)

Let us look at this using our example from earlier with Thomas,Steve and Bob. Because:

[Thomas, Steve, Bob]→ [Alice, Jane, Wiremu]

Has a lower score than the worst score from:

[Thomas, Steve, Bob]→ [Thomas]

[Thomas, Steve, Bob]→ [Steve]

[Thomas, Steve, Bob]→ [Bob]

Then we would reject [Alice, Jane, Wiremu]. But we would not reject a set [Alice,
Bob, Wiremu] as there is one exact match and it therefore would produce a higher score.

5.3 A threshold using ENTROPY

We can make use of the Shannon entropy of the posterior distribution P(b|m), which reflects
how much the distribution is spread out over the available families. Low entropy points to
a strong winner or winners, and hence we might reasonably reject all candidates that exceed
some threshold. From information theory, Entropy can be interpreted as the average level of
information or surprise, represented by a given distribution. The idea of information entropy
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Figure 5.2: The comparison of ENTROPY values for the Armishaw family. The green data
points represent positive linkages and the red represent negative ones. The red comparisons
are against b sets from the Lemon family. This is the resulting entropy values when tested
with noise = 0.

was introduced in ”A Mathematical Theory of Communication” by Claude Shannon in his
1948 paper [63]. Entropy is defined as

S(x) = −
n

∑
i=1

p(xi) log2 p(xi).

where x is the random variable, with possible outcomes xi, each with probability P(xi),
the entropy S(x) of X. We also need to be able to relate thresholds for different choices of n,
so divide the entropy by its maximum possible value, log2(n) so it varies in the range 0 to 1.

5.3.1 How to reject using an ENTROPY threshold

We take the entropy S of the distribution of P(m|b)∀b ∈ B (where B is all of the BDM
groups for this surname). We set a rejection threshold T, and where the entropy divided by
log2(length(B)) is greater than T will be rejected. We use the log of the family length so that
when we can set an appropriate threshold value that is focused on the uncertainty of the
results for each family that is not dependant on the length of the family. Otherwise there
would need to be a different T for each different length of B.

5.3.2 An example

In 5.2 the entropy of two last name family comparisons are displayed. The blue is the failure
case and the red is the successful one. In the successful case each Armishaw - Armishaw
comparison is compared to the entropys of when each Armishaw family is compared to the
Lemon family.

This suggests that we can use entropy to reject negative linkages. By calculating the
entropy for a perfect case and using it to compare imperfect cases like the real lemons family,
we can rule out cases where the P(m|b) appears to be significant but is actually not.

There is a very clear division between the entropy of a comparison containing a real
match and the entropy of a comparison to an arbitrary family in Figure 5.2.
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5.3.3 The flaws of ENTROPY

Entropy assesses relative probabilities in p(b|m) but is blind to absolute values in the likeli-
hood p(m|b), so there is no corollary with the intuitively reasonable (if naive on its own)
requirement that at least one good match between people should be present for a match be-
tween families to be plausible. Even if none of the available b are correct we might still get
a low entropy due to chance. For example, considering a particular m, if one b includes a
single name that matches while the others do not, the entropy could be low despite all these
p(m|b) being low.

5.4 Better than nothing - BTN

Consider the generative probability P(b|m) where P(x|y) is the usual Ngrams model based
on data in y and m is (just) one of the names in m itself. The max Rm = max

m∈m

[
P(m | m)

]
provides a baseline measure of how hard a string like m is to predict, from pieces of itself. This is
a similar concept to the better than one method described above.

We consider the ratio between P(m | b) and Rm : a value > 1 indicates that b provides
about as much help in predicting m as would one name alone taken from m itself. Taking
logs yeilds a score

Sm|b = log P(m | b)− log Rm

with scores above zero indicating ‘suspicious coincidences’ in the above sense.
This method compares the probability of a comparison where beta = 0 (so effectively

P(m | null)) and a ”regular” beta = 0.5. The point is that when the P(m | b) is more than
the P(m | null) then the B family probably isnt very good. We want a real match to ”win”
this comparison and it should, because a distribution derived from the real B will almost
certainly perform better than using the base distribution.
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Chapter 6

Results of the Group-to-Group
linkage methods

This chapter assess the accuracy and performance of the group to group linkage methods
described in Chapter 4 and the rejection methods described in Chapter 5 on test data. This
chapter aims to test each element and to comment on the successes and deficiencies of each
method in order to find a suitible combination of linkage and rejection methods. Subject to
the noise model described in Section 3.2.2, we would like to answer the following questions:

• Which linkage method is the best (MATCH, NGRAMS)?

• Which rejection method is best (AL1, ENTROPY, BTN)?

• Which value of the ENTROPY threshold is the best?

• How much noise can the algorithm handle?

This chapter is broken up into different sections based on the three different rejection
methods. Each rejection method was tested with each of the linkage methods. The same test
data set has been used as in the previous chapter.

6.1 The At-Least-1 rejection method - AL1

The AL1 rejection method will reject the linkage when the score from the comparison is
worse than when the m family is compared to a single one of its members. The AL1 rejection
method was applied to both MATCH and NGRAMS linkage methods. The results of both of
these linkage methods on test data can be seen in Table 6.1. The results of both of these
linkage methods on test data with noise introduced can be seen in Table 6.1. The noisy
results are a much more useful predictor of performance on real MLO data than the clean
data because we know that the real data is messy. In a noisy situation AL1 was able to
reject more negative families than it was in the noiseless case. The best combination was
with the NGRAMS linkage method where the precision, accuracy scores are the best. It is still
worth noting that it is not performing very well as it is only able to reject 84% of non match
families.

6.2 The ENTROPY rejection method

Figure 6.1 the ROC curve (Receiver Operating Characteristic) which plots the rate of True
Positive classifications to False Positive classifications is shown at different levels of noise in
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linkage True + False - True - False + Precision Accuracy F1
MATCH 0.996 0.004 0.124 0.876 0.532 0.560 0.694
NGRAMS 1.000 0.000 0.050 0.950 0.513 0.525 0.678

Table 6.1: Performance of AL1 rejection method with no noise on test data. Across both of
the linkage methods the AL1 method is not able to reject the majority of the true negatives.
All of the methods produce low precision and accuracy. The F1 score is higher than the
precision and accuracy scores because it is primarily focused on the ability to predict true
positives.

linkage True + False - True - False + Precision Accuracy F1
MATCH 0.740 0.260 0.210 0.790 0.484 0.475 0.585
NGRAMS 0.936 0.064 0.159 0.841 0.527 0.547 0.674

Table 6.2: Performance of AL1 rejection method on test data with noise = 0.2. Like on the
clean data, the AL1 method is not able to reject the majority of the true negatives when noise
is introduced. All of the methods produce low precision and accuracy, lower now that noise
has been introduced. Again the F1 score is higher than the precision and accuracy scores
because it is primarily focused on the ability to predict true positives.

the test ground truth data set. We use this to understand how the ENTROPY rejection method
performs on a range of noisy data. The perfect result would be a curve that has a coordinate
of (0,1) and hits the very top left corner as this would mean that it had a 100% True positive
and a 0% false positive rate. The NGRAMS model performed very well, and was robust to
increased noise in the data. As expected the MATCH linkage method was not robust to noise
and whilst performing well on clean data performed poorly on noisy data.

Figures 6.2 and 6.4 show the different entropy values produced for each m family when
compared to the b families with the same surname. Figures 6.3, 6.5 show the same thing
but when the experiments are run on a noisy data. Each green point represents a family that
does originate in b ∈ Bm (ie. a case we would like to pass) while each red is the same for a
different (and wrong) set of families, which we would like to exclude. The families appear
on the graph sorted by the positive value, hence the green values decrease from left to right.
In setting a threshold for entropy we would want most cases that have high entropy should
be excluded (red) while most that are low should ideally pass (green).

6.2.1 The MATCH linkage method with ENTROPY rejection

When the ENTROPY threshold rejection method is used with the MATCH linkage method, we
see promising results. ENTROPY produces much better results than the match and al1 rejec-
tion methods. On the noiseless test data set Figure 6.2 shows a division between positive
and negative families. The green points are generally in the lower half of the graph, and the
red points are consistently in the top half. The entropy values of the MATCH linkage method
in Figure 6.2, is linearly separable between matching and unmatched families due to the
binary nature of this linkage method. Each comparison is concerned only with the number
of identical matches. This means that to score highly there must be many identical matches,
and in a comparison with no identical matches there will be a score of zero. In Figure 6.2
we see this the majority of the green points where a real match exists are at the bottom, and
the majority of the red points where there is no real match, are at the top. This means that
entropy is a suitable measure of family fit. This is good because it means that the data lends
itself well to a threshold. It is fairly obvious that an appropriate threshold exists where most
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Figure 6.1: The Receiver Operating Characteristic curves for different linkage methods
with Entropy rejection. The MATCH linkage method with no noise has an almost perfect
curve, this can be seen in the red squares. When noise is introduced, performance drops
significantly. This is shown in the orange squares. This highlights the fragility of the identi-
cal string matches. The best performing linkage method was the NGRAMS model shown in
blue. With no noise, the ROC curve is almost as good as the MATCH method with no noise.
The model with noise introduced is shown in green. This method performs almost as well
as the MATCH and NGRAMS methods without noise.

of the green squares will be accepted and most of the red ones will be rejected. When the
experiment is run on noisy data, the ability of the method to reject incorrect comparisons
becomes much worse. The noise in the data means that there are a lot less exact matches
and so the scores are lower. The accuracy values decrease and we can see when comparing
Tables 6.3 and 6.4, that this occurs at all threshold values. Interestingly the precision values
are higher in the noisy table which means that in general the data points are closer together.
This is visible in Figure 6.3, where the red and green points are positioned close together at
the top of the graph. Both Figure 6.2 and Figure 6.3 suggest that ENTROPY may be used to
distinguish between positive and negative cases.

6.2.2 The NGRAMS linkage method with ENTROPY rejection

When the ENTROPY threshold rejection method is used with the NGRAMS linkage method,
we see even more promising results. ENTROPY thresholding produces the best results so
far. On the noiseless test dataset Figure 6.4 shows almost most of the positive families at
a near zero entropy value and the negative families with much more vertical spread. The
green points are always at the very bottom of the graph, and the red points are spread out
across the whole graph. The real matches in general all have lower entropy values than
their corresponding non-match. Like the MATCH linkage method the positive and negative
data points are not linearly separable. This suggests that ENTROPY is an appropriate method
for rejection. We can eliminate a significant proportion of non matches while still accepting
most of the real matches. Tables 6.3 and 6.4 show that an appropriate threshold exists where
most of the green points will be accepted and some of the red points will be rejected. On
noisy data, the ability of the method to reject incorrect comparisons decreases. The accuracy
values decrease and we can see when comparing Tables 6.5 and 6.6, that this occurs at all
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Figure 6.2: Comparison of the entropy for each family, using the MATCH linkage method,
noise = 0. The data points (one per family) are sorted by the green value. The values are
plotted using a scale of S

log2(N)
so that they would all be in the range of zero to one. The

positive (green) points are generally in the lower half of the graph, and the red points are
consistently in the top half. Note the lack of correlation with the red values.

threshold values. The best accuracy is 0.9 with a threshold value of 0.1 when noise is not
present in the data. This only decreases to 0.82 with the same threshold value when noise
is introduced. Noise is at a level of 0.2 as per Section 3.2.2 Both Figure 6.4 and Figure 6.5
suggest that ENTROPY may be used to distinguish between the positive and negative cases.

6.2.3 What effect did the noise have?

Figures 6.3 and 6.5 show the different values of entropy produced for each m family when
compared to the b families with the same surname when noise is introduced. Adding noise
to the test data caused some of the entropy values to increase - this occurred for all of the
linkage methods. It is particularly obvious for the MATCH linkage method where in Figure
6.2 there is a fairly even distribution of families top and bottom, whereas in Figure 6.3 when
is noise present there is a high concentration of families at the top of the graph and very
few at the bottom. This means that there is much more uncertainty in the distribution of
surname group. Now, instead of having low entropy the red squares (the real comparisons)
are more uncertain and have drifted to the top. This is likely to be because the noise in-
troduces spelling mistakes and removes names completely and identical matches that have
been removed. This means that the clear advantage that the true match would have had has
been reduced.

