

R o b o t i c F e e d b a c k
L o o p s

I m p l e m e n t i n g t w o - w a y c o m m u n i c a t i o n i n a r c h i t e c t u r a l l y
f o c u s e d r o b o t i c p i c k a n d p l a c e o p e r a t i o n s

A 120 point thesis submitted in partial fulfilment of the requirements
for the degree of Master of Architecture (Professional)

Victoria University of Wellington, School of Architecture

Harrison Le Fevre

2020

Unless otherwise stated all images are the authors own work. QR
codes have been used throughout this thesis to provide links to
additional video based content. These QR codes can be scanned
with a QR code reader application. Accessing and watching
these videos is essential in understanding the research.

N o t e s

The mission of the Advanced Manufacturing and Prototyping for Design
research lab is to investigate and define innovative techniques and
methods of construction applicable to the building sector through the
use of contemporary tools of design, fabrication, and manufacturing.

Website: ampd.center

Instagram: @ampdlabnz

A b s t r a c t

1 2

The use of robots in the fabrication of complex architectural structures
is increasing in popularity. However, architectural robotic workflows
still require convoluted and time-consuming programming in order
to execute complex fabrication tasks. Additionally, an inability for
robots to adapt to different environments further highlights concerns
around the robotic manipulator as a primary construction tool.

There are four key issues currently present in robotic fabrication for
architectural applications. Firstly, an inability to adapt to unknown
environments; Secondly, a lack of autonomous decision making;
Thirdly, an inability to locate, recognise, and then manipulate objects
in the operating environment; Fourthly a lack of error detection if
a motion instruction conflicts with environmental constraints.

This research begins to resolve these critical issues by seeking to integrate
a feedback loop in a robotic system to improve perception, interaction
and manipulation of objects in a robotic working environment. Attempts
to achieve intelligence and autonomy in static robotic systems have seen
limited success. Primarily, research into these issues has originated from
the need to adapt existing robotic processes to architectural applications.
The work of Gramazio and Kohler Research, specifically ‘on-site mobile
fabrication’ and ‘autonomous robotic stone stacking’, present the current
state of the art in intelligent architectural robotic systems and begin
to develop solutions to the issues previously outlined. However, the
limitations of Gramazio and Kohler’s research, specifically around a
lack of perception-controlled grasping, offers an opportunity for this
research to begin developing relevant solutions to the outlined issues.

This research proposes a system where blocks, of consistent dimensions,
are randomly distributed within the robotic working environment.
The robot establishes the location and pose (position and orientation)
of the blocks through an adaptive inclusion test. The test involves
subsampling a point-cloud into a consistent grid; filtering points based
on their height above the ground plane in order to establish block
surfaces, and matching these surfaces to a CAD model for improved

1 3

accuracy. The resulting matched surfaces are used to determine four
points which define the object rotation plane and centre point. The
robot uses the centre point, and the quaternion rotation angle to execute
motion and grasping instructions. The robot is instructed to repeat
the perception process until the collection of all the blocks within
the camera frame is complete, and a preprogrammed wall is built.

The implementation of a robotic feedback loop in this way demonstrates
both the future potential and success of this research. The research
begins to develop pathways through which to integrate new types
of technologies such as machine learning and deep learning in
order to improve the accuracy, speed and reliability of perception-
controlled robotic systems through learned behaviours.

C o n t e n t s

1 6

1. Introduction 25

2. Background 29

2.1 Intel l igence 30
2.1.1 Cognition 31
2.1.2 Perception 33

2.1.2.1 Perception Limitations 34

2.1.3 Autonomy 35
2.1.4 Decision Making 36
2.1.5 Learning 37

2.2 Feedback Loops 38

2.3 Artif icial Intel l igence 38
2.3.1 Deep Learning 42

2.3.1.1 Object Detection 44
2.3.1.2 Object Recognition 45

2.4 Robotic Systems 45
2.4.1 Intelligent Robotic Grasping 47

2.5 Robotic Brick Construction 50
2.5.1 Intelligent Robotic Brick Construction 51

2.6 Autonomous Vehicles 54

3. Aims and Objectives 57

3.1 Aims 58

3.2 Scope 58

3.3 Objectives 59
3.3.1 Prototype One 59
3.3.2 Prototype Two 62
3.3.3 Prototype Three 62

3.4 Methodology 62

4. Tools 69

4.1 Rhino and Grasshopper 70

4.2 Robot Operating System 71

4.3 Intel Realsense Camera 75

1 7

4.3.1 Environment Representation 76

4.4 Tool Summary 76

5. Preliminary Investigations 79

5.1 Connecting to the robot 80

5.2 Init ial feedback loop 80

5.3 Environment information collection 84

6. Prototype One 89

6.1 Limitations 104

7. Prototype Two 111

7.1 Limitations 118

8. Prototype Three 125

8.1 Limitations 132

9. Discussion 137

9.1 Linking the Research to the Literature 138
9.1.1 Intelligence 138
9.1.2 Perception 139
9.1.3 Autonomy 140
9.1.4 Decision making 141
9.1.5 Learning 141

9.2 Autonomous vehicles 142

9.3 Limitations 142

9.4 Opportunit ies 143

10. Conclusion 147

11. Bibliography 151

12. List of Figures 157

13. Appendix 161

1 8

13.1 Robot Control Code 162
13.1.1 Main Control Program 162
13.1.2 Wall Generation Program 165
13.1.3 Motion Instructions 169
13.1.4 Grasping Instructions 171
13.1.5 Block Rotation Angle 173
13.1.6 Capture Pointcloud 176
13.1.7 Wall Retention 177
13.1.8 Request Tool Action 179

1 9

T e r m i n o l o g y

2 2

ABB - Manufacturer of industrial robotic manipulators.

Deep Learning - The process of developing neural networks
capable of generating patterns through which an artificial
system can use to interact with unknown environments.

Grasshopper - A visual programming language that
interfaces with Rhino through a plugin.

Linux - An open source operating system similar in function to Windows

Machine Learning - The process of allowing machines to learn
the best course of action to take for a particular situation.

Operating Environment - The immediate environment
in which the robot interacts with.

Pick and Place Operation - The process of a six axis industrial robotic
manipulator grasping objects within the operating environment and
placing these objects in order to construct various structures.

Python - A high level programming language used
for a wide range of programming tasks.

Quaternion - A set of four numbers that describe the
rotation of the robot around a point in 3D space

Rhino - 3D modelling software common in architectural workflows

Robot Operating System (ROS) - A framework of pre built
tools used to develop complex robot control systems.

2 3

1 . I n t r o d u c t i o n

2 6

The use of robots with the explicit intent of building complex architectural
structures is a relatively new area of research within the field of
architecture. Before 2010, the capabilities of the technology available
to architects pursuing this endeavour were limited. The introduction of
several new technologies and a renewed interest in developing a more
efficient means of construction has once again catapulted the robotic
manipulator to the forefront of construction tools in architectural
research. This renewed interest has been of increased importance to
the development of intelligent autonomous robotic systems designed to
function in ways previously not possible, due to technological limitations.

Attempts to implement complex subsystems to control robots through
artificial intelligence has seen significant interest within the last ten years.
The advent of technologies such as machine learning and deep learning
have presented new methodologies in which to approach these issues.
Additionally, the theoretical aspects of what defines intelligence have
been widely explored with an emphasis on replicating the behaviours of
intelligence in artificial systems. By extrapolating intelligence into four
distinct characteristics; autonomy, perception, decision making and learning,
this provides a means of defining intelligence for robotic systems. All
four of these characteristics, when implemented in an artificial system,
develop different technical structures responsible for exchanges between
the robot and the operating environment. Autonomy can be considered as
the ability of the system to operate without external intervention, while
perception adds a layer of complexity by preempting system actions through
experience. Decision making contributes to the overall system by applying
a critical lens to the information fed back from the operating environment.
Learning, in contrast, extrapolates the systems previous experiences in
order to formulate reasoned approaches to unknown operating environment
conditions. The combination of these four theoretical markers act as a
means of measuring the success of the outcomes of this research based
on the importance of each aspect in defining an intelligent system.

Given these conditions of intelligence, this research develops two systems
that interact with two different stages of the communication between

2 7I n t r o d u c t i o n

the robot and the operating environment. Firstly, the development of a
system through which the robot is capable of gathering several blocks
from within the operating environment and using these to construct a
predefined wall structure at a position strictly specified by the operator.
Secondly, the development of a system that consists of considerably more
operator setup time however, it seeks to redefine the method through
which the operator interacts with the robotic system. In this case, the
operator generates a set of plans for a block wall structure which are
shown to the robotic systems visual sensor and in turn interpreted into
digital information which the system can use to construct the wall system.
Both of these systems have opportunities for further development with
the intention being to combine the two prototypes created to increase
the ability of the system to build more complex architectural structures.

This research is still in the early stages of development and, while
the outcomes of this research are not production-ready, they offer
both a starting point and framework for the continued development
of a system capable of fully autonomous construction.

2 . B a c k g r o u n d

3 0

In order to begin to understand how best to implement intelligence in
artificial systems, a general understanding of the underlying conceptual
frameworks of human intelligence (referred to as intelligence) is
required. These conceptual frameworks outline how our understanding
of intelligence is defined. Moreover, significant consideration must
be made to incorporate these fundamental understandings into
the current discourse around the implications of implementing
intelligence in previously unintelligent systems. Conceptually this
framework manifests in several unique conceptual ideas, each heavily
reliant on the others to develop complex, intelligent systems.

2.1 Intel l igence

Consensus on how to define intelligence is not present in the literature.
The lack of common understanding makes it almost impossible to
define global intelligence. However, when examining the literature,
common themes in intelligence exist. The commonality of these
comparisons still leaves the scope of intelligence unresolved. However,
several attempts have been made to offer a succinct understanding of
intelligence. Binet (1905, p. 6) describes intelligence as “...adapting
one’s self to circumstances”, similarly, Wechsler (1944) suggests the
“capacity...to act purposefully...to deal effectively with the environment”
constitutes intelligence. Additionally, Sternberg (1982) adds that
intelligence requires goals in which to direct environment interaction.

Given these generalised conceptual viewpoints, this thesis will manifest
intelligence as the ability to interact with environments and carry out
adaptive, goal-orientated objectives. This definition is purposefully
simplified to allow for definitive evaluation against the outcomes of
this research and aligns with current approaches to implementing
intelligence in artificial systems. Intelligence is the overarching concept
consisting of several sub-concepts that offer more direct means in
which to manifest intelligent processes for unintelligent systems.

Several other questions arise from the literature that offer additional
considerations to the scope of intelligence for this research. The first, “Is

3 1B a c k g r o u n d

intelligence the level of competency displayed when undertaking both
unknown and familiar tasks?” and secondly, “Is intelligence the rate at
which a system can learn?”. Answers to these questions are not directly
explored in this thesis, given the complexity of the definition of intelligence.
However, they are relevant to use as markers in which to reference
when considering the implications of outcomes from this research.

Intelligence can be divided into six distinct subsystems that contribute
to an overall definition of system intelligence. The combination
of these systems provides a robotic system with the means and
understanding to usefully interact with the operating environment
and develop systems beyond conventional programming structures.

2.1.1 Cognition

Cognition and Intelligence are both referenced in the literature in similar
terms. However, it is essential to differentiate between the two. Cognition
offers additional layers of response from the intelligent system to make
it more effective at manifesting intelligent actions and interactions. Key
concepts that underlie the cognitive ability of intelligent systems include
Knowing, Remembering, Understanding, Communicating and Learning.
The most important of these for robotic systems is learning. The other
four concepts rely heavily on learning in robotic systems in order to have
any significant effect on the overall cognition of an artificial system.

The human ability of cognition relies on an acute understanding of two
key concepts. The first, Environment Perception, provides cognitive
systems with the ability to ingest information about their surroundings
(Brooks, 1991). The second, goal attainment, requires the system to be
able to examine the information presented to it, and in turn, respond in
such a way as to succeed in its required goal (Maes, 1990; Smithers, 1997).
These definitions of cognition are similar to intelligence suggesting that
the two are inherently connected. Cognitive systems however, contain
two additional underlying systems that operate together to define the
cognitive ability of artificial systems. The first, Classification, is a means
of grouping perceived environment situations into groups for easier

3 2

identification in new or unknown situations. The second, Problem
Solving, uses the previously presented classifications in order to solve
issues that prevent a system from achieving the required goal state.
Both of these underlying systems, in combination with the previously
outlined concepts of perception and goal attainment, contribute to
a cognitive system. It is however, classification and problem solving,
that differentiate a cognitive system from an intelligent one.

Classification, when considered in relation to cognitive systems,
offers considerable comparisons to current machine learning and deep
learning methods. Classification acts as a means of quickly organising
the environment in distinct groupings. These groupings can then be
applied to new or uncertain environments in order to quickly ascertain
the constraints of an environment, what objects are present in the
environment and how the system should begin to interact with the
environment. Classification is not a means of accurately determining
all uncertain environment parameters however, it does provide a way
in which an artificial system can quickly develop approximations of
the parameters and constraints to the environment it inhabits.

Problem-solving can be broken down into three categories that are
typical of cognitive systems. A Trial and Error approach repeatedly
modifies different parameters until achieving a suitable solution. An
Algorithmic approach systematically deals with problems in a step by
step process. This approach guarantees a successful outcome. The final
approach, Heuristics, uses previous experience and collected information
to increase the speed at which problems are solved. These concepts are
all of particular importance to developing intelligent artificial systems.
Cognitive problem solving draws significant comparisons to current
machine learning and deep learning applications specifically through
the methods that cognitive systems use to solve problems. As such
the application of this knowledge will be discussed further with the
specific intent on integration in current deep learning methods.

Cognition offers significant points of interest to consider what

3 3B a c k g r o u n d

behaviours, and abilities offer the best chance of success when
integrated with artificial systems, specifically industrial robots for
architectural applications. The scope of how these can be integrated
is discussed further in a later section with attention paid to the
comparisons with current machine learning and deep learning
techniques and the potential for these techniques to successfully achieve
complex robotic operations without programmed instruction.

2.1.2 Perception

Perception, the second subsystem of intelligence, has two layers of
complexity that progressively offer increasingly complex manifestations
of intelligence. Environment perception is a means of replicating real-
world operating environments in digital form. Perception itself adds
an additional layer of complexity by allowing the system to instantly
prepare itself to interact with the environment, a preconceived response
to ingested visual information about the operating environment and the
role of objects in that environment. With the intent of determining what
objects can assist the system in achieving the required goal or task. Both
of these layers are vital to intelligent systems. Gathering information
about the environment is essential in order to successfully interact with
and manipulate objects within operating environments effectively. The
added layer of an instantaneous response afforded by perception presents
an increased robustness to the robot - environment feedback loop.

Commonly, perception is referred to in the literature as the ability
to understand the environment through vision. However, this limits
the importance of perception to the intelligence of artificial systems.
This is done by reducing it to merely the gathering of information
and not the reasoning behind the processing of this information that
influences the reactions of the artificial system to environmental
parameters and constraints. Another approach to understanding
the role of perception in intelligent artificial systems is to consider
the result of reacting to environmental cues presented to the
system. In essence, this approach considers perception as the way

3 4

in which, primarily through vision, the system reacts and prepares
itself to successfully interact with the environment it occupies.

Perception is an extremely important aspect of the autonomous robot system.
Perception is not simply the act of seeing an object, it is the act of seeing a
tool in the environment and adapting the system to interact with this tool.
Perception is partially the way in which a system reacts to external input.
When you first perceive an object you see it ’s uses as a tool and how you
might use this to benefit your chances of achieving a certain goal or task.
After this initial interaction you see an object in terms of what it is. This can
be linked back to the basic need for survival, wherein the usefulness of an
object in the environment is more important than what the object actually is.

2.1.2.1 Perception Limitations

The concept of perception is vital to the success of integrating intelligence,
cognition and decision making in artificial systems, specifically industrial
robotic manipulators. Despite this status, the difficulty of effectively
implementing a comprehensive perception system capable to some extent
of replicating human perception is technologically constrained. As such,
perception of this type falls outside of the scope of this thesis, however, it is
worth considering in future applications of this research an attempt should
be made to develop an approach which is akin to human perception and in
turn more effective at environment interaction and object manipulation.

For the purposes of this thesis, the role of perception is limited to
simple information gathering in order to accurately replicate the
robotic operating environment in digital terms. The role of reacting
to this information and facilitating object manipulation is distributed
among different systems. Cognitive and decision-making processes
through algorithmic representations are effective at harnessing
available hardware to instantiate robust intelligent robotic systems.

When considering the environment perception for applications that
include robotic systems, the quality of the information gathered by
these sensors is pertinent to the successful perception of different object

3 5B a c k g r o u n d

types. These perception systems must be able to accurately define
environments in relation to the position of the environment sensors
and with regard for the position of the overall robotic systems in order
to offer additional functionality to an intelligent artificial system.

2.1.3 Autonomy

The use of language, such as ‘autonomous’ when referring to robotic
systems, often confuses the significance and meaning of such terms.
Smithers (1997) indicates a collision of terms from different industries
that have been misconstrued when applied to newly developed
robotic systems. As such, even in consultation with the literature,
it is difficult to find consensus on relevant measures of autonomy
through which the outcomes of this research can be evaluated.

