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The use of robots in the fabrication of complex architectural structures 
is increasing in popularity. However, architectural robotic workflows 
still require convoluted and time-consuming programming in order 
to execute complex fabrication tasks. Additionally, an inability for 
robots to adapt to different environments further highlights concerns 
around the robotic manipulator as a primary construction tool.

There are four key issues currently present in robotic fabrication for 
architectural applications. Firstly, an inability to adapt to unknown 
environments; Secondly, a lack of autonomous decision making; 
Thirdly, an inability to locate, recognise, and then manipulate objects 
in the operating environment; Fourthly a lack of error detection if 
a motion instruction conflicts with environmental constraints. 

This research begins to resolve these critical issues by seeking to integrate 
a feedback loop in a robotic system to improve perception, interaction 
and manipulation of objects in a robotic working environment. Attempts 
to achieve intelligence and autonomy in static robotic systems have seen 
limited success. Primarily, research into these issues has originated from 
the need to adapt existing robotic processes to architectural applications. 
The work of Gramazio and Kohler Research, specifically ‘on-site mobile 
fabrication’ and ‘autonomous robotic stone stacking’, present the current 
state of the art in intelligent architectural robotic systems and begin 
to develop solutions to the issues previously outlined. However, the 
limitations of Gramazio and Kohler’s research, specifically around a 
lack of perception-controlled grasping, offers an opportunity for this 
research to begin developing relevant solutions to the outlined issues.

This research proposes a system where blocks, of consistent dimensions, 
are randomly distributed within the robotic working environment. 
The robot establishes the location and pose (position and orientation) 
of the blocks through an adaptive inclusion test. The test involves 
subsampling a point-cloud into a consistent grid; filtering points based 
on their height above the ground plane in order to establish block 
surfaces, and matching these surfaces to a CAD model for improved 
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accuracy. The resulting matched surfaces are used to determine four 
points which define the object rotation plane and centre point. The 
robot uses the centre point, and the quaternion rotation angle to execute 
motion and grasping instructions. The robot is instructed to repeat 
the perception process until the collection of all the blocks within 
the camera frame is complete, and a preprogrammed wall is built.

The implementation of a robotic feedback loop in this way demonstrates 
both the future potential and success of this research. The research 
begins to develop pathways through which to integrate new types 
of technologies such as machine learning and deep learning in 
order to improve the accuracy, speed and reliability of perception-
controlled robotic systems through learned behaviours.
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ABB - Manufacturer of industrial robotic manipulators.

Deep Learning - The process of developing neural networks 
capable of generating patterns through which an artificial 
system can use to interact with unknown environments.

Grasshopper - A visual programming language that 
interfaces with Rhino through a plugin.

Linux - An open source operating system similar in function to Windows

Machine Learning - The process of allowing machines to learn 
the best course of action to take for a particular situation.

Operating Environment - The immediate environment 
in which the robot interacts with.

Pick and Place Operation - The process of a six axis industrial robotic 
manipulator grasping objects within the operating environment and 
placing these objects in order to construct various structures.

Python - A high level programming language used 
for a wide range of programming tasks.

Quaternion - A set of four numbers that describe the 
rotation of the robot around a point in 3D space

Rhino - 3D modelling software common in architectural workflows

Robot Operating System (ROS) - A framework of pre built 
tools used to develop complex robot control systems.
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The use of robots with the explicit intent of building complex architectural 
structures is a relatively new area of research within the field of 
architecture. Before 2010, the capabilities of the technology available 
to architects pursuing this endeavour were limited. The introduction of 
several new technologies and a renewed interest in developing a more 
efficient means of construction has once again catapulted the robotic 
manipulator to the forefront of construction tools in architectural 
research. This renewed interest has been of increased importance to 
the development of intelligent autonomous robotic systems designed to 
function in ways previously not possible, due to technological limitations.

Attempts to implement complex subsystems to control robots through 
artificial intelligence has seen significant interest within the last ten years. 
The advent of technologies such as machine learning and deep learning 
have presented new methodologies in which to approach these issues. 
Additionally, the theoretical aspects of what defines intelligence have 
been widely explored with an emphasis on replicating the behaviours of 
intelligence in artificial systems. By extrapolating intelligence into four 
distinct characteristics; autonomy, perception, decision making and learning, 
this provides a means of defining intelligence for robotic systems. All 
four of these characteristics, when implemented in an artificial system, 
develop different technical structures responsible for exchanges between 
the robot and the operating environment. Autonomy can be considered as 
the ability of the system to operate without external intervention, while 
perception adds a layer of complexity by preempting system actions through 
experience. Decision making contributes to the overall system by applying 
a critical lens to the information fed back from the operating environment. 
Learning, in contrast, extrapolates the systems previous experiences in 
order to formulate reasoned approaches to unknown operating environment 
conditions. The combination of these four theoretical markers act as a 
means of measuring the success of the outcomes of this research based 
on the importance of each aspect in defining an intelligent system.

Given these conditions of intelligence, this research develops two systems 
that interact with two different stages of the communication between 
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the robot and the operating environment. Firstly, the development of a 
system through which the robot is capable of gathering several blocks 
from within the operating environment and using these to construct a 
predefined wall structure at a position strictly specified by the operator. 
Secondly, the development of a system that consists of considerably more 
operator setup time however, it seeks to redefine the method through 
which the operator interacts with the robotic system. In this case, the 
operator generates a set of plans for a block wall structure which are 
shown to the robotic systems visual sensor and in turn interpreted into 
digital information which the system can use to construct the wall system. 
Both of these systems have opportunities for further development with 
the intention being to combine the two prototypes created to increase 
the ability of the system to build more complex architectural structures.

This research is still in the early stages of development and, while 
the outcomes of this research are not production-ready, they offer 
both a starting point and framework for the continued development 
of a system capable of fully autonomous construction. 
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In order to begin to understand how best to implement intelligence in 
artificial systems, a general understanding of the underlying conceptual 
frameworks of human intelligence (referred to as intelligence) is 
required. These conceptual frameworks outline how our understanding 
of intelligence is defined. Moreover, significant consideration must 
be made to incorporate these fundamental understandings into 
the current discourse around the implications of implementing 
intelligence in previously unintelligent systems. Conceptually this 
framework manifests in several unique conceptual ideas, each heavily 
reliant on the others to develop complex, intelligent systems. 

2.1 Intel l igence

Consensus on how to define intelligence is not present in the literature. 
The lack of common understanding makes it almost impossible to 
define global intelligence. However, when examining the literature, 
common themes in intelligence exist. The commonality of these 
comparisons still leaves the scope of intelligence unresolved. However, 
several attempts have been made to offer a succinct understanding of 
intelligence. Binet (1905, p. 6) describes intelligence as “...adapting 
one’s self to circumstances”, similarly, Wechsler (1944) suggests the 
“capacity...to act purposefully...to deal effectively with the environment” 
constitutes intelligence. Additionally, Sternberg (1982) adds that 
intelligence requires goals in which to direct environment interaction.

Given these generalised conceptual viewpoints, this thesis will manifest 
intelligence as the ability to interact with environments and carry out 
adaptive, goal-orientated objectives. This definition is purposefully 
simplified to allow for definitive evaluation against the outcomes of 
this research and aligns with current approaches to implementing 
intelligence in artificial systems. Intelligence is the overarching concept 
consisting of several sub-concepts that offer more direct means in 
which to manifest intelligent processes for unintelligent systems.

Several other questions arise from the literature that offer additional 
considerations to the scope of intelligence for this research. The first, “Is 
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intelligence the level of competency displayed when undertaking both 
unknown and familiar tasks?” and secondly, “Is intelligence the rate at 
which a system can learn?”. Answers to these questions are not directly 
explored in this thesis, given the complexity of the definition of intelligence. 
However, they are relevant to use as markers in which to reference 
when considering the implications of outcomes from this research.

Intelligence can be divided into six distinct subsystems that contribute 
to an overall definition of system intelligence. The combination 
of these systems provides a robotic system with the means and 
understanding to usefully interact with the operating environment 
and develop systems beyond conventional programming structures.

2.1.1  Cognition

Cognition and Intelligence are both referenced in the literature in similar 
terms. However, it is essential to differentiate between the two. Cognition 
offers additional layers of response from the intelligent system to make 
it more effective at manifesting intelligent actions and interactions. Key 
concepts that underlie the cognitive ability of intelligent systems include 
Knowing, Remembering, Understanding, Communicating and Learning. 
The most important of these for robotic systems is learning. The other 
four concepts rely heavily on learning in robotic systems in order to have 
any significant effect on the overall cognition of an artificial system.

The human ability of cognition relies on an acute understanding of two 
key concepts. The first, Environment Perception, provides cognitive 
systems with the ability to ingest information about their surroundings 
(Brooks, 1991). The second, goal attainment,  requires the system to be 
able to examine the information presented to it, and in turn, respond in 
such a way as to succeed in its required goal (Maes, 1990; Smithers, 1997). 
These definitions of cognition are similar to intelligence suggesting that 
the two are inherently connected. Cognitive systems however, contain 
two additional underlying systems that operate together to define the 
cognitive ability of artificial systems. The first, Classification, is a means 
of grouping perceived environment situations into groups for easier 
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identification in new or unknown situations. The second, Problem 
Solving, uses the previously presented classifications in order to solve 
issues that prevent a system from achieving the required goal state. 
Both of these underlying systems, in combination with the previously 
outlined concepts of perception and goal attainment, contribute to 
a cognitive system. It is however, classification and problem solving, 
that differentiate a cognitive system from an intelligent one.

Classification, when considered in relation to cognitive systems, 
offers considerable comparisons to current machine learning and deep 
learning methods. Classification acts as a means of quickly organising 
the environment in distinct groupings. These groupings can then be 
applied to new or uncertain environments in order to quickly ascertain 
the constraints of an environment, what objects are present in the 
environment and how the system should begin to interact with the 
environment. Classification is not a means of accurately determining 
all uncertain environment parameters however, it does provide a way 
in which an artificial system can quickly develop approximations of 
the parameters and constraints to the environment it inhabits.  

Problem-solving can be broken down into three categories that are 
typical of cognitive systems. A Trial and Error approach repeatedly 
modifies different parameters until achieving a suitable solution. An 
Algorithmic approach systematically deals with problems in a step by 
step process. This approach guarantees a successful outcome. The final 
approach, Heuristics, uses previous experience and collected information 
to increase the speed at which problems are solved. These concepts are 
all of particular importance to developing intelligent artificial systems. 
Cognitive problem solving draws significant comparisons to current 
machine learning and deep learning applications specifically through 
the methods that cognitive systems use to solve problems. As such 
the application of this knowledge will be discussed further with the 
specific intent on integration in current deep learning methods.

Cognition offers significant points of interest to consider what 
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behaviours, and abilities offer the best chance of success when 
integrated with artificial systems, specifically industrial robots for 
architectural applications. The scope of how these can be integrated 
is discussed further in a later section with attention paid to the 
comparisons with current machine learning and deep learning 
techniques and the potential for these techniques to successfully achieve 
complex robotic operations without programmed instruction.

2.1.2  Perception

Perception, the second subsystem of intelligence, has two layers of 
complexity that progressively offer increasingly complex manifestations 
of intelligence. Environment perception is a means of replicating real-
world operating environments in digital form. Perception itself adds 
an additional layer of complexity by allowing the system to instantly 
prepare itself to interact with the environment, a preconceived response 
to ingested visual information about the operating environment and the 
role of objects in that environment. With the intent of determining what 
objects can assist the system in achieving the required goal or task. Both 
of these layers are vital to intelligent systems. Gathering information 
about the environment is essential in order to successfully interact with 
and manipulate objects within operating environments effectively. The 
added layer of an instantaneous response afforded by perception presents 
an increased robustness to the robot - environment feedback loop.

Commonly, perception is referred to in the literature as the ability 
to understand the environment through vision. However, this limits 
the importance of perception to the intelligence of artificial systems. 
This is done by reducing it to merely the gathering of information 
and not the reasoning behind the processing of this information that 
influences the reactions of the artificial system to environmental 
parameters and constraints. Another approach to understanding 
the role of perception in intelligent artificial systems is to consider 
the result of reacting to environmental cues presented to the 
system. In essence, this approach considers perception as the way 
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in which, primarily through vision, the system reacts and prepares 
itself to successfully interact with the environment it occupies.

Perception is an extremely important aspect of the autonomous robot system. 
Perception is not simply the act of seeing an object, it is the act of seeing a 
tool in the environment and adapting the system to interact with this tool. 
Perception is partially the way in which a system reacts to external input.  
When you first perceive an object you see it ’s uses as a tool and how you 
might use this to benefit your chances of achieving a certain goal or task. 
After this initial interaction you see an object in terms of what it is. This can 
be linked back to the basic need for survival, wherein the usefulness of an 
object in the environment is more important than what the object actually is.

2.1.2.1  Perception Limitations

The concept of perception is vital to the success of integrating intelligence, 
cognition and decision making in artificial systems, specifically industrial 
robotic manipulators. Despite this status, the difficulty of effectively 
implementing a comprehensive perception system capable to some extent 
of replicating human perception is technologically constrained. As such, 
perception of this type falls outside of the scope of this thesis, however, it is 
worth considering in future applications of this research an attempt should 
be made to develop an approach which is akin to human perception and in 
turn more effective at environment interaction and object manipulation.

For the purposes of this thesis, the role of perception is limited to 
simple information gathering in order to accurately replicate the 
robotic operating environment in digital terms. The role of reacting 
to this information and facilitating object manipulation is distributed 
among different systems.  Cognitive and decision-making processes 
through algorithmic representations are effective at harnessing 
available hardware to instantiate robust intelligent robotic systems.

When considering the environment perception for applications that 
include robotic systems, the quality of the information gathered by 
these sensors is pertinent to the successful perception of different object 
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types.  These perception systems must be able to accurately define 
environments in relation to the position of the environment sensors 
and with regard for the position of the overall robotic systems in order 
to offer additional functionality to an intelligent artificial system.

2.1.3  Autonomy

The use of language, such as ‘autonomous’ when referring to robotic 
systems, often confuses the significance and meaning of such terms. 
Smithers (1997) indicates a collision of terms from different industries 
that have been misconstrued when applied to newly developed 
robotic systems. As such, even in consultation with the literature, 
it is difficult to find consensus on relevant measures of autonomy 
through which the outcomes of this research can be evaluated.

Within the literature, attempts to define the concept of autonomy 
have been unable to reach a clear consensus. In contrast, some progress 
has been made with regards to autonomous robotic systems in specific 
situations. Autonomy in such systems is often described as the ability of 
a machine to achieve a particular task (Froese et al., 2007). Autonomy 
described in this way has limited applications. Pfeifer (1996) adds that 
autonomous agents interact with the environment without the need for 
human intervention. Environment interaction without human interaction 
is a crucial component of autonomous systems, especially those with 
artificial origins. Being able to interact robustly with the environment 
constitutes a reciprocal interaction that operates beyond pre-programmed 
constraints. However, Froese et al. (2007) argue that to restrict the 
definition of autonomous systems to this still lacks the essence of 
genuine autonomy; instead arguing that self-governance and decision 
making are fundamental when describing any autonomous system.

With regard to robotic systems, both  Maes (1993) and Smithers (1997) 
consider a robotic system autonomous if it can extract environment 
information, understand the consequences this information poses 
and use this information to achieve specific goals or tasks. Also, 
consideration of the two domains of autonomy – Behavioural and 
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Constitutive - must be taken into consideration. This research focuses 
on the behavioural domain which defines certain behaviours that are 
typical of autonomous systems. For robotic systems, these behaviours 
include; collecting environment information, environment perception, 
localisation, decision making and motion instruction execution 
(Thondiyath, 2016). Currently, these behaviours are the best means 
of establishing and evaluating the autonomy of robotic systems. 
They offer direct measures in which to evaluate the outcomes of the 
research against and provide a direction in which to investigate the 
best way to begin to implement autonomy in artificial systems. 