With the noisy NGRAMS model, the behaviour is similar to the noiseless MATCH model.The
accuracy and precision scores shown in Table 6.6 are still pretty high.

6.3 The Better Than Nothing Method - BTN

The BTN rejection method, described in Section 5.4, compares each family-family compari-
son to what would have happened if the same had been generated by the base distribution.
A result will be rejected when the score from the comparison P(m|b) is worse than the com-
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Figure 6.3: Comparison of the entropy for each family, using the MATCH linkage method,
noise = 0.2. The positive green points are generally in the lower half of the graph, and the
red points are consistently in the top half. However by introducing noise about half of the
green points are now amongst the red. This will be because noise will mess up name strings
and so there will no longer be identical matches.
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Figure 6.4: Comparison of the entropy for each family, using the NGRAMS linkage
method, noise = 0. Almost all of the positive green points sit at the very bottom of the
graph, and the red points are spread out fairly evenly from 0 to 1.
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Figure 6.5: Comparison of the entropy for each family, using the NGRAMS linkage
method, noise = 0.2. Almost all of the positive green points sit at the very bottom of the
graph, and the red points are spread out fairly evenly from 0 to 1. Compared to the noise-
less model, there are more high entropy positive green points, this can be seen in a longer
slope at the start of the green curve.

parison of the same m family drawn only from the base distribution, rather than from the b
family i.e. P(m|null).

This rejection technique does not apply to the MATCH linkage method. The MATCH link-
age method looks only at exact matches and does not draw from the base distribution or
use Ngrams at all. We have applied the BTN model to the NGRAMS linkage model. Figure
6.6 shows the distribution of scores for both the positive and negative linkages on our test
ground truth data set. This shows that BTN threshold is able to distinguish between the two
cases most of the time.

When this method was first presented in Section 5.4 we proposed that any comparison
”with scores above zero indicating ‘suspicious coincidences’ in the above sense.” should be
rejected. However it appears that there might be some better results if the threshold were
set higher. This suggests that the ratio between P(m | b) and Rm might be somewhat larger
than 1.

The BTN rejection in combination with the NGRAMS linkage method performed very
well (see Tables 6.7 and 6.8). The NGRAMS linkage method produced a best accuracy value
of 0.957 (threshold = 0.1) and a precision value of 0.921 at the same threshold on non noisy
data. On noisy data the NGRAMS linkage method produced a best accuracy value of 0.851
(threshold = 0.1) and a precision value of 0.914 at the same point. The BTN method appears
to correctly reject almost all of the non matches and does not interfere with the true cases.
These Tables also show that the introduction of noise is not creating significant disruption
in the scores, as the accuracy is only decreasing by less than 0.1 when this very significant
amount of noise is introduced.

The BTN rejection method produces much smoother results than ENTROPY. This method
is by far the best performing rejection method analysed in this chapter. The ROC curve
shown in Figure 6.7 lets us compare the performance of the methods. This visualises what
Tables
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Test data, noise = 0 Test data, noise = 0.2

Figure 6.6: Histograms of scores from NGRAMS linkage method with BTN rejection. His-
tograms of scores using the BTN method 5.4. The BTN rejection method in the no noise situ-
ation (left), and the same approach with noise = 0.2 (right). Both have n = 4 and β = 0.5. The
green, like in previous examples are comparisons where the real family is present and the
red are rejection comparisons where the real family has been replaced by a randomly gener-
ated one. There is a clear difference between positive and negative cases for both noisy and
clean cases.
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Figure 6.7: The Receiver Operating Characteristic curve for NGRAMS linkage methods
with BTN rejection. All of the the ROC curves in the diagram are very promising. The
NGRAMS linkage method performs well, Performance is good both with clean data and
when noise is introduced. This is shown in the blue and the purple lines.
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Threshold True + False - True - False + Precision Accuracy F1
0.0 0.000 1.000 1.000 0.000 NaN 0.500 0.000
0.1 0.478 0.522 0.995 0.005 0.989 0.736 0.644
0.2 0.589 0.411 0.991 0.009 0.984 0.790 0.737
0.3 0.704 0.296 0.984 0.016 0.978 0.844 0.819
0.4 0.817 0.183 0.967 0.033 0.961 0.892 0.883
0.5 0.873 0.127 0.941 0.059 0.937 0.907 0.904
0.6 0.902 0.098 0.914 0.086 0.913 0.908 0.907
0.7 0.936 0.064 0.864 0.136 0.874 0.900 0.904
0.8 0.960 0.040 0.788 0.212 0.819 0.874 0.884
0.9 0.993 0.007 0.537 0.463 0.682 0.765 0.809
1.0 0.996 0.004 0.024 0.976 0.505 0.510 0.670

Table 6.3: Performance of ENTROPY rejection method on test data, using the MATCH link-
age method with no noise. The threshold uses a value of S

log2(N)
so that all of the values are

in the range zero to one. The best accuracy occurred at a threshold value of 0.6, however
there was also high accuracy at 0.4, 0.5 and 0.7. Generally this method was able to correctly
reject negative cases.

6.4 Summary

The best combination with the linkage method NGRAMS was the with ENTROPY rejection
method. The NGRAMS-AL1 combination was not able to correctly reject the false families,
and produced a very small number of True Negative results. The ENTROPY results are very
different between the different methods. The threshold for the MATCH linkage method for
the best precision/accuracy with noisy data is 0.9, whereas the threshold is a lot lower for
NGRAMS linkage performing best at 0.1.

The MATCH linkage method is very good at identifying True Positives but very bad at
rejecting True Negatives or handling noise when it was added with all of the rejection meth-
ods. The MATCH linkage method was only applicable to the AL1 and the entropy rejection
methods.
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Threshold True + False - True - False + Precision Accuracy F1
0.0 0.000 1.000 1.000 0.000 NaN 0.500 0.000
0.1 0.034 0.966 1.000 0.000 1.000 0.517 0.066
0.2 0.044 0.956 1.000 0.000 1.000 0.522 0.084
0.3 0.078 0.922 1.000 0.000 1.000 0.539 0.145
0.4 0.113 0.887 0.996 0.004 0.966 0.554 0.202
0.5 0.146 0.854 0.997 0.003 0.981 0.572 0.255
0.6 0.223 0.777 0.988 0.012 0.949 0.606 0.361
0.7 0.292 0.708 0.976 0.024 0.924 0.634 0.444
0.8 0.348 0.652 0.965 0.035 0.909 0.657 0.504
0.9 0.516 0.484 0.895 0.105 0.831 0.705 0.636
1.0 0.745 0.255 0.174 0.826 0.474 0.460 0.580

Table 6.4: Performance of ENTROPY rejection method on test data, using the MATCH link-
age method with noise = 0.2. The best accuracy occurred at a threshold value of 0.9. The
noise in the test data significantly impacted the MATCH methods ability to correctly reject
negative cases. The accuracy numbers are much lower at every threshold value.

Threshold True + False - True - False + Precision Accuracy F1
0.0 0.000 1.000 1.000 0.000 NaN 0.500 0.000
0.1 0.950 0.050 0.855 0.145 0.868 0.902 0.907
0.2 0.978 0.022 0.774 0.226 0.812 0.876 0.887
0.3 0.987 0.013 0.670 0.330 0.749 0.828 0.852
0.4 0.989 0.011 0.549 0.451 0.687 0.769 0.811
0.5 0.995 0.005 0.446 0.554 0.642 0.721 0.781
0.6 0.998 0.002 0.304 0.696 0.589 0.651 0.741
0.7 1.000 0.000 0.173 0.827 0.547 0.586 0.707
0.8 1.000 0.000 0.086 0.914 0.522 0.543 0.686
0.9 1.000 0.000 0.014 0.986 0.504 0.507 0.670
1.0 1.000 0.000 0.000 1.000 0.500 0.500 0.667

Table 6.5: Performance of ENTROPY rejection method on test data, using the NGRAMS

linkage method with no noise. The best accuracy (0.902) occurred at a threshold value of
0.1. Performance decreased as the threshold increased. The NGRAMS method was able to
reject negative linkages.
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Threshold True + False - True - False + Precision Accuracy F1
0.0 0.000 1.000 1.000 0.000 NaN 0.500 0.000
0.1 0.785 0.215 0.851 0.149 0.840 0.818 0.812
0.2 0.853 0.147 0.772 0.228 0.789 0.812 0.820
0.3 0.898 0.102 0.704 0.296 0.752 0.801 0.818
0.4 0.925 0.075 0.583 0.417 0.690 0.754 0.790
0.5 0.947 0.053 0.414 0.586 0.618 0.680 0.748
0.6 0.960 0.040 0.307 0.693 0.581 0.634 0.724
0.7 0.972 0.028 0.194 0.806 0.547 0.583 0.700
0.8 0.962 0.038 0.090 0.910 0.514 0.526 0.670
0.9 0.985 0.015 0.015 0.985 0.500 0.500 0.663
1.0 0.979 0.021 0.000 1.000 0.495 0.490 0.657

Table 6.6: Performance of ENTROPY rejection method on test data, using the NGRAMS

linkage method with noise = 0.2. The best accuracy (0.818) occurred at a threshold value
of 0.1. Performance decreased as the threshold increases. The NGRAMS method was able to
reject negative linkages. The noise in the test data did not significantly impact the MATCH

methods ability to correctly reject negative cases. The accuracy numbers are only slightly
lower at each threshold value.

Threshold True + False - True - False + Precision Accuracy F1
0.0 1.000 0.000 0.710 0.290 0.775 0.855 0.873
0.1 1.000 0.000 0.914 0.086 0.921 0.957 0.959
0.2 0.851 0.149 0.967 0.033 0.963 0.909 0.904
0.3 0.614 0.386 0.988 0.012 0.980 0.801 0.755
0.4 0.408 0.592 0.998 0.002 0.994 0.703 0.578
0.5 0.253 0.747 0.998 0.002 0.991 0.625 0.403
0.6 0.174 0.826 1.000 0.000 1.000 0.587 0.296
0.7 0.120 0.880 1.000 0.000 1.000 0.560 0.215
0.8 0.072 0.928 1.000 0.000 1.000 0.536 0.134
0.9 0.046 0.954 1.000 0.000 1.000 0.523 0.088
1.0 0.033 0.967 1.000 0.000 1.000 0.517 0.065

Table 6.7: Performance of BTN rejection method on test data, using the NGRAMS linkage
method with noise = 0. As the threshold value increases the precision decreases. Aside
from when the threshold is at zero, the accuracy decreases as the threshold increases. The
best Accuracy is at a threshold value of 0.1.
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Threshold True + False - True - False + Precision Accuracy F1
0.0 0.954 0.046 0.653 0.347 0.733 0.803 0.829
0.1 0.775 0.225 0.927 0.073 0.914 0.851 0.839
0.2 0.526 0.474 0.975 0.025 0.954 0.750 0.678
0.3 0.314 0.686 0.993 0.007 0.977 0.653 0.475
0.4 0.150 0.850 1.000 0.000 1.000 0.575 0.261
0.5 0.103 0.897 1.000 0.000 1.000 0.552 0.187
0.6 0.056 0.944 1.000 0.000 1.000 0.528 0.107
0.7 0.038 0.962 1.000 0.000 1.000 0.519 0.074
0.8 0.012 0.988 1.000 0.000 1.000 0.506 0.023
0.9 0.013 0.987 1.000 0.000 1.000 0.506 0.026
1.0 0.007 0.993 1.000 0.000 1.000 0.504 0.015

Table 6.8: Performance of BTN rejection method on test data, using the NGRAMS linkage
method with noise = 0.2. The performance is much the same when noise is introduced. The
best Accuracy is 0.851 when the threshold is 0.1, shown in the bold print.
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Chapter 7

Methods for finding the best
alignment

This chapter motivates and outlines a way forward in addressing the full alignment prob-
lem. We will be linking groups in MLO to ones in BDM by looking at the best alignments
between the groups. In practice it is also, of course, very natural to think of a specific align-
ment when considering the plausibility of one group versus another: “What if James in b is
really Jimmy in m?” and so on. The main advantage of a solution built in terms of specific
alignments is that it ensures that an individual is only accounted for once: “If the James W

in b also had the middles names of Andrew and David, he could in theory be counted 3 times
when compared with a family in m with 3 brothers: James, Andrew and David ”.