Within the literature, attempts to define the concept of autonomy
have been unable to reach a clear consensus. In contrast, some progress
has been made with regards to autonomous robotic systems in specific
situations. Autonomy in such systems is often described as the ability of
a machine to achieve a particular task (Froese et al., 2007). Autonomy
described in this way has limited applications. Pfeifer (1996) adds that
autonomous agents interact with the environment without the need for
human intervention. Environment interaction without human interaction
is a crucial component of autonomous systems, especially those with
artificial origins. Being able to interact robustly with the environment
constitutes a reciprocal interaction that operates beyond pre-programmed
constraints. However, Froese et al. (2007) argue that to restrict the
definition of autonomous systems to this still lacks the essence of
genuine autonomy; instead arguing that self-governance and decision
making are fundamental when describing any autonomous system.

With regard to robotic systems, both Maes (1993) and Smithers (1997)
consider a robotic system autonomous if it can extract environment
information, understand the consequences this information poses
and use this information to achieve specific goals or tasks. Also,
consideration of the two domains of autonomy – Behavioural and

3 6

Constitutive - must be taken into consideration. This research focuses
on the behavioural domain which defines certain behaviours that are
typical of autonomous systems. For robotic systems, these behaviours
include; collecting environment information, environment perception,
localisation, decision making and motion instruction execution
(Thondiyath, 2016). Currently, these behaviours are the best means
of establishing and evaluating the autonomy of robotic systems.
They offer direct measures in which to evaluate the outcomes of the
research against and provide a direction in which to investigate the
best way to begin to implement autonomy in artificial systems.

2.1.4 Decision Making

Decision Making builds upon the concepts of intelligence, cognition
and autonomy presented previously. Decision Making adds additional
responsibility to the system in order to manifest stronger environment
interaction and better consideration for the state the operating environment
is in at the time a decision is made. Additionally, decision making develops
strategies to deal with issues presented in the environment that an
intelligent system must overcome to be successful at achieving the required
task or goal. Saaty (2008) in ‘Decision making with the analytic hierarchy
process’ outlines the process required to be undertaken in order to make
decisions: A clearly defined problem, outlined in terms specific to the
situation, along with the purpose for making the decision and defining the
criteria that confirm a successful outcome to the decision-making process.
To manifest this in artificial systems, information about the state of the
environment, what the system has to achieve and all the potential actions
the system is able to take, act as inputs the decision-making process.

Within decision-making, two subcategories exist which define two
typologies of the decision-making processes. The first is controlled decision
making and the second is fuzzy goal or constraint decision making.
Bellman and Zadeh (1970) argue that when the goal for a decision-making
process is not defined, outcomes of the process are ambiguous potentially
leading to undesired outcomes. Additionally, having unclear or unknown

3 7B a c k g r o u n d

constraints reduces the suitability of decisions made to specific outcome
processes (Bellman & Zadeh, 1970; Saaty, 2008). Current technology is
limited in that the accuracy of the environment model is not sufficient to
preemptively make decisions about how to interact with the environment.

The integration of decision making in a robotic system can be thought of
as the ability to evaluate the current state of the operating environment
and, based on this information, execute instructions on the robot that
makes use of this information to inform the robot ’s actions. This is an
essential element that needs to be included in this research to allow
for more complex pick and place operations to be undertaken.

2.1.5 Learning

Does an intelligent system, designed for architectural fabrication,
need to learn? Should an intelligent system, designed for architectural
fabrication, need to learn? These are highly relevant questions that
remain unanswered in the context of intelligent robots for architectural
fabrication tasks. We can store information easily in a computer, so the
fact of retaining knowledge is inconsequential to machine learning.
What is most pertinent, is the ability to firstly learn relationships that
can then be applied to new information presented to the machine.

What constitutes learning? Is it forming relationships based on
predefined inputs, or is the creation of new relationships based on a
large amount of information, or are you said to have learnt something
after completing it after several attempts? I would argue that human
learning is a combination of all three of these characteristics and
additional layers of complexity that cannot be fully understood.

Learning is not typically attempted by autonomous individuals on a
daily basis. Instead Brooks (2014) argues that “Most of what people
do in their day to day lives is not problem-solving or planning, but
rather it is routine activity in a relatively benign, but certainly dynamic,
world”(p. 1). This speaks to the vast prior experiences that human
intelligence is built on. The amount of information required to achieve

3 8

similar learned results with intelligent robotic systems is virtually
impossible. However, what this stresses is that given enough information
through which to learn a classification based approach to the required
operations, pre training algorithmic models which generalise how a
robot should interact with the operating environment are a suitable
solution in order to achieve simple cognitive tasks such as the picking
and placing of rectilinear objects with consistent dimensions.

2.2 Feedback Loops

Feedback loops are the underlying structures present in all intelligent
systems. They act as a means for systems to gather information about
the environment and perpetuate this information into useful actions to
further the goals of the system. Feedback Loops are the process through
which information, via a number of different sensors, is gathered from
the environment. Using this information the system, utilising its base
intelligence, makes decisions that transition the system towards an intended
goal state. Once the best course of action has been determined, the system
executes the required tasks necessary in achieving the desired goal state.

This process is essential in a robotic pick and place operation due to
the reliance on the robot having an understanding of the conditions
of the environment it is operating in. Additionally, the robot is aware
of the end goal of the system, in this case, a completed block wall
structure. Both of these conditions are the fundamental principles
involved in a feedback loop system. The development of a comprehensive
feedback loop system for robotic pick and place operations would be a
fundamental component in any application for robots in construction.

2.3 Artif icial Intel l igence

Attempts to transfer human intelligence processes to artificial systems
have met limited success since they began in the mid-twentieth century.
A significant number of different approaches have been considered from
highly structured ‘state machines’ to more flexible deep learning approaches
that have been developed in the last ten years. As such, the term ‘Artificial

3 9B a c k g r o u n d

Intelligence’ has come to define an ever-expanding scope of concepts and
processes that attempt to implement some sort of intelligence into artificial
systems. Given this wide scope, it is important to clarify how this thesis
defines artificial intelligence and what processes are of particular importance
for the successful development of a robotic system capable of executing
simple additive fabrication tasks without pre-programmed definitions.

The successful integration of simple intelligence in a robotic system will
present two key concepts. The first, Environment Perception will, as
previously stated, render the robotic operating environment in digital terms.
The second, Decision Making will interpret the environment information,
algorithmically retrieving suitable information in order to allow the robotic
system to successfully achieve specific goals or outcomes. In simple terms,
can the system perceive the environment and if so, is it able to understand
it in such a way that it can adapt and interact with the objects in the
operating environment in a meaningful way? Within this simplification
of intelligence, the additional processes of cognition, autonomy, learning
and feedback loops are all operating underneath the decision making
process in order to manifest competent decisions in the robotic process.

Specific approaches to manifesting these intelligence processes can be split
into two distinct categories. A structured rule-based intelligence, where
a set of rules determine the extent that the system has to operate in. The
second, is a more flexible learned intelligence, where the system has learnt
formal and informal relationships about the operating environment and
objects in it with which it formulates its own set of feasible considerations
for interacting with the environment. Simply, rule-based vs learnt
relationship. These two approaches are most common in the literature
having transitioned from rule-based approaches to learning approaches
with the development of more powerful computational hardware.

Machine Learning is a subset of artificial intelligence concerned
with providing the necessary computational structures which would
allow a machine to learn and retain knowledge (Figure 1). For
the purposes of this research a subset of Machine Learning, Deep

Machine
Learning

Image
Classification

Model
Training

Scoring of
attempts

Robotic
Learning

Autonomous object detection
and grasping system

Filtering for
object

isolation

Definition of
successful
results

Computer
Vision

Image
Manipulation

Object edge
contours

3D environment
information

Ob
je
ct
 D
et
ec
ti
on

Ob
je
ct
 D
et
ec
ti
on

Application of
model

Figure 1 - Computer Vision and Machine
Learning process

4 2

Learning, is found to offer the appropriate scope to successfully
develop autonomous robotic pick and place operations.

2.3.1 Deep Learning

Deep Learning is a recent attempt, having re-emerged as a viable
approach in the last ten years, to develop robust and effective intelligence
implementations in artificial systems. Deep Learning formulates
algorithmic models that can be applied to new situations consisting
of similar data to facilitate advanced levels of intelligence in specific
applications. Deep Learning training methods can be defined in three
distinct categories; supervised learning, unsupervised learning and
reinforcement learning. These three categories attempt to achieve
learning through different approaches, the advantages and disadvantages
of which will be discussed subsequently. Each approach provides a
different means of achieving a level of intelligence in artificial systems.

Supervised learning attempts to train a model, representative of a
predefined relationship in a data structure. Each data point consists
of a description and a label which defines what action should be taken
(Sutton & Barto, 2018). The purpose of this system is to develop
generalised relationships that allow the system to operate effectively
in unfamiliar or uncertain situations. In addition, supervised learning
applies basic rules upon which the system can define the representative
model (Guérin et al., 2018). The combination of these two control
processes define a model which is adept at a singular trained task.

Supervised learning presents both clear benefits and limitations. For the
purposes of interacting with the environment, the collection of correct
action representations is often impossible (Sutton & Barto, 2018).
Additionally, supervised learning is unable to adapt to any change to
the situation in which it was trained. As a result, changing any of the
environment parameters renders a model trained in this way unable to
operate successfully, or the outputs and actions of the system will be
ineffective or unintended in relation to the outcomes expected by the
system designer. Given these constraints, a supervised learning model

4 3B a c k g r o u n d

is ineffective when deployed in a situation that requires the artificial
system to be flexible and adaptable to a variety of operational situations.
Therefore this learning method has been discounted in favour of
methods more suitable to solving the previously presented issues.

Unsupervised learning develops representational models that, in contrast
to supervised learning, determine the relationship through the model
rather than being predefined (Goodfellow et al., 2016). The unsupervised
learning model draws its own comparisons from the input data and as
such extracts feature sets potentially unseen by the system designer
(Guérin et al., 2018). The overall goal of unsupervised learning is to
classify data into different feature sets in order to be applied to, in a
similar fashion to supervised learning, unfamiliar or uncertain situations.

Unsupervised learning has several benefits when compared to supervised
learning but is limited as a means of establishing flexible and adaptive
robotic grasping systems. The benefits of unsupervised learning are present
in the ability for complex situations to be accurately represented in the
learnt model. The relationships with the training dataset also have the
potential to be classified in ways that are not immediately evident but still
produce the desired results and outcomes. In contrast, the limitations of
unsupervised learning restrict the adaptability of the model when the system
is introduced to situations in which the training data did not consider. The
unsupervised learning model offers some benefits over the supervised model
however the limitations still indicate that it lacks the means to develop
flexible and adaptable robotic systems for architectural fabrication situations.

Reinforcement learning is the process of interacting with the environment
and learning in real-time. Specifically, reinforcement learning focuses on
operating environment goal states which the system interacts with, in order
to achieve a goal or task (Sutton & Barto, 2018). For each action the system
takes towards achieving a goal state, it is given a score or reward which
indicates how effective that particular action is in achieving the goal state.
Given the importance of the environment state, it is essential that the system
is able to accurately reflect changes made to the environment in a way that

4 4

the reinforcement learning system can utilise to inform the next action.

In contrast to both supervised and unsupervised learning, reinforcement
learning is capable of operating in real time. This gives it the distinct
advantage of being able to adapt the learning process as the system
encounters different operating environment situations. However, to
ensure that a reinforcement learning system acts effectively, consideration
needs to be given to the trade off between exploitation and exploration.
The system must exploit its current knowledge to guide actions but
it must also explore different actions in case a new action is more
effective than a current action (Sutton & Barto, 2018). Reinforcement
learning offers the best solutions to the complex issue of flexible
and adaptive robotic systems for additive architectural fabrication,
consistently meeting the requirements as outlined previously.

Given the goals of this research, reinforcement learning has
been used to begin to implement complex intelligent decision
making in a robotic system. The benefit of real time operation
significantly outweighs any of the limitations and allows the robotic
system to be flexible and adaptable to different situations.

2.3.1.1 Object Detection

Deep Learning begins to facilitate more complex intelligence processes,
the most basic of these being object detection. Object detection refers
to the ability of an artificial system to detect when objects are within
the perception frame. 2D object detection is common where a bounding
box is applied to the region where the deep learning algorithm believes
the object is. Common applications for object detection systems are
in autonomous vehicles, industrial and domestic robots. This research
uses those systems as a baseline for the integration of object detection
in additive robotic fabrication for architectural applications.

Object detection can be developed using three different approaches.
Sobti et al. (2018) approach object detection using simple RGB images in
which a rectangular bounding box is applied when a deep learning model

4 5B a c k g r o u n d

successfully detects the specific object in the frame. Rahman et al. (2019)
add an additional layer of complexity by including depth information in the
form of RGB-D images. The added depth data is an attempt to improve
the 2D detection process to include 3D environment information in the
object detection process. Ziegler et al. (2018) go one step further to render
an RGB-D image as a point cloud. The point cloud is matched to a CAD
model of the object to be detected with the intent to improve the accuracy of
the object detection process allowing for better robotic - object interaction.

2.3.1.2 Object Recognition

Object recognition builds on the process developed in an object detection
system to allow an artificial system to know what objects it is perceiving
through an environment sensor. Object recognition is linked heavily
with the concept of perception. The purpose of object recognition is
to establish the usefulness of objects in the operating environment,
quickly establishing through a pretrained model, how best to use objects
presented to the robotic system in achieving a set of goals or tasks. This
adds an additional layer of sophistication to an intelligent system over
simply identifying what objects are present in the perception frame.

The scope of approaches to object recognition can be demonstrated in three
studies. Baareh et al. (2012) use feature extraction through an artificial
neural network to develop a robust method for 3D object recognition. Pinto
et al. (2013) integrate a laser range finder into the object recognition system
in order to overcome some of the limitations of camera based recognition
systems, specifically the requirement for suitable lighting to evenly light the
object to be recognised. Nagy (1994) attempts to use pattern recognition to
differentiate between different object types during the recognition process.
Of these three approaches the most useful is Barreh et al. as a system that
requires robots to interact with objects necessitates that object recognition
is highly accurate to reduce errors in the object grasping process.

2.4 Robotic Systems

Robots, specifically those suited to industrial applications, have long been

4 6

used as a means of increasing efficiency and reliability in a number of
industries. Currently, industries that benefit most from these productivity
increases are those in which robots are required to undertake the same task
repeatedly e.g. automotive manufacturing. Contrasting this, the introduction
of robots as tools in industries that require more adaptability and flexibility
from robot systems has been limited. Architectural applications, specifically
for construction, require robotic systems that function reliably across a wide
range of scenarios and conditions from prefabrication in a controlled factory
environment to on-site construction in a complex and challenging site.
These limitations have long restricted robotic use in architecture to trivial
applications. However, with the advent of new technologies coinciding
with the 4th industrial revolution, robots are beginning to gain interest as
feasible construction tools for both prefabricated and on-site construction.

Robots have been used since the mid-twentieth century as tools to
increase productivity in specific industries. Robots are inherently good
at accurately repeating the same task. However, for applications that
require flexibility and adaptability in robotic motion instructions with
specific consideration for environment interaction, current robotic
processes cannot fulfil these demands. Architecture, and specifically
the construction of architecture, is one such industry where flexibility,
speed, efficiency and adaptability is paramount. As such, the current
software tools dictating robot motion control are fundamentally unable
to manifest complex architectural structures from robotic assembly
processes. Furthermore, the disconnect between a robot and its operating
environment underlines the limitations of current robotic systems
to be utilised as construction tools for architecture applications.

Attempts to introduce robots as tools for the construction of architecture
is evident since the widespread uptake of robots as manufacturing tools in
conjunction with the advances in software control for the programming
of robots. Since this time, attempts to integrate robots into robust
construction workflows has significantly increased. In addition to this
increase, significant attempts have been made to introduce tools that
allow the robot to perceive and interact with the environment that it

4 7B a c k g r o u n d

is operating in. Primarily these systems have been developed through
the work of the Gramazio and Kohler research group. Their research
focuses on integrating robots into construction workflows with increased
speed, efficiency and flexibility over typical construction workflows.

2.4.1 Intelligent Robotic Systems

Applications for computer vision and autonomous robotic decision making
are vast. As a result of this, a significant amount of research already
exists that considers how to implement computer vision in an industrial
robotic workflow. The majority of the research deals with mobile robots
with the intention of having robots navigate through an environment
while only a very small amount of research deals directly with the
application of robotic feedback loops for architecture and construction
applications. The existing research can be broken down into two main
categories. Firstly, object mapping for 3D model generation and secondly,
object detection and recognition for industrial robotic handling

Preliminary work on 3D object mapping was undertaken by Besl and
Mckay (1992) and Blais and Levine (1995). This preliminary work
attempted to use rudimentary vision systems in order to generate digital
3D models. Similarly, Newcombe et al. (2011) in the paper KinectFusion:
Real-Time Dense Surface Mapping and Tracking, presents an updated
implementation of vision sensing and object recognition. An RGB-D sensor
captures both image and depth data, on which the authors implement
an iterative closest point algorithm in order to combine depth data
from different viewpoints into a descriptive and complete digital model.
More recent research, undertaken by Martin et al. (2014), investigated
the implications of interference on the reliability of depth measurement
data collected from RGB-D sensors. This research highlighted the
need for adaptive algorithms to account for image interference.

Research that considers the implications of intelligent and environmentally
aware grasping in an industrial robotic workflow is limited to a few key
industries. As such, intelligent grasping approached from an architectural
perspective, has seen limited research interest. To date, two key studies

1.

2.

3.

4.

5.

