
An Evolutionary
Computation Approach to

Resource Allocation in
Container-based Clouds

by

Boxiong Tan

A thesis
submitted to the Victoria University of Wellington

in fulfilment of the
requirements for the degree of

Doctor of Philosophy
in Computer Science.

Victoria University of Wellington
2020

Abstract

A container-based cloud is a new trend in cloud computing that intro-
duces more granular management of cloud resources. Compared with
VM-based clouds, container-based clouds can further improve energy effi-
ciency with a finer granularity resource allocation in data centers. The cur-
rent allocation approaches for VM-based clouds cannot be used in container-
based clouds. The first reason is that existing research lacks appropriate
models that can represent the interaction of allocation features. Many crit-
ical features, such as VM overhead, are also not considered in the current
models. The second reason is that current allocation approaches do not
perform well to the three frequently encountered allocation scenarios, off-
line allocation, on-line allocation, and multi-objective allocation. Current
approaches for these scenarios are mostly based on greedy heuristics that
can be easily stuck at local optimum, or meta-heuristics that consider a
simplified one-level allocation problem. Evolutionary Computation (EC)
is particularly good at solving combinatorial optimization problems for
both off-line and on-line scenarios. The overall goal of this thesis is to
propose an EC approach to the three allocation scenarios in order to im-
prove the performance of container-based clouds. Specifically, we aim to
optimize energy consumption in all the scenarios. An additional objective,
availability of application, is considered for the multi-objective scenario.

First, this thesis investigates two promising representations, vector-
based and group-based. We proposes two novel vector-based (e.g., Single-
chromosome Genetic Algorithm (SGA) and Dual-chromosome GA (DGA)) and
a group-based GA approaches for the off-line allocation scenario. Cor-
responding genetic operators and decoding processes are also developed

and evaluated. Two contributions have been made. Firstly, a novel off-
line model has been proposed based on current models with additional
features. It can be used to evaluate allocation algorithms. Secondly, two
types of problem representation, vector-based and group-based, are inves-
tigated and three novel approaches are proposed. The three approaches
are compared with state-of-the-art approaches. The results show that all
solutions produced by these approaches are better than the state-of-the-art
approaches and group-based GA is the best approach.

Second, this thesis proposes a novel genetic programming hyper-heuristic
(GPHH) and a cooperative coevolution (CCGP)-based approach for the
on-line allocation scenario. These hyper-heuristic methods can automati-
cally generate allocation rules. For GPHH-based approach, we develop a
novel training procedure to generate reservation-based rules for allocating
containers to VM instances. For the CCGP-based approach, we introduce a
new terminal set and develop a training procedure to generate allocation
rules for two-level allocations. We analyze both human-designed rules
and generated rules to provide insights for algorithm designers. Two con-
tributions have been proposed for the on-line problem. First, the on-line
model for the on-line allocation scenario is developed. Second, a novel ter-
minal set and training procedures are developed. The automatically gen-
erated heuristics perform significantly better than the manually designed
heuristics.

Third, this thesis proposes a multi-objective approach that generates a
set of trade-off solutions for the cloud providers to choose from. Our novel
approach, namely Nondominated Sorting-Group GA (NS-GGA), combines
the group-based representation and the NSGA-II framework. The exper-
imental results are compared with existing approaches. The results show
that our proposed NS-GGA approach outperforms all other approaches.
We propose two novelties. The first novelty is the multi-objective model
including objectives of energy consumption and availability. The second
novelty is the NS-GGA approach that combines the group-based represen-

tation with NSGA-II. The allocation solutions found by NS-GGA dominate
the solutions found by other existing approaches.

iv

Acknowledgments

I would like to thank my supervisors, A/Prof Hui Ma, Dr Yi Mei, and Prof
Mengjie Zhang, for their patient guidance and support during the course
of my Ph.D study. A/Prof Hui Ma is always good to talk to. Dr Yi Mei
challenged me to dig deeper into the problems. Prof Mengjie Zhang gave
his feedback on my articles and thesis fast and helpful. I am also grateful
for the financial support from the Marsden Fund (VUW1510 and VUW
1614) over the past three years.

I am especially grateful to Qu Ying for being a teacher, a good listener,
and my closest friend. Thank you for spending hours and hours teach-
ing me writing. Thank you for listening to my frustrations when I was
stumbled. This thesis cannot be done without your encouragement and
help.

Thank my friends in Evolutionary Computation Research Group, Alexan-
dre Sawczuk da Silva, Chen Wang, John Park, Bach Hoai Nguyen, Victo-
ria Huang, FangFang Zhang and so many unlisted, for discussing, shar-
ing ideas, reviewing my writings. I would also like to thank Mengge Hao,
Shenbo Xuan, Ying Zhu, and Mingming Zhong, for your warm friendship.

Last but not least, I would like to thank my family for their great sup-
port and understanding. Thank you to my parents who give me the op-
portunity to pursue this degree and have always been there for me.

v

vi

List of Publications

• B. Tan, H. Ma and Y. Mei, “A NSGA-II-based approach for service
resource allocation in Cloud”, IEEE Congress on Evolutionary Com-
putation (CEC), 2017, pp. 2574-2581.

• B. Tan, H. Ma and Y. Mei, “A Genetic Programming Hyper-heuristic
Approach for Online Resource Allocation in Container-Based Clouds”.
AI: Advances in Artificial Intelligence, 2018, pp. 146-152.

• B. Tan, H. Ma and Y. Mei, “A Hybrid Genetic Programming Hyper-
Heuristic Approach for Online Two-level Resource Allocation in Container-
based Clouds”, IEEE Congress on Evolutionary Computation (CEC),
2019, pp. 2681-2688.

• B. Tan, H. Ma and Y. Mei, “Novel Genetic Algorithm with Dual
Chromosome Representation for Resource Allocation in Container-
Based Clouds”, IEEE International Conference on Cloud Computing
(CLOUD), 2019, pp. 452-456.

• B. Tan, H. Ma, Y. Mei and M. Zhang, “A Genetic Programming Coop-
erative Coevolution Hyper-Heuristic Approach for Resource Alloca-
tion in Container-based Clouds”, IEEE Transaction on Cloud Com-
puting, 2019, second around of revision.

• B. Tan, H. Ma, Y. Mei, “A Group Genetic Algorithm for Resource
Allocation in Container-Based Clouds”. Evolutionary Computation
in Combinatorial Optimization (EvoCOP), 2020, pp. 180-196.

vii

viii

• B. Tan, H. Ma and Y. Mei, “An NSGA-II-based Approach for Multi-
objective Micro-service Allocation in Container-based Clouds”. IEEE/ACM
International Symposium on Cluster, Cloud and Internet Computing
(CCGRID). 2020, to appear.

Contents

1 Introduction 1
1.1 Problem Statement . 1
1.2 Motivation . 7
1.3 Research Goals . 8
1.4 Major Contributions . 11
1.5 Organization of Thesis . 13

2 Literature Review and Background 17
2.1 Concepts of Clouds . 17

2.1.1 An Overview of Cloud Computing 18
2.1.2 Cloud Resource Allocation 21
2.1.3 Virtualization Technologies 23
2.1.4 Workload Types . 27
2.1.5 Allocation Scenarios and Problems 29

2.2 Concepts of EC . 32
2.2.1 Genetic Algorithms (GAs) 32
2.2.2 Hyper-Heuristics, GPHH, and CCGP 35
2.2.3 Non-dominated Sorting GA-II (NSGA-II) 39

2.3 Related Work . 41
2.3.1 RAC Problem Models 41
2.3.2 Off-line Resource Allocation in Clouds 43
2.3.3 On-line Resource Allocation in Clouds 48
2.3.4 Multi-objective Resource Allocation in Clouds 51

ix

x CONTENTS

2.3.5 EC Algorithms in Combinatorial Optimization 52

2.4 Summary and Thesis Scope 56

3 GA-based Approaches for Off-line RAC 59

3.1 Introduction . 59

3.2 Chapter Organization . 60

3.3 Off-line RAC Model . 61

3.4 The Off-line RAC Process and Assumptions 65

3.5 Vector-based GA . 67

3.5.1 Single-Chromosome GA (SGA) Approach 67

3.5.2 Dual-Chromosome GA (DGA) Approach 74

3.6 Group-based GA for RAC . 79

3.6.1 Overall Procedure . 80

3.6.2 Representation . 81

3.6.3 Initialization . 81

3.6.4 Gene-level Crossover 82

3.6.5 Rearrangement . 84

3.6.6 Unpack . 85

3.6.7 Merge . 86

3.6.8 Time Complexity Analysis 86

3.7 Experiments and Results . 87

3.7.1 Datasets and Test Instances 88

3.7.2 Benchmark Algorithms 89

3.7.3 Parameter Settings . 90

3.7.4 Results . 91

3.8 Discussions on Representations 97

3.8.1 Single-chromosome Representation 97

3.8.2 Dual-chromosome Representation 98

3.8.3 Group Representation 99

3.9 Chapter Summary . 101

CONTENTS xi

4 GP-based Approaches for On-line RAC 103

4.1 Introduction . 103

4.2 Chapter Organization . 106

4.3 On-line RAC Model . 106

4.4 The On-line RAC Process and Assumptions 107

4.5 GPHH-RAC . 110

4.5.1 The GPHH-RAC Approach Overview 112

4.5.2 Rule Representation 115

4.5.3 Fitness Evaluation . 117

4.6 CCGP-RAC . 119

4.6.1 The CCGP-RAC Approach Overview 120

4.6.2 Representation, Terminal Set, and Function Set 123

4.6.3 Fitness Function . 124

4.7 Experiments and Results . 124

4.7.1 Benchmark Algorithms 125

4.7.2 Experiment Settings 126

4.7.3 Experiment Results . 131

4.8 Rule Analysis . 135

4.8.1 VM Creation Behavior 136

4.8.2 Structural Analysis of Evolved Rules 141

4.9 Chapter Summary . 145

5 EC for Multi-objective RAC 147

5.1 Introduction . 147

5.2 Chapter Organization . 151

5.3 Multi-Objective RAC Problem Model 151

5.4 The Multi-Objective RAC Process and Assumptions 156

5.5 NS-GGA . 158

5.5.1 Algorithm . 158

5.5.2 Representation . 160

5.5.3 Initialization . 160

xii CONTENTS

5.5.4 Crossover . 161
5.5.5 Rearrangement . 162
5.5.6 Mutation . 164
5.5.7 Fitness Assignment . 165

5.6 Experiments and Results . 166
5.6.1 Benchmark Algorithms 166
5.6.2 Performance Metrics 167
5.6.3 Datasets and Test Instances 168
5.6.4 Parameter Settings . 169
5.6.5 Experiment Results and Analysis 169

5.7 Chapter Summary . 174

6 Conclusions 179
6.1 Achieved Objectives . 180
6.2 Conclusions . 182

6.2.1 Problem Models . 182
6.2.2 Vector-based and Group-based Representations . . . 183
6.2.3 Complexity of Genetic Operations 184
6.2.4 Hyper-Heuristic Framework 184
6.2.5 Insights of Allocation Heuristics 185
6.2.6 Independent Optimization Objectives 185

6.3 Future work . 185
6.3.1 Hybrid Approach of Vector-based and Group-based

Representation . 186
6.3.2 Time Sequence Analysis for Resource Requirement

of Applications . 186
6.3.3 Multi-Objective Hyper-Heuristic Approaches 187
6.3.4 Lifelong Learning Hyper-heuristics for Allocation

Heuristics . 187
6.3.5 Location-aware Allocation in Container-based Clouds 188

Figures

1.1 Compared to VM-based, the number of VM can be reduced
in container-based cloud because containers are co-allocated
to VMs. 2

1.2 The connection between major contributions chapters in the
thesis. 15

2.1 Stakeholders of cloud computing adapted from [97] 19

2.2 VM-based and Container-based virtualization adapted from
[165] . 23

2.3 A comparison between OS container and Application con-
tainer adapted from [168] . 24

2.4 A comparison between standard bin packing and vector bin
packing . 30

2.5 Crossover and mutation . 37

2.6 GP program that represents x + max(y × 2, -2) 38

2.7 Crowding distance, adapted from [48], where f1, and f2 are
two optimization objectives to be minimized. 40

2.8 The energy consumption at time t are same for method A
and B. 44

3.1 An illustration of the RAC problem. 61

3.2 The flowchart of the off-line RAC process. 65

3.3 An example of SGA representation of RAC solution 68

3.4 Representation . 76

xiii

xiv FIGURES

3.5 Order 1 crossover . 78

3.6 Single-point crossover . 78

3.7 Representation . 81

3.8 An example of gene-level crossover 83

3.9 Resource usage frequency in the AuverGrid dataset [189] . . 88

3.10 Comparison of the average energy consumption 91

3.11 Comparison of the convergence among SGA, DGA-NF, DGA-
FF, and GGA-RAC of test instance 1 to 4 93

3.12 Comparison of the convergence among SGA, DGA-NF, DGA-
FF, and GGA-RAC of test instance 5 to 8 94

3.13 Number of VM instances in test instances 1 to 4 95

3.14 Number of VM instances in test instances 5 to 8 96

3.15 Comparison of computation time of all algorithms. 97

3.16 An example of two individuals with different representa-
tions being decoded to the same solution. 100

4.1 The flowchart of on-line RAC process. 108

4.2 The overview of the training process of GPHH-RAC. 113

4.3 The tree-based representation of a rule. 115

4.4 Illustration of the features used in the terminal set 116

4.5 The overview of CCGP-RAC. 120

4.6 The representation of CCGP-RAC. 123

4.7 Illustration of the features used in the terminal set 124

4.8 Resource usage frequency in the real-world datasets 127

4.9 Allocation process of simulation 0 from scenarios 3 and 12 . 133

4.10 PM resource utilization . 134

4.11 PM remaining resource . 136

4.13 The average frequency of VM types used by three algorithms 138

4.14 The average waste and overhead of memory in scenario 1,
run #0. 139

FIGURES xv

4.15 The 3D and contour plot of the GP tree: f = 10×(leftV mCpu−
leftV mCpu3)×leftV mMem, where x-axis is the leftVmMem
and y-axis is the leftVmCpu . 143

4.16 The contour map shows the high-score regions of Rule-15p
when allocating VM of type 17 and 20. 144

5.1 Group representation . 160
5.2 Flowchart of gene-level crossover for NS-GGA. 162
5.3 The best solutions found in three algorithms in test cases 1

to 4. 172
5.4 The best solutions found in three algorithms in test cases 5

to 8. 173
5.5 Number of VM instances that four algorithms used in the

synthetic VM types (right) and real-world VM types (left). . 174
5.6 The median solutions found in NS-GGA and NS-DGA-FF in

test cases 1 to 4. 175
5.7 The median solutions found in NS-GGA and NS-DGA-FF in

test cases 5 to 8. 176
5.8 The evolution of Pareto front in NS-GGA from test case 8

run 27. 177

6.1 Illustration of thesis contributions. 183

xvi FIGURES

Chapter 1

Introduction

1.1 Problem Statement

Cloud computing has become the pillar of software industry by offer-
ing on-demand computing resources (e.g., storage and computing) [27].
Clouds are essentially data centers that use virtualization technologies,
e.g., Virtual Machines (VMs) and containers, to separate servers (Physi-
cal Machines (PMs)) into smaller units and lease them to cloud users [88].
Clouds bring numerous benefits to cloud users. For example, Google de-
ploys its applications on clouds, and anyone who has access to the Internet
could use them from anywhere in the world. Clouds release the burden
of purchasing and maintaining hardware resources. Hence, the cost of op-
erating applications has decreased because cloud users only need to pay
for the resources that they rent. In addition, clouds guarantee that their
services can be accessible 99.99% of the time [14] and dynamically adjust
the capacity for applications when handling the fluctuation of workloads.
With the development of cloud technology, many new types of clouds,
e.g., container-based clouds, have emerged to provide more profits for
both cloud users and cloud providers.

Container-based clouds [110] or Container-as-a-Service (CaaS) [166] is
a recent development in this area. Accoriding to a survey [1] in 2019,

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Compared to VM-based, the number of VM can be reduced in
container-based cloud because containers are co-allocated to VMs.

87% of IT companies have adopt container technology and this percent-
age was 55% in 2017. There is an urgent need to container-based clouds.
Different from traditional VM-based clouds that resources are managed
with VMs, container-based clouds use containers as the basic resource
management unit. Containers [157] are a new virtualization technology
for allocating physical resources to applications. Compared to VMs, con-
tainers incur less overhead (e.g., CPU and memory) by sharing Operating
Systems (OSs). For example, in Figure 1.1, the PM instance in container-
based clouds uses two OSs instead of the four OSs needed by the VM-

1.1. PROBLEM STATEMENT 3

based clouds. However, containers suffer from the drawbacks of perfor-
mance interference (e.g., competition on I/O resources) [229] and security
treats [76]. Therefore, container-based clouds use VMs to provide an ad-
ditional level of isolation for security.

Container-based clouds are beneficial for both stakeholders of clouds,
e.g., cloud users and cloud providers. From the cloud users’ perspective,
container-based clouds are suitable for allocating large scale cloud-native
applications [111], e.g., micro-services [149] and server-less architectures
[21]. This is because of the flexibility of allocation, the auto-scaling, and
high speed in the delivery of enhancements [60]. From the cloud providers’
perspective, containers provide the potential to reduce the energy con-
sumption of data centers. By using auto-scaling [125] and migration [65]
technologies, containers are resource units with finer granularity, which
makes their management flexible. Hence, to fulfill the cloud providers’
need for energy reduction, resource allocation is a critical task in container-
based clouds.

Resource allocation is a crucial procedure to effectively utilized resources
in data centers. In cloud computing, resource allocation [135] denotes “the
process of distributing resources economically between competing groups
of programs or users”. Resource allocation determines the type, quantity,
and placement of resources [238]. The goal for resource allocation is to
maximize the profit without violating constraints such as Service Level
Agreement (SLA) [197]. Specifically, unlike VM-based clouds which have
a one-level structure where VM instances are directly allocated to PM in-
stances, resource allocation in container-based clouds (RAC) involves a two-
level structure [150]. On the first level, containers need to be allocated to
VM instances. New VM instances may be used if the existing VM instances
do not provide enough resources to host containers. On the second level,
new VM instances need to be allocated to PM instances. In these processes,
more variables, such as the placement of containers and the types of new
VM instances, need to be determined. Therefore, VM-based allocation ap-

4 CHAPTER 1. INTRODUCTION

proaches cannot be directly applied in container-based clouds. Existing re-
source allocation approaches for container-based clouds are mainly meta-
heuristics [84,119] and rule-based [133,166,245]. They either only consider
one level of allocation, containers to VM instances, or using simple rules
to allocate resources. Hence, it is urgent to propose resource allocation
approaches for container-based clouds to use cloud resources effectively.
Without effective allocation algorithms, container-based clouds may suf-
fer from low resource utilization ranging from 10% to 50% [253]. The extra
PM instances consume enormous amounts of energy every year, and this
significantly lowers clouds’ profit while also emitting a large amount of
carbon dioxide into the environment.

Among the numerous scenarios of allocation [88] in clouds, the fol-
lowing three should be further discussed. To maintain a highly utilized
data center, some of the allocation scenarios are particularly important
and need to be addressed urgently in container-based clouds. One of
the most frequently encountered scenarios is off-line resource allocation
(also called static resource allocation). Off-line scenarios [213] allocate a
set of containers simultaneously. During the allocation, no migration is
done with workload changes [68]. The off-line scenario frequently occurs
during the allocation of new applications, e.g., initial application alloca-
tion [97, 213]. In this scenario, allocation performance, measured by re-
source utilization or energy consumption, is the single objective for this
task. That is because a large number of allocations can hugely increase the
energy consumption of the data center.

On-line resource allocation [213] (also called dynamic resource allo-
cation) refers to the immediate allocation of a container. Clouds rely on
the on-line allocation to adjust the allocation of applications dynamically.
For example, this type of allocation is used in the procedure of container
migration, where a container is moved from a PM instance, which is PM
overloading or machine breakdown. The container needs to be allocated
to another PM instance immediately. Hence, the data center could main-

1.1. PROBLEM STATEMENT 5

tain a load-balancing, highly utilized status.

Another important scenario is the multi-objective resource allocation
[238], where the relationship between containers is considered. For ex-
ample, containers are often the components for large-scale applications;
their connections and relationships need to be considered. Therefore, in
addition to energy consumption, extra objectives, such as availability, are
frequently considered in this scenario. As the availability is the most con-
cerned requirement of application users according to IBM’s survey [12].
These scenarios bring challenges and require specific designs to cope with
their characteristics.

Different approaches are needed for handling the distinct characteris-
tics of each previously discussed resource allocation scenario. The off-
line resource allocation is a two-level optimization problem. Each level
of allocation can be simplified as a vector bin packing problem, which is
NP-complete problems [245]. This means that a polynomial-time algorithm
for solving the problem is not known. Moreover, two levels of allocation
need to be determined simultaneously because of their interaction. In ad-
dition to energy consumption, the on-line resource allocation only has a
short decision time to solve the problem once a new container arrives at
the cloud. In the on-line problem, the resource requirement of a container
is unknown in advance. The multi-objective resource allocation problem
requires more objectives to be optimized independently. Moreover, when
the objectives are conflicting with each other, it is difficult to handle the
trade-offs.

Current studies solve the RAC problem mainly with two types of method,
rule-based approaches [102, 121, 134, 166] and meta-heuristics approaches
[84, 119]. The rule-based approaches use rules to make allocation deci-
sions, each targeting a sub-problem of allocation (e.g., containers to VM in-
stances, and VM instances to PM instances). These rules are mostly based
on greedy algorithms such as AnyFit-based heuristics [50], e.g., First-Fit,
Best-Fit, and other human-designed heuristics [228]. Therefore, they are

6 CHAPTER 1. INTRODUCTION

easily stuck in local optimal solutions. Besides, these rules consider too
few features, which lead to poor generality. For example, their perfor-
mance varies without considering VM types. As Wolke et al. [226] sug-
gested, rule-based approaches are only useful in some scenarios, such as
container migration, because of the short decision-making time. How-
ever, they are not appropriate for other scenarios, such as initial off-line
container allocation, which has relaxed decision times. The existing meta-
heuristics are mostly focused on the OS-container allocation problem, which
is a one-level allocation problem. Hence, these approaches cannot solve
the two-level allocation problems.

Evolutionary Computation (EC) [236] is particularly useful for solv-
ing combinatorial optimization problems. EC uses a population of so-
lutions to iteratively search in the solution space. The population-based
approaches can avoid becoming stuck in local optimum solutions, and
ECs can easily incorporate domain-specific knowledge when addressing
real-world problems [69]. Additionally, EC can be used to adapt solu-
tions to dynamic changes in the environment [69]. EC has been success-
fully applied in many academic and real-world problems, such as Job
Shop Scheduling [47, 90, 152], Vehicle Routing [32, 115], and Arc Routing
problems [18,139]. RAC is also a combinatorial optimization problem that
shares many similarities with the previously mentioned problems. There-
fore, in this thesis, we propose EC-based approaches to solve the resource
allocation problem in container-based clouds. However, it is challenging
to design effective EC-based algorithms for the resource allocation prob-
lem. To do this, we need to design representations and specific genetic
operators so that EC algorithms can be adapted to the problem. We con-
sider the use of EC to solve the resource allocation problem for the three
scenarios in container-based clouds.

This research aims to improve the performance in container-based clouds
by using EC algorithms. Specifically, this work focuses on three represen-
tative resource allocation scenarios: off-line allocation, on-line allocation,

1.2. MOTIVATION 7

and multi-objective allocation.

1.2 Motivation

Existing works [178, 198, 206] adopt models from VM-based clouds and
use them to solve resource allocation problems in container-based clouds.
However, the adaptation of these models is not fully compatible. Using
the models from VM-based clouds can lead to inefficiency because of lack-
ing critical features and decision variables. The core difference between
VM-based and container-based clouds is that, in VM-based clouds, cloud
users decide the quantity and types of VM instances and allocate applica-
tions inside these VM instances. Cloud providers only allocate VM instances
to PM instances without considering the utilization of VM instances. In
container-based clouds, all of the above decisions are made automatically
according to the requirements of the received applications. Hence, ad-
ditional variables and features, e.g., the placement of containers in VM
instances, the types of VM instances, and the overheads of VM instances,
are needed to reflect the interactions of two-level allocation in container-
based clouds. Thus, a new two-level model where the first level allocates
containers to VMs and the second level allocates VMs to PMs must be pro-
posed.

Previous approaches to resource allocation in VM-based clouds also
can lead to inefficiency if they are applied directly in container-based clouds.
For the off-line resource allocation problems, some studies [83] simplify
the two-level allocation problem by using one type of VM for all con-
tainers. Other works [85, 119, 185, 220] simplify the two-level allocation
as one-level by directly allocating containers to PM instances. Although
the allocation problem is easier to solve with these simplifications, the cur-
rent approaches are not flexible enough. For example, a variety of affinity
constraints on containers, such as security and Operating System, cannot
be implemented on the same PMs. Containers with different affinity re-

8 CHAPTER 1. INTRODUCTION

quirements must be allocated to separate PMs. This causes low utilization
of PMs. Besides, the computational time of Integer Linear Programming
(ILP)-based approaches [83] grows exponentially as the problem size in-
creases. Therefore, it is infeasible to apply an ILP approach in large alloca-
tion problems (more than 1000 containers).

For the on-line resource allocation problem, current works have three
major drawbacks. Firstly, similarly to the previous problem, some research
focuses on the simplified one-level problem [83]. Secondly, current works
mostly employ rule-based approaches [166] to achieve fast and acceptable
solutions, and these human-designed rules only consider simple features
(e.g., residual resources of PMs) to make decisions. As a result, the perfor-
mance of these rules varies on various workload patterns of applications,
as well as different VM settings. The workload patterns of applications
have been proven a critical factor to the resource allocation problems [126].
Therefore, the rules that ignore the patterns and VM types will lead to poor
performance. The third drawback is found from a widely used framework
of AnyFit-based algorithms [51,98]. AnyFit-based algorithms are often ap-
plied to on-line bin packing problems. In this problem, AnyFit-based al-
gorithms always start from allocating containers to existing VMs without
considering new VMs, which limits the decision space.

1.3 Research Goals

The overall goal of this research is to improve the performance (e.g., en-
ergy efficiency and availability of applications) of resource allocation in
container-based clouds by using EC algorithms. More specifically, this
work applies EC algorithms to deal with the three resource allocation sce-
narios, off-line allocation, on-line allocation, and multi-objective alloca-
tion.

1. Off-line allocation deals with a set of applications being allocated
to unused PM instances to minimize the used PM instances. This is the

1.3. RESEARCH GOALS 9

most common scenario in a data center, e.g., the initial allocation of ap-
plications. We design a new two-level allocation model and Genetic Al-
gorithms (GAs) to solve the problem. In particular, we will investigate
the performance of two representations of the problem, vector-based and
group-based, and compare their performances when applying them in an
EC algorithm.

• Propose a model for the resource allocation in container-based clouds prob-
lem. The detailed two-level allocation procedure is first defined. The
relationship between overheads, types of VMs, and numbers of VMs
are introduced in this new model. The decision variables, constraints,
and objectives are formally defined.

• Propose a vector-based representation approach for the off-line resource al-
location problem.

The research aims to investigate the performance of vector-based
representation approaches. The vector representation has been suc-
cessfully applied in a variety of cloud resource allocation tasks [101]
with EC algorithms. It is easy to encode a solution in the vector form
and use existing genetic operators to find near-optimal solutions. GA
is a population-based search algorithm [215] that has been widely
applied in the combinatorial optimization problems.

Two reasons motivate us to develop vector-based approaches. Firstly,
existing vector-based approaches are designed for one-level optimiza-
tion problems [105, 119, 164] and therefore they cannot be directly
used to solve our problem. We study the performance of two-level
vector-based approach in this thesis. Secondly, the effectiveness of
different decoding techniques is unknown.

• Propose a group-based representation approach for the off-line resource al-
location problem.

We also investigate the group-based representation, as it can directly

10 CHAPTER 1. INTRODUCTION

represent the grouping of containers and VM instances. Hence, it
does not require a decoding process that affects the quality of so-
lutions. Besides, the group representation is intuitive facilitates the
incorporation of domain knowledge in the genetic operators in order
to accelerate the search process.

2. On-line allocation requires dynamically allocating applications. For
example, it requires an immediate allocation of applications for PM over-
loading and machine breakdown [28]. The computational time should be
as short as possible for a single allocation decision. Therefore, current so-
lutions are rule-based [133, 166]. However, Manually designing heuris-
tics/rules to include all features related to the problem is not practical.
Therefore, current rules only consider simple features, and this leads to
poor performance. A genetic programming [22] hyper-heuristic (GPHH)
can learn patterns from historical workload records of applications off-line
and automatically generate new heuristics. A Cooperate Coevolution GP
(CCGP) integrates GPHH with a cooperative coevolution framework that
allows GPHH to generate rules for two-levels of allocation. These gener-
ated heuristics can be used to solve the on-line problem. Hence, we list
three sub-objectives as follows:

• Propose an on-line model for the resource allocation in container-based clouds
problem. The first sub-objective is to propose an on-line model for the
problem. This on-line model is used in the training and test pro-
cesses in order to evaluate the performance of allocation algorithms.

• Propose a GPHH approach combined with heuristics for the on-line resource
allocation problem.

Since it is challenging to evolve both levels of rules in the first place,
we develop a GPHH approach to generate allocation rules for al-
locating containers to VM instances. For the allocation of VM in-
stances to PM instances, we apply human-designed heuristics. The
main purpose is to develop a GPHH to evolve reservation-based

1.4. MAJOR CONTRIBUTIONS 11

rules [51,98] instead of AnyFit-based rules [51,98] for allocating con-
tainers to VM instances.

• Propose a CCGP approach for the on-line resource allocation problem.

The third sub-objective is to propose a CCGP approach to gener-
ate all the allocation rules that are needed, including VM selection,
VM creation, and PM selection, to solve the resource allocation prob-
lem. This sub-objective adopts the method of generating reservation-
based rules in the previous sub-objective. New training procedures
and terminal sets are proposed.

3. Multi-objective allocation considers the interconnections among
the applications. Therefore, multiple optimization objectives are commonly
considered. We design the allocation model with additional objectives to
capture the real-world requirements. Meanwhile, we design an EC-based
approach to solve the multi-objective allocation problem.

• Propose a multi-objective model for the resource allocation in container-
based clouds problem. The first sub-objective is to propose a multi-
objective model. Interconnections of containers, variables, constraints,
and objectives are proposed.

• Propose an EC approach for the multi-objective resource allocation prob-
lem. The second sub-objective is to develop a multi-objective EC
algorithm to solve the problem. This includes developing a repre-
sentation and genetic operators that are suitable in the problem with
conflicting objectives.

1.4 Major Contributions

This thesis proposed four major contributions to the area of resource allo-
cation in cloud computing:

12 CHAPTER 1. INTRODUCTION

• This thesis proposes three variations of the RAC model correspond-
ing to three resource allocation scenarios in container-based clouds:
an off-line, an on-line, and multi-objective resource allocation mod-
els. New features, such as VM overheads, VM types, and affinity
constraints, are included in the new models. These models can either
be used in the off-line algorithms or used in simulations to evaluate
the performance of algorithms.

• This thesis proposed three GA-based approaches, e.g., SGA, DGA,
and GGA-RAC, for the off-line resource allocation. These three ap-
proaches are developed based on two types of representation, i.e.,
vector-based and group-based representations. Corresponding ge-
netic operators and decoding processes are also developed and com-
pared. The three approaches are compared with state-of-the-art algo-
rithms to determine which is most suitable for the off-line allocation
scenario.

• This thesis proposed two hyper-heuristic approaches, i.e., a Genetic
Programming Hyper-Heuristic-based approach (GPHH-RAC) and Co-
operative Coevolution Genetic Programming-based approach (CCGP-
RAC), for the on-line resource allocation. Since this is the first time
that GPHH and CCGP are applied on the RAC problem, the first
contribution of the two approaches is the training procedure for gen-
erating reservation-based rules. The reservation-based rules can si-
multaneously decide whether a container is allocated to an existing
VM instance or a new VM instance with the selected type. The sec-
ond contribution is the evolution of two cooperative rules to solve
the two-level problem. The experiment results show that automat-
ically generated rules from both GPHH-RAC and CCGP-RAC out-
perform the state-of-the-art, manually designed rules. We also pro-
vide some insightful analysis of human-designed rules and gener-
ated rules. These insights are informative for future studies to design

1.5. ORGANIZATION OF THESIS 13

algorithms.

• This thesis proposes a multi-objective approach, e.g., NS-GGA, for
the multi-objective resource allocation. NS-GGA adopts a group-
based representation and an NSGA-II framework. We develop novel
genetic operators that can handle the trade-offs between conflict-
ing objectives. The experiments on real-world datasets show that
by comparing the proposed approach with three state-of-the-art al-
gorithms: FF&BF/FF, Spread, and a vector-based NS-DGA approach.
The proposed NS-GGA outperforms all other approaches in both ob-
jectives. In addition, NS-GGA provides a set of solutions that have a
trade-off between energy consumption and availability.

1.5 Organization of Thesis

• Chapter 1: Introduction

The problem statement, research goal, motivation, thesis contribu-
tions, publications, and the thesis organization are presented in this
chapter.

• Chapter 2: Literature Review

This chapter presents a background of cloud resource management,
virtualization technologies, and resource allocation strategies. In ad-
dition, it presents a literature review of off-line, on-line, and multi-
objective resource allocation. It highlights the main limitations and
current challenges.

• Chapter 3: Genetic Algorithms for Off-line Resource Allocation in
Container-based Clouds (RAC)

This chapter proposes a novel model for the off-line resource alloca-
tion problem in container-based clouds. Three novel genetic algorithm-
based approaches, which based on two representations, are proposed

14 CHAPTER 1. INTRODUCTION

to solve the allocation problem. The performance of three proposed
approaches is compared with the benchmark algorithms using a real-
world dataset.

• Chapter 4: Genetic Programming for On-line Resource Allocation in
Container-based Clouds (RAC)

This chapter proposes an on-line model for the on-line allocation
problem. Then, two novel hyper-heuristics approaches are proposed,
a Genetic Programming Hyper-heuristic-based approach (GPHH-RAC),
and a Cooperative Coevolution GP-based approach (CCGP-RAC).
The performance of the two algorithms is evaluated through sim-
ulations.

• Chapter 5: Evolutionary Multi-objective Optimization for Resource
Allocation in Container-based Clouds (RAC)

This chapter proposes a novel model for the multi-objective resource
allocation problem in container-based clouds. It also proposes a novel
NS-GGA approach to solve this problem. The performance is evalu-
ated with a real-world dataset and compared with algorithms used
in the industry.

• Chapter 6: Conclusions

In this chapter, the conclusions and findings in each chapter are pre-
sented and summarized. The chapter also describes the main future
research directions arising from the contributions of this work.

The connections between the major contribution chapters in this the-
sis is shown in Figure 1.2.

The off-line RAC model in Chapter 3 provides the functionality to
evaluate the problem. This model is also used and modified to fit
the on-line RAC and multi-objective RAC problems in Chapter 4 and
5. Meanwhile, two vector-based approaches and a group-based ap-
proach are proposed. Chapter 4 develops two GP-based approaches,

1.5. ORGANIZATION OF THESIS 15

Figure 1.2: The connection between major contributions chapters in the
thesis.

e.g., a GPHH-RAC approach and a CCGP-RAC approach, for the on-
line RAC problem. Chapter 5 investigates the trade-off between en-
ergy consumption and the availability of applications in a multi-
objective problem. A multi-objective approach NS-GGA is devel-
oped to improve both energy consumption and the availability of
applications.

16 CHAPTER 1. INTRODUCTION

Chapter 2

Literature Review and
Background

This chapter introduces the fundamental concepts of resource allocation in
cloud computing, evolutionary computation (EC), and related works. We
separate the background section into two parts. Section 2.1, introduces the
concepts of cloud computing. Section 2.2 explains the methods of evolu-
tionary computation that we intend to use to solve the allocation problem.
Then, Section 2.3 reviews the related works. Section 2.3.1 reviews the ex-
isting problem models for the research problem. Section 2.3.2 and 2.3.3
review the studies on off-line and on-line scenarios of the allocation prob-
lems. Section 2.4 concludes the findings in the literature and positions our
research in the field.

2.1 Fundamental Concepts of Cloud Resource Al-

location

In this section, we discuss the roles in cloud computing and service mod-
els. Then, Section 2.1.2 discusses the goal of resource allocation. Section
2.1.3 introduces two widely used virtualization technologies to achieve

17

18 CHAPTER 2. LITERATURE REVIEW AND BACKGROUND

this goal, virtual machines, and containers and discusses their differences.
We then introduce the problem studied in the thesis, the resource allo-
cation problems in container-based clouds. Section 2.1.4 discusses the
workload types in resource allocation problems. Section 2.1.5 explains the
abstract problem of resource allocation and further categorizes the prob-
lems into two scenarios, off-line and on-line allocation scenarios because
they must be resolved with different methods. Section 2.2 introduces the
overview of evolutionary computation (EC). We explain a few EC algo-
rithms in detail, e.g., genetic algorithm, NSGA-II, and Genetic Program-
ming.

2.1.1 An Overview of Cloud Computing

Cloud computing is a computing model that offers a network of servers
to their clients in an on-demand fashion. According to NIST’s defini-
tion [141], ”cloud computing is a model for enabling ubiquitous, convenient,
on-demand network access to a shared pool of configurable computing resources
(e.g., networks, servers, storage, applications, and services) that can be rapidly
provisioned and released with minimal management effort or service provider in-
teraction.” Hence, the primary functionality of cloud computing is to pro-
vide facilities and resource management to cloud users.

Cloud computing involves three stakeholders (see Figure 2.1). Cloud
providers build data centers and maintains the servers at the data centers.
To use these remote servers, cloud users (e.g., an application provider), can
deploy and access their applications (e.g., Endnote, Google Drive) in these
servers from anywhere in the world. Once the applications are deployed,
end users can use them without installing on their local computers. Cloud
providers charge fees from cloud users for using the infrastructure. Cloud
users charge fees from end users for using applications. To provide cloud
services, three fundamental service models define the responsibilities of
stakeholders.

2.1. CONCEPTS OF CLOUDS 19

Figure 2.1: Stakeholders of cloud computing adapted from [97]

Software as a Service (SaaS) Cloud users develop applications so that
End users access and use these applications. The applications can be de-
ployed in private or public cloud data centers. In the following content, we
use the term clouds to represent cloud data centers. Deploying applications
in private clouds is the traditional software development paradigm. Cloud
users manage their facilities and resource management of applications,
e.g., adding, removing servers, install software libraries. When applica-
tions are deployed in public clouds, cloud providers take care of resource
management. Different cloud applications, e.g., Google Drive, Gmail, and
Netflix, are examples of SaaS.

Infrastructure as a Service (IaaS) Cloud providers offers resources (e.g.
virtual machines (VMs)) to cloud users. The abstract of physical computing
resources, such as CPU, memory, and network, are packed into VMs and
hid from cloud users. Amazon Elastic Compute Cloud (EC2) [3] is one of
the examples of IaaS.

20 CHAPTER 2. LITERATURE REVIEW AND BACKGROUND

To manage the cloud resources, cloud users and cloud providers have dif-
ferent responsibilities. Cloud users estimate the resources that they need
and rent several VM instances of certain types. After that, cloud users man-
ages the VM instances as remote servers. Cloud providers do very little
management inside the VM instances. Instead, cloud providers manage VM
instances as whole resource units, e.g., monitoring the usage of VM in-
stances, adding and deleting VM instances (i.e., horizontal auto-scaling
service).

One of the significant disadvantages of IaaS in terms of resource allo-
cation is that cloud users tend to reserve more resources for ensuring the
Quality of Service (QoS) at peak hours [52]. The overly reserved resources
lead to low resource utilization of Physical Machine (PM) instances in
clouds during the non-peak hours.

Platform as a Service (PaaS) Unlike IaaS, PaaS offers a platform of devel-
opment, deployment, and automatic resource management to cloud users.
Since the cloud platform supports the full cycle of software development,
cloud users can focus on the functionalities of the software. Google Ap-
pEngine [9] is an example of PaaS.

PaaS cloud provides resource management, including resource provi-
sioning, allocation, and auto-scaling, and offers a set of APIs that allows
cloud users to deploy their applications. PaaS clouds avoid the disadvan-
tage of the separated responsibilities between cloud providers and cloud
users. Therefore, it can potentially improve resource utilization than IaaS
clouds.