2.1.4  Decision Making

Decision Making builds upon the concepts of intelligence, cognition 
and autonomy presented previously. Decision Making adds additional 
responsibility to the system in order to manifest stronger environment 
interaction and better consideration for the state the operating environment 
is in at the time a decision is made. Additionally, decision making develops 
strategies to deal with issues presented in the environment that an 
intelligent system must overcome to be successful at achieving the required 
task or goal. Saaty (2008) in ‘Decision making with the analytic hierarchy 
process’ outlines the process required to be undertaken in order to make 
decisions: A clearly defined problem, outlined in terms specific to the 
situation, along with the purpose for making the decision and defining the 
criteria that confirm a successful outcome to the decision-making process. 
To manifest this in artificial systems, information about the state of the 
environment, what the system has to achieve and all the potential actions 
the system is able to take, act as inputs the decision-making process.

Within decision-making, two subcategories exist which define two 
typologies of the decision-making processes. The first is controlled decision 
making and the second is fuzzy goal or constraint decision making.  
Bellman and Zadeh (1970)  argue that when the goal for a decision-making 
process is not defined, outcomes of the process are ambiguous potentially 
leading to undesired outcomes. Additionally, having unclear or unknown 
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constraints reduces the suitability of decisions made to specific outcome 
processes (Bellman & Zadeh, 1970; Saaty, 2008). Current technology is 
limited in that the accuracy of the environment model is not sufficient to 
preemptively make decisions about how to interact with the environment.

The integration of decision making in a robotic system can be thought of 
as the ability to evaluate the current state of the operating environment 
and, based on this information, execute instructions on the robot that 
makes use of this information to inform the robot ’s actions. This is an 
essential element that needs to be included in this research to allow 
for more complex pick and place operations to be undertaken.

2.1.5  Learning

Does an intelligent system, designed for architectural fabrication, 
need to learn? Should an intelligent system, designed for architectural 
fabrication, need to learn? These are highly relevant questions that 
remain unanswered in the context of intelligent robots for architectural 
fabrication tasks. We can store information easily in a computer, so the 
fact of retaining knowledge is inconsequential to machine learning. 
What is most pertinent, is the ability to firstly learn relationships that 
can then be applied to new information presented to the machine. 

What constitutes learning?  Is it forming relationships based on 
predefined inputs, or is the creation of new relationships based on a 
large amount of information, or are you said to have learnt something 
after completing it after several attempts? I would argue that human 
learning is a combination of all three of these characteristics and 
additional layers of complexity that cannot be fully understood. 

Learning is not typically attempted by autonomous individuals on a 
daily basis. Instead Brooks (2014) argues that “Most of what people 
do in their day to day lives is not problem-solving or planning, but 
rather it is routine activity in a relatively benign, but certainly dynamic, 
world”(p. 1). This speaks to the vast prior experiences that human 
intelligence is built on. The amount of information required to achieve 



3 8

similar learned results with intelligent robotic systems is virtually 
impossible. However, what this stresses is that given enough information 
through which to learn a classification based approach to the required 
operations, pre training algorithmic models which generalise how a 
robot should interact with the operating environment are a suitable 
solution in order to achieve simple cognitive tasks such as the picking 
and placing of rectilinear objects with consistent dimensions.

2.2 Feedback Loops

Feedback loops are the underlying structures present in all intelligent 
systems. They act as a means for systems to gather information about 
the environment and perpetuate this information into useful actions to 
further the goals of the system. Feedback Loops are the process through 
which information, via a number of different sensors, is gathered from 
the environment. Using this information the system, utilising its base 
intelligence, makes decisions that transition the system towards an intended 
goal state. Once the best course of action has been determined, the system 
executes the required tasks necessary in achieving the desired goal state.

This process is essential in a robotic pick and place operation due to 
the reliance on the robot having an understanding of the conditions 
of the environment it is operating in. Additionally, the robot is aware 
of the end goal of the system, in this case, a completed block wall 
structure. Both of these conditions are the fundamental principles 
involved in a feedback loop system. The development of a comprehensive 
feedback loop system for robotic pick and place operations would be a 
fundamental component in any application for robots in construction. 

2.3 Artif icial  Intel l igence

Attempts to transfer human intelligence processes to artificial systems 
have met limited success since they began in the mid-twentieth century. 
A significant number of different approaches have been considered from 
highly structured ‘state machines’ to more flexible deep learning approaches 
that have been developed in the last ten years. As such, the term ‘Artificial 
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Intelligence’ has come to define an ever-expanding scope of concepts and 
processes that attempt to implement some sort of intelligence into artificial 
systems. Given this wide scope, it is important to clarify how this thesis 
defines artificial intelligence and what processes are of particular importance 
for the successful development of a robotic system capable of executing 
simple additive fabrication tasks without pre-programmed definitions.

The successful integration of simple intelligence in a robotic system will 
present two key concepts. The first, Environment Perception will, as 
previously stated, render the robotic operating environment in digital terms. 
The second, Decision Making will interpret the environment information, 
algorithmically retrieving suitable information in order to allow the robotic 
system to successfully achieve specific goals or outcomes. In simple terms, 
can the system perceive the environment and if so, is it able to understand 
it in such a way that it can adapt and interact with the objects in the 
operating environment in a meaningful way? Within this simplification 
of intelligence, the additional processes of cognition, autonomy, learning 
and feedback loops are all operating underneath the decision making 
process in order to manifest competent decisions in the robotic process.

Specific approaches to manifesting these intelligence processes can be split 
into two distinct categories. A structured rule-based intelligence, where 
a set of rules determine the extent that the system has to operate in. The 
second, is a more flexible learned intelligence, where the system has learnt 
formal and informal relationships about the operating environment and 
objects in it with which it formulates its own set of feasible considerations 
for interacting with the environment. Simply, rule-based vs learnt 
relationship. These two approaches are most common in the literature 
having transitioned from rule-based approaches to learning approaches 
with the development of more powerful computational hardware.

Machine Learning is a subset of artificial intelligence concerned 
with providing the necessary computational structures which would 
allow a machine to learn and retain knowledge (Figure 1). For 
the purposes of this research a subset of Machine Learning, Deep 
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Learning, is found to offer the appropriate scope to successfully 
develop autonomous robotic pick and place operations.

2.3.1  Deep Learning

Deep Learning is a recent attempt, having re-emerged as a viable 
approach in the last ten years, to develop robust and effective intelligence 
implementations in artificial systems. Deep Learning formulates 
algorithmic models that can be applied to new situations consisting 
of similar data to facilitate advanced levels of intelligence in specific 
applications. Deep Learning training methods can be defined in three 
distinct categories; supervised learning, unsupervised learning and 
reinforcement learning. These three categories attempt to achieve 
learning through different approaches, the advantages and disadvantages 
of which will be discussed subsequently. Each approach provides a 
different means of achieving a level of intelligence in artificial systems.

Supervised learning attempts to train a model, representative of a 
predefined relationship in a data structure. Each data point consists 
of a description and a label which defines what action should be taken 
(Sutton & Barto, 2018). The purpose of this system is to develop 
generalised relationships that allow the system to operate effectively 
in unfamiliar or uncertain situations. In addition, supervised learning 
applies basic rules upon which the system can define the representative 
model (Guérin et al., 2018). The combination of these two control 
processes define a model which is adept at a singular trained task.

Supervised learning presents both clear benefits and limitations. For the 
purposes of interacting with the environment, the collection of correct 
action representations is often impossible (Sutton & Barto, 2018). 
Additionally, supervised learning is unable to adapt to any change to 
the situation in which it was trained. As a result, changing any of the 
environment parameters renders a model trained in this way unable to 
operate successfully, or the outputs and actions of the system will be 
ineffective or unintended in relation to  the outcomes expected by the 
system designer. Given these constraints, a supervised learning model 
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is ineffective when deployed in a situation that requires the artificial 
system to be flexible and adaptable to a variety of operational situations. 
Therefore this learning method has been discounted in favour of 
methods more suitable to solving the previously presented issues.

Unsupervised learning develops representational models that, in contrast 
to supervised learning, determine the relationship through the model 
rather than being predefined (Goodfellow et al., 2016). The unsupervised 
learning model draws its own comparisons from the input data and as 
such extracts feature sets potentially unseen by the system designer 
(Guérin et al., 2018). The overall goal of unsupervised learning is to 
classify data into different feature sets in order to be applied to, in a 
similar fashion to supervised learning, unfamiliar or uncertain situations. 

Unsupervised learning has several benefits when compared to supervised 
learning but is limited as a means of establishing flexible and adaptive 
robotic grasping systems. The benefits of unsupervised learning are present 
in the ability for complex situations to be accurately represented in the 
learnt model. The relationships with the training dataset also have the 
potential to be classified in ways that are not immediately evident but still 
produce the desired results and outcomes. In contrast, the limitations of 
unsupervised learning restrict the adaptability of the model when the system 
is introduced to situations in which the training data did not consider. The 
unsupervised learning model offers some benefits over the supervised model 
however the limitations still indicate that it lacks the means to develop 
flexible and adaptable robotic systems for architectural fabrication situations.

Reinforcement learning is the process of interacting with the environment 
and learning in real-time. Specifically, reinforcement learning focuses on 
operating environment goal states which the system interacts with, in order 
to achieve a goal or task (Sutton & Barto, 2018). For each action the system 
takes towards achieving a goal state, it is given a score or reward which 
indicates how effective that particular action is in achieving the goal state. 
Given the importance of the environment state, it is essential that the system 
is able to accurately reflect changes made to the environment in a way that 
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the reinforcement learning system can utilise to inform the next action.

In contrast to both supervised and unsupervised learning, reinforcement 
learning is capable of operating in real time. This gives it the distinct 
advantage of being able to adapt the learning process as the system 
encounters different operating environment situations. However, to 
ensure that a reinforcement learning system acts effectively, consideration 
needs to be given to the trade off between exploitation and exploration. 
The system must exploit its current knowledge to guide actions but 
it must also explore different actions in case a new action is more 
effective than a current action (Sutton & Barto, 2018). Reinforcement 
learning offers the best solutions to the complex issue of flexible 
and adaptive robotic systems for additive architectural fabrication, 
consistently meeting the requirements as outlined previously.

Given the goals of this research, reinforcement learning has 
been used to begin to implement complex intelligent decision 
making in a robotic system. The benefit of real time operation 
significantly outweighs any of the limitations and allows the robotic 
system to be flexible and adaptable to different situations.

2.3.1.1  Object Detection

Deep Learning begins to facilitate more complex intelligence processes,  
the most basic of these being object detection. Object detection refers 
to the ability of an artificial system to detect when objects are within 
the perception frame. 2D object detection is common where a bounding 
box is applied to the region where the deep learning algorithm believes 
the object is. Common applications for object detection systems are 
in autonomous vehicles, industrial and domestic robots. This research 
uses those systems as a baseline for the integration of object detection 
in additive robotic fabrication for architectural applications.

Object detection can be developed using three different approaches. 
Sobti et al. (2018) approach object detection using simple RGB images in 
which a rectangular bounding box is applied when a deep learning model 
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successfully detects the specific object in the frame. Rahman et al. (2019) 
add an additional layer of complexity by including depth information in the 
form of RGB-D images. The added depth data is an attempt to improve 
the 2D detection process to include 3D environment information in the 
object detection process. Ziegler et al. (2018) go one step further to render 
an RGB-D image as a point cloud. The point cloud is matched to a CAD 
model of the object to be detected with the intent to improve the accuracy of 
the object detection process allowing for better  robotic - object interaction.

2.3.1.2  Object Recognition

Object recognition builds on the process developed in an object detection 
system to allow an artificial system to know what objects it is perceiving 
through an environment sensor. Object recognition is linked heavily 
with the concept of perception. The purpose of object recognition is 
to establish the usefulness of objects in the operating environment, 
quickly establishing through a pretrained model, how best to use objects 
presented to the robotic system in achieving a set of goals or tasks. This 
adds an additional layer of sophistication to an intelligent system over 
simply identifying what objects are present in the perception frame.

The scope of approaches to object recognition can be demonstrated in three 
studies. Baareh et al. (2012) use feature extraction through an artificial 
neural network to develop a robust method for 3D object recognition. Pinto 
et al. (2013) integrate a laser range finder into the object recognition system 
in order to overcome some of the limitations of camera based recognition 
systems, specifically the requirement for suitable lighting to evenly light the 
object to be recognised. Nagy (1994) attempts to use pattern recognition to 
differentiate between different object types during the recognition process. 
Of these three approaches the most useful is Barreh et al. as a system that 
requires robots to interact with objects necessitates that object recognition 
is highly accurate to reduce errors in the object grasping process.

2.4 Robotic Systems

Robots, specifically those suited to industrial applications, have long been 
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used as a means of increasing efficiency and reliability in a number of 
industries. Currently, industries that benefit most from these productivity 
increases are those in which robots are required to undertake the same task 
repeatedly e.g. automotive manufacturing. Contrasting this, the introduction 
of robots as tools in industries that require more adaptability and flexibility 
from robot systems has been limited. Architectural applications, specifically 
for construction, require robotic systems that function reliably across a wide 
range of scenarios and conditions from prefabrication in a controlled factory 
environment to on-site construction in a complex and challenging site. 
These limitations have long restricted robotic use in architecture to trivial 
applications. However, with the advent  of new technologies coinciding 
with the 4th industrial revolution, robots are beginning to gain interest as 
feasible construction tools for both prefabricated and on-site construction.

Robots have been used since the mid-twentieth century as tools to 
increase productivity in specific industries. Robots are inherently good 
at accurately repeating the same task. However, for applications that 
require flexibility and adaptability in robotic motion instructions with 
specific consideration for environment interaction, current robotic 
processes cannot fulfil these demands. Architecture, and specifically 
the construction of architecture, is one such industry where flexibility, 
speed, efficiency and adaptability is paramount. As such, the current 
software tools dictating robot motion control are fundamentally unable 
to manifest complex architectural structures from robotic assembly 
processes. Furthermore, the disconnect between a robot and its operating 
environment underlines the limitations of current robotic systems 
to be utilised as construction tools for architecture applications.

Attempts to introduce robots as tools for the construction of architecture 
is evident since the widespread uptake of robots as manufacturing tools in 
conjunction with the advances in software control for the programming 
of robots. Since this time, attempts to integrate robots into robust 
construction workflows has significantly increased. In addition to this 
increase, significant attempts have been made to introduce tools that 
allow the robot to perceive and interact with the environment that it 
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is operating in. Primarily these systems have been developed through 
the work of the Gramazio and Kohler research group. Their research 
focuses on integrating robots into construction workflows with increased 
speed, efficiency and flexibility over typical construction workflows.

2.4.1  Intelligent Robotic Systems

Applications for computer vision and autonomous robotic decision making 
are vast. As a result of this, a significant amount of research already 
exists that considers how to implement computer vision in an industrial 
robotic workflow. The majority of the research deals with mobile robots 
with the intention of having robots navigate through an environment 
while only a very small amount of research deals directly with the 
application of robotic feedback loops for architecture and construction 
applications. The existing research can be broken down into two main 
categories. Firstly, object mapping for 3D model generation and secondly, 
object detection and recognition for industrial robotic handling

Preliminary work on 3D object mapping was undertaken by Besl and 
Mckay (1992) and Blais and Levine (1995). This preliminary work 
attempted to use rudimentary vision systems in order to generate digital 
3D models. Similarly, Newcombe et al. (2011) in the paper KinectFusion: 
Real-Time Dense Surface Mapping and Tracking, presents an updated 
implementation of vision sensing and object recognition. An RGB-D sensor 
captures both image and depth data, on which the authors implement 
an iterative closest point algorithm in order to combine depth data 
from different viewpoints into a descriptive and complete digital model. 
More recent research, undertaken by Martin et al. (2014), investigated 
the implications of interference on the reliability of depth measurement 
data collected from RGB-D sensors. This research highlighted the 
need for adaptive algorithms to account for image interference.