Figure 2 - Block wall Parameters

1. Block Dimensions.
2. Mortar spacing.
3. Wall offset.
4. Wall path
5. Overall wall dimensions

5 0

have investigated the integration of object detection in a robotic workflow.
De Gregorio et al. (2016) in the paper “RobotFusion: Grasping with a
Robotic Manipulator via Multi-view Reconstruction”, describe a means
of using a robot equipped with an RGB-D sensor to determine the
location of objects in an environment in relation to the robot coordinate
base. A second investigation by Tsarouchi et al. (2016) examined an
offline system that utilises CAD files of objects to match to scanned
objects. More specifically, the pose of the robot is determined through
similarities and differences in the RGB images gathered by the robot.
One further example by Furrer et al. (2017) in the paper “Autonomous
robotic stone stacking with online next best object target pose planning”
presents the current state of the art with regard to object detection in
a robotic workflow in the architectural and construction industries.

2.5 Robotic Brick Construction

The use of robots in architectural applications has increased significantly
since the beginning of the 21st century. This uptake in robotic use has also
coincided with the introduction of additive fabrication processes for robotic
construction. Primarily, this has taken the form of six-axis industrial robots
placing bricks in order to construct bespoke wall systems (Figure 2).

Some research exists that examines the implications of the introduction
of robots in simple additive fabrication processes. Two systems
developed in the 1990s were the first attempt to implement robots
in adaptive construction processes. However, these systems were
primarily focused on improving efficiency without considering the
potential that new fabrication technologies could have on the ability
to construct significantly more complex wall geometries. As such,
they failed to gain any traction within the construction industry.

These systems all have significant limitations that revolve around
a lack of operating environment awareness, an inability to adapt to
new operating environments and the inability to adapt to changes
in the existing operating environment. These limitations severely
restricted the suitability of these early systems to successfully construct

5 1B a c k g r o u n d

complex block wall systems with limited human intervention.
However, these initial attempts developed a framework on which
additional development and research could be undertaken.

2.5.1 Intelligent Robotic Brick Construction

The first of these precedent examples titled ‘Flexbrick’ aimed to develop a
means of prefabricating sections of brick walls using an industrial robotic
manipulator (FlexBrick, ETH Zurich, 2008-2010, n.d.). In contrast to the
proposed research, this project did not use any adaptive or autonomous
feedback systems to enhance the process of fabrication. This project is a
useful marker in terms of demonstrating the viability of construction that
utilises bricks and the potential for robotic fabrication to begin to develop
systems that utilise brick construction. The proposed research has the
potential to build upon this project in an attempt to introduce flexibility
and adaptability into simple architectural robotic fabrication tasks.

The second precedent example is again a project undertaken by
Gramazio and Kohler Research. In contrast to the previously outlined
precedent, this project begins to incorporate sensor data in an
autonomous feedback loop. The project utilises this data to determine
the width of timber panels that are used to clad premade structural
timber frames. This process is rudimentary in sensor application
as the timber cladding is placed in the same position for every
operation and therefore cannot be adapted easily if the environment
the robot was operating in was to change (Eversmann, 2018).

The third precedent project titled ‘Stratifications’ is a project that
uses vision-based feedback in order to determine what thickness of
brick should be picked in order to maintain the structural integrity
of a block wall system (Figure 3). This project uses an RGB-D sensor
that scans the already constructed wall in an attempt to determine the
dimensions of the blocks surrounding where the new block is going
to be placed. Based on these measurements, the algorithm decides
which block is best suited to fill the gap, and the robot then executes a
manipulation instruction in order to grab the block from one of three

Stratifications

The Endless Wall

On-site Mobile Robotic Construction

This content is unavailable.
Please consult the figure
list for further details.

This content is unavailable.
Please consult the figure
list for further details.

This content is unavailable.
Please consult the figure
list for further details.

This content is unavailable.
Please consult the figure
list for further details.

This content is unavailable.
Please consult the figure
list for further details.

This content is unavailable.
Please consult the figure
list for further details.

This content is unavailable.
Please consult the figure
list for further details.

This content is unavailable.
Please consult the figure
list for further details.

This content is unavailable.
Please consult the figure
list for further details.

Figure 3 - Stratifications.
(2011).
Gramazio and Kohler Research.
https://gramaziokohler.arch.ethz.ch/web/e/
projekte/206.html

Figure 4 - The Endless Wall.
(2011).
Gramazio and Kohler Research.
https://gramaziokohler.arch.ethz.ch/web/e/
projekte/216.html

Figure 5 - Building Strategies for On-site Robotic Construction.
(2014 - 2018).
Gramazio and Kohler Research.
https://gramaziokohler.arch.ethz.ch/web/e/
forschung/273.html

5 4

different stacks. These stacks of blocks are in known locations, and
this is where the proposed research differs significantly. The proposed
research aims to replace known location object picking with vision-
based object picking in order to reduce setup time and remove errors
from the picking operation (Stratifications, London, 2011, n.d.).

The current state of the art with regard to autonomous and intelligent
robotic construction methods is present in the in-situ fabricator (Helm
et al., 2014) (Figure 5). This is a mobile robot with the ability to operate
in a range of different environments. Specifically, this mobile robotic
system is capable of construction in two distinct additive fabrication
processes. The robotic system is capable of constructing pre programmed
brick wall structures in an area larger than currently possible with
fixed based robotic manipulators. Additionally, the robotic system is
also capable of fabricating complex steel mesh reinforcing structures
currently uneconomical with traditional construction processes. These
two additive fabrication systems are achieved through the use of vision
sensor information and complex algorithmic systems which provide the
robotic system with the information required to actively construct these
structures. As the robot is also required to move around the environment,
it uses the collected environment information to generate a rudimentary
map of the operating environment, which is updated every time the robot
moves. This allows the robot to localise itself within the environment
and understand its position in relation to the fabrication process it is
executing. While this system is significantly complex, it still has several
limitations which impact the autonomy and flexibility of the system
to undertake certain tasks. Firstly, the system requires human input to
transfer material to the robot. In addition it is not able to grasp objects
from locations that are not preprogrammed into the system. The system is
also untested in environments that are not highly controlled and as such is
not capable of sufficient autonomy outside of a laboratory environment.

2.6 Autonomous Vehicles

Over the last ten years, the success of autonomous vehicle in real-world

5 5B a c k g r o u n d

applications has increased significantly. The development of complex
systems, which allow vehicles to operate without human intervention in
complex environments, offers a framework or roadmap for the integration of
similar systems in the architecture and construction industries. This roadmap
consists of developing processes to control the vehicle with computers,
including implementing several different sensor arrays to accurately map
the operating environment. Further processes include developing intelligent
algorithms to make sense of the information gathered from the sensor
arrays and then developing these algorithms by implementing machine
learning technology into the system to improve the overall capabilities
of the system by learning how a human would operate a vehicle.

This roadmap can be applied to a robotic pick and place operation
as it will require the implementation of similar systems in order to
function successfully. Firstly, the robot will need to be controlled using
external applications and in real-time. Secondly, in order for the robot
to understand the extent of the task, it is required to fulfil, a minimum
of one visual sensor will be required. Thirdly, the robotic system
will require the implementation of intelligent algorithms in order to
successfully use the information available to execute autonomous pick
and place operations. The similarities between autonomous vehicles and
autonomous robots for construction provides a useful framework for the
development of a robotic system with a comparable level of intelligence.

3 . A i m s a n d O b j e c t i v e s

5 8

3.1 Aims

Based on the previously outlined research, the aims of this research are clear
in terms of both scope and position within the overall body of research.
The existing research offers four critical areas in which this research
begins to develop solutions. These relate specifically around developing
systems that allow robots to begin to formulate intelligent decisions
about what actions to take within an operating environment to best
achieve the required goals of the system. Robotic feedback loops present
a significant opportunity to develop new systems for more efficient and
reliable construction due to the limited flexibility and autonomy of robots
in current construction applications. This research aims to begin to resolve
four critical issues for robotic fabrication in architecture and construction:

• The inability to adapt to unknown environments (Figure 6 - 9) .

• The lack of autonomous decision making in robotic workflows.

• The inability to locate, recognise and then manipulate objects in the
working environment.

• The lack of error detection if a motion command fails to execute or is
executed incorrectly.

The proposed research aims to begin to solve these issues by developing a
complex autonomous robotic feedback loop system, capable of constructing
a block wall using objects found through vision-based feedback. The aim
is to integrate RGB-D and tracking camera environment information with
object detection and recognition algorithms in order to identify the location
of objects in the robot ’s environment, determine what the object is and also
the pose of the objects in relation to the robot coordinate base. Furthermore,
the successful integration of these systems within this research will
begin to facilitate intelligence in architectural robotic fabrication.

3.2 Scope

The scope of this thesis is directed towards designing a successful
autonomous robotic pick and place operation. The process through which

5 9A i m s & O b j e c t i v e s

this thesis will operate interrogates the literature for a means to define
the extent of the research scope. The scope of this thesis investigates
four key areas of the literature and their applications to robotic pick and
place systems- Intelligence, Autonomy, Decision Making and Perception.
These four areas scope the relevant literature, ensuring that the thesis has
explored the relevant areas of both theoretical and practical applications.

 The scope of this thesis is framed in such a way as to ensure the relevance
of the resulting outcomes to the overall body of literature inclusive of both
theoretical and practical applications. Specifically, practical applications
investigated the implications of the technical systems that control the robot,
how the robot interacts with the operating environment(primarily through
vision),and the complex systems that decipher the information provided by
the robot interacting with the environment. In relation to the theoretical
aspects of this thesis, specific conceptual ideas, as discussed earlier, are
matched with the practical aspects to form a cohesive vision for the thesis.

3.3 Objectives

This thesis consists of several objectives in order to successfully achieve
the overall aim of the thesis in developing an autonomous robotic system
capable of grasping unknown objects in the working environment. The first
of these objectives consisted of investigating the hardware and software
tools required in order to implement feedback loops in a robotic workflow.

3.3.1 Prototype One

• Connect a simulated robot to a robot

• Have the robot respond to commands in real-time

• Gather a point cloud representation of the operating environment

• Isolate the point cloud information that describes the location blocks
to interact with

• Convert the point cloud description to useable information for the
robot

Figure 6 - Conventional Pick and place operation

Figure 7 - Operating environment does not match the
programmed parameters of the robotic system

Figure 8 - Robot continues executing pre-programmed
motion instructions

Figure 9 - Robot is unaware of multiple failures.
Requires human intervention to correct
the robots actions.

6 2

• Execute a single grasping operation

3.3.2 Prototype Two

• Loop over the execution instructions

• Implement a closest point algorithm in order to determine corner
points of each block

3.3.3 Prototype Three

• Develop a random wall pattern generator

• Have the robot recognise the wall pattern from an image

• From a known stack of blocks, have the robot construct the wall from
the image

3.4 Methodology

This research developed through a methodology common in both
architecture and design. The design thinking methodology consists of
four key stages, each reliant on the previous, to guide the direction of
the research (Figure 10). In addition to this reliance is the feedback
process between each stage of the design process whereby outcomes
discerned in the later stages of the research are used again as inputs in
the design process to influence the iterative process of the research.

The first stage in this methodology is to clearly and adequately define
the problems and issues this research is attempting to address. The
issues that are to be addressed revolve around the current limitations in
autonomous robotic fabrication in conjunction with the formalisation of
tools and processes suitable to begin to implement autonomous robotic
control of the construction process. In order to materialise the extent
of the research, the issues and problems need to be suitably defined and
considered in order to provide a clear direction for the research to take. In
addition to the initial scoping of the research, as the research progresses,
the outcomes of the research also shape the scope through the iterative

6 3A i m s & O b j e c t i v e s

design process which in turn allows the research to progress in ways which
may not have been considered at the beginning of the research process.

The next stage of the research methodology is to determine ways in
which the previously defined issues and problems could be solved. In
the case of this research, the main ways in which ideas were generated
related to solving the technical complexities of having a robot
operate autonomously and begin to understand the environment it is
operating in. The ideate stage of the research methodology relies on
the resolution of the define stage to be at a suitable level in order to
manifest solutions that have the highest potential to be successful.

The third stage in the design thinking research methodology is the
prototyping phase. In the context of this research, the prototyping
phase consists of three different prototypes with increasing levels of
complexity, both in terms of technical development and robot action in
the environment. The first of the three prototypes are developed solely on
the approaches developed in the ideate phase. However, the additional two
prototypes build on the previous prototypes in addition to the approaches
developed in the ideate phase. After the completion of each prototype,
the prototype is evaluated through a the testing phase in order to then
determine where improvements can be made to the next prototype.

 The final stage of this methodology is the testing phase. This phase consists
of the outcomes of the prototypes being evaluated against the effectiveness
of solving the previously defined problems. In the case of this research,
each prototype was considered based on how effective it was on three
different metrics. The first of these metrics, autonomy, considered how
much human intervention and setup was required in order for the robot to
successfully complete the required task. The second metric, intelligence,
considers how suitable the robot ’s actions are when compared to how a
human would approach a situation. The third metric, reliability, considers
how many times the robot could successfully complete the requirements
of the prototype, given different operating environment conditions. The
combination of these three metrics were used to determine what aspects

Define

Redefining
the issues

Developing
new solutions

Enhancing prototype
parameters

Ideate

Prototype

Evaluate

De
ve
lo
pi
ng
 a
 n
ew
 p
ro
to
ty
pe

Figure 10 - Research Methodology

6 6

of each prototype were successful and could be carried over to the next
prototype. The metrics also identified areas where changes were needed
for the next prototype in order for the outcome to be more successful.

The overall research methodology will consist of four unique phases that,
when combined, form a comprehensive means of undertaking architectural
research. Most notably, this methodology is useful as a way of quickly
iterating through design options in order to develop robust outcomes.
The use of prototyping in an autonomous robotic feedback loop system
provides tangible feedback as to the effectiveness of each iteration.

The previously outlined methodology is particularly useful in developing
outcomes that are highly resolved. Lucas(2016), in his book “Research
Methods for Architecture”, describes the benefits of an iterative process
“The results of an experiment can be unpredictable, but this is actually
a primary benefit of the process – it allows you to design your next
experiment to ask a more specific question”. The proposed research
method allows for incremental improvements in the competence of
autonomous robotic feedback loops to be observed. These incremental
observations are vital in establishing robust research outcomes. They
allow for the initial research question to be thoroughly interrogated
thus establishing a means of determining the viability of autonomous
robotic feedback loops for architectural fabrication applications.

6 7A i m s & O b j e c t i v e s

4 . T o o l s

7 0

4.1 Rhino and Grasshopper

Grasshopper and Rhino are Windows based systems that provide a
means to simplify the process of interfacing with complex robotic
systems. Rhino is a 3D modelling software package that is a standard
application in architectural practice, along with many other industries.
Grasshopper is a plugin for Rhino that offers two distinct new capabilities.
The first is the ability to construct complex parametric geometry in
the Rhino environment and secondly, Grasshopper allows the import
and export of data in Rhino via additional scripting languages.

Information integration between different tools in a feedback system
is essential to a successful robot operation. Grasshopper facilitates this
through the integration of Python scripts that translate grasshopper
geometry into readable instructions for robotic execution. Additionally,
Grasshopper acts through a simple text file interface, sending files over
a network, to communicate with the various other tools such as ROS
(Robot Operating System), an open source,Linux based application that
facilitates a live interface between generated data and robotic operation.

Using Rhino and Grasshopper as an interface between complex robotic
systems can provide three distinct advantages. Firstly, for architectural
applications, Grasshopper is a familiar tool which can make it easier to
understand and visualise complex robotic concepts. Secondly, through
visual representation, Grasshopper allows for an understanding of
complex spatial information about the underlying feedback process.
Finally, Grasshopper offers a familiar language interface between the
robotic control structures and communicated feedback information.

While the benefits of using Rhino and Grasshopper as an interface
to ROS are significant, several limitations are also apparent that
restrict the usefulness of this process. Firstly, new processes on top
of the already complex robotic control structures lead to potential
reductions in the speed and efficiency of the overall feedback loop
system, especially when operating in real-time. Secondly, the robot
operating between two environments, Linux and Windows , reduces

7 1T o o l s

the flexibility to adapt developed systems to different situations.

The use of Rhino and Grasshopper requires an awareness
of these limitations and working to ensure they don’t have
a detrimental impact on the robot operating system.

4.2 Robot Operating System

The Robot Operating System (ROS) operates on a Linux based operating
system and is a control structure capable of managing a wide range of
robotic systems, including six axis robotic manipulators. Control of these
systems is facilitated through five subsystems; Nodes, Topics, Messages,
Publishers and Subscribers. The combination of these subsystems, through
a communication hierarchy, establishes control over environment interaction
and instruction execution in a robotic system. The communication hierarchy
also allows ROS to facilitate both delayed and real-time feedback loops.
This allowance for real-time feedback loops presents ROS as a framework
in which to control robotic motion through environment interaction.

A series of interlinked Nodes control the interaction between ROS and
a robot (Figure 11). Each node in the system handles one area of robotic
control. Three distinct Node clusters are responsible for: robot motion
control, external information input and, programmed information input.
Robot motion control nodes collaborate to execute instructions on the robot.
External information input nodes gather information about the operating
environment of the robot. Programmed input nodes allow the programmer
to define information about the environment or objects in the environment.