Also, in recent years, a set of new PaaS clouds has emerged. As an ex-
tension of PaaS, Function-as-a-Service (FaaS) [8] allows cloud users to de-
velop, run, and manage a set of functions instead of developing a mono-
lithic application. Requests of the functions from end users are allocated
and processed in clouds automatically. Since no virtual or physical server
is needed to run an application, FaaS is also a subset of server-less com-

2.1. CONCEPTS OF CLOUDS 21

puting [21]. Amazon Lambda [6] is an implementation of FaaS clouds.
Container-as-a-Service [167] uses containers and VMs as resource manage-
ment units. CaaS is particularly good at managing micro-service-based
applications. With each container hosts a micro-service instance, CaaS
can handle large scale of containers. CaaS is also named container-based
clouds, which will be discussed in Section 2.1.3. Red Hat OpenShift [10]
and Amazon Container Service [5] are both the implementations of CaaS.

Clearly, cloud techniques are becoming more automatic and intelligent
to handle the deployment and delivery of applications. This could release
the burden of resource management away from cloud users. Hence, this
requires cloud providers to use advanced techniques to handle the resource
allocation in clouds to not only meet the requirements of cloud users but
also maximize the profit of clouds.

2.1.2 Cloud Resource Allocation

Cloud resource allocation is subset of cloud resource management [224]
which broadly includes all manipulations of cloud resources including re-
source provisioning [194], resource scheduling [195], etc. Resource alloca-
tion [135] denotes as “the process of distributing resources economically
between competing groups of programs or users”. That is, resource al-
location refers to the process of selecting the number of resources for ap-
plications and deciding the physical locations of these resources in cloud
data centers. The aims of cloud resource allocation can be generally cat-
egorized into two groups, satisfying Service Level Agreement (SLA) and
minimizing energy consumption of data centers.

SLA

SLA [38] is a blueprint that defines the cloud service quality parameters
that required by cloud users. These parameters, also called Quality of Ser-
vice (QoS), such as availability that defines the time that an application

22 CHAPTER 2. LITERATURE REVIEW AND BACKGROUND

is available, e.g., 99% uptime means cloud users will be unable to access
the application for no more than about 3.65 days per year. Other QoS pa-
rameters [7], such as maximum response times, worse case recovery, are
different by cloud providers.

SLA is also a contract that sets up QoS constrains the cloud providers
need to satisfy while providing services. Otherwise, penalties are en-
forced. Hence, to satisfy these SLA constraints, cloud providers apply vari-
ous methods to improve the service quality, such as using clusters of com-
puters to offer high-availability or distributing workload requests to mul-
tiple data centers [38]. Other methods are using algorithms to optimize
the allocation resources in data centers so that the QoS is satisfied. The re-
source allocation problem is first modeled and formulated into optimiza-
tion problems. The QoS parameters are modeled as the optimization ob-
jectives [162] (e.g. availability) or the constraints of the problem [162] (e.g.
resource constraint).
Energy Consumption of Data centers

The major expense of cloud providers is the energy consumption [182]. Ac-
cording to [182], both the cooling system and PM instances account for
40% of energy consumption. To minimize energy consumption of data
centers, two approaches can be used. First is the energy reduction of
cooling system. This is mainly for the design of data centers. Another
approach is server consolidation. This approach reduces the energy con-
sumption of used servers. The current energy efficiency of servers is low
on average [253]. This thesis focuses on the server consolidation methods.

The main cause of low energy efficiency is the low utilization of PM
instances, which accounts for 20 to 30% on average. A low utilized PM
instance, e.g., 15% of the CPU capacity, also consumes 70% of the energy
of its peak time. Hence, cloud providers aim to maximize the utilization of
PM instances to reduce the energy consumption of data centers.

Cloud providers apply virtualization technologies so that large PM in-
stances are fragmented into smaller units which can be to allocated to

2.1. CONCEPTS OF CLOUDS 23

Figure 2.2: VM-based and Container-based virtualization adapted from
[165]

multiple users and released.

2.1.3 Virtualization Technologies

Cloud providers use virtualization technologies [208] to achieve finer gran-
ularity resource management than the traditional way of allocating an en-
tire PM instance to a single user. Virtualized management partitions the
resources of a PM instance (e.g., CPU, memory, and disk) into several in-
dependent units and allocates applications into these units. The most com-
mon units are VMs and containers. The following sections illustrate two
classes of virtualization (see Figure 2.2): VM-based and container-based vir-
tualization.

VM-based Virtualization

A VM-based virtualization has three-layers of structure: PM-Hypervisor-
VM (see Figure 2.2 left-hand side). An underlying PM instance provides
the hardware resources such as CPU and memory. Hypervisors [147], or

24 CHAPTER 2. LITERATURE REVIEW AND BACKGROUND

Figure 2.3: A comparison between OS container and Application container
adapted from [168]

the Virtual Machine Monitors (VMMs) are on the software layer on top
of a PM instance. A hypervisor accesses to a PM instance’s resources so
that VM instances can share resources of the PM instance. A VM instance
is the basic resource management unit. A VM instance has its resource
capacities include CPU, memory, bandwidth, etc. Each VM instance can
be accessed remotely and managed as a server. Among multiple VM in-
stances in the same PM instance, isolation of PM’s resources is ensured by
the hypervisor. To simplified the resource allocation in clouds and satisfy
the requirement of cloud users, cloud providers normally provide various
types of VM with distinct capacities [4]. Some implementations of VM-
based hypervisor such as Xen [23], KVM [104], and VMware ESX [216]
dominate this field in recent years. On top of a hypervisor, VM instances
are the resource management units. A VM instance allows an independent
Operating System (OS) to run on it.

2.1. CONCEPTS OF CLOUDS 25

Container-based Virtualization

Traditional container virtualization, e.g., OS containers [187], has been
used in big data processing platforms as the computing units for over a
decade [136, 219]. In recent years, new container platforms, e.g., Docker,
introduce application containers [89] to facilitate the development of ap-
plications.

An OS containers (Figure 2.3 left-hand side) have an OS installed and
host multiple applications from different cloud users. These applications
are segmented and isolated. An OS container is suitable for deploying
a large number of applications that share the same OS kernel. On the
other hand, when various applications require different OSs, OS contain-
ers’ performance is similar to VMs. Three implementations of OS contain-
ers: OpenVZ, Google’s control groups, and namespace are widely used in
Google and Facebook.

Application containers [29] (Figure 2.3 right-hand side) have a many-
to-one mapping relationship with a VM instance. A single application
runs in an application container. Major implementations such as Docker,
Rocket, and Kubernetes [29] are prevalent in the software industry. In
comparison with OS containers, application containers are much more
flexible in terms of software development and deployment. With applica-
tion containers, each application can be deployed separately on different
machines. These containers can be vertically scaled up to add capacities.
Hence, application containers are more suitable for modern cloud-native
architectures such as micro-services and server-less because these archi-
tectures are highly distributed and loosely coupled.

Comparison between Container-based and VM-based Virtualization

This section compares VM-based and container-based virtualization [59,
66, 230] in terms of the key characteristics of resource allocation.

Containers have mainly three advantages over VMs. Firstly, contain-

26 CHAPTER 2. LITERATURE REVIEW AND BACKGROUND

ers are lightweight, which means they generate much less overhead than
a VM hypervisor [66]. Secondly, containers share OSs. Therefore, they can
reduce the overheads on OSs. Thirdly, containers naturally support verti-
cal scaling [53] while VMs do not. Vertical scaling means a container can
dynamically adjust its resources under the host’s resource constraint. This
feature offers fine granularity management of resources.

Although containers have numerous advantages compared to Virtual
Machines (VMs), they suffer from security threats [76, 138] and perfor-
mance interference (e.g. competition on I/O resources) [229, 237]. There-
fore, when facing the diverse requirements from applications, e.g., various
OSs and security levels, cloud providers can use VM instances to provide an
extra level of isolation for containers. Hence, a new two-level resource
allocation [150, 173, 187, 245] emerges where on the first level, containers
need to be allocated to VM instances. New VM instances may be used if
the existing VM instances do not have enough resources to host the con-
tainers. On the second level, the new VM instances need to be allocated
to PM instances. This novel cloud architecture is called container-based
clouds.

Container-based Clouds

In recent years, a new type of cloud, container-based clouds [110] have
emerged that apply both containers and VMs as the resource management
unit. With these two virtualization technologies, i.e., VMs and container-
ization, complement each other, container-based clouds have the potential
to achieve a high resource utilization as well as high security over the ap-
plications.

Resource allocation in container-based clouds (RAC) brings new challenges.
First, the existing resource allocation tools and approaches cannot deal
with heterogeneous resources [136]. For example, a cluster management
tool, Swarmkit [142] can be used to manage a cluster of docker containers.
However, Swarmkit cannot allocate containers into heterogeneous VMs

2.1. CONCEPTS OF CLOUDS 27

or PMs. The heterogeneity of VM/PM configurations, including different
resource sizes, types, Operating Systems, etc. Second, the resource allo-
cation in container-based clouds involves two-levels of allocation that is
extremely difficult. Each level of allocation is a vector bin packing prob-
lem, which is NP-hard [50]. The allocations at the two levels interact with
each other. For example, when allocating containers to VM instances, the
selection of different VM types impact the allocations in the second level.
Hence, ideally, the two-level allocations should be done simultaneously to
find the global optimal solution.

Hence, the popularity of container-based clouds and the difficulty of
the RAC problem motivate us to develop novel algorithms to solve the
RAC problems in different scenarios.

2.1.4 Workload Types

Workload [39] is defined as the resource consumption of a computational
job that completed by a computational unit in a given time. The type of
application significantly affects the resource allocation techniques [155].
This section summarizes five types of commonly encountered workload
types in clouds.

Web Applications

Web applications are long-term workloads meaning that they continu-
ously run for days before releasing from servers [88]. Once web appli-
cations are deployed, they constantly receive requests from end users. Two
distinct allocation scenarios require different allocation strategies. The first
scenario is at the beginning of deployment. A set of application web ap-
plication with their predefined resource requirement is initially deployed
to a data center. Since the information of web applications are known, this
scenario is considered as an off-line allocation [226]. After deployment,
the resource requirement is continuously changing with the number of

28 CHAPTER 2. LITERATURE REVIEW AND BACKGROUND

incoming requests. Migration strategies are used when the host servers
are overloading. This scenario is often considered as an on-line alloca-
tion [103]. Reactive rules are usually used to re-allocate web applications
in order to avoid the competing of resources.

The optimization objectives of web applications can be separated into
two perspectives. From the cloud users’ perspective, the objectives include
cost of used VMs/PMs, and a variety of QoS requirements such as avail-
ability [78,85,220]. From the cloud providers’ perspective, energy consump-
tion is often considered.

Bag of Tasks

Bag-of-tasks (BoT) refers to those applications which have a set of inde-
pendent jobs that can be processed in parallel [86], e.g., massive search
such as key breaking. In clouds, BoT is charged for complete allocation
slots (e.g., 1 hour) of computing resources regardless of whether the tasks
are being executed [86]. Traditional algorithms such as Min-Min, Max-
Min [71], and Sufferage [129] are used to schedule these tasks. Recent
approaches [113, 199] assumes that the task execution time is known to
optimize the allocation.

Makespan is a common objective of BoT scheduling tasks [86]. Besides,
preparation of the input data before executing is necessary for BoT tasks.

Big Data Applications

Big data applications involve a massive amount of data being collected
and processed [137]. Generally, big data applications involve high volume,
diverse variety of data, and require a high velocity to process [251]. To be
specific, two categories of applications, batch processing and workflow
applications, are examples of big data applications.

2.1. CONCEPTS OF CLOUDS 29

Batch Processing Batch processing applications, such as Page Rank and
TeraSort, utilize distributed frameworks like MapReduce [56] to process
a batch of computational tasks. One of the famous implementation of
MapReduce, Hadoop, first employed First-In-First-Out (FIFO) scheduler
and then implemented the Fair scheduler [241]. However, these sched-
ulers do not consider the energy efficiency of the data center. Mashayekhy
[137] developed two energy-aware scheduling algorithms, EMRSA-I and
EMRSA-II, which can significantly improve energy efficiencies and satis-
fied the SLA requirements.

Workflow Applications Workflow applications, such as scientific work-
flows [80], are commonly represented as a directed acyclic graph (DAG).
The optimization objective of workflows is usually the execution time of
applications or the processing capacities [158]. The allocation of work-
flow jobs is an NP-complete problem in general form [209]. Hence, heuris-
tics and meta-heuristics are proposed to solve the problems. Deelman et
al. [58] develop a framework named Pegasus. Other systems, such as
GridFlow [40] and ICENI [73], are also based on heuristics. Evolution-
ary Algorithms, such as GA [240], PSO [158] based approaches, are also
proposed to solve workflow allocation problems and show better perfor-
mance than the traditional heuristics.

This thesis considers the workload type of web applications. Firstly,
since web applications are long-term tasks, they may take months to be
released. Secondly, our research can be extended to other types of work-
load by considering the release time or the due date.

2.1.5 Allocation Scenarios and Problems

Since the focus of the thesis is the RAC problem, this section introduces
the abstract of the RAC problem as a vector bin packing problem; and two
allocation decision scenarios, the off-line scenario, and on-line scenario
[226].

30 CHAPTER 2. LITERATURE REVIEW AND BACKGROUND

Vector Bin Packing Problem

Figure 2.4: A comparison between standard bin packing and vector bin
packing

Resource allocation in clouds [159], including RAC problem, can be
simplified as a vector bin packing problem [45]. The resources, such as
CPU, memory, and storage of resource units, are considered as the dimen-
sions of the problem. Different from the standard bin packing problem
(see Figure 2.4), the vector bin packing problem considers the resources
that have been used by other items.

Since vector bin packing is an NP-hard problem [45]. Current stud-
ies develop heuristics and meta-heuristics to solve the problems. First Fit
Decreasing (FFD) is a widely used heuristic [16, 190]. Pandit et al. [159]
propose a simulated annealing-based approach that searches for the near-
optimal solutions in the discrete solution space. Meta-heuristics, such as
genetic algorithm (GA) [225], Particle Swarm Optimization [233], have
shown great potential to solve the problem.

The RAC problem can be treated as a two-level vector bin packing
problem. The first level allocates containers to VM instances, and the sec-
ond level allocates VM instances to PM instances. Hence, the RAC prob-
lem is even challenging to solve. Additionally, two allocation scenarios,

2.1. CONCEPTS OF CLOUDS 31

off-line allocation, and on-line allocation, have their different characteris-
tics and require different methods to solve.

Off-line Allocation Scenario

Off-line scenario allocates a set of applications in planning time to achieve
a global optimal solution. In real-world cloud allocation, the initial al-
location of applications [145, 201] and periodic re-allocation of applica-
tions [64, 227] are two typical examples of the off-line scenario. The initial
allocation of applications occurs when a set of new applications needs to
be allocated [97]. The periodic re-allocation of applications occurs when
the utilization of PM instances decreases to a certain level, which triggers
the re-allocation process [97]. Then, the re-allocation process moves the
existing applications from one PM instance to another to achieve high re-
source utilization. The moving step is called migration [114]. Since the
applications are constantly arrived and released, cloud providers often set
a utilization threshold [120] or periodically [227] re-allocate the existing
applications that running in the PM instances.

On-line Allocation Scenario

On-line scenario allocates applications one by one as they arrive at clouds.
Hence, the allocation decision must be made in real-time. In clouds, on-
line allocation happens in multiple scenarios such as machine breaking
[75], overloading [28], allocation with real-time priority [44]. All these
scenarios require emergent allocations. Therefore, a real-time decision is
necessary. Since time is a critical factor in the on-line problem, the off-line
methods usually cannot be used because they take a long time to search
for the optimal solution. Also, the on-line allocation only allocates a small
number of applications at a time. It is difficult to find the optimal alloca-
tion solution for the period considered.

32 CHAPTER 2. LITERATURE REVIEW AND BACKGROUND

2.2 Fundamental Concepts of Evolutionary Com-

putation

Evolutionary Computation (EC) algorithms [20] are artificial intelligence
algorithms that are inspired by biological mechanisms of evolution, social
interactions and swarm intelligence. They are famous for strong search-
ability because they have several distinguishing characteristics, such as
the use of a population-based search, the stochastic search, and heuris-
tics embedded with domain knowledge [31]. EC algorithms have been
applied successfully to solve a variety of real-world problems [232], espe-
cially combinatorial optimization problems. This section mainly reviews
three EC algorithms that are applied to our work, genetic algorithms (GAs),
Non-dominated Soring GA II (NSGA-II), and genetic programming (GP).

2.2.1 Genetic Algorithms (GAs)

GA is a population-based search algorithm [215] that originally developed
by Holland [91]. In GA, the solution of a problem is encoded as a chromo-
some or an individual. GA searches for the best solution by iteratively
changing the values in the chromosomes so that the solution is explored.

A general GA procedure begins with an initialization of a population
of chromosomes. The initialization generates a population of solutions
that widely spread across the solution space. The purpose of initialization
is to start the search in a good position by obtaining knowledge through
sampling. It followed by an iterative process called generation. In each
generation, the fitness value of chromosomes is evaluated according to a
defined fitness function. Generally, a fitness value represents the quality
of a solution. Then, genetic operators such as mutation and crossover are
applied to the solutions so that they are modified. As a search mechanism,
these operators evolve solutions to explore the search space on different
distances. New generations of solutions are then evaluated by the fitness

2.2. CONCEPTS OF EC 33

function. This evolutionary procedure ends when a predefined generation
number or a satisfactory level of fitness has been reached.

GA-based algorithms are suitable for off-line combinatorial optimiza-
tion problems. Although GA-based algorithms do not guarantee the global
optimal solution, they usually can find near-optimal solutions within a
feasible amount of time. However, GA-based algorithms still take too long
than on-line problems require. Therefore, this thesis considers using a GA-
based algorithm in the off-line RAC problems.

Representation for Resource Allocation Problems

For evolution computation, the design of representation is a key issue be-
cause the quality of the representation of a problem can decide the land-
scape of the studied problem [19]. It is difficult to design the represen-
tation because it must be able to correctly represent the problem search
space. The represetation is tightly coupled with the operators that act
upon it. The operators must be able to manipulate an instance with differ-
ent distances so that it can control the search speed and strategy.

This section reviews some of the representations for resource allocation
problems. The common representations in the literatures include vector-
based representation [87, 93] and group-based representation [61].

Vector-based Representation Traditionally, GA employs vector-based rep-
resentation and encode solutions of a problem into a vector of integers
or binary values [101, 183]. For resource allocation problems, the vector-
based representation is an indirect representation, and the individuals must
be decoded into a solution.

In the literature, the vector-based representation has been successfully
applied to a variety of cloud resource allocation tasks [87,101]. Specifically,
Phan et al. [164] develops a vector-based representation to allocate compu-
tation tasks to VM instances. Klein el al. [105] proposes a SanGA approach
for service composition problem. Rahimi et al. [177] proposes MAPCloud

34 CHAPTER 2. LITERATURE REVIEW AND BACKGROUND

to allocate mobile applications on 2-tier cloud architecture. Their Simu-
lated Annealing-inspired approach is applied to the vector-based repre-
sentation.

There are mainly two advantages of applying vector-based represen-
tation. Firstly, it is easy to encode the solution in a vector form. Both
binary and permutation representations have been developed for similar
problems [101]. Secondly, with various existing genetic operators, GA is
able to search the solution space stochastically. The stochastic search pro-
vides a general search pattern without any background knowledge of the
problem. Hence, GA can be easily applied to a variety of problems.

On the other hand, the disadvantages are also observed. Since the RAC
problem is a grouping problem (bin-packing problem [101]), the vector-
based representation requires a decoding method to transform an individ-
ual into an allocation solution. The quality of the decoding method affects
the effectiveness of the search. Another disadvantage is also caused by the
decoding process that it is hard to apply domain knowledge to the opera-
tors. Although GA can search the solution stochastically, domain knowl-
edge can accelerate the search. However, with vector-based representa-
tion, the search process is in the genotype space, while the solutions are
evaluated in the phenotype space. Hence, the design of domain-specific
operators is difficult.

Group-based Representation Group-based representation is a direct rep-
resentation for the resource allocation problems because these problems
are normal variations of bin packing problems [124].

Group-based GA (GGA) was proposed by Falkenauer [61] to solve the
bin packing problem. GGA overcomes a significant defect, the redun-
dant encoding problem, in the ordering GA [169]. The ordering GA uses
a vector-based representation, and the decoding process highly relies on
items rather than the numbering of groups. For example, using two let-
ters A and B to represent distinct groups, AAB and BBA are two solutions.

2.2. CONCEPTS OF EC 35

However, a decoding process may decode these two solutions with the
same meaning – the first two items are in the same group, and the third
item is in another group. Therefore, these two solutions are redundant.
GGA proposes a variable-length representation to solve the issue of re-
dundancy. The new crossover, mutation, and inversion operators directly
operate on groups instead of items. Later on, Quiroz-Castellanos [175]
embeds heuristics into the algorithm to speed up the search process.

GGA has been successfully applied to solve many bin packing prob-
lems such as ordering batch problems in warehouse [106], VM alloca-
tion problem [82, 99, 123, 235], and assembly line balancing problem [184].
Group representation is also widely used for those similar problems, such
as Job shop scheduling problems [47].

Compared to vector-based representation, group-based GA has two
advantages. Firstly, the group representation does not require a decod-
ing process, which affects the quality of solutions. Secondly, group-based
representation has a variable length. Hence, no computational resource
is wasted on the unused part of a chromosome. Thirdly, since the group
representation is a direct mapping of the allocation solution, it is easy to
apply domain knowledge for designing heuristics. Hence, the operators
can be more efficient than the stochastic search.

The effectiveness of GA highly depends on the representation of stud-
ied problems. Hence, this thesis will investigate which representation is
more suitable for the RAC problem.

2.2.2 Hyper-Heuristics, GPHH, and CCGP

Hyper-Heuristics

Hyper-heuristic is a learning method which searches in the heuristic space
rather than the solution space [36]. Hyper-heuristic exploits the structure
of a problem and uses domain knowledge to design heuristics for that
problem automatically. Although domain experts still provide domain

36 CHAPTER 2. LITERATURE REVIEW AND BACKGROUND

knowledge, the human is freed from the difficulty of manual search for
the best ways of combining potential components. Hyper-heuristic algo-
rithms can be categorized into two groups: selective and generative [36].
Selective hyper-heuristics rank the best heuristics from a set of heuris-
tics. Generative hyper-heuristics generate heuristics from a set of building
blocks or domain knowledge given by domain experts.

Hyper-heuristics have been used on bin packing problems, and they
have been proven to outperform than simple heuristics (e.g., First Fit,
Best Fit). López-Camacho et al. [124] state that hyper-heuristics perform
equally or better than the best single heuristics. This is beneficial for real-
world applications because the choice of best heuristics varies according to
different instances and environments. Thus, it is unknown which heuris-
tic is the best in advance. Therefore, the computational cost of using a
generated hyper-heuristics is lower than applying all heuristics on the
problem and using the best result. Sotelo-Figueroa et al. [196] develop a
micro-differential evolution algorithm for evolving bin packing heuristics
with an indirect representation. Burke et al. [34, 35, 37] propose hyper-
heuristics for variations of bin packing problems, including 1-D, 2-D, and
Strip Packing problems. Sim et al. [192, 193] develop lifelong learning
hyper-heuristics to the 1-D bin packing problem by using the artificial im-
mune system.

Genetic Programming Hyper-Heuristics

Genetic programming [108] is an evolutionary computation technique, in-
spired by biological evolution, to find computer programs for solving a
specific task automatically. In a GP population, each individual repre-
sents a computer program with a tree. In each generation, these programs
are evaluated by a predefined fitness function, which accesses the perfor-
mance of each program. Then, individuals will go through several genetic
operators such as selection, crossover, and mutation.

Crossover and mutation (see Figure 2.5) stochastically generate new

2.2. CONCEPTS OF EC 37

solutions from the selected individuals. The crossover randomly selects
the branches on two selected individuals and switch the branches. The
mutation randomly selects a branch and replaces it with a randomly gen-
erated branch. After the modification by genetic operators, new rules are
added to the new generation of the population. The tournament selec-
tion and genetic operators keep generating new individuals until the new
population has the same number of individuals as before. Then, the next
iteration starts.

(a) Crossover

(b) Mutation

Figure 2.5: Crossover and mutation

The major difference between GA and GP is the representations they
used. Each GP individual is represented as a tree with variant depth in-
stead of a string. This representation is particularly suitable for a program.
For example, a GP individual is shown in Figure 2.6 which is a program x
+ max(y × 2, -2). The variables {x, y}, and constraint {-2, 2} are called ter-
minals of the program. The arithmetic operations {+, ×, max } are called
functions in GP. A GP individual is a specific combination of elements in
a terminal set and a functional set. In order to observe the relationship be-
tween a function and its subtrees, the GP programs are usually presented
to human users by using the prefix notation similar to a Lisp expression,

38 CHAPTER 2. LITERATURE REVIEW AND BACKGROUND

Figure 2.6: GP program that represents x + max(y × 2, -2)

for example, x + max(y× 2, -2) can be expressed as (+ (x (min (× y 2) -2))).

GPHH has been successfully applied to a variety of problems. In Job
Shop Scheduling (JSS) problems, GPHH has been widely used for evolv-
ing dispatching rules for various of JSS problems such as multi-objective
JSS [152] the multi-task JSS [161], and the JSS with machine breakdown
[160]. The generated rules outperform neural network techniques. For the
bin packing problems, GPHH has been applied to evolve the rules for 1-
dimension [35], 2-dimension [34], and 3-dimension [17] problems. In these
cases, the generated rules outperform human-designed rules in terms of
performance. Further, the automatic learning procedure greatly reduces
the complexity of the heuristic-design process.

Cloud resource allocation usually has extra constraints such as multi-
dimensional resources, migration costs, heterogeneous PMs. These con-
straints make the cloud resource allocation problems much harder than
bin packing problems [132]. Therefore, traditional bin packing approaches
such as First-Fit Decreasing, Best Fit, cannot perform well in this context.
GPHH, therefore, is a promising technique that can be used to generate
heuristics under multiple constraints automatically.

CCGP combines GP with a cooperative framework [152], so that CCGP

2.2. CONCEPTS OF EC 39

can simultaneously evolve multiple heuristics to solve a problem. CCGP
maintains N sub-populations for generating N cooperative heuristics re-
spectively. In [239], CCGP generates sequencing and routing rules for Dy-
namic Flexible JSS (DFJSS) [243, 244]. Similarly, Zhou et al. [250] employ
CCGP to evolve machine assignment and job sequencing rules for a multi-
objective DFJSS problem.

2.2.3 Non-dominated Sorting GA-II (NSGA-II)

NSGA-II was proposed by Deb et al. [57] in 2002, and it is a widely used
multi-objective algorithm. The procedure is similar to GA with additional
operators for handling the non-dominated solutions. Initially, the algo-
rithm randomly generates a population of N solutions. Then the popula-
tion is sorted with a fast non-dominated sorting. Solutions in the popula-
tion are ranked with its non-domination level, where level 1 contains the
best solutions, level 2 means the second-best, and so on. The algorithm
applies a binary tournament selection, a crossover, and mutation opera-
tors that are similar to GA’s. After generating a set of offspring, the new
offspring and original population are combined. Now the population has
twice the number of solutions. Then, the population will be sorted again,
and the top N solutions are preserved to the next generation.

NSGA-II proposes two innovative operators: fast non-dominated sort-
ing and crowding distance comparison-based diversity preservation. The
fast non-dominated sorting has a complexity of O(MN2) where M is the
number of objectives, N is the population size. Hence, the method can
quickly sort the solutions and group them into different levels of the front.
Crowding distance is a method to estimate the density of solutions sur-
rounding a particular solution in the population [57]. The distance is cal-
culated by averaging the distance of two solutions on either side of a so-
lution along with each of the objectives (see Figure 2.7).

NSGA-II has been used in many real-world multi-objective problems

40 CHAPTER 2. LITERATURE REVIEW AND BACKGROUND

Figure 2.7: Crowding distance, adapted from [48], where f1, and f2 are
two optimization objectives to be minimized.

in cloud computing, such as web service composition [217, 218], web ser-
vice allocation [127], task scheduling in clouds [207], and resource alloca-
tion in clouds [171, 200, 248].

Multi-objective Performance Metrics

The performance of a multi-objective algorithm is evaluated by several
performance metrics. These metrics consider mainly three aspects of a
set of solutions, the convergence, the diversity, and the number of solu-
tions. The convergence indicates the closeness between the solutions and
the theoretical Pareto optimal front. Diversity denotes the distribution of
solutions. Over fifty different methods [180] have been proposed to eval-
uate these performance metrics. Among assorted methods, we introduce
the hyperVolume indicator [252] and IGD [214] because they are widely
applied to the multi-objective studies and we will apply these two meth-
ods in this thesis.

HyperVolume indicator [181, 252] is a measure used in evolutionary
multi-objective optimization. The indicator reflects the volume enclosed
by a solution set and a reference point. The hyperVolume mainly measures

2.3. RELATED WORK 41

the convergence of the solutions. A larger HyperVolume value indicates a
better solution set.

The IGD [214] is short for inverted generational distance [211] as a way
of estimating how far the elements in the true Pareto front are from those
in the non-dominated set produced by an algorithm. IGD calculates the
sum of the distances from each point from the true Pareto front to the
nearest point from the non-dominated set produced by an algorithm. In
other words, IGD measures the coverage of the true Pareto front from the
solutions from an algorithm. The lower the IGD, the better quality the
solution is.

2.3 Related Work

Related work discusses the modeling of the RAC problem and resource
allocation in the off-line, on-line, and multi-objective scenarios. Further-
more, we summarize the related works of using EC algorithms in the com-
binatorial optimization problems that are similar to our problems.

2.3.1 RAC Problem Models

We summarize the existing models of RAC problem from the perspectives
of objectives, dimensions of resources, and constraints.

Existing studies for the RAC focusing on objectives either from cloud
providers or cloud users. From the perspective of cloud providers. Their
priority is minimizing the energy consumption of the used PM instances
[117, 134, 166, 191] or improving the utilization of resources [62]. Guan et
al. [83] and Zhang et al. [242] consider not only energy consumption but
also the cost of the data exchange between containers. Fan et al. [62] focus
on improving the utilization of PMs and load balancing between the VM
instances in the same PM instance. From cloud users’ perspective, mini-
mizing the cost and maximizing the QoS are their concerns [85, 150].

42 CHAPTER 2. LITERATURE REVIEW AND BACKGROUND

Most of the existing studies [133,166,191] model the RAC problem as a
vector bin packing problem [51]. They generally consider two dimensions
of resources, i.e., CPU and memory. Another study [62] considers more
resources, such as local and remote disks.

As for the constraints, current studies generally consider two types of
constraints. The first one is the resource constraint [62, 133, 166, 191, 242]
where the total resource requirement of containers cannot exceed the ca-
pacity of the VM instances and the total VM capacities on a PM cannot
exceed the PM’s capacity. The second one is that each container should
only be allocated to one VM instance [62, 191].

Currently, researchers have simplified the problem model with differ-
ent assumptions. For example, Zhang et al. [245] study resource alloca-
tion for applications without considering application arrival and depar-
ture time. Zhang et al. [246] assume all the applications will be hosted
for a period of time. Many researchers [128, 226] find that live migration
introduces high overhead and downtime. Wolke et al. [226] suggest that
allocation could be performed periodically and treated as an off-line prob-
lem that focuses on container placement and, therefore, does not consider
migration overhead. Other researchers [166] study resource allocation in
clouds by focusing on container migrations, for which container migra-
tion overhead is considered in order to decide the time and the number of
containers to migrate.

Overall, current studies mainly ignored three characteristics in the model
of RAC problem. The first limitation is that the current works do not con-
sider VM overheads. As a result, small VM instances are often selected for
containers. However, a large number of small VM instances leads to VM
sprawl [186]. On the other hand, creating large VM instances leads to un-
used VM resources [133]. This trade-off is the core issue in the VM creation
problem. Some researchers consider the existence of overheads [133, 134],
but they do not provide much analysis.

Secondly, they do not considered affinity constraints of RAC. Affinity

2.3. RELATED WORK 43

constraints define which containers can be co-allocated, e.g., security rea-
sons, distinct OS requirements. Without the affinity constraint, all contain-
ers can be allocated directly to PM instances. Containers require distinct
Operating Systems (OSs) and software libraries. Therefore, not all con-
tainers can be consolidated into a single VM [46]. Therefore, we need to
consider the requirement of OSs as the affinity constraints in this work.

The third characteristic is that, for the on-line problem, the overall qual-
ity of allocation does not consider energy consumption over a period of
time. Most of the existing studies evaluate allocations by measuring the
temporal energy consumption at a certain time point [133]. However, the
evaluation cannot represent the energy efficiency of a cloud because the
energy consumption of a data center is determined by the overall energy
consumption of a given period [55]. For example, Figure. 2.8 shows the
curves of energy consumption from two methods. Although the energy
consumption is the same at time t, the difference in the actual energy
consumption during the entire period (the areas under the curves) can be
huge. Therefore, to address this issue, we should consider the accumulated
energy consumption as a quality measure.

In summary, existing works either use biased evaluation measure to
evaluate container allocations, or ignore VM overheads or affinity con-
straints. In this work, we will address the deficiencies of existing works in
our problem model.

2.3.2 Off-line Resource Allocation in Clouds

Off-line resource allocation, also called static resource allocation, allocates
a set of applications in the planning stage. The optimization objectives
of the off-line problems focus on energy consumption and QoS. We group
related studies into four categories. Among these problems, the RAC prob-
lem is similar to the allocation of containers and VMs to PMs.

• Allocation of VMs to PMs

44 CHAPTER 2. LITERATURE REVIEW AND BACKGROUND

Figure 2.8: The energy consumption at time t are same for method A and
B.

• Allocation of containers to PMs

• Allocation of containers to VMs

• Allocation of containers and VMs to PMs

Allocation of VMs to PMs

Existing literature has studied the VM allocation problem for over a decade.
Many studies were conducted to investigate the allocation of VM prob-
lem [131, 188, 210]. We discuss some of the important work in this field.

Traditional approaches model the problem as variants of vector bin
packing problems and apply heuristics and mathematical programming
to solve them. For instance, studies [179, 197, 221] uses mathematical pro-
gramming such as Integer Linear programming (ILP), or Mixed Integer
Linear programming (MIP) to solve the VM allocation problem. Wang
and Xia [221] develop a MIP algorithm for solving large-scale VM alloca-
tion problem under a non-linear power consumption model. They first use
a linear function to approximate the cubical function. Then, they use the

2.3. RELATED WORK 45

Gruobi MIP solver to solve the relaxed linearized problem. Further, they
apply an iterative rounding algorithm to obtain the near-optimal solution.
Speitkamp et al. [197] apply an LP-relaxation-based heuristics and analyze
the historical workload patterns. The main problem of the ILP-based ap-
proach is that the scale of the allocation problem is constrained because
the ILP takes an infeasible time to find the optimal solution. Hence, the
present works applied relaxation methods, which also do not guarantee
to find the optimal solution.

Most of the works propose extensions of greedy-based heuristics such
as First-Fit Decreasing (FFD) [228, 247], Best-Fit, Best-Fit Decreasing [26],
etc. However, although greedy-based approaches but they cannot guar-
antee to find the optimal solution. Beloglazov et al. [26] consider the uti-
lization of VM instances and the candidate PM instances. They propose a
modified Best-Fit Decreasing to solve the problem. Zhang et al. [247] pro-
pose a heterogeneity-aware algorithm using FFD and its variations. Lin
et al. [118] propose two heuristics, a round robin-based and a hybrid ap-
proach of round-robin and FF. All of the approaches mentioned above fo-
cus on the reduction of energy consumption of clouds. An obverse draw-
back of these heuristics is that they lead to a local optimal solution due to
their greedy feature.

In order to avoid the long computation time and premature solution,
meta-heuristics [225,234] are often applied to solve the VM allocation prob-
lems. Wilcox et al. [225] also propose a reordering GA approach. They use
an indirect representation [176], which represents a packing solution as a
sequence of items. In order to transform the sequence into a packing, they
applied an ordering operator, which, in essence, is the First-Fit algorithm.
This design naturally avoids an infeasible solution. Therefore, there is no
need for constraint handling. Xiong and Xu [234] propose a PSO based
approach to solve the problem. Their major contribution is using a total
Euclidean distance δ to represent the distance between current resource
utilization and the optimal resource utilization (see Eq. 2.1) where d is

46 CHAPTER 2. LITERATURE REVIEW AND BACKGROUND

the dimension of resources, uij is the current resource utilization of j in
a PM instance i, ubesti is the predefined optimal resource utilization (e.g.
70% CPU utilization). Another contribution is their representation used in
PSO. They represent the allocation of each VM instance to a PM instance as
a probability and let particles search through the indirect solution space.

δ =
n∑
i=1

√√√√ d∑
j=1

(uij − ubesti)2 (2.1)

Allocation of Containers to PMs

Heuristics are proposed to solve the allocation of containers to PMs. Docker
Swarm [143] and Google Kubernetes [2] have been widely used as the con-
tainer allocation tools. Docker Swarm allocates containers to VMs with
a round-robin algorithm [206] and a Spread algorithm [2]. Spicuglia et
al. [198] propose an OptiCA framework that allocates containers to PM in-
stances. Their goal is to optimize the performance of big-data applications
without considering energy consumption. Raj et al. [178] minimize the en-
ergy consumption under SLA constraints. They propose simple heuristics
that are based on First Fit Decreasing.

Different from the above methods, a distributed agent-based system
[154] has been proposed to allocate workflow tasks in container-based
clouds. The agents (containers) calculate their benefit functions and use
different greedy-based strategies based on the geographic information.
The system adjusts continuously and eventually reaches Nash Equilib-
rium when all agents stop switching their allocation.

Allocation of Containers to VMs

Different from the previous two categories, the allocation of containers to
VM instances does not focus on reducing energy consumption. Instead,
they mostly improve application response time and VM utilization.

2.3. RELATED WORK 47

Kozhirbayev et al. [110] try to reduce the number of used VM instances
to reduce the cost. Zhou et al. [249] propose a framework for both on-line
and off-line container allocation. Beaumont et al. . [24] consider variants of
the allocation problems and analyze their complexities. These variants are
grouped into different situations, one single container, several grouped
containers, and several independent containers. They proposed a set of
heuristics and compared their performance.

Allocation of Containers and VMs to PMs

Most researchers tend to develop ILP or propose heuristics to solve the
problem. Guan et al. [83] consider one type of VM, and each PM instance
is filled with ten VM instances. Then, they propose an ILP-based approach
to allocate containers. However, only considering one type of VM is not
only inflexible to meet different resource requirements but also leads to
the waste of resources. Furthermore, allocating a large number of VM
instances lead to huge overheads. Nardelli et al. [151] propose the Elas-
tic provisioning of Virtual machines for Container Deployment (EVCD)
to allocate containers to VM instances. They propose a problem model
that aims at optimizing QoS attributes instead of energy consumption.
They also apply an ILP to solve the problem and compared it with tra-
ditional approaches such as round-robin. In their experiment, they con-
sider the allocation as a periodic allocation problem, and two types of
VM are used. From the perspective of the above two approaches, it is
known that, without any relaxation method, the computational time of
ILP-based approaches grows exponentially with the increase of the prob-
lem size. Hence, their approaches cannot handle large scale problems.

Heuristics have been proposed to solve the RAC problem. Zhang et
al. [245] propose to use traditional bin packing heuristics to solve the two-
level allocation problem. They apply a BestFit approach to select VM in-
stances for containers and select PM instances for new VM instances. For
VM creation, the smallest type of VM should be selected when no VM in-

48 CHAPTER 2. LITERATURE REVIEW AND BACKGROUND

Table 2.1: Container allocation studies are categorized based on their ap-
proaches.

Allocation Scenario ILP and MLP Greedy-Heuristics Meta-Heuristics

VMs to PMs [179, 197, 221] [26, 118, 228, 247] [225, 234]
Containers to PMs and
containers to VMs

[2, 24, 154, 178, 206, 249]

Containers and VMs
to PMs

[83, 151] [133, 166, 245]

stance is available.

In Mann’s work [133], they consider the overheads of VM instances
and model the overhead as a constant value of CPU utilization, but he
stated that more sophisticated models could be more realistic. In order to
prove the interaction of two-levels of allocation, Mann uses a fixed VM
allocation algorithm and test a series of VM selection algorithms such as
simple selection [74], Multiple selections, Maxsize, Consolidation-friendly.
Mann discovers that the final energy consumption varies with the selec-
tion algorithms. Mann claims that the performance is better when VM
selection has more knowledge of the PM instances’ capacity. However,
Mann’s study only focuses on the partial allocation with fixed VM alloca-
tion algorithm. The answer to “How these two-levels of placement inter-
act ?” is still undiscovered. Piraghaj et al. [166] develop a set of heuristics
such as Random Host Selection, Least Full Host Selection, and Correla-
tion Threshold Host Selection. These algorithms are also based on greedy
heuristics.

2.3.3 On-line Resource Allocation in Clouds

For solving on-line allocation problems, most research applied rule-based
approaches in order to make fast allocation decisions.