If the data set is trustworthy and it is believed that is has all the right people just mis-
spelled then looking for the best alignment is both possible and of advantage. However if
it is believed that (one or both) of the data sets are of poor quality then choosing a specific
alignment could decrease the ability to find the correct family.

7.1 With alignments

What is the probability of some set of names m, given they originate from a set of (named,
identified) people b? We are interested in the actual alignment of individuals because we
want to know if each person in m is in b.

By the sum rule of probability,

P(m | b) = ∑
z∈Z

P(m, z | b) (7.1)

= ∑
z∈Z

P(m | z, b) P(z | b) (7.2)

Note we can drop the b in the second reduces to just B, leaving

P(m | b)︸ ︷︷ ︸
F

= ∑
z∈Z

P(m | z, b)︸ ︷︷ ︸
f (z)

P(z | B)︸ ︷︷ ︸
p(z)

(7.3)

These 3 probabilities are worth giving shorter ”names” to, for future reference.

• F = P(m | b) the marginal likelihood is what we want to find.

• f (z) = P(m | z, b) is the likelihood of the names, given source b and alignment z.
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• p(z) = P(z | b) is the prior over alignments.

The quantity we need to calculate is therefore

F = ∑
z∈Z

f (z) p(z) (7.4)

Because this is represents what PKW are trying to do when they are looking for missing
shareholders. If we know F (up to a proportionality constant) for each b ∈ B we can readily
1 find the quantity we’re really interested in: P(b|m).

Even without specifying f (z) and p(z) in detail though, we can look at what is required
for inference, namely the computation of F.

7.1.1 Why is this hard?

In reality the whakapapa or family structure and the gender of a baby determines what
name it gets. PKW need to identify the real identities of shareholders who have money to
collect. We need to be able to infer these identities at scale (the whole of MLO) but only. If
we can model this scenario/world/situation then we can get the posterior distribution (the
probability of the names given the sets). At an individual level this could be perceived as
simple however, the actual inference problem is massive and non-trivial. It is the type of
task that is difficult even for the human expert: Their choices rely on a variety of separate
data sets, years of experience and an knowledge of Māori whakapapa.

We can calculate the probability of two sibling groups given the names inside. By using
Bayes inference, we can invert this probability with Bayes theorem and get the probability
of alignment given the two sets. Calculating f (z) is hard. This is because we do not know
which person from each group is from the other group. This means that naively there are
at least (n

m) combinations plus additional alignments where people do not match at all and
match to a person outside of the group. This is a huge number of sets to check and does not
scale at all.

The brute force approach is to find F exactly, by calculating the whole sum. This means
working out all of the different possible alignments/linkages and then calculating the p(x)
for each alignment.

The main problem with this is that there are a lot of possible linkages z ∈ Z : When
|b| = |m| there are |Z| = |b|! because there are |b|! different permutations of m to try
against b. When |b| 6= |m| something like |Z| =b Cm.

The brute force approach will only be feasible when either B or M is small and so the
resultant sum is also small. We have included the brute force approach in explanation only
and its results are not included in this thesis because they are always correct, not very inter-
esting and incredibly slow.

7.2 Model for f (z)

Our generative model, f (z) is the likelihood of a set of names, given source b and alignment
z. In order to build p(m|b, z), and from there to p(m|b), which is ∝ p(b|m), we need models
for p(m|b) and p(m|null). p(m|null) lets us represent a linkage structure in which given
an individual in MLO there is no relevant record in BDM.

1ie. by normalising over all the F values arrived at for b ∈ B
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If names in MLO, given birth name, are independent of the names of siblings, then this
factorizes as follows:

f (z) = P(m | z, b) (7.5)

=
M

∏
j=1

P(mj | bzj) (7.6)

Working in log space has numerical advantages, because we can add instead of multiply.
It is more convenient to work with S = log f and use this as a score instead,

S(z) =
M

∑
j=1

Sj,zj (7.7)

where

Sj,zj = log P(mj | bzj) (7.8)

|Z| is the total number of all possible alignments. Unfortunately |Z| is really large and
not feasible to compute at the scale of the approximately 5 million records in MLO and BDM.
In this section we propose and compare several methods for calculating |Z|more efficiently.

The idea is to use the f of the best alignment we can find as a proxy for F.

F ≈ f (z?) (7.9)

where z? is the optimal alignment:

z? = arg max f ({z}) (7.10)

recalling that the f in question is f (z) = Pr(m|b, z).
Note that since log is monotonic, arg maxz f (z) = arg maxz S(z) which means finding z?

has a completely ”additive” character since S(z) = ∑i Si,zi .

7.2.1 Optimising f (z)

Instead of using costly compute and trying every single combination of alignments we can
approximate this using Dynamic Programming. Dynamic programming is a form of Bell-
man’s equation which is essentially the same as the Viterbi algorithm [64]. The Viterbi al-
gorithm finds ”the most likely sequence of states of the hidden chain X which might have
given rise to a given set of observations.” [66].

There are already many dynamic programming algorithms that have been developed to
do sequence alignment - a similar problem often seen in genetic sequencing and other string
matching or word problems [67]. Many of these algorithms add spaces to the string so that
letters match up. For example consider if we wanted to match the two strings ABCDDE ABBDE.
We would get:

AB CDDE

ABB D E

Although at first glance this technique might be applicable to our scenario it relies on
having a good ordering for individuals so that the ’gaps’ could be inserted and individuals
paired up like the letters were in the example above. In theory, arranging the individuals
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Figure 7.1: Example alignment. Here [A,B,C] is the b family, [1,2,3] is the m family and
z is a possible alignment between them.

alphabetically would work except for the fact that this would then be very brittle to nick-
names as they would move the individual out of sequence and never be aligned. We have
instead developed our own dynamic programming algorithm.

Dynamic programming will provide us with a method for finding the best alignment,
with less computational pain. We will be able to find the best global alignment between the
two groups (MLO and BDM). This is possible because the alignment problem we face has
optimal substructure. ”A problem is said to have optimal substructure if an optimal solution
can be constructed from optimal solutions of its sub problems” [54].

7.2.1.1 Optimal substructure

Suppose that we have a set of BDM names b =[ A,B,C] and a set of MLO names m =
[1,2,3]. So there are 9 possible links: {A1,A2,A3,B1, B2, B3, C1,C2,C3} The obvious
linkage structures are not too numerous, being just these six:

[{A1,B2,C3}, {A1,B3,C2}, {A2,B1,C3}, {A2,B3,C1}, {A3,B1,C2}, {A3,B2,C1}]

However there is also the case where an element in m does not match any of the elements
in b. For each individual we also have to have an null person, in case there is none in b that
is also in m.This means that there are really 6x6 options instead of 3x3. When the sizes of the
sets are small there are a low number of linkage structures to consider. In our small example
of MLO length of 3, there are only 36 different linkage structures. However for larger set
sizes this number is much larger and calculating them would become tedious.

Suppose the link structure L = {A1, B2, C3}, is actually the optimal alignment. We can be
sure that we will get the optimal alignment dynamically by making use of the core principal
of dynamic programming - Optimal substructure.

The match between C and 3 is in the L set. Consider the sub problem before C3 was
added. It must have been a linkage involving the subset of links {A1, A2, B1, B2}. Now, since
L is optimal, whatever the linkage in that sub-list, it must also be optimal, for that subset
i.e. it’s the best linkage involving the terminals A, B for BDM and 1, 2 for MLO, otherwise L
couldn’t have been optimal in the first place. Thus an example of the optimal substructure
required for dynamic programming to be a good fit.

So using this concept of optimal substructure this algorithm allows us to find the best
alignment between two sets of names/people: Suppose we count additions to the set size
via a counter t.
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For each linkage (e.g. A1), we assign a value: R(A1), which is a valuation or score of that
link.

We want the total valuation of a linkage structure to be:

P(m | b, z) =
M

∏
j=1

p(mj | bzj)

Working in log space, the (log) valuation is therefore:

M

∑
j=1

log p(mj | bzj)

And so the ”local” valuation of the link, must be log p(mj | bzj). For instance we’ll have
R(A1) = log p(m1 | bA).

We are interested in finding the set with the highest possible sum total of R values which
will be logP(m|z, b). At t=1 we have the list of possible links {A1, A2, A3, B1, B2 ... C3}, these
being all of the different options for the first element in the set. Each of these 9 alignments
has a list, consisting of only itself, eg. list(A1, t = 1) = [A1]. This will eventually grow
as t increases. And each also has a value V, which is the cumulative value of its list. To
start with t=1 all of the lists have just the one element, so V(A1, t = 1) = R(A1) and so on.
For t=2, we want to consider adding a second element to the set of links. We don’t know
which will be optimal overall but can find the value of any combination formed thus far.
For example when V(B2, t = 2), we would consider the V of each of the t=1 options, and
pick the maximum value. However because in an alignment each person is only linked to
a maximum of one other person, we must exclude anything that mentions B2 in its list. At
t=2 this is just B2 itself. In this simple example, that just leaves A1, A3, C1, C3. We choose the
max ”source” node from t=1. Suppose it’s A1 (not A3, C1 or C3). In that case, we would write
V(B2, t = 2) = V(A1, t = 1) + R(B2), because this is the value of the linkage set {A1,B2},
list(B2, t = 2) = list(A1, t = 1) with B2 appended to it. This generalises to all subsequent
t. At the end, we pick the node with the largest value of V, and its list will be the optimal
alignment. This means that the optimal alignment for a group of size N is the same as the
optimal alignment for a group of size N-1 plus the Nth item aligned with its pair.

We can find the best single alignment much more quickly than integrating over all of
them:

F ≈ f (Zbest) (7.11)

7.2.1.2 The BEST ALIGNMENT algorithm for aligning two sets of names

The BEST ALIGNMENT algorithm works by selecting all of the initial one-to-one combina-
tions of the two groups and then greedily finding the next best combination to add to each
such alignment. Continuing until there are no more possible additions in each alignment,
we arrive at the best overall.

The BEST ALIGNMENT algorithm uses the following components:

• m = [m1, m2, . . . mM] a list of people from MLO, defined earlier in Section 3.2.

• b = [b1, b2, . . . bB] a list of people from BDM defined earlier in Section 3.2.

• G = The relative values of matching each item in the first group to each item in the
second group.
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• L - a list of the different alignments. This is initialised as all of the size 1 combinations.
E.g. For the two sets A,B,C and 1,2,3 L = [A1, A2, A3, B1, B2, B3, C1, C2, C3].

• Mask - A list of matrices which hold the values which are available to be selected by
the algorithm, there is one for each different alignment.

• V - The relative values of matching each item in the first group to each item in the
second group.

• W - All of the valid values that are available to be chosen. This is found by multiplying
V by the Mask.

• t - the count individuals selected as part of the alignment.

The BEST ALIGNMENT algorithm begins by calculating L, by storing multiple different
alignments. This creates a list of Masks which hold the valid values for each different align-
ment. As we iterate through t, we build up the alignments in L by calculating which values
V are validValues and choosing the best available option.

Algorithm 1 Dynamic program for finding BEST ALIGNMENT between b and m groups
input: MLO group m, BDM group b
Result: Best alignment between m, b
M,N = length(m), length(b)
mask← List[List[NxM]]
L← List[List[alignmentTuples]]
for t← 1 to min(N, M)− 1 do

mask = updateMask(mask,L)
V = recalcV(L)
newV = MxN array of floats
for r ← 1 to M do

for c← 1 to N do
W = V .* mask[r,c]

bestValue = maximum(W)
bestCoord = argmax(W)
if bestVal > 0 then

newV[r,c] = bestVal + G[r,c]
append(L[r,c], (bestCoord))

else
L[r,c] = []

end
end

end
V = newV;

end
return L[indexOf(Max(V))]

7.2.2 Proof

We can prove that the algorithm returns the optimal result by induction:

Proof. Because L contains all sets of size 2 from both groups, the optimal solution must be
present at this point.
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General case: Assuming that L contains the optimal solution at size N, at size N + 1,
the new list L must also contain the most optimal solution because the update step is done
greedily for each combination there is no better solution that could exist at size N + 1.