The ROS Node communication structure allows for the transfer of
information about the operating environment to the robot control systems.
Facilitating environment information transfer requires exploiting an array
of environmental sensors. Systems such as Intel’s Realsense D435 allows
the analogue environment to be accurately established in digital form.
Communication between the environment sensor array and the robot
control structures is facilitated through ROS Topics. These Topics publish
information that additional adaptive algorithms can manipulate into robot

/c
am
er
a/
de
pt
h/
im
ag
e_
ra
w

/c
am
er
a/
de
pt
h/
po
in
tc
lo
ud

Ro
bo
t

pr
og
ra
mm
in
g
an
d
Co
nt
ro
l

En
vi
ro

nm
en
t
In
fo
rm
at
io
n

Mo
ti

on
 I

ns
tr

uc
ti

on
 E

xe
cu

ti
on

/r
ob
ot
_s
ta
te
_p
ub
li
sh
er

/r
ob
ot
_c
on
tr
ol
le
r

/s
er

ia
l_

no
de

/j
oi
nt
_t
ra
je
ct
or
y_
ac
ti
on

/m
ov

e_
gr

ou
p

/r
ob

ot
_t

f_
pu

bl
is

he
r

/o
de

me
tr

y_
pu

bl
is

he
r

/t
f

Figure 11 - ROS node and topic structure

7 4

motion instructions, which are communicated to the robot and executed.

ROS Topics act as the primary subsystem for node communication. Topics
act as start and endpoints for data communication. Nodes contain either
a collection of Topics or a single Topic through which information is
transferred in the ROS message format. To send and receive information,
Topics publish and subscribe to Topics grouped in other nodes. By
publishing information, other Topics can receive this information by
subscribing to the publishing Topic. Topics within the same node also
communicate in this manner. The functionality of Topics defines a flexible
information transfer process, capable of seamless real-time feedback.

This programmed information input is essential in allowing interaction
between industrial robots and operating environments. ROS facilitates
the integration of programmed inputs through the generation of ROS
Topics publishing such information. However, these programmed
inputs are not static. Through the publishing and subscribing system,
other ROS nodes can retrieve programmed data. In static robot control
structures this process is mono-directional, whereas ROS facilitates
bi-directional feedback which interacts with the programmed input
to manifest environment parameters in robotic actions. This feedback
process presents robot operators with the central systems to implement
simple reciprocity between the robot and its operating environment.

In order to entertain real-time feedback, ROS communication operates
in a hierarchical structure. This hierarchical structure consists of two
communication layers, with a diminishing level of priority. The highest
layer, i.e. the one with the highest priority, controls robot motion
instruction execution. Also, other essential communication, crucial to the
successful operation of the robot, is facilitated in this layer. The sublayer
primarily controls sensor integration, programmed environment parameters
and functions which are not critical to the successful functioning of
the robot. Given that these two layers exist independently, real-time
feedback between the environment and the robot control structure, along
with feedback about the robot ’s position and state are simultaneously

7 5T o o l s

updated to inform subsequent motion instruction execution.

These Feedback loops, in conjunction with ROS, suggest an approach
to two-way communication for robotic pick and place operations. ROS
facilitated two-way communication that incorporates environment
information will result in a robotic system that is influenced by and
responsive to the operating environment. Two distinct types of feedback
are apparent when examining the capabilities of ROS communication.
These pertain primarily to real-time and delayed feedback. Real-
time feedback loops, as the name suggests, allow the robot to receive
information about the environment through ROS as it is interacting with
it. In contrast, delayed feedback loops update motion control systems
after an amount of time has elapsed. Real-time feedback implemented
through ROS has several advantages most notably, robots interacting with
operating environments in real-time can adapt quickly and effectively to
both subtle and significant changes in operating environment conditions.
Contrasting this, delayed feedback loops require the robot to suspend
the execution of instructions until environment information can be
generated, and therefore allow the robot to interact successfully with the
operating environment. This limitation suggests a real-time feedback loop
implementation, through ROS, as the most effective means of developing
two-way communication for robotic pick and place operations.

In collaboration with real-time feedback loops, ROS allows for the
transfer and filtering of specific environment information. In addition
to simple information communication, ROS begins to conduct simple
decision-making concerning the execution of robot motion. Existing
robot control processes, as outlined previously, establish simple code
to robot transfers as a means of instructing robot motion. However,
through the feedback loop process, ROS can establish control over
numerous robotic systems. The output of each of these systems is
used by ROS to determine how best to interact with the information
available to it and rudimentary decision making can be established.

4.3 Intel Realsense Camera

7 6

The Intel Realsense camera (D435) contains an array of environment
information gathering sensors used to generate accurate descriptions
of environments in digital form. The D435 consists of a standard RGB
camera module, Stereo depth cameras and an IR pattern projector.
Combined, these three sensors are capable of accurately mapping the
environment between a range of .1 and 10 metres. This sensor array
can accurately generate several output types which depict the physical
environment. The first of these is an RGB image, which is consistent with
images typically captured with an ordinary camera. The second is a pixel
mapped depth image, which depicts what the camera can see with the
colour of each pixel indicating the distance from the camera. The third
is a point cloud, which describes the environment in three-dimensional
point coordinates. These three information types lend themselves to
different approaches for feedback loop implementation in robotic
workflows by way of the environmental representation they generate.

4.3.1 Environment Representation

In order to utilise the information provided by the environment
sensors, two distinct outputs are available to allow the robot to begin to
interact with the environment. Stereo depth images provide the robotic
system with information that pertains to the structure of the operating
environment. However, this information is not localised in regards to
the position of the camera on the robot and the position of the robot in
the operating environment. In contrast, point cloud descriptions provide
a localised environment map that is accurately linked to the position of
the camera and in turn, the position of the robot. Given the constraints
of the stereo depth images, maximising the use of a point cloud in
this system is the most effective means of providing an appropriate
environmental representation in a robotic pick and place operation.

4.4 Tool Summary

The combination of the outlined tools presents a systematic strategy
on which a comprehensive two-way communication approach to

7 7T o o l s

robotic environment interaction can be established. Rhino and
Grasshopper, standard architectural tools, offer a means of interfacing
with complex robotic systems. This interface is perpetuated through
the ROS communication system allowing for complex feedback and
rudimentary decision making. Furthermore, the introduction of Intel’s
Realsense camera and point cloud descriptions, provide the necessary
environment information in order to evolve a sophisticated robot
and environment communication structure. All these tools integrated
together have the potential to provide a means of formulating
complex robotic operations for architecture-specific tasks.

5 . P r e l i m i n a r y
I n v e s t i g a t i o n s

8 0

5.1 Connecting to the robot

The connection between the robot and a control source, e.g. ROS was
essential to the success of this research. This connection was facilitated
through several pre-existing functions included in the ROS library. The first
of these functions uses communication over a local area network (LAN) to
gather information about the robot state for the control system to use. The
second function uses this same LAN in order to update the state information
for both the robots kinematic functions as well as the tool attached to the
robot. The combination of these two functions allows for a connection
to be manifested between the robot and external robot control sources.

Using this method of connecting to the robot offers two primary benefits;
instantaneous communication and flexibility in the control structure.
The capabilities of the control system did not restrict the scope of the
research. Through implementing the connection between the robot and
the control source, ROS has been determined as the most appropriate
tool due to the number of different control functions available. These
control functions, as outlined in the previous chapter, differentiate ROS
from the other tools available. Using this control source has allowed the
scope of the research to develop further than initially considered due to
the complexity of the systems available within the ROS framework.

5.2 Init ial feedback loop

Several different approaches were considered in order to establish essential
feedback between the robot and the control source. The first uses an
isolated ROS environment, whereas the second uses a combination of
ROS/Grasshopper/Rhino (RGR). The rudimentary feedback loops
consist of a simple process where the robot is sent a motion instruction
to execute an action. After this action is executed, the new position
of the robot is communicated to the control source. With this new
information, the control source determines the appropriate changes that
are required to be made to the next motion instruction in order for it to
be successful (Figure 12). This feedback process works in the same manner
for both the isolated ROS environment and the RGR environment.

8 1P r e l i m i n a r y I n v e s t i g a t i o n s

For the purposes of implementing this rudimentary feedback and
for the future development of this research the, RGR feedback loop
process has been established as the most viable process to achieve the
outcomes of the research. The RGR process provides two primary
benefits. This first is that the robot control functions are predefined,
so this reduces initial complexity. Secondly, controlling the robot
through grasshopper and rhino allows for a visual representation
of the process the robot is undertaking to be established. This
visual representation is particularly useful for troubleshooting
issues encountered throughout the progression of the research.

As ROS only operates on Linux based operating systems, a method of
communicating between the Linux based ROS system and the windows
based Rhino/Grasshopper system is required. The methodology used for
this is to develop structures which communicate through simple text files.
The communication process consists of the Rhino/Grasshopper system
writing a set of targets points to a text file which is then sent over a LAN
to the ROS control structure for execution on the robot. The intel realsense
camera, as described previously, is capable of generating a point cloud
description of the environment. Using a text file based communication
system allows for the coordinate data for each point in the point cloud
to be written to a file and transferred from the ROS control structure to
the Rhino/Grasshopper working environment, thus facilitating a feedback
loop between the operating environment and robot motion execution.

This use of text files allows for direct communication between different
operating platforms. Rhino is used in this process to better understand what
outputs are developed from the intel realsense camera. A significant benefit
of the text file communication system is the speed through which large
amounts of data can be quickly transferred between systems. The initial
system operated with a communication time of approximately 20 seconds
however, with the implementation of a text file based communication system,
this time was reduced to approximately 0.5 seconds. As a result of these
improvements in communication speed, the text file communication system
was implemented in all future applications of the feedback loop process.

Figure 12 - Simple robotic feedback
loop process

8 4

5.3 Environment information collection

Several different methods of environmental information collection
were looked into during the initial investigation as to their viability in
a feedback loop process including Computer Vision. Computer Vision
uses a different output from the realsense camera, images, in order to
determine the location of objects in the environment (Figure 13 & Figure
14). There are several limitations to this process which meant that it
was discounted from being used in further prototypes. The difficulty in
converting the image into terms that the robot can use to execute motion
instructions was significant and more easily done from a point cloud.
Current research also uses point cloud systems specifically for this reason,
as they have far greater accuracy than that of an image, and can meet
the low tolerances required in a construction environment process .

An additional limitation, when compared to the RGR approach, was the
difficulty in accurately mapping the complexities of the robot operating
environment. Computer Vision produces a pixel image of the environment
under consideration by the visual sensor. This method of information
generation contains significantly less information about the operating
environment than is included in the point cloud description used by the
RGR method. This lack of information reduces not only the accuracy of
the block grasping process but also the ability for the system to discern
between different elements in the environment, specifically the blocks
required for construction of the wall system. This approach to object
identification was discounted from future prototypes due to a lack of
accuracy, difficulty in translating pixel information to useful data capable
of translation to robotic terms and a lack of clarity in the information
gathered from the visual sensor. The combination of these issues suggests
that a RGR workflow is more appropriate to the scope of the research.

Another method that was considered during the initial investigations
was Machine Learning. Machine Learning is a means of classifying
outcomes from a large dataset for use in new and unknown situations. The
Machine Learning process is most suited to applications that are after the
feedback stage in a feedback loop process for example. Machine Learning

8 5P r e l i m i n a r y I n v e s t i g a t i o n s

is suited to inferring relationships in the point cloud data set to identify
the location of multiple objects with different geometries. The Machine
Learning approach offers additional scope to the research that is best used
after the successful implementation of a complex feedback loop system.

The inclusion of Machine Learning in the early stages of this research
would have significantly reduced the research output. The complexity of
implementing a Machine Learning algorithm is significant and not best
suited as a means of achieving a simple feedback loop system. Machine
Learning can however, provide significant benefits when used to begin
making decisions for the robot. In this case, the machine learning algorithms
can be manipulated into developing solutions that consider approaches
not possible from a human perspective due to the size and complexity
of the point cloud data set. Further investigations into the suitability
of Machine Learning were conducted later in the design process.

Figure 13 - The robot operating environment

Figure 14 - Construction Surface

6 . P r o t o t y p e O n e

Conventional
Programming

Simple Rule
Based

Complex Rule
Based

Machine
Learning

Computer
Vision

Object
Detection

Object
Recognition

Complex Pose
Estimation

Generative
Interface

Robot
Construction

Autonomous
System

Pattern
Recognition

Figure 15 - Prototype One

9 2

The process of developing a feedback loop system relies on a robust
methodology. All the steps in this process rely on a common architectural
approach of iteration and prototyping where incremental changes are
made to parameters and then analysed in order to determine whether such
changes are useful or require a different approach to be undertaken. In
contrast to most other research in the computer vision field, this research
includes the use of Rhino as a means of facilitating interaction with a
robot as a familiar interface for an architectural researcher. (Figure 16)

The first step in the process called for data transfer systems to be established
in order to facilitate communication between the robot and Robot Operating
System (ROS). ROS is an open source software package that facilitates live
interaction with robots. ROS consists of two basic concepts that are useful
to robotic feedback loops. Firstly, communication between nodes via what
are called topics and secondly, the ability to easily extract data published
to these topics. These two concepts allow for real-time communication
to occur between a robot and an external CAD program such as Rhino.

Communication within ROS occurs through a series of nodes which either
publish data to a topic or subscribe to a topic to receive data. The interface
for this system is primarily through a high-level programming language such
as Python. For the purposes of this research, Python was used due to the
flexibility and adaptability it offers. Python also allows for development to
proceed more rapidly due to a significant reduction in setup time compared
to other programming languages. This interaction facilitates basic motion
instruction communication between ROS and a robot with a ROS node
that publishes point coordinate and motion instructions to a topic in
which a subscriber node is collecting the instructions and executes them.

This concept can be further expanded and made more accessible through
the use of Rhino as a visual interface to this process. Rhino along with
Grasshopper provides a working method where architects can understand
and define motion commands within an environment to be sent to the
robot. This system is particularly useful for troubleshooting issues with
robotic motion instructions as the visual feedback from Rhino allows

9 3P r o t o t y p e O n e

for an easier understanding of what instructions are being sent and the
expected motion of the robot in a given environment. Rhino also facilitates
defining the robot ’s environment in 3D. This presents an opportunity
to reduce issues with collisions in the environment by using Rhino to
prevent motion points being set outside of the robot ’s operating area.

As a result of ROS being able to communicate in real-time between
a robot and a motion instruction, it is possible to use Rhino as a live
interface between a human and a robot. Real-time interaction with
robots is currently experiencing a significant uptake in research due
to the possibilities of this type of robot human interaction. However,
ROS itself is highly proprietary,code based and requires significant
setup time making it difficult to be integrated into an already
existing architectural workflow which is generally a visual one..

To facilitate the live connection between Rhino, ROS and a robot, a
cloud-based server was used in order to seamlessly transfer files between
different operating systems and devices. This can account for some
slowdown in performance due to a file being sent over the network.
Direct communication via ROS can be explored in future projects.

The next stage of the process required the setup and connection of an
RGB-D camera. An RGB-D camera is required in order to generate
both environment images and point clouds with associated depth
information. An Intel Realsense D435 with ROS integration was used
for this project due to its ability to produce a point cloud. This point
cloud data was published directly to a ROS topic and then extracted to
a plain text file through a ROS subscriber. This process was relatively
straightforward with the data easily extracted and then exported into
a readable format for integration into other parts of the workflow. By
publishing to a plain text or comma separated value format, the data could
be used easily in different iterations by different software packages.

The data extracted from the camera provided a three-dimensional
representation of the environment in which the robot was located. From
this data, differences between the original “clean” environment and

Define System
Parameters

Implement
System

Parameters

Capture
Environment
Information

Pre-process
data to remove
null values

Localise
Objects in the
environment

Feedback Loop

Remove
unnecessary

data

Extract
Rotation and
location data

Send motion
instructions to

the robot

Execute motion
instructions

Figure 16 - Prototype One Functionality

1.

2.

3.

4.

Figure 17 - Determining Mesh Normals

1. Base Pointcloud
2. Mesh from Pointcloud
3. Mesh face normals
4. Comparison of face normals to world vertical normals

Mesh Face Normal

World Vertical Normal

9 8

anything added to the environment could be compared to determine if
anything new was in proximity to the robot. This was the first step to
identify objects that could be moved and relocated by the robot. The
process of transforming simple point cloud data into identifiable objects
for the robot to move, requires significant data manipulation. Firstly,
converting the data from a collection of points to a mesh is necessary to
determine where the surfaces are in the data that is collected. Further
to this, the normals of the mesh faces must be compared to a directly
vertical normal in order to then determine which mesh face normals
are perpendicular to the RGB-D camera (Figure 17). The next step is
to filter these mesh faces based on distance from the camera in order to
determine the top of an object ’s surface with reference to the robot frame.

The new 3D mesh now represents the highest surface within the
camera frame, which is the top of the object. With this data, the mesh
can now be matched to one of the predefined objects in the library.
This match is based on a comparison between the area of the mesh
and the area of the objects in the library. Mesh areas that were within
a range of tolerance of the original object area were determined to
be “blocks”. The library object was then compared to the identified
mesh in order to determine the location and orientation of the object
and to provide a list of objects for the robot to manipulate.

The amount of time required to identify a block relies on two key
processes to be executed. The first process is the extraction of the camera
data as a point cloud representation of the camera frame. The second
is the organisation and manipulation of this data into a format that is
understandable by the robot. The process initially required approximately
90 seconds to completely execute and output targets for execution on the
robot. The processing time was a severe limitation on the effectiveness
of the entire system. In order to improve the functionality, the amount
of points in the extracted point cloud was reduced. This reduction
occurred through subsampling the point cloud down from 30,000 to
3,000 points and had a profound effect on the overall processing time
in order to identify a block, reducing this to approximately 5 secs.

9 9P r o t o t y p e O n e

Two robot motion operations were necessary for the success of the research.
The first was to move and position the robot over the identified object
and the second was to grab the object and place it in its final location.
The identification and location of added objects to the environment of
the robot was the first step to provide the necessary data for the robot to
move and orient itself in reference to the object to be picked up. Through
the identified mesh, the corner points of the block were determined. The
corner points or extents are vital in establishing the position of the object
in 3D space in relationship to the robot so it could be picked up and
moved. The robot was then provided with instructions to move above and
orient its gripper based on knowing the short and long side of the block.