Research that considers the implications of intelligent and environmentally 
aware grasping in an industrial robotic workflow is limited to a few key 
industries. As such, intelligent grasping approached from an architectural 
perspective, has seen limited research interest. To date, two key studies 
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have investigated the integration of object detection in a robotic workflow. 
De Gregorio et al. (2016) in the paper “RobotFusion: Grasping with a 
Robotic Manipulator via Multi-view Reconstruction”, describe a means 
of using a robot equipped with an RGB-D sensor to determine the 
location of objects in an environment in relation to the robot coordinate 
base. A second investigation by Tsarouchi et al. (2016) examined an 
offline system that utilises CAD files of objects to match to scanned 
objects. More specifically, the pose of the robot is determined through 
similarities and differences in the RGB images gathered by the robot. 
One further example by Furrer et al. (2017) in the paper “Autonomous 
robotic stone stacking with online next best object target pose planning” 
presents the current state of the art with regard to object detection in 
a robotic workflow in the architectural and construction industries.

2.5 Robotic Brick Construction

The use of robots in architectural applications has increased significantly 
since the beginning of the 21st century. This uptake in robotic use has also 
coincided with the introduction of additive fabrication processes for robotic 
construction. Primarily, this has taken the form of six-axis industrial robots 
placing bricks in order to construct bespoke wall systems (Figure 2). 

Some research exists that examines the implications of the introduction 
of robots in simple additive fabrication processes. Two systems 
developed in the 1990s were the first attempt to implement robots 
in adaptive construction processes. However, these systems were 
primarily focused on improving efficiency without considering the 
potential that new fabrication technologies could have on the ability 
to construct significantly more complex wall geometries. As such, 
they failed to gain any traction within the construction industry. 

These systems all have significant limitations that revolve around 
a lack of operating environment awareness, an inability to adapt to 
new operating environments and the inability to adapt to changes 
in the existing operating environment. These limitations severely 
restricted the suitability of these early systems to successfully construct 
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complex block wall systems with limited human intervention. 
However, these initial attempts developed a framework on which 
additional development and research could be undertaken.

2.5.1  Intelligent Robotic Brick Construction

The first of these precedent examples titled ‘Flexbrick’ aimed to develop a 
means of prefabricating sections of brick walls using an industrial robotic 
manipulator (FlexBrick, ETH Zurich, 2008-2010, n.d.). In contrast to the 
proposed research, this project did not use any adaptive or autonomous 
feedback systems to enhance the process of fabrication. This project is a 
useful marker in terms of demonstrating the viability of construction that 
utilises bricks and the potential for robotic fabrication to begin to develop 
systems that utilise brick construction.  The proposed research has the 
potential to build upon this project in an attempt to introduce flexibility 
and adaptability into simple architectural robotic fabrication tasks.

The second precedent example is again a project undertaken by 
Gramazio and Kohler Research. In contrast to the previously outlined 
precedent, this project begins to incorporate sensor data in an 
autonomous feedback loop. The project utilises this data to determine 
the width of timber panels that are used to clad premade structural 
timber frames. This process is rudimentary in sensor application 
as the timber cladding is placed in the same position for every 
operation and therefore cannot be adapted easily if the environment 
the robot was operating in was to change (Eversmann, 2018).

The third precedent project titled ‘Stratifications’ is a project that 
uses vision-based feedback in order to determine what thickness of 
brick should be picked in order to maintain the structural integrity 
of a block wall system (Figure 3). This project uses an RGB-D sensor 
that scans the already constructed wall in an attempt to determine the 
dimensions of the blocks surrounding where the new block is going 
to be placed. Based on these measurements, the algorithm decides 
which block is best suited to fill the gap, and the robot then executes a 
manipulation instruction in order to grab the block from one of three 
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different stacks. These stacks of blocks are in known locations, and 
this is where the proposed research differs significantly. The proposed 
research aims to replace known location object picking with vision-
based object picking in order to reduce setup time and remove errors 
from the picking operation (Stratifications, London, 2011, n.d.).

The current state of the art with regard to autonomous and intelligent 
robotic construction methods is present in the in-situ fabricator (Helm 
et al., 2014) (Figure 5). This is a mobile robot with the ability to operate 
in a range of different environments. Specifically, this mobile robotic 
system is capable of construction in two distinct additive fabrication 
processes. The robotic system is capable of constructing pre programmed 
brick wall structures in an area larger than currently possible with 
fixed based robotic manipulators. Additionally, the robotic system is 
also capable of fabricating complex steel mesh reinforcing structures 
currently uneconomical with traditional construction processes. These 
two additive fabrication systems are achieved through the use of vision 
sensor information and complex algorithmic systems which provide the 
robotic system with the information required to actively construct these 
structures. As the robot is also required to move around the environment, 
it uses the collected environment information to generate a rudimentary 
map of the operating environment, which is updated every time the robot 
moves. This allows the robot to localise itself within the environment 
and understand its position in relation to the fabrication process it is 
executing. While this system is significantly complex, it still has several 
limitations which impact the autonomy and flexibility of the system 
to undertake certain tasks. Firstly, the system requires human input to 
transfer material to the robot. In addition it is not able to grasp objects 
from locations that are not preprogrammed into the system. The system is 
also untested in environments that are not highly controlled and as such is 
not capable of sufficient autonomy outside of a laboratory environment.

2.6 Autonomous Vehicles

Over the last ten years, the success of autonomous vehicle in real-world 
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applications has increased significantly. The development of complex 
systems, which allow vehicles to operate without human intervention in 
complex environments, offers a framework or roadmap for the integration of 
similar systems in the architecture and construction industries. This roadmap 
consists of developing processes to control the vehicle with computers, 
including implementing several different sensor arrays to accurately map 
the operating environment. Further processes include developing intelligent 
algorithms to make sense of the information gathered from the sensor 
arrays and then developing these algorithms by implementing machine 
learning technology into the system to improve the overall capabilities 
of the system by learning how a human would operate a vehicle.

This roadmap can be applied to a robotic pick and place operation 
as it will require the implementation of similar systems in order to 
function successfully. Firstly, the robot will need to be controlled using 
external applications and in real-time. Secondly, in order for the robot 
to understand the extent of the task, it is required to fulfil, a minimum 
of one visual sensor will be required. Thirdly, the robotic system 
will require the implementation of intelligent algorithms in order to 
successfully use the information available to execute autonomous pick 
and place operations. The similarities between autonomous vehicles and 
autonomous robots for construction provides a useful framework for the 
development of a robotic system with a comparable level of intelligence.
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3.1 Aims

Based on the previously outlined research, the aims of this research are clear 
in terms of both scope and position within the overall body of research. 
The existing research offers four critical areas in which this research 
begins to develop solutions. These relate specifically around developing 
systems that allow robots to begin to formulate intelligent decisions 
about what actions to take within an operating environment to best 
achieve the required goals of the system. Robotic feedback loops present 
a significant opportunity to develop new systems for more efficient and 
reliable construction due to the limited flexibility and autonomy of robots 
in current construction applications. This research aims to begin to resolve 
four critical issues for robotic fabrication in architecture and construction: 

•   The inability to adapt to unknown environments (Figure 6 - 9) . 

•   The lack of autonomous decision making in robotic workflows. 

•   The inability to locate, recognise and then manipulate objects in the 
working environment.

•   The lack of error detection if a motion command fails to execute or is 
executed incorrectly.

The proposed research aims to begin to solve these issues by developing a 
complex autonomous robotic feedback loop system, capable of constructing 
a block wall using objects found through vision-based feedback. The aim 
is to integrate RGB-D and tracking camera environment information with 
object detection and recognition algorithms in order to identify the location 
of objects in the robot ’s environment, determine what the object is and also 
the pose of the objects in relation to the robot coordinate base. Furthermore,  
the successful integration of these systems within this research will 
begin to facilitate intelligence in architectural robotic fabrication.

3.2 Scope

The scope of this thesis is directed  towards designing a successful 
autonomous robotic pick and place operation. The process through which 
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this thesis will operate interrogates the literature for a means to define 
the extent of the research scope. The scope of this thesis investigates 
four key areas of the literature and their applications to robotic pick and 
place systems- Intelligence, Autonomy, Decision Making and Perception. 
These four areas scope the relevant literature, ensuring that the thesis has 
explored the relevant areas of both theoretical and practical applications.

 The scope of this thesis is framed in such a way as to ensure the relevance 
of the resulting outcomes to the overall body of literature inclusive of both 
theoretical and practical applications. Specifically, practical applications 
investigated the implications of the technical systems that control the robot, 
how the robot interacts with the operating environment(primarily through 
vision),and the complex systems that decipher the information provided by 
the robot interacting with the environment. In relation to the theoretical 
aspects of this thesis, specific conceptual ideas, as discussed earlier, are 
matched with the practical aspects to form a cohesive vision for the thesis.

3.3 Objectives

This thesis consists of several objectives in order to successfully achieve 
the overall aim of the thesis in developing an autonomous robotic system 
capable of grasping unknown objects in the working environment. The first 
of these objectives consisted of investigating the hardware and software 
tools required in order to implement feedback loops in a robotic workflow.

3.3.1  Prototype One

•   Connect a simulated robot to a robot

•   Have the robot respond to commands in real-time

•   Gather a point cloud representation of the operating environment

•   Isolate the point cloud information that describes the location blocks 
to interact with

•   Convert the point cloud description to useable information for the 
robot





Figure 6 - Conventional Pick and place operation

Figure 7 -  Operating environment does not match the 
programmed parameters of the robotic system

Figure 8 -  Robot continues executing pre-programmed  
motion instructions

Figure 9 -  Robot is unaware of multiple failures.  
Requires human intervention to correct  
the robots actions.
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•   Execute a single grasping operation

3.3.2  Prototype Two

•   Loop over the execution instructions

•   Implement a closest point algorithm in order to determine corner 
points of each block

3.3.3  Prototype Three

•   Develop a random wall pattern generator

•   Have the robot recognise the wall pattern from an image

•   From a known stack of blocks, have the robot construct the wall from 
the image

3.4 Methodology

This research developed through a methodology common in both 
architecture and design. The design thinking methodology consists of 
four key stages, each reliant on the previous, to guide the direction of 
the research (Figure 10). In addition to this reliance is the feedback 
process between each stage of the design process whereby outcomes 
discerned in the later stages of the research are used again as inputs in 
the design process to influence the iterative process of the research.

The first stage in this methodology is to clearly and adequately define 
the problems and issues this research is attempting to address. The 
issues that are to be addressed revolve around the current limitations in 
autonomous robotic fabrication in conjunction with the formalisation of 
tools and processes suitable to begin to implement autonomous robotic 
control of the construction process. In order to materialise the extent 
of the research, the issues and problems need to be suitably defined and 
considered in order to provide a clear direction for the research to take. In 
addition to the initial scoping of the research, as the research progresses, 
the outcomes of the research also shape the scope through the iterative 
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design process which in turn allows the research to progress in ways which 
may not have been considered at the beginning of the research process.

The next stage of the research methodology is to determine ways in 
which the previously defined issues and problems could be solved. In 
the case of this research, the main ways in which ideas were generated 
related to solving the technical complexities of having a robot 
operate autonomously and begin to understand the environment it is 
operating in. The ideate stage of the research methodology relies on 
the resolution of the define stage to be at a suitable level in order to 
manifest solutions that have the highest potential to be successful.

The third stage in the design thinking research methodology is the 
prototyping phase. In the context of this research, the prototyping 
phase consists of three different prototypes with increasing levels of 
complexity, both in terms of technical development and robot action in 
the environment. The first of the three prototypes are developed solely on 
the approaches developed in the ideate phase. However, the additional two 
prototypes build on the previous prototypes in addition to the approaches 
developed in the ideate phase. After the completion of each prototype, 
the prototype is evaluated through a the testing phase in order to then 
determine where improvements can be made to the next prototype.

 The final stage of this methodology is the testing phase. This phase consists 
of the outcomes of the prototypes being evaluated against the effectiveness 
of solving the previously defined problems. In the case of this research, 
each prototype was considered based on how effective it was on three 
different metrics. The first of these metrics, autonomy, considered how 
much human intervention and setup was required in order for the robot to 
successfully complete the required task. The second metric, intelligence, 
considers how suitable the robot ’s actions are when compared to how a 
human would approach a situation. The third metric, reliability, considers 
how many times the robot could successfully complete the requirements 
of the prototype, given different operating environment conditions. The 
combination of these three metrics were used to determine what aspects 
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Figure 10 -  Research Methodology
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of each prototype were successful and could be carried over to the next 
prototype. The metrics also identified areas where changes were needed 
for the next prototype in order for the outcome to be more successful.

The overall research methodology will consist of four unique phases that, 
when combined, form a comprehensive means of undertaking architectural 
research. Most notably, this methodology is useful as a way of quickly 
iterating through design options in order to develop robust outcomes. 
The use of prototyping in an autonomous robotic feedback loop system 
provides tangible feedback as to the effectiveness of each iteration. 

The previously outlined methodology is particularly useful in developing 
outcomes that are highly resolved. Lucas(2016), in his book “Research 
Methods for Architecture”, describes the benefits of an iterative process 
“The results of an experiment can be unpredictable, but this is actually 
a primary benefit of the process – it allows you to design your next 
experiment to ask a more specific question”. The proposed research 
method allows for incremental improvements in the competence of 
autonomous robotic feedback loops to be observed. These incremental 
observations are vital in establishing robust research outcomes. They 
allow for the initial research question to be thoroughly interrogated 
thus establishing a means of determining the viability of autonomous 
robotic feedback loops for architectural fabrication applications.
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4.1 Rhino and Grasshopper

Grasshopper and Rhino are Windows based systems that provide a 
means to simplify the process of interfacing with complex robotic 
systems. Rhino is a 3D modelling software package that is a standard 
application in architectural practice, along with many other industries. 
Grasshopper is a plugin for Rhino that offers two distinct new capabilities. 
The first is the ability to construct complex parametric geometry in 
the Rhino environment and secondly, Grasshopper allows the import 
and export of data in Rhino via additional scripting languages.

Information integration between different tools in a feedback system 
is essential to a successful robot operation. Grasshopper facilitates this 
through the integration of Python scripts that translate grasshopper 
geometry into readable instructions for robotic execution. Additionally, 
Grasshopper acts through a simple text file interface, sending files over 
a network, to communicate with the various other tools  such as ROS 
(Robot Operating System), an open source,Linux based application that 
facilitates a live interface between generated data and  robotic operation.

Using Rhino and Grasshopper as an interface between complex robotic 
systems can provide three distinct advantages. Firstly, for architectural 
applications, Grasshopper is a familiar tool which can make it easier to 
understand and visualise complex robotic concepts. Secondly, through 
visual representation, Grasshopper allows for an understanding of 
complex spatial information about the underlying feedback process. 
Finally, Grasshopper offers a familiar language interface between the 
robotic control structures and communicated feedback information.

While the benefits of using Rhino and Grasshopper as an interface 
to ROS are significant, several limitations are also apparent that 
restrict the usefulness of this process. Firstly, new processes on top 
of the already complex robotic control structures lead to potential 
reductions in the speed and efficiency of the overall feedback loop 
system, especially when operating in real-time. Secondly, the robot 
operating between two environments, Linux and Windows , reduces 
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the flexibility to adapt developed systems to different situations.

The use of Rhino and Grasshopper requires an awareness 
of these limitations and working to ensure they don’t have 
a detrimental impact on the robot operating system.