2.3. RELATED WORK 49

Allocation of VMs to PMs

Beloglazov et al. [25] apply an AnyFit-based framework [98] and consider
the problem as a vector bin packing problem with multiple resources.
These resources are combined into a single value in order to decide which
PM instances are suitable for which VM instances [98]. [25] proposes Energy-
aware BF to select PM instances with the least CPU usage. Wood et al. [228]
propose a volume rule to allocate VM instances. They choose target PM in-
stances with the least value of volume = 1

1−cpu ∗
1

1−mem .

Forsman et al. [70] propose two distributed migration strategies to bal-
ance the load in a system. The push strategy is applied to overloaded PM
instances; it attempts to migrate One VM instance at a time to less loaded
PM instances. The pull strategy is applied to underutilized PM instances to
request workloads from heavier loaded PM instances. Each of the strate-
gies is executed on each PM instance as an intelligent agent. These in-
telligent agents (e.g., PMs) share their status with each other through a
communication protocol. Forsman’s approach has several interesting fea-
tures. First, they apply an adaptive high-load threshold (e.g., 0.7 of overall
CPU utilization) so that it considers the environment changes. Second,
they use an EWMA algorithm to reduce the unnecessary migration be-
cause EWMA [92] is useful in smoothing out variations in the average
load. Third, they apply entropy to model the load distribution. The en-
tropy method is also applied to some previous approaches [112, 174]. In
this thesis, we design allocation algorithms for a centralized allocation sys-
tem.

Xiao et al. [231] propose an algorithm based on evolutionary game the-
ory. Their approach has two contributions. First, they build a quadratic
energy model for the energy consumption of PM instances and a linear
model for the energy consumption of migration. Second, they propose
an algorithm based on Multiplayer random evolutionary game theory to
solve the on-line problem. In their approach, VM instances are mapped
into players that take part in the evolutionary game. In each iteration, all

50 CHAPTER 2. LITERATURE REVIEW AND BACKGROUND

players choose their best feasible action, i.e., players migrate to the PMs,
which can minimize energy consumption. Some players randomly choose
PM instances in order to avoid being stuck at a local optimum. Xiao com-
pared their approach with giving simple bin-packing heuristics: First Fit,
Best Fit Increasing, Best Fit Decreasing, Greedy, and Load Balance rule.
The solutions show their approach can improve energy consumption sig-
nificantly, especially in the scenario where the distributions of VMs are
very centralized.

Allocation of Containers and VMs to PMs

Piraghaj et al. [166] propose a framework for container-based resource
management, including three steps, analyzing resources to trigger migra-
tion, deciding which containers to migrate, and placing the container to a
VM instance. In the third step, Piraghaj applies three heuristics: FF, Ran-
dom, and Least Full. However, this work only reports that their approach
can reduce the number of VM instances but does not mention how to re-
duce the number of PM instances by migrating VM instances. Therefore,
this work does not consider the interactions between two levels: VMs and
PMs.

Extending Piraghaj’s work, Gholipour [79] develops a joint VM and
container multi-criteria migration decision (JVCMMD) policy which con-
sider the interactions between containers and VMs. JVCMMD policy in-
cludes 8 sub-policies for the entire migration process of the existing con-
tainers and VMs. The process determines which host is overload, which
container and VM should be migrated, and the destination of container
and VM migration. Since, no new container is coming and container are
keep releasing as they finished, VM creation rule is not considered.

Unlike previously introduced reactive approach, Liu et al [122] applies
linear regression to make prediction of PMs’ status and applies rule-based
algorithms to allocate containers. The experiment results show that rule-
based algorithms with prediction can improve the energy efficiency than

2.3. RELATED WORK 51

the reactive rules.

For the RAC problem, most of the research employs AnyFit-based algo-
rithms such as BF and FF. AnyFit-based algorithms always select existing
VM instances until no VM instance is available. Then, they apply a sim-
ple heuristic such as a Just-Fit [133] or Largest [133] to create VM instances.
These simple heuristics may not lead to the optimal allocation at the end
because they either create a large number of small VM instances, which
wastes the resources on VM overheads or create large but low-utilized VM
instances.

2.3.4 Multi-objective Resource Allocation in Clouds

Studies [84, 94, 119, 121, 185, 220] discuss the multi-objective problems and
optimize objectives such as energy consumption, communication cost be-
tween containers, and availability of applications. However, these multi-
objective approaches could only be applied to OS-container architecture,
where containers are allocated to PM instances directly. Most of these
works consider the relationship between containers. Both [94, 121] con-
sider the data transmission. Guerrero et al. [84] consider the reliability of
micro-service allocation. Besides energy consumption, various objectives
are considered. [84, 94, 119] consider the load balancing of PM instances.
Network overheads [84, 119] or transmission [121] have also frequently
been used as the optimization objectives.

Heuristics are used in these studies. Liu et al. [121] use a weight-sum
function to measure the score of each node and select the PM instance with
the highest score to allocate a container. Hu et al. [94] develop a heuristics
with two key ideas Resource Utilization Threshold and Dot-Product heuristic.
They adjust the distribution of containers on the PM instances based on the
threshold of utilization. The Dot-Product heuristic measures the similarity
of containers and PM instances in terms of resource demand and resource
capacity. Containers are allocated to the most suitable PM instances.

52 CHAPTER 2. LITERATURE REVIEW AND BACKGROUND

EC methods have been dominating in multi-objective resource allo-
cation. Studies [63, 67, 77, 84, 100, 119, 235] focus on the multi-objective
VM allocation problems. Guerrero et al. [84] propose an NSGA-II-based
approach to solve the problem, and it outperforms the approaches used
in Kubernetes. [67, 77, 100, 119] propose ant colony algorithm-based ap-
proaches. Both Gao et al. [77] and Ferdaus et al. [67] use a vector alge-
bra complimentary resource utilization model proposed by Mishra [146].
They consider three resources CPU, memory, and network I/O with two
objectives: minimizing power consumption and resource wastage. They
apply the Resource Imbalance Vector to capture the imbalance among three
resources. Meanwhile, they use a linear energy consumption function to
capture the relationship between CPU utilization and energy [63]. Their
solution is compared with four algorithms: Max-Min Ant System, a greedy-
based approach, and two FFD-based methods. The results show that their
proposed algorithm has much less resource wastage than other algorithms.

Xu and Fortes [235] propose a multi-objective VM allocation approach
with three objectives: minimizing total resource wastage, power consump-
tion, and thermal dissipation costs. They apply an improved grouping ge-
netic algorithm (GGA) with fuzzy multi-objective evaluation. The wastage
is calculated as differences between the smallest normalized residual re-
source and the others. They also applied a linear power model to esti-
mate the power consumption [116]. They conduct experiments on syn-
thetic data and compare it with six traditional approaches, including FFD,
BFD, and single-objective grouping GA. The results showed superior per-
formance than other approaches.

2.3.5 EC Algorithms in Combinatorial Optimization

This section reviews a number of EC algorithms in two combinatorial op-
timization fields: cloud computing scheduling and job shop scheduling
(JSS). We review these two fields because of two reasons. Firstly, though,

2.3. RELATED WORK 53

these problems have some fundamental differences from the RAC prob-
lem but share some similarities. These problems deal with task allocation
in both off-line and on-line scenarios. For example, JSS has many on-line
variations, such as the dynamic JSS problem [223]. Secondly, the EC al-
gorithms that have been applied to these problems use some techniques,
e.g., permutation-based crossover operator, which can potentially inspire
us to design problem-specific operators for solving our problem.

Cloud Computing Resource Allocation

Traditional cloud computing resource allocation includes four categories
[87]: cloud brokering and service placement are typically off-line prob-
lems; server load balancing and cloud capacity planning are on-line prob-
lems. EC algorithms have been applied to problems in each of these cate-
gories. This section will briefly review approaches.

In cloud brokering problem, a cloud broker is an intermediary between
cloud users and cloud providers to estimate the resource requirements from
cloud users and choose resources from cloud providers. The objective of
cloud brokering is to minimize the cost for cloud users as well as guarantee
the quality of service (QoS) of cloud users’ applications.

Frey et al. [72] propose a GA approach (CDOXploer) for finding near-
optimal cloud deployment architectures and runtime reconfiguration rules
for software. Their approach takes into account VM types, the number
of VM instances, and the scaling policies of VM instances. CDOXplorer
minimizes response times, costs, and SLA violations in order to satisfy
the requirement of cloud users. In comparison with Frey’s centralized ap-
proach, Iturriaga et al. [95] propose an Evolutionary Algorithm (EA) with
distributed sub-populations. In each sub-population, they applied a Sim-
ulated Annealing (SA) method to find the local optimal solution. It is
shown that the proposed algorithm outperforms the reference list schedul-
ing algorithms in both computation time and performance (maximizing
the profit of a broker).

54 CHAPTER 2. LITERATURE REVIEW AND BACKGROUND

In the service placement problem, cloud users aim to optimize the costs
and performance (e.g., QoS) of their services. Compared with the cloud
brokering problem, service placement focuses less on resource allocation
but focuses more on the location selection. Cloud users need to decide the
locations of services and the number of services [87].

Tan et al. [202] propose an aggregation approach with binary PSO to
solve the service placement problem with two objectives: minimizing cost
and minimizing the response time. They find that the single-objective al-
gorithm can only provide one solution for each run. This single-objective
algorithm is suitable to use when cloud users have preferences of differ-
ent QoS. Therefore, they develop an NSGA-II-based approach [205] that
uses Pareto front approach to find a set of non-dominated solutions. They
conclude that multi-objective evolutionary algorithms are suitable for the
service placement problem.

Capacity planning problems estimate the future load of VM instances
and PM instances before allocating resources. The primary objectives are
to optimize the QoS while minimizing the cost of users. Different from
the above problems, the capacity planning problem is often treated as an
on-line problem. Kousiouris et al. [107] propose an artificial neural (ANN)
network-based framework to predict the load of a GNU Octave system.
They use a GA to create the structure of ANN, and the ANN is encoded
using a bit-string representation. The algorithm can be trained off-line and
test on-line. Therefore, it is well-suit for an on-line problem.

Job Shop Scheduling

Job shop scheduling (JSS) problems [172] dispatch a set of jobs to ma-
chines. A job goes through a predetermined sequence of operations in
order to finish its tasks. Each machine can only process a specific oper-
ation. Therefore, it needs to make intelligent decisions to schedule these
jobs in order to finish processing jobs before their due dates.

JSS problems can also be divided into on-line (dynamic) and off-line

2.3. RELATED WORK 55

(static). In off-line JSS problems, all properties of jobs and machines are
known in advance. In on-line JSS problems, properties of jobs are un-
known. This section focuses on the on-line JSS problems because they are
similar to our on-line RAC problem.

On-line JSS problems often apply small heuristics such as dispatch-
ing rules [33] because dispatching rules have short reaction times and can
quickly deal with unforeseen changes in an on-line event. For example, an
SPT (shortest processing time) selects the job with the shortest processing
time waiting at available machines. Apart from simple dispatching rules,
composite dispatching rules (CDRs) [96] combine several simple dispatch-
ing rules to achieve higher performance. It is difficult to design dispatch-
ing rules for on-line JSS problems because, first, no single dispatching
rule is more effective than others for all JSS problem instances. Second,
a real-world dynamic JSS problem is changing over time, e.g., machines
are added and removed. Therefore, designing dispatching rules often re-
quires domain knowledge.

To design dispatching rules more effectively, researchers use a hyper-
heuristic technique to generate dispatching rules automatically. Specif-
ically, a great number of hyper-heuristic approaches to the JSS problem
uses GPHH as previously introduced. GPHH represents dispatching rules
with a tree-based representation, and these dispatching rules can be inter-
preted as priority-based dispatching rules. GPHH approaches generally
outperform manually designed dispatching rules for both off-line and on-
line JSS problems [33].

The on-line JSS problem and the on-line RAC problem share many sim-
ilarities. First of all, they are both on-line problems that require a fast de-
cision. Second, they both dispatch jobs to PM instances. The differences
are that the on-line JSS problem usually does not care about the resources
requirement of a job. The on-line RAC problem considers not only the re-
source requirement of the containers but also the remaining resources in
PM instances. Another difference is that the jobs in on-line JSS go through

56 CHAPTER 2. LITERATURE REVIEW AND BACKGROUND

a route of PM instances while the containers in on-line RAC problem stay
at PM instances. The similarities inspire us to apply the GPHH approach
to the on-line RAC problem.

In conclusion, EC-based algorithms have been widely used in resource
allocation problems in clouds for both off-line and on-line scenarios. Specif-
ically, meta-heuristics, such as GA, are more suitable for off-line scenarios,
and hyper-heuristics, such as GPHH, are suitable for on-line scenarios.

2.4 Summary and Thesis Scope

This chapter introduced the main concepts of cloud resource allocation,
Evolutionary Computation (EC), and reviewed the recent studies on re-
source allocation in clouds. We discuss the limitations of existing work on
two allocation decision scenarios.

We summarize the drawbacks of current studies and challenges on
the RAC problem from four perspectives. Firstly, the current models of
the RAC lack some critical features. Current RAC models are mostly ex-
tended from previously VM-based clouds. Hence, the VM-related fea-
tures, such as VM overhead, affinity constraints, are not included. These
features are critical because they heavily affect decision making. There-
fore, a new model that includes these features needs to be developed. Sec-
ondly, the RAC problem is a new and difficult (NP-hard). Hence, EC is
the most promising technique for the off-line scenario. The difficulties for
developing EC methods are the design of problem representation and ge-
netic operators. Currently, two types of representation, vector-based and
group-based, are potentially suitable for the RAC problem. Their effective-
ness needs to be discovered. Thirdly, manually designed heuristics are
widely used for the on-line RAC problem. However, manually designed
heuristics cannot consider the complex interaction of features. Hence,
these heuristics are often simple. A related field of Job Shop Scheduling
(JSS) provides a promising technique of GPHH. GPHH is a hyper-heuristic

2.4. SUMMARY AND THESIS SCOPE 57

technique that can automatically generate heuristics based on the features
and historical workload datasets. However, the employment of GPHH
on RAC is difficult because the RAC is a two-level allocation problem.
Fourthly, the multi-objective RAC also requires the development of multi-
objective EC methods. Hence, we introduce the thesis scope.

Table 2.2: The thesis scope

Characteristic Thesis scope

Virtualization Containerization
System resources CPU and Memory
Service Model Platform-as-a-Service, Container-as-a-Service
Cloud Architecture Container-based clouds
Resource Management Unit Heterogeneous Container, VMs, and homogeneous PMs
Goal Minimize energy consumption and other objectives
Workload type Web service
Allocation Scenarios Off-line, on-line, and multi-objective scenarios
Methods Evolutionary Algorithms

This thesis (see Table 2.2) investigates EC approaches to help cloud
providers improving the performance of resource allocation in container-
based clouds problems. The thesis considers heterogeneous containers,
VMs, and homogeneous PMs as the resource units. In addition, CPU and
memory are being considered. The major objective is to minimize the en-
ergy consumption of data centers. Other objectives, such as availability,
are also considered. This thesis focuses on long-term workload types such
as web service. Evolutionary algorithms are proposed in order to solve
these combinatorial optimization problems in three main allocation sce-
narios, i.e., off-line single-objective, on-line single-objective, and off-line
multi-objective problems.

58 CHAPTER 2. LITERATURE REVIEW AND BACKGROUND

Chapter 3

Genetic Algorithms for Off-line
Resource Allocation in
Container-based Clouds (RAC)

3.1 Introduction

The purpose of this chapter is to design an effective vector-based and
group-based representations of GA for solving the off-line RAC problem.
As discussed in Chapter 2.2.1, vector-based [105,164,177] and group-based
representations [82, 99, 123, 235] for various resource allocation problems
have been proposed in the literature. Moreover, each representation has
its advantages. However, the exising representations cannot be directly
used in the RAC problem because they have the structure for one-level al-
location. In order to design effective GA-based approaches for the off-line
RAC problem, this chapter proposes both vector-based and group-based
GAs and compare them with existing approaches.

In order to develop GA-based approaches for the RAC problem, mul-
tiple objectives need to be done. We first propose a model for the RAC
problem. Such a model is used to evaluate the performance of algorithms
for solving the problem. Then, we develop problem-specific operators for

59

60 CHAPTER 3. GA-BASED APPROACHES FOR OFF-LINE RAC

each representation. Finally, we evaluate the effectiveness of the proposed
approaches and compare to the state-of-the-art algorithms with real-world
datasets.

1. To propose an off-line model for the RAC problem. The new problem
model represents the two-level allocation problem and includes new
features such as VM overheads and new constraints.

2. To propose new vector-based GA approaches for the RAC problem,
including initialization strategy, decoding methods, genetic opera-
tors, and constraint handling methods.

3. To propose a new group-based GA approach for the RAC problem,
including initialization strategy, genetic operators, and constraint han-
dling methods.

4. To evaluate the performance of these proposed approaches in order
to identify their advantages and limitations.

3.2 Chapter Organization

The remainder of this chapter is organized as follows. Section 3.3 presents
the off-line RAC model used in this chapter. Section 3.4 illustrates the off-
line allocation process and our assumptions. Then, Section 3.5 introduces
the vector-based GA approaches. The first approach, a single-chromosome
GA (SGA) is described in Section 3.5.1. In Section 3.5.2, we introduce an-
other vector-based GA, a dual-chromosome GA (DGA). Section 3.6 presents
a distinct representation of group-based GA (GGA-RAC). To evaluate the
proposed algorithms, we conduct a series of experiments in Section 3.7
and illustrate the pros and cons of the proposed algorithms. Section 3.9
summarizes this chapter.

3.3. OFF-LINE RAC MODEL 61

3.3 Off-line RAC Model

The off-line RAC problem is a task of allocating a set of containers to a
set of VM instances with various types, then allocate the created VM in-
stances to a set of PM instances (see Figure 3.1). The allocation process
involves four decision-making processes. VM selection chooses an existing
VM instance to allocate a container. In the meanwhile, the data center can
also create a new VM instance to allocate the container. VM creation selects
a type of VM, and creates a VM instance with the selected type. Then it
allocates the container to the new VM instance. Cloud providers define
the types of VM. Likewise, PM selection chooses an existing PM instance to
allocate the new VM instance. PM creation is used to select types of PM if
the PMs are also heterogeneous, e.g., there are different types of PM to be
used. In this research, we consider homogeneous PM, which means there
is one type of PM; therefore, no need to decide types for PM creation.

Figure 3.1: An illustration of the RAC problem.

We now define a formal model for the off-line RAC problem. Assume
a set of containers C = {c1, . . . , cn} arrives to the cloud to be allocated.

62 CHAPTER 3. GA-BASED APPROACHES FOR OFF-LINE RAC

Table 3.1: Notation and description of the problem model

Notation Description

ci a container of index i
τj the VM type of a VM instance j
ψi the OS type of a container i
pk a PM instance of index k
xil An indicator of whether the container i is allocated to the l VM instance
ylk An indicator of whether the l th VM instance is allocated to the kth PM instance
zjl An indicator of whether the l th VM instance is of type j
E The energy consumption of the data center over the allocation period
Etk The energy consumption of the kth PM instance at time t
EP idle

k , EP full
k The energy consumption when the kth PM instance is idle and fully used

ζcpu(ci), ζ
mem(ci) The CPU and memory occupation of the ith container

Ωcpu(),Ωmem() The CPU and memory occupation of a resource entity
πcpu(τj), π

mem(τj) The CPU and memory overheads of a VM type of τj
OS(ci) The operating system type of the ith container
µcputk , µmemtk The CPU and memory utilization of a the kth PM instance at time t

Each container ci has a CPU occupation ζcpu(ci), a memory occupation
ζmem(ci) and the operating system OS(ci) for running it. A set of OS
types Ψ = {ψ1, . . . , ψo} that can be required by the containers. There is
a set of VM types Γ = {τ1, . . . , τm} that can be selected to allocate the
containers. Each VM type τj has a CPU capacity Ωcpu(τj) and a memory
capacity Ωmem(τj). Also, it has a CPU overhead πcpu(τj) and memory over-
head πmem(τj), indicating the CPU and memory occupation for running a
new VM instance of that type. There is an unlimited set of PM instances
P = {p1, . . . , } for allocating the created VM instances. Each PM instance
pk has a CPU capacity Ωcpu(pk) and a memory capacity Ωmem(pk).

The off-line container allocation problem is subject to the following
constraints:

1. Each container is allocated to one VM instance.

2. Each created VM instance is allocated to one PM instance.

3. For each created VM instance, the total CPU and memory occupa-
tions of the containers allocated to that VM instance does not exceed

3.3. OFF-LINE RAC MODEL 63

the VM instance’s capacity.

4. For each PM instance, the sum of the CPU and memory capacities of
the VM instances allocated on the PM instance does not exceed the
PM instance’s capacity.

5. For each container, it must be allocated to a VM instance which has
installed the same OS.

The energy consumption of all the PM instances is calculated as fol-
lows:

E =
K∑
k=1

Ek, (3.1)

whereEk is the energy consumption of the kth PM instance (K is the num-
ber of PM instance used).

Ek is calculated as follows:

Ek = Eidle
k + (Efull

k − Eidle
k) · µcpuk , (3.2)

where Eidle
k and Efull

k indicate the energy consumption of the kth PM in-
stance per time unit when it is idle and fully loaded, respectively. The en-
ergy model is proposed by Fan [63] and has been widely used in research
of VM allocation [54].

µcpuk indicates the CPU utilization level of the kth PM instance. µcpuk is
calculated as follows.

µcpuk =

∑L
l=1

(∑m
j=1 π

cpu(τj) · zjl +
∑n

i=1 Ωcpu(ci) · xil
)
· ylk

Ωcpu(pk)
, (3.3)

where xil, ylk and zjl are binary decision variables, and L is the number
of created VM instances. xil takes 1 if container ci is allocated to the l th
created VM instance, and 0 otherwise. ylk takes 1 if the l th created VM
instance is allocated to the kth PM instance, and 0 otherwise. zjl takes 1 if
the l th created VM instance is of type j, and 0 otherwise.

Given the above mathematical notations, the off-line RAC problem can
be formulated as follows.

64 CHAPTER 3. GA-BASED APPROACHES FOR OFF-LINE RAC

min
K∑
k=1

Ek, (3.4)

s.t.
L∑
l=1

xil = 1, ∀ i = 1, . . . , n, (3.5)

K∑
k=1

ylk = 1, ∀ l = 1, . . . , L, (3.6)

m∑
j=1

zjl = 1, , ∀ l = 1, . . . , L, (3.7)

n∑
i=1

ζres(ci)xil ≤
m∑
j=1

Ωres(τj)zjl,

∀ l = 1, . . . , L, res ∈ {cpu,mem},
(3.8)

L∑
l=1

m∑
j=1

Ωres(τj)zjl ≤ Ωres(pk),

∀ k = 1, . . . , K, res ∈ {cpu,mem},

(3.9)

OS(ci) = OS(cj), ∀l = 1, · · · , L.
L∑
l=1

xilxjl = 1, (3.10)

xil, ylk, zjl ∈ {0, 1}, (3.11)

where constraints (3.5) and (3.6) indicate that each container (or the cre-
ated VM instance) is allocated to exactly one created VM instance (or a
PM instance). Constraint (3.7) indicates that each created VM instance
must belong to a VM type. Constraint (3.8) implies that the total occupa-
tion of all the containers allocated to each created VM instance does not
exceed the capacity of the VM instance. Constraint (3.9) indicates that the
total capacity of the created VM instances allocated to each PM instance
does not exceed its corresponding capacity. Constraint (3.10) means that
the containers allocated to the same VM instance must have the same re-
quired OS, which is the installed OS on that VM instance. Constraint (3.11)
defines the domain of the decision variables.

3.4. THE OFF-LINE RAC PROCESS AND ASSUMPTIONS 65

The next section explains the allocation process and our assumptions
in detail.

3.4 The Off-line RAC Process and Assumptions

Figure 3.2: The flowchart of the off-line RAC process.

This section explains the allocation process of the off-line RAC process
(see the flowchart in Figure 3.2) and our assumptions. In the beginning, we
first apply a preprocessing technique that groups the incoming containers
into o groups, where o is the total number of OS types. Then, we allocate
each group of containers into a set of unused PM instances using an off-
line allocation algorithm. Finally, we evaluate the allocation by computing
the energy consumption of used PM instances.

The preprocessing of grouping the applications according to their OS
requirements is a common procedure in the industry. The primary reason
is that traditional clouds allocate containers into a cluster of bare-metal

66 CHAPTER 3. GA-BASED APPROACHES FOR OFF-LINE RAC

PM instances (No virtualization). It is straightforward to map groups of
containers into clusters of PM instances.

This research also adopts the preprocessing for three reasons. Firstly,
since the off-line RAC allocates a large number of containers at each time.
A large number of containers in different OS groups can be combined to
achieve high utilization in PM instances. Secondly, OS constraint is a hard
constraint, which must be satisfied by allocation solutions. There is not
much benefit to allocate a mixed set of containers with different OS re-
quirements. Thirdly, the computational complexity of an allocation algo-
rithm increases dramatically with considering an additional variable of
OS. Based on these reasons, we also adopt the preprocessing technique.

The grouping procedure of containers is shown in Algorithm 1. For
each container ci, find its OS requirement ψo and allocate it to the corre-
sponding groups.

Algorithm 1: Group containers according to their OS require-
ments

Input : a set of containers
Output: j groups of containers

1 for each container ci do
2 for each OS types ψo do
3 if OS(ci) = ψo then
4 assign the container to group o;
5 end

6 end

7 end

The next section explains the proposed vector-based GAs for the off-
line RAC problem.

3.5. VECTOR-BASED GA 67

3.5 Vector-based GA

GA [215] has been successfully applied to various combinatorial optimiza-
tion problems over its fifty-years of history [81]. Not only does GA over-
come the shortcoming of greedy-based heuristics (e.g., First-Fit) that are
easily stuck at local optimum but also GA has a controllable computa-
tional time. However, the key challenge of applying GA to solve the prob-
lem is the design of the representation of solutions and genetic operators
that can evolve solutions [130]. A good representation narrows the search
space, and good operators can accelerate the searching for near-optimal
solutions.

This section investigates the effectiveness of vector-based GA by de-
veloping two distinct vector-based representations and corresponding op-
erators.

3.5.1 Single-Chromosome GA (SGA) Approach

This section introduces the design of the first vector-based GA approach,
which includes representation, genetic operators, the fitness function, and
the procedure of the algorithm. In the following content, we will use SGA
as the short name of single-chromosome GA.

Single-Chromosome Representation

In this approach, we use a single vector to represent a solution of RAC
problem called a single-chromosome representation (to distinguish from
the dual-chromosome representation in Section 3.5.2). The representation
shown in Figure 3.3 includes a vector of integers. An individual is divided
into cells (separated with dotted lines). Each cell denotes the allocation of
a container to a VM, e.g. the index and the type of the selected VM. The
second level of allocation, VM instances to PM instances, is decided by a
decoding process.

68 CHAPTER 3. GA-BASED APPROACHES FOR OFF-LINE RAC

Figure 3.3: An example of SGA representation of RAC solution

The representation consists of several paired cells (separated with dot-
ted lines). Each pair of cells represents the allocation of a container. The
order of containers follows the same order in the given RAC task. The in-
teger in the first cell represents the type of VM instance, and the second
integer denotes the index of the VM instance. The type of the VM instance
is selected from a given set of VM types. The index of a VM instance has no
particular order. However, the numbers of indexed must be consecutive.
For example, it is invalid that, in an individual, containers are allocated
to #0, #1, #3 VMs. Since #2 should be allocated before #3 VM instance is
created. In Figure 3.3, the example allocates seven containers. Container
#0 is allocated to VM instance #0 with type 1. Container #1 and #2 are both
allocated to VM instance #1 with type 2.

For the second-level of allocation, VM instances to PM instances, a de-
coding process is applied. The process decodes an individual starting from
the VM instance with #0 index. It finds the VM instance of the next index
and allocates VM instances one by one to a PM instance until the PM in-
stance cannot host the current VM instance. Then, a new PM instance is

3.5. VECTOR-BASED GA 69

created, and the remaining VM instances are allocated to the new PM in-
stance. Essentially, this decoding process uses a Next-Fit (NF) heuristic.

Clearly, specifically designed operators are needed to manipulate chro-
mosomes. Therefore, based on this representation, we further developed
initialization and mutation methods.

Initialization

The initialization (see Algorithm 2) is designed to generate a diverse pop-
ulation. For each individual, it first generates a vector with a length of
twice the number of containers (line 2). Then, for each pair of the entries
(the allocation for each container), it follows several steps (from line 4 to
line 17). It first tries to find an existing VM that can host ci. If there exists
a VM instance that can host the container, then allocate the container by
assigning the type of the VM instance to the first entry (VM type) and as-
signing the index of the VM instance to the second entry (VM index). If no
existing VM instance can host the container, a new VM instance is created.

From line 10 to line 14, a new VM instance is created. First, it iterates
the VM type list and finds the first VM type τf that can host the container.
Then, it randomly generates a VM type τk that has more or equal capacity
than τf . Finally, it allocates the container to the new VM instance and
updates the VM counter.

Mutation

We design a mutation operator (see Algorithm 3) to manipulate the types
of VM. The mutation operator has two functions. First function re-allocates
containers to existing VMs from line 13 to line 15. The second function re-
allocates containers to new VM instances from line 6 to line 12. The steps
of the creation of a new VM instance is similar to the steps in the initial-
ization.

Since a container can be randomly allocated to an existing VM instance,

70 CHAPTER 3. GA-BASED APPROACHES FOR OFF-LINE RAC

Algorithm 2: Initialization
Input : A set of types of VM τ , A set of containers C,
Output: A population of individuals P

1 for each individual p do
2 Generate a vector with the length of |C| × 2;
3 vmCounter ← 0;
4 for Each container ci do
5 if an existing VM vj that can host the container ci then
6 First entry of the i pair← τvj ;
7 Second entry of the i pair← j;

8 end
9 else

10 Find the first VM type τf that has enough resource to
host ci;

11 Randomly generate a type of VM τk that has more or
equal capacity than τf ;

12 First entry of the i pair← τk;
13 Second entry of the i pair← vmCounter;
14 vmCounter ← vmCounter + 1;

15 end
16 P ← p;

17 end

18 end
19 return a population P ;

the mutation operator can lead to two types of invalid solution. The first
invalid type of solutions contains a non-consecutive index of VM instance.
That means the indexes of VM instances are not continuous. For example,
VM instances with indexes, #0, #1, #3, but without #2. The second type
of invalid solution is VM overloading, which means one or more VM in-

3.5. VECTOR-BASED GA 71

stances host more containers than their resource capacities. At this stage,
a repair operator is needed to solve the above issues.

Algorithm 3: Mutation operator
Input : An individual p, a set of types of VM τ , a set of containers

C, a set of existing VM instances V , a mutation rate β,
Output: An individual p

1 for each container ci do
2 Randomly generate a number u from [0, 1];
3 if u < β then
4 vmCounter ← count(V);
5 Randomly select j from [0, vmCounter];
6 if j = vmCounter then
7 find the first type of VM τf that can host the container;
8 Randomly generate a type τk with ζcpu(τk) >= ζcpu(τf)

and ζmem(τk) >= ζmem(τf);
9 First entry of the i pair← τk;

10 Second entry of the i pair← vmCounter;
11 vmCounter ← vmCounter + 1;

12 end
13 else
14 First entry of the i pair← τvj ;
15 Second entry of the i pair← j;

16 end
17 Repair(p);

18 end

19 end
20 return the individual p;

72 CHAPTER 3. GA-BASED APPROACHES FOR OFF-LINE RAC

Repair Operator

The repair operator (see Algorithm 4) has two functions to fix violations
in individuals after mutation. The first function fixes the issue of non-
consecutive VM indexes. The repair operator re-assigns indexes to the
individual according to each group of containers that are allocated to the
same VM instance. To achieve this, the repair operator first constructs lists
of VM instances. The lists include VM instances and their containers (line
2 to line 5). Then, it re-assigns VM indexes to the individual (line 10) if the
VM instance has enough resources to host the container.

In the meanwhile, the repair operator also fixes the overloading of VM
instances. During the re-assigning of VM indexes, the operator also checks
whether a required VM instance has enough resources to host the con-
tainer (line 8). If a VM instance cannot host the container, the container is
added to a leftContainerList. Later on, from line 17 to line 19, these con-
tainers are re-allocated with a rule FF&C/FF. The rule attempts to allocate
a container with First-Fit (FF). If no existing VM instance is available, it
creates a VM instance with its required VM type (as defined in the first en-
try of container i in the vector) and allocates the new VM instance to PM
instances with FF. Thus, the individual remains a valid solution.

Fitness Function

We use Eq 3.12 as the fitness function to evaluate individuals of a popula-
tion in terms of the overall energy consumption of all used PM instances.
Lower fitness indicates a better individual.

Fitness E =
K∑
k=1

Ek (3.12)

3.5. VECTOR-BASED GA 73

Algorithm 4: Repair operator
Input : An individual p,
Output: The repaired individual p

1 leftContainerList← null;
2 for each container ci do
3 j ← the VM index of ci;
4 containerListj ← ci;

5 end
6 for each VM j do
7 for each container ci in the containerListj do
8 if VMj can host container ci then
9 allocate ci to VMj ;

10 Second entry of container i← j;

11 end
12 else
13 leftContainerList← ci;
14 end

15 end

16 end
17 for each container ci in leftContainerList do
18 allocate container ci with FF&C/FF;
19 end
20 return the repaired individual p;

SGA

In previous sections, we introduce genetic operators and fitness function.
They are the components used in Algorithm 5. The GA that we applied
follows the standard GA procedure without a crossover operator. The
crossover operator is difficult to preserve the information of the parents.

Considering the following two examples. In the first example, a con-

74 CHAPTER 3. GA-BASED APPROACHES FOR OFF-LINE RAC

Algorithm 5: SGA for the RAC problem
Input : a set of containers, a set of VM types, a list of PM

instances,
Output: an allocation of containers

1 population← Initialization;
2 gen← 0 ;
3 for gen does not reach the maximum generation do
4 fitness evaluation(population);
5 new population← elitism(population);
6 while have not filled the new population do
7 children← tournament selection(population);
8 mutation(children);
9 add children to the new population

10 end
11 gen← gen+ 1;

12 end
13 return an allocation of containers;

tainer is allocated to VM #2 with type 2 in parent 1. The same container
is allocated to VM #2 with type 3. Although in both parents, the container
is allocated to VM #2, the VM instances are not of the same type. In the
second example, a container is allocated to VM #2 with type 2 in both par-
ents. However, the container allocation in two VM #2 may be different.
Hence, in the single-chromosome GA, we only applied the mutation oper-
ator. Hence, the SGA approach does not use a crossover operator.

3.5.2 Dual-Chromosome GA (DGA) Approach

This section introduces the design of the second vector-based approach,
which includes the representation, genetic operators, and the fitness func-
tion. Since the overall procedure of dual-chromosome GA (DGA) is the same

3.5. VECTOR-BASED GA 75

with SGA, the procedure is not repeated.
Although the SGA solves the two-level RAC problem, it has disad-

vantages in its representation. The most critical flaw is that the single-
chromosome representation heavily relies on the original sequence of con-
tainers provided by the input data. Additionally, the GA cannot use a
crossover operator. Thus, this representation lacks flexibility and narrows
the search space. The GA cannot provide a strong ability to search the so-
lution space without a crossover operator. These disadvantages motivate
us to develop another vector-based representation to solve the problem.

Representation

Unlike the representation of SGA which mixes the information of alloca-
tions from two-levels, the representation of the DGA consists of two vec-
tors to separate the allocation decisions for two levels. An example of the
representation is shown in Figure. 3.4. The first vector is designed for allo-
cating containers to VMs which includes the VM selection and VM creation
and the other vector is designed for allocating VMs to PMs that includes
the PM selection and PM creation.

Both chromosomes are vectors of integer values. Specifically, in the
vector of container allocation, each value represents the index of a con-
tainer in the original input. The length of the chromosome is the total
number of containers. In the chromosome of VM allocation, each entry
represents the type of a VM with the value taken from the list of VM types.
The length of the VM allocation vector equals the length of the container
allocation vector. This is because we may use at mostN VMs for allocating
N containers (one-to-one mapping).

Similar to the SGA, to obtain a complete solution, a decoding process is
needed. Bin packing heuristics can be used as the decoding process. Next-
Fit (NF) heuristic is one of the most commonly used heuristics for the bin
packing problem [51], and it can be used in both levels of allocation. The
NF heuristic allocates items to bins sequentially until a bin cannot host the

76 CHAPTER 3. GA-BASED APPROACHES FOR OFF-LINE RAC

Figure 3.4: Representation

next item. Then, the bin is closed, and it will never be revisited. A new bin
is used to allocate the next item. This process continues until all the items
are allocated.

We show an example of applying NF on the individual in Figure 3.4.
After container #5 is allocated to VM #0, if the following container #1 can-
not fit into VM #0, we close VM #0 and open VM #1 to accommodate con-
tainer #1. The closed VMs are never checked again later on. This decoding
ends when all containers are allocated. Similarly, VMs are packed into
PMs using the same rule. A decoded solution includes both levels of allo-
cation as well as the types of VM.

Another bin-packing heuristic, First-Fit (FF) heuristic [51], can also be
used as a decoding process. Similar to NF, FF also allocates items sequen-
tially. The major difference between FF and NF is that FF never closes a
bin. That is, for every item, FF always checks from the oldest bin to the lat-
est. Although FF has a higher computational complexity than NF (O(N)

vs. O(1)), FF also obtains better performance than NF [51] because the
bins are better utilized. In this work, we apply both NF and FF as the de-
coding procedures and, therefore, two variations of DGA are created. The
variation with NF decoding is named DGA-NF, and the other variation is
named DGA-FF. These two variations are the same for other parts of the
algorithm, including the overall procedure and genetic operators.

3.5. VECTOR-BASED GA 77

Initialization

Two functions are designed for the initialization. The first function ran-
domly shuffles the indexes of containers to generate a container allocation
vector. The second function uniformly generates the types of VM. Both
functions use the uniform distribution to generate a diverse set of solu-
tions.

Crossover and Mutation

The design of crossover aims at retaining the “good” genes from the par-
ents. For the vector of container allocation, the definition of “good” is
the permutation, which leads to high utilization of VMs’ resources. We
apply the order 1 crossover [170] to pass the useful permutation to the
next generation. For the VM allocation vector, we apply the single-point
crossover [15].

Order 1 crossover randomly selects a sequence of consecutive entries
from one parent and copies them to the child. The remaining values in
the child are placed with the same order in the other parent. For example,
in Figure 3.5, containers 3 and 4 are selected and copied from parent to
child 1. Then, the containers (3 and 4) which have been allocated are
crossed out from parent 2. The rest values in the child are copied from
parent 2, starting from the second cut point and rolling back to the head,
e.g., containers 1, 5, and 2. The same rules are applied to generate a
second child.

Single-point crossover first randomly cuts a vector into two parts. A
child inherits one part from parent 1 and the other part from parent 2 (see
Figure 3.6).

We also design two functions in the mutation operator. The switch
function is used on container allocation vector. The mutation operator
Change VM type, is used on VM allocation vector.

78 CHAPTER 3. GA-BASED APPROACHES FOR OFF-LINE RAC

Figure 3.5: Order 1 crossover

Figure 3.6: Single-point crossover

Switch mutation randomly selects two entries on container allocation
vector and switch their values. This mutation changes the allocation of
two containers.

Change VM type mutation loops through the VM allocation vector and
changes the value uniformly from the VM type list by a probability. This
mutation modifies the types of VM.

The overall DGA mutation process is shown in Algorithm 6. In the
beginning, a random number of u is generated to determine whether ap-
plying the switch function on the container allocation vector. Then, for
each entry on the VM allocation vector, a u is generated to decide whether
to mutate the type of a VM.

3.6. GROUP-BASED GA FOR RAC 79

Algorithm 6: DGA Mutation
Input : An individual, mutation rate β
Output: A mutated individual

1 u← random();
2 if u < β then
3 Switch mutation() on container allocation vector;
4 end
5 for each entry on the VM allocation vector do
6 u← random();
7 if u < β then
8 Change VM type mutation();
9 end

10 end
11 return the mutated individual;

DGA

The procedure of DGA is the standard GA (see Section 2.2.1). Hence, it is
not repeated in this section.

This section also proposes two variations of DGA, e.g., DGA-FF and
DGA-NF, which are based on two decoding methods.

3.6 Group-based GA for RAC

This section describes our GGA-RAC approach for the RAC problem which
includes the overall procedure of GA, a group representation, and three
problem-specific operators.

80 CHAPTER 3. GA-BASED APPROACHES FOR OFF-LINE RAC

3.6.1 Overall Procedure

This section first introduces the overall procedure of our proposed GGA-
RAC approach.