The second motion operation, grasping of the object, requires the gripper
to be located at the same position on every block in order to ensure the
precise placement of the block. To determine the exact positioning of the
gripper, the four corner points of the block need to provide two key pieces of
information. The first is the centre point of the block, which is defined using
two opposite corner points, and the second being the orientation of the
block on a flat surface. This orientation is calculated using a vector which is
parallel with the robot base y axis and a vector which describes the shortest
side of the block (Figure 21). The angle between these two is calculated and
transferred into a roll, pitch, yaw (RPY) and quaternion description of the
block’s orientation. Having determined these two pieces of information, the
robot is now able to execute a motion instruction in order to grasp a block.

Finally, the robot was given instructions on where to place the
block based on a predetermined location and the blocks were
stacked. This part of the research related to previous work in pre
programming the robot to move known objects to known positions.

The system developed through this research resulted in a process in
which the robot was able to successfully identify the location and
orientation of an object within a controlled environment. The system
was able to determine the pose (Position and Orientation) of a simple
rectangular block through the use of a library of object faces. These

Figure 18 - Pointcloud Description

Figure 19 - Filter Block Positions

1.

2.

3.

Figure 20 - Block Pose Estimation

1. Grouping Block surface points
2. Matching to Geometry Library
3. Extracting Corner and Centre Points

1 0 4

object faces were matched with the topmost surface of the block in the
environment. The result of this process is a robotic feedback loop able
to determine the extents of a randomly placed object from a known
library of object faces that could be picked and placed precisely.

6.1 Limitations

The results of this research present a system for controlling robot
motion through the integration of a vision sensor in a robotic feedback
loop. When presented with a block/brick with known dimensions, the
robotic feedback system was able to identify the location of the object
in the environment, compute a set of planes to move to, and then
execute motion instructions in order to move to the corner points of
the identified object. The system was able to deal with the placement
of the block on any of its planar sides, calculating the correct distance
from the camera to the block and then executing motion instructions in
order to detect the location of the given object in the environment.

Robotic feedback loops that employ vision as a means of object detection
were successful with this research. The results have identified a series of
restrictive limitations to be further explored. A fundamental limitation
of this system is the speed at which the entire process is carried out. The
process of manipulating a large dataset, along with the conversion of
strings to floating point values, are key contributors to the reduced speed
of operations. While this may not seem like an excessive amount of time,
this execution time is only for a single object to be identified and very
simple motion instructions to be executed. If the system was to be scaled
to be more appropriate for the construction industry, this processing
time could be significantly restrictive to widespread industry uptake.

Another limitation of this system is the accuracy of the extracted point
cloud data. Robots operate with very tight tolerances, whereby a robot is
significantly more precise than what the camera currently accounts for.
When used in this system, the robot was lacking the critical accuracy that
would be required to execute a pick and place motion instruction. The
accuracy of the point cloud could be increased when manipulated in Rhino

1 0 5P r o t o t y p e O n e

and Grasshopper. By using a visual medium as a tool for understanding the
point cloud data, minor adjustments and variations could be made to manage
issues with accuracy. While this approach was moderately effective, further
research would need to be conducted in order to improve the accuracy
to match the tight tolerances expected in the operating environment.

Another less significant limitation is the restriction of object detection
to a predefined library of object faces. In this research, the three different
faces of the simple rectangular block where used as a library of objects in
which a match between the resulting mesh geometry could be made. When
considering the application of this research to extend further than it does
currently, the limitations of this approach to object detection are more
evident. When this system/process of object detection is transferred to an
environment where the objects are not contained within the library, the
lack of adaptability to new and differing environments containing objects
that are unknown to the robot would cause this system to stop operating.

Robotic efficiency is best observed when a robot is undertaking a repetitive
task and interacting with the same object over and over. The use of an
object library in this research attempts to limit the complexity of the
system in order to progress with further development beyond object
identification. As such, the system is currently only able to operate and
interact with objects that are rectilinear, and of which the geometry
is simple e.g. blocks/bricks. This is a limitation, however, materials
commonly used within the construction industry match these rectilinear
limitations and therefore it is not something that requires an immediate
solution in order to be effective as a means of unknown object detection.

The summation of these three limitations is that while the research
is relevant, when considering approaches for further investigation,
different means of locating and detecting objects in the environment
will require an effective means of manipulating visual data and an
increase in computational efficiency to provide a more reliable means
of operation in the long term. While this system is limited, there is the
potential for a number of different approaches to be taken to further

Block Rotation Angle

Robot Base Y axis Vector

Block Short side Vector

Robot Y Axis Vector

Figure 21 - Block rotation angle calculation

1 0 8

the research (as outlined below). These different approaches have the
potential to develop this system of object detection to the point where it
can be integrated with completely unknown environments and objects.

This research has been successful in identifying objects within a controlled
environment. To progress further there are several opportunities to pursue
that could provide solutions to the limitations of the system outlined above.
The first such opportunity is to investigate the potential for an image-
based object detection system to operate to the same or better extent than
the current system. Computers are more efficient in processing bitmap
image data than they are in dealing with the conversions of text to numbers.
As such, a system that utilizes this processing power could operate at a
greater speed than the current system with the potential for a real-time
system to be developed. Another potential avenue to examine is the use of
improved hardware for kinematic planning and collision detection. Sorin
and Konidaris (2018) have developed a system whereby kinematic planning
and collision detection is undertaken in milliseconds, rather than the 1 - 2
seconds currently seen with basic consumer-grade software. Finally, the
integration of camera calibration into the system provides an opportunity
to improve the accuracy of the extracted point clouds which in turn will
increase the accuracy of robot operations within the operating environment.

1 0 9P r o t o t y p e O n e

7 . P r o t o t y p e T w o

Conventional
Programming

Simple Rule
Based

Complex Rule
Based

Machine
Learning

Computer
Vision

Object
Detection

Object
Recognition

Complex Pose
Estimation

Generative
Interface

Robot
Construction

Autonomous
System

Pattern
Recognition

Figure 22 - Prototype Two

1 1 4

The second prototype builds on the previous prototype by integrating
additional complexity to the robotic pick and place operation. The
system functions in a broadly similar way to the previous prototype
but with new systems included to control sequential object grasps,
different wall construction locations and improve grasping accuracy.
These three issues have been identified as the key restraints in the
previous prototype, specifically the inability to build a wall with more
bricks than could fit into the visual sensor frame. The functionality
of this system follows a capturing of the operating environment in
digital terms, appropriating this data to align with robot instruction
sequences, and redirection back to the robot for execution. (Figure 23)

The goal of this prototype is that the robot constructs a simple block wall
using blocks found in the operating environment. The position and location
of these blocks are unknown to the robot until information from the visual
sensor is processed to determine where in the operating environment they
are located. Functionality to repeat the information input process will allow
for the construction of larger and more complex wall structures. Improving
the accuracy of the block grasping is also an essential goal of this prototype.

The second prototype functions by first initialising several different
systems that deal with background processes outside the primary pick
and place operation. The first of these provides the robotic system with
a means of retaining information concerning the state of the currently
constructed wall. When first starting the system, the user-defined wall is
translated into a list of block placement coordinates. These coordinates
provide the robotic system with a description of all the blocks in the wall.
This information is stored in a CSV file. Throughout the pick and place
operation, the system updates the CSV file when the robot successfully
places a block, thus providing an up to date description of the progress
of wall construction in digital terms. The second initialisation process
involves communication between the robot control systems and the
robot. As the previous prototype demonstrated, after communication
between the two exceeded 70 unique communications, the system failed to
function correctly as the grippers failed to either open or close. In order

1 1 5P r o t o t y p e T w o

to overcome this limitation, a ‘cookie’ received from the robot during the
initial HTTP request is re-sent with each subsequent request to maintain
the link between the robot control systems and the robot. Both of these
systems address issues with the previous prototype, thereby increasing
the ability of the robotic system to complete more complex tasks.

Environment information is captured through the robots visual sensor
before the wall construction process begins. Critically, as discovered in
the previous prototype, the distance between the ground surface and the
visual sensor is essential in gathering accurate information about the state
of the operating environment, specifically the position and orientation
of the block objects. If the visual sensor is too close then not enough
information is available in each image capture and if too far away, then the
accuracy of the resulting point can be off by as much as 20mm. A distance
of 400mm from the ground surface to the visual sensor lens appears to
be most effective at balancing the two constraints. The output from the
visual sensor describes the operating environment as a Point cloud which is
transferred from the visual sensor to the robot control system for processing.

The Point cloud export from the visual sensor contains a point
representation for each pixel in the image and as such, for an image
with a resolution of 1,280 x 720 pixels, the Pointcloud contains 921,600
individual points. In an attempt to improve the processing times this initial
point cloud was subsampled down to 10% of the original size while still
maintaining the structure of the pointcloud. This subsampling improved
the overall processing performance significantly. In addition, the speed
of communication between the robot and the robot control system has
also been improved by transitioning from a cloud-based communication
service to a local network protocol. While the cloud-based service was
taking approximately 20 seconds to complete communication processes,
the local network solution has reduced this to approximately 0.5 seconds.
Switching to a local network file transfer has also allowed for significant
improvements to the complexity of the initial point cloud that can now
be transferred from the visual sensor to the robot control systems.

1.

2.

3.

4.

5.

6.

7.

8.

Figure 23 - Autonomous robotic grasping sequence. The
robot grasps the randomly distributed blocks
to construct a simple block wall.

1 1 8

In contrast to the initial prototype, this system uses a new method for
determining the position and orientation of the blocks in the visual sensor
frame. The initial point cloud is filtered by height above the ground
surface, in a similar way to the initial prototype however, this is where
the similarities conclude. In the initial prototype, the rotation angle of
the block often failed to be correctly calculated whereas this prototype
integrated an inclusion test. The system uses a corner point of the block,
typically the corner point with the lowest x value coordinate,to test for
the inclusion of two other corner points within a specific radius.

After the conclusion of determining the position and orientation of the
blocks, this information needs to be translated into data that the robot
understands. From each of these poses, the centre point of the block
along with the angle of the block in relation to the robot act as inputs
for the motion instruction generation system. The rotation angle of the
block controls the rotation of axis 6 of the robot, the grippers, aligning
the grippers with the block to execute the pick and place operation.

After the creation of the block position and orientation instructions, the
control system transfers these to the robot through the ROS communication
system for execution. The robot will fully execute an instruction sequence for
the number of blocks present in the visual sensor frame at the initial point
of capture. If the blocks were to move during this instruction execution
process, the robot would be unaware of this and continue as though the
blocks were in the original positions. After this instruction sequence, the
robot returns to the initial capture position to repeat the process and add
to the already existing wall rather than begin constructing a new wall.

7.1 Limitations

This prototype makes a significant number of improvements to the first
prototype. There are still several limitations present in this prototype
that are restrictive in allowing the system to undertake more complex
pick and place operations. However, this prototype still has significant
potential to be developed in its current direction in future research. The
combination of developing systems to remove the limitations in the system

1 1 9P r o t o t y p e T w o

and implementing potential system improvements offers the opportunity
to develop a complex robotic system capable of dealing effectively with
varying operating environment conditions. These limitations and potential
opportunities will be discussed in more detail with a particular focus on
why the described limitations are inherent in a system of this type.

The limitations of this prototype can be organised into three main
categories; Operating Environment, Lighting and Technical. Solutions
to the first two limitations are more easily found by making physical
adjustments to the operating environment and the systems operating
within it. The technical issues limiting the progress of this research
however, are more complex and require a significant increase in both
time and resources to overcome. As such, attempts to improve the
operating conditions have been more thoroughly interrogated and
explored compared to the more arduous technical aspects of the system.

The state and setup of the operating environment were fundamental to
the success of this prototype. Three critical conditions were essential in
ensuring the successful operation of the system. Firstly, the positioning
and texture of the ground surface of the operating environment is critical
in ensuring high-quality data input to the visual sensor. During the
prototyping phase, it was found that highly reflective surfaces reduced the
effectiveness of the visual sensor to map the operating environment with
a high level of accuracy. The lack of accuracy is a significant limitation of
the system that then requires the operator to have a reasonable amount
of control over the environment in which the robot is operating. In
applications that cannot be controlled, such as on a construction site,
the ability to maintain a consistent surface will be limited. While this
limitation was able to be successfully rectified in a laboratory environment
further applications of this research will need to consider the implications
of surface materials on the quality and accuracy of visual sensor data.

Control of the lighting conditions within the operating environment
was equally essential to the success of the pick and place operation.
Poor lighting conditions resulted in the blocks within the operating

1 2 0

environment casting sharp shadows. These shadows were commonly
interpreted by the visual sensor as block edges resulting in blocks being
ignored by the system or the position and orientation of the blocks being
incorrect. Several methods were used in an attempt to overcome these
issues. Multiple lights were set up around the visual sensor capture area
to remove shadowing from a single direct light source. This approach
was highly effective in reducing the number of ‘misreads’ by the visual
sensor significantly. However, this approach is not transferable to
different operating environments. In an attempt to address this, a light
was attached to the gripping tool on the end of the robot. This approach
was slightly less practical than the consistent illumination, however
it offers significantly more flexibility to the robotic operating system.
Overall, lighting is a significant limitation of this prototype and has been
addressed to improve the accuracy of the overall pick and place operation.

Several limitations exist that relate to technical aspects of the robotic system.
Firstly, the accuracy of the wall being constructed is reduced primarily
due to the grasping of the blocks, which is often inaccurate in the long
direction of the block resulting in uncontrolled wall construction. Several
different approaches were taken in an attempt to improve the accuracy of
the robotic system. Firstly, the algorithm that filters the point cloud into
each block was interrogated in order to determine where the issues with
the accuracy of the system may be occurring. Review of this process meant
that an entirely new approach to the sorting of data gathered from the
visual sensor was required. Secondly, as described previously, significant
attempts have been made to improve the accuracy of the visual sensor
data through controlling the physical operating environment variables.

The second technical limitation is that the robotic system can only pick-
up blocks that are parallel with the ground surface; blocks on angles off of
the surface are unable to be identified. This requires a fundamental shift in
the technologies used to determine the position and orientation of blocks
in the operating environment by transitioning from a typical programming
workflow to a machine learning-focused solution. Given the complexity
of machine learning, transitioning to this approach is outside the scope

1 2 1P r o t o t y p e T w o

of this research however portions of machine learning approaches have
been integrated to slightly improve the abilities of the robotic system.

Thirdly, the robotic system sits in a loop executing a scan every 8 seconds
while no blocks are detected in the camera frame. The length of time
between loops is restrictive as the camera requires a certain amount of
time to start and stop capturing. A potential solution to this issue is a
system that is continuously capturing data through the visual sensor. This
will reduce the slowdown created by multiple camera scans and improve
the robot ’s knowledge of the operating environment. The technical
limitations of this prototype are significant and if this research was to
continue there is potential for these issues to be adequately addressed
to improve the capabilities of the robotic pick and place system.

The prototype has several areas that are suitable for further research and
investigation. Firstly, there is the potential to cover a larger scan area
by having multiple visual sensor capture locations. Moving the robot
to unique predefined capture locations would allow a more significant
portion of the operating environment to be used to pick blocks from.
Secondly, there is the potential to build multiple walls simultaneously
and remember the state of each wall thus allowing the robot to multitask
using the resources available to it. Thirdly, there is the potential to
decide which block should be used with each wall based on distance from
the block to the wall. An algorithm could be used to stipulate that the
distance between a block and a place target should be as small as possible.
The combination of these improvements would provide the robotic
system with significantly more ability to construct complex structures.

3.

2.

1. 4.

5.

6.

Figure 24 - Pre sorting randomly distributed blocks to
improve wall construction accuracy.

8 . P r o t o t y p e T h r e e

Conventional
Programming

Simple Rule
Based

Complex Rule
Based

Machine
Learning

Computer
Vision

Object
Detection

Object
Recognition

Complex Pose
Estimation

Generative
Interface

Robot
Construction

Autonomous
System

Pattern
Recognition

Figure 25 - Prototype Three

1 2 8

Based on the results of the two previous prototypes, the limitations of
each are complex and will likely require substantial technical investment
in order to provide a viable architectural solution. The difficulties
outlined in the previous prototype, specifically the difficulty in accurately
grasping blocks which locations are not known, suggests reverting to the
well established process of grasping blocks from known locations. While
simplifying the grasping process may seem to be a backward step for the
research this prototype implements a machine learning algorithm that
is capable of determining the extent and content of an image presented
to the robot through the imaging sensor. The machine learning process
offers significant complexity to the prototype in conjunction with
developing the autonomy of the robotic system from a different perspective
with the intent for future research to combine the two approaches.

The new system works in a process similar to the previous prototype. A
stack of blocks is arranged by the operator, the location of which is either
pre-programmed or input by the operator. The block stack arrangement
removes the issue of accurately locating the block through the use of the
visual sensor. The lack of accuracy in grasping the blocks in the previous
prototype is thereby reduced by using the operator to control the robotic
operating environment, thus simplifying the complexity of the conditions
in which the robot has to operate. Using the operator to pre-locate the
position of the blocks for the robot to grasp allows the overall system to
be used to undertake more complex operations without being restricted
by a lack of accuracy in the block grasping and placement process.