7.3 Methods for measuring P(mi|bj)

So what is a good form, for p(mi|bj) where mi and bj are names from m and b? Between
bj and mi a lot can happen. First note the contexts were very different (one dominated
by compliance with the crown’s definition of legal identity, the other with connection to
whenua). Then there are shortenings, additions (some predictable, others entirely new), plus
flawed memories, alternative spellings and plain typos, to name just some of the effects. In
coming up with a tractable procedure we will not be able to model each of these possibilities
explicitly.

Some nomenclature for alignments:

• Alignment. This is defined as birth-origin indices for elements of m. zj = i corresponds
to the assertion that the jth element of m is actually the same person as the ith element
of b.

– We can call the whole vector z an alignment bewtween sets of b and m.

– Note that |z| = |m| = M.

– We also need a notation to represent the lack of a link from b: let zj = null

represent the assertion that the jth element of m does not correspond to anybody
from b.

In this section we will outline two possible methods for this: EDIT DISTANCE and NGRAMS.

7.3.1 Probabilistic adaptation of EDIT DISTANCE

Our model for f (z) is the likelihood of the names, given source b and linkage z.

f (z) = P(m | z, b)

f (z) = P(m | z, b) is the likelihood of the names, given source b and linkage z
The first term is the probability that the alignment of M generated from B. This uses

Levenshtein distance, also known as the edit distance. Edit distance
In their 1974 original paper proposing an iterative solution to the dynamic problem,

Wagner and Fischer describe edit distance as “The string-to-string correction problem is to
determine the distance between two strings as measured by the minimum cost sequence of
”edit operations” needed to change the one string into the other.”[55]

leva,b(i, j) =


max(i, j) if min(i, j) = 0

min


leva,b(i− 1, j) + 1
leva,b(i, j− 1) + 1
leva,b(i− 1, j− 1) + 1(ai 6=bj)

otherwise
(7.12)

Levenshtien distance operations include substitutions, insertions and deletions. Edit dis-
tance has many applications such as finding the distance or difference between 2 words or in
error correction. Dynamic programming is a common method of producing the edit distance
/Levenshtien distance.

61



Where for a given alignment there are N name pairs, P(m|z, b) can be defined as follows:

P(m | z, b) =
N

∏
i=0

P(mzi | bi) (7.13)

=
N

∏
i=0

P(namesEqual) (7.14)

P(mi | z, bi) = P(namesEqual | Gender) (7.15)

We need a prior for the way in which names change. Names are compared using a com-
bination of edit distance as well as a prior distribution of names changes in New Zealand.
This used a reported value of 7000 names changes to the Department of Internal Affairs per
year. This value was for males and females of all ages but did not include people who had
married as they are automatically allowed to use their married name without a submission
to the DIA [56]. This statistic has been used as a prior for name change probabilities for
first names. Let ρ represent a name change. Using the current New Zealand population this
becomes:

P(ρ) = 7000/4794000 = 0.00146

So now we can work out for a name pair what the probability is that the first names
and last names equal given the gender of the person. Let N be the string that represents a
person’s name. In the formula below we are comparing two people: i and j. This is just:

P(Ni = Nj) = (1− ρ) ∗ δ(bi, mj) + ρ ∗ lev(bi, mj) (7.16)

where the ”Kronecker delta” δ is used to select exact matches:

δi,j =

{
1 if i = j,
0 if otherwise.

(7.17)

7.3.2 NGRAMS

We could use the same NGRAMS method as described in Section 4.2. However there are a
few minor changes that need to be made to the algorithm. The basic principal of Ngrams
is to ask the question “is this word likely to have come from this distribution?”. We are
still trying to achieve this in the alignments approach as well, except that the distribution
of interest is not the whole of b but instead a single name. In order to use NGRAMS in the
dynamic method we need to be able to apply it to single words in m. Instead of looking
at the Ngrams distribution of the whole b family to predict the m name, we use only the
Ngrams distribution of the specific b name.

7.4 Summary

In this chapter we have introduced a method for finding the optimal alignment between
two groups of individuals from BDM and MLO. This is done using dynamic programming
and when discussed is called the BEST ALIGNMENT method. We have also discussed two
different methods for calculating P(mi|bj) which is a measure for how different two names
are. The first is EDIT DISTANCE which calculates how many letters would need to be altered
to make mi from bj. The second is NGRAMS which uses the same principles as described
in Section 4.2 to model the probability of generating mi using an ngrams distribution build
from the b family.
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Chapter 8

Experiments and Results - with best
alignment

We want to assess the accuracy of linkages arrived at using a single ”best” alignment. This
chapter aims to test each element of this process and comment on the successes and defi-
ciencies of each method. We are testing:

• Which method EDIT DISTANCE, NGRAMS to use for measuring P(m|b)?

• Which method ENTROPY or BTN performs best for rejections?

• How robust are the models to noise?

8.1 Linkage Results without rejections

This section compares the accuracy of the BEST ALIGNMENT found using EDIT DISTANCE

versus NGRAMS to measure P(m|b). It is important to understand the performance of the
BEST ALIGNMENT algorithm first before adding in any of the rejection techniques. We want
to find out if we can identify True Positives. Table 8.1 shows the accuracy of the BEST ALIGN-
MENT method with EDIT DISTANCE and the BEST ALIGNMENT method with NGRAMS. Table
8.1 also shows the same results when the NGRAMS linkage method is used at different levels
of noise. The group-to-group linkage table has been included so that we can be reminded of
the performance of the group to group method and compare it to the alignment approach.
The NGRAMS group to group method performed better. It appears that the introduction
of alignments did not improve performance. It was more difficult to correctly identify the
real linkage between an m and a b with the dynamic method. However the results are still
promising and heat maps generated from the BEST ALIGNMENT method appear in order.

Whilst this initial experiment used the EDIT DISTANCE 7.3.1 to measure P(mi|bj) for
the dynamic algorithm, in this thesis we will not continue further testing due to its poor
performance. Intuitively when noise is set to zero, the accuracy should be 100% as for each
comparison of a real match where both names are exactly the same the EDIT DISTANCE = 0.
However this does not seem to be the case and the model is performing poorly. The problem
with this model is that it is not inherently probabilistic so some arbitrary prior is needed to
map EDIT DISTANCE scores to a probability that can be used in P(mi|bj). This is risky as
we have no prior this and used a best guess. We are more interested in using the NGRAMS

to measure P(mi|bj). This was because of its good performance in the models with no
alignment and the good performance in Table 8.1.
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Figure 8.1: Heatmaps on the Baron surname puzzle on test data with noise = 0. Each row
corresponds to a b group and each column corresponds to an m group. A dark blue square
represents a high probability of the comparison being a real linkage and a light blue square
represents a low probability of the comparison being a real linkage. Both graphs are on test
data and the diagonal bands indicate that we can identify the true source of each family
with both methods. Left: The heatmap generated when running the group-to-group with
ngrams linkage method. Right: The heatmap generated when running the best alignment

with ngrams linkage method. The diagonal is not as clear as in the group-to-group with
ngrams linkage method.

8.2 Linkage Results including rejections

This section outlines the use of the rejection methods from Chapter 5 with the BEST ALIGN-
MENT linkage method. Two of the rejection methods used in the alignment agnostic method
were used on the BEST ALIGNMENT method as well. These are ENTROPY and BTN. Again all
of the following tests were done on the test data set explained earlier in section 3.2.1.

8.2.1 ENTROPY

Figure 8.2 shows the entropy of each row of the results grid as shown in previous figures.
As before the entropy from True Negative comparisons are in red and the True Positives
are shown in green. The green points are sorted by their entropy value and the red points
represents the same comparison but with the family of interest replaced by a random family
(so we know rejection should have happened).

There is not an obvious place to put an ENTROPY rejection threshold as the red and green
data points are not linearly separable. We cannot tell which are the Positive results and
which are the negative results from entropy. This is especially interesting when compared
to other entropy results, such as the 6.4 where there almost all of the red entropy values are
very low and grouped together at the bottom of the graph. In the BEST ALIGNMENT results
there is a very wide range of entropy values for both positive and negative comparisons.
This means it is difficult to differential the real matches from the fake. When noise is in-
troduced in figure 8.3, the red circles extend down and spread out more. This would make
entropy even less effective. This is a problem as we do believe that the real data is noisy.
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Figure 8.2: Entropy for each family in the test data under the the BEST ALIGNMENT link-
age method using NGRAMS without noise. The red data points are typically above their
corresponding data points. This suggests that setting a threshold on entropy is not partic-
ularly useful as the positive (green) points have a large range and there is no way to linely
seperate the red and the green points.
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Figure 8.3: Entropy for each family in the test data under the the BEST ALIGNMENT with
noise = 0.2. Here all of the data points have lower entropy than when there was no noise,
both green and red. The spread makes it even more difficult to place a threshold as there are
many low entropy red points below the majority of green ones. The red and green points
have the same range.
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BEST ALIGN & EDIT DIST BEST ALIGN & NGRAMS NGRAMS group-to-group
Noise True + False - True + False - True + False -
0.0 0.590 0.410 1.000 0.000 1.000 0.000
0.1 0.381 0.619 0.857 0.143 1.000 0.000
0.2 0.278 0.722 0.714 0.286 1.000 0.000
0.3 0.203 0.797 0.714 0.286 0.857 0.143
0.4 0.181 0.819 0.571 0.429 0.857 0.143
0.5 0.149 0.851 0.286 0.714 0.286 0.714
0.6 0.137 0.863 0.286 0.714 0.429 0.571
0.7 − − 0.000 1.000 0.429 0.571
0.8 − − 0.143 0.857 0.000 1.000
0.9 − − 0.000 1.000 0.000 1.000
1.0 − − 0.000 1.000 0.000 1.000

Table 8.1: Accuracy of linkage methods without rejection at different noise values. Left:
The performance of the BEST ALIGNMENT method (using EDIT DISTANCE) by itself is poor. It
is unable to correctly link more than 60% of linkages even when noise is set to zero. Center:
Performance of the BEST ALIGNMENT using an NGRAMS, by itself is very good ( 100% of
families correctly linked at zero noise). Performance is still very good even when some noise
is introduced. Right: Performance of the NGRAMS group-to-group linkage method. This
performs much better than the BEST ALIGNMENT method. There is a higher true positive
rate at higher noise levels than the BEST ALIGNMENT method.

8.2.2 BTN Rejection

The BTN rejection method did not perform well at all on the BEST ALIGNMENT results. Table
8.4 shows this in the low precision and accuracy values. We can also see it in Figure 8.4,
where in both the left and right histograms there is no significant difference between the
green (positive match) and red (no match).

8.3 Summary

When the ENTROPY threshold rejection method is used with the BEST ALIGNMENT linkage
method, we do not see promising results. Whilst positive results with high entropy tend to
have an associated negative result with higher entropy there is no separation between the
two groups. The BTN rejection method also performs poorly when used in conjunction with
the BEST ALIGNMENT linkage method, and it is unable to distinguish between positive and
negative test examples.

66



Threshold True + False - True - False + Precision Accuracy F1
0.0 0.000 1.000 1.000 0.000 NaN 0.500 0.000
0.1 0.000 1.000 1.000 0.000 NaN 0.500 0.000
0.2 0.008 0.992 0.997 0.003 0.733 0.502 0.015
0.3 0.024 0.976 1.000 0.000 1.000 0.512 0.046
0.4 0.048 0.952 0.998 0.002 0.953 0.523 0.091
0.5 0.075 0.925 0.990 0.010 0.886 0.533 0.138
0.6 0.165 0.835 0.966 0.034 0.828 0.566 0.276
0.7 0.333 0.667 0.876 0.124 0.729 0.605 0.458
0.8 0.624 0.376 0.698 0.302 0.674 0.661 0.648
0.9 0.914 0.086 0.316 0.684 0.572 0.615 0.704
1.0 0.987 0.013 0.000 1.000 0.497 0.494 0.661

Table 8.2: Performance of ENTROPY rejection method on test data, using the BEST

ALIGNMENT - NGRAMS linkage method with noise = 0. Threshold is done against
entropy/log(2, n). This table shows that the ENTROPY rejection method is not performing
well on the dynamic data. The highest accuracy value is 0.661 at a threshold of 0.8. This is
considerably lower than when entropy was used with N-grams which had accuracy as high
as 0.9 on the same test data set with the same conditions of β and n.