Algorithm 7: GGA-RAC for the RAC problem
Input : a set of containers, a set of VM types, a list of PM

instances,
Output: an allocation of containers

1 population← Initialization;
2 gen← 0 ;
3 for gen does not reach the maximum generation do
4 fitness evaluation(population);
5 new population← elitism(population);
6 while have not filled the new population do
7 parents← tournament selection(population);
8 children← gene-level crossover(parents);
9 unpack(children);

10 merge(children);
11 add children to the new population

12 end
13 gen← gen+ 1;

14 end
15 return an allocation of containers;

The algorithm (see Algorithm 7) starts with the initialization of a pop-
ulation. The individual is represented as a list of PMs. Then, the algorithm
enters a loop of evolution where each loop is called a generation. In each
generation, individuals are evaluated with a fitness function (Eq.(3.1)).
Then, the best individuals are preserved and copied to the new population
with Elitism [30]. Tournament selection [144] is used to direct the popu-
lation to the high-fitness region. Then, we propose three problem-specific

3.6. GROUP-BASED GA FOR RAC 81

operators, gene-level crossover, unpack, and merge. These operators modify
the individuals so that they can perform an effective search in the solution
space.

3.6.2 Representation

Figure 3.7: Representation

The representation of an individual (see Figure 3.7) is a complete solu-
tion for a RAC problem. The individual consists of a list of PM instances.
Each PM consists of a list of VM instances, and each VM instance has a list
of containers.

3.6.3 Initialization

The design of initialization aims at producing a diverse population of so-
lutions. For each individual, we first randomly generate a permutation of
containers. Then, we allocate containers to VM instances using a FF [49]. If
there is no VM instance available, we create a VM instance with a random
type. At last, a list of VM instances is allocated to PM instances with the

82 CHAPTER 3. GA-BASED APPROACHES FOR OFF-LINE RAC

FF This representation ensures a diverse combination of containers and
VM instances. It also locates the solutions in a high-quality region with FF
instead of NF.

3.6.4 Gene-level Crossover

To inherit the useful parts from parents, one must define what is a “good
gene”. In the bin packing problem, a good gene at bins’ level is when
well-filled bins can lead to fewer bins [175]. Similarly, highly utilized
PM instances could lead to fewer PM instances for the allocation problem.
Therefore, we define a good gene as a PM instance with high utilization. In
our case, we apply the gene-level crossover twice according to the utilization
of CPU and memory respectively and generate two children.

The gene-level crossover preserves the highly utilized PM instances
from both parents. In the beginning, we sort the PM instances in both
parents according to PM instances’ utilization of CPU or memory in de-
scending order. Then, the crossover compares the PM instances from two
parents in pairwise (see Figure 3.8). The winner’s PM instance of the pair
will be preserved. Preservation includes three steps. First, the crossover
copies the VM instances combination inside the PM instance, including the
types and number of VM instances. Second, the crossover checks whether
a container from the original VM instance has been allocated in the previ-
ous PM instances. If the container has been allocated, then the container
will not be allocated again. In the end, some containers may not be allo-
cated to PM instances. They are called free containers. These free containers
are reallocated with an operator called rearrangement, which will be intro-
duced in the next section. After all the containers have been allocated,
empty PM and VM instances are removed from an individual.

An example of crossover is shown in Figure 3.8. The left-hand side
shows two parents and their allocation while the right-hand side shows a
child and its allocation after completing the crossover and before the use

3.6. GROUP-BASED GA FOR RAC 83

Figure 3.8: An example of gene-level crossover

of rearrangement. Six containers will be allocated to PM instances. Each
container list (wrapped with brackets) includes the containers that have
been allocated to the corresponding VM list. The allocation figure shows
the detailed allocation of containers. It is easy to observe that the VM
types and the number of VM instances in the two parents are entirely dif-
ferent. In both parents, PM instances have been sorted. Then, the pairwise
comparisons start with PM 1 and PM 1’. The wining PM instance, PM 1, is
copied to the child. Then, the second pair of PMs are compared, and PM 2’
wins. Instead of copying all its VM instances and containers to the child, a
container 1 has been removed because it has been allocated in PM 1. Simi-
larly, the PM 3’ from parent 2 is copied, but all its containers are removed.
Finally, two free containers, 3 and 5, are allocated with a rearrangement
operator which will be introduced in the next section.

84 CHAPTER 3. GA-BASED APPROACHES FOR OFF-LINE RAC

3.6.5 Rearrangement

Rearrangement inserts free items to bins. In the beginning (see Algorithm
8), we sort the containers according to the product of their normalized
resources R (see Eq.3.13) in ascending order.

R =
ζcpu(ci)

Ωcpu(pk)
· ζ

mem(ci)

Ωmem(pk)
(3.13)

Then, we check whether in each VM instance, the smallest two containers
can be replaced by the target container. If so, we replace the small con-
tainers with the target container. Otherwise, check the next VM instance.
After replacing, we have two smaller containers that need to be allocated.
At this point, we apply First-Fit (FF) & Random Creation (RC) / First-Fit (FF)
heuristics to allocate them. If the target container cannot replace any of the
two containers, we also applied FF&RC/FF to allocate it. The FF&RC/FF
means, we first use FF to allocate containers to VMs. If no VM instance
has enough space, we randomly create a new VM instance to allocate con-
tainers and use FF to allocate the new VM instance to PM instances.

Our rearrangement operator is inspired by [175] to avoid the draw-
back of FF and further improve the structure of a VM instance. In the bin-
packing problem, FF-based approaches [61, 175] have been widely used.
However, a simple FF-based approach cannot change the existing struc-
ture of a bin. Hence, the replacement heuristic is developed. The core idea
of the replacement heuristic is that the smaller items are easier to allocate.
Therefore, we replace smaller containers with a big one. Then, two smaller
containers can be easily allocated to existing VM instances without creat-
ing a new VM instance. The heuristic does not consider more than two
containers because of simplicity. The heuristic of replacing two contain-
ers is trying to avoid the computational complexity of searching for the
replacement of multiple containers.

3.6. GROUP-BASED GA FOR RAC 85

Algorithm 8: Rearrangement operator
Input : a target container, a list of PM instances,
Output: a list of PM instances

1 Sort the containers in all VM instances according to Eq.3.13 in
ascending order;

2 for each VM instance do
3 if the two smallest containers in each VM instance can be replaced by

the target container then
4 Replace two containers with the target VM instance;
5 Allocate two containers with FF&RC/FF;
6 return a list of PM instances;

7 end

8 end
9 Allocate the target container with FF&RC/FF;

10 return a list of PM instances;

3.6.6 Unpack

Unpack operator eliminates low-utilized PM instances and reallocates their
containers. This operator prevents premature convergence and introduces
new gene component into the current population.

The operator has two steps. First, it calculates the probability of un-
packing a PM instance, according to Eq.(3.14). The PM instance with high
CPU utilization has a smaller chance of being unpacked. Second, it un-
packs PM instances in a roulette wheel style. After unpacking, the free
containers are reallocated with the rearrangement operator.

probability =
1− Ωcpu(pk)∑K
k=1 1− Ωcpu(pk)

(3.14)

The unpack operator is adaptive with the evolution process. In the be-
ginning, the average utilization of PM instances is low. Therefore, more
PM instances are unpacked. As the population evolved, high utilized

86 CHAPTER 3. GA-BASED APPROACHES FOR OFF-LINE RAC

PMs move to the head of an individual and have a low chance of being
unpacked. Therefore, the good genes are preserved, and new genes are
introduced by the rearrangement operator.

3.6.7 Merge

The merge operator replaces small VM instances with a bigger one to re-
duce the free resources in PM instances. Free resources represent the re-
sources that have not been allocated to any VM instances. The merge op-
erator can improve the utilization of PM instances by reducing the free
resources in PM instances as well as the overheads from VM instances.

The merge operator has two alternative functionalities, merge and en-
large. In the first one, it goes through all the PM instances and checks
whether the two smallest VM instances can be replaced by a larger VM
type. If it is possible, all the containers are migrated from these two small
VM instances to the new larger VM instance, and the small VM instances
are removed. If we cannot replace two VM instances with a larger one, we
attempt to replace the smallest VM instance with a larger VM type. The
large VM type is also selected randomly. The purpose of the replacement
is to eliminate the unused the resources in PMs.

3.6.8 Time Complexity Analysis

Based on our implementation, we compare the computation complexity
(the worst case) between SGA, DGA and GGA-RAC in Table 3.2. DGA-NF
and DGA-FF are in the same column because they have the same worst
case.

Where R is the number of free containers to be rearranged, N ′ is the
max number of containers in a VM instance, and M is the number of VM
instances used. N ′′ is the max number of containers in a PM instance. K is
the number of PM instances used, M ′ is the max number of VM instances

3.7. EXPERIMENTS AND RESULTS 87

Table 3.2: Time Complexity (worst case) Comparison between SGA, DGA-
NF and GGA-RAC

SGA DGA-NF/FF GGA-RAC

Initialization O(TN) O(N) O(N2)

Elitism O(N) O(N) O(N)

Evaluation O(N2) O(N2) O(N)

Crossover - O(2N) O(KM ′ +K logK +R(MN ′ logN ′ +M2))

Mutation O(N2(T +N +R(MN ′ +M ′K))) O(2N) -
Unpack - - O(N ′′(MN ′ logN ′ +M2))

Merge - - O(KTM ′ logM ′)

Rearrangement - - O(R(MN ′ logN ′ +M2))

Overall O(N5) O(N2) O(N4)

in a PM instance, and T is the number of VM types. The upper bound of
R, N ′, M , N ′′, and K is N .

Obviously, DGA has lowest complexity (overallO(N2)) than SGA (O(N5))
and GGA-RAC (O(N4)) in each generation. For the GGA-RAC approach,
the main reason for high complexity is the rearrangement operator, which
has been used in both crossover and unpack operators. The heuristic in re-
arrangement includes more comparisons in order to swap out the smaller
containers. Hence it is costly. Time complexity and performance are also
the major trade-off between GGA-RAC, which embedded with heuristics
versus DGA, which replied on stochastic search. The core difference be-
tween DGA and GGA-RAC is that GGA-RAC allows heuristics to be em-
bedded into the search process, e.g., rearrangement, while DGA only relies
on the stochastic process.

3.7 Experiments and Results

The overall goal of the experiment is to test the performance of our pro-
posed algorithms, SGA, DGA-NF, DGA-FF, and GGA-RAC in terms of en-
ergy consumption. This section starts with the description of the dataset
and test instances designed for the experiment. Then, a benchmark al-

88 CHAPTER 3. GA-BASED APPROACHES FOR OFF-LINE RAC

gorithm, a rule-based approach FF&BF/FF, is presented. Next section ex-
plains the parameter settings of the algorithms. Experiment results are
shown and analyzed to understand the performance of these approaches
and explain the pros and cons of them.

3.7.1 Datasets and Test Instances

We design 8 test instances (see Table 3.3) which allocates an increasing
number of containers (from 200 to 1500) in two sets of VM types. We use a
real-world application trace (AuverGrid [189]) to get the test data about
the resource requirements, e.g., CPU and memory, of containers. Fig-
ure 3.9 shows the distributions of CPU and memory requirements in the
AuverGrid trace [189]. To generate the containers’ resource requirements,
we select the first 400,000 lines of the trace from the original datasets. Then
we filtered the trace to exclude the containers that require more resources
than the largest VM type. The last step randomly samples resource re-
quirement and use them as the test data of containers.

0.
0e
+0
0

5.
0e
+0
4

1.
0e
+0
5

1.
5e
+0
5

2.
0e
+0
5

0 200 400 600
capacity

c
o
u
n
t

cpu mem

Figure 3.9: Resource usage frequency in the AuverGrid dataset [189]

For the settings of PMs and VMs, we assume homogeneous PMs which
have 8 cores and the total capacity is [13200 MHz, 16000 MB]. The maxi-
mum energy consumption for the PM is set to 540 KWh. This setting has
been used in [133]. We design two sets of VM types (see Table 3.4), real-
world VM types (20 types from Amazon EC2), and a synthetic set of VM

3.7. EXPERIMENTS AND RESULTS 89

types (10 types). The real-world VM types are proportional whereases the
synthetic ones are random. The CPU and memory of synthetic VM types
are sampled from [0, 3300 MHz] and [0, 4000 MB], representing the capac-
ity of one core.

Table 3.3: Test instances

instance VM types number of containers

1 synthetic 200
2 synthetic 500
3 synthetic 1000
4 synthetic 1500
5 real-world 200
6 real-world 500
7 real-world 1000
8 real-world 1500

Table 3.4: VM types

real world VM types

VM types [CPU, Memory] VM types [CPU, Memory] VM types [CPU, Memory] VM types [CPU, Memory]

1 [206.25, 250] 6 [412.5, 1000] 11 [825, 2000] 16 [825, 1875]
2 [412.5, 500] 7 [825, 4000] 12 [1650, 250] 17 [1650, 3750]
3 [825, 1000] 8 [206.25, 500] 13 [1650, 500] 18 [412.5, 1312.5]
4 [1650, 2000] 9 [412.5, 2000] 14 [1650, 1000] 19 [825, 2625]
5 [412.5, 250] 10 [412.5, 4000] 15 [412.5, 937.5] 20 [2475, 2625]

synthetic VM types

1 [719, 2005] 4 [1135, 3542] 7 [1363, 2634] 10 [2100, 3013]
2 [917, 951] 5 [1231, 1989] 8 [1648, 1538]
3 [1032, 1009] 6 [1311, 3238] 9 [2047, 1181]

3.7.2 Benchmark Algorithms

FF&BF/FF [133, 245] uses three heuristics to allocate containers. It uses
First-Fit heuristics to allocate both containers and VMs and applies a

90 CHAPTER 3. GA-BASED APPROACHES FOR OFF-LINE RAC

Best-Fit (BF) for selecting VM types. Whenever no VM instance is
available to host a container, the BF selects a type of VM which has just
enough resource to host the container. Explicitly, BF selects the VM type
which has the minimum normalized free resources according to Eq.3.15.

Free resources = min{
Ωcpu(τj)− ζcpu(ci)− πcpu(τj)

Ωcpu(pk)
and

Ωmem(τj)− ζmem(ci)− πmem(τj)

Ωmem(pk)
} (3.15)

3.7.3 Parameter Settings

The parameter setting of SGA, DGA-NF, DGA-FF, and GGA-RAC are listed
in Table 3.5. In addition to the operators that we proposed, we apply
Elitism with size 5 and tournament selection with size 2 on all approaches.
For all approaches, we set the population size as 100. DGA and GGA-RAC
share the same crossover rate of 70% and mutation rate of 10%. SGA com-
pletely relies on the mutation to search. Hence, we set a high mutation
rate of 80%.

These parameters are commonly used in other works. In addition, we
have tested the parameters empiricially by trying different combination of
values. The selected parameter values achieved the best results among the
examined combinations

Table 3.5: Parameter Settings

SGA DGA-NF/FF GGA-RAC

crossover rate - 70% 70%
mutation rate 80% 10% 10%
elitism size 5 5 5
population 100 100 100
tournament size 2 2 2

All algorithms were implemented in Java version 8, and the experi-
ments were conducted on i7-4790 3.6 GHz with 8 GB of RAM running

3.7. EXPERIMENTS AND RESULTS 91

Linux Arch 4.14.15. We ran each GA-based algorithm 30 times and ap-
plied the Wilcoxon rank-sum to test the statistic significance.

3.7.4 Results

This section illustrates the performance comparison among the five algo-
rithms in terms of energy consumption. Then, we explain the drawbacks
of the compared algorithms by comparing the convergence and the num-
ber of VM instances in the allocation.

The energy consumption of five algorithms are shown in Figure 3.10
and in Table 3.6. For each test instance, all algorithms are run with dif-
ferent numbers of generations. We show each algorithm that runs the
same amount of time to ensure the comparison is fair. The benchmark
algorithm FF&BF/FF has an overall poor performance in all test instances.
DGA-NF also performs poorly and even worse than FF&BF/FF in test in-
stances 3 and 4 of synthetic VM types. SGA has similar or better perfor-
mance than FF&BF/FF and DGA-NF. DGA-FF and GGA-RAC are much
better than other approaches. DGA-FF works well in small test instances
(200 and 500 containers), while GGA-RAC shows its advantages in larger
test instances (1000 and 1500 containers). In the following, we analyze the
behaviors of these algorithms by showing detailed statistics.

0

5000

10000

 200 500 1000 1500
Container size

E
n

e
rg

y
 (

k
w

h
)

FF&BF/FF SGA DGA−NF DGA−FF GGA−RAC

(a) Synthetic VM types

0

5000

10000

15000

 200 500 1000 1500
Container size

E
n

e
rg

y
 (

k
w

h
)

FF&BF/FF SGA DGA−NF DGA−FF GGA−RAC

(b) Real-world VM types

Figure 3.10: Comparison of the average energy consumption

92 CHAPTER 3. GA-BASED APPROACHES FOR OFF-LINE RAC

Table 3.6: Energy consumption of all test instances obtained by five algo-
rithms.

synthetic VM types (test instances 1 to 4)
container size 200 500 1000 1500
computation time 2.0s 4.5s 12.0s 18.0s

FF&BF/FF 1708.0 ± 0 4244.2 ± 0 8259.0 ± 0 12176 ± 0
SGA 1706.3 ± 0.6 3864.6 ± 1.4 8255.3 ± 2.6 12197.3 ± 58.4
DGA-NF 1703.1 ± 0.4 3861.1 ± 2.6 8610.8 ± 111.9 12662.2 ± 131.4
DGA-FF 1701.5 ± 0.2 3851.2 ± 1.2 7870.6 ± 3.7 11803.4 ± 4.2
GGA-RAC 1702.5 ± 0.5 3852.1 ± 1.1 7849.5 ± 3.3 11700.3 ± 136.4

real-world VM types (test instances 5 to 8)
container size 200 500 1000 1500
computation time 2.0s 5.0s 10.0s 12.0s

FF&;BF/FF 2093.2 ± 0 4635.0 ± 0 9808.2 ± 0 14500.4 ± 0
SGA 1711.3 ± 2.0 4221.2 ± 108.9 8669.5 ± 58.1 13024.5 ± 116.2
DGA-NF 1701.6 ± 0.9 4234.1 ± 2.4 9037.3 ± 84.7 13693.7 ± 124.0
DGA-FF 1699.1 ± 0.5 3848.8 ± 1.4 8246.9 ± 3.9 12220.4 ± 95.4
GGA-RAC 1699.2 ± 0.4 3845.4 ± 1.9 8064.2 ± 183.1 12127.8 ± 4.9

We show the convergence curves of proposed algorithms in terms of
computation time in Figure 3.11 and Figure 3.12. The benchmark algo-
rithm FF&BF/FF is not shown here because it performs much worse than
the other algorithms. The first noticeable fact is that SGA (red) shows a flat
trend, meaning the population hardly evolve during the search procedure.
DGA-FF (green) converges in a short amount of time, and it performs well
in small instances (1, 2, 5, 6). DGA-NF always starts at the worst solution
with the highest energy consumption. However, the poor searchability
of DGA-NF hinders it from finding good solutions. GGA-RAC has a slow
convergence in all test instances. However, GGA-RAC performs the best in
large instances (3, 4, 7, 8) and has similar performance in small instances
as well. Overall, GGA-RAC shows strong searchability.

3.7. EXPERIMENTS AND RESULTS 93

-RAC

(a) Test instance 1

-RAC

(b) Test instance 2

-RAC

(c) Test instance 3

-RAC

(d) Test instance 4

Figure 3.11: Comparison of the convergence among SGA, DGA-NF, DGA-
FF, and GGA-RAC of test instance 1 to 4

The poor searchability of SGA is due to two reasons. The first reason is
that SGA does not have a crossover operator. Crossover operator does not
only combines the “good” parts from parent individuals but also generates
a solution that “far away” from the original solution in the search space.
Without crossover, the exploration of SGA is dramatically decreased. The
second reason is that the SGA completely relies on the mutation operator
to search. The mutation operator tends to allocate the container to exist-
ing VM instances or creates the first VM instance that can host the con-
tainer. This heuristic is both greedy and highly dependent on the order
of the predefined list of VM types. Since containers are generally small
(see Figure 3.9), an individual of SGA is largely filled with the same type

94 CHAPTER 3. GA-BASED APPROACHES FOR OFF-LINE RAC

-RAC

(a) Test instance 5

-RAC

(b) Test instance 6

-RAC

(c) Test instance 7

-RAC

(d) Test instance 8

Figure 3.12: Comparison of the convergence among SGA, DGA-NF, DGA-
FF, and GGA-RAC of test instance 5 to 8

of VM instances (type 1 from the Table 3.4). Hence, without introducing
diverse VM types, switching containers from one VM instance to another
can hardly improve the quality of a solution. This is because a group of
the same type of VM instances cannot form different combinations of PM
instances.

The major defect of DGA-NF is the decoding process. Compared to
FF, NF closes a bin (such as VM and PM instance) whenever the current
item (such as container and VM) cannot be allocated to it while FF never
closes a bin so that the future items can be still put into the unfilled bins. It
means that NF cannot guarantee a VM instance to be filled with containers.
Consequently, we may observe that DGA-NF starts from a bad allocation

3.7. EXPERIMENTS AND RESULTS 95

and takes a long time to converge. Replacing NF with FF immediately
improves the performance. However, the DGA-FF is still inferior to the
GGA-RAC approach in large test instances.

20

25

30

FF&BF/FF SGA DGA−NF DGA−FF GGA−RAC
Algorithm

N
u

m
b

e
r

o
f

V
M

s

(a) Instance 1

40

50

60

70

FF&BF/FF SGA DGA−NF DGA−FF GGA−RAC
Algorithm

N
u

m
b

e
r

o
f

V
M

s

(b) Instance 2

100

120

140

160

FF&BF/FF SGA DGA−NF DGA−FF GGA−RAC
Algorithm

N
u

m
b

e
r

o
f

V
M

s

(c) Instance 3

100

120

140

160

FF&BF/FF SGA DGA−NF DGA−FF GGA−RAC
Algorithm

N
u

m
b

e
r

o
f

V
M

s

(d) Instance 4

Figure 3.13: Number of VM instances in test instances 1 to 4

The number of VM instances used by all five algorithms are compared
in Figure 3.13 and Figure 3.14. The FF&BF/FF always uses the largest num-
ber of VM instances. This is because the algorithm uses BF to create new
VM instances where BF always create a VM instance with the smallest VM
type that can accommodate a container. Hence, BF creates a large number
of small VM instances. These small VM instances increase the segmenta-
tion of PM instances and also increase the overheads. Hence, FF&BF/FF
must use more PM instances. For the most test instances (except instance
2), GGA-RAC uses the fewest number of VM instances. That means GGA-

96 CHAPTER 3. GA-BASED APPROACHES FOR OFF-LINE RAC

25

50

75

FF&BF/FF SGA DGA−NF DGA−FF GGA−RAC
Algorithm

N
u

m
b

e
r

o
f

V
M

s

(a) Instance 5

50

100

150

200

FF&BF/FF SGA DGA−NF DGA−FF GGA−RAC
Algorithm

N
u

m
b

e
r

o
f

V
M

s

(b) Instance 6

100

200

300

400

FF&BF/FF SGA DGA−NF DGA−FF GGA−RAC
Algorithm

N
u

m
b

e
r

o
f

V
M

s

(c) Instance 7

200

300

400

500

600

700

FF&BF/FF SGA DGA−NF DGA−FF GGA−RAC
Algorithm

N
u

m
b

e
r

o
f

V
M

s

(d) Instance 8

Figure 3.14: Number of VM instances in test instances 5 to 8

RAC is good at selecting large VM instances and form good combinations
of VM instances to fill PMs. With fewer VM instances, fewer resources
overheads are generated, and segmentation of PM instances is also miti-
gated.

Lastly, we compare the computation time of all five algorithms with the
same number of solution evaluations (e.g., 100 generations) in Figure 3.15.
As we may clearly see that SGA uses much longer than other algorithms
due to its high complexity of its mutation operator. The GGA-RAC uses
much less time than SGA but GGA-RAC is still significantly slower than
two DGA variations.

Overall, in the category of vector-based GA, SGA has poor searchabil-
ity and long computation time compared with DGA. Based on the SGA,

3.8. DISCUSSIONS ON REPRESENTATIONS 97

0

200

400

 200 500 1000 1500
Container size

T
im

e
 (

s
)

FF&BF/FF SGA DGA−NF DGA−FF GGA−RAC

(a) Test instances with ten VM types

0

100

200

300

 200 500 1000 1500
Container size

T
im

e
 (

s
)

FF&BF/FF SGA DGA−NF DGA−FF GGA−RAC

(b) Test instances with twenty VM types

Figure 3.15: Comparison of computation time of all algorithms.

we further develop two variations of DGA, DGA-NF and DGA-FF. These
two DGA variations perform dramatically differently. DGA-NF performs
poorly and even worse than SGA. The major reason is that its NF decod-
ing process always closes VM instances without filling them. On the other
hand, DGA-FF achieves the second-best performance and converges fast.
To compare with vector-based GA, we further develop a GA with group-
based representation, the GGA-RAC approach. GGA-RAC has the best
overall performance. However, due to the high computation complexity
in its operators GGA-RAC uses more time than DGA approaches.

3.8 Discussions on Representations

This section provides discussions on the representations that we devel-
oped in this chapter.

3.8.1 Single-chromosome Representation

The design of single-chromosome representation is a hybrid of direct and
indirect representations. For the containers–VMs level, it is a direct rep-
resentation because the chromosome specifies the allocation of containers,

98 CHAPTER 3. GA-BASED APPROACHES FOR OFF-LINE RAC

including the VM indexes and types. For the VMs–PMs level, it is an indi-
rect representation because of the NF decoding.

This hybrid representation has more disadvantages than advantages.
The first disadvantage is that the indexes of VM instances need to be main-
tained after any mutation occurrence. It is important to keep the indexes
of VM instances as a continuous sequence because it facilitates the muta-
tion operator to reallocate containers to different VM instances. However,
the cost of this maintenance is high in terms of computation complexity.

The second disadvantage is the NF decoding process. That is, VM in-
stances are sequentially packed into PM instances. Although with NF,
the decoded solutions are always feasible, meaning that a solution does
not contain any violation, the decoding method is far from good. NF
closes a PM instance once a VM instance cannot be allocated to the PM. It
means that, although the PM instance could still accommodate other VM
instances, it will never be revisited. Hence, the decoding method leads to
low utilized PM instances.

The third disadvantage is that it is difficult to include a crossover op-
erator for this representation. As mentioned in Section 20, the crossover
operator is hard to preserve the information in the parents.

3.8.2 Dual-chromosome Representation

The dual-chromosome representation improves the single-chromosome
representation from two aspects. Firstly, unlike the fixed sequence of con-
tainers, the dual-chromosome representation uses a permutation of con-
tainer indexes. Thus, the containers can be arbitrarily combined when dif-
ferent permutation is generated. Hence, the dual-chromosome represen-
tation avoids the indexing of VM instances. Secondly, various crossover
techniques can be used in this representation.

There are limitations of the dual-chromosome representation as well.
The first one is the fixed length of the VM allocation vector. During the de-

3.8. DISCUSSIONS ON REPRESENTATIONS 99

coding process, after allocating all containers to VM instances, the unused
VM instances in the VM allocation vector are ignored. Since the actual
number of VM instances is much smaller than the number of containers,
the majority of the VM allocation vector is not used (the ignored part of
the vector). This causes a waste of computational resources. When a large
number of individuals are generated, memories are wasted. Computing
power is also wasted when applying genetic operators on the unused parts
of VM allocation vectors. The second disadvantage is that the same solu-
tion can have different representations. For instance, Figure 3.16 shows
two individuals with different representations. However, they can be de-
coded into the same solution with NF. The diversity of a population is de-
creased because of this disadvantage. The third disadvantage is that it is
difficult to embed heuristics in the operators to accelerate the search. This
is because the dual-chromosome representation needs a decoding process
to interpret an individual to a solution. The decoding process follows a
sequential order. Hence, any modification on an index leads to a major
change in the solution.

3.8.3 Group Representation

Since the group representation can be directly evaluated without using
any decoding process, the group representation mainly has two advan-
tages over the vector-based representation. Firstly, the effectiveness of the
decoding process can be neglected. Secondly, heuristics can be embedded
in the genetic operators to improve the quality of the solution intention-
ally. Because GGA-RAC applies directed search instead of fully relying
on stochastic search, GGA-RAC could find better solutions. For example,
we switch two containers’ allocation in different VM instances without
changing the structure of the entire solution. Therefore, the disadvantage
of indirect representation in DGA is avoided.

The GGA-RAC has a higher computational cost than the DGA due to

100 CHAPTER 3. GA-BASED APPROACHES FOR OFF-LINE RAC

Figure 3.16: An example of two individuals with different representations
being decoded to the same solution.

two reasons. The first reason is that the group representation is variable-
length. It means that the number of PM instances is different for indi-
viduals. Hence, the representation is implemented with a linked list. On
the contrary, the dual-chromosome representation has fixed-length vec-
tors, which can be implemented as an array. As the computational cost
for a linked list is inherently higher than an array, the GGA is also more
computationally expensive than DGA. The second reason is that the com-
plexities of the operators from GGA-RAC are higher than the operators
from DGA (see Table 3.2).

Overall, both vector-based and group-based representations have pros
and cons. Compared with GGA-RAC, DGA is faster. DGA and SGA can
also easily apply existing genetic operators. GGA-RAC allows heuristics
to be embedded into genetic operators to achieve better performance.

3.9. CHAPTER SUMMARY 101

3.9 Chapter Summary

In summary, this chapter investigates two representations for applying EC
algorithms to solve off-line RAC problem. In order to achieve this goal, we
develop GA-based algorithms with two representations, vector-based and
group-based representations.

To achieve this goal, four contributions were accomplished. (1) A for-
mal model of RAC problem was proposed, two-level of allocation, vari-
ables, constraints are formally defined. (2) We develop two vector-based
GAs, SGA and DGA. (3) We develop a group-based GA, GGA-RAC. The
operators that we proposed address the two-level allocation problem. (4)
Experiments were carried out to evaluate the performance of these ap-
proaches. The proposed algorithms were compared to a popular human-
designed rule.

The analysis of these approaches shows that meta-heuristics with dif-
ferent representations have different performances. From the perspective
of algorithm design, the vector-based GAs are simple and straightforward
because existing search mechanics, e.g., various crossover operators, can
be directly applied to the representation. However, it is difficult to em-
bed domain knowledge and heuristics into the operators because of the
decoding process. In terms of the performance of vector-based GAs, they
highly depend on the decoding process. DGA-FF is much effective DGA-
NF. In terms of computation time, vector-based GAs are relatively faster
without repeatedly repairing process. Hence, DGA variations are much
faster than SGA. The group-based representation, on the other hand, uti-
lizes the domain knowledge well and shows good searchability, especially
for large test instances. In terms of computation time, GGA-RAC is slower
than DGA.

For algorithm designers and cloud providers, this chapter provides some
important insights into two representations and GA-based algorithms that
can be directly applied to solving the RAC problem. For algorithm design-

102 CHAPTER 3. GA-BASED APPROACHES FOR OFF-LINE RAC

ers, vector-based algorithms can be designed quickly since the existing op-
erators can be applied. The group-based representation can achieve better
performance.

Next chapter will discuss the on-line allocation scenario of RAC. Dif-
ferent from the off-line scenario, the on-line scenario allocates containers
on the fly with rule-based approaches. Hence, the quality of the allocation
rules is critical in this problem.

Chapter 4

Genetic Programming for On-line
Resource Allocation in
Container-based Clouds (RAC)

4.1 Introduction

The purpose of the research presented in this chapter is to propose hyper-
heuristic approaches for the on-line resource allocation in container-based
clouds (RAC) to minimize accumulated energy consumption.

Current works on the on-line RAC problem mostly employ rule-based
approaches [166] to achieve fast and acceptable solutions. This is because
the on-line RAC problem requires a real-time solution. Rule-based ap-
proaches are reactive approaches that respond to arrivals of containers
and the needs of container placement during the container migration pro-
cess. Rule-based approaches are effective for solving RAC problem be-
cause they consider some features that are related to resource allocation at
the time of container arrivals. Other approaches, such as meta-heuristics-
based ones [85] are too slow for the on-line problem.

Current rule-based works have three major drawbacks. Firstly, most
research works treat resource allocation in the container-based cloud as a

103

104 CHAPTER 4. GP-BASED APPROACHES FOR ON-LINE RAC

single-level problem [83] which only considers the allocation of contain-
ers directly to PM instances but neglect the container–VM level. Secondly,
the current rules only consider simple features (e.g., residual resources of
Physical Machines (PMs)) to make decisions. Since they do not consider
the VM types or the features of workloads, these rules cannot adapt to
various workload patterns of applications as well as different sets of Vir-
tual Machine (VM) types. In constrast, we design a VM type selection
mechanism and consider the features of workload pattern. Therefore, the
evolved rules are adaptive to workload patterns and VM types. The work-
load patterns of applications have been proven a critical factor to the re-
source allocation problems [126]. Therefore, the rules that ignore the pat-
terns and VM types will lead to poor performance. The third drawback of
the AnyFit-based algorithms [51,98] is that it always starts from allocating
containers to existing VM instances, while allocating to new VM instances
with specific type may lead to lower overall energy consumption. Hence,
it limits the decision and its performance.

Hence, this chapter addresses the above mentioned three drawbacks
by proposing a hyper-heuristic approach for two-level RAC problem. The
hyper-heuristic approach can automatically generate rules with compli-
cated structures (e.g. non-linear relationship between the features and the
target VMs shown in Section 4.8) using features from the cloud environ-
ment. Therefore, the generated rules that can adapt to the environment. In
addition, hyper-heuristic approaches can also generate non-AnyFit-based
rules such as reservation rules [51] that can create new VM instances for
containers even when there are available VM instances.

Genetic Programming Hyper-Heuristics (GPHH) and Cooperative Co-
evolution GP (CCGP)(see Chapter 2.2.2) are both evolutionary computa-
tion hyper-heuristic algorithms which have been successfully applied in
a variety of problems. In Job Shop Scheduling (JSS) problems, GPHH
has been widely used for evolving dispatching rules for various of JSS
problems such as multi-objective JSS [152] the multi-task JSS [161], and

4.1. INTRODUCTION 105

the JSS with machine breakdown [160]. The generated rules outperform
neural network techniques. GPHH has been applied to evolve rules for
variations of bin packing problem [17, 34, 35]. Furthermore, the automatic
learning procedure greatly reduces the complexity of the heuristic-design
process. CCGP has been used for generating multiple cooperative heuris-
tics. In [239], CCGP generates sequencing and routing rules for Dynamic
Flexible JSS (DFJSS) [243,244]. Similarly, Zhou et al. [250] employ CCGP to
evolve machine assignment and job sequencing rules for a multi-objective
DFJSS problem. CCGP is suitable for solving the RAC problem because it
can design multiple cooperative rules can adapt to the changing workload
patterns.

Hence, in order to achieve the goal of proposing hyper-heuristic ap-
proaches for the on-line RAC problem, we need to accomplish four objec-
tives. Firstly, we will model the on-line RAC problem. The off-line model
that we proposed in the previous chapter (see Chapter 3.3) is not suitable
for an on-line problem. As previous mentioned (see Chapter 2.3.1), the
existing on-line models for RAC problem adopt the same model as the
off-line problems [133]. The evaluation of the off-line problem is inappro-
priate to on-line algorithms. This is because the energy consumption of
a data center is determined by the overall energy consumption of a given
period [55]. Hence, the evaluation for the allocation algorithms is mislead-
ing.

Secondly, we will propose a GPHH-RAC that combines GPHH and
human-designed rules for RAC problem. It is difficult to evolve both lev-
els of rules in the first place. Therefore, we first evolve one-level allocation
rules and combine them with human-designed rules on the other level.
Then, we propose a CCGP-RAC method to solve the two-level problem.
In this objective, we will use GPHH to evolve reservation-based rules for
allocating containers to VM instances.

Thirdly, based on the GPHH-RAC approach, we will propose a CCGP-
RAC approach that evolves two levels of allocation rules. Finally, we will

106 CHAPTER 4. GP-BASED APPROACHES FOR ON-LINE RAC

conduct experiments on these proposed approaches and compare them
with the state-of-the-art approaches.

1. To propose an on-line model for the problem;

2. To propose a GPHH-RAC approach combining GPHH generated rules
with human-designed rules for the two-level RAC problem; The GPHH-
RAC approach follows a reservation framework instead of the Any-
Fit framework;

3. To propose a CCGP approach for evolving the allocation rules for
two levels RAC simultaneously;

4. To evaluate CCGP approach by comparing it with human-designed
rules and the GPHH-RAC approach on benchmark datasets;

4.2 Chapter Organization

The remainder of this chapter is organized as follows. In Section 4.3, we
present a formal model for the on-line RAC model. Section 4.4 illustrates
the container allocation process and the assumptions that we considered.
Section 4.5 describes our GPHH-RAC approach for the proposed on-line
RAC problem. Section 4.6 introduces the proposed CCGP approach. Sec-
tion 4.7 outlines the experimental design and discusses the experimental
results for comparisons between different approaches. Section 4.8 pro-
vides a detailed analysis of both human-design rules and evolved rules.
Section 4.9 summarizes this chapter.

4.3 On-line RAC Model

The on-line RAC problem allocates containers at the time when they ar-
rive at a cloud, which is different from off-line RAC problem that allocates
a batch of containers. The on-line RAC model is developed based on the

4.4. THE ON-LINE RAC PROCESS AND ASSUMPTIONS 107

model proposed in Chapter 3.3. The major difference between the on-line
RAC model and the off-line RAC models is the method of evaluation. In
the on-line RAC problem, the evaluation calculates the accumulated en-
ergy consumption over a period of time [55], while in the off-line problem,
the energy consumption is calculated at the time point of evaluation. We
have discussed the reasons that we evaluate the problem with accumu-
lated energy in Chapter 2.

The accumulated energy consumption over the allocation period is cal-
culated as follows.

E =
n∑
t=1

K∑
k=1

Etk, (4.1)

whereEtk is the energy consumption of the kth PM instance (K is the num-
ber of PM used) at time t which is defined in Chapter 3.3. The variables,
constraints have been described in Section 3.3; thus, they are not repeated.

4.4 The On-line RAC Process and Assumptions

This section describes the on-line RAC process (see the flowchart in Fig-
ure 4.1) and the assumptions that we considered in our problem. In the
beginning, a data center is initialized with the initialization data. Then, it
starts to allocate containers one by one. For each container, it first filters
the incompatible VM instances out. The incompatible VM instances are
the VM instances that install different OSs with the current container re-
quires. The vmSelectionCreation is a function that makes two decisions, VM
selection and VM creation, to either selects an existing VM instance or cre-
ate a new VM instance. Later on, after allocating the container to the VM
instance, if the VM instance is new, similar to vmSelectionCreation, pmSelec-
tionCreation selects an existing PM instance or create a new PM instance.
After each allocation of a container, the accumulated energy is calculated
and the final output for the on-line RAC process.

The on-line RAC process (See Algorithm 9) describes the details about

108 CHAPTER 4. GP-BASED APPROACHES FOR ON-LINE RAC

Figure 4.1: The flowchart of on-line RAC process.

the on-line container allocation process. The process focuses on the allo-
cation of containers and VM instances. The input of the process includes
five components, i.e. an initialized data center, a set of containers C which
are unavailable at the beginning, VM selection rule sr, VM creation rule cr,
and PM selection rule pr. The output is the allocation of these containers,
and we use the accumulated energy consumption of the data center AE
over a given period to evaluate the allocation.

The allocation process starts with an initialized data center. The initial-
ized data center runs a number of PM instances, hosting a number of VM
instances and containers. A set of containers C arrives (from line 2). The
containers are allocated one by one. To allocate a container, first, all the
VM instances that installed different OSs to the one required by the con-

4.4. THE ON-LINE RAC PROCESS AND ASSUMPTIONS 109

Algorithm 9: The on-line RAC Process
Input : An initialized data center, A list of VM types τ , A set of

containers C, VM selection rule sr, VM creation rule cr,
PM selection rule pr

Output: Allocation of container, accumulated energy
consumption of the data center AE

// The initialized data center includes a list of

VM instances and a list of PM instances.