The operator either self generates or allows the program to generate a
block wall pattern (Figure 26). The pattern generator program will generate
a random arrangement of two different block orientations, primarily for
simplicity for the initial testing stages. The operator inputs the length
and height of the wall that they want the system to construct. The system,
through the use of a machine learning algorithm, determines the required
number of blocks for each row and the total number of blocks required
for the overall wall. The pattern generation is formulated through a
random choice algorithm where the length of each row is divided by the

1 2 9P r o t o t y p e T h r e e

number of blocks in both orientations to generate a random wall pattern.
Once the wall pattern is created the program generates a pixel line image
of the block wall which is exported for use in the robotic operation.

Once the wall pattern image was generated, the process of physically
constructing the wall in the robotic working environment can begin.
The first step in this process consisted of transferring the information
generated in the block wall pattern image into digital terms that the
robot understands (Figure 27). The process begins by having the operator
present the image to the robots visual input sensor (intel realsense
D435). The robot captures an image of the block wall pattern to use in a
sequence of algorithms that determine the parameters of the block wall
to be constructed which are then translated into motion instructions
for the robot. The first of these algorithms is a Canny edge detection
algorithm. This algorithm filters distinct edges from the background of
an image allowing the edges of each block in the wall to be determined
and translated into digital terms. This first step translates physical
plans into digital information that can be manipulated for future use.

Once the edges of each block have been determined, the system introduces
a second algorithm to determine the face area of each block which is
calculated using the pixel coordinates of each continuous block edge.
These areas are matched to the actual value of the block face area, either
the end or side of the block, in order to determine the wall pattern.
This information is stored in an order list, with the first item being the
first brick to place and the last item being the final brick to place.

The motion instructions for the robot ’s actions are generated from this
list of blocks. As this system uses only two different types of block
orientations, the motion instructions for each block placement in the
wall construction are to either place the block long-side parallel to the
wall direction or, the end of the block parallel to the wall direction.
Only two different motion commands are then required in order to
place the blocks in the correct position within the wall structure. The
motion instructions consist of the same instructions that are present in

Figure 26 - Pixel image of wall pattern used to
instruct the robot

Figure 27 - Machine Learning through
pattern matching and analysis

1 3 2

the previous prototypes where the communication between the robot
control systems and the motion instruction algorithm system is facilitated
through ROS. This process of communication ensures that additional
functionality can be added to the system in the future without the
communication process hindering the capabilities of the robotic system.

After the motion instructions for the placement of the blocks in the
wall structure have been generated, the predefined motion instructions
for the grasping of each block in the pile of blocks to use is weaved
into the list of motion instructions in order to have the robot correctly
grab blocks from the pile and place them in the wall structure. The
operator is in control of the process of preventing the robot from
colliding with the operating environment. This presents a number of
limitations in this prototype that restrict the comprehensiveness of the
system to manifest complex architecture construction situations.

Overall this prototype functions through predefining the location of a
pile of blocks to use in the wall construction and generating a random or
user-defined block wall pattern for two different block types. Physically
presenting the robot with a drawing of the block wall pattern and,
using a combination of three algorithms allows the robot to determine
what the pattern of the wall is. From the pattern determination, motion
instructions are generated which allow the robot to execute tasks that
involve grasping the blocks in a pile and then correctly placing the blocks
to create the wall described in the two-dimensional pixel image.

8.1 Limitations

This prototype has several limitations, primarily revolving around the
complexity of implementing digital accuracy in the robotic operating
environment. Firstly, the blocks are picked from known locations. Secondly,
the system is constrained by the type of image that can be used to instruct
the robot. Thirdly, as in the other prototypes, the lighting around the robots
visual sensors is imperative in achieving accurate identification of what the
robot is seeing. Finally, the robot is unaware of the extent of the operating
environment. The combination of these limitations will be discussed further

1 3 3P r o t o t y p e T h r e e

with an emphasis on potential solutions if the research was to continue.

The first limitation of this prototype is the requirement for the position
of the blocks to be explicitly programmed into the system. This has two
restrictions; firstly the blocks must all be positioned in a uniform manner
in the same plane as the operating environment ground surface. Secondly,
the accuracy of locating the position of the blocks in relation to the robot
is critical in ensuring the accuracy of the resulting wall structure. This
requirement shifts a significant amount of responsibility for the accuracy of
the system to the operator. While having the operator position the pile of
blocks may work in a controlled laboratory environment, the introduction
of other variables typical in construction infer that the robot needs to
be capable of finding the blocks in the operating environment itself.

The second limitation of this prototype is the limited scope of images
that can be read into the algorithmic system. As the system is designed
to read simple pixel line images, presenting the system with an image
that does not fit the specific requirements of the system can cause
unforeseen errors. The system will still attempt to process the visual
information however, the outcome will cause the robot to operate in
an unexpected way. The reason simple pixel line images were used
to instruct the robot is the ease of distinguishing between black and
white pixels in the edge detection process. In order to increase the
complexity of the image that can be read by the robot, without reducing
the accuracy of the resulting output, requires the integration of a
filtering algorithm to remove unnecessary information from the image
before running the edge detection algorithm. This creates a significant
limitation however, it does not fundamentally restrict the functionality
of the system in successfully constructing the block wall structure.

The third limitation of this prototype is the requirement for operating
environment conditions to be perfect when the visual sensor is in
operation. As discussed in the previous prototype, the lighting of the
area that the visual sensor is viewing is required to illuminate the surface
uniformly. However, given how the image of the block wall pattern is

1 3 4

presented to the robot, a small amount of shadowing is always present
on the image. This can cause some confusion to the edge detection
algorithm but can be resolved by merely including a filtering algorithm
in the image processing system to reduce the harshness of the shadow
in the images. The limitation was promptly resolved and presented
little restriction to the functionality of the overall prototype system.

The fourth limitation of this prototype is the lack of operating environment
awareness from the robot. The robot is unaware of the state and the objects
that are present in the operating environment. This is particularly limiting
when errors occur in the robot environment interaction. As the robot cannot
perceive what is happening it has no way to anticipate potential errors
occurring. As such, preventing collisions with the wall being constructed or
the pile of construction materials are the responsibility of the operator to
both foresee and act quickly enough to prevent. The position of the visual
sensor at the end of the robot limits the ability to use this device to act as
the eyes of the robot and provide updated information about the state of
the environment, due to the potential for this visual sensor to be obstructed
by objects held in the tool attached to the robot. A viable solution to this
issue would be to employ an additional visual sensor however, both the cost
of an additional sensor and the requirement to calibrate two sensors so they
act correctly, are significant undertakings but still present the best method
for integrating operating environment awareness in this prototype system.

To overcome the limitations discovered through the development of this
prototype requires a combination of the system developed in prototype
two to be integrated with prototype three in order for the robot to
establish where the initial positions of the blocks are and the number of
blocks that can be used to build a wall. Additionally, the development
of prototype two to a stage where blocks placed in any position or
orientation can be grasped accurately offer the potential for this prototype
to act in an almost autonomous manner. The inclusion of elements of
the work currently in development by Gramazio and Kohler, discussed
in a subsequent paragraph offer the potential for the development
of a robotic system capable of operating autonomously on site.

1 3 5P r o t o t y p e T h r e e

The potential of this prototype is to allow a robot to read a set of plan
documents or similar instructions for a construction project. Having
read these plans, the robot can determine where on-site it needs to be to
complete a construction task, what tools it needs to complete the task, what
materials it needs and also the sequencing it needs to place the materials
in order to complete the construction task. The robot can act as though it
is a competent human construction worker, interpreting drawings and then
constructing the building on-site with the added advantages of repeatable
accuracy, 24/7 operation and significantly increased operating capacity.

Looking within the literature at the current state of the art suggests
the potential, as alluded to earlier, to integrate aspects of both
this research and the work of Gramazio and Kohler. Gramazio and
Kohler’s work focuses on providing some awareness of the operating
environment to the robot, a fundamental limitation of this research
due to both time and cost constraints. Combining the two, along
with the interpretation of construction documentation by the robot
and an accurate understanding of the environment the robot is
operating in, begins to bring about the overall potential of this system
to act as an alternative for the on-site construction worker.

9 . D i s c u s s i o n

1 3 8

9.1 Linking the Research to the Literature

The practical outcomes of this thesis have demonstrated the beginnings
of a complex robotic system capable of executing basic construction tasks
without human intervention. It is pertinent with this new knowledge
to reinterrogate the literature with a specific emphasis on situating this
thesis within the existing body of knowledge. Linking the outcomes of
this thesis to already existing work, formalises the conclusions drawn
from this thesis. More importantly, it aids to reinforce the relevance of
the system to both architectural theory and practice. The specific areas of
interest will be discussed further through two lenses. First, a theoretical
examination followed by a practical analysis of the conclusions of this thesis.

There are several areas of interest when comparing the outcomes of this
thesis to the literature. Firstly, a comparison with intelligence theory and an
evaluation of the conditions that define intelligence against the outcomes
of this thesis. Secondly, a critical analysis of the implications of perception
within the scope of this thesis. Thirdly, autonomy is examined with the
intent of determining the level of autonomy present in this system. Fourthly,
the process of decision making is examined through the lens of self-decision
making by the autonomous system. Finally, the process of learning will be
examined with a particular weight given to fundamental learning techniques
within artificial robotic systems. The combinations of these theoretical
positions serve to cover the relevant literature within the scope of this thesis.

9.1.1 Intelligence

This thesis presents intelligence as the ability to interact with environments
and carry out adaptive, goal-orientated objectives. The questions relating
to the definition of intelligence discussed in chapter two are a useful means
of presenting the outcomes of this thesis in terms of being an intelligent
system. Examining the first question; Is intelligence the level of competency
displayed when undertaking both unknown and familiar tasks? With regard
to the outcomes of this thesis, it is clear that the system proposed in this
thesis displays some level of intelligence. To be able to interact with the
environment, even in a rudimentary manner, suggests that the system

1 3 9D i s c u s s i o n

displays a basic form of intelligence. The second question, Is intelligence the
rate at which a system can learn? This thesis does not explicitly encounter a
rate of learning indicator, as the system is primarily focused on achieving a
singular task and as such learning was not a primary driver of the research
direction. However, functionality is included in the system which begins
to exhibit learning like behaviour where the more attempts the system
makes at a particular task the more competent the system becomes at that
particular task. Based on the formerly presented definition of intelligence it
is clear that the resulting robotic pick and place system developed through
this thesis is beginning to exhibit a rudimentary level of intelligence
across the spectrum of intelligence metrics present in the literature.

9.1.2 Perception

Perception in the scope of this thesis consists of two layers of
complexity which aid in defining a manifestation of intelligence in
artificial systems. Firstly, environment perception simply translates
to reproducing the physical environment in digital terms. The second
layer is significantly more complex allowing an artificial system to
prepare itself to interact with any environment. Primarily this is a
preconceived response developed through the system’s experience that
assesses the usefulness of objects within an environment in assisting
the system in achieving the required task. The resulting system of this
thesis operates primarily within the first layer of perception, merely
gathering a mapping of the environment to be processed at a later date.

The difficulty with implementing the second layer of perception is
significant. In order to preconceive a response to specific situations
and objects within an operating environment, the artificial system
must have significant experience operating in a multitude of different
environments. The aim of addressing complex perception was outside
the scope of this thesis due primarily to the complexity of developing
such a system. There were also a lack of existing attempts as a reference
point for the development of a perception system capable of pre-
emptive action to meet a target or goal. The resulting system of this

1 4 0

thesis attempts to begin to integrate the idea of perception with having
the system undertake a series of predefined instructions that assist in
allowing the system to preemptively understand the environment.

9.1.3 Autonomy

Autonomy, defined in this thesis based on a comprehensive analysis
of the literature, refers to the ability of an artificial system to achieve
a particular task. When considering autonomy in this manner it is
clear that the resulting system of this thesis has achieved a level of
autonomy. This level of autonomy is restrictive as the robotic system
still requires a significant amount of human intervention to complete
simple tasks. This human intervention takes the form of control over
the environment and preventing the robot from making errors critical
to the successful completion of the robotic pick and place task.

Autonomy has additional limitations on the suitability of the resulting
robotic system to practical applications. By requiring the intervention of
humans in the robotic construction process, the system has limited use
cases within the architecture and construction industries in its present
state. However, using the metrics of autonomy presented earlier, this
system can be evaluated as to the relevance and success of the system in
achieving a suitable level of autonomy. Firstly, collecting environment
information is manifested in this system autonomously through an
environment sensor and requires no human input to function successfully.
Secondly, environment perception is addressed in terms of gathering
information but not intelligently preempting critical decision-making
processes. Thirdly, localisation is addressed through this system by
relating collected environment information to the position of the robot
to localise it within the operating environment. Fourthly, a minimal
amount of rudimentary decision making is undertaken by the system in
terms of what object to initiate interaction with first. The system does
not make any further attempts to implement complex decision-making
processes. Finally, motion instruction execution is dealt with through ROS
thereby exhibiting the level of autonomy that is inherent in the system.

1 4 1D i s c u s s i o n

The combination of these five behaviours dictates the level of autonomy
that an artificial robotic system possesses. Based on the resulting system
of this thesis it is clear that the system obtains a moderate level of
autonomy, capable of medium complexity tasks, however, it is unable
to be classed as fully autonomous due to the requirement for human
interaction in several critical stages of the wall construction process.

9.1.4 Decision making

Decision making is a fundamental consideration of an intelligent system
and serves to act as a differentiator between simplistic artificial systems and
artificial systems that would be considered intelligent. When evaluating
the outcomes of this thesis in terms of being able to make decisions,
specific abilities as discussed earlier, offer a means of relating decision-
making theory to practical outcomes. Decision making can be thought
of as having the ability to evaluate the current state of the operating
environment and, based on this information, execute instructions on the
robot that makes use of this information to inform the actions of the
robot. Decision making has been implemented in the final prototype of
this thesis by requiring the robot to decide what position a block should
be placed in a user-defined block wall structure. Through the use of deep
learning algorithms, the robotic system decides what the orientation
of each block is and in turn, which pile of blocks to use to construct
the correct wall structure. Decision making is a fundamental process
in intelligent systems delivering more appropriate approaches to the
undertaking of tasks than those artificial systems without decision making.

9.1.5 Learning

Learning and the process of learning have been less widely investigated
through the development of this thesis. This is primarily due to the
complexity of implementing learning systems in robotic processes that
rely on accurate mappings of the operating environment to function
correctly. While not actively implemented to the extent required to call
the process learning throughout the development of the robotic pick and

1 4 2

place system, elements of the learning process have been implemented
to improve the performance of the system. Brooks (2014) suggests that
“Most of what people do in their day to day lives is not problem-solving
or planning, but rather it is routine activity in a relatively benign, but
certainly dynamic, world” (p. 1) and as such pre-programming, the ability
to solve specific problems that the system is expected to encounter,
can and does constitute a level of self-learning. This level of self-
learning has been implemented through the design process to formalise
complex underlying systems in terms that are useful to the robot.

9.2 Autonomous vehicles

The role of autonomous vehicles throughout the development of this
thesis has been to act as a roadmap/framework for the development of an
autonomous robotic construction system. The direction and/or outcomes
of each prototype have evolved to follow a similar direction to that of the
development of autonomous vehicles over the last ten years. Given the
complexity of an autonomous vehicle, the progress of this research has not
completed the autonomous vehicle roadmap. However, progress has been
made towards translating portions of the framework from autonomous
vehicles to robotic pick and place operations. This includes, operating
environment visual information gathering and using this information
to make decisions about the best course of action for the system to take
in order to achieve the required task of constructing a block wall.

9.3 Limitations

Throughout the design process, several limitations became apparent.
These limitations primarily related to issues in accurately translating
physical operating environment variables into digital terms useful to
the robot. These limitations can be broadly categorised into two areas;
environment and technical. Both groups of limitations are restrictive to
the development of the research. However, environmental limitations
can be more easily developed out of the system due to the relative
ease in manipulating the physical environment to better suit the

1 4 3D i s c u s s i o n

operating conditions of the robot. In contrast, technical limitations
require a considerable amount of technical competence to develop
comprehensive solutions to primarily high-level programmatic issues.

When individually examining the limitations of the final outcomes of this
thesis two fundamental limitations present themselves as critical issues
to the overall success of autonomous robotic pick and place operations
for architectural construction. Firstly, operating environment setup. Strict
limitations are required in order to allow the robot to function successfully
in the prescribed operating environment. The objects with which the robot
is required to interact must not interfere with each other and external
clutter must be removed in order to map the operating environment with
enough clarity to undertake construction tasks. Secondly, the limitations
of the technical aspects of the robot environment interaction process
limit the feasibility of this prototype. This limitation relates to the
complexity of differentiating between objects in the operating environment
ie.objects that are not in the same plane as the operating environment
ground surface. This is a significant limitation that restricts the overall
ability of the robotic system to perform complex construction tasks.

9.4 Opportunit ies

Several opportunities exist around these limitations in which the further
development of this research could enhance the ability of the system to
perform complex construction tasks. Opportunities primarily exist to
develop a more complex operating environment mapping system capable of
multi-angle object detection and recognition. This would allow a developed
robotic system to grasp a group of blocks without the placement of such
blocks being essential to the success of the grasping operation. In addition,
greater environment mapping accuracy would allow the robotic system to
begin to make more complex decisions about how to best interact with
the environment thereby internally evaluating the best course of action
to take given the information it has about the operating environment.

Further opportunities also exist in which to continue the development of
this research. Firstly, implementing an image-based processing system to

1 4 4

identify the location of blocks within the environment would have two
significant benefits; firstly, processing performance would significantly
increase due to the ability for computational system to more quickly
process the image data; secondly, the implementation of a more complex
deep learning algorithm would be advantageous due to the system using an
image-based framework over a point cloud framework. The combination of
these two opportunities suggests a higher level of task execution complexity
could be achieved if additional resources were attributed to the research.