Threshold True + False - True - False + Precision Accuracy F1
0.0 0.000 1.000 1.000 0.000 NaN 0.500 0.000
0.1 0.021 0.979 1.000 0.000 1.000 0.510 0.041
0.2 0.039 0.961 0.997 0.003 0.933 0.518 0.074
0.3 0.061 0.939 0.984 0.016 0.794 0.523 0.113
0.4 0.082 0.918 0.975 0.025 0.765 0.528 0.148
0.5 0.136 0.864 0.967 0.033 0.806 0.552 0.233
0.6 0.229 0.771 0.906 0.094 0.709 0.568 0.347
0.7 0.329 0.671 0.793 0.207 0.614 0.561 0.428
0.8 0.556 0.444 0.648 0.352 0.612 0.602 0.583
0.9 0.736 0.264 0.272 0.728 0.503 0.504 0.597
1.0 0.854 0.146 0.000 1.000 0.461 0.427 0.598

Table 8.3: Performance of ENTROPY rejection method on test data, using the BEST

ALIGNMENT - NGRAMS linkage method with noise = 0.2. Threshold is done against
entropy/log(2, n). This table shows that the ENTROPY rejection method is not performing
well on the dynamic data. The highest accuracy value is 0.602 at a threshold of 0.8. This
is the same threshold that performed the best in Table 8.3. This is considerably lower than
when entropy was used with N-grams which had accuracy as high as 0.818 on the same test
data set with the same conditions of β and n.

Noise True + False - True - False + Precision Accuracy F1
0.000 0.987 0.013 0.000 1.000 0.497 0.494 0.661
0.2 0.829 0.171 0.000 1.000 0.453 0.414 0.586

Table 8.4: BEST ALIGNMENT linkage with BTN rejection on test data.The BTN method
seems to reject almost none of the comparisons. This is why the True positive rate is so
high but simultaneously the True negative rate is zero.
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Test data, noise = 0 Test data, noise = 0.2

Figure 8.4: BEST ALIGNMENT linkage with BTN rejection. Histograms of scores using the
BTN method in Section 5.4. The noisy environment (right) creates almost the same distri-
bution as the one with no noise (right). Both positive and negative values seem to have
the same performance of Left: The BEST ALIGNMENT linkage method with the BTN rejection
method where no noise is applied to the test data. Right: The BEST ALIGNMENT linkage
method with the BTN where noise=0.2 applied to the test data.
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Chapter 9

Real data

This chapter details the results of the linkage finding and rejection algorithms on real Māori
Land Online records. It was a stretch goal for the thesis to apply the methods to real data.
As discussed previously, we are unable to measure the performance of the algorithms over
the whole data set due to the lack of labelled data. Instead we investigate individual results
that seem promising. The purpose of this section is to display and discuss examples from
the results.

9.1 Māori Land Online

We look to close the loop by applying our models to the real Māori Land Online data. This
will be a test two fold, firstly on what our models can find and secondly on how helpful the
BDM-H data is in terms of being suitable to link to MLO.

The MLO data that was used in the test set was used, this means that the same surnames
are being tested on the real data. All of the names in the following tests are present in both
MLO and BDM. There are no surnames names missing from MLO, so it would be technically
possible (while unlikely) to match every single family. The parameters n = 4 and β = 0.5
were used, these being guided by the results in earlier experiments. The noise method
was only used to simulate the real noise in the MLO data set so is not needed for these
experiments. A different base distribution was used in the NGRAMS model - one trained on
the real MLO data. Last names were not included in the tests themselves as discussed earlier
in Section 3.2.

Each of the models from previous chapters is applied to the real MLO data. We look at
the results and investigate the rejections.

9.1.1 Group-to-group

This section focuses on different rejection methods (AL1, ENTROPY and BTN) applied to the
group-to-group linkage methods discussed in Chapter 4. This section features output from
the linkage/rejection methods which describes which linkages were rejected and the top
three candidate b families (even if they were rejected).

9.1.1.1 AL1

When using the AL1 rejection method on the group to group linkage methods, there were
vastly different results between the MATCH and NGRAMS methods, see Table 9.3. The AL1
rejection method requires a linkage to be at least as good as the worst scoring comparison
when the m set is compared to members of itself. There were not many exact name matches,
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so many of the linkages were rejected under the MATCH model. There were significantly
fewer linkages rejected when using the NGRAMS model. This indicates there are families
with similar distributions that are good enough to pass AL1 but not the same names (thus
rejected by MATCH).

Linkage method MATCH NGRAMS

Rejected 426/1075 53/1075

Table 9.1: Predicted MLO AL1 rejections with GROUP-TO-GROUP linkage method using
MATCH and NGRAMS. Just under half of the families are rejected with the MATCH linkage
method and only 53 are rejected using the NGRAMS linkage method.

Let us compare the example linkage in Figure 9.1 of the same Bracken family groups
which are matched using the NGRAMS linkage method instead of EXACT shown in Figure
9.2. Interestingly both families were rejected when the NGRAMS linkage method was used
instead of the EXACT linkage method. Both methods also had different orderings and differ-
ent top b families. The second m family still chose b families 2 and 6.

9.1.1.2 ENTROPY

We consider rejecting linkages that have entropy above some designated threshold. In the
previous Chapters several different thresholds were tested so that we could understand how
many linkages would be rejected at each threshold. The experiments in Chapters 6 and 8
suggested that very low entropy threshold values produced the best accuracy results. The
same thresholds applied on the real MLO data results in almost all of the linkages rejected
as shown below in Figures 9.3 and 9.4.

When using the ENTROPY rejection method on the group to group linkage methods, there
were different results between the MATCH and NGRAMS. In the MATCH linkage method in
Figure 9.3 there are clear and visible ’steps’. This is reflected in Table 9.7 where the number
of rejections is not continuous. With the NGRAMS linkage model there was an even spread
in entropy values which can be seen by the smooth diagonal in Figure 9.4.

Threshold MATCH NGRAMS

0 1075/1075 1075/1075
0.1 1066/1075 937/1075
0.2 1066/1075 863/1075
0.3 1066/1075 785/1075
0.4 1062/1075 661/1075
0.5 1054/1075 500/1075
0.6 1036/1075 366/1075
0.7 937/1075 236/1075
0.8 962/1075 96/1075
0.9 872/1075 18/1075
1.0 90/1075 0/1075

Table 9.2: Predicted MLO ENTROPY rejections with GROUP-TO-GROUP linkage method
using MATCH and NGRAMS.. When the entropy threshold is set to the best value from
earlier experiments, almost all of the families are rejected when using the NGRAMS linkage
model. The MATCH linkage method also causes almost all of the families to be rejected at
every threshold.
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--------------------------------------------------------------------

Method for linkage = match

Method = AL1

lastName = Bracken

---------------Results------------------

M family: [ pakoa, pakoa, henare, rameka, joseph, kawariki ]

All BDM families were rejected.

position id BDM-H family

1 1 [ hope, norman, maud, may, olive, annie, hilda, alice, robert,

james ]

2 2 [ jane, alexander, lilian, mary, helen, angel, roberta, henry,

elizabeth, christopher, john, hugh, richard, maggie, christina,

sarah ]

3 3 [ john, elizabeth, lucy, fanny ]

- - - - - - - - - -

M family: [ victor, ngaire, joseph, anthony, lei, duncan, matariki,

john, charles, douglas, huia, leilani, kahakaha, rachel, tui,

oileen, mei, ann ]

position id BDM-H family

1 2 [ jane, alexander, lilian, mary, helen, angel, roberta, henry,

elizabeth, christopher, john, hugh, richard, maggie, christina,

sarah ]

2 3 [ john, elizabeth, lucy, fanny ]

3 6 [ rose, clarence, annie, agnes, vivian, john ]

--------------------------------------------------------------------

Figure 9.1: The Bracken family, linkage selected using BTN and the MATCH linkage
method. In this example with the Bracken family, two of the Bracken MLO sets are shown
with the best found linkages. In the first, the linkage is rejected and the model says that no
families were suitable. There are no names that appear in the m family and in any of the top
3 performing possible b families. It is good that these were rejected. The second family was
not rejected. Because there is at least one exact match in each of the top three b families. All
of the b families match on the name john. Both of the MLO families in the example chose
BDM family 2 in their top 3.

71



--------------------------------------------------------------------

Method for linkage = ngrams

Method = AL1

lastName = Bracken

---------------Results------------------

M family: [ henare, joseph, pakoa, rameka, kawariki, pakoa ]

All BDM families were rejected.

position id BDM-H family

1 7 [ vera, annie, norman, margaret, kathleen, imelda, charles ]

2 6 [ clarence, vivian, agnes, john, rose, annie ]

3 5 [ nolan, hamilton, mary, hazel, william, walr, stanley, ira,

maud, eileen, olive ]

- - - - - - - - - -

M family: [ oileen, john, matariki, leilani, kahakaha, anthony ,

charles, huia, tui, mei, duncan, ann, victor, joseph, ngaire,

lei, douglas, rachel ]

All BDM families were rejected.

position id BDM-H family

1 7 [ vera, annie, norman, margaret, kathleen, imelda, charles ]

2 2 [ richard, angel, alexander, maggie, sarah, roberta, helen,

christopher, henry, john, mary, elizabeth, lilian, christina,

jane, hugh ]

3 6 [ clarence, vivian, agnes, john, rose, annie ]

--------------------------------------------------------------------

Figure 9.2: The Bracken family, linkage selected using BTN and the NGRAMS linkage
method. In this example with the Bracken family, two of the Bracken MLO sets are shown
with the best found linkages. In the first, the linkage is rejected and the model says that no
families were suitable. There are no names that appear in the m family and in any of the
top 3 performing possible B families. It is appropriate that these were rejected. The second
family was also rejected, even though there is an exact match in each of the second and third
b families.
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Figure 9.3: Sorted entropy for each family in the MLO data set when compared to the
families in BDM-H using NGRAMS. There is a wide range of entropy value with a few clear
steps in the distribution. There are many values with an entropy of 1, another portion with
almost 1. There are 2 further clusters, at 0.6 and 0.1. The obvious steps in the distribution
suggest that some families were very clearly present and others clearly not.
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Figure 9.4: Sorted ENTROPY using NGRAMS instead of MATCH. Each data point represents
an MLO to BDM-H comparison. There is a wide range of entropy values, and there are no
clear and significant steps when the data points are sorted by entropy. There are no obvious
steps or clusters that we can use to set an appropriate threshold. Instead because there
is a continuous distribution of entropy we can only make a best guess and set a sensible
threshold based on examples and performance on test data.
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--------------------------------------------------------------------

Method for linkage = ngrams

Method = Entropy (0.1)

---------------Results------------------

lastName = Smillie

-------------------------------

M family: [jullianne, julieanne, julianne, malcolm, akuira]

position id BDM-H family

1 1 [isabella, millar, alexander, daniel, john, julians ]

2 6 [helen, scott, cowan, william ]

3 8 [william, charles, alexander, mcpherson, james, jessie , per,

robert, constance, isabell, john, melville ]

--------------------------------------------------------------------

Figure 9.5: The Smillie family, linkage selected using ENTROPY and the NGRAMS linkage
method. There is only a partial match julians to julianne, however due to what looks like
an error the name julianne is repeated 3 times so it becomes more compelling. Examples
like this make a good case for alignment specific methods because that would not allow
julianne to count more than once.

In the examples below a threshold of 0.1 was used as this value had the highest accuracy
in Chapter 6. There are some comparisons that were not rejected but probably should have
been on further inspection.