1 AE = 0;
2 for each container in C do
3 candidate VM instances← Filter(a list of VM instances,

OS(container));
4 vm← vmSelectionCreation(candidate VMs, container, τ , sr,

cr);
5 allocate(container, vm);
6 if vm is new then
7 add(vm, the list of VM instances);
8 pm← pmSelection(a list of PMs, vm, pr);
9 if pm is null then

10 pm← pmCreation();
11 add(pm, the list of PM instances);

12 end
13 allocate(vm, pm);

14 end
15 AE += calculateEnergy(the list of PM instances);

16 end
17 return allocation and AE;

tainer are filtered in line 3. The VM selection rule sr and VM creation rule cr
are used to select a VM instance from the candidate VM instances or select
a type of VM to create a new VM instance in line 4. Then, the container is

110 CHAPTER 4. GP-BASED APPROACHES FOR ON-LINE RAC

allocated to the VM instance in line 5. If a VM instance is newly created,
the OS of the new VM instance is set to the same as the one required by
the current container. Then, the PM selection rule pr is used to select a PM
instance among the existing PM instances in line 8. If there is no available
PM instance, the PM creation rule creates a new PM instance to host the
new VM instance in line 10. The allocation process outputs the allocation
and the accumulated energy consumption AE as introduced in Eq. (4.1).

Algorithm 10 shows the procedure of VM selection and VM creation. For
the VM selection, we show a Best Fit algorithm which iterates all the VM
instances and evaluates them with sr. The VM instance with the lowest
value is selected. If there is no available VM instance, the VM creation rule
selects a VM type from the VM type list τ . Finally, an existing VM in-
stance or a new VM instance is returned. Notice that, since the procedure
shows the Best-Fit algorithm for VM selection, the procedure is different
from other selection algorithms such as reservation-based selection algo-
rithms.

4.5 GPHH Approach for RAC (GPHH-RAC)

This section describes our GPHH-RAC approach to the on-line RAC prob-
lem. The purpose of developing GPHH-RAC is to investigate the effec-
tiveness of applying hyper-heuristics on the RAC problem. Therefore,
we first apply hyper-heuristic on one-level (containers to VMs) and use
human-design rule on the other level (VMs to PMs). As our preliminary
work [204] shows, GPHH can be used to generate rules for the one-level
allocation problem. Therefore, we develop a GPHH-RAC approach that
combines a learning algorithm GPHH and a human-designed rule. The
GPHH is used to learn and generate the allocation rules for allocating
containers to VM instances, and the human-designed rule is used to al-
locate VM instances to PM instances. In order to create sophisticated
allocation rules, we first design a training framework for the GPHH to

4.5. GPHH-RAC 111

Algorithm 10: Procedure of vmSelectionCreation
Input : A list of candidate VM instances, A list of VM types τ , A

container, VM selection rule sr, VM creation rule cr,
Output: vm

1 bestScore← null;
2 bestVM← null;
3 for each vmi in the candidate VM instances do
4 score← sr(vmi, container);
5 if bestScore ≥ score then
6 bestScore← score;
7 bestVM← i

8 end

9 end
10 if bestScore is null then
11 vm← create a VM instance with the type of cr(τ , container);
12 end
13 else
14 vm← vmbestV M

15 end
16 return vm;

generate reservation-based rules. Reservation-based rules can create a
new VM instance even when there are available VM instances to pro-
vide more chances of optimizing overall energy consumption. That means
reservation-based rules have a larger search space than the AnyFit-based
rules. Therefore, reservation-based rules are more likely to find better so-
lutions than AnyFit-based rules. Additionally, we design a set of novel
problem-specific terminals for VM creation and selection. These terminals
are used as components of the generated rules. In the following subsec-
tions, we first provide an overview of the GPHH framework. Then, we
describe the representation and terminal set of GPHH, followed by the

112 CHAPTER 4. GP-BASED APPROACHES FOR ON-LINE RAC

fitness function and the GPHH algorithm.

4.5.1 The GPHH-RAC Approach Overview

We propose a GPHH-RAC approach that uses GPHH to automatically gen-
erate a rule that can handle both VM selection and VM creation simultane-
ously, and uses a human-designed rule for PM selection. In our approach,
we combine the VM selection and VM creation decisions and use a single
VM selection and creation rule to make both decisions. The VM selection and
creation rule is based on a reservation framework [50].

To generate rules to solve the on-line RAC problem, we use GPHH to
search for the rules which adapt to the training data that covers various
application workload patterns and VM types. Although the training pro-
cess may take a long computation time, automatic rule generation takes
less effort than manually designing rules. It is efficient to apply the gener-
ated rules to solve the on-line RAC problem.

The overview of the training process of GPHH-RAC is shown in Figure
4.2. The GPHH-RAC initializes a population of VM selection and creation
rules randomly. Then, the rules are evolved by the genetic (e.g., crossover
and mutation) operators. A set of training instances is used for fitness
evaluation. To evaluate a rule, first, the rule is combined with the pre-
specified human-designed rule. Then, the pair of rules are applied to each
training instance to generate an allocation solution.

By iteratively evaluating and modifying the rules, the population grad-
ually searches in the space of rules. The performance keeps improving
because only the best rule is kept to the next generation. This process of
evaluation and modification continues until a predefined number of iter-
ations is reached. Finally, the GPHH-RAC outputs the rule with the best
fitness value in the training process. Then, the generated VM selection and
creation rule and the human-designed rule will be used to generate the
allocation solution for any (unseen) RAC problem instance. Next section

4.5. GPHH-RAC 113

Figure 4.2: The overview of the training process of GPHH-RAC.

provides a detailed explanation of the training procedure.

The training procedure of GPHH-RAC is described in Algorithm 11. It
starts with the initialization of a population of Pvr. The population con-
tains N randomly generated VM creation and selection rules. We apply the
ramped Half-and-Half [109] in constructing trees to ensure diversity in the
population.

The iteration of evolution begins at line 5 and ends at line 18. From
line 6 to line 12, each individual in the population is evaluated with a
set of training instances. We have introduced the allocation process in
Section 4.4, Algorithm 9. Notice that, we evolve a single VM creation
and selection rule instead of two separate rules, i.e. VM selection and VM
creation rules. Therefore, line 4 in Algorithm 9 is changed from vm ←
vmSelectionCreation(candidateV Ms, container, τ, sr, cr) to vm ←
vmSelectionCreation(container, τ,pvr

i). The allocation in line 8 returns the

114 CHAPTER 4. GP-BASED APPROACHES FOR ON-LINE RAC

accumulated energy consumption of AE. Then, we calculate the fitness
value (in line 11) by Eq.4.2 (see Section 4.5.3). A training instance sgen con-
tains the information of containers to be allocated and a data center with
an initialization. We switch to a different training instance in each genera-
tion to ensure the generalization of the rules.

Algorithm 11: GPHH-RAC
Input : A set of training instance S, A terminal set and a function

set, A human-designed First Fit rule FF ,
Output: The best VM selection and creation rule pvr

1 Initialize a population of rules Pvr;
2 Pvr ← {pvr1 , p

vr
2 , · · · , pvrN };

3 gen← 0;
4 AE ← 0;
5 while maxGeneration is not reached do
6 for each rule pvri in Pvr do
7 for a training instance sgen in the training set do
8 AE ← apply pvri and FF on the training instance sgen

(see Algorithm 9);

9 end

10 pvri ← ÃE
N

11 end
12 TournamentSelection;
13 Crossover;
14 Mutation;
15 Reproduction;
16 gen← gen+ 1

17 end
18 return the best rule pvr;

When all rules have been evaluated, we apply the tournament selection

4.5. GPHH-RAC 115

and genetic operators on the population. The tournament selection [109]
guides the evolutionary process. The rules with higher fitness values have
larger probabilities to be selected. Then, two genetic operators, crossover
and mutation, are applied to the selected rules. The reproduction copies a
number of top individuals to the next generation. Then, the next iteration
starts.

4.5.2 Rule Representation

Figure 4.3: The tree-based representation of a rule.

We use trees to represent rules (see Figure. 4.3). One benefit of using
trees is that they can be easily interpreted as a prefix notation [109]. In
addition, since the trees can grow, they can represent a complex relation-
ship. Furthermore, trees are easy to be manipulated, such as by pruning
and re-constructing. Therefore, we can easily evolve them to search in the
rule space.

The nodes on Figure. 4.3 are drawn from the terminal set (the T nodes)
and the function set (the F nodes). To generate sophisticated rules, we
consider many features of the on-line RAC problem and use them as a
terminal set of GP trees. Table 4.1 describes the terminal and function sets
that we used in GPHH. The design of the terminals follows the research
[34] on 2D bin packing.

116 CHAPTER 4. GP-BASED APPROACHES FOR ON-LINE RAC

Table 4.1: Terminal and Function sets

Symbol Description

Attributes for Container Allocation

leftVmMem remaining memory of a VM instance
leftVmCpu remaining CPU of a VM instance
coCpu container CPU
coMem container memory
vmMemOverhead memory overhead of a VM instance
vmCpuOverhead CPU overhead of a VM instance

Function set + , - , × , protected %

Figure 4.4: Illustration of the features used in the terminal set

We design six features for the terminal set, and they are shown in Fig-
ure 4.4. These features are inspired by Burke’s work [35]. leftVmMem and
leftVMCpu are the remaining resources of a VM instance after the con-
tainer is allocated in. coCpu and coMem are the resource requirements of
the container. This work introduces two extra features. vmMemOverhead
and vmCpuOverhead are the amount of CPU and memory overheads when
a new VM instance is created. If the evolved rule selects an existing VM
instance, then the overhead is 0. For the function set, we use four basic
arithmetic operators to construct rules (the protected division returns a

4.5. GPHH-RAC 117

value of 1 when divided by 0).

4.5.3 Fitness Evaluation

As Section 4.4 discussed, when applying AnyFit-based algorithms and
reservation-based algorithms, the algorithms for VM selection and VM cre-
ation are different.

Instead of using two rules, VM selection sr and VM creation cr, to al-
locate containers to VM instances, GPHH evolves reservation-based rules
vr that have the above functionalities. Algorithm 12 shows the procedure
of how to use reservation-based rules. In the beginning, lists of candidate
VM instances and VM types are provided. The major difference is in line
3, where we temporarily append empty VM instances (one for each VM
type) into the candidate VM instances. Consequently, the VM selection and
creation rule vr evaluates the newly created VM instances as well as the
existing VM instances. From line 4 to line 10, the VM creation and selec-
tion rule evaluates all the candidate VM instances and assign them a score.
Line 12 removes the unused empty VM instances from the candidate VM
instances. If the selected VM instance is a new VM instance, it is created
and returned.

The fitness function is then used to evaluate the generated rules. The
fitness function is designed as follows:

fitness =
ÃE

N
(4.2)

Where ÃE is the normalized accumulated energy consumption of the
allocation of a training instance. N is the number of containers. With ÃE

N
,

we calculate the average accumulated energy consumption per container.

ÃE =
AE

AEsub&Just−Fit/FF
(4.3)

We normalize the AE of a rule with the accumulated energy consump-
tion of a benchmark rule (e.g. AEsub&Just−Fit/FF) using Eq. (4.3). The rea-

118 CHAPTER 4. GP-BASED APPROACHES FOR ON-LINE RAC

Algorithm 12: Procedure of vmSelectionCreation using
reservation-based rules

Input : A list of candidate VM instances, A list of VM types τ , A
container, A VM creation and selection rule vr,

Output: vm
1 bestScore← null;
2 bestVM← null;
3 Append the list of VM types to the candidate VM instances as

empty VM instances;
4 for each vmi in the candidate VM instances do
5 score← vr(vmi, container);
6 if bestScore ≥ score then
7 bestScore← score;
8 bestVM← i

9 end

10 end
11 Remove the unused empty VM instances from the candidate VM

instances;
12 if vmbestV M is a new VM instance then
13 vm← create the vmbestV M ;
14 end
15 else
16 vm← vmbestV M ;
17 end
18 return vm;

4.6. CCGP-RAC 119

son that we use normalized AE is that different training instances have
major differences. It is unfair to use the aggregation of AE of all train-
ing instances to compare algorithms. The use of normalized AE cannot
affect the training process because the AE is normalized with a constant
value. In our experiments, the normalization is based on the benchmark
rule sub&Just-Fit/FF.

In summary, the GPHH-RAC approach automatically generates rules
for VM creation and selection and uses a First Fit algorithm for PM selec-
tion. Next section describes the CCGP-RAC for the on-line RAC problem.
Unlike the GPHH-RAC approach, CCGP-RAC generates rules for both VM
creation and selection and PM selection.

4.6 Cooperative Coevolution GP Approach for RAC

(CCGP-RAC)

This section describes the proposed Cooperative Coevolution Genetic Pro-
gramming (CCGP) approach for the on-line RAC problem. The CCGP-
RAC approach automatically generates rules for both allocating contain-
ers to VM instances and VM instances to PM instances. There are two
reasons that we develop the CCGP-RAC to the problem. First, the on-line
RAC problem has a two-level structure. Both levels of allocations need to
be optimized to achieve the optimal solution. Second, two levels of al-
locations are interactive; hence, two levels of optimization must be done
simultaneously. To develop a CCGP-RAC approach, as CCGP has not been
applied to the RAC problem, we first design a training process that suits
the CCGP framework. In addition to previously designed terminals for
VM creation and selection, we designed a new terminal set for PM selection.
In the following subsections, we first describe an overview of the CCGP-
RAC framework. Then, we illustrate the representation and terminal sets
of the problem.

120 CHAPTER 4. GP-BASED APPROACHES FOR ON-LINE RAC

4.6.1 The CCGP-RAC Approach Overview

The on-line RAC problem involves three decision processes, VM selec-
tion, VM creation, and PM selection (see Section 4.4). We propose a CCGP-
RAC approach to automatically generate rules for all these processes. The
CCGP-RAC approach adopts an idea from previous proposed GPHH-RAC
approach (see Section 4.5) to generate reservation-based rules. That is, the
CCGP-RAC also generates the rules to make the VM selection and VM cre-
ation decisions simultaneously. The other rule PM selection is generated by
the CCGP-RAC together with the VM selection and VM creation rule.

Figure 4.5: The overview of CCGP-RAC.

The overview of CCGP-RAC is shown in Figure 4.5. The CCGP-RAC
initializes two populations of rules randomly. Then, the rules are evolved

4.6. CCGP-RAC 121

cooperatively by the genetic operators (e.g., crossover and mutation). A
set of training instances is used for fitness evaluation. To evaluate a rule,
first, the rule is combined with a collaborator from the other sub-population
to form a pair of rules. Then, the pair of rules are applied to each train-
ing instance to generate an allocation solution. Finally, the average quality
(i.e., accumulated energy consumption) of the allocation solutions is set
to the fitness of the evaluated rules. By iteratively evaluating and mod-
ifying the rules, the population gradually searches in the space of rules.
The performance keeps improving because only the best pairs of rules are
kept to the next generation. This process of evaluation and modification
continues until a predefined number of iterations is reached. Finally, the
CCGP-RAC outputs a pair of rules with the best fitness value in the train-
ing process. The pair of rules will then be used to generate the allocation
solution for any (unseen) RAC problem instance.

The proposed CCGP-RAC approach is described in Algorithm 13. It
starts with the initialization of two sub-populations of Pvr and Ppr (line 1).
Each sub-population contains N randomly generated rules. We apply the
ramped Half-and-Half [109] in constructing trees to ensure the diversity in
each sub-population.

The iteration of evaluation and modification begins at line 4 and re-
peats until a predefined maxGeneration is reached. The variable gen is the
counter of the iteration. We evaluate the rules in turns (the loop from line
5 to line 11). At the beginning, each rule pri from Pvr is paired with a rep-
resentative rule pr′rep from the Ppr (the loop from line 6 to line 10). The best
rule is defined as a representative of that sub-population. In the first gen-
eration, we randomly select a rule from Ppr as the representative. Then the
pair of rules is evaluated in line 7.

In the evaluation stage, we apply the pair of rules to allocate a set of
containers to a set of PMs. The detailed allocation process is shown in Al-
gorithm 9. The allocation returns the accumulated energy consumption of
AE. The information on containers and PM instances are given by a train-

122 CHAPTER 4. GP-BASED APPROACHES FOR ON-LINE RAC

Algorithm 13: CCGP-RAC
Input : A set of training instance S, a terminal set for VM selection

and creation, a terminal set for PM selection, a function set
for both rules

Output: The best VM selection and creation rule, The best PM
selection rule

1 Initialize each sub-population Pr with r = {vr, pr}
2 Pr ← {pr1, pr2, · · · , prN};
3 gen← 0

4 while maxGeneration is not reached do
5 for r = vr → pr do
6 for i = 1→ N do
7 AE ← apply pri and pr

′
rep on the training instance sgen

where r′ 6= r (see Algorithm 9);
8 pri ← AE

N
;

9 end

10 end
11 for r = vr → pr do
12 pselectedr ← TournamentSelection(pr);
13 pr ← genetic operators(pselectedr);

14 end
15 gen← gen+ 1

16 end

ing instance sgen from the training set. We switch to a different training
instance in each generation to improve the generalization of the rules.

When all rules have been evaluated, we apply the tournament selec-
tion and genetic operators on two sub-populations. The tournament selec-
tion [109] guides the evolutionary process. The rules with higher fitness
values have larger probabilities to be selected. Then, two genetic opera-

4.6. CCGP-RAC 123

tors, crossover and mutation, are applied to the selected rules.
Crossover and mutation follow the standard GP algorithm (see Chap-

ter 2.2.2).

4.6.2 Representation, Terminal Set, and Function Set

The allocation rules act as a priority function which assigns a score to
each candidate allocation decisions. With the score, we can decide which
VM/PM to allocate the container/VM. The allocation rules are constructed
by the features in the terminal set and function set.

Figure 4.6: The representation of CCGP-RAC.

We use two trees to represent VM creation and creation and PM selection
rules (see Figure 4.6). The terminal nodes (T and T ′ nodes from the Figure)
from two rules are sampled from different terminal sets shown in Table 4.2.
Two rules share the same function set.

An illustration of the terminals is shown in Figure. 4.7. The leftVmMem
and leftVmCpu are the remaining resources of a VM instance. They are
calculated as subtracting the configuration resources of the VM instance
by the overhead of that VM and the resources used by the containers run-
ning on the VM instance. The leftPmMem and leftPmCpu are the remaining
resources of a PM instance. They are calculated as subtracting the con-
figuration resources of the PM instance by the configuration resources of

124 CHAPTER 4. GP-BASED APPROACHES FOR ON-LINE RAC

Figure 4.7: Illustration of the features used in the terminal set

the VM instances running on that PM instance. The protected % returns 1
when the denominator is 0.

4.6.3 Fitness Function

To evaluate a pair of rules, we need first to apply the pair of rules on a
training instance. Then, we used a fitness function to evaluate its perfor-
mance, a fitness value. The evaluation process and fitness function are the
same as in GPHH-RAC (see Eq.4.2 in Section 4.5.3).

4.7 Experiments and Results

A set of experiments were carried out to evaluate the performance of the
GPHH-RAC, and CCGP-RAC approaches. The objective of the experiments
is to understand the strengths and weaknesses of the proposed approaches.
This section first illustrates the experiment design, including datasets, pa-
rameters, and test instances, and then shows the results. Finally, the au-

4.7. EXPERIMENTS AND RESULTS 125

Table 4.2: Terminal and Function sets of CCGP-RAC

Symbol Description

Attributes for VM selection and creation

leftVmMem remaining memory of a VM instance
leftVmCpu remaining CPU of a VM instance
vmMemOverhead memory overhead of a VM instance
vmCpuOverhead CPU overhead of a VM instance
coCpu container CPU requirement
coMem container memory requirement

Attributes for PM selection

leftPmMem remaining memory of a PM instance
leftPmCpu remaining CPU of a PM instance
vmMem the configuration memory of a VM instance
vmCpu the configuration CPU of a VM instance

Function set +,-,×, protected %

tomatically generated rules are analyzed to show the insights of resource
allocation in container-based clouds. For benchmark algorithm, we use a
sub&Just-Fit/FF rule as introduced individually in Section 4.7.1.

4.7.1 Benchmark Algorithms

This section introduces the benchmark algorithms for the on-line RAC
problem.

sub&Just-Fit/FF includes three sub-rules. sub rule [146] is represented as
the absolute value of the difference between two resources, such as
|vmCPU − vmMem| in VM selection where vmCPU and vmMem are the
remaining resources of a VM instance. Just-Fit rule creates the smallest
type of VM instance that can satisfy the resource requirements of the
container to be allocated. First Fit selection algorithm (FF) iterates from
the oldest VM/PM instance to the latest one and allocates the
container/VM to the first VM/PM instance that has enough resources.

126 CHAPTER 4. GP-BASED APPROACHES FOR ON-LINE RAC

4.7.2 Experiment Settings

This section discusses the simulation environment in both GPHH-RAC,
and CCGP-RAC approaches. Then, the detailed settings of the training
and testing scenarios are provided. All algorithms were implemented in
Java version 8, and the experiments were conducted on an i7-4790 3.6 GHz
with 8GB of RAM running Linux Arch 4.14.15-1.

Simulation

To reliably measure the effectiveness of the rules, a large number of sim-
ulations (e.g., 30 to 50) are usually needed [153]. For training, we use 100
simulations in a rotating manner. That is, we switch to a new training in-
stance at each generation. The purpose of switching simulation is to find
good rules for VM selection and VM creation and PM selection, which are
independent of training instances. This training method has been success-
fully applied in Job Shop Scheduling problems [90]. For testing, we use
30 simulations. The testing result shows an average performance on the
simulations.

Datasets

We design 12 scenarios for the experiments (see Table 4.3) which are di-
vided into four groups. Each scenario has distinct numbers of OS from 3
to 5. For each scenario, we use 100 instances for training and 30 instances
for testing. Each instance contains 2500 containers to be allocated. This
number of containers is large enough for an algorithm to reach a stable
status.

To generate the instances, we use two real-world workload datasets –
AuverGrid trace and Bitbrains trace [189]. The original workload trace
files contain millions of lines of CPU and memory usage records of ap-
plications. For each dataset, we select the first 400,000 lines of records as
the source files. Then, we filter the records to exclude the containers that

4.7. EXPERIMENTS AND RESULTS 127

Table 4.3: Test instances

scenarios number of OSs VM types workload patterns

scenario 1 3 synthetic VM types AuverGrid trace
scenario 2 4 synthetic VM types AuverGrid trace
scenario 3 5 synthetic VM types AuverGrid trace

scenario 4 3 synthetic VM types Bitbrains trace
scenario 5 4 synthetic VM types Bitbrains trace
scenario 6 5 synthetic VM types Bitbrains trace

scenario 7 3 real-world VM types AuverGrid trace
scenario 8 4 real-world VM types AuverGrid trace
scenario 9 5 real-world VM types AuverGrid trace

scenario 10 3 real-world VM types Bitbrains trace
scenario 11 4 real-world VM types Bitbrains trace
scenario 12 5 real-world VM types Bitbrains trace

require more resources than the largest VM type (see Table 4.4 and Table
4.5). The last step is to randomly select the resource requirement of con-
tainers to construct an instance. Figure. 4.8 shows the distributions of CPU
and memory requirements in two datasets.

0.
0e
+0
0

5.
0e
+0
4

1.
0e
+0
5

1.
5e
+0
5

2.
0e
+0
5

0 200 400 600
capacity

c
o
u
n
t

cpu mem

(a) AuverGrid trace

0e
+0
0

2e
+0
4

4e
+0
4

6e
+0
4

0 200 400 600
capacity

c
o
u
n
t

cpu mem

(b) Bitbrains trace

Figure 4.8: Resource usage frequency in the real-world datasets

For the configurations of PM and VMs, we use a quad-core PM size of
[13200 MHz, 16000 MB] which has been used in [133]. We assume each

128 CHAPTER 4. GP-BASED APPROACHES FOR ON-LINE RAC

core has eight threads. To simulate real-world VM configuration, we use
the information of VM types offered by Amazon EC2 in Table 4.4. Ad-
ditionally, to generalize the VM configuration, we randomly generate 10
VM types (see Table 4.5) where the values of CPU and memory are sam-
pled from [0, 3300 MHz] and [0, 4000 MB] representing the capacity of one
core because a quad-core PM has four independent units.

Table 4.4: Real-world VM types

VM types [CPU, Memory] VM types [CPU, Memory]

1 [206.25, 250] 11 [825, 2000]
2 [412.5, 500] 12 [1650, 250]
3 [825, 1000] 13 [1650, 500]
4 [1650, 2000] 14 [1650, 1000]
5 [412.5, 250] 15 [412.5, 937.5]
6 [412.5, 1000] 16 [825, 1875]
7 [825, 4000] 17 [1650, 3750]
8 [206.25, 500] 18 [412.5, 1312.5]
9 [412.5, 2000] 19 [825, 2625]

10 [412.5, 4000] 20 [2475, 2625]

Table 4.5: Synthetic VM types

VM types [CPU (MHz), Memory (MB)] VM types [CPU, Memory]

1 [719, 2005] 6 [1311, 3238]
2 [917, 951] 7 [1363, 2634]
3 [1032, 1009] 8 [1648, 1538]
4 [1135, 3542] 9 [2047, 1181]
5 [1231, 1989] 10 [2100, 3013]

For the affinity constraint, we set up an Operating System (OS) con-
straint. Each container has a requirement of OS and can only be allocated
to the VM instance, which has the same OS installed. We simulate three
scenarios where the number of OS increases from 3 to 5. The OS require-

4.7. EXPERIMENTS AND RESULTS 129

ment of a container is generated from a distribution (see Table 4.6). We use
this distribution to simulate a real-world market share of OS [11].

Table 4.6: OS distribution

number of OS OS distribution (%)

3 50-30-20
4 62.5-17.5-15.5-4.5
5 17.9-45.5-23.6-10.5-2.6

Algorithm 14: Pseudo code for the initialization of a data center
Input : A set of PM instances P ,
// Each PM hosts a number of VM instances, Each

VM hosts a number of containers

Output: an initialized data center
// An empty data center includes an empty vmList

and an empty pmList.

1 vmList← null;
2 pmList← null;
3 for each PM instance p in P do
4 pmList← p;
5 for each VM instance v in the PM instance do
6 vmList← v;
7 end

8 end
9 return the initialized data center;

A data center is initialized (see the procedure in Algorithm 14) before
the allocation of containers. The initialization data includes a set of PM
instances P . Each PM instance in P hosts a number of VM instances. Sim-
ilarly, each VM instance hosts a number of containers. The initialization

130 CHAPTER 4. GP-BASED APPROACHES FOR ON-LINE RAC

set up the vmList and the pmList by adding VM instances and PM in-
stances into the lists. These lists will be used in the container allocation
process. The purpose of allocating containers to an initialized data center
is to simulate a real-world scenario in which PM instances are running in
different utilization levels. It also helps to train rules that are robust to a
different initial state of data centers. We illustrate the method to generate
initialization data in the experiment section (see Section 4.7.2).

Based on the allocation process, we designed and implemented a sim-
ulator. Below are the assumptions of the simulator.

1. Containers arrive uniformly between [0, T];

2. Arrived containers must be allocated immediately;

3. Overload threshold of VM/PM is 100% of resource utilization as the
threshold does not affect the behavior of allocation algorithm;

4. No weight or priority of containers, which means containers are equally
important;

5. Homogeneous PM instances (all PM instances have the same initial
resources);

6. Assume an infinite number of available VM/PM instances that can
be used;

All results have been tested with Wilcoxon signed-rank test between
the rules from our CCGP-RAC and the existing rules. The significance
level is set to α = 0.05.

Parameter Settings

Table 4.7 shows the parameters that we used in all experiments. All the
parameters follow the setting that has been commonly used in the litera-
ture (e.g. [140]). The CCGP-RAC and the GPHH-RAC were implemented
by ECJ [43].

4.7. EXPERIMENTS AND RESULTS 131

Table 4.7: Parameter Settings

Parameter Description

Initialization ramped-half-and-half
Crossover/mutation/reproduction 80%/10%/10%
Maximum Depth 7
Number of generations 100
Sub-Population 512
Selection tournament selection (size = 7)

4.7.3 Experiment Results

This section first shows the accumulated energy consumption compari-
son of the sub&Just-Fit/FF rule, the GPHH-RAC rules, and the CCGP-RAC
rules. Then, in the detailed results, we show the behaviors of these meth-
ods by examining their allocation procedures. We further look at the PM
utilization and PM remaining resources to find out what causes the differ-
ences in these methods.

Overall Results

The comparison of the accumulated energy consumption among the three
methods are shown in Table 4.8. We can see that the CCGP-RAC rules have
a major advantage over the sub&Just-Fit/FF rule and the GPHH-RAC rules
in all scenarios. GPHH-RAC rules, although slightly worse than CCGP-
RAC rules, also performed much better than the sub&Just-Fit/FF rule.

Detailed Results

The CCGP-RAC rules achieve good performance in all scenarios and we
showed scenario 3 and 12 (see Figure. 4.9) because others have similar
trends. The allocation procedure shows the increment of energy consump-
tion while allocating containers. The left-hand sides are the comparisons
of three methods. The right-hand sides are the zoom-in comparisons be-

132 CHAPTER 4. GP-BASED APPROACHES FOR ON-LINE RAC

Table 4.8: Mean and standard deviation of the energy consumption (Kwh)
of 30 instances for 12 scenarios among the sub&Just-Fit/FF rule, the GPHH-
RAC rules, and the CCGP-RAC rules.

sub&Just-Fit/FF GPHH-RAC CCGP-RAC

scenario 1 3.75E7 ± 1.6E6 3.16E7 ± 2.3E6 3.12E7 ± 1.0E5
scenario 2 3.75E7 ± 1.6E6 3.16E7 ± 2.3E6 3.12E7 ± 1.5E5
scenario 3 3.77E7 ± 1.6E6 3.18E7 ± 2.3E6 3.15E7 ± 1.4E5
scenario 4 4.11E7 ± 1.7E6 3.39E7 ± 2.3E6 3.36E7 ± 1.8E5
scenario 5 4.11E7 ± 1.7E6 3.41E7 ± 2.3E6 3.37E7 ± 8.1E4
scenario 6 4.12E7 ± 1.7E6 3.42E7 ± 2.3E6 3.39E7 ± 8.3E4
scenario 7 3.72E7 ± 1.7E6 3.17E7 ± 2.3E6 3.10E7 ± 2.7E5
scenario 8 3.74E7 ± 1.7E6 3.18E7 ± 2.3E6 3.11E7 ± 3.4E5
scenario 9 3.74E7 ± 1.7E6 3.19E7 ± 2.3E6 3.14E7 ± 3.8E5
scenario 10 3.86E7 ± 2.0E6 3.42E7 ± 2.4E6 3.34E7 ± 3.4E5
scenario 11 3.91E7 ± 1.9E6 3.42E7 ± 2.4E6 3.37E7 ± 3.4E5
scenario 12 3.91E7 ± 1.9E6 3.47E7 ± 2.3E6 3.39E7 ± 3.6E5

tween the GPHH-RAC rules and the CCGP-RAC rules. The energy con-
sumption of evolved rules is the average of 30 runs’ results. In the be-
ginning, the energy consumptions resulted from three methods increase
slowly because containers are allocated to the free spaces in PM instances.
Since no new PM is created, the performances of all methods look the same
(overlapping lines). Later on, the increments of energy consumption are
different for three methods. The increment of energy consumption is the
slowest using the CCGP-RAC rules. Another noticeable pattern is that the
turning point of the CCGP-RAC rules is later than the sub&Just-Fit/FF rule.
This means the CCGP-RAC rules allocate more containers into the existing
PM instances than the GPHH-RAC and CCGP-RAC. Therefore, the CCGP-
RAC rules use a smaller number of PM instances and the increment of
energy consumption is slow.

To understand why the CCGP-RAC rules have a slower increment of
energy consumption compared to other rules, we show the CPU and mem-
ory utilization of four representative scenarios, i.e., 3, 6, 9, 12 in Figure. 4.10.

4.7. EXPERIMENTS AND RESULTS 133

-RAC -RAC

(a) Scenario 3

-RAC -RAC

(b) Scenario 3

(c) Scenario 12

-RAC -RAC

(d) Scenario 12

Figure 4.9: Allocation process of simulation 0 from scenarios 3 and 12

The sub&Just-Fit/FF rule generates the lowest utilization in both CPU and
memory among all scenarios except the memory utilization of scenario
12. Since the sub&Just-Fit/FF rule generally has a low resource utilization,
it is not surprising that it uses more PM instances and more energy con-

134 CHAPTER 4. GP-BASED APPROACHES FOR ON-LINE RAC

sumption. To compare the GPHH-RAC rules and the CCGP-RAC rules, the
GPHH-RAC rules have better CPU utilization, while the CCGP-RAC rules
have better memory utilization in all scenarios. As shown in Section 4.7.2,
memory resource is the bottleneck in both real-world datasets. It is now
clear that the CCGP-RAC rules outperform GPHH-RAC rules on the crit-
ical resource, e.g., memory. The remaining question is that compared to
the GPHH-RAC rules, why CCGP-RAC rules can obtain high utilization of
memory?

-RAC -RAC

(a) PM CPU utilization

-RAC -RAC

(b) PM memory utilization

Figure 4.10: PM resource utilization

To improve the utilization of resources, one can improve the utiliza-
tion of VM instances, reduce the PM instances remaining resources, or
both. Since the GPHH-RAC rules and the CCGP rules show difference
only in the VM–PM level, we now focus on the reduction of PM remain-
ing resources. The PM remaining resources are the idle resources in PM in-
stances, which are affected by two factors, i.e., the number of VM instances
on the PM instance and the types of these VM instances. The only way to
reduce the PM instance remaining resource is by constructing a combina-

4.8. RULE ANALYSIS 135

tion of VM instances that uses all or majority resources in a PM instance.
To construct such a combination, the VM creation and PM selection rules
must be used together.

From Figure. 4.11, it can be observed that the CCGP-RAC rules have a
higher remaining CPU and a lower remaining memory than the GPHH-
RAC rules do. It means that the CCGP-RAC rules use the memory more
effectively than the GPHH-RAC rules on PM instances. This is consis-
tent with the PM utilization shown in Figure. 4.10. The CCGP-RAC rules
achieve this performance because they are co-evolved while the GPHH-
RAC rules consist of two rules generated independently, i.e., First-Fit as
the PM selection rule. Therefore, it is hard to construct a good combination
of allocations because First-Fit always selects the first available PM. The
detailed explanation of why the CCGP-RAC rules achieve a better mem-
ory utilization is discussed in Section 4.8.

To this end, we have shown the CCGP-RAC rules achieve the lowest
accumulated energy consumption. The GPHH-RAC rules have slightly
worse performance than the CCGP-RAC rules, while the sub&Just-Fit/FF
rule has the worst performance.

In summary, the experimental evaluations in this section show that the
CCGP-RAC rules achieve the best performance among the three methods.
In particular, the rules generated by CCGP-RAC can lead to a better con-
tainer to VM allocations and, therefore, lower PM remaining resources,
comparing with the other two methods.

4.8 Rule Analysis

This section further analyzes the drawbacks of the sub&Just-Fit/FF rule and
shows how CCGP-RAC evolved rules make the allocation decisions.

136 CHAPTER 4. GP-BASED APPROACHES FOR ON-LINE RAC

-RAC -RAC

(a) PM remaining CPU

-RAC -RAC

(b) PM remaining memory

Figure 4.11: PM remaining resource

4.8.1 VM Creation Behavior

We analyze the ratio of VM types and the quantity of VM instances of
three methods to show the patterns of VM types selection among three
approaches. Figure. 4.13 illustrates the average ratio of VM types (bar
chart) and the average quantity of VM instances (pie chart) used by three
methods in scenarios 3, 6, 9, 12. We analyzed these patterns and found
three facts. First, from the pie charts (see Figure. 4.13), we have seen
that sub&Just-Fit/FF uses 2 to 4 times more VM instances than the evolved
rules. Second, we found that the most frequently used VM type by sub&Just-
Fit/FF is type 2 which is a small VM type. Third, from the PM utilization
(see Figure. 4.10), the sub&Just-Fit/FF also generates the lowest utilization.
From these facts, we infer that the sub&Just-Fit/FF leads to the VM sprawl.

VM sprawl [186] is the major reason for the low utilization of data cen-
ters, and the sub&Just-Fit/FF rule can lead to it. In a data center where VM
sprawl occurs, PM instances are filled with a large number of small VM in-
stances and most of them are lowly utilized. Therefore, the average of PM

4.8. RULE ANALYSIS 137

(a) scenario 3

(b) scenario 6

utilization is low, e.g., 15% to 20%. From the above patterns of VM types
selection, the sub&Just-Fit/FF rule has created a large number of small VM
instances and has the lowest utilization among three methods, which are
the symptoms of VM sprawl.

To understand the consequence of VM sprawl, we observe the incre-
ment of VM wasted memory and memory overhead throughout the allo-

138 CHAPTER 4. GP-BASED APPROACHES FOR ON-LINE RAC

-RAC -RAC

(a) scenario 9

-RAC -RAC

(b) scenario 12

Figure 4.13: The average frequency of VM types used by three algorithms

cation process in Figure. 4.14. This figure shows that when applying the
sub&Just-Fit/FF rule, memory is consumed by VM overheads and wasted
quickly. VM wastes are the small resource segmentation inside VM in-
stances that will never be used. The fast accumulation of VM overheads

4.8. RULE ANALYSIS 139

-RAC -RAC

(a) Average Wasted Memory

-RAC -RAC

(b) Average Memory Overhead

Figure 4.14: The average waste and overhead of memory in scenario 1, run
#0.

and wastes are due to the vast number of VM instances. Therefore, the ac-
tual resources used by containers are low when VM sprawl occurs. How-

140 CHAPTER 4. GP-BASED APPROACHES FOR ON-LINE RAC

ever, for the evolved rules, the wastes and overheads increase much slower
than the sub&Just-Fit/FF rule.

The main reason that causes VM sprawl is that the Just-Fit rule only
greedily considers the resource requirement of the current container. Since
most containers have a small resource requirement (less than 100 in CPU
and 200 in memory) (see Section 4.7.2). The Just-Fit, therefore, tends to
create small VM instances, e.g. type 2 and type 15. In the scenarios of real-
world VM types (scenarios 9 and 12), the Just-Fit might achieve a low PM
remaining resources (see Figure. 4.11) because these VM types happen to
be divisible (32 VMs can fill a PM). However, with a different set of VM
configurations, e.g., synthetic VM types, the Just-Fit cannot construct a
combination of VM types that uses PM resources efficiently.

On the other hand, the evolved rules can select a good combination of
VM instances with the given VM types to avoid VM sprawl. The evolved
rules consider both the capacities of VM instances and the residual re-
sources on PM instances. Therefore, they can create a combination of VM
types so that PMs’ resources are used more efficiently. For example, in
scenario 3, evolved rules favor type 1, 2, 4, 6, 10. This is because the com-
bination of these types of VM can easily achieve a high memory utiliza-
tion of PM instances. With the combination of type 10 × 2, type 1 × 3,
and type 6 × 1, the aggregated memory is 15279 MB which uses 95% of a
PM’s memory. This is the reason that the evolved rules remain stable in
PM utilization and PM remaining regardless of the given set of VM types.

In summary, the sub&Just-Fit/FF rule causes VM sprawl by allocating
too many small VMs. The CCGP-RAC rules create VM instances purpose-
fully with the consideration of multiple factors, e.g., PM residual resources
and VM types, so that they improve the utilization of PM instances and
successfully avoid VM sprawl.

4.8. RULE ANALYSIS 141

4.8.2 Structural Analysis of Evolved Rules

To better understand how the rules utilize the given features to decide the
allocation of containers, we analyze an example of the CCGP-RAC rules.
We are first manually simplifying the evolved rules, i.e., the VM selection
and creation and PM selection rules. Then, we analyze the rules’ behaviors
by plotting them on a 3-D surface.

We select a CCGP-RAC rule from scenario 9, run 15, called Rule-15,
and illustrate its performance. The reason that we select this rule is that
the size of the rule is small and easy to explain. Rule-15 achieves a better
training performance than the sub&Just-fit/FF rule, e.g. with 12748.55 vs.
14997.29 in fitness values. It also achieves a better test performance with
an average of 3.39E7 Kwh vs. 4.12E7 Kwh. Rule-15 consists of two sub
rules, e.g. the VM selection and creation rule called Rule-15v and the PM
selection rule called Rule-15p.

score = ((leftV mCpu− (leftV mCpu× (leftV mCpu× leftV mCpu)))×

((leftV mMem÷ (leftV mCpu+ leftV mCpu))× leftV mCpu))÷

normalizedV mMemOverhead

(4.4)

We start analyzing the Rule-15v rule. As previously introduced (see
Section 4.5.3), the VM selection and creation rule Rule-15v has the function-
alities of VM selection and VM type selection when creating a new VM
instance. The Rule-15v rule achieves these two functionalities by evaluat-
ing both existing VM instances and a set of new VM instances. The major
difference between selecting existing or creating new VM instances is the
value of VM overhead at the evaluation stage.

Specifically, the original Rule-15v rule (see Eq 4.4) involves a variable
normalizedVmMemOverhead. At the evaluation stage, the value of normal-
izedVmMemOverhead equals 0 when Rule-15v rule is applied on an existing
VM instance. On the other hand, the value of normalizedVmMemOverhead

142 CHAPTER 4. GP-BASED APPROACHES FOR ON-LINE RAC

equals 0.0125 (200MB ÷ 16000MB to normalize) when Rule-15v rule is ap-
plied on a new VM instance.