4.2 Robot Operating System

The Robot Operating System (ROS) operates on a Linux based operating 
system and is a control structure capable of managing a wide range of 
robotic systems, including six axis robotic manipulators. Control of these 
systems is facilitated through five subsystems; Nodes, Topics, Messages, 
Publishers and Subscribers.  The combination of these subsystems, through 
a communication hierarchy, establishes control over environment interaction 
and instruction execution in a robotic system. The communication hierarchy 
also allows ROS to facilitate both delayed and real-time feedback loops. 
This allowance for real-time feedback loops presents ROS as a framework 
in which to control robotic motion through environment interaction. 

A series of interlinked Nodes control the interaction between ROS and 
a robot (Figure 11). Each node in the system handles one area of robotic 
control. Three distinct Node clusters are responsible for: robot motion 
control, external information input and, programmed information input. 
Robot motion control nodes collaborate to execute instructions on the robot. 
External information input nodes gather information about the operating 
environment of the robot. Programmed input nodes allow the programmer 
to define information about the environment or objects in the environment.

The ROS Node communication structure allows for the transfer of 
information about the operating environment to the robot control systems. 
Facilitating environment information transfer requires exploiting an array 
of environmental sensors. Systems such as Intel’s Realsense D435 allows 
the analogue environment to be accurately established in digital form. 
Communication between the environment sensor array and the robot 
control structures is facilitated through ROS Topics. These Topics publish 
information that additional adaptive algorithms can manipulate into robot 
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Figure 11 -  ROS node and topic structure
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motion instructions, which are communicated to the robot and executed.

ROS Topics act as the primary subsystem for node communication. Topics 
act as start and endpoints for data communication. Nodes contain either 
a collection of Topics or a single Topic through which information is 
transferred in the ROS message format. To send and receive information, 
Topics publish and subscribe to Topics grouped in other nodes. By 
publishing information, other Topics can receive this information by 
subscribing to the publishing Topic. Topics within the same node also 
communicate in this manner. The functionality of Topics defines a flexible 
information transfer process, capable of seamless real-time feedback.

This programmed information input is essential in allowing interaction 
between industrial robots and operating environments. ROS facilitates 
the integration of programmed inputs through the generation of ROS 
Topics publishing such information. However, these programmed 
inputs are not static. Through the publishing and subscribing system, 
other ROS nodes can retrieve programmed data. In static robot control 
structures this process is mono-directional, whereas ROS facilitates 
bi-directional feedback which interacts with the programmed input 
to manifest environment parameters in robotic actions. This feedback 
process presents robot operators with the central systems to implement 
simple reciprocity between the robot and its operating environment.

In order to entertain real-time feedback, ROS communication operates 
in a hierarchical structure. This hierarchical structure consists of two 
communication layers, with a diminishing level of priority. The highest 
layer, i.e. the one with the highest priority, controls robot motion 
instruction execution. Also, other essential communication, crucial to the 
successful operation of the robot, is facilitated in this layer. The sublayer 
primarily controls sensor integration, programmed environment parameters 
and functions which are not critical to the successful functioning of 
the robot. Given that these two layers exist independently, real-time 
feedback between the environment and the robot control structure, along 
with feedback about the robot ’s position and state are simultaneously 
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updated to inform subsequent motion instruction execution.

These Feedback loops, in conjunction with ROS, suggest an approach 
to two-way communication for robotic pick and place operations. ROS 
facilitated two-way communication that incorporates environment 
information will result in a robotic system that is influenced by and 
responsive to the operating environment. Two distinct types of feedback 
are apparent when examining the capabilities of ROS communication. 
These pertain primarily to real-time and delayed feedback. Real-
time feedback loops, as the name suggests, allow the robot to receive 
information about the environment through ROS as it is interacting with 
it. In contrast, delayed feedback loops update motion control systems 
after an amount of time has elapsed. Real-time feedback implemented 
through ROS has several advantages most notably, robots interacting with 
operating environments in real-time can adapt quickly and effectively to 
both subtle and significant changes in operating environment conditions. 
Contrasting this, delayed feedback loops require the robot to suspend 
the execution of instructions until environment information can be 
generated, and therefore allow the robot to interact successfully with the 
operating environment. This limitation suggests a real-time feedback loop 
implementation, through ROS, as the most effective means of developing 
two-way communication for robotic pick and place operations.

In collaboration with real-time feedback loops, ROS allows for the 
transfer and filtering of specific environment information. In addition 
to simple information communication, ROS begins to conduct simple 
decision-making concerning the execution of robot motion. Existing 
robot control processes, as outlined previously, establish simple code 
to robot transfers as a means of instructing robot motion. However, 
through the feedback loop process, ROS can establish control over 
numerous robotic systems. The output of each of these systems is 
used by ROS to determine how best to interact with the information 
available to it and rudimentary decision making can be established.

4.3 Intel  Realsense Camera
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The Intel Realsense camera (D435) contains an array of environment 
information gathering sensors used to generate accurate descriptions 
of environments in digital form. The D435 consists of a standard RGB 
camera module, Stereo depth cameras and an IR pattern projector. 
Combined, these three sensors are capable of accurately mapping the 
environment between a range of .1 and 10 metres. This sensor array 
can accurately generate several output types which depict the physical 
environment. The first of these is an RGB image, which is consistent with 
images typically captured with an ordinary camera. The second is a pixel 
mapped depth image, which depicts what the camera can see with the 
colour of each pixel indicating the distance from the camera. The third 
is a point cloud, which describes the environment in three-dimensional 
point coordinates. These three information types lend themselves to 
different approaches for feedback loop implementation in robotic 
workflows by way of the environmental representation they generate.

4.3.1  Environment Representation

In order to utilise the information provided by the environment 
sensors, two distinct outputs are available to allow the robot to begin to 
interact with the environment. Stereo depth images provide the robotic 
system with information that pertains to the structure of the operating 
environment. However, this information is not localised in regards to 
the position of the camera on the robot and the position of the robot in 
the operating environment. In contrast, point cloud descriptions provide 
a localised environment map that is accurately linked to the position of 
the camera and in turn, the position of the robot. Given the constraints 
of the stereo depth images, maximising the use of a point cloud in 
this system is the most effective means of providing an appropriate 
environmental representation in a robotic pick and place operation.

4.4 Tool Summary

The combination of the outlined tools presents a systematic strategy 
on which a comprehensive two-way communication approach to 
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robotic environment interaction can be established. Rhino and 
Grasshopper, standard architectural tools, offer a means of interfacing 
with complex robotic systems. This interface is perpetuated through 
the ROS communication system allowing for complex feedback and 
rudimentary decision making. Furthermore, the introduction of Intel’s 
Realsense camera and point cloud descriptions, provide the necessary 
environment information in order to evolve a sophisticated robot 
and environment communication structure. All these tools integrated 
together have the potential to provide a means of formulating 
complex robotic operations for architecture-specific tasks.
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5.1 Connecting to the robot

The connection between the robot and a control source, e.g. ROS was 
essential to the success of this research. This connection was facilitated 
through several pre-existing functions included in the ROS library. The first 
of these functions uses communication over a local area network (LAN) to 
gather information about the robot state for the control system to use. The 
second function uses this same LAN in order to update the state information 
for both the robots kinematic functions as well as the tool attached to the 
robot. The combination of these two functions allows for a connection 
to be manifested between the robot and external robot control sources.

Using this method of connecting to the robot offers two primary benefits; 
instantaneous communication and flexibility in the control structure. 
The capabilities of the control system did not restrict the scope of the 
research. Through implementing the connection between the robot and 
the control source, ROS has been determined as the most appropriate 
tool due to the number of different control functions available. These 
control functions, as outlined in the previous chapter, differentiate ROS 
from the other tools available. Using this control source has allowed the 
scope of the research to develop further than initially considered due to 
the complexity of the systems available within the ROS framework.

5.2 Init ial  feedback loop

Several different approaches were considered in order to establish essential 
feedback between the robot and the control source. The first uses an 
isolated ROS environment, whereas the second uses a combination of 
ROS/Grasshopper/Rhino (RGR). The rudimentary feedback loops 
consist of a simple process where the robot is sent a motion instruction 
to execute an action. After this action is executed, the new position 
of the robot is communicated to the control source. With this new 
information, the control source determines the appropriate changes that 
are required to be made to the next motion instruction in order for it to 
be successful (Figure 12). This feedback process works in the same manner 
for both the isolated ROS environment and the RGR environment.
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For the purposes of implementing this rudimentary feedback and 
for the future development of this research the, RGR feedback loop 
process has been established as the most viable process to achieve the 
outcomes of the research. The RGR process provides two primary 
benefits. This first is that the robot control functions are predefined, 
so this reduces initial complexity. Secondly, controlling the robot 
through grasshopper and rhino allows for a visual representation 
of the process the robot is undertaking to be established. This 
visual representation is particularly useful for troubleshooting 
issues encountered throughout the progression of the research. 

As ROS only operates on Linux based operating systems, a method of 
communicating between the Linux based ROS system and the windows 
based Rhino/Grasshopper system is required. The methodology used for 
this is to develop structures which communicate through simple text files.  
The communication process consists of the Rhino/Grasshopper system 
writing a set of targets points to a text file which is then sent over a LAN 
to the ROS control structure for execution on the robot. The intel realsense 
camera, as described previously, is capable of generating a point cloud 
description of the environment. Using a text file based communication 
system allows for the coordinate data for each point in the point cloud 
to be written to a file and transferred from the ROS control structure to 
the Rhino/Grasshopper working environment, thus facilitating a feedback 
loop between the operating environment and robot motion execution.

This use of text files allows for direct communication between different 
operating platforms. Rhino is used in this process to better understand what 
outputs are developed from the intel realsense camera. A significant benefit 
of the text file communication system is the speed through which large 
amounts of data can be quickly transferred between systems. The initial 
system operated with a communication time of approximately 20 seconds 
however, with the implementation of a text file based communication system, 
this time was reduced to approximately 0.5 seconds. As a result of these 
improvements in communication speed, the text file communication system 
was implemented in all future applications of the feedback loop process.





Figure 12 -  Simple robotic feedback 
loop process
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5.3 Environment information collection

Several different methods of environmental information collection 
were looked into during the initial investigation as to their viability in 
a feedback loop process including Computer Vision. Computer Vision 
uses a different output from the realsense camera, images, in order to 
determine the location of objects in the environment (Figure 13 & Figure 
14). There are several limitations to this process which meant that it 
was discounted from being used in further prototypes. The difficulty in 
converting the image into terms that the robot can use to execute motion 
instructions was significant and more easily done from a point cloud. 
Current research also uses point cloud systems specifically for this reason, 
as they have far greater accuracy than that of an image, and can meet 
the low tolerances required in a construction environment process .

An additional limitation, when compared to the RGR approach, was the 
difficulty in accurately mapping the complexities of the robot operating 
environment. Computer Vision produces a pixel image of the environment 
under consideration by the visual sensor. This method of information 
generation contains significantly less information about the operating 
environment than is included in the point cloud description used by the 
RGR method. This lack of information reduces not only the accuracy of 
the block grasping process but also the ability for the system to discern 
between different elements in the environment, specifically the blocks 
required for construction of the wall system. This approach to object 
identification was discounted from future prototypes due to a lack of 
accuracy, difficulty in translating pixel information to useful data capable 
of translation to robotic terms and a lack of clarity in the information 
gathered from the visual sensor. The combination of these issues suggests 
that a RGR workflow is more appropriate to the scope of the research.

Another method that was considered during the initial investigations 
was Machine Learning. Machine Learning is a means of classifying 
outcomes from a large dataset for use in new and unknown situations. The 
Machine Learning process is most suited to applications that are after the 
feedback stage in a feedback loop process for example. Machine Learning 
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is suited to inferring relationships in the point cloud data set to identify 
the location of multiple objects with different geometries. The Machine 
Learning approach offers additional scope to the research that is best used 
after the successful implementation of a complex feedback loop system.

The inclusion of Machine Learning in the early stages of this research 
would have significantly reduced the research output. The complexity of 
implementing a Machine Learning algorithm is significant and not best 
suited as a means of achieving a simple feedback loop system. Machine 
Learning can however, provide significant benefits when used to begin 
making decisions for the robot. In this case, the machine learning algorithms 
can be manipulated into developing solutions that consider approaches 
not possible from a human perspective due to the size and complexity 
of the point cloud data set. Further investigations into the suitability 
of Machine Learning were conducted later in the design process.

 





Figure 13 -  The robot operating environment

Figure 14 -  Construction Surface
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Figure 15 -  Prototype One
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The process of developing a feedback loop system relies on a robust 
methodology. All the steps in this process rely on a common architectural 
approach of iteration and prototyping where incremental changes are 
made to parameters and then analysed in order to determine whether such 
changes are useful or require a different approach to be undertaken. In 
contrast to most other research in the computer vision field, this research 
includes the use of Rhino as a means of facilitating interaction with a 
robot as a familiar interface for an architectural researcher. (Figure 16)

The first step in the process called for data transfer systems to be established 
in order to facilitate communication between the robot and Robot Operating 
System (ROS). ROS is an open source software package that facilitates live 
interaction with robots. ROS consists of two basic concepts that are useful 
to robotic feedback loops. Firstly, communication between nodes via what 
are called topics and secondly, the ability to easily extract data published 
to these topics. These two concepts allow for real-time communication 
to occur between a robot and an external CAD program such as Rhino.

Communication within ROS occurs through a series of nodes which either 
publish data to a topic or subscribe to a topic to receive data. The interface 
for this system is primarily through a high-level programming language such 
as Python. For the purposes of this research, Python was used due to the 
flexibility and adaptability it offers. Python also allows for development to 
proceed more rapidly due to a significant reduction in setup time compared 
to other programming languages. This interaction facilitates basic motion 
instruction communication between ROS and a robot with a ROS node 
that publishes point coordinate and motion instructions to a topic in 
which a subscriber node is collecting the instructions and executes them.

This concept can be further expanded and made more accessible through 
the use of Rhino as a visual interface to this process. Rhino along with 
Grasshopper provides a working method where architects can understand 
and define motion commands within an environment to be sent to the 
robot. This system is particularly useful for troubleshooting issues with 
robotic motion instructions as the visual feedback from Rhino allows 
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for an easier understanding of what instructions are being sent and the 
expected motion of the robot in a given environment. Rhino also facilitates 
defining the robot ’s environment in 3D. This presents an opportunity 
to reduce issues with collisions in the environment by using Rhino to 
prevent motion points being set outside of the robot ’s operating area.

As a result of ROS being able to communicate in real-time  between 
a robot and a motion instruction, it is possible to use Rhino as a live 
interface between a human and a robot. Real-time interaction with 
robots is currently experiencing a significant uptake in research due 
to the possibilities of this type of robot human interaction. However, 
ROS itself is highly proprietary,code based and requires significant 
setup time making it difficult to be integrated into an already 
existing architectural workflow which is generally a visual one..

To facilitate the live connection between Rhino, ROS and a robot, a 
cloud-based server was used in order to seamlessly transfer files between 
different operating systems and devices. This can account for some 
slowdown in performance due to a file being sent over the network. 
Direct communication via ROS can be explored in future projects.

The next stage of the process required the setup and connection of an 
RGB-D camera. An RGB-D camera is required in order to generate 
both environment images and point clouds with associated depth 
information. An Intel Realsense D435 with ROS integration was used 
for this project due to its ability to produce a point cloud. This point 
cloud data was published directly to a ROS topic and then extracted to 
a plain text file through a ROS subscriber. This process was relatively 
straightforward with the data easily extracted and then exported into 
a readable format for integration into other parts of the workflow. By 
publishing to a plain text or comma separated value format, the data could 
be used easily in different iterations by different software packages.