There was one family that appears to be a genuine match. There are lots of identical
name matches and a few partial matches. The Hollamby family are the best example of a
probable linkage in this data set, an example of how accurate the linkage appears to be can
be seen in Figure 9.7.

9.1.1.3 BTN

When the BTN rejection method is applied to NGRAMS linkages on the MLO data we can
see from Figure 9.8 that the shape and positioning of the real scores (shown in blue), closely
resembles the shape and positioning of the negative cases (shown in red) reprinted from
Figure 6.6. The majority of the scores from the real data (and the test negatives) are less
than zero. A score less than zero means that b set was worse at generating m than the base
distribution was. This suggests that there are not many (if any) real matches between MLO
and BDM-H.

9.1.2 Linkages found with best alignment

9.1.2.1 BTN

The BTN rejection method with the NGRAMS-DYNAMIC linkage method only rejected 196
families when the threshold was set to zero. This is of a similar order to the BTN with
NGRAMS using the group-to-group method instead of the alignment with dynamic. This
can be seen in Table 9.4.
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--------------------------------------------------------------------

Method for linkage = ngrams

Method = Entropy (0.1)

---------------Results------------------

lastname = Meager

----------------------------------------

M family: [ allan, rotorua, florence, ngaire, john, robert ]

position id BDM-H family

1 1 [ thomas, edward, john, william, florence, mary ]

2 3 [ elizabeth, mary, jane, ka, john, alice, harriet, ellen, ann,

clara, william ]

3 7 [ alfred, john, annie, elizabeth, catherine, mary ]

--------------------------------------------------------------------

Figure 9.6: The Meager family, linkage selected using ENTROPY and the NGRAMS linkage
method. There are two matches here - florence and john. This seems like a reasonably
compelling link but there are a lot of people missing from both sides.

--------------------------------------------------------------------

Method for linkage = ngrams

Method = Entropy (0.1)

---------------Results------------------

lastName = Hollamby

-------------

M family:[ esme, b, cecil, ngaire, ann, kenneth, yvonne, john ,

albert, joan, mavis, rewa ]

position id BDM-H family

1 2 [ esme, alberta, carita, william, kenneth, howard, cecil, allan,

ngaire, annie, allan, jack, doris, eileen ]

2 3 [ phyliss, beryl, albert, edward, mavis, rewa, flora,

dardanella, joan, margaret, moyra ]

3 5 [ flora, may, james, roderick, richard, albert ]

--------------------------------------------------------------------

Figure 9.7: The Hollamby family, linkage selected using ENTROPY and the NGRAMS link-
age method. In this linkage the Hollamby family has identical matches with the ’best’
match : Esme, Cecil, Ngaire, Kenneth and a partial match albert which is very simi-
lar to alberta. There is also identical matches with the second best match: Albert, Mavis,

Rewa and Joan. A possible explanation for this is that the MLO group is actually made up
of cousins (which would explain why they have the same share value), having all inher-
ited from a grandparent. So we would have a family made up of : Esme, Cecil, Ngaire

and Kenneth and then another one with Albert, Mavis, Rewa and Joan. Yvonne and john

might be other family members.

75



MLO data Test data

Figure 9.8: NGRAMS linkage with BTN rejection. Left: Histogram of scores using the BTN

method 5.4. The BTN rejection method with n = 4 and beta = 0.5. The majority of the scores
are less than zero. Because most of the scores are less than zero this means that the base
distribution was better at generating the target m than b was. Right: histogram scores for
BTN with NGRAMS on test data with noise. This graph is included for reference.

--------------------------------------------------------------------

Method for linkage = ngrams

Method = BTN

---------------Results------------------

lastName = Wesley

----------------------------------------

M family:[ marie, morehu, kaye, emily, iwi, leonie, , anne, mary ]

position id BDM-H family

1 3 [ eliza, annie, emily ]

2 5 [ william, john, lawrence, thelma, isabell ]

3 4 [ william, richard, john ]

- - - - - - - - - -

M family:[ tahatu, alethea, john, charles, hohepa, may ]

All BDM families were rejected.

position id BDM-H family

1 2 [ john, arthur, edward, charles ]

2 1 [ walr, charles, john ]

3 7 [ edith, john, hellen ]

--------------------------------------------------------------------

Figure 9.9: The Wesley family, linkage selected using BTN and the NGRAMS linkage
method. In the first wesley family linkage, the result was not rejected. There was one exact
match in emily and a partial match in anne to annie. In the second linkage, all of the BDM-H
families were rejected. This is unusual as there are two exact matches john and charles.
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Threshold NGRAMS

-0.2 146/1075
-0.1 648/1075
0.0 951/1075
0.1 1051/1075
0.2 1065/1075
0.3 1071/1075
0.4 1075/1075
0.5 1075/1075
0.6 1075/1075
0.7 1075/1075
0.8 1075/1075
0.9 1075/1075
1.0 1075/1075

Table 9.3: Predicted MLO BTN rejections with GROUP-TO-GROUP linkage method using
NGRAMS.This table shows the number of rejections at each threshold value when using
the BTN rejection method. Many families were rejected when using the NGRAMS linkage
method, when the threshold is set to zero there are 951 families rejected. This means that for
951 familes the base distribution was a better generator of the target m set than any b family
ngram frequency distributions.

Figure 9.10 shows the BTN rejection histograms with the NGRAMS-DYNAMIC linkage
method.

9.1.2.2 ENTROPY

The ENTROPY rejection method rejected every linkage at the low entropy thresholds (where
we would have set them based on our experiments on test data). This can be seen in Figure
9.11 where a significant number of the data points are close to one at the top of the graph.

The results from the Table 9.5 suggest that there are not many individuals from MLO in
BDM-H. This is evident because of the high number of rejections at the best entropy thresh-
olds from the test data. There are low entropy comparisons, but there are not a significant
number of them. It is unlikely that both data sets were generated from the same ground
truth. There are a few convincing matches and these stand out. However the majority of
the low entropy comparisons are not so obvious. They typically have one or two identical
matches and a large number of non matches. The size of these families means that the there
are lots of names going into the NGRAMS distribution. This can mean that by chance the m
and the b families produce similar enough NGRAM substring probabilities to be counted as
a match.

9.1.3 Summary of results on MLO

From the results of the tables and looking at the comparisons there is very little evidence that
there are more than (at best) a handful of real matches between BDM-H and MLO. Because
BDM-H is a historic data set, there are no recent records freely available. This means it is
almost impossible to find any modern day shareholders who have lost contact using BDM-
H. This is unfortunate and highlights the difficulty of the task that Māori land incorporations
face. They are looking for a very small needle in a very large haystack.
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MLO data Test data

Figure 9.10: NGRAMS-DYNAMIC linkage with BTN rejection. Left: Histogram of scores
using the BTN method 5.4 on MLO data. The BTN rejection method with n = 4 and beta = 0.5.
The histogram is very spread out and not bell shaped like the other BTN histograms, it has a
large peak at just below zero and then spreads out from just above zero up to 1.25. Because
most of the scores are more than zero this means that b was better at generating the target m
than the base distribution was. Right:This is the same BTN model with NGRAMS-DYNAMIC

with noise = 0.2 applied to the test data. This graph is included for reference.
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Figure 9.11: Sorted entropy for each family in the MLO dataset when compared to the
families in BDM-H using the BEST ALIGNMENT NGRAMS linkage method. There is a
smaller range in values for this linkage method, most of the entropy values are near one and
the lowest value is around 0.45.There are no obvious steps in the distribution.
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Threshold NGRAMS

-0.2 1/1075
-0.1 24/1075
0.0 196/1075
0.1 219/1075
0.2 384/1075
0.3 528/1075
0.4 634/1075
0.5 741/1075
0.6 790/1075
0.7 864/1075
0.8 903/1075
0.9 953/1075
1.0 969/1075
1.1 1012/1075
1.1 1026/1075

Table 9.4: BTN rejections with NGRAMS-DYNAMIC alignments on MLO data. When the
btn threshold is set to the best value from earlier experiments, almost none of the families
are rejected when using the NGRAMS linkage model. There were 196 families rejected at
threshold = 0.0, which would suggest that there are some reasonable matches between MLO
and BDM-H.

9.2 Application of models: Cenotaph Data

Records from the online cenotaph offer an opportunity to test the linkage and rejection meth-
ods on another data set. An Auckland War Memorial Museum project, the Online Cenotaph
stores details for more than 235,000 New Zealand service men and women, who have served
this country on active service from the 19th century until today. [69]

The purpose of including this additional data set is that it is another opportunity to
test the group comparison method against Births Deaths and Marriages. The data is much
cleaner and smaller, and has been maintained by the Auckland War Memorial Museum
project. As a part of the project, relatives of service men and women are able to add pho-
tographs and additional details to the profiles of their loved ones.

The limitation of the data that we were able to retrieve is that it is only contains males
and only where there were more than one family member who fought. So essentially the
data set is a collection of families of brothers who went to war. This still allows for some
interesting comparisons to BDM as we can still assess the outcomes of the models. We may
get higher entropy than we would normally expect for a perfect match as there are so many
other names in the BDM sets that are not in the Cenotaph.

In theory this should perfectly line up with bits of BDM-H as most of this data is from
before the 100 year cutoff.

The challenge with this data set is that (like with MLO) we do not have the answers, so
we can only run our models and then go through and assess the results. Even then it is hard
to say what the correct linkages are - and therefore we can only guess at which methods are
most effective.

There are 20 surnames that are in our Cenotaph data that are not present in our Birth
Deaths and Marriages data set.
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Threshold NGRAMS

0 1075/1075
0.1 1075/1075
0.2 1075/1075
0.3 1075/1075
0.4 1075/1075
0.5 1070/1075
0.6 1063/1075
0.7 1051/1075
0.8 986/1075
0.9 779/1075
1.0 7/1075

Table 9.5: Predicted MLO rejections with BEST ALIGNMENT linkage using NGRAMS.
When the entropy threshold is set to the best value from earlier experiments, all of the fam-
ilies are rejected when using the NGRAMS linkage model.

9.2.1 Group-to-group linkage methods

This section focuses on different rejection methods (AL1, ENTROPY and BTN) applied to the
group-to-group linkage methods discussed in Chapter 4.

9.2.1.1 AL1

Table 9.8 contains the number of linkages that would be rejected for both the MATCH and
NGRAMS linkage method when using the AL1 rejection method on the Cenotaph data. With
both of the linkage methods there were very few families rejected by the AL1 method. This
means that in almost all of the cases there were at least one string that appeared in both the b
set and in the CEN family (c) set. Less than 10% of families were rejected with both linkage
methods.

Predicted AL1 Rejections with various linkage methods on Cenotaph data
Linkage method MATCH NGRAMS

Rejected 40/735 61/735

Table 9.6: Predicted Cenotaph AL1 rejections with GROUP-TO-GROUP linkage method
using NGRAMS. This table shows the number of rejections for each of the different linkage
methods when using the AL1 rejection method. Both of the linkage methods reject very few
of the families. This suggests that many of the Cenotaph families are present in the BDM
historical data.

Figure 9.12 shows an example linkage from the Cenotaph data when using the AL1 re-
jection method with the MATCH linkage method. It performs very well as the whole of the
Cenotaph family is present in the most likely linkage. This is a relatively small example and
it true that family 31 has many other names in it. This is likely to be siblings who did not go
to war.

Figure 9.13 displays the results for when the NGRAMS method is used in conjunction with
al1 instead. This is another example of a realistic looking match where all of the cenotaph
individuals are present in the most likely family (76).
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--------------------------------------------------------------------

Method for linkage = match

Method for rejection = AL1

---------------Results------------------

lastName = Childs

----------------------------------------

C family: [ charles , ellis ]

position id BDM-H family

1 31 [ albert , arthur , edith , john , ellis , ellen , charles ]

2 14 [ charles , vine , valentine , newlands , eliza , james ,

mclachlan , hector , william , george , nellie , raymond , mary

, annie , archibald ]

3 5 [ joseph , jessie , clara , charles , ellen , warden ]

--------------------------------------------------------------------

Figure 9.12: The Childs family, linkage selected using AL1 and the MATCH linkage
method. In this example with the Childs family, the best found linkages are shown. The
BDM-H families was not rejected. This is because there is at least one exact match in each
of the top three b families. All of the names are present in the top BDM candidate. There
are two exact matches in the first b family (Charles and Ellis), and one in the other two
(Charles).