Hence, the original Rule-15v can be simplified to Eq 4.5. For VM selec-
tion, the vmMemOverhead becomes 0. Therefore, the score of Rule-15v be-
comes a constant of 1 (as we applied the protected ÷). A constant means
Rule-15v chooses the first VM instance that has enough resources for the
container. In other words, the VM selection of Rule-15v acts like First-Fit.
For VM creation, we replace vmMemOverhead with a constant of 0.0125 to
simplified the rule. Since the simplified rule has two variables, e.g. leftVm-
Cpu and leftVmMem, we plot the rule on a 3-D surface.

score =

1, V Mselection

10× (leftV mCpu− leftV mCpu3)× leftV mMem, VMcreation
(4.5)

The 3-D surface plot of Rule-15v (see Figure 4.15) shows the behavior
of Rule-15v when it creates new VM instances. The figure also shows why
the rule favors type 17 and type 20. The leftVmMem ranges in [0, 0.25]
and leftVmCpu ranges in [0, 0.1875]. This is because the VM types with
largest memory of 4000 MB, e.g. type 7 and 10, which is normalized to
0.25. The VM type, i.e. type 20, has the largest VM CPU (2475 MHz) which
is normalized to 0.1875. We observe that the score of Rule-15v is higher
when both leftVmMem and leftVmCpu is getting larger. The score is more
sensitive to leftVmCpu than leftVmMem. Applying Rule-15v on twenty VM
types, we found that type 17 generally obtains the highest score followed
by type 20. This observation is consistent with the VM frequency shown in
the last section (see Figure 4.13, scenario 9). For other types, such as type 7
and type 10, although they have a large memory, their CPU capacities are
too small.

From the previous analysis, we found that Rule-15v tends to create
large VM instances. This is a major difference between the human-designed
rule sub&Just-Fit/FF that favors small VM types, e.g., type 2 and type 15.
Large VM instances, create less segmentation and VM overhead, can re-

4.8. RULE ANALYSIS 143

Figure 4.15: The 3D and contour plot of the GP tree: f = 10 ×
(leftV mCpu − leftV mCpu3) × leftV mMem, where x-axis is the leftVm-
Mem and y-axis is the leftVmCpu

duce the wasted resources in the PM instances.

score = leftPmMem− leftPmCpu+ vmCpu/leftPmMem (4.6)

Rule-15p (see Eq. 4.6) can achieve a good combination of VM instances.
Here, we use the most frequently created VM types, i.e. type 17 and type
20, as examples to show the behavior. If we allocate a type 17 VM in-
stance with Rule-15p, the vmCpu is replaced by 0.125. Figure 4.16a shows
a contour plot of using Rule-15p to allocate a type 17 VM instance. The
lighter area represents the region of a higher score. It shows that the rule
prefers two types of PM instances. The first type (appears on the right-
bottom corner in the contour map) has high residual memory (more than
12800 MB) and low residual CPU. This type of PM instance can allocate
more VM instances with large memory capacity and low CPU capacity.
The other type of preferred PM instances (appears on the left-bottom cor-
ner) has less or equal residual memory of 4000 MBs regardless of residual
CPU. This means that Rule-15p tries to allocate the VM instance into a PM
instance with the resources just enough for one type 17 VM instance. Sim-

144 CHAPTER 4. GP-BASED APPROACHES FOR ON-LINE RAC

ilarly, if we allocate a type 20 VM instance with Rule-15p, the vmCpu is
replaced by 0.1875. Figure 4.16b shows the preferred PM instances should
have low residual memory regardless of residual CPU capacity. Notice
that, the term vmCpu/leftPmMem in the Rule-15p might counterintuition.
However, the vmCpu is a constant when Rule-15p evaluating PM instances.
Hence, vmCpu only provides a constant value in this case.

(a) Allocate a type 17 VM with Rule-15p (b) Allocate a type 20 VM with Rule-15p

Figure 4.16: The contour map shows the high-score regions of Rule-15p
when allocating VM of type 17 and 20.

To compare the generated rules and human-designed rules such as
First-Fit or Best-Fit, from previous analysis, we observe that the gener-
ated rules can construct both linear and non-linear functions to decide the
allocation. Therefore, the generated rules can easily mimic the behavior of
First-Fit or Best-Fit. However, the non-linear relationship between differ-
ent features is difficult to capture by human experts. Hence, the generated
rules are much flexible compared to human-designed rules.

In summary, this section provides an analysis of a rule, generated by
the CCGP-RAC approach. From the analysis, we can see how the rule leads

4.9. CHAPTER SUMMARY 145

to a better VM type selection and how to construct a good combination of
VM instances. Besides Rule-15, we have analyzed other rules and reach
the same conclusion. Due to the page limit, we only described one rule.

4.9 Chapter Summary

The overall goal of this chapter was to propose novel hyper-heuristic ap-
proaches for the on-line resource allocation in container-based clouds (RAC)
to minimize accumulated energy consumption. We achieve this goal by
developing a GPHH-RAC, and CCGP-RAC approaches. Four novel contri-
butions were accomplished to achieve this goal. (1) A novel model was
proposed to model on-line RAC problem and to evaluate on-line RAC so-
lutions. (2) A new set of terminals were proposed to generate rules for
the GPHH-RAC and CCGP-RAC methods. (3) New training procedures
were developed to generate reservation-based rules of VM creation and se-
lection in both GPHH-RAC and CCGP-RAC. (4) Novel training procedures
of GPHH-RAC and CCGP-RAC approach were developed as they are first
applied to the RAC problem.

The analysis of the human-designed rule shows that it leads to VM
sprawl by creating a large number of small VM instances. On the other
hand, the evolved rules (from both GPHH-RAC and CCGP-RAC) success-
fully avoid VM sprawl. The evolved rules can select/create a good com-
bination of VM instances by considering the information of workload pat-
terns and the VM types. The information is reflected by the interaction of
multiple cloud features, e.g., residual resources and VM overheads.

For cloud providers, our proposed GPHH-RAC and CCGP-RAC approaches
provide several advantages for solving the on-line RAC problem. First of
all, these algorithms automatically design allocation rules without human
intervention. Secondly, the evolved rules have an explainable structure
with cloud features interaction. The explainability provides insights for
algorithm designers to understand how the interactions of cloud features

146 CHAPTER 4. GP-BASED APPROACHES FOR ON-LINE RAC

reflect the information such as workload patterns and VM types. The in-
sights can help cloud providers to develop more effective algorithms. Last
but not least, our proposed GPHH-RAC approach can generate rules that
suitable for heterogeneous workloads and VM types.

Next chapter will discuss the multi-objective scenario of RAC and the
EC algorithm developed for the problem.

Chapter 5

Evolutionary Multi-objective
Optimization for Resource
Allocation in Container-based
Clouds (RAC)

5.1 Introduction

The purpose of the research presented in this chapter is to propose a multi-
objective algorithm for the multi-objective scenario of container-based clouds
to reduce energy consumption and improve the availability of applica-
tions. In Chapter 3, we have studied the single-objective RAC problem,
which allocates containers that are independent of each other. With the
popularity of service-oriented computing (SOC), many applications are
composed of micro-services, which are dependent on each other. This
gives rise to the RAC problem that allocates containers that are compo-
nents of micro-services. With dependencies among containers, more con-
straints and objectives need to be concerned in order to achieve the re-
quirements from both cloud providers and cloud users. Since the new prob-

147

148 CHAPTER 5. EC FOR MULTI-OBJECTIVE RAC

lem is multi-objective, the existing single-objective model and algorithms
cannot be directly applied to the problem. Therefore, new models and al-
gorithms are needed to be proposed. In particular, we will present a model
that considers micro-service architecture because it is commonly used in
the industry [7].

Micro-service architecture [148] gets extensive attention in recent years
as it has the potential to develop large-scale web applications (e.g., Net-
flix, Spotify). Micro-service applications consist of a set of loosely coupled
web services. That is, these web services are maintained independently,
deployed distributed, and communicating through HTTP or messages.
By deploying web services in container-based clouds, applications benefit
not only from the seemingly infinite resources but also the fast deploy-
ment of micro-services and the low overheads of containers. In addition,
container-based clouds take care of resource management and automati-
cally add and remove resources to the micro-services. Hence, a container-
based cloud is ideal for allocating large-scale applications due to its inher-
ent advantages.

The allocation of micro-service can be described as following. Each ap-
plication is composed of a set of micro-services that could have multiple
replicas. The “replica” refers to the software entity of a micro-service. Mul-
tiple replicas of a micro-service can share the workload and avoid single-
point failure. With each replica deploying in a container, these containers
are allocated to VM instances and then to PM instances.

The nature of the micro-service allocation problem is a multi-objective
resource allocation problem in container-based clouds (RAC). Multiple objec-
tives come from stakeholders where cloud providers have the primary con-
cern of energy consumption, and Service Level Agreement (SLA)-related
objectives, such as maximizing availability or minimizing the communi-
cation cost between containers. The problem can be considered as a vector
bin packing problem because containers have multiple resources to be al-
located. In addition, this chapter considers an off-line problem as the first

5.1. INTRODUCTION 149

attempt to study the multi-objective RAC.

Existing works in the literature study the RAC problem with different
focuses. The RAC problem is studied as a two-level allocation problem
in [133,166,245]. They allocate independent containers to minimize the en-
ergy consumption of the used PM instances. However, these approaches
only consider one objective, i.e., minimizing energy consumption, and ne-
glect the performance of applications. Other research [85, 119, 185, 220]
considers the micro-service allocation as a multi-objective problem and
optimize objectives such as energy consumption, communication cost be-
tween containers, and availability of applications. However, these multi-
objective approaches are applied in OS-level container architecture [187],
where containers are allocated to PM instances directly. Hence, there is
a need to develop a multi-objective approach for the multi-objective RAC
problem.

Among numerous QoS optimization objectives of micro-services, e.g.,
communication cost, network distance, and availability, we consider avail-
ability as the additional objectives that need to be optimized. The Relia-
bility, Availability, and Serviceability (RAS) are the most concerned QoS
characteristics by both cloud users and cloud providers [163, 212] . Avail-
ability defines the time that the services are available. This characteristic
fundamentally affected the users’ experience. Hence, we focus on this ob-
jective. Besides, the availability and energy consumption are conflicting.
Therefore, they cannot be optimized separately. This is because, from cloud
providers’ point of view, the replicas of a micro-service need to be allocated
as spread across PM instances as possible in order to maximize the avail-
ability. However, the minimization of energy consumption requires to use
as fewer PM instances as possible. Therefore, there is a conflict between
maximizing availability and minimizing energy consumption.

Multi-objective evolutionary algorithms (MOEAs) are well suited for
the multi-objective RAC problem. As previously mentioned, multi-objective
RAC problem involves a two-level vector bin packing problem, which is

150 CHAPTER 5. EC FOR MULTI-OBJECTIVE RAC

NP-hard [51]. Integer Linear Programming (ILP) or Mixed Linear Pro-
gramming (MLP) approaches cannot be used in large-scale problems be-
cause of the high computation time [51]. Evolutionary algorithms (EAs)
can find near-optimal solutions within a reasonable period. Compared
to greedy-based heuristics, it has less chance to get stuck into local op-
tima [225]. Also, MOEAs provide a set of trade-off solutions in a single
run. Users of MOEAs can select one of the solutions based on their prefer-
ences. This is an effective way to provide multiple trade-off solutions.

Non-dominated Sorting Genetic Algorithm (NSGA)-II proposed by Deb
et al. [57] is one of the most widely applied MOEAs. Due to its effective-
ness of finding wide-spread solutions [13], NSGA-II has been successfully
applied in many real-world multi-objective combinatorial problems such
as web service allocation [205], service composition [217,218] and resource
allocation in clouds [127, 203]. These problems have similar representa-
tions and problem structures with the multi-objective RAC problem.

Therefore, to address the multi-objective RAC problem as a multi-objective
resource allocation problem, we propose an NSGA-II-based method, named
NS-GGA, to minimize the energy consumption and maximize the avail-
ability. The NS-GGA is based on NSGA-II and our proposed GGA-RAC in
Chapter 3. The major difference between NS-GGA and NSGA-II is that we
propose problem-specific genetic operators to the RAC problem. NS-GGA
and GGA-RAC are different both in genetic operators and the optimiza-
tion procedure. The proposed NS-GGA provides a set of non-dominated
solutions that allows cloud providers to choose from. Therefore, we propose
three objectives to achieve the goal.

1. To propose a novel problem definition for multi-objective RAC prob-
lem;

2. To develop three novel operators for NS-GGA and;

3. To evaluate our proposed approach with three state-of-the-art algo-
rithms on real-world datasets.

5.2. CHAPTER ORGANIZATION 151

5.2 Chapter Organization

In this chapter, Section 5.3 presents the model of the problem. Section 5.4
illustrates the multi-objective RAC process. Then, Section 5.5 describes the
proposed NS-GGA. Section 5.6 illustrates the experiment design, results,
and analysis. Section 5.7 summarizes the contributions.

5.3 Multi-Objective RAC Problem Model

Table 5.1: Notation and description of the problem model

Notation Description

as an application of index s
msj a micro-service of index j
ci a container of index i
τj the VM type of a VM instance j
ψi the OS type of a container i
pk a PM instance of index k
xil An indicator of whether the container i is allocated to the l VM instance
ylk An indicator of whether the l th VM instance is allocated to the kth PM instance
zjl An indicator of whether the l th VM instance is of type j
E The energy consumption of the data center over the allocation period
Etk The energy consumption of the kth PM instance at time t
EP idle

k , EP full
k The energy consumption when the kth PM instance is idle and fully used

ζcpu(ci), ζ
mem(ci) The CPU and memory occupation of the ith container

Ωcpu(),Ωmem() The CPU and memory occupation of a resource entity
πcpu(τj), π

mem(τj) The CPU and memory overheads of a VM type of τj
Υ(msj) = as The jth micro-service is a component of an application as
Φ(ci) = msj The ith container is a replica of a micro-service msj
OS(ci) The operating system type of the ith container
µcputk , µmemtk The CPU and memory utilization of a the kth PM instance at time t

The multi-objective RAC problem model is developed based on the
single-objective RAC problem model introduced in Chapter 3.3 but consid-
ering two objectives. In the multi-objective RAC problem, a set of applica-
tion A = {a1, . . . , as} arrive at the cloud to be allocated. Each application
consists of a set of micro-services MS = {ms1, . . . ,mso}. Υ(msj) = as

152 CHAPTER 5. EC FOR MULTI-OBJECTIVE RAC

denotes that a micro-service msj is a component of the application as.
Micro-services have multiple replicas with each mapping to a container
C = {c1, . . . , cn}. Φ(ci) = msj denotes that a container ci is one of the
containers of micro-service msj . Each container ci has a CPU occupa-
tion ζcpu(ci), a memory occupation ζmem(ci). There is a set of VM types
Γ = {τ1, . . . , τm} that can be selected to allocate the containers. Each VM
type τj has a CPU capacity Ωcpu(τj) and a memory capacity Ωmem(τj). Also,
it has a CPU overhead πcpu(τj) and memory overhead πmem(τj), indicating
the CPU and memory occupation for creating a new VM instance of that
type. There is an unlimited set of PM instances P = {p1, . . . , } for allo-
cating the created VM instances. Each PM instance pk has a CPU capacity
Ωcpu(pk) and a memory capacity Ωmem(pk). Each PM instance also has a
failure rate F(pk) indicating that at any time point, a PM instance has a
probability to crush and not available.

The multi-objective RAC problem has the same constraints as those in
single-objective RAC problem:

1. Each container is allocated to one VM instance.

2. Each created VM instance is allocated to one PM instance.

3. For each created VM instance, the total CPU and memory occupa-
tions of the containers allocated to that VM instance does not exceed
the corresponding VM capacity.

4. For each PM instance, the sum of the CPU and memory capacities of
the VM instances allocated on the PM instance does not exceed the
corresponding PM’s capacity.

5. For each container, it must be allocated to a VM instance which has
installed the same OS.

The energy consumption is calculated as follows:

E =
K∑
k=1

Ek, (5.1)

5.3. MULTI-OBJECTIVE RAC PROBLEM MODEL 153

where Ek is the energy consumption of the kth PM instance and K is the
number of PM instance used.

Ek is calculated as follows:

Ek = Eidle
k + (Efull

k − Eidle
k) · µcpuk , (5.2)

where Eidle
k and Efull

k indicate the energy consumption of the kth PM in-
stance per time unit if it is idle and fully loaded, respectively. µcpuk indicates
the CPU utilization level of the kth PM instance which sums up the utiliza-
tion of the CPU of this PM instance. This energy model, which is proposed
by Fan et al. [63], means that the energy consumption of a PM instance is
ranging from Eidle

k to Efull
k depending on its CPU utilization level. µcpuk is

calculated as follows.

µcpuk =

∑L
l=1

(∑m
j=1 π

cpu(τj) · zjl +
∑n

i=1 Ωcpu(ci) · xil
)
· ylk

Ωcpu(pk)
, (5.3)

where xil, ylk and zjl are binary decision variables, and L is the number of
created VM instances. xil takes 1 if ci is allocated to the l th created VM
instance, and 0 otherwise. ylk takes 1 if the l th created VM instance is
allocated to the kth PM instance, and 0 otherwise. zjl takes 1 if the l th
created VM instance is of VM type j, and 0 otherwise.

The availability of all the applications is calculated as follows:

Availability =

∑S
s=1 Λ(as)

S
(5.4)

where Λ(as) is the availability of the application as. It is defined as the
product of the availabilities of the application’s micro-services.

Λ(as) = λms1 · λms2 · . . . λmso ,∀Υ(msj) = as (5.5)

The availability of a micro-service is related to the PM instances that host
its containers (see Eq.5.6). The micro-service msj is crushed if all its con-
tainers ci are crushed (see Eq.5.7). Eq.5.7 means that if the PM instance pk
is crushed, then, all the containers in the PM instance are crushed. Since

154 CHAPTER 5. EC FOR MULTI-OBJECTIVE RAC

these containers are not independent, the case statement returns the fail-
ure rate of the PM instance (denote as F (pk)) once. Otherwise, it returns
1.

λmsj = 1−
K∏
k=1

crushPro(pk) (5.6)

crushPro(pk) =

F (pk), if(
∑n

i=1

∑L
l=1 xil · ylk) > 1,∀Φ(ci) = msj

1, else
(5.7)

The following example shows how to calculate the availability of an
application. An application has two micro-servicesA andB. Micro-service
A has two containers c1 and c2 which are both allocated to PM instance
p1. Micro-service B also has two container c3 and c4 which are allocated to
PM instances p2 and p3. Assume the failure rate for all PM instances as 2%.
Then, the availability of the application is calculated as following. Since
containers c1 and c2 are allocated to the same PM instance, the availability
of micro-service A is λ(msA) = 1− 2% · 1 = 98%. The availability of micro-
service B is also λ(msB) = 1 − 2% · 2% = 99.96%. Then the availability of
the application is 98% · 99.96% = 97.9608%.

The multi-objective RAC problem is to find resource allocation with min-
imal overall energy consumption and minimal failure (1 - availability) as
shown as follows.

min
K∑
k=1

Ek, (5.8)

min 1−
∑S

i=s Λ(as)

S
, (5.9)

s.t.
L∑
l=1

xil = 1, ∀ i ∈ {1, . . . , n}, (5.10)

K∑
k=1

ylk = 1, ∀ l ∈ {1, . . . , L}, (5.11)

5.3. MULTI-OBJECTIVE RAC PROBLEM MODEL 155

m∑
j=1

zjl = 1, , ∀ l ∈ {1, . . . , L}, (5.12)

n∑
i=1

ζres(ci)xil ≤
m∑
j=1

Ωres(τj)zjl,

∀ l ∈ {1, . . . , L}, res ∈ {cpu,mem},
(5.13)

L∑
l=1

m∑
j=1

Ωres(τj)zjl ≤ Ωres(pk),

∀ k ∈ {1, . . . , K}, res ∈ {cpu,mem},

(5.14)

OS(ci) = OS(cj), ∀l = 1, · · · , L.
L∑
l=1

xilxjl = 1, (5.15)

xil, ylk, zjl ∈ {0, 1}, (5.16)

where constraints (5.10) and (5.11) indicate that each container (or new cre-
ated VM instance) is allocated to exactly one created VM instance (or PM
instance). Constraint (5.12) indicates that each created VM instance must
belong to a type. Constraint (5.13) implies that the total occupation of all
the containers allocated to each created VM instance does not exceed its
corresponding capacity. Constraint (5.14) indicates that the total capacity
of the created VM instances allocated to each PM instance does not exceed
its corresponding capacity. Constraint (5.15) means that the containers al-
located to the same VM instance must have the same required operating
system, which is the installed operating system on that VM instance. Con-
straint (5.16) defines the domain of the decision variables.

The major differences between the multi-objective and the single-objective
models (introduced in Chapter 3) are in the following four aspects. First,
the definition of applications and the organization of applications are dif-
ferent. In the single-objective model, we define that each container repre-
sents an application because an application is allocated to a container. In
contrast, in the multi-objective model, we define that each application is
comprised of a set of micro-services, and each micro-service could have

156 CHAPTER 5. EC FOR MULTI-OBJECTIVE RAC

multiple replicas. With each replica allocated to a container, an applica-
tion consists of many containers. In our model, we use Υ(msj) = as to
define the relationship between micro-services and applications. We use
Φ(ci) = msj to define the relationship between replicas and micro-services.

Second, since the structure of applications is different in two models,
the dependencies between containers are also different. In the single-
objective model, each application is allocated to one container, and con-
tainers are independent of each other. In contrast, in the multi-objective
model, each application is allocated to multiple containers. The contain-
ers could be dependent because they could host the replicas of the same
micro-services. The calculation of the availability of an application is af-
fected by the allocation correlation of the replicas. That is, if replicas of
a micro-service are allocated to the same PM instance, then if the PM in-
stance crushes, all replicas are crushed. Third, an additional characteristic
of PM instances’ failure rate is considered in the multi-objective model,
which is not considered in the single-objective model. This new feature
is used to calculate the availability of applications. Fourth, an additional
objective, availability, is considered in the multi-objective model.

5.4 The Multi-Objective RAC Process and Assump-

tions

This section explains the allocation process of the multi-objective RAC pro-
cess and our assumptions. The allocation process starts by grouping the
applications by their OS requirements. We apply a preprocessing tech-
nique that groups the incoming applications into o groups where o is the
total types of OSs (assuming all the containers of an application requires
the same OS). Then, we allocate each group of applications into an empty
set of PM instances using an off-line allocation algorithm. Finally, we eval-
uate the energy consumption of used PM instances and the average avail-

5.4. THE MULTI-OBJECTIVE RAC PROCESS AND ASSUMPTIONS 157

ability of applications.
The details of the multi-objective RAC process (is shown in Algorithm 15).

The procedure is simplified from the real-world case to focus on the allo-
cation of applications and VM instances. The input of the process includes
three components, a set of applications A with each application includes
a set of micro-services, each micro-service has multiple containers, a list
of OS types, and a list of VM types. A preprocessing procedure is used to
group applications into o categories. Then, it starts to allocate each group
of applications to a set of empty PM instances using an allocation algo-
rithm. The output is the allocation, total energy consumption E of the
used PM instances, and the average availability of applications.

Algorithm 15: Multi-objective RAC Process
Input : A list of VM types τ , A list of OS types o, A set of

applications A,
Output: allocation, energy consumption of the data center E

1 E = 0;
2 group(applications);
3 for each group of applications do
4 pmList← null;
5 allocate applications to pmList;
6 E += calculateEnergy(pmList);
7 failure += calculateAvailability(A);

8 end
9 failure /= j;

10 return allocation, E and failure;

The preprocessing of grouping the applications according to their OS
requirements is a commonly used procedure in the industry. The major
reason is that traditional clouds allocate containers into a cluster of bare-
metal PM instances [156]. It is straightforward to map groups of applica-
tions into clusters of PM instances. The grouping procedure of applica-

158 CHAPTER 5. EC FOR MULTI-OBJECTIVE RAC

tions is similar to Chapter 3.4. Hence, they are not repeated.

We have the following assumptions in the experiments,

1. All containers are equally important;

2. PM instances are homogeneous. That is, all PM instances have the
same initial resources;

3. There are infinite available VM/PM instances that can be used;

5.5 NS-GGA

This section introduces the design of our NS-GGA, which includes the rep-
resentation, genetic operators, and the fitness function.

5.5.1 Algorithm

Our proposed algorithm follows the standard NSGA-II framework de-
scribed in Algorithm.16. The algorithm starts with the initialization of a
population of solutions in line 1. Solutions are represented as a group of
PM instances hosting VM instances and containers (see Section 5.5.2). The
main evolution is an iterative process consisting of a number of genera-
tions from line 2 to line 16. In each generation, each individual is evaluated
according to objective functions in line 4. In the subsequent loop from line 6
to line 10, the binary tournament selects two parents and two children are
generated by crossover and mutation operators. After a new population
of U is generated, we evaluate U , and then sort and calculate the crowd-
ing distance of P ∪U in line 13, 14. Finally, we select the top individuals to
create a new population. This evolutionary procedure ends with a set of
Pareto front solutions.

In the next a few sections, we introduce the detailed design of repre-
sentation and operators.

5.5. NS-GGA 159

Algorithm 16: NS-GGA for multi-objective RAC
Input : A set of VM types, A set of containers, A set of PM

instances,
Output: The allocation of containers

1 Initialize a population P with individuals;
2 while Termination Condition is not meet do
3 for Each individual do
4 Evaluate the fitness values;
5 end
6 while children number is less than the population size do
7 Apply binary tournament selection to select two parents;
8 Apply crossover over the selected parents;
9 Apply mutation on two children;

10 Add the children into a new population U ;

11 end
12 evaluate individuals from U ;
13 non-dominated sorting of {P ∪ U};
14 calculate crowding distance of {P ∪ U};
15 P ← select population size of individuals from {P ∪ U};
16 end
17 return the Pareto front of solutions;

160 CHAPTER 5. EC FOR MULTI-OBJECTIVE RAC

5.5.2 Representation

The representation in NS-GGA has the same structure with the GGA-RAC
approach proposed in Section 3.6, Chapter 3. A solution consists of a list
of PM instances hosting VM instances. Each VM instance hosts a list of
containers. The sizes of these lists vary according to the allocation.

Figure 5.1: Group representation

Although both the GGA-RAC approach (in Section 3.6, Chapter 3) and
the NS-GGA have the same representation, GGA-RAC focues only on the
energy consumption while NS-GGA is a multi-objective algorithm that op-
timizes both objectives. Therefore, NS-GGA requires a different set of op-
erators to achieve this goal.

5.5.3 Initialization

The initialization intends to create a diverse set of solutions. First, we ran-
domly shuffle containers and use First-Fit (FF) heuristic to allocate them
to a set of VM instances with random types (uniformly choose from a
VM table). Then, the VM instances are allocated to a set of PM instances
with FF. The use of FF guarantees valid solutions as well as a consolidated
VM/PM allocation. The initialization is the only operator that is the same
with GGA-RAC because randomly generated solutions are diverse in both
objectives.

5.5. NS-GGA 161

5.5.4 Crossover

We propose a gene-level crossover where PM instances on the chromo-
some are sorted, pair-wisely compared and preserved (see the flowchart in
Figure.5.2). In the first step, the PM instances of a chromosome are sorted
under a criterion, such as CPU utilization or duplication number (intro-
duced later). Then, two PM instances p and p′ from two chromosomes are
compared pair-wisely (e.g., CPU utilization). The winning PM instance
preserves all its content, including all VM instances and containers to the
child. Before copying the containers, we need to check whether these con-
tainers have been allocated. Only the unallocated containers are copied
so that the child solution does not validate the constraint on containers
(Eq. 3.5). If one parent has more PM instances than the other, the extra PM
instances are copied to the child as well. In the end, some containers may
be unallocated and free to be allocated. These free containers are allocated
with the rearrangement operator. After all containers have been allocated to
the child, the empty PM and VM instances in the child are removed.

In order to optimize the two objectives, we apply the crossover twice to
generate one child with each of the two sorting criteria. The first criterion
focuses on optimizing energy consumption. It considers the CPU utiliza-
tion of PM instances and prefers higher utilization. The heuristic considers
that a good solution contains PM instances with higher CPU utilization.
The second criterion intends to improve availability. Therefore, it favors
PM instances with smaller duplication numbers. The duplication number
is the total number of containers hosted by this PM instance that belong to
the same micro-service. The PM instance with a high duplication number
is undesirable because it leads to a high failure rate of applications.

The crossover procedure is similar to the crossover in Chapter 3.6.4.
Hence, it is not repeated.

162 CHAPTER 5. EC FOR MULTI-OBJECTIVE RAC

Figure 5.2: Flowchart of gene-level crossover for NS-GGA.

5.5.5 Rearrangement

To optimize both objectives, rearrangement (see Algorithm.17) inserts free
containers into PM instances using two methods, i.e., an energy-aware
method, and an availability-aware method. Rearrangement randomly se-
lects (50% of chance) a method from the above two methods to insert con-
tainers (line 2). The energy-aware method (line 3 to line 11) attempts to

5.5. NS-GGA 163

Algorithm 17: Rearrangement operator
Input : a target container, a list of PM instances,
Output: a list of PM instances

1 u← Randomly selects from [0, 1];
2 if u > 0.5 then
3 Sort the containers in all VM instances according to Eq.5.17 in

ascending order;
4 for each VM instance do
5 if the two smallest containers in each VM instance can be

replaced by the target container then
6 Replace two containers with the target VM instance;
7 Allocate two containers with FF&RC/FF;

8 end

9 end
10 Allocate the target container with FF&RC/FF;

11 end
12 else
13 for each PM instance do
14 if the target container does not share a micro-service with any

container within the PM instance then
15 Replace a container that has duplicates;
16 Allocate the container with FF&RC/FF;

17 end

18 end

19 end
20 return a list of PM instances;

replace two smaller containers with a larger free container and uses FF
to allocate the smaller containers. We measure the size of a container us-
ing the product of a container’s normalized utilization of resources (see

164 CHAPTER 5. EC FOR MULTI-OBJECTIVE RAC

Eq. 5.17). The energy-aware method first sorts of containers in ascending
order (line 3). This heuristic is based on a basic idea is that it is easy to
allocate small items to bins. The availability-aware method (line 12 to line
19) intends to replace a duplicated container of a micro-service from a PM
instance with a free container (defined in Section 5.5.4).

R =
ζcpu(ci)

Ωcpu(pk)
· ζ

mem(ci)

Ωmem(pk)
(5.17)

5.5.6 Mutation

We design two functions in the mutation operator, unpack and merge. These
two functions are executed in orders. The unpack function improves a
solution by eliminating the inferior part of a solution. The function un-
packs the inferior PM instances according to two criteria, i.e., the PM in-
stances with low CPU utilization and the PM instances with high duplica-
tion numbers.

The unpack operator first sorts the PM instances according to CPU uti-
lization (descending) or duplication number (ascending). The operator
unpacks the PM instances in a roulette wheel style (see Algorithm 18).
That is, the lower-ranking PM instances have a higher chance of being un-
packed. In the beginning, each PM instance in the list is allocated with a
probability (line 3). Then, a randomly generated number of u is compared
with the probability. If u is smaller than the probability, the PM instance
is unpacked, and all its containers are released and added to the free con-
tainer list cList (line 11).

probability =
1− Ωcpu(pk)∑K
k=1 1− Ωcpu(pk)

(5.18)

The second function of mutation is merged. Merge replaces small VM
instances with a larger one. Hence PM instances could release more VM
overheads. It also has two alternative ways; the first one merges two
smallest VM instances in a PM with a large type of VM without violat-

5.5. NS-GGA 165

Algorithm 18: Unpack procedure
Input : a list of PM instances pmList
Output: a list of PM instances pmList, a set of free containers cList

1 cList← null;
2 for Each PM instance p in the pmList do
3 p← probability(p) (see Eq.5.18);
4 end
5 for Each PM instance p do
6 u← Random();
7 if u < p then
8 cList← release(p);
9 end

10 end
11 return pmList and cList;

ing the resource constraint. An alternative way is to enlarge the smallest
VM instance with a large type selected randomly.

5.5.7 Fitness Assignment

The fitness assignment includes three steps. The first step calculates the
objective values. The two objective functions are introduced in the previ-
ous section (see Section 5.3). The energy consumption is calculated accord-
ing to Eq. 5.19 and the availability is calculated according to Eq. 5.20 (see
the equations below). The second step ranks the individuals into multiple
fronts. Based on the fitness values of two objectives, the NS-GGA sorts
the individuals with fast non-dominated sorting and ranked the individ-
uals into fronts. In each front, the individuals are non-dominated to each
other. The first front holds the best individuals. In the third step, crowd-
ing distance measures the density of individuals surrounding a particular
individual.

166 CHAPTER 5. EC FOR MULTI-OBJECTIVE RAC

Fitness 1 =
K∑
k=1

Ek, (5.19)

Fitness 2 = 1−
∑S

s=1 Λ(as)

S
(5.20)

With these steps, a selection operator prefers the individual with a
lower rank. If two individuals are from the same front, the selection prefers
the individual with larger crowding distance.

5.6 Experiments and Results

The goal of the experiment is to test the performance of the proposed al-
gorithm in terms of two objective values: energy consumption and avail-
ability. We conduct experiments and compare our proposed algorithms
with three benchmark algorithms, two rule-based FF&BF/FF [133,245] ap-
proach and a Spread [2] (a method in Kubernetes), and a multi-objective
Non-dominated Sorting dual-chromosome Genetic Algorithm (NS-DGA) approach
extended from the DGA approach proposed in Section 3.5.2, Chapter 3.
Note that there is no existing multi-objective approach to the multi-objective
RAC problem.

5.6.1 Benchmark Algorithms

FF&BF/FF [133, 245] uses three heuristics to allocate containers. It uses
First Fit heuristics to allocate both containers and VM instances and ap-
plies a Best Fit (BF) for selecting VM types for creating new VM instances.
Whenever no available VM instance can host a container, the BF selects a
type of VM which has just enough resource to host the container.

Spread [2] is an approach provided by an open-source container man-
agement tool Kubernetes. The simple rule tries to allocate containers from

5.6. EXPERIMENTS AND RESULTS 167

the micro-services to different PM instances so that it maximizes the avail-
ability of micro-services. Spread iteratively goes through PM instances and
uses FF to select a VM instance to allocate the container. If no VM instance
is available, it will create a VM instance with just enough resources. If no
PM instance is available, a new PM instance is created. After allocating a
container to a PM instance, it always avoids allocating the containers of
the same micro-service to the same PM instance.

NS-DGA-FF combines the original NSGA-II and our proposed single-
objective Dual-chromosome GA with First-Fit decoding (see Section 3.5.2. In
particular, we apply the procedure from NSGA-II and the representation
from DGA-FF. The genetic operators are also from DGA-FF. In DGA-FF, an
individual requires a decoding process to construct a dual-chromosome
into a solution. This approach uses a dual chromosome representation,
which includes two vectors; one represents a permutation of containers,
the other represents the selected VM types. In this case, we applied First-
Fit (FF) decoding because the DGA-FF is competitive with GGA-RAC while
DGA-NF is far worse than GGA-RAC. In previous Chapter 3, we have
shown that the DGA-FF achieved a worse performance in energy con-
sumption compared with GGA-RAC approach. However, However, be-
cause of the different selection criteria between single- and multi-objective
GA algorithms, DGA-FF does not necessary performance badly in multi-
objective problem. Hence, we still compare the NS-GGA with the multi-
objective NS-DGA-FF.

5.6.2 Performance Metrics

To compare two multi-objective approaches, NS-GGA and NS-DGA-FF,
we use hypervolume [252] and Inverted Generational Distance (IGD) val-
ues [214] as introduced in Chapter 2.2.3.

The calculation of hypervolume requires a reference point. In this case,
we use (1, 1) because we are minimizing both objectives. We normalize

168 CHAPTER 5. EC FOR MULTI-OBJECTIVE RAC

the fitness values for both objectives into the [0, 1] range with the linear
normalization (Eq.5.21):

normalized x =
x− xmin

xmax − xmin
(5.21)

where x is the fitness value, xmax and xmin is the maximum and mini-
mum value of x. In our experiments, we use the maximum and minimum
values found in the experiments as xmax and xmin. This is because the op-
timum energy consumption is unknown.

Calculating the IGD value needs a true Pareto front. For our problem,
the true Pareto front is unknown. Therefore, an approximated Pareto front
is produced by combining all the solutions produced by the two compared
algorithms and then applying a non-dominated sorting to obtain the fi-
nal non-dominated set. The approximated Pareto front dominates all the
other solutions we found.

5.6.3 Datasets and Test Instances

We design 8 test instances (see Table.5.2) with increasing number of appli-
cations from 50 to 200. For each application, we generate a maximum
of 5 micro-services. Each micro-service has several replicas/containers
selected from 2 to 5. We use a real-world application trace (AuverGrid
trace [189]). We generate the containers using the same way as in Section
3.7.1, Chapter 3. We set a crush rate of 2.5% for PM instances.

For the settings of PM and VM types, we assume homogeneous PM
instances which have eight cores and the total capacity is [13200 MHz,
16000 MB]. The maximum energy consumption for the PM is set to 540
KWh. This setting has been used in [133]. We design two sets of VM
types (see Table 5.3), i.e., real-world VM types (20 types from Amazon
EC2) and a synthetic set of VM types (10 types). The real-world VM types
are proportional, while the synthetic ones are randomly generated. The
CPU and memory of synthetic VM types are sampled from [0, 3300 MHz]

5.6. EXPERIMENTS AND RESULTS 169

and [0, 4000 MB], representing the capacity of one core.

Table 5.2: test instances

instance VM types number of applications

1
synthetic
VM types

50
2 100
3 150
4 200

5
real-world
VM types

50
6 100
7 150
8 200

5.6.4 Parameter Settings

The parameter settings for NS-DGA-FF is listed in Table 5.4. In addition to
our proposed operators, we apply the elitism [30] with size 5 and tourna-
ment selection [144] with size 2. These methods are standard and widely
applied.

All algorithms were implemented in Java version 8, and the experi-
ments were conducted on i7-4790 3.6 GHz with 8 GB of RAM running
Linux Arch 4.14.15. We applied the Wilcoxon rank-sum test to test the
statistical significance.

5.6.5 Experiment Results and Analysis

The overall performance of our proposed NS-GGA is much better than the
other three algorithms. Figure.5.3 and 5.4 show the performance of solu-
tions found in two single-objective algorithms and our proposed NS-GGA.
Figure.5.6 and 5.7 compare the performance between two multi-objective

170 CHAPTER 5. EC FOR MULTI-OBJECTIVE RAC

Table 5.3: VM types

real world VM types

VM types [CPU, Memory] VM types [CPU, Memory]

1 [206.25, 250] 11 [825, 2000]
2 [412.5, 500] 12 [1650, 250]
3 [825, 1000] 13 [1650, 500]
4 [1650, 2000] 14 [1650, 1000]
5 [412.5, 250] 15 [412.5, 937.5]
6 [412.5, 1000] 16 [825, 1875]
7 [825, 4000] 17 [1650, 3750]
8 [206.25, 500] 18 [412.5, 1312.5]
9 [412.5, 2000] 19 [825, 2625]

10 [412.5, 4000] 20 [2475, 2625]

synthetic VM types

1 [719, 2005] 6 [1311, 3238]
2 [917, 951] 7 [1363, 2634]
3 [1032, 1009] 8 [1648, 1538]
4 [1135, 3542] 9 [2047, 1181]
5 [1231, 1989] 10 [2100, 3013]

approaches, NS-DGA-FF and NS-GGA. Table 5.5 shows the detailed com-
parison of hypervolume and IGD values from two multi-objective ap-
proaches.

Our proposed NS-GGA is much better than the two baseline algorithms,
Spread and FF&BF/FF. In Figure.5.3 and 5.4, we plot the best results of
30 runs from NS-GGA and solutions from rule-based approaches. As we
minimize both energy consumption and the failure probability, better re-
sults are closer to the original point. These results show a similar pattern.
Firstly, Spread always has the best availability throughout all test cases. In

5.6. EXPERIMENTS AND RESULTS 171

Table 5.4: Parameter Settings

Parameter Description

mutation rate 0.1
crossover rate 0.7
elitism top 5 individuals
Number of generations 100
Population 100
Selection tournament selection (size = 2)

the meanwhile, it also performs poorly in terms of energy consumption.
Secondly, FF&BF/FF always gains the worst availability. Thirdly, our pro-
posed NS-GGA achieves the best results in both objectives.

Spread is best in availability and performed poorly in energy consump-
tion because it allocates containers as spread as possible. In the mean-
while, it does not consider the number of PM instances and uses as many
as possible. Consequently, Spread uses much more PM instances than other
algorithms.