The outcomes of this design-based research have developed a competent
robotic system capable of executing pick and place operations in a
controlled environment. Additionally, this system is capable of acting
with a level of intelligence and autonomy that begins to demonstrate
the implications of such a system on the architecture and construction
industries. Although several limitations reduce the viability of
the system, a significant number of opportunities exist that could
develop this research into a fully autonomous construction tool.

1 4 5D i s c u s s i o n

1 0 . C o n c l u s i o n

1 4 8

Robotic fabrication and robotic construction are two essential developments
in the construction industry. Both of these construction methodologies
provide a means of increasing the rate at which complex architectural
structures can be built. The development of autonomous systems within this
industry is vital to improving the abilities of robotic systems to undertake
essential construction tasks with a better level of competency than human
workers. This thesis has developed a robotic system capable of autonomously
constructing a simple block wall through the use of real-time feedback,
artificial intelligence algorithms and complex decision-making processes.

Essential to the development of the outcomes of this thesis are critical
aspects of the literature, which provide a direction to the scope of the
research. Firstly, autonomy was identified as a critical contributor to
an intelligent system with the level of autonomy contributing directly
to the abilities of the robotic system. Secondly, perception, the ability
to make sense of the environment, is an equally important descriptor
of an intelligent robotic system. Perception allows a robotic system to
act responsively to changes in operating environment conditions in a
manner that is consistent with existing intelligent systems. Thirdly,
decision making contributes to the intelligence of a robotic system by
allowing such a system to critically evaluate the state of the operating
environment and then act most appropriately in order to achieve a pre-
defined goal. Finally, feedback loops provide an intelligent robotic system
with a means of understanding changes in the operating environment
and adapting future actions to these changes. The combination of
these key theoretical elements define the structure of robotic systems
intending to operate intelligently in a variety of environments.

The resulting outcomes of this research are two robotic systems with a
similar set of capabilities however, one develops through learning while
the other is conventionally programmed to interact with the operating
environment. These two systems demonstrate different levels of intelligence
based on the two different approaches to environment interaction. Prototype
Two develops a means of allowing the robot to interact with objects in the
operating environment. In contrast Prototype Three resets to conventional

1 4 9C o n c l u s i o n

methods of environment interaction however the interface between the
operator and the robotic system is defined by the operator providing the
robot with an image from which it is to construct a block wall structure.

The potential for this research to form the beginnings of foundational
changes to the architecture and construction industries should not be
understated. The implications of autonomous robotic systems that can
successfully execute complex construction tasks is significant. These
systems can operate consistently for extended periods while maintaining a
higher level of accuracy than any human construction worker could attain.
This has significant implications for the future role of the architect in
the construction environment with the potential for the architect to have
greater control over the construction process by utilising autonomous
robotic systems to manifest complex architectural structures.

1 1 . B i b l i o g r a p h y

1 5 2

Baareh, A. K., Sheta, A. F., & Al-batah, M. S. (2012). Feature
based 3D Object Recognition using Artificial Neural
Networks. International Journal of Computer Applications in
Technology, 44(5). https://doi.org/10.5120/6256-8402

Bellman, R. E., & Zadeh, L. A. (1970). Decision-Making in a
Fuzzy Environment. Management Science, 17(4), 141–165.

Besl, P. J., & McKay, N. D. (1992). A method for registration
of 3-D shapes. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 14(2), 239–256.

Binet, A. (1905). New Methods for the Diagnosis of the Intellectual
Level of Subnormals. L’Année Psychologique, 191–244.

Blais, G., & Levine, M. D. (1995). Registering multiview range
data to create 3D computer objects. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 17(8), 820–824.

Brooks, R. A. (1991). Intelligence Without Reason. Massachusetts
Institute of Technology. http://www.sciencedirect.
com/science/article/pii/000437029190053M

Brooks, R. A. (2014). The Role of Learning in Autonomous Robots.
Fourth Annual Workshop on Computation Learning Theory, 5–10.

De Gregorio, D., Tombari, F., & Di Stefano, L. (2016). RobotFusion:
Grasping with a Robotic Manipulator via Multi-view
Reconstruction. In G. Hua & H. Jégou (Eds.), Computer Vision
– ECCV 2016 Workshops. Springer International Publishing.

Eversmann, P. (2018). Robotic Fabrication Techniques for Material
of Unknown Geometry. In K. De Rycke, C. Gengnagel, O.
Baverel, J. Burry, C. Mueller, M. M. Nguyen, P. Rahm, & M. R.
Thomsen (Eds.), Humanizing Digital Reality: Design Modelling
Symposium Paris 2017 (pp. 311–322). Springer Singapore.

1 5 3B i b l i o g r a p h y

FlexBrick, ETH Zurich, 2008-2010. (n.d.). Gramazio
Kohler Research. Retrieved March 18, 2019, from http://
gramaziokohler.arch.ethz.ch/web/e/forschung/152.html

Froese, T., Virgo, N., & Izquierdo, E. (2007). Autonomy: A Review
and a Reappraisal. In F. Almeida e Costa, L. M. Rocha, E.
Costa, I. Harvey, & A. Coutinho (Eds.), Advances in Artificial
Life (Vol. 4648, pp. 455–464). Springer Berlin Heidelberg.

Furrer, F., Wermelinger, M., Yoshida, H., Gramazio, F., Kohler, M.,
Siegwart, R., & Hutter, M. (2017). Autonomous robotic stone
stacking with online next best object target pose planning.

Goodfellow, I., Bengio, Y., & Courvile, A. (2016).
Deep Learning. MIT Press.

Guérin, J., Thiery, S., Nyiri, E., & Gibaru, O. (2018). Unsupervised
robotic sorting: Towards autonomous decision making robots.
In arXiv [cs.RO]. arXiv. http://arxiv.org/abs/1804.04572

Helm, V., Willmann, J., Gramazio, F., & Kohler, M. (2014). In-Situ Robotic
Fabrication : Advanced Digital Manufacturing Beyond the Laboratory. In
F. Röhrbein, G. Veiga, & C. Natale (Eds.), Gearing up and accelerating
cross-fertilization between academic and industrial robotics research
in Europe : technology transfer experiments from the ECHORD
project (Vol. 94, pp. 63–83). Springer International Publishing.

Lucas, R. (2016). Research methods for architecture.
Laurence King Publishing London.

Maes, P. (1990). Situated agents can have goals. Robotics
and Autonomous Systems, 6(1), 49–70.

Maes, P. (1993). Modelling Adaptive Autonomous
Agents. Artificial Life, 1(1-2), 135–162.

1 5 4

Martín, R. M., Lorbach, M., & Brock, O. (2014). Deterioration of depth
measurements due to interference of multiple RGB-D sensors. IEEE.

Nagy, Z. (1994). Object Recognition by Neural Network.
IFAC Proceedings Volumes, 27(3), 169–173.

Newcombe, R. A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison,
A. J., Kohi, P., Shotton, J., Hodges, S., & Fitzgibbon, A. (2011).
KinectFusion: Real-time dense surface mapping and tracking. 2011 10th
IEEE International Symposium on Mixed and Augmented Reality.

Pfeifer, R. (1996). Building “Fungus Eaters”: Design Principles
of Autonomous Agents. In Proceedings of the Fourth
International Conference on Simulation of Adaptive
Behavior SAB96 (From Animals to Animats), 3–12.

Pinto, A. M., Rocha, L. F., & Paulo Moreira, A. (2013). Object
recognition using laser range finder and machine learning techniques.
Robotics and Computer-Integrated Manufacturing, 29(1), 12–22.

Rahman, M. M., Tan, Y., Xue, J., Shao, L., & Lu, K. (2019). 3D object
detection: Learning 3D bounding boxes from scaled down 2D bounding
boxes in RGB-D images. Information Sciences, 476, 147–158.

Saaty, T. L. (2008). Decision making with the analytic
hierarchy process. Ethical Human Sciences and Services: An
International Journal of Critical Inquiry, 1(1), 83–98.

Smithers, T. (1997). Autonomy in robots and other
agents. Brain and Cognition, 34(1), 88–106.

Sobti, A., Arora, C., & Balakrishnan, M. (2018). Object Detection
in Real-Time Systems: Going Beyond Precision. 1020–1028.

Sorin, D., & Konidaris, G. (2018). Enabling Faster, More Capable
Robots With Real-Time Motion Planning. IEEE Spectrum:
Technology, Engineering, and Science News; IEEE Spectrum. https://

1 5 5B i b l i o g r a p h y

spectrum.ieee.org/automaton/robotics/robotics-software/enabling-
faster-more-capable-robots-with-real-time-motion-planning

Sternberg, R. J., & Salter, W. (1982). Conceptions of
Intelligence. In R. J. Sternberg (Ed.), Handbook of Human
Intelligence (pp. 3–15). Cambridge University Press.

Stratifications, London, 2011. (n.d.). Gramazio Kohler
Research. Retrieved March 18, 2019, from http://
gramaziokohler.arch.ethz.ch/web/e/projekte/206.html

Sutton, R. S., & Barto, A. G. (2018). Reinforcement
learning: An introduction. MIT press.

Thondiyath, A. (2016). Autonomy for Robots: Design and Developmental
Challenges (Keynote Address). Procedia Technology, 23, 4–6.

Tsarouchi, P., Matthaiakis, S.-A., Michalos, G., Makris, S.,
& Chryssolouris, G. (2016). A method for detection of
randomly placed objects for robotic handling. CIRP Journal
of Manufacturing Science and Technology, 14, 20–27.

Wechsler, D. (1944). The measurement of adult
intelligence. Williams & Wilkins Co.

Ziegler, J., Gattringer, H., Kaserer, D., & Müller, A. (2018).
Automated, Depth Sensor Based Object Detection and
Path Planning for Robot-Aided 3D Scanning. Advances
in Service and Industrial Robotics, 336–343.

1 2 . L i s t o f F i g u r e s

1 5 8

Figure 1 - Computer Vision and Machine Learning process 41

Figure 2 - Block wall Parameters

1. Block Dimensions.
2. Mortar spacing.
3. Wall offset.
4. Wall path
5. Overall wall dimensions 49

Figure 3 - Stratifications.
(2011).
Gramazio and Kohler Research.
https://gramaziokohler.arch.ethz.ch/web/e/
projekte/206.html 53

Figure 4 - The Endless Wall.
(2011).
Gramazio and Kohler Research.
https://gramaziokohler.arch.ethz.ch/web/e/
projekte/216.html 53

Figure 5 - Building Strategies for On-site Robotic Construction.
(2014 - 2018).
Gramazio and Kohler Research.
https://gramaziokohler.arch.ethz.ch/web/e/
forschung/273.html 53

Figure 6 - Conventional Pick and place operation 61

Figure 7 - Operating environment does not match the
programmed parameters of the robotic system 61

Figure 8 - Robot continues executing pre-programmed
motion instructions 61

Figure 9 - Robot is unaware of multiple failures.
Requires human intervention to correct
the robots actions. 61

Figure 10 - Research Methodology 65

Figure 11 - ROS node and topic structure 73

Figure 12 - Simple robotic feedback loop process 83

Figure 13 - The robot operating environment 87

Figure 14 - Construction Surface 87

Figure 15 - Prototype One 91

Figure 16 - Prototype One Functionality 95

Figure 17 - Determining Mesh Normals

1. Base Pointcloud
2. Mesh from Pointcloud
3. Mesh face normals
4. Comparison of face normals to world normals 97

1 5 9L i s t o f F i g u r e s

Figure 18 - Pointcloud Description 101

Figure 19 - Filter Block Positions 101

Figure 20 - Block Pose Estimation

1. Grouping Block surface points
2. Matching to Geometry Library
3. Extracting Corner and Centre Points 103

Figure 21 - Block rotation angle calculation 107

Figure 22 - Prototype Two 113

Figure 23 - Autonomous robotic grasping sequence. The
robot grasps the randomly distributed blocks
to construct a simple block wall. 117

Figure 24 - Pre sorting randomly distributed blocks to
improve wall construction accuracy. 123

Figure 25 - Prototype Three 127

Figure 26 - Pixel image of wall pattern used to
instruct the robot 131

Figure 27 - Machine Learning through
pattern matching and analysis 131

1 3 . A p p e n d i x

1 6 2

13.1 Robot Control Code

13.1.1 Main Control Program

#!/usr/bin/env python

import tf
import sys
import time
import math
import rospy
import capture
import file_io
import requests
from math import radians
from pprint import pprint
from block_wall import blockWall
from object_pose import PosePoint
from pick_object import PickPlace
from req_grip import gripperControl
from camera_pos import camera_capture
from wall_retention import wallRetention
from requests.auth import HTTPDigestAuth
from motion_control import MotionControl
from fail_position import failed_exec_pos

class mainControl():

 def __init__(self):

 wallRetention().write_base()

 url = ‘http://192.168.125.1/rw/iosystem/signals/gripper_open?action=set’
 payload = {‘lvalue’: 1}
 self.r = requests.post(

 url, data=payload, auth=HTTPDigestAuth(‘Default User’, ‘robotics’))

 def number_blocks(self):
 file_main = file_io.read_file(

 ‘/home/harrison/Desktop/Share/point_cloud/no_blocks.csv’, ‘n’)
 if file_main[0] == ‘None’:
 no_blocks = 0
 else:

 no_blocks = int(file_main[0])

 print ‘[INFO]: Number of blocks {}.’.format(no_blocks)

 return no_blocks

 def pick_targets(self):

1 6 3A p p e n d i x A

 # Read in the coordinate values from rhino
 x_values = file_io.read_file(

 ‘/home/harrison/Desktop/Share/point_cloud/motion_commands.csv’, ‘x’)
 y_values = file_io.read_file(

 ‘/home/harrison/Desktop/Share/point_cloud/motion_commands.csv’, ‘y’)
 z_values = file_io.read_file(

 ‘/home/harrison/Desktop/Share/point_cloud/motion_commands.csv’, ‘z’)

 # Split list into each block

 point_list = [[[float(x_values.pop(0)),
 float(y_values.pop(0)),
 float(z_values.pop(0))]
 for _ in range(4)]
 for _ in range(self.number_blocks())]

 pprint(point_list)

 return point_list

 def point_capture(self):

 # Move to camera capture position

 move = MotionControl([camera_capture()])

 move.main()

 # Wait for the robot to move to the capture position
 time.sleep(1)
 # Execute the pointcloud capture

 capture.main()

 # Wait for processing in rhino
 time.sleep(5)

 def execute_motion(self):

 for i, block in enumerate(self.pick_targets()):
 print ‘[INFO] Loop {}’.format(i)

 rot_angle = PosePoint(block[0], block[1], block[2])
 print ‘[INFO]: Rotation Angle: {}’.format(rot_angle.z_angle())

 quaternion_rotation = tf.transformations.quaternion_from_euler(

 rot_angle.z_angle(), radians(0), radians(180))
 print ‘[INFO]: Quaternion Rotation:’

 pprint(quaternion_rotation)

 centre_point = block[3]
 print ‘[INFO]: Centre Point: {}’.format(centre_point)

 quaternion_rotation = list(quaternion_rotation)

 for item in quaternion_rotation:
 centre_point.append(item)

 print ‘[INFO]: Motion Target: {}’.format(centre_point)

 print ‘[INFO]: Executing pick operation’

 pick_object = PickPlace(‘pick’, [centre_point], 75, self.r)
 pick_object.main()

1 6 4

 print ‘[INFO]: Executing place operation’

 place_object = PickPlace(

 ‘place’, [wallRetention().write_file()], 75, self.r)
 place_object.main()

 def main(self):

 while len(wallRetention().readin_file()) > 0:
 self.point_capture()

 while self.number_blocks() == 0:
 time.sleep(8)
 self.main()

 self.execute_motion()

 self.main()

if __name__ == “__main__”:

 try:

 motion = mainControl()

 motion.main()

 except rospy.ROSInterruptException:

 pass

1 6 5A p p e n d i x A

13.1.2 Wall Generation Program
#!/usr/bin/env python

import tf
from pprint import pprint
from math import degrees, radians

class blockWall(object):

 ‘’’
 Class to generate the coordinate positions of a simple linear block wall

 Usage: <block_length>(block length in mm),
 <block_width>(block width in mm),
 <block_height>(block height in mm),
 <wall_length>(number of blocks in a row),
 <wall_height>(number of rows),

 <start_point>([x, y, z]),

 <wall_direction>(x, -x, y, -y),

 <mortar_spacing>(spacing between bricks in mm)
 <row_offset>(offset between alternate rows in mm)
 ‘’’

 def __init__(self, block_length, block_width, block_height, wall_length, wall_height,
start_point, wall_direction, mortar_spacing, row_offset):

 self.block_length = block_length

 self.block_width = block_width

 self.block_height = block_height

 self.wall_length = wall_length

 self.wall_height = wall_height

 self.start_point = start_point

 self.wall_direction = wall_direction

 self.mortar_spacing = mortar_spacing

 self.row_offset = row_offset

 def height_control(self):
 ‘’’
 Function to generate the robot targets for the specified number of rows
 ‘’’

 place_list = []

 for i in range(self.wall_height):
 increment = self.block_height * i

 if i % 2 == 0:
 place_list.append(self.row_control(‘norm’, self.start_point[2] + (self.
block_height + increment)))

 if i % 2 != 0:
 place_list.append(self.row_control(‘alt’, self.start_point[2] + (self.
block_height + increment)))

 return place_list

1 6 6

 def row_control(self, norm_alt, plane_height):
 ‘’’
 Function to generate block placement coordinates for inputs
 function allows for the specification of the direction in which the wall is
 generated from the start point
 ‘’’

 mortar_spacing = self.mortar_spacing

 # The rotation angle of the blocks for a wall to be constructed perpendicular to
the robot

 x_wall_angle = tf.transformations.quaternion_from_euler(radians(0), radians(0),
radians(180))
 x_wall_angle = list(x_wall_angle)