--------------------------------------------------------------------

Method for linkage = ngrams

Method for rejection = AL1

---------------Results------------------

lastName = Davies

-------------

C family: [ percy , james , arthur , sylvesr ]

position id BDM-H family

1 76 [ lonsdale , arthur , percy , wesrfield , james , ethel ,

albert , harry , silvesr , annie , william , george , rita ,

thomas , elsie , allan ]

2 157 [ henry , david , lesr , william ]

3 93 [ arthur , david , bertie , victor , darcy , james , william ]

--------------------------------------------------------------------

Figure 9.13: The Davies family, linkage selected using AL1 and the NGRAMS linkage
method. In this example with the Davies family, the best found linkages a shown. The
BDM-H families was not rejected. This is because there is at least one exact match in each
of the top three b families. All of the names are present in the top BDM candidate. The
really impressive thing is the change of spelling of Sylvesr/silvesr. It is nice to see that an
example with noise is still picked up (albeit with a lot of other perfect names). We can also
see that there are a few additional names in BDM so this suggests some other siblings who
were in the family.
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9.2.1.2 ENTROPY

We consider rejecting linkages that have entropy above some designated threshold. In the
previous Chapters several different thresholds were tested so that we could understand how
many linkages would be rejected at each threshold. The experiments in Chapters 6 and 8
suggested that very low entropy threshold values produced the best accuracy results. The
same thresholds applied on the real MLO data results in almost all of the linkages rejected
as shown in the previous Section in Figures 9.3 and 9.4. When these same thresholds were
applied to the Cenotaph data entropy results appear very similar to the real MLO applica-
tion, this can be seen in Figures 9.14 and 9.15 and most of the linkages were rejected using
the previously successful threshold value of 0.1. This is interesting because when we look
at the actual examples such as is shown in Figure 9.16 and 9.17 the actual linkages are much
different in that they appear legitimate. Almost all of the cenotaph families have an realistic
looking match.

When using the ENTROPY rejection method on the group to group linkage methods,
there were similar results between the MATCH and NGRAMS. In the MATCH linkage method
in Figure 9.3 the distribution is continuous and concave up. This is reflected in Table 9.10
where the number of rejections consistent increasing with each threshold value. With the
NGRAMS linkage model there was an even spread in entropy values which can be seen by
the smooth diagonal in Figure 9.4.

Predicted ENTROPY Rejections with various linkage methods on Cenotaph data
Threshold MATCH NGRAMS

0 715/735 715/735
0.1 697/735 560/735
0.2 678/735 499/735
0.3 642/735 457/735
0.4 619/735 400/735
0.5 597/735 344/735
0.6 561/735 284/735
0.7 516/735 212/735
0.8 426/735 107/735
0.9 279/735 38/735
1.0 20/735 20/735

Table 9.7: Predicted Cenotaph ENTROPY rejections with GROUP-TO-GROUP linkage
method using MATCH and NGRAMS. This table shows the number of rejections for each
of the different linkage methods when using the ENTROPY rejection method. When the en-
tropy threshold is set to 0.1 which was the best value from earlier experiments, almost all
of the families are rejected when using the NGRAMS linkage method. The ENTROPY on the
MATCH linkage method is the most aggressive, rejecting the more families at low threshold
values than the NGRAMS methods. Note that there were 20 surnames that were present in
the Cenetaph data but were missing from BDM-H. All of these were (of course) rejected, but
this explains why the rejection values at the highest ENTROPY threshold was not 100%

In Figure 9.16 both names from the Cenotaph family were present in the best performing
BDM-H family but it was still rejected. This suggests that additional names in the b family
that do not match the m or in this case c family detract from the plausibility of the linkage.
This is a flaw in the entropy rejection method as it is not designed to model plausibility as a
human would see it.

There are a few interesting examples where the exact property that NGRAMS was picked
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Figure 9.14: Sorted entropy for each family in the Cenotaph data set when compared to
the families in BDM historical using the MATCH linkage method. There is a big range of
entropy values, and they follow a continuous curve with no steps or clusters. The shape is
concave down, decreasing. This means that there are in general, more high entropy values.
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Figure 9.15: Sorted entropy for each family in the Cenotaph dataset when compared to the
families in BDM-H using the NGRAMS linkage method. There is a big range of entropy
values, and they follow a continuous curve with no steps or clusters. The shape is linear,
decreasing. This means that there are in general, the same amount of high entropy values as
low entropy values.
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--------------------------------------------------------------------

Method for linkage = match

Method for rejection = entropy (0.1)

---------------Results------------------

lastName = McCathie

----------------------------------------

C family: [ james , david ]

All BDM families were rejected.

position id BDM-H family

1 1 [ stuart , william , david , james , elspeth , henderson ,

henderson , jane , keith , hall , donald , margiet , malcolm

]

2 2 [ thelma , conville , jean , cecil , raymond , keith , william

, donald ]

3 3 [ colin , donald , thomas , stuart ]

--------------------------------------------------------------------

Figure 9.16: The McCathie family, linkage selected using ENTROPY and the MATCH link-
age method. In this example with the McCathie family, the best found linkages a shown.
The BDM-H families were rejected. Strangely, all of the Cenotaph names are present in the
top BDM candidate. We can also see that there are a few additional names in BDM so this
suggests some other siblings who were in the family. This suggests that ENTROPY is not as
able to cope with the concept of having a small number of perfect matches like AL1 and BTN

rejection methods are.
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--------------------------------------------------------------------

Method for linkage = ngrams

Method for rejection = entropy

---------------Results------------------

lastName = McLean

----------------------------------------

C family: [ kenzie , alexander , john ]

position id BDM-H family

1 22 [ james , john , mclachlan , janet , david , henry , anew ,

duncan , helen , sarah , mckenzie , alexander , hugh , isabella

]

2 10 [ ann , alexander , mary , john , john , annie , kenzie , jessie

, ann , murdoch , lillie , donald , glasgow , catherine , swart

, duncan , ann , evangeline ]

3 334 [ william , james , bell , john , alexander , elizabeth , anew ,

george ]

--------------------------------------------------------------------

Figure 9.17: The McCathie family, linkage selected using ENTROPY and the MATCH link-
age method. In this example with the McCathie family, the best found linkages a shown.
The BDM-H families were not rejected. The top candidate has two exact matches and one
partial match in the top BDM candidate. alexander and john match exactly and then we
also have kenzie and the partial match Mckenzie. We can also see that there are a few
additional names in BDM so this suggests some other siblings who were in the family.

to solve was seen - spelling differences were picked up. In the Figure 9.17 for example the
name kenzie can be partially matched to Mckenzie.

9.2.1.3 BTN

The match linkage method is not applicable to the BTN because it does not use the base dis-
tribution to generate names. It is only applicable on the NGRAMS linkage method. When the
BTN rejection method is applied to NGRAMS linkages on the Cenotaph data we can see from
Figure 9.18 that the shape and positioning of the real scores (shown in blue), is more similar
to the shape and positioning of the positive cases (shown in green) where the peak of the
scores are above zero. The majority of the scores from the real data (and the test positives)
are more than zero. A score more than zero means that b set was better at generating m
than the base distribution was. This suggests that there are potentially many real matches
between the cenotaph data and BDM-H.

With the BTN method (when the threshold was set to 0) there were also very few families
rejected.

In Figure 9.19 there are only two BDM-H families that have the last name Caffery so
only these are displayed in the results. This is an example of a linkage that looks realistic
and has two exact matches but is rejected anyway. This is likely because of the large family
size, so that the base distribution is better at predicting the other 14 names than the b set is.
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CEN data Test data

Figure 9.18: NGRAMS linkage with BTN rejection. Left: Histogram of scores using the BTN

method 5.4. The BTN rejection method with n = 4 and beta = 0.5. The majority of the scores
are more than zero. A score more than zero means that the b set was better at generating m
than the base distribution was. Right: histogram scores for BTN with NGRAMS on test data
with noise. This graph is included for reference.

--------------------------------------------------------------------

Method for linkage = ngrams

Method for rejection = BTN

---------------Results------------------

lastName = Caffery

----------------------------------------

C family: [ james , joseph , william ]

All BDM families were rejected.

position id BDM-H family

1 1 [ edith , may , mary , jane , joseph , maria , elizabeth ,

donald , henry , margaret , albert , mona , ann , rose , robert

, james ]

2 2 [ ernest , gibson , george , joseph , stanley ]

--------------------------------------------------------------------

Figure 9.19: The Caffery family, linkage selected using ENTROPY and the MATCH linkage
method. In this example with the Caffery family, the best found linkages a shown. The
BDM-H families were rejected. The top candidate has two exact matches. james and joseph

match exactly, but william was not present. Again we can also see that there are a few
additional names in BDM so this suggests some other siblings who were in the family.
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Threshold NGRAMS

-0.2 20/725
-0.1 60/735
0.0 159/735
0.1 426/735
0.2 658/735
0.3 715/735
0.4 732/735
0.5 733/735
0.6 734/735
0.7 734/735
0.8 735/735
0.9 735/735
1.0 735/735

Table 9.8: Predicted Cenotaph BTN rejections with GROUP-TO-GROUP linkage method
using NGRAMS.This table shows the number of rejections at each threshold value when
using the BTN rejection method. When the threshold was zero, not many families were
rejected when using the NGRAMS linkage method. This means that for 159 familes the base
distribution was a better generator of the target m set than any b family ngram frequency
distributions.

9.2.2 Linkages found with best alignment

9.2.2.1 BTN

The BTN rejection method with the NGRAMS-DYNAMIC linkage method rejected zero fami-
lies when the threshold was set to zero. This is less rejections than when the BTN rejection
method was used with NGRAMS using the group-to-group method instead of the alignment
with dynamic. This can be seen in Table 9.10, and Figure 9.20 where all of the scores are
more than zero.

Figure 9.22 shows the performance of the BTN rejection method in blue. The distribution
is bell-shaped with a tail on the right hand side. This means that in every linkage comparison
the b family was a better predictor of the Cenotaph set than the base distribution.

9.2.2.2 ENTROPY

In previous Chapters different thresholds were tested so that we could understand how
many linkages would be rejected at each threshold. The experiments in Chapters 6 and 8
suggested that very low entropy threshold values produced the best accuracy results. The
same thresholds applied on the real CEN data results in almost all of the linkages rejected
when ENTROPY rejection is used with the BEST ALIGNMENT linkage method. The ENTROPY

rejection method rejected every linkage at the low entropy thresholds (where we would have
set them based on our experiments on test data). This can be seen in Figure 9.22 where a
significant number of the data points are at the top of the graph. Table 9.10 shows the exact
number of linkages rejected at every threshold value.

9.3 Summary of methods

Across the MLO data, all of the methods performed similarly. Almost all linkages were
rejected. This was reflected in the example linkages shown throughout Section 9.1 where
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Figure 9.20: Sorted BTN score for each family in the Cenotaph data set when compared to
the families in BDM historical using the NGRAMS linkage method. There is a large range
of BTN values, from 0.14 to 3. There is a continuous curve with no steps or clusters. Most of
the data points are less than 1.5.

CEN data Test data

Figure 9.21: NGRAMS-DYNAMIC linkage with BTN rejection. Left: Histogram of scores
using the BTN method 5.4. The BTN rejection method with n = 4 and beta = 0.5. None of the
scores are less than zero, this means that the base distribution was better at generating the
target m than b was. Right:This model has noise = 0.2 applied to the test data. This graph is
included for reference.
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Threshold NGRAMS

0 0/735
0.2 1/735
0.4 8/735
0.6 44/735
0.8 129/735
1.0 325/735
1.2 477/735
1.4 553/735
1.6 600/735
1.8 619/735
2.0 644/735
2.2 672/735
2.4 689/735
2.6 702/735
2.8 709/735
3.0 715/735

Table 9.9: Predicted Cenotaph BTN rejections with BEST ALIGNMENT linkage method us-
ing NGRAMS. When the BTN threshold is set to the best value from earlier experiments (0.5),
almost none of the families are rejected when using the NGRAMS linkage model. The MATCH

linkage method also causes almost all of the families to be rejected at every threshold.

many did not resemble each other at all. There were a few believe able matches that we
came across but not many.