FF&BF/FF has a high energy consumption and failure probability due
to two disadvantages. Firstly, using FF to allocate containers according to
the original sequence, applications by applications, cause most containers
for the same micro-services are allocated in the same PM instance. Hence,
the failure probability is high. Secondly, BF selects the smallest possible
type of VM to allocate a container. This strategy creates many instances of
small VM instances that cause a large amount of VM overheads and frag-
mented VM instance resources that cannot be used. The number of VM
instances can be seen in Figure.5.5. FF&BF/FF creates the biggest num-
ber of VM instances and then followed by Spread. Both multi-objective
approaches use much fewer VM instances.

Comparing with two multi-objective approaches, our proposed NS-
GGA dominate NS-DGA-FF. Figure 5.6 and 5.7 show the results from a

172 CHAPTER 5. EC FOR MULTI-OBJECTIVE RAC

0.000

0.001

0.002

0.003

0.004

4000 4200 4400 4600
Energy (Kwh)

F
a

il
u

re

FF&BF/FF Spread NS−GGA

(a) Test case 1

0.000

0.001

0.002

0.003

8500 9000 9500 10000
Energy (Kwh)

F
a

il
u

re

FF&BF/FF Spread NS−GGA

(b) Test case 2

0.000

0.001

0.002

0.003

11000 11500 12000 12500
Energy (Kwh)

F
a

il
u

re

FF&BF/FF Spread NS−GGA

(c) Test case 3

0.000

0.001

0.002

0.003

0.004

15000 15500 16000 16500
Energy (Kwh)

F
a

il
u

re

FF&BF/FF Spread NS−GGA

(d) Test case 4

Figure 5.3: The best solutions found in three algorithms in test cases 1 to 4.

single run from two algorithms. The run includes the median hypervol-
ume value among all 30 runs. NS-GGA clearly achieves better convergence
than the NS-DGA-FF in all test cases. In Table 5.5, we can observe that
NS-GGA performs better in both the hypervolume (bigger the better) and
IGD value (smaller the better). The bigger hypervolume values indicate
the better convergence of NS-GGA. The smaller IGD values refer to better
coverage of the solutions from NS-GGA to the true Pareto front. The cov-
erage means that the solutions from NS-GGA can cover more regions on
the true Pareto front than NS-DGA-FF.

The main reason that causes the outperformance of NS-GGA over NS-
DGA-FF is that NS-GGA uses a group representation. In NS-DGA-FF, be-
cause the vector-based representation needs to be decoded to evaluate,

5.6. EXPERIMENTS AND RESULTS 173

0.000

0.001

0.002

0.003

4500 5000 5500
Energy (Kwh)

F
a

il
u

re

FF&BF/FF Spread NS−GGA

(a) Test case 5

0.000

0.001

0.002

0.003

9000 10000 11000 12000
Energy (Kwh)

F
a

il
u

re

FF&BF/FF Spread NS−GGA

(b) Test case 6

0.000

0.001

0.002

0.003

0.004

12000 13000 14000 15000
Energy (Kwh)

F
a

il
u

re

FF&BF/FF Spread NS−GGA

(c) Test case 7

0.000

0.001

0.002

0.003

0.004

16000 17000 18000 19000 20000
Energy (Kwh)

F
a

il
u

re

FF&BF/FF Spread NS−GGA

(d) Test case 8

Figure 5.4: The best solutions found in three algorithms in test cases 5 to 8.

the search and evaluation are separated in genotype space and phenotype
space. Human-designed heuristics can hardly be used in the search pro-
cess because of this separation. NS-DGA-FF can only rely on stochastic
search without any domain knowledge. In contrast, our group represen-
tation does not require a decoding process. Hence, it is easy to embed
heuristics in the operators to improve the performance, such as the switch
of containers in the rearrangement operator.

It is easy to observe that during the evolution process both objectives
are improving. Figure.5.8 shows the evolution of the Pareto front from
test case 8. Different colors of circles (from red to orange) represent the
solutions from generation 1 to 100. In the beginning (red circles), both the
solutions are much worse in both objectives. Later generations of solutions

174 CHAPTER 5. EC FOR MULTI-OBJECTIVE RAC

0

100

200

300

50 100 150 200
Number of applications

N
u

m
b

e
r

o
f

V
M

s

FF&BF/FF Spread NS−DGA−FF NS−GGA

0

300

600

900

50 100 150 200
Number of applications

N
u

m
b

e
r

o
f

V
M

s

FF&BF/FF Spread NS−DGA−FF NS−GGA

Figure 5.5: Number of VM instances that four algorithms used in the syn-
thetic VM types (right) and real-world VM types (left).

are pushed towards the original point, and we may observe the solutions
are converging with more and more solutions are overlapping.

5.7 Chapter Summary

The overall goal of this chapter was to propose a NS-GGA approach to
solve the multi-objective resource allocation in container-based clouds (RAC)
problem. Three objectives were accomplished to achieve this goal. (1)
We proposed a multi-objective RAC problem model; (2) Our proposed
NS-GGA adopts a group-based representation and embedded with bin-
packing heuristics in the genetic operators. (3) We run experiments on
real-world datasets with comparison with three state-of-the-art algorithms:
FF&BF/FF, Spread, and a NS-DGA. The results show that our proposed NS-
GGA approach outperforms all other approaches in both objectives. Also,
our approach provides a set of solutions that has a trade-off between en-
ergy consumption and availability.

For cloud providers, our proposed NS-GGA approach offers an advan-

5.7. CHAPTER SUMMARY 175

1e−05

2e−05

3e−05

4e−05

4330 4340 4350 4360 4370 4380
Energy (kwh)

F
a

il
u

re

NS−DGA−FF NS−GGA

(a) Test case 1

2.0e−05

2.4e−05

2.8e−05

3.2e−05

8400 8500 8600 8700 8800
Energy (kwh)

F
a

il
u

re

NS−DGA−FF NS−GGA

(b) Test case 2

0.00005

0.00010

0.00015

0.00020

11250 11500 11750
Energy (kwh)

F
a

il
u

re

NS−DGA−FF NS−GGA

(c) Test case 3

0.00004

0.00008

0.00012

0.00016

15000 15250 15500 15750
Energy (kwh)

F
a

il
u

re

NS−DGA−FF NS−GGA

(d) Test case 4

Figure 5.6: The median solutions found in NS-GGA and NS-DGA-FF in
test cases 1 to 4.

tage. It provides a set of solutions that has a trade-off between energy
consumption and availability. Cloud providers can select a solution based
on their preferences.

176 CHAPTER 5. EC FOR MULTI-OBJECTIVE RAC

5.0e−06

1.0e−05

1.5e−05

4400 4500 4600 4700
Energy (kwh)

F
a

il
u

re

NS−DGA−FF NS−GGA

(a) Test case 5

2.0e−05

2.4e−05

2.8e−05

3.2e−05

8750 9000 9250 9500 9750 10000
Energy (kwh)

F
a

il
u

re

NS−DGA−FF NS−GGA

(b) Test case 6

1.4e−05

1.6e−05

1.8e−05

2.0e−05

2.2e−05

11750 12000 12250 12500 12750 13000
Energy (kwh)

F
a

il
u

re

NS−DGA−FF NS−GGA

(c) Test case 7

2.4e−05

2.6e−05

2.8e−05

16000 16500 17000
Energy (kwh)

F
a

il
u

re

NS−DGA−FF NS−GGA

(d) Test case 8

Figure 5.7: The median solutions found in NS-GGA and NS-DGA-FF in
test cases 5 to 8.

Table 5.5: The comparison of hypervolume and IGD values between NS-
DGA-FF and NS-GGA

instance Method HV (avg ± sd) IGD (avg ± sd) instance Method HV (avg ± sd) IGD (avg ± sd)

instance 1
NS-GGA

NS-DGA-FF
0.64 ± 0.19
0.50 ± 0.00

0.15 ± 0.06
0.2 ± 0.003

instance 5
NS-GGA

NS-DGA-FF
0.97 ± 0.00
0.91 ± 0.06

0.02 ± 0.02
0.04 ± 0.06

instance 2
NS-GGA

NS-DGA-FF
0.96 ± 0.14
0.69 ± 0.20

0.03 ± 0.03
0.21 ± 0.16

instance 6
NS-GGA

NS-DGA-FF
0.97 ± 0.00
0.81 ± 0.11

0.01 ± 0.005
0.13 ± 0.09

instance 3
NS-GGA

NS-DGA-FF
0.78 ± 0.20
0.49 ± 0.00

0.12 ± 0.12
0.31 ± 0.006

instance 7
NS-GGA

NS-DGA-FF
0.82 ± 0.05
0.64 ± 0.08

0.04 ± 0.01
0.15 ± 0.05

instance 4
NS-GGA

NS-DGA-FF
0.95 ± 0.15
0.50 ± 0.06

0.02 ± 0.01
0.39 ± 0.05

instance 8
NS-GGA

NS-DGA-FF
0.82 ± 0.05
0.66 ± 0.06

0.09 ± 0.02
0.18 ± 0.04

5.7. CHAPTER SUMMARY 177

2.5e−05

3.0e−05

3.5e−05

4.0e−05

15750 16000 16250 16500 16750 17000
Energy(Kwh)

F
a
il
u

re

1 40 60 80 100

Figure 5.8: The evolution of Pareto front in NS-GGA from test case 8 run
27.

178 CHAPTER 5. EC FOR MULTI-OBJECTIVE RAC

Chapter 6

Conclusions

The overall goal of this thesis was to improve the performance (e.g., en-
ergy efficiency and availability of applications) of the resource allocation in
container-based clouds (RAC). This goal was fulfilled by proposing evolu-
tionary computation (EC) techniques combined with heuristics for differ-
ent resource allocation problem scenarios, namely off-line RAC problem,
on-line RAC problem, and multi-objective RAC problem. For each sce-
nario, we first proposed a formal model that captures the key features of
the studied problem. Then, we developed and analyzed appropriate EC-
based algorithms based on the characteristics of these scenarios. Specif-
ically, we investigated and proposed different representations, decoding
strategies, and specialized genetic operators for solving these problems.
These proposed algorithms were compared with state-of-the-art approaches
using real-world datasets. Finally, we analyzed the advantages and disad-
vantages of each approach and provided insights to cloud providers and
algorithm designers.

This remainder of this chapter is organized as follows. Section 6.1 out-
lines the objectives that were achieved in this thesis. Section 6.2 presents
the main conclusions reached in this work. Section 6.3 explores possible
future work directions.

179

180 CHAPTER 6. CONCLUSIONS

6.1 Achieved Objectives

The following objectives were achieved in this thesis.

1. This research starts from the modeling of the off-line RAC problem in
Chapter 3. This model formally defines the objective, variables, and
constraints of the two-level RAC problem. Then, this chapter pro-
poses three genetic algorithms (GA)-based approaches for solving
the off-line RAC problem. These approaches are developed based on
two types of representations, vector-based and group-based. Specif-
ically, the vector-based representation encodes resource allocation
with vectors of numbers. This representation requires a decoding
process to translate an individual into a solution. We develop two
approaches, the single-chromosome GA (SGA) and dual-chromosome GA
(DGA). Different representations and decoding processes were pro-
posed and discussed. Then, we investigated the group-based repre-
sentation and proposed a group-based GA (GGA) approach. One of
the key contributions of the GGA is that the genetic operators, which
are embedded with bin-packing heuristics, can modify the group
structures both at the containers–VMs level and the VMs–PMs level.
Experiments show that the DGA is fast and good at solving small-
scale allocation problems (e.g., fewer than 500 containers). The GGA
approach, although having a slower convergence than the DGA, can
find better solutions for large-scale problems.

2. This thesis has proposed hyper-heuristics for the on-line RAC prob-
lem. To the best of our knowledge, it is the first time hyper-heuristic
algorithms are used to automatically generate heuristics for resource
allocation in clouds (Chapter 4). Instead of directly solving an on-
line allocation problem, the proposed hyper-heuristic algorithm can
generate a heuristic, that can generate a solution on-line. Hyper-
heuristic approaches are particularly promising in solving on-line
problems because they are trained off-line and can be used on-line.

6.1. ACHIEVED OBJECTIVES 181

Additionally, hyper-heuristics are able to learn the structure of good
heuristics automatically. We propose two approaches, a genetic pro-
gramming hyper-heuristic (GPHH) approach, namely GPHH-RAC,
and a cooperative coevolution GP (CCGP) approach, namely CCGP-
RAC. New terminal sets and training procedures were developed
for these approaches. Experiments show that both GPHH-RAC and
CCGP-RAC approaches can achieve better performance than human-
design heuristics. In addition, CCGP-RAC achieves the best perfor-
mance by evolving heuristics for resource allocation on both containers–
VMs and VMs–PMs levels. The analysis shows that the inflexible
design of human-designed on-line allocation heuristics can lead to
low utilization of PMs (known as VM sprawl). On the contrary, the
generated heuristics could discover non-linear functions to decide
an allocation based on given features (e.g., remaining resources in
VMs/PMs), which are difficult for human experts to manually de-
sign.

3. This thesis has proposed a multi-objective approach, NS-GGA, to
solving the multi-objective RAC problem with the objective of min-
imizing energy consumption and maximizing availability of applica-
tions (Chapter 5). The multi-objective problem in two-level container-
based clouds had never been studied previously. We propose domain-
specific genetic operators that can balance these two objectives and
achieve better performance than the existing algorithms. Experimen-
tal results show that the NS-GGA approach can successfully evolve
trade-off solutions for cloud providers to choose based on their prefer-
ences, which are significantly better than the solutions obtained by
other single-objective approaches such as rule-based heuristic, and
another multi-objective vector-based GA.

182 CHAPTER 6. CONCLUSIONS

6.2 Conclusions

This section outlines the main contributions presented in this thesis. The
above contributions are interconnected to address the research goal in Fig-
ure 6.1.

The rest of the subsections summarize these contributions. Firstly, three
problem models were proposed from Chapter 3 to Chapter 5. The mod-
els of on-line RAC and multi-objective RAC problems are extended from
the model of off-line RAC problem. In all scenarios studied in this thesis,
the allocation algorithms optimize the objective of energy consumption.
Secondly, vector-based and group-based representations were developed.
Multiple GA operators were designed for these representations. Thirdly,
hyper-heuristic-based methods (e.g., CCGP and GPHH) were proposed
for the on-line problem. Lastly, a multi-objective algorithm, namely NS-
GGA, is proposed to optimize two objectives, energy consumption and
availability of applications. Moreover, the models and algortihms can be
extended to solve other similar problems, e.g., allocating workloads with
additional objectives and constraints, e.g., network latency.

6.2.1 Problem Models

This thesis proposes three novel problem models for three problem sce-
narios. Four decision-making procedures, i.e. VM selection, VM creation,
PM selection, and PM creation, were identified in the two-level RAC prob-
lem. We proposed formal models of the RAC problem, including objec-
tives, variables, and constraints. The new relationships between contain-
ers, VMs, and their overheads, various types of VM, and an affinity con-
straint, i.e., Operating Systems, are considered in the models. These mod-
els can be used to evaluate allocation algorithms.

6.2. CONCLUSIONS 183

Figure 6.1: Illustration of thesis contributions.

6.2.2 Vector-based and Group-based Representations

This thesis proposes several novel schemes to represent the solutions of
the off-line RAC problem so that they can be optimized using evolution-
ary computation algorithms. This includes a vector-based representation,
where the allocation of containers and VMs are represented as vectors of
integers. The vector-based representation must be decoded into a cor-
responding allocation in order to be evaluated. The major advantage of
vector-based representation is its ability of using existing genetic vector-
based genetic operators to search for solutions. The group-based represen-
tation is intuitive. Since it directly represents the allocation of containers,
VM instances, and PM instances in groups, and does not require a de-
coding procedure. We have designed problem-specific genetic operators
based on the group-based representation to evolve the solutions, mean-
while also ensuring the validity of the solutions. For algorithm design-

184 CHAPTER 6. CONCLUSIONS

ers, the vector-based representation can be used to achieve fast allocation,
since the existing operators can be applied. The group-based representa-
tion can achieve better performance if effective heuristics are used.

6.2.3 Complexity of Genetic Operations

This thesis also proposes novel problem-specific genetic operators to be
used during the evolutionary processes. Specifically, in the GGA-RAC
for the off-line RAC problem, novel bin-packing heuristics are designed
to solve the two-level RAC problem. When compared with vector-based
GAs that use generic search operators, our proposed GGA-RAC uses more
effective problem-specific genetic operators to find solutions. Although
the complexity of the proposed group-based operators is higher than the
generic operators, the computation time is acceptable for off-line prob-
lems.

6.2.4 Hyper-Heuristic Framework

This thesis proposes two novel contributions in solving the on-line RAC
problem. The first contribution is the GPHH-RAC approach using reservation-
based heuristics. The novel approach combines two decision-making pro-
cedures, VM selection and VM creation, into a single procedure and uses the
generated heuristics to decide whether a container is allocated to an exist-
ing VM instance or a new VM instance with selected type. The reservation-
based heuristics are more flexible than AnyFit-based heuristics, where con-
tainers are always allocated to existing VMs first. The second contribution
is the CCGP-RAC approach that can evolve two cooperative heuristics to
solve the on-line RAC problem. Our on-line RAC approaches can automat-
ically generate adaptive heuristics based on the historical workload data
and the settings of available VMs without the domain knowledge or the
involvement of domain experts.

6.3. FUTURE WORK 185

6.2.5 Insights of Allocation Heuristics

This thesis analyzes both a manually designed rule and automatically gen-
erated heuristics to provide insights for cloud providers and algorithm de-
signers. The analysis shows that human-designed heuristics can lead to
the low utilization of Physical Machines (PMs) (known as VM sprawl).
The reason is that these heuristics do not consider VM types and workload
patterns. On the other hand, the generated heuristics contain non-linear
functions of some problem-related features (e.g., remaining resources in
VMs/PMs). It is impractical for human experts to manually identify these
non-linear functions. This research also shows the interpretability of gen-
erated heuristics from GPHH-RAC and CCGP-RAC. The interpretability is
important for cloud providers to understand why the heuristics are effec-
tive.

6.2.6 Independent Optimization Objectives

This thesis proposes the use of multi-objective evolutionary computing
techniques for independently optimizing RAC with two objectives, mini-
mizing energy consumption and maximizing availability of applications.
Our novel approach combines the group-based representation and an NSGA-
II framework. The proposed approach is compared at the industrial allo-
cation algorithms and another multi-objective algorithm. Our proposed
NS-GGA provides a set of solutions that has a better trade-off between en-
ergy consumption and availability. Cloud providers can select a solution
based on their preferences.

6.3 Future work

Due to the scope of this research, there are still some areas for potential
extensions and future work. This section briefly gives some directions to
readers.

186 CHAPTER 6. CONCLUSIONS

6.3.1 Hybrid Approach of Vector-based and Group-based

Representation

Intuitively, a hybrid approach using both vector-based and group-based
representations in an evolutionary algorithm may lead to better perfor-
mance than applying them individually. As discussed in Chapter 3, vector-
based, and group-based representations can be used to complement each
other. Specifically, the vector-based representation can be used in explo-
ration phases because it is easy and fast to search stochastically. The group-
based representation, on the other hand, can be used in exploitation phases
because domain knowledge and heuristics can be embedded into the local
search operators (e.g., mutation). Hence, one way to employ both rep-
resentations is to use a population that is initialized with vector-based
represetation. During the local search phase, the local search operators
were applied to the decoded population. Then, the population switches to
vector-based representation again.

6.3.2 Time Sequence Analysis for Resource Requirement

of Applications

Cloud environments are high dynamic, meaning that applications’ resource
requirements fluctuate over time. Our current work, including all three
problem scenarios, makes the allocation decisions based on a single record
of resource requirements, i.e., a pair of CPU and memory requirements of
an application. For off-line scenarios, such as initial container allocation,
it is a common approach because there is no monitoring data of an un-
allocated application. However, for on-line scenarios, the time sequence
analysis can be useful because we need to avoid allocating applications
with the same peak time. Furthermore, the time analysis can provide more
evidence to develop strategies for proactive approaches. That is, we may
handle the upcoming loads in advance. For developing hyper-heuristic
approaches, time sequence-related features and novel training procedures

6.3. FUTURE WORK 187

need to be introduced and developed.

6.3.3 Multi-Objective Hyper-Heuristic Approaches

On-line RAC may need to consider multiple optimization objectives. Cur-
rently, our proposed approaches in on-line scenarios focus on allocating
independent containers. Similar to the multi-objective scenario in Chapter
5, the dependencies among containers could be considered. Hence, other
QoS objectives, e.g., availability and the data transmission time, overall re-
sponse time, need to be considered. Additionally, a multi-objective genetic
programming based hyper-heuristic method can be developed to gener-
ate allocation heuristics automatically. In order to handle conflicting ob-
jectives, Had-MOEA [222] algorithm can be applied to explore the Pareto
front of non-dominated allocation heuristics regarding the objectives men-
tioned above.

6.3.4 Lifelong Learning Hyper-heuristics for Allocation

Heuristics

The resource requirement of applications changes over time. The auto-
matically generated heuristics must also continuously evolve in order to
remain effective. One way of doing this is to periodically use our proposed
GPHH approaches on recently collected data to refine the rules. However,
this also begs the question of how often cloud providers should refine the
heuristics. Another approach of continuously evolving heuristics is devel-
oping an artificial immune system (AIS)-based approach [193]. AIS has
been used to evolve allocation heuristics for 1D-bin packing problems,
and it shows excellent performance [193]. AIS can continuously replace
old heuristics with new ones when learning new tasks.

188 CHAPTER 6. CONCLUSIONS

6.3.5 Location-aware Allocation in Container-based Clouds

Container-based clouds have become a popular choice for fog and edge
computing [41, 42]. The container-based virtualization is lightweight and
much flexible than VM-based clouds. This new combination of contain-
ers and Internet of Thing (IoT) brings new challenges. One of them is the
additional consideration of geographical distances and network latencies
between the correlated containers. New problem models will need to con-
sider not only the resource allocation of containers but also the response
time among locations. Also, the workflows of containers and replicas have
a significant impact on the design of allocation algorithms.

Bibliography

[1] 2019 container adoption survey. https://

portworx.com/wp-content/uploads/2019/05/

2019-container-adoption-survey.pdf. Accessed: 2020-09-
24.

[2] Advanced scheduling in kubernetes. https://kubernetes.io/
blog/2017/03/advanced-scheduling-in-kubernetes/.
Accessed: 2019-12-12.

[3] Amazon ec2. https://aws.amazon.com/ec2/?nc1=h_ls. Ac-
cessed: 2020-04-27.

[4] Amazon ec2 instance types. https://aws.amazon.com/ec2/

instance-types/. Accessed: 2020-04-27.

[5] Amazon elastic container service. https://aws.amazon.com/

ecs/. Accessed: 2020-1-22.

[6] Aws lambda, run code without thinking about servers. pay only
for the compute time you consume. https://aws.amazon.com/
lambda/. Accessed: 2020-1-22.

[7] Aws service level agreements (slas). https://aws.amazon.com/
legal/service-level-agreements/?nc1=h_ls. Accessed:
2020-03-26.

189

190 BIBLIOGRAPHY

[8] Function as a service. https://www.ibm.com/cloud/learn/

faas. Accessed: 2020-03-26.

[9] Google app engine. https://cloud.google.com/appengine.
Accessed: 2020-03-26.

[10] Openshift. https://www.openshift.com/. Accessed: 2020-1-
22.

[11] Revenue share of global server operating system
market in 2015, by operating system. https:

//www.statista.com/statistics/639574/

worldwide-server-operating-system-market-share/.
Accessed: 2018-10-05.

[12] The state of container-based app development. https://www.

ibm.com/downloads/cas/BBKLLK1L. Accessed: 2020-09-16.

[13] ABRAHAM, A., AND JAIN, L. Evolutionary Multiobjective Optimiza-
tion. Springer, London, 2005, pp. 1–6.

[14] ADHIKARI, V. K., GUO, Y., HAO, F., VARVELLO, M., HILT, V.,
STEINER, M., AND ZHANG, Z. L. Unreeling netflix: Understand-
ing and improving multi-CDN movie delivery. In International
Conference on Computer Communications (INFOCOM) (2012), IEEE,
pp. 1620–1628.

[15] AGRAWAL, R. B., DEB, K., AND AGRAWAL, R. Simulated binary
crossover for continuous search space. Complex systems 9, 2 (1995),
115–148.

[16] AJIRO, Y., AND TANAKA, A. Improving packing algorithms for
server consolidation. In International Computer Measurement Group
Conference (CMG) (2007), vol. 253, Computer Measurement Group,
pp. 399–406.

BIBLIOGRAPHY 191

[17] ALLEN, S., BURKE, E. K., HYDE, M., AND KENDALL, G. Evolv-
ing Reusable 3D Packing Heuristics with Genetic Programming. In
Conference on Genetic and Evolutionary Computation (GECCO) (2009),
ACM, pp. 931–938.

[18] ARAKAKI, R. K., AND USBERTI, F. L. Hybrid genetic algorithm for
the open capacitated arc routing problem. Computers & Operations
Research 90 (2018), 221–231.

[19] ASHLOCK, D., MCGUINNESS, C., AND ASHLOCK, W. Representa-
tion in Evolutionary Computation. Springer, Berlin, Heidelberg, 2012,
p. 77–97.

[20] BÄCK, T., FOGEL, D. B., AND MICHALEWICZ, Z. Handbook of evolu-
tionary computation. CRC Press, 1997.

[21] BALDINI, I., CASTRO, P., CHANG, K., CHENG, P., FINK, S.,
ISHAKIAN, V., MITCHELL, N., MUTHUSAMY, V., RABBAH, R.,
SLOMINSKI, A., ET AL. Serverless computing: Current trends and
open problems. In Research Advances in Cloud Computing. Springer,
2017, pp. 1–20.

[22] BANZHAF, W., NORDIN, P., KELLER, R. E., AND FRANCONE, F. D.
Genetic programming. Springer, 1998.

[23] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S., HARRIS, T.,
HO, A., NEUGEBAUER, R., PRATT, I., AND WARFIELD, A. Xen and
the art of virtualization. In Symposium on Operating systems principles
(SOSP) (2003), ACM, p. 164.

[24] BEAUMONT, O., EYRAUD-DUBOIS, L., AND LARCHEVÊQUE, H. Re-
liable service allocation in clouds. In International Symposium on Par-
allel and Distributed Processing (IPDPS) (2013), IEEE, pp. 55–66.

192 BIBLIOGRAPHY

[25] BELOGLAZOV, A., ABAWAJY, J., AND BUYYA, R. Energy-aware re-
source allocation heuristics for efficient management of data cen-
ters for Cloud computing. Future Generation Computer Systems 28, 5
(2011), 755–768.

[26] BELOGLAZOV, A., AND BUYYA, R. Adaptive Threshold-Based Ap-
proach for Energy-Efficient Consolidation of Virtual Machines in
Cloud Data Centers. In International Workshop on Middleware for
Grids, Clouds and e-Science (MGC) (2011), p. 6.

[27] BELOGLAZOV, A., AND BUYYA, R. Optimal online deterministic
algorithms and adaptive heuristics for energy and performance effi-
cient dynamic consolidation of virtual machines in Cloud data cen-
ters. Concurrency Computation Practice and Experience 24, 13 (2012),
1397–1420.

[28] BELOGLAZOV, A., AND BUYYA, R. Managing overloaded hosts for
dynamic consolidation of virtual machines in cloud data centers un-
der quality of service constraints. IEEE Transactions on Parallel and
Distributed Systems 24, 7 (2013), 1366–1379.

[29] BERNSTEIN, D. Containers and cloud: From LXC to docker to ku-
bernetes. IEEE Cloud Computing 1, 3 (2014), 81–84.

[30] BHANDARI, D., MURTHY, C., AND PAL, S. K. Genetic algorithm
with elitist model and its convergence. International journal of pattern
recognition and artificial intelligence 10, 06 (1996), 731–747.

[31] BONISSONE, P. P., SUBBU, R., EKLUND, N., AND KIEHL, T. R. Evo-
lutionary algorithms + domain knowledge = real-world evolution-
ary computation. IEEE Transactions on Evolutionary Computation 10,
3 (2006), 256–280.

BIBLIOGRAPHY 193

[32] BRAEKERS, K., RAMAEKERS, K., AND VAN NIEUWENHUYSE, I. The
vehicle routing problem: State of the art classification and review.
Computers & Industrial Engineering 99 (2016), 300–313.

[33] BRANKE, J., NGUYEN, S., PICKARDT, C. W., AND ZHANG, M. Au-
tomated Design of Production Scheduling Heuristics: A Review.
IEEE Transactions on Evolutionary Computation 20, 1 (2016), 110–124.

[34] BURKE, E. K., HYDE, M., KENDALL, G., AND WOODWARD, J. A
Genetic Programming Hyper-Heuristic Approach for Evolving 2-D
Strip Packing Heuristics. IEEE Transactions on Evolutionary Computa-
tion 14, 6 (2010), 942–958.

[35] BURKE, E. K., HYDE, M. R., AND KENDALL, G. Evolving bin pack-
ing heuristics with genetic programming. In Parallel Problem Solving
from Nature (PPSN) (2006), Springer, pp. 860––869.

[36] BURKE, E. K., HYDE, M. R., KENDALL, G., OCHOA, G., ÖZCAN,
E., AND WOODWARD, J. R. A Classification of Hyper-Heuristic Ap-
proaches: Revisited. Springer, 2019, pp. 453–477.

[37] BURKE, E. K., HYDE, M. R., KENDALL, G., AND WOODWARD, J.
Automating the packing heuristic design process with genetic pro-
gramming. Evolutionary computation 20, 1 (2012), 63–89.

[38] BUYYA, R., GARG, S. K., AND CALHEIROS, R. N. Sla-oriented re-
source provisioning for cloud computing: Challenges, architecture,
and solutions. In International Conference on Cloud and Service com-
puting (2011), IEEE, pp. 1–10.

[39] CALZAROSSA, M. C., MASSARI, L., AND TESSERA, D. Workload
characterization: A survey revisited. ACM Computing Surveys 48, 3
(2016), 1–43.

194 BIBLIOGRAPHY

[40] CAO, J., JARVIS, S. A., SAINI, S., AND NUDD, G. R. Gridflow:
Workflow management for grid computing. In IEEE/ACM Interna-
tional Symposium on Cluster Computing and the Grid (CCGRID) (2003),
IEEE, pp. 198–205.

[41] CELESTI, A., FAZIO, M., GIACOBBE, M., PULIAFITO, A., AND VIL-
LARI, M. Characterizing cloud federation in IoT. In International
Conference on Advanced Information Networking and Applications Work-
shops (WAINA) (2016), IEEE, pp. 93–98.

[42] CELESTI, A., MULFARI, D., FAZIO, M., VILLARI, M., AND PULI-
AFITO, A. Exploring container virtualization in IoT clouds. In Inter-
national Conference on Smart Computing (SMARTCOMP) (2016), IEEE,
pp. 1–6.

[43] CH., R. A java-based evolutionary computation research system.
https://cs.gmu.edu/˜eclab/projects/ecj//. Accessed:
2018-10-05.

[44] CHAWLA, Y., AND BHONSLE, M. Dynamically optimized cost based
task scheduling in Cloud Computing. International Journal of Emerg-
ing trends & technology in computer science 2, 3 (2013), 38–42.

[45] CHEKURI, C., AND KHANNA, S. On multi-dimensional packing
problems. In Symposium on Discrete Algorithms (SODA) (1999), ACM-
SIAM, pp. 185–194.

[46] CHEN, J., CHIEW, K., YE, D., ZHU, L., AND CHEN, W. AAGA:
Affinity-Aware Grouping for Allocation of Virtual Machines. In In-
ternational Conference on Advanced Information Networking and Appli-
cations (AINA) (2013), IEEE, pp. 235–242.

[47] CHEN, J. C., WU, C.-C., CHEN, C.-W., AND CHEN, K.-H. Flexi-
ble job shop scheduling with parallel machines using Genetic Algo-

BIBLIOGRAPHY 195

rithm and Grouping Genetic Algorithm. Expert Systems with Appli-
cations 39, 11 (2012), 10016–10021.

[48] CHOI, Y. H., AND KIM, J. H. Self-Adaptive Models for Water Distri-
bution System Design Using Single-/Multi-Objective Optimization
Approaches. Water 11, 6 (2019), 1293.

[49] CHRISTENSEN, H. I., KHAN, A., POKUTTA, S., AND TETALI, P. Ap-
proximation and online algorithms for multidimensional bin pack-
ing: A survey. Computer Science Review 24 (2017), 63–79.

[50] COFFMAN, E. G., GAREY, M. R., AND JOHNSON, D. S. Approxima-
tion Algorithms for Bin Packing: A Survey. PWS Publishing Co., 1996,
p. 46–93.

[51] COFFMAN JR., E. G., CSIRIK, J., GALAMBOS, G., MARTELLO, S.,
AND VIGO, D. Bin Packing Approximation Algorithms: Survey and
Classification. Springer, 2013, pp. 455–531.

[52] D. SREENIVASAN, P. GAYATHRI, R. ANITHA, AND P. DHIVYA. Op-
timization of resource provisioning in cloud. IEEE transactions on
service computing 5, 2 (2012), 14–16.

[53] DAWOUD, W., TAKOUNA, I., AND MEINEL, C. Elastic virtual ma-
chine for fine-grained cloud resource provisioning. In International
Conference on Computing and Communication Systems (I3CS) (2011),
Springer, pp. 11–25.

[54] DAYARATHNA, M., WEN, Y., AND FAN, R. Data center energy con-
sumption modeling: A survey. IEEE Communications Surveys Tutori-
als 18, 1 (2016), 732–794.

[55] DE CAUWER, M., MEHTA, D., AND O’SULLIVAN, B. The Temporal
Bin Packing Problem: An Application to Workload Management in

196 BIBLIOGRAPHY

Data Centres. In International Conference on Tools with Artificial Intel-
ligence (ICTAI) (2016), IEEE, pp. 157–164.

[56] DEAN, J., AND GHEMAWAT, S. Mapreduce: simplified data pro-
cessing on large clusters. Communications of the ACM 51, 1 (2008),
107–113.

[57] DEB, K., PRATAP, A., AGARWAL, S., AND MEYARIVAN, T. A fast
and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transac-
tions on Evolutionary Computation 6, 2 (2002), 182–197.

[58] DEELMAN, E., SINGH, G., SU, M.-H., BLYTHE, J., GIL, Y., KESSEL-
MAN, C., MEHTA, G., VAHI, K., BERRIMAN, G. B., GOOD, J., ET AL.
Pegasus: A framework for mapping complex scientific workflows
onto distributed systems. Scientific Programming 13, 3 (2005), 219–
237.

[59] DUA, R., RAJA, A. R., AND KAKADIA, D. Virtualization vs con-
tainerization to support PaaS. In International Conference on Cloud
Engineering (IC2E) (2014), IEEE, pp. 610–614.

[60] EBERT, C., GALLARDO, G., HERNANTES, J., AND SERRANO, N. De-
vops. Software 33, 3 (2016), 94–100.

[61] FALKENAUER, E. A hybrid grouping genetic algorithm for bin pack-
ing. Journal of heuristics 2, 1 (1996), 5–30.

[62] FAN, C., WANG, Y., AND WEN, Z. Research on Improved 2D-BPSO-
Based VM-Container Hybrid Hierarchical Cloud Resource Schedul-
ing Mechanism. In International Conference on Computer and Informa-
tion Technology (ICCIT) (2016), IEEE, pp. 754–759.

[63] FAN, X., WEBER, W.-D., AND BARROSO, L. A. Power provisioning
for a warehouse-sized computer. ACM SIGARCH Computer Architec-
ture News 35, June (2007), 13.

BIBLIOGRAPHY 197

[64] FANG, D., LIU, X., LIU, L., AND YANG, H. TARGO: Transition and
reallocation based green optimization for cloud VMs. In Interna-
tional Conference on Green Computing and Communications (GreenCom)
(2013), IEEE, pp. 215–223.

[65] FARAHNAKIAN, F., LILJEBERG, P., AND PLOSILA, J. LiRCUP: Linear
regression based CPU usage prediction algorithm for live migration
of virtual machines in data centers. In Euromicro Conference Series on
Software Engineering and Advanced Applications (SEAA) (2013), IEEE,
pp. 357–364.

[66] FELTER, W., FERREIRA, A., RAJAMONY, R., AND RUBIO, J. An up-
dated performance comparison of virtual machines and linux con-
tainers. In International Symposium on Performance Analysis of Systems
and Software (ISPASS) (2015), IEEE, pp. 171–172.

[67] FERDAUS, H., AND MURSHED, M. R. N. C. R. B. Virtual machine
consolidation in cloud data centers using ACO metaheuristic. In
European Conference on Parallel Processing (Euro-Par) (2014), vol. 8632,
pp. 306–317.

[68] FERRETO, T. C., NETTO, M. A., CALHEIROS, R. N., AND DE ROSE,
C. A. Server consolidation with migration control for virtualized
data centers. Future Generation Computer Systems 27, 8 (2011), 1027–
1034.

[69] FOGEL, D. B. The Advantages of Evolutionary Computation. In Bio-
computing and Emergent Computation (BCEC) (1997), World Scientific
Press, p. 1–11.

[70] FORSMAN, M., GLAD, A., LUNDBERG, L., AND ILIE, D. Algorithms
for automated live migration of virtual machines. Journal of Systems
and Software 101 (2015), 110–126.

198 BIBLIOGRAPHY

[71] FREUND, R. F., GHERRITY, M., AMBROSIUS, S., CAMPBELL, M.,
HALDERMAN, M., HENSGEN, D., KEITH, E., KIDD, T., KUSSOW,
M., LIMA, J. D., ET AL. Scheduling resources in multi-user, hetero-
geneous, computing environments with SmartNet. In Heterogeneous
Computing Workshop (HCW) (1998), IEEE, pp. 184–199.

[72] FREY, S., FITTKAU, F., AND HASSELBRING, W. Search-based ge-
netic optimization for deployment and reconfiguration of software
in the cloud. In International Conference on Software Engineering (ICSE)
(2013), pp. 512–521.

[73] FURMENTO, N., LEE, W., MAYER, A., NEWHOUSE, S., AND DAR-
LINGTON, J. ICENI: an open grid service architecture implemented
with Jini. In ACM/IEEE Conference on Supercomputing (SC) (2002),
IEEE, pp. 37–37.

[74] GANESAN, R., SARKAR, S., AND NARAYAN, A. Analysis of SaaS
business platform workloads for sizing and collocation. In Interna-
tional Conference on Cloud Computing (CLOUD) (2012), IEEE, pp. 868–
875.

[75] GAO, C., WANG, H., ZHAI, L., GAO, Y., AND YI, S. An Energy-
aware Ant Colony Algorithm for Network-aware Virtual Machine
Placement in Cloud Computing. In International Conference on Paral-
lel and Distributed Systems (ICPADS) (2016), IEEE, pp. 669–676.

[76] GAO, X., GU, Z., KAYAALP, M., PENDARAKIS, D., AND WANG, H.
ContainerLeaks: Emerging security threats of information leakages
in container clouds. In International Conference on Dependable Systems
and Networks (DSN) (2017), IEEE, pp. 237–248.

[77] GAO, Y., GUAN, H., QI, Z., HOU, Y., AND LIU, L. A multi-objective
ant colony system algorithm for virtual machine placement in cloud
computing. Journal of Computer and System Sciences 1, 8 (2013), 1–13.

BIBLIOGRAPHY 199

[78] GEROFI, B., VASS, Z., AND ISHIKAWA, Y. Utilizing memory content
similarity for improving the performance of highly available virtual
machines. Future Generation Computer Systems 29, 4 (2013), 1085–
1095.

[79] GHOLIPOUR, N., ARIANYAN, E., AND BUYYA, R. A novel energy-
aware resource management technique using joint vm and container
consolidation approach for green computing in cloud data centers.
Simulation Modelling Practice and Theory 104 (2020), 102127.

[80] GIL, Y., DEELMAN, E., ELLISMAN, M., FAHRINGER, T., FOX, G.,
GANNON, D., GOBLE, C., LIVNY, M., MOREAU, L., AND MYERS, J.
Examining the challenges of scientific workflows. Computer 40, 12
(2007), 24–32.

[81] GONG, Y.-J., CHEN, W.-N., ZHAN, Z.-H., ZHANG, J., LI, Y.,
ZHANG, Q., AND LI, J.-J. Distributed evolutionary algorithms and
their models: A survey of the state-of-the-art. Applied Soft Computing
34 (2015), 286–300.

[82] GU, J., HU, J., ZHAO, T., AND SUN, G. A new resource scheduling
strategy based on genetic algorithm in cloud computing environ-
ment. Journal of computers 7, 1 (2012), 42–52.

[83] GUAN, X., WAN, X., CHOI, B., SONG, S., AND ZHU, J. Application
oriented dynamic resource allocation for data centers using docker
containers. IEEE Communications Letters 21, 3 (2017), 504–507.