 # The rotation angle of the blocks for a wall to be constructed parallel to the robot
 y_wall_angle = tf.transformations.quaternion_from_euler(radians(90), radians(0),
radians(180))
 y_wall_angle = list(y_wall_angle)

 # Start point coordinates

 x_coordinate = self.start_point[0]
 y_coordinate = self.start_point[1]

 point_list = []

 if norm_alt == ‘norm’:

 # Test to determine the direction of the wall based on user input

 if self.wall_direction == ‘-x’ or self.wall_direction == ‘x’:
 # Loop for the number of blocks in each row
 for i in range(1, self.wall_length + 1):

 # Empty point list

 point = []

 # Test which direction the wall is going in
 if self.wall_direction == ‘-x’:

 point.append(self.start_point[0] - (self.block_length * i) - (mortar_
spacing * i))

 point.append(y_coordinate)

 if self.wall_direction == ‘x’:

 point.append(self.start_point[0] + (self.block_length * i) +
(mortar_spacing * i))

 point. append(y_coordinate)

 # Append the height of the block as the z coord place value

 point.append(plane_height)

 point_list.append(point)

 # Add the quaternion description to the end of each point in the list
 for item in point_list:
 for angle in x_wall_angle:

1 6 7A p p e n d i x A

 item.append(angle)

 return point_list

 # Test to determine the direction of the wall based on user input

 if self.wall_direction == ‘-y’ or self.wall_direction == ‘y’:

 # Loop for the number of blocks in each row
 for i in range(1, self.wall_length + 1):

 # Empty point list

 point = []

 # Test which direction the wall is going in
 if self.wall_direction == ‘-y’:

 point.append(x_coordinate)

 point.append(self.start_point[1] - (self.block_length * i) - (mortar_
spacing * i))

 if self.wall_direction == ‘y’:

 point.append(x_coordinate)

 point.append(self.start_point[1] + (self.block_length * i) +
(mortar_spacing * i))

 # Append the height of the block as z coord place value

 point.append(plane_height)

 point_list.append(point)

 # Add th quaternion description to the end of each point in the list
 for item in point_list:
 for angle in y_wall_angle:
 item.append(angle)

 return point_list

 if norm_alt == ‘alt’:

 # Test to determine the direction of the wall based on user input

 if self.wall_direction == ‘-x’ or self.wall_direction == ‘x’:
 # Loop for the number of blocks in each row
 for i in range(1, self.wall_length + 1):

 # Empty point list

 point = []

 # Test which direction the wall is going in
 if self.wall_direction == ‘-x’:

 point.append((self.start_point[0]) - (((self.block_length * i) -
(mortar_spacing * i)) - (self.row_offset)))

 point.append(y_coordinate)

 if self.wall_direction == ‘x’:

 point.append(((self.start_point[0]) + ((self.block_length * i) +

1 6 8

(mortar_spacing * i)) + (self.row_offset)))

 point. append(y_coordinate)

 # Append the height of the block as the z coord place value

 point.append(plane_height)

 point_list.append(point)

 # Add the quaternion description to the end of each point in the list
 for item in point_list:
 for angle in x_wall_angle:
 item.append(angle)

 return point_list

 # Test to determine the direction of the wall based on user input

 if self.wall_direction == ‘-y’ or self.wall_direction == ‘y’:

 # Loop for the number of blocks in each row
 for i in range(1, self.wall_length + 1):

 # Empty point list

 point = []

 # Test which direction the wall is going in
 if self.wall_direction == ‘-y’:

 point.append(x_coordinate)

 point.append(((self.start_point[1]) - ((self.block_length * i) -
(mortar_spacing * i)) - (self.row_offset)))

 if self.wall_direction == ‘y’:

 point.append(x_coordinate)

 point.append(((self.start_point[1]) + ((self.block_length * i) +
(mortar_spacing * i)) + (self.row_offset)))

 # Append the height of the block as z coord place value

 point.append(plane_height)

 point_list.append(point)

 # Add the quaternion description to the end of each point in the list
 for item in point_list:
 for angle in y_wall_angle:
 item.append(angle)

 return point_list

1 6 9A p p e n d i x A

13.1.3 Motion Instructions
#!/usr/bin/env python

import tf
import sys
import time
import rospy
import irb1200_home
import moveit_commander
import moveit_msgs.msg
import geometry_msgs.msg
from math import radians, degrees

class MotionControl(object):

 def __init__(self, target_list):

 self.target_list = target_list

 moveit_commander.roscpp_initialize(sys.argv)

 rospy.init_node(‘irb1200_motion_commands’, anonymous=True)

 self.robot = moveit_commander.RobotCommander()

 self.scene = moveit_commander.PlanningSceneInterface()

 self.move_group = moveit_commander.MoveGroupCommander(‘irb1200_arm’)

 self.display_trajectory_publisher = rospy.Publisher(

 ‘/move_group/display_planned_path’, moveit_msgs.msg.DisplayTrajectory, queue_

size=20)

 def start_robot(self):

 # Print for debugging
 print ‘Reference frame: {}’.format(

 self.move_group.get_planning_frame())

 print self.move_group.get_end_effector_link()

 print ‘Robot Groups’

 print self.robot.get_group_names()

 print ‘Printing robot state’

 print self.robot.get_current_state()

 print ‘’

 def motion_points(self):

 # Generate a grid of points

 test2 = tf.transformations.euler_from_quaternion(
 [0.00, 0.707106, 0.0, -0.707106])

 test2 = list(test2)

 z_angle = radians(-180.0 + 38.660827)

1 7 0

 y_angle = radians(-90.0)
 x_angle = radians(-10.0)

 test_point = tf.transformations.quaternion_from_euler(

 x_angle, y_angle, z_angle)

 print ‘{}\n’.format(self.target_list)

 print ‘Executing motion . . .’

 # For each point in the grid move to that point
 for target in self.target_list:
 pose_target = geometry_msgs.msg.Pose()

 pose_target.orientation.w = target[3]
 # pick_pose[0] # 0.707106781187
 pose_target.orientation.x = target[4]
 pose_target.orientation.y = target[5] # pick_pose[1] # 0.0000
 # 0.0000 # -0.707106781187
 pose_target.orientation.z = target[6] # pick_pose[2]
 pose_target.position.x = float(round(target[0] * 0.001, 4))
 pose_target.position.y = float(round(target[1] * 0.001, 4))
 pose_target.position.z = float(round((target[2]) * 0.001, 4))
 self.move_group.set_pose_target(pose_target)

 self.move_group.go(wait=True)

 # If motion failed go to home position

 # and end motion execution

 if self.move_group.go(wait=True) == False:

 home = irb1200_home.abb1200MoveGroupInteface()
 home.go_to_joint_state()

 break

 print ‘Moved to target {}’.format(target)

 print ‘{}\n’.format(self.move_group.get_current_pose())

 self.move_group.clear_pose_targets()

 def main(self):

 self.start_robot()

 self.motion_points()

1 7 1A p p e n d i x A

13.1.4 Grasping Instructions
#!/usr/bin/env python

import time
from req_grip import gripperControl
from pick_motion import MotionControl

class PickPlace(object):

 def __init__(self, pick_place, grab_release_point, offset_point, session):

 self.pick_place = pick_place

 self.approach_point = [[grab_release_point[0][0],
 grab_release_point[0][1], grab_release_point[0][2] +
offset_point,

 grab_release_point[0][3], grab_release_point[0][4],
 grab_release_point[0][5], grab_release_point[0][6]]]

 self.grab_release_point = grab_release_point

 self.withdraw_point = self.approach_point

 self.session = session

 def approach(self):
 ‘’’
 Function executed when approaching a pick / place target

 ‘’’

 # if executing a pick operation

 if self.pick_place == ‘pick’:

 # Open the grippers

 gripperControl().open_close(‘open’, self.session)

 # Wait for 2 seconds to ensure grippers are fully open
 time.sleep(0.25)

 # if executing a place operation do nothing

 elif self.pick_place == ‘place’:

 pass

 # Move to the approach point

 motion = MotionControl(self.approach_point)

 motion.main()

 def grab_release(self):
 ‘’’
 Function executed when either picking or placing an object

 ‘’’

 # Move to the pick / place target

 motion = MotionControl(self.grab_release_point)

 motion.main()

1 7 2

 # if executing a pick operation

 if self.pick_place == ‘pick’:

 # Close the grippers

 gripperControl().open_close(‘close’, self.session)

 # Wait for 2 seconds to ensure object is properly grasped
 time.sleep(0.25)

 # if executing a place operation

 elif self.pick_place == ‘place’:

 # Open the grippers

 gripperControl().open_close(‘open’, self.session)

 # Wait for 2 seconds to ensure grippers are fully open
 time.sleep(0.25)

 def withdraw(self):
 ‘’’
 Function executed when withdrawing from a pick / place target
 ‘’’

 # Move to the withdraw target
 motion = MotionControl(self.withdraw_point)

 motion.main()

 def main(self):
 ‘’’
 Execute the pick and place operation

 ‘’’

 self.approach()

 self.grab_release()

 self.withdraw()

1 7 3A p p e n d i x A

13.1.5 Block Rotation Angle
#!/usr/bin/env python

from sympy import Point3D, Line
from math import degrees, radians

class PosePoint(object):

 ‘’’
 Generates the centre point and z axis rotation for an orthogonal object defined by three
points.

 Todo:

 Add functionality to calculate x and y axis rotation

 Usage: PosePoint(<origin[x, y, z]>, <point_1[x, y, z]>, <point_2[x, y, z]>)

 ‘’’

 def __init__(self, point_1, point_2, point_3):
 self.point_1 = point_1

 self.point_2 = point_2

 self.point_3 = point_3

 def pose_point(self, point):
 ‘’’
 Function to seperate a point into x, y and z components.

 ‘’’

 x = float(point[0])
 y = float(point[1])
 z = float(point[2])

 return x, y, z

 def plane_points(self):
 ‘’’
 Convert entered floating point values into native 3D point values
 for future use
 ‘’’

 origin = Point3D(self.pose_point(self.point_1))
 max_y = Point3D(self.pose_point(self.point_2))
 min_y = Point3D(self.pose_point(self.point_3))

 return origin, max_y, min_y

 def normal_vector(self):
 ‘’’
 Generate two vectors which describe the short and long sides of an orthogonal

 block

 ‘’’

1 7 4

 # Get the three points required to define a plane
 origin, max_y, min_y = self.plane_points()

 # Calculate the distance between the origin and the first point

 length_one = origin.distance(max_y)

 # Calculate the distance between the origin and the second point

 length_two = origin.distance(min_y)

 # Print the lengths to the terminal for debugging
 print ‘Length One: {}’.format(float(length_one))

 print ‘Length Two: {}’.format(float(length_two))

 # Seperate the origin into coordinate components

 x_point = origin.x

 y_point = origin.y

 z_point = origin.z

 # Offset y component to calculate a normal vector for angle calculation
 new_x_point = y_point - 100

 # Generate a new point

 test_point = Point3D(x_point, new_x_point, z_point)

 # Generate a new base line for angle measurement
 line_1 = Line(origin, test_point)

 return line_1, length_one, length_two

 def z_angle(self):

 # Get the three required points

 origin, max_y, min_y = self.plane_points()

 # Get the three required vectors

 normal_vector, length_one, length_two = self.normal_vector()

 # Test to determine which vector is the shortest

 # This is used to determine which side of the block is the shortest

 if length_one > length_two:

 line_2 = Line(origin, min_y)

 # Calculate the angle between the base line and the shortest

 # side of the block

 line_angle = normal_vector.angle_between(line_2)

 if degrees(line_angle) <= 5:

 line_angle = 0

 # Return the required rotation angle for the robot to align

1 7 5A p p e n d i x A

 # correctly with the block
 print degrees(float(-line_angle))

 # return float(-line_angle - radians(90))
 return float(-line_angle)

 elif length_one < length_two:

 line_2 = Line(origin, max_y)

 # Calculate the angle between the base line and the shortest

 # side of the block

 line_angle = normal_vector.angle_between(line_2)

 if degrees(line_angle) <= 5:

 line_angle = 0

 # Return the required z axis rotation for the robot to align
 # correctly with the block
 print degrees(float(-line_angle))

 # return float(-line_angle - radians(90))
 return float(-line_angle)

 def centre_point(self):
 ‘’’
 Calculates the centre point for a block defined by three points
 ‘’’

 # Get the three required points

 origin, max_y, min_y = self.plane_points()

 # Caculate the centre point

 centre_point = [(float((max_y.x + min_y.x) / 2)),
 (float((max_y.y + min_y.y) / 2)), float(max_y.z)]

 return centre_point

1 7 6

13.1.6 Capture Pointcloud
Learn more or give us feedback

#!/usr/bin/env python

import csv
import time
import rospy
from sensor_msgs.point_cloud2 import read_points_list, PointCloud2

class camCap:

 def __init__(self):
 self.sub_once = rospy.Subscriber(“/camera/depth/color/points”, PointCloud2, self.

callback)

 def callback(self, data):

 start_time = time.time()

 print ‘[INFO]: Starting point cloud capture at...’

 data_list = read_points_list(data)

 with open(‘/home/harrison/Desktop/Share/point_cloud/final_points.csv’, ‘w’) as new_file:
 csv_writer = csv.writer(new_file, delimiter=’,’)

 csv_writer.writerow(‘xyzc’)

 for line in data_list:
 csv_writer.writerow(line)

 end_time = time.time()

 print ‘[INFO]: Data extraction complete at...’

 print ‘[INFO]: Processing complete in {}’.format(end_time - start_time)

 self.sub_once.unregister()

def main():

 rospy.init_node(‘irb1200_motion_commands’, anonymous=True)

 camCap()

1 7 7A p p e n d i x A

13.1.7 Wall Retention
#!/usr/bin/env python

import file_io
import random
from pprint import pprint
from block_wall import blockWall

class wallRetention:

 def write_base(self):

 wall_selection = random.randint(1, 3)
 print wall_selection

 if wall_selection == 1:

 wall_position = [250, 280, 2]
 wall_direction = ‘x’

 elif wall_selection == 2:

 wall_position = [250, -280, 2]
 wall_direction = ‘x’

 elif wall_selection == 3:

 wall_position = [600, -140, 2]
 wall_direction = ‘y’

 # Define wall variables

 mortar_spacing = 10
 alt_row_offset = 20
 no_rows = int(20/4)

 # Generate the wall robot targets

 place_targets = blockWall(70, 30, 30, 4, no_rows, wall_position,
 wall_direction, mortar_spacing,

 alt_row_offset)

 random_list = []

 for item in place_targets.height_control():
 for coord in item:
 random_list.append(coord)

 # Write the file to shared directory

 file_io.save_file(‘/home/harrison/Desktop/Share/point_cloud/base_wall.csv’, random_

list)

 print ‘[INFO]: Wall block coordinates generated’

1 7 8

 def readin_file(self):

 # Readin the target coordinate file

 test_file = file_io.read_line(‘/home/harrison/Desktop/Share/point_cloud/base_wall.

csv’)

 # Print for debugging
 pprint(test_file)

 return test_file

 def write_file(self):

 # Read in the wall target list
 target = self.readin_file()

 actual_target = target.pop(0)

 final_targets = []

 for item in actual_target:
 # Convert the targets to floating point values

 final_targets.append(float(item))

 # Save the file with the used target removed
 file_io.save_file(‘/home/harrison/Desktop/Share/point_cloud/base_wall.csv’, target)

 print ‘[INFO]: Target extracted & file written’

 # Return the target for robot execution
 return final_targets

1 7 9A p p e n d i x A

13.1.8 Request Tool Action
#!/usr/bin/env python

import time
import requests
from requests.auth import HTTPDigestAuth

class gripperControl:

 def gripper_url(self, open_close, value, s):

 if open_close == ‘open’:

 url = ‘http://192.168.125.1/rw/iosystem/signals/gripper_open?action=set’
 payload = {‘lvalue’: value}

 r = requests.post(url, data=payload, auth=HTTPDigestAuth(‘Default User’,
‘robotics’), cookies=s.cookies)
 print ‘[INFO]: Status {}’.format(r.status_code)

 print ‘[INFO]: Text {}’.format(r.text)

 print ‘[INFO]: Cookies {}’.format(r.cookies)

 elif open_close == ‘close’:

 url = ‘http://192.168.125.1/rw/iosystem/signals/gripper_close?action=set’
 payload = {‘lvalue’: value}

 r = requests.post(url, data=payload, auth=HTTPDigestAuth(‘Default User’,
‘robotics’), cookies=s.cookies)
 print ‘[INFO]: Status {}’.format(r.status_code)

 print ‘[INFO]: Text {}’.format(r.text)

 print ‘[INFO]: Cookies {}’.format(r.cookies)

 def open_close(self, open_close, session):

 if open_close == ‘open’:

 self.gripper_url(‘open’, 0, session)
 self.gripper_url(‘close’, 0, session)
 self.gripper_url(‘open’, 1, session)
 time.sleep(0.5)

 elif open_close == ‘close’:

 self.gripper_url(‘open’, 0, session)
 self.gripper_url(‘close’, 0, session)
 self.gripper_url(‘close’, 1, session)
 time.sleep(0.5)

1 8 0