The Cenotaph data on the other hand provided much more interesting and differing
results. The AL1 and BTN methods rejected almost none of the linkages and found many
promising results while the ENTROPY method rejected everyone. The ENTROPY method on
the Cenotaph data had a similar distribution of entropy values to the real MLO data set.
This is surprising as the actual examples in the cenotaph data are much more promising.

In general a problem with the ENTROPY rejection method is that it is hard to set the
threshold. We have tried out a variety of different thresholds but we have no real way of
justifying where to put it.

What the AL1 and BTN methods have in common is that they are both accepting linkages
that show some promise. This is particularly useful in the Cenotaph data where (we believe)
the whole family would not go to war and so we would expect to see only a partial match
in names between the BDM-H set and the Cenotaph set.

A common theme for those families picked in the examples is that when no really ob-
vious matches exist, very large families are picked instead. This could be a fault of the
linkage methods in that a big family is just more likely to by chance have the names from the
MLO/CEN family.
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Figure 9.22: Sorted entropy for each family in the CEN dataset when compared to the
families in BDM historical using the BEST ALIGNMENT linkage method with NGRAMS.
There is a much more defined slope in the graph compared to the equivalent display in
Figure 9.11. Most of the entropy values are above 0.75 but there are some that are lower. The
lowest value is around 0.1. There are no values less than 0.1 which is unfortunate as this
was where the entropy values tended to be set on test data.

Threshold NGRAMS

0.0 735/735
0.1 735/735
0.2 733/735
0.3 729/735
0.4 722/735
0.5 612/735
0.6 694/735
0.7 649/735
0.8 571/735
0.9 361/735
1.0 20/735

Table 9.10: Predicted Cenotaph ENTROPY rejections with BEST ALIGNMENTS linkage
method using NGRAMS. When the entropy threshold is set to the best value from earlier
experiments, almost all of the families are rejected when using the NGRAMS linkage model.
The MATCH linkage method also causes almost all of the families to be rejected at every
threshold.
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9.4 Discussion of real data

Can we use these methods to reliably find individuals from Māori Land Online in Births Deaths and
Marriages (historical) ?
This is the million dollar question (well approximately 5 million dollar question for PKW).
The short answer is no. There were very few matches that appear legitimate from the results
of the linkage and rejection methods on the real MLO to BDM-H comparison. However
many compelling matches were produced when the linkage and rejection methods were
applied to the cenotaph data. When the MLO results are compared to the results of the
CEN data, the reasons for the lack of matches is highlighted. It appears that the methods
themselves perform well, because CEN produces a lot of compelling results. This implies
that it is a problem with the data quality in MLO. There are two main problems with the
comparison that we are trying to do.

The first is that MLO is vastly out of date. Because the MLO data set is only updated in
response to an inheritance event, this relies on individual shareholders to take their inher-
itance claims to the Māori Land Court. The onus is on the shareholders to follow complex
processes for low reward. This cannot be guaranteed to happen and requires not insignifi-
cant effort from the individual.

The cenotaph is a reliable data set because we know that the family groupings in it are
fairly accurate as they have been updated by historians and family members. With the CEN
data it is likely that both data sets were generated from the same latent entity i.e. a single
individual created the record in BDM and in CEN.

The second problem is that MLO and BDM-H do not cover the same time period. One
of the key differences between the MLO and CEN data sets is the time period of the data.
As a result of the fact that MLO does not always contain the most recent information, for
any given land block it is possible that some of the original owners are still listed. MLO data
references many different points during New Zealand’s history. This is unlike the CEN data
which is close to representing singular events in time (New Zealand has not fought in many
large scale wars). We know that many of the current day owners in MLO are too young to
even appear in BDM-H. This suggests that a high number of rejections is the result of using
BDM-H as compared to what we would expect from a more up to date BDM.

One of the goals of the wider project has been to investigate how much could be done
with the freely available data and build a case for requesting more complete data be made
available (by the Crown for example). It is apparent that further (current) BDM data is
required, this would mean that any shareholder from MLO would be in theory present in
BDM. It is very likely that if BDM was used instead of the historical version then there
would be more matches as there were in the cenotaph data which matches the time frame
of BDM-H.
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Chapter 10

Conclusion

Part of what has made this research journey different to a traditional thesis is that right
from the very beginning it has been grounded in an understanding of the problem in the
context of te ao Māori and the world of Māori data. This has changed the way that the
project worked as a whole and it has been a privilege to be a part of. It has meant changing
our expectations and learning how to integrate Māori data and information with a western
view of how science is carried out. It is important to bear that in mind when reflecting on
the scope and the directions that this research has taken.

10.1 Key contributions:

This thesis has modelled the key inference processes in the BDM and MLO linkage problem
using a Bayesian model. This has involved understanding and integrating te ao Māori into
the research problem. By having a Māori world view at the forefront of this research it has
meant that we have taken into consideration inherent cultural structures that are present
within the data. Māori concepts such as whānau, hapū, iwi and whakapapa are crucial to
understanding how land ownership and land use are seen by Māori. This has directly led
to the concept of GROUP-TO-GROUP comparisons and the effort to link groups of people
to each other, as opposed to linking individual records independent of their context. By
understanding the company that an individual keeps, we are closer to understanding them
and their story.

We explored two different GROUP-TO-GROUP linkage methods, which we called MATCH

and NGRAMS. The MATCH method assigned scores to each possible linkage via the number
of exact string matches between the two sets. This performed well on test data but, unsur-
prisingly, was not robust to noise. The NGRAMS linkage method used a Markov model for
text to identify the likelihood of one group creating the other. This was much more robust
to noise and outperformed the MATCH method on test data.

Three novel rejection methods for linkages were designed: AL1, ENTROPY and BTN. The
AL1 method rejects linkages that perform worse than an on-the-fly threshold, which is cre-
ated by considering a single perfect match. When using the MATCH linkage method, this
means rejecting all linkages where there is not at least one individual who appears in both
sets. When using the NGRAMS linkage method which is probabilistic this method rejects
linkages that do not do at least as well as a set with one identical match. The ENTROPY

rejection method uses the (scaled) Shannon entropy [63] to measure the distribution of nor-
malised posterior probabilities derived from scores across different possible linkages in a
puzzle. We proposed that low entropy indicates strong winners and so one could reject all
linkages with high entropy. This method performed well on test data for GROUP-TO-GROUP
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but did not do as well on the BEST ALIGNMENT linkage methods, or on real data. The BTN

method rejects linkages where the base distribution is better able to generate the target m
(or c) set than the proposed b set.

A dynamic programming algorithm was developed for generating the BEST ALIGNMENT

between an m and a b set. The BEST ALIGNMENT linkage method was implemented with
two different string matching methods: NGRAMS and EDIT DISTANCE. Of these, NGRAMS

was an extension of the model used in the GROUP-TO-GROUP linkage and the EDIT DIS-
TANCE approach measures the number of changes needed to be made to turn one string
into the other. The BEST ALIGNMENT approach was not as successful on test or real data.

These linkage methods were then applied to real MLO and Cenotaph data. We were
able to identify many compelling matches between the Cenotaph data and BDM-H. We
were unfortunately not able to identify many compelling matches between the MLO data
and BDM-H.

10.2 Assessment of data

Part of this project was to assess the value of having this data. The key questions were:

• Is Births Deaths and Marriages (historical), good enough?

• Would it be worth having real BDM?

The results of the various experiments on both the real Māori Land Online data and
the Cenotaph data indicate that Births Deaths and Marriages Historical is not sufficient.
Cenotaph had many positive linkages that could be identified as a very likely link. This
suggests that our methods perform well enough to identify real links that are present. By
contrast, the MLO data did not yield convincing matches. We hypothesise that whilst there
may be issues with the identification of sibling groups in MLO, the main problem is that
MLO data is misaligned with BDM-H. There is a not enough overlap in terms of the time
that the individuals are alive.

It would be the recommendation from this thesis that for the project to proceed further
and be able to provide valuable insight to Māori land organisations, access to Births Deaths
and Marriages be sought.

10.3 Future research and work

As with any research project, there is always more that could be done. Key areas of further
work would be:

10.3.1 Build an interface for this recommendation engine to be used by PKW

Currently this research remains purely experimental and has not been implemented in a
way that is immediately consumable by PKW. This is likely to be done as a part of the wider
project but would require investigation into real use cases and the exact queries that PKW
staff would be making.

10.3.2 Rejection methods more appropriate for the BEST ALIGNMENT linkage
method

It was demonstrated that the ENTROPY and BTN rejection methods did not perform very
well in combinations with the BEST ALIGNMENT linkage method. It would be useful to

94



further develop rejection methods that utilised specific features of the BEST ALIGNMENT

linkage method. These are not limited to but may include use of the number of perfect
matches within an alignment, and the number of matches within an alignment that are not
to a real person (i.e. the number of times the best alignment occurs when there is no actual
alignment).

10.3.3 Estimation via Importance Sampling

The BEST ALIGNMENT algorithm finds the optimal alignment and uses the probability de-
rived from this as the basis for the subsequent comparison between b groups. From a
Bayesian perspective this is not the best thing to do, as it uses f = p(m | b, z?), with z?

being the optimal alignment, as a proxy for F = p(m | b).
An alternative approach to this is to use a form of Importance Sampling ([70, 68]) to

generate a Monte Carlo estimate of the (latter) marginal likelihood - an approach that inte-
grates over the options for alignment rather than optimising over them. Use of Importance
Sampling to estimate F potentially offers two advantages over the optimisation approach of
using f . Firstly, it directly addresses the correct probability and this means it takes appropri-
ate account of ambiguous identities, rather than just “taking the best match”. Secondly, the
computational load involved is readily tuned up or down as needed: more computational
resource can generate better approximations when uncertainty is large, or can be cut down
when the evidence is clear.

To estimate F with Importance Sampling, we would like to draw samples z from an
optimal proposal distribution q, which is known to be q(z) = | f (z)| p(z). Such samples
could be generated using Metropolis Hastings for example. Although investigated in initial
experiments there was not time to fully develop this as a solution.

10.3.4 Investigate use of Latent Dirichlet Allocation (LDA) at a land block level

”LDA is a probabilistic model with a corresponding generative process – each document
is assumed to be generated by this (simple) process” [71]. LDA (often called ”topic mod-
elling”) models sets of documents, each of which is taken to consist of words from more
than one topic. A topic is simply a distribution over a fixed vocabulary, and it is assumed
that these topics precede the creation of the documents [71]. We could consider the names
on a land block as a document. Some initial work was done investigating use of LDA to
generate hapū groups across different share blocks and minute book references, using this
mixed membership model to try and get at which names ”travel together” as a whole in the
MLO corpus.

There were some promising initial results that were able to group different well known
families together, albeit with only a modest number of topics being assumed. Although this
line of investigation was not continued here, it may be worth pursuing further. It would be
interesting to see whether the LDA model could recreate family groups at a level of granu-
larity that approaches what was achieved by the minute book references and share values.
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To close

This has been more than a scientific journey but also one of cultural discovery. Understand-
ing the underlying problem of Māori who have become disconnected from their culture has
shown me things about my own cultural connection (or lack thereof). As a half Cantonese-
Chinese, half English, New Zealander, I too am disconnected from my land. I, like many
other New Zealand-born Chinese, am disconnected from my language. This has prompted
me to change my perspective of who I am and where I belong.

This project has totally changed my perspective of New Zealand history and the land. It
has also allowed me to enrich my own cultural connections as I realised that I too am lost
from my culture and I am working to get that back.
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[8] Māori Dictionary Retrieved from: https://maoridictionary.co.nz/search?idiom=phrase
=proverb=loan=histLoanWords=keywords=matauranga+maori
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