[84] GUERRERO, C., LERA, I., AND JUIZ, C. Genetic algorithm for multi-
objective optimization of container allocation in cloud architecture.
Journal of Grid Computing 16, 1 (2018), 113–135.

[85] GUERRERO, C., LERA, I., AND JUIZ, C. Resource optimization of
container orchestration: a case study in multi-cloud microservices-

200 BIBLIOGRAPHY

based applications. The Journal of Supercomputing 74, 7 (2018), 2956–
–2983.

[86] GUTIERREZ-GARCIA, J. O., AND SIM, K. M. A family of heuris-
tics for agent-based elastic cloud bag-of-tasks concurrent schedul-
ing. Future Generation Computer Systems 29, 7 (2013), 1682–1699.

[87] GUZEK, M., BOUVRY, P., AND TALBI, E. G. A survey of evolution-
ary computation for resource management of processing in cloud
computing. IEEE Computational Intelligence Magazine 10, 2 (2015),
53–67.

[88] HAMEED, A., KHOSHKBARFOROUSHHA, A., RANJAN, R., JAYARA-
MAN, P. P., KOLODZIEJ, J., BALAJI, P., ZEADALLY, S., MALLUHI,
Q. M., TZIRITAS, N., VISHNU, A., ET AL. A survey and taxonomy
on energy efficient resource allocation techniques for cloud comput-
ing systems. Computing 98, 7 (2016), 751–774.

[89] HE, S., GUO, L., GUO, Y., WU, C., GHANEM, M., AND HAN, R.
Elastic application container: A lightweight approach for cloud re-
source provisioning. In International Conference on Advanced Informa-
tion Networking and Applications (AINA) (2012), IEEE, pp. 15–22.

[90] HILDEBRANDT, T., HEGER, J., AND SCHOLZ-REITER, B. Towards
Improved Dispatching Rules for Complex Shop Floor Scenarios: A
Genetic Programming Approach. In Annual Conference on Genetic
and Evolutionary Computation (GECCO) (2010), ACM, pp. 257–264.

[91] HOLLAND, J. H. Outline for a Logical Theory of Adaptive Systems.
Journal of the ACM 9, 3 (1962), 297–314.

[92] HOLT, C. C. Author’s retrospective on ‘forecasting seasonals and
trends by exponentially weighted moving averages’. International
Journal of Forecasting 20, 1 (2004), 11 – 13.

BIBLIOGRAPHY 201

[93] HRUSCHKA, E. R., CAMPELLO, R. J., FREITAS, A. A., ET AL. A
survey of evolutionary algorithms for clustering. IEEE Transactions
on Systems, Man, and Cybernetics 39, 2 (2009), 133–155.

[94] HU, Y., DE LAAT, C., ZHAO, Z., ET AL. Multi-objective container
deployment on heterogeneous clusters. In IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGRID) (2019),
pp. 592–599.

[95] ITURRIAGA, S., NESMACHNOW, S., DORRONSORO, B., TALBI,
E. G., AND BOUVRY, P. A Parallel Hybrid Evolutionary Algorithm
for the Optimization of Broker Virtual Machines Subletting in Cloud
Systems. In International Conference on P2P, Parallel, Grid, Cloud and
Internet Computing (3PGCIC) (2013), pp. 594–599.

[96] JAYAMOHAN, M., AND RAJENDRAN, C. Development and analysis
of cost-based dispatching rules for job shop scheduling. European
Journal of Operational Research 157, 2 (2004), 307–321.

[97] JENNINGS, B., AND STADLER, R. Resource management in clouds:
Survey and research challenges. Journal of Network and Systems Man-
agement 23, 3 (2014), 567–619.

[98] JOHNSON, D. S. Fast algorithms for bin packing. Journal of Computer
and System Sciences 8, 3 (1974), 272 – 314.

[99] KAAOUACHE, M. A., AND BOUAMAMA, S. Solving bin packing
problem with a hybrid genetic algorithm for VM placement in cloud.
Procedia Computer Science 60 (2015), 1061–1069.

[100] KAEWKASI, C., AND CHUENMUNEEWONG, K. Improvement of con-
tainer scheduling for docker using ant colony optimization. In Inter-
national Conference on Knowledge and Smart Technology (KST) (2017),
IEEE, pp. 254–259.

202 BIBLIOGRAPHY

[101] KALRA, M., AND SINGH, S. A review of metaheuristic scheduling
techniques in cloud computing. Egyptian Informatics Journal 16, 3
(2015), 275 – 295.

[102] KAUR, K., DHAND, T., KUMAR, N., AND ZEADALLY, S. Container-
as-a-service at the edge: Trade-off between energy efficiency and
service availability at fog nano data centers. IEEE Wireless Commu-
nications 24, 3 (2017), 48–56.

[103] KAUR, K., DHAND, T., KUMAR, N., AND ZEADALLY, S. Container-
as-a-service at the edge: Trade-off between energy efficiency and
service availability at fog nano data centers. IEEE wireless communi-
cations 24, 3 (2017), 48–56.

[104] KIVITY, A., KAMAY, Y., LAOR, D., LUBLIN, U., AND LIGUORI, A.
KVM: the Linux Virtual Machine Monitor. In The Ottawa Linux Sym-
posium (OLS) (2007).

[105] KLEIN, A., ISHIKAWA, F., AND HONIDEN, S. Sanga: A self-adaptive
network-aware approach to service composition. IEEE Transactions
on Services Computing 7, 3 (2013), 452–464.

[106] KOCH, S., AND WÄSCHER, G. A grouping genetic algorithm for
the order batching problem in distribution warehouses. Journal of
Business Economics 86, 1-2 (2016), 131–153.

[107] KOUSIOURIS, G., MENYCHTAS, A., KYRIAZIS, D., KONSTANTELI,
K., GOGOUVITIS, S. V., KATSAROS, G., AND VARVARIGOU, T. A.
Parametric design and performance analysis of a decoupled service-
oriented prediction framework based on embedded numerical soft-
ware. IEEE Transactions on Services Computing 6, 4 (2013), 511–524.

[108] KOZA, J. Genetic Programming: On the Programming of Comput-
ers by Means of Natural Selection. Complex adaptive systems (1992).

BIBLIOGRAPHY 203

[109] KOZA, J. R. Genetic programming as a means for programming
computers by natural selection. Statistics and Computing 4, 2 (1994),
87–112.

[110] KOZHIRBAYEV, Z., AND SINNOTT, R. O. A performance compari-
son of container-based technologies for the cloud. Future Generation
Computer Systems 68 (2017), 175–182.

[111] KRATZKE, N., AND QUINT, P.-C. Understanding cloud-native ap-
plications after 10 years of cloud computing - a systematic mapping
study. Journal of Systems and Software 126 (2017), 1–16.

[112] KUNKLE, D., AND SCHINDLER, J. A load balancing framework for
clustered storage systems. In High Performance Computing (HiPC)
(2008), Springer, pp. 57–72.

[113] LEE, Y. C., AND ZOMAYA, A. Y. Practical scheduling of bag-of-tasks
applications on grids with dynamic resilience. IEEE Transactions on
Computers 56, 6 (2007), 815–825.

[114] LEELIPUSHPAM, P. G. J., AND SHARMILA, J. Live vm migration
techniques in cloud environment—a survey. In Conference on Infor-
mation & Communication Technologies (ICTD) (2013), IEEE, pp. 408–
413.

[115] LEGILLON, F., LIEFOOGHE, A., AND TALBI, E. G. CoBRA: A coop-
erative coevolutionary algorithm for bi-level optimization. Congress
on Evolutionary Computation (CEC) (2012), 1–8.

[116] LIEN, C. H., BAI, Y. W., AND LIN, M. B. Estimation by software for
the power consumption of streaming-media servers. IEEE Transac-
tions on Instrumentation and Measurement 56, 5 (2007), 1859–1870.

[117] LIN, C., CHEN, J., LIU, P., AND WU, J. Energy-efficient core alloca-
tion and deployment for container-based virtualization. In Interna-

204 BIBLIOGRAPHY

tional Conference on Parallel and Distributed Systems (ICPADS) (2018),
IEEE, pp. 93–101.

[118] LIN, C.-C., LIU, P., AND WU, J.-J. Energy-efficient virtual machine
provision algorithms for cloud systems. In International Conference
on Utility and Cloud Computing (UCC) (2011), IEEE, pp. 81–88.

[119] LIN, M., XI, J., BAI, W., AND WU, J. Ant colony algorithm for multi-
objective optimization of container-based microservice scheduling
in cloud. IEEE Access 7 (2019), 83088–83100.

[120] LIN, W., WANG, J. Z., LIANG, C., AND QI, D. A threshold-based
dynamic resource allocation scheme for cloud computing. Procedia
Engineering 23 (2011), 695–703.

[121] LIU, B., LI, P., LIN, W., SHU, N., LI, Y., AND CHANG, V. A new
container scheduling algorithm based on multi-objective optimiza-
tion. Soft Computing 22, 23 (2018), 7741–7752.

[122] LIU, J., WANG, S., ZHOU, A., XU, J., AND YANG, F. Sla-driven
container consolidation with usage prediction for green cloud com-
puting. Frontiers of Computer Science 14, 1 (2020), 42–52.

[123] LIU, X.-F., ZHAN, Z.-H., DENG, J. D., LI, Y., GU, T., AND ZHANG,
J. An energy efficient ant colony system for virtual machine place-
ment in cloud computing. IEEE Transactions on Evolutionary Compu-
tation 22, 1 (2016), 113–128.

[124] LÓPEZ-CAMACHO, E., TERASHIMA-MARÍN, H., OCHOA, G., AND

CONANT-PABLOS, S. E. Understanding the structure of bin pack-
ing problems through principal component analysis. International
Journal of Production Economics 145, 2 (2013), 488–499.

[125] LORIDO-BOTRAN, T., MIGUEL-ALONSO, J., AND LOZANO, J. A. A
review of auto-scaling techniques for elastic applications in cloud
environments. Journal of grid computing 12, 4 (2014), 559–592.

BIBLIOGRAPHY 205

[126] LU, C., YE, K., XU, G., XU, C., AND BAI, T. Imbalance in the cloud:
An analysis on alibaba cluster trace. In International Conference on Big
Data (Big Data) (2017), IEEE, pp. 2884–2892.

[127] MA, H., DA SILVA, A. S., AND KUANG, W. NSGA-II with local
search for multi-objective application deployment in multi-cloud. In
Congress on Evolutionary Computation (CEC) (2019), pp. 2800–2807.

[128] MAENHAUT, P.-J., VOLCKAERT, B., ONGENAE, V., AND DE TURCK,
F. Resource management in a containerized cloud: Status and chal-
lenges. Journal of Network and Systems Management (2019), 1–50.

[129] MAHESWARAN, M., ALI, S., SIEGEL, H. J., HENSGEN, D., AND

FREUND, R. F. Dynamic mapping of a class of independent tasks
onto heterogeneous computing systems. Journal of parallel and dis-
tributed computing 59, 2 (1999), 107–131.

[130] MAN, K.-F., TANG, K.-S., AND KWONG, S. Genetic algorithms: con-
cepts and designs. Springer Science & Business Media, 2012.

[131] MANN, Z. Á. Allocation of virtual machines in cloud data cen-
ters—a survey of problem models and optimization algorithms.
ACM Computing Surveys 48, 1 (2015), 1–34.

[132] MANN, Z. A. Approximability of VM allocation : Much harder than
bin packing. Hungarian-Japanese Symposium on Discrete Mathematics
and Its Applications (JHSDM) (2015), 21–30.

[133] MANN, Z. Á. Interplay of virtual machine selection and virtual ma-
chine placement. In Service-Oriented and Cloud Computing (ESOCC)
(2016), Springer, pp. 137–151.

[134] MANN, Z. Á. Resource optimization across the cloud stack. IEEE
Transactions on Parallel and Distributed Systems 29, 1 (2018), 169–182.

206 BIBLIOGRAPHY

[135] MANVI, S. S., AND SHYAM, G. K. Resource management for Infras-
tructure as a Service (IaaS) in cloud computing: A survey. Journal of
network and computer applications 41 (2014), 424–440.

[136] MAO, Y., OAK, J., POMPILI, A., BEER, D., HAN, T., AND HU,
P. Draps: Dynamic and resource-aware placement scheme for
docker containers in a heterogeneous cluster. In International Per-
formance Computing and Communications Conference (IPCCC) (2017),
IEEE, pp. 1–8.

[137] MASHAYEKHY, L., NEJAD, M. M., GROSU, D., ZHANG, Q., AND

SHI, W. Energy-aware scheduling of mapreduce jobs for big data
applications. IEEE transactions on Parallel and distributed systems 26,
10 (2014), 2720–2733.

[138] MATTETTI, M., SHULMAN-PELEG, A., ALLOUCHE, Y., CORRADI,
A., DOLEV, S., AND FOSCHINI, L. Securing the infrastructure and
the workloads of linux containers. In Conference on Communications
and Network Security (CNS) (2015), IEEE, pp. 559–567.

[139] MEI, Y., TANG, K., AND YAO, X. Decomposition-based memetic
algorithm for multiobjective capacitated arc routing problem. IEEE
Transactions on Evolutionary Computation 15, 2 (2011), 151–165.

[140] MEI, Y., ZHANG, M., AND NYUGEN, S. Feature Selection in Evolv-
ing Job Shop Dispatching Rules with Genetic Programming. In Ge-
netic and Evolutionary Computation Conference (GECCO) (2016), ACM,
pp. 365–372.

[141] MELL, P. M., AND GRANCE, T. The NIST definition of cloud com-
puting. Tech. rep., National Institute of Standards and Technology,
Gaithersburg, MD, Gaithersburg, MD, 2011.

[142] MENOUER, T., CÉRIN, C., AND LECLERCQ, É. New multi-objectives
scheduling strategies in docker swarmkit. In International Conference

BIBLIOGRAPHY 207

on Algorithms and Architectures for Parallel Processing (ICA3PP) (2018),
Springer, pp. 103–117.

[143] MERKEL, D. Docker: lightweight linux containers for consistent
development and deployment. Linux journal 2014, 239 (2014), 2.

[144] MILLER, B. L., GOLDBERG, D. E., ET AL. Genetic algorithms, tour-
nament selection, and the effects of noise. Complex systems 9, 3 (1995),
193–212.

[145] MISHRA, M., DAS, A., KULKARNI, P., AND SAHOO, A. Dynamic
resource management using virtual machine migrations. IEEE Com-
munications Magazine 50, 9 (2012), 34–40.

[146] MISHRA, M., AND SAHOO, A. On Theory of VM Placement:
Anomalies in Existing Methodologies and Their Mitigation Using
a Novel Vector Based Approach. In International Conference on Cloud
Computing (CLOUD) (2011), IEEE, pp. 275–282.

[147] MORABITO, R., KJÄLLMAN, J., AND KOMU, M. Hypervisors
vs. lightweight virtualization: a performance comparison. In In-
ternational Conference on Cloud Engineering (CLOUD) (2015), IEEE,
pp. 386–393.

[148] NADAREISHVILI, I., MITRA, R., MCLARTY, M., AND AMUNDSEN,
M. Microservice architecture: aligning principles, practices, and culture.
O’Reilly Media, Inc., 2016.

[149] NAMIOT, D., AND SNEPS-SNEPPE, M. On micro-services architec-
ture. International Journal of Open Information Technologies 2, 9 (2014),
24–27.

[150] NARDELLI, M., HOCHREINER, C., AND SCHULTE, S. Elastic Provi-
sioning of Virtual Machines for Container Deployment. In Interna-
tional Conference on Performance Engineering Companion (ICPE) (2017),
ACM, pp. 5–10.

208 BIBLIOGRAPHY

[151] NARDELLI, M., HOCHREINER, C., AND SCHULTE, S. Elastic pro-
visioning of virtual machines for container deployment (icpe). In
International Conference on Performance Engineering Companion (2017),
ACM, pp. 5–10.

[152] NGUYEN, S., ZHANG, M., JOHNSTON, M., AND TAN, K. C. Auto-
matic design of scheduling policies for dynamic multi-objective job
shop scheduling via cooperative coevolution genetic programming.
IEEE Transactions on Evolutionary Computation 18, 2 (2014), 193–208.

[153] NGUYEN, S., ZHANG, M., AND TAN, K. C. Surrogate-assisted ge-
netic programming with simplified models for automated design of
dispatching rules. IEEE transactions on cybernetics 47, 9 (2017), 2951–
2965.

[154] NIU, M., CHENG, B., FENG, Y., AND CHEN, J. Gmta: A geo-
aware multi-agent task allocation approach for scientific workflows
in container-based cloud. IEEE Transactions on Network and Service
Management 17, 3 (2020), 1568–1581.

[155] ORZECHOWSKI, P., PROFICZ, J., KRAWCZYK, H., AND SZYMAŃSKI,
J. Categorization of cloud workload types with clustering. In Inter-
national Conference on Signal, Networks, Computing, and Systems (IC-
SNCS) (2017), Springer, pp. 303–313.

[156] PAHL, C., BOZEN-BOLZANO, L. U., AND PAHL, C. Containerisa-
tion and the PaaS Cloud Containerisation and the PaaS Cloud. IEEE
Cloud Computing 2, September (2015), 24–31.

[157] PAHL, C., BROGI, A., SOLDANI, J., AND JAMSHIDI, P. Cloud con-
tainer technologies: a state-of-the-art review. IEEE Transactions on
Cloud Computing (2017).

[158] PANDEY, S., WU, L., GURU, S. M., AND BUYYA, R. A particle
swarm optimization-based heuristic for scheduling workflow appli-

BIBLIOGRAPHY 209

cations in cloud computing environments. In International conference
on advanced information networking and applications (AINA) (2010),
IEEE, pp. 400–407.

[159] PANDIT, D., CHATTOPADHYAY, S., CHATTOPADHYAY, M., AND

CHAKI, N. Resource allocation in cloud using simulated annealing.
In Applications and Innovations in Mobile Computing (AIMoC) (2014),
IEEE, pp. 21–27.

[160] PARK, J., MEI, Y., NGUYEN, S., CHEN, G., AND ZHANG, M. In-
vestigating the generality of genetic programming based hyper-
heuristic approach to dynamic job shop scheduling with machine
breakdown. In Artificial Life and Computational Intelligence (ACALCI)
(2017), Springer, pp. 301––313.

[161] PARK, J., MEI, Y., NGUYEN, S., CHEN, G., AND ZHANG, M. Evo-
lutionary multitask optimisation for dynamic job shop scheduling
using niched genetic programming. In Advances in Artificial Intelli-
gence (AI) (2018), Springer, pp. 739—-751.

[162] PASCHKE, A., AND SCHNAPPINGER-GERULL, E. A Categorization
Scheme for SLA Metrics. Service Oriented Electronic Commerce 80, 25-
40 (2006), 25–40.

[163] PEREZ-BOTERO, D., SZEFER, J., AND LEE, R. B. Characterizing hy-
pervisor vulnerabilities in cloud computing servers. In International
workshop on Security in cloud computing (SCC) (2013), ACM, pp. 3–10.

[164] PHAN, D. H., SUZUKI, J., CARROLL, R., BALASUBRAMANIAM, S.,
DONNELLY, W., AND BOTVICH, D. Evolutionary multiobjective op-
timization for green clouds. In The Genetic and Evolutionary Compu-
tation Conferences (GECCO) (2012), ACM, pp. 19–26.

[165] PIRAGHAJ, S. F., CALHEIROS, R. N., CHAN, J., DASTJERDI, A. V.,
AND BUYYA, R. Virtual machine customization and task mapping

210 BIBLIOGRAPHY

model for efficient allocation of cloud data center resources. The
Computer Journal 59, 2 (2016), 208–224.

[166] PIRAGHAJ, S. F., DASTJERDI, A. V., CALHEIROS, R. N., AND

BUYYA, R. A Framework and Algorithm for Energy Efficient Con-
tainer Consolidation in Cloud Data Centers. In International Con-
ference on Green Computing and Communications (GreenCom) (2015),
IEEE, pp. 368–375.

[167] PIRAGHAJ, S. F., DASTJERDI, A. V., CALHEIROS, R. N., AND

BUYYA, R. Efficient Virtual Machine Sizing for Hosting Containers
as a Service, 2015.

[168] PIRAGHAJ, S. F., DASTJERDI, A. V., CALHEIROS, R. N., AND

BUYYA, R. A survey and taxonomy of energy efficient resource
management techniques in platform as a service cloud. In Hand-
book of Research on End-to-End Cloud Computing Architecture Design.
IGI Global, 2017, pp. 410–454.

[169] POON, P. W., AND CARTER, J. N. Genetic algorithm crossover oper-
ators for ordering applications. Computers & Operations Research 22,
1 (1995), 135–147.

[170] POON, P. W., AND CARTER, J. N. Genetic algorithm crossover oper-
ators for ordering applications. Computers & Operations Research 22,
1 (1995), 135–147.

[171] PORTALURI, G., GIORDANO, S., KLIAZOVICH, D., AND DOR-
RONSORO, B. A power efficient genetic algorithm for resource al-
location in cloud computing data centers. In International Conference
on Cloud Networking (CloudNet) (2014), IEEE, pp. 58–63.

[172] POTTS, C. N., AND STRUSEVICH, V. A. Fifty years of scheduling: a
survey of milestones. Journal of the Operational Research Society 60, S1
(2009), S41–S68.

BIBLIOGRAPHY 211

[173] PRAKASH, C., PRASHANTH, P., BELLUR, U., AND KULKARNI, P.
Deterministic container resource management in derivative clouds.
In IEEE International Conference on Cloud Engineering (IC2E) (2018),
pp. 79–89.

[174] QIN, X., ZHANG, W., WANG, W., WEI, J., ZHAO, X., AND HUANG,
T. Towards a cost-aware data migration approach for key-value
stores. In International Conference on Cluster Computing (CLUSTER)
(2012), pp. 551–556.

[175] QUIROZ-CASTELLANOS, M., CRUZ-REYES, L., TORRES-JIMENEZ,
J., GÓMEZ, C., HUACUJA, H. J. F., AND ALVIM, A. C. A group-
ing genetic algorithm with controlled gene transmission for the bin
packing problem. Computers & Operations Research 55 (2015), 52–64.

[176] RADCLIFFE, N. Formal Analysis and Random Respectful Recombi-
nation. In International Conference on Genetic Algorithms (CGA) (1991),
Morgan Kaufmann Publishers Inc., pp. 222–229.

[177] RAHIMI, M. R., VENKATASUBRAMANIAN, N., MEHROTRA, S., AND

VASILAKOS, A. V. MAPCloud: Mobile applications on an elastic
and scalable 2-tier cloud architecture. In International Conference on
Utility and Cloud Computing (UCC) (2012), IEEE, pp. 83–90.

[178] RAJ, V. M., AND SHRIRAM, R. Power aware provisioning in
cloud computing environment. In International Conference on Com-
puter, Communication and Electrical Technology (ICCCET) (2011), IEEE,
pp. 6–11.

[179] REZVANI, M., AKBARI, M. K., AND JAVADI, B. Resource allocation
in cloud computing environments based on integer linear program-
ming. The Computer Journal 58, 2 (2015), 300–314.

212 BIBLIOGRAPHY

[180] RIQUELME, N., VON LÜCKEN, C., AND BARAN, B. Performance
metrics in multi-objective optimization. In Latin American Computing
Conference (CLEI) (2015), IEEE, pp. 1–11.

[181] RIQUELME, N., VON LUCKEN, C., AND BARAN, B. Performance
metrics in multi-objective optimization. In Latin American Computing
Conference (CLEI) (2015), IEEE, pp. 1–11.

[182] RONG, H., ZHANG, H., XIAO, S., LI, C., AND HU, C. Optimiz-
ing energy consumption for data centers. Renewable and Sustainable
Energy Reviews 58 (May 2016), 674–691.

[183] ROTHLAUF, F., AND GOLDBERG, D. E. Representations for Genetic and
Evolutionary Algorithms. Physica-Verlag, 2002.

[184] ŞAHIN, M., AND KELLEGÖZ, T. An efficient grouping genetic al-
gorithm for u-shaped assembly line balancing problems with maxi-
mizing production rate. Memetic Computing 9, 3 (2017), 213–229.

[185] SAMPAIO, A. R., RUBIN, J., BESCHASTNIKH, I., AND ROSA, N. S.
Improving microservice-based applications with runtime placement
adaptation. Journal of Internet Services and Applications 10, 1 (2019), 4.

[186] SARATHY, V., NARAYAN, P., AND MIKKILINENI, R. Next gener-
ation cloud computing architecture: Enabling real-time dynamism
for shared distributed physical infrastructure. In International Work-
shops on Enabling Technologies: Infrastructures for Collaborative Enter-
prises (2010), IEEE, pp. 48–53.

[187] SHARMA, P., CHAUFOURNIER, L., SHENOY, P., AND TAY, Y. Con-
tainers and virtual machines at scale: A comparative study. In Inter-
national Middleware Conference (Middleware) (2016), ACM/IFIP, pp. 1–
13.

BIBLIOGRAPHY 213

[188] SHAW, S. B., AND SINGH, A. A survey on scheduling and load bal-
ancing techniques in cloud computing environment. In International
conference on computer and communication technology (ICCCT) (2014),
IEEE, pp. 87–95.

[189] SHEN, S., V. BEEK, V., AND IOSUP, A. Statistical Characterization of
Business-Critical Workloads Hosted in Cloud Datacenters. In Inter-
national Symposium on Cluster, Cloud and Grid Computing (CCGRID)
(2015), IEEE/ACM, pp. 465–474.

[190] SHI, L., FURLONG, J., AND WANG, R. Empirical evaluation of vec-
tor bin packing algorithms for energy efficient data centers. In Sym-
posium on computers and communications (ISCC) (2013), IEEE, pp. 9–
15.

[191] SHI, T., MA, H., AND CHEN, G. Energy-aware container consolida-
tion based on pso in cloud data centers. In Congress on Evolutionary
Computation (CEC) (2018), IEEE, pp. 1–8.

[192] SIM, K., HART, E., AND PAECHTER, B. A hyper-heuristic classifier
for one dimensional bin packing problems: Improving classification
accuracy by attribute evolution. In International Conference on Parallel
Problem Solving from Nature (PPSN) (2012), Springer, pp. 348–357.

[193] SIM, K., HART, E., AND PAECHTER, B. A lifelong learning hyper-
heuristic method for bin packing. Evolutionary computation 23, 1
(2015), 37–67.

[194] SINGH, S., AND CHANA, I. Cloud resource provisioning: survey,
status and future research directions. Knowledge and Information Sys-
tems 49, 3 (2016), 1005–1069.

[195] SINGH, S., AND CHANA, I. A survey on resource scheduling in
cloud computing: Issues and challenges. Journal of grid computing
14, 2 (2016), 217–264.

214 BIBLIOGRAPHY

[196] SOTELO-FIGUEROA, M. A., SOBERANES, H. J. P., CARPIO, J. M.,
FRAIRE HUACUJA, H. J., REYES, L. C., AND SORIA ALCARAZ, J. A.
Evolving Bin Packing Heuristic Using Micro-Differential Evolution with
Indirect Representation. Springer, 2013, pp. 349–359.

[197] SPEITKAMP, B., AND BICHLER, M. A mathematical programming
approach for server consolidation problems in virtualized data cen-
ters. IEEE Transactions on services computing 3, 4 (2010), 266–278.

[198] SPICUGLIA, S., CHEN, L. Y., BIRKE, R., AND BINDER, W. Optimiz-
ing capacity allocation for big data applications in cloud datacen-
ters. In International Symposium on Integrated Network Management
(IM) (2015), IEEE, pp. 511–517.

[199] SUGAVANAM, P., SIEGEL, H. J., MACIEJEWSKI, A. A., OLTIKAR,
M., MEHTA, A., PICHEL, R., HORIUCHI, A., SHESTAK, V., AL-
OTAIBI, M., KRISHNAMURTHY, Y., ET AL. Robust static allocation
of resources for independent tasks under makespan and dollar cost
constraints. Journal of Parallel and Distributed Computing 67, 4 (2007),
400–416.

[200] SUN, Y., LIN, F., AND XU, H. Multi-objective optimization of
resource scheduling in fog computing using an improved nsga-ii.
Wireless Personal Communications 102, 2 (2018), 1369–1385.

[201] SVÄRD, P., LI, W., WADBRO, E., TORDSSON, J., AND ELMROTH,
E. Continuous datacenter consolidation. In International Conference
on Cloud Computing Technology and Science (CloudCom) (2016), IEEE,
pp. 387–396.

[202] TAN, B., HUANG, H., MA, H., AND ZHANG, M. Binary pso for
web service location-allocation. In Artificial Life and Computational
Intelligence (AI) (2017), Springer, pp. 366–377.

BIBLIOGRAPHY 215

[203] TAN, B., MA, H., AND MEI, Y. A NSGA-II-based approach for ser-
vice resource allocation in Cloud. In Congress on Evolutionary Com-
putation (CEC) (2017), IEEE, pp. 2574–2581.

[204] TAN, B., MA, H., AND MEI, Y. A Genetic Programming Hyper-
heuristic Approach for Online Resource Allocation in Container-
Based Clouds. In Australasian Joint Conference on Artificial Intelligence
(AI) (2018), Springer, pp. 146–152.

[205] TAN, B., MA, H., AND ZHANG, M. Optimization of location alloca-
tion of web services using a modified non-dominated sorting genetic
algorithm. In Australasian Conference on Artificial Life and Computa-
tional Intelligence (AI) (2016), Springer, pp. 246–257.

[206] TAO, Y., WANG, X., XU, X., AND CHEN, Y. Dynamic resource allo-
cation algorithm for container-based service computing. In Interna-
tional Symposium on Autonomous Decentralized System (ISADS) (2017),
IEEE, pp. 61–67.

[207] TSAI, J.-T., FANG, J.-C., AND CHOU, J.-H. Optimized task schedul-
ing and resource allocation on cloud computing environment using
improved differential evolution algorithm. Computers & Operations
Research 40, 12 (2013), 3045–3055.

[208] UHLIG, R., NEIGER, G., RODGERS, D., SANTONI, A. L., MARTINS,
F. C. M., ANDERSON, A. V., BENNETT, S. M., KAGI, A., LEUNG,
F. H., AND SMITH, L. Intel virtualization technology. Computer 38,
5 (2005), 48–56.

[209] ULLMAN, J. D. Np-complete scheduling problems. Journal of Com-
puter and System sciences 10, 3 (1975), 384–393.

[210] USMANI, Z., AND SINGH, S. A survey of virtual machine placement
techniques in a cloud data center. Procedia Computer Science 78 (2016),
491–498.

216 BIBLIOGRAPHY

[211] VAN VELDHUIZEN, D. A. Multiobjective Evolutionary Algorithms:
Classifications, Analyses, and New Innovations. PhD thesis, 1999.

[212] VAQUERO, L. M., RODERO-MERINO, L., AND BUYYA, R. Dynam-
ically scaling applications in the cloud. ACM SIGCOMM Computer
Communication Review 41, 1 (2011), 45–52.

[213] VARASTEH, A., AND GOUDARZI, M. Server Consolidation Tech-
niques in Virtualized Data Centers: A Survey. IEEE Systems Journal
11, 2 (2017), 772–783.

[214] VILLALOBOS-ARIAS, M. A., PULIDO, G. T., AND COELLO COELLO,
C. A. A proposal to use stripes to maintain diversity in a multi-
objective particle swarm optimizer. In Swarm Intelligence Symposium
(SIS) (2005), IEEE, pp. 23–30.

[215] VOSE, M. D. Modeling simple genetic algorithms. In Foundations
of Genetic Algorithms, L. D. WHITLEY, Ed., vol. 2 of Foundations of
Genetic Algorithms. Elsevier, 1993, pp. 63 – 73.

[216] WALDSPURGER, C. A. Memory resource management in VMware
ESX server. ACM SIGOPS Operating Systems Review 36, SI (Dec 2002),
181.

[217] WANG, C., MA, H., AND CHEN, G. Using EDA-Based local search
to improve the performance of nsga-ii for multiobjective semantic
web service composition. In Database and Expert Systems Applications
(2019), Springer, p. 434–451.

[218] WANG, C., MA, H., CHEN, G., AND HARTMANN, S. A Memetic
NSGA-II with EDA-Based Local Search for Fully Automated Multi-
objective Web Service Composition. In The Genetic and Evolutionary
Computation Conference Companion (GECCO) (2019), Association for
Computing Machinery, p. 421–422.

BIBLIOGRAPHY 217

[219] WANG, J., YAO, Y., MAO, Y., SHENG, B., AND MI, N. Fresh:
Fair and efficient slot configuration and scheduling for hadoop clus-
ters. In International Conference on Cloud Computing (CLOUD) (2014),
IEEE, pp. 761–768.

[220] WANG, W., CHEN, H., AND CHEN, X. An availability-aware vir-
tual machine placement approach for dynamic scaling of cloud ap-
plications. In International Conference on Ubiquitous Intelligence and
Computing (UIC) (2012), IEEE, pp. 509–516.

[221] WANG, Y., AND XIA, Y. Energy optimal VM placement in the
cloud. In International Conference on Cloud Computing (CLOUD)
(2017), IEEE, pp. 84–91.

[222] WANG, Z., TANG, K., AND YAO, X. Multi-objective approaches
to optimal testing resource allocation in modular software systems.
IEEE Transactions on Reliability 59, 3 (2010), 563–575.

[223] WANG, Z., ZHANG, J., AND YANG, S. An improved particle swarm
optimization algorithm for dynamic job shop scheduling problems
with random job arrivals. Swarm and Evolutionary Computation 51
(2019), 100594.

[224] WEINGÄRTNER, R., BRÄSCHER, G. B., AND WESTPHALL, C. B.
Cloud resource management: A survey on forecasting and profil-
ing models. Journal of Network and Computer Applications 47 (2015),
99–106.

[225] WILCOX, D., MCNABB, A., AND SEPPI, K. Solving virtual machine
packing with a Reordering Grouping Genetic Algorithm. IEEE,
pp. 362–369.

[226] WOLKE, A., BICHLER, M., AND SETZER, T. Planning vs. dynamic
control: Resource allocation in corporate clouds. IEEE Transactions
on Cloud Computing 4, 3 (2016), 322–335.

218 BIBLIOGRAPHY

[227] WOLKE, A., TSEND-AYUSH, B., PFEIFFER, C., AND BICHLER, M.
More than bin packing: Dynamic resource allocation strategies in
cloud data centers. Information Systems 52 (2015), 83–95.

[228] WOOD, T., SHENOY, P. J., VENKATARAMANI, A., AND YOUSIF,
M. S. Sandpiper - Black-box and gray-box resource management
for virtual machines. Computer Networks 53, 17 (2009), 2923–2938.

[229] XAVIER, M. G., DE OLIVEIRA, I. C., ROSSI, F. D., DOS PASSOS,
R. D., MATTEUSSI, K. J., AND DE ROSE, C. A. A performance
isolation analysis of disk-intensive workloads on container-based
clouds. In Euromicro International Conference on Parallel, Distributed,
and Network-Based Processing (PDP) (2015), IEEE, pp. 253–260.

[230] XAVIER, M. G., NEVES, M. V., ROSSI, F. D., FERRETO, T. C.,
LANGE, T., AND DE ROSE, C. A. F. Performance evaluation of
container-based virtualization for high performance computing en-
vironments. In International Conference on Parallel, Distributed and
Network-Based Processing (PDP) (2013), IEEE, pp. 233–240.

[231] XIAO, Z., JIANG, J., ZHU, Y., MING, Z., ZHONG, S., AND CAI, S. A
solution of dynamic VMs placement problem for energy consump-
tion optimization based on evolutionary game theory. Journal of Sys-
tems & Software 101 (2015), 260–272.

[232] XING, B., AND GAO, W.-J. Introduction to Computational Intelligence.
John Wiley & Sons, Ltd, 2014.

[233] XIONG, A.-P., AND XU, C.-X. Energy efficient multiresource alloca-
tion of virtual machine based on pso in cloud data center. Mathemat-
ical Problems in Engineering 2014 (2014).

[234] XIONG, A.-P., AND XU, C.-X. Energy Efficient Multiresource Al-
location of Virtual Machine Based on PSO in Cloud Data Center.
Mathematical Problems in Engineering 2014, 6 (2014), 1–8.

BIBLIOGRAPHY 219

[235] XU, J., AND FORTES, J. A. Multi-objective virtual machine place-
ment in virtualized data center environments. In International Con-
ference on Green Computing and Communications (GreenCom) (2010),
ACM/IEEE, pp. 179–188.

[236] YAO, X., AND XU, Y. Recent advances in evolutionary computation.
Journal of Computer Science and Technology 21, 1 (Jan 2006), 1–18.

[237] YOUNG, E. G., ZHU, P., CARAZA-HARTER, T., ARPACI-DUSSEAU,
A. C., AND ARPACI-DUSSEAU, R. H. The True Cost of Containing:
A gVisor Case Study. In USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud) (July 2019), USENIX Association.

[238] YOUSAFZAI, A., GANI, A., NOOR, R. M., SOOKHAK, M.,
TALEBIAN, H., SHIRAZ, M., AND KHAN, M. K. Cloud resource al-
location schemes: review, taxonomy, and opportunities. Knowledge
and Information Systems 50, 2 (2017), 347–381.

[239] YSKA, D., MEI, Y., AND ZHANG, M. Genetic programming hyper-
heuristic with cooperative coevolution for dynamic flexible job shop
scheduling. In European Conference on Genetic Programming (EuroGP)
(2018), Springer, p. 306–321.

[240] YU, J., BUYYA, R., AND RAMAMOHANARAO, K. Workflow Schedul-
ing Algorithms for Grid Computing. Springer, 2008, pp. 173–214.

[241] ZAHARIA, M., BORTHAKUR, D., SARMA, J. S., ELMELEEGY, K.,
SHENKER, S., AND STOICA, I. Job scheduling for multi-user mapre-
duce clusters. Tech. rep., University of California, 2009.

[242] ZHANG, D., YAN, B., FENG, Z., ZHANG, C., AND WANG, Y. Con-
tainer oriented job scheduling using linear programming model. In
International Conference on Information Management (ICIM) (2017), As-
sociation for Information Systems, pp. 174–180.

220 BIBLIOGRAPHY

[243] ZHANG, F., MEI, Y., AND ZHANG, M. Surrogate-assisted genetic
programming for dynamic flexible job shop scheduling. In Advances
in Artificial Intelligence (AI) (2018), Springer, pp. 766–772.

[244] ZHANG, F., MEI, Y., AND ZHANG, M. A new representation in
genetic programming for evolving dispatching rules for dynamic
flexible job shop scheduling. In European Conference on Evolutionary
Computation in Combinatorial Optimization (EvoCop) (2019), Springer,
pp. 33–49.

[245] ZHANG, R., ZHONG, A.-M., DONG, B., TIAN, F., AND LI, R.
Container-VM-PM architecture: A novel architecture for docker
container placement. In International Conference on Cloud Computing
(CLOUD) (2018), Springer, pp. 128–140.

[246] ZHANG, X., WU, T., CHEN, M., WEI, T., ZHOU, J., HU, S., AND

BUYYA, R. Energy-aware virtual machine allocation for cloud with
resource reservation. Journal of Systems and Software 147 (2019), 147–
161.

[247] ZHANG, Y., AND ANSARI, N. Heterogeneity aware dominant
resource assistant heuristics for virtual machine consolidation.
In Global Communications Conference (GLOBECOM) (2013), IEEE,
pp. 1297–1302.

[248] ZHENG, H., FENG, Y., AND TAN, J. A hybrid energy-aware resource
allocation approach in cloud manufacturing environment. IEEE Ac-
cess 5 (2017), 12648–12656.

[249] ZHOU, R., LI, Z., AND WU, C. Scheduling frameworks for cloud
container services. IEEE/ACM Transactions on Networking 26, 1
(2018), 436–450.

BIBLIOGRAPHY 221

[250] ZHOU, Y., YANG, J., AND ZHENG, L. Hyper-heuristic coevolution
of machine assignment and job sequencing rules for multi-objective
dynamic flexible job shop scheduling. IEEE Access 7 (2019), 68–88.

[251] ZIKOPOULOS, P., EATON, C., AND IBM. Understanding Big Data:
Analytics for Enterprise Class Hadoop and Streaming Data, 1st ed.
McGraw-Hill Osborne Media, 2011.

[252] ZITZLER, E., AND THIELE, L. Multiobjective optimization using
evolutionary algorithms — A comparative case study. In Parallel
Problem Solving from Nature (PPSN) (1998), Springer, pp. 292–301.

[253] ZOMAYA, A. H. K. R. P. J. K. B. Z. M. M. T. V. U. K. A survey
and taxonomy on energy efficient resource allocation techniques for
cloud computing systems. Computing NA, 7 (2014), 751–774.