The data extracted from the camera provided a three-dimensional 
representation of the environment in which the robot was located. From 
this data, differences between the original “clean” environment and 
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Figure 16 -  Prototype One Functionality
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anything added to the environment could be compared to determine if 
anything new was in proximity to the robot. This was the first step to 
identify objects that could be moved and relocated by the robot. The 
process of transforming simple point cloud data into identifiable objects 
for the robot to move, requires significant data manipulation. Firstly, 
converting the data from a collection of points to a mesh is necessary to 
determine where the surfaces are in the data that is collected. Further 
to this, the normals of the mesh faces must be compared to a directly 
vertical normal in order to then determine which mesh face normals 
are perpendicular to the RGB-D camera (Figure 17). The next step is 
to filter these mesh faces based on distance from the camera in order to 
determine the top of an object ’s surface with reference to the robot frame.

The new 3D mesh now represents the highest surface within the 
camera frame, which is the top of the object. With this data, the mesh 
can now be matched to one of the predefined objects in the library. 
This match is based on a comparison between the area of the mesh 
and the area of the objects in the library. Mesh areas that were within 
a range of tolerance of the original object area were determined to 
be “blocks”. The library object was then compared to the identified 
mesh in order to determine the location and orientation of the object 
and to provide a list of objects for the robot to manipulate.

The amount of time required to identify a block relies on two key 
processes to be executed. The first process is the extraction of the camera 
data as a point cloud representation of the camera frame. The second  
is the organisation and manipulation of this data into a format that is 
understandable by the robot. The process initially required approximately 
90 seconds to completely execute and output targets for execution on the 
robot. The processing time was a severe limitation on the effectiveness 
of the entire system. In order to improve the functionality, the amount 
of points in the extracted point cloud was reduced. This reduction 
occurred through subsampling the point cloud down from 30,000 to 
3,000 points and had a profound effect on the overall processing time 
in order to identify a block, reducing this to approximately 5 secs.
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Two robot motion operations were necessary for the success of the research. 
The first was to move and position the robot over the identified object 
and the second was to grab the object and place it in its final location. 
The identification and location of added objects to the environment of 
the robot was the first step to provide the necessary data for the robot to 
move and orient itself in reference to the object to be picked up. Through 
the identified mesh, the corner points of the block were determined. The 
corner points or extents are vital in establishing the position of the object 
in 3D space in relationship to the robot so it could be picked up and 
moved. The robot was then provided with instructions to move above and 
orient its gripper based on knowing the short and long side of the block.

The second motion operation, grasping of the object, requires the gripper 
to be located at the same position on every block in order to ensure the 
precise placement of the block. To determine the exact positioning of the 
gripper, the four corner points of the block need to provide two key pieces of 
information. The first is the centre point of the block, which is defined using 
two opposite corner points, and the second being the orientation of the 
block on a flat surface. This orientation is calculated using a vector which is 
parallel with the robot base y axis and a vector which describes the shortest 
side of the block (Figure 21). The angle between these two is calculated and 
transferred into a roll, pitch, yaw (RPY ) and quaternion description of the 
block’s orientation. Having determined these two pieces of information, the 
robot is now able to execute a motion instruction in order to grasp a block.

Finally, the robot was given instructions on where to place the 
block based on a predetermined location and the blocks were 
stacked. This part of the research related to previous work in pre 
programming the robot to move known objects to known positions.

The system developed through this research resulted in a process in 
which the robot was able to successfully identify the location and 
orientation of an object within a controlled environment. The system 
was able to determine the pose (Position and Orientation) of a simple 
rectangular block through the use of a library of object faces. These 





Figure 18 -   Pointcloud Description

Figure 19 - Filter Block Positions
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Figure 20 -  Block Pose Estimation 
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object faces were matched with the topmost surface of the block in the 
environment. The result of this process is a robotic feedback loop able 
to determine the extents of a randomly placed object from a known 
library of object faces that could be picked and placed precisely.

6.1 Limitations

The results of this research present a system for controlling robot 
motion through the integration of a vision sensor in a robotic feedback 
loop. When presented with a block/brick with known dimensions, the 
robotic feedback system was able to identify the location of the object 
in the environment, compute a set of planes to move to, and then 
execute motion instructions in order to move to the corner points of 
the identified object. The system was able to deal with the placement 
of the block on any of its planar sides, calculating the correct distance 
from the camera to the block and then executing motion instructions in 
order to detect the location of the given object in the environment.

Robotic feedback loops that employ vision as a means of object detection 
were successful with this research. The results have identified a series of 
restrictive limitations to be further explored. A fundamental limitation 
of this system is the speed at which the entire process is carried out. The 
process of manipulating a large dataset, along with the conversion of 
strings to floating point values, are key contributors to the reduced speed 
of operations. While this may not seem like an excessive amount of time, 
this execution time is only for a single object to be identified and very 
simple motion instructions to be executed. If the system was to be scaled 
to be more appropriate for the construction industry, this processing 
time could be significantly restrictive to widespread industry uptake.

Another limitation of this system is the accuracy of the extracted point 
cloud data. Robots operate with very tight tolerances, whereby a robot is 
significantly more precise than what the camera currently accounts for. 
When used in this system, the robot was lacking the critical accuracy that 
would be required to execute a pick and place motion instruction. The 
accuracy of the point cloud could be increased when manipulated in Rhino 
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and Grasshopper. By using a visual medium as a tool for understanding the 
point cloud data, minor adjustments and variations could be made to manage 
issues with accuracy. While this approach was moderately effective, further 
research would need to be conducted in order to improve the accuracy 
to match the tight tolerances expected in the operating environment.

Another less significant limitation is the restriction of object detection 
to a predefined library of object faces. In this research, the three different 
faces of the simple rectangular block where used as a library of objects in 
which a match between the resulting mesh geometry could be made. When 
considering the application of this research to extend further than it does 
currently, the limitations of this approach to object detection are more 
evident. When this system/process of object detection is transferred to an 
environment where the objects are not contained within the library, the 
lack of adaptability to new and differing environments containing objects 
that are unknown to the robot would cause this system to stop operating.

Robotic efficiency is best observed when a robot is undertaking a repetitive 
task and interacting with the same object over and over. The use of an 
object library in this research attempts to limit the complexity of the 
system in order to progress with further development beyond object 
identification. As such, the system is currently only able to operate and 
interact with objects that are rectilinear, and of which the geometry 
is simple e.g. blocks/bricks. This is a limitation, however, materials 
commonly used within the construction industry match these rectilinear 
limitations and therefore it is not something that requires an immediate 
solution in order to be effective as a means of unknown object detection.

The summation of these three limitations is that while the research 
is relevant, when considering approaches for further investigation, 
different means of locating and detecting objects in the environment 
will require an effective means of manipulating visual data and an 
increase in computational efficiency to provide a more reliable means 
of operation in the long term. While this system is limited, there is the 
potential for a number of different approaches to be taken to further 
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Figure 21 -  Block rotation angle calculation
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the research (as outlined below). These different approaches have the 
potential to develop this system of object detection to the point where it 
can be integrated with completely unknown environments and objects.

This research has been successful in identifying objects within a controlled 
environment. To progress further there are several opportunities to pursue 
that could provide solutions to the limitations of the system outlined above. 
The first such opportunity is to investigate the potential for an image-
based object detection system to operate to the same or better extent than 
the current system. Computers are more efficient in processing bitmap 
image data than they are in dealing with the conversions of text to numbers. 
As such, a system that utilizes this processing power could operate at a 
greater speed than the current system with the potential for a real-time 
system to be developed. Another potential avenue to examine is the use of 
improved hardware for kinematic planning and collision detection. Sorin 
and Konidaris (2018) have developed a system whereby kinematic planning 
and collision detection is undertaken in milliseconds, rather than the 1 - 2 
seconds currently seen with basic consumer-grade software. Finally, the 
integration of camera calibration into the system provides an opportunity 
to improve the accuracy of the extracted point clouds which in turn will 
increase the accuracy of robot operations within the operating environment.
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Figure 22 -  Prototype Two
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The second prototype builds on the previous prototype by integrating 
additional complexity to the robotic pick and place operation. The 
system functions in a broadly similar way to the previous prototype 
but with new systems included to control sequential object grasps, 
different wall construction locations and improve grasping accuracy. 
These three issues have been identified as the key restraints in the 
previous prototype, specifically the inability to build a wall with more 
bricks than could fit into the visual sensor frame. The functionality 
of this system follows a capturing of the operating environment in 
digital terms, appropriating this data to align with robot instruction 
sequences, and redirection back to the robot for execution. (Figure 23) 

The goal of this prototype is that the robot constructs a simple block wall 
using blocks found in the operating environment. The position and location 
of these blocks are unknown to the robot until information from the visual 
sensor is processed to determine where in the operating environment they 
are located. Functionality to repeat the information input process will allow 
for the construction of larger and more complex wall structures. Improving 
the accuracy of the block grasping is also an essential goal of this prototype.

The second  prototype functions by first initialising several different 
systems that deal with background processes outside the primary pick 
and place operation. The first of these provides the robotic system with 
a means of retaining information concerning the state of the currently 
constructed wall. When first starting the system, the user-defined wall is 
translated into a list of block placement coordinates. These coordinates 
provide the robotic system with a description of all the blocks in the wall. 
This information is stored in a CSV file. Throughout the pick and place 
operation, the system updates the CSV file when the robot successfully 
places a block, thus providing an up to date description of the progress 
of wall construction in digital terms. The second initialisation process 
involves communication between the robot control systems and the 
robot. As the previous prototype demonstrated, after communication 
between the two exceeded 70 unique communications, the system failed to 
function correctly as the grippers failed to either open or close. In order 
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to overcome this limitation, a ‘cookie’ received from the robot during the 
initial HTTP request is re-sent with each subsequent request to maintain 
the link between the robot control systems and the robot. Both of these 
systems address issues with the previous prototype, thereby increasing 
the ability of the robotic system to complete more complex tasks.

Environment information is captured through the robots visual sensor 
before the wall construction process begins. Critically, as discovered in 
the previous prototype, the distance between the ground surface and the 
visual sensor is essential in gathering accurate information about the state 
of the operating environment, specifically the position and orientation 
of the block objects. If the visual sensor is too close then not enough 
information is available in each image capture and if too far away, then the 
accuracy of the resulting point can be off by as much as 20mm. A distance 
of 400mm from the ground surface to the visual sensor lens appears to 
be most effective at balancing the two constraints. The output from the 
visual sensor describes the operating environment as a Point cloud which is 
transferred from the visual sensor to the robot control system for processing.

The Point cloud export from the visual sensor contains a point 
representation for each pixel in the image and as such, for an image 
with a resolution of 1,280 x 720 pixels, the Pointcloud contains 921,600 
individual points. In an attempt to improve the processing times this initial 
point cloud was subsampled down to 10% of the original size while still 
maintaining the structure of the pointcloud. This subsampling improved 
the overall processing performance significantly. In addition, the speed 
of communication between the robot and the robot control system has 
also been improved by transitioning from a cloud-based communication 
service to a local network protocol. While the cloud-based service was 
taking approximately 20 seconds to complete communication processes, 
the local network solution has reduced this to approximately 0.5 seconds. 
Switching to a local network file transfer has also allowed for significant 
improvements to the complexity of the initial point cloud that can now 
be transferred from the visual sensor to the robot control systems.
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Figure 23 -  Autonomous robotic grasping sequence. The 
robot grasps the randomly distributed blocks 
to construct a simple block wall.
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In contrast to the initial prototype, this system uses a new method for 
determining the position and orientation of the blocks in the visual sensor 
frame. The initial point cloud is filtered by height above the ground 
surface, in a similar way to the initial prototype however, this is where 
the similarities conclude. In the initial prototype, the rotation angle of 
the block often failed to be correctly calculated whereas this prototype 
integrated an inclusion test. The system uses a corner point of the block, 
typically the corner point with the lowest x value coordinate,to test for 
the inclusion of two other corner points within a specific radius. 

After the conclusion of determining the position and orientation of the 
blocks, this information needs to be translated into data that the robot 
understands. From each of these poses, the centre point of the block 
along with the angle of the block in relation to the robot act as inputs 
for the motion instruction generation system. The rotation angle of the 
block controls the rotation of axis 6 of the robot, the grippers, aligning 
the grippers with the block to execute the pick and place operation. 

After the creation of the block position and orientation instructions, the 
control system transfers these to the robot through the ROS communication 
system for execution. The robot will fully execute an instruction sequence for 
the number of blocks present in the visual sensor frame at the initial point 
of capture. If the blocks were to move during this instruction execution 
process, the robot would be unaware of this and continue as though the 
blocks were in the original positions. After this instruction sequence, the 
robot returns to the initial capture position to repeat the process and add 
to the already existing wall rather than begin constructing a new wall.

7.1 Limitations

This prototype makes a significant number of improvements to the first 
prototype. There are still several limitations present in this prototype 
that are restrictive in allowing the system to undertake more complex 
pick and place operations. However, this prototype still has significant 
potential to be developed in its current direction in future research. The 
combination of developing systems to remove the limitations in the system 
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and implementing potential system improvements offers the opportunity 
to develop a complex robotic system capable of dealing effectively with 
varying operating environment conditions. These limitations and potential 
opportunities will be discussed in more detail with a particular focus on 
why the described limitations are inherent in a system of this type.

The limitations of this prototype can be organised into three main 
categories; Operating Environment, Lighting and Technical. Solutions 
to the first two limitations are more easily found by making physical 
adjustments to the operating environment and the systems operating 
within it. The technical issues limiting the progress of this research 
however, are more complex and require a significant increase in both 
time and resources to overcome. As such, attempts to improve the 
operating conditions have been more thoroughly interrogated and 
explored compared to the more arduous technical aspects of the system.

The state and setup of the operating environment were fundamental to 
the success of this prototype. Three critical conditions were essential in 
ensuring the successful operation of the system. Firstly, the positioning 
and texture of the ground surface of the operating environment is critical 
in ensuring high-quality data input to the visual sensor. During the 
prototyping phase, it was found that highly reflective surfaces reduced the 
effectiveness of the visual sensor to map the operating environment with 
a high level of accuracy. The lack of accuracy is a significant limitation of 
the system that then requires the operator to have a reasonable amount 
of control over the environment in which the robot is operating. In 
applications that cannot be controlled, such as on a construction site, 
the ability to maintain a consistent surface will be limited. While this 
limitation was able to be successfully rectified in a laboratory environment 
further applications of this research will need to consider the implications 
of surface materials on the quality and accuracy of visual sensor data.

Control of the lighting conditions within the operating environment 
was equally essential to the success of the pick and place operation. 
Poor lighting conditions resulted in the blocks within the operating 
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environment casting sharp shadows. These shadows were commonly 
interpreted by the visual sensor as block edges resulting in blocks being 
ignored by the system or the position and orientation of the blocks being 
incorrect. Several methods were used in an attempt to overcome these 
issues. Multiple lights were set up around the visual sensor capture area 
to remove shadowing from a single direct light source. This approach 
was highly effective in reducing the number of ‘misreads’ by the visual 
sensor significantly. However, this approach is not transferable to 
different operating environments. In an attempt to address this, a light 
was attached to the gripping tool on the end of the robot. This approach 
was slightly less practical than the consistent illumination, however 
it offers significantly more flexibility to the robotic operating system. 
Overall, lighting is a significant limitation of this prototype and has been 
addressed to improve the accuracy of the overall pick and place operation.

Several limitations exist that relate to technical aspects of the robotic system. 
Firstly, the accuracy of the wall being constructed is reduced primarily 
due to the grasping of the blocks, which is often inaccurate in the long 
direction of the block resulting in uncontrolled wall construction. Several 
different approaches were taken in an attempt to improve the accuracy of 
the robotic system. Firstly, the algorithm that filters the point cloud into 
each block was interrogated in order to determine where the issues with 
the accuracy of the system may be occurring. Review of this process meant 
that an entirely new approach to the sorting of data gathered from the 
visual sensor was required. Secondly, as described previously, significant 
attempts have been made to improve the accuracy of the visual sensor 
data through controlling the physical operating environment variables. 

The second  technical limitation is that the robotic system can only pick-
up blocks that are parallel with the ground surface; blocks on angles off of 
the surface are unable to be identified. This requires a fundamental shift in 
the technologies used to determine the position and orientation of blocks 
in the operating environment by transitioning from a typical programming 
workflow to a machine learning-focused solution. Given the complexity  
of machine learning, transitioning to this approach is outside the scope 
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of this research however portions of machine learning approaches have 
been integrated to slightly improve the abilities of the robotic system. 

Thirdly, the robotic system sits in a loop executing a scan every 8 seconds 
while no blocks are detected in the camera frame. The length of time 
between loops is restrictive as the camera requires a certain amount of 
time to start and stop capturing. A potential solution to this issue is a 
system that is continuously capturing data through the visual sensor. This 
will reduce the slowdown created by multiple camera scans and improve 
the robot ’s knowledge of the operating environment. The technical 
limitations of this prototype are significant and if this research was to 
continue there is potential for these issues to be adequately addressed 
to improve the capabilities of the robotic pick and place system.

The prototype has several areas that are suitable for further research and 
investigation. Firstly, there is the potential to cover a larger scan area 
by having multiple visual sensor capture locations. Moving the robot 
to unique predefined capture locations would allow a more significant 
portion of the operating environment to be used to pick blocks from. 
Secondly, there is the potential to build multiple walls simultaneously 
and remember the state of each wall thus allowing the robot to multitask 
using the resources available to it. Thirdly, there is the potential to 
decide which block should be used with each wall based on distance from 
the block to the wall. An algorithm could be used to stipulate that the 
distance between a block and a place target should be as small as possible. 
The combination of these improvements would provide the robotic 
system with significantly more ability to construct complex structures. 
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Figure 24 -  Pre sorting randomly distributed blocks to 
improve wall construction accuracy.
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Figure 25 -  Prototype Three
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Based on the results of the two previous prototypes, the limitations of 
each are complex and will likely require substantial technical investment 
in order to provide a viable architectural solution. The difficulties 
outlined in the previous prototype, specifically the difficulty in accurately 
grasping blocks which locations are not known, suggests reverting to the 
well established process of grasping blocks from known locations. While 
simplifying the grasping process may seem to be a backward step for the 
research this prototype implements a machine learning algorithm that 
is capable of determining the extent and content of an image presented 
to the robot through the imaging sensor. The machine learning process 
offers significant complexity to the prototype in conjunction with 
developing the autonomy of the robotic system from a different perspective 
with the intent for future research to combine the two approaches.

The new  system works in a process similar to the previous prototype. A 
stack of blocks is arranged by the operator, the location of which is either 
pre-programmed or input by the operator. The block stack arrangement 
removes the issue of accurately locating the block through the use of the 
visual sensor. The lack of accuracy in grasping the blocks in the previous 
prototype is thereby reduced by using the operator to control the robotic 
operating environment, thus simplifying the complexity of the conditions 
in which the robot has to operate. Using the operator to pre-locate the 
position of the blocks for the robot to grasp allows the overall system to 
be used to undertake more complex operations without being restricted 
by a lack of accuracy in the block grasping and placement process. 

The operator either self generates or allows the program to generate a 
block wall pattern (Figure 26). The pattern generator program will generate 
a random arrangement of two different block orientations, primarily for 
simplicity for the initial testing stages. The operator inputs the length 
and height of the wall that they want the system to construct. The system, 
through the use of a machine learning algorithm, determines the required 
number of blocks for each row and the total number of blocks required 
for the overall wall. The pattern generation is formulated through a 
random choice algorithm where the length of each row is divided by the 
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number of blocks in both orientations to generate a random wall pattern. 
Once the wall pattern is created the program generates a pixel line image 
of the block wall which is exported for use in the robotic operation.

Once the wall pattern image was generated, the process of physically 
constructing the wall in the robotic working environment can begin. 
The first step in this process consisted of transferring the information 
generated in the block wall pattern image into digital terms that the 
robot understands (Figure 27). The process begins by having the operator 
present the image to the robots visual input sensor (intel realsense 
D435). The robot captures an image of the block wall pattern to use in a 
sequence of algorithms that determine the parameters of the block wall 
to be constructed which are then translated into motion instructions 
for the robot. The first of these algorithms is a Canny edge detection 
algorithm. This algorithm filters distinct edges from the background of 
an image allowing the edges of each block in the wall to be determined 
and translated into digital terms. This first step translates physical 
plans into digital information that can be manipulated for future use.

Once the edges of each block have been determined, the system introduces 
a second algorithm to determine the face area of each block which is 
calculated using the pixel coordinates of each continuous block edge. 
These areas are matched to the actual value of the block face area, either 
the end or side of the block, in order to determine the wall pattern. 
This information is stored in an order list, with the first item being the 
first brick to place and the last item being the final brick to place. 

The motion instructions for the robot ’s actions are generated from this 
list of blocks. As this system uses only two different types of block 
orientations, the motion instructions for each block placement in the 
wall construction are to either place the block long-side parallel to the 
wall direction or, the end of the block parallel to the wall direction. 
Only two different motion commands are then required in order to 
place the blocks in the correct position within the wall structure. The 
motion instructions consist of the same instructions that are present in 





Figure 26 -  Pixel image of wall pattern used to 
instruct the robot

Figure 27 -  Machine Learning through 
pattern matching and analysis
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the previous prototypes where the communication between the robot 
control systems and the motion instruction algorithm system is facilitated 
through ROS. This process of communication ensures that additional 
functionality can be added to the system in the future without the 
communication process hindering the capabilities of the robotic system.

After the motion instructions for the placement of the blocks in the 
wall structure have been generated, the predefined motion instructions 
for the grasping of each block in the pile of blocks to use is weaved 
into the list of motion instructions in order to have the robot correctly 
grab blocks from the pile and place them in the wall structure. The 
operator is in control of the process of preventing the robot from 
colliding with the operating environment. This presents a number of 
limitations in this prototype that restrict the comprehensiveness of the 
system to manifest complex architecture construction situations.

Overall this prototype functions through predefining the location of a 
pile of blocks to use in the wall construction and generating a random or 
user-defined block wall pattern for two different block types. Physically 
presenting the robot with a drawing of the block wall pattern and, 
using a combination of three algorithms allows the robot to determine 
what the pattern of the wall is. From the pattern determination, motion 
instructions are generated which allow the robot to execute tasks that 
involve grasping the blocks in a pile and then correctly placing the blocks 
to create the wall described in the two-dimensional pixel image.

8.1 Limitations

This prototype has several limitations, primarily revolving around the 
complexity of implementing digital accuracy in the robotic operating 
environment. Firstly, the blocks are picked from known locations. Secondly, 
the system is constrained by the type of image that can be used to instruct 
the robot. Thirdly, as in the other prototypes, the lighting around the robots 
visual sensors is imperative in achieving accurate identification of what the 
robot is seeing. Finally, the robot is unaware of the extent of the operating 
environment. The combination of these limitations will be discussed further 
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with an emphasis on potential solutions if the research was to continue.

The first limitation of this prototype is the requirement for the position 
of the blocks to be explicitly programmed into the system. This has two 
restrictions; firstly the blocks must all be positioned in a uniform manner  
in the same plane as the operating environment ground surface. Secondly, 
the accuracy of locating the position of the blocks in relation to the robot 
is critical in ensuring the accuracy of the resulting wall structure. This 
requirement shifts a significant amount of responsibility for the accuracy of 
the system to the operator. While having the operator position the pile of 
blocks may work in a controlled laboratory environment, the introduction 
of other variables typical in construction infer that the robot needs to 
be capable of finding the blocks in the operating environment itself.

The second limitation of this prototype is the limited scope of images 
that can be read into the algorithmic system. As the system is designed 
to read simple pixel line images, presenting the system with an image 
that does not fit the specific requirements of the system can cause 
unforeseen errors. The system will still attempt to process the visual 
information however, the outcome will cause the robot to operate in 
an unexpected way. The reason simple pixel line images were used 
to instruct the robot is the ease of distinguishing between black and 
white pixels in the edge detection process. In order to increase the 
complexity of the image that can be read by the robot, without reducing 
the accuracy of the resulting output, requires the integration of a 
filtering algorithm to remove unnecessary information from the image 
before running the edge detection algorithm. This creates a significant 
limitation however, it does not fundamentally restrict the functionality 
of the system in successfully constructing the block wall structure.

The third limitation of this prototype is the requirement for operating 
environment conditions to be perfect when the visual sensor is in 
operation. As discussed in the previous prototype, the lighting of the 
area that the visual sensor is viewing is required to illuminate the surface 
uniformly. However, given how the image of the block wall pattern is 
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presented to the robot, a small amount of shadowing is always present 
on the image. This can cause some confusion to the edge detection 
algorithm but can be resolved by merely including a filtering algorithm 
in the image processing system to reduce the harshness of the shadow 
in the images. The limitation was promptly resolved and presented 
little restriction to the functionality of the overall prototype system.

The fourth limitation of this prototype is the lack of operating environment 
awareness from the robot. The robot is unaware of the state and the objects 
that are present in the operating environment. This is particularly limiting 
when errors occur in the robot environment interaction. As the robot cannot 
perceive what is happening it has no way to anticipate potential errors 
occurring. As such, preventing collisions with the wall being constructed or 
the pile of construction materials are the responsibility of the operator to 
both foresee and act quickly enough to prevent. The position of the visual 
sensor at the end of the robot limits the ability to use this device to act as 
the eyes of the robot and provide updated information about the state of 
the environment, due to the potential for this visual sensor to be obstructed 
by objects held in the tool attached to the robot. A viable solution to this 
issue would be to employ an additional visual sensor however, both the cost 
of an additional sensor and the requirement to calibrate two sensors so they 
act correctly, are significant undertakings but still present the best method 
for integrating operating environment awareness in this prototype system.

To overcome the limitations discovered through the development of this 
prototype requires a combination of the system developed in prototype 
two to be integrated with prototype three in order for the robot to 
establish where the initial positions of the blocks are and the number of 
blocks that can be used to build a wall. Additionally, the development 
of prototype two to a stage where blocks placed in any position or 
orientation can be grasped accurately offer the potential for this prototype 
to act in an almost autonomous manner. The inclusion of elements of 
the work currently in development by Gramazio and Kohler, discussed 
in a subsequent paragraph offer the potential for the development 
of a robotic system capable of operating autonomously on site.
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The potential of this prototype is to allow a robot to read a set of plan 
documents or similar instructions for a construction project. Having 
read these plans, the robot can determine where on-site it needs to be to 
complete a construction task, what tools it needs to complete the task, what 
materials it needs and also the sequencing it needs to place the materials 
in order to complete the construction task. The robot can act as though it 
is a competent human construction worker, interpreting drawings and then 
constructing the building on-site with the added advantages of repeatable 
accuracy, 24/7 operation and significantly increased operating capacity.

Looking within the literature at the current state of the art suggests 
the potential, as alluded to earlier,  to integrate aspects of both 
this research and the work of Gramazio and Kohler. Gramazio and 
Kohler’s work focuses on providing some awareness of the operating 
environment to the robot, a fundamental limitation of this research 
due to both time and cost constraints. Combining the two, along 
with the interpretation of construction documentation by the robot 
and an accurate understanding of the environment the robot is 
operating in, begins to bring about the overall potential of this system 
to act as an alternative  for the on-site construction worker.
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9.1 Linking the Research to the Literature

The practical outcomes of this thesis have demonstrated the beginnings 
of a complex robotic system capable of executing basic construction tasks 
without human intervention. It is pertinent with this new knowledge 
to reinterrogate the literature with a specific emphasis on situating this 
thesis within the existing body of knowledge. Linking the outcomes of 
this thesis to already existing work, formalises the conclusions drawn 
from this thesis. More importantly, it aids to reinforce the relevance of 
the system to both architectural theory and practice. The specific areas of 
interest will be discussed further through two lenses. First, a theoretical 
examination followed by a practical analysis of the conclusions of this thesis.

There are several areas of interest when comparing the outcomes of this 
thesis to the literature. Firstly, a comparison with intelligence theory and an 
evaluation of the conditions that define intelligence against the outcomes 
of this thesis. Secondly, a critical analysis of the implications of perception 
within the scope of this thesis. Thirdly, autonomy is examined with the 
intent of determining the level of autonomy present in this system. Fourthly, 
the process of decision making is examined through the lens of self-decision 
making by the autonomous system. Finally, the process of learning will be 
examined with a particular weight given to fundamental learning techniques 
within artificial robotic systems. The combinations of these theoretical 
positions serve to cover the relevant literature within the scope of this thesis.

9.1.1  Intelligence

This thesis presents intelligence as the ability to interact with environments 
and carry out adaptive, goal-orientated objectives. The questions relating 
to the definition of intelligence discussed in chapter two are a useful means 
of presenting the outcomes of this thesis in terms of being an intelligent 
system. Examining the first question; Is intelligence the level of competency 
displayed when undertaking both unknown and familiar tasks? With regard 
to the outcomes of this thesis, it is clear that the system proposed in this 
thesis displays some level of intelligence. To be able to interact with the 
environment, even in a rudimentary manner, suggests that the system 
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displays a basic form of intelligence. The second question, Is intelligence the 
rate at which a system can learn? This thesis does not explicitly encounter a 
rate of learning indicator, as the system is primarily focused on achieving a 
singular task and as such learning was not a primary driver of the research 
direction. However, functionality is included in the system which begins 
to exhibit learning like behaviour where the more attempts the system 
makes at a particular task the more competent the system becomes at that 
particular task. Based on the formerly presented definition of intelligence it 
is clear that the resulting robotic pick and place system developed through 
this thesis is beginning to exhibit a rudimentary level of intelligence 
across the spectrum of intelligence metrics present in the literature.

9.1.2  Perception

Perception in the scope of this thesis consists of two layers of 
complexity which aid in defining a manifestation of intelligence in 
artificial systems. Firstly, environment perception simply translates 
to reproducing the physical environment in digital terms. The second 
layer is significantly more complex allowing an artificial system to 
prepare itself to interact with any environment. Primarily this is a 
preconceived response developed through the system’s experience that 
assesses the usefulness of objects within an environment in assisting 
the system in achieving the required task. The resulting system of this 
thesis operates primarily within the first layer of perception, merely 
gathering a mapping of the environment to be processed at a later date. 

The difficulty with implementing the second layer of perception is 
significant. In order to preconceive a response to specific situations 
and objects within an operating environment, the artificial system 
must have significant experience operating in a multitude of different 
environments. The aim of addressing complex perception was outside 
the scope of this thesis due primarily to the complexity of developing 
such a system. There were also a lack of existing attempts as a reference 
point for the development of a perception system capable of pre-
emptive action to meet a target or goal. The resulting system of this 
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thesis attempts to begin to integrate the idea of perception with having 
the system undertake a series of predefined instructions that assist in 
allowing the system to preemptively understand the environment.

9.1.3  Autonomy

Autonomy, defined in this thesis based on a comprehensive analysis 
of the literature, refers to the ability of an artificial system to achieve 
a particular task. When considering autonomy in this manner it is 
clear that the resulting system of this thesis has achieved a level of 
autonomy. This level of autonomy is restrictive  as the robotic system 
still requires a significant amount of human intervention to complete 
simple tasks. This human intervention takes the form of control over 
the environment and preventing the robot from making errors critical 
to the successful completion of the robotic pick and place task.

Autonomy has additional limitations on the suitability of the resulting 
robotic system to practical applications. By requiring the intervention of 
humans in the robotic construction process, the system has limited use 
cases within the architecture and construction industries in its present 
state. However, using the metrics of autonomy presented earlier, this 
system can be evaluated as to the relevance and success of the system in 
achieving a suitable level of autonomy. Firstly, collecting environment 
information is manifested in this system autonomously through an 
environment sensor and requires no human input to function successfully. 
Secondly, environment perception is addressed in terms of gathering 
information but not intelligently preempting critical decision-making 
processes. Thirdly, localisation is addressed through this system by 
relating collected environment information to the position of the robot 
to localise it within the operating environment. Fourthly, a minimal 
amount of rudimentary decision making is undertaken by the system in 
terms of what object to initiate interaction with first. The system does 
not make any further attempts to implement complex decision-making 
processes. Finally, motion instruction execution is dealt with through ROS 
thereby exhibiting the level of autonomy that is inherent in the system. 



1 4 1D i s c u s s i o n

The combination of these five behaviours dictates the level of autonomy 
that an artificial robotic system possesses. Based on the resulting system 
of this thesis it is clear that the system obtains a moderate level of 
autonomy, capable of medium complexity tasks, however, it is unable 
to be classed as fully autonomous due to the requirement for human 
interaction in several critical stages of the wall construction process.

9.1.4  Decision making

Decision making is a fundamental consideration of an intelligent system 
and serves to act as a differentiator between simplistic artificial systems and 
artificial systems that would be considered intelligent. When evaluating 
the outcomes of this thesis in terms of being able to make decisions, 
specific abilities as discussed earlier, offer a means of relating decision-
making theory to practical outcomes. Decision making can be thought 
of as having the ability to evaluate the current state of the operating 
environment and, based on this information, execute instructions on the 
robot that makes use of this information to inform the actions of the 
robot. Decision making has been implemented in the final prototype of 
this thesis by requiring the robot to decide what position a block should 
be placed in a user-defined block wall structure. Through the use of deep 
learning algorithms, the robotic system decides what the orientation 
of each block is and in turn, which pile of blocks to use to construct 
the correct wall structure. Decision making is a fundamental process 
in intelligent systems delivering more appropriate approaches to the 
undertaking of tasks than those artificial systems without decision making.

9.1.5  Learning

Learning and the process of learning have been less widely investigated 
through the development of this thesis. This is primarily due to the 
complexity of implementing learning systems in robotic processes that 
rely on accurate mappings of the operating environment to function 
correctly. While not actively implemented to the extent required to call 
the process learning throughout the development of the robotic pick and 
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place system, elements of the learning process have been implemented 
to improve the performance of the system. Brooks (2014) suggests that 
“Most of what people do in their day to day lives is not problem-solving 
or planning, but rather it is routine activity in a relatively benign, but 
certainly dynamic, world” (p. 1) and as such pre-programming, the ability 
to solve specific problems that the system is expected to encounter, 
can and does constitute a level of self-learning. This level of self-
learning has been implemented through the design process to formalise 
complex underlying systems in terms that are useful to the robot.

9.2 Autonomous vehicles

The role of autonomous vehicles throughout the development of this 
thesis has been to act as a roadmap/framework for the development of an 
autonomous robotic construction system. The direction and/or outcomes 
of each prototype have evolved to follow a similar direction to that of the 
development of autonomous vehicles over the last ten years. Given the 
complexity of an autonomous vehicle, the progress of this research has not 
completed the autonomous vehicle roadmap. However, progress has been 
made towards translating portions of the framework from autonomous 
vehicles to robotic pick and place operations. This includes, operating 
environment visual information gathering and using this information 
to make decisions about the best course of action for the system to take 
in order to achieve the required task of constructing a block wall. 

9.3 Limitations

Throughout the design process, several limitations became apparent. 
These limitations primarily related to issues in accurately translating 
physical operating environment variables into digital terms useful to 
the robot. These limitations can be broadly categorised into two areas; 
environment and technical. Both groups of limitations are restrictive to 
the development of the research. However, environmental limitations 
can be more easily developed out of the system due to the relative 
ease in manipulating the physical environment to better suit the 
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operating conditions of the robot. In contrast, technical limitations 
require a considerable amount of technical competence to develop 
comprehensive solutions to primarily high-level programmatic issues.

When individually examining the limitations of the final outcomes of this 
thesis two fundamental limitations present themselves as critical issues 
to the overall success of autonomous robotic pick and place operations 
for architectural construction. Firstly, operating environment setup. Strict 
limitations are required in order to allow the robot to function successfully 
in the prescribed operating environment. The objects with which the robot 
is required to interact must not interfere with each other and external 
clutter must be removed in order to map the operating environment with 
enough clarity to undertake construction tasks. Secondly, the limitations 
of the technical aspects of the robot environment interaction process 
limit the feasibility of this prototype. This limitation relates to the 
complexity of differentiating between objects in the operating environment 
ie.objects that are not in the same plane as the operating environment 
ground surface. This is a significant limitation that restricts the overall 
ability of the robotic system to perform complex construction tasks.

9.4 Opportunit ies

Several opportunities exist around these limitations in which the further 
development of this research could enhance the ability of the system to 
perform complex construction tasks. Opportunities primarily exist to 
develop a more complex operating environment mapping system capable of 
multi-angle object detection and recognition. This would allow a developed 
robotic system to grasp a group of blocks without the placement of such 
blocks being essential to the success of the grasping operation. In addition, 
greater environment mapping accuracy would allow the robotic system to 
begin to make more complex decisions about how to best interact with 
the environment thereby internally evaluating the best course of action 
to take given the information it has about the operating environment. 

Further opportunities also exist in which to continue the development of 
this research. Firstly, implementing an image-based processing system to 
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identify the location of blocks within the environment would have two 
significant benefits; firstly, processing performance would significantly 
increase due to the ability for computational system to more quickly 
process the image data; secondly, the implementation of a more complex 
deep learning algorithm would be advantageous due to the system using an 
image-based framework over a point cloud framework. The combination of 
these two opportunities suggests a higher level of task execution complexity 
could be achieved if additional resources were attributed to the research.

The outcomes of this design-based research have developed a competent 
robotic system capable of executing pick and place operations in a 
controlled environment. Additionally, this system is capable of acting 
with a level of intelligence and autonomy that begins to demonstrate 
the implications of such a system on the architecture and construction 
industries. Although several limitations reduce the viability of 
the system, a significant number of opportunities exist that could 
develop this research into a fully autonomous construction tool.
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Robotic fabrication and robotic construction are two essential developments 
in the construction industry. Both of these construction methodologies 
provide a means of increasing the rate at which complex architectural 
structures can be built. The development of autonomous systems within this 
industry is vital to improving the abilities of robotic systems to undertake 
essential construction tasks with a better level of competency than human 
workers. This thesis has developed a robotic system capable of autonomously 
constructing a simple block wall through the use of real-time feedback, 
artificial intelligence algorithms and complex decision-making processes.

Essential to the development of the outcomes of this thesis are critical 
aspects of the literature, which provide a direction to the scope of the 
research. Firstly, autonomy was identified as a critical contributor to 
an intelligent system with the level of autonomy contributing directly 
to the abilities of the robotic system. Secondly, perception, the ability 
to make sense of the environment, is an equally important descriptor 
of an intelligent robotic system. Perception allows a robotic system to 
act responsively to changes in operating environment conditions in a 
manner that is consistent with existing intelligent systems. Thirdly, 
decision making contributes to the intelligence of a robotic system by 
allowing such a system to critically evaluate the state of the operating 
environment and then act most appropriately in order to achieve a pre-
defined goal. Finally, feedback loops provide an intelligent robotic system 
with a means of understanding changes in the operating environment 
and adapting future actions to these changes. The combination of 
these key theoretical elements define the structure of robotic systems 
intending to operate intelligently in a variety of environments.

The resulting outcomes of this research are two robotic systems with a 
similar set of capabilities however, one develops through learning while 
the other is conventionally programmed to interact with the operating 
environment. These two systems demonstrate different levels of intelligence 
based on the two different approaches to environment interaction. Prototype 
Two develops a means of allowing the robot to interact with objects in the 
operating environment. In contrast Prototype Three resets to conventional 



1 4 9C o n c l u s i o n

methods of environment interaction however the interface between the 
operator and the robotic system is defined by the operator providing the 
robot with an image from which it is to construct a block wall structure. 

The potential for this research to form the beginnings of foundational 
changes to the architecture and construction industries should not be 
understated. The implications of autonomous robotic systems that can 
successfully execute complex construction tasks is significant. These 
systems can operate consistently for extended periods while maintaining a 
higher level of accuracy than any human construction worker could attain. 
This has significant implications for the future role of the architect in 
the construction environment with the potential for the architect to have 
greater control over the construction process by utilising autonomous 
robotic systems to manifest complex architectural structures.
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13.1 Robot Control Code

13.1.1  Main Control Program

#!/usr/bin/env python

import tf
import sys
import time
import math
import rospy
import capture
import file_io
import requests
from math import radians
from pprint import pprint
from block_wall import blockWall
from object_pose import PosePoint
from pick_object import PickPlace
from req_grip import gripperControl
from camera_pos import camera_capture
from wall_retention import wallRetention
from requests.auth import HTTPDigestAuth
from motion_control import MotionControl
from fail_position import failed_exec_pos

class mainControl():

    def __init__(self):

        wallRetention().write_base()

  

  url = ‘http://192.168.125.1/rw/iosystem/signals/gripper_open?action=set’
        payload = {‘lvalue’: 1}
        self.r = requests.post(

            url, data=payload, auth=HTTPDigestAuth(‘Default User’, ‘robotics’))

    def number_blocks(self):
        file_main = file_io.read_file(

            ‘/home/harrison/Desktop/Share/point_cloud/no_blocks.csv’, ‘n’)
        if file_main[0] == ‘None’:
            no_blocks = 0
        else:

            no_blocks = int(file_main[0])

        print ‘[INFO]: Number of blocks {}.’.format(no_blocks)

        return no_blocks

    def pick_targets(self):
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        # Read in the coordinate values from rhino
        x_values = file_io.read_file(

            ‘/home/harrison/Desktop/Share/point_cloud/motion_commands.csv’, ‘x’)
        y_values = file_io.read_file(

            ‘/home/harrison/Desktop/Share/point_cloud/motion_commands.csv’, ‘y’)
        z_values = file_io.read_file(

            ‘/home/harrison/Desktop/Share/point_cloud/motion_commands.csv’, ‘z’)

        # Split list into each block

        point_list = [[[float(x_values.pop(0)),
                        float(y_values.pop(0)),
                        float(z_values.pop(0))]
                       for _ in range(4)]
                      for _ in range(self.number_blocks())]

        pprint(point_list)

        return point_list

    def point_capture(self):

        # Move to camera capture position

        move = MotionControl([camera_capture()])

        move.main()

        # Wait for the robot to move to the capture position
        time.sleep(1)
        # Execute the pointcloud capture

        capture.main()

        # Wait for processing in rhino
        time.sleep(5)

    def execute_motion(self):

        for i, block in enumerate(self.pick_targets()):
            print ‘[INFO] Loop {}’.format(i)

            rot_angle = PosePoint(block[0], block[1], block[2])
            print ‘[INFO]: Rotation Angle: {}’.format(rot_angle.z_angle())

            quaternion_rotation = tf.transformations.quaternion_from_euler(

                rot_angle.z_angle(), radians(0), radians(180))
            print ‘[INFO]: Quaternion Rotation:’

            pprint(quaternion_rotation)

            centre_point = block[3]
            print ‘[INFO]: Centre Point: {}’.format(centre_point)

            quaternion_rotation = list(quaternion_rotation)

            for item in quaternion_rotation:
                centre_point.append(item)

            print ‘[INFO]: Motion Target: {}’.format(centre_point)

            print ‘[INFO]: Executing pick operation’

            pick_object = PickPlace(‘pick’, [centre_point], 75, self.r)
            pick_object.main()
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            print ‘[INFO]: Executing place operation’

            place_object = PickPlace(

                ‘place’, [wallRetention().write_file()], 75, self.r)
            place_object.main()

    def main(self):

        while len(wallRetention().readin_file()) > 0:
            self.point_capture()

            while self.number_blocks() == 0:
                time.sleep(8)
                self.main()

            self.execute_motion()

            self.main()

if __name__ == “__main__”:

    try:

        motion = mainControl()

        motion.main()

    except rospy.ROSInterruptException:

        pass
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13.1.2  Wall Generation Program
#!/usr/bin/env python

import tf
from pprint import pprint
from math import degrees, radians

class blockWall(object):

    ‘’’
    Class to generate the coordinate positions of a simple linear block wall

    Usage: <block_length>(block length in mm),
           <block_width>(block width in mm),
           <block_height>(block height in mm),
           <wall_length>(number of blocks in a row),
           <wall_height>(number of rows),

           <start_point>([x, y, z]),

           <wall_direction>(x, -x, y, -y),

           <mortar_spacing>(spacing between bricks in mm)
           <row_offset>(offset between alternate rows in mm)
    ‘’’

    def __init__(self, block_length, block_width, block_height, wall_length, wall_height, 
start_point, wall_direction, mortar_spacing, row_offset):

        self.block_length = block_length

        self.block_width = block_width

        self.block_height = block_height

        self.wall_length = wall_length

        self.wall_height = wall_height

        self.start_point = start_point

        self.wall_direction = wall_direction

        self.mortar_spacing = mortar_spacing

        self.row_offset = row_offset

    def height_control(self):
        ‘’’
        Function to generate the robot targets for the specified number of rows
        ‘’’

        place_list = []

        for i in range(self.wall_height):
            increment = self.block_height * i

            if i % 2 == 0:
                place_list.append(self.row_control(‘norm’, self.start_point[2] + (self.
block_height + increment)))

            if i % 2 != 0:
                place_list.append(self.row_control(‘alt’, self.start_point[2] + (self.
block_height + increment)))

        return place_list
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    def row_control(self, norm_alt, plane_height):
        ‘’’
        Function to generate block placement coordinates for inputs
        function allows for the specification of the direction in which the wall is
        generated from the start point
        ‘’’

        mortar_spacing = self.mortar_spacing

        # The rotation angle of the blocks for a wall to be constructed perpendicular to 
the robot

        x_wall_angle = tf.transformations.quaternion_from_euler(radians(0), radians(0), 
radians(180))
        x_wall_angle = list(x_wall_angle)

        # The rotation angle of the blocks for a wall to be constructed parallel to the robot
        y_wall_angle = tf.transformations.quaternion_from_euler(radians(90), radians(0), 
radians(180))
        y_wall_angle = list(y_wall_angle)

        # Start point coordinates

        x_coordinate = self.start_point[0]
        y_coordinate = self.start_point[1]

        point_list = []

        if norm_alt == ‘norm’:

            # Test to determine the direction of the wall based on user input

            if self.wall_direction == ‘-x’ or self.wall_direction == ‘x’:
                # Loop for the number of blocks in each row
                for i in range(1, self.wall_length + 1):

                    # Empty point list

                    point = []

                    # Test which direction the wall is going in
                    if self.wall_direction == ‘-x’:

                        point.append(self.start_point[0] - (self.block_length * i) - (mortar_
spacing * i))

                        point.append(y_coordinate)

                    if self.wall_direction == ‘x’:

                        point.append(self.start_point[0] + (self.block_length * i) + 
(mortar_spacing * i))

                        point. append(y_coordinate)

                    # Append the height of the block as the z coord place value

                    point.append(plane_height)

                    point_list.append(point)

                # Add the quaternion description to the end of each point in the list
                for item in point_list:
                    for angle in x_wall_angle:
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                        item.append(angle)

                return point_list

            # Test to determine the direction of the wall based on user input

            if self.wall_direction == ‘-y’ or self.wall_direction == ‘y’:

                # Loop for the number of blocks in each row
                for i in range(1, self.wall_length + 1):

                    # Empty point list

                    point = []

                    # Test which direction the wall is going in
                    if self.wall_direction == ‘-y’:

                        point.append(x_coordinate)

                        point.append(self.start_point[1] - (self.block_length * i) - (mortar_
spacing * i))

                    if self.wall_direction == ‘y’:

                        point.append(x_coordinate)

                        point.append(self.start_point[1] + (self.block_length * i) + 
(mortar_spacing * i))

                    # Append the height of the block as z coord place value

                    point.append(plane_height)

                    point_list.append(point)

                # Add th quaternion description to the end of each point in the list
                for item in point_list:
                    for angle in y_wall_angle:
                        item.append(angle)

                return point_list

        if norm_alt == ‘alt’:

            # Test to determine the direction of the wall based on user input

            if self.wall_direction == ‘-x’ or self.wall_direction == ‘x’:
                # Loop for the number of blocks in each row
                for i in range(1, self.wall_length + 1):

                    # Empty point list

                    point = []

                    # Test which direction the wall is going in
                    if self.wall_direction == ‘-x’:

                        point.append((self.start_point[0]) - (((self.block_length * i) - 
(mortar_spacing * i)) - (self.row_offset)))

                        point.append(y_coordinate)

                    if self.wall_direction == ‘x’:

                        point.append(((self.start_point[0]) + ((self.block_length * i) + 
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(mortar_spacing * i)) + (self.row_offset)))

                        point. append(y_coordinate)

                    # Append the height of the block as the z coord place value

                    point.append(plane_height)

                    point_list.append(point)

                # Add the quaternion description to the end of each point in the list
                for item in point_list:
                    for angle in x_wall_angle:
                        item.append(angle)

                return point_list

            # Test to determine the direction of the wall based on user input

            if self.wall_direction == ‘-y’ or self.wall_direction == ‘y’:

                # Loop for the number of blocks in each row
                for i in range(1, self.wall_length + 1):

                    # Empty point list

                    point = []

                    # Test which direction the wall is going in
                    if self.wall_direction == ‘-y’:

                        point.append(x_coordinate)

                        point.append(((self.start_point[1]) - ((self.block_length * i) - 
(mortar_spacing * i)) - (self.row_offset)))

                    if self.wall_direction == ‘y’:

                        point.append(x_coordinate)

                        point.append(((self.start_point[1]) + ((self.block_length * i) + 
(mortar_spacing * i)) + (self.row_offset)))

                    # Append the height of the block as z coord place value

                    point.append(plane_height)

                    point_list.append(point)

                # Add the quaternion description to the end of each point in the list
                for item in point_list:
                    for angle in y_wall_angle:
                        item.append(angle)

                return point_list
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13.1.3  Motion Instructions
#!/usr/bin/env python

import tf
import sys
import time
import rospy
import irb1200_home
import moveit_commander
import moveit_msgs.msg
import geometry_msgs.msg
from math import radians, degrees

class MotionControl(object):

    def __init__(self, target_list):

        self.target_list = target_list

        moveit_commander.roscpp_initialize(sys.argv)

        rospy.init_node(‘irb1200_motion_commands’, anonymous=True)

        self.robot = moveit_commander.RobotCommander()

        self.scene = moveit_commander.PlanningSceneInterface()

        self.move_group = moveit_commander.MoveGroupCommander(‘irb1200_arm’)

        self.display_trajectory_publisher = rospy.Publisher(

            ‘/move_group/display_planned_path’, moveit_msgs.msg.DisplayTrajectory, queue_

size=20)

    def start_robot(self):

        # Print for debugging
        print ‘Reference frame: {}’.format(

            self.move_group.get_planning_frame())

        print self.move_group.get_end_effector_link()

        print ‘Robot Groups’

        print self.robot.get_group_names()

        print ‘Printing robot state’

        print self.robot.get_current_state()

        print ‘’

    def motion_points(self):

        # Generate a grid of points

        test2 = tf.transformations.euler_from_quaternion(
            [0.00, 0.707106, 0.0, -0.707106])

        test2 = list(test2)

        z_angle = radians(-180.0 + 38.660827)
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        y_angle = radians(-90.0)
        x_angle = radians(-10.0)

        test_point = tf.transformations.quaternion_from_euler(

            x_angle, y_angle, z_angle)

        print ‘{}\n’.format(self.target_list)

        print ‘Executing motion . . .’

        # For each point in the grid move to that point
        for target in self.target_list:
            pose_target = geometry_msgs.msg.Pose()

            pose_target.orientation.w = target[3]
            # pick_pose[0]  # 0.707106781187
            pose_target.orientation.x = target[4]
            pose_target.orientation.y = target[5]  # pick_pose[1]  # 0.0000
            # 0.0000  # -0.707106781187
            pose_target.orientation.z = target[6]  # pick_pose[2]
            pose_target.position.x = float(round(target[0] * 0.001, 4))
            pose_target.position.y = float(round(target[1] * 0.001, 4))
            pose_target.position.z = float(round((target[2]) * 0.001, 4))
            self.move_group.set_pose_target(pose_target)

            self.move_group.go(wait=True)

            # If motion failed go to home position

            # and end motion execution

            if self.move_group.go(wait=True) == False:

                home = irb1200_home.abb1200MoveGroupInteface()
                home.go_to_joint_state()

                break

            print ‘Moved to target {}’.format(target)

            print ‘{}\n’.format(self.move_group.get_current_pose())

            self.move_group.clear_pose_targets()

    def main(self):

        self.start_robot()

        self.motion_points()
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13.1.4  Grasping Instructions
#!/usr/bin/env python

import time
from req_grip import gripperControl
from pick_motion import MotionControl

class PickPlace(object):

    def __init__(self, pick_place, grab_release_point, offset_point, session):

        self.pick_place = pick_place

        self.approach_point = [[grab_release_point[0][0],
                                grab_release_point[0][1], grab_release_point[0][2] + 
offset_point,

                                grab_release_point[0][3], grab_release_point[0][4],
                                grab_release_point[0][5], grab_release_point[0][6]]]

        self.grab_release_point = grab_release_point

        self.withdraw_point = self.approach_point

        self.session = session

    def approach(self):
        ‘’’
        Function executed when approaching a pick / place target

        ‘’’

        # if executing a pick operation

        if self.pick_place == ‘pick’:

            # Open the grippers

            gripperControl().open_close(‘open’, self.session)

            # Wait for 2 seconds to ensure grippers are fully open
            time.sleep(0.25)

        # if executing a place operation do nothing

        elif self.pick_place == ‘place’:

            pass

        # Move to the approach point

        motion = MotionControl(self.approach_point)

        motion.main()

    def grab_release(self):
        ‘’’
        Function executed when either picking or placing an object

        ‘’’

        # Move to the pick / place target

        motion = MotionControl(self.grab_release_point)

        motion.main()
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        # if executing a pick operation

        if self.pick_place == ‘pick’:

            # Close the grippers

            gripperControl().open_close(‘close’, self.session)

            # Wait for 2 seconds to ensure object is properly grasped
            time.sleep(0.25)

        # if executing a place operation

        elif self.pick_place == ‘place’:

            # Open the grippers

            gripperControl().open_close(‘open’, self.session)

            # Wait for 2 seconds to ensure grippers are fully open
            time.sleep(0.25)

    def withdraw(self):
        ‘’’
        Function executed when withdrawing from a pick / place target
        ‘’’

        # Move to the withdraw target
        motion = MotionControl(self.withdraw_point)

        motion.main()

    def main(self):
        ‘’’
        Execute the pick and place operation

        ‘’’

        self.approach()

        self.grab_release()

        self.withdraw()
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13.1.5  Block Rotation Angle
#!/usr/bin/env python

from sympy import Point3D, Line
from math import degrees, radians

class PosePoint(object):

    ‘’’
    Generates the centre point and z axis rotation for an orthogonal object defined by three 
points.

    Todo:

    Add functionality to calculate x and y axis rotation

    Usage: PosePoint(<origin[x, y, z]>, <point_1[x, y, z]>, <point_2[x, y, z]>)

    ‘’’

    def __init__(self, point_1, point_2, point_3):
        self.point_1 = point_1

        self.point_2 = point_2

        self.point_3 = point_3

    def pose_point(self, point):
        ‘’’
        Function to seperate a point into x, y and z components.

        ‘’’

        x = float(point[0])
        y = float(point[1])
        z = float(point[2])

        return x, y, z

    def plane_points(self):
        ‘’’
        Convert entered floating point values into native 3D point values
        for future use
        ‘’’

        origin = Point3D(self.pose_point(self.point_1))
        max_y = Point3D(self.pose_point(self.point_2))
        min_y = Point3D(self.pose_point(self.point_3))

        return origin, max_y, min_y

    def normal_vector(self):
        ‘’’
        Generate two vectors which describe the short and long sides of an orthogonal

        block

        ‘’’
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        # Get the three points required to define a plane
        origin, max_y, min_y = self.plane_points()

        # Calculate the distance between the origin and the first point

        length_one = origin.distance(max_y)

        # Calculate the distance between the origin and the second point

        length_two = origin.distance(min_y)

        # Print the lengths to the terminal for debugging
        print ‘Length One: {}’.format(float(length_one))

        print ‘Length Two: {}’.format(float(length_two))

        # Seperate the origin into coordinate components

        x_point = origin.x

        y_point = origin.y

        z_point = origin.z

        # Offset y component to calculate a normal vector for angle calculation
        new_x_point = y_point - 100

        # Generate a new point

        test_point = Point3D(x_point, new_x_point, z_point)

        # Generate a new base line for angle measurement
        line_1 = Line(origin, test_point)

        return line_1, length_one, length_two

    def z_angle(self):

        # Get the three required points

        origin, max_y, min_y = self.plane_points()

        # Get the three required vectors

        normal_vector, length_one, length_two = self.normal_vector()

        # Test to determine which vector is the shortest

        # This is used to determine which side of the block is the shortest

        if length_one > length_two:

            line_2 = Line(origin, min_y)

            # Calculate the angle between the base line and the shortest

            # side of the block

            line_angle = normal_vector.angle_between(line_2)

            if degrees(line_angle) <= 5:

                line_angle = 0
                

            # Return the required rotation angle for the robot to align
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            # correctly with the block
            print degrees(float(-line_angle))

            # return float(-line_angle - radians(90))
            return float(-line_angle)

        elif length_one < length_two:

            line_2 = Line(origin, max_y)

            # Calculate the angle between the base line and the shortest

            # side of the block

            line_angle = normal_vector.angle_between(line_2)

            if degrees(line_angle) <= 5:

                line_angle = 0

            # Return the required z axis rotation for the robot to align
            # correctly with the block
            print degrees(float(-line_angle))

            # return float(-line_angle - radians(90))
            return float(-line_angle)

    def centre_point(self):
        ‘’’
        Calculates the centre point for a block defined by three points
        ‘’’

        # Get the three required points

        origin, max_y, min_y = self.plane_points()

        # Caculate the centre point

        centre_point = [(float((max_y.x + min_y.x) / 2)),
                        (float((max_y.y + min_y.y) / 2)), float(max_y.z)]

        return centre_point
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13.1.6  Capture Pointcloud
Learn more or give us feedback

#!/usr/bin/env python

import csv
import time
import rospy
from sensor_msgs.point_cloud2 import read_points_list, PointCloud2

class camCap:
  

  def __init__(self):
    self.sub_once = rospy.Subscriber(“/camera/depth/color/points”, PointCloud2, self.

callback)

    

  def callback(self, data):
    

    start_time = time.time()

    print ‘[INFO]: Starting point cloud capture at...’

    data_list = read_points_list(data)

    with open(‘/home/harrison/Desktop/Share/point_cloud/final_points.csv’, ‘w’) as new_file:
        csv_writer = csv.writer(new_file, delimiter=’,’)

        csv_writer.writerow(‘xyzc’)

        for line in data_list:
            csv_writer.writerow(line)

    end_time = time.time()

    print ‘[INFO]: Data extraction complete at...’

    print ‘[INFO]: Processing complete in {}’.format(end_time - start_time)

    self.sub_once.unregister()

def main():

    rospy.init_node(‘irb1200_motion_commands’, anonymous=True)

    camCap()
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13.1.7  Wall Retention
#!/usr/bin/env python

import file_io
import random
from pprint import pprint
from block_wall import blockWall

class wallRetention:

    def write_base(self):

        wall_selection = random.randint(1, 3)
        print wall_selection

        if wall_selection == 1:

            wall_position = [250, 280, 2]
            wall_direction = ‘x’

        elif wall_selection == 2:

            wall_position = [250, -280, 2]
            wall_direction = ‘x’

        elif wall_selection == 3:

            wall_position = [600, -140, 2]
            wall_direction = ‘y’

        # Define wall variables

        mortar_spacing = 10
        alt_row_offset = 20
        no_rows = int(20/4)

        # Generate the wall robot targets

        place_targets = blockWall(70, 30, 30, 4, no_rows, wall_position,
                                  wall_direction, mortar_spacing,

                                  alt_row_offset)

        random_list = []

        for item in place_targets.height_control():
            for coord in item:
                random_list.append(coord)

        # Write the file to shared directory

        file_io.save_file(‘/home/harrison/Desktop/Share/point_cloud/base_wall.csv’, random_

list)

        print ‘[INFO]: Wall block coordinates generated’



1 7 8

    def readin_file(self):

        # Readin the target coordinate file

        test_file = file_io.read_line(‘/home/harrison/Desktop/Share/point_cloud/base_wall.

csv’)

        # Print for debugging
        pprint(test_file)

        return test_file

    def write_file(self):

        # Read in the wall target list
        target = self.readin_file()

        actual_target = target.pop(0)

        final_targets = []

        for item in actual_target:
            # Convert the targets to floating point values

            final_targets.append(float(item))

        # Save the file with the used target removed
        file_io.save_file(‘/home/harrison/Desktop/Share/point_cloud/base_wall.csv’, target)

        print ‘[INFO]: Target extracted & file written’

        # Return the target for robot execution
        return final_targets
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13.1.8  Request Tool Action
#!/usr/bin/env python

import time
import requests
from requests.auth import HTTPDigestAuth

class gripperControl:

    def gripper_url(self, open_close, value, s):

        if open_close == ‘open’:

            url = ‘http://192.168.125.1/rw/iosystem/signals/gripper_open?action=set’
            payload = {‘lvalue’: value}

            r = requests.post(url, data=payload, auth=HTTPDigestAuth(‘Default User’, 
‘robotics’), cookies=s.cookies)
            print ‘[INFO]: Status {}’.format(r.status_code)

            print ‘[INFO]: Text {}’.format(r.text)

            print ‘[INFO]: Cookies {}’.format(r.cookies)

        elif open_close == ‘close’:

            url = ‘http://192.168.125.1/rw/iosystem/signals/gripper_close?action=set’
            payload = {‘lvalue’: value}

            r = requests.post(url, data=payload, auth=HTTPDigestAuth(‘Default User’, 
‘robotics’), cookies=s.cookies)
            print ‘[INFO]: Status {}’.format(r.status_code)

            print ‘[INFO]: Text {}’.format(r.text)

            print ‘[INFO]: Cookies {}’.format(r.cookies)

    def open_close(self, open_close, session):

        if open_close == ‘open’:

            self.gripper_url(‘open’, 0, session)
            self.gripper_url(‘close’, 0, session)
            self.gripper_url(‘open’, 1, session)
            time.sleep(0.5)

        elif open_close == ‘close’:

            self.gripper_url(‘open’, 0, session)
            self.gripper_url(‘close’, 0, session)
            self.gripper_url(‘close’, 1, session)
            time.sleep(0.5)



1 8 0